
~ Science and Engineering Research Council

~ Rutherford Appleton Laboratory
~ Chilton DIDCOT axon oxn OQX RAL-91-065
a:

September 1991

A Formal Specification of a Graphics
System in the Framework of the .
Computer Graphics Reference Model

D Duce and F Paterno

-

A FORMAL SPECIFICATION OF A GRAPHICS SYSTEM IN THE
FRAMEWORK OF THE COMPUTER GRAPHICS REFERENCE MODEL

+ ,*D.Duce ,F.Paterno
(+) Rutherford Appleton Laboratory, Chilton, Didcot, Oxon
(*) CNUCE - C.N.R., Via S.Maria 36, 56100 Pisa, Italy

Abstract
The Graphical Kernel System, GKS, was published as an ISOIIEC standard in 1985 and is now
undergoing revision. A Reference Model for Computer Graphics reached the status of Draft Inter­
national Standard in August 1991.This paper explores the use of the Reference Model as the basis
for the structure of a formal description of the framework of the first draft of the revised GKS,
called GKS-R. The Reference Model combines process and data views of computer graphics, and
for this reason, the formal description technique LOTOShas been used for the work described here.
LOTOS combines an algebraic data type definition notation ACTONE with a process description
technique based on process algebras.

•

Llntroduction
The Computer Graphics Reference Model(CGRM)[I] provides a conceptual framework for the
development and the integration of graphics systems and their related systems and it is being devel­
oped as an international standard. It is defined as five environments hierarchically layered and with
the same internal logical structure.
Its main goals are: verify and refine requirements for computer graphics; identify needs for com­
puter graphics systems and external interfaces; compare computer graphics systems. It is intended
to provide a consistent terminology for computer graphics systems as well as generic framework
by which all future graphical systems and relationships among them should be.described. Ther~ is
also an interesting discussion in progress on how systems different from graphics systems, asWIn­

dow systems and image processing systems, are related to this framework.
Its proposal was born from the consideration that a set of graphics systems (OKS, OKS-3D,
PIllGS, PIDGS PLUS) has been produced over a ten years period with common concepts but also
with incompatibilities due to the different times at which they were produced, the different people
involved, and the different application areas.
It was clearly going to be difficult to produce a Reference Model of the existing set of standards
with clean concepts. The approach had to be to define a ReferenceModel having to filter the current
concepts and to use this as the basis for the next generation of graphics systems.
The aim of this present work is to provide a formal specificationfor the framework of GKS-R struc­
tured in the same way as the CGRM.The motivation for the work was a desire to explore the struc­
ture of the CGRM and the applicability of this particular structuring to the description of a graphics
system, in a formal way.
The first ISO standard for computer graphics, the Graphical Kernel System(GKS) was published
in August 1985 and is now undergoing revision. The GKS-R system considered in this paper is the
result of a meeting of the GKS Rapporteur Group held in Leeds in July 1990 which has already
undergone one further round of revision in February 1991, leading to a document with Committee

1

Draft Status. The document has to undergo much more processing before it will became an Inter­
national Standard. The reason for choosing OKS-R for this exercise is that it is based on a small
number of well-defined concepts and has a well-defined internal architecture that differs signifi­
cantly from the current OKS standard. The OKS revision work is being carried out in the light of
the insight gained during the development of the CORM and hence is an appropriate system in
which to explore the structuring used by the CORM. A conscious effort has been made by the OKS
Rapporteur Group to adhere to the CORM. The OKS Revision activity is described in more detail
in [3].
The specification is given in LOTOS[4]. LOTOS is a formal description technique, standardized
by ISOIIEC. LOTOS was originally developed for the formal description of communications pro­
tocols. It contains a notation for describing communicating processes, which is based on Milner's
Calculus of Communicating Systems (CCS)[5], with an algebraic notation for defining datatypes
called ACTONE[6].
The CORM combines process and datatype views of computer graphics, and the fact that LOTOS
provides both process and data types descriptions was the main reason for choosing LOTOS for
this work. There was also a desire to see howwell an International Standard, developed within one
domain of application in mind, could be applied to a different domain.
The formal definition of a general framework for graphics systems has been addressed already[7]
providing a configurable model graphics system as general framework and using the Z specifica­
tion language. In this approach a variety of different configurations of specialized functional units,
called graphics modules, can be constructed with a range of differing functionality. A graphics sys­
tem is built up from a selection of graphicsmodules, organized into conceptually related processing
classes, termed processing strands.These form a framework on which a number of designated con­
figurations of graphics modules, termed processing pipelines can be assembled.
Also the outline of the OKS-R functionality has been already formally specified[8] using LOTOS.
In the earlier work the kernel and each workstation were associated with one specificprocess while,
to follow the CORM framework, a deeper decomposition into processes is needed.
LOTOS has been shown to be a useful specification language for graphics systems because it has
concurrent constructs needed to describe the cooperation among output and input functionality and
the possible input modes and it also allows algebraic data types specifications for defining the
graphics data types exchanged among the graphics component and their processing.
The paper concludes with an example of a frequently used graphica.lintera~tion described ~sing
the specification developed here, to show that it can be used to descnbe a WIdespectrum of mter­
active graphic applications.

2. The Computer Graphics Reference Model
The CORM consists of five environments representing five different levels of abstraction in a
graphics system. The environments all have the same internal architecture composed of five proc­
esses and four data structure. The functions of the environments are:
Construction environment: the application data to be displayed is prepared as a model from which
specific graphics scenes can be produced. Input tokens in the instruction store are constructed in
the precise form utilized by the application.
Virtual environment: a set of virtual output primitives is defined in a completely geometrically
defined way. Input tokens are defined in a coordinate system used in the virtual environment.
Viewing environment: a specific view of the scene is taken, projecting the picture to be presented.

2

-

Input tokens in the selected store are elevated to the virtual environment.
Logical environment: the picture is rendered as an image ready for presentation: each graphical
output primitive is associated with a complete set of properties, in a device-independent way.Input
tokens are converted to device independent form with properties added to differentiate the origin
of the input if required.
Physical environment: the image is presented as a display for output to a specific device. All prop­
erties associated with the physical input devices used will be known at this stage.

S
t
o
r

•..••f-+----I.a
g
e

a
g
e Manipulation

I
n
t
e
r
f
a
c
e Fig.1 The components of a environment

•

I
n
t
e
r
f
a
c
e

One environment is described as five processes and four data structures(fig.1).
The processes are:
absorption: accepts output data from the next higher environment and applies the geometric and
other transformations necessary to produce the data in the form appropriate to its environment. It
is called production in the virtual environment and rendering in the logical environment.
manipulation: processes data from the collection store and the aggregation store, it adds data from
these two components to the others and it provides linkages between input and output within a spe­
cific environment.
distribution: takes data from the current environment and passes it to the next lower environment,
no transformations, geometric or otherwise, are applied to the data as it is distributed.
assembly: is the process which accepts input data from the next lower environment and processes
it for inclusion in the aggregation store or token store of the current environment.
emanation: it takes input control data passed directly from the assembly process or input tokens
from the token store of the current environment and passes it to the next higher environment. It is
called generation in the virtual environment and abstraction in the logical environment.
The data elements are:
composition: the conceptual accumulation of the graphical output existing at any time within an
environment. It is called scene in the logical environment and image in the logical environment.
collection store: a set of named and structured set of output data intended for use within an envi­
ronment.

3

token store: it contains input tokens ready for emanation to the next higher environment. It is called
directive store in the virtual environment and information store in the logical environment.
aggregation store: a set of named and structured set of input data intended for use within an envi­
ronment.

3. The GKS-R case study
The key component of GKS-R is the NDC picture, which consists of a sequence of output primi­
tives. In this specification, only the polyline primitive is considered. It suffices to represent its
geometry by a list of points (the vertices of the primitive) and its attributes by the nameset attribute
bound to it on creation from the GKS state list. The GKS state list consists of the current values of
the GKS state, nameset attribute, list of normalization transformations (presumed ordered by view­
port input priority) and associated list of normalization transformation numbers and the currently
selected normalization transformation.
The NDC picture may be displayed on workstations. Multiple workstations can be in operation
together. As the NDC picture is updated, the displays on the open workstations will be updated at
the same time. A mechanism is provided to suspend this updating of visual effects for a particular
workstation. For this specification, a workstation is represented by the workstation state list and
physical picture.
The physical picture is represented as a sequence of physical primitives. A physical primitive is
represented by a list of points and the values of the operator attributes, highlighting and detectabil­
ity. The subsequence of the NDC picture to be displayed on a particular workstation and the values
of the operator attributes are determined by selection criteria. The workstation state list consists of
separate selection criteria for visibility, highlighting and detectability, the current workstation
transformation and a flag used by REQUEST mode input. Sequences of output primitives can be
defined as a picture part and retained in a picture part store. A picture part is thus a sequence of
output primitives.
In the current GKS-R document, GKS segments are supported using the nameset mechanism and
picture parts. A route direction has also been included which directs output primitives either to the
NDC picture or through a by-pass channel directly to a backdrop on each workstation.
These features are not discussed in this paper.
The GKS-R operations modelled in the specification are:
OPENGKS
CLOSEGKS

CREATEOUTPUT PRIMITIVE

SET PRIMITIVE ATTRIBUTE (nameset only)
SET NORMALIZATIONTRANSFORMATION

DELETE PRIMITIVES

BEGIN PICfURE PART
END PICfURE PART
BEGIN PICfURE PARTAGAIN
APPEND PICfURE PART
COPY PICfURE PARTFROM PICfURE PARTSTORE

4

-

SET INPUT MODE
REQUEST LOCATOR
REQUEST PICK
SAMPLE LOCATOR
SAMPLE PICK
AWAITEVENT

OPENWORKSTATION
CLOSEWORKSTATION
SETWORKSTATIONSELECTION CRITERION
SETWORKSTATIONTRANSFORMATION

•
OKS-R combines the input functions for the different classes of input device into single functions
for each operating mode. Here we have found it convenient to specify separate functions for each
of the two device classes described.
OKS is a 2-dimensional system, this implies the viewing environment can be ignored because it
performs only the identity transformation. The construction environment is also null. In each envi­
ronments state information is distributed between the component processes. The allocation of
OKS-R fuctionality to environments follows the description of the OKS functionality in the terms
given in annex A of the CORM document. In OKS the production of primitives in NDC spacewith
attributes bound corresponds to the virtual environment. OKS workstations correspond to the log­
ical and physical environments. Realization of bundled aspects is done in the logical environment
during rendering. In OKS those aspects that are definitely geometric are bound at the virtual (NDC)
environment. The individual/bundled model fits into the CORM as long as the complete geometry
is specified at the NDC level. The event queue in OKS corresponds to a token store in the virtual
environment. Transformation of locator and stroke input values from NDC to WC coordinates is
performed by an emanation in the virtual environment. Echoing occurs when the appropriate out­
put primitives are created in the image.
OKS can open multiple workstations, this means that from a CGRM point of view there is a fan­
out with one virtual environment and as many logical and physical environments as the number of
open workstations. In this specificationwe consider a simplified case with a kernel (a virtual envi­
ronment) and a workstation (a logical environment) statically allocated, with the workstation asso­
ciated with two input devices (locator and pick) that can be reconfigured at any time in one out of
the three possible input modes, and one output device.
LOTOS supports a multiway rendezvous protocol that is different with respect to the conventional
mechanism found in languages such as ADA, OCCAM, ECSP: more than just two processes can
be involved, and are not fixed, but they can vary dynamically during the evolution of the system
depending on the processes activations realized (while the channels are static that means for a
given set of allocated processes it is not possible to modify the processes synchronizing on each
channel). The value passing on a gate can be realized along different directions and it is possible
to transmit on the same gate, at different times, different data types. When the communication
between processes has to be modelled, and values of basic data types have to be sent, there are two
possible approaches:
- to use simple events where the value passed belongs to a structured data type (the associated
commands are: process sender: ...gl lx; .../process receiver: ...gl ?y:complex_type; ...)
- to use structured events, allowed by LOTOS, composing in the communication simpler data type

