LOGIC PROGRAMMING FOR THE L AW

DISSERTATION SUBMITTED FOR THE DEGREE OF

MASTER OF TECHNOLOGY

BY

W P SHARPE

BRUNEL UNIVERSITY

JUNE 1984

ACKNOWLEDGEMENTS

I am grateful to Bob Kowalski, Peter Hammond and Marek Sergot for
introducing me to the field of 1logic programming and the law, and for
‘their help in providing source material and discussing problems. I would
like to thank Tom Addis for his very helpful comments on the first draft
of this report. I am especially grateful to Susan Fuller who typed it
all to meet impossible deadlines. I am also happy to acknowledge the

support of the Science and Engineering Research Council.

SUMMARY

This project 1looks at the use of 1logic programming for building
intelligent knowledge based systems. The domain of law is chosen as a
vehicle for the study which has three main sections. First, the field of
knowledge representation is surveyed in order to put logic in the context
of other formalisms. Secondly, the current state of the art in
intelligent 1legal systems is reviewed, with particular attention to
recent systems implemented in PROLOG. Lastly, a practical system to
represent a piece of legislation is described in detail. This study
shows the strength of logic as an analytic tool for structuring knowledge
and as a tool for building knowledge based systéms. It also shows,
however, that the analysis of knowledge for mechanical representation is
still in its infancy. Simplistic translation of explicit knowledge into
a logic program produces a system of no significant power; a number of
structuring principles must be used to organise the domain knowledge into
a problem solving system. The discovery of these principles 1is the
subject of the infant science of knowledge engineering. This project

suggests a few such principles for the domain of written law.

CONTENTS

1 INTRODUCTION 1
2 KNOWLEDGE REPRESENTATION 6
2.1 Introduction 6
2.2 The Knowledge Level 7
2.3 On the Epistemological Status of Semantic Networks 14
2.4 The Epistemology of a Rule-Based System 20
25 Frame Representations and the Declarative/Procedural Controversy 25
2.6 Logic For Problem Solving 28
2.7 Knowledge for Machines 34
2.8 Summary 37
3 INTELLIGENT LEGAL INFORMATION SYSTEMS 38
3.1 Overview ' 38
3.2 Precursors of Intelligent Legal Systems 40
3.3 LEGOL 41
3.4 Logic Based Systems 46
345 Deontic Systems 54
3.6 Frame Systems 56
y REPRESENTATION OF SSP LEGISLATION 62
4.1 Introduction 62
4.2 The "Direct" Approach 68
4.3 The "Single Goal" Approach 72
by The "Conceptual" Approach 76
4.5 Summary 87
5 CONCLUSIONS 88
REFERENCES

Appendix A The "Single Goal" program listing.
Appendix B The "Conceptual" program listing and example problems.

Annex Examples from Employers' Guide to SSP.

CHAPTER I

LOGIC PROGRAMMING FOR T H.E LAW

INTRODUCTION

This project is a study of the applicability of the techniques of logic
programming to problems in representing legislation for the purposes of
intelligent consultation. The motivations for the choice of domain and

technique are both practical and theoretical.

The body of statute law in force in this country has been estimated to
run in excess of 25 million words. The law affects us all in many
different aspects of our lives and the problem of obtaining accurate
knowledge of the law is becoming acute. Even solicitors are concerned
that they are not able to keep up to date with the law that is relevant
to their clients. When case law is added in, the body of material
relevant to our daily affairs becomes quite unmanageable. The practical
case for some automatic assistance with managing this body of knowledge

is therefore clear.

Artificial Intelligence as a discipline has for a long time studied the
problems of assisting humans in problem solving in domains where the
concepts are of great complexity, such as medicine or mineral
prospecting. Of recent years the recognition that knowledge of a domain
and knowledge of problem solving methods to use in that domain are
intimately related, has led to the invention of the terms 'knowledge
based programming' and 'knowledge engineering' to represent this subset

of Artificial Intelligence. These terms are used to describe the
processes of building what are generally known as expert systems in which

- T =

expert knowledge of a domain is represented in some explicit way. What
makes this style of programming different from conventional programming
is the use of representational formalisms that bear a natural
relationship to the knowledge to be expressed. The important aspect of
these formalisms is that they have explicit means for representing
inferential associations and other knowledge structuring concepts absent
from the traditional languages. The process of developing an expert
system is then called knowledge engineering because the expert is
'simply' making explicit his knowledge of his domain in the particular

formalism.

This is contrasted with traditional programming in which the problem must
be translated into an expressive form of data structures and procedures
whose semantics are more to do with the state changes of a computer than

the problem to be solved.

The development of languages whose semanties are more closely related to
problem solving than to machine operations is an area of active research
that goes wider than artificial intelligence and is generally now known
as the field of declarative languages. This term indicates that the
languages describe what should be done not how it should be done by a
computer. These languages are strictly declarative with respect to the
underlying implementation, but when used for knowledge representation
they may describe either assertions or problem solving procedures. The
important point is that the procedures are expressed in terms of domain
heuristics, not manipulation of internal data structures of the kind we
are familiar with in traditional computing. This point is dealt with in

detail in this study.

Amongst the declarative languages there are two main classes: functional
languages and logic languages. Within AI, LISP is the functional

- 2 =

language most widely used. In practical use its many non functional
features are also extensivgly exploited. It is very powerful for
building and manipulating-complex data structures in an efficient manner.
Functional languages however do not have "built-in“ inferential
mechanisms of the kind required for knowledge engineering. These are
found in the logic languages, which conversely lack the myriad procedures

for handling data structures found in LISP.

A recent definition of intelligent knowledge based systems is that they
are ones which "apply inference to knowledge to perform a task"™ [1].
While no general definition of machine intelligence can hope to gain
total approval in the current state of our understanding, there is
widespread acceptance of inference and knowledge representation as
cornerstones of the subject. That we seek to understand basic concepts
by trying to model natural phenomena through the manipulation of symbols
is not peculiar to the science of artificial intelligence. In the case
of AI the phenomena are tasks which, if performed by natural agents, we
think of, in some loose sense, as requiring 'intelligence'. This is
taken up in more detail in the next chapter. Given that inference is a
fundamental part of AI we will naturally be interested in programming
languages which have powerful inferential mechanisms. In the logic
programming languages these mechanisms are combined with the development
of the declarative approach to programming; the use of these languages
for knowledge engineering thus becomes of interest both from the
perspective of AI and the development of declarative programming in
general. The c¢laim is made for logiec programming that its declarative
semantics are a natural and powerful tool for knowledge representation,
and that its procedural semantics confer upon it the ability to apply the
knowledge represented to perform tasks. The purpose of this project was

to study that claim.

Beyond the Qractical reasons for choosing the legal domain for this study
the theoretical justification lies in the apparent correspondence between
the written expression of the law and the formalism of logic programming.
The law is one domain where, superficially, there is no problem with the
acquisition of knowledge. What is written down is the law, and it is
written down in the form of rules "if ... then ...". The Horn clause
subset of 1logic is a formalism that expresses rules directly. We
therefore have a match between a domain and the formalism we wish to
investigate. Given this initial match we may feel justified in expecting
that any limitations found here will also be found in domains where the
match does not exist. We find in this study that the match is
superficial only and perhaps tends to conceal the relationship between
domain knowledge and a representational language. In the second chapter
of this report we survey the subject of knowledge representation in
general and find that this relationship is subtle and still largely not
understood. This survey puts the use of logic in a wider context and
goes some way to establishing its role in the study of knowledge based

programming.

The law is put to many different uses by many quite different classes of
users: the ordinary citizen would 1like to be able to have definiﬁive
advice on his entitlement to some benefit, say, or know in rough detail
what his rights are in some situation; an employer wishes to know
precisely what are the various procedures he must comply with in respect
of his employees; a solicitor needs very detailed knowledge of all the
laws pertaining to his client's case and, more importantly, knowledge of
how to apply the law, the procedure for its use; the legal drafter needs
assistance with constructing complex written documents that convey the
intended meaning; the policy maker needs to be able to model the effect

= iy =

of a hypothetical piece of legislation. At the heart of all these uses
there is one and the same law. We would like to understand how that
legal knowledge should be structured so that it can be put to all these
uses, and where the boundaries are between a representation of the law in
general and its representation for a particular task. Chapter 3 looks at
the existing literature on the application of AI to the law and reviews

the state of our current knowledge of these questions.

A major part of the time spent on this project was devoted to a practical
investigation into the use of 1logic programming for the law. This
investigation took the form of building a system capable of answering a
restricted set of queries on a very small amount. of legislation. This
study provided the insights upon which the rest of the survey was built.

This part of the project is reported on in detail in Chapter 4.

In the final chapter the conclusions of this investigation are presented

with some suggestions for future lines of work.

CHAPTER 1ITI

KNOWLEDGE REPRESENTATION

2.1 INTRODUCTION

The subject of knowledge representation is an area of current research
that displays an 1immense variety of approaches and intellectual
positions. It would be possible to survey it through the classic
taxonomy of representational methods but that approach is not followed
here. The review of current work contained in [7] shows that although
some taxonomic classification is possible at a surface level into such
methodologies as 1logic, production rules, semantic nets ete, there is
deep disagreement about the very language in which the research problems
should be stated. The authors of the survey were themselves surprised at
the almost total heterogeneity in the replies to their questionnaire and
are unable to draw out any general principles. Given such a situation,
where each researcher takes a different attitude to the significance of
even an elementary taxonomic classification of techniques, this study
chooses to take a different approach. Newell [26] has made an attempt to
give a new framework to the field of knowledge representation. This work
will be taken as a reference point for the whole field against which the
contributions of a number of other workers will be described. The papers
chosen for review represent a wide spectrum of attitudes but, given the
diversity already referred to, any claim to a comprehensive treatment of

the subject (or theiliterature) must be unfounded.

In order to provide a framework for this discussion the,K argument of the

paper by Newell is given in detail in the next section.

- O 1=

2.2 "THE KNOWLEDGE LEVEL" [26]

The particular contribution made by Newell is to propose a description of
intelligent systems in terms of two levels - a knowledge level and a
symbol level - in place of a single symbol level which is the prevaient
approach. This approach is intended to remove dispute and clarify the
methodology of AI, the paper itself does not aim to offer any radically

new solutions to the problems of designing intelligent systems.

In order to place the notion of knowledge level in context Newell reviews
the concept of a level of systems abstractions as it is found in such
treatments as [#1]. A level in a computer system is a description of a
virtual machine. There is a medium on which a number of components
operate. The components are built up according to a number of basic

structural laws of composition to produce a system (virtual machine)

whose actions may be described by certain laws of behavior. In a real

system a level of abstraction must be defined in terms of the level
below. It is important to realise that in this sense a level is an
artefact and not a more abstract (in the sense of containing less
irrelevant detail) description of what lies beneath. A given level can
be used to realise a whole class of systems at the next higher level, but
will in general also place a number of constraints on those systems.
Each level is thus a specialisation of the one beneath and its existence
is open to empirical observation and suﬁject to the technological
constraints of the level beneath. The second important characteristic of
a systems level is that, once defined, it may be used as a tool for

analysis and design essentially without regard to the lower levels. It

is in this way that it may be called a level of abstraction since the
language of one level is used independently of its realisation, and
describes behaviour in terms that need have no one-to-one functional
counterpart in the components of the lower level. This of course is an
idealised view, and Newell observes that in real computer systems a level
is only one approximation, the constraints of one 1level propagate into
the design at the next higher level and must be taken account of by the

system designer.

Parenthetically we note that the driving moitivation behind the work in
the declarative languages 1is the desire to construct a systems level
which would allow design to proceed in a language having formal world
semantics rather than one that is concerned with the manipulation of
states within a computer. Newell's distinction of symbol and knowledge
level helps us to understand where the bridge between the representation
of external knowledge of the world and knowledge of representation and

processing must be built. This point is returned to later.

The next step in the development of Newell's hypothesis is the assertion
that the description of intelligent systems may be usefully made in terms

of a functional decomposition.

Without attempting to offer a definitive decomposition he suggests a few
basic functional components. The definition of a task enters through a
perceptual component and is stored in an internal representation.
Drawing on a goal structure and some general knowledge activity proceeds

to manipulate the representation until a solution is available. The

representation, viewed in this way, is plainly just the component that
confers on the system some degree of competence. We understand that the
structures of the representation will be manipulated by the processes in
a way that is consistent with a representational view of those
structures. Newell observes that while the notion of a representation is
used fairly precisely within computer science, competence or knowledge
appears to be whatever it is that a representation has. This observation
of actual practice is elevated by Newell to become his Knowledge Level

Hypothesis:

"There exists a distinet computer system level, lying immediately above
the symbol level, which is characterised by knowledge as the medium and

the principle of rationality as the law of behavior®.

Although Newell proposes a knowledge levél which can therefore be
described in terms applicable to any other systems level, he observes
characteristics that distinguish it from other 1levels in all major
respects. Firstiy he observes that the structure of the knowledge level
is very simple, and that variety at this level 1is a result of what is

known rather than of structural complexity. Thus the components are:

- a physical body with arbitrary modes of interaction with the

environment

- a body of knowledge, defined without regard to any constraints

on internal structure or representation.

- a set of goals, only distinguished from the rest of the
knowledge in respect of their function.

- G

There are no structural laws for the composition of these components,
they cannot be built up into more complex agents. We may note that
Newell is here offering a different view of a systems level. In the
earlier section we noted that a level is an artefact, and as such not a
general abstract level of description of the external world. Here, on
the contrary, we appear to be offered an epistimological framework for
knowledge and rational Dbehaviour of agents within real world
environments. This confliet is perhaps resolved by the development of

the concept of the knowledge level within a system as not having any

extensional reality but being only intensionally expressed by the
representation within the symbol level. This is nothing new in the study
of science 1in general. It is only in AI, where the subject is the
representation of the reasoning process itself, that there has been a
particular problem in separating out the properties of a symbol syétem
from its real world semantics. Newell notes the tendency in AI to make a
mythology of knowledge representation, making it the 1locus of

intelligence.

The law of behaviour of the knowledge level is the principle of

rationality:

"If an agent has knowledge that one of its actions will lead to one of

its goals then the agent will select that action®.

This level of description asserts a global principle that governs the
behaviour of the symbol 1level without asserting any mechanistic
principles for its realisation. It is, following the previous paragraph,

an empirical observation of the principle which we take to be appropriate

- 10 -

to the description of intelligent systems. Newell here is clearly giving
concrete expression to the way in which AI design has proceeded, and he
also meets the work of other disciplines such as utility theory,
experimental psychology, decision theory, ete where the derivation of
behaviour from goals is a central theﬁe. Newell explicitly brings out
this connection and also extends the principle with auxiliary ones which
define rational behaviour under conditions of multiple simultaneous
goals, ete. These principles are offered only as examples to explain the
idea of knowledge level rather than as a set of carefully thought out and
substantiated definitions. It is-clear that these principles do not give
us much insight into the definition of rational behaviour, but they do

serve to distinguish the definitional task from the representational one.

He is at pains to point out that the investigation of these principles
can never be complete, that the knowledge level unlike other system
levels has a radical incompleteness. This means that sometimes the
behaviour of a system cannot be entirely specified by the knowledge level

but only in terms of the symbol level which realises it.

These considerations 1lead up to Newell's functional definition of

knowledge as:

"Whatever can be ascribed to an agent such that its behaviour can be

computed according to the principle of rationality".
This functional view allows us to ascribe to a system the essentially
unbounded set of propositions that may be made as a result of knowledge

about (competence with respect to) some aspect of the world. We have an

= 7

intuitive notion that a finite representation can intensionally hold
knowledge that in its extensive form is unbounded, and indeed this
intuition can be seen to be fundamental to a recent defintion of
intelligent knowledge based systems as ones "which apply inference to
knowledge to perform a task" [1]. An intelligent system generates by

inference knowledge (propositions) that are relevant to the task in hand.

Given this functional defintion the problem for an intelligent agent is
to create a symbol 1level that can solve the functional equation. The
knowledge 1level. provides only a definition, not a theory, of
representation. At the knowledge level we have rationality and knowledge
producing behaviour; at the symbol level we cannot expect these to
resolve in any predetermined way into data structures and processes.
Representational theory is thus a separate domain of research from the
definition of the knowledge level. Newell summarises the reduction of

the knowledge to the symbol level in the following table:

Knowledge Level Symbol level

Agent Total symbol system

Actions Symbol system with transducers
Knowledge Symbol structure plus its proceses
Goals (Knowledge of goals)

Principle of rationality Total problem solving process

Having made this distinction between the levels it becomes possible to
examine the contribution made by an AI system or methodology to each
level separately. In doing so we shall find, as Newell observes, that
the relationship between the levels is not pure because of the radical
incompleteness of the knowledge level refefred to earlier; and also
because empirical observation of intelligent agents (psychology) shows
how processing limitations intimately affect the realisation of the
idealised knowledge level definition. In looking at particular AI
systems Newell finds that in general they make their main contribution to
one or other level rather than to both. Thus MYCIN [34], which is
discussed in more detail 1in a later section, is a contribution
essentially to the knowledge level, its processing regime being quite

straightforward.

Newell relates his distinction of levels to that between epistemological
adequacy and heuristic accuracy. Central to Newell's thesis is the
propostion that a formalism and analysis that achieves epistemological
adequacy with respect to some knowledge is not therefore bound to be
heuristically accurate at the symbol level. In other words it is the
distinction between using a tool to define the representation and using
it to encode it. We should not expect a priori that any formalism will
be appropriate to both uses. The view taken by certain workers, such as
McCarthy, that logic is appropriate to both uses Newell asserts to be
mistaken. He cites the now well established limitations of uniform proof
procedures in defence of this and also observes in McCarthy's move
towards distinguishing the concept of a number from its representation an

implicit recognition of his own position.

s g

Newell ends by speculating that his theory may allow us to build a
generative class of rational goal directed systems; the design form being
derived from the knowledge level as a universal description of

intelligent systems.

In summary therefore the recognition of the knowledge level allows us to

make the following assertions.

- knowledge is abstract and is present only intensionally in

the structures and processes of the symbol level,

- tools for analysis of the knowledge level are distinct from

the technologies of the symbol level;

- knowledge is a radical approximation, and an adequate model
of an agent will include some description of its symbol

level.

2.3 "ON THE EPISTEMOLOGICAL STATUS OF SEMANTIC NETWORKS" [6]

Brachman, like Newell, through a survey of historical practice in AI is
lead to suggest an understanding of knowledge representation in terms of
levels and to define a new level to clarify earlier confusions. In
Brachman's case the subject is not knowledge representation in general

but specifically the use of semantic networks as a representational tool.

= 3 =

A network is simply a collection of nodes joined by arcs and it becomes a
representation of meaning through the association of some class of
concepts with the nodes and relations with the links. That there has
been no consistency between workers on the choice of concepts to attach
to nodes and links is immediately apparent. Brachman suggests that the
uniformity of the tool has also lead to an unfortunate tendency to
confound representations that are essentially distinct. His
reconstruction of the field identifies four levels that have been widely
used and defines a fifth (the epistemological) that he beleives'has not

been adequately recognised or studied. These levels are:

- implementational
- logical

- epistemological
- conceptual

- linguistic

When isolated in a pure form a level is comprised of a number of
primitives and an interpreter that processes them. A network is then a
means of structuring primitives and the interpreter is a means of
deploying the information contained in that structure. It should be
noted that Brachman is here making it clear that the knowledge
represented in a network is only adequately described by both the network

and its interpretive processes.

In order to achieve the reconstruction into levels Brachman characterises

a network level as having neutrality, adequacy and semantics. A level is

neutral towards the level above it insofar as it does not force any

- 15 =

particular choice of primitives into it. It is adequate if it is
sufficiently rich to represent all the semantics appropriate to its
level. A level therefore requires that such a semantics should exist and

be well defined.

The implementational level is found in the work of Nash-Webber and Reiter
which treats a network as little more than a data structuring device of
nodes and pointers for the construction of higher level logical language.
As such it has nothing to say specifically about knowledge structuring or
representation and has semantics no different from (say) a 1list

processing language.

A network constructed at the 1logical 1level represents 1logical
relationships. Nodes represent predicates and propositions and 1links
represent logical relationships such as AND, SUBSET, etc. For this level
the notion of adequacy is well defined being derived from the predicate
calculus. From this point of view the semantic¢ network may be seen as
simply an alternative syntax for predicate calculus with the useful
addition of organisational principles over normally unindexed predicate

calculus statements.

The epistemological 1level is the focus of Brachman's study and is
concerned with the relationship between the parts of an intension to the
intension as a whole, and one intension to another. It describes the
formal structure of conceptual units and their relationship independently
of the knowledge they contain. This level is therefore about the

definition of knowledge structuring primitives (such as property

inheritence) rather than particular knowledge primitives that are found
at the next higher level.

- 16 =

The conceptual level is typified by the work of Schank [30, 31]. At this

level the designer describes case structures with their attendent cases

or "slots". A node is associated with a case structure which defines
some primitive piece of knowledge. For instance a verb structure has
cases to define agent, object, etec. In Schank's work there are
"primitive acts"™ with cases such as "instrument" and "direction". The
primitives at this 1level are therefore directly concerned with
discovering underlying unity in word senses and their case relations, ie
with a framework for the meaning of language. It does not explicitly

account for the internal structure of these senses.

The top most 1level, the linguistic has primitive elements which are
language specific. The only example found by Brachman is OWL [16]
although the view that language may be inseparable from the structuring
of knowledge has been considered elsewhere [20]. 1In this view it is the
knowledge itself which forms the structure, and the meaning of links

cannot be asserted separately from the knowledge embodied in the network.

In discussing Brachman's analysis'from the Newell perspective we need to
distinguish the analysis itself from any particular system that he takes
as an example. The analysis into five levels may then be seen as a
contribution to our understanding of the knowledge level since it allows
us to be more precise about the analytic tools used to describe
knowledge. As pointed out above Brachman's analysis assumes that network
formalisms are to be considered together with their interpreters and this
gives them the competence like character of the knowledge level. Each
level then attacks the notion of competence in a different way and it

nust be a subject of research whether the insights gained prove to have

w VT =

value. Clearly Brachman's attitude is different to Newell's insofar as
he does not ascribe to the logical level any primacy as an analytic tool,

sees it in fact as subserviant to higher level analyses.

