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1. The First Generation

Standardization activities have existed in computer graphics since the early 1970’s and a family
of standards for computer graphics is now emerging from the International Organization for Stan-
dardization/ International Electrotechnical Commission (ISO/IEC). This family of standards cov-
ers a broad range of graphics requirements from application program interfaces for the generation

and interactive manipulation of 3D graphics, to device level interfaces for the transfer of graphi-
cal information.

The major standards in progress are:

(1) GKS (Graphical Kernel System) - a set of basic functions for 2D device-independent com-
puter graphics programming.

(2) CGM (Computer graphics metafile for transfer and storage of picture description informa-
tion) - a device independent data exchange format for computer graphics pictures.

(3) CGI (Interface techniques for dialogues with graphical devices) - a set of basic elements for
the control and data exchange between device-independent and device-dependent levels in
graphics.

(4) GKS-3D (Graphical Kernel System for 3 Dimensions) - an extension of GKS to provide the
basic functions for computer graphics programming in 3D.

(5) PHIGS (Progammer’s Hierarchical Interactive Graphics System) - a set of functions for
computer graphics programming in environments requiring rapid modification of graphical
data that describes geometrically related objects.

(6) Language Bindings - bindings of the functions and data types of the functional standards to
standardized programming languages.

(7) Registration - a registration mechanism is being set up to deal with the standardization of
primitive aspects, generalized primitives, escape functions and other graphical entities.

(8) Conformity Testing of Implementations of Graphics Standards - the purpose of this
project is twofold: first to specify the characteristics of standardized test sets for use in
determining the conformance of implementations of graphics standards and second to pro-
vide direction to developers of functional standards concerning conformance rules.

In order to describe the status of the various standardization projects, it is necessary to define the
various stages a standards document goes through within ISO/IEC before becoming an interna-
tional standard. These are:

(1) Workitem. An official project with agreed scope and goals and timescales. When an area
has been identified for standardization, a proposal for a project is prepared. There is a bal-
lot on the proposal within the appropriate joint technical committee (JTC) and, if success-
ful, the workitem is assigned to a particular Subcommittee, who manage the project and
assign it to a particular Working Group (WG) to carry out the technical work. The Subcom-
mittee for computer graphics is SC24, within JTC1, designated JTC1/SC24. The WG struc-
ture of SC24 is outlined below. A rapporteur (manager) and document editor are appointed
for the project by the SC.
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Draft Proposal (DP). The WG produces successive Working Drafts (WD) of the standard
until the document is sufficiently mature that it can be submitted to the SC for registration
as a DP. The DP is then circulated within the SC for technical review and ballot. Com-
ments submitted with the votes are addressed and resolution of them is sought. If sufficient
agreement is reached the document proceeds to the next stage. If not, or if the document
has undergone substantial change, then it has to be circulated for a further DP ballot.

Draft International Standard (DIS). When sufficient agreement is reached on the DP docu-
ment, the revised document is registered as a DIS. The publication of a DIS should indicate
that technical agreement has been reached. The document is then circulated within the JTC
for review and ballot. Comments submitted are addressed and resolution sought. Any
remaining disagreements at this stage can cause another DIS ballot, but normally the docu-
ment proceeds to the next stage.

International Standard (IS). The DIS revised in the light of comments received becomes
the Final Text. A final ballot within ISO/IEC Council ensures that all members are satisfied
that the ISO/IEC procedures have been followed by the project. Eventually the standard is
published and the text is available from ISO/IEC Central Secretariat, or through national
standards bodies. It is common for international standards to be issued as national stan-
dards, under a national number, possibly in translation. Standards are reviewed S years
after publication, at which time they may be endorsed, revised or abandonned.

Addenda. A mechanism exists for enhancing a standard prior to the five year review. This
is done by publishing an Addendum to the standard. Addenda are progressed through simi-
lar phases to standards themselves.

The computer graphics subcommittee, SC24, has five working groups:

WG1: Architecture. Charged with developing a computer graphics reference model, soli-

citation of user requirements in the area of computer graphics and currently with the revi-
sion of GKS.

WG2: Application Program Interfaces. Standardization of functional specifications for
application program interfaces.

WG3: Metafiles and Device Interfaces. Standardization for graphical information
exchange, including computer graphics metafile and device interfaces.

WG4: Language Bindings. Standardization of language bindings for functional standards.

WGS5: Validation, Testing and Registration. Development of methods and procedures
for testing and validation of implementations of computer graphics f}mctional standards and
development of methods and procedures for the registration of graphical items.

Voting is a slow process and consequently the development of standards takes a long time.

The documents tend to be long and intricate and the commenting process demands a large

amount of, usually, volunteer labour. The status of the projects referred to above is shown in
table 1.
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Project Ref Doc Availability of text for:

WD DP DIS IS
GKS 1SO7942 IS (1985)
GKS Language bindings
Fortran ISO8651-1 IS(1988)
Pascal 1SO8651-2 IS(1988)
Ada DIS8651-3 IS(1988)
C DP8751-4 6/88
GKS-3D DIS8805 1S(1988)
GKS-3D Language bindings
Fortran DIS8806-1 4/89
Pascal SC24/N190 7/88
Ada SC24/N189 7/88 2/89 6/90
C SC24/N181 7/88 3/89  12/89
PHIGS
Functional description DIS9592-1 IS(1989)
Archive file format DIS9592-2 IS(1989)
Archive file clear text encoding DIS9592-3 1S(1989)
PHIGS Language bindings
Fortran DIS9593-1 7/87 11/87 12/88
Extended Pascal DP9593-2 5/89  12/89
Ada DIS9593-3 9/87 1/89 8/89
C DP9593-4 5/89 12/89
CGM
Functional description I1SO8632-1 IS (1987)
Character encoding ISO8632-2 IS (1987)
Binary encoding 1SO8632-3 IS (1987)
Clear text encoding ISO8632-4 IS (1987)
CGM Addendum 1
Functional description 1S08632-1/ADD.1 10/88 10/89
Character encoding 1S08632-2/ADD.1 10/88 10/89
Binary encoding 1SO8632-3/ADD.1 10/88 10/89
Clear text encoding 1S08632-4/ADD.1 10/88 10/89
CGM Addendum 2
Functional description N23 3/88 5/89  10/89 10/90
Character encoding N24 10/89
Binary encoding N25 10/89
CGI DP9636 11/88  10/89 2/91
CGI Character encoding SC24/N209 3/89 10/89
CGI Binary encoding SC24/N210 3/89  10/89
CGI Library language binding
Fortran SC24/N192 1/89 8/89 4/90 6/91
C SC24/N191 1/89 8/89 4/90 6/91
Conformity Testing SC24/N18S 8/88 3/89  12/89 10/90

Table 1




1.1. GKS

The Graphical Kemel System (GKS) was published as an ISO Standard on 15 August, 1985. The
Standard itself is defined in.8 A more detailed introduction and primer are given in6 while a full
and comprehensive treatment may be found in.5 The following sections briefly describe the key
concepts in GKS.

1.1.1. Dimensionality

GKS is a two-dimensional graphical system and provides no support for three dimensions. The
extension of GKS to 3D is described later.

1.1.2. Primitives

The six basic output primitives are polyline, polymarker, fill area, text, cell array and generalized
drawing primitive (GDP). The polyline primitive draws a set of lines between a sequence of
points. The polymarker primitive is similar but marks the sequence of points with a specified
symbol. The text primitive provides considerable flexibility in defining the quality of the text, its
size and orientation, the origin etc. It also supports the text path being in any of the major direc-
tions providing support for those languages not writing from left to right. The fill area primitive

is defined in terms of a set of points which specify a polygon. The primitive fills the enclosed
area with a solid colour or a specified pattern or hatch style.

The cell array primitive is specifically aimed at the image processing community where the

cell array defines the colour or grey level to be associated with individual cells of a rectangular
array.

GDP provides a controlled method of adding more exotic primitives. Particular implemen-
tations are free to add to the basic primitive set by specifying particular GDP types as producing
higher level shapes such as ellipses etc.

The GKS output primitives have a rich set of aspects, allowing a high degree of control over
the way primitives are rendered on displays. The aspects of a polyline primitive, for example,
allow control over the linetype (solid, dotted etc.), linewidth and colour. The mechanisms by
which the values of aspects are determined are described shortly.

1.1.3. Coordinate Systems and Device Independence

The GKS concept of a workstation is the key to device independence in GKS. A workstation
consists of zero or one display surface and zero or more input devices plus associated software.
The GKS idea of a workstation is an abstraction from physical hardware.

A major difference from many earlier graphics systems is that GKS allows more than one
workstation to be in use simultaneously. For example, an operator may be interacting with a

design through an interactive display, while taking copies of completed parts of the design on a
plotter.

Output primitives are specified in a cartesian world coordinate system. Applications that
require other user level coordinate systems, for example, polar or logarithmic coordinates, must
first transform these user coordinates to world coordinates.

Transformation to the coordinate system of the display device is accomplished in two
stages. First, world coordinates are transformed to an intermediate coordinate system called nor-
malized device coordinates (NDC) by a window to viewport mapping termed a normalization
transformation, Then a second window to viewport mapping, the workstation transformation,
transforms these coordinates to device coordinates.

The purpose of the normalization transformation is to facilitate the composition in NDC
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space of pictures defined in different world coordinate system spaces. Different device coordi-
nate systems are accommodated in the workstation transformation. Thus to use an application
program with different devices, it is only necessary to change the workstation transformation.
The composition of the picture in NDC space does not need to be changed.