5

-
(the associated commands are: process sender: ...gl !xl !x2 ... !xn; .../ process receiver: ...
gl ?yl:simplel_type ?y2:simple2_type ...?yn: simplen_type;): . .
Wehave chosen the second approach because otherwise the specification gets more complex SInce
more data types are added only to compose smaller data types in order to specify the communica­
tion, and then we need more primitives to insert in their definition different operations to decom­
pose them again by inquiring the value of the components of the complex data types There are two
possible approaches to describe CORM data types in LOTOS: associating with LOTOS processes
whose only function is managing the access to it (we call this the CORM data-LOTOS process
approach) or as parameters of one CORM process (we call this the CORM data-CORM process
approach). Next two sections illustrate the results of both the approaches in the case of OKS-R for
both the involved environments (virtual and logical).

4. The CGRM data-LOTOS process approach
The main OKS-R functionality has been mapped onto the CORM in this way:
Virtual environment: normalization transformation (production) and inverse (manipulation/gener­
ation); input queue (directive store); NDC picture (scene); picture part store (collection).
Logical environment: workstation transformation (rendering) and inverse (abstraction); DCpicture
(image); mapping logical attributes (rendering): echo (from aggregation to image, through the
workstation manipulation, for the locator; through kernel manipulation and scene, for the pick
device); trigger and measure (aggregation and assembly).
You can notice in figure 2 that the workstation collection does not receive any data from the other
components of the graphics system. This stresses the consideration that in the present design of the
graphics system there are some features that are beyond the control of the graphic application pro­
grammer and are implementation dependent.

4.1 The realization of input primitives in the CGRM
This seems to be one of the more complicated problems. Wehave chosen to describe pick and loca­
tor input classes because they are most involved in the manipulation of graphics representations.
The physical devices corresponding to the pick and locator logical input devices each provide raw
data which define a position in device coordinates(DC).
The flow of primitives in the model depends on the operating mode of the input device. In
REQUEST mode, the production receives the input primitive from the application requesting input
from a particular device. The primitive is then passed as control information through the distribu­
tion and rendering to the abstraction. The abstraction then requests the current measure value of
the device from the aggregation store. The current measure value is returned when the correspond­
ing trigger fires. The current measure value delivered to the abstraction is then returned to the appli­
cation after processing by the manipulation and generation.
SAMPLE mode input is similar to REQUEST mode input except that the aggregation store does
not wait for a trigger to fire before returning the current measure value to the abstraction.
In EVENT mode, the AWAITEVENT request is passed from the application to the production and
then to the generation. The generation removes the first event in the input queue (directive store)
and return this to the application. Events are added to the input queue by the abstraction, through
the manipulation.
The workstation manipulation applies the echo function to the locator input values received from
the aggregation, it uses predefined shapes received from the collection to build the echo and it
returns the results to the image.

6

-

k
e
r
n
e
I

Scene
p

m a
r
t •

wcl
abl ag

Distribution

imp itp iml itl
Fig.2 The GKS-R in the framework of the CGRM - First Approach

p
a
r
t

When the assembly receives new measure input or trigger values it retums them to the aggregation
which in turn passes the locator measure values to the workstationmanipulation and the pick value
to the higher levels for echoing. When a trigger fires, if the device is in EVENT mode, the current
measure value is sent to the kernel manipulation, if it is in REQUEST mode and a request from the
application is pending, the current measure value is sent to the kernel manipulation and the pending
request is cleared. The abstraction applies the inverse workstation transformation to input data and
passes them to the kernel manipulation.
For locator devices, the token emanating from the abstraction is passed to the kernel manipulation,
which determines which inverse normalization transformation should be applied to the token in
order to generate the appropriate logical input value for the application program. The current val­
ues of the normalization transformation are held by the production. These values are communi­
cated to the manipulation when required by the manipulation. The manipulation selects the
appropriate transformation and creates a token in the directive store which consists of the locator
position in NDC coordinates and the transformation to be applied. The transformation is actually
applied by the generation. This mechanism is necessary in order to comply with the constraints on
coordinate systems and the actions of each process in the environment, imposed by the CORM.

7

Process Parameters Input data types

Production KernelS tateList Gks.primitives

Kernel collection PicturePartStore, Partname Gksprimitives
Scene Ndcpicture Ws_primitives, PicturePart, Ndcpoint
Directive Queue Inputkvalue, Input_mode
Generation Input_kvalue
Manipulation PicturePart, Point, InEut_mode, Inputclass,
Distribution

Nameset, List_tras cord, List_lnt
Ws_primitives, Ndc_primitives

Rendering WsStateList Ws_primitives
Image Dcpicture Dc_primitives, Dcpicture
Assembly Bool, Point
Aggregation Point, Bool, Input_mode Point, Inputclass, Input_prim
Abstraction Trasfcord Input_mode, Input_class, Ws_primitives, Point
Manipulation Template Template, Point

••

Table 1: Summary of Parameters and Data Types
For pick devices, the manipulation selects the output primitive in the scene which is 'closest' to the
NDC position. The value of the nameset associated with this primitive is returned to the directive
store. The specification, like GKS-R itself, does not give a precise definition of how the primitive
picked is selected. The directive store contains the input queue used by devices in EVENT mode.
For devices in REQUEST or SAMPLE mode, tokens are passed immediately to the generation.
The parameters and data types for each process are summarized in table 1.

4.2 The virtual environment
The kernel is described by seven processes, where four have a status and three realize mainly rout-
ing of data, after processing them, to other processes.
The production applies the normalization transformation to the output primitives and associates the
current name set by the wctondc function. It also manages most of the kernel state list (some data
are managed by other processes, for example the current picture part open is in the kernel collec­
tion). It receives commands from the application on the pl channel. Most of the kernel control
commands will modify its status, the workstation control commands are sent to the distribution(dl
channel), the output commands are sent to the collection if a picture part is open otherwise to the
scene. The input instructions are sent to the distribution except for the await event command that
is sent to the generation. After receiving an input instruction it has always to syncronize with the
generation waiting until the latter sends the input result to the application. This is needed to prevent
new instructions being received before the previous input instruction has been completely executed
to avoid inconsistencies. In Lotos two or more processes synchronize when all are offering the
same value on the same gate. It can also synchronize with the manipulation when the list of nor­
malization transformations and the list of associated numbers are requested.

8

-

specification CGRM_GKS_R_subset: noexit

library
BOOLEAN. ELEMENT. SET. NATURALNUMBER. INTEGER. LIST_INTEGER. REAL.
STRING
endlib
The following expression is the parallel composition of the thirteen processes, with the initial val­
ues of their parameters. which describe the GKS-R system. The workstation identifier of the work­
station instance is wsx.
behaviour
««««««production(rnk_krn_list(ppcl, empyNS. emptylist, emptylist, identityjjllcolll kemel_col­
lection(emptyPPS, null»I[s2]1sceneremptylvfX'Pljlls l, s3, m3, m4, pl , ml] Imanipulationj'[dsl]l
directivetemptyqueuejjllg l, g2, g3, g4]lgeneration)l[dl, d2]ldistribution)l[rl]1rendering (initial_­
wsStateLs (wsxjjllwc l]] image (ernptydcpjjllwmz, il]1 manipulation (arrowjjllwml llaggrega­
tion(O. 0, O. O. false, false, request, requestjjllabl , ab2, ag, m2]labstraction(identity»I[aml.
atl] lassembly)l[wm2]Iws_collection)
where
process production[pl, dl , s2. col, ml, g2](k:KerneIStateList) :noexit r=
(pI?pr:Gks_prim;

([inq(pr) eq opengks] -> production(k)
[][inq(pr) eq c1osegks]-c- exit
[][inq(pr) eq openws] -> dl !pr; production(opws(k, pr)
[][inq(pr) eq c1osews]-> dl lpr; production(clws(k, pr)
[][inq(pr) eq outputprim] -> ([inq_state(k) eq ppcl] -> s2!wctondc(pr. k); production(k)

[][inq_state(k) eq ppop] -> col!wctondc(pr, k); productioruk)
[][inq(pr) eq deleteprimitive] -> s2!pr; production(k)
[][inq(pr) eq selectnormalizationtransformation] -> production(sel_tn(k, pr))
[][inq(pr) eq setnamesetattribute] -> production(set_ns(k, prj)
[][inq(pr) eq setworkstationtransformation] -» dl !pr; production(k)
[][inq(pr) eq setvisualeffect] -» dl lpr; production(k)
[][inq(pr) eq setworkstationcriteria] -> dl lpr; production(k)
[][inq(pr) eq beginpicturepart] -> collpr; productiontbpptk)
[J[inq(pr) eq beginpicturepartagain] -> collpr; productiontbpptk)
[][inq(pr) eq closepicturepart] -> collpr; productiontcpptk)
[][inq(pr) eq appendpicturepart] -> collpr; production(k)
[][inq(pr) eq copypicturepartfrompps] -> collpr; production(k)
[][inq(pr) eq setinputmode] -> dl lpr; production(k)
[][inq(pr) eq requestlocator] -> dl lpr; g2!resin; production(k)
[][inq(pr) eq requestpick] -> dl !pr; g2!resin; production(k)
[][inq(pr) eq samplelocator] -> dl!pr; g2!resin; production(k)
[][inq(pr) eq samplepick] -> dl !pr; g2!resin; production(k)
[][inq(pr) eq awaitinput] -> g2!awaitinput; g2!resin; productiontkj)

