Science and Engineering Research Council

Rutherford Appleton Laboratory

< Chilton DIDCOT Oxon OX11 0QX RAL-92-062

RAL-92-062

Process Algebra in the Specification of
Graphics Standards

C Reade

September 1992



Process Algebra in the
Specification of Graphics Standards

Chris Reade *

August 1992

Abstract

Some issues which relate to equivalence and conformance in formal
specification arising from a case study are discussed. This work is a con-
tinuation of a case study looking at the use of the formal specification lan-
guage LoTos [LOTOS 1989] in the description of graphics software and
standards. (Earlier work on this case study was reported in [Purvis 1990].)
One of the objectives of the study is to discern areas where formal reason-
ing might be helpful in comparisons and tools to support formal reasoning
can be applied to solve problems.

An example of simulating output devices is used to illustrate some
problems with modelling devices and designing protocols for interfaces.
The notion of stable observation testing is introduced to deal with prob-
lems of delay.

1 Introduction

One of the main purposes of formalising standards is to ensure precision in the
description of the standard. However, such precision is only useful if an appro-
priate notion of conformance is also made precise and methods for establishing
conformance exist. A small example concerning the simulation of output de-
vices is described here using process algebra to illustrate some issues related
to (observational) equivalence and conformance in the specification of graphics
software.

*Formal Methods Group, SEG, Informatics Dept., Rutherford Appleton Laboratory and
Computer Science Dept., Brunel University



1.1 Background

This work is the continuation of a case study using LoTos [LOTOS 1989] for
specifying standards for graphics software. A previous report [Purvis 1990]
contained several detailed examples, focussing on the formalisation of GKS
[GKS 1985) in LoTos. The case study is part of the work carried out for the
ERIL project (Equational Reasoning in LoTos [ERIL]). Thus, one of the ob-
Jectives of the case study work has been to discern areas where formal reasoning
is helpful and where tools to support formal reasoning can be applied to solve
problems.

LoTtos is an ISO standard formal specification language developed for the de-
scription of Open Systems Interconnection Services and Protocols. It combines
both a process algebra derived from CCS and CSP for describing the behaviour
of systems (processes) with an algebraic specification language (ACT ONE) for
describing data types. As such it provides a useful vehicle for studying the
relationships between process and data in the specification of graphical sys-
tems. Furthermore, ISO now recommend the use of standardised specification
languages (like LoTos) for use in specifying other standards, so it is an appro-
priate choice for formalising grpahics standards.

1.2 Related Work

Several papers have reported work on using data algebra and, more recently, pro-
cess algebra to formalise standards for graphics software. Earlier work in formal-
ising graphics standards mostly focussed on the data, operations and primitives
associated with output and transformations in GKS (e.g. [Arnold et al 1987,
Duce 1988, Duce 1989]). More recently, the problem of specifying input has
been tackled using process algebras which are more appropriate for describing
concurrent behaviour of multiple interactions. In [Duce et al 1989] CSP was
used to specify behaviour of input devices. Several aspects of modelling graphics
software are discussed in [Gnatz 1990], but a less abstract (more implementation
oriented) notion of process is used.

In [Purvis 1990] specific parts of GKS were formalised with LoTos. This work
uses the data abstractions of LoT0s to specify data objects and state compo-
nents in much the same way as in Duce’s earlier work with OBJ [Duce 1989].
The behavioural part of LoTos is then used to extend such specifications to
include interface protocols and abstract models of devices (especially the logical
input devices of GKS).



1.3 Combining Data and Process in Specifications

The formalisation of output primitives and components of the state in GKS
using algebraic data type specifications is relatively straight forward. The only
real problem is choosing appropriate levels of abstraction which avoid over-
specification but which still allow appropriate distinctions to be made. On the
other hand, the formalisation of behaviour with behavioural abstractions is less
clear cut because there are far more choices to be made. Issues of distributed
state, multiple access, sharing, views, preserving integrity and protocol design
are all involved at this level.

The problem of where to draw the boundary between abstract data type de-
scriptions and process descriptions is a critical one. In fact this distinction
between data and event is a fundamental problem in software design gener-
ally and certainly not unique to specifications of graphics software. In general
there is a spectrum of possibilities between the two and descriptions need to be
designed to avoid (i) overspecification (for example, when process descriptions
force unnecessary constraints on the ordering of events) and (ii) underspecifi-
cation (E.g allowing distributed state access to give erroneous or inconsistent
results in certain circumstances).

A particular problem which arises is how to feed-back responses to input when
the intermediate calculation is distributed and may be interleaved with other in-
put and other responses. It is clearly not sufficient to insist on one input/output
cycle at a time when access is distributed, so more intricate protocols must be
introduced. Formal descriptions of behaviour can be used to express such pro-
tocols pecisely and also enable further analysis to check, e.g. that integrity
is preserved and whether two processes have equivalent observable behaviour.
Another problem is that of how to model physical devices in a suitably abstract
way. Both these problems are illustrated in the example in section 2.