The workstation transformation may be set differently for different workstations, thus
allowing different regions of the virmal picture to be displayed on different workstations.

Through the workstation activation and deactivation mechanism, not all primitives need be
displayed on all workstations.

The aspect ratios of window and viewport may differ in the normalization transformation,
but the workstation transformation maps the workstation window to the largest possible region of
the workstation viewport with the same aspect ratio.

1.1.4. Aspects

The appearance of primitives on the display surface of a workstation is controlled by their
aspects. GKS distinguishes two types of aspects, workstation independent aspects which have the
same value on all workstations on which the primitive is displayed, and workstation dependent
aspects which may have different values on different workstations.

The values of aspects are controlled by attributes. For workstation independent aspects,
there is one attribute per aspect. These attributes are termed geometric attributes. For worksta-
tion dependent aspects, two methods of specification are possible, bundled specification and indi-
vidual specification. Bundled specification uses a lookup table approach. A single attribute for
each primitive, the primitive index, controls the values of all the workstation dependent aspects
of the primitive.

The polymarker primitive will be used as an example. The values of all the aspects of a
polymarker (marker type, markersize scale factor and polymarker colour index) are determined
by the value of the polymarker index attribute. A polymarker index defines a position in a table,
the polymarker bundle table. Each entry in this table specifies values for all the non-geometric
aspects of a polymarker. Each workstation has its own bundle table and so a polymarker in the
virtual picture may be displayed with different representations on different workstations.

In the case of individual specification, there is one attribute for each workstation dependent
aspect and thus each aspect has the same value on each workstation on which the primitive is

displayed. How each workstation approximates this value is dependent on the workstation and
the implementation.

A set of aspect source flags controls the mode of specification of each aspect. Some aspects
may be specified individually, whilst others are specified by a bundle.

Bundled specification is a powerful tool for achieving application program portability
between different workstation environments. If carefully constructed, moving a program to a dif-
ferent environment will merely mean defining new representations for the different indices used
in the picture, to employ, in the best way possible, the characteristics of the workstations in the
new environment. The bundled scheme is important when it is necessary to ensure that primi-
tives with different attributes can be differentiated on different workstations; whilst the individual

scheme is important when primitives with specific aspects are to be represented on each worksta-
tion as closely as possible to the specification.



1.1.5. Graphical Input

A major innovation in GKS is the model of input. The aim was to specify a set of virtual input
devices onto which real input devices could be mapped.

All input devices are formalized as having a measure and a trigger. The measure describes
the type of input value returned by the device, while the trigger is the event which causes the
measure value to be returned to the application program in certain styles of input.

The data that can be entered into an application program by the operator are divided into six
different types, and six classes of logical input device are defined corresponding to these. The
data types are:

LOCATOR: a position in world coordinates and the associated number of the normaliza-
tion transformation used to convert back from device coordinates via NDC to world coordi-
nates. The normalization transformation used is that whose viewport contains the data-
point. Conflicts are resolved by a priority mechanism.

STROKE: similar to LOCATOR except that it represents a sequence of world coordinate
positions rather than a single position.

VALUATOR: a real number in some range.
CHOICE: an integer that represents a selection from a set of choices.

PICK: the name of a selected segment and an identifier that indicates which set of primi-
tives in the segment has been picked.

STRING: a character string.
The three operating modes in which GKS input devices may be set of provide input are:

REQUEST: rather like FORTRAN READ. A request is made by the application program
for a measure of the specified device to be returned. GKS will wait until the operator has
set the measure to the desired value and activated the trigger.

SAMPLE: the current measure value is returned whenever requested by the application
program. The trigger is not used by SAMPLE input.

EVENT: a number of input devices may be active together. Each time the trigger for a par-
ticular device is activated, the current measure value and data that identify the device are
added to a single queue of input events for all the devices used in event mode. The applica-
tion program can interrogate the queue to retrieve the input events. It is possible to couple
more than one input device to the same trigger so that multiple events can be generated
from a single trigger event. Unfortunately, this coupling is not under application program
control.

Some degree of control over logical input devices is provided to the application program through
device initialization functions. These enable the program to define the initial value for the dev-
ice, the prompt/echo type (for example a LOCATOR device may be echoed as a rubber band line,

tracking cross etc.), the area of the display to be used for displaying the echo, and further device
dependent data,

1.1.6. Segments

Associated with each workstation is a segment store in which segments consisting of sets of GKS
primitives and associated attributes can be stored. Functions exist to create, delete, rename and
manipulate segments. Associated with each segment is a set of attributes which control visibility,
highlighting, priority for output and detectability from a pick device. It is also possible to

transform segments such that the picture defined by the segment can be scaled, rotated, translated
etc.
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There is also a workstation independent segment storage which is used as a central library.
Additional operations are available for segments stored in this storage, for instance to enable
them to be moved to other workstations.

1.1.7. Levels

Rather than insist that all facilities in GKS are supported by every implementation, GKS is
defined as a set of levels on two orthogonal axes, output and input. There are nine levels in total,
ranging from level 2¢ which includes everything, to level Oa which has no input facilities and
only simple output facilities.

1.2. GKS-3D and PHIGS

The two functional standards that extend GKS to 3 dimensions are GKS-3D and PHIGS. GKS-
3D is a minimal extension to GKS to allow 3D working. GKS-3D provides application programs
with the capability to define and display 3D graphical primitives specified using 3D coordinates.
The GKS input model is also extended to provide 3D locator and stroke input. A major goal in

the design of GKS-3D was that existing GKS programs should run, as far as possible, without
change.

Neither GKS or GKS-3D satisfy the requirements of application programs where modifica-
tion of the graphical data is required in an efficient manner, where the objects to be displayed
consist of geometrically related parts and where rapid dynamic articulation of graphical entities is

required. PHIGS aims to address applications with these requirements. The main features of
these two systems are now described.

1.2.1. Storage

The segment store in GKS-3D is identical to that in GKS except for the extension to 3 dimen-
sions. Segments are normally stored on workstations and there is a centralized workstation

independent segment store to allow movement of segments from this storage to other worksta-
tions as required.

The major difference between PHIGS and GKS is that in PHIGS the creation and display of
a picture are very explicitly independent phases. At the heart of PHIGS is a single centralized
structure store (CSS), which has greater functionality than the GKS-3D segment store and
appears at a different (higher) place in the viewing pipeline.

A structure consists of a number of structure elements which can be both grgphical and
non-graphical. Thus it is possible to keep application data associated with graphics in the same
database. PHIGS provides facilities for creating and editing structures held in the CSS.

PHIGS provides a set of functions which define structure elements. There is a 1-1
correspondence between primitives and structure elements. In addition, PHIGS has structure ele-
ments for attribute setting and specification of application data. A major feature of CSS is that it
is hierarchical. Structure elements are provided which call other structures.

Structures are displayed when they are posted to a workstation. Posting causes the structure
to be traversed and interpreted. A complex modelling transformation is applied to coordinates in

the structure elements as they are interpreted and an equally complex modelling clipping opera-
tion may also be applied.

The primitives generated by PHIGS enter the viewing pipeline immediately prior to the
viewing operation. The modelling transformation provides a similar function to the normaliza-
tion transformation and the modelling clip represents a generalization of the normalization clip.



1.2.2. Structures
Particular features of the PHIGS structure facility are:

(1) Hierarchy. Structures can call other structures and the same structure may be called more
than once from a higher level. Thus a car may need only a single wheel structure which is
called four times (five including the spare!).

(2) Modelling coordinates. Structure elements contain positional information in modelling
coordinates, a cartesian coordinate system. Each structure has a global and local modelling
transformation which are concatenated to produce the transformation to be applied to the
points to turn the modelling coordinates into the world coordinates to be passed to the view-
ing pipeline. Modelling clipping regions may be defined in modelling coordinates as the
intersection of a collection of half-spaces. These regions are then transformed to world
coordinates and combined, using standardized or implementation dependent combinators, to
produce a composite modelling clipping region which may be applied to graphical output.

(3) Inheritance. Substructures inherit attributes, modelling transformation and modelling clip-
ping from the calling structure. Thus the global modelling transformation for a structure
will be that passed in by the calling structure. When a structure has been completely
traversed, control reverts to the higher structure that called it and the attributes, transforma-
tions etc. are reset to those in force on entry to the substructure. Thus a substructure has no
effect on the calling structure.

(4) Editing. Labels can be placed in structures and there is a structure element pointer. Conse-
quently, it is possible to move around a structure and edit it after initial creation. This is
unlike GKS segments which cannot be changed after creation.

1.2.3. Viewing

Viewing consists of projecting the 3D image onto a 2D projection plane. The viewing pipeline is
given in Figure 1. Functions are provided to assist with the definition of this viewing operation.
The initial coordinates are changed to Viewing Coordinates by defining a View Reference Point
and a set of axes associated with it. The intention is that this point has some relationship to the
object to be viewed and makes the setting up of the projection transformation that much easier.

Once the Viewing Coordinates are established, Front and Back Planes are defined which
specify the limits of the object to be viewed. A Projection Reference Point can be speciﬁed and a
Projection Plane which allows the object to be viewed by projecting it onto the projection pl?ne.
The View Window specifies that part of the projection plane to be output to the workstation.
Both parallel and perspective projections are provided.

Each primitive has a View Index associated with it which defines the view bundle table
entry on the workstation to be used. This contains details of the viewing transformation and clip-
ping to be applied. It was believed that, unlike GKS, there is a need for more than one view to be
available at a time on a workstation. This would, for example, allow titles to be output using a
parallel projection while a 3D object to which the titles are associated is output using a perspec-
tive transformation. ‘The view bundle is analogous to the polyline bundle in that it allows views
to be different on different workstations.