[jml !inq_trn(k) !inq_lntms(k); productioruk)
endproc

•

9

-

The collection manages the picture part store and has also, as parameter, the name of the currently
open picture part. When it receives a copypicturepartfrompps instruction it sends the related
instructions to the manipulation.
process kernel_collection[col, m4](pps: PPS, pn: Partname) :noexit :=
col?pr:Ws_prim;

([inq(pr) eq outputprim] -> collection(addPP(pn, pr, pps), pn)
[][inq(pr) eq beginpicturepart] -> collection(begpicpart(pps, pr), getpntprj)
[][inq(pr) eq appendpicturepart] -> collection(append(pps, pr), pn)
[][inq(pr) eq copypicturepartfrompps] ->m4!cpfpps(pps, pr); collection(pps, pn)
[][inq(pr) eq beginpicturepartagain] -> collection(pps, getpntpr)
[][inq(pr) eq closepicturepart] -> collection(pps, null»

endproc

The scene manages the NDC picture. It receives single output and control output primitives from
the production or a picture part from the manipulation. The new NDC picture is sent to the work­
station for display. The scene can also receive an NDC position from the manipulation. The name­
set of the output primitive 'closest' to this position is returned to the manipulation. Echoing of the
pick input device takes the form of highlighting the primitive selected. This is achieved by adding
the name hl to the nameset of the primitive selected; the workstation selection criterion for high­
lighting is set such that primitives containing the name hl will be highlighted. The name hl will be
deleted from the nameset of the other primitives in the scene, thus cancelling the echo of any pre­
viously picked primitives.
process scene[d2, m3, s1, s2, s3](ndcp: Ndcpicture) :noexit :=
(s2?pr:Ws_prim;

([inq(pr) eq outputprim] -> d2!pr; scene(addndc(pr, ndcp)
[][inq(pr) eq deleteprimitive] -> d2!del(getsel(pr), ndcp); scene(del(getsel(pr), ndcpjj)

[]s3?pp:PicturePart; d2!addpp(pp, ndcp): scene(addpp(pp, ndcp)
[]s1?p:Ndcpoint ?s:Select; m3!get_ns(detect(p, ndcpj);

[det(get_ns(detect(p, ndcpl), s)] -> d2!eco(rmec(ndcp), p); scene(eco(rmec(ndcp), p»
[not(det(get_ns(detect(p, ndcpj), s)] -> scenemdcp)

endproc

The directive manages the input queue. In our example we consider only locator and pick values.
In both cases it receives them from the kernel manipulation. For locator input it receives also the
associated inverse transformation, chosen from the normalization transformations at the moment
at which the point is received. For pick input, the pick value consists of a nameset. These values
will pass through the generation that will apply the inverse normalization transformation to locator
input. This process also receives from the manipulation the locator and pick input values for
devices in REQUEST or SAMPLE mode that have to be passed to the generation.When the appli­
cation asks for an event from the input queue it is communicated by the generation.
process directive[g3, g4, ds1](q: Queue):noexit .=
(g4!topeq); directive(remove(q»
[] ds1?id:In_kvalue ?md:In_mode;

([md eq event] -> directive(add(id, q»
[][(md eq sample) or (md eq request)] -> g3!id; directivetq)

)endproc

10

-

The generation receives from the directive store the input values, on g3 for SAMPLE and EVENT
mode and on g4 for EVENT mode, to pass to the upper levels. For locator input i~receives th~point
in normalized coordinates and the associated inverse normalization transformation and applies the .
transformation, delivering a position in world coordinates and the associated normalization
transformation number.
It synchronizeswith the production after the application requests an input value from the queue and
then it waits for a value from the directive.
process generation[gl, g2, g3, g4] :noexit r=
(g3?im:In_kvalue; ([inq_cl(im) eq locator] -c-g l !trasf_n(im); g2!resin; generation

[][inq_cl(im) eq pick] -> gl !im; g2!resin; generation)
[]g2Iawaitinput; g4?im:In_kvalue; ([inq_cl(im) eq locator] ->gl ltrasf_n(im); g2lresin; generation

[][inq_cl(im) eq pick] -> gl lim; g2lresin; generation) •
) endproc

The manipulation serves two purposes: transmission of picture parts from the picture part store to
the scene, generation of logical input values from data provided by the abstraction. For locator
input, the manipulation selects which normalization transformation is to be used to transform the
NDC coordinate point defined by the abstraction to a point in WC required by the application. The
current values of the normalization transformation are held in the kernel state list in the production.
The manipulation selects the normalization transformation whose viewport contains the NDC
point. In the case that the viewport of more than one transformation contains the point, the
transformation selected is that with highest viewport input priority. The CGRM requires that the
generation applies the inverse normalization transformation and so the manipulation delivers a
token consisting of the NDC point, the inverse normalization transformation that has to be applied
and the number of the normalization transformation concerned. It is necessary to store the
normalization transformation itself in the input token, rather than a pointer to the transformation
(i.e. the transformation number), because it is possible for the application to change the
normalization transformation between selection by the manipulation and application by the
generation.
For pick input, the manipulation inquires from the scene the nameset of the output primitive closest
to the point delivered by the abstraction. The scene echoes, by highlighting, the primitive selected.
process manipulation[m4, m3, sl, s3, ml, m2, dsl] :noexit :=
(m4?pp:PicturePart; s3lpp; manipulation
[]m2?im: Point ?md: In_mode ?cl: Input_class;

([cl eq pick] -> m2?s:Select; sl lim Is;m3?ns: Nameset; dsl!mk_pick_kvalue(ns) lmd; manip­
ulation
[][cl eq locator] -> ml ?tn:List_Trasfcord ?In: List_Int; dsl!mk_loc_kvalue(im, get_tr
(inp_trasf(tn, In, imj), get_in(inp_trasf(tn, In, im») lmd; manipulation)

) endproc

The distribution transmits data to the lower level.
process distribution[dl, d2, rl] :noexit :=
(dl ?prl:Ws_prim; rl lprl ; distribution
[] d2?pr2:Ndc_primitives; rl Ipr2; distribution
) endproc

11

4.3 The logical environment
The rendering realizes the workstation transformation and manages the workstation state list. It
receives output, control and input primitives. The latter are switched to the abstraction. Commands
to update the image only have an effect if the visual effects state is ALLOWED (represented here
by the value true).
process rendering[rl, wc1, ab2](w: WsStateList) :noexit :=
(rl ?pr:Ws_prim;

([inq(pr) eq outputprim] ->
([sel(get_ns(pr), inq_wcri(w, visib) and inq_ve(w)] -> wcl!wstrasf(pr, w); rendering(w)
[][not(sel(get_ns(pr», inq_wcri(w, visib) ornot(inq_ve(w»] -> renderingtw)

[][inq(pr) eq ndcpicture] ->([inq_ve(w)] -> wcl!ndcptodcp(pr, w); rendering(w)
[][not(inq_vetwj)] -> renderingtw)

[][inq(pr) eq openworkstation] -> rendering(initial_wsStateLs(wsx»
[][inq(pr) eq closeworkstation] -> exit
[][inq(pr) eq setworkstationcriteria] -> rendering(setcri(w, pr)
[][inq(pr) eq setworkstationtransformation] -> ab2!pr; renderingfsetwstrtw, pr)
. [][inq(pr) eq setvisualeffect] -> rendering(ve(w, pr)
[][inq(pr) eq setinputmode] -> ab2!pr; rendering(w)
[][inq(pr) eq requestlocator] -> ab2!pr; rendering(w)
[][inq(pr) eq requestpick] -> ab2!pr; rendering(w)
[][inq(pr) eq samplelocator] -> ab2!pr; rendering(w)
[][inq(pr) eq samplepick] -> ab2!pr; renderingfw)

[]ab2!inq_wcri(w, detect); renderingiwj);
endproc

The image is involved to update the DC picture and it sends to the distribution all the DC picture
updates and the echo for the measure value. When it receives a new instance of the locator echo,
the previous one is removed before adding the new one.
process image[wcl, il, wd2] (dcp: Dcpicture) :noexit:=
(wcl ?prw: Dc_primitives; wd2!prw; ([inq(prw) eq outputprirn] -> image(adddcp(prw, dcp))

[][inq(prw) eq dcpicture] -> image(adddcpic(prw, dcpjj)

[]il?im: Dcpicture; wd2!adddcpic(im, rem_cursor(dcp)); image(adddcpic(im, rem_cursor(dcp))))
endproc

The assembly process receives the input for the trigger and themeasure from the input devices (for
pick and locator devices it is a point), and then passes these values (for the trigger only the indica­
tion of the device where it has been satisfied) to the aggregation store where the logical processing
is realized.
process assembly[itl, iml, itp, imp, aml , atl] :noexit :=
(itl?itBool; atl !locator; assembly
[]iml?imi :Point; aml liml !locator; assembly
[]itp?it:Bool; at! !pick; assembly
[]imp?im2:Point; aml !im2 !pick; assembly)
endproc

12

-

The aggregation process receives from the asssembly new measure values and trigger signals.
From the application through the rendering and the abstraction. it receives input comman?s. !ts ~ta­
tus consists, for each device, of the current measure value, the input mode and a boolean indicating
if an input in REQUEST mode is pending. When a new pick measure is received, it is sent to the
kernel level where the echo is realized. The token transmitted includes a mode field, which can take
the values REQUEST, SAMPLE, EVENT and NEW. NEW means that the value is related only to
a change of the current measure and not to an instruction or a trigger event. While the new locator
measures are sent to the image, through the manipulation, for echoing.
process aggregation[abl, ag, wml, ad, aml](iml,imp: Point, pndl,pndb: Bool, 1m,pm: In_mode)
:noexit :=
(aml ?im:Point ?cl:Input_class;

([cl eq locator] -> wml !im; aggregation(im, imp, pndl, pndp, lm, pm)
[][el eq pick] -> abl!im !new !pick; aggregation(iml, im, pndl, pndp, 1m,pm)

[Jad ?it:Input_cJass;
([it eq locator] ->

([1m eq event] -> abl liml !1m lit; aggregation(iml, imp, pndl, pndp, 1m, pm)
[][pndl eq true] -> abl!iml !lm lit; aggregation(iml, imp, false, pndp, lm, pm)
[J[(lm eq sample) or (Ilm eq request) and (pndl eq falsejj] -> aggregation(iml, imp, pndl,
pndp, 1m, pm)

