
00
C\I~
I

~
00
I

....I«a::

J

Science and Engineering Research Council

Rutherford Appleton Laboratory
CHILTON, DIDCOT, OXON, OX11 OOX

RAL-84-128

Better Understanding through
Formal Specification

D A Duce and EVe Fielding

December 1984

-

Better Understanding through Formal Specification

D. A. Duce and E. V. C. Fielding

Rutherford Appleton Laboratory, Chilton, Didcot OXON OXII OQX

ABSTRACT

The Graphical Kernel System (GKS) is now an ISO International Standard
for computer graphics programming. One of the major innovations of the Stan­
dard is the bundled specification of aspects, a mechanism which gives the applica­
tions programmer the ability to tailor the appearance of a picture independently
on each of the workstations on which it is displayed, using the capabilities of the
workstations. GKS also incorporates the traditional method of individual specifi­
cation of aspects in which each workstation does the best it can to represent glo­
bal aspect values. In this paper a formal specification technique, the Vienna
Development Method (VDM), is used to describe aspect specification. The GKS
model of aspect specification is progressively constructed from simpler models.
Properties of these simpler models are formulated and the specifications are
proved to conform to these. The properties are then traced through the more
complex models. The paper demonstrates the applicability of formal specification
to the design of graphics software and the ability of formal techniques to catalyse
the deeper understanding of designs.
Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements
Specifications; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs - specification techniques; 1.3.4 [Computer Graph­
ics]: Graphics Utilities; 1.3.6 [Computer Graphics]: Methodology and Techniques -
languages
General Terms: Design
Additional Key Words and Phrases: Abstract data type, abstract specification,
attribute handling, bundled aspects, constructive specification, graphic data type,
Graphical Kernel System, individual aspects, structural induction

. ..

-

Better Understanding through Formal Specification

D. A. Duce and E. V. C. Fielding

Rutherford Appleton Laboratory, Chilton, Didcot OXON OXII OQX

1. Introduction
The aim of this paper is to show that the techniques of formal specification can be applied to the
design of graphics software in a useful way. It will be shown that formal specification can give a
succinct, readable and precise account of a design, and furthermore that there are techniques
which enable properties of a design to be formulated and investigated. It will also, hopefully, be
shown that this process can lead to a deeper understanding of the concepts involved, sometimes in
unexpected ways.
The example used in this paper is attribute handling in the Graphical Kernel System (GKS) [I].
From simple beginnings, a specification is constructed which exhibits much of the behaviour of
GKS and which sheds considerable light on the underlying concepts. Reasons of space prevent a
more complete specification being developed here; the primary purpose of this paper is to illustrate
techniques, not to give a complete specification of GKS.
The notation used in this paper is based on the Vienna Development Method (YDM) [2] of Jones.
In order to minimize the introduction of notation, only a limited subset of VDM is used, and
some simplifications have been made.

2. Overviews

2.1. GKS concepts
Pictures in GKS are constructed from a number of basic building blocks, called primitives. GKS
has six output primitives: polyline, polymarker, text, fill area, cell array and generalized drawing
primitive (GDP). For the purposes of this paper it suffices to consider a single primitive, polyline,
which draws a connected sequence of line segments. Each primitive has an associated set of
parameters used to define a particular instance of the primitive. In the case of polyline, the
parameters are the coordinates of the vertices. Primitives can be grouped together in segments, but
segments are not considered here.
GKS has introduced the concept of an abstract workstation to hide the peculiarities of device
hardware. A workstation consists of zero or one display surfaces and zero or more input devices.
An application program may direct output to more than one workstation simultaneously, but in
this paper only one workstation is considered and input is disregarded.
Coordinate data in the parameters of a primitive are specified in world coordinates (WC), a Carte­
sian coordinate system. Transformation to the coordinate system of the display device is accom­
plished in two stages; firstly, world coordinates are transformed to an intermediate coordinate sys­
tem called normalized device coordinates (NDC) by a window to viewport mapping termed a nor­
malization transformation, then a second window to viewport mapping, called the workstation
transformation transforms these coordinates to device coordinates (DC). The details of these
transformations will not further concern us. It will be assumed in the specifications that polyline
coordinate data are supplied in normalized device coordinates, and that the workstation transfor­
mation is fixed. Primitives can optionally be clipped to the boundary of the viewport of the nor­
malization transformation, but clipping too, will be ignored.

. ..

-
-2 -

,

The appearance of a primitive displayed on a workstation is determined by its parameters and
additional data termed aspects. The aspects of a polyline are: linetype, which in GKS may be
solid, dashed, dotted, dashed-dotted or implementation-dependent; linewidth scale factor, which is
applied to the nominal linewidth provided by the workstation to give a value which is then
mapped to the nearest available linewidth; and polyline colour index. For simplicity, it will be
assumed in the specifications that follow that the value for linewidth can be specified directly,
rather than as the product of a scale factor and a nominal width. It is also assumed that the
workstation supports any linetype and linewidth requested, as, although it is a simple matter to
map the requested value onto the nearest available value, this adds needless complexity for the
present purposes. Colour will also not be considered.
The values of aspects are determined by attributes. There are two basic schemes for specifying
aspects, termed individual specification and bundled specification. In the individual scheme the
value of each aspect is determined by a different attribute; the linetype aspect by the linetype attri­
bute and the linewidth scale factor aspect by the linewidth scale factor attribute. For each of the
attributes there is an operation to set its value. In this scheme, the setting of the value of an attri­
bute, such as linetype, applies to all subsequent polyline primitives until it is reset. For example:

