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Abstract

Mural is an interactive mathematical reasoning environment designed to assist the
kind of theorem proving tasks that arise when following a formal methods approach to
software engineering. It is the result of work carried out at Manchester University and
the Rutherford Appleton Laboratory under the Alvey IPSE 2.5 project.

Considerable design emphasis has been placed upon the user interface, using the power
of workstation technology to present information and to give the user freedom of action
backed up by careful dependency tracking. Through this emphasis on the user interface
it is hoped to enable users to maintain their intuition of the problem domain and hence
guide the proof in the right direction, whilst the mechanical symbolic manipulation of the
machine can maintain the integrity of the proof.

The Mural proof assistant is generic in that it can be instantiated for reasoning in a
variety of logics. Logical theories are constructed in a hierarchical store where collections
of declarations and axioms are structured along with derived rules and their proofs. Some
effort has been spent on the instantiation of the proof assistant for the formal method VDM.
This instantiation includes theories of the logic LPF upon which VDM is based, and of
the basic types and functions of VDM. . e

The system includes tools for the construction of VDM specifications .and reifications
between them and for the generation of the proof obligations that provide the basis of
the formal verification of the refinement relationship. It also supports the construction of
theories in the proof assistant where it is possible to reason about specifications, reifications
and proof obligations. Though there are many more features that would be desirable in a
complete environment for VDM, this degree of support has shown that the Mural proof
assistant could be used as an integral part of a generic support environment including
provision for the formal development of software.

This paper concentrates upon the VDM support aspects of Mural: how users can build
specifications and reifications between them; and how these are “translated” into Mural
theories including the generation of the corresponding proof obligations.

Keywords: formal methods, formal specification, refinement, proof, integrated support

environments.

1 Introduction

One frequently cited reason for the slow take-up of formal methods in industry is the lack of
tools for supporting the processes involved. Tools are required that can provide integrated
support for the full formal development method, including the construction of specifications,



incremental refinement of specifications to implementations, the generation of proof obliga-
tions for the verification of the refinements and the formal reasoning required to discharge
them. Such tools could also address the management of the formal objects involved. How-
ever, fully integrated tools for all the processes of formal software development may still be
some way off.

The Mural system, developed by Manchester University and Rutherford Appleton Lab-
oratory under the Alvey funded IPSE 2.5 project, is primarily concerned with providing
generic support for what is perhaps the most intricate of these processes, that is the con-
struction of fully formal mathematical proofs. The project has also concerned itself with
how this proof assistant could be integrated with support for the other processes of formal
development. To this end, support facilities for specification and verification for the formal
development method VDM have been built alongside the formal reasoning assistant. With
this combined facility it is possible to construct VDM specifications and reifications between
them and generate the theories in which proof obligations can be discharged, thus providing
a level of integration not previously available.

This paper discusses the support for VDM provided by the Mural system. We assume
some knowledge of VDM, including data reification and operation modelling.

2 Background
21 The Mural System

The major component of Mural is a generic mathematical reasoning environment designed
to assist in the theorem proving tasks that arise when following a formal methods approach
to software engineering. Using a carefully specified and constructed kernel, and through the
use of “state-of-the-art” user interface design, Mural is intended to harness the mechanical
precision of the computer in combination with the intuitive insight of the user. Mural is
founded on a generic logic that can be instantiated to a variety of logics [1] and thus is
capable of providing support for the reasoning required in many formal development meth-
ods. Logical theories are organised in a hierarchical store where collections of declarations
and axioms are structured along with derived rules and their proofs. Proofs are constructed
interactively in a natural deduction style. The user is given the freedom to construct the
proof in any manner — top-down, bottom-up, middle-out,..., with Mural providing assis-
tance in determining which existing rules in the theory store are applicable at each stage,
and checking correctness of the reasoning in the proof.