1.4 Equivalence and Conformance

Of direct relevance to decisions about specification style are the notions of equiv-
alence and the relationship of satisfaction or conformance between implemen-
tation and specification. To a certain extent, the problem of where to draw the
boundary between process and data descriptions can be aleviated by the ability
to show equivalences. If two specifications can be shown to be equivalent de-
spite differences in the style (e.g. in the separation between process and data),
it does not really matter which is chosen as the preferred specification because
they will both have the same posssible implementations (for a suitable notion of
equivalence). However, it is important to take into account how easy the proofs
of equivalence and satisfaction are. This is where further investigation is needed



both in theory (methods for showing equivalences) and in practice (criterea for
good choices of specification style).

For algebraic specifications of data types, there are well established notions
of observational equivalence and sufficient completeness. For Process algebras
there are many different notions of equivalence.

The LoTos standard gives the semantics of behaviour expressions with labelled
transition systems and desribes some equivalence relations in an annex. In par-
ticular: testing equivalence (with an associated congruence) is a weak equiva-
lence which may identify too many processes for some applications, while weak
bisimulation equivalence (with the associated congruence called observational
equivalence) can be regarded as a minimal equivalence to be subsumed by all
others.

In the literature, there are other interesting equivalences, based on De Nicola and
Hennessy Testing [DeN Henn 1984], Refusal Testing [Phillips 1987}, Generalised
Failures [Langerak 1990}. In [Abramsky 1987] a framework for studying many
equivalences was developed and it was shown how observational equivalence was
a form of testing equivalence with an extra-rich notion of test.

There is also the relationship of conformance discussed in [Brinksma et al 1986].
In process algebra, behaviour expressions are used both for describing specifi-
cations and implementations, thus the satisfaction of a specification by an im-
plementation (the conformance of the implementation to the specification) is
a relationship between behaviour expressions. One possible notion of confor-
mance is shown in [Brinksma et al 1986] to be a combination of extension and
reduction. Behaviour B extends C if it may perform additional actions without
disrupting the actions required by C (it has no new failures involving actions
required by C). Behaviour A reduces B if it is more deterministic (a reduction
in the don’t care choices without introducing new failures). A conforms to C if
there is some B such that A reduces B and B extends C. (Formal definitions are
given in section 3). This notion of conformance allows for arbitrary behavismr
in an environment which does not behave properly and so does not say anythmg
about robustness. It is clear from this that using processes to specify required
behaviour involves more than just describing some ideal behaviour and hoping
that equivalence will capture all the alternative descriptions of behaviour which
would be allowable substitutes. It seems necessary to consider the environment
and a possible range of alternative behaviours which might be acceptable but
which are not equivalent when writing a specification. However, it may be poss-
sible to develop new equivalences (or forms of test) which capture classes of
allowable behaviours to ease the burden of specification.

In the next section we describe the example; in section 3 formalisation problems
are discussed and the formal definitions for stable observation testing are given.



2 Example: Simulation of an Output Device

This example is based on some abstract descriptions of graphics output devices
(taken from [Gnatz 1990]) and couched here as LoTOs process specifications.It is
chosen to illustrate several problems about observation as well as representation
techniques.

2.1 Output Devices VECDEYV and CURPOS

We assume an underlying type STROKE

type STROKE is INDEX POINT COLOUR

sorts Stroke

opns mty: -> Stroke
stroke: Stroke Index Index Colour -> Stroke
wndw: Index Index -> Bool
apprnc: Stroke Point -> Colour

eqns ....

endtype

with a sort Stroke and an operation stroke to create Stroke values starting
from an initial empty Stroke value (mty). The wndw function determines the
area of interest and the apprnc (appearance) function is an observer function
allowing the inspection of Stroke values at chosen points to produce a colour.
We will not introduce the laws relating these here as they are not needed for
the example. However we do note that stroke(s,i,j,c) is only regarded as
properly defined when wndw(i,j) = true. In [Gnatz 1990] this restriction on
the application of stroke is expressed in the laws for the type. In LoTos
specifications, functions are always total so we have put such constraints into
process specifications which control use of the type. This type is common to
two different abstract output devices which are pictured in figure 1.

The device VECDEV (vector device) has primitive access operations (event gates)
c1r (clear/reset operation) and drwln (draw-line operation with parameters of
type Index, Index and Colour). There is also a gate for passing back a boolean
value to indicate if the last drwln operation was successful.

This, apparently simple feedback turns out to be an interesting problem which
allows us to illustrate a general problem about distributed states and communi-
cation. In an actual implementation, this feedback might well be implemented
as a return value of a procedure or using an update to a shared variable. In this
context, we need to express the feedback as a communication between processes
(i.e. as an event), but there are different ways to do this:-



150k drawto
moveto setcir
getcir
arwin ciear getok - getpos
A Vector Device A Cursor Device

Figure 1: VECDEYV and CURPOS

o A simple offering of the return event after a drwln action which requires
the event to be accepted (suspending other offers until after the return
value has been communicated)

o Buffering the return event through an intermediate process so that it can
be ignored (i.e. so that the writing and reading of the value do not have
to be synchronised).

e Making the return value part of the event drwln (i.e. making this a two-
way communication with values passing both ways).

