
---
SCIENCE AND ENGINEERING RESEARCH COUNCIL
RUTIIERFORD APPLETON LABORATORY

INFORMATICS DIVISION

SOFrW ARE ENGINEERING GROUP NOTE 116

Dimensional Design Issued by
R.W.Witty and D.R.Gibson

A Layout Algorithm for the Labelled Cuboid Model
14th April 1986

Draft 2

DISTRIBUTION: R W Witty
DR Gibson
M Bertran-Salvans
TPovey,DEC
CEvans,DEC
R&DIDDIDEC me

KEYWORDS: SEGN 116Dimensional Design

History
1 TreeMeta description designed by Rob Witty, January 1986.
2 Major change to include explanatory diagrams, tables of variable name. derivation, with some

reworking of the original draft to reflect comments made by Rob Witty.



1. Introduction

This note is intended to document some ideas which arose during the course of technical meetings while
drawing up the requirements specifications for the Dimensional Design project The Requirements Specifi­
cation may be found in SEG Note 111; several earlier drafts of the document are also available as SEG
Notes.

2. The Layout of a Dimensional Design

A Dimensional Design may be represented as a tree such that each node in the tree has a number of
branches; each subtree being a Dimensional Design in itself. Drawing the tree is straightforward if the
Dimensional Design is limited to being a unary or binary tree, and simple rules about the placing of sub­
trees are enforced. For example, the first class of subtree may be drawn vertically down the page, and the
second horizontally across the page. The representation of a ternary tree means drawing the third class of
subtree into a further dimension. On a flat piece of paper or display screen there is clearly a problem in
projecting a three dimensional object in only two dimensions; this difficulty can be overcome by using the
diagonal direction to represent the third class of subtree.

node

-.

Figure 1: diagram showing how a ternary tree may be mapped onto a flat display surface, by
projecting the third dimension as a diagonal.

A Dimensional Design need not be limited to having three subtrees, and in fact, there is no reason why a
Dimensional Design should not have an arbitrary number of subtrees! This creates problems when
attempting to draw the tree, unless some strategy is adopted which reduces the complex nature of an n-ary
tree into something more manageable.

\...._3. The Cuboid Model

In the Cuboid Model, a node which has more than three subtrees is broken down into a node having a
series of groups of subtrees. Each of these groups contains three or less subtress. In order to draw the tree,
the node is drawn, followed by the fust group of three subtrees, using the vertical, horizontal and diagonal
directions to represent each class of subtree. A box, or cuboid, is drawn so that it encloses the node and
subtrees, and the next group of three subtrees is drawn around this cuboid, and so on. All of the branches
are logically connected to the root node, although when drawn it may appear as though a subtree is con­
nected to a cuboid rather than the node itself. A node which consists of several cuboids may be thought of
as a stack of pieces of paper, where the size of the sheet of paper increases towards the bottom of the stack.
Logically, each piece of paper shows the root node, but this is only visible on the uppermost sheet The
length of the lines connecting the logical node to each group of subtrees also increases towards the bottom
of the stack, so that the subtrees of each level project out from under the piece of paper above.

14thApril 1986

."



-2-

Figure 2 diagram showing how a node with six subtrees may be drawn using the cuboid
model. More subtrees could be handled by adding more cuboids.

In order to maintain uniformity throughout the model, the contents of each node of a Dimensional Design
may also be thought of as Dimensional Designs. This reduces the complexity of having to deal with the
Dimensional Design as a whole. The contents of the nodes are treated in exactly the same way as the rest
of the model, which would not be the case if the contents of a node were to be regarded as a string of text
for example.

4. The Labelled Cuboid Model

During the course of the technical discussions, it was decided that it may be useful to associate a label with
a cuboid, to provide a means of identifying it, or explaining how it fitted into the Dimensional Design. In
order to allow a flexible system of labels, it was decided that a label could exist on any of L'1efour sides of
the cuboid. This idea soon extended to providing four possible labels for a cuboid, one on each side. To
maintain uniformity once again, each label is also a Dimensional Design, and is attached to the root node of
the cuboid. This means that a node may have seven, rather than just three, subtrees on each level of the
stack, ie. within each cuboid.

label

L,__la_b_el..._Jt... : .. -r ~ie~ ..·L...t_la_be_l..._J
label

Figure 3: diagram illustrating that a cuboid with four labels contains seven and not three sub­
trees.

The drawing algorithm is intended to be as simple as possible. The basic scheme involves drawing the top
label of the cuboid, arid then the left labe1. The contents of the cuboid are then drawn, followed by the
right and bottom labels. Since the model was chosen to be uniform, and each of the labels and the contents
are themselves Dimensional Designs, it is possible to draw these by treating each as a new cuboid and
recursing down the inner structures.
The algorithm is kept as general as possible, in order to leave scope for investigating various layout
schemes, by parameterising as many parts of the drawing process as possible. For example, the positions
of the labels relative to the root may be changed by providing a different set of parameters. These parame­
ters will be explained in more detail later.

14th April 1986

. ..



-
- 3 -

5. Investigation of the Model

In order to test the feasability of such a model, before considering it seriously in any higher level design
stages, a means of testing it was required. A simple data format, with a regular syntax, was produced so
that Designs which exhibited the features of this model could be constructed. In order to minimise time
spent on building test systems, it was decided to make use of existing software.

