
SIAM r. COMPUT.
Vol. 5. No.3, September 1976

THE REI,ATION BETWEEN
COMPUTATIONAL AND DENOTATIONAL PROPERTIES

FOR SCOTT'S D",,-MODELS OF THE LAMBDA-CALCULUS*

CHRISTOPHER P. WADSWORTHt

Abstract. A prominent feature of the lattice-theoretic approach to the theory of computation due
to D. Scott is the construction of solutions for isomorphic domain equations. One of the simplest of
these is a domain isomorphic to the space of all continuous functions from itself to itself, providing the
first "mathematical" model for the lambda-calculus of Church and Curry.

However, solutions of such domain equations are not unique; in particular, the lambda-calculus
has many models. So the question arises as to which one should choose for computational purposes.
We consider the relation between equivalence of meaning in Scott's models and the usual notions of
conversion and reduction. By extending the lambda-calculus to allow approximate (i.e., partially
specified) expressions and approximate reductions, we show that every expression determines a set of
approximate normal forms of which it is the limit in Scott's model. Two immediate corollaries give a
characterization of those expressions whose value is the least element of the model and further
justification for the result that various lambda-calculus fixed-point combinators are all equal to the
lattice-theoretic least fixed-point operator.

We show also that this leads to a characterization of equivalence which has a natural counterpart
for other languages; specifically, expressions have the same meaning in Scott's model just when either
can serve in place of the other in any "program" without altering its "global" properties.

Key words. lambda-calculus, lattices, isomorphic domain equations, projections, theory of
computation, denotational semantics, equivalence, termination, head normal form, approximations,
approximate normal form, incompleteness, fixed-point operators

Introduction. The purpose of this paper is to give an overview of recent
results about the A-calculus models discovered by Scott [17] in 1969, and to
discuss how they reflect, and can be interpreted in terms of, the assumptions
underlying the lattice-theoretic approach to the theory of computation. A few of
the longer, more technical proofs have been omitted to make the development
more readable and will be given in forthcoming papers [23], [24].

Ultimately our study concerns the acceptability of (some) language defini­
tions based on the lattice-theoretic approach. This theory provides solutions for
isomorphic domain equations, which are needed to define denotational semantics
for many programming languages. However, solutions of such domain equations
are not unique, and several different construction methods are now available. As a
result, languages defined in this way may have many possible semantics and the
question arises as to which of these is appropriate for reasoning about programs
written in the language.

* Received by the editors March 13, 1975, and in revised form November 23,1975.
t Department of Systems and Information Science, Syracuse University, Syracuse, New York.

Now at Department of Computer Science, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ,
Scotland. This work was supported by National Science Foundation under Grant GJ-41540 and
previously by a U.K. Science Research Council Grant to C. Strachey, Programming Research Group,
Oxford University Computing Laboratory, Oxford, England.

4liH

490 CHRISTOPHER P. WADSWORTH

of calculation rules (the "copy-rule", simplification rules for conditionals, arith­
metic, etc.) for transforming expressions; a set of ordered pairs (n, m) of integers
may then be called a computed function of (2) if f(ii) can be transformed to m by
some sequence of applications of the rules, where it and m denote numerals
corresponding to the integers nand m,respectively. Under suitable restrictions on
the language, it can be shown that equations such as (2) can always be solved
uniformly-there is always a least-defined solution-and that the rules can be
chosen and applied so that the algorithmically computed function agrees with this
solution. This is well-known as the first recursion theorem of Kleene [9, §66,
Thm. 26]. The results in §5 below provide a A-calculus analogue of this result;
indeed, when applied to the special case of several A-calculus fixed-point
operators they are essentially the same result (see also Morris [11]). Our study is
thus exactly the same in nature as these earlier ones; the novel feature, as we have
indicated, is that we consider here a language whose semantics requires solutions
of domain equations.

After a quick review of the A-calculus in § 1, we present its semantics in §2
for arbitrary solutions, as complete lattices, of the isomorphism (1). In §3 we
extract the properties of Scott's particular solution, Doc, we shall use and give
some examples. Section 4 departs from the main study of models to introduce the
equivalent notions of solvability and head normal form which playa vital role in
interpreting the later results and understanding their proofs. In § 5 we generalize
the ordinary notion of reduction to study "approximations" and develop their
"limit" properties, which lead in §6 to the mentioned characterization of equiva­
lence of meaning in Doc. Section 7 then discusses one of the more surprising
properties of Doc-the possibility of equivalences between normal forms and
expressions with no normal form-and its implications.

Though much of the development is highly technical, nevertheless the results
provide some new insights which should apply equally to more expressive and
more realistic languages; some indications will be given in the conclusion.

1. The A-calculus. We assume familiary with the basic theory as presented,
e.g., in [7], but give a brief summary to fix our notation and terminology.

We assume denumerably many variables x, y, Z,' •• , x', y', ... , and define
the set of well-formed expressions, called terms, inductively as follows:

1. Every variable is a term.
2. If M and N are terms, so is the combination (MN), the parts M and N

being called its rator and rand, respectively.
3. If x is a variable and M is a term, then the abstraction (Ax.M) is a term, the

parts x and M being called its bv and body, respectively.
We shall use == for syntactic identity of terms and, to reduce the proliferation of
parentheses, we adopt the conventions that

(a) omitted parentheses in combinations associate to the left, e.g.,

xyzw ==«(xy)z)w),

(b) the scope of the dot" . " in an abstraction extends as far to the right as
possible, i.e., to the first unmatched ") " or to the end of the term if that
occurs first, and

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 491

(c) consecutive abstractions may be collapsed to a single one, e.g.,

Axyz.M==(Ax. (Ay. (Az.M»)

An occurrence of a variable x in a term M is free if it is not inside the body M'
of some part of M of the form Ax.M', and bound otherwise. FV(M) denotes the set
of variables occurring free in M. M is closed if FV(M) is empty, otherwise M is
open; closed terms are sometimes also called combinators.

The notion of a context is the "dual" of the notion of a subterm and is useful
for a uniform treatment of results for both open and closed terms. A context,
C[], consists of all parts of a term except that one subterm is missing (indicated
by the empty brackets); C[M] then denotes the result of filling the missing subterm
with M. Thus, the notation C[M] distinguishes a particular occurrence of M as a
subterm. Note that a statement that terms A, B differ only in an occurrence of
M, N, respectively, as a subterm, can then be expressed as the existence of a
context C[] such that A ==C[M] and B ==C[N]. We shall see several such uses of
contexts below when we compare the applicative properties of terms and their
substitution instances. Many contexts we meet will be head contexts, of the general
form

(Ax1X2'" xn.[])MtM2••• MnAtA2'" Am, n ~O, m ~O.

In particular examples, x], X2, ... , x, will typically be a list of free variables of the
terms being considered and Mb ... ,Mno A], ... ,Am will be closed terms; the
choice of M], ,M; determines corresponding substitution instances, and the
choice of A], , Am prescribes arguments for application of these substitution
instances as functions.

We shall write [N/ x]M for the substitution of N for (free occurrences of) x in
M. We omit a formal definition but assume it is given so that bound variables in M
are changed when necessary to prevent capture of free variables of N; e.g.,

[yz/ x](Ay.x(Ax.xy)) ==Aw.yz(Ax.xw),
where w is some variable different from x, y, and z. This ensures that substitution
is well-defined for all terms M and N; see [7, pp. 89-104] for a full discussion.

Terms are "evaluated" by eliminating abstractions as much as possible,
according to two replacement rules and an auxiliary rule allowing renaming of
bound variables:

1. a-conversion: Provided ye FV(M) , a term of the form C[Ax.M] may be
converted to C[Ay.M'], where M'==[y/x]M and C[] is any context.

2. f3-conversion: A term of the form R == (Ax.M)N is called a f3-redex and
R'==[N/x]M is called its contractum. In any term, the operation of
replacing an occurrence of R by R' is called a 13-contraction; in the other
direction, replacement of an occurrence of R' by R is called a 13-expansion
or f3-abstraction. A sequence of (possibly zero) f3-contractions is called a
f3-reduction, written X f3-red X'; when f3-abstractions may also be
included in a sequence of replacements, the sequence is called a 13-
conversion, written X f3-cnv X'.

3. n-conuersion: A term of the form Ax.Mx, with xeFV(M), is called an
n-redex, and then M is its contractum. The definitions of n-contractton,
etc., are analogous to those for f3-contraction, etc., in 2.

492 CHRISTOPHER P. WADSWORTH

When it is of no interest which rules are being applied, we write simply X redX' or
XcnvX'.

A term is said to be in normal form if it does not contain a redex as a subterm.
Terms in normal form are said to be distinct if they are not O'-interconvertible. A
term N in normal form is said to be a normal form of M iff M cnv N. (Again, we
may prefix f3- and/or TI- to these notions as appropriate; when used without a
prefix, we always mean f3-Tl-normal form.) It is readily seen that every term in
normal form can be written in the form

n~O, m~O,

with each Nalso in normal form; conversely, every such term is in f3-normal form
(and in f3-Tl-normal form if also N« =fo x, or if x, occurs free in ZNIN2 ... Nm-1).

Not all terms have a normal form. The two best-known examples are ~~,
Where ~== Ax.xx, and the so-called paradoxical combinator

Y" ==Af.(Ax.f(xx»(Ax.f(xx».
A third example is the term

J== Y,,(Af.Ax.Ay.x(fy»

which we shall see behaves very much like the identity 1==Ax.x.
For our discussion of interpretations and models, we summarize the theory as

a formal system. As such the A-calculus is an equational calculus; there is one
predicate symbol "=" and the formulae consist of all equations M =Nbetween
terms. The axioms and rules of inference are the usual ones for equality, plus the
three conversion rules:

AI. = is a substitutive equivalence relation:

(p) M=M

(0')
M=N
N=M

(T)
M=L;L=N

M=N

M=N
(Subst) C[M] =C[N]' for all contexts C[].

A2. conversion rules:

(a) Ax.M= Ay.[y/x]M, provided yeFV(M),

(f3) (Ax.M)N=[N/x]M,

Ax.Mx=M, provided xeFV(M).

Then, formally, M cnv N means that M =N is provable from these axioms, and
M red Nmeans that M =Nis provable without the use of the symmetry rule (0').
Prefixes 0'-, f3-, or TI- on cnv or red denote probability without some of the
conversion rules; e.g., M f3-redNmeans that M =Nis provable without the use
of (0'), (a) and (TI).