Each of these is reasonable, but we choose the second method in order to model
the possibility of ignoring the result which we believe to be the more typical
case in implemented software. The first method requires more constraints on
external processes, while the third method would causes problems for events
which take some time to complete. A fourth possibility where the return event
is offered alongside alternative choices is ruled out as unreasonable. This is
because a process waiting for the return event could be pre-empted by another
process trying to proceed with further drwln requests causing the first process
to deadlock or receive the wrong results.

We specify the process VECDEV using components running in parallel, where one
process (0OK) is just a buffer for the isok return value (written to by the main
process on gate setok and able to be read independently by an external process
(the application program) through isok:-

process OK[setok,isok](b:Bool)
:= ( setok?ok:Bool; OK[...Jlok
[] isok!b; OK[...]b
)

endprocess



isok

VECDEV!

Figure 2: Construction of VECDEV1

(We use ... to abbreviate the repetition of the event gate names in the header).
So process OK can either accept a new boolean value (ok) on gate setok or output
its current value on gate isok and repeat. The other process VS is given by:-

process VS[clear,drvln,setok,observel (vs:Stroke)
:= ( clear; VS[...Imty
[] drwln?u:Index,v:Index,c:Colour;
( [wndw(u,v)] -> setok!true;
vs[...]l(stroke(vs,u,v,c))
[J [not wndw(u,v)] -> setok!false; VS[...]vs

)
[1 observe?p:Point!apprnc(vs,p); VS[...]vs
)
endprocess

VS is parameterised by a current stroke value (vs) and will engage in a clear
request to return to the initial mty state. Alternatively it will engage in any
drwln action with values for the two indexes (u and v) and colour (¢); after
which the appropriate boolean value is sent to the companion process by a
setok action. depending on whether wndw(u,v) is true or false. In the former
case, the parameter is changed to record the new state (stroke(vs,u,v,c)).
otherwise it is left unchanged. The additional (observe) action is discussed in
the next sub-section, and we ignore it for the moment.

A first approximation to the main process is VECDEV1 (see figure 2) which con-
sists of VS and OK in parallel, communicating via setok actions which are then
hidden from outside:-



darwin
VECDEV

Figure 3: Construction of VECDEV

process VECDEVO[clear,drwln,isok,setok,observel
:=  VS[clear,drwln,observe,setok] (mty)
| [setok] |
OK [setok, isok] (true)
endprocess

process VECDEVi{clear,drwln,isok,observel
:= hide setok in VECDEVO([clear,drwln,isok,setok,observe]
endprocess

)

This is referred to as a first approzimation because it is wrong!

The problem is that the concurrentisation of the behaviour into two communi-
cating processes allows an application program to do a drwln and then read the
return value on isok too early (before it is set by the internal commumcatlon).

This illustrates a fundamental problem with distributed states. The problem
can be avoided by writing VECDEV as a non-distributed (sequentialized) process.
However, we prefer to seek a more general solution which allows us to keep
the distributed state. avoiding the erroneous behaviour by adding some further
control.

The solution given below. makes essential use of the multi-party synchronising
communications which are available in LoTos and CSP (but not CCS). We
introduce a third, controlling / synchronising process which insists on following
a drwln action by a setok action before allowing an isok action (or another
drwln):-



process CONTROL[drwln,setok,isok]
:= ( drwln?u:Index,v:Index,c:Colour;
setok?b; CONTROL[drwln,setok,isok]
[0 isok?b; CONTROL[drwln,setok,isok]
)

endprocess

This CONTROL process is put in parallel with VECDEVO so that all drwln, setok
and isok actions must synchronise (see figure 3):-

process VECDEV[clear,drwln,isok,observel
:= hide setok in
VECDEVO[clear,drwln,observe,setok]
| [dxwln,setok,isok] |
CONTROL [dxrwln,setok,isok]
endprocess

This now has the correct behaviour. Furthermore, we claim that VECDEV is (ob-
servationally) equivalent to the following non-distributed (sequentialised) ver-
sion (SVD):-

process SVD[clear,drwln,observe] (vs:Stroke, b:Bool)
1= ( clear; SVD[...]l(mty,b)
[J drwln?u:Index,v:Index,c:Colour;
( [wndw(u,v)) -> svD[...J(stroke(vs,u,v,c),true)
] [not wndw(u,v)] -> SVD[...]J(vs,false)

)
[] observe?p:Point!apprnc(vs,p); SVD[...]l(vs,b)
)
endprocess

An outline proof of this is given in the appendix. Although this is only a small
example, it illustrates the potential for a formalism which allows such proofs.