Operation Sequence Linetype Linewidth scale factor
set .Iinetype (t I)
set .Jtnewidth .scale _factor (w I)
polyline (pts) t 1 li'1

set .Iinetype (t2)
polyline (pts) t z WI

Attribute values are bound to primitives upon creation and cannot subsequently be altered.
In the bundled mode of specifying polyline aspects, the values of all the aspects are determined by
a single attribute, called the polyline index. A polyline index defines a position in a table, the poly­
line bundle table, each entry in which is termed a bundle and specifies the values for each of the
aspects. The bundle corresponding to a particular polyline index is termed the representation of
the index. There is an operation which sets the value of polyline index modally. as well as an
operation to set the representation of a bundle index. When a polyline is created. the current
value of the polyline index is bound to the primitive and cannot subsequently be changed. Bun­
dles are bound to primitives when they are displayed. In GKS each workstation has its own poly­
line bundle table, which allows the application to control the appearance of poly lines with the
same polyline index independently on each workstation on which they are displayed, using the
capabilities of the workstation. If a representation of a polyline index is changed, the appearance
of polylines already created with that polyline index may also be changed to the new representa­
tion. Thus although the value of the polyline index with which a polyline is created cannot subse­
quently be changed, the representation with which the polyline is displayed can be changed. GKS
admits that some workstations are able to perform such changes dynamically whilst others need to
redraw the picture to effect the changes. OKS allows the application to control when such
redrawing (regeneration) takes place. In this paper it is assumed that the workstation is capable of
performing changes of polyline representation dynamically. In a previous paper [3] the regenera­
tion mechanism of OKS is specified and its behaviour examined.
The simplified system described above forms a proper subset of a full GKS system.
Formal specifications for both of the schemes for specifying aspects are given in later sections and
these specifications are developed into two alternative combined schemes.

2.2. The Formal Specification Technique
The purpose of a specification is to state what a system is to do, not how it is to do it. A formal
specification defines a system in an implementation-independent way by the use of abstract data
types to describe the internal state. An abstract data type is characterized only by the operations
allowed over it.
The specification technique used in this paper, VDM, is an example of the constructive or model-

. ..

-
-3 -

based approach, which models abstract data types in terms of mathematically tractable entities
such as sets, lists and mappings. Other authors have considered the application of algebraic or
property-based techniques to the specification of graphics software [4.5,6].
For our present purposes, a VDM specification has two components:
(1) a model of the state;
(2) operations over the state.
The first component describes the structure of the class of objects representing the state. If X is
some class of objects, objects belonging to this class are said to have type X. Objects are built
from basic objects (integers, reals etc.), tuples, sets, lists and mappings.
In the specifications given here, all operations have the general type:

State x Inputs x State -+ Boolean

The effect of an operation in VDM is described by two predicates: a pre-condition and a post­
condition. The former is a predicate over State and Inputs and defines the conditions under which
the operation produces a valid result. The latter is a predicate over State (the initial state), Inputs
and State (the final state), which defines the effect of the operation. Defining operations impli­
citly in this way, allows relations and thus non-determinacy to be specified. though non­
determinacy does not arise in the specifications given here. Where the pre-condition is true (i.e. all
values of the inputs and initial state produce a valid result). it is omitted.
The definition in the next section of some fundamental types. which are used in the subsequent
specifications, provides the opportunity to illustrate and explain most of the notation used in this
paper.

3. Basic Types

NDC_Foints = list of NDC_Foint
NDC_Foint = R x R

I
I

'1' DC_Points = list of oc.rst«
DC_Point = R x R

I Bundle = Linetype x Linewidth
Linetype = N
Linewidth = R

t: NDC_Foints -+ DC_Foints
t ts A ...

Polyline.Jndex = N
Polyline.Bundle.Table = map Polyline.Jndex to Bundle

elems : list of a -+ set of a
elems(l) ~ if I = < > then { } else {hd I} u elems(tll)

In the simplest case, a type has only one component, as in the definition of the type NDC .Points .
It is defined to be a list, each of whose elements is an object of type NDC .Point, The type
NDC .Point is the first example of a tuple, and is an ordered pair, each of whose components has
the basic type R (real). Lists of points in DC coordinates are similarly defined by the types
DC .Points and DC .Point .
The type Bundle is a (Line type , Linewidth) pair, where a Linetype has the basic type N (natural
numbers) and Linewidth is of type R (real).
An example of a mapping is the description of the polyline bundle table (used in the bundled
aspects specification) as a mapping from a Polyline .Index , of basic type N, to a Bundle. A

-
-4-

mapping is similar to a function except that it has a (possibly sparse) finite domain and the pairing
of an element in the domain with an element in the range is constructed explicitly, rather than
being defined by an expression.
Finally, the way in which a function is defined is shown, with the introduction of a function elems.
The first line in the definition of elems is its signature, which characterizes the function by giving
the types of its domain and range in terms of the generic type n. It states that elems takes an
argument of type list of u and returns as result a set of objects of type u, The second line
describes the effect of the function, which is to take a list and to produce a set containing the ele­
ments in the list. The operators hd and tl are used to obtain the head and tail of a list respec­
tively, and < > denotes the empty list.
Also introduced is a function t , which is used in the specifications to transform a list of points in
NDC coordinates to a list of points in DC coordinates. As the exact definition of t is not of
interest the details are not given here.
The notation for defining operations over the whole state will be introduced later. Definitions of
types will not be restated in the following specifications, unless they have changed.

4. The Formal Specification of Individual Aspects
A formal specification of a simple model of GKS, with a single workstation and a single output
primitive, polyline, must embody the concepts described in section 2.1. The concept of NDC
space must be captured; some abstraction of the workstation concept must be made; and the
aspect specification mode must be modelled. The combination of both the state definition and the
definition of the operations over this state serves to capture these concepts.
Primitives are considered to be created in NDC space. ryvC space has been disregarded for sim­
plicity.) A suitable model for capturing the idea of a picture being built in NDC space is to have a
component of the GKS state representing the NDC picture, to which is added each primitive as it
is created.
The concept of a workstation can be simplified to the model of the picture in DC space that is
displayed on the display surface. This DC picture is modelled similarly to the NDC picture, as a
component of the GKS state to which each primitive is added as it is displayed. The operations
over the state define the relationship between these two pictures, and show how they are con­
structed.
To model the individual mode of aspect specification, a state component for each attribute is
required, representing its current value.
The definition of the state is now shown below, followed by some explanation.