The second component of Mural is a support facility for VDM, the VDM Support Tool
(VST). This facility provides support for the construction of VDM specifications and refine-
ments between them. It also generates theories in the hierarchy in which the specifications
can be reasoned about together with the proof obligations that must be discharged to verify
the design decisions. Considerable effort has also gone into populating the proof assistant
with the theories of the basic constructs of VDM. By intention, the Mural VDM support tool
does not provide full support for specification and refinement in VDM, as the primary reason
for its development was to investigate how a fuller support facility could be integrated with
the proof assistant. Only a small part of the VDM specification language is catered for, and
only a limited notion of reification is supported. Operation decomposition is not addressed.
At present, the only way to determine the status of proofs about a specification or reification
is by looking at the status of the rules in the corresponding Mural theories. The VST does
however provide a level of integration of support for the processes of specification refine-
ment and proof that was not previously available. Though limited in its original objectives,



the degree of support provided has attracted much interest and the system has been used
on several non-trivial specifications as part of evaluation work.

2.2 Related Work

Following almost twenty years of development and practical use in a wide variety of appli-
cations, work is currently under way to develop a BSI standard for the VDM specification
language [2]. The standardisation effort concentrates upon the abstract and concrete syn-
taxes but also addresses semantics and context conditions. It is hoped that this work will
be adopted by ISO. The standardisation effort, however, does not consider issues related to
refinement and proof.

The use of VDM as a development method including refinement and proof is described
in [3]. There have been a number of papers addressing semantic issues in VDM. In [4, 5], the
formulation of the proof obligations are justified with respect to a semantic model for VDM.
Monahan [6] has presented a semantic model for VDM type definitions; this has been used by
Arentoft and Larsen as the starting point for a semantic model for BSI-VDM [7]. Operation
decomposition has been addressed by Milne [8] and Ah-Kee [9]. A new formulation of some
of the proof rules for operation decomposition is presented in [3].

In addition to Mural, there are a number of other tools for the construction of VDM
specifications. STC’s VDM Toolset [10] provides a structure editor for specifications, which
performs some static type-checking and syntax conformance. Adelard’s SpecBox provides
a parser for BSI-VDM which performs arity checking. IST’s GENESIS has been instantiated
for VDM, giving a structure editor and static semantics checker; there is also a proof editor
for LPF, but proof obligations are not generated from VDM specifications.

A number of tools exist which provide support for specification construction and (patent)
type-checking in Z, including Spivey’s “Fuzz”. Several proof tools have been used to dis-
charge Z “proof opportunities” (including the “B” tool [13] and the Boyer-Moore theorem
prover). There have been some recent interesting developments in reasoning about Z speci-
fications by embedding the notation in other systems, in the “zedB” rule base for the B tool,
and in the FST project’s work on Z in HOL.

The RAISE project [14] developed a “wide-spectrum” specification language in which
specifications can be written in both model-oriented and algebraic styles. Part of the RAISE
work has involved the design of tools to support the construction of specifications, though
little or no support for formal proof is provided.

3 A Small Example

In this section we give an example of a small development in the VDM support tool. The
example is a simple address book with a lookup operation.

Figure 1 shows the development browser, which comprises two (duplicate) lists of speci-
fications (“abstract” and “concrete”, relative to the reifications) and a list of reifications. Each
reification links two specifications, with the intention of showing that one specification can
be considered a “more concrete” version of the other. When a specification is selected in the
“abstract” list, the list of reifications is filtered to show only those reifications “from” that
specification, and similarly for the “concrete” list. When a specification is selected in each
list, it is possible to add a new reification between them (in addition to any already present).
Selecting a reification causes its abstract and concrete specifications to be selected in the two
lists, as in the figure.
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(Abstract) specifications Reifications (Concrete) specifications

lookup reification lookup lev 1
lookup lev 2 laokup tax 2
lookup reification aux. spec, lookup reification aux. spec.

Figure 1: A development browser

From the development browser, we can add, browse and edit specifications using a spec-
ification browser. Figure 2 shows the specification browser on the level 1 (most abstract)
specification of “lookup”. This consists of lists of the type, constant, function and operation

tackup le

Typa dafinitions

ADDR :: house : N,

street : String
town : String

Stata county : String AddrBook
Constants ,: AddrBook = map NAME to ADDR

LOOKUP
LOOKUP(name : NAME) addr : ADDR
rd addrBook : AddrBook
pre (name€dom addrBook)
post (addr=addrBook{name})

Functions

Operations

ADDNAME

Figure 2: Specification browser on the “abstract” lookup specification

definitions in the specification, a button to show the state, and a “noticeboard” in which
the definitions can be displayed and edited in individual “notices”. (The noticeboard is a
miniature window environment in which notices may be moved, resized, iconised and ex-
posed). The visible notices here show definitions of the types ADDR and AddrBook, and the
specification of the LOOKUP operation. At this level, the address book is simply a map from
names to addresses, and LOOKUP is specified in terms of map functions. These definitions
were constructed using a structure editor which uses an abstract syntax drawn from the BSI
draft standard.