COMPUTATIONALANDDENOTATIONALPROPERTIES 493

Note that since (Ax.Mx)X f3-redMX, when xe FV(M), for all terms X, the
n-rule is equivalent to the requirement of (functional) extensionality:

MX = NX for all X
(Ext) M=N

More essentially, however, the 'l1-rule, when included, expresses a limitation on
possible interpretations; it says that all terms can be regarded as functions (which,
incidentally, we regard as equivalent if they have the same graph).

THEOREM1.1 (The Church-Rosser Theorem). If X cnv Y, there is a term Z
such that X red Z and Y red Z.Hence, if a term has two normal forms X and Y,
then X a-cnv Y.

THEOREM1.2 (The Standardization Theorem). If M has a normal form, then
M can always be reduced to normal form by normal-order reduction, defined as the
reduction in which each step is determined by contraction of the leftmost redex (i.e.,
the redex whose left-hand end is furthest to the left).

Two terms M and N will be said to be separable iff there is a (head) context
C[] such that C[M] cnv I=Ax.x and C[N] cnv K =Ax.Ay.x.

THEOREM1.3 (Bohm [5]). If M and N have distinct f3-'l1-normal forms, then
Mand N are separable.

Theorems 1.1 and 1.2 are well-known; in particular, Theorem 1.1 establishes
the consistency of the A-calculus system based on A1, AZ. (In the absence of a
negation operation, a formal system for the A-calculus is said to be inconsistent if
all equations between terms are provable, for which it suffices that 1=K is
provable, since II(KA)B f3-red A and KI(KA)B f3-red B for all terms A and B.)

Theorem 1.3 is, for distinct normal forms, a form of converse of the
Church-Rosser Theorem. The latter shows that distinct normal forms cannot be
proved equal by the conversion rules; Theorem 1.3 shows that if one were ever to
postulate, as an extra axiom, the equality of two distinct normal forms, the
resulting system would be inconsistent. So the truth of equations between terms
having a normal form is completely resolved by the theory of conversion-if any
two such terms with distinct normal forms have the same value in a model, then all
terms have the same value.

2. Lattice models of the A-calculus. Because of the type-free style of
application allowed in the A-calculus, the domain of any interpretation must
include (at least up to isomorphism) a significant portion of its own function space.
In this section we consider interpretations based on arbitrary solutions of the
isomorphism
(2.1) D=[D~D]

with D a complete lattice" and [D~D] the lattice of continuous functions from D
to D under the "pointwise" partial ordering. For a general orientation and the

2 For those who prefer, directed complete partial orderings (partially ordered sets with a least
element in which every directed subset has a least upper bound) may be used throughout without
significantly affecting our development or results. However, we prefer to work with complete lattices
for simplicity and. ease of comparison to Scott's papers (though the more sophisticated notions
associated with continuous lattices will not be used here).

494 CHRISTOPHER P. WADSWORTH

definitions of monotonicity, directed set, continuous function, projections, etc.,
we refer the reader to the referenced papers of Scott. We shall use the symbols [;;,
U, 1-, and T to denote, respectively, the partial ordering, the least upper bound
(l.u.b.) operation, the least element, and the greatest element of complete lattices.

Anticipating the notation of the particular solution to be studied later, we let
000 be any solution of (2.1), as a complete lattice, with more than one element,
and we express the isomorphism by two (continuous) functions

(2.2)

(2.3)

(2.4)

qt(cI>(x))= x, for all x E 000,

cI>(qt(f)) = i. for all tE [Doo~ Doo].
Let VAK, EXP and ENV denote the sets of all variables, terms and

environments, respectively. By an environment, p, we mean an association of
values in Dcowith all variables, so p :VAK ~ 000 and ENV is the set of all functions
from VAK to Dco. The interpretation of variables is extended to all terms by a
mapping

"If: EXP ~ [ENV ~ Dco].

We shall use the emphatic brackets [and] to enclose terms and write 'J1M](P)
for the value, or denotation, of M relative to the environment p. "If is defined
by structural induction, with one clause for each case in the syntax of terms:

(S1) 'JIlIx](p)=p[x],

(S2) 'JIlIMN](p) = cI>('JIlIM](p))('JIlIN](p)),
(S3) 'JIlIAx.M](p) = qt(Ad EDoo.'JIlIM](p[d/ x])),

where p[d/x]:: p' E ENV is given by p'[x] =d and p'[x'] = p[x'] for x' ~ x.
In (S1), the value of a variable x is ascertained by looking up its denotation in

p, which, in view of the functional nature of p, is achieved by application of p to x.
In (S2), the value of the rator M is interpreted as a function by application of cI>;
this function is an element of [000 ~ 000], so can be meaningfully applied to the
value of the rand N.

Clause (S3) is a little more involved. An abstraction Ax.M is naturally
interpreted as a function from Dco to Doo.When applied to any argument d E Doo,
the result of this function is the value of the body M in the environment p' identical
to p in all respects, except that the bound variable x is now associated with the
argument d. As d varies over 000, 'JIlIM](p[d/x]) determines a continuous
function, which is rendered as an element of Dooby the isomorphism qt. (That this
function is continuous is a consequence of the continuity of the isomorphism pair
cI>,qt and the fact that expressions fashioned out of variables and continuous
functions by typed abstraction and typed application are continuous in all their
free variables.)

It is important to notice the distinction between the language being defined
and the notation used to define it (the meta-language). In particular, note the two
different uses of the A-notation in (S3); on the left is the symbol "A" of the

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 495

type-free A-calculus, on the right we have the typed A-notation used to write
down an expression for the meaning of the type-free notation. The second usage is
convenient but is not essential to a presentation of the definition of '11; it can be
avoided at the cost of introducing a name for the function occurring as the
argument of 'I' (i.e., by writing:

(S3') r[Ax.M](p) = 'I'(f), where fed) = r[M](p[d/ x]».

To establish that the above interpretation of terms gives a model for the
A-calculus, we must say when equations between terms hold in 000, and show that
the axioms about equality and conversion are then satisfied. We define terms as
being semantically equivalent, or equal in 000, when they have the same value for
all associations of values with their free variables:

M =oooN iff V![M](p) = V![N](p) for all p EENV.

That this gives a substitutive equivalence relation is immediate from the corre­
sponding properties of equality of lattice elements. The validity of the conversion
rules then follows from the properties (2.3) and (2.4) of the isomorphism, obvious
results about V![M](p) being independent of values in p for variables not
occurring free inM,and a preliminary substitution lemma: For all termsMand N,
variables x, and environments p,

V![[N/x]M](p) = V![M](p[V![N](p)/x]).

The latter asserts that extending environments models substitution correctly; the
proof is a tedious but straightforward induction on the structure of M.

In outline we have proved
THEOREM 2.1. The interpretation (S1)-(S3) and the relation =000 provide a

model for the A-calculus system based on a-Bi-n-conoersion

Ma-{3-T/-cnv N implies M=OooN.

Since we shall always have in mind the fixed interpretation above, it is
convenient now to simplify our notation by

(i) allowing the terms themselves to stand for their values in 000, and
(ii) identifying elements of Doowith their image under the isomorphism <1>,'1'.
For closed terms the ambiguity in (i) is in any case not very great. Using the

semantic clauses (S1)-(S3) to fully expand V![M](p), we obtain an expression (of
the meta-language) which is independent of p, e.g.,

V![Ax.(Ay.yx)x](p) = 'I'(Ado E Ooo.<I>('I'(AdlEDoo.<I>(d1)(do»)(do»

=AdoE000.(AdiE 000.d1do)do

by property (2.4) and the identification convention (ii) for <1>,'1'. Apart from a
change of bound variable names, this last expression differs from the original term
only in the type indications for its bound variables. If M does contain free
variables, the ambiguity is only slightly greater; a similar expansion then shows
that V![M](p) depends only on the values of these free variables in the environ­
ment p.

496 CHRISTOPHER P. WADSWORTH

Thus the use of the terms themselves to denote their values is sufficiently
precise if we say that

1. free variables are regarded as ranging over Doo,
2. when a term is applied as a function we understand that its image under <I>

is intended,
3. when we write an abstraction Ax.M we understand that x is restricted to

ranging over 000, and by the abstraction we really mean the image of the
corresponding function under '1'.

By virtue of Theorem 2.1, the conversion rules preserve values so we' may use
them to manipulate terms used in this way as expressions for elements of Doo.
Whenever we do need to be careful about distinguishing between terms and their
values, or between elements of Doo and their image in [Doo ~ Doo], or for emphatic
reasons, we can fall back on the more formal notation and write in all the
appropriate 'Y,p,<1>,'1', etc., but most of the time we can tolerate the ambiguity.

In general the converse of the implication in Theorem 2.1 cannot hold for
arbitrary solutions of the isomorphism (2.2), but for terms having a normal form
tlrere is a positive result. From the observations at the end of § 1, we know that
distinct normal forms must have distinct values provided the model is nontrivial
(not all terms have the same value). The latter is immediate from I ;t;DooK.
(Otherwise, since II(Kx)y {3-redx and KI(Kx)y (3-red y, we would have x = y for
all x, y E000, contradicting the assumption that Doo contains more than one
element.)

With 000 being a lattice rather than a set a slightly stronger result holds. Just
as lattice equality determined an equivalence relation between terms, so ~
induces a quasi-ordering:

Mr;;.N iff VlIM](p)~ VlIND(p) forallpEENV.

(As a relation between terms, r;;. fails to be a partial ordering only in that
M r;;. N r;;. M implies that M and N have the same value but not that they are the
same term.) The relation r;;. is easily seen to be substitutive:

M r;;. N implies C[M] r;;. C[N] for all contexts q].
Then, since the terms I and K are incomparable under r;;. (otherwise, we would
have the same contradiction as above), it follows that all pairs of separable terms
are incomparable; in particular:

THEOREM 2.2. If M and N have distinct {3-Tl-normalforms, thenM and N are
incomparable under r;;..

For terms without normal forms the situation is not so straightforward. Their
properties are dependent on the deeper structure of particular models, and
Theorem 2.2 may fail if either M or N fails to have a normal form.