The State

GKS = NDCYicture x Dtl.Picture x Linetype x Linewidth

NDCYicture = list of LNDCYolyline
LNDCYolyline = NDCYoints x Linetype x Linewidth

Dtl.Picture = list of LDCYolyline
L.DCYol line = DCYoints x Linet e x Linewidth

States of the system are described by objects of the class GKS, which is defined to be a 4-tuple.
with the first component of type NDC .Picture , the second component of type DC .Picture and
with the last two components having the types of the attributes.
The NDC picture is modelled as a list of objects of type / _NDC .Polyline (the prefix 'I _' standing
for 'Individual'), which in turn is modelled as a list of points, a linetype and a linewidth. As poly­
lines are created objects of type / ___NDC.Polyline are formed, so the choice of the components of
the type / ___NDC.Polyline defines what is bound to the polyline at creation time.

...

-
- 5 -

The picture displayed on the workstation is also modelled as a list of objects, and at the DC level
a polyline is described similarly by a list of points, a linetype and a linewidth. The choice of com­
ponents for the type I __DC.Polyline defines what is bound to the primitive at display time. The
DC picture description is a representation of the essential features of a polyline displayed on a
workstation.
The use of the data type list in the definitions of the pictures in NDC and DC coordinate space
allows the order in which primitives are created to be retained and used in the display of primi­
. tives. Had the data type set been used, this notion of order would have been lost. An order of
display is not prescribed by the GKS document, but for the purposes of this illustration, the fami­
liar model of preserving the order of creation in order of display is adhered to.

NDC Picture creation
One operation is allowed on an NDC .Picture component of the state - the creation of a new pic­
ture by adding a polyline to an existing picture. The definition of a function to do this is:

I create.Epicture : NDC___Points x Linetype x Linewidth x NDC___Picture --. NDC_Pic(ure I

I create Lipicturetpts, It, lw, ndcp) ~ mk i_Jldc....polyline(pts, It, Iw) :: ndcp

The effect of this function is to create a new object of type LNDC .Polyline and to add it onto
the list describing the existing NDC picture.
New objects are created by constructor functions. The name of a particular constructor function is
taken from the type name of the object being created, prefixed with mk .: The operator cons.
(denoted here by the symbol '::' which is used in infix form), adds an element at the head of a list.

DC Picture display
A similar function is defined over the DC .Picture component of the state:

display.Liptcture : DC___Points x Linetype x Linewidth x Dtl.Picture --. DC_Picture I
display_i__picture(pts, It, Iw, dcp) ~ mk_i_dc__polyline(pts, It, Iw) :: dcp I

Operations
Three operations over this state need to be defined:

polyline
set .Iinetype
set .linewidth

The operation definitions are preceded by a let clause which names the object gks and its com­
ponents that comprise the initial state. The convention followed is that type names have capital­
ized initial letters and the names of instances are the lower case equivalents of the names of their
types. The names of the final state and its components are the same as those of the initial state
but decorated with a prime ('). Strictly these names should also be declared in the let clause, as
follows:

mk_gks(ndc .picture ', de .picture ', current .Iinetype ', current .Iinewidth ') = gks'

but for conciseness this clause is omitted.
For simplicity, the let clause defining the State instances referred to in the pre- and post- condi­
tions of the operations is defined once at the start of the specification of all the operations. rather
than being repeated at the start of each operation definition. This should not cause any confusion.
The definitions of the operations are given below.

-
-6-

let mk.sgksindc.ipicture, de.picture, current.Iinetype, current.Jinewidthy = gks in

polyline: GKS x NDC_Points x GKS -I' Boolean
polyline(gks, ndc..points, gks') ~
post ndc.picture' = create.Lipictureindc points, current.Iinetype, curren t.Iinewidth , ndc.picturei II

de.picture' = display.Lspictureitindc pointsi, current.Iinetype, current.Iinewidth, dc_picture)

setIinetype : GKS x Linetype x GKS -+ Boolean
setIinetypetgks, linetype, gks') ~
post currentIinetype' = linetype

setIinewidth : GKS x Linewidth x GKS -+ Boolean
set.Iinewidthigks, linewidth, gks') ~

st currentIinewidth' = linewidth

The first line of each definition gives the signature of the operation. The second line names the
arguments and results of the operation, in the same sequence as in the signature; thus in the first
two lines of the definition of polyline, gks is an object of type GKS, ndc .points is an object of
type NDC .Points and the resulting object gks' is also of type GKS .

The effects of the polyline operation are defined in the post-condition which relates the initial and
final states implicitly. The post-condition is written in terms of the previously defined functions
create .i .picture and display .i_picture in order to facilitate comparison with later specifications
of other attribute models which will redefine these subsidiary functions. It creates a new polyline
in the NDC picture and displays this polyline in the DC picture. It can be seen from this defini­
tion that for each polyline that is added to the NDC picture, a corresponding polyline is also
added to the DC picture.
Strictly one should also write:

current .Iinetype' = current.Iinetype 1\ current _linewidth' = currentIinewidth
in the post-condition for polyline. By convention, the values of the components of the final state
which are not given in post-conditions, are the same as the corresponding values in the initial
state. The conventions used should not cause confusion, but it is necessary to appreciate their
implications' in order to understand the specification fully.
The effects of the post-conditions of set Jinetype and set .linewidth are self-explanatory.
That concludes the specification of the individual aspect specification scheme, as well as the intro­
duction of notation.

5. The Formal Specification of Bundled Aspects
In order to specify formally the bundled mode of aspect specification, once again, the concepts of
the NDC picture and the DC picture must be modelled by components of the state in a way simi­
lar to that shown in the specification of the individual aspect scheme.
To model the bundled aspect scheme, there is only a single attribute (polyline index) whose current
value has to be represented in the state. There is an additional concept to be captured; the idea of
a polyline bundle table in which representations for polyline indices are stored. In this specifica­
tion, as a polyline bundle table is associated with a workstation, the concept of a workstation is
captured not only by the model of the DC picture, but also by the model of the polyline bundle
table. The type used to describe a polyline bundle table was introduced in section 3, where basic
types were defined and explained.
This specification exhibits the same fundamental structure as the specification for the individual
aspects scheme.
The state of the system is described by objects of the class GKS defined as shown below.

. ..