If we descend from the analysis to any particular network formalism then
it is an open question whether we find the contribution being made at the
knowledge or symbol level. Newell himself discusses one example at the
conceptual level, that of Schank's conceptual dependency structures and
places it within the knowledge level. Schank postulates a simple model
for a language-free representation of meaning for "overt™ physical or
mental activities; Each conceptual dependency (CD) structure consists of
a primitive act and a set of conceptual cases. Inference rules are
grouped under the primitive acts. The number of primitive acts is quite

small (eleven in [31]). Examples of acts are:

ATRANS Abstract transfer of possession, ownership or

control of a physical object

INGEST Bring a substance into the body of a person or

animal

The acts take place in a world of states, objects and actions. Actors
have mental states that can participate in this world and have causal
effects upon it. The dynamics of the model are summed up by Newell as

follows:

- 18 -

World: states, actions, objects, attributes

Actors: objects with mentality

Cause:

An act results in a state

A state enables an act

A state or act initiates a mental state

A mental act is the reason for a physical act

A state disables an act.

The essential observation is that this model has been effectively
implemented in a program (MARGIE) capable of an interesting ability to
rephrase and perform inferences on natural language but that the
implementation (the symbol level) did not shed any new insights on the

model.

The semantic network formalism of Phillips [28], discussed further below
(section 2.7) was designed, like Schanks, to help extract meaning from
natural language text. Philiips not only discusses the relationship
between his paradigmatic structures and the concebtual parser of Schank's
model, thus adding to our understanding of that model, but also analyses
the capabilities of the net interpreter in considerable detail. He is
able to show that certain classes of meaning recognition can be achieved
by path tracing processes, ie using a Chomsky type 3 grammer of the
networks. Recognition of a class of more structurally complex concepts

however requires pattern matching (equivalent to accepting a string of

the form ah bny an4 cannot therefore be accommodated by a path tracing

- 1

interpreter. This is a contribution specifically to our understanding of
the symbol level since it relates to the complexity of implementation of
a conceptual scheme that is independent of that scheme's justification at

the knowledge level.

2.4 "THE EPISTEMOLOGY OF A RULE-BASED EXPERT SYSTEM" [9]

In this paper Clancey derives a general epistemological framework for the
design of expert systems through a consideration of the knowledge that
must be made explicit in order for an expert system to be useful for
communicating its expertise. The system which was the subject of his
analysis was MYCIN [34], the well known diagnostic and treatment advisor
for bacterial infection. It was a reasonable hypothesis that a system
able to apply an expert's knowledge of a domain, with some level of

explanation already available, should provide a basis for communicating

that expertise to the non-expert. The conclusion of Clancey's study is
that MYCIN cannot communicate its expertise because several different
kinds of knowledge are combined inextricably in the internal
representation, so although the system may be said to have diagnostiec
knowledge (it performs that task) it has not got any knowledge of the
diagnostic task itself. Clancey traces this shortcoming to the
uniformity of the representation in production rules but observes that
once the epistemology is clarified the actual representational notation
is irrelevant. He is able to carry his analysis over to a number of
different expert systems which taken together wuse all the common

notations and thus we should understand this as a contribution purely to

= Bl =

the knowledge 1level. It is to be expected that there is much to be
learnt about the perspicuity and power of the different notations to
achieve the structuring he proposes. Although the original motivation of
his study was to use a knowledge base for tutorial purpdses his framework
offers the possibility of incéreasing the power and flexibility of systems

in performing their primary task.

The three types of knowledge that Clancey identifies within MYCIN and
which he proposes should be made separately explicit are strategic,
structural and support. Support knowledge justifies the use of a rule by
giving it a basis in facts about the domain or the world in general.
Strategic knowledge is concerned with plans for problem solving and lies
above individual goals and hypothesis; to some extent it can be stated in
domain independent terms. Structural knowledge defines abstractions that
index the domain knowledge and thereby provide "handles" for the use of
strategic knowledge. These three types of knowledge are now considered

in more detail.

Rule justification is the process of logical argumentation to support the
implication from a rule's antecedent to its consequent. In MYCIN Clancey
distinguishes four kinds of justification: identification, world fact,
domain fact, and causal. The first three of these are characterised by a
degree of self-evidence within the problem domain that makes further
support for the explanatory process unnecessary. For example, a domain
fact rule is: "if a drug is administered orally and is poorly absorbed in
the GI tract, then the drug was not administered adquately".

Unravelling the justification of this rule would not add anything to the

- 81 =

understanding of the diagnostic domain and would have to draw on
knowledge outside that domain. Such justification would properly belong
in a system such as INTERNIST which is a more general advisor on internal

medicine.

A simple example of a causal rule is "if a patient is less than 8 years

old, don't prescribe tetracyline™. The rule does not mention the
underlying causal mechanisms upon which it rests (chelation - drug
deposition in developing bones, causing blackened permanent teeth). In

order to provide a satsifactory explanation one can imagine a tree of
rules refining each step of the process to an ever greater level of
detail. Clancey points out however that an explanation satisfies when it
makes contact with known concepts, and from this point of view the

explanatory process is one of generalisation from the specific unfamiliar

detail to the general known class. The model for explanation may then be

shown diagramatically as follows:

Explanation: Immunosuppression > gram neg rods & entero
bacteriaceae
Explanatory level: Abstractions of problem 2 abstractions of causal
features process
Rule level: Antecedent = Consequent
Rule: If white blood count > e.coll (.75) causing
less than 2.5 infection...

- 22 -

The abstract explanatory level is directly related to causal models for
the process thét ié the subject of the diagnostic analysis. Making this
causal model explicit then as a basis for explanations clearly has
potential for giving the expert system recourse to general process
knowledge when specific rules fail. Now Clancey observes that we would
be quite mistaken to conclude from the discovery that a process model is
necessary for explanation that MYCIN rules are written at the wrong
level. The rules are good heuristics because they combine the knowledge
of the explanatory level with strategic knowledge to drive the diagnostic
procedure. The causal model is not an efficient subgoal structure for
solving the diagnostic problem; it can justify the relations found
between problem features, but those features are often deduced rather
than presented. The model thus provides feedback that the diagnosis

'fits' and is a source of 'first principles' when heuristics fail.

Turning them to strategic knowledge we find that it is concerned with how
to order goals and subgoals, choose between alternative paths of
investigation ete. It is well known that good human problem solvers have
efficient means for structuring their approach to the large amount of
information and possible deductive paths present in a complex domain;
Clancey concludes that some of these means can be expressed in domain

independent terms. As examples:

- common (frequent) causes of disorder should be considered

first

- if there are unusual causes then pursue them.

- 23 -

Clancey finds such strategic knowledge encoded into metarules in MYCIN,
bué there the domain independent strategy is implicitly present in a
domain specific rule. To achieve the separation, and hence explicit
representation it is necessary to include also the structural knowledge
of the domain. In the above example, structural knowledge in MYCIN would
include classes of 'common' and 'unusual' causes for particular features.
The strategic knowledge is procedural in nature and Clancey places the
issue of integrating the domain specific heuristies with the procedural,
strategic knowledge (for problem solving as opposed to explanation) at

the heart of the 'declarative/procedural controversy' [U42].

The structural knowledge, if it is to be consistent with the explanatory
knowledge of the system, must pertain to the same relations for
hierarchically abstracting data and hypothesis as were discussed under
the heading of support knowledge. From an examination of a number of
expert programs (DENDRAL, AM, etc) Clancey is able to abstract a number
of structuring principles that provide handles for the strategic process.
In the following examples KS stands for 'knowledge source' and means an

inference association:

- organise KSes for each hypothesis on the basis of how KS data
relates to the hypothesis, for focusing on problem features
(¢.f NEOMYCIN)
- organise KSes hierarchically by hypothesis for consistency in
data-directed interpretation.
Strategic rules might then be:
- Do not consider KSes that are subtypes of ruled-out

hypothesis.

- Consider KSes that abstract known data.

- 24 -

What Clancey wishes to stress is that by keeping the strategic knowledge
independent the structure of the supporting knowledge can be made

explicit and hence accessible to an explanatory system.

Clancey believes that this analysis is a useful basis for the design of
new expert systems and is independent of the notation used for its
representation. Production rules were used in his reconstruction of
MYCIN into NEOMYCIN to demonstrate these principles. He sees the design
process as essentially cyclic, in which changes are made to the prototype
rules until a new epistemological pattern emerges leading to a redesign

of the rule set.

2.5 "FRAME REPRESENTATIONS AND THE DECLARATIVE/PROCEDURAL

CONTROVERSY" [42]

Winograd first of all sets out the declarative and procedural positions
on knowledge represenﬁation. The declarative approach asserts that
knowledge can be stated and represented without reference to the uses to
which it may be put. Competence then rests separately upon a set of
facts for a domain and a set of procedures for manipulating facts of all
sorts. Such a view, if used as a representational methodology, gives to
a knowledge base an understandability and flexibility: declarative
statements are a prevalent form of communicating knowledge, and the
knowledge base can be modified incrementally by the addition of

assertions.

For the procedural approach Winograd cites three particular advantages.
Firstly, he observes that many of the things we know are in fact best

- 25 -

seen as procedurs, eg manipulations in a blocks world. Secondly,
procedures can express more naturally second order knowledge about the
use of declarative knowledge, eg "the relation NEAR is transitive as long
as you don't try to use it too many times in the same deduction™.
Thirdly, he ascribes to procedures the ability to hold strategic
knowledge, using this term to mean the domain dependent integration of
Clancey's strategic and structural knowledge, ie "if you are trying to
deduce this particular sort of thing under this particular set of
conditions, then you should try the following strategies."™ Since this
knowledge 1is concerned with the control of the deductive process and
entails the use of domain specific knowledge Winograd concludes that a

procedural description is more natural.

Winograd finds the source of the dispute about the relative merits of the
two approaches in different views on the question of modularity in system
construction. The declarative view allows a strong independence between
"what" and "Yhow" and confers learnability and understandability. The
procedural approach allows more powerful interaction between the "chunks?"
of knowledge and allows'them to enter into the control of this reasoning
process. In particular expressions of both views he observes a move
towards the other. Thus production systems are moving AI systems away
from the general power of procedural interaction towards modular
interaction through a structural database. In the other direction
Sussman [U40] imports domain knowledge into the general problem solving

procedure to guide the backtracking process.

The attempted synthesis of these approaches suggested by Winograd is

based almost entirely on a representational method rather than an

- 26 -

epistemological analysis. The representational format is called a
"fpame”. A knowledge representation is then to be built up from frames

arranged in a generalisation hierarchy. This is a structure of isa links

connecting concepts to those of which they are specialisations. This
hierarchy 1is operationally a hierarchy of descriptions in which

additional properties are added as one descends the isa links.

A frame holds the internal information about a node in the hierarchy;
this information is recorded in "slots" or components which identify the
important elements (IMPS). These IMPS are themselves other frames and
the links between frames established in this way are distinct from those
of the isa hierarchy. Winograd is drawn into the implementational issues
when he decides that these pointers should be able to be a path of IMP

names to address an element held in another frame.

Having introduced a wuniform notation Winograd explicity rejects the
notion that it should be given a general, uniform interpreter. The

purpose of the notation is to facilitate procedural attachment, ie to

incorporate algorithmic knowledge into a modular, declarative
organisation. From a study of the examples in the paper it is clear that
all that Winograd is offering is a technological device to mix general
deductive schemes (eg isa hierarchies) with domain specific ones. The
notation does not offer us any useful insights into the epistemological
questions of how the general deductive framework should be designed (c.f.
Schank, Phillips ibid). The péper was written before the use of
deduction systems to perform computations became established and with the
benefit of hindsight we can see that the issue was really about how to
use domain information to control the deductive process. The invention
of languages with both a procedural and declarative semantics essentially

= B7 =

removed the declarative/procedural controversy in the form expressed
here. The issues of allowing domain information to control the deductive
process are taken up in the following section. Here we can note that the
frame notation has continued to be developed, no longer as a solution to
a procedural/declarative controversy but in the ways briefly discussed in

section 2.7 as a concept-grouping and hypothesis generation device.

2.6 *"LOGIC FOR PROBLEM SOLVING" [21, 22]

Logic programming is the technique of combining the expression of a
problem in logic with an automatic proof procedure in order to produce a
problem solver. The technique came of age with the machine oriented
formalism of first order logic called Resolution [29], and now has its
best known expression in the Prolog system. Prolog is restricted to
problem definitions expressed in the Horn clause subset of logic; we
return to this later in this section but the remarks that foilow apply to

logic programming in general.

At its simplest, a logic program is a collection of assertions and rules.

A rule is of the form:
AifBand C

Typically the expression of a problem solving task in this form falls

into three parts [21]:

- 28 -

(1) Assertions and rules which describe the problem domain in

general.

(2) Problem specific assertions expressing the hypothesis of the

problem to be solved.
(3) A goal statement which expresses the problem itself.

The problem is solved by the application of general inference techniques
to (1) and (2) to derive (3). Now this addition of a proof technique to
the declarative problem statement gives to the rules in (1) a procedural

interpretation. If we have a rule of the form:

A if B and C

and the proof procedure is that of Prolog (left to right, depth first

with backtracking) then the procedural interpretation of the rule is:

(1) reduce problem A to subproblems B and C
(2) solve B
(3) solve C

(4) 4if C fails, backtrack and attempt to resatisfy B. Solve C.

ete

The procedural semantics thus allows a logic programmer to describe a

problem solving strategy as well as a problem specification. It is

important to realise that this strategy does not reside in either one
component (logic or control) of the logic programme. The problem
specification must be designed with a view to its pragmatic application

= 29 -

by the particular control strategy that is available. This perspective

on problem solving lead Kowalski to propose the slogan equation:
Algorithm = Logic + Control

This expresses the idea that the statement of what an alogorithm does may
be kept separate (in a logic program) from a control component which
affects only efficiency and not the meaning of the algorithm. Kowalski
argues that an algorithm expressed in this way provides two distinect
means for improving its efficiency. Either the problem representation
can be changed to specify the problem in a new way, or the problem
solving (theorem proving) capabilities of the program executor can be
improved. On the 1latter possibility Kowalski notes ([21] that a
completely satisfactory autonomous control strategy has Aot yet been
designed and that a number of languages have been developed to give the
programmer more flexibile explicit control (eg PLANNER [19]). The

development of a problem specification is further developed in [22].

In [22] Kowalski takes as an example the fifteen puzzle of sorting the

initial state.

13 3 {12
11141 9 |8

to the goal state

= 30 =

131 14 |15

by finding an appropriate sequence of legal moves. He develops a rule
based expression of the problem solving strategy assuming- the Prolog

style of program control.

The problem expression is in terms of specialised sorting operations

which can perform such operations as:
"put the second row in order, without moving blocks in the first row"

And these are themselves ordered into an effective problem solving
sequence. The solution here is algorithmic; Kowalski describes as
heuristics a collection of rules which may solve some problems but are
not guaranteed to solve all of them. When a collection of rules covers
all cases within a class it becomes an algorithm for that class. Rules
are held to be an ideal way of developing heuristies because the
separation of 1logic and control components facilitates incremental

development.

We can now make a number of observations about the power and limitations
of logic programming. Firstly, we note that a persistant theme in this
section is that the human program designer must make the problem solving
strategy explicit in domain specific terms and cannot rely on an
autonomous control regime to turn an arbitrary logical speéification into
an effective problem solver. We then must criticise existing logic
languages (like Prolog) for representing part of the problem strategy

- B =

implicitly in their control regimes rather than explicitly. We also note
that the structural knowledge (in Clancey's terms) must be made explicit
as part of the expression of the problem solving strategy and is not
automatically derived from non domain specific principles. Secondly, we
observe that there is with this formalism no 'procedural/deciarative
controversy' - it is recognised that the problem solving procedures
(strategies) must be explicitly attended to in the declarative statement
of the problem domain. Thirdly, once a problem salving strategy has been
enshrined in a particular representation of the problem domain we cannot
expect that the general capabilities of the theorem prover will confer
more general problem solving capabilities upon the problem
representation. This is an important point that needs some further

elaboration.

Ignoring for the moment the use of explicit control over the theorem
prover, a problem solving strategy is expressed as illustrated above
through the choice of subgoals and order in which they shall be pursued.
This strategy makes the difference between the theorem prover being able
to find a solution on the one hand, or running off into combinational
explosions or never ending recursions on the other. Now it is a powerful
property of logic programming that rules written to be used in one way
can often be used in another by the exploitation of the general proof
procedures. Thus, having written a set of rules to determine membership
of a set

member (X, [X|_1).

member (X, [_1Y]) if member(X,Y).
we can also use them to generate members of a given set. The vestige of

the declarative/procedural issue is found in the naive view that this

- 32 -

pleasing property of logic programs at a microscopic level extends to the
problem solving ability at the macrdscopic level. We can now readily
understand that we should be very surprised to find that a carefully
expressed problem solving strategy for a particular class of problems
could solve the inverse class of problems by some simple inversion of the
strategy. In any case we may be sure that such a property is not
conferred by the simple use of logic to express the strategy. It will
only come as a result of deiiberate design and insight into the structure
of the problem domain. It has not always been adequately recognised that
the ability to use collections of logic clauses top down or bottom up
- does not necessarily extend in any useful way to a general problem

solving ability.

Our fourth observation on the wuse of 1logic for representation is
therefore that the development of the much sought after general control
strategies will go hand in hand with the epistemological studies
described by Clancey that allow us to tease out problem independent
strategies from problem dependent structure. Experience in automatic
theorem proving 1is here a contributor of 1ideas, but not the only
contributor. Analysis of human problem solving in the style of Clancey's

work also generates new general strategies.

Finally, we can now understand that logic itself is in no sense a general
solution to knowledge representation but rather:

(a) An analytic tool at the knowledge level.

(b) A powerful implementation tool at the symbol level.
We must not let its general power at the symbol level deceive us into
believing it brings ready made epistemological solutions to the knowledge
level, or that it is the only tool that may be usefully employed for the

analysis of that level.

- 33 -

2.7 KNOWLEDGE FOR MACHINES [3]

We conclude this section as knowledge representation by briefly taking up
the task that was abandoned at the start - that of reviewing the issues
of representation through the techniques that have been used. As a

framework for this discussion we take Addis & Johnson [3].

Addis & Johnson first of all develop an approach to knoﬁledge the main
points of which may be summarised as follows: There is no intrinsic
connection between the signs of a representational language and the
world; meaning is only to be found in a shared social context. The
representation of knowledge 1is distinet from the representation of
meaning; the process of knowledge -elicitation identifies knowledge
structures whose representation does not entail representing the meaning
of those structures. "Knowing" is having the right to be sure, and the
builder of a machine knowledge base must be concerned with transferring
the right to be sure which is an essential part of the knowledge context.
The possible bases of the right to be sure are briefly examined and the
concept of supportive knowiedge {(in the sense used in Clancey) is
introduced. In building a knowledge base a decision must be made on a
level at which justification will cease. This level will be determined
by the class of users of the knowledge base and will specify base
premises assumed to be known. This level will change with time and
unless the knowledge base adjusts the knowledge content will degrade. A
stronger statement is also made, that knowledge of a concept (not only an
inference) is also subject to support through argumentation and can never

therefore be considered to be 'in hand'.

- 3y -

Three formalisms for representation are then discussed: semantic nets,
production rules and frames. For semantic nets two design criteria are
identified:

- the set of tasks to be performed

- the level of assumed knowledge to be expected of the user.
The first of these will guide the choice of organisational primitives and
given that there is no universal theory of representations these must be
domain dependent. It will also provide the functional specification for
the interpreter-plus-network problem solver. The second criterion is
concerned with the basis for the support' knowledge discussed above.
Addis & Johnson note that the particular shortcoming of the net formalism
is that it does not specify the interpretive and transformational
procedures that may be legally applied. Nets are open to any kind of
procedure and this is the source of their power as well as their
weakness. The weakness is that an ad hoc procedure is not guaranteed to
manipulate all our primitives in ways that maintain real world
consistency (unlike logic). The power is that certain inferences of
heuristiec value may be given precise and efficient expression (see

discussion in section 2.3 above).

Production systems allow programs to be constructed from rules of the
form:
If <condition> then <action>

Rules may not directly invoke one another but interact through a global
database. The selection of rules is determined by a separate control
structure. This perspective tends to emphasise the refinement of the
problem representation for efficient manipulation. This in turn obscures
the problem solving strategy since subgoals are invoked by ensuring that
at the correct time their conditions will match the current state of the
representation.

- 35 =

Production systems as typically implemented in AI have an essentially
weaker control regime than 1logic languages and therefore make the
explicit representation of control (deductive) knowledge and problem
knowledge more difficult. This was discussed in detail in Clancey's work
which also indicated that the formalism is powerful and effective if used

wisely.

A common theme in much of psychology is that we can only perceive in
terms of previously established structures; the method by which we
acquire such structures posing deep developmental and philosophical
problems. The same theme 1is found in artificial intelligence
encapsulated in the frame or script concept. A frame is simply a
structure that can be brought to bear upon a situation as a kind of
prototype within which the solution can be understood. In a formal sense
then it is a technique for hypothesis generation and an expression of the
logical constraints between hypothese. Frames are therefore a tool of a
different order to the preceding two, being an organisational principle
more than implementational device. That said, frame-based languages have
been implemented and used effectively. From the perspective of Newell's
paper we may assert that the justification for this is a technological
issue at the symbol level distinct from any epistemological justification
at the knowledge level. At the symbol level they are subject to the same

comments as we made for semantic nets.

In the recognition of the importance of user defined units to organise
knowledge we return to the problem of determining the basis for the
expression of support knowledge. When we realise that humans have the
ability to reconstruct these units to meet new situations we realise how
far our fixed representations of narrow domains are from conferring true
intelligence upon our programs.

- 36 -

2.8 SUMMARY

Given the diversity of views on knowledge representation referred to at
the beginning of this chapter it cannot be expected that this survey
could reveal any general summarising principles for the field. It does
seem reasonable to claim however that Newell's hypothesis of a knowledge
level has genuine programatic value in our study of the issues. We can
begin to see that arguments about notations have really been about
epistemologiéal issues which have come to the fore through the use of
those notations. [Each notation confers a certain bias on how a worker
will express the functional equation that the symbol level is called upon
to solve. He will of course express it in a way that suits his notation,
but this is a strength as well as a weakness. Every endeavour that
enables us to ascribe some degree of rationality to an artificial system
has some potential contribution to make to our analysis of the knowledge

level.