[][it eq pick] ->
([pm eq event] -> abl limp !pm lit; aggregation(iml, imp, pndl, pndp, 1m, pm)
[][pndp eq true] -> abl limp !pm lit; aggregation(iml, imp, pndl, false, 1m, pm)
[J[(pm eq sample) or «pm eq request) and (pndp eq falsejj] -> aggregation(iml, imp, pndl,
pndp, 1m, pmjj)

[Jag?prw;Input_prim;
([inq(prw) eq requestlocator] -> aggregation(iml, imp, true, pndp, 1m, pm)
[][inq(prw) eq requestpick] -> aggregation(iml, imp, pndl, true, 1m, pm)
[J[inq(prw) eq samplelocator] -> abl!iml; aggregation(iml, imp, pndl, pndp, 1m, pm)
[][inq(prw) eq samplepick] -> abl limp; aggregation(iml, imp, pndl, pndp, 1m, pm)
[][inq(prw) eq setinputmode] ->

([inqd(prw) eq locator]->aggregation(iml, imp, pndl, pndp, inqm(prw), pm)
[][inqd(prw) eq pickj-> aggregation(iml, imp, pndl, pndp, 1m,inqm(prw»»

•

) endproc

The abstraction receives requests for input for devices in REQUEST and SAMPLE mode, from the
application through the production, distribution and rendering. The abstraction communicates the
requests to the aggregation. The tokens generated are then communicated to the kernel manipula­
tion. The abstraction applies the inverse of the current workstation transformation to positional
data, to generate corresponding points in NDC space. Whenever the workstation transformation is
changed, the new value is communicated to the abstraction by the rendering, so that the state of the
abstraction mantains the current value of the workstation transformation.
process abstraction[abl, ab2, ag, m2](tn:Trasfcord) :noexit :=
(abl ?im:Point ?md:In_mode ?cl:Input_elass; m2!trasf(im, tn) !md !el; abstraction(tn)
[J ab2?prw:Ws_prim;

([inq(prw) eq requestlocator] -> ag!prw; abl ?im:Point; m2!trasf(im, tn) !request !locator;
abstraction (tn)

13

[][inq(prw) eq requestpick] -> ag!prw; ab1?im:Point; ab2?s:Select; m2!trasf(im, tn) !request
!pick;m2!s; abstraction(tn)

[][inq(prw) eq samplelocator] -> ag!prw; abl ?im:Point; m2!trasf(im, tn) !sample !locator;
abstraction(tn)

[][inq(prw) eq samplepick] -> ag!prw; abl ?im:Point; ab2?s:Select; m2!trasf(im, tn) !sample
!pick;m2!s; abstraction(tn) ,

[][inq(prw) eq setinputmode] -> ag!prw; abstraction(tn)
[][inq(prw) eq setworkstationtransformation] -> abstraction(inv_trasf(gettr(pr»»

)endproc

The manipulation, at the workstation level, is responsible for realizing the echo functionality for
the locator device. The manipulation holds one template echo, received from the collection, which
may be instantiated at a particular position to produce an echo of the cursor position. The result is
incorporated into the image.
process manipulation [il , wm2, wml] (cur: Template) :noexit :=
(wm2?z:Template;manipulation (z)
[]wml ?im: Point; i1!mk_cursor(im, cur); manipulationfcur)
endproc

•

5. The CGRM data-CGRM process approach
In this approach collection, composition, aggregation store and token store are treated as parame­
ters of the CORM processes. We use the same data types that have been defined for the first
approach and are described in the appendix. The main problem is to decide the association of
CORMdata with CORMprocesses. The first solution investigated was to put all the data structures
into the manipulation. This decreases the number of processes to define but causes an overloading
of functionality in the manipulation. The result is a manipulation specification that is not easily
readable and an unbalanced distribution of processing among the components. For these reasons
the approach chosen associates the directive store with the generation. In this way it is possible to
simplify the manipulation specification and obtain a more natural description because the directive
store has then the function of mantaining data until the generation receives a request from the
higher levels to interrogate the store, an operation that can be immediately executed if the data are
stored locally. Consideration was also given to associating the composition with the distribution,
but this was rejected because of the tight coupling between the composition and the manipulation
in the virtual environment. Echoing of input devices and pick input require close coupling.

5.1 The virtual environment
When the production receives output primitives it delivers them to themanipulation with the kernel
status to provide information whether to add them to the NDC picture or to the collection.The ml
gate is used to pass,the list of normalization transformations to the manipulation when locator input
has to be processed.
process production[pl, dl, ml, g2](k:KernelStateList) :noexit:=
(pI?pr:Oks_prim;

([inq(pr) eq opengks] -> production(k)
[][inq(pr) eq closegks] -> exit
[][inq(pr) eq openws] -> dl !pr; production(opws(k,pr»

14

g2

k
e
r
n

dl e
1

p
a
r •t

Distribution

imp itp imlitl
Fig.3 The GKS-R in the framework of the CGRM - Second Approach

[][inq(pr) eq closews] -> dl lpr; production(clws(k, pr))
[][inq(pr) eq outputprim] -> ml !wctondc(pr, k); m1linq_state(k); production(k)
[][inq(pr) eq deleteprimitive] -> ml !pr; production(k)
[][inq(pr) eq selectnormalizationtransformation] -> production(sel_tn(k, pr)
[][inq(pr) eq setnamesetattribute] -> production(set_ns(k, pr)
[][inq(pr) eq setworkstationtransformation] -> dl!pr; production(k)
[][inq(pr) eq setvisualeffect] -> dl!pr; production(k)
[][inq(pr) eq setworkstationcriteria] -> dl!pr; production(k)
[][inq(pr) eq beginpicturepart] -> ml!pr; productionfbpptk)
[][inq(pr) eq beginpicturepartagain] -> ml !pr; productiontbppik)
[][inq(pr) eq closepicturepart] -> mI!pr; productiorucpptk)
[][inq(pr) eq appendpicturepart] -> nil !pr; production(k)
[][inq(pr) eq copypicturepartfrompps] -> ml !pr; production(k)
[J[inq(pr) eq setinputmode] -> dl!pr; production(k)
[][inq(pr) eq requestlocator] -> dl !pr; g2!resin; production(k)
[][inq(pr) eq requestpick] -> dl!pr; g2!resin; production(k)

15

-

w
s
p
a
r
t

[][inq(pr) eq samplelocator] -> dl lpr; g2lresin; production(k)
[][inq(pr) eq samplepick] -> dl!pr; g2lresin; production(k)
[][inq(pr) eq awaitinput] -> g2lawaitin; g2lresin; productioruk)

[]ml !inq_trn(k) !inq_lntrns(k); productiontk)
endproc .

The production and the generation can synchronize when theproduction receives an await event
instruction from the application, then the generation gets the element at top of the event queue on
the mS gate and passes it to the application. The generation uses the m3 gate to receive input in
SAMPLE or EVENT mode.
process generation[gl, g2, m3](q: Queue):noexit :=
(m3?im:In_kvalue ?md: In_mode;
([md eq event] -> generation(add(im, q)
[H(mdeq sample) or (md eq request)] -> ([cl eq locator] -> gl!trasf_n(im); g2!resin;

generation(q)
[][cl eq pick] -> gl!im; g2!resin; generationtqjj)

[]g2lawaitin; ([inq_cl(top(q» eq locator] -> gl !trasf_n(top(q»; g2!resin; generationtremovetq)
[][inq_cl(top(q» eq pick] -> gl!top(q); g2lresin; generationtremoverqjj)

•

endproc

This process is strongly modified with respect to the previous approach because now it has to
realize directly the processing of the main data structures(except the input queue). When an output
primitive or a picture part is added to the NDCpicture it is sent toward the lower levels, by the m2
gate, to be added, after transformation, to the DC picture.
process manipulation[ml, m2, m3, m4](pps: PPS, pn: Partname, ndcp: Ndcpicture) :noexit:=
(m4?p: Point ?md: In_mode ?cl: Input_class;
([cl eq pick] -> [det(get_ns(detect(p, ndcpj), s)] -> m2leco(rmec(ndcp), p);

m3!mk_pick_kvalue (get_ns(detect(p, ndcpjnlmd;
([det(get_ns(detect(p, ndcpj), s)] ->manipulation(pps, pn, eco(rmec(ndcp), p»
[not(det(get_ns(detect(p, ndcpj), s»)])->manipulation(pps, pn, ndcp))

[][cl eq locator] -> ml ?tn:List_Trasfcord ?In: List_lnt;
m3!mk_loc_kvalue(p, get_tr (inp_trasf(tn, In, p», get_in(inp_trasf(tn, In, p»)!md;
manipulation(pps, pn, ndp)
)

[]ml ?pr:Gks_prim;
([inq(pr) eq ourputprim] -> ml ?st:Status;

([st eq ppop] -> manipulation(addPP(pn, pr, pps), pn, ndp)
[Hst eq ppcl] ->m2!pr; manipulation(pps, pn, addndc(pr, ndcpjj)

[][inq(pr) eq beginpicturepart] ->manipulation(begpicpart(pps, pr), getpn(pr), ndp)
[][inq(pr) eq appendpicturepartl -> manipulation(append(pr, pps), pn, ndp)
[Hinq(pr) eq copypicturepartfrompps] -> m2lcpfpps(pr, pps); manipulation(pps, pn, addpp

(cpfpps (pr, pps), ndp)
[][inq(pr) eq beginpicturepartagain] -> manipulation(pps, getpn(pr), ndp)
[][inq(pr) eq closepicturepart] ->manipulation(pps, null, ndp)
[Hinq(pr) eq deleteprimitive] ->m2ldel(getsel(pr), ndcp); manipulation(pps, pn,

del(getsel(pr), ndcpn)
endproc

16

-

The distribution transmits data to the lower level.
process distribution[dl, d2, m2] :noexit :=
(dl ?prl:Ws:._prim;d2!prl; distribution
[] m2?pr2:Ndc_primitives; d2!pr2; distribution
) endproc

5.2 The logical environment
We assume wsx is the workstation identifier of the workstation.
process rendering[d2, w l , cl](w: WsStateList) :noexit :=
(d2?pr: Ws_prim;

([inq(pr) eq outputprim] ->(
[sel(get_ns(pr), inq_wcri(w, visib) and inq_ve(w)] -> wl !wstrasf(pr,w); rendering(w)
[][not(sel(get_ns(pr»),inq_wcri(w,visib) or not(inq_ve(w»] -> rendering(w)

[][inq(pr) eq Ndcpicture] ->(
[inq_ve(w)] ->wl!ndcptodcp(pr, w); rendering(w)
[][not(inq_ve(w»] -» renderingtw)