Another instance of the browser on the “level 2 lookup” specification is shown in fig-
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ure 3. The address book in this case is a sequence of pairs of names and addresses. To

Type definitions
Stri AddrBook2
AddrBook2 = seq of NameAddrPair
NameAddrPair inv-AddrBook2(ab2 : seq of NameAddrPair) : B
NAME A ¥i: N, Vj: N, ((s-nama(ab2(i))=s-nama(ab2(j)))i=j))
ADDOR

LOOKUP2
State LOOKUP2(name : NAME) addr : ADDR
Constants rd addrBook : AddrBook2
pra isAddrfor(nama, addrBook)
post (addr=addrfor(name, addrBook))

Functions addrfor

addrFor addrFor{name : NAME, addrBook : AddrBook2) addr : ADDR
_ pre existsAddrfor(name, addrBook)
post Ji : N, ({i€inds addrBook)
~(mk-NameAddrPair(name, addr)=addrBook(i}}))

existsAddrfor
Oparations existsAddrfor(name : NAME, addrBook : AddrBook2) : B

_ £ Jap : NameAddrPair. ((ap€elems addrBook)A(s-name(ap)=name))

Figure 3: Specification browser on the “concrete” lookup specification

ensure that it is still “map-like” we need to restrict this by an invariant that no two distinct
elements of the sequence can have the same name. To simplify the specification of the new
operation LOOK UP2, we choose to define two auxiliary function definitions, eddrFor (which
is implicitly defined) and ezistsAddr (which is explicitly' defined).

When we construct a reification between two specifications, or look at an existing reifica-
tion, it is presented in a reification browser (figure 4). This contains component lists for the
two specifications, and lists for definitions specific to the reification (e.g. auxiliary functions
used to define retrieve functions). Components of specifications may be viewed via notices
in an attached noticeboard. At present, the reification browser is incomplete; the only in-
teresting thing we can do here is to select an operation in each specification and create an
operation model between them. Doing this for the operations LOOKUP and LOOKUP2
gives us an operation modelling browser (figure 5). This lists the arguments, read and write
externals and result of the two operations (the operation may also be viewed as a notice
in the attached noticeboard), and a central list which is a “pool” of available data reifica-
tions. The component lists of the two operations are tied, so that when (for example) the
(single) read-only state component of the abstract operation is selected, the corresponding
component of the concrete operation is also selected. The intention is to link each of these
component-pairs by a data retrieval describing how the type of the concrete component can
be viewed as a data reification of the type of its abstract counterpart. When a pair is selected,

INote: though explicit, this definition is non-constructive, through its use of existential quantification; however,
the function is “clearly implementible” in this case.
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Constants L
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Functions
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isAddrfor
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Oparations Data reifications
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Operations

LOOKUP2
. LOOKUP2(name : NAME) addr : ADDR
d addrBook : AddrBook rd addrBook : AddrBook2
re (name€dom addrBook) pra isAddrfor(namae, addrBook)
ost (addr=addrBook(name)) post (addr=addrFor(name, addrBook))

Figure 4: A reification browser

this can be done by selecting a data reification in the central list and “tying” it to the pair.
These links are used in the generation of the domain and result obligations arising from the
operation model. The noticeboard in the example shows a data reification between AddrBook
and AddrBook2; in addition to the abstract and concrete types, this contains the definition
of the retrieve function from AddrBook2 to AddrBook, here defined in terms of an auxiliary
function mapFromSeq. Note that we permit interface refinement (i.e. reification of argument
and result types); and that our reification model is restricted to those cases where the abstract
and concrete operations have the same number of read and write components.

We are free to construct abstract and concrete specifications in any order, and the compo-
nents of each specification can be added in any order. It is even possible to begin building

a reification between two specifications before they are complete (indeed, we have done so
here).