Support is provided for Hidden Line and Hidden Surface removal in both GKS-3D and
PHIGS. Associated with primitives is an attribute defining which method of rendering is to be
used on the workstation. The workstation can be asked to render or not and it has flexibility in
how it does the rendering. Consequently, a variety of workstations can choose the most appropri-
ate methods depending on their hardware characteristics.



View Orientation Transformation
...................... ...VRC
View Clip
View Mapping Transformation
...................... ...NPC
Workstation Clip
Workstation Transformation
......................... DC3

Figure 1
1.2.4. Primitives

GKS-3D and PHIGS provide the same basic primitive set as GKS except that they are extended
to work in the 3D environment. Existing GKS functions can be called an produce the equivalent

GKS-3D primitive on the Z=0 plane (effectively a Z=0 coordinate is added to each position in a
GKS function call).

In GKS-3D and PHIGS, text, fill area and cell array remain planar primitives, but can be
positioned in an arbitrary plane. Polyline and polymarker become genuine 3-dimensional primi-
tives with no constraints on the positions used in the function call.

One additional primitive has been added to both GKS-3D and PHIGS, FILL AREA SET,
which specifies a set of fill areas all of which will be rendered together as a single entity. For
rendering 3-dimensional objects, it was believed that this extension was necessary. For the same
reason, FILL AREA SET has more control on how the boundary edge is rendered than the oﬂ.gi-
nal fill area primitive. There are some subtle, annoying, differences between the rules governing
the rendering of the primitive in GKS-3D and in PHIGS.

A further primitive has been added to PHIGS, ANNOTATION TEXT RELATIVE. The
purpose of this primitive is to facilitate labelling of objects. The primitive is defined in NPC
space, its position is defined by a reference point in modelling coordinate space and an offset
from this in NPC coordinate space. The plane on which the annotation appears is always parallel
to the x-y plane of the display space and is unaffected by modelling and viewing transformations,
but the reference point is transformed normally. Height, orientation, path and alignment attri-
butes may be specified for the primitive in NPC space and an annotation style may also be speci-
fied which defines how the relationship between the reference point and the text string will be
displayed. The options available for the latter include unconnected, lead line displayed with
current polyline aspects and implementation dependent manner. This primitive is useful in cer-
tain contexts, but it remains to be seen to how large a class of applications this will extend.

In GKS and GKS-3D, eligibility of primitives for picking, visibility and highlighting are
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determined by segment attributes. PHIGS has no segment store and rather than carry over the
GKS analogy through a structure attribute mechanism, it was recognized that more flexible ways
of controlling such entities are necessary in a system designed to serve the needs of highly
interactive applications. All primitives in PHIGS have a NAME SET attribute. This is an addi-
tion to the GKS and GKS-3D attribute sets. The nameset attribute defines the eligibility of the
primitive for highlighting, invisibility, picking and incremental spatial search (a ‘‘software’
search which can be performed on the centralized structure store). A filter mechanism is incor-
porated in PHIGS with an inclusion and exclusion set of names at each workstation to control
specific rendering of primitives. Primitives whose name sets have at least one name in common
with the inclusion set and no names in common with the exclusion set of a particular filter have
the property (highlighted, invisible, pickable etc.) controlled by that filter. This gives a very
flexible mechanism for structuring the models defined by the centralized structure store. For
example, the heating system or electrical system or water system of a house could be selectively
displayed by merely changing filters, if the primitives corresponding to objects in these systems
have appropriate name set attributes.

It was felt that this mechanism would be useful in GKS and GKS-3D also, but it has been

decided that the mechanism should not be incorporated in GKS-3D at this stage, but is to be con-
sidered in the 5 year review of GKS.

1.2.5. Input

The input models in all three standards are very similar. Both GKS-3D and PHIGS extend the
logical input devices by allowing 3-dimensional locator and stroke devices as well as the six logi-
cal input devices defined in GKS.

Pick input in PHIGS has been extended to give more information about what has been
picked. In GKS and GKS-3D, the PICK device returns the name of the segment and the PICK
identifier within the segment. As a structure in PHIGS could be executed as part of one or more
parent structures, some applications will need to know more than just the local structure name.
Consequently, in PHIGS it is possible to recover the names of the structures in the hierarchy that
led to the invocation of the structure that has been picked.

1.2.6. Colour Models

Colour models define a colour coordinate space and a subspace, in which each point represents a
describable colour. GKS only supports the RGB colour model, in which colours are described by
triples of values ranging from 0 to 1 or 0% to 100% for each of the three primaries.

PHIGS and GKS-3D allow other colour models to be used, including CIE, HSV and HLS.
The application program can select the colour model in which the tuple of values specifying
colours will be interpreted. The CIE colour model was introduced in response to the observation
that ‘*device independent’’ colour is becoming a major issue in computer graphics. The specifi-
cation of colour is an area in which there is increasingly close collaboration between the makers
of graphics standards and the makers of standards for document production and printing.

1.2.7. Summary

This section has only given an informal introduction to the new facilities available and the differ-
ences between PHIGS and GKS-3D. Stringent efforts have been made to harmonize PHIGS and
GKS-3D and remaining differences either reflect different requirements for their respective fields

of application or fundamental differences of opinion about the conceptual model by which they
are related.
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1.3. Language Bindings

In the early days of ISO work on graphics standards, it was realized that the different languages
from which people used graphics made it necessary to define the functional specification in a way
that was independent of any one language. The functional standards, GKS, GKS-3D and PHIGS
therefore define a collection of functions and data types which are intended to be sufficiently
abstract as not to hinder binding to any particular programming language. There is a separate
ISO standardization activity to cover language bindings for GKS, GKS-3D and PHIGS. Bindings
for these standards to FORTRAN, Pascal, Ada and C are either completed or in preparation.
Table 1 shows the current status of the language binding standards. The rules of the game are
that language bindings may only be standardized for programming languages which themselves
have some status as standards. Thus there are no standardized bindings to languages such as Pro-
log or Lisp, though there is much interest in bindings to these languages and alternative
approaches continue to be reported in the literature.” The paper by Sparks and Gallop!? gives a
good overview of the problems and approaches to language btinding standardization.

1.4. The Computer Graphics Metafile (CGM)

GKS provides a mechanism for the storage of graphical information, segment storage, but this
only provides a method for the storage of transient information and is not designed for long-term
storage between sessions. Once the workstation is closed, segment storage for that workstation
ceases to exist.

GKS recognized the need for storage of graphical information between sessions and ini-
tially included within it a GKS Metafile facility as part of the standard which allowed an audit

trail of GKS commands (used to create and manipulate pictures) to be stored and later retrieved
and executed.

As it became clear that there would be more than one graphics standard at the functional
level and all would have a need for long term storage and retrieval of graphical information, it
was decided to separate out the metafile function as a separate standard. Thus was born the Com-
puter Graphics Metafile (CGM) for the storage and transfer of picture description information
(ISO 8632) which was approved for progression to an International Standard in September 1986.

GKS does include a set of functions for reading and writing metafiles and an Annex which
specifies a metafile of the audit trail type which is adequate for the needs of GK§. The Annex
(E) is not an intrinsic part of the standard, but if provided by an implementation, will allow com-
munication between GKS systems or long-term storage and auditing within a GKS system.

GKS Annex E describes an audit trail metafile in which the entire process of creating a pic-
ture is stored for future replay. Essentially the metafile records every function invoked in the
creation of the picture. In contrast, the CGM is a picture capture metafile and captures a snapshot
of the graphical image. It is probably fair to say that at the time the CGM project was started, the
differences between these two types of metafile were not widely or deeply understood and har-
monization problems have arisen as a result. The CGM metafile does not include any elements
which imply dynamic change to the image, nor does it record any segmentation structure to the
image. This can cause problems for GKS applications which wish to write metafiles to the CGM

standard. The relationship between the CGM and GKS is explored in the paper by Brodlie,
Henderson and Mumford.*

GKS-3D poses even more profound problems in this area as a result of the much more com-
plex transformation pipeline and satisfactory compromises are currently being sought.

For a detailed description of the CGM, see the book by Amold and Bono.3



=T

1.4.1. Functional Specification of the CGM

Each instance of the CGM is a collection of elements. Figure 2 summarizes the overall structure
of a metafile as a series of levels.
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Metafile level. A metafile consists of a metafile descriptor and picture descriptions. The
metafile descriptor contains information that is valid for the whole metafile, for example the
precision of real and integer quantities in the metafile. The main body of the metafile con-
tains descriptions of a number of independent pictures that can be accessed individually.
These descriptions are self-contained in that the description of one picture is not dependent
on any information stored in another picture definition.

Picture level. Pictures descriptions are bounded by particular delimiters. Between these
delimiters is a picture descriptor which defines how the picture definition data are stored.
The description of the picture itself is contained within the picture body.

Picture body level. The elements at this level are essentially primitive and attribute ele-
ments describing the graphical content of the picture.

BEGIN Metafile ) END Metafile
METAFILE| descriptor METAFILE| level
BEGIN Picture Picture END Picture

PICTURE | descriptor body PICTURE level

/ In any order

I 1

BEGIN .. . Picture
PICTURE Control Primitive | Attribute body

BODY elements elements elements o

Figure 2

The elements making up the CGM split broadly into seven classes:

Description elements. These elements specify the version of the CGM used in defining the
file and information concerning the capabilities of the process needed to read the CGM.