Everything we have said so far holds for all models of the A-calculus (or at
least for all extensional lattice models), and we cannot expect the conversion rules
to be complete for an arbitrary model. At the same time it is clear that we would
not want completeness in this sense anyway. At first one's intuition might have
been that a "natural model" for the A-calculus isone in which terms have the same
value just when they are interconvertible. However, the rules of conversion are
only the minimum one should expect of an equational theory of "type-free"

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 497

functions and there are several respects in which they are deficient; for instance,
they do not allow any inductive arguments. More immediately, we shall see
examples of terms which are not interconvertible but which exhi~it the same
computational behavior. We would like to regard such terms as having the same
meaning.

3. A particular model: The use of projections. We turn our attention now to
the particular models discovered by Scott in 1969. First we give a brief outline of
the construction in order to extract the properties of 000we need in a convenient
form (the laws of projection and application below).

Let 00 be any complete lattice and, inductively, On+1= [0" ~ On]. The key
to the construction lies in making this hierarchy of function spaces cumulative by
"embedding" the lower-type spaces in the higher-type ones. These embeddings
are described formally by a sequence of projection pairs

<Pn
On 0n+1> n = 0,1,2,' .. ,

<Pn

«/In+I(X') = «/I" 0 x' 0 cPn> X' E On+2'

Then the inverse limit of the 0"'s, i.e.,

000 = {(x,,)~=o:Xn = «/In(Xn+I), x, EOn}

is a complete lattice (under the "componentwise" partial ordering) and gives an
isomorphism

(3.1)

There are two known "parameters" in this construction-the choice of the
initial domain 00 and the choice of the initial projection pair cPo, «/Io-which can be
varied and one still obtains a solution of (3.1). In this and later sections our results
hold for any 00 with more than one element (we shall see in § 6 why, other than
this, the choice of Do doesn't matter) but with cPo, «/10fixed as Scott's original
projection pair:

cPo(X) =Ay E Do.x, x E 00,

«/Io(x') = x'(..Loo)' x' EDI.

In fact the construction does more than solve the isomorphism (3.1) for the
solutions have an internal structure too. There are also projection pairs

embedding each On as the subspace

O~OO)= {cPnoo(x): x E O,.} £;000

and inducing projection functions

498 CHRISTOPHER P. WADSWORTH

We can now "forget" the finite-type spaces D, used in the construction and
work entirely within Doc, with the subspaces D~OC) and the projections Pn. These
projections satisfy various equations (e.g., see [20, p. 64] or [15, pp. 114-115])
and determine essentially all the structure of the resulting A -calculus models. For
this it is convenient-to redefine the subscript notation to stand for the projections;
we now write, for x, YE Doc and f E [Doo ~ Doo],

x(y) for <I>(x)(y),

f for 'I'(f),
Xn for Pn(x),

Transliterating the properties of the projections P; into this notation gives the
following:
Laws of projection.

(PI)

(P2)

Xn !;;; Xm !;;; x for n ~ m,

(P3)
00

x = U Xno
n=O

(P4)

(P5) (Additivity) (UX)n=U{xn : x E X} for X 5,;;; Doc.
Laws of application.

X(z) = y(z) for all z E Doc~x = y,
(P6) (Extensionality)

x(z)!;;; y(z) for all z E Doo~ X!;;; y,

(P7)
eo

x(y) = U Xn+l(Yn),
n=O

(P8)

(P9)

(PI0)

l_(y) = l_,

xo(y) =Xo = x(l_)o,

Xn+l(Y) = X (Y,.}n.

(Where parentheses are omitted, application takes precedence over projection;
e.g., in (PI0), x(Yn)n when fully parenthesized is (x(Yn))n')

Three derived laws which follow from the above .are

(PII)

(PI2)

(P13)

Xn+l(Y) = Xn+l(Y)m for all m ~ n,
XII+l(y) = Xn+l(Y,,J for all m ~ n,

x = Y~x" = y" for all n ~O.

Informally, we can read applications of these projection functions as entailing
a loss of information, in the following sense. We have

D&OO)5,;;; D\OO)5,;;; ••• 5,;;; D~OO)5,;;; ••• 5,;;; Doo

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 499

and, for each x E Doo, the projections Xn E D~<X»form an increasing sequence
#

Xo ~ X 1 ~ ••. ~ XII ~ ... !;; x

of approximations to X; moreover, since
XII =U{w : w E D~<X»,W ~ X}

follows easily from the above, we can think of XI! as the best approximation to X
available in the subspace D~<X».Properties (P3) and (P13) then state that every
element of Doo is determined by these "finite" approximations.

In a similar way, (P7) states that application of an element of Doo as a function
is determined by the functional behavior of its projections. Note, however, that
(P7) does not imply that the terms in the l.u.b.-expression on the right are the best
apj.coximations x(y)" to the result of the application on the left (in general we only
have Xn+l(YII)!,;; X(Y)II)' but only that their join gives the correct result. (Note also
that (P7) is not a definition of application but a derived property satisfied by the
projection functions together with the cI>-partof the isomorphism; in the strict
notation (P7) reads

(PI') cI>(X)(Y) = U cI>(Pn+1(x»(Pn(y» .)
n=O

Properties (P9)-(PI2) tell us how the individual projections of elements
behave as functions. Property (P9) states that Oth projections are constant
functions on Doo; this is a consequence of the choice of the constant-function
embedding cf>o: Do ~ D! given above. For (n + l)st projections, the definition of
D~~\ as the embedding of Dn+! == [D" ~ DIl] in Doo implies that elements of D~::\
are essentially functions from D~:") to D~<X»);that is, D~~! =[D~:") ~ D~<X»].Thus, the
application Xn+l(Y) will always give a result in the subspace D~OO)(property (Pl1)
above) and is independent of information contained in its argument Y which is not
contained in the best approximation Yn to Y in D~:")(property (P12) above).
Further, considering the expression X(Yn)" on the ri~ht of (PI 0) as an operation on
Y, x is being applied to the nth projection Yn E D~oo of the argument and the nth
projection x.(Yn)n E D~OO)of the result is beinr taken; but from what we just said,
this is how the best approximation Xn+! E D~~! =[D~OO) ~ D~:")] acts, so the applica­
tion Xn+l(Y) gives the same result (property (PlO) above).

With these laws we can do many useful calculations about the values of terms
in Doo. Three typical examples are

THEOREM 3.1. (a) (Scott [20]) ~~ =..L,
(b) (Park [13]) YA = Y,
(c)] =0= I,

where Y: [Doo ~ DooJ ~ DCa defined by

Y(f) = U f"(..L)

is the lattice-theoretic least fixed-point operator and the terms ~, YA, I and J are as
given in § 1.

Note how use has been made of the ambiguity between terms and their values
in stating the theorem. In (a) we really mean that 'VlIa~n(p) =..1. for all p. For (b),

500 CHRISTOPHER P. WADSWORTH

from lattice theory we know that the function Y maps continuous functions to
their least fixed-points. Y itself also is continuous, so, by virtue of the isomorph­
ism, we can think of Yas an element of Dco; that is, we can faithfully "identify" Y
with the element YcoE 000 given by

Y co=='I'(Ax E Dco. Y(<I>(x»)= '1'(Y 0 <1»
Then, properly stated, (b) reads: for all p, 'JIll YA](p) = Y co.

Proof.We give the calculation for (b) as an illustration. Part (a) can be proved
by a similar calculation, but notice it follows immediately from (b), since
~~ cnv YAI and .1 is clearly the least fixed-point of 1.

For (b), since YA is, by p-conversion, a fixed-point operator, we have Y!;; YA.
For the converse, by extensionality it suffices to show that YA(f) !;; Y(f) for
arbitrary f. Let X== Ax.f(xx). Then it suffices to show that

(3.2) X(Xn) !;; r+2(.1) for all n ~ 0,

for then

YA(f) mv X(X) = x(n~o Xn) = n~o X(Xn), by (P3) and continuity,

co
!;; U r+2(.1) = Y(f).

n=O
We prove (3.2) by induction on n. For n = 0, we have

X(Xo) = f(Xo(Xo» = f(Xo) !;; f(f(.1»

by definition of X, (P9), and monotonicity, since Xo = X(.1)o!;; X(.1) = f(.1(.1» =
f(.1). For n ~O, we have

X(Xn+1) = f(Xn+1(Xn+1» = f(Xn+1(Xn», by definition ofX and (PI2),

!;;f(X(Xn» !;; f(r+\.1»,
by Xn+l !;; X and induction hypothesis.

For part (c), let F==Af.Ax.Ay.x(fy), so 1== YAF. That I is a fixed-point of F,
and hence 1£ 1, is immediate since FI (3-TJ-red1.We prove the stronger result:

THEOREM 3.2. I is the only fixed-point of F i~ Dco.
Proof. Let I be any fixed-point of F,so I satisfies the equation

(3.3) l(x)(y) = x(l(y».

We prove inductively that In = In for all n ~O, for which, by extensionality, it
suffices to prove that In (x)(y) = In(x)(y) for arbitrary x, y.

For n = 0 we have, using (3.3), (P9), (P8) and (P2),

10(x)(y) = 1(.1)o(Y)= 1(.1)(.1)0= .1(1(.1»0 = .1,

lo(x)(y) = I(.1)o(y) = .1o(Y)=.1.

For n = I we have, using also (PIO) with n = 0,

It(x)(y) = l(xo)o(Y) = l(xo)(.1)o = xo(I(.1»o = xo,

It(x)(y) = I(xo)o(y) = xo(Y) = Xo·

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 501

Now assume, inductively, that J,,+1 =1"+1 for some n ~ O.Then

In+2(x)(y) = J(X,,+I)n+l (y) = J(xn+ 1)(Yn)" by (PlO) twice

= Xn+l(J(Yn))n = Xn+l(J(Yn),,) by (3.3), (Pll, P12) with m = n

= X,,+l(Yn) since, using the induction hypothesis,
J(Yn)" = J,,+I(Y) = 1n+1(y) = l(y,,)n = Yn

1n+2(x)(y) = I(Xn+l),,+l(Y)= Xn+1(Y) = X,,+l(Y,,)' o
The second part of Theorem 3.1 extends to a whole sequence of A-calculus

fixed-point combinators, defined by

i~O,

where G=Ay.Af.f(yf). First, note the following intimate connection between G
and arbitrary fixed-point operators:

LEMMA 3.3. (a) In any extensional model of the A -calculus, an element V is a
fixed-point operator iff V is a fixed-point of G:

Vf =f(V f) iff GV = V.

(b) For the lattice-theoretic least fixed-point operator Y,

G(Y) =Doo Y =Doo Y(G).