4 Theories from Developments

In this section we describe the approach taken in the translation of VDM specifications and
reifications into the Mural theory store, to create theories within which we can reason about
the proof obligations that arise. As Mural is generic, there is a “once-off” effort to instantiate
the theory store for VDM, creating a hierarchy of theories (propositional and predicate LPF,
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read~-only state
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precondition
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& mapFromSaq(r)

DDR identit

NAME idantity
Abstract: NAME
Concrete: NAME
Retrieve Function:
idNAME(r : NAME) : NAME

Figure 5: An operation model browser

numbers, sets, maps, sequences etc.) culminating in a “VDM Primitives” theory. This theory
should be an ancestor of every theory generated from a specification or reification in the
VDM support tool. Such a theory store is not static: not only will new theories be created
corresponding to new specifications and reifications, but more derived rules can be added
to the VDM Primitives hierarchy as required.

4.1 Notation used for Mural theory components

There is insufficient space in this paper to describe Mural’s generic logic; here we give only a
brief summary of the notation used in this paper to describe components of Mural theories.

The Mural theory store is organised as a hierarchy of individual “theories”. Each theory
can declare new type and expression symbols, which can be defined either through axioms or
by direct definitions. The syntax permits higher-order metavariables and includes dependent
type constructs, but beta-reduction is not built-in (to make matching of proof rules decid-
able). In addition to axioms, a theory can also contain derived rules; each rule may have an
associated proof which justifies it with respect to the axioms or other derived rules. (It is
possible to use derived rules in proofs before they have been proven; Mural’s dependency
tracking can determine the set of unproven rules used in a proof (directly or indirectly),
and will also prevent circular arguments). A theory can have one or more parent theories,
in which case all the declarations, definitions, axioms and rules of these theories (and their
ancestors) may be used in the theory.

We will use the following notation to describe components of Mural theories?.

*This notation is not precisely the same notation as used in Mural, and does not capture the full power of
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A Mural declaration such as
mk-T + [2,0]

declares a constant symbol mk-T of expression arity 2 and type arity 0. We will use this
notation for both expression and type declarations. If mk- T is an expression constant declared
as above, then we may construct expressions such as mk-T|[z, y] for any expressions z and
y. Whether or not such an expression is meaningful depends upon axioms (e.g. formation
rules) given in the theory?.

Expression and type symbols may be bound to definitions, e.g.

A = (= (fet]) v ~([e2]))

defines A as an expression constant of (expression) arity 2 (using [e1] and [e2] as “placehold-
ers” in the definition). Instances of definitions in expressions may be folded and unfolded;
for example the expressions

AP,Q] and —(-PV-Q)

are interchangeable. (In Mural, it is also possible to specify a “pretty-printing” format for
each constant (declared or defined). For A, this is defined as ([e1] A [e2]), so A[P, Q] will
actually appear as (P A Q). In much of what follows, we will use pretty-printed notation
without introduction.)

We will use the following notation for inference rules:

e L
" mk-T(a,b): T

defines an inference rule (which may be either an axiom or a derived rule) called “mk-T
formn”. This rule has expression metavariables « and b (which may be “instantiated” to any
expressions when applying the rule). It has two hypotheses (which in this case are typing
assertions) and a conclusion. This rule states that if we have two expressions « and & of
types A and B respectively, then the expression mk-T|[a, b] is of type T.

4.2 Theories from Specifications

How best to divide the objects corresponding to specifications into theories is largely a
matter of taste. For example, we could try to place each type definition in a theory of its
own; this would allow reuse of the type definition when reasoning about other specifications.
However, we would then have to make the theory structure reflect the inter-dependency of
type definitions. We choose a simpler approach where each specification becomes a single
Mural theory. If a “finer-grained” structure is required, then the theories must be rebuilt by
hand.

The “translated theory” of a specification is a single Mural theory, with the VDM Primi-
tives theory as its parent. The theory contains:

¢ Mural type definitions, type formation and checking axioms corresponding to the type
definitions of the specification;

Mural’s declaration mechanism and inference rules (for example, an inference rule may also contain sequent
hypotheses), but is sufficient for our purposes.