= 27 =

CHAPTER ITII

INTELLIGENT LEGAL INFORMATION SYSTEMS

3.1 OVERVIEW

The application of the techniques of artificial intelligence to legal
systems is still at a comparatively early stage and is characterised by a
relatively small number of significant projects with a considerable
amount of peripheral activity. The surveys in [27] and [8] reveal an
enormous variety of aims, objectives and approaches to the field and only
a small minority may be considered to have a background in, and an up to
~date understanding of, the potential (and limitations) of current AI
techniques. It is beyond the scope of this project to survey all this
literature which deals with general applications. Instead, following the
perception in the last chapter that the application of a particular
representational technique contributes to the wunderstanding of the

domain, the survey is organised around those techniques.

It is of course the goél of most projects that apply AI to the law to
design representations that will serve a wide spectrum of purposes; the
nature of the law itself constantly brings this purpose to mind. At any
one time it is possible to point to a body of written material and
declare that it is the law. Notwithstanding that the concepts embodied
in that material are only fully determined within a social context there
is no doubt that this one source of knowledge must be common to all the
applications of the law. How attractive it is then to believe that we
can represent the law just once and only supplement it with additional

- 38 -

world knowledge to prescribe its application to world problems. This may
be likened to separating the structural from the strategic knowledge in
NEOMYCIN. We saw there that in terms of an explanatory systems this
might be a goal, but for a problem solving system it still posed deep
problems of the separation of domain dependent knowledge from domain
independent application strategies. The law may be considered to pose
special problems in this respect since although a purpose guides the
framing of a law, that purpose is not contained in the law itself [38].
The conceptual model is specifically absent, and this absence we may
assume reflects a judgement by lawyers that it cannot be adequately
expressed in legal language. We must therefore expect difficulties if we

try to represent that model in the weaker tools we have at our disposal.

Section 2 looks briefly at some of the legal systems that are on the
fringes of 'intelligent' systems. In section 3 we look at the LEGOL
project which grew out of the traditional systems analysis and database
approach, and how a natural sYnthesis of that notation with logic seems
to be suggested. Section U4 then looks at the use of logic for legal
systems, which 1is the primary interest of this study. Section 5
discusses deontic systems - those that concern themselves with the
concepts of permission and obligation which are fundamental to any legal
system that seeks more than narrow applicability. Lastly, in section 6,
we look at frame based systems, particularly the TAXMAN Project and get
some feel for the complexity to be expected of a system that can assist

the practising lawyer.

-39 -

3.2 PRECURSORS OF INTELLIGENT LEGAL SYSTEMS

The complexity of the law is such that often even quite modest mechanical
assitancg with its comprehension or application can yield significant
benefit. In [5] a system is reported in detail that analyses tax
allowance. The system was written in BASIC and the knowledge is
represented entirely in flow charts. A similar system (also in BASIC) is
Hellawell's CORPTAX [17] for analysing the taxation of stock redemptions.
The weakness of these systems is apprarent: all possible questions that
might need answering must be anticipated and catered for. More
seriously, the structure of the rules is actually lost in the translation
to a flowchart so that modification becomes a programming task rather

than a knowledge engineering one.

Selecting welfare benefits is the subject of du Feu's work [11]. This
project was motivated by the observed very low rate of take up of
benefits and was designed to take a 'whole household' approach. Very few
details of the program are given and it appears to use a form of decision

table approach.

Gilbert has developed a prototype DHSS benefit assessment system which
has been tested in an experiment with Citizen's Advice Bureaux workers in
the field. The system is believed not to involve AI techniques but

written accounts were not available to the writer.

- 40 -

33 LEGOL

The LEGOL project [36, 37, 38] is an ambitious project that has sought to
gradually widen the scope of its representational formalism to cover
progressively more aspects of legislation. In this section we discuss
those aspects of LEGOL that grow out of relational database ideas. The

extension to handle deontic concepts is discussed in the next section.

LEGOL is based on a relational algebra for the manipulation of data
elements. The semantic model for the defintion of these data elements
gives a particular emphasise to the representation of time. All the data
elements are recorded with the time at which they begin or end. This is
particularly important for legal systems where time often plays an

essential role. The data elements or "entities" fall into three classes.

Things - Entities which have an independent existence and whose
time period is uniquely determined by the values of the
other attributes, eg a person, where the time period

represents the life time.

Conditions - These entities have a time period which is not

determined by the other attributes.

eg employed (ICI, Bloggs, 1976-1980)

employed (ICI, Bloggs, 1982-1984)

- 41 -

A particular condition cannot .be specified

independently of its time period since this period is

conditional.

States - These are similar to conditions and are differentiated
by one attribute being a function of the others, eg
number_of children (Family, N, period), N is a function

of Family and period.

However function is not a defined semantic concept and
the distinction between conditions and states appears

to be more intuitive than formal.

We may see in this model some similarties with the conceptual model for
relational databases expounded by Addis [2], but a full comparison is
beyond the scope of this project. The LEGOL language is a means of
manipulating an underlying database in which all these entities are held
in the form of relations. The process of representing the law with LEGOL
therefore consists in two phases. First the entities to be represented
must be determined through a process of relational analysis; secondly the
legal rules must be expressed in LEGOL rules for the manipulation of the
relations. We can mention the hope expressed in Stamper [37] that it
will be possible to reach a ‘'canonical' analysis, a goal of relational
analysis in general; Addis [2] shows how any such analysis is incomplete
unless the world constraints between relations have also been
represented. This does not seem to have been tackled by Stamper except

in the informal condition/state distinection.

- 42 -

The syntactic unit in LEGOL is the rule, and its form is:
<target relation> <hpdate symbol> <source expression>

The source expression comprises relations and LEGOL operators. The
effect of the rule is to assign the result of evaluating the source
expression to the target relation. The operators are specialised forms
of the relational operators to take account of the special importance
given to the time attributes. The following example is taken fairly

directly from [37]:

number of children(Jones, 3, 1959-1967)

number_of children(Jones,2,1967-1972)

These represent the number of children in the Jones family in the given
periods (where defintion of a child is held in rules elsewhere). Family

Allowance rates are held in another relation:
rate(2,8/-,1965-1970)
rate(3, 18/-,1965-1970)
rate(2,25/-,1970-1979)
rate(3,40/-,1970-1979)

Given these relations a Family Allowance rule c¢an now be written:
allowance(Family,X)e rate(N,X) while

number_of children(Family,X)

= %) =

This rule performs a join over the number of children with special
handling of the time attributes. The 'while' operator creates for each
tuple in the target relation the pime attributes that represent the
intersection of the periods in the tuples of the source relations. Where

there is no intersection the tuple is deleted.

The effect of the allowance rule on our example data is thus to construct

the new allowance relation:

allowance Jones 18/~ 1965-1967

Jones 8/~ 1967-1970

Jones 25/- 1970-1972

LEGOL has other special time operations such as 'or while', ‘whenever',
etc. These are all defined within the interpreter and not accessible to

argumentation by the LEGOL user.

Two update symbols are provided in LEGOL, represented by a single arrow
(as above) or a double arrow. The double arrow form transfers the
candidate key of the evaluated source to the target, whereas the single
arrow form does not. It is also possible to name attributes of the
target relation and update them by some operation on the candidate key.

For instance, the rules:

start_of child(Person) &start of Person

end_of child(Person) &start_of Person + 16

together model the rule that a person under 16 is a child.

- 44 -

Only the simplest legal rules will be represented by a single LEGOL rule.
The interpreter supports multiple rules through sequential interpretation
and it has also been found necessary to introduce iterative loops, and
the other control structures of conventional programming languages to
deal with the complexities of real law. This is a serious shortcoming
and indicates that, quite apart from any conceptual problems there might
be with using the relational model as the basic semantic framework, that
the operators and their interpreter are fundamentally inadequate for
representing the law. The criticisms that applied to the BASIC programs
described in section 2, with their confusion of program structure with

legal structure are seen to be still present in the LEGOL formalisation.

In [32] Sergot performs a thorough comparison of LEGOL with 1logic
programming and shows not only that all its features can be readily
reconstructed in logic, but that considerably more power resides in the
new formulation without being attended by any obvious penalties. Taking
the family allowance example we can represent it with corresponding logic

clause:

allowance(Family,X,T) if rate(N,X,T1),
number_of children(Family,NT2),

while(T1,T2,T).
Here the time attributes and the relationship between them in the source
and target has become explicit: while(T1,T2,T) will hold whenever the

intersection of time periods T1 and T2 is the period T.

When run bottom up this clause will have the same effect as our LEGOL

rule, adding new allowance clauses by inference on the supplied data.

-

However, it can also be used top down to establish a particular instance
of an allowance from a database of families and rates. The benefit of
such flexibility is obvious, and becomes even greater when dis junctive

rules are considered. A disjunctive rule is one of the form:

AifBor Cor ..

To establish A it is sufficient to establish only one of B,C . . . A
logic program using A top down is able to do this. A LEGOL program must
compute B,C . . . and then their union. This may be not only
inefficient, but could in some instances be combinationally explosive and
non terminating. Given that disjunctive conditions are a common feature

of the law this is not a trivial problem.

We therefore turn to systems that have used logic directly for legal

systems and discuss their design and current capabilities.

3.4 LOGIC BASED SYSTEMS

As we have seen from preceding parts of this study there are adequate
reasons deriving from AI experience for supposing that logic could
provide a suitable representation for some aspects of 1legal systems.-
Independently of these considerations however there is also the evidence
from the 1legal profession that 1logic is relevant as a means of
structuring law. In [4] Allen discusses in detail the structure of
written legislation and concludes that while legal drafters are skilled

in handling the semantic dimensions of the written word they have totally

- U6 -

failed to handle structure in any consistent or systematic way. The
result of this failure is inadvertant ambiguity due to the multiple
interbretations that can be put upon collections of statements. Computer
science long ago confronted the ambiguity of such constructs as the
'dangling else' and established rules to deal with them. Legal drafters
it seems have never approached their task with the same rigour. Since
the drafters have at their disposal a considerably richer language than
the computer programmer the consequences are correspondingly worse. In
his carefully argued paper Allen accounts for over 4000 possible
interpretations of a set of statements whose connectives include the word
'unless'. This complexity arises only when the statements include the
deontic concepts, but whatever the reason it is plain that the situation
is unsatifactory. The solution proposed by Allen is a move towards
"normalised" drafting in which only a standard set of structuring
primitives would be used. Not surprisingly the structures he proposes to
express the relationships between normalised statements are the logical
ones: conjunction, disjunction, conditional, etc. Normalised statements

must all contain deontic operators expressed in a standardised way.

Allen's study sounds a note of caution when we set out to represent
legislation. The law is what is currently written down and that takes no
account of Allen's proposals. ﬁe shall have to choose in our systems
whether we translate the law in normalised form first (current practice)
or whether we attempt to model its ambiguity. We should not suppose
however that the ambiguity makes legislation unamenable to logic. Logic
is quite at home with ambiguity and indeed is the tool with which Allen
teased out all the meanings of ‘unless' - it is unlikely that anything

other than logic could adequately represent them.

- 47 -

Now that the use of Prolog as a logic programming tool is becoming
widespread a number of informal reports are made of projects, on
representing rules and regulations. The only documented case study
available however is the work of Hammond [14] on DHSS supplementary
benefit regulations. More recent work at Imperial College has used logic
to represent sections of the British Nationality Act and the author is
grateful to members of the College for access to informal documentation

of this project.

Hammond's project started with the clearly defined aim of expressing
entitlement to supplementary benefit. With this target the source
material was not the legislation itself but the pragmatic expression of
it in the DHSS guide to the application of the legislation. The rules
were elaborated from this guide with the aid of a DHSS expert. The final
description of benefit entitlement contains a little over 200 rules and
facts and includes computation of the entitlement. It is important to
note that the project stated with a single goal, which in effect

translated into a single top level goal for the Prolog program:

Person is_entitled to sup_ben if
not Perspn is_disqualified by sex and
not Person is a juvenile and
Person study_status OK and
Person is a GB resident and
Person is_excused_or registered for work and
Person needs_ financial_help and

not Person is-disqualified by trade_dispute.

- 48 -

Most of these conditions are themselves described by further rules. It
is the goal structure of the program that determines how the rules are
structured, not any underlying conceptual model of the 'benefit domain'.
At some point in pursuing subgoals the program must either encounter
assertions or fail in its search. The logic system used (Query-the-User
[32]) allows condition to be declared "askable" and this has the effect
that the user of the system is asked to supply the information to satisfy
the goal. - This has its most obvious use in acquiring basic data such as
'age'!, but can also be used to allow an external decision on something
that is essentially undecidable within the knowledge available to the

system, eg discretionary judgements.

The system is able to offer an explanation of its reasoning by reciting
the trace of successful goals; in this respect the program does nothing

not done equally well by non-logic systems.

The ability to make flexible access to the information in the program is

quoted as a benefit of the logic representation, eg:

"What is the maximum capital allowance for supplementary benefit
claims"®
or

"What is jones disqualifed by"

These queries must be put to the program in a standardised form, ie
Which (X : jones is_disqualified by X)

The symmetry of the logical representation thus allows a relation such as

'is_disqualified_by' to find a solution as well as showing that a

s dig) =

relationship holds. In [21] the distinction between finding and showing
is discussed. Since any procedure that applies to showing problem p(T)
also applies to identifying an individual X such that p(X) it follows
that the search space for a finding problem is generally larger than that
for a showing problem. Following our earlier discussions of the need to
include problem specific information to guide the search strategy we must
recognise therefore that the strategy that works for showing will not
necessarily work for finding. The Hammond program which has a fairly
simple structure amenable to exhaustive searching does not reveal this

problem, examples which do are given in the next chapter of this study.

We also note that the order in which questions are asked‘of the user is
entirely determined by the order of search. While this 1is perhaps
satisfactory in a simple case we would probably like to have more control
in the general case and it would be advisable if dialogue control were
explicit. In practical circumstances carefully ordered questions are
asked by benefit assessment officers of claimants. It should be possible
to specify this order and maintain it if some changes to the legislation
require modifications to the problem solving strategy. In this example
the problem solving strategy would appear to generate a sensible dialogue
but we shall see that this need not always be the case. These remarks
are not to be taken as criticisms of the representations in logie: in his
study of MYCIN Clancey notes that there is no means of controlling the
ordering of rules (and hence dialogue) that are selected to try to
establish a goal. The ordering is determined by the order in which goals
were edited into the system. Prolog is superior in this respect in that
goal ordering is explicitly controlled. We simply have to be careful not

to expect too much of the general deductive power of our logic system.

=B =

Another example of a Prolog program encoding legislation is the system
under development at Imperial College by Sergot et al to handle the
British Nationality Act. This is very similar in style to the Hammond
example, using Query-the-User to couple the system user into the problem
solving process. Unlike the supplementary benefit program however it was
designed directly from the legislation. This particular legislation has
been very amenable to logicai representation since it is 1logically
straight-forward and self-contained. Like the Hammond program it falls
into a simple goal structure which can be adequately represented by and-
or trees. The following example, shown in Figure 1, is taken from

informal project documentation.

This can be translated directly in Horn clauses in a Prolog program by

the translation of the tree:

to the clauses

A if Band C and D

A if B and C and E

Aif F

F if Gand H and I

F if G and H and J

- T

Born after

commencement

Born in

UK

British

Citizen by birth

o

New born found abandoned

in UK after commencement

of Act

A

\ \

\>

Not known to
be born before

commencement

Not known

to be born

outside UK //

Parent BC at

time of birth

Parent settled
in UK at time

of birth

Figure 1

- 52 -

.

!

i
!
!
{
i
]
|
!

i]

)

Not known to
have parents
not settled

in UK at time

of birth
L

.

Not known to
have parents
who at time

of birth were

not BC

In [21] Kowalski shows how in general the and-or tree representation of a
problem does not make explicit the effect of subgoal selection strategy
on the size (and finiteness) of the search space. An extended
representation is necessary to show the contribution each procedure makes
to the values of the variables to which the procedure is applied. Like
the supplementary benefit example the British Nationality Act program
presents a sufficiently constrained search space that this is not a

problem.

We can summarise the experience gained from these systems briefly as

follows:

(1) A logic formalism allows a natural expression of rules in a form
that is easily seen to correspond to the legislation.

(2) The rules are easy to modify to reflect changés in the
legislation.

) Surface level explanation of reasoning is easily provided. Since
it is the rules that are the law, and not any underlying deep
concepts, issues of deeper explanation do not apply. However, we
consider the limits of this understanding of consultation systems
further in section 5 below.

@) These systems have not had to tackle any serious distinction

between expressing the law and applying it to solve problems. In
the Hammond example the program was designed to solve a problem,

and its rules are not constrained to be identical to those in the

- 53 -

legislation. In the BNA the direct representation of the
legislation appears to have resulted in a useful problem solving
system. The extent to which this approach may be extended is an

open question and one of the subjects of the next chapter.

3.5 DEONTIC SYSTEMS

To a first approximation the systems described so far in this chapter
have been concerned with handling objects and realationships rather than
the deontic concepts of permission and obligation. These concepts

however pervade the law and in some sense may be regarded as its essence.

In the proposals of Allen [4] for a normative form for legal drafting
discussed above it 1is required that the consequent of every rﬁle
contained one of the deontic concepts. These concepts effectively
express the relationship of individuals to the application of the law by
defining legal and illegal behaviour. As our representations of the law
are extended to cover sequences of behaviour we shall have to tackle the
definition of these deontic concepts. It is not proposed to study them
here since that is the province of lawyers (see eg [25]) and it is a
subject that fills many volumes. Here we simply note the type of problem
that has to be tackled and the two stances that can be taken to the use

of logic in automated systems.
Given legal rules of the form:
X is obliged to do A for Y

Y is permitted to not do B

o Gl -

We would like to be able to deduce the inverse relationships that would

allow us to answer such queries as:

Has Y a right to A?

Is Y obliged to do B?

Where the actions of agents produce consequences that appear in further
deontic rules we can find considerable complexity in the relationships
involved (as illustrated by the 4000 meanings of ‘'unless'). Two
attitudes can be taken to logic in the representation of these deontic
concepts and the rules of inference that a study of legal processes deems
to be appropriate for their manipulation. These two attitudes are the
same as those found in AI to the treatment of uncertain or probabalistic
reasoning. In MYCIN and many other systems it is possible to attach a

'certainty factor' to a rule, eg

if P then Q (C1)

if Q then R (C2)

The transitive certainty factor C3 for the rule

if P then R (C3)

is then defined implictly within the system by some ad hoc definition
such as €3 is the minimum of C1 and C2. In this approach therefore the
underlying deductive mechanism is altered to cope with a perceived
mismatch between the properties of the domain and two-valued logic. The
alternative approach (adopted in [10]) is to represent the special

inference rules explicitly. Our example could then be expressed:

- 55 -

leads_to (X,Y,C) if causes (X,Y,C).
leads_to (X,Y,C3) if
causes (X,Z2,C1) and
leads_to (Z,Y,C2) and

combine {(C1,C2,C3).

The combine relation can then be defined as appropriate, and obviously
alternative defintions could be given for different relations by simple
extension. Not dnly does this approach make the inferential rules
explicit and therefore amenable to explanation, modification, relation-
specific definition, etc, it also leaves us with an underlying aeductive
mechanism whose theorem proving properties are well understood. An ad
hoc logic designed to fit our special requirements of some particular

reasoning system is unlikely to possess the same properties.

3.6 FRAME SYSTEMS

The TAXMAN project of McCarty [23, 24] is a major attempt to use
artificial intelligence techniques to model 1legal reasoning and has
probably gone further in analysing the conceptual problems than the other
gystem we have described. The LEGOL system, which is the only other
project to try and define a formal representation has specifically

excluded from its goals automatic legal reasoning.

- 56 -

TAXMAN models one sub chapter of the US Internal Revenue Code - the
taxation of corporate re-organisations. The legislation is very complex
and has been the subject of a number of judicial decisions s0 a complete
model must account for both statue and case law. The goals of the
project are ambitious, aiming to take the automatic modelling into the
realm where the concepts as well as the inferences must be supported by

argumentation.

The model developed by McCarty to support his system goes beyond a
surface representation of the rules and is expressed in a network
formation as an abstraction/expansion hierarchy of frames or templates.
Rather than show the notation used in [23] for the semantic networks we
reconstruct them here in the notation of partitioned networks defined by
Hendrix in [18]. There are insufficient details in the TAXMAN papers
available to the writer to be sure that this reconstruction captures all
of the original but it serves its main purpose. That purpose is to show
that although the original work is expressed in a semantic network and
~ implemented in a frame based language (AIMDS) it can equally well be
expressed in a semantic network whose equivalence to predicate logic has
been established. In [18] Hendrix establishes this equivalence, showing
further how his notation is a means for representing logical statements

about collections of propositions.

Figure 2 therefore is an expression of the basic concepts of the TAXMAN
model in the Hendrix notation. We note that there is no reference in
McCarty's work to Hendrix or others who have used the semantics of
predicate logic for their network formations and his choice of frames was

not necessarily therefore fully informed.

- 57 =

In the figure the table on the arrows have the following meanings:

] set inclusion
ds dis joint subset

e set membership

UNIVERSAL
ds

(LEGAL PERSONS

.%
%\'
(7]

CORPORATIONS

HUMANS

IMPLICATIONS

T i — —

J;**
LEGAL PERSONS @ AE%

Figure 2

Y12

- 58 -

Figure 2 shows not only the hirarchial organisation of concepts but an
example of a template; that for the 'ownings' mode. In the Hendrix
notation every situation set has a template, or delineation in his
terminology. A delineation specifies the deep cases that name and
restrict the participants of situations in the set. The ownings template

delineation shown corresponds to the formula:

¥x { member (X, Ownings)
33y, z, t1, t2 [member(y, Legal persons) & agt(x,y)
& member(z, property) & obj(x,z)
& member(t1, Times) & Start_time(x , t1)

& member(t2, Times) & end_time(x, t2)]}

This is a formal statement that all the named slots must be filled in to
create an instance of an ownings situation. Other templates are defined
by McCarty but their definition would add nothing to this description.
McCarty notes that this model can be used both top down to find instances
of some concept or bottom up to establish membership of some c¢lass.
Clearly the frame language is no different to the Hendrix system in this
respect. Where the AIMDS system appears to be useful in the TAXMAN
system is in its ability to return partial matches to a concept together
with a residue expression which lists that par£ of the logical expression
and its associated binding 1list which produced the true, .false, or
unknown evaluation, respectively. The system used to implement the
Hammond programm [15], also has an ability to record dependencies within
a proof on undertermined variables, but the writer has not sufficient

details to make a detailed comparison.