Proof. Part (a), and hence the first half of (b), is immediate from the definition
of G by f3-reduction and extensionality. For the second half of (b),

on (1.)(/) = /"(1.), for all n ~O,

is easily proved by induction on n. Hence, using the definition of U on function
spaces,

Y(G)(/)=C~O G"(..L»)(f)=n~o G"(1.)(/)= ,,~/"(..L)= Y(/)

from which the result follows by extensionality. 0
(Similar to Theorem 3.2, it might now be asked whether Y is the only

fixed-point of G in Doo, but this fails-there are other (continuous) fixed-point
operators on Doo besides Y.However, it turns out that Y is the only one which is
A-definable, because YA is a maximal term under the ordering s; (A proof of the
latter will be included in [24].) In other words, it can be shown that every
A-calculus term having the fixed-point property has the least fixed-point operator
Yas its value in Doo. For the particular terms y<O), y<l),' .. , however, we need
not bother here with this interesting, but technically quite difficult, generaliza­
tion.)

COROLLARY 3.4. For all i ~ 0, y<i) =Doo Y.
Proof.The case i = 0 isjust Theorem 3.1(b). If, inductively, y<i)=Doo Y, then

o
Historically, the equivalence of these fixed-point combinators in Doo, dis­

covered originally by Park [13], provided the first example of the incompleteness

502 CHRISTOPHER P. WADSWORTH

of the conversion rules for these models, for it was known previously [4, p. 195]
that the first two, yO) and y1), are not interconvertible. The motivation for
wishing to regard all these fixed-point combinators equivalent will be discussed at
the end of § 5.

Part (c) of Theorem 3.1 is a more unexpected example of incompleteness, for
it gives an example of a term without a normal form which is equivalent to one in
normal form. We shall return to discuss this example further in §7, where we shall
see it is not so unreasonable as it seems at first sight. For now, we note that the
phenomenon is not special to the particular normal form I (it would perhaps be
even more surprising if it was!):

COROLLARY 3.5. For any normal form N, there is a term X with no normal
form such that N =Oco X.

Proof. Choose an occurrence of a variable x in N which is not the rator of a
combination. (Such an occurrence always exists, e.g., choose the rightmost
occurrence of a variable in N.) Let X be the term obtained by replacing this
occurrence of x by the term J(x). Then N =0", X, since J(x) =Oco I(x) cnv x, and
the replaced occurrence of x not being the rator of a combination is sufficient to
guarantee that X does not have a normal form. 0

4. Solvability and head normal forms. Classical studies of the A-calculus
generally emphasize the significance of normal forms and tend to divide the terms
into two classes-those with normal forms, whose "values" are perfectly defined,
and those with no normal form, which are regarded as "meaningless" or
"undefined". Such a division is too "discrete" (indeed we shan find reason to
doubt the semantic significance of the distinction at all). Instead, just as Scott
argues for data objects in general, we must recognize varying degrees of
definedness; the "value" of a term may be defined in some respects but not in
others. More especially, we cannot consistently regard a term as undefined just
because it fails to have a normal form; some can be used to give defined results in
nontrivial ways, and in fact it would be inconsistent to identify all terms not having
a normal form:

Example 1. Let A be any term without a normal form, and let M==Ax.xIA
and N ==Ax.xKA. Both M and N fail to have a normal form, but MK f3-red I and
NK f3-red K. Identifying M and N would therefore imply 1= K, which would
render the A-calculus inconsistent.

The concepts of solvability and head normal form are the beginnings of our
analysis of the semantic significance of terms. We think of them primarily as
allowing distinctions to be drawn between terms without normal forms, but the
notions apply equally to all terms. Solvability was first studied in connection with
the A-de finability of partial recursive functions by Barendregt [2], [3], to which we
refer the interested reader for a fuller discussion.

We consider first the closed terms and how they behave when applied as
functions:

Example 2. Consider the terms
MJ==aa, where a ==Ax.xx,
M2==aT, where Tw sx.xxx,
M3==aD, where D==Ax.Ay.xx.

COMPUTATIONALANDDENOTATIONALPROPERTIES 503

(In fact M3 {J-red YAK.)These three terms, none of which have a normal form, are
particularly "hereditarily undefined". No matter how they may be applied as
functions their computations will continue indefinitely: for all k ~ 0 and all terms
Xl> X2, ••• , Xi, the applications MiXlX2 ••• Xk fail to have a normal form, for
each of Ml> M2, M3 above.

On the other hand, not all terms without normal forms behave in this way as
functions. For example, the terms of Example 1 do not, nor does the paradoxical
combinator YA or the term J given in § 1; e.g.,

YA (KA) {J-red A, for any term A,

J(KA)B {J-red A, for any terms A, B.

We define a closed term Mas being solvable iff there is an integer k ~ 0 and
terms Xl> X2,· •• , X; such that MX1X2• •• X; has a normal form.

Terms having a normal form are always solvable; indeed, more strongly:
LEMMA4.1. If Mis a closed term having a normal form Nand X is any term,

there exist k ~ 0 and terms Xl> X2, ••• , Xk such that

(4.1)

Proof. We can write the normal form N in the form N==
AXIX2 .•• Xn-ZNIN2 ..• Nm. Since M, and therefore N, is closed, we have Z ==Xi for
some i. Choosing k = n, Xi ==AYIY2 ... Ym.x, and X, ==I for j ¥- i, the result
follows. 0

The following corollary is then straightforward from the property IX red X,
and indicates the reason for the terminology "solvability":

COROLLARY4.2. A closed termM is solvable iff the equation (4.1) with X ==I
can be solved for Xl, X2, ••• , Xk (for some k ~ 0) iff for all terms X the equation
(4.1) can be solved.

For open terms we must consider also their substitution instances. For
example, x(aa) can never yield a normal form by being applied as a function, but
its substitution instance [KSj x](x(aa» is solvable provided S is solvable. We
therefore define an open term as being solvable iff there is a substitution of closed
terms for its free variables such that the resulting (closed) term is solvable. Or,
uniformly for all terms M,M is solvable iff there is a head context C[] such that
C[M] has a normal form. Corollary 4.2 then extends to open terms in the same
way.

The concept of head normal form provides a syntactical characterization of
the solvable terms. First:

Example 2 (cont.). If we inspect the reductions of M», M2, M3 we find:
1. M, reduces only to itself.
2. Every term to which M2 reduces is of the form «Ax. xxx) T) TT ... T.
3. Every term to which M3 reduces is, after a-conversion, of the form

AX,X2· •• xn.«Ax.Ay.xx)D).
These terms have the general form: either they consist of a {J-redex, or of a
{J-redex followed by a finite number of arguments, or of a finite number of
abstractions on terms of the latter form. That is, they are of the form

(4.2) n~O, m~O.

504 CHRISTOPHER P. WADSWORTH

A term of the form (4.2) will be said to be not in head normal form and the redex
(Ax.M)N is then called its head redex. The reduction of a term in which each step is
determined by contraction of the head redex (when it exists) will be called head
reduction.3 0

On the other hand, the terms of Example 1 are not of the form (4.2), nor are
the terms

Af.f«Ax·f(xx))(Ax·f(xx))), Ax.Ay.x(Jy)

to which Y" and J, respectively, are reducible. None of these terms are in (or have)
a normal form, but they are in head normal form, of the general-form

(4.3) n :2:0, m 2:: 0, Z a variable,

where Xl> Xz, ... , Xm are arbitrary terms. (We leave it to the reader to show that
every term can be written uniquely in one of the forms (4.2) or (4.3) for suitable
n, m,X;, etc.)

In (4.3) the variable z is known as the head variable and the term X; as its ith
main argument. Two head normal forms will be called similar iff they have the
same head variable (after a-conversion, if necessary, so that bound variables
agree) and the difference between the number of main arguments and the number
of initial bound variables (i.e., m - n in (4.3)) is the same for both. (The use of the
difference here is a technical point connected with n-conversion. Most similar
head normal forms we meet will be strongly similar, i.e., will have the same
number of main arguments and the same number of initial bound variables. Note
that in any case similar head normal forms can always be converted to strongly
similar ones, by applying 7J-abstractions to the one with fewer initial bound
variables.)

Analogous to normal-order reduction of terms to normal form, it can be
shown that a term has a head normal form iff its head reduction terminates, and all
head normal forms of a term are similar (strongly similar if n-conversions are
excluded). (In fact, note that a head redex, when it exists, is also the leftmost
f3-redex, so the head reduction of a term consists of some initial segment of its
normal-order reduction, or the whole of the latter if the term does not have a head
normal form.)

It is instructive to compare (4.3) with the structure of normal forms given in
§ 1. In a head normal form (4.3) the main arguments Xl> Xz, ... ,Xm can be
arbitrary terms, whereas a normal form requires these inner subterms also to be in
normal form. Thus, a head normal form is a kind of "weak" normal form, which
we might say is in normal form "at the first level".

It is easy to see that terms having a head normal form are solvable, for the
proof of Lemma 4.1 uses only the fact that Nis in head normal form. The converse
can also be proved by syntactic means (by analyzing head reductions) but we shall
see an easier model-theoretic proof in the next section.

3 This definition of head reduction should not be confused with that of Curry [8, pp. 32, 157]. For a
head redex, Curry's definition requires n =0 above; here it is not appropriate to limit ourselves to this
case, because the binding of free variables does not affect (un)solvability. .

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 505

The upshot of this discussion is that only those terms without normal forms
which are in fact unsolvable can be regarded as being "undefined" (or better now:
"totally undefined"); by contrast, all other terms without normal forms are at least
partially defined. Essentially the reason is that unsolvability is preserved by
application and composition-if U is unsolvable, so are UX and U·X for all terms
X-which we have seen is not true in general for the property of failing to have a
normal form.

To say that (some) terms without normal forms have a value which is not
undefined seems at first a little disturbing, for after all every reduction of any term
without a normal form will fail to terminate. In fact it is our traditional conception
of termination-the result of a program is defined if its execution terminates and
undefined if not-which is at fault here, as nonterminating programs cannot
always be regarded as being "totally undefined". Consider, for instance, a
language with output statements, so that programs whether they terminate or not
may be producing intermediate output, possibly even infinite output (e.g.,

let n := 0;
while true do begin output Prime(n);

n := n+l end

producing a list of the prime numbers). In such latter cases we might say the
program computes its (infinitary) result "bit-by-bit" (the result of the program
being the "union" of the partial outputs); then only those nonterminating
programs which produce no intermediate output should be thought of as being
"totally undefined". .