The second device CURPOS is more like a device drawing dots and keeping track
of the current cursor position and a current colour as well as a stroke value.
Once again it comprises a main process CS in parallel with OK and a CONTROL’.
CS is expressed as:-

process CS[rst,stclr,drwto,moveto,qc,qp,
observe,setok]l (vs:Stroke,vc:Colour,cp:Index)
:= ( rst; CS[...]J(mty,bg,dx(0,0))
[] stclr?c:Colour; CS[...J(vs,c,cp)



[] drwto?u:Index ;
( [wndw(cp,u)] -> setok!true;
cs[...](stroke(vs,cp,u,vc),vc,u)
[} [not wndw(cp,u)] => setok!false;
csl...J(vs,vc,cp)
)
(] moveto?u:Index ;
( [wndw(cp,u)] -> setok!true; CS[...]J(vs,vc,u)
(1 [not wndw(cp,u)] -> setok!false;
csl...1(vs,vc,cp)
)
[J qctve ; cs[...1(vs,vec,cp)
{1 gplep ; ¢CS[...1(vs,vec,cp)
(] observe?p:Point!apprnc(vs,p); CSL[...]1(vs,vc,cp)
)

endprocess

and has a rst action (similar to clear) which resets all the parameter values
of type Stroke Colour and Index respectively. CS will also accept: stelr
(set colour) with any colour (¢) an action which is used to update the colour
stored in the current state (parameter); drwto (draw to) with an index value
(u) which is used along with the current position index value (cp) and current
colour (ve¢) to draw a stroke (update the stroke value) and update the current
position provided wndw(cp,u) = true; moveto with an Index value (u) which
is used along with the current position index value (cp) to update the current
position provided wndw(cp,u) = true. [For both drwto and moveto, OK is sent
the appropriate boolean value (via setok) before any change of parameters].
The actions qc and gv are just to allow the parameters ve and cp (recording
the current colour and current position, respectively) to be inspected. (Once
again, we ignore the observe action until the next sub-section.)

The main CURPOS is just the parallel composition of CS and 0K communicating
via setok with CONTROL’ used to synchronise. It has the same events as CS
except that setok is hidden from outside and the other gate from OK (renamed
getok) is also visible:-

process CURPOSO[rst,stclr,drwto,moveto,getok,qc,qp,observe]
:= CS[rst,stclr,drwto,moveto,
qc,qp,observe,setok] (mty,bg,dx(0,0))
| [setok] |
OK [setok,getok] (true)
endprocess

10



drawto isok

to
move seteir Sneli2
Shelll

getcir

etok getpos

g rst drwin clear
Simuiating CURPOS with Simulating VECDEV with
2 shell around VECDEV a shell around CURPOS

Figure 4: Simulation Shells

process CONTRCL’{drwto,moveto,setok,getok]
:= ( drwto?u:Index ; setok?b;
CONTROL’ [drwto,moveto,setok, getok]
[] moveto?u:Index ; setok!ib;
CONTROL’ [drwto,moveto,setok,getok]
[J getok?b; CONTROL’[drwto,moveto,setok,getok]
)

endprocess

process CURPOS[rst.stclr,drwto,moveto,getok,qc,qp,observe]
:= hide setok in
CURPOSO[rst,stclr,drwto,moveto,getok,qc,qp,observe]
| [drwto,moveto, getok,setok] |
CONTROL’ [drwto,moveto,setok, getok]
endprocess

2.2 Simulations of the Devices

Ve are interested in the possibility of writing shells around VECDEV and GURPOS
so that they appear to behave like the other device as far as applications pro-
grams are concerned and allow the same displays to result. Such shells are pic-
tured in figure 4 and can be simply modelled as processes put in parallel with
the underlying device with internal links hidden from the outside. However.
we also need to deal with observation by the user. At the moment, we have
only discussed the behaviour through the gates which are used by applications
programs but we know that the effects on states. or at least the appearance of
displays can be observed. In process descriptions, we need to model such ob-
servations explicitly as events in order to avoid identification of different states.
(Processes can only be distinguished by their behaviour in terms of events at

11



drwin

isok Clear

observe

Figure 5: Allowing for External Observation of Appearance

gates so a user’s observation gate is needed as well as the application program
gates.) We have therefore added the observation gates through which the ap-
pearance of any point can be ascertained. This is modelled as a two way event
with a point provided by an observing process which receives the appearance
of the point (in one communication). [The use of a two-way communication
is not significant, but is just one way around a restriction in LoTos. Ideally,
the entire appearance function from points to colours with its domain should
be communicated in a single event, but passing such a functional value is not
possible directly in LoTos. Another way round this problem is to encode the
function as a value via its (finite) graph.]

When the shells are added, they do not link with the observation gate (see figure
5). The shells (SHELL1 and SHELL2) are given in figure 6 and the descriptions
of the composed devices and shells are given in figure 7.

The shells are relatively straight forward, for example, when SHELL2 receives
a drwln event with values (u,v,c), it sends a setelr!c event (to be received
by CURPOS), then sends a moveto!u, then checks if this was ok (using a getok
event). If it was ok, then it sends a drawto!v and checks to see if this was also
ok, storing the result locally in its own parameter.