Control Elements. These elements define the size and orientation of the space in which the
CGM is defined.

Picture Descriptor Elements. The CGM provides more flexibiliiy iz s - areas than GKS.
For example, line width in GKS is specified by giving the width of the ne s a factor of the
standard line width on the specified device. The CGM allows as an ali.."native the width to
be specified in virtual device coordinates. The descriptor elements decla: : the modes in use
for this particular CGM.

Graphical Elements. These describe the visual components of the picture being transferred.

CGM includes more primitives than GKS, for example, circular arcs, disjoint polylines and
rectangles.

Attribute Elements. These specify the attributes of the graphical elements.
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(6) Escape Elements. These describe device or system dependent elements where no constraint
is placed on the contents.

(7) External Elements. These elements are used to include relevant messages and application
data not directly related to the graphical image of the picture.

1.4.2. Encodings of the CGM

The first part of the standard describes the elements that may appear in a metafile and the con-
straints on their ordering. Subsequent parts of the standard define the representations for these
elements in actual metafiles. Three representation schemes, known as encodings, have been
standardized. Each has particular goals such as compactness, ease of generation and interpreta-
tion, ease of transfer across networks. The three encodings are:

(1) Character Encoding. The aims of this encoding are compactness and transferrability across
a network. The encoding is composed solely from the ISO 7-bit (ASCII) printing charac-
ters. Elements are encoded as an opcode followed by associated data.

(2) Binary Encoding. This encoding aims to minimize the processor effort required to generate

and/ or interpret the metafile. It is perhaps best suited for storage and retrieval of graphical
data within one system.

(3) Clear Text Encoding. This encoding is aimed at the requirement of having a metafile that
can be read and edited by people. It is almost guaranteed that this format can be used for
transfers between any pair of heterogeneous systems.

CGM also allows private encodings as long as they conform to the functional description and
general rules of conformance given in Part 1 of the Standard.

1.4.3. Conformance

It is worth noting that the conformance statements in CGM relate to the conformance of a
metafile. They do not refer to the processes of generating or interpreting metafiles. Thus there
can be no guarantee that a metafile written by one generator can be understood by every inter-
preter. Commercial products typically differ in the range of CGM elements they generate and the
range they can interpret, though the description of each metafile does contain a list of element
types used in that metafile, so one can a priori determine whether a given metafile can be inter-
preted by an interpreter with given capabilities. This limited conformance requirement needs to
be borne in mind when purchasing software purporting to offer CGM.

1.4.4. Implementations

By the end of 1987 over two dozen companies in the USA had released products or announced
plans for products incorporating support for the CGM. Three kinds of product are emerging:
applications such as CAD or business graphics packages may offer the ability to write a CGM file
capturing one or more of the pictures created during a design session, second applications such as
desktop publishing systems or printer spoolers which can read in CGM files and make some use
of the pictures contained therein (for example paste into document or print on device), and third a
small number of applications (such as graphics editors) can take in a CGM picture description,
manipulate it and write it out again as a CGM description.

A major boost was given to CGM in the USA at the Integrate 88 demonstration at the
NCGA ’88 conference and exhibition held in Anaheim in March 1988. Integrate *88 was a mul-
tivendor systems integration demonstration which incorporated four application areas typically
found in a multifaceted corporation: engineering/design, corporate communications/financial
analysis, graphics arts and computer-aided publishing. Some 38 vendors took part in the demons-
tration. Multi-vendor equipment and software were linked together through an ethernet
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communications infrastructure running TCP/IP and used CGM as the standard picture inter-
change format. The demonstration was organized as a series of scenarios. In a typical scenario
an operator would retrieve a design created on a CAD program. The CAD representation was
then modified and output as a file in CGM format. In this format it was then sent to the graphics
art department for enhancement or directly to printing and publishing for merging with text in a
brochure. Similar procedures were used to exchange files between finance, graphics arts, and
printing and publishing. It was an impressive demonstration of the potential of interchange for-
mats such as CGM in promoting product harmonization and is worth mentioning for that reason
alone.

A second demonstration of this type was held at the Eurographics UK Chapter Conference
in Manchester in March 1989 where more encodings were interchanged. The NCGA 89
demonstration included PHIGS as part of the interchange system for the first time.

1.4.5. CGM Addenda

As mentioned above, CGM in its present form does not include all the facilities necessary to
serve as a GKS metafile for all levels of GKS. A project known as CGM Addendum 1 is address-

ing this and reached the status of draft in December 1987. The principal elements added in
Addendum 1 include:

(1) segmentation support;

(2) capabilities needed for dynamic picture regeneration;
(3) device viewport control.

Some stable functionality from CGI is also being included for example closed figures and pixel
array and drawing mode support.

A second Addendum, CGM Addendum 2, is being processed to provide support for GKS-
3D by introducing appropriate 3D elements.

1.5. The Computer Graphics Interface (CGI)

The Computer Graphics Interface is an interface to graphics devices. It is intended as the inter-
face through which a device driver communicates with a device. Unlike the CGM which defines
the output from a graphics system for transmission or storage, the CGI standard has to handle
both output and input and it is assumed that the device is on-line and capable of supporting
dynamic interactive graphics. The CGI has to support a wide range of devices from simple
plotters to high powered interactive terminals and it is this diversity which is one of the main rea-
sons why CGI has been under development for so long and agreement still looks to be some way
away (although it has now reached DIS stage). The book by Amold and Bono? gives a
comprehensive account of the CGI draft as it existed at the end of 1987.

CGl is a multipart standard with six parts. Part 1 is an overview introducing the other parts
as follows.

(1) Part 2 - control, negotiation and errors. Control functions are provided for device manage-
ment and coordinate space specification. Device management includes initialization and
termination, deferral mode control etc. Negotiation is the process of establishing the capa-
bilities of the device the driver will use. This involves interrogation of the facilities pro-
vided by the device and selection of those to be used. Error handling is necessarily different
to functional standards and CGI provides the ability to turn off error reporting and detect-
ing.

(2) Part 3 - output and attributes. The output primitives provided in CGI are very similar to
those in CGM. Bundled and individual specification of aspects are supported.
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(3) Part 4 - segmentation. CGI defines two types of stored graphics object, segments and bit-
maps. The segment model is close to the GKS model and the operations provided over seg-
ments are essentially the operations inherent in GKS. A mechanism is provided to enable
primitives stored in a segment to acquire new attribute values when a segment 18 copied.
This is an extension of the rather bizarre feature of GKS by which primitives acquire a new
clipping rectangle when certain segment manipulation operations are performed.

(4) Part 5 - input. The CGI input functionality is designed to support the input models of the
functional standards. CGI provides the six input classes of GKS together with an area class
and general input class.

(5) Part 6 - raster. This functionality allows the creation, storage, manipulation and display of
images stored as sets of pixels. The bitmap functionality is not found in other graphics
standards. Bitmaps provide a second point in the CGI pipeline at which graphics output
data can be stored and modified, at the point where primitives have been rendered to pixel
values. A bitmap can be selected as the destination for graphics output, allowing portions
of a picture to be defined and named. Bitmaps can be combined using either two or three
operand raster operations, allowing logical combinations of bitmap parts.

The CGI is a very large and complex set of functions, standardization of which is still far from
complete.

Many of the functions are inappropriate for many devices, however it is not a straightfor-
ward matter to identify simple subsets of the functions and group them in sensible ways. The
current draft uses the idea of a constituency profile. Such profiles define sets of functions and
their precise capabilities for particular classes of CGI users. It is intended that the CGI standard
itself will define a number of such profiles related to the needs of GKS, and other profiles can be
standardized through the Registration procedure.

1.6. Registration

During the evolution of all these standards it has become obvious that it is not possible to stand-
ardize everything at once. In particular, there are a number of graphical elements that can be
found in a bewildering number of varieties, for example marker types. Rather than delay the
standards in progress by trying to get agreement on extensive lists of such elements for each stan-
dard in turn, the documents now just refer to a single registration mechanism and mandate only a
very small number of such elements.

The US National Institute of Science and Technology has been approved as the Registration
Authority for the Register of Graphical Items. The Procedures for Registration of Graphical
Items will be published in the form of an ISO/IEC Technical Report, but this is likely to be pro-
cessed as an International Standard at its first review.

1.7. Conformity Testing

The Commission of the European Communities is establishing a European Conformance Testing
Service for standards in the information technology and telecommunications areas. Three Euro-
pean laboratories have set up a testing service for GKS: AFNOR in France, GMD in Germany
and the National Computer Centre in the UK,

A standard entitled ‘‘Conformance Testing of Graphics Standards’’ is being prepared.
Topics to be addressed include guidelines for conformance sections of functional standards, pro-
cedures for developing a test suite and procedures for running a test service.
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1.8. Compatibility

As can be seen from the descriptions above, the degree of compatibility between the standards is
not as great as one would expect. The work has tended to fragment with individual groups of
experts concentrating on one or two of the many activities. It is now recognized that there is a
need for a coherent reference model for computer graphics which will provide a framework for
future standardization activities and a coherent programme of work.

2. Reference Model

2.1. Introduction

Serious work on a Reference Model for Computer Graphics started at the ISO meeting at Timber-
line in July 1985. A Task Group with membership from the GKS, GKS-3D, PHIGS, CGI, CGM

and language bindings working groups came together under the chairmanship of F.R.A. Hopgood
to put forward a simple model for comment.

A major problem identified early on was the relationship between the workstation interface
of the functional standards and CGI. While some believed the two were synonymous, the CGI
Working Group believed they had a much wider remit.