-
- 7 -

The State

I GKS = NDC_Picture x DCYicture x PolylineBundle Table

NDCYicture = list of B_NDCYolyline
B_NDCYolyline = NDCYoints x Polyline.Jndex

x Polyline.Jnde x I

I

I DCYicture = list of BJJCYolyline
i BJJCYolyline = Dtl.Points x PolvlineTndex x Bundle

As in the individual aspects specification, the NDC picture is modelled as a list of objects. How­
ever, the type of the objects in this list has been changed. A B_NDC_Polyline (the prefix 'B_'
standing for 'Bundled') is represented as a list of points and a polyline index, as only the polyline
index is bound to the polyline at the time of its creation.
The DC picture, too, is modelled as a list of objects of a different type from the objects compris­
ing the DC picture of the individual aspects scheme. The type B JJC .Polyline captures the con­
cept of a bundle being bound to a primitive at display time. The need for polyline indices to be
stored in the DC picture will become apparent later.

NDC Picture creation
The creation of a new polyline and its addition to the NDC picture is described by the function
create .b_picture, which has a similar form to create .i _picture:

DC Picture display
The function display .b .picture which is defined over the DC picture for the bundled aspects
scheme and corresponds to display .i _pic ture is:

x Bundle x

It describes the display of a polyline by its addition to the DC picture.

Operations
The operations in this system defined below are:

polyline
set .polyline .index
set _polyline _representation

let mk.gksindc.picture, de.picture, polyline.bundle.Jable, current.poiyline.indexi = gks in

polyline: GKS x NDCYoints x GKS -+ Boolean
polyline(gks, ndc.points, gks') g
pre currentspolyltne.Index E dom polyline.bundle.sable
post ndc..picture' = create.b.ipicturetndc points, current.polyline.Index, ndcpicturei "

dc.picture' = display.ibspicturet ttndc.poin ts), polyline_bundlctable(current_po(vline_index), :
dc_picture)

set.ipolyline.index : GKS x PolylineJndex x GKS -+ Boolean
i setcpolyline Indexigks, polyline.Index. gks') g
I post currentpolyline.index = polyline index

...

-
-8 -

set.polyline.representation : OKS x Polyline.Jndex x Linetype x Linewidth x OKS --+ Boolean
setipolyline.representationigks, polyline.index, linetype , linewidth, gks') g
post polyline.bundle.sable' = polylinebundlesable + fpo(vline.index -> mk..bundletlinetype , linewidth)] "

dcpicture' = recreatetdc.picture. polyline.bundle.sable')

I recreate: DtlPicture x Polyline.Bundle..Table -+ DCYicture
. recreate(dcp, pbt) g if dcp = < > tben < > else rebind(bd dcp, pbt) :: recreate(tl dcp, pbt)

The form of the polyline operation mirrors that of the polyline definition in the previous specifica­
tion, the differences in the binding of aspects being captured in the definitions of the types
B _NDC .Polyline and B _])C .Polyline and of the functions create .b .picture and
display .b _picture. Its effect is to create a new polyline in the NDC picture and to display it in
the DC picture. For simplicity, the pre-condition ignores the fact that GKS defines a behaviour
for the case when a representation of the polyline index is not defined.
The operation set _polyline .index resembles the operations set .Iinetype and set .linewidth of the
individual aspects specification, and like them. sets the current value of an attribute
(polyline _index).
The operation set _po(vline .representation has two effects. The first line of its post-condition
describes the addition to the polyline bundle table of the new representation specified for the poly­
line index. The operator' +' adds ipolvline .Index -+ mk .bundle (linetype , linewidth)] to the map­
ping, overriding any previous value associated with polyline _index. The second line of the post­
condition describes the effect of set _po(vline .xepresentation on the DC picture, which is to change
the representations of all polylines created with polyline .index to its new representation. Two
auxiliary functions, recreate and rebind are used in the definition. recreate is defined recursively
and traverses the DC picture applying the function rebind to each element in the list. rebind uses
the polyline .index stored with each DC polyline to look up the associated representation in the
new polyline bundle table, and then changes the representation of the polyline to this value. This
explains why polyline indices are included in the representation of DC polylines. The notation
pbt (index) in the definition of rebind denotes the application of the polyline bundle table mapping
to a polyline index to yield the associated bundle.

:

6. A Comparison of the Individual and Bundled Aspect Specifications
We are now in a position to compare the individual and bundled systems just specified. This will
illustrate some of the techniques that can be used to prove properties of specifications.
The first question to be posed is: what is the correspondence between the two systems - is there a
sequence of operations in the one system that corresponds to a sequence of operations in the
other? As both schemes of specifying aspects are concerned with the appearance of primitives at
the DC picture level, and it is possible to define and use bundle representations with the same
values as those used to set individual attributes, the relationship between the schemes should be
expressible in terms of equivalence between the DC pictures that they produce. Firstly. then. this
notion of equivalence needs to be defined. A polyline in the bundled DC picture will be said to be
equivalent to a polyline in the individual DC picture if the result of the following function is true:

compare: B_])CYolyline x LDCYolyline -+ Boolean
comparetb.idcpl, Ldcpl) g let mkbsicpotylineib.ipts. i, b) = b.idcpl

and mkbundleib.It, b.Jw) = b
and mk.Ldc.polylineti.pts, Ut, Uw) = i..dcpl in

b.ipts = i.pts A b.It = i.It A b.Iw = i.Iw

This definition says that the polylines have the same appearance if they have the same lists of

...