The combined process SIMVECDEV is supposed to simulate the behaviour of
VECDEV and is built from CURPOS running in parallel with SHELL2 communi-
cating via the gates of CURPOS (except observe) which are then hidden from
other processes. Similarly SIMCURPOS is supposed to simulate the bekaviour of
CURPOS and is built from VECDEV running in parallel with SHELL1 communicat-
ing via the gates of VECDEV (except observe) which are then hidden from other
processes.

Unfortunately, the relationship between these simulating devices and the origi-
nal devices is not just one of observational or even testing equivalence.

12



process SHELLi[clear,drwln,isok,rst,stclr,drwto,moveto,
getok,qc,qp] (vc:colour,cp:indx, b:bool)
:= ( rst; SHELL1[...}(bg,dx(0,0),b)
[J stelr?c:Colour; SHELL1[...l(c,cp,b)
[J drwto?u:Index ; drwln!cp,u,vc ; getok?ok:Bool ;
( [Cokl =-> SHELLi[...J(vc,u,true)
[1 [not okl -> SHELLi[...](vc,cp,false)
)
{] moveto?u:Index ;
( [wndw(cp,u)] -> SEELLi[...](vc,u,true)
[1 [not wndw(cp,u)] -> SHELL1[...](vc,cp,false)
)
(1 qctve ; SHELLi[...J(vc,cp,b)
{1 gptep ;: SHELLi[...](vc,cp,b)
[1 getok!b ; SHELL1[...](vc,cp,b)
)

endprocess

process SHELL2[rst,stclr,drwto,moveto,getok,
¢lear,drwln,isok] (b:Bool)
:= ( clear; rst; SHELL2[...]b
[J drwln?u:Index,v:Index,c:Colour;
stclric; movetolu; getok?oki:Bool;
( [okil -> drawto!v; getok?ok2:Bool;
SHELL2([...Jok2
(1 [not okil -> SHELL2[...]false
)
{] isok!b; SHELL2(...]bv
)
endprocess

Figure 6: (i) SHELL1 converts a VECDEYV into a CURPOS (ii) SHELL2 con-
verts a CURPOS into a VECDEV

13



process SIMVECDEV[clear,drwln,isok,observe]
:= hide rst,stclr,drwto,moveto,getok,qc,qp in
CURPOS [rst,stclr,drwto,moveto,getok,qc,qp, observel
| [rst,stclr,drwto,moveto, getok] |
SHELL2[rst,stclr,druwto,moveto,getok,
clear,drwln,isok] (true)
endprocess

process SIMCURPOS[rst,stclr,drwto,moveto,getok,qc,qp, observel
:= hide clear,drwln,isok in
VECDEV([clear,drwln, isok,observe]
i [clear,drwln,isok]|
SHELL1{clear,drwln,isok,rst,stclr,drwto,
moveto,getok,qc,qpl (bg,dx(0,0),b)
endprocess

Figure 7: (i) SIMVECDEYV uses CURPOS and SHELL? to simulate a VECDEV
(ii) SIMCURPOS uses VECDEV and SHELL1 to simulate a CURPOS

The reason for the inequivalence is that delayed effects and unstable intermedi-
ate states of the simulating device allow (premature) observations of the display
state to be used to distinguish between devices and their simulations. For ex-
ample, after doing a drawln action, SIMVECDEV may need five internal actions
before a stable state with the correct display can be observed.

The simulating devices do conform to the original devices but. as we show in
the next section, this is not the end of the story.

3 Formalisation Problems

There are several inter-related problems illustrated by the example from the
previous section. We separate these into two groups:-

Modelling problems: including choice of representation problems, observational
equivalence and conformance problems.

Design problems, including the design of protocols for communication with de-
vices.

Both groups are problems to do with creating graphics standards in general
rather than just the formalisation of these standards, but we can explore and

14



compare choices more easily using appropriate formalisms such as LoTos.

The modelling problem of what to do about observing appearance is discussed in
some detail below. Another problem concerns finding a gqgd level of abstraction
for appearance. Gnatz [Gnatz 1990] discusses the need for several different
levels of abstraction to model geometric semantics and equivalences, graphical
equivalences and physical/technological equivalences. We have not addressed
these issues here which are mostly concerned with data algebra rather than
process algebra. However process algebra enters into the problem as well because
a single construction can often be broken up into several different sequences of
primitive actions which reflect different ways to form the same construction.
This means that data type equivalences may have to be studied through process
algebra action sequences.

On the design side, the small protocol example concerning feedback of responses
to requests given sub-section 2.1 was illustrative of a general problem in con-
structing standards for graphics software which involves distributed state. In
this case the control to be added was obvious. However, *for larger designs.
the form of this control may not be so clear cut. This is where formalisation
is particularly important to help sort out the various possibilities and com-
pare for equivalences. Recent work on a Computer Graphics Reference Model
[CGRM 1992] is an attempt to provide a framework for comparing graphics
standards and to allow for the many ways in which the state can be distributed
with pipelines between the operator and an application.

3.1 Observing Appearance

In the example, we saw the need to cater for recording effects which might
be observed directly by the user on an output device, and did this by adding
an observation gate. This is an essential step if we intend to model devices
as processes and still have the ability to distinguish devices with observably
different behaviour. However, we saw that a device designed to simulate another
device may allow observations of appearance before the device has settled down
to a stable state and thus may give erroneous results.