5.1. The Use of TreeMeta

The syntax of the data format was described using BNF style rules. TreeMeta is a powerful compiler­
compiler system which takes user-provided rules and produces a Pascal program which can then be com­
piled into a translator. This translator takes the raw input data, and transforms it according to the BNF rule
set which the user supplied. As the data is processed by the translator, a tree is built in memory, and at
suitable points, this tree can be traversed in order to produce the transformed style of data.
The translator which was produced takes the linear data format and builds a tree structure in memory which
represents the Dimensional Design. Once the whole Design has been built up, the tree is processed accord­
ing to the rules. (see later), and a series of simple output primitives are produced which show how the
Design may be drawn. These primitives are of the form

"--- DrawCharacter( character, box)
DrawRectangle( box )
DrawVector( start point, end point)
DrawEnum( box)
DrawInduction( box)
DrawConstructor( box )
DrawConditional( box )

where character represents an ascii character enclosed in single quotes, box represents the set of four
values for the top, left, bottom and right edges of the enclosing box, and point gives the x and y coordinates
ofa point
In order to display the Dimensional Design in some form - it is particularly tedious to have to draw one by
hand from the data - a Pascal program was written which draws the Design on a Perq screen by obeying the
output primitives from the translator.

5.2. Glossary of Parameters and Variables

'---,,~ large number of variables and parameters are used within the TreeMeta rules for processing the simple
data format So that the rules make some sense, they need some explanation. There is method in the narn­
ing scheme, even though it may look awkward. Where a variable name begins with three upper case char­
acters, the first character denotes which part of an object the variable applies to, and the next two charac­
ters denote the object itself. Any variable which contains the word gap refers to a distance between two
objects, and any which contains the word len refers to the length of an arc connecting two objects. The
layout of the four labelled cuboid model is shown in figure 4, the next level of structure, i.e. the intemals of
the contents box, shown in figure 5. Tables I and 2 show how the variable names are derived.
The following variables are used as parametric constants within the translator, and are initialised using the
input data:
CHHT and CHWD are the height and width of a single character within theDimensional Design;
UTgap is the horizontal distance between the left hand side of the cuboid and the left hand side of the top
label;
Tl.Lgap is the vertical distance between the bottom of the top label and the top of the left label;

14th April 1986

, .•



-
- 4-

TCB,LCB TLT,LLT
LLTgap Top Label

BLT,RLT...... ....................
trCNgapTLLgap

.............. TCN,LCN .............
TLL,LLL TLR.LLR

Left LCNgap LLRgap Right
Label Label

Contents

BLL,RLL BLR,RLR

BCN,RCNtnBgap
TLB,LLB

Bottom Label

BLB,RLB BCB,RCB

Figure 4: diagram showing the layout of a four labelled cuboid, and some of the parameters
used by this particular drawing algorithm.

caar = CHaracter HeighT
CHWD = CHaracter WiDth
LLTgap = Left to Label Top gap
TLLgap = Top to Label Left gap
TCNgap = Top to CoNter.ts ~ap
LCNgap = Left to CoNtents gap
TLBgap :::; Top to Label Bottom gap
LLRgap

,
Left to Label Right gap

Vlen = Vertical length
Hlen = Horizontal length
Tgap = Top gap
Lgap = Left gap
ArcV = Arc Visibility
MaxB = Maximum Bottom
MaxR = Maximum Right

Table 1: showing the derivation of some of the parameter and variable names, as used within
the translation rules.

TCNgap is the vertical distance between the bottom of the top label and the top of the contents box;
LCN gap is the horizontal distance between the right hand side of the left label and the left hand side of the
contents box;
TLBgap is the vertical distance between the bottom of the contents box and the top of the bottom label; t

j
1

14th April 1986

...



-
- 5 -

TLT = Top of Label Top I TLB = Top of CuBoid
LLT = Left of Label Top I LLB = Left of CuBoid
BLT = Bottom of Label Top I BLB = Bottom of CuBoid

RLT = Right of Label Top I RLB = Right of CuBoid

TLL = Top of Label Left I TLR = Top of CoNtents
LLL = Left of Label Left I LLR = Left of CoNtents
BLL = Bottom of Label Left I BLR = Bottom of CoNtents
RLL = Right of Label Left I RLR = Right of CoNtents
TCB = Top of Label Bottom I TRT = Top of RooT
LCB = Left of Label Bottom I LRT = Left of RooT
BCB = Bottom of Label Bottom I BRT = Bottom of RooT
RCB = Right of Label Bottom I RRT = Right of RooT
TCN = Top of Label Right I TST = Top of SubTree
LCN = Left of Label Right I LST = Left of SubTree
BCN = Bottom of Label Right I BST = Bottom of SubTree
RCN = Right of Label Right I RST = Right of SubTree

Table 2: showing the derivation of the variable names for the coordinates of labels and other
structures, as used within the translation rules.

TCN,LCN
TRT,LRT lHsTgapBI

DDRoot ..
: I

BRT,RRT ;'RsTIenK'I
S11enB, :

:
DS11enR ;MaxR

.. :.

MaxB ..
VSTgapK ·..···t~STI~~······························:

..

..
BCN,RCN

Figure J: diagram showing the parameters used when drawing the Contents of a Cuboid (see
fig 4).

lLRgap is the horizontal distance between the right hand side of the contents box and the left hand side of
the right label.
VlenR#. HlenR#. TgapR# andLgapR#, where # represents a number from 1 to 12, go to make up a table of
characteristics for drawing arcs (see later).
The rest of the variables are used within the main body of the translator. Several of the variables are used
to pass values into and out of the various phases of the translator, in the same way as parameters are passed

14th April 1986

, ..



- 6-

to and from procedures. Most of the variables have to be stacked each time the drawing method recurses
down the Design, and unstacked when that part of the tree has been completed.
T L. Band R are the values for the top, left, bottom and right limits of the current Dimensional Design in
question. The starting position of the overall design is defined by specifying the initial T and L in the
parameter sequence. However, once translation has begun, these are used as local work variables, and pro­
vide a method of parameter passing within the translator.
TCB. LCB. BeB and RCB are the top, left, bottom and right limits of the current cuboid.
TLT. ILT. BLT and RLT are the top, left, bottom and right limits of the box containing the top label.
TIL. ILL. BLL and RLL are the top, left, bottom and right limits of the box enclosing the left label.
TLR. ILR. BLR and RLR are the top, left, bottom and right limits of the box containing the right label.
TLB. LLB. BLB and RLB are the top, left, bottom and right limits of the box enclosing the bottom label.
TCN. LCN. BCN and RCN are the top, left, bottom and right limits of the contents box of the current
cuboid.