-
-9 -

vertices, linetypes and linewidths. A bundled DC picture is said to be equivalent to an individual
DC picture (written' =') if corresponding poly lines in the pictures are equivalent in the above
sense.
A sequence of operations in one system will be said to be equivalent to a sequence of operations in
the other system if the resulting DC pictures are equivalent. This definition conveniently subsumes
both static and dynamic behaviours.
The fact that the individual aspects scheme binds aspects to primitives on their creation, and that
these cannot subsequently be altered, whilst the bundled scheme binds aspects to primitives upon
display, and these can subsequently be altered, suggests that the bundled scheme is more powerful
than the individual scheme. If the dynamic binding capabilities of the bundled scheme were not
exploited (by not changing existing bundle representations), it could be used to achieve similar
effects to the static binding permitted by the individual scheme. Stated in terms of equivalence at
the DC picture level, it would seem reasonable that:

Property 1:
For every sequence of operations in the individual scheme, an equivalent sequence of operations
can be given in the bundled scheme. Ii
How can this be shown formally?
A tool which will be required is the technique known as structural induction over lists:
To prove a property <p of lists, we prove:
(1) <p holds for the empty list, < >

(2) if <p holds for a list I, then <p holds for e :: I, and conclude that <p holds for all lists.
The basis for this method of proof is that all lists are built up from the empty list by prefixing.
Strictly, proving (1) and (2) only guarantees that <p holds for finite lists, but infinite lists are not
likely to arise in graphics hardware!
As an illustration of the application of this technique, a useful lemma that is required later will be
stated and proved. This lemma states that if recreate applies to a DC picture a polyline bundle
table which has the same representations of polyline indices as those present in the DC polylines
comprising the picture, then the DC picture remains unchanged. More formally:

Lemma 1

recreateidcp, pbt) = dcp
iff 'if mk.b.xic.polylineipts, i, b) E elems(dcp) . pbt(i) = b

Proof of Lemma 1:
By structural induction.

Base case: dcp = < >

It follows immediately that:

recreate(< > .pbt) = < >

Assume: recreate(dcp. pbt) = dcp

Add a polyline to each side and we have to show that:

recreatetmk b.sic.polylinetpts, i, b) :: dcp, pbt) = mk.b.sic.polylineipts, i, b) :: dcp
iff b = pbt(i)

The lhs expands to:

. ..

-
- 10 -

recreateirnk.h siccpolylineipts. i, b) :: dep, pbt)
= rebindtmk bidc polvlinetpts, i, b), pbt) :: reereate(dep, pbl)
= mk.b.sic.polylinetpts. i, pbt(i») :: dep by induction hypothesis
= mk.b.sdc.polylineipts, i. b) :: dcp if b =pbt(i)
"# mk sb.sdc spolylineipts, i, b) :: dep if b :j:. pbt(i)

which completes the proof. I I
Property 1 can now be shown by proving the following statement:

Formal Statement of Property 1
Let b .gks" denote a state of the bundled system, pbt" denote the polyline bundle table com­
ponent, and denote its DC picture component by b cdc spicture": Let i igks" denote a state of the
individual system with DC picture component i idc _pieturek• Suppose that b.sic _pieturek ==
i idc _pieturek, then if i r$ dom pbt" or pbt" + l(i) = pbt" (i), the following sequences of operations
are equivalent (i.e. b uic ipicture" == i sdc spicture't y:

Bundled Operation Sequence
set.polyline.representationib .gks" , i, t , w. b.gks" + 1)
set.polyline.indexib _gksK + 1, i, b .gks': + 2)

polylineib .gks" + 2, ptsk + 2, b .gks" + 3)

Individual Operation Sequence
set Iinetypeii _gkSk, t , i _gksk + I)
set.Iinewidthti .gks" + 1. w , i.gks':" '2)
polyline(i .gks" + 2, ptsi; + 2, i.gks" + 3)

polyline(b .gks" - 1, pts; _ 1, b_gksn) polylineii .gks" - 1. pis; _ 1. i _gksn)

These sequences of operations take each of the systems through a series of state transitions:
b .gks" -4 b .gks" + 1 -4 ••• b .gks" in the bundled case, and similarly in the individual case
through: i igks" -4 i_gksk+! -4 ... i igks" (where k +2 < n). II
Since the polylines in each system are displayed with the same aspects (t and w), we would expect
the two pictures to be the same.

Proof:
Inspection of the post-condition of set _polyline .representation reveals that this operation can
modify the DC picture. A moment's reflection will suggest that the appearance of the DC picture
will be unchanged by set .polyline _representation only if the representations of all the polyline
indices used in the creation of the picture remain unchanged. This is the statement that was for­
malized and proved in lemma 1.

Case 1: i r$ dom pbt"

First it will be shown that the DC pictures are still equivalent in states b.gks" + 2 and i .gks" + 2.

For the bundled system: in state gks" -t- 1, the polyline bundle table has the form:

pbt" + 1 = pbt" + [i -4 mk bundlett , w)]

and the DC picture is changed in the following way:

b _de _picturek + 1 = reereate(b .sic .picture" , pbt" + 1)

'r:j mkb.sdc.polylinetpts, pi, b) E elemsib cdc spicturet s .
pbt" + l(Pi) = pbt" (Pi) = b

since pi "# i. Thus by lemma 1:

Now:

b _de _pieturek + 1 = b .sic _pieturek

It follows immediately from the post condition of set .polyline .index that:

pbt" + 2 = pbt" + 1 II b .sic _pieturek + 2 = b .sic .picture" + 1

...

-
- 11 -

And so: b cdc iptcture':"? = buic spicture"

For the individual system: it follows immediately from the post-conditions of set Jinetype and
set .Iinewidth that:

i sdc _picturek + 2 = i uic .picture"

Thus: b .sic _picturek + 2 == i.idc .picture" + 2

It is now shown that the polyline operation preserves the equivalence of the DC pictures by using
structural induction over lists.

Base case: bsdc ipicturei+? == iuic spicture+"? = < >

Perform a polyline operation in each system and then, from the definitions of the polyline opera­
tions, the DC pictures become:

b_de .picture" + 3 = mk.b sdc.polylinetttptsi. + 2)' i, mk..bundiett , w»:: < >
i.idc _picturek + 3 = mk..i.dc.polyltnettipts, + 2)' t , w):: < >

Now: comparetmk .b.sdcspolylinetttpts, +2)' i , mk .bundle (t, w»,
mk_i_dc_polyline(t(ptsk+2)' t , w) = true

Thus: b.sic _picturek + 3 == i idc .ptcture" + 3

Assume: b .sic _pieturen - 1 == i_dc _pieturen -,

Perform another polyline operation in each system; and the DC pictures become:

b_de _pieturen = mk..b.sdcspolylinetttpts; _ I)' i, mk ibundlett , w» :: b_de .picture" - J

i.sdc .picture" = mk_Ldc_po(vline(t(ptsn _ I)' t, w) :: i idc .picture" - 1

As before: compare(mk_b_dc_polyline(t(ptsn_I), i , mk ibundle it , w»,
mk _i _de _polyline (t tpts; _ I), t, w» = true

and so, by the induction hypothesis:

b .xlc _pieturen == i sdc _picturen

which concludes case 1.