[][inq(pr) eq openworkstation] -> rendering(initial_wsStatel.stwsx)
[][inq(pr) eq eloseworkstation] -> exit
[][inq(pr) eq setworkstationcriteria] -> rendering(setcri(w, pr)
[][inq(pr) eq setworkstationtransformation] -> cl!pr; rendering(set_wstr(w, pr)
[][inq(pr) eq setvisualeffect] -> rendering(ve(w, pr)
[][inq(pr) eq setinputmode] -> cl!pr; rendering(w)
[][inq(pr) eq requestIocator] -» cl !pr; rendering(w)
[][inq(pr) eq requestpick] -> cl!pr; rendering(w)
[}[inq(pr)eq samplelocator] -> cl !pr; rendering(w)
[][inq(pr) eq samplepick] -> cl!pr; renderingtw)

[]c1!inq_wcri(w, detect); rendering(w)
endproc

•

process assembly[itl, iml, itp, imp, w4m, w4t] :noexit :=
(itl?it:Bool; w4t!locator; assembly
[]iml?iml:Point; w4m!iml !locator; assembly
[]itp?it:Bool; w4t!pick; assembly
[]imp?im2:input_data; w4m!im2 !pick; assembly)
endproc

process abstraction[w3, w5, cl, m4](tn:Trasfcord) :noexit :=
(w3?im:Point ?md:ln_mode ?el:lnput_elass; m4!trasf(im, tn) !md !el; abstraction(tn)
[] cl ?prw:Ws_prim;

([inq(prw) eq requestlocator] -> w5!prw; w3?im:Point; m4!trasf(im, tn) !request !locator;
abstraction(tn)

[][inq(prw) eq requestpick] -> w5!prw; w3?im:Point; cl ?s:Select; m4!trasf(im, tn) !request
!pick;m4!s; abstraction(tn)

17

[][inq(prw) eq samplelocator] -> w5!prw; w3?im:Point; m4!trasf(im, tn) !sample !locator;
abstraction(tn)

[][inq(prw) eq samp1epick] -> w5!prw; w3?im:Point; c1 ?s:Se1ect; m4!trasf(im, tn) !sample
!pick; m4!s; abstraction(tn)

[][inq(prw) eq setinputmode] -> w5!prw; abstraction(tn)
[]linq(pr) eq setworkstationtransformation] -> abstraction(inv _trasf(gettr(pr) »)

)endproc

In this approach the workstation manipulation status has to consist also of the status of the logical
input devices.
process manipulation [wl , w2, w3, w5, w4m, w4t] (cur: Template, iml,imp: Point, pndl, pndb:
Bool, 1m,pm: In_mode, dcp: Dcpicture) :noexit :=
(wl ?pr: Dc_primitives; w2!pr;

([inq(pr) eq outputprim] -> manipulation(cur, iml, imp, pndl, pndp, 1m,pm, adddcp(pr, dcp)
[][inq(pr) eq dcpicture] -> manipulation(cur, iml, imp, pnd1,pndp, 1m,pm, adddcpic(pr, dcpjj)

[]w4m?im:Point ?cl:Input_class;
([cl eq locator] -> w2!adddcpic(rnk_cursor(im, cur), remcursorfdcpj); manipulation (cur,

im, imp, pnd1,pndp, 1m,pm, adddcpic(im, remcursorfdcpjj)
mcl eq pick] -> w3!im !new !pick; manipulation(cur, iml, im, pndl, pndp, 1m,pm, dcp)

[]w4t?it:Input_class;
([it eq locator] ->

([Im eq event]-> w3!iml !lm lit; manipulation(cur, iml, imp, pndl, pndp, 1m,pm, dcp)
[][pndl eq true]-> w3!iml !lm lit; manipulation(cur, iml, imp, false, pndp, 1m,pm, dcp)
[][(lm eq sample) or ((1meq request) and (pndl eq false)] -> manipulation(iml, imp, pndl,

pndp, 1m,pm, dcp)
[][it eq pick] ->

([pm eq event]-> w3!imp !pm lit; manipulation(cur, iml, imp, pndl, pndp, 1m,pm, dcp)
[][pndp eq true]-> w3!imp !pm lit; manipulation(cur, iml, imp, pndl, false, 1m,pm, dcp)
[][(pm eq sample) or «pm eq request) and (pndp eq falsejj] -> manipulation(cur, iml, imp,

pndl, pndp, 1m,pm, dcp)
[]w5?pr:lnput_prim;

([inq(pr) eq requestlocator] -> manipulation(cur, iml, imp, true, pndp, 1m,pm, dcp)
[][inq(pr) eq requestpick] -c-manipulation(cur, iml, imp, pndl, true, lm, pm, dcp)
[][inq(pr) eq samplelocator] -> w3!iml; manipulation(cur, iml, imp, pndl, pndp, lm, pm, dcp)
[][inq(pr) eq samplepick] -> w3!imp; manipulation(cur, iml, imp, pndl, pndp, 1m,pm, dcp)
[][inq(pr) eq setinputmode] ->

([inqd(pr) eq locator] -> manipulation(cur, iml, imp, pndl, pndp, inqm(pr), pm, dcp)
[][inqd(pr) eq pick] -> manipulation(cur, iml, imp, pndl, pndp, 1m,inqm(pr), dcpjj)

) endproc

6. A graphical interaction described in the specified framework
The components of the CORM that are involved in typical graphical interactions will be illustrated
following the structure of the first specificationdiscussed(CORM data structure-LOTOSprocesses
approach). The example chosen for this purpose is a simple graphical editor. The initial layout has
on the left a column composed of a vertical sequence of graphical rectangles each one associated
with a basic graphic element (i.e, polygon, rectangle, circle, ...). The main area is used to compose

18

the design. For interaction a three button mouse is used. The possible interactions are:
_ to select a basic element from the column and to place a new instance in the graphic area. The
event, to position it, is a button press and while pressed feedback shows the current position of the
new graphical item depending on the cursor position.
- the primitives in the graphic area can be selected by button press, when selected they are high­
lighted.
- an operation on the selected primitive (i.e. move, resize, set_attributes, ..) can be realized by a
pop-up menu activated by the third button press.

D •

~

~

o
-:

fig.4 A typical graphical interaction

The interaction can be described by five input devices:
- one pick device associated with the side column, whose trigger condition is button 1pressed and
cursor position inside the column;
_one pick input device associated with the graphic area, whose trigger condition is button 2 pressed
and cursor position inside the graphic area;
_a locator device to place a new instance in the graphic area, whose trigger condition is button 1

pressed and cursor position in the graphic area;
- a locator device activated by button 3 pressed and cursor position in the graphic area, this device
is used to define a position at which to display a pop-up menu;
- a choice device to select an item of the pop-up menu, whose trigger is button 3 release.
The two pick devices and the second locator device (associated with the pop-up menu) are in
EVENT mode because the user has to be free to choose which action to realize, the first locator is
in REQUEST mode, because a request locator instruction has to be perfomed, after a pick on the
side column, to indicate where the new instance has to be placed. Also the choice device is in
REQUEST mode and it is requested from the application after receiving an event from the second
locator.When it is requested the menu with its items appears and the element selected by themouse
position, when the button is up, is sent to the application.
At the beginning only the three devices in EVENT mode are activated. In both the pick devices the
primitives detected by the position of the cursor are highlighted. This is obtained by sending the
cursor positions from the assembly through aggregation, abstraction, and manipulation, to the

19

scene. Here their name set is changed so as to satisfy the selection criterion for highlighting of the
workstation. The updated primitives are distributed for display on the workstation. .
The application after receiving a pick input from the side column starts a request locator mstruc­
tion. This means a new echo (the geometric shape selected) related to the cursor position is dis­
played through the workstation manipulation, when it is in the graphic area. If the trigger fires the
current position is sent to the application, after transformation by the inverse workstation transfor­
mation (abstraction) and the appropriate inverse normalization transformation (kernel manipula­
tion and generation). Then the application will send the graphical primitives to display the selected
object in the selected position.
Manipulation of a displayed instance of a graphical element is achieved by selecting the instance
using the second mouse button. Pressing the third button then generates an event that is sent to the
application to ask for a request choice primitive associated with the pop-up menu that will appear
in the position previously selected, and when the buttom is up, the selected choice is sent to the
application. Then the parameters of the select operation have to be provided by the operator: this
can be easily achieved in different ways.

8. Conclusions
This work shows that LOTOS can be used as a specificationlanguage for graphics systemsbecause
it provides a rigorous tool to describe the cooperation among the components and the definition and
processing of graphics data types. A parallel approach can provide more information to the users
and the implementators of the graphics system regarding the cooperation among its components.
It facilitates refinement to parallel language implementations, such as Occam.
We investigated two possible approaches in the decomposition of the graphics system following
the structure of the CGRM. Both approaches use the same set of basic graphics data type for the
definition of their parameters and input data types. Their algeabric definitions can be found in the
appendix.
If we compare the two approaches we can note the first one requires a larger number of processes
and this allows all the possible accesses to a particular CGRM data structure to be shown in a
clearer way. The second one is more compact. A choice between the t~o a~proach is probab~y
driven by the taste and the background of the user of the formal specification, Future work IS

planned to formally explore their equivalence. . . .
We can conclude that a description of the architecture of the New GKS IS realizable USIng the
CGRM framework (this was not evident at the beginning). It also pushes towards to a more parallel
description: if we compare this work to the previous attempt to specify GKS-R functionality by
LOTOS, we notice that the system, in both approaches, has been divided into a higher number of
components (in the previous case it was just divided into kernel and workstation processes).

Acknowledgments
This work was carried out whilst Fabio Paterno' was a Visiting Scientist at Rutherford Appleton
Laboratory. Support from Consiglio Nazionale delle Ricerche and Rutherford Appleton Labora­
tory is gratefully acknowledged.

Bibliography
[1] ISO/IEC DIS 11072. Information Processing Systems. Computer Graphics. Computer Graph-

20

ics Reference Model. ISO Centrals Secretariat, Geneva, 1991.
[2] ISO/lEC.lnformation Processing Systems. Computer Graphics. New Graphical Kernel System
(GKS-R) functional description. . .
[3]K.W.Brodlie, D.A.Duce, ER.A.Hopgood. "The New Graphical Kernel System". Computer
Aided Design, N.4, 1991.
[4]T.Bolognesi, H.Brinksma. "Introduction to the ISO Specification Language LOTOS". Compu­
ter Networks and ISDN Systems, vo1.14, pp.25-59,1987.
[5]R.Milner. "A Calculus for Communicating Systems". LNCS 92, Springer Verlag, 1980.
[6]H.Ehrig, B.Mahr. "Fundamentals of Algebraic Specification 1 - Equations and Initial Seman­
tics". Berlin. 1985. Springer-Verlag.
[7] D.B.Arnold, D.A.Duce, GJ.Reynolds. "An Approach to the Formal Specification of Config­
urable Models of Graphics Systems". Proceedings of Eurographics Conference 1987. Amsterdam
[8] D.Duce, EPaterno' ."LOTOS Description of GKS-R functionality". Eurographics Workshop
Formal Methods in Computer Graphics. Marina di Carrara. 1991.