All of the constants we will declare during the translation of specifications and reifications will have type
arity 0. An example of a constant with a non-zero type arity is the set type constructor X-set, which is declared
as setof — [0,1] (i.e. it takes one type as an argument).



o definitions of any constants and explicit functions;
« definitions of the pre- and post-conditions of implicit functions and operations;

e (initially unproven) rules corresponding to proof obligations and type-checking (includ-
ing invariant checking) of functions and operations

As we shall see later, many proof obligations can be presented as extra hypotheses to axioms,
rather than as unproven rules. In such cases, the axiom can then be used in practice only
when the proof obligation is discharged.

The translation of specifications is incremental, but demand-driven: for example, if a
function definition is modified after translation, then its translation is undone, but will be
regenerated if the specification is subsequently re-translated.

4.3 Translation of types and type definitions

Generally, a type definition in a specification will be translated to a similar type definition in
Mural. Most of the type constructors of VDM can be described in “general” theories which
form part of the VDM Primitives theory. Sets, maps, sequences, (binary) type unions and
optional types are in this category. Type definitions using these constructors can be translated
as Mural definitions using instances of the generic constructors. N-ary type unions can be
translated as a composition of binary unions.

4.3.1 Invariants

For a definition of type T with an invariant where the type shape uses the above constructors,
translation is straightforward. First, the definition of the invariant inv-T (an explicit function
definition) is translated (as will be described later). Then the type definition is translated to
a SubType definition. For example, the type definition:

T = Tezp

where
inv-T(v) 2 P(v)

is translated to a definition of inv-T and to the Mural definition of the type symbol T
T < v: Tezp' | inv-T(v) >

where Tezp’ is the translation of the type shape Tezrp. This defines type T as a subtype of
type Tezp’' such that all values » of type T satisfy the predicate inv-T (v). Note that we adopt
the view that the invariant is an intrinsic part of the type T, and that there is no intermediate
type “T without the invariant”.

43.2 Composite types

Composite type definitions require an alternative treatment. As different composite type
definitions may have different numbers of fields, and as Mural does not allow constants of
variable arities, it is not possible (or rather, not easy) to define a general “composite type
constructor” in Mural. Therefore composite type shapes cannot be translated into Mural
type expressions directly. Furthermore, a greater amount of information is associated with



composite types than other type constructions, in that a composite type definition also de-
fines constructor and destructor functions. Instead, we create an axiomatic definition, with
formation and typing rules for expressions involving the constructor and destructors.

For example, the composite type definition
T 2 f1: A
f2:B
should be “translated” to:

a declaration of the constructor function (an expression constant with expression arity
two):

mk-T — [2,0];
declarations of the destructor functions (expression constants with expression arity one):
s-f1,8-f2— [1,0];

appropriate typing axioms:
2T
(i)—;m;;r
t: T
[s-£2 formn ()5~

a:A,b:B

£ )
ErE T L UL

and axioms defining s-f1 and s-f2:

k-T(a,b): T
61 \ m ’
s-f1 intro|(a, b) P Lmb (a0 = o

. k-T(a,b): T
> b) m 3
s-f2 intro [(a, s-f2(mk-T(a, b)) =5
(note the use of typing assertions to ensure that mk-T(a, b) is well-formed)
yping
i T

(T oKD, s 72y =

When a composite type definition has an associated invariant, this must also be declared
and mentioned in the mk-T formation axiom, e.g.:

inv-T — [2,0]
:A,b: B, inv-T(a,b)
- o :
[T fomnle, -2 A e
and we must also provide an axiom for asserting the invariant:
e \ mk-T(a, b): I
[l e T

It should be pointed out that this is only a partial translation, as an induction scheme for
T is not generated.
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4.4 Translation of function definitions
441 Definition of pre- and post-conditions

A VDM definition of a function f declares a new function name for use in expressions.
Therefore the first part of the translation creates a Mural declaration of an expression symbol
f of the appropriate arity. If the function has a pre-condition, then a definition of the symbol
pre-f is also created; similarly for the post-condition of an implicit function. For example,
given:

f (z:N,y:N) »:N
prez > y
post r = z-y

then the following definitions will be created in translation:

pre-f & ([1] > [2])
post-f £ [3] = [1]-[2]