The following variables are used when drawing the structure within the contents box of the cuboid.
TRT. LRT. BRT and RRT are the limits of the box which encloses the root node of the Dimensional
Design.
Vlen. Hlen, Tgap, Lgap: are the current arc characteristics, and are drawn from the table above by giving
an index into the table. Vlen and Wen are the vertical and horizontal dimensions of an arc, ie the height
and width of an upright box enclosing the arc. Tgap and Lgap are vertical and horizontal displacements
used to determine the starting position of an arc relative to the current position.
ArcV is the flag denoting whether the current arc is visible or invisible.
TST. LST. BST and RST are the top, left, bottom and right limits of the box which encloses the subtree of
the root node currently being processed.
MaxE andMaxR give the bottom and right limits of the diagonal subtree.
M1 andM2 are used as local variables within the MAXOF3 output rule.

In Figure 5, DSTlenB and DSTlenR are shown to illustrate the diagonal subtree parameters, VSTlenB and
VSTgapR are illustrate those of the vertical subtree, and HSTgapB and HSTlenR for the horizontal subtree.
These variables are a convenience only: they are not used within the TreeMeta rule system, as they are spe­
cial cases which can be handled using Vlen, Hlen, Tgap andLgap.

DSTlenB = Diagonal SubTree length to Bottom
DSTlenR = Diagonal SubTree length to Right
VSTlenB = Vertical SubTree length to Bottom
VSTgapR = Vertical SubTree gap to Right
HSTgapB = Horizontal SubTree gap to Bottom
HSTlenR = Horizontal SubTree length to Right

Table 3: showing the derivation of other (unused) variable names, as shown in figure 5.

14th April 1986

.,



-
-7-

5.3.TheTreeMetaRulesforDataParsing

.meta DirrDes

" fir s t 0 f all, re -de fine the del imi t ers, sot hat
open tm comment changes from double quote to open brace,
close tm comment changes from double quote to close brace,
string delimiter stays a single quote,
inline code marker stays an at sign

.def delim(123,125,39,64)

" It isnt intuitive, but re-definition of default delimiters doesnt start
until the rules are actually being parsed! Beware!

" Syntax Rules"

DimDe s = Pa rams
Dd ?'Failed to match Dd '?
: ROOT[2] *

{ Delimiters are re-defined now! }

{ Parameter Input}

Params = ParamA ParamB ParamC ParamO
: PARPMS [4]

{ Ch a rac t e r s }

Par amA = 'CHHT = ' .num
,ClJIi\D=' .num

PARAMA[2]

( Labels and Cuboids}'--
ParamB = 'LLTgap=' .num

'TLLgap=' .num
,TCNg ap=' .num
'LCNgap=' .nurn
<' TLBg ap» ' .num
,LLRg ap= ' .num
: PAR.PMB[6]

{ Sub-Tree Arc Length, Direction}

ParamC = 'Vlen' 'HIen' 'Tgap' 'Lgap'
'ReI-I' .num .num .nurn .num
'Rel-2' .num .num .num .num

14th Apr i1 1986



-
- 8 -

,Re 1-3' .num .num .num .n um
,Re 1- 4 ' .m um .ji um .Dum .n um
,Re 1 - 5' .ji urn .Dum .m um .Dum
,Re 1- 6' .ji um .Dum .n um .n um
'Rel-7' .jium .m um .jium .jiurn
, Re 1 - 8 ' .m um .jium .num .num
,Re 1- 9' .Durn .num .num .n um
,Re 1- 10' .nurn .num .num .num
,Re 1- 11 ' .num .num .num .Dum
,Re 1- 12' .jium .num .num ,Dum

PARPMC[48]

ParamD 'T=' .num
'L=' .n um

PARAMD[2]

{ Linear Form of Dimensional Design}

Dd = Atom I Cuboid)
DD[ 1] ;

Atom SpecialSymbol I Ascii)
ATCM[ 1] ;

SpecialSymbol = '\S'
'#' A 'Enum' I
,*, A 'Induction' I
'0' A 'Constructor'
'7' A 'Conditional'
SPECIAL[l] ;

7'Failed to match SpecialSymbol '7

As c i i '\A' .chr
: ASCII[l]

{ Cuboid = Labels + (Root + .Subv'I'r ees) }

Cuboid = BoxBeg
'--./

LabTopp 7'Failed to match LabTopp ,7
LabLeft ?'Failed to match LabLe f t '7
Contents ?'Failed to match Con ten ts '?
LabRight ?'Failed to match LabRi gh t '?
LabBott ?'Failed to match LabBo tt '?
BoxEnd ?'Failed to match BoxEnd '?-

CUBOID[7 ]

BoxBeg = '['
( 'C' A 'Compressed' I .empty A 'Expanded' )
?'Failed to match BoxBeg '?
: CUBEXP[ 1]

BoxEnd ']'

14th Apr i 1 1986



-
- 9 -

( 'V' ~ ,Vi sible' / .empty ~ 'Invisible' )
CUBVIS [1] ·,

LabTopp ( 'T' Dd ·empty ~ ,nil' LABEL [1]

LabLeft ( 'L' Dd / ·emp t y A 'ni l' LABEL [1]

LabBo tt ( 'B' Dd / ·emp ty A ,nil ' LABEL [1]

LabRight= ( 'R' Dd / ·empty A ,nil ' ) LABEL [1]

Contents Dd
SubTrees ?'Failed to match SubTrees '?
: CCNTENTS[2]

SubTrees Attribs
ST1 ?'Failed to ma tch ST1 '?
ST2 ?'Failed to match ST2 '?
ST3 ?'Failed to match ST3 '?