•

Appendix A
In this appendix the data types used for the parameters and the channel data types are defined. The
naming conventions are variables and operators in lower case, sort names with initials in upper
case.

A generic transformation is described by six coefficients, representing the composition of basic
transformation along the two directions. In our specification it is used for coordinates transforma­
tions that are defined by two translations and one scale transformation. The mult operation realizes
a matrix product between square matrixes with the first two columns from the Trasfcord data and
the third from the identity matrix. It returns a Trasfcord that is the resulting matrix without the third
column.

type TRASFCORD is REAL
sorts Trasfcord
opns mk_trasfcor: Real, Real, Real, Real, Real, Real

inv_trasf: Trasfcord
mult: Trasfcord, Trasfcord
identity:

eqns forall a,b,c,d,e,f,g,h,z,l,m,n: Real ofsort Trasfcord
identity = mk_trasfcor(1, 0, 0, 0, 1,0);
mult(mk_trasfcor(a, b, c, d, e, f), mk_trasfcor(g, h, z, 1,m, n)) =mk_trasfcor(a*g+d*h,
b*g+e*h, c*g+f*h+z, a*l+d*m, b*l+e*m, c*l+f*m+n);
mult(mk_trasfcor(a, b, c, d, e, f), inv_trasf(mk_trasfcor(a, b, c, d, e, f))) = identity;

endtype

-> Trasfcord
-> Trasfcord

->Trasfcord
-> Trasfcord

type POINT is TRASFCORD
sorts Point
opns mk_point: Real, Real

get_x: Point
get_y: Point

-> Point
-> Real
-> Real

21

-> Pointtrasf: Point, Trasfcord
eqns forall x,y,a,b,c,d,e,f:Real - ofsort Real

get_x(mk_point(x, y» = x;
get_y(mk_point(x, y» = y;
of sort Point
trasftmk poinnx, y), mk.jrasfcorta, b, c, d, e, t)=mk_point(x*a+y *b + c, x* d+y * e+ f);

endtype

type NDCPOINT is POINT
sorts Ndcpoint

eqns forall x,y:Real ofsort Bool
get_x(mk_point(x,y»ge 0 and get_x(mk_point(x,y»le 1 = true;
get_y(mk_point(x,y»ge 0 and get_y(mk_point(x,y»le 1 = true;

endtype

type POINTS is POINT
sorts Points
opns emptypoints :

addpoint : Point, Points
trasfpoints: Points, Trasfcord

eqns forall pn : Point, pnts : Points, mat: Trasfcord ofsort Points
trasfpoints(emptypoints, mat) = emptypoints;
trasfpoints(addpoint(pn, emptypoints), mat) = addpoint(trasf(pn, mat), emptypoints);
trasfpoints(addpoint(pn,pnts), mat) = addpoint(trasf(pn, mat), trasfpoints(pnts, mat»;

endtype

-> Points
-> Points
-> Points

type NDCPOINTS is POINTS
sorts Ndcpoints

eqns forall x,y:ReaI ofsort Bool
get_x(mk_point(x,y»ge 0 and get_x(mk_point(x,y»le 1 = true;
get_y(mk_point(x,y»ge 0 and get_y(mk_point(x,y»le 1 = true;

endtype

This data type allows associates integers and normalization transformations.
type VIEW_INP is TRASFCORD
sorts View_inp
opns mk_view_inp:lnt, Trasfcord

get_in: View_inp
get_tr: View_inp

eqns forall num: Int, tr: Trasfcord ofsort Int
get_in(mk_view_inp(num, tr) = num;
ofsort Trasfcord

->View_inp
-> Int
-> Trasfcord

22

get_tr(rnk_ view _inp(num, tr)) = tr;
endtype

type VIEWPORT is POINT
sorts Viewport
opns rnk_vp: Point, Point
endtype

-> Viewport

The list of coordinate trasformations has been introduced to define the operation to detect the in­
verse normalization transformation to apply to locator input. The inpjrasf operation returns the
inverse of the normalization transformation containing the point with the highest priority and its
associated number.
type LIST_TRASFCORD is TRASFCORD, VIEW_INP,VIEWPORT,LIST_INT
sorts List_Trasfcord
opns emptylist: -> List_Trasfcord

add_trasf: List_Trasfcord, Trasfcord, Viewport -> List_Trasfcord
inp_trasf: List_Trasfcord, List_Int, Point -> View_inp
gett: Int, List_Int, List_Trasfcord -> Trasfcord

eqns forallltr: List_Trasfcord, t,tj: Trasfcord, ii,j: Int, li:List_Int, vp: Viewport, x,xl,x2, y,yl,y2:
Real ofsort Trasfcord

if (ii eqj) =>
gett(ii, add_int(Ii, j), add_trasf(ltr, tj, vp)) = trj;
if (ii neq j) =>
gett(ii, addInuli, j), addtrasftltr, tj, vp)) = gett(ii, li, ltr);
ofson View_inp
if (txl leq x) and (x leq x2) and (yl leq y) and (y leq y2)) =>
inp_trasf(add_trasf(ltr, t, rnk_vp(rnk_point(xl, yl), rnk_point(x2, y2»), add_int(li, ii),

rnk_point(x,y)) = rnk_view_inp(ii, inv_trasf(t));
if not«xlleq x) and (x leq x2) and (ylleq y) and (y leq y2)) =>
inp_trasf(add_trasf(ltf, t, rnk_vp(rnk_point(xl, y l), rnk_point(x2, y2»), add_int(1i,ii),

rnk_point(x,y)) = inp_trasf(ltr, li, mk pointfx.yl);
endtype

•

type LOCATORis POINT
sorts Locator data
opns rnk_locator: Point, Int
endtype

-> Locator_data

The type name set is obtained from the definition of set from the basic LOTOS library by renaming
(one of the features provided by LOTOS to build structured specifications).
type NAME is
sorts Name, Partname, Wsid
opns nl, n2, n3 : -> Name

23

null, p l,p2, p3 :
wI, w2, w3 :
pptoname: Partname
wsidtoname: Wsid

endtype

-> Partname
->Wsid
-o Name
-o Name

type NAMESET is
SET renamedby
sortnames Nameset for set

Name for element
opnnames emptyNS for {}
endtype

type ATTRIBUTES is
sorts Highlt, Detectab
opns highlighted:

normal:
detectable:
undetectable:

endtype

-> Highlt
-> Highlt
-> Detectab
-> Detectab

Here only the 'contains' selection criterion is described but other selection criteria can be added
in a similar way. They are stored in the workstation state list to filter the primitives arriving from
the kernel.
type SELECTION is NAMESET,BOOL, ATTRIBUTES
sorts Select
opns contains: Nameset

sel: Nameset, Select
det: Nameset, Select
high: Nameset, Select
selectall, rejectall:

eqns forall ns, nsl , ns2 : Nameset, SV, sh : Select
ofsort Bool
sel(nsl, contains(ns2)) = nsl includes ns2;
sel(nsI, contains(emptyNS)) = (nsl eq emptyNS);
sel(ns, containstjns l) union (ns2))) = (sel(ns, contains(nsl))) and (sel(ns, contains(ns2)));
ofsort Highlt
sel(ns, sv) =>
det(ns, sv) = highlighted;
not(sel(ns, sv)) =>
det(ns, sv) = normal;
ofsort Detectab
sel(ns, sh) =>
high(ns, sh) =detectable;
not(sel(ns,_sh)) =>
high(ns, sh) =undetectable;

-> Select
-> Bool
-> Detectab
-> Highlt
-> Select

24

--~

endtype

This type has been introduced to manage different types of selection criteria.
type CRITERION is
sorts Criterion
opns visib:

detect:
highligh:

endtype

-> Criterion
-> Criterion
-> Criterion

Here some operations which modify the kernel or the workstations status are defined.
type CONTROL_PRIMITIVE is NAME, TRASFCORD, NAMESET, CRITERION
sorts Control_prim

opns mk_opws: Wsid
mk_clws: Wsid

•

-> Control_prim
-> Control_prim
-> Control_prim
-> Control_prim
-> Control_prim
-> Control_prim
-> Control_prim
-> Control_prim
-> Control_prim
-> Control_prim
-> Control_prim
-> Control_prim
-> Controlprim
-> String
-» Wsid

mk_delete_primitives: Select
mk_begin_picturepart: Partname
mk_begin_picturepartagain: Partname
mk_close_picturepart: Partname
mk_appendpp: Partname, Partname, Trasfcord, Nameset
mk_copyppfrompps: Partname, Select, Trasfcord, Nameset
mk_sel_cri: Wsid, Criterion, Select
mk_set_visef: Wsid, Bool
mk_sel_norm_transf: Int
mk_set_ws_transf: Trasfcord
mk_set_ns_attr: Nameset
inqcp: Control_prim
getwsid: Control_prim
getsel: Control_prim
gettr: Controlprim
getpn: Control_prim -> Partname

eqns forall ws: Wsid, bol :Bool, ns: Nameset, pn,pnl :Partname, sel : Select, tr: Trasfcord, n: Int,
cr: Criterion ofsort String

inqcp(mk_opws(ws» = openws;
inqcptmk clwstws) = closews;
inqcptmk deleteprimitivesfsel) = deleteprimitive;
inqcptmk begin pictureparttpn) = beginpicturepart;
inqcp(mk_begin_picturepartagain(pn» = beginpicturepartagain;
inqcp(mk_c1ose_picturepart(pn» = closepicturepart;
inqcp(mk_app_picture_part(pnl, pn, tr, ns) = appendpicturepart;
inqcp(mk_sel_cri(ws, cr, sel) = setselectioncriteria;
inqcp(mk_set_vis_ef(ws, bol) = setvisualeffect;
inqcp(mk_copyppfrompps(pn, sel, tr, ns) = copypicturepartfrompps;
inqcp(mk_sel_norm_transf(n» = selectnormalizationtransformation;
inqcp(mk_set_ws_transf(tr) = setworkstationtransformation;
inqcp(mk_set_ns_attr(ns» = setnamesetattribute