The CGM Working Group had established an International Standard based on a clean con-
cept of a picture to be captured and restored. GKS, on the other hand, had much more the con-
cept of graphical information flowing to some subset of open workstations with the arrival of
information at the workstation display being determined by a number of controls. Making a
clean interface between the two standards was difficult.

PHIGS, designed as a structuring facility for computer graphics, had also made changes to
the primitive set and the way operator attributes, such as highlighting, were controlled at the
workstation. Although PHIGS could have been designed with GKS-3D as the viewing back-end
to the system, this was not the case.

In consequence, a set of graphics standards had been produced over a 10 year period with a
great deal of similarity and common concepts but with minor incompatibilities due to the dif-
ferent times at which they were produced and the different people involved. It was clearly going
to be difficult to produce a Reference Model of the existing set of standards with clean concepts.
The approach had to be to define a Reference Model having a distillation of the current concepts
in use and use this as the basis for the next generation of standards. GKS, the oldest of the set of
standards, would be coming up for its Review in a few years time.

2.2, Strand Model

An ad hoc Committee on Reference Models was established and this met in Frankfurt in Febru-
ary 1986. A major input to that meeting was a paper by Graham Reynolds® emanating from the
Modular Graphics Systems Project! at the University of East Anglia. This defined a novel pro-
cess oriented graphics system architecture for emulating a variety of computer graphics systems.
It was proposed that this could be used as th. basis for a Reference Model.

The underlying conceptual models of most standard graphics systems, in particular of those
existing and proposed international standards for graphics, and of many existing graphics pack-
ages, are most often seen as being graphics processing pipelines. In the case of graphics output,
graphics data is refined as it passes down the pipeline, by associating graphical attributes,
transforming coordinates, clipping etc., until it reaches a form which is suitable for display on a
particular workstation or device. Graphical input can be viewed as a pipeline of processes
transforming the data resulting from some input interaction into a form suitable for use by the
application. The input interaction may also involve processes from the output pipeline in order to
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achieve any desired prompts and echoes. Clearly, the composition of these pipelines and the
order of components within them may differ widely between models, however there are often a
reasonable number of components common to most. Examples of these are transformations,
attributes, clipping, storage etc. These common components play an equivalent role in each
model, even though the internal details of the components will most likely differ. It can be
shown that a large number of the differences between graphics system models can be expressed
in terms of the different orderings (or configurations) of these components.

The Reynolds abstract reference model of graphics data states developed this processing
pipeline model by isolating the smallest incremental changes to the states of graphics information
(or storage areas), and by defining when graphics data undergoes transitions between these states
by the application of specialized processes.

The data states are grouped together to form strands of processing, where a particular strand
is concerned with a subset of the overall intended graphical effects. Five major strands can be
identified in most standard graphics systems, as follows:

(1) attribute strand;

(2) transformation strand;
(3) clipping strand;

(4) dimensionality strand;
(5) storage strand.

The processing strands are illustrated in figure 3, which also indicates how a specific graphics
pipeline can be configured by ordering the state transitions on and between strands. The Frank-
furt meeting identified a list of concepts that needed to be included in a Reference Model:

(1) pipelines;

(2) levels/interfaces;

(3) multiplexing;

(4) attribute binding;

(5) -elaboration;

(6) instantiation;

(7) language bindings and encodings;
(8) data coding versus procedural interface;
(9) resource sharing;

(10) input model;

(11) application interface;

(12) operator interface;

(13) primitives, attributes;

(14) storage structures;

(15) workstations;

(16) metafiles;

. (17) raster graphics.

The strand approach was looked at as an alternative to the more normal pipeline description of
computer graphics.
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2.3. External Reference Model

After the Frankfurt meeting, two independent approaches were considered. The first concentrated
on establishing a Reference Model that was primarily concerned with how other standards would
interact with the computer graphics standards. The second concentrated on establishing an inter-
nal reference model for computer graphics showing how the various concepts in graphics should
fit together.

The External Reference Model was based on the pipeline approach establishing a 7 stage
pipeline for input and output. The output stages were seen as:

(1) Conceptualization: the mapping of the application’s requirements into graphical terms.
(2) Formulation: the creation of graphical information.

(3) Elaboration: the mapping of graphical information onto the abstract picture on a worksta-
tion.
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(4) Generation: the mapping of some part of the abstract picture onto a virtual display surface.
(5) Realization: the use of real attributes on the workstation to define the picture.

(6) Production: the process of causing the image to appear.

(7) Visualization: the process of inspecting the output by the operator.

A similar set of stages did the reverse process for input.

Work on the external reference model continued until January 1989 with several refine-
ments of the document.

2.4. Components and Frameworks

The major input to the internal reference model came from BSI using the work of Amold and
Reynolds on strands and Duce on Formal Specification.2 Out of these came a components and
frameworks model for describing graphics standards.

Components can be thought of as basic concepts such as output primitives, attributes, pic-
tures, views etc. Frameworks define how these components fit together in a particular standard.
Thus a framework statement might be that pictures in this standard can only be constructed from
a sequence of output primitives that have all their attributes bound to them.

As for the external reference model, the internal reference model went through a number of
refinements with attempts at describing existing standards in terms of the model. As a separate
activity, the relationship between components and abstract data types was established.

2.5. A Single Reference Model

A meeting was held in Paris in January 1989 to consider the two activities - external and internal.
The major output from the meeting was a decision to merge the external and internal reference
model into a single activity. The meeting elaborated the basic concepts or components in the
Reference Model and attempted to define both the internal and external relationships. Four major
concepts were agreed:

(1) Pictures: the current contents of a space.

(2) Collections: a storage structure associated with primitives and their related attributes.
(3) Metafiles: a mechanism for storing and retrieving pictures.

(4) Archives: a mechanism for storing and retrieving collections.

A Reference Model based on these 4 major concepts was seen as being both feasible and able to
relate to existing standards.

A subsequent meeting in Darmstadt provided further input to the Reference Model ir'xclud—
ing a desire to have more symmetry between output and input and an ability to have attributes
jointly owned by the output primitive and the associated input device.

2.6. Summary

A Working Draft Reference Model has now been completed by the acting Document Editors

D.A. Duce and F.R.A. Hopgood. This will be presented to the complete ISO Working Group in
October 1989. Its current state is given in Appendix A.
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3. Revision of GKS

3.1. Introduction

The international Review of GKS started with a Workshop sponsored by Eurographics in Disley
in September 1987.11 The Workshop split into four major activities:

(1) concepts;

(2) storage;

(3) primitives;

(4) input.

The major concerns in each area are given below.

3.2. Concepts

There was less clarity in the concepts of GKS than there ought to be. A major problem of any
review would be to decide whether a slavish upward compatibility with GKS was necessary or to
admit that the original concepts were not clean and that any revision would almost certainly cause
some GKS programs to cease to work as they did before.

Additional primitives had been defined for the newer standards. A major question was
whether these should be added to GKS or the GKS model extended to include them as a subpart.

The text primitive continued to give concern. It did not have the functionality required by
the typesetting community yet was the most exotic primitive in GKS. Either it should be
extended to cover the wider community or reduced to a level similar to the other primitives.

There was strong support for a more precise definition which left language binding con-
siderations to that standard. A new GKS should not look like a FORTRAN subroutine library.

3.3. Storage

The segment model of GKS was very restrictive. Also, it did not completely specify the storage
required. For example, font definitions had not been integrated into the GKS storage model. A
facility for defining macros was not available.

The main conclusions were that there was a real need for a workstation independent storage
system. If the GKS Workstation Independent Storage System was available, the possibilities'for
implementors were greatly enhanced. A new standard should make a global storage mechanism
mandatory and that would simplify the overall model.

The nameset and filter mechanism of PHIGS was reviewed in some detail. The conclusion
was that the segment facilities of GKS could be subsumed into a more general naming model. It

would allow all the current functionality but would also allow all the advantages of data stored
effectively in a relational database,

3.4. Primitives

The major concerns were the level of workstation dependencies which made it impossible for a
device independent view of graphics to be available at the NDC level. Text extent was a particu-
lar problem.

The main concerns were to increase the portability and make the standard more device
independent.

There was a belief that text was not really a basic primitive. CELL ARRAY could be inter-
preted as a special case of FILL AREA. The need for an extension to FILL. AREA had to be
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quantified.

3.5. Input

The input model in GKS was defined at Abingdon in 1981. Not all of the input model defined
there was included in GKS. In particular, there was a good description of machine independent
input tools and how they could be set up.

The main conclusions were that all applications programs should have the ability to build
logical input devices and be responsible for the echo and control of the device where appropriate.

3.6. Tucson

An ISO meeting at Tucson in July 1988 defined the scope and goals for the GKS Review. It also
established a number of ad Aoc Rapporteur Groups to provide input to the Review - input model,
relationship to window management, text etc.

It was decided to split the work needed into a Maintenance Review of GKS and an activity

aimed at producing a new Application Interface which catered for those areas not supported by
GKS.

The Maintenance Review of GKS was targeted at:
(1) making any necessary editorial changes and technical corrections;
(2) enhancing portability by reducing implementation and workstation dependencies;
(3) considering new functionality coming in from the later standards;
(4) reviewing the interaction of GKS with metafiles.

3. Tikley

The first GKS Review Meeting took place in Ilkley in March 1989. The BSI made a strong case
for making GKS better defined even if this meant a loss of compatibility and for extending GKS
to remove the major deficiencies encountered by users.

The Ilkley meeting agreed that:

(1) New functionality should be considered in making the standard closer to CGM and CGI.
The naming and selection of primitives in PHIGS should be examined. An improved text
model was needed.