The symbols pre-f and post-f can then be used in the definition axiom for the function.
We must guard against ill-formed pre- and post-conditions; though some of these checks
could be performed by the VST, we prefer to phrase these checks as proof obligations in the
translated theory. Given arguments of the correct types, the pre-condition must be a Boolean
expression:

wepredfe Do
pre-f(z,y):B

It may be argued that this is overstrict, in that it forces pre-conditions to be total; however, for
approaches such as animation, it may be useful to determine when a function or operation
cannot be applied or invoked, in addition to determining when it can. B

Given arguments of the correct types such that the pre-condition holds, the post-condition
must also be a Boolean expression:

z:N, y:N, r:N, pre-f(a, b)

).
(z,y,r, post-f(a,b,r):B

4.4.2 Translation of explicit function definitions

An explicit function definition such as:
fF:NxN-=>N
f(zv y) é -y

could be translated into a Mural definition f — [e1]-[e2] where instances of z and y in the
function body have been replaced in the Mural definition by [e1] and [e2] respectively.

(Note that this function is ill-defined when z < y; this will be reflected in the inability to
complete the proof of the well-formedness obligation given later.)

However if the body of a function does not refer to some argument, then such a simple
translation would not work, as the Mural definition would be ill-formed. (The expansion
of any Mural definition must mention all of its arguments; this allows us to treat definition
folding and unfolding as proper inverses. It also prevents us from replacing a non-denoting

i1



term by a denoting term.) The only well-formed definition we can make will have an arity
which is less than that of the original function; this would greatly complicate the translation
process. Therefore we have chosen to translate explicit functions into symbol declarations
and axioms rather than direct definitions. This has the further advantage of making the
translation of explicit functions similar to that for implicit functions.

For an explicitly-defined function:

f:NXN—»N
flz,9) & z-y
prez > y

we want to be able to substitute occurrences in expressions of applications of the function by
the body of the definition (with suitable substitutions). However, we should only be allowed
to do this when the function application is well-formed, that is, when the arguments are of
the correct types and satisfy the pre-condition. Thus, we want a rule of the form

:N, y:N, pre-f (=,
[T e o, )22 20 0)

f(z,9) = z-y

Note that instances of z and y in the body of the function are translated to meta-variables.

However, this is not strict enough: we must also ensure that the function definition is
itself well-formed. When the arguments are of the correct type and satisfy the pre-condition,
then the body should have the same type as the result type claimed for the definition. In
theory, the VDM support tool could perform some of the well-formedness checks on explicit
function definitions, but for some cases — those where the result type of the function has
an associated invariant — this cannot be done mechanically, and the well-formedness check
must be presented as a rule to the proof assistant. Such a rule might appear as:

:N, y:N v
f well-formed [z, y) z:N, 9:N, pre-f(z, )
z-y:N

In preference to giving this as a separate (unproven) rule, we add its conclusion as an extra
hypothesis to the final definition axiom, to make the dependency clear:

. z: A, y: B,pre-f(z,y), z-y:N
f defn|(z, ¥ )- o) e=u
,Y) =

The “working version” of this axiom can then be derived by proving the general well-
formedness obligation rule and discharging the new hypothesis.

4.43 Translation of implicit function definitions
Given an implicit function definition:

f(z:Nyy:N) =N
prez >y
postr = z-y

we need rules for reasoning about expressions which contain subexpressions of the form
i (ela 62)‘

If f is implicitly defined as above, then we know that the expression f(z, y) is of type N
when z, y are of type N and pre-f holds for them; i.e., we need a rule such as:

12



\ z:N, y:N, pre-f(z, y)
DY (=, 9):N

As f is implicitly defined, we cannot, in general, give a precise value z such that f(z,y) = 2;
the most we can say is that f(z, y) satisfies its post-condition (given the same conditions as
above):

— ~ y TN, y:N,pre-f(z,y)
z,y, post-f(z,y,f(z,v))
Before we can use these rules, we should discharge the implementibility proof obligation

for f (otherwise, there is no guarantee that the expression f(z,y) denotes a value). The
implementibility obligation can be described as the (initially unproven) rule:

z:N, y:N, pre-f(z, 3)
7 ib \ y 3 )
flmplementl lefz, ) Ir:N. Post-f(z, Y, 7')

In preference to generating the first two rules in translation, we create two axioms which
incorporate “one-point” versions of the implementibility obligation:

:N, y:N, pre-f(z,¥),3r:N - post-f (z,y, 1)
- v 2N y:N, pre-f (2, 9), P 9
f-formn |(z, y) (9N

(z V) z:N,y: N, pre-f(z,y),3r:N - post-f(z,y,r)
i post'f(zv ysf(zs y))

Thus, before we can derive any properties of an expression which applies f to a particular
z and y, we must show that f is implementible for those particular arguments. Note that if
we prove the more general implementibility obligation, we can then use it to discharge the
one-point versions in the axioms and thus derive the “working versions” first given.