- 59 -

McCarty is interested not just in identifying states but in reasoning
about the state changes involved in company reorganisations. There we
have the Exchangings subset of Situations with slots for "agents",
"object", "old owner", ™ew owner", "instant time". These are the
rudiments of the TAXMAN I system and can be used to express the essential
aspects of 1its domain. McCarty however identifies some severe
shortcomings of the system that have lead him to investigate the design
of a TAXMAN II system. First, the system must represent at the ground
level the full set of factual situations that might occur in any given
case. McCarty concludes that it is inconceivable that a full set of
facts could be expressed in the TAXMAN I formalism in sufficient detail
for the system to be capable of dealing with any interesting 1legal
question. Secondly, McCarty cites the "open textured" nature of the high
level concepts involved in legal reasoning as being essentially beyond
the scope of the formalism. The legal concepts of importance he
identifies as "dynamic" rather than "static", and justified by a sense of

"purpose", a point that we have already seen as a potential problem in

other domains.

To tackle these problems McCarty proposes a model which goes beyond the
fixed-template/partial match capability of TAXMAN I and instead has
concepts modelled as a "prototype™ and a sequence of "deformations"™ of
the prototype. A prototype is a concrete description and deformations
are mappings of these descriptions. A concept then is the set of
examples which can be generated by a sequence of mappings from the
prototype. The theory is not worked out in detail in [23] where McCarty

concentrates on a mixture of theoretical and implementational problems.

- 60 -

The most interesting aspect is that he finds a theory of the deontic
concepts to be essential to his purpose. This is because the domain is
intimately concerned with the maintenance or transfer of rights and so a
particular pattern of events can only be judged to fit a certain concept

if it maintains complex patterns of rights in property.

Seen as Situations in the Hendrix scheme the new conepts do not appear to
pose any new representational problems. The problems clearly lie in the
semantic modelling of the domain. In summary therefore we can conclude
that the frame based approach helped McCarty to handle the analysis of
his problem by suggesting an organisation in terms of templates,
inheritance hierarchies, collections of propositions, ete. However, the
particular choice of frame language may have made his task more difficult
by giving him only a subset of the power available in a notation such as

Hendrix's which has full logical adequacy.

=61 =

CHAPTER IV

REPRESENTATION OF SSP LEGISLATION

4.1 INTRODUCTION

This chapter reports on a practical investigation that was undertaken by
the writer into the representation of legislation using PROLOG as a logic
programming language. The piece of legislation chosen was the Statutory
Sick Pay (SSP) provisions contained in the Social Security and Housing
Benefits Act 1982 [35] and associated Regulations [39]. This was chosen
because of the widespread attention it received in the computer press at
the time of its introduction. Since it concerned pay-roll programs of DP
departments its provisions had to be incorporated into those programs,
which are written in traditional DP languages (usually COBOL). The
legislation was strongly criticised by the DP community because of its
complexity; it was said to be both difficult to understand and difficult
to implement.. This legislation therefore suggested itself as a suitable
test-bed for the technqiues of knowledge based programming for which much
is claimed for their ability to tackle complex problems. The choice of
logic programming language was also quite natural. Regulations are
expressed as rules, and indeed we have seen in our survey in the previous
chapter that a more explicit and carefully structured representation of
rules has been proposed for the law. Logic is a natural and powerful
expressive tool for representing rules and would therefore seem to be an

obvious choice. PROLOG was the only practical system available, and

- 62 -

there is some interest in finding its limitations as a logic programming
language; but that was a secondary objective to exploring how readily the
logic rule approach could generate a system of useful capability within

the time constraints of the project.

The project was concerned not only with using the rule based approach to
legislation but also with testing how readily the logic rules could be
derived directly from the written legislation and how close they could
remain to it while acquiring some useful problem solving ability. From
one point of view one could argue that since the written law is not
tailored to any one of its many domains and methods of application nor
should its machine representation be. That this naive representation is
unlikely to have much problem solving power we have seen from earlier
chapters. The project deliberately started with this naive position and

went through the following stages:

(1) Direct representation of rules as close to their written form as
possible with no particular problem task in mind. Identification

of limitations.

(2) Representation of rules in a form tailored to a specific top
level problem goal in the style of the Hammond Supplementary
Benefit program, but still keeping as close to the written form

of the legislation as possible.

(3) Representation of the legislation in a form powerful enough to
tackle a number of real world case histories. The example
problems were taken from the Employers' guide to SSP produced as

an explanatory document by the DHSS.

- 63 -

In the course of this evolution the general target was a system that
could be consulted in a fairly general and 'intelligent' Qay about the
provisions of the legislation. As the project progressed it became
apparent that to build such a system four categories of information would
need to be explicitly handled. The inclusion of each type of information
entailed going beyond the straightforward translation of the written
legislative rules into logic rules, demonstrating that the natural match

between the domain and the formalism was superficial only.

Firstly, the law is in general definitional rather than algorithmic in
character. The definition of a concept is given rather than a method of
discovering or establishing an instance of that concept. We may compare

it with a definition of sortedness:

sequence y is a sorted version of segquence x if
y is a permutation of x and

y is ordered.
We could represent this in logic as

sort(x, y) if
permutation(x, y) and

ordered(y)

As pointed out by Kowalski [22] this is more like a specification than a
program. To turn it into a program we would wish to transform the
definition into an algorithmiéally more powerful one by the inclusion of
specific sorting expertise. In the case of the law we are interested in
preserving the original definition, alongside any problem solving

strategic knowledge we have to bring to bear. In the British Nationality

- 6l -

Act program it appears that the additional knowledge can be added as
additional rules rather than as a modification of the definitional rules.
Such a neat distinction proved impossible to maintain for SSP. The
relationship between the problem solving knowledge and the definitional
law is similar to that between the 'heuristic' and 'causal' rules in
Clancey's analysis. The law is supposed to be a set of rules to which
the behaviour of society will conform, it is a model against which a
particular case should be made to fit. The description of the model
however 1is not the best heuristiec for diagnosing the peculiar

characteristics of a specific case.

Secondly, to support our problem solving rules we need to establish some
underlying conceptual framework for them to handle. This was evidently
true in the TAXMAN program which had to deal with the ill structured
nature of case law and is no less true when we have only statue law to
consider. We cannot therefore assume that because the law is written
down that there is no knowledge acquisition problem in representing it.
This conceptual framework will have to encompass both common world
concepts, of time periods, events, etc, and as our system becomes more
ambitious the social context which gives the-law its validity as a set of
‘norms’'. Studying this requirement will help us understand the way we
might design a system that can answer questions both about the law, and

about its application to cases. Questions of the first type are:

"What is the law on X7?"
"How does pregnancy affect entitlement to sick pay?"

"What can I do if ...?"

- 65 -

Questions of the second type are:

"What does the law prescribe about X in this case?"

"What SSP is due for 12 May given ..."

Thirdly, the written law, considered as a specification, is itself an
object that presents problems in its representation. The method of
presentation of the law is frequently to state a general principle
followed by a number of qualifications and exceptions. Where these are
presented in close sequence they often only differ syntactically from the
formalised rule notation proposed by Allen. Often however the cross
referencing is at a conceptual 1level and modifies the meaning of
concepts. Rules can assign special meanings for other rules in
particular contexts, suspend them altogether, or regulate their effect in
a number of ways. There is no locality of reference to basic concepts
and the cross referencing between rules is not always explicit. These
problems bear a strong similarity to those studied under the heading of
non-monotonic logic. In monotonic logic the addition of new axioms to a
system can only increase the number of theorems that can be proved. In
non-monotonic logic the addition of a new axiom can render a previously
proved theorem false. This problem has not been tackled at all in this
project since non-monotonic logics are themselves a research area, but it
may be seen as an interesting future area of study. What we can note
here is that in some way the written form of the law must be explicitly
handled and kept intact in any large scale system if there is to be any

hope of keeping in step with the law as it changes.

= 68 =

The fourth type of knowledge to emerge as requiring separate and explicit
treatment was the knowledge required to produce sensible dialogues during
a consultation. We have seen how the previously discussed exampies used
the ‘'askable' label to indicate that the information could be asked of
the user when required. This 'call by need' approach was found to be
inadequate in its simple form. At the minimum it appears to be sensible

to be able to generalise a specific question, eg instead of asking:
"Was <person> sick on 12 May?"

we would ask
"How long was <person> sick for after 12 May?"

Specific problems that arose are discussed later with a sketch of a
solution in this case. A consultation system that was to be used by a
benefit assessment officer in claimant interviews would certainly have to
have a solution to this problem. The DHSS produces handbooks for its
officers giving them guidance on the order in which questions should be
asked. These rules often go quite outside the benefit under
consideration, eg when registering for supplementary benefit a claimant
is told to register for unemployment benefit first; fulfilling this

requirement automatically establishes data relevant to the SB claim.

This project has concentrated on the practical investigation of the first
twvof the above four types of knowledge, with some observations on the
fourth. The remainder of the chapter describes the project according to

the three stages described above. A few caveats are in order before the

- 67 -

description. Firstly, the purpose of the project was to gain insight
into the problems rather than to produce a complete polished system for
other users. To this end the analysis was taken to a point where
problems of complexity became apparent, but were not pushed into
elaboration of detail that added nothing new. This said, the final stage
was taken to the point of being able to solve real problems in order to
obtain some measure of the investment of effort required by the
technique. Secondly, as will become clear, only a small fragment of the
total SSP legislation has been tackled. The information necessary to
answer most of the example queries is contained in 7 sections and a
Schedule of the Act and 7 sections of the Regulations. The relevant part
of the Act contains 26 sections and Schedules running to several pages;
the Regulations contain 22 sections. These other sections range over
wide areas, such as records to be maintained by employers, determination
of disputes, relationship of such terms as "earnings" and "benefits" to
other 1legislation, ete. In general these other sections possess much
less logical structure than the main part concerned with defining the
essgntial conditions of entitlement. To tackle them would raise the
problems of the four types of knowledge by an order of complexity and
would certainly also entail tackling representation of the deontic

concepts.

4.2 THE "DIRECT™ APPROACH

In order to qualify as a day for which SSP is due a day must meet three
basic conditions and must not be excluded by reason of any of a number of
supplementary conditions; the structure of the legislation expressed in

the first three sections of the Act is as follows:

- 68 -

employee is_entitled_to_SSP_for(Day) if
part_pf_g_period_pf_;ncapacity_for_york(Day) and
within_a period_of entitlement(bay) and
is_a qualifying_day(Day) and

not is_excluded from SSP(Day).

We will consider in more detail the first of these three condtions. Two
rules contain the essential definition of a period of incapacity for work

(piw).

2 (2) In this Part "period of incapacity for work™ means any period of
four or more consecutive days, each of which is a day of

incapacity for work ..."

2 (3) Any two periods of incapacity for work which are separated by a
period of not more than two weeks shall be treated as a single

period of incapacity for work.

Between them these two rules will demonstrate many of the problems we
encounter in the translation into a representation for an intelligent
consultation system. The statement of the first rule in the standard

form of logic is:
V(x)[F(x)&Vy[W(x,y) 9 S(y)]] & P(x)
where

F(x) means X is a period of four or more days

W(x,y) ﬁeans y is a day in the period x

- 69 -

S(y) means y is a day of sickness

P(x) means x is a period of incapacity for work

We can transform this by routine procedures into clausal form:

P(x) € F(x),S(d(x)).

P(x),W(x,d(x)) « F(x).

In the transformation we have had to introduce the function d(x) in order
to eliminate an existential quantifier. We have also ended up with two
rules, instead of one, the second of which is not a Horn clause. It is
plain that we cannot render these clauses back into an intelligible
English form that still is an obvious expression of the original rule.
Nor are we able to use PROLOG as a problem solver since it is restricted
to the Horn clause subset of clausal form. It is possible to derive a
corresponding Horn clause specification but only by taking a particular
representation, eg lists, of the concept we are trying to define and
defining it as a recursive procedure. This takes us into the issues
tackled in the later stages of selecting representations and procedures
to search them. Before leaving this rule we also note that takgn
together our top level goal and this one could not tell us whether a day
was in a period of incapacity for work. A link is missing that must be

expressed by the rule:

part_of a period_of_ incapacity_for_work(Day) if
period_of incapacity_for work(P),

part_of period (P,Day).

- 70 -

This is a trivial example of how we must insert 'problem solving' rules
in intimate relations with our legislative rules if they are to have any
pragmatic value. Further, we realise on reflection that in a pragmatic
sense the rule does not say what it means. It is quite clear from the
use made of the definition that a period of incapacity for work is not
just a consecutive period of sickness but the longest such period. It
begins when someone falls sick and ends when they are better; a subset of
a period is not properly speaking a period in the sense meant there. To
express this we must start to add still more rules whose form is far from

simple.

The second of the above rules causes us even more trouble. First of all,
this is an excellent example of a rule conceptually modifying one that
has gone before to such an extent that the first rule is almost useless.
We must therefore throw away our direct representation of the first rule
and take the two together; the writer can think of no other way of
dealing with "shall be treated as" other than defining what a piw is. An

appropriate definition might be:

Periods of four or more consecutive days of sickness, separated

by not more than two weeks, together comprise a piw.
Trying to express this in logic the following suggests itself:

VxVy¥z[[W(x,y)&W(x,z)] 9 [FS(y)&FS(z)& G(y,z)]] 2 P(x)
where
W(x,y) means y is a day in the period x
FS(y) means y is one of four or more days of sickness
G(y,z) means y and z are separated by more than 14 days of non
sickness |

= -

Clearly, FS and G need further expansion, and this formulation suggests
that we would have been better off starting with a definition of a part-
piw and then defining how parts comprise a whole. This approach is taken
in our final representation. All remarks made above for the first rule
concerning the difficulty of expression in Horn clauses and making
contact with problem solving rules apply with even greater strength to

our now considerably more complex definition.

The conclusion of this analysis is not that logic cannot be used to
represent the law. It is that a "direct" approach, unmotivated by a
conceptual representation of our task or problem domain does not yield a
representation of any pragmatic value, either as a definitional structure
or a problem solving tool. Further, that the direct representation may
fall beyond the scope of our Horn clause problem solving mechanisms. The
translation to logic was comparatively simple and so the claim for logiec
of a certain 'naturalness' as a specification language in this doman may
be c¢onsidered to be substantiated. We now see how far beyond the

specification of the law we must go to specify a system that can apply

it.

4.3 THE "SINGLE GOAL™ APPROACH

We have seen how to give some pragmatic value to our representation
we must constrain it to the Horn clause form and must supply missing
information to link the basic rules together. The second approach to the

problem was therefore to take the same initial clause as before and treat

- T2 =

it as the top 1level goal of a problem solving representation. The
process of representation is then driven by the top down refinement of
subgoals, and legislation. is only included if it is encompassed by this
process. Appendix A shows the program that results. We find that the
two rules- we considered above enter into our representations in quite a

different way. First of all we have:

part_of a period_of incapacity_ for work(Day) if
day_of sickness(Day), and

one_of four or_more-days_of sickness(Day).

The first subgoal can then be further refined according to the detailed

provisions in the Regulations for determining days deemed to be days of

sickness, eg

day_of sickness(Day) if
under_medical care_in respect of disease_or_disablement(Day) and

employee_pas_pone_po_york_pnder_}he_pontract_pf_pervice(Day).

The second subgoal contains the essence of the first of the piw rules.
No further refinement can be made without making some further assumptions
about the problem solving task. The simplest assumption is that this
subgoal will be resolved by the user and we can therefore declare this
relation to be 'askable'. To determine it with respect to some database
representing a case history would require more rules to examine adjacent

days and count themn.

Although the above encoding may appear quite trivial it is the result of

- T8 -

a design decision that had to be reached independently of the

legislation. A more straightforward rule, closer to the legislation,

would have been:

part_of a piw(Day) if

one_of four_or_more_days_of Sickness(Day).

By including the additional subgoal it is possible to bring in the full

definition of a day of sickness (which comes down to five bottom level

goals to be declared 'askable'), before asking the generalising question.

In this way the user is lead through the detailed definition for one day

and then asked whether it belongs to a longer period of such days. We

have not by these simple rules avoided the complication of handling the

definition of a piw as distinct from deciding whether a day is a part of

one: the determination of
refinement demands that we
day belongs. In this case
rules separate from the

establishing that a day was

The bottom level goals that

them:

other goals reached through our top down
discover when the piw started to which this
it was not possible to keep the definitional
heuristic ones as it was for the rules

in a piw.

result thus have a rather contrived air about

beginning of period_of sickness including_ day(Day,Start)

start_of period of sickness greater than four_ days_ending

within previous fourteen days(Day,Start)

-7 -

_Alternatives of more or less elegance could be produced but the points
are well made that problem solving rules are very different from those
derived directly from the legislation, and the retrieval of definitions

is a different task from applying the definition to a case history.

Further examination of the rules in this version of the program shows
that many of the relations are highly dependent on their context of use
for their meaning and value. Specifically, where several subgoals of one
rule are all 'askable' the later ones assume the dialogue context created
by the previous ones. In most cases this could be avoided if desired by
reducing the subgoals to a single more complex one, or by passing
variables between them, but that merely makes the 'askable' goals more

difficult for the user to deal with.

The consequence of the two preceding observations is the conclusion that
this representation will be highly inflexible. The large number of
bottom level goals is shown in the Appendix and the highly specific
nature of many of them shows that they are unsuitable for a general
problem solver able to reason bottom up from data. Because of this the
actual program written did not parameterise the rules on the day under
examination. It was quite evident that the program coﬁld only possibly

show that a day satisfied some conditions, not find those that did.

It was the intention when this project started to obtain a version of
Query-the-User that would allow a program written in this way to be
tested. Unfortunately this was not possible and so the documentation in
the Appendix represents a design rather than a proven program. It was
not therefore possible to give examples of its operation or explore its

properties through example problems.

= 98 o

In certain places the refinement process has been stopped short and this

is indicated by ???. At these points trying to fit the representation

into this approach became very convoluted and was abandoned.

The Query-the-User method has proved very successful in other instances
so we must explain why we had problems with it here. The answer is
clearly that the system's internal reasoning powers are far too weak. It
is driven back to the user for help with evey step along the way. In
fact the program is very little more than a decision tree. It lacks any
model for achieving coherence between the many subgoals to be determined.
Asking the user is all right if there is a good match between his real
world concepts and the goals that the system must satisfy; in order to

achieve that we must turn to the third stage of the project.

4.y THE "CONCEPTUAL™ APPROACH

At this point it was clear that representing the 1legislation for
explanatory purposes and problem solving purposes are two distinet tasks.
Sometimes they can sit uneasily together, sometimes they are in conflict.
For this stage the original aim of producing a problem solving system for
the examples in the employers' handbook was adhered to. A note on
extending the system to the first task is included at the end of the
section. An attempt was still made however to preserve wherever possible
a distinction between rules that defined the law and those that applied
it. The program listing is contained in Appendix B. This program has
been implemented and run on the examples. At the end of the testing are
the data and dialogues for each of the four examples. For completeness

the examples are reproduced from the handbook in the Annex.

- 76 -

The previous stages of the study had revealed that the main problem lay
in providing a powerful representation of events and time periods. The
SSP legislation, as the first rule shows, is all about time periods and
the relationships between them. What was needed was a set of algorithms
to complement the definitions. Just as the 'sort' example at the start
of this chapter 1is essentially useless for problem solving, so general
definitions of periods and events had no power to solve problems.
Analysis of the type of relationships between periods also showed that it
would be necessary to have different procedures for finding and for
'showing' problems. Procedures that could show that a number of days
satisfied some rules would be combinationally explosive, or non
terminating if used to find a day. In most cases the procedures could
~only be used one way because the operations entailed arithmetic

operations or tests that could only instantiate in one direction.

A uniform set of procedures for representing and manipulating time
periods was therefore designed. Study of the legislation derived that a

period could be defined by:

(GD)] specific days, eg week begins on Sunday;

(2) specific dates, eg tax year begins on 4 April;

(3) some condition true on every day, and not on adjacent days, eg
sickness;

(%) restrictions on length (max or min) of a period defined by any of
1 to 3;

o

(5)

(6)

(1)

(8)

(9)

(10)

derivation or intersection of periods defined by 1 to U4;

linking of periods defined by 1 to 5, eg piw derived form

sickness with gaps less than 15 days

restrictions on length of a period defined by 1 to 6, eg a
contract is 1linked and must have aggregate length exceeding 13

weeks;

definitions 1 to 7 plus conditions that must be satisfied on the
first day, eg period of entitlement. The conditions do not
necessarily pertain to that day directly, eg the entitlement
conditions refer to the contract 1length and other benefits

received in the preceding 6 weeks;

definitions 1 to 8 plus terminating events, eg imprisonment

terminates entitlement;

cumulative condition, eg sum of SSP received exceeding 1limit

terminates entitlement.

The representation designed allows all these types of definition to be

handled uniformly except for the last. The definition of when the

entitlement 1limit is reached is interesting in that it is algorithmic.

For a day of sickness a daily rate is calculated and paid in full.

Because this daily rate depends on the number of qualifying days in the

week it is not constant so the maximum amount a person can receive is up

to the maximum for one day over the 'entitlement limit'. The day on’

- 78 -

which the sum recieved exceeds the limit is the last day of entitlement.
In order éo express this, and the more complicated case where the weekly
rate of SSP changes along the way, the legislation has to be given
algorithmically. To have implemented an equivalent algorithm in this
project would have been very time consuming and did not seem justified,

so the maximum entitlement rules have not been completed.

A small number of predicates are used to define the characteristics of
each type of period found in the legislation. All the period definitions
may be found in the second section of the program listing. The

definitions for a piw are as follows:

period_type(piw, linked).
period_gub_period_pame(piw,sub_piw).

period_linkage(piw, 14).

period_type(sub piw,derived).
period_derivations(sub_piw,[sickness]).
period min length(sub_piw,4).

The sickness period is then defined:

period_pype(sickness,primitive_pondition).

period;gefinition(sickness,day_pf~§ickness).
To handle these standardised forms of definition a small number of
procedures are defined, found in the third section of the listing. There

are two basic searching operations that are needed both for constructing

- TG =

a period from its definition and for answering the example queries. The
first takes a day and the name of a period, and finds the period of the

named variety that includes the day:
period_including day(Period,Period_name,Day).