Technically, this could be seen as the same synchronisation problem discussed
for the behaviour of VECDEV (section 2.1) where extra control was introduced
to ensure synchronisation. For example, we could prevent observations at the
wrong time in simulating devices like STMCURPOS by extending the shell with an
observation alternative (at the top level) of the form

[] observe?p:Point?c:Colour; SHELL1[...](vec,cp,b)



Figure 8: Processes A, B, C and D

This extra gate would be included in the list of synchronisation gates in the
parallel composition of SIMCURPOS but not hidden in order to ensure that ob-
servations synchronise with both the shell and the underlying device (CURPQS)
and exclude the possibility of premature observation. However, such a solution
is rejected on the grounds that shells are intended only as interfaces between
devices and applications programs and it is therefore unrealistic for a shell to
have direct access to the user’s observation gate.

We should accept that an output device may need time to stabilise before ob-
servations are made, and turn our attention to the way in which we make obser-
vations. That is, we need to look at the appropriate form of tests and notions
of conformance for such devices rather than try to correct the simulation.

The stability problem is illustrated more abstractly in figure 8 with processes
A and B. Here, actions a and ¢ are to be thought of as (user) observations
of the state while b is an ordinary action (e.g. an application program action
like drwln). Process B corresponds to the process which might result from
simulating A and behaves very much like A provided observations are made
only at stable states. In both A and B, before doing b, only observation a
can be made; after doing b only observation ¢ can be made once the state is
stable. This distinguishes an unacceptable implementation such as D (in figure
8) which does not have this required property. In D it is possible after a b event
to first observe the (correct) c event and then afterwards observe the {incorrect)
a event,.

In fact B conforms to A according to the definition of conformance given below

16



but, unfortunately, so too does the unnacceptable process D (showing that this
notion of conformance is inadequate for our purpose).

Another problem is a process like C (in figure 8) which also conforms to A but
which can clearly deadlock if a user observation is made at the unstable state.
The behaviour of B when observed at the unstable state is benign, but that of
C is not.

In describing devices as processes, we have had to add appearance observation
as an event which is a two way communication or synchronisation. In reality, the
passive observation of appearance is really only a one-way communication and
should not influence the device being observed, so the possibility of deadlock is
an artefact of the representation forced on us by the use of processes. Processes
descriptions such as C do not correspond to any realistic process because of the
way we interpret the (appearance) observation events.

This prompts us to define a set of reasonable processes with respect to (appear-
ance) observations. This is formalised in the following sub-section.

3.2 Stable Observation Testing

A restriction on when appearance observations may be made will be introduced
into tests. First we give formal definitions of the traces and failures of processes
P for which we assume there is a labelled transition system with transitions of
the form P = P’, meaning P may do action z and become P'. Let a € Act be
any visible action and z € Act U {i} where i is the unique invisible action.

Notation

P=P =4; P=P ordn>0P" p'

P=a'>P, =def 3P1,P2 P=€> P1 g’PgéP’

P=P =4y 3P,,..P, P =24 p 23 p,... =2 P, where ¢ = a103...an
P=2» =43P PP

Traces(P) =qey {0 € Act*|P =5}

Failures(P) =4¢y {(0,X)|3P' P== P’ and YP",a € X, not P’ = P"}

Extension, reduction and conformance are defined by:-

Definition P ext Q@ =4y Traces(P) D Traces(Q) and if (o, X) € Failures(P)
with ¢ € TR(Q) then (o, X) € Failures(Q).

Definition Pred Q =4.5 Traces(P) C Traces(Q) and Failures(P) C Failures(Q).

Definition Pcont Q =4,y if (0,X) € Failures(P) with ¢ € TR(Q) then
(¢, X) € Failures(Q).

17



Both ext and red are pre-orders which generate the same equivalence (namely
failures/testing equivalence). On the other hand, conf is not a pre-order as it
is not transitive. It is easy to check that Pconf @ if and only if 3R, Pred R
and Rext @

To define an appropriate notion of equivalence for stable observations, we distin-
guish a new set (Obs) of actions which we wish to regard as special observations
(only to be done at stable states). In the examples of the previous section,
these would be events at the observe gate, but we generalise the concept for
any new set of actions. In the formalisation below, we assume processes are
defined by a labelled transition system. Let a € L be the normal visible actions
(events) and o € Obs be (appearance) observation actions where L N Obs =
and Act = L U Obs.

We define a process as being reasonable if doing an Obs observation cannot
cause new deadlocks.

Definition P is reasonable if whenever (o, X) € Failures(P) then
(o> (Act — Obs), X) € Failures(P).

where ¢ > X means the projection of sequence ¢ with actions in .\' only.