25

-> Select
-> Trasfcord

ofsortWsid
getwsid(mk_opws(wsj) = ws;
getwsid(mk_clws(ws» = ws;
getwsid(mk_sel_cri(ws, cr, sel) = ws;
getwsid(mk_set_visef(ws, bol) = ws;
ofsort Select
getseltmkdelete primitivestsel) = sel;
ofsort Trasfcord
gettr(mk_set_ws_trasnf(tr) = tr;
ofsort Partname
getpn(mk_begin_picture_part(pn» = pn;
getpn(mk_begin_picture_part_again(pn» = pn;
getpn(mk_copyppfrompps(pn, sel, tr, ns) = pn;

endtype

type INPUT_CLASS is
sorts Input_class
opns locator:

pick:
endtype

-> Input_class
-> Input_class

•

This is the data type for the elements of the input queue.
type INPUT_KVALUEis NDCPOINT, LOCATOR,NAMESET, INPUT_CLASS
sorts In_kvalue
opns mk_loc_kvalue: Ndcpoint, Trasfcord, Int

mk_pick_kvalue: Nameset
null_element:
trasf,n: In_kvalue

-> In_kvalue
-> In_kvalue
-> In_kvalue
->Locator_data

inq_cl: In_kvalue -> Input_class
eqns forall tn : Trasfcord, pn :Ndcpoint, numb: Int, ns: Nameset ofsort In_kvalue

trasf_n(mk_loc_kvalue(pn, tn, numb» = mk_locator(trasf(pn, tn), numb);
ofsort Input_class
inq_cl(mk_loc_kvalue(pn, tn, numb» = locator;
inq_cl(mk_pick_kvalue(ns» = pick;

endtype

The 'new' mode has been introduced to indicate to themanipulation that the current pick value has
been sent to it only to realize an echo.
type INPUT_MODE is
sorts In_mode
opns event:

sample:
request:

-> In_mode
-> In_mode
-> In_mode

26

new:
endtype

type INPUT_PRIMITIVE is STRING, INPUT_MODE, INPUT_CLASS
sorts Input_prim
opns mk_requestlocator:

mk_requestpick:
mk_samplelocator:
mk_samplepick:
mk_awaitinput :
mk_setinputmode: W sid, Input_class, In_mode
inqip: Input_prim
inqd: Input_prim
inqm: Input_prim

eqns forall ws: Wsid, cl:Input_class, md: In_mode of sort String
inqip(mk_requestlocator) = requestlocator;
inqip(mk_requestpick) = requestpick;
inqip(mk_samplelocator) = samplelocator;
inqip(mk_samplepick) = samplepick;
inqip(mk_awaitinput) = awaitinput;
inqip(mk_setinputmode(ws, cl, md) = setinputmode;
ofsort Input_class
inqd(mk_setinputmode(ws, cl, md) =cl;
ofsort In_mode
inqm(mk_setinputmode(ws, cl, md) =md;

endtype

-

-> In_mode

-> Input_prim
-> Input_prim
-> Input_prim
-> Input_prim
-> Input_prim
-> Input_prim
-> String
-> Input_class
-> In_mode

•

type GKS_PRIMITIVE is OUTPUT_PRIMITIVE, CONTROL_PRIMITIVE, INPUT_PRIMI­
TIVE
sorts Oks_prim
opns mkgp 1: Output_prim ->Oks_prim

mkgp2: Control_prim -> Gks_prim
mkgp3: Input prim -> Gks_prim
inq: Oks_prim -> String

eqns forall op : Output prim, cp : Control_prim, ip : Input_prim ofsort String
inqunkgp ltop) = inqop(op);
inqunkgpztcp) = inqcp(cp);
inqtmkgp'Ifip) = inqip(ip);

endtype

type STATUS is
sorts Status
opns ppop:

ppcl :
endtype
When a workstation is opened its name is added to the name set of the kernel state list. In this

27

,-

-> Status
-> Status

specification we assume that a list of normalization transformations have been previously defined
and it is possible to modify the current normalization transformation by the Select Normalization
Transformation instruction.
type KERNELSTATELIST is BOOL, NAMESET, PICfUREPART, LIST_TRASFCORD
sorts KernelStateList
opns mk_krn_list: Status, Nameset, List_Trasfcord, List_Int, Trasfcord -> KernelStateList

opws: KernelStateList, Control_prim -> KernelStateList
clws: KernelStateList, Control_prim -> KernelStateList
bpp: KernelStateList -> KernelStateList
cpp: KernelStateList -> KernelStateList
sel_tn: KernelStateList, Control_prim -> KernelStateList
set_ns: KernelStateList, Control_prim -> KernelStateList
inq_ns: KernelStateList -> Nameset
inq_state: KernelStateList -> Status
cur_trasf: KernelStateList -> Trasfcord
inq_trn:KerneIStateList -> List_Trasfcord
inq Intrns: KernelStateList -> List_Int

eqns forall st : Status, ns.nsl : Nameset, tr: List_Trasfcord, nt: List_Int, t,t1: Trasfcord, w l: Wsid,
n: Int ofsort Nameset

inq_ns(mk_krn_list(st, ns, tr, nt, t» = ns;
ofsort Trasfcord
cur_trasf(mk_krn_list(st, ns, tr, nt, t)) = t;
ofsort Status
inq_state(mk_krn_list(st, ns, tr, nt, t) = st;
ofsort List_Trasfcord
inq_trn(mk_krn_list(st, ns, tr, nt, t) = tr;
ofsort List_Int
inq_ltrn(mk_krn_list(st, ns, tr, nt, t) = nt
of sort KernelStateList
opws(mk_krn_list(st, ns, tr, nt, t),mkopwstw l) = mk_krn_list(st, ns union [wl], tr, nt, t);
clws(mk_krn_list(st, ns, tr, nt, t), mk_clws(wl)) =mk_krn_list(st, ns remove [wl], tr, nt, t);
bpp(mk_krn_list(ppcl, ns, tr, nt, t) = mk_krn_list(ppop, ns, tr, nt, t);
cpp(mk_krn_list(ppop, ns, tr, nt, t» = mk_krn_list(ppcl, ns, tr, nt, t);
sel_tn(mk_krn_list(st, ns, tr, nt, tl), mk sel normjransftn) = mk_krnJist(st, ns, tr, nt,
gett(n, nt, trj);
set_ns(mk_krn_list(st, ns, tr, nt, t1), mkset nsjittrtns l) = mk_krn_list(st, ns1, tr, nt, t);

endtype

•

type OUTPUT_PRIMITIVE is POINTS, KERNELSTATELIST,NDC_PRIMITIVE
sorts Output_prim
opns mk_out_prim: Points

wctondc: Output prim, KernelStateList
inqop: Output_prim

eqns forall pns : Points, k : KemelStateList ofsort String
inqop(mk_out_prim(pns» = outputprim;

-> Output_prim
-> Ndc_prim
-> String

28

of sort Ndc_prim
wctondc(mk_out_prim(pns), k) = mk_ndcpr(trasfpoints(pns, cur_trasf(k)), inq_ns(k));

endtype

The realization of echo of the pick device is amongst the functions defined in the type
NDCPICTURE. The detect function returns the picked primitive (only one) and eco realizes
highlighting by adding the element hl to the name set of the picked primitive. The last equation of
the eco function indicates that when a new primitive is highlighted any previous picked primitive
is returned to the normal state.
type NDCPICTURE is NDC_PRIMITIVE, PICTUREPART
sorts Ndcpicture
opns emptyNDCP: -> Ndcpicture

mkNDCP: Ndc_prim -> Ndcpicture
addndc: Ndc_prim, Ndcpicture -> Ndcpicture
del: Select, Ndcpicture -> Ndcpicture
detect: Point, Ndcpicture -> Ndc_prim
addpp: PicturePart, Ndcpicture -> Ndcpicture
eco: Ndcpicture, Point -> Ndcpicture
rmec: Ndcpicture -> Ndcpicture

eqns forall crit : Select, pn, ps : Points, ns: Nameset, ndcp : Ndcpicture, pp : PicturePart
ofsort Ndcpicture
del(crit, emptyNDCP) = emptyNDCP;
sel(get_ns(mk_ndcpr(ps, nsj), crit) eq true =>
del(crit, addndc(mk_ndcpr(ps, ns), ndcpjjedelicrit, ndcp);
sel(get_ns(mk_ndcpr(ps, nsj), crit) eq false =>
del(crit, addndc(mk_ndcpr(ps, ns), ndcp) = addndc(mk_ndcpr(ps, ns), del(crit, ndcpj);
addpp(emptypp, ndcp) = ndcp;
addpp(addprpp(mk_ndcpr(ps, ns), pp), ndcp) = addndc(mk_ndcpr(ps, nsj.addpptpp, ndcpj);
eco(emptyNDCP, pn) = emptyNDCP;
detect(pn, ndcp) = mk_ndcpr(ps, ns) =>
eco(addndc(mk_ndcpr(ps, ns), ndcp), pn) = addndc(mk_ndcpr(ps, ns union [hlj), ndep):
not(detect(pn, ndcp) = rnk_ndcpr(ps, ns) =>
eco(addndc(mk_ndcpr(ps, ns), ndcp), pn) = addndc(rnk_ndcpr(ps, ns), eco(ndcp, pnj);
rmec(addndc(mk_ndcpr(ps, ns), ndcp) = addndc(mk_ndcpr(ps, ns remove{hl}),rmecmdcpj);

endtype

•

The operations allowed on the picture part are: to add a primitive to a picture part (addprpp), to
, select a picture part obtained by the primitives of a picture part satisfying a selection criterion
(selpp), to add a name set to the primitives of a picture part (addns), to append a picture part to
another (appendpp), to transform the primitives of a picture part (trasfpp).
type PICTUREPART is NDCPRIMITIVE, POINTS
sorts PicturePart
opns emptypp: -> PicturePart

addprpp: Ndc_prim, PicturePart -> PicturePart
addns: Nameset, PicturePart -> PicturePart
appendpp: PicturePart, PicturePart -> PicturePart