For understanding the interpretation of A-calculus terms in Dro this analogy
with languages which allow intermediate output is a helpful one to have in mind, in
the following sense. Consider "evaluating" a term M by reduction. If we find that
M has a head normal form (4.3), we can output the "first-level" information about
its initial bound variables, its head variable, and the number of its main argu­
ments; then proceed recursively to evaluate (in parallel) the main arguments
Xl! X2, ••• ,Xm• If this process stops in finite time the original term M has a
normal form and this is the information which will have been output. The process
may fail to terminate in two ways: Either at some stage it may find a (sub)term
without a head normal form, in which case the relevant component of the result is
"totally undefined" as no information about it will ever be output, or the process
may recurse indefinitely producing infinite output. (The latter would happen, e.g.,
for YA and J.) For either case the total output gives, intuitively, all the information
that can be computed about the "value" of the whole term M. These ideas
harmonize very nicely with the general intuitions underlying Scott's approach to
the theory of computation and will be pursued further in the next section.

So far we have considered only what happens when terms (or their substitu­
tion instances) are applied as functions. If functions are applied to them, then, even
for an unsolvable term U as argument, we can always obtain, say, a normal form as
result by using a constant function. But such usages are trivial as the use of any
term in place of Uwould give the same result; more generally, we shall see that

506 CHRISTOPHER P. WADSWORTH

unsolvable terms can never have a nontrivial effect on the outcome of a reduction
(Corollary 5.5). .

Thus the interpretation of unsolvable terms as being "least defined" is a good
one. It will not be surprising therefore when we find that they are exactly the terms
with value.l in the Doo-model. It has been shown by Barendregt [2, p. 91] that it is
consistent to identify all unsolvable terms (again, an easier proof will be seen
below), and from a computational point of view it is desirable to do so as they
behave so alike.

5. Approximate reduction. Our discussion so far has established models only
for the equational part of the theory of the A-calculus. In consequence we know
that the process of reduction preserves meanings, but there is no direct interpreta­
tion of the reduction-relation itself in these models. In this section we shall see that
none is needed, for the relation can be treated metatheoretically; that is, its
properties will be seen to be implicit in the internal structure of the models.

We. shall take up the idea of "evaluation-by-reduction" in a little more
general formulation than at the end of the previous section, so as not to be
dependent on anyone method of reduction. Based on suggestions originally due
to Scott,"we shall extend the ordinary A-calculus to allow partial terms and partial,
or approximate, reductions, then we can investigate limits of better and better
approximate reductions and tie these in with the notion of limit already present in
the lattice-models. The method is similar to the usual arguments justifying the use
of least fixed-points in work on the theory of computation (cf. the comments on
recursive function calculi in the Introduction and the treatment of while­
statements in [19] or recursive procedures in [1]). The results will show that
although the theory of conversion is too weak for proof purposes-not all true
equations between terms which hold in 000 can be proved-there is a limiting
sense in which the reduction rules are complete for purposes of evaluation.

We shall base our limiting process on f3-reduction. The ideas can also be
applied to 7J-reduction but we do not need to do so here as the latter plays rather a
subsidiary role in evaluation; in any case if we can prove anything about limits
using fewer approximations, the results remain true when more approximations
are included.

Suppose we start reducing a term M, using any method and order of reduction
we care to choose. If M has a normal form and the reduction actually reaches one,
everything is fine and we can take the normal form obtained as the "value" of M. If·
not, conventionally the possibility is not considered of attributing a value to a
reduction which apparently fails to terminate; one simple concludes that the initial
term M does not appear to have a normal form. However, We need not be so
pessimistic, for there is something that can be said, based on the intermediate
terms in the reduction: .

Example 3. Suppose M has been reduced to a term M', say

M' ==Ax.Ay.y(x((Az.P)Q»(xy)((Aw.R)S)

4 In conversation, October 1970.

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 507

where P, Q, R, S are terms. At this stage we cannot tell whether M has a normal
form or not, because there are still at least the two underlined redexes in M'.
However, from the form ofM',we can say that ifM',and hence M, is going to have
a normal form, this must be of the form

Ax.Ay.y(x(?))(xy)(?)

because' any further (/3)-reduction of M' can affect only the parts where we have
written "T", Now adjoin to the A-calculus the special constant symbol fl to stand
for such "undetermined" parts of normal forms. Then we shall say

A' ==Ax.Ay.y(x(fl))(xy)(fl)

is a partial normal form of M-partial because it tells us something of the
structure of the normal form of M (if such exists), but does not give complete
information. The obvious interpretation of fl in the lattice-models is as the least
element 1.:

(S4) 'V[n](p) = 1..

Then n~X for all terms X, from which the substitutivity property gives A I ~ M'
(=M). Thus, A' is certainly one approximation to M, and we shall now call it an
approximate normal form of M. (Of course, it is possible that A I is actually equal to
M in 000, if the subterms which have been replaced bynturn out to have value 1.,
but in general this will not be the case.)

Clearly this idea of approximating any parts remaining to be evaluated (i.e.,
/3-redexes) by fl can be applied to all terms in all possible reductions of M In this
way we obtain a whole set of approximations, each giving some, in general
incomplete, information about M. The obvious question is whether, passing to
their values in Doo, their join gives all the information "contained" in the value of
the starting term M.

Notice that the answer is immediate for any term which has a (proper) normal
form, for then its normal form is one of its approximate normal forms, and for
some obvious terms with value 1., e.g., for the term aawhich reduces only to itself
so that fl is its only approximate normal form. More informative is:

Example 4. All terms to which Y" reduces are of the form AfFCXX), where
X== Ax.f(xx) and n ~O, so the approximate normal forms of Y" are {AfF(fl): n ~
O}. Thus there is an exact parallel here with the terms in the usuall.u.b.-expression
for the least fixed-point operator. (This of course was part of our motivation for
.studying approximate reduction for arbitrary terms.)

To formalize the above we first introduce some further terminology. Expres­
sions of this A-fl-calculus will be called A-fl-terms, or simply terms when no
confusion is likely. A term will be said to be in approximate normal form if it does
not contain a /3-redex, and in proper normal form if additionally it does not contain
any occurrences of fl. A term A will be called a direct approximant of a term Miff
A is in approximate normal form and matches M except at occurrences of fl in A,
and will be called the best direct approximant of M if fl occurs in A only at
subterms corresponding to the (outermost) /3-redexes in M. (In Example 3, A'
was the best direct approximant of M'; other direct approximants are, e.g.,

508 CHRISTOPHER P. WADSWORTH

Ax.Ay.y(O)(Oy)(n) and Ax.Ay.O(xy)(O).)A term A will be called an approximate
normal form ofM iffA is a direct approximant of a term to which M is reducible.

(In fact, these definitions are slightly wider than in our earlier discussion for
they allow subterms larger than the outermost ~-redexes to be replaced by 0 in
forming direct approximants; but clearly every direct approximant is ~ the best
one (hence the terminology), so use of the wider definition does not affect limits.)

From (S4) and the properties of .1, it is immediate that two it-conoerston rules
are valid in Dco:

OX=O,

Ax.O=O.

We leave it to the reader to show
LEMMA 5.1. If M~-redM' and B, B' are the best direct approximants of

M,M', respectively, then B ~ B'.
So the best approximants of successive terms in a reduction form an increas­

ing sequence. Unfortunately for any particular reduction of a term M such a
sequence may converge to a limit smaller than the value of M. (In particular,
normal-order reduction is sometimes inadequate in this sense; consider M==
Ax.x(aa)(R) where R is any ~-redex with value different from .L)

Considering all reductions, however, remedies the deficiency. We shall write
s4(M) for the set of approximate normal forms of M. (It follows easily from
Lemma 5.1and the Church-Rosser Theorem that s4(M) is always a directed set.)
In the statement of the limit theorem which follows we write in the "If and p to
emphasize the distinction between syntactic and semantic concepts:

THEOREM 5.2. For all terms M and environments p,

V'[M](p) =U {1I1IAD(p):A E s4(M)}.

Proof. Unfortunately there is room only for a few hints of the proof here; the
full proof will be given in [23]. The main step consists of the development of a
formal typed calculus for carrying out the kind of calculations with projections we
did informally in §3, via the notion" of a type-assignment for terms appropriate to
these models. The. "types" are integers and a type-assignment consists of an
association of (arbitrary) integers with every subterm of a term; the intended
interpretation is that the corresponding projection of the value of the subterm is to
be taken. The properties of projections, in particular (P3), and continuity then
imply, by structural induction on M, that 1I1IM](p) is equal to the l.u.b. of (the
values of) all such typed-terms representing type-assignments for M.

Corresponding to the properties (P9) and (PlO) of projections, two forms of
typed ~-reduction can be defined and shown to preserve the values of terms with
type-assignments. The "well-foundedness" of (P9) and (PI0) (i.e., application of
an (n + l)st projection always decreases the level of the projections involved by
one; and application of a Oth projection allows the argument to be replaced by 0

. without changing the result) can then be used to show that every typed-term T,
representing a type-assignment for M, can be reduced to, and hence is equivalent

5 Suggested to us by 1. M. E. Hyland, personal communication, lanuary 1972.

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 509

to, a typed-term T in approximate normal form. The result then follows by
showing that the untyped term corresponding to T is always one of the approxi­
mate normal forms of M. 0

With this theorem we can explain our remarks about the "limiting complete-
ness" of the reduction rules. The rules are adequate for generating the (r.e.) set of
terms to which M reduces. As these are generated, so more and more of the
approximate normal forms of M are obtained. The theorem asserts that if we are
prepared to generate enough of the terms to which M reduces, then we can
calculate an expression whose value approximates the value of M as close as we
like-intuitively, we can "compute" (canonical representations for) the values of
terms in 000•

In another, related sense, the theorem can be regarded as asserting that every
term has a "normal form"; it's just that this may be an infinite expression (as was
hinted at toward the end of § 4). Several methods for specifying infinite normal
forms have been suggested (e.g., see [12]); when done in the right way we should
be able to say that terms have the same meaning (in 000) iff they have the same
infinite normal form.