SUBTREES [4]

Attribs Order
RelNum 7'Failed to match RelNum '7
ArcVis 7'Failed to match ArcVis '7
: ATfRIBS[3] ;

Order ( .'D1V2H3' /
.'D1H2V3' /
.'D1H3V2' /
.'D1V3H2' /
.empty A 'D1V2H3' )
ORDER [1]

Re INum ( ,1-3' , 1' A , 2' A ,3' /
, 4 - 6' '4 ' A , 5' ~ '6 ' /

x,; ' 7 - 9' , 7' - , 8' ~ , 9' /
'10-12' A , 10' - , 11 ' ~ , 12' /
.empty '1 ' A '2' A ,3' )
RELNlM[3]

ArcVi s ( 'DVIS' .jium / .empty - , 1' )=
( 'WIS·' .jium .empty - , 1' )
( 'RVIS' .uum I .empty - , 1' )

ARCVIS[3] .,

ST1 ('1' Dd I '#1' A 'nil' )
SUBTREE[l] ;

1 4 t h Ap r ill 986

...



- 10 -

ST2 = ( , 2' Dd I ' #2' A , nil' )
SUBTREE [1] ;

ST3 ' 3' Dd I '# 3' A 'n ii' )
SUBTREE [1] ;

{ End of Syntax Rules}

{ Code Production Rules}

ROOT [-,-) =>
*1 { Params }
*2 { B,R <- EntireDD(T,L) }
, S i z e 0 f DD: ' %
'Top < OUT[T) > %
'Left < OUT[L) > %
'Bottom= ' < OUT[B) > %
'Right < OUT[R) > %

PARAMS [-,-,-,-] =>
*1 *2 *3 *4

PARAMA[-,-] =>
< CHHT < - CCNY [ *)] >
< CHWD <- CONV[*2] >
.empty

?ARAMB [-,-,-,.,-,,.]=>
{ Labels}
< LLTgap <- C~~[*l] >
< TLLgap <- CONV[*2j >
< TCNgap <- C~~[*3] >
< LCNgap <- CONV[*4] >
< TLBgap <- C~~[*5] >
< LLRgap <- CONV[*6] >
.empty

PARM1C [-,-•-•~,-,-•-•-•-•-,-,-•
•.. .•. .•. - - - •.. - - •.. - -, , , . , , , , , , , ,
.,-,-,-,"',"',-,-,-,-,",-,
-,-,-,-,-,-,-,-,-,-,-,-
=>

< VI enR1
TgapRl

<- CCNV[*I]
<- CCNV[*3]

HlenRl
LgapRl

14t h Apri I 1986

<- CONV[*2]
<- CONV[ *4] >

...



-
11 -

< VI enR2 <- CCN.V[*5] HlenR2 <- coxv [ *6 ]
TgapR2 <- CCNV[ *7] LgapR2 <- CX)l'IN[*8] >

< VI enR3 <- CCNV[*9] HI enR3 <- coxv [ * 10 )
TgapR3 <- CCNV[ * 11] LgapR3 <- <Xl\"'V [ * 12 ] >

< VlenR4 <- CCNV[*13] HI e nR4 <- CONV[*14]
TgapR4 <- CCNV[*15] LgapR4 <- m'N[*16] >

< VIenR5 <- CCNV[ * 17] HlenR5 <- cosv [ * 1S ]
TgapR5 <- CCNV[*19] LgapRS <- ~"'[*20] >

< VlenR6 <- CCNV[ *21] HlenR6 <- ~"'[*22]
TgapR6 <- CCNV[ *23] LgapR6 <- ~rv[*24 ] >

< VlenR7 <- CCNV[ *25] HI enR7 <- m"rv[ *26]
TgapR7 <- CCNV[ *27] LgapR7 <- CONV[*2S] >

< VI enR8 <- CCNV[ *29] HIenR8 <- CONV[*30]
TgapR8 <- CCNV[*31] LgapRS <- CONV[*32] >

< VI enR9 <- CCNV[*33] HIenR9 <- CONV[*34]
TgapR9 <- CCNV[*35] LgapR9 <- CONV[*36] >

< VIenR10 <- CCNV[*37] HIenR10 <- ~rv[*38]
TgapR10 <- CCNV[ *39] LgapR10 <- cosv [*4 0 ] >

< VlenRl1 <- CCNV[ *41 ] HIenRll <- COl'N[*42]
TgapRll <- CCNV[ *43] LgapRl1 <- cosv [ *4 4 ] >

< VI enR12 <- CCNVt*45 ] HIenR12 <- CONV[*46]
TgapR12 <- CCNV[*47 ] LgapR12 <- CONV[*48] >

.empty

PARAMD[-,-].=>
{ Starting Point}
< T <- CONV[*l] ; L <- C~'V[*2] >
. emp ty

{ End of Parameters}

{ Draw Dimensional Design - Atom or Cuboid}

DD[ -] =>
*1

ATOM [ASCII[-]] =>
< B <- T + CHHT ; R <- L + CHWD >
'DrawCharacter('

14 t h Ap r i 1 1986

...



-
- 12 -

@39 * 1 : * 1 @39
OUTTLBR[ )

, ,

[SPECIAL('Enum')] =>
< B <- T + CHHT
'Dr awEnum(,
OUTTLBR[ ]

R <- L + CHM) >

[SPECIAL['Induction']] =>

< B <- T + CHHT ; R <- L + CHWD >
'Drawlnduction(,
OUTTLBR[ ]

[SPECIAL['Constructor']] =>
< B <- T + CHHT ; R <- L + CHWD >
'DrawConstructor{'
OUTTLBR[ ]

[SPECIAL['Conditional']] =>
< B <- T + CHHT ; R <- L + CHWD >
'DrawConditional{'
OUTTLBR[ ]

OUTTLBR [] =>
< OUT[T] >
< OUT[L] >
< OUT[B] >
< OUT[R] >

, ,,, ,
, ,,
');' %

CUBOID [CUBEXP['Compressed'],-,-,-,-,-,-] =>
{ Do not draw Contents}
< B <- T + CHHT ; R <- L + CHWD >
'DrawRectangle(,
OUTTLBR[] .