4.5 Translation of operation definitions

As operation decomposition is not supported by the VST, only implicit operation definitions
are translated. The pre- and post-conditions are translated in a similar manner as for function
definitions. Their translation is slightly more complicated in that the pre-condition can refer
to the “initial state” of an operation, and the post-condition can refer to the initial and final
states, in addition to the arguments and result.

The implementibility obligation for an operation

OP (z:X) R
extrdrd : Rd
wruwr @ Wr

pre ...expression in z, rd and wr...

post ...expression in z, r, rd, wr and wr...

is translated as an unproven rule*:

z: X,rd: Rd, wr: Wr,pre-OP(z, 7, rd, wr)
Ir: R - Jwr: Wr - post-OP(z, 7, rd, wr, wr)

I OP implementibility I(z, rd, wr)

*If operation decomposition were supported, then the conclusion could appear as a hypothesis to an axiom

concerning calls of the operation within an “explicit” operation, by analogy with the definition axiom for an
implicit function definition.
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4.6 Theories from Reifications

In order to reason about a reification of one specification by another, we need the information
contained in the two specifications. Therefore, the theory within which we reason about the
reification should inherit from both their theories. This is achieved by making the theories
of the two specifications parents of the reification theory.

Roughly, the theory of a reification will contain definitions of the retrieve functions used
in the data reifications, together with all the concomitant proof obligations of data reification

and operations modelling. It will also contain definitions of auxiliary types and functions
used.

4.6.1 Translation of data reifications

Within a reification, a particular data reification from a concrete type C to an abstract type
A via a retrieve function retr-A translates to:

¢ a definition or declaration of the retrieve function (in the same manner as for explicit
function definitions), as a function from C to 4:

retr-A — [1,0];

¢ and an unproven rule expressing the adequacy obligation for the data reification:

ciC
Ja: A - retr-A(c) = a

l retr-A adequacy |(c)

Both of these are situated in the theory of the overall reification.

4.6.2 Translation of operation models

Recall that an operation modelling refers to the abstract and concrete operations and a number
of DataReifs. Translation of the OpModel amounts to the translation of each of these along
with the creation of two unproven rules in the reification theory: one expressing the domain
obligation, and another expressing the result obligation.

Suppose an abstract operation AOP is modelled by a concrete operation COP:

AOP (aa: AA) ar: AR COP (ca: CA) cr: CR

extrd ard : ARD extrd erd : CRD
Wr awr : AWR wr cwr : CWR

pre ... pre ...

post ... post ...

and that retr-a, retr-r,..., retr-wr are the retrieve functions associated with each component.
Then the domain proof obligations generated is of the form:

ca: CA,crd: CRD, cwr: CWR,

-AOP((retr- X =
ICOP T I(ca, s ) pre (retr-a(ca), retr-rd(crd), retr-wr(cwr))
pre-COP(ca, crd, cur)

that is, the concrete pre-condition should hold whenever the abstract pre-condition holds for
the retrieved values. The generated result proof obligation has the form:
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a,:Ag,rc:Ro,rd.: RDc,wr,: WRg,wr.: WRe,
pre-OP y(retr-a(a.), retr-rd(rd.), retr-wr(wr,)),
p0st-OP ¢ (ac, T, Tde, WTe, WTe)
post-OP y(retr-a(a.), retr-r(r.), retr-rd(rd.),
retr-wr(wr, ), retr-wr(wr,))

[OPC result obligaticll(ca, e, CUT)

thatis: the abstract post-condition should hold on the retrieved values whenever the abstract
pre-condition and concrete post-condition hold. The generalisation to multiple arguments
and state references is straightforward.