As one immediate consequence of Theorem 5.2, we obtain the following
complete characterization of those terms which have value .L (for all environ­
ments) in these models:

COROLLARY 5.3. The following three conditions are equivalent:
(a) Mis unsolvable.
(b) M does not have a head normal form.
(c) M=o=O.
Proof. We prove (c) implies (a) and (b) implies (c). That (a) implies (b), or

equivalently that not-(b) implies not-(a), follows by a proof similar to that of
Lemma 4.1.

For (c) implies (a), we give the proof for closed terms M. (The extension to
terms with free variables-in which case, for solvability, one must consider closed
substitution instances-is straightforward using the rule (02).)Suppose M =0= 0
but M is solvable. Then there exist terms Xt, X2, ••• ,Xk (k ~ 0) such that
MXIX2 ••• X; cnv 1.But then, by using (01), we have

1=0=MXIX2 ••• Xk =0= OXIX2 ••• Xk =0= 0,
which is a contradiction.

For (b) implies (c), suppose M does not have a head normal form, so every
term M' to which M reduces is not in head normal form. For any term M' not in
head normal form, all direct approximants of M' are of the form

(5.1) n~O, m~O.

But A' =0= 0 by (01) and (02). Hence all approximate normal forms of Mare
equal to 0 in Doo, so M =000 0 by Theorem 5.2. 0

The last two results are pleasing semantic properties of the models of § 3.
They are quite natural in themselves and desirable from our earlier discussion, but
we can find additional technical support via several formal (syntactic) results
relating terms and their approximate normal forms when used as parts of larger
expressions. In particular we have:

510 CHRISTOPHER P. WADSWORTH.

THEOREM 5.4. For all terms M and contexts C[],
(a) C[M] has a normal form iff C[A] has the same normal form for some

A E .stl(M). .
(b) C[M] has a head normal form iff C[A] has a similar head normal form for

some AEd(M).
Proof.That the normal forms in (a) (head normal forms in (b) will be the same

(similar) follows from the separability of distinct normal forms (dissimilar head
normal forms). (For dissimilar head normal forms, this is straightforward; for
distinct normal forms, see Theorem 1.3.) Part (a) is then proved by arguments
based on the relative lengths of the normal-order reductions of terms and their
direct approximants; we leave the full proof to [23]. Part (b) can be proved by
analogous arguments about the lengths of various head reductions, but there is an
alternative proof using our results above. By Corollary 5.3, it suffices to show

C[M] >=0= 11 iff C[A] >=0= 11 for some A E .stl(M).

But this follows easily from continuity and Theorem 5.2. 0
COROLLARY 5.5. Suppose Uis unsoloable and C[] isany context. Then C[U]

has a normal form (a head normal form) iff C[M] has the same normal form (a
similar head normal form) for all terms M.

Proof. The "if" part is trivial. We give the proof of the "only if" part for
normal forms. Suppose C[U] has a normal form N. By Theorem 5.4(a), there is an
approximate normal form A' of U such that C[A'] red N. Since U is unsolvable,
A' must be of the form (5.1) in the proof of Corollary 5.3. Hence

C[AX\X2... xn-11X,X2 ... Xm] red N.

It is easily shown that normal-order reductions to (proper) normal form are not
affected by applications of 11-conversion or replacements of 11by arbitrary terms,
from which the result follows: 0

Intuitively, Corollary 5.5 shows why unsolvable terms should be regarded as
being "least defined". Theorem 5.4 shows that the' interesting" computational
behavior of terms is determined by their approximate normal forms, so Theorem
5.2 can be interpreted as showing that the values of terms in Doo "contain" just the
information relevant to their use in computations.

In fact, Theorem 5.4 can be extended to apply also to the approximate normal
forms of C[M]. In the case of a function application FM (i.e., taking C[] ==F[] so
C[M]==FM) where F is any term, this specializes to: For all A' E .stl(FM), there is .
an A E .stl(M) such that A' E d(FA). Or, equivalently:

d(FM) = U {.stl(FA): A E .stl(M)}.
In words: To obtain an approximate normal form of a function application FM
requires only an approximate normal form of the argument M. This is just a
A-calculus (syntactic) analogue of the general considerations motivating the
continuity of functions in Scott's theory of computation.

Finally we dose this section by considering again the fixed-point combinators
of §3. For i =0 and i= 1 (and it seems likely for all i~O) all terms to which y<il
reduces are of the form

Af./"(Ax,x2· .. Xk.RXtX2· .. X"J, n, k, m ~O,

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 511

where R is a fJ-redex and X, is a term, for j = 1, 2, ... , m. (For yO), we have
k =m =0 and R = XX where X = Ax.f(xx); see Example 4. For v'", see [4, p.
195].) So the approximate normal forms of yi) consist essentially (i.e., after use of
(fil) and/or (fi2) if m ¥ 0 and/or k ¥ 0) of

{Af.f"(n): n ~O}
Thus, yO) and yl) have the same set of approximate normal forms-which, in
view of Theorem 5.4, is why we would like to regard them as equivalent-and
these approximate normal forms correspond exactly to the terms in the l.u.b.­
expression for the least fixed-point operator-which is why we would like them to
have the least fixed-point operator as their meaning.

6_ A characterization of =000- The results of §5 provide motivation for
several semantic properties of Scott's A -calculus models-roughiy, they show that
terms are given the right meanings from a computational point of view. In this
section we show that equivalence of these meanings is also natural, by exhibiting a
direct connection between =000 (and the ordering ~) and a syntactic relation
definable from the conversion rules.

From our discussion so far, two particular equivalence relations between
. terms are worth noting:

1. approximate normal form equivalent: M -a N

M-a N =def d(M) = d(N)
2. normal form equivalent (first studied by Morris [11]): M -n N

M -n N ""'def for all contexts C[], C[M] has a normal
form iffC[N] has (the same) normal form.

Then Theorems 5.4 and 5.2 imply

M-aN ~ M-nN,

M-aN ~ M=oooN,

Further, it can be shown that

but the reverse implication does not hold (e.g., consider I and J with the null
. context C[] "'"[])-essentially what happens is that the property of having a
normal form is too strong. However, if we replace "normal form" by "head
normal form" throughout, as suggested by §4, then implications can be estab­
lished in both directions, That is, if we define head normal form equivalence,
M-h N, analogous to M- n N, then

From right to left this is an easy consequence of Corollary 5.3 and substitutivity. In
the other direction the full proof is rather intricate but can be derived quite
straightforwardly with the aid of a lemma we shall state without proof (Lemma 6.2
below).

512 CHRISTOPHER P. WADSWORTH

First, it is convenient to introduce two alternative formulations and corre­
sponding quasi-orderings. We define Mis solvably extended byN as

M $sN ==def for all contexts C[], if qM]
is solvable, so is C[N] .

. . and write M -s N if each is solvably extended by the other. We define Mis
semi-separable from Nby

M:6 N ==def there is a (head) context C[1such
that C[M] red I but C[N] is unsolvable,

. and call two terms semi-separable if either is semi-separable from the other. (The
latter is a weak version of "separable" defined in § 1; the prefix "semi-" is used in
the same sense as its usage in connection with decision procedures in computabil­
ity theory.)

LEMMA 6.1. For all terms M and N,
(a) M-;» ¢:> M-.N,
(b) M:6N ¢:> M :6sN.
Proof. The proof is immediate from the definitions, by Corollaries 5.3, 4.2,

respectively. 0
LEMMA6.2. Suppose A is in approximate normal form andNis any term. Then

ArkN ::? A:6N.
Proof. The proof is achieved by a generalization of the construction used by

Bohm [5] in the proof of Theorem 1.3 and will be given in [24]. 0
Now we can establish the characterization of =000' In fact it is more

convenient to do so for the inequality :;eooo' along with a characterization of r;;:
THEOREM 6.3.6 The following three conditions are equivalent:
(a) Mand Nare semi-separable (M:6N),
(b) M and N are not solvably equivalent (M~s N),
(c) M :;eooo N (M r;; N).
Proof. By Lemma 6.l(b), it suffices to show (a) is equivalent to (c).
To show (c) implies (a), supposeM r;; N. Then A r;; Nforsome A E stl(M), by

Theorem 5.2 and the properties of l.u.b's. By Lemma 6.2, there is a context C[]
such that C[N] is unsolvable and qA] red I, whence also C[M] red I by Theorem
5.4(a), which shows M is semi-separable from N.

To show (a) implies (c), suppose M~N and let C[] be a context such that
C[M] red I and C[N]== U is unsolvable. Then M ~ N would imply I ~ U, con­
tradicting U being unsolvable (because of Corollary 5.3). 0

For closed terms, Theorem 6.3 specializes to: .
THEOREM 6.4. If M and N are both closed terms, the following three conditions

are equivalent:
(a) Mr;; N,
(b) there is a closed term F such that FM red I and FN is unsolvable,
(c) there exist closed terms XI. X2, ••• .X; (k;;;: 0) such that

MX,X2•• • Xk red I
while NX,X2 ••• Xk is unsolvable.

6 Essentially this same result has also been proved independently by 1. M. E. Hyland.

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 513

Proof. For (c) implies (b), simply set F-= AZ.ZX1X2 ••• Xi: That (b) implies (a)
follows from Theorem 6.3 since, when (b) holds, C[]-=F[] is then a semi­
separating context. For (a) implies (c), suppose M'k N, so that M is semi­
separable from N, by Theorem 6.3. Let

C[]-=(AxIX2· .. xn.[])M1M2••• MnAIA2··· Am
be a head context such that C[M] red I and C[N] -= U is unsolvable. Since M is

. closed, we have
C[M]-=(AxIX2· .. x".M)M1M2 ... MnAIA2· .. Am l3-red MA1A2··· Am

and similarly for N. Hence (c) follows by setting k =m and Xi -= Ai for i =
1,2,···, k. 0

We can 'understand the content of Theorem 6.4 further with reference to the
lattice structure of Doo. For distinct elements a, b E 000, say a [;f b for definiteness,
there are always continuous functions which (partially) distinguish between them:
for arbitrary d ¥- 1.,

(6.1) a [;f b=>there is a continuous [:Doo~ 000 such that [(a) = d, [(b) = 1..

(E.g., the function
[(x) = if x [;f b then d else 1.

has this property and is continuous.) Now call an element of 000 A-definable iff it is
the value 'fI1[M](p)of a closed term M (since M is closed, the choice of p doesn't
matter), and suppose a and b are A-definable elements, say

a = 'fI1[M](p), b = 'fI1[N](p).