[CUBEXP['Expanded'],-,-,-,-,-,-] =>
{ Draw Contents}
STACKALL[] { to allow arithmetic to work when DD recurses }
< TCB <- T ; LCB <- L > { input params }

{ Top Label}
< TLT <- TCB ; LLT <- LCB + LLTgap >
< T <- TLT ; L <- LLT ; B <- TCB ; R <- LCB >

{ ie B, R defaults if Label is nil}
* 2 { DD or nil}
< BLT <- B ; RLT <- R >

{ Left Label }
< TLL <- BLT + TLLgap
< T <- TLL ; L <- LLL

LLL <- LCB >
B <- BLT ; R <- LCB >

14 t h Apri I 1986

...



- 13 -

* 3 { B s. R < - DD (T,L) 0 r nil }
< BLL <- B RLL <- R >

{ Contents}
< TCN <- BLT + TCNgap >
< LCN <- RLL + LCNgap >
* 4 { BCN, RCN <- Contents(TCN,LCN) }

{ Right Label}
< TLR <- TLL > { Syrmnetry withie f t 1 abel }
{ LLR = Max(RCN,RLT)+LLRgap }

< PUSH [RCN] ; PUSH[RLT]; PUSH[O] >
11AXOF3[]
< LLR <- POP[O] + LLRgap >

< T <- TLR L <- LLR >
< B <- TCB R <- LLR > { was R <- LLR - LLRgap }
* 5
< BLR <- B RLR <- R >

{ Bo tt om Label }
{ TLB = Max (BLL,BCN,BLR)+TLBgap }

< PUSH[BLL] ; PUSH [BCN] PUSH[BLR] >
MAXOF3 []
< TLB <- POP[O] + TLBgap >

< LLB <- LLT > { Symmetry with Top Label}
< T <- TLB ; L <- LLB B <- TLB ; R <- LCB >
* 6 { DD or ni I }
< BLB <- B ; RLB <- R >

{ Cuboid Overall s iz e }
< BCB <- BLB >
{ RCB <- Max (RLR,RLB) }

< PUSH [RLR] , PUSH[RLB] PUSH[O) >
MAXOF3 [)
< RCB <- POP[O) >

{ Cuboid Visibility - Draw a box, or not}
* 7

{ Return Overall Size in output params }
< T <- TCB ; L <- LCB > { restore to original value}
< B <- BCB ; R <- RCB >
UNSTACKALL[ ]

{ Label}
LABEL ['nil'] =>

.emp t y

[-] =>
*1 { B,R <- DD(T,L) }

14 t h Ap r ill 986



- 14 -

{ Cuboid Visibility}
CUBV IS [,Invis ib 1e '] =>

.empty

['Visible'] =>
'DrawRectangle( ,
< OUT[TCB] > ','
< OUT [LCB] > ','
< OUT[BCB] > ','
< OUT[RCB] > ');' %

CONTENTS[-,-] =>
{ Draw Root}
< T <- TCN ; L <- LCN >
*1 { B,R <- DD(T,L) }
< BRT <- B ; RRT <- R >
< MaxB <- BRT ; MaxR <- RRT > { Initialise Sub-Tree Extremities}

{ Draw Sub-Trees}
*2 { MaxB, MaxR := ST(TCN,LCN,BRT,RRT,MaxB,MaxR) }
< BCN <- MaxB ; RCN <- MaxR >

{ ATTRIBS(Order,ReINum,ArcVis),STl,ST2,ST3}
SUBTREES [ ATTRIBS [ORDER ['DIV2H3'] ,RELNUM[ -,-,-],ARCVIS r-. -, -]], -, -, -] =>

DST [*1:*2 :*1, *1:*3:*1, *2]
VST [*1:*2:*2, *1:*3:*2, *3]
HST [*1:*2:*3, *1:*3:*3, *4 ]

ATTRIBS [ORDER ['DIH2V3' ],RELNUM[ -,-,-],ARCVIS [-,-,-]] ,-,-,-] =>
DST[*I:*2:*1, *1:*3:*1, *2]
HST [*1:*2:*::;:,1< 1:*3:*2, ~3]
VST [*1 : *2 :*3, *1 : *3:*3, *4 ]

ATTRIBS[ORDER['DIV3H2'],RELNUM[-,-,-],ARCVIS[-,-,-]],-,-,-J =>
DST[*I:*2:*I, *1:*3:*1, *2]
HST[*I:*2:*2, *1:*3:*2, *4]
VST [*1: *2:*3, *1: *3:*3, *3]

. [ ATTRIBS [ORDER ['DIH3V2'] ,RELNUM[ -,-,-],ARCVIS r-. -, -]], -, -, -] =>
DST [*1:*2 :*1, *1:*3:*1, *2] -
VST[*I:*2:*2, *1:*3:*2, *4]
HST[*I:*2:*3, *1:*3:*3, *3]

{ Draw Diagonal Sub-Tree}
DST[-,-,-] =>

PHYS[*I]
ARCV[ *2]
*3

{ New Arc Style Params }
{ New Arc Visibility}
{ Draw Subtree }

14 t h Ap ri I 1986

...