In the following, we make use of the deadlock detection tests described in

[Langerak 1990] and add special cases for the new set of actions. TLOTOS
test T" are given by

T == pass | stop | a;T | ;T | Th[)T= | =T | 6;T

where ¢ € L and 7 is a countable set of tests. § is Langerak’s test for deadlock.
The behaviour of test runs is given by first defining the behaviour of a test using
a labelled transition system. We introduce 4/ as a new action indicating that a
test has been passed:-

5 1 [
pass-\-/-i»stop a;T 5T T 6;T =T

T, =T e 6
BT 97 Uil S

where z € Aet U {1,0,+/}. The combined behaviour of a test and process in a
test run is given by:-

PP oG PL P Ll
Pl. TSP, T PpPlTSP|.T PI.TSPILT

T -3z € ActU{i,} P|.TS) TST
Pll. T Y stop P, TSPl T

18



A completed test run of P and T is a derivation of P||, T == stop for some
o € (Act U {i,v/,0})". A successful test run is a completed test run where ¢
ends in a /. We say that Pmay T if there is a successful run of P and T, and
Pmust T if all completed runs of P and T are successful.

It is shown in [Langerak 1990] that only may tests are necessary with the addi-
tion of 6, and furthermore, only a restricted form of sequential tests are necessary
to distinguish processes.

We will add new restricted forms of tests involving actions in Obs, ensuring
that they can only be performed after a deadlock test. We will add these to the
sequential tests defined below

Let AC L,O C Obsand X C Act. We introduce 8x T to abbreviate £{z; stop|z €
X}[]0; T. Sequential tests T are defined (with auxiliary restricted tests (R) and
simple tests (S)) by:-

Te=r S| 0aR
R == 6popass|o;R| S
S u= pass|a;T

(Note that 63T = 6;T). The added Obs actions in restricted tests R can only
be done following a deadlock test (in T) and hence will only be done starting
in a stable state.

We need to add 0;S = S to the transitions for tests (0 € Obs) and we can
derive
z€X

0
0xT - T ————ma—7—
XSS 6xT = stop
The combined behaviour of a test and process in a test run is modified to
include:- ,

PSP TST
Pl.TSP|. T

This extension allows us to restrict testing of the special observations to start
in stable states and therefore make fewer distinctions between processes. (We
require that processes considered are reasonable with respect to Obs for this).
Relative to this restricted form of testing, we claim that the devices described
in section 2 are testing equivalent to the simulated versions.

In figure 8, A, B and C are (stable observation) testing equivalent, but D can
be distinguished with the test T' = b;0; a;pass (recall that Obs = {a,c} and
L = {b} in this example). C is not distinguishable, but as pointed out before,
can be ruled out of consideration as it is not a reasonable process ((ba, {c}) is

19



a failure of C but (b,{c}) is not a failure of C. The fact that B, C and D all
conform to A (in fact they are all extensions of A) shows a problem with the
notion of conformance in this context. The notion of extension assumes extra
behaviour as irrelevant, but this should not be so if the extra behaviour iinvolves
erroneous displays of information.

4 Conclusions

The example of simulations of output devices illustrated several problems of
design and modelling in the use of process algebra to formalise graphics stan-
dards and software. In the report, we hope also to have shown that a formal
specification language like LoT0S can provide a basis for a much more detailed
analysis and the potential for studying equivalence and conformance problems
formally. In particular, we illustrated a proof of equivalence for two versions of
a model for an output device. We also showed that an equivalence proof for a
simulating device with the original version was not so straight forward. This
was due to problems in modelling passive observations and also the possible
delays in effects due to distributed processing (unstable states). A solution was
formalised through considering notions of equivalence, testing and conformance.

This work is regarded as a first step. There is clearly much more to say about
conformance, observation and equivalence in this context. There is a need to
take the theory much further in order to establish whether or not there are any
useful equational axiomatisations for new notions of conformance.

Finally, we would like to acknowledge that a tool for checking bisimulation
equivalence - the concurrency workbench [Cleaveland et al 1990] was useful in
this work. Although the bisimulation proof given in the appendix is simple
enough to do by hand, a small use of the workbench allowed the discovery of
some non-equivalences in earlier examples and highlighted the delay problem
discussed in sub-section 3.1.

References

[Abramsky 1987] S. Abramsky Observation Equivalence as a Testing
Fguivalence Theoretical Computer Science No. 53
p.225-241 North Holland 1987

[Arnold et al 1987) D.B. Arnold, D.A. Duce, G.J. Reynolds An Approach
to the Formal Specification of configurable models of
graphics Systems EUROGRAPHICS ’87, Proc Euro-

20



[Baumann 1990}

[Brinksma et al 1986]

[Cleaveland et al 1990]

[CGRM 1992]

[DeN Henn 1984]

[Duce 1988]

[Duce 1989]

[Duce et al 1989]

[ERIL)

[GKS 1985

pean Computer Graphics Conference and Exhibition,
(eds G.Marechal) North Holland, pp. 439-463

P. Baumann A Description Technique for the Computer
Graphics Reference Model (Unpublished? Draft com-
municated to D. Duce July 1990)

E. Brinksma, G. Scollo, C. Steenbergen LOTOS Speci-
fications, Their Implementations and Their Tests Proc
6th Int Symposium on Protocol Specification, Testing
and Verification, Montreal, June 1986, North Holland