(2) The Error Reporting mechanism needed to be less language dependent.

(3) More work should be delegated to the language bindings.

(4) The use of special workstations for long term storage and segments was queried.
(5) The rich level structure of GKS had not been used and required simplification.

(6) The compatibility with GKS (ISO 7942) should not be more restrictive than the current
variation allowed in implementations.

(7) Packaging of functions in a more abstract way would lead to a more consistent document.

(8) A clear definition of an NDC picture was needed if a sensible interface to CGM was to be
achieved.

- (9) Primitives with their geometry completely defined at the NDC picture should be con-
sidered. '

The document editors were asked to produce a revised document based on these guidelines for
discussion at the ISO meeting in Brazil in October 1989. Appendix B gives the revised text to be
submitted to that meeting by Brodlie, Duce and Hopgood.
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4. Summary

The new Reference Model Document and the new GKS (GKS-N) are the initial drafts of the next
generation of computer graphics standards. At this stage they are far from complete and wi.ll
have significant changes made to them during the Review procedure. They are published here in
order that a larger audience can consider the road being taken in future graphics standardization.
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INTERNATIONAL STANDARD ISO/NEC xxxx(E)

Information processing systems - Computer graphics - Computer Graph-
ics Reference Model

0 Introduction

The Computer Graphics Reference Model (CGRM) defines an architecture for computer graphics. Its purpose
is to provide a consistent terminology for computer graphics and establish the relationship between the con-
cepts which make up the reference model. It should be used in describing specific standards and in the rela-
tionship between graphics standards and the environment in which they exist.

This standard will provide the basis for the development of future computer graphics standards and ensure
their long term coherence based on objective rational foundations. Existing graphics standards will not neces-

sarily fit precisely into the Reference Model. However, experience with the current standards has significantly
influenced the model.

International Standards related to computer graphics exist or are under development in the following areas:
a) Open System Interconnection - Basic Reference Model;
b) Virtual Terminal Protocols and Terminal Management;
¢) File Transfer, Access and Management Protocols;
d) Office Document Architecture and Interchange;
e) Text and Office Systems;
f) Exchange of Product Model Data;
g) Character Sets and Coding;
h) Open Distributed Processing.
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1 Scope and field of application

This International Standard defines a structure within which current and future International Standards for
computer graphics shall be compared and their relationships described.

This International Standard does not define how computer graphics standards shall be defined and developed.
It does not specify the functional descriptions of computer graphics standards, the bindings of those standards
to programming languages, or the encoding of graphical information in any coding technique or interchange
format. It is neither an implementation specification for systems incorporating computer graphics, nor a basis
for appraising the conformance of implementations.

This International Standard, the Computer Graphics Reference Model (CGRM), defines a set of concepts and
their inter-relationships which should be applicable to the complete range of future graphics standards.

CGRM defines computer graphics output in terms of output primitives which make up pictures that are output
to the operator. The operator defines input values that are transmitted to the application in an appropriate
form. Any connection of output generated to input received is handled by the application. To allow complex

graphical images, CGRM defines a storage facility called the collection from which pictures may be com-
posed.

This standard may be applied to:
a) Verify and refine user requirements for computer graphics;
b) Identify needs for computer graphics standards and external interfaces;
¢) Refine individual models from the user requirements for computer graphics;
d) Define the architecture of new computer graphics standards;
e) Compare computer graphics standards.

CGRM provides four levels of abstraction that correspond to the application, virtual, logical and physical
environments. CGRM defines the operations on pictures and collections appropriate in each environment.
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2 Definitions

For the purpose of this International Standard, the following definitions apply.

2.1 application: The external entity that accesses the application environment. Applications are not modelled
in the CGRM, but their interactions with computer graphics are modelled.

2.2 application environment: The environment closest to the application interface.

2.3 application interface: The interface provided by the application environment to the application. This is

the only interface between the application and the application environment, and consequently the graphics sys-
tem.

2.4 archive: A mechanism for representing a collection for storage, retrieval and transmission.

2.5 clipping: Restriction of the geometric shape of an output primitive to a region of interest.

2.6 collection: A named structured assembly of entities which can be transformed into a set of output or input
primitives.

2.7 environment: A subdivision of CGRM at a given level of abstraction. The definition of the environment
includes the definition of its primitives, picture, an (optional) set of collections and (optional) associated state
information. Each environment contains at least one coordinate space as part of its definition. A set of func-
tions is provided on the picture and collection.

2.8 geometry: The property of a primitive used to define nearest.

2.9 input primitive: The atomic unit from which input is composed by the application. There may be more
than one class of input primitive. An input primitive consists of an input value, whose type depends on the
class. An input primitive may have associated properties.

2.10 logical environment: The environment between the virtual and the physical environments. Qutput primi-
tives contain complete geometric and rendering descriptions.

2.11 metafile: A mechanism for representing a picture for storage, retrieval and transmission.

2.12 operator: The external entity that observes the contents of the physical picture and provides physical
input values. Operators are not modelled in the CGRM, but their interactions with computer graphics are
modelled.

2.13 operator interface: The interface provided by the physical environment to the operator.

2.14 output primitive: The atomic unit from which graphical output is composed. There may be more than
one class of output primitive, An output primitive consists of a geometric shape. An output primitive may
have associated properties.

2.15 physical environment: The environment closest to the operator interface.
2.16 picture: A spatially structured set of output primitives at a given environment level.

2.17 post: An operation which transforms part of the picture at one environment level to a picture at the next

lower environment level. Posting can be achieved by "posting” the collections making up the picture rather
than posting the picture itself.

2.18 property: A value associated with a primitive whose meaning is dependent on the class of the primitive.
2.19 rendering: Differentiation of two primitives of the same type by means other than their geometry.
2.20 transformation: An operation that achieves a transition from one environment to another.

2.21 traversal: An operation which transforms a collection or part of a collection to produce the picture or
part of the picture within the same environment.



ISO/IEC xxxx(E) 4

Definitions

2.22 trigger: An operation which transforms some part of the input memory at one environment level to some
part of the input memory at the next higher environment level.

2.23 virtual environment: The environment between the application environment and the logical environ-
ment. Output primitives in the virtual environment contain complete geometric descriptions.
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3 Conformance

The concepts and their interrelationships in CGRM provide the framework in which all future computer graph-
ics standards should be defined.

Future standards should express their main concepts in the; vocabulary of the CGRM and indicate the precise
constraints defined by a specific standard.

CGRM requires that future standards define environments and interactions between environments as well as
application and operator interfaces.
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4 The Computer Graphics Reference Model

4.1 Introduction
The Computer Graphics Reference Model (CGRM) consists of the following major concepts:
a) environments;
b) output primitives;
¢) input primitives;
d) pictures;
€) input memory;
f) posting;
g) triggering;
h) properties;
i) transformations;
j) collections;
k) metafiles;
1) archives.

4.2 Environments

A CGRM environment consists of a picture, an input memory, a set of collections and possibly associated state
information, defined at a specific coordinate space. A set of functions is defined that applies to the picture,
input memory and collection. There are four environments as shown in figure 1.

a) application;
b) virtual;

c) logical,

d) physical.

The four environments are always present in the description of a graphics system but some of them may be
transparent or null.
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The Computer Graphics Reference Model Environments
APPLICATION
AR L‘HIVE
METAFILE . Input E: >
- Picture
Memory
Collection _
VIRTUAL
METAFILE . Input ARCHIVE
Picture
Memory ‘
Collection
LOGICAL
METAFILE : Input ‘ ARCHIVE
Picture
Memory
Collection
PHYSICAL
METAFILE . Input ARCHIVE &
-z Picture
Memory
Collection
Figure 1

The main characteristics of each environment are given below.

Application environment : in this environment, output information is composed into graphics fragments with
editing, composition and transformation applied. It is not necessary for the precise geometry of the picture to
be defined at this stage but naming used in interaction shall be defined. Input memory is constructed in the
precise form required by the application.
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Virtual environment ; in this environment, the graphical picture to be output is defined as a set of virtual outpl_xt
primitives. The geometry of these virtual primitives is completely defined so that virtual pictures are geometri-
cally complete. All graphical devices should be capable of rendering pictures in the virtual environment,

Input memory is defined in the coordinate system used in the virtual environment. Similar input primitives can
only be differentiated by their associated properties.

Logical environment ; associated with graphical output primitives is a set of properties associated with render-
ing. In the logical environment, the complete set of properties should be bound to the logical output primitive.
It is pbssible that only a subset of output devices can precisely render the information in the logical environ-
ment. Input values are converted to device independent form with input value properties added to differentiate

the origin of the input if required. The precise interpretation of the input memory by the application may not
be known in this environment.

Physical environment: the environment consists of a picture in device coordinates with a specific device.
Input memory will contain input values as received from the input device. It is not necessary for there to be a
one-to-one correspondence between the contents of physical input memory and logical input memory. All
properties associated with the input devices used will be known at this stage.

Fan-out is only allowed between the virtual and logical environments. The virtual environment may map onto

more than one logical environment. A single logical environment maps onto a single physical environment as
shown in figure 2.

Application Environment

Virtual Environment

Logical Environment Logical Environment

Physical Environment Physical Environment

Figure 2
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4.3 Output primitives

Output primitives are atomic units in terms of which graphical output in each of the four environments is
described. Four types of output primitives are recognized corresponding to the four different environments.
Output primitives have associated geometry and properties. Only application output primitives can be edited.