-
- 15 -

{ Draw Vertical Sub-Tree}
VST [-,-,-] =>

PHYS[*l)
ARCV[ *2]
*3

{ Draw Horizontal Sub-Tree}
HST [ - , - , -] =>

PHYS [* 1]
ARCV[ *2]
*3

PHYS [ , 1' ] =>
\......- < VIen <- VlenRI HI en <- HI enRl

Tgap <- TgapRl Lgap <- LgapRl >
·emp ty

[,2 '] =>
< VI en <- VIenR2 HI en <- HI enR2

Tgap <- TgapR2 Lgap <- LgapR2 >
·emp ty

[ , 3 ' ] =>
< Vien <- VIenR3 HI en <- HIenR3

Tgap <- TgapR3 Lgap <- LgapR3 >
·emp ty

['4'] =>
< VI en <- VI enR4 Hien <- HI enR4

Tgap <- TgapR4 Lgap <- LgapR4 >
·emp ty

[ , 5.' ] =>
< Vien <- VI enRS Hlen <- HI enR5

Tgap <- TgapRS Lgap <- LgapR5 >
·emp ty

[,6'] =>
< Vien <- VI enR6 Hien <- HI enR6

Tgap <- TgapR6 Lgap <- LgapR6 >
·emp ty

[,7 '] =>
< VI en <- VlenR7 Hien <- HI enR7

Tgap <- TgapR7 Lgap <- LgapR7 >
·emp ty

[,S '] =>
< Vien <- VI enRS Hien <- HIenRS

Tgap <- TgapRS Lgap <- LgapRS >
·emp ty

[ , 9 ' ] =>

14 t h Ap r i I 1986



- 16 -

< VI en <- VIenR9 HI en <- HI enR9
Tgap <- TgapR9 Lgap <- LgapR9 >

.empty

[,10'] =>
< VI en <- VienRI0 HI en <- HI enRIO

Tgap <- TgapRI0 Lgap <- LgapRI0 >
.empty

[ , 11 ' ] =>
< VIen <- VI enRll HI en <- HI enRll

Tgap <- Tg apRll Lgap <- LgapRll >
.empty

[,12'] =>
< Vien <- VI enR12 HI en <- HlenR12

Tgap <- TgapR12 Lgap <- LgapR12 >
.empty

ARCV [,1'] =>
< ArcV <- 1 > { visible}
.emp ty

['0'] =>
< ArcV <- 0 > { invisible}
.empty

SUBTREE ['nil'] =>
.emp t y

[-] =>

-

{ Draw Arc to DD }
{ Draw Arc (TST,LST,BST,~ST) according to direction of arc}

SETTST[ ]
SETLST[ ]
SETBST[ ]
SETRST[ ]
DRAWVECTOR []

{ Set start of DO to end of Arc}
SETDDTST[ ]
SETDDLST[ ]

{ Draw DD }
< T <- TST
*1
< BST <- B

L <- LST >

RST <- R >

{ Overall Size of Subtree }
{ MaxB = Max(MaxB,BST)

< PUSH [MaxB]
w.xOF3 []

}
PUSH[BST]

14 t h Ap rill 986

,..

PUSH[O] >



--
- 17 -

< MaxB <- POP[O] >
{ MaxR = Max (MaxR,RST) }

< PUSH[MaxR) ; PUSH[RSTJ
MAXOF3 []
< MaxR <- POP[O] >

PUSH[O] >

{ Initial start point of Sub-Tree Arc}

SETTST[] =>
< Vlen # 0 > < TST <- BRT > / < TST <- TCN >

SETBST[) =>
< Vlen # 0 > < BST <- MaxB > / < BST <- TCN >

SETLST[] =>
< Hlen # 0 > < LST <- RRT > / < LST <- LCN >

SETRST[] =>
< Hlen # 0 > < RST <- MaxR > / < RST <- LCN >

DRAWVECTOR [] =>
< ArcV # 0 > { Visible Arc}

'DrawVector( ,
< OUT[TST + Tgap] > ','
< OUT[LST + Lgap] > ','
< OUT[BST + Tgap + Vlen] >
< OUT[RST + Lgap + Hlen] >

, ,,
');' %

/ .empty { Invisible Arc}

"'-{ Set start of Sub-Tree's DD}

SETDDTST [] =>
< Vlen # 0 > < TST <- BST + Vlen > / < TST <- TST >

SETDDLST[] =>
< Hlen # 0 > < LST <- RST + Hlen > / < LST <- LST >

MAXOF3 [] =>
< Ml < - POP [ 0 ]
MAXM12 []
< Ml <- POP [0 ]

M2 <- pop[ 0] >

M2 <- POP [0] >

14 t h Aprill 986



-
- 18 -

MAXM12 []

MAXM12 [] =>
< Ml > M2 > < PUSH [MlJ > I < PUSH [M2] >

STACKALL[ ] =>
<
PUSH [ TCB ] PUSH [ LCB ] PUSH [ BCB ] PUSH [ RCB ]
PUSH[ TLT ] PUSH [ LLT ] PUSH [ BLT ] PUSH[ RLT ]
PUSH[ TLL ] PUSH [ LLL ] PUSH [ BLL ] PUSH [ RLL ]
PUSH[ TCN ] PUSH [ LCN ] PUSH [ BCN ] PUSH [ RCN ]
PUSH [ TLB ] PUSH [ LLB ] PUSH [ BLB ] PUSH [ RLB ]
PUSH [ TLR ] PUSH [ LLR ] PUSH [ BLR ] PUSH[ RLR ]
PUSH [ TRT ] PUSH [ LRT ] PUSH [ BRT ] PUSH [ RRT ]
PUSH[ TST ] , PUSH [ LST ] PUSH [ BST ] PUSH [ RST ] ,
PUSH[ VIen ] ; PUSH [ Hien ]; PUSH [ Tgap ]; PUSH[ Lgap ];
PUSH [ ArcV ] ; PUSH [ MaxB ]; PUSH [ MaxR ]
>
.empty

UNSTACKALL[ ] =>
<
MaxR <- POP[O] MaxB <- POP [0] ArcV <- POP[O]
Lgap <- POP[O] Tgap <- POP[O] HI en <- POP[O] VIen <- POP[O]
RST <- POP[O] BST <- POP[O] LST <- POP[O] TST <- POP[O]
RRT <- POP[O] BRT <- POP [0] LRT <- POP[O] TRT <- POP[O]
RLR <- POP[O] BLR <- POP [0] LLR <- POP[O] TLR <- POP[O]
RLB <- POP[O] BLB <- POP[O] LLB <- POP[O] TLB <- POP[O]
RC'T <- POP[O] BeN <- POP[O] LCN <- POP[O] TCN <- POP[O]
RLL <- POP[O] BLL <- POP[O] LLL <- POP[O] TLL <- POP[O]
RLT <- POP[O] BLT <- POP [0] LLT <- POP[O] TLT <- POP[O]
RCB <- POP[O] BCB <- POP[O] LCB <- POP[O] TCB <- POP[O]
>
.empty

{ End of Code Production Rules}

.end

14thApril1986

...