Since M 'k N iffa [;f b (by definition of 'k), (6.1) implies that when M'k N there is
a continuous function [which distinguishes between the values of M and N, and
by the isomorphism <1>,'I' this function [can itself be considered an element of 000•

Theorem 6.4 expresses the stronger property that, for distinct A-definable ele­
ments, there is always a A-definable function which distinguishes between them.
A second consequence, for closed terms M and N, is that

M =0=N iff MZ=0=NZ for all closed terms Z
(which incidentally implies we have models satisfying the w-rule of Barendregt [2,
p. 48], for the restriction that M and N be closed terms can be removed with the
aid of Theorem 6.3). So the A.:.definablesubspace has pleasant "closure" proper­
ties and the term structure of the model (i.e., the ordering ~ and the equality =0=
between terms) depends only on the A-definable subspace of Doo.

We can also see, with hindsight, why the construction of 000 yields essentially
the same model for arbitrary choice of the initial domain Do (but not for arbitrary
choice of the initial projection pair 4Jo, %-the characterization theorems above
hold only with the 4Jo, % mentioned in § 3). It is not difficult to show that, of the
elements of Do (regarded as the subspace D~OO)of D",,), 1. is the only one which is
A-definable. (In fact, 1. is the only A-definable element of the union of all the
"finite-type" spaces D~OO),n = 0, 1,2,) For the choice of Do this means that,
although Do must include two distinct elements, 1. and T, for a nontrivial model,
additional elements are redundant as they will not be A-definable and hence
cannot affect the term structure of the resulting model.

514 CHRISTOPHER P. WADSWORTH

Further insight is provided by recalling the intuitive interpretation of partial
orderings in Scott's theory, in terms of "information content". For domain
elements a and b, a ~ b was intended to mean "a gives some information where b
gives either no information or different information". The results of §5 showed
that (the values of) terms having different computational behavior have differ­
ences in their "information content"; Theorem 6.3 gives the converse, that when
there is a difference in the "information content" of (the values of) terms in Doo,

this can be detected in their computational behavior. Roughly, when M 'k N, their
semi-separating context searches the terms for the information contained in M
but not in N. If and when this is found, i.e., for M, the appropriate part of M is
extracted and "standardized" to give the identity as result. In the corresponding
part of None finds no information (an unsolvable term) or different information (a
term with head normal form dissimilar to that in the corresponding part of M); in
either case the standardizing stage for M can be chosen so that when applied to
this part of N the resulting term is unsolvable. (In fact, the omitted proof of
Lemma 6.2 is just a formalization of this informal sketch; the tricky part involves
showing that all the selections and manipulations can be done within the A­
calculus.)

A more technical consequence concerns the possibility of giving additional
axioms for the A-calculus in an attempt to axiomatize the model completely.
Although neither the relation =000 not its negation ;t:ooo are recursively enumera­
ble (in fact, =~oo is n~-complete), effective relative axiomatizations are possible.
Since unsolvable terms are equal in Doo, consider the extended theory A* in which
we postulate the equality of all unsolvable terms:

(Uns) M, N both unsolvable
M=N

as an additional inference rule. It is easily shown that any equality of semi­
separable terms is inconsistent with (Uns), whence it follows from Theorem 6.3
that M ;t:ooo N iff M = N would render the theory A* inconsistent. This implies
that the inequality ;t:ooo (and similarly the relation 'k) can be effectively
axiomatized relative toA*; roughly, one constructs a proof of M ;t:000N by tracing
backwards a proof of inconsistency of A*+M =N (e.g., a proof of 1=K in
A*+M =N). Such a relative axiomatization is of some interest as (Uns) is the only
noneffective rule in A*-in fact, (Uns) is equivalent to the halting problem
(implied by results in [2]). In a certain sense, this is the best one can do as regards
axiomatizing the inequality #000 (because =000 is a n~-relation).

It also follows that =000 is the largest, consistent model of the theory A*. This
has the interesting interpretation: given that we wish to consider all unsolvable
terms equivalent, terms have different values in Doo iff this is necessary for
consistency. Or, equivalently, terms are equal in Doo iff there is no reason to
distinguish between them, where we regard the property of terms having different
computational behavior (in the "global" sense we have discussed) as a necessary
and sufficient reason for distinguishing between them.

7. Rationalization for 1=J.The possibility of equivalences between normal .
forms and terms with no normal form is one of the more unexpected, almost

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 515

pathological, properties of the models we have studied and deserves a separate
discussion. At first, this possibility was surprising because we felt there was a close
connection between the property of having a normal form and termination of
programs. In this way we hoped to find a model-theoretic characterization of
"normal form" and hence suggest a semantic analogue of termination. In § 4, we
saw reason to doubt the analogy, so our original motivation here no longer
applies.

However, this alone cannot be said to imply that we should necessarily expect
or desire that 1=J; to rationalize this, more is needed. Of course, the general
consequences of the characterization in §6 provide some motivation, but there
are several more specific arguments also.

First, under a suitable formalization of "infinite normal form", the term J will
have an infinite normal form-roughly, this will be

J = Axo.Axl.Xo(Ax2.X 1(Ax3.xz(Ax4.x3(· ..))))

-while 1== Ax.x is a finite normal form. So 1=J is a A-calculus analogue of, e.g.,
3 = 2.999· .. , in the sense that it is an example of a finite expression which is
equivalent to an infinite one, just as 3 = 2.999 ... is an example of a real number
which has both a finite and an infinite decimal notation.

A second insight concerns the operation Hof (a single) 7]-expansion viewed
as an operation within the A-calculus. H can be expressed by the equation

H(x) = Ay.X(Y), y,¢x,
and is, of course, an identity operation in any extensional model. Suppose now
that instead of performing just one 7]-expansion, we consider an infinite 7]­
expansion operator obtained by recursively applying 7]-expansion to the newly
introduced variable y:

U:o(x) = Ay·X(U:o(y)), y'¢X.
This equation is now just that which is satisfied by the term J, so J represents an
infinite number of applications of an identity operation. Iterating an identity
operation an infinite number of times will not always given an identity operation
(often it will give "undefined") but this is the case for the particular iteration
involved in J. Perhaps the best way of expressing this is that when we write a
recursive definition we can always compute results step-by-step via the recursion,
but sometimes a solution can also be found as a closed formula (non-recursive).

Clearly U:o can be generalized to other operators, e.g., to ones which perform
any finite number of n-expansicns at the top level before recursingon some or all
of the newly introduced variables; all such examples will have the identity function
as their value in Doo. In a certain sense, this method and that of Corollary 3.5
exhaust all possibilities of equivalences between normal forms and terms with no
normal form," so all such examples are essentially just variations on the I =J one.

7 More precisely, we mean here that, given any term N in normal form, by applying infinite
"I-expansion operators to some or all of its sub terms (not necessarily the same operator for each
subterm) we can obtain many terms equivalent to N which have no normal form. Under a suitable
.formalization of "infinite "I-expansion operator", we conjecture that every term not having a normal
form but equivalent to N in D", can be obtained in this way, up to a-J3-conversion. However, we shall
not pursue this formally here as the ideas are more clearly seen in the general discussion of "infinite
conversions" to follow, but see also the treatment of infinite normal forms in Nakajima [12].

516 CHRISTOPHER P. WADSWORTH

It is also interesting here to compare the characterization of =Oco with the
more naturally occurring equivalence '"""0 defined in §6. All the above examples
will fail for -0 (because no normal form can be normal form equivalent to a term
without a nomial form), but it can be shown that, again, they essentially exhaust all
examples of terms for which M =OcoN but M 7-0 N.

An alternative formulation allows comparison with other calculi. We can say
that I and J are equal by "infinite conversion" or are "interconvertible ·in the
limit"; we illustrate this view in Fig. 1, where we have applied suitably chosen
1J-expansions to I and a-l3-reductions to J.As these conversions proceed, it can
be seen that the part where the terms differ is pushed deeper and deeper inside the
terms. In other words, although I and J are not finitely interconvertible, they can
be transformed, by means of the conversion rules alone, to terms which match
each other up to arbitrarily large, finite "depth".

Agree to I I
depth I I I J .---L L _
o Ax.x

~
Ax.Ay.x(y)

~
Ax.Ay.x(Az.y(z »

~
Ax.Ay.x(Az.y(Aw.z(w)))

~

2

3

FIG.!

~."'.',.,(fyj

Ax.Ay.x(Jy)

~
'x.A'.X(".'(J'~

Ax.Ay.x(Az.y(Aw.z(Jw»)

~,f3

This phenomenon can be generalized to give.a full characterization of =Oco

along the same lines by taking account of the rule (Uns) equating unsolvable
terms. «Uns) was not needed in Fig. 1as no subterm was unsolvable.) We have:
M=0"" NiffMandNcan be transformed by a-I3-1J-Uns-conversion to terms which
agree to arbitrary depth. More formally:

M=oooN iff (Vk?;;O)(3M',N')(M'=kN' and A* f-M=M',N=N')

where =k symbolizes the notion of terms matching to depth k. By formalizing the
notion of "depth" which we have indicated only rather loosely above, this
formulation can be made the basis for an axiomatization of =Ocowith only two
noneffective rules-the rule (Uns) and an infinitistic rule corresponding to the
universal quantifier for k. (Again there is a similar axiomatization of the ordering
~).

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 517

By comparison, consider functions on the integers. One can give two defini­
tions for the identity function, the explicit definition

t=AnEint.n

and the recursive definition

g =An Eint.if n = o then oelse g(n -1)+ 1

Although these two definitions clearly define the same function, one cannot give a
recursive function calculus with a finite set of (effective) "conversion rules" such
that the equivalence of f and g can be shown by transforming them into identical
expressions. (Proofs of f = g normally require the use of inductive methods.)
However if we consider the rule

Replace n by if n = k then k else n
where n is an integer variable and k is a numeral, then, just as for I and J in Fig. 1,
we can obtain "conversions" of f and g to expressions which agree to arbitrary
depth. This is shown in Fig. 2, where, for g, we use the "copy-rule" to handle
recursion plus the usual simplification rules of elementary arithmetic.

I I
Agree to I I
depth fig___ L ~ _

I
Xn.n I

~ I:
An." n ~ a then a"I l An" n ~ a then Oelse gIn -,:;,;;"

An. if.n ~ I An.if n = 0 then 0 simplification

else if n = 1_then 1 else n : elser-if-n-=-1-th-~-n-l~e'-I-Se-~-(-n---2-)+----'2

: f21 f

o

2

FIG.2

Taken together, we feel these arguments show that equivalences such as
I =D"" J are not unreasonable and, indeed, should be regarded as natural
whenever one accepts the validity of n-conoersion.