The geometry of application output primitives is not necessarily fully defined. Application output primitives
_ can be edited, but cannot be rendered. If clipping is provided in the application environment, the results of
clipping operations have to be expressible in terms of application output primitives.

The geometry of virtual primitives is completely defined. Virtual output primitives cannot be edited, clipped
or rendered. Logical output primitives have both geometry and rendering completely defined.

Physical output primitives may be rendered and clipped. The result of clipping a physical output primitive is
not necessarily expressible in terms of physical output primitives.

Properties of output primitives can constrain the possible input values allowed and affect the transformation
applied to input values in defining input primitives at a higher environment level.

4.4 Input primitives

Input primitives are atomic units in terms of which input in each of the four environments is described. Four
types of input primitives are recognised corresponding to the four different environment levels. Input primi-

tives have associated properties and may have associated geometry. Only physical input primitives can be
edited.

Physical input primitives are produced in the physical environment through the operator interface. Properties
associated with physical input primitives describe the input device used.

Logical input primitives are produced in the logical environment by triggering from the physical environment.
Properties associated with logical input primitives describe generic input devices.

Virtual input primitives are produced in the virtual environment by triggering from the logical environment.
Properties associated with virtual input primitives include the geometry associated with the virtual picture.

Application input primitives are produced in the application environment by triggering from the virtual
environment. Properties associated with application input primitives include the geometry understood by the
application and any naming associated with input and output by the application.

4.5 Pictures

Graphical output is composed into pictures which can be present in each of the four environments. Specific
functions exist for posting a picture at one environment to generate some part of a picture at the next lower
environment level.

Pictures can be stored in metafiles. Metafiles can be retrieved and added to the current picture at this environ-
ment level, or replace it.

The following operations exist on pictures:

add output primitive

add transformed collection

copy to metafile (whole picture)
delete picture

delete output primitive

inquire property

inquire property of picture at position
Ppost picture

retrieve picture from metafile
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4.6 Input memory

Input is composed into input memory which can be present in each of the four environment levels. Specific
functions exist for triggering an input memory at one environment to generate some part of input memory at
the next higher environment level.

The following operations exist on input memory:

add input primitive

add transformed collection
delete input memory
delete input primitive
inquire property

trigger input memory

4.7 Posting

Posting is the operation which transforms some of the picture at one environment level to be included in the
picture at the next environment level. Posting can be achieved by "posting" the collections making up the pic-
ture rather than posting the picture itself.

Posting can be automatic so that a change in the picture at one environment level automatically causes the post
operation to be performed. Posting can be continuous so that the picture at one environment level is continu-
ously transformed into the picture at the lower level. Posting can be defined to occur only when specified.

4.8 Triggering

Triggering is the operation which transforms some part of the input memory at one environment level to be
included in the input memory at the next higher environment level.

Triggering can be automatic so that any change in input memory at one environment level automatically
causes the triggering operation. Triggering can be continuous so that the input memory at one level is continu-

ally transformed into the input memory at the next higher level. Triggering can be defined to occur only when
certain events happen.

4.9 Properties

Application properties: describe the way the operator perceives the information displayed on the device and
can be used in returning information from the operator to the application. Application properties are bound to
primitives in the application picture.

Virtual properties: these properties are completely defined for all virtual primitives. In particular they pre-

cisely define the geometry of the virtual picture. Virtual properties precisely define the geometry of input
values in the virtual input memory.

Logical properties: these properties are defined for all logical primitives. In particular, they precisely define

the rendering of the logical picture required on a device. Logical properties define generic device properties to
be associated with logical input primitives.

Physical properties . these properties control what parts of the logical picture appear on the device. It is possi-
ble that the physical device will not be able to render the logical picture precisely. Input properties describe
the physical input device in use.

4.10 Transformations

Transformations exist between the coordinate spaces in different environments. A post operation defines a
transformation between some part of the picture at one environment level before it is added to the picture at the
next lower environment level. Similarly, a trigger operation defines a transformation between some part of the

input memory at one environment level before it is added to the input memory at the next higher environment
level.

10
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If the picture is composed from a set of collections, and collections exist in the two environments, a trz_msfo.r-
mation of the picture from one environment to another can be realized by a transformation of collections in
one environment to relevant entries in the other environment with the appropriate linking to the picture at the

lower level. The post and trigger operations can change the properties associated with primitivies or entities in
a collection.

4.11 Collections

A set of entities can be grouped together in a collection. Structure can exist within a collection which relates
one entity with another. Collections exist at all four environments. Collections can be archived and retrieved.
Collections are added to a picture or input memory by the operation ‘add transformed collection’. Traversal is
one method that can be used to achieve this.

Archived collections can only be retrieved at the same environment level as that at which the archive was gen-
erated. The following operations exist on collection:

copy collection to archive (whole collection)
create collection

delete collection

edit collection (only in application environment)
inquire collection

post collection

retrieve collection from archive

4.12 Relationship between output and input

There is a symmetry between output and input which is exemplified by the definition of output primitives and
input primitives. The application expresses the output which the operator is to observe in terms of output
primitives and the operator constructs the input on which the application is to act from input primitives.

There may be a linkage between output primitives and input primitives in that properties of output primitives,
for example a transformation, may be controlled by input values and properties of input primitives, for exam-
ple the range of allowable values, may be indicated by an output primitive. The linkage between input and
output is described in the CGRM by shared primitives and storage of input and output at appropriate levels in
the model.

Graphically represented feedback and echoes to the operator input are thus no different to other graphical out-

put. The application may choose which picture level they appear for the first time. Similarly, the applicaﬁion
may choose at which level the naming of output primitives or their geometry can be used by the input primi-
tives.

Conceptually, input produces responses in the application environment. However, if echoes are defined to first
appear at, for example, the logical environment and input values have a transformation which generates logical
coordinate values and the echo is defined to be dependent on this value, it is permissible that an optimization
exists that allows the system to take the input logical coordinate value and use it in specifying the echo without
needing the application to intervene.

4.13 External relationships
The overall structure of the reference model is illustrated in figure 3.

11
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Application
........... Application Interface
Metafile Archive
- Application Environment e
e Virtual Environment <
< Logical Environment <
< Physical Environment e
----------- Operator Interface
Operator

Figure 3 - Interfaces

There are two main interfaces to computer graphics:
a) operator interface : the interface provided by the physical environment to the operator.

b) application interface : the interface provided by the physical environment to the operator. This is the
only interface between the application and the application environment, and consequently the graphics sys-
tem.

The external entities are:

c) operator : the external entity that observes the contents of the physical picture and provides physical
input values. The operator is not part of the computer graphics reference model.

d) application: the external entity that accesses the application environment. The application is not part of
the computer graphics reference model.

External interfaces also exist for metafiles and archives at each environment. Internal interfaces exist between
the application and virtual environments, the virtual and logical environments and the logical and physical
environments.

12
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Metafiles and archives may be generated by external agents and imported through the appropriate en'viron_ment
interface. Thus communication between a computer graphics system and the outside world is described in the
reference model in terms of an application interface, operator interface, metafile or archive.

The four environments are always present in the description of a computer graphics system that is neither a
metafile, archive, application interface, operator interface or internal interface, but it is permissible for any

environment to be null, in other words to provide an identity post transformation for that environment to the
next lower environment.

13
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Annex A

Window Systems

(Non-normative Annex)

Window systems exist below the Physical Environment of the Computer Graphics Reference Model and pro-
vide a multiplexing and resource management function at this level.

The primitives of the window system are virtual bit maps with properties. The connection between the win-
dow system and the computer graphics system is shown in figure 4.

Application Application
Virtual Graphics Virtual Graphics
wsy wSs wsi WS4
Logical Graphics Logical Graphics Logical Graphics Logical Graphics
Physical Graphics Physical Graphics Physical Graphics Physical Graphics

...................................................................

Window Management System

Bit Map Device

Figure 4

The window system can be elaborated using the same model as the computer graphics system, as shown in

figure 5.

14
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Annex A Window Systems

WM APPLICATION

S

—

Picture Collection

=i
- 5

(=5
METAFILE <> Lz_l

</ &
L~ |
e

Picture Collection
WM LOGICAL
< METAFILE — ﬁ
v
Picture Collection
WM PHYSICAL
Colour
Table
METAFILE Constrained
Picture
Picture Collection
Figure 5§

The window application level for some window systems at least will require a collection if the system allows

15
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window updates that change the geometry of the virtual picture. An example is a menu which displays a sul?-
set of the range of menu items. If an increase in the menu area allows more menu items to be shown, this
would require the menu window to be stored at the window application level.

A collection is required at the virtual environment if the window system allows operations that do not change
the geometry. Re-ordering windows on a screen could be done by the window system storing the windows for
damage repair at the virtual level.

A collection is required at the logical environment if the window system does pop-up menus by storing and
retrieving bit maps with the rendered information. Whether storage is done at the logical or physical environ-
ment will depend on whether changes that effect resource management cause changes to the physical picture.
For example, if a window is hidden which currently uses all the colour table entries, does the uncovered win-
dow have its true colours substituted now that the colour table is not overloaded? The answer to this question
determines whether the collection occurs at the logical or physical environment.

The pictures in the window environment contain primitives that are bit maps with properties. In particular,
properties are used to control highlighting, visibility and detectability. For example, the focus for mouse and
keyboard input is an attribute similar to visibility and detectability.

As for the CGRM, the picture is geometrically complete at the virtual environment. That is, bit maps are posi-
tioned correctly. At the logical level, borders, scroll bars, rendering of the window contents are precisely
defined. At the physical environment, scarce resources such as the colour table are allocated to produce the
picture to appear on the device.