The data representation used for a period is a list of ail the days in
15 This allows linked periods to be handled as easily as non-linked
ones. If no period meeting the conditions is found then Period is
instantiated to the empty 1list. This procedure uses lower level ones
that can generate dates forwards and backwards from the day of interest
and uses the period definitions to test for inclusion. To determine a
sickness period’for example the day of sickness predicate is used until a
" day is found which fails. Having built up a period, limiting conditions
are then applied as may be seen from the top level procedure in the
listing. The second basic procedure for building up time periods takes a
start and end date (a time frame) and searches for periods of a defined
type within that time frame. Two versions are required, one to search

from the start forwards, the other from the end backwards,
period_within_ time frame_forward(P, Period name,T start,T end).

This is written in such a way that when backtracking occurs it will find
the next solution, returning the empty list when there are no more. This
procedure is able to use the first one together with a few rules to
adjust its time frame whenever a solution is found. For the rules that
handle periods as part of other definitions it is useful to add one

further procedure that collects up all the solutions within a time frame:

- 80 -

all periods-within time frame forward(P,Period_name,T start,T end).

Looking now at the first two sections of the listing we can see a clear
distinction has been maintained between those rules that define the law
and those that apply the definitions. The latter must know about the
data structures for periods and the procedures to handle them, whereas
the former do not. 1In each section the application rules are identified
by a subheading. For both of these types of rules the logic programming
formalism appears to be natural and concise. It is only for the basic
period searching procedures that the logic is 1less appropriate. The
basic operations entail searching up and down lists in an efficient way
that is more conveniently handled by an algorithmic language. Designing
these procedures in logic was considerabley more difficult than writing
the other rules, and getting them to work was definitely a process of
debugging rather than 'knowledge engineering'. The efficiency
implications cannot be ignored either: the system as written could not
handle the fourth of the example cases in the form in which it was stated
because it ran out of stack space in very deep recursions involving very
large data structures. No doubt some ingenuity and a compiler that
optimises tail recusion would help, but the conclusion that logic is not

ideal for this type of operation appears inescapable.

At the end of the program there is a listing of the bottom level goals.
It is apparent that these are all direct equivalents of conditions found
in the legislation, rather than invented to fill problem solving gaps in
it. It would be entirely reasonable to declare all these to be 'askable!
of the user. By establishing a conceptual framework for the problem
solving, albeit a simple one, we have put the problem solving'back into

the system.

- 81 -

As an example of the program in action we give below a slightly
abbreviated trace of the solution of a simple query from example 1. The
query is to determine the appropriate weekly rate of ssp on a particular
day:

? weekly rate_of ssp(310,Weekly rate).

Weekly rate=37
The rate is as follows with depths of indentation indicating the depth of

the subgoal search:

normal weekly earnings(310,E)
normal weekly earnings by two pay_days(310,E)
two_preceding pay_ days_separated by eight weeks(310,P1,P2)
period_within time frame_backward([P2],pay_day,0,310)
P3 is P2-1
period_yithin_pimg_frame_packwarq_([P1],pay_gay,O,P3)
gap_between periods(P1,P2,Gap)
Gap>=55
P3 is P1+1
pay_received_in period(P3,P2,Pay)
all_periods_yithin_pime_ﬁrame_forward(pay_ﬁays,day_pf_payment,
P1,P2)
sum_pay received(Pay_days,Pay)

earnings_palculated_from_pwq_pay_days(P1,P2,Pay,E)

This simple example shows the use of several different searches through

dates to establish the relevant pay days and all the pay received in the

period between them.

- 82 -

One simplification adopted in this program design should be noted at this
point. There is an impliecit 'point of view' when talking about time
periods. If the current data is in the middle of, say, a period of
sickness, then the end date of that period is strietly not known.
Similarly, - if a contract end date has not been specified but simply lies
some time in the future then it is irrelevant for consideration of events
up to the current date. A complete handling of time periods for our
system ought to include this 'point of view' explicitly. This was not
done because of the added complexity and because minor adjustments to the

way the example data was presented obviated any problems.

The foregoing remarks allow us to see how we could set about achieving a
more sensible dialogue structure for our problem solver. Take as an
example the definition of a period of entitlement. This is the most
complicated period definition but its interesting feature at this point
is that the period is ended by the first to occur of a number of events:
end of contract, start of pregnancy disqualifying period, start of a
period of legal custody, or end of piw (the usual case). The problem
solving rules first of all construct the intersection of the current
contract and the piw; this should be done with reference to the current
date as an end date as noted above. This establishes a period within
which to search for the first instance of any of the other terminating
events. At this point it would not be sensible for the system to ask of
each day in turn whether it satisfies those conditions - it should
discover whether the event occurred in the period of interest, ie it
should generalise the question in the way that a human questioner would.
In order for this to be possible it would only be necessary to introduce

a new relation:

- 83 -

known(Period_name,Start,Finish)

that would record the period of time for which the data currently
available to the system represented a complete history. Then an askable
goal would only be asked if its history were not known for the period in
question. If it were asked then the 'known' relation would require
updating. Without a mechanism such as this we are not able to cope with
the statement in example 2, where it says there is no reason to suspect
the (27 year old female) employee is pregnant. PROLOG cannot represent
negation directly, ie we cannot include 'not pregnant' as an assertion to
be used by the theorem prover. Negation is implied from failure to prove

a goal. By including the assertion:

known(pregnancy, ,).

we would prevent further attempts to establish facts relating to
pregnancy. Even if we had explicit negation, the 'known' predicate would
serve to guide the process of generalising questions. An implementation
of this idea was beyond the scope of this project, but we note that two
approaches could be taken. One would use PROLOG intrinsics to assert and
retract versions of the 'known' clause, essentially doing assignments;
the other would build a declarative model of database update within which

the whole system could operate.

Although we have gone a small way towards giving our system problem
80lving capabilities and some possibility of improving its dialogue at a
rudimentary level, we have not yet tackled representing the definitional

aspect of the law for consultation, distinct from problem solving. In

- 84 -

example 1 the system can correctly apply the rules that allow an employer
to withold payment in lieu of a waiting day for which notification of
sickness was not given, but it has no means to answer the question
actually posed: "What can you do about the late notification?". As
another example, consider the rules defining a 'day of sickness' that
were discussed in the previous section. We saw there how a dialogue
could be contrived to take a user through the detailed definition and
then ask a generalising question. This was really a trick, combining the
two types of consultation and clearly does not carry over into our new
system. Once we have a conceptual framework for some part of the
legislation however we can incorporate procedures to explain that
framework. As a trivial example, if we redefined our period predicates

to look like:

period(Period_name,type,x)
period(Period_name,derivation,y)

ete

then a query of the form

? = period(sickness,X,Y).

would recover the definitional predicates. Clearly we would want to have
some more sophisticated retrieval that could recursively unravel all the
dependencies and explain the relationship between them, but the point is
that by having a conceptual structure related to a user's concept we have
the germ of a consultation system on the concept of the legislation. It

is worth recapping here the observations made in section 2.7 above

- 85 -

concerning the need to establish the basic level of justifiecation to
which a concept must be reduced, and that this level depends on the class
of users. The level of justification for periods is simple because it
rests on common world concepts, it will not be so simple for, eg rights
and obligations. Our system has no framework for making explicit the
notions of what the employer and. employee must do in order that the
legislation is a true model of real world events. It therefore has
nothing that by simple extension could answer the 'late notification’

query, and is totally unable to deal in any useful way with the example

2%

As a final point on our conceptual framework we note that even when we
are dealing with such comparatively simple things as time periods and
events the representation is quite complex. The nature of the law is to
always introduce exceptions to general rules; the system allows for this
in its representation of periods by including 'special conditions' that
can be applied after everything else. Even this however does not deal
with the rule that says that the end of a contract does not terminate a
period of entitlement if the contract was terminated solely or mainly to
avoid 1liability for SSP. To have accommodated this would require the
ability to attach whole clauses where we only had predicate names. To
introduce it as an afterthought would require substantial reworking. We
note that this would be a traditional 'programming' rather than
'knowledge engineering' task. The modifiability of ruleé pertains only
to the direct expression of the legislation, and we have now established

Jjust how much and how little that can do for us.

- 86 -

4.5

SUMMARY

In summary therefore we observe:

(1)

(2)

(3)

A useful consultation system on any large scale will have to make
expliecit knowledge of four types: definitional, problem solving,
dialogue, and written structure. This knowledge i1s not made
explicit by the direct representation of the 1legislation in

logic.

A conceptual structure is a sine qua non for consultation on

definitions and anything beyond trivial problem solving.

Problem solving may be separated into the application of 1low
level procedures to general definitions. The interfacing
procedures are naturally written in logic, but the low level ones

less so.

- 87 -

CHAPTER V

CONCLUSIONS

This project started with the perception of a match between a technique,
logic for rule based systems, and the domain of legislation, and sought
to investigate how far the technique would go in helping to build a
knowledge based system of power and flexibility. The method was
practical, the representation of a new piece of legislation as a means of
gaining insight into the problems involved. The conclusions arise from
making a number of distinctions that are substantiated by a survey of the
literature and which help us to assign the correct role for logic in the

building of knowledge based systems.

The most important distinction is the one that we took as a framework for
the survey of knowledge representation: that an intelligent system must
be described at two levels, the knowledge level and the symbol level.
This enabled our study of logic for problem solving to make clear that we
must not confuse power at the representational level with competence at
the knowledge level. The detailed analysis of MYCIN by Clancey further
demonstrated how only by analysing each competence we require of the
system can we make the necessary knowledge explicit; until we have made
it explicit we cannot represent it; and until we have represented it we
have not given that competence to our system, whatever the
representational formalism. Clancey's paper also demonstrated that our

epistemological studies might have implications for improving the domain

- 88 -

independent deductive strategies we implement for our logic systems. We
would only gain benefit from such improvements in those domains where we
could provide the corresponding structural knowledge for the deductive

rules to act upon.

An interesting questioh left unresolved by the survey of knowledge
representation was the status of semantic nets and their interpreters as
specialised inference tools tailored to specific uses. It remains an
open question whether for an equivalent 1logic representation we can
always. use the separation of an algorithm into logic and control to
optimise the control component adequately by automatic means. It seems
likely that the current state of the art is that it is a theoretical
possibility rather than one available to programmers. However, a
detailed study would appear to be a useful impetus to work in program

transformation.

Another area that it becomes apparent could be fruitfully studied from a
logic programming viewpoint was the use of frames seen as hypothesis
generation mechanisms and a notation for handiing collections of clauses.
The frame notion when separated from its connection .with semantic
networks appears to be more an expression of epistemological insight at

the knowledge level rather than an essential representational tool.

Our general conclusions on 1logic as a representational formalism are
therefore that its power has still not been fully explored in a number of
important areas, and that we should not let those explorations distract

us from our other task, the study of the knowledge level itself.

= 88 -

Turning to the experience of building a system we found the lessons of
Clancey's study were just as relevant despite the seeming ease of
translating legislative rules into logic.rules. We found that in order
to build a system with any competence we had to be specific about the
competence required - was it to explain definitions, reason about cases,
hold sensible dialogues with a user, etc? With a clear purpose in mind
the logic programming method proved to be powerful and easy to use in all
respects except the low level manipulation of data structures. we found
that even a simple problem solving system involved a knowledge
acquisition task, 1ie deriving some wunderlying real world concepts
pertaining to the tasks. We also noted that the easy modifiability of
the rules that represent the legislation would not carry over quite so
easily into our more powerful conceptual model. 1In other words there is
a good deal of programming as well as knowledge engineering in building a
knowledge based system in a complex domain. It was apparent that
extending a system to deal with all the law, instead of just the parts
displaying a high degree of structure over a few basic concepts, would
require conceptual models of far more detail than we have at present.
The TAXMAN example showed just how far one would expect to go away from
the original expression of the law in order to model the concepts
adequately. The written form of the law, as a collection of cross
referencing statements, was also uncovered as requiring separate explicit

treatment in the future.

Our general conclusion from this study is therefore that the match
between the technique and the domain exists only at a surface level and
is perhaps inclined to deceive us into believing that in this domain the
epistemology of the knowledge level comes free with the knowledge - we

have demonstrated that that is not the case.

- O =

REFERENCES

1. A programme for Advanced Information Technology. The Report of the
Alvey Committee. HMSO 1982.

2. Addis, T.R. (1982). Expert Systems. An Evolution in Information
Retrieval. Information Technology. Research and Development (1982) Vol
1, No.4, pp 301-324,

3. Addis T.R. & Johnson, L. (1982). Knowledge for Machines. Brunel
University MCSG/TRZ2S.

4., Allen, L (1979). Language, Law and Logic. Plain Legal Drafting for
the Electronic Age. 1In Niblett, ibid.

5. Bellord, N. (1979). Tax Planning By Computer. In Niblett, ibid.

6. Brachman, R.J. (1979). On the Epistemological Status of Semantic
Networks in Findler, ibid.

7. Brachman, R.J., R. Smith, B.C. (1980). Special issue on Knowledge
Reproduction SIGART 70, pp 1-138.

8. Ciampi, C. (Ed), (1982). Artificial 1Intelligence and Legal
Information Systems. North Holland.

9. Clancy, W.J. (1983). The Epistemology of a Rule-Based Expert System.
Artifical Intelligence, Vol 20, No 3. pp 215-251.

10. Clark, K and McCabe, F.G. (1982). 1In Hayes, J & Michie D.J. (Eds)
Machine Intelligence, Ellis and Horwood.

11. du Feu, D. (1980). Selecting Welfare Benefits by Computer. 1In
Niblett, ibid.

12. Employer's Guide to Statutory Sick Pay. (1982). DHSS. NI.227.

13. Findler, N.V. (Ed), (1979). Associative Networks, Representation and
Use of Knowledge by Computers. Academic Press.

14, Hammond, P. (1983). Representation of DHSS Regulations as a Logic
Program. In proceedings of Expert Systems 83, pp 225 -235.

15. Hammond, P. APES: A user manual. Imperial College Research Report
DOC 82/9. Imperial College, London. '

16. Hawkinson, L (1975). The Representation of Concepts in OWL.
Proceedings of the U4th International Joint Conference on Artificial
Intelligence, 1977 pp 67-T6.

17. Hellawell, R (1980). A Computer Program for Legal Planning and
Analysis. Taxation of Stock Redemptions. Columbia Law Review 80 (7), pp
1363-1398.

18. Hendrix, G.G. (1979). Encoding Knowledge in Partitioned Networks in
Findler, ibid. ’

= Qs

19. Hewitt, C. (1969). PLANNER. A Language for Proving Theorems in
Robots. Proc. IJCAI-I pp 295-301.

20. Intelligent Knowledge Based Systems. A Programme for Action in the
U.K. (1983). SERC.

21. Kowalski, R. (1979). Logic for Problem Solving. North Holland.

22. Kowaski, R. (1983). Logic for Expert Systems. In Procedings of
Expert Systems 83, pp 79-93. BCS.

23. McCarty, T. (1980). The TAXMAN Project: Towards a Cognitive Theory
of Legal Argument. In Niblett, ibid.

24, McCarty, T (1982). Intelligent Legal Information Systems: Problems
and Prospects. In Proc. Coll. on Data Processing and the law. UK
Committee of Comparative law.

25. McCarty, T. Permissions and Obligations. In Proc IJCAI 83 pp 287-
294.

26. Newell, A. (1982). The Knowledge Level. Artificial Intelligence,
Vol 18, No. 1, pp 87-127.

27. Niblett, B. (Ed), (1980). Computer Science and Law. Cambridge
University Press.

28. Philips, B (1978). A Model for Knowledge and its Application to
Discourse Analysis. Am. J. Computational Linguisties. Vol 5 (4).

29. Robinson, J.A., (1965). A Machine Oriented Logic Based on the
Resolution Principle. JACM 12 pp 23-41.

30. Schank, R.C. (1975). Conceptual Information Processing. North
Holland.

31. Schank, R.C. (1979). Re: The Gettysburg Address. In Findler, ibid.

32. Sergot, M. (1980). Legol as a Logic Programming Language. Imperial
College, London. :

33. Sergot, M. (1983). A Query-the-User facility for logic programming.
In Degano, P. & Sandwell, E (Eds), Intergrated Interactive Computer
Systems. North Holland.

34, Shortliffe, E.H. (1976). Computer-Based Medical Consultations:
MYCIN. Elsevier, New York.

35. Social Security and Housing Benefits Act 1982. HMSO.

36. Stamper, R.K. (1973). The LEGOL Project and Languages. Proc
Datafair Conference. BCS.

37. Stamper, R.K. (1979). Towards a Semantic Normal Form. IFIP TC2
Working Conference on Database Architecture, Venice.

=3 .

38. Stamper, R. (1980). LEGOL: Modelling Legal Rules by Computer. In
Niblett, ibid.

39. Statutory Sick Pay (General) Regulations 1982. HMSO.

40. Sussman, G.J. & McDermott, D.V. (1972). Why Conniving is Better than
Planning. AI Memo No 255, MIT Project Mac.

41. Tannenbaum, A.S. (1976). Structured Computer Organisation. Prentice
Hall.

42, Winograd, T. (1975). Frame Representations and the
declarative/procedural controversy. In Bobrow D.G. and Collins A, Eds,
Representation and Understanding pp 185-210. Academic Press.

APPENDIX A

May 11 Toe:ondg 1984 sspaskl Page 1

R YR O R R R A R R N AL LR L S IR S E S TET T "

Ji

¥ SSP_ASK

=

ra

b 55P cousuliaticon pregram withcut time period
i modelling.

%

w F Sharpe

o May 1944

A

Y e R R N N N S N Ry N R RS
entitled_to_ssp_tror_day -
day is_part_of_a_piw,
day_is_within_a_pericd_of_entitlement,
day 1s_a_yualifyiog_day,
nct (day_is_excluded).

day_is_part_of_a_piv 2~
day _is_a_day_of_sickncss, _ .
gay_1s_onhé_ct_rour_cr_mo:r:_days_sickrness.

day_is_a_day_of_sickness 1=
under_wedical _care_in_respect_of_disease_or_disabklement,
hhas_done_nc_work_under_the_ccentract_of_service_on_day.

day_is_a_day_of_sickrcss -
stated_by_a_registered_wmedical_practaitioner_that_bhe_shculd_not_work_for_day,
has _done_no_vwork_under_the_contract_of_service_on_day.

day_is_a_day_ot_sickuess -
at_commencemant _ct_day_cr_uuring_the_day_he_became_incapable_of_work_specific_to_contract_ot_service,

May 11 16358 1984 supaskl Pags 2

has_dona_no_uwcrk_under_the_contract_of_service_on_day_cxcept_during_a_shift_which_ends_on_that_day_hav

day_is_withiu_a_period_of_<ntitlement :-
relevant_date (b),
not (terminared_by_maxiwmum_euntaitlement (R)),
noc {terminated _bhy_contract (b)),
nct (terminpatad _by_legal _custody (E)),
nct {terwinated_Ly_pregnancy {(R)),
nct (entitlement_disqualified_by_schedula_one_for_irelevant_date (R)).

relevant_date (h) -
beginning_cf_piw(S5),
Leginning_of_mest_recunt_contract (C),
latel (5,C,4).

Leginning_or_piw(F) -
period_of_sickaess_iacluding_day_in_question_beyan (S),
period_ot_linked_sickness_tegan (S, P).

period_ot_linked_sickness_tegan (s, P) -
Stdrt_of_perliod_sickness_qgreater_than_four_days_ending_within_grevious_fourteen_days (S, P1),
period_of_linked_sickness_Legan(S1, P).

o

periocd_of_linked_sickuess_vegan (5, $).

L (B By €) 3~
JaEEE Ry £y H) s

teimitnared_by _maximum_entitlement -

Hay 11 16258 1984 sspaskl Page 3

entitlement_limit (Limic),
entitlement _exceeds_limit_for_period_or_tax_year (Limit).

entitlement_limit (Limit) - 2272

ectitlement_exceeds_limic_fore_pericd_cr_tax_year (Limit) z-
total_entitlement_tor_curient_period_of_entitlement_up_to_and_including_day_in_question(E),
E >= limit.

total_entitlement_tor_current_period_of_entitlement_up_to_and_including_day_in_question(E) :- 222

cnvitlement _exceeds_liwit_tore_pericd_cr_tax_year (Limit) :-
total_entitlement_for_curient_tax_year_up_to_and_including_day_in_guestion(B),

E >= Limit.