The proviso is, of course, crucial and at least inconvenient when dealing with
most computer languages. We mentioned in § 1 that n-conversion embodies the
view that every object is a function. There are no constants as such in the "pure"
A -calculus, one effect of which is that A -calculus computations never quite touch
ground level (e.g., by giving an integer, a truth value, or some other primitive
object, as the result of a computation); if needed, constants must be represented as
functions. Though this is not the most transparent approach for constants, it is a

518 CHRISTOPHER P. WADSWORTH

possible one and should have a corresponding "natural semantics". The proper­
ties of 000 can then be read as showing that when one is happy to represent
everything as a function, the Doo-model is a natural one, in the sense that the
meanings of terms and their equivalences have the appropriate consequences for
computational purposes.

A better approach, however, is to include primitive objects, or atoms, directly'
in the interpretation. Then one might study various extended A-calculi which
.include constants in their syntax and some additional replacement rules (called
8-rules) for these. Models for such "applied" A-calculi can be found via solutions
of

where A is some primitive lattice of atoms. The interpretation of terms runs much
as before, with some given interpretation for the constants. (The only ambiguity
concerns an application a(x) in which a is an atom in A; this is given a standard
.meaning, e.g., J._, or T, or a special error-atom.) Any solution for E will provide
models for a-tJ-conversion but not, of course, for 'l1-conversion (because distinct
atoms behave the same as functions).

Particular solutions, Eoo, are known in which many of the results for 000
remain true, e.g., the analogues of Corollary 3.4 and Theorem 5.2. Whether all
unsolvable terms will have value 1. in Ex depends on the choice between
"separated" and "coalesced" sums; that is, on whether one wishes to distinguish
between the least element 1.E and the least function 1.[E-+E}If so, this is mirrored
in the syntactic aspects by calling an unsolvable term strongly unsolvable if also it
is not reducible to an abstraction; then, with separated sums, terms will have value
1. iff they are strongly unsolvable.

Equivalences such as 1=J will fail to hold. In fact, it can be shown that no
normal form can be equal in Eooto a term without a normal form. This is to be
expected as there is no reason to regard I and J as equivalent when 'l1-conversion
is denied; indeed, they can be distinguished by application to a constant.

The relation =Eoowill clearly be different from =000. One obvious conjecture
is: M =s; N iff for all contexts C[], C[M] has a normal form just when C[N] has
the same normal form (here, normal form would mean tJ-5-normal form). But
with constants present, since whole programs are generally intended to give basic
objects rather than functions as results, a more natural characterization would be

M =EooN¢:>for all contexts C[], C[M] is reducible to a constant
just when C[N] is reducible to the same constant.

It seems likely that such a characterization can be established if sufficient
constants (one for each atom?) and 8-rules are included in an extended calculus.

8. Conclusion. It is worth reflecting on how our results might generalize to
other languages. Clearly there should always be some connection between the
denotational semantics of a language and the properties of the computations
which can be evoked by its programs. When such a connection has been estab­
lished, we can then work with either the denotational or an implementation­
oriented definition of the language. If we regard the denotational semantics as the

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 519

primary definition, the connection woctd show that the implementation is not only
correct but is "effectively complete", in the sense that it can compute and make
use of every "bit" of information determined hy the denotations. Alternatively, if
we regard the implementation as given, such a co.mection establishes the denota­
tional meanings as a valid basis for reasoning about the "global" properties of
programs under the implementation (conceptually a simpler task than working
with the implementation directly).

For proofs based on a denotational semantics, methods wili he needed for
performing inductions on the structure of domains, particularly domains obtained
as solutions of isomorphic domain equations. As with the properties of A -calculus
models, many program properties will not be dependent on the internal structure
of particular solutions, but it seems likely that some will be so dependent. In our
study the laws of projections on DCX) embody the relevant structure, but it remains
to be seen whether a similar use of projections will provide a convenient
framework for inductions on solutions of other domain equations.

The characterization of semantic equivalence of terms in DCX) has an obvious
counterpart for other languages in the form of a substitutivity test: program
fragments may reasonably be regarded as equivalent just when either can serve in
place of the other in any program without affecting the "input-output" behavior
of the program. To emphasize the sense in which a program's behavior might be
affected, we can generalize the notion of "semi-separable" as follows. Let 'TT, 'TT' be
(well-formed) program fragments of the same syntactic category of a language L.
Call 'TT and 'TT' semi -separable iff there are programs II and II' of L, differing only in
an occurrence of 'TT and 'TT', respectively, such that the execution of II halts giving
some standard output (e.g., 0) while that of II' would continue indefinitely giving
no intermediate output, or vice versa. Then, given a semantics for L, one can
conjecture that 'TT and 'TT' are semantically distinct just when they are semi­
separable. If this holds we can reasonably claim that the given semantics for L is
the right one. (Of course, with the benefit of hindsight, these suggestions are not
surprising.)

Finally, note the closure properties of the definable subspace of DCX). In
general, any solution of a domain equation will contain nondefinable elements
and it would be distressing if two definable elements were equivalent in all the
ways they may be combined with definable elements yet could be distinguished by
making use of the nondefinable elements; for in the semantics based on such a
domain there would be programs which have different meanings yet have the
same computational behavior. (Of course, the results of §6 show this does not
occur for the A -calculus semantics based on DCX).)

Such a situation is not necessarily irretrievable, however. One possibility is
simply that a language may be lacking in generality or expressive power; this could
be patched either by extending the language directly or by regarding computa­
tional equivalence as being determined with respect to an extended language. A
second possibility is that the definition of semantic equivalence could be modified;
instead of defining semantic equivalence with reference to all environments, one
can consider only environments in which the denotation of every variable is a
definable element of the domains used in the semantics (with similar modi fica­
tiom for equivalence of functional abstractions). However, the structure of the

520 CHRISTOPHER P. WADSWORTH

domains may not then be as directly applicable to equivalence proofs as it was for
the A-calculus examples in§ 3. A recent paper of Plotkin [14] points out these and
other difficulties and expands on the possibilities.

Acknowledgmeilts. I wish to thank Professors Dana Scott, Christopher
Strachey, and John Reynolds for many helpful suggestions and encouragement. I
am especially indebted to Martin Hyland for the notion of type-assignment used
in the proof of Theorem 5.2.

REFERENCES

[1] J. W. DE BAKKER AND W. P. DE ROEVER, A calculus for recursive program schemes, Proc.
IRIA Colloquium on Automata, North-Holland, Amsterdam, 1972.

[2] H. P. BARENDREGT, Some extensional term models for combinatory logics and A -calculi, Ph.D.
thesis, Utrecht Univ., the Netherlands, 1971.

[3] --, Solvability in A-calculi, Proc, 1972 Orleans Congres de Logique, J. P. Calais, J. Derrick
and G. Sabbagh, eds., to appear.

[4] C. BOHM, The CUCH as a formal and descriptive language, Formal Language Description
Languages, T. B. Steel, ed., North-Holland, Amsterdam, 1966, pp: 179-197.

[5] --, Alcune proprieta delle forme /3-'l1-normali nel A-K-calcolo, Consiglio Nazionalle delle
Recerche, no. 696, Rome, 1968.

[6] J. M. CADIOU, Recursive definitions of partial functions and their computations, Ph.D. thesis,
Stanford Univ., Stanford, Calif., 1972.

[7] H. B. CURRY AND R. FEYS, Combinatory Logic, vol. 1, North-Holland, Amsterdam, 1958.
[8] H. B. CURRY, J. R. HINDLEY AND J. SELDIN, Combinatory Logic, vol. 2, North-Holland,

Amsterdam, 1972.
[9] S. C. KLEENE, Introduction to Metamathematics, Van Nostrand, New York, 1952.

[10] C. MCGOWAN, Co"ectness results for lambda-calcul!4S interpreters,Ph.D. thesis, Cornell Univ.,
Ithaca, N.Y., 1971.

[11] J. H. MORRIS, Lambda-calculus models of programming languages, Ph.D. thesis, Project MAC,
Mass. Inst. of Tech., Cambridge, Mass., 1968.

[12] R. NAKAJIMA, Infinite norms for A -calculus, Symposium on A -calculus and Computer Science
Theory, Consiglio Nazionalle delle Ricerche, Rome, 1975.

[13] D. M. R. PARK, The Y-combinator in Scott's lambda-calculus models, Symposium on Theory of
Programming, Univ. of Warwick, unpublished, 1970.

[14] G. D. PLOTKIN, LCF considered as a programming language, J. Theoret. Computer Sci., to
appear.

'[15] J. C. REYNOLDS, Notes on a lattice-theoretic approach to the theory of computation, Dept. of
Systems and Information Science, Syracuse Univ., Syracuse, N.Y., 1972.

[16] B. K. ROSEN, Tree-manipulating systems and Church-Rosser theorems, J. Assoc. Comput.
Mach., 20 (1973), pp. 160-187.

[17] D. SCOTT, Lattice-theoretic models for the A-calculus, Princeton Univ., Princeton, N.J., unpub­
lished, 1969;

[18] --, Outline of a mathematical theory of computation, Proc. 4th Ann. Princeton Conf. on
Information Sciences and Systems, Princeton Univ., Princeton, N.J., 1970, pp. 169-176.

[19] --, The lattice of flow diagrams, Semantics of Algorithmic Languages, E. Engeier, ed.,
Springer Lecture Notes in Mathematics, no. 188, Springer-Verlag, New York, 1971, pp.
311-366.

[20] --, Data types as lattices, Notes, Amsterdam, unpublished, 1972.
[21]--, Lattice theory, data types and semantics, Formal Semantics of Programming Languages,

. R. Rustin, ed., Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 65-106.
[22] --, Lattice-theoretic models for various type-free calculi, Proc. 4th Internat. Congr. for Logic,

. Methodology, and the Philosophy of Science (Bucharest), North-Holland, Amsterdam,
1973.

COMPUTATIONAL AND DENOTATIONAL PROPERTIES 521

[23] c. P. WADSWORTH, Approximate reduction and lambda-calculus models, this Journal, to
appear.

[24] ---, A general form of a theorem of Bohm and its application to SCali's models for the
A-calculus, in preparation.