-
- 19 -

6. Examples ofTest Data

The following is the parameter section of the various sets of test data, and is reproduced here to avoid
unnecessary duplication in the examples.

CHHT= 17
CH'M>= 13

LLTgap= 0
TLLgap= 0
TCNgap= 0
LCNgap= 0
TLBgap= 0
LLRgap= 0

VI en HI en Tgap Lgap

ReI-l 17 13 0 0
Rel-2 17 0 0 7
Re 1- 3 0 13 9 0

Re I -4 34 26 0 0
Rel-5 34 0 0 7
Rel-6 0 26 9 0

Re 1-7 51 39 0 0
Re 1- 8 51 0 0 7
Re 1- 9 0 39 9 0

Rel-l0 68 52 0 0
Re 1 - 11 89 0 0 7
Re 1- 12 0 52 9 0

T= 10
L= 10

'-- The character height and width are specific to the default font on the Perq, and correspond to the number of
pixels. These sizes were obtained independently from of the rest of this work. The rest of the parameters
are related to the character size.
Note: The diagrams that follow are sketches only; they are not intended to mirror the exact parameters
used.

14th April 1986



--
- 20-

A F-G L-M

\
B

\
C

D

I
E

H

\
I

J

I
K

Figure 6: diagram showing the simple test case of a nested cuboid.

The Dimensional Design in figure 6 can be produced from the data (parameter section omitted):

[
[ \AA 1 [ \AB 1 \AC

#2
#3

]
2 r \AD #1

2 \AE
#3

]
3 [ \AF #1

#2
3 \AG

]
V 1 [ \AH 1 \AI

#2
#3

]
2 [ \AI #1

2 \AK
#3

]
3 [ \AL #1

#2
3 \AM

J
] V

14th Apr i 1 1986



-
- 21 -

T

\
L

L IC-O-N-TI R

\ \
L L

B

\
L

Figure 7: diagram showing a cuboid with simple labels.

The Dimensional Design shown in Figure 7 can be produced using the following data (parameter section
rmitted):

[
T [ \AT 1 \AL #2 #3 ] V
L [ \AL 1 \AL #2 #3 ] V
[ \AC #1

#2
3 [ \AO #1

#2
3 [ \AN #1

#2
3 \AT

]
] # 1 #2 #3
R [ \AR 1 \AL #2 #3 ] V
B [ \AB 1 \AL #2 #3 ] V

] V

"--

14th April 1986



- 22-

A H-I-J l.K p S
-,
B -,

C -,
D

E
I
F
I
G

K

L

N

0

Q

R

Figure 8: diagram showing nested cuboids, and selection of arcs from the parameter table.

14th April 1986



-
- 23-

The Dimensional Design shown in Figure 8 can be produced using the following data, but the exact arc
dimensions depend on the parameter section (omitted, see earlier): .

[
[
[
[ \AA 1-3 1 [ \AB 1-3 1 [ \AC 1-3 1 \AD

#2
#3

]
#2
#3

]
2 [ \AE 1- 3 #1

2 [ \AF 1 - 3 #1
2 \AG
#3

]
#3

]
3 [ \AH 1- 3 #1

#2
3 [ \AI 1-3 #1

#2
3 \AJ

]
]

] V 4 - 6 1 \AK
2 \AL
3 \AM

] V 7-9 1 \AN
2 \AO
3 \AP

] V 10 - 12 1 \ AQ
2 \AR
3 \AS

] V

14th April 1986



-
Appendix A: The Drawing Program on the Perq

The Pascal source that follows provides the bulk of the drawing program on the Perq. Several areas are
Perq and PNX specific (pNX is the ICL version of UNIXt for the Perq), and in fact, this program will only
run within the Window Management System, and not on the raw display. Several types have to be
declared in order to provide the structures which the PNX system calls expect as parameters. IeL Pascal
provides an "include" mechanism: the PNX specific types are declared in the me "PNXtypes.h". The for­
mal declarations of the PNX specific system calls are held in "PNXproc.pas", as are the bodies of pro­
cedures which are used to hide the use of the system calls and types. The following are declared:

procedure getwindowsizei var w, h : integer); this routine returns the width and height of the window in
pixels. The Window Management System must be active!
procedure gettextsizet var w, h : integer); this routine returns the width and height of a character in the
default font, assuming a constant width font
procedure clearwindow; this routine clears the contents of the window.
procedure drawline( xa, ya, xb, yb : integer); this draws a line from the point given by (xa,ya) to the point
(xb.yb).
procedure drawtexti x, y : integer; s : packed array[lo..hi:integerJ of char); causes the text in s to be out­
put starting at the point (x.y).

Note: The Window Management System takes care of clipping any output to the window boundary.

t UNIX is a Trademark of Bell Laboratories.

14thApril 1986



-ii-

program draw(input, output);

con s t
MAXS 20; (* max number of characters in a string *)

type
string = packed array[l ..MAX:S] of char;

box record
Ieft, top, rig h t, bot tom integer;

end;

(* inor der t0 k eep the str uc tu res imp Ie, k eep *)
(* the PNX specific types in a seperate file *)

#include "PNXtype.h"

var
WW, wh
cw, ch

integer; (* width and height of window in pixels *)
integer; (* width and height of character in pixels *)

finished boolean;

top, left, bottom, right integer;

letter: char;

wd: string;

sq : box;

(* in order to keep the structure simple, declare the PNX *)
(* specific system calls and procedures in a seperate file*)

#include "PNXproc.yas"

(* declarations of:
procedure getwindowiize( var w, h integer);
procedure gettextsize( var w, h integer);
procedure clearwindow;
procedure drawline( xa, ya, xb, yb : integer);
procedure drawtext( x, y : integer;

s : packed array[lo ..hi: integer] of char);
* )
(* the rest of the routines and program should be PNX independant *)

procedure boxbuild( var b : box; bl, bt, br, bb : integer);
begin

b.left := bI;
b.top :"" bt;
b.right := br;
b.bottom:= bb;

end;

14 t h Ap r i 1 1986

...