-
-

8y
-
o~

total _entitlenment_tor_currant_tax_yeal _up_to_and_including_day_in_question (k)

terminated_by_contract (F) 3-
wcst_recent_ccunrract_ended_betfore_day_in_question, .
not {(contract_was_torminated_sclely_or_wmainly_to_avoild_liability_for_ssp,
contract_due_to_expire_on_or_atter_day_1in_question).

teimivated _by_legal_custody (k) :-
detalned_1irn_legal_custedy_batween_relevant_date_and_day_in_question (k).

teipminated_by_legal_custedy (R) s-
sentenced_te_luprisonwent_uvetvween_relevant_date_and_aay_in_question (R),

notL (sentence_i&_suspended) .

termrnated_by_preguancy (k) -
pregnant_in_preceddny_sevan_nonths (B) ,

Lay 171 163150 1984 sSspask1l Page 4

expected_week_crf_contincuwe=nt_ccmmadcament (C)
b is C-748,

L >= R,

precedes_day_1in_question (I).

epritlesnent_disgualatfied_by_schedule_cne_for_relevant_date (k) z-
enployee_is_over_pensicondlle_age_on_relevarnt_date (k) ;
disgualified_by_shert_contract_on_relevant_date (k) ;
ncrmal_weekly calnings_belcouw_lcwer_limit (£) ;
disqualiticd_by_pension_day_in_interruption_of_ewmployement_preceding_relevant_date (k) ;
disyualiried_vy_sickness_rtenefit_entitlament_in_preceding_period (k) ;
disgualiried_by_maternity_allcwance_in_preceding_gperiod (k) ;
disqualiticd_by_reason_oi_having_done_no_work_under_contract (F) ;
disqualiiied_by_trade_dispute (k) ;
reached_maximum_tax_year_ecntlitlemant_Ltefore_relevant_date (R) ;
enfployee_1s_or_has_been_pregnant_with_a_disgualifying_period_including_relevant_date (R) ;
disgyualificd_Ly legal_custcdy (h).

disgqualifed_by_short_contraci_on_televant_date (R) :-
contract_for_uay_in_4guestion_was_entered_iuto_for_a_specitied_geriod_of _not_more_than_three_months,
nct (special_shcecrt_contract_conditicns_apply(R)).

spocilal_short_contract_conditions_apply (k) -
contract_of_seivice_has_become_a_contract_for_a_period_cxceeding_three_months_on_relevant_date(k), !.

special_sncrt_contiract_conditicns_apply (R) :-
current_cointract_was_préceaed_by_a_contract_with_same_2mployer_which_ceased_to_have_effect_not_more_th
urrcnt_contrauct_started,
aggyregate_lenyth_of _precedaing_contracts_with_current_contract_exceeds_thirtean_veeks.

dyqreyate_length_oi_preceiling_contracts_with_current_contract_exsesds_thivtesn_veeks 3-

May 11 16:58 1984 s:ﬁ:sk1 Payge O

specitiea_period_of current_ccentract_on_day_in_guestion (€),
period_ot _earlier_contract(P),

R A Sy

accumulated_aygregates_cxcced_thirteen (A).

accumulated_agqgregates_axcecd_thivtesn (8) -
A > 143,

!n

accumnlated_agygregates_ ,waed_thirteen(A) 3=
earlier_contract_+erminated_witnin_eight_weeks_of _tnose_already_considered,
period_of_earli=r_contract (L),
Ayg is A + L,
accumlated _agyregates_e<xceod_thivrteen(Rgqg) .

normal _weekly carnings_telow_lower_limit(R) - 2727

disqualiticd_by_pension_day_in_interruption_of_emglcyment_preceding_relevant_date(R) 2~
onavday_in_57_;receding_xe1avant_ddtu_formed_parL‘ot~a_perlod_ot_lntprruptlon_of_employment(R),
invaliaity_pension_day _occured_during_geriod_ot_interruption_of_=mployment,

invalidity_pension_day_occured_during_pericd_cf_interruption_cf_smployment :-
uay~dur1nq_per10d_ot~1utLLruptlan_cf_emplcyment_ror_whlch_=mployue_was‘entitled_to_an_invalidity_or_no

invalidity_pension_day_occured_during_period_ct_interruption_of_employment :z-
day_during_period_ot lntprlufpxon ct emplcymcnt tor_which_emgloyee_was_not_entitled_to_an 1nva11d1ty C:
ion_but_wh1Lh_was_the_last_day_of_JnVal1d1ty_penslon_qualliylnq_perlod.

disyualified _by_sickuess_ben=tit_sititla2ment_in_preceding_period (k) :-
one_day_in_57_preceding_relevant_date_was_aday_ot_entitlement_to_sickness_tenefit_or_would_have_been_if
s_satisfied ().

Fay 11 16258 1984 sspaskl Paqge 6

disqulaitfed_by _maternity_allowance_in_preceding_gperiod (k)
one_day_in_57_prece=ding_relavant_date_was_day_of_entitlement_tc_maternity_allowance (R).

disqualitied by_reason_of_hkaving_dene_nc_work_under_contract (R) :-
on_relevant_date_employee_bad_done_no_work_under_contract_of_service (R),
net (employee _had_worked_on_zarlier_linked_contract (R)).

employee_haid_worked_on_earlper_linked_contract (k) :-
ati_vcarlicr_contract_ceased_to_have_eftect_not_more_than_eight_weeks_berore_the_contract_valid_on_relev

employee _has_worked_on_sarlisr_contract.

disqualified_by_trade_dispute(8) 2- _
on_rclevant_date_there_was_a_stoppage_of_work_due_to_a_trade_dispute_at_the_employees_place_of_employn
nct (employee_proves_at_ro_time_on_or_before_relevant_date_did_he_have_direct_involvement_or_interest_i.

Eon R e

reached_maximum_tax_year_entitlem.nt_tetore_relevant_date(k) :- 297,
employee_is_ol_has_Leen_pregnant_with_a_disqualifying_period_including_relzavant_date (R) :-
pregnant_in_preceding_seven_mcnths (R),
expectca_week_of_confinenment (C),
Ik im €=37;
R >= b,
not (pregnancy_terminated_betore_disqualifyinyg_period_otherwise_than_by_confinement (D)) .

disqualfied_by_legal_custvody(R) -
detained_in_legal_custody_dat_any_time_on_relevant_date (R) .

disgualtied_Ly legal_custedy () -

May 11 16:58 1984 <o

raskl Page 7

sentenced_to_imprisonment_on_relevant_date (R),
nct (sentence_is_suspended).

day_1is_a_yqualitying_day :-

day_is_qualitfying_day :z- ’

qualifying_aays_are_aygreed_days_of_week,!,
day_is_agreed_or_obligatory_agreed_qualiftying_day.

days_1s5_agreed_or_okligatory_agreed_gualifying_day
1

-
- 7
Ml

week_beginning_sunday_and_ccentaining_day_in_yguestion_includes_at_least_one_agreed_qualifying_day,
day_in_questicn_is_an_agreed_qualifying_day.

day_is_agreed_or_obligatery_qgualitying_day :-
day_is_obligatcery_gualitying_day_tor_week.

day_is_a_qualityiug_day :z-

days_o1_work_ILeyuibed _ot_«mplcycce_ars_agreed,
[]
= (¥

day_is_aygreed_or_default_day_ol_wcrK.

day_is_agreed_or_default_day_of_work

®

P
]
el L

week_beginnityg_sunday_and_iuncluding_day_in_qguestion_includes_at_least_one_day_of_work,
day_in_questicn_igu

al_itgieed_daoy_of_reguired__work,
day_1S_abL_aygleed_or_detanlr_day _Gi_¥wOorkK -
day in isoa

yLestiol we e sday.

May 11 16:58 1964 sspaskl Page 8

day_is_a_yualitying_day :-
not (day_in_questicu_is_a_day_on_which_no_euployees_expected_to_work).

day_1is_excluded z-
day_dis_in_first three_qualiftying_days;
day_is_excluded_Ly gntitlewent_limit;
day_is_excluded_for_tailure_tc_notify_sickness.,

day_is_excluded_by_entitlement_limit :- 722,

day_is_ecluded_tor_failure_to_notify_sickness :-
day_may_be_excluded_tor_tailure_to_notify_sickness,
employer_has_exercised_right_to_withhold_payments_in_respect_of_unnotitied_day.

day_may_Le_excluded_for_failure_tc_notify_sickness -
nct (notitication_cf_sickness_given_tor_day_in_question).

day_may_be_excluded_tcr_failure_tc¢_notify_ sickness z-
nctitication_ol_sickness_qgiven_tor_day_in_questicn,
number_of_waiting_days_tloi_which_notitication_was_not_giveu (W),
number_ot_gualifying_days_Letween_waiting_days_and_day_in_guestion_for_which_notification_given (N),

N+1,
== M,

[
44

M
N

day_is_excludeda_by_entitlemeny_limit -
entitlement_liwit (L), 227

May 11 17:C0 1984 sspask2 Page

B ok ok X oK % o R ok ok o ks b ool Skl O R R R R OR KR OK R A ROR R) Rk ks R K Ak
[}

o

i3 GOoals that fmuot Lo defineu cxternally for SSP_ASK

-]

n v

ot At e e e o o o ok i o st e o o o og e gtk oK ok ko % o 0% e o i ol b 3 % ook ok R S gl o 0k A o e ok o ok ok ok

-t

askable (day_is_cne_ct_four_oi_wore_days_sickness).

askable (undel_medical_care_in_lespect_cf_disease_or_disablement).

askable (has_done_nc_wérk_under_the_contract_of_service_an_day).

askable (stated _by_a_redgistered_medical_practitioner_that_he_should_unot_work_for_day). ,

askatle (at_ccmmencement_cf_day_or_during_the_day_he_became_incapable_of_work_specific_to_centract_of_service).
askable (has_done_no_werk_under_the_contract_of_service_on_day_except_during_a_shift_which_ends_on_that_day_hav

askable (period_of_sickenss_<dncluding_day_in_gquestion_began).

askable (start_of_pericd_sickness_greater_than_four_days_ending_within_previous_fourteen_days).
ishatle{beginning_cf_nost_recent_contrdct).

askacle (most_tecent_ccentract_ended_before_day_in_question).

asikable (contrace_was_terminated_soleley_or_mainly_to_avoid_liakility_for_ssp).

askable (coutract_due_to_expire_cn_orf_after_day_in_question).

askable (detained_2an_legal_custody_fetween_relevant_datrc_and_day_in_guestion).

askable (sentenced_to_imprisonment_between_relevant_date_and_day_in_question).

askabtle (sentence_1s_suspernded) .

askable (pregnant_in_precediny_seven_mncnths) .

askable (expected_week_of_confinemncnt_ccmmeéncement).

askable [precedes_day_in_questicn) .

askalble (employee_1s_ovel_pensionable_age_on_rclevant_dcate).

askakle (contract_for_day_in_question_wvas_entered_into_tor_a_specified_period_of_not_more_than_three_months).
askable (current_contracr_was_greceded_by_a_contract_with_same_employer_which_ceased_to_have_etfect_rot_more_th
nirent_ccntract_started).

askable (specitied_pericd_of_current_countract_cn_day_3in_guestion).

askable (period_of_ecarlier_contract).

askable (one_day_in_57_precediag_relevant_date_formed_part_of_a_period_of_interruption_of_employment).

askable (day_durinyg_period_of _interrupticn_of_employment_tcecr_which_employee_was_entitled_tc_an_invalidity_or_nc
askable (day_during _peritod_cf_interrutpion_of_employment_tor_which_employee_was_not_entitled_to_an_invalidity_o
ion_but_which_was_the_last_day_of_invalidity_pension_qualifying_period).

askable (one_day_in_57_precediang_relavant_date_was_day_of_entitlement_to_sickness_benefit_or_would_have_heen_it
s_satlistied).

ashable (one_aay_in_57_precediny_v=iwvart_date_was_dav_of_entitlaeavnt_to_raterrnity_allowance) .
askable(on_relevant_date_employee_had_done_no_work_under_countract_oti_service). .
ashable (au_carlicr_contract_ceased_to_have_effect_not_more_than_ecight_weeks_betore_the_contract_valid_on_relev

May 11 17:00. 1984 sspask?2 Payge 2

askable {employee_has_worksd_on_earlier_contract).

askable (on_relevant_date_there_was_a_stoppage_ot_work_due_to_a_trade_dispute_at_the_employees_place_of_enployu
askalble (employee_proves_at_no_tise_on_or_betcore_relevant_date_did_he_have_direct_involvement_or_interest_in_ti
e

askable (pregnancy_terminated_bLefore_disqualifying_period_ctherwise_than_by _confinement).

askable (qualifying _days_of _week_are_agreed_days_otf_week).

askable (week_beginning_sunday_and_containing_day_in_guestion_includes_at_least_one_aqreed_qualifying_day)
askable (day_in_questicn_is_an_aqreed_qualitying_day). ’

askable (day_ic_obligatory_gualiryingy_day_for_vweek).

askable (days_of_werk_required_ot_empleyee_are_agrecd).

asskable (day_in_guestion_is_a_weduncsday). '

askable (day_in_question_is_a_day_on_which_no_employees_expected_to_work).

askable (day_is_in_tfirst_three_qualirying_days).

askable (nctification_cti_sickness_given_tor_day_in_question).

astable (number_ot_waiting_days_tor_which_nctification_was_not_given).

askable (number_of_vqualifying_days_berween_walting_days_and_day_in_gquestion_for_which_notification_given).

May 1

ey
Al s n A A

Tes27 1984

co Ay
A

o R %

[P0 A R U T
» 7»/ WY /cl{

S8 Bage |

c&uld' w ol 6y G g o/ ¢r Q7 0 0
A RLRE YL TR INTRAR

RERKR %

APPENDTIX

B

a a’l el 6 Qi ‘IJ’U' I’ o a

T K oo kK

LI

i %
i SSP %
%

A L TFrolcy progyram to mcdel the Ltatutory Sick Pay %
Y legivlartion]
i ¥
v W P Starpe #
% May 196l g
¥ . !
G e h R LR AR NG R AR U RN RN RN R KRR A AR R RN RN AR LY
R R R N R e N T AT E P T e Py s P Y YT TR
%
v The fcllowling scection contains general rules
% not restricted to handling tire periaods,
%
oo RO S ko %O s e ok sk Rt e ook Kt el ke Aod e ek ool ot o ook ok o3k e ROK ook koo 4
S .
£ ENG PELENERT S0 S8
v
empioyece_31s_entitled _toe_cep(Lay) -
witnin_SSF_pceriod (bEP_periced, an),
nct (zxcluded_trom_ssp_peliod (8Sk_pericd, Day)).
e cluaed_from_ssp_pericd (SSP_period, Lay) -
waltiny day (55F _pericd, bay).
erciuded_trom_ssp_period (SSP_period, LCay) -
way_Le_excluded_for_failure_tc_notify{SSP_gpericd, Day),

chployel _e€XeICLlies_right_to_withhold_payment_for_reilure_

=R By L Bay) =
slcKknese_givin (Bay)) .

_wxcluded_ror
ot {norlfticat:

ol e EC
Gl -

ey L

Gh

to_notify(bay) .

May 17 lozz7 1984 sspl Pege 2

may_ke_excluded_tor_failule_to_nctily(SSP_pericd, Day) :-
may_be_excluded_tcer_walvring_day (55F_geriod, Day, W).

may_be_oxcluded_tor_waiting_day (SsP_pericd, Day, W) :-
nct (waiting_day (SSP_geriod, Cay)),
walting_day (SsP_jpericd, W),
not (notification_ot_sickniss_given(W)),
nctirication_ct_sickness_given (Day),
not (tirst_soriricaticn_suk_conditicns (Cay, W, SSP_pericd)),
nct (second_notiticetion_sulb_cenditions (Day, W, SSP_period)).

first_notirication_siuv_conditicne (Lay, w, SSP_period) :-
carlier_day_in_period(wl, W, SSF_pericd),
ray_be_excluded_fci_waitiay_day (sSP_period, Day, wl).

second_notificaticen_sub_conditions (bay, W, SSE_period) :-
garlier_day_is_pericd(fayl, Day, SSP_jericd),
wey_be_excluded_tor_walting_day {(SSP_period, Dayl, WH).

walting _day (SsP_periced, W) 1-
in_rirst_tnree_days_of _period (SS¥_pericd, W).

ar

"

A Applicationr ¢t 1ules tc case
W

A

within _SSP_period ([54T]), Day) :-
period_including_day ([S|%), ssp_pericd, Day).
carlier_day_in_petiod(Layl, Day, F) :-
time_trame (P, Start, ©nd),
£ 1s Day-1,
aay_in_period bLackwerd(bayi, Start, E).

o Riret _mantée _days_of peried (Period, E3Y)] 2+
appeznd (f L1, 12, bi], _, ¥Pa11cd),

May 31 16227 1964 sEpl Dage 4

10, PErisd [By B BI); BEY) s

A

4 Problew sclving iule to determine 5SP entitlement
3 within a giveén period

o

A

ssp_due_in_period (stavt, Tinisn, SoP_period, S55P) -
pericd_within_time_trame_tcrward (SSP_pericd, ssp_period,
Start, Finish),
Ssp_sum_tor_fericd (8SP_pericd, 55P).

ssp_sum_for_period({ Sj1]), 55P) -
weekly rvate_oi_ssp (5, Weekly_tate),
ssp_sum ([5)1], Weckly_rate, 35@).

ssp_sum ([), _s G)o

ssp_sum ([Cay|l], Weekly_vate, S35t) -
daily_rate_of_ssp(fay, wWwsekly_rate, S1),

ssp_sum (1, Weekly_rate, 52),

53P is 51452,

k NCRMAL WLekIY HReNINGS

Lornal _weekly_earnirgs (Pay, k) -
ncrmal _wenkly earnings_Ly_two_pay_days (bay, E);
ncimal_weexly_earnings_by_cue_pay_day(Bay, E);
ncrmal_weekly_carnings_ty no_pay_day (Day, E).

rLoimael _weekly_€arninys_Ly_two_pay_days (Day, E) -
two_immediately_preceding_pay_days_separated_by_at_least_eight_weeks(Day, P1, P2),
P3 1s F1+¢1,
pay_ruceived_in_pericd {3, B2, Pay),

May 11 16:27 1984 s«spl Payoe U

carnings_calculated_rion_two_ray_days(¥1, F2, Pay, F).

catnings_calculated _frem_two_pay days(Fi, E2, ¥ay, F) :-
pay_day_intervals_are_mul*iples_crt_calendar_months,
nearest_whole_number_cf_wcenthe (F1, E2, M),
L as (Pay*i12)/ {1452).

carnings_calculated_trem_two_pay_days(F1, 12, Pay, T) -
nct (pay_day_1int<orvals_ale_multiples_cf_calendar _months),
exact_nunber ol _weeks (€1, P2, W),
L is Pay/u.

Callilhgs_cCalculated_trcem_two_pay_days (BE1, 2, Fay, E) :-
net {pay_day_intervals_are_multiples_cf_calendal_wonths),
nct (exact_nunker_ct_weeks (B1, B2, W)),
B od1s (Payd7) /7 (P2-P1+1).

rormal _weekly_ earnirys_by_one_ray_aay(lay, E) -
not (vwo_imwediarely_preceding_gay_daays_secparated_by_at_least_sight_weeks (Day, P1, P2)),
imnediately_preceding_pay_day (Day, P),
pericd_for_wiich_payment_received (P, Start, Ind),
pay_recelved_1u_fpericd(Start, fnd, Pay),
edarunlngs_culculated_trow_twc_gay_days({Start, ind, Pay, [).

norwal _waerkly _earnings by_no_pay_day(lay, k) :-
ner (immpediately_preceding_ray_day (Lay, P)),
nerwal_weekly earningsg_calculated_from_contract (k).

normal _weakly eeinings_calcnlated_ftrcm_ccntract (k) -
contractual_rcmulicration_1S_weckly_entitlement (£).

norwal_weekly earnings_calculated_trem_ccntract (k) z-
contrtaCtual_remuneration_is_multiple _menth_entitlement (M, Salary),
E 15 [Salaly®lz)/(Mt52) .

o
n

Fay 11 16327 1984 sspl Paye

p3 Normal weekly carnings - application to casz
p
T

two_lnmediately preceding_pay_days_separated_ty_at_least_eight_weeks (Day, b1, P2) :-
period _wiwnip_vime_frame_Lackward ([P2], pay_day, 0, bhay), ’
1
N
B2 148 E2=1;
period_within_taime_frame_tackward ({ P1), pay_dey, O, P3),
gap_Letween_poericds([(¢1]), LP2), Gag),
Gap >= 55,

pay_reccived_ifL_peried ¢P1, F2, Pay) :-
all_perviods_witnin_time_trawme_tcrward (Fay_days, day_of_payaent, I, P2),
sum_gay_reccived (lay_days, Fay).

sum_pay_recaived ([], 0).

suw_pay_rec=ived ([DayiT], Pay) :-
pay_history{Cay, S, _,
sum_pay_leceived (1, »2),
Ray 2Ag SRSz,

),

iteaiest_whole_pumber_or_months(P1, P2, M) :-
yap_betweon_periods ([P1]), [P2], G),
M is (G+15)/3C

¢Xact_numker_or_weeks (11, P2, W) -
gap_bLetweon_peidoeds({E1], [P2], G},
6 is 6 med 7,
W is (G+1) /7.
1uhediately _preceding_pay_day (lay, P) z2-
period_within_time_frawme_tackward ([P}, pay_day, 0, bay).
period_tor_which_pavmsur_ricoaveda {Pay_day, Start, brd) -
pay_kistory (Pay_dey, _, Start, fnd).

Eay 11 1b:27 1984 ss531 Paye b

v WEXALY Khik CF SSE

i

3

wevkly rate_of_ssp(lay, W) -
ncrwal _weekly_carninqgs(bay, B,
) -

weckly raté_fer_earnings(k, W
weokly rate_ror_carning:s(k,. 2b) =

F is floor(i+1l),

F < 45,

wvoekly.rate_tor_earnings (b, 1) -
Fois flocr(t+l),
P >= U5,
F < 00,

wee kly _rate_tor_ealnings(:, 37) -
: F 15 tfloor (L+1),

1
F >= 60,
G BAILY LAl I"OE SSP

darly _rate_of_ssp{Day, 3y -
weekly rate_otf_sspliay, W),
number_ot_gualitrying_days_in_week (Day, Q) .
3 15 W/Q.

daily_rate_of_ssp(bay, weekly rate, 5) -
numbicr_ot_qualirying_days_in_week (Cay, Q),
5 16 Weehly_rate/g.

May 11 16:27 1984 sse1 Faygye 7

tpplicatica
%

i

nowber_cf_gualifying_days_1in_week (Lay, Q) 3
perrod_including_day (duck, wcek, Day),
time _trame (Weex, Sun, Sat),
all_pericds_within_time_frame_tforward{Q_days, qualitying_day, 3uu, Sat),
number_ ol _days_in_poriod (¢_days, Q).

May 11 16328 1984 sspd Page 1

ool R AR RO KRR KR A ok e R Ak kb b ARl b Ak h RS KAk A b KA R bk £ M

(12

r

G fhe tollowing scction corsists entirely of rules that

p are us2d tc define periods that may thken be handled

% in a unitorm way.

a

T T Y LRy R S N R R S Py e Ry
O,

% PERICD FOn WRICH S2P I35 DUT

¥, ’

poriod_type (ssp_perlod, derived).
puriod_derivations (ssp_perlod, [pivw, sntitlement]).
peticad SpeEcidl echdliien{ssp peried, sSej ccnd)s

gag cond ([1, [D«

ssp_cond (F_cond, P) -
Jualirying_days_in_gpctiod{¥_qual, P),
ssp_uvxcluded_days (I_ccad, F_ygual).
qualifying_days_in_period (P_qual, F) 3-
time_rrame (P, Start, Ena),
all_periods_within_time_rrame_torward (¢, gualifying_day, Start, End),
inctersection (F, ¢, P_qual). '

sup_=xcluded_days (P_excl, SSP_pericd) -
sxd (P_excl, |], $SP_period, SSE_period).

ey B Il s oY

sxd (P_excl, Fart, {Firstjinest], SSP_pericd) -
excluded_rircu_zsp_pericd (85P_period, First),
4 '
SHd (B_exGly PalE, test, $E9F _rericd) s

ng 11T To:2d 1984 esp2 Tage 2

sxd (P_sxcl, Part, [Filrscihast], Sse_period) -
append (Parv, [Firscl,),
sxd (P_excl, 'y kest, 3SP_gpericd).