Case 2: i E dom pbt"

In this case, if the new representation for i is the same as its old representation, then

pbt" + 1 = pbt" + [i -+ mk .bundle (t, w)] = pbt"

Then by lemma 1,

b .sic _pieturek +, = b_dc _picturek

and the proof then continues as for case 1.
However, if the new representation for i differs from the old representation, then:

pbt" + 1 = pbt" + [i -+ mkbundleit, w)] =1=pbt"

and it follows, also from lemma 1, that:

b _de .picture" + 1 =1=b .xic .picture"

and thus: b_de _picturen ., i.idc .picture"
//
The next question to be asked is: what happens if bundled and individual specification modes are

. ..

-
12 -

combined in a single system? The next sections consider two such systems.

7. The Formal Specification of Bundled or Individual Aspects
The next system to be considered is one in which all the aspects of each polyline may be specified
either in an individual mode or in a bundled mode. The operations in this system are the combi­
nation of the operations in the individual aspects system and the bundled aspects system:

polyline
set .polyline .index
set .Iinetype
set .linewidth
set _polyline .representation

In addition, a new operation is added:
set_aspect_!node(aspect_tnode)

The argument aspect .mode can take the values BUNDLED or INDIVIDUAL. If the argument
has the value BUNDLED, subsequent polylines will be created in the bundled style. using the
current .polyline .Index . If the argument has the value INDIVIDUAL, the values of
current .Iinetype and current .Iinewidth will be bound to the polyline when it is created. The
operation set .aspect .mode may be invoked at any time.

The State

I GKS = NDCYicture x DCYicture x PolylineBundle.Table x Polyline.Jndex x
I Linetype x Linewidth x Aspect.Jdode

I NDCYicture = list of NDCYolvline

I

NDCYolyline = LNDCYolyline I B_NDCYolyline

DCYicture = list of DC_PolylineI DCYolyline = LDCYolyline I BJ)CYolyline

! AspecLMode = {BUNDLED, INDIVIDUAL}

In this GKS state, the NDC picture is again modelled as a list of objects of type NDC .Polvline ,
However, to accommodate the two modes of specifying aspects, the type NDC .Polyline is now
defined as the disjoint union of the two types L.NDC .Polyline and B _NDC .Polyline . The impli­
cation of this is that an NDC picture may contain a mixture of objects of these types. The DC
picture is defined similarly.

;-

NDC and DC Picture functions
The operations on the NDC and DC pictures are the functions:

create _i_picture
create .b .picture
display _i_picture
display .b_picture

defined in sections 4 and 5.

Operations
The definitions of the operations in this combined individual or bundled mode system are:

...

-
- 13 -

j"iet mk.gksindc .picture, dcipicture, polyline.bundle.Lable, currentcpolylineiinde x,
I current.Iinetype, current.Linewidth, current.uspect.modei = gks in

I polyline: GKS x NDCYoints x GKS --+ Boolean .

I polyline(gks, ndcipoints, gks') ~
pre (currenLaspect_mode = BUNDLED ==;> current.polylineindex E dom polyline.bundleiable)

I post (currenLaspect_mode = INDIVIDUAL ==;>

II tcu,:::~:::::~:;:ru~O;:::~~:di:ual systeminsection4.)
post polyline definition of the bundled system in section 5.)

set.polyline.lndex : GKS x Polyline.Jndex x GKS --+ Boolean
set.Iinetype : GKS x Linetype x GKS --+ BooleanI setIinewidth : GKS x Linewidth x GKS --+ Boolean

I
The definitions of the above three operations are as in sections 4 and 5.

set.iaspect.rnode : GKS x Aspect.Mode x GKS --+ Boolean
II set.aspect.modeigks. aspectmode, gks') ~
post current.aspect.mode' = aspectrnode

!
set.ipolyline.representation : GKS x PolylineJndex x Linetype x Line .••...idth x GKS --+ Boolean
setcpalyline.representationtgks, polyline.Index, linetype, linewidth, gks') ~
post polyline.bundle.table' = polyline.bundle.sable + ipolylineIndex --+ mkibundletlinetype , linewidthii II

de.picture' = recreatetdc.picture, polyline.bundle.sable")

recreate: DtlPicture x PolylineBundleTable --+ Dtl.Picture
recreate(dcp, pbt) ~ if dcp = < > then < > else rebind(hd dcp, pbt) :: recreate(tl dcp, pbt)

rebind: DCYolyline x Poiyline.Bundle.Table --+ DCYolyline
II rebind(dcpl, pbt) ~ case is.Lulc.polylinetdcph: dcpl

case isb.sic polylinetdcph: let mk.b.sic.polylinetpts, index, b) = dcpl in
mk b dc.polylinetpts, index, pbt(index»

The rebind function calls for some comment. The effect of the function on a DC polyline depends
on whether the particular de _polyline has type I _DC .Polyline or B _DC .Polyline, The function
is_x (y) returns true if the object y is of type X and false otherwise. Thus the rebind function
only affects polylines which were created in the bundled mode of working.

Behaviour

If the operation:
set .uspect .mode igks" , BUNDLED, gks" + I)

is invoked before the creation of any polylines, and is not reinvoked with the argument INDIVI­
DUAL, the behaviour of the system reduces to that of the bundled system defined in section 5.
This can be seen by observing that the NDC and DC pictures produced will contain objects of
type B __NDC .Polyline and B _DC .Polyline respectively, and that these types correspond to the
types defined in the specification in section 5. Furthermore the operations polyline.
set .polyline .index and set .polyline .representation reduce under this condition to the correspond­
ing operations in section 5, and the operations set .Iinetype and set .Iinewidth have no effect on
the NDC and DC pictures.
Similarly, if the operation:

set .uspect .mode (gks" , INDIVIDUAL, gks" + I)

is invoked before the creation of any polylines, and is not reinvoked with the argument

...