-
- i i i -

procedure drawbox( b : box );
begin

drawl ine(b.left,b. top,b. right ,b. top);
d raw 1in e (b .rig h t,b .top ,b .rig h t , b .bot tom) ;
d raw I in e (b .rig h t,b .bot tom, b .1eft ,b .bot tom) ;
d raw 1 ine (b .1eft ,b .bot tom, b .1eft ,b .top) ;

end;

procedure charinbox( b : box; c : char);
var

s tmp : pac ked array [1. . l] 0 f char ;
begin

s tmp [1] := c;
drawtext{b.left+3,b.bottom-l,stmp);

end;

procedure getfourcharacters(var s string);
var

i : integer;
begin

for := 1 to MAXS do s [i] , .,

for i 1 to 4 do
begin

if eof or eoln then
begin

writeln('getfourcharacters: eof or eoln');
exit(l);

end
else
begin

read(s[i));
end;

end;
end;

procedure g~tcharsandbracket(var s string);
var

i integer;
f boolean;

begin
for i := 1 to MAXS do s[i] := , '.,

i := 1;
f := <true;

while f do
begin

if eof or eoln or (i = MAXS) then
begin

writeln('getcharsandbracket: eof or eoln or overflow');
exit(l);

end
else

14 t h Ap r i 1 1986

...



- iv -

begin
read(s[i])
if s Li l = '(' then f := false;
i

end;
i + 1;

end;
end;

procedure getcharacter(var letter char);
var

i integer;
s string;

begin
for := 1 to MAXS do s [i) := , , .,
for i := 1 to 4 do (* quote char quote comma *)
begin

if eof or eoln then
begin

writeln('getcharacter: eof or eoln');
exit(l);

end
else
begin

read(s[i));
end;

end;

if (s[l) <> "") or
(s[3] <> "") or
(s[4) <> ',') then

begin
writeln('getcharacter: missing quotes or comma');
exit(l);

e:ld;

if not (s[2) in [' '.. '~') then
begin

writeln('getcharacter: non-printable ascii');
exit(l);

. I<,
end;

letter := s[2];
end;

procedure getfourintegers(var t, 1, b, r integer);
var

integer;
n array[1 ..4] of integer;
s string;

begin
for i 1 to MAXS do s [i) := • '.

for i := 1 to 4 do

14 t h Ap r i I 1986

...



-
- v -

begin
if eof or eoln then
begin

writeln('getfourintegers: eof or eoln');
exit(l);

end;

read(n[i]);

if eof or eoln then
begin

writeln('getfourintegers: eof or eoln');
exit(l);

end;

read(s[i));
end;

if (s[l] <> ',') or
(s[2] <> ',') or
( s [ 3) <> ',') 0 r
(s[4] <> ')') then

begin
writeln('getfourintegers: missing commas or bracket');
exit(l);

end;

t n[I);
I n[2];
b := n[3];
r:=n[4];

end;

begin
getwindowsize(ww, wh);
gettextsize(cw,ch);

cw := cw + 4;
ch := ch + 4;

(* add 2 pixels either side of char *)
(* add 2 pixels above and below *)

clearwindow;

finished := false;

while not finished do
begin

getfourcharacters(wd);

(* 'Ca se' staternen t on v alue 0 f wd *)

if wd = 'Size
begin

finished := true;

, then

14 t h Ap r i 1 1986



- vi -

end
else

if wd = 'Dr aw
begin

getcharsandbracket(wd);

, then

(* Another 'Case' statement on value of wd *)

if wd = 'Character( , then
begin

getcharacter(letter);
get f 0u r i n t e ge r s ( top , I eft , bot t om, rig h t ) ;

box bu i Id ( s q , Ieft, top, rig h t , bot tom) ;
charinbox(sq, letter);

end
e Is e

if wd = 'Enum( , then
begin

get f 0u r in t e g e r s ( top , Ieft , bot t om, rig h t ) ;

box bu i Id ( s q , Ieft , top , rig h t , bot t om) ;
charinbox(sq, '#');

end
else

if wd = 'Induction( , then
begin

getfourintegers(top,left,bottom,right);

box bu i Id ( s q , Ieft , top , rig h t , bot t om) ;
charinbox(sq, '*');

end
else

if wd 'Constructor( , then
begin

getfourintegers(top,left,bottom,right);

box bu i 1d ( s q ,Ie f t , top, rig h t , bot tom) ;
charinbox(sq, '0');

end
else

if wd = 'Conditional( , then
begin

getfourintegers(top,left,bottom,right);

box bu i Id ( s q ,Ie f t , top, rig h t , bot tom) ;
char inbox( sq,'?');

end
else

14 t h Apr i I 1986



-
- v i i -

if wd = 'Rectangle( , then
begin

get f 0u r i n t e g e r s ( top , Ieft , bot t om, rig h t ) ;

box b u i Id ( s q , Ieft, top, rig h t , bot t om) ;
drawbox(sq);

end
else

i f wd = 'Ve c tor ( , then
begin

get f 0u r i n t e g e r s ( top , Ieft , bot t om, rig h t ) ;

drawline(left,top,right,bottom);
end
else

(* default action *)
begin

writeln('main loop: unknown Draw ... ');
exit(l) ;

end;

(* should really check for closing semi-colon here *)

readln;
end
e Is e

(* default action *)
begin

writeln('main loop: not Size ... or Draw ... ·);
exit(1);

end;
end;

end.

14thApril 1986