73 ' WELR

“period_type (week, rframing).’
period_detinition (week, sunday).
period_length (week, 7).

i

/ }

5 T3X YEMR

)

paliod_tvype (tax_year, frawing).

p=tiod _detinition (tax_yeal, april_fourth).
pericd_length {tax_year, 365).

f Assumed reteroetce derfiniticn fot dates is that the first day
¢t a calender ywvar is 1 and &ll prcocllem dates are later,

aprit_teouourth (Day) - :
44 is Day mod 365,

7
% STCKNESS
l,.'i

pariod_type (sickness, primitive_ccnditicn).
period_detinition(sickness, day_ot_zsickness).

7
"

fay 11 16323 19384 sspd bPaye 3

% PERLCGD OF INCRFLCITY FOR wWwCHK (PIW)
K

rericd_type (piw, linked).
pericd_sutb_period_nawe (piw, sub_piw).
period_liakage (piw, 14},

peLiod_type (sub_piw, derived).
period_derivations (subk_piw, } sickness]).
pericd_min_length (sub_piw, k).

9
b3 PERICD OF LNTTLLEMENY
’.A 5

period _type{entitlement, derived).

prriod_derivations (entitlencnt, {piw, entitling_contract]).

period_vxclusions (=ntitlement, {preg_disgnal, legal_custcedy]).

puriod_tirst_day_conditions (entatlemcnt,
[telow_pensicnarle_age,

5 ccntract_over_mininum_length,
ncrmal_weekly_earnings_atove_lcewelr_lirmice,
nc_peunsion_day_ain_interrupticn_ct_employment_in_preceaing_57_days,
nc_sickness_Lenafit_entitlement_in_gpreceding_S7_days,
nc_maternity_allowancs_entitlewent_in_preceding_57_days,

¥ wcrk_dene_undei_contract,
o) liot_disqualitiad_ty_trade_dispute,
Lo telow_maximun_tax_yeal_entlitlement,

nct_within_proegnancy_disqualitying_period]).

Lelew_pensionable_age (L) :-
aqge (Late, Eqg=),
h i3 Ays + (D-Laxw) /3oed,
A £ 65,

Lay 11 le:26 1984 sspe Page 4

norwal _weekly earninygs_dhbove_lcower_limit (Day) z2-
ncrwal _weekly carnings (Lay, F),
B 2 2.

no_pension_day_in_irnteriuption_ot_emplcyment_in_preceding_57 days (bay) :-
Layl is rtay - 57,
period_within_vime_trawe_backward ([], state_benefit, Dayl, Lay).

no_sickress_benefit_entitlement_in_preceding_£7_days (Day) :-
Layl is Lay - 57,
periad_within_time_drame_tackward ([], state_benerit, Dayl, Day).

no_materndty_allowance_entitlement_1n_preceding_57_aays (Day)
bay1l 1s Day - 57,
persod_within_time_tirame_Ltackwaird ([]}, state_benerit, Dayl, Day).

not_within_pregnancy_disqualitying_gpericd (Day) z-
period_iucluding_day ([], prey_disqual, Day).

o 9 1 P e 0 I Y

NE an s

period_type (s#ntitling_contract, linked).

jelicd_sub_period_nawe (ontitling_contract, sub_entitliny_contract).
fer1od_livnkage (entitling_contract, Se).

pelicd_min_length (entitling_contract, 91).

period_tygpe (sub_entitiing_contract, primitive_event).
period_defiaition (subk_entitlang_ccntract, contract_period),

(g

ot

ol PREGNANCY DISQOUMLEIVYING PICIGD
o'
o

period_type (preg_dasqiual, dszivad).,

o

Mav 11 Tbezd 1984 ssp2 Payge S

period_deravations (preg_disqual, |expected_continement_as_detined_by_Act]).
period_special_condition (preg_disqual, pregnancy_disqualirication).

febicd_type (expected_ceontinzwert_as_de<fined_ty_Act, eveut).
perioa_definition (expected_contincwent_ds_defined_by _Act, expected_confinement).

pregnancy_disqgualiticaticn([], []) 2- .

preynancy _disyuwalificetiorn (P_disqual, [C|_])) =-
Start is ¢ - 77,
End is C + ug,
censtruct_peraicd trom_limits (F_disqual, Starz, End).

¥

b3 STAYE EENEFIT

#

i Fer the purposes of this pilct project the various penztits
w (pensicn, matelnity, sicknesg) that can remeve entitlement
P tc 36P under Schedul= 1 and lumped together under the

% definition "state benefit

%

per iod_type (state_tanetic, priwictive_event).
period_definition (state_bepctit, state_benefit).

R

g

LEsal CUsTORY

..

peraod_type (legal_custody, primitive_event).,
pericd_detinition (legal_custcdy, lzgal_custody).

b
7 QUALIFYIHKG LAYE

a
o
o

May 11 Teyds 1988 escpd Page ©

period_typé(qualifying;day, cvent) .
por iod_detinition (yualafyiny_day, qualifying_day).

gqualityiny_ day (b)) -
gualilying_days_are_ayreed,
agteed_qualirying_day (0) .

gualirying_aay (D) :-
quatitying_days_arg_determinad_by_tegulaticns,
qualirying_day_by_regulaticns(L).

qualitying_days_ar¢_détermined_iy_regnlaticns :-
nct (qualityirg_days_ar._agresd).,

qualitying_day_by_iegularicas (D) :-
contractual_wciking_days_are_agreed,
contractual_working_day (L) .

gqualirying_day_by_ L»gulutious(“) S
contractuald_ working_days_ale_agreed,
Waek 1nplualng day_contains_nc_agreed_contractual_working_ dayq(n),

OLllgaIOLy_quaJJLang_ﬂuy_ot~wtek(L)

qualiftying_day_by_ ieyulations (D) :-
noL(Lontldctualmwox}Jng_days_aLe_aqreed),
actual _worxing_days_ale_aygleed,
actual _werking_day (D).

qualitying_day_by_regulaticns(b) -
nct {contractual _werking_days_are_agreed),
actual_workiny_days_ar=_ayLeed,
week including_day_ccnrained_nc_working_days_tor_cmployee (D),
wednesday (L) .

guad LEpd iy dap_ by wegulztiecgd(l) -

May 11 1b:zb 1984 sgp2 Paye 7

not (contractual_wcirking_days_are_agreed),
Lot {actual_werking_days_dre_ayreed),
not (day_on_which_no_cmplcyces_rcyquired_to_work (D)) .

qualitying_day_by_regulaticns (L) :-
not (contractual_wcerking_days_are_agreced),
not {(actual_wcrking_days_are<_aqresed),
day_on_wlhich_nc_empleyees_reguired_tc_work (D),
wveek_including_day_coentaeins_nce_days_of_requited_work_fcecr_all_employees (D).

f AEPLICe I'TON

wen k_including_day_ccentains_no_days_otf _required_work_for_all _employees(Lay) :-
period_incluaing_day (Hezk, wcek, Day),
yeneral_wolh_days_in_wcek {week, Work_days) .

day_oun_whicn_no_emplcyecs_required_to_work (Day) :=-
period_including_day (Yeek, week, Day),
gencral_work_days_in_weck (weeck, Work_days),
in_period (kork_days, Lay).

i

7 PRY [LARYS

5

" It is necessary to detine sapardtaly *'pay_deys' and 'days of

5 paymwent®, The twc terms ane ured distainctly, the fermer are

% used to detine a jeriod over which earnings are to be calculated,

% : the latel to uetermihe earnings within the period.

A
I

period_type (pay_day, eveut).
period_definition {pay_day, pay_day).

pay_day (D) -

May 11 16:23 1984 sspl Page 8

employee_has_iderntitiable_ncrmal_pay_days,
ncrmal_pay_day (D),
day_of_paysent {U) .

pay_day (D) :- g
net {employece_has_identifiable_normal_pay_days),

day_of_payment (D).

perriod_type (day_ct_payment, event).
puriod_definition (day_of_peyment, day_cti_payment),

day_o1_payment (D) 2- d
pay_history (B, Sum_treceivid, Start_pay_period, End_pay_period).

F“ay 11 lo:ds 1984 ssps Page 1

R N I N A S N YRS SRR R T T P S L TUL R R PP
.

% The tollowing s2cticn contains procedutes that take

% a perilod detinlticn and us<¢ 1t to find an ivstance of

" that period subject te scone censtraint e.qg. that it

] must include a specific day, o1 ke within a specific

* time frame.

¥

R R N N R Y Y S AR A E R Y I R R P S P T

a

TR hRTRRKRAN ARG L GRAT RARARRTR AR A ARG AR AR KRR AEER KRR ZURL LR U ANT K05 %

§ .

b3

Search ror a ypericd ot yeneral definition surrcunding a day
P

PR ENER AR A RRERERGKARAT w AR GAE AR T AR TRAAT KRR AK R T F R KR KK AR SR IR E N

period_ancluaing_day (Y, Fericd_rawe, Lay) -
pid (L1, Pericd_name, Lay),
tirsc_day_cenditicns_pild (b_fd, P1, Period_name),
eXcluued_yprd (P_excl, F_fd, TFericd_nanme),
valid_length_pid(F_len, P_excl, Fericd_name),
special_conditions_pid(F, F_len, Fericd_name).

7
b A dinked pericd 1u broken down into its constituent parts first
)

pid (F, Period_rame, Day) -

perirod_type (Ferico_name, linked),
peéricd_sub_period_nawe (Period_name, Sub_name),
pericd_linkaye (Pericd_nane, Gag),
perrod_inciuding_day (Part, Sul_name, Day),

1

L]

linked_period (Eart, sSubk_naws, Gap, F),

s »

n

May 11 16833 19846 sgpd Tage 2

Boundary condicticr for assembling null part
]
tinked_peracd ([Jo_s_ol]) = 4.

A

X Agssemble tull pericd frow the forward and backward linked
A sub Larts

i

linked_period (Fart, Pericd_nawe, Gap, bull) -
linked_forward_period (Forward, Part, Pevriod_nawe, Gap, _, _),
linked_bachward_pericd(full, Fcrward, Fevicd_nawc, Gap, _, _).

linked_forward_peraocd (i, [w]|1l], EFericd_nawe, Gap, _, _) -
1
L]
end_list({CIT], End),
Search_start 1s Fnd+2,
Search_end 1= Ind+Gap+tl,
linked_torward_pericd(k, [], Pericd_name, Gap, Search_starr, Search_end),

append(fett], L, F).:

linked_forward_period (2, [, Pericd_nene, Gag, Search_start, Search_end) :-
Search_start > Search_end,

liunked_fcrward_pericd (P, [], PFcriod_nawme, Gag, Search_stert, Scarcn_end) :-
1
4 d
périod_ainciwaing_day (t, Feiicd_name, Searcl_start),
S is Search_start+1,
ilinked_fcrward_period(¥, &, Feriod_nawme, Gap, &, Seaeich_end),

linked_backward_peracd (P, | Start|Q]), Pericd_name, Gap, _, _) =-

!
N

Search_start is Start=-Gap-1,
Scarch_end is Start-1,
linked_vpackwaro_paricd (s, |}, berlod_name, Gap, Scarch_start, scarca_wnd),

May 11 lo:zds 1984 sspd Pago 3

append (k, [Starcj¢], P).

link=d_backward_pericd (I, P, [ericd_name, Gag, Search_start, Search_end) :-
Search_stairt > Sewarch_vnd,
1
lirked_backward_pervicd (', {], Ferioa_name, Gap, Search_start, Search_end) :-
!
2 e,
period_includiny-day (i, Period_mame, Search_end),
5 i35 Search_end-1, .,
linked_backward_pericd (', t, Feriod_name, Gap, Search_start, S).

% Pericd type "rraming” including particular day
/"
pia (P, Period_rnawme, Day) :-

period_type (bgricu_nesme, framing),

]

Ll

period_detiricvion(Pericu_name, Lef),

day_in_period_Lkeckward (L, 0, Lay),

Pred =.. [Lef,i],

call {(Pred),
s »lcund the first day
feriod_lenygth {(Fevicd_nawme, L),
ccustruct_pevicd_kunown_length(F, Day, 1l).

Feriod tyjpe "primitive_ccnulticn" including day

PR IR

pid{y, Feriod_nawe, Day) -
period_type(leracd_name, primitive_ccnditicn),

]
ol

perioca_detirizion(Period_uname, Dcf),
pid_prim (P, Lel, Bay).

fay

[N

10:35 1984 ss¢2 Page o

pid_prim(l)}« Bet; bay) -

Ccendition =,. [Letr,Lay],
not (call (Corndaticny),

jid_pram(f, Der, Day)l:—

day_backward {iLi, Lay),

conditionl =.. [Pet, D1],

not (call (Cenditicrl)),
1

= 0

day_tcrward (L2, Day).,
Conditaon?Z =,. [Let,B2],
nct(call (Condition?)),
] g

Ly

start is Di+d,

Finish is LZ2-1,

Start =< Finish,

construct_pecicd_trom_limits (E,

% Tne day in gqueastion

>9

Founda

% Found

Start,

€arlier limit

later limit

Finish).

i Period typs "primitive_evernt" including day

pid (b, Period_name, BLay)

period_typ= (Fzrica_name,

[riwitive_event),

periou_aetinition (Period_name, Letinition),

pid_pram_s=svent (P,

Fetinitiocu,

pid_praim_svent (P, Lor, Day)
bveut =.. [Det, Start,

call (sveut),
Lay >= Start,
Lay =< Fanuizuh,

]
)

e STERuCR T veedll § e LG wsaiE

. -

Finish],

Lay) .

SR B e

Firish).

not in

period

Hay 11 16:33 1984 sspd Fage 5

pia_prim_evenct ([], _, _). 4 defaunlt.
b

w Period type "derived"™ Zncluding day

:]\

pid (', Period_uname, Day) :-

period_type (Peticd_name, derived),
period_dcrivatlonsTPuriod_name, {P_nameDerivations]),
period_inciuding_day (P11, F_name, Day),

pid_derived (¢, P1, Dorivarions, Day).

pid_dsrived (¢, P, [], Tay).

pid_derived (P_der, E, [Psricd_namc|Derivations], Day) :-
perioa_including_day (v, Feriecd_naue, Lay),
intersccticn (¥, U, F),
pld_derived (I_der, £, Derivaticong, Day).

G

v Period type "ivent" inciuding day

73 Ab wevent which cccupics cunly oke day is treated as 4
" degenerate term of period o that it can be handled
p: unircrmly Ly cther prceccodules.

pid (P, Period_raume, LRay) -
pericd_tyge (Pericd_name, <vant),
period_detirrtion (Period_ndwe, Betinition),
pid_cvent (I, Detinivicr, Lay).

pid_event ([bay }, betaniticn, Tay) :-
kvent =.. [bLetanitacr, bay],
Cali (Event),

Fay 11 1b:33 1684 sspd Page 6
[
pii_eventc ([1, _, _). % Event did not occur on day.

l#‘
!
g
b The tollowing -derinitions deal with the e€xclusions and special
% cenditions tudat can skherten cne cf the basic types.
1)
y
% Conditions *that must Le true cf first day
o
"

) = Mq

tirst_day_conditicns_gpid([], | 1.

1itst_day_coiditions_pid (¥, P, lLeriod_nanme) -
ncr (period_tirst_day_ccenuiticns (Period_name, _)),
|

- .

tirst_day_coundatious_gid (P_td, [, Period_rame) :-
period_first_day_conditicneg (Feriod_name, Conditions),
tdc_ pid (F.rd, ¥, CoLULEICHS) »

S _pld (B e []) 5= L

tdg rid(P td, [Firet d3yi1]), [Cllosditions]) -
Fred =.. [¢, Farst_day],
call ('red),
]

Ll |
tde_pid (F_1d, {First_dayyil], Ccrditicns).

3

Full@ pPrdl J. =z =) . ¥ kny failure suppresses period
= =7 = : p
%
o LXClusive perious that SUppress ol telwmirate period early

%

Pay 11 1o:33 1994 ssp3 Page 7

sxeluded pad(l Ye £) 33— L.

cxcluded_pid (I, P, Feriod_rame) -
ncr (perioa_exclugicns (Period_name, _)),
[]

excluded_pird (IF_excl, P, Period_name) :-
period_excliusicns (Fericd_rame, Ekxclusicns),
exc_¢id (P_excl, P, kxclusicns).

exc_paid ([], [],'_) = s
ekE PId(Fy ¥ [} 2= ¥

exc_pid(F_excl, P, [F=riod_numejlkxclusicns]) z-
time_frame (P, Start, End),
peiiod_within_tine_trames_tcrwaid (Excl, Period_nawme, Start, Tnd),
truscate_pericd (P, Excd, 1runc_E),
exc_pid (I'_excl, Trunc_t', cxclusiocns).

tiuncate_g<riod(l’, [1, F) -4,

truncate_geviod({sqx1, [viY), []) 3=
S > k&,
1

truncatle_peciod ({S1¥], (94Y]), (B2 &=

s < I,
tLiuheate, pardicd (%, LEIY Ja) s

period deftiniticns may include ad hoc special
conditions tc deal with individual peculiarities

>3k ™8 >

ay 11 10233 198& sspd Paye 8

Spsiclal_conaitions_gid (v, P, Pericd_name) 3-
not (periocd_special_ccendition(Fericd_nare, _)),
1

special_conditions_ypid(P_cornd, ¢, kericd_name) :-
pericd_speciai_ccnditicen (Pericd_name, Condition),
Fred =.. [Conditicn, P_cend, T],
call (Fred) .

S

lenqgth validity ciizck
)

valid_length_pid (P_lern, b, bteriod_rame) -
up_to_min_length_gid (K1, ¥, Fcricd_name),
within_wmax_length_pia(P_Ller, F1, Pericd_name).

up_to_min_length_pid (b, b, Piricd_tame) -
not (period_win_length(bericd_rame, _)).

up_to_min_length_pid (i _ler, b, Feriod_nawe) -

" perrod_min_lengtk (Pericd_neme, Hiny,
lengih_ot_pericd{(lF, leugtn),
valid_lenyth (¥_len, ¥, lerngth, HMHin).

within_waex_lenguh_pld(k, b, Tericd_name) -
not (pericd_max_lengtu(Pericd_namé, _)).

within_max_lengtu_gid (F_len, I, Feriod_name) -
period_mex_lenyth (Pericd_nams, Max),
length_ot_peracd(f, Length),
valid_length (F_len, F, Hax, Léngth).

valid_lengtn(] }, ¥, X, Y) :-

Y = A Y4

viilid _length (b, by Wi W) 5=
X >= Y.

Fay 11 Ye:34 1986 s=pb Fage 1

e B KK U A AR AR A AN AR A S RN AR A AR R AN RER TR A DR R KK 5 K

Search tor a pericd withln o €pecific time trame
Search forvaras.

N+ DL BC 26 v q

o K R R A KO Y Rk KRR VAL A DL AN RRATT AN RERRK A AR S ke NN E
period_within_time_frame_fcerward (F, Pericd_name, T_start, T_end) z-
ccustruct_pericd_frew_liwits(Frame, T_start, 1_end),

~aEE M1 Naemsnad mawme M ceawmdb_ . . T smAN ——

pEEE T Je _p € EXart, T ol
T_start > i_end, % Solution is [}J when none tound
3
ptte (P, 2Pericd_name, T_start, T_end) z-
period_including_day (1, Pericd_name, TI_start),
ptitr_next (¢, P11, PFellcu_name, T_start, ¥ _end).

% cobtinuc gearch it last clause did nct find a solution 4%
pti1i_next (P, [], Pericd_name, 1_start, T_end) :-

1,

St A I ostart+1;

ptri (F, Eericd_rame, 5, 7_und).

4 ¢ject a scluticn %
ptit_next (P, P, _, _s _)o

¥ search toL next sclutica %
ptrt_next (B, Q, Fericd_name, _, t_ond) -

end_list (¢, ¥nd),
I _start g Yodel,

May 11 1To:34 1984 sspb Paqe 2

pttf (P, Pericd_pnamc, T_start, T_end).

Search tor a perioa ¢t general definition within a specitic time trame.
Search backwards.

B oe

e

period_within_time_frame_backward (P, Period_name, T_start, T_cnd) :-
cecustruct_pericu_trvom_liwits (brame, 1T_start, 1_end),
ptth (P1, Perica_nawe, 9_start, T_end),
intersection (1, Franme, D).

peBL il Jo .o € Stare, T) 2-
T stapt > I Jrik, # Sclution 1s [] when none found

)
Y

prtb(l, Rericd nrame, 1 _grarct; T end) o=
period_including_day (¢#1, rcricd_name, T_end),
pttu_siext{t, k1, Peipiod_rnawe, T_start, T_end).

% continue fed.ch if last clause did not tird a solution ¥
pefn_nexe (B, { 1, Peraed_rawe, ¥ _start, T_end) 2=

kAl T_end=il,

ptrb (P, Pericd_name, T_start,).

% eject a solutien %

[tIL_.n&':Xt ‘p' P’ _r)o

% sealch toil next solutaicn i

ptto_next (P, [SIv], Period_nawe, Y_start, _) -
: T_end is 5-1,
ptth (P, Pericd_name, T_start, T_crd).

=2 s

Accumulate ali the periods of gencral defird t2on within a specifac

May 11 16134 1984 ssp4 Page 4

time frame into a single concatenated period,
Urdered in fcrward ordern,

BE B ¥

&ll_periods_within_tine_trawe_toirward (E, Pericd_name, T_start, T_end) :-
' censtruct_perica_trom_limits {Frame, T_start, 7_end),

aptrf (B1, [], PFeriod_name, T_start, T_end),

intersecuvion (1, Frame, F).

apLtt(p, P, _, T_start, 1_cnd) :z-
T_start > T_e=nd, ’ % Terminate the search
]

aptff(all, P11, Period_name, T_start, ‘1_end) :-
period_includinygy_day (F2, Fericd_name, T_start),
append (1, 2, P3),
apttf_next (All, P3, Pericd_name, T_start, T_end).