29

trasfpp: PicturePart, Trasfcord -> PicturePart
seIpp: PicturePart, Select, trascord, Nameset . -> Pictu:ePart

eqns forall ns,nsl : Nameset, cri : Select, mat: Trasfcord, pnts : Points, ndcp: Ndcpicture, pp,ppl:
PieturePart ofsort PicturePart

selpp(emptypp, cri, mat, ns) = emptypp;
sel(ns, cri) eq true =>
selpp(addprpp(mk_ndcpr(pnts, ns), pp), cri, mat, nsl) = addprpp(trasf (mk_ndcpr(pnts, ns
union nsl), mat), selpp(pp, cri, mat, nsl j); .
sel(ns, cri) eq false =>
selpp(addprpp(mk_ndcpr(pnts, ns), pp), cri, mat. nsl) = selpp(pp, eri, mat, nsl);
trasfpp(emptypp) = emptypp;
trasfpp(addprpp(mk_ndcpr(pnts, ns), pp), mat) = addprpp(mk_ndcpr(trasfpoints(pnts, mat).
ns), trasfpp(pp, mat»;
addns(nsl,emptypp) = emptypp;
addns(nsl, addprpp(mk_ndcpr(pnts. ns), pp» = addprpp(mk_ndcpr(pnts, ns union nsl), pp);
appendpp(emptypp, pp) = pp;
appendpp(addprpp(p, pp), ppl) = addprpp(p, appendpp(pp. pplj);

endtype

•

In the Picture Part Store are defined operations to make a PPS, to unify two PPS, to begin a new
picture part in the PPS. to append a picture part to a PPS, to get a picture part from a PPS and to
add a primitive to a PPS.
type PICTUREPARTSTORE is PICTUREPART, CONTROL_.PRIMITIVE
sorts PPS

opnsemptyPPS: -> PPS
mkPPS: Partname, PicturePart -> PPS
union: PPS, PPS -> PPS
begpicpart: PPS. Control_prim -> PPS
append: PPS, Control_prim -> PPS
addPP: Partname, Ndc_prim, PPS -> PPS
getpp: Partname, PPS -> PicturePart
cpfpps: PPS, Control_prim -> PicturePart

eqns forall pnl,pn2: Partname, p: Ndc_prim, ppsl, pps2, pps3: PPS, ns: Nameset, mat: Trasfcord
ofsort PPS

emptyPPS union ppsl =pps l;
ppsl union ppsl = ppsl;
pps1 union pps2 = pps2 union ppsl;
ppsl union (pps2 union pps3) = (ppsl union pps2) union pps3;
begpicpan(ppsl, mk beginpictureparttpn l) =mkPPS(pnl, emptyPP) union (ppsl);
begpicpart(ppsl, rnk begin picturepartagaintpn l) = mkPPS(pnl, emptyPP) union (ppsl);
append(ppsl, mk_appendpp(pnl, pn2, mat, nsj) = mkPPS(pnl, appendpp(addns(ns,

trasf(getpp(pnl, ppsl), mat», getpp(pn2, pps l) union deletepicturepart(pnl, ppslj);
addPP(pnl, p, addPP(pn2, p, ppss) = addPP(pn2, p, addPP(pnl, p, pps3»;
addPP(pn, p, ppsl) union pps2 = addPP(pn, p, ppsl union pps2);
addPP(pnl, p, emptyPPS) = emptyPPS;
pnl eqpn2 =>

30

--

addPP(pnl, p, mkPPS(pn2, pp» = mkPPS(pn2, addprpp(p, ppj);
pnl ne pn2 =>
addPP(pnl, p, mkPPS(pn2, pp» = mkPPS(pn2, pp);
addPP(pnl, p, ppsl union pps2) = addPP(pnl, p, ppsl) union addPP(pnl, p, pps2);
ofsort PicturePart
getpp(pnl, emptyPPS) = ernptypp;
pnl eqpn2 =>
getpp(pnl, mkPPS(pn2, pp) union ppsl) = pp;
pnl ne pn2 =>
getpp(pnl, mkPPS(pn2, pp) union ppsl) = getpp(pnl, ppsl);
cpfpps(ppsl, mk_copyppfrompps(pn, sel, tr, ns) = selpp(getpp(pn, ppsl), sel, tr, ns);

endtype •

The described queue is the input one where can be added or removed locator and pick elements.
type QUEUE is INPUT_KVALUE
sorts Queue
opns emptyq:

add: In_kvalue, Queue
top: Queue
remove: Queue

eqns forall x : In_kvalue, q : Queue ofsort In_kvalue
top(emptyq)=null_element;
top(add(x, emptyqjj=x;
q neq emptyq =>
top(add(x, q» = top(q);
ofsort Queue
remove(add(x, emptyq) = emptyq;
q neq emtpyq =>
remove(add(x, q)) = add(x, removetqj):

endtype

-> Queue
-> Queue
-> In_kvalue
-> Queue

This data type represents a output primitive after Production processing.
type NDC_PRIMITIVE is WORKSTATIONSTATELIST,SELECTION, NDCPOINTS, STKING
sorts Ndc_prim
opns mk_ndcpr: Ndcpoints, Nameset

wstrasf: Ndc_prim, WsStateList
inqop: Ndc_prim
get_ns: Ndc_prim

eqns forall pnts : Points, ns : Nameset, wsl :WsStateList ofsort String
inqop(mk_ndcpr(pnts, ns) = outputprim;
ofsort Nameset
get_ns(mk_ndcpr(pnts, ns) = ns;
ofsort Dc_prim
wstrasf(mk_ndcpr(pnts, ns), wsl) = mk._dc_prim(trasfpoints(pnts,inq_wstr (wslj),

det (inq_wcri(wsl, detect), ns), high(inq_wcri(wsl, highligh), nsj);

-> Ndc_prim
-> Dc_prim
-> String
-> Nameset

endtype

31

type NDC_PRIMITIVES is NDC_PRIMITIVE, NDCPlcruRE, STRING
sorts Ndc_primitives
opns mk_ndcpsl: Ndc_prim

mk_ndcps2: Ndcpicture
inqndcps: Ndc_primitives

eqns forall pr: Ndc_prim, ndcp: Ndcpicture of sort String
inqndcps(mk_ndcpsl(pr» = inqop(pr);
inqndcpsunk ndcpszmdcp) = ndcpicture;

endtype

->Ndc_primitives
-> Ndc_primitives
-> String

Input and control primitives arrive at the workstation level at the same gate and so are grouped in
the same data type, with output primitives.
type WS_PRIMITIVE is CONTROL_PRIMITIVE, INPUT_PRIMITIVE, NDC_PRIMITIVES
sorts Ws_prim
opns mkwpI: Control_prim

mkwp2: Input_prim
mkwp3: Ndc_primitives
inq: Ws_prim

eqns forall cp : Control_prim, ip : Input_prim ofsort String
inqtmkwpltcp) = inqcp(cp);
inqtmkwpztip) = inqip(ip);
inqtmkwp'Itip) = inqndcps(ip)

endtype

->Ws_prim
->Ws_prim
->Ws_prim
-> String

type WORKSTATIONSTATELIST is SELECTION, TRASFCORD, CONTROL_PRIMITIVE
sorts WsStateList
opns mkwsStLs: Select, Select, Select, Trasfcord, Bool ->WsStateList

initial_wsStateLs: Wsid ->WsStateList
ve:WsStateList, Control_prim ->WsStateList
set_cri: WsStateList, Control_prim ->WsStateList
set_wstr: WsStateList, Control_prim ->WsStateList
inq_wstr: WsStateList -> Trasfcord
inq_ve: WsStateList -> Bool
inq_wcri: WsStateList, Criterion -> Select

eqns forall s,sl,s2,s3 : Select, bl,bll: Bool, tr,trl: Trasfcord, wsx: Wsid ofsortWsStateList
initial_wsStateLs(wsx) = mkwsStLs(contains(wsx), contains(hl), selectall, identity, true);
ve(mkwsStLs(s, sl, s2, tr, bl), mk_set_visef(wsx, bl l) = mkwsStLs(s, sl, s2, tr, bll);
set_cri(mkwsStLs(sl, s2, s3, tr, bl), mk_sel_cri(wsx, visib, s) = mkwsStLs(s, s2, s3, tr, bl);
set_cri(mkwsStLs(sl, s2, s3, tr, bl), mk_sel_cri(wsx, detect, s) = mkwsStLs(sl, s, s3, tr, bl);
set_cri(mkwsStLs(sI, s2, s3, tr, bl), mk_sel_cri(wsx, highligh, s) =mkwsStLs(sl, s2, s, tr, bl);
set_wstr(mkwsStLs(sl, s2, s3, tr, bl), mk setws jransf(tr l) =mkwsStLs(sI, s2, s3, trI, bl);
ofsort Bool
inq_ve(mkwsStLs(sl, s, s3, tr, bl) = bl;

32

of sort Select
inq_wcri(mkwsStLs(sl, s2, s3, tr, bl), visib) = sl;
inq_wcri(mkwsStLs(sl, s2, s3, tr, bl), detect) = s2;
inq_wcri(mkwsStLs(sl, s2, s3, tr, bl), highligh) = s3;
ofsort Trasfcord
inq_wstr(mkwsStLs(sl, s2, s3, tr, bl) = tr;

endtype

This type has been introduced because defining aDC primitive with highlighting and detectability
attributes it cannot be seen as an instance of a generic output primitive
type DCPRIMITIVE is
sorts Dc_prim
opns mk_dc_prim: Points, Detectab, Highlt ->Dc_prim
endtype

•

This description of the dcpicture allows the composition of the dcprimitives arriving from the
rendering and the echo of the input devices arriving from the aggregation. A cursor is defined as a
dcpicture generated from a point and a predefined shape.
type DCPICTURE is NDC_PRIMITIVES, DCPRIMITIVE, WORKSTATIONSTATELIST
sorts Dcpicture
opns emptydcp: -> Dcpicture

adddcp: Dc_prim, Dcpicture -> Dcpicture
adddcpic: Dcpicture, Dcpicture -> Dcpicture
mk_cursor: Point, Template -> Dcpicture
rem_cursor: Dcpicture -> Dcpicture
ndcptodcp: Ndcpicture, WsStateList -> Dcpicture

eqns forall dcpl : Dcpicture, pn : Point, ps: Points, tm: Template, wsl: WsStaeteList, ns:Nameset,
ndcp: Ndcpicture ofsort Dcpicture

ndcptodcp(emptyNDCP) = emptydcp;
sel(ns, inq_wcri(wsl, visib) =>
ndcptodcp(addndc(mk_ndcpr(ps, ns), ndcp), wsl) = adddcp(wstrasf(mk_ndcpr(ps, ns), wsl),
ndcptodcp(ndcp, wslj);
not(sel(ns, inq_wcri(wsl, visibjj) =>
ndcptodcp(addndc(mk_ndcpr(ps, ns), ndcp), wsl) = ndcptodcp(ndcp, wsl);
rem_cursor(adddcpic(mk_cursor(pn, tm), dcplj) =dcpl;

endtype

type DC_PRIMITIVES is OUTPUT_PRIMITIVE, STRING, ATTRIBUTES
sorts Dc_primitives
opns mk_dcps1: Output_prim, Highlt, Detectab

mk_dcps2: Dcpicture
inq: Dc_primitives

eqns forall pr: Output_prim, ndcp: Ndcpicture ofsort String
inq(mk_ndcpsl(pr» = inqop(pr);
inqunkndcpszmdcp) = dcpicture;

-> Dc_primitives
-> Dc_primitives
-> String

33

endtype

These are some possible cursor types
type TEMPLATE is
sorts Template
opns arrow:

cup_of_tea:
hour_glass:

endtype
endspec

-> Template
-> Template
-> Template

34