-
- 14 -

BUNDLED, the system will behave as the system defined in section 4 for the individual mode of
aspect specification. Note that the operation set ~o/yline _representation has no effect on a DC
picture composed entirely of objects of type I _J)C .Polyline .
These two cases do not exhaust the possible behaviours of this system, however, because the aspect
specification mode can be changed dynamically, i.e. some polylines in the picture may be created
in BUNDLED mode, and others in INDIVIDUAL mode.
One of the properties exhibited under these circumstances is: the representations of polylines
created in the bundled mode can be changed as in the pure bundled system, but the representa­
tions of polylines created in individual mode cannot be changed, as in the case of the pure indivi­
dual system.
The system behaves as a genuine combination of the bundled and individual systems. An exten­
sion of property 1 given in section 6 holds:

Property 2
For every sequence of operations in this system (including changes of aspect mode) an equivalent
sequence can be given in the pure bundled scheme. Bundle indices already used in the bundled
part of the picture cannot be reused in representing the individual part, otherwise the individual
parts would undergo changes were their representations to be altered. II

8. The Formal Specification of Mixed Mode Aspects - GKS Style
Aspect handling in GKS is an extension of the system described in section 7. GKS allows a mixed
mode of working in which some aspects of a primitive are determined from individual attributes.
whilst others are determined by the bundled attributes.
Aspect source flags (ASF's) determine whether an individual or a bundled attribute value should
be used for the corresponding aspect. In GKS there is one ASF for each aspect. Since the only
aspects considered here are linetype and linewidth, only linetype ASF and linewidth ASF are
needed. There are four possible combinations of aspect source flags:

Linetype ASF
INDIVIDUAL
BUNDLED
BUNDLED
INDIVIDUAL

Linewidtb ASF
INDIVIDUAL
BUNDLED
INDIVIDUAL
BUNDLED

The NDC and DC polylines which are created and displayed under each of these cases are dis­
tinguished by their types.
The specification of the proper subset of GKS aspect specification handling is given below. The
extensions follow a similar pattern to the extensions made in the development of the specification
given in section 7.

...

-
- 15 -

The State

I GKS = NDC_Picture x DCYicture x Polyline.BundleTable x Polyline.Jndex x
Linetype x Linewidth x ASF x ASF I

i
I

NDCYicture = list of NDCYolyline I
NDC_Polyline = LNDCYolyline I B_NDCYo~vline I Bt_NDCYolyline I Bw_NDC_Po~vline 1

Bt_NDCYolyline = NDCYoints x Polyltne.Jndex x Linewidth !
Bw_NDCYolyline = NDCYoints x Polyline.Jndex x Linetype

DCYicture = list of Dtl.Polyline
DC_Polyline = LDC_Polyline I B_DCYolyline I Bt_DC_Polyline I Bw_DC_Polyline
Bt_DC_Polyline = DtlPoints x Polyline.Jndex x Linetype x Linewidth
Bw.D'Ccl'olyline = DCYoints x PolylineJndex x Linetype x Linewidth

: ASF = {BUNDLED, INDIVIDUAL}

NDC Picture creation
Uses create .i .picture , create .b .picture as defined in sections 4 and 5 respectively, as well as:

I create.bt .picture : NDCYoints x Polyline.Jndex x Linewidth x NDCYicture ~ NDC_Picture
I create.bt.picturetpts, index, lw, ndcp) ~ mk.bt.ndc.polyltnetpts. index, ilt') :: ndcp

I createbw.picture : NDCYoints x Polyline.Jndex x Linetype x NDCYicture ~ NDC_Picture
i create bwipicturetpts. index, It, ndcp) ~ mk.bw.ndc.polylinecpts, index, It) :: ndcp

DC Picture display
Uses display .i_picture, display .b _picture as defined in sections 4 and 5 respectively, as well as:

displaybt ipicture : DC_Points x Polyitne.Jndex x Linetype x Linewidth x DC_Picture
~ D'Ci.Picture

display.bt.spictureipts, index, It, lw, dcp) ~ mk.bt.sdc.polvlineipts, index, It, Iw) :: dcp

display.bw.ipicture : DtlPoints x Polyline.Jndex x Linetype x Linewidth x DC.Picture
~ DC_Picture

~ mkbwcdc 01 line ts, index, It, lw :: de

Operations
The operations in this system are again the combination of the operations in the individual aspect
system and the bundled aspect system, with the addition of an operation to set the aspect source
flags,

polyline
set _po~vline.index
set .Iinetype
set .Iinewidth
set _polyline .representation
set _aspect _source _}7ags

...

-
- 16 -

i let mk.gkstndc.picture, de.picture, polyline.bundle.Jable, currenrpoiyline Index,
I currentIinetype, current.Jinewidth, linetype.iasf, linewidth.iasf) = gks in

i polyline: GKS x NDC_Points x GKS ~ Boolean
I polylineigks, ndc.points. gks') ~

I
pre t linetype.suf = BUNDLED V linewidthiasf = BUNDLED =l>

currentipolylineindex E dom polylinebundle.rable)
post (linetypeiasf = INDIVIDUAL A linewidthiasf = INDIVIDUAL ='>

post polyline definition of the individual system in section 4.)
A
(linetype.usf = BUNDLED A linewidthiasf = BUNDLED =l>

post polyline definition of the bundled system in section 5.)
A
(linetype.iasf = BUNDLED A linewidthiasf = INDIVIDUAL =l>

ndc.picture' = create.br.picturetndcspotnts, current.ipolyline.index, current.Jinewidth,
ndc_picture) A

let mk.bundletlt, Iw) = po~vline_bundle_table(current_polyline_index) in
dcipicture' = display.btcpicturetttndc..points), currentspolyline.inde x, It. currentIinewidth,

dc_picture))
A

(linetype.asf = INDIVIDUAL A linewidth.xisf = BUNDLED =l>

ndc.picture' = create.bw.spictureindc.points, currentpolyline Index, current.Iinetype,
ndcpicturei A

let mk..bundleilt, lw) = polyline_bundle_table(current_po~vline_index) in
de.picture' = displaybwpicturetttndc pointsi, currentcpoiylineiindex, current.Iinetype, lw,

dc_picture))

set.ipolylinesindex : GKS x PolylineJndex x GKS ~ Boolean
set.Iinetype : GKS x Linetype x GKS ~ Boolean
set.Iinewidth : GKS x Linewidth x GKS ~ Boolean