Cleaveland R., Parrow J., Steffan B. A Semantics-
Based Verification Tool for finite state Systems (IFIP)
Protocol Specification, Testing and Verification, IX,
E.Brinksma, G.Scollo, C.A.Vissers (Eds) Elsevier Sci-
ence Publishers B.V. North Holland 1990

ISO - Information Processing Systems - Computer
Graphics - Computer Graphics Reference Model.
ISO/IEC IS 11072

R. De Nicola, M.C.B. Hennessy Testing Equivalence for
Processes Theoretical Computer Science 34 pp.83-133

D.A. Duce Formal Specification of Graphics Software
in Theoretical foundations of Computer Graphics and
CAD, R.A. Ernshaw (Ed), Springer Verlag, London
1988

D.A. Duce GKS, Structures and Formal Specifica-
tion EUROGRAPHICS ’89, Proc European Computer
Graphics Conference and Exhibition, (eds W. Hans-
mann, F.R.A. Hopgood, W. Strasser) North Holland,
pp 307-323.

D.A. Duce, P.G.W. ten Hagen, van Liere Components,
Frameworks and GKS Input EUROGRAPHICS 89,
Proc European Computer Graphics Conference and
Exhibition, (eds W. Hansmann, F.R.A. Hopgood, W.
Strasser) North Holland.

Equational Reasoning in LOTOS SERC/DTI funded
project IEATP/SE/IED4/1/1477 (Verification Tech-
niques for LOTOS).

Information Processing Systems - Computer Graphics
- Graphical Kernel System ISO 7942

21




[Gnatz 1990]

[Langerak 1990]

[LOTOS 1989

[Phillips 1987]

[Purvis 1990]

[Ruggles and Yee 1987]

R.Gnatz Graphic Data Types, Abstract Graphic
Machines, Non-Deterministic Specifications and the
Derivation of Interactions. Draft Report, Technische
Universitat Munchen

R.Langerak A Testing Theory for LOTOS using Dead-
lock detection (IFIP) Protocol Specification, Testing

_and Verification, IX, E.Brinksma, G.Scollo, C.A.Vissers

(Eds) Elsevier Science Publishers B.V. North Holland
1990

ISO - Information Processing Systems - Open Systems
Interconnecion - ISO-LOTOS, A Formal Description
Technique Based on the Temporal Ordering of Obser-
vational Behavior Int Standard ISO 8807, 1989

I. Phillips Refusal Testing Theoretical Computer Sci-
ence 50 pp.241-284

J.B. Purvis The Use of LOTOS in the Specification
of Graphics Software Brunel University, Computer Sci-
ence Technical Report CSTR-90-5, July 1990

C.L.N. Ruggles and S.T. Yee Notes on Atiempting a
Top Down Formal Specification of GKS in META-IV
Technical report No.3, Dept. of Comp. Sci., Univ. Le-
icester, Sept 1987

22



Appendix: Equivalence Proof

We prove that VECDEV is equivalent (weak bisimulation congruent) to the sequen-
tial alternative SVD after making some simplifications to avoid dealing with a
large number of similar states. The main simplification is to make type Stroke
trivial with one value (i.e. all stroke values are equivalent to mty). We can then
simplify the other value passing actions as follows:-

o stands for all observe actions (which are now identified)

a stands for all drwln! (u,v,c) actions for which wndw(u,v) = true
b stands for all drwln! (u, v, c) actions for which wndw(u,v) = false
c stands for clear

t stands for isok!true

£ stands for isok!false

st stands for setok!true

st stands for setok!false

With these abbreviations, SVD and VECDEV can be expressed as

SVD = t;SVD [J c;svD [J a;sSvD [] b;svD’
SVD? = £;SVD’ [] ¢;SVD’ [] a;svD [] b;svD’

VECDEV = hide st,sf in VD
VD = VDO |[a,b,t,f,st,st]] C
VDo = VS |[st,sf]] OK (=VECDEV0)

VS = a;t;VS [ b;f;Vs [ c;Vs
OK = ¢;0K [] st;0K [] sf;NO
NO = £;NO [J sf;N0 [J st;0K

Cc=¢t:c[] £;¢[] a;c’ [] b;C? (=CONTROL)
¢’ = s£;C [] st;C

By expanding out VDO and then VD (see figure 9) we calculate new expressions
for VD and VECDEV:-

vD
vD?

t;vD [J c;vb [] a;st;VD [ b;sf;VD’
£;VD’ [J c;VD’ []1 a;st;VD [] b;sf;VD’

VECDEV
VECDEV?

t;VECDEV [] ¢;VECDEV [] a;i;VECDEV []1 b;i;VECDEV’
f;VECDEV’ [] ¢;VECDEV’ [J a;i;VECDEV [] b;i;VECDEV’

where i is the silent (internal) action. It is now clear that VECDEV and SVD are
equivalent using the law that x;i;A = x;A.

23



Figure 9: Transition diagrams for VS, OK, VDO, C, VD, YECDEY and SVD

24