% search for next scluticn %
aptff_next(all, {], Period_nawe, T_start, T_end) z-

4

O A

5 1is T_start+1,

aptif (Ali, [}, Pceriod_nawe, S, T_end).

apttf _nexc (P, Q, Feriod_name, 5, T_end) :-
Sl avs 1S,
end_list (¢, tnd),
52 15 Fnd+1,
max (1, 2, 1_szrart),
apttf (P, ¢, Pcriod_nawe, T_start, T_end).

May 17 162306 1984 ssp5 Page 1

B AR R A AR A b A R o oK A %ok o sk ook ok ok ok koK sk o % ok ok o ok A o o ke ok 3Ol oK R AR ok ok ok ok

ra
b3 The rollowing section ccntains wiscellanccus
. grocedures that can perform useful operaticns on
¥ time periods and days.
u/
m
oo A ow ok Al g ok o o e s 6 4 o o e A o e 5K 3R ok K8 o o oK oK oK Rk ook o ook o 8¢ ok ok ok Rk %
%
yA Generate days rorward/tackward from a reference
o
VA

day_torvward (S, S).

day_torward (Day, Starvt) :-
day_rcrward (L, start),
Lay 1is Db+1,

dny_ backward (F, I).
day_backward (Day, ¥Finish) :z-

day_backward (L, Finish),
Day is b-1.

y
% tenerate days forward/backward within a period
.

day_in_period_forward (s, 5, F) -
s =< TF.

day_in_period_torward(fay, Start, Finish) :-
Start < Finish,
S s Stary +1,
day_in_periocd_torvara(bPay, S, kinish).

wd_ TaneRWerli(F, Sy R) &=
&

7

May 11 l0:3b 1984 ss15 Paye 2

day_in_period_backward (D1y, Start, Finish) :-
Start < finish,
F is Finish-1,
day_in_pericd_hackward (Lay, Start, F).

u/':
5 Pick ct1 tirst and ldst elements of list

“w

r
time_trawme ({ start{|t), Starc, Finish) :-
end_list ((StarcT), Finish).

end_list ([X], X).

end_lisc({_1Y], 2) s~
end_list (Y, 2).

%
@ Ceoustruct period as a list from kucwn start and length/end
3
coLstruct_periocd_krown_length([], S, 1) 1= ¢,
coits truct_period_kueve_ length ([StartyT]), Start, Length) :-

$ is Stavt+i,

b is Lengtn-1,

censtruct_pericd_known_length (T, S, M).

consTROGE. periied. fron ddnlits (1.5], Sa 8) 3= 4

coLkgtruct_period_trowm_limits ([Starv|T], Start, Finish) :-
8 I8 Stdart+1,

censtruct_pericd_trowm_limiis (T, 3, Finish).

.k-

~

Hay 11 1b:3b 1984 sspS Page 2

% interzccticn of crdered lists (periods)

-+ [D

intersection ([],
interwection{_, [1, [D).

Jiiverseceion ([XTI)z L X121 XIS I} &
intevsection (Y, 4, 5).

SntarsecEron (XY)y, [EW), &) =7
X < P,
intarsection (Y, {PJ0], 2).

irntérsection ([8{1Y], {FiQ]), 2) -
X > P,
irterscetion ([XY], @, 2).

5

% list (pericd) append

% : :

append([), L, L).

append ([XIL1], L2, {X113]) =-
agpend (L1, Lz, 1:).

% Length of period (not number cf elements in
% but distance between ends).
Ji

length_ot_pericd({ J, v) - L.

length_of_period (P, L) ==
time_frawe (¥, &, E),
L ke B2

iist,

May 11 1633b 1984 =spd Vaye U

Number ot days ain pericd

TE WT a8

rumber_ot_days_in_gpcriod([], 0).

runkcr_of_days_in_pericd ([X|Y], N) -

number_of_days_in_pcriod (Y, M),
N is M+l
4
p gap_kbetween_perioas
%
gap_uﬁtweeh_period:(P1 [B P2]), &) &-

'
end_list (P11, 8),
G is L-5-1.

% . maximua Oof two Lumbks=rs

maxdXy Yo X) &=

X 2= Y
NaX X, Y, Y) ==
P

fiewber or poericd

in_period((Pi_J, P).

it peracId ([AR]s B) 3=

(numker of elements in list)

May 11 1v:36 1984 ss(ES Page 5
in_period (P, L) .
% Positicn ot bLay in periced

position_in_period ([First|xest), Lay, _) -
Day < Firse,
LIPSl 1 1 (8
posditioe in_ peried ({ll), Fy, _) &=

U
tail.

position_in_period tf vay 1%], tay, 1).

positicn_in_peried ({ #y1f), lDay, ¥) :i-
pesition_in_geriod (7, Lay, M),
N i.‘3 f‘l+1.-

%
* Days ot weck
[0 .
%
/ Thig 1¢ a simplistic rmplementation that assumes a
% leterance sunday nas been entered with propbiem data.
k
1ot _sunday {2). $ correct t1or 14€3 which is used tor the examplas.

supnday (Day) :-
retr _sunday (S),
0 is (Day-35) wcd 7.

monday (Day) ==
ref _sunday (b),
1 i35 (Day-8) wsosd 7.

May 11 16:36 1984 sS85 Page 6

tucsday (Bay) -
ret_sunday (S),
2 i3 (Day-5) mod 7.

wedricsday (Day) -
ref_sunday (3),
3 15 (Day-S8) wod 7.

thursday (Lay) =-
rer_sunday (8),
4 is (Bay-3s) mod 7.

friday(Lay) :-
ret _sunday {S),

S is (Lay-8) mcd 7.

saturday (Cay) -
ret_sunday (S),
6 1is (Day-s) mcd 7.

bay 11 lbzd2 1yb4 priuw Page 1

o 8 A R N RN A R R K R ¢ oK o oo o ik 3 o ool g o ok e o ok R0k ook e N

Listed here are «ll the bLottcem level gcals that
canh only be satistied hy exteinal data.

ST SE N == 2 N

A R RIS R RS SRS RS E L R RS L EEEEE R RS RS R

actual_workiny_day ().
actual_werking_days_are_agread,

aye (Late, Aye).

ayrecu_yualitying_aay (L) .

contract_poriacd(start, Finisb) ¢
contiactual_remuneration_is_multiple_month_entitlement (M, Salary).
coitractual_remuneration_is_nmultiple_menth_entitlement (M, Salary).
cohtraciual_remuneration_is_weekly entitlement (8) .
cotitracrvual_werking_day (D) .

conrtiraciual_working_aays_are_agrecd,

day_ot_sickuness (bay) .

euwployae_nas_iaentifiarle_normal_pay_days.

aémployel _wxeiclses_rigut_te_withhold_payment_fcecr_tailure_to_notify(Day).
expeCled_continement (bare) .

gulilal _woTrKinyg_days_1in_week (d2ek, “work_days).

legal_custedy (Start, ¥nd).

notual_pay_uay (D).

noriticaticn_ct_sickress_yiven(Lay).
obligatory_qyualityinyg_day_of_ week (D).

pay_hiutory (Pay_day, Sum, Start_pay_peiloed, dnd_pay_period).
qualiryilug_days_are_ayreaed,

stats_Lkenefit(Start_period, hnd_peirod).

sutday (d) .

tay 11 13:49 1984 casel Fage 1

¥
% CASE HISTCEY 1
%

age (0, 27).

courract_gperiod (¢, 365).

qualityingy_days_are_ayleed.

gqualifying_day (i) -
mcnday (D)
tuesday (L) ;
wednesday (B)
thursday (L)
friday (D).

cmployes_has_identifiavle_ncimal _pay_days.

normal_pay_day(l) z-
thursday (L) .

pay_history (L, 158, D1,
thursday (L),
D1 is b - 16,
U2 39S B b

day_cft_sickness (D) :-
b >= 31¢G,
D =< 3i17.

notification_of_sickness_given (D)

D >= 312,
B =< 317.

¥

O contract dates

dils &

stated

&myloyat_cxercisns_llgut_y@_wirhhu]d_paymanr_tcr_failuLa_co_notify(s

May 11 Tes11 1984 cassi.doc Page 1

it

7 CRSL HIS1ORT 1

P4

% System respons: to problem gueries
"

7- weakly_ rate_of_ssp (310, Weckly_rate).

Wez:kly_rate = 37 ‘

?7- period_within_time_tfram:_tcrward{ssPeriod, ssp_rperiod,
ssPericd = {315

2= dally_gene_of_ sSp (310, Daily rate) .

Daily _rate = 7.30949¢4

I~ £Ep_Hue ih pasracd (318, J30; 55Peried, SS5RPaAY)s

YsPeriod = [315]
SEPay = T.35329%94

310,

3206) .

ftay 11 11:14 1984 case? Page 1

W
% CASE HISTORY 2
%

“age (0, 42).
con'sEact [erdiod (0, 3u5)
day_of_sickness (D) -

B 3= 204,

D =< 231.

nuc3fication of sickness givean(l) 3=
day_cf_sickrness (D).

srats_ban=1it (&, 14806).

may 11 1e:12 1964 casel.doc Pays 1

%
% ErSE NESTOwY 2

yi

% Systewm respounse to proklem gueries
A

?- period_within_time_frame_fcrward (5SFeriad, ssp_gperiod,
220, 240).

Sskevicd = |)
?- poariod_within_time _trame_trcrward (PIW, piw, 220, 240).
PIV = | 224,225,226,227,228,229,239,;231)

H

FET = []

?- peliod_within_time_irawmc_terwald (X6T, entitlement, 220,

2Ly .

May 11 13:50 1984 cased Fage 1

53 N

CASL HISTOL'Y 3

P

aqe (0, 27).
coutract_period (C, 363).

actual _working_days_alc_agreed.
actual_working_day (I') :-
wednesday (L) ;
thursday (D) ;
rriday (D) .

pay_histcyy (b, 47, L1, b) -
ucrmal_pay_day (D),
D1 is D-4.

employee_has_identitlalile_normal_pey_days.

normal_pay_day (D) -
triday (D).

contractual_iemunelation_is_we=kly entitlement (47.2).

day_ot_sickuess (B) -
L >= 120,
L =< 132,

novification_cf_sicknuss_given (D) -
E)'-': 1:/.«C’
I =< 132,

fay 11 tezls 1984 cased.doc Page 1

i
pA CASE HISTUORY 3

4

* System respense to proklem queries
w

s

?- all_periods_within_time_frame_tcrward (Cualitying_days,
qualifying_day, 120, 135).

Qe LI VLG, days = [N34, 725,126,731, 7132;,733)

?2- nnmber_of_gquelitfying_days_in_wewk (120, N).
Moo= 3

?- weekly rate_of_ssp (1206, Weckly ratc).,

keohly _rate = 31

?~ daily_rate_ot_ssp(lelb, Daily_rate).

LFatly rate = 10.33332¢

7~ nup_dus_an_period {10, 135, SSFericd, s5SPay).

SSbPericd = [131,132]
S5Fay = 2U.6b6bb26

ray 11 13:51 1584 caseld Page 1

=

C25E HisTGLY 4

b S

aye {164, €5).
contract_fpericd (G, 3bv).
yualifying_days_aCe_aylead.

qualitying_day (D) :-
monday (D) ;
tuesday (I')
wednesday (D)
thursday (L) 5
triday {D).

enployee_has_identitiable_unormal_pay_days.

rornal_pay_day (D) :-
friday ().

cottractual_remuneraticn_is_weekly_entitlement (125).

) . % Fcnus payment

pay_nistory (138, 25¢, _,

pay_histcry (b, 1z5, L1, Iy :-
ncimal_pay_day (L),
b1 is L-4,

déy_ot-sickness(b) =
L >= 155,
D =< 158.

day_of_sickness (b) -
L >= 1ee,

Fay 11 13:51 1uel cascl Tage 2

L =< 168,

day_of_sickness (L) :-
D >= 171,
L =< 180C.

notitication_of_gickness_given (D) -
day_cf_sickuezss (D).

MBay 11T 1615 1988 cascel.odoc Faye 1

o7

7")
% CASE LISTCrY 4

%

k System response te prcehlem gueries
0

1

?2- period_within_time_freme_fciward (Sickuess,
sickness, 150, 180),

[155,156,157,158] y
[166,167,168 vy

{171,172 173, T, v75,176, 177, 178,179,160]
[]

S1ckness
Hickness
Sickness

Sickinuss =

o

?- period_within_time_frame_fcrwalrd (5Skeriod,
sgp_period, 150, 180).

subPericd = [172,173,174,172,17¢8,179,18C]
?- ssp_due_in_period (150, 180, 5LSPericd, 35Pay).

stpericd = {172,173,174,175,178,179,180)
S$skay = 51.799561

?- normal_weeckly_earninas (172, Weekly_earnings).

‘L
o

18

Heekly_earnings = b6,
7~ weekly _rate_ol_ssp (172, Weekly rate).
Weckly_rate = 37

7~ dally_rate_of_ssp(l1i2, Daily_rare).

Paily_rate = 7,39949%y

Y

May 11 16:15 1984 caselt,doc Fayc 2

? sup_due_in_peried (171, 175, sSsberiod, SSPay).

Sabericd = [172,173, 174,175]
SSPay = 29.599854
yex

ANNEZX

Appendix F

Examples of operation of

SSP

I. This appendix gives 3 short exam-
ples and one longer one of spells of
sickness for which action has to be taken
under the SSP scheme.

If you want to check whether you have
understood the operation of the SSP
scheme correctly, you can look at these
examples and work out the answers to
the questions they ask.

The earnings levels and rates of SSP
used are the ones given in this guide, not
the ones which come into effect on 6
April 1983.

2. Example 1

A male employee aged 27 works 5 days
a week and his agrced qualifying days
arec Monday to Friday inclusive. Your
rules about notifying sick absence are
that employecs must telephonc on the
first qualifying day of sick absence.

He has not been sick in the past year and
there are no unusual circumstances such
as a stoppage of work.

You pay him full net pay under your
own sick pay scheme for up to 4 weeks
of sick absence each year, from the first
day of sickness.

He carns a regular gross wage of £150 a
week, payable on Thursdays.

He does not turn up for work on
Monday 7 November 1983 and on
Tucsday 8 November he telephones to
say he is il -

He rewurns to work on Monday 14
November and completes a self-certifi
cate saying he was sick from Sunday 6
November to Sunday 13 November

inclusive. He has no good reason for not
telephoning you on Monday 7 Nov-
ember, but you have no reason to doubt
that he was sick.

Questions

What is the appropriate weekly rate of
ssp?

What is the appropriate daily rate of
SSP?

What can you do about the late noti-
fication? '

What SSP is due?

What do rou have to pay?

Answers

Rate of SSP

The payments made to the employee
over the period 9 September to 3
November average well over £60 a week,
so the standard rate of SSP---£37 a
week-—is payable.

The daily rate is the weekly rate divided
by the number of qualifying days in the
week. In this case, £37 + 5 = £7.40 per
day.

Late notification

Notification was one qualifying day late
with no good reason, so if you wish you
can withhold payment of SSP for one
day.

SSP due

The first 1 qualifying days, 7, 8 and 9
November, are waiting days for which
SSP is not payable.

If you have decided to withhold pay-
ment of onc day’s SSP as a penalty for
late notification of sick absence, you can

53

withhold payment for Thursday 10
November. This would leave SSP only
being payable for Friday 11 November
and a total of £7.40 SSP would be due.

If you decided nof to withhold any SSP,
despite the late notification, SSP would
be payable for both Thursday 10 Nov-
ember and Friday 11 November, a total
of £14.80 SSP.

What do you have to pay?

If you are already paying this employee
£150 in respect of these 5 days of
absence under your own sick pay
scheme, this comes to £30 a day, well in
excess of your SSP liability for each
payable day. You need pay no more
than this. Your SSP liability has been
met by your own sick payments, but you
can, of course, get back the gross
amount of SSP due.

3. Example 2

A female employee aged 42 is sick for a
week. Only 6 weeks earlier she had been
off sick and at that time she was
claiming State invalidity benefit and was
not receiving SSP.

She states on a self-certificate that her
first day of sickness was 10 August
1983. You hold a letter from the DHSS
stating that spells of sickness starting on
or before 23 August 1983 should result
in claims for State benefit rather than

SSP.

Questions

What action, if any, should you take
under the SSP scheme? When should

you take action?

Answers

The sickness lasted more than 3 days, so
a PIW has been formed: but this
employee is excluded from SSP.

54

You should send or give her an ex-
clusion form SSP 1(E) within 7 days of
knowing she had been sick for at least 4

days.

You should record the sickness absence,
the fact that the employee was excluded
from SSP, and the reason for the
exclusion.

4. Example 3

A female employce, aged 27, works for
you in the mornings only, each Wednes-
day. Thursday and Friday. You have not
agreed any qualifying days with her, but
she is aware of your rules about noti-
fication of sickness which say that
employees should telephone you on the
first qualifying day of sick absence.

She does not come in to work on
Wednesday 4 May 1983 but telephones
on the same day to say she is ill. It is her
first sick absence for over a year. She is
ot entitled to any occupational sick pay
from you. On Monday 9 May you
receive a self-certificate form stating that
she has been incapable of work since
Saturday 30 April, together with a
doctor’s statement dated 7 May which
states that she will be fit to return to
work on Friday 13 May. She does return
to work on that day.

There is no reason to doubt her incap-
acity, and no reason to suspect that she
might be pregnant.

Her wages over the 8 weeks before she
fell sick have been a regular £47.50 a
week gross, payable on Fridays.

Questions

Which days are qualifying days?

How many qualifying daysin a week?
What is the appropriate weekly rate of
Ssp?

What is the appropriate daily rate of
SSP?

What payment of SSP should be made?

Answers

Qualifying days

In the absence of an agrecment as to
gualifying days. they are those days
which you and your employee agree
would normally have been worked. In
this case the qualifying days are
Wednesday, Thursday and Friday of
each week.

There are 3 qualifying days in each
week.

Weekly rate of SSP

All payments made in the period 5
March to 29 April should be added
together and divided by 8. The result in
this case is average weekly earnings of
£47.50. Thus the appropriate weekly
rate of SSP is £31 (middle rate).

Daily rate of SSP

The daily rate is the weekly rate divided
by the number of qualifying days in the
week.

£31 +3=£10.3333 aday.

SSP payable

The spell of sickness included 5 quali-
fying days. The first 3 are waiting days
and SSP is payable only for 11 and 12
May.

The SSP payable is § of £31 which =
£20.6667. This is rounded up to the next

whole penny to give a gross payment of
£20.67 SSP.

5. Example 4

A long-serving male employee aged 64
goes sick. His agreed qualifying days are
Monday to Friday inclusive each week.
He has had no previous sick absence for
3 months,

Your rules about notification of sick
abscnce are that employees should tele-
phone you on the first qualifying day of
sick absence.

He telephones on Monday 6 June 1983
to say he is not well. and will be away
for a few days. He returns to work on
Wednesday 8 June, when he completes a
self-certificate saying he had been ill
from Saturday 4 June to Tuesday 7 June
inclusive. There is no reason to doubt
this statement.

Monday of the next week. 13 June, is his
65th birthday. He is away sick on the
Wednesday, Thursday and Friday of
that week (he telephones on the Wednes-
day to report his absence). He posts to
you a self-certificate stating that he was
sick for these 3 days only, and was nor
incapable of work on Saturday 18 June
or Sunday 19 June.

However, he does not return to work on
Monday 20 June. Evidently he has
become seriously ill. His daughter tele-
phones on Wednesday 22 June to say
that he was taken to hospital on Monday
and you eventually receive a hospital
certificate (form Med 10) which con-
firms this.

He returns to work on 20 September
1983.

There are no unusual circumstances
such as strikes at his place of work
during his sickness.

He is normally paid weekly on Friday
for the week up to and including that
Friday. On each of the 8 pay days up to
and including Friday 3 June he received
£125.00 gross. On Wednesday 18 May
he received a bonus payment of £250.

Questions

1. There are 3 spells of sickness. What
SSP action do you take in respect of
each one?

2. What are the employee’s average
weekly earnings for SSP purposes?

3. What are the appropriate weekly
and daily rates of SSP?

55

4. Assuming that you wish to pay any
SSP due on a weekly basis, how much
SSP would be due on each Friday while
the sickness lasts?

5. When should a transfer form be sent
to the employee?

Answers

1 First spell
The employee was sick from 4—7 June
inclusive. This is 4 days, so a PIW has
been formed.

The employee is not excluded from SSP.

There are 2 qualifying days in the PIW,
which will be waiting days.

No SSP is payable in respect of this spell
and, having noted your records, there is
no further action you need to take.

Second spel!

The employee was sick from 15—17 June
inclusive. This is less than 4 consecutive
days. A PIW has not been formed and
you should take no action at all under
the SSP scheme.

Third spell

The employee was sick from 20 June to
19 September, so a PIW has been
formed.

This PIW [links with the first PIW.
There must be 14 or fewer days between
2 PIWs to establish a link. From 8 June
to 19 June (inclusive) is 12 days, so the
2 PIWs are linked. (The second spell,
which did not form a PIW, is ignored).

So the 2 PIWs count as one.

The employee reached pension age on
13 June and if the 3rd spell had not
linked with an earlier spell, he would
have been excluded from SSP for this

56

reason. However, the first day of sick-
ness in the series of linked PIWs was 4
June, before he reached pension age. So
he is not excluded from SSP.

You were notified late in respect of 2
qualifying days at the beginning of the
3rd spell of sickness, but as the employee
had been taken into hospital there was
a good reason for the delay and no
penalty is imposed.

Two waiting days were served in the first
linked PIW. One more waiting day
remains to be served, so SSP is due from
the second qualifying day of the 3rd
spell of sickness; ie from. Tuesday 21
June.

2. The employee’s average weekly
earnings are calculated by adding
together his gross earnings over the
period 9 April to 3 June inclusive. The
bonus received on 18 May must be
included. Thus(8 x £125 + £250) - 8 =
£156.25.

3. The weekly rate of SSP is therefore
£37. The daily rate is the weekly rate
divided by the number of qualifying days
in the week. £37 + 5 = £7.40 per day.

4. On Friday 24 June, 4 days’ SSP are
due. 4 days at £7.40 = £29.60.

A full week's SSP, £37, is due on each
of the next 7 Fridays: I, 8, 15, 22 and
29 July and 5 and 12 August.

A single day’'s SSP, £7.40 in respect of
Monday 15 August, is due on Friday
19 August.

5. You should issue a transfer form on
any convenient day between Tuesday 2
August and Tuesday 9 August; ie
between the day on which there are 2
weeks’ more SSP due, and the day on
which one more week of SSP is due.