4.7 An example

An important design decision in the development of Mural was to preserve as far as possible
the freedom of the user to construct objects (such as theories, proofs, specifications and
refinements) in any order. However (partly as a consequence of this freedom of construction
order) care must be taken when we come to translate specifications and reifications into the
Mural theory store. For example, an attempt to translate (say) an operation which refers to a
function or type which has no definition in the specification will fail; a reification cannot be
translated before its abstract and concrete specifications; and before an operation model can
be translated, all of its component-pairs must be tied to data reifications. Furthermore, the
VDM support tool’s translation mechanism does not track dependencies, so the user must
ensure that components of specifications and reifications are translated in the correct order.

With these provisos in mind (and with the addition of “identity retrievals” on NAME
and ADDR in our example operation model), we can translate our mini-development into
the Mural store. This creates a Mural theory for each specification, extending the basic VDM
theory, containing translations of the type, function and operation definitions (including
well-formedness and implementibility proof obligations). Translating the reification creates
a theory which inherits from the theories of the two specifications and contains definitions
of the retrieve functions, the corresponding adequacy proof obligations, and the domain and
result obligations of the operation model. Figure 6 shows a Mural theory browser on the the-
ory generated from our reification. Its parent theories are the theories generated from the two
specifications (which in turn have the basic “VDM” theory as a common parent). Thus the
reification theory inherits all the declarations and definitions in the two specification theoties
(e.g. definitions of the pre- and post-conditions of LOOKUP and LOOKUP?2). The reification
theory contains declarations and definitions of the retrieve functions used in our operation
model, together with their adequacy obligations. The noticeboard contains notices showing
the statements of the domain and result obligations for our operation model, together with
the statement of the adequacy obligation for retr-AddrBook.
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signatura

idADDR : Constant
IGNAME : Constant

retr-AddrSook2 : cﬂﬂ5t1

rulas

iJADDR adequacy oblig
idADDR definition : Axiqg

LOOKUP by LOOKUP2 domain obligation ; Rule

2 2 name : NAME ), ( addrBook : AddrBook2 ),

( pre-LOOKUP [ ( idNAME [ name J) , ( ratr-AddrBook2 [ addrBook ] ) ]) }

( pre-LOOKUPZ [ nama , addrBook J)

IdNAME adequacy oblig
IdNAME definition : Axid
LOOKUP by LOOKUP2 dg
13 P21 f e

accept

parents

: lookup lev 1 theory
i 100kup 1av 2 theory

rule groupings

i

( name : NAME ), ( addr : ADDA ), ( addrBook : AddrBook2 ),

( pre-LOOKUP [ ( I¢NAME [ name ]) , ( retr-AddrBook2 [ addrBook])]),
( post-LOOKUP2 [ name , addr , addrBook]) }

K
i

{ post-LOOKUP [ ( idNAME [ name J) , ( idADDA [ addr]) , ( retr-AddrBook2 [

addrBook 1) 1)}

mapFromSeq definition : i

accept

tactics

retr-AddrBook2 adequag
retr-AddrBook2 definitiof

retr-AddrBook2 adequacy obligation : Rule

)
{ ( a: AddrBook ) }

oracies

3 r : AddrBook2 . ( ( retr-AddrBook2[r])=a )

Figure 6: A theory browser on the LOOKUP reification theory

5 Conclusions

As stated earlier, the VDM support tool component of Mural is not a fully-fledged support

environment for VDM. There are many ways in which it could be improved or extended, for
example:

Only a small subset of VDM is catered for.

Many well-formedness checks could be carried out prior to the translation phase (in-
Cllldmg, for example, “patent” type-checking, detection of references to undeclared
types/functions).

The theory structure should be finer-grained, allowing re-use of common type defini-
tions or even common data reifications.

The support tool does not “keep track” of proof obligations etc, so users cannot eas-
ily determine which obligations are still outstanding for a particular specification or
reification (or component thereof). (This would be easy to remedy.)

The reification model chosen greatly limits the kinds of operations that can be modelled.

There is no support for operation decomposition; much work needs to be done to
determine a practical interface model for this.

However, the VDM support tool has satisfied our original intentions of providing “inter-
esting” proof obligations to exercise the Mural proof assistant, and of demonstrating that a
generic formal reasoning environment can be extended and instantiated to provide support
for a particular development method.
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