I The definitions of the above three operations are as in sections 4 and 5,
I
I set.iaspectssource.flags : GKS x ASF x ASF x GKS ~ Boolean
I set.iaspect.source.flagstgks, lt.iasf, Iw.usf, gks') ~
post linetype.usf" = ILasJ II linewidth.iasf" = lw.usf

set.polyline.representation : GKS x Polyline.Jndex x Linetype x Linewidth x GKS ~ Boolean
set.potyline.representationigks. polyline index, linetype. linewidth, gks) ~
post polyline.bundle.rable' = polyline bundle.stable + [polyline_index ~ mkbundletlinetype . linewidth)] A

de.picture' = recreateidc.picture, polyline.bundle Jable'Y

I recreate: DC_Picture x Polyline.Bundle.T'able ~ DC_Picture
recreateidcp, pbt) ~ if dcp = < > then < > else rebind(hd dcp, pbt) :: recreate(tl dcp, pbt)

rebind : DC_Po~vline x Polyline.Bundle.Table ~ DC_Polyline
rebindidcpl, pbt) ~ case is.i.sdc.polylinetdcpli: dcpl

case is.b.sdc.polylinetdcpty: let mk .b.sic.polylinetpts, index, b) = dcpl in
mk.b xlc polylinetpts, index, pbttindexi

case is.bt.sic.polylinetdcplt: let mkbtcdc.polylineipts, index. It, lw) = dcpl
and mkbundleinew It, new.lwi = pbt(index) in

mk .bt.slc.polylineipts, index, new.It, Iw)
case is.bw.xic.polylinetdcpty: let mk .bw.sic.polylineipts, index, It, Iw) = dcpl

and mkbundtetnew It, new_lw) = pbt(index) in
mk.bw.dc 01 line ts, index, It, newIw

...

-
- 17 -

Properties of the Specification
Clearly, the specification exhibits all the properties of the system defined in section 7. However,
the seemingly minor difference between the two systems introduces some totally new behaviour.
The following property points to this:

Property 3
One might expect that all sequences of operations in this system would also have equivalents in the
pure bundled system. However this is not the case. There are some sequences of operations for
which equivalent sequences cannot be given in the pure bundled scheme. II
To see this, it is only necessary to consider the following example:

Operation Sequence Polyline Created
set.ipolylinecrepresentationii , tb, Wb)

set.polytine.inde xCi)
set.linetypett.i
set.Jinewidthiw.y
seLaspecL.source_f/ags(BUNDLED, INDIVIDUAL)
polyline(pts) mkbt idccpolylinett cpts v:i, tb, Wi)
seLaspecLsource_f/ags(lNDIVIDUAL, BUNDLED)
polyline(pts) mk .bw.sdc .polvlinett (pts), i, ti, H"b)

where t, =I tb and Wi =I Wb' There is no direct bundled equivalent of this picture, because the
first polyline would require a bundle table entry:

i - mk.bundletti , Wi)

whilst the second would require an entry:

i - mk.bundlett., Wb)

where tb =I ti 1\ Wb =I Wb' This is clearly impossible. //

9. Conclusions
This paper has illustrated that formal specification can be used to express and analyse concepts.
Our previous paper [3] in combination with this paper has laid the foundations for a complete
specification of GKS.
The stepwise development of the GKS attribute handling model given here is the kind of process a
designer might go through, and indeed there are parallels with the historical development of GKS
within the ISO graphics working group. Development should proceed in a clean way in so far as
the combination of concepts should not introduce untoward side effects. Part of the design pro­
cess should be the isolation of properties possessed by concepts and the demonstration that these
properties still hold in combination in a system. A further aid to understanding the behaviour of a
system is to describe it in a specification notation which is executable. This approach is described
in [7,8].
In this paper we have chosen a property of aspect binding' and traced it through the stepwise
development of the GKS binding model and have shown which models exhibit the property. The
fact that the last model does not, should prompt the designer to question why. A design decision
has to be taken as to the importance of conformance to the chosen property.
The formal technique will not give an answer to these design questions directly, but it does help to
clarify the issues involved and allows the designer to explore the design space more thoroughly .

...

-
- 18 -

References

1. Graphical Kernel System (GKS) 7.2 Functional Description. ISOjDIS 7942. Information Pro­
cessing (4 November 1982).

2. C. B. Jones, Software Development: A Rigorous Approach. Prentice-Hall, Englewood Cliffs,
NJ (1980).

3. D. A. Duce, E. V. C. Fielding, and L. S. Marshall, "Formal Specification and Graphics
Software," RAL-84-068, Rutherford Appleton Laboratory, Chilton, Didcot, OXON OXII
OQX, U.K. (1984).

4. R. Gnatz, "An Algebraic Approach to the Standardization and the Certification of Graphics
Software," Computer Graphics Forum 2(2/3) (1983).

5. G. S. Carson, "The Specification of Computer Graphics Systems," IEEE Computer Graphics
and Applications, pp. 27-41 (September 1983).

6. W. R. Mallgren, "Formal Specification of Graphic Data Types," ACM Transactions on Pro­
gramming Languages and Systems 4(4), pp. 687-710 (October 1982).

7. P. Henderson, "Specifications and Programs," in Software; Requirements. Specifications and
Testing, ed. T. Anderson, Blackwell Scientific Publications (To appear).

8. C. Minkowitz, "Specification to Prototype - A comparison of two formal methods of
software design," Department of Computer Science, University of Stirling, Scotland (1984).

...