There are good reasons why metafiles will be required at the virtual, logical and physical level. At the virtual
environment, cut and paste operations are performed using metafile output and application processing. At the
logical level, plotter output of the correctly rendered picture (without colour table resource constraints) will be
achieved by metafile output. At the physical environment, metafile output is required for screen capture.

Examples of how specific window operations are performed are given below. These particular operations may
be performed in other ways by some systems. In particular, nearly all operations can be performed by the
application redefining bit map primitives to the window system.

Highlighting: highlighting a window is seen as an attribute of the window and is probably performed at the
logical level. Highlighting would cause the allocation of colour table resources to change so would not neces-
sarily be done at the physical environment.

Dragging: dragging a window with just a border shown can be achieved at the physical or logical level.

Dragging with the complete window moving changes the geometry, and it performed no lower than the virtual
environment.

Icons: the iconization of windows is done by storing icons and windows at the application environment of the
window system. Whether updates of iconized pictures are retained in the application collection will depend on
the window system.

Resize: as this is a geometry change, it is likely to be done using the window stored in the application collec-
tion.

Cut and paste: assuming bit maps are cut and pasted, and the system only allows the contents of bit maps to
be cut and pasted, this is done by metafile output followed by input at the virtual level.
Rubber banding : similar to dragging outline box.

Stackinglreordering . changing window order is frequently done at the virtual environment. The collection

contains bit maps of the windows without borders. The border information is contained in the environment
state list.

Scrolling . scrolling over a limited field (for example, over a menu too large to display but of well-defined
size) could be done at the application or virtual levels. For scrolling over undefined or potentially very long
areas will normally require application to redefine bit map windows.

Menu selection: menus will normally be stored in the application environment collection and will cause a
change in the virtual picture when popped-up, pulled-down etc.

16
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Lens: the device that magnifies bit maps is an operation on the physical picture which may require a physical
collection for picture part storage.

Colour focus: systems that give preference to a specific window in terms of colour table resource will achieve
this by state information associated with the picture at the logical environment.

Radio buttons : menu devices which cause the window system to make visible or highlight some part of one of
a set of windows is achieved by properties associated with the windows and possibly state information to
ensure only one of several buttons is highlighted in the radio button case.

Text input: for window systems that organize text input to a window only sending text to the application on
the pressing of a control key, this would be handled at the virtual environment as there is potentially some
geometric changes.

Archives will depend on the requirement for persistence of information between sessions.

Collections will often contain single primitive items. However, a hierarchical set of windows is an example of
a collection with a set of primitives in it if they are manipulated as a whole.

17
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Annex B

The Relationship of Imaging to the Computer Graphics Reference Model

(Non-normative)

This annex addresses the relationship between imaging and the Computer Graphics Reference Model. This is
an example of an application of the Computer Graphics Reference Model. Imaging is concerned with opera-
tions on images and extraction of features and structure from images. An image in this context is a rectangular
array of picture elements. Image operations apply a basic operator over an entire region of interest of an
image. Image presentation is concerned with presenting an image on a display in conjunction with graphical
output, for example displaying contours on image data.

To relate the CGRM and imaging it is necessary to identify the environment or environments in which imaging
operations take place. An image is identified with a collection in the application environment; image opera-
tions are then operations applied to this collection which may change the contents and structure of the collec-
tion. Transfer formats for images are identified with archives of the application collection in the CGRM. Such
archives may be used to input images to an imaging system and for saving processed images.

Image presentation is a display operation on this collection in the application environment. For display pur-
poses, the image is a particular graphics primitive and is displayed in a similar manner to other classes of
graphics primitives. Displaying images with other graphical data is then treated quite naturally. The primi-
tives representing images are refined through virtual, logical and physical environments in a manner entirely
analogous to other graphics primitives.

18
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Annex C

Existing standards and CGRM

(Non-normative)

GKS workstations correspond to the logical and physical environments. Realization of bundled aspects is
done at the logical level. Transformation of coordinates from NDC to DC takes place at the posting of the log-
ical picture. In GKS, those aspects which are definitely geometric are bound at the virtual (NDC) level. How-
ever some geometric text attributes (alignment) are not able to be completely bound until the logical level
(unlike the CGRM proposal). The individual/bundled model fits into CGRM as long as the complete geometry
is specified at the NDC level. This deficiency in GKS has been corrected for at least one font in PHIGS.

Segment store in GKS is identified as a virtual collection (WISS) and a logical collection (WDSS).

There are a number of areas in GKS where it does not fit precisely with CGRM. Each identifies a problemin
GKS, not CGRM.

GKS-3D has more than one coordinate system involved in the posting from NDC3 to DC3 (virtual to physi-
cal). The reference model does not preclude this.

Both GKS and GKS-3D have no clear concept of a picture to be viewed. The poor compatibility with CGM
identifies this. If these standards adhered to CGRM, the interaction and connection to CGM would be more
precisely defined.

The structure store in PHIGS is a collection at the application level.

All three functional standards have a deferral/regeneration model which is difficult to fit into CGRM. It is
believed that this is due to the imprecision of the model rather than a deficiency in CGRM.
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INTERNATIONAL STANDARD ISOMEC xxxx(E)

Information processing systems - Computer graphics - Computer Graph-
ics Reference Model

0 Introduction

The Computer Graphics Reference Model (CGRM) defines an architecture for computer graphics. Its purpose
is to provide a consistent terminology for computer graphics and establish the relationship between the con-
cepts which make up the reference model. It should be used in describing specific standards and in the rela-
tionship between graphics standards and the environment in which they exist.

This standard will provide the basis for the development of future computer graphics standards and ensure
their long term coherence based on objective rational foundations. Existing graphics standards will not neces-

sarily fit precisely into the Reference Model. However, experience with the current standards has significantly
influenced the model.

International Standards related to computer graphics exist or are under development in the following areas:
a) Open System Interconnection - Basic Reference Model;
b) Virtual Terminal Protocols and Terminal Management;
c) File Transfer, Access and Management Protocols;
d) Office Document Architecture and Interchange;
e) Text and Office Systems;
f) Exchange of Product Model Data;
g) Character Sets and Coding;
h) Open Distributed Processing.
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1 Scope and field of application

This International Standard specifies a set of functions for computer graphics programming, the New Graphi-
cal Kernel System (GKS-N). It provides functions for two dimensional graphical output, the storage and
dynamic modification of pictures, and operator input. GKS-N functions and datatypes are specified indepen-
dently of programming languages.

GKS-N establishes a system for device independent graphics programming by separating picture composition
and interaction from the realization of the pictures on a specific output device and the input devices used by the
operator.

This International Standard is applicable to a wide range of applications that produce two dimensional pictures
on vector or raster graphical devices. Operator interaction is allowed with these pictures.
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2 Definitions

For the purpose of this International Standard, the following definitions apply.

2.1 application: The external entity that accesses the application environment. Applications are not modelled
in the CGRM, but their interactions with computer graphics are modelled.

2.2 application environment: The environment closest to the application interface.

2.3 application interface: The interface provided by the application environment to the application. This is
the only interface between the application and the application environment, and consequently the graphics sys-
tem.

2.4 archive: A mechanism for representing a collection for storage, retrieval and transmission.

2.5 clipping: Restriction of the geometric shape of an output primitive to a region of interest.

2.6 collection: A named structured assembly of entities which can be transformed into a set of output or input
primitives.

2.7 environment: A subdivision of CGRM at a given level of abstraction. The definition of the environment
includes the definition of its primitives, picture, an (optional) set of collections and (optional) associated state

information. Each environment contains at least one coordinate space as part of its definition. A set of func-
tions is provided on the picture and collection.

2.8 geometry: The property of a primitive used to define nearest.

2.9 input primitive: The atomic unit from which input is composed by the application. There may be more
than one class of input primitive. An input primitive consists of an input value, whose type depends on the
class. An input primitive may have associated properties.

2.10 logical environment: The environment between the virtual and the physical environments. Output primi-
tives contain complete geometric and rendering descriptions.

2.11 metafile: A mechanism for representing a picture for storage, retrieval and transmission.

2.12 operator: The external entity that observes the contents of the physical picture and provides physical

input values. Operators are not modelled in the CGRM, but their interactions with computer graphics are
modelled.

2.13 operator interface: The interface provided by the physical environment to the operator.

2.14 output primitive: The atomic unit from which graphical output is composed. There may be more than
one class of output primitive. An output primitive consists of a geometric shape. An output primitive may
have associated properties.

2.15 physical environment: The environment closest to the operator interface.
2.16 picture: A spatially structured set of output primitives at a given environment level.

2.17 post: An operation which transforms part of the picture at one environment level to a picture at the next

lower environment level. Posting can be achieved by "posting” the collections making up the picture rather
than posting the picture itself.

2.18 property: A value associated with a primitive whose meaning is dependent on the class of the primitive.
2.19 rendering: Differentiation of two primitives of the same type by means other than their geometry.
2.20 transformation: An operation that achieves a transition from one environment to another.

2.21 traversal: An operation which transforms a collection or part of a collection to produce the picture or
part of the picture within the same environment.
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3 Definitions

For the purposes of this International Standard, the following definitions apply.

3.1 ASF (attribute source flag): A flag for each logical attribute. If flag is set to INDIVIDUAL, the logical
attribute is bound to the primitive at creation. If flag is set to BUNDLED, a bundle index is bound at creation
and the logical attribute is bound at the logical level from the bundle table.

3.2 attribute: A particular property that applies to an output primitive.

3.3 baseline: A horizontal line within a character body (see figure 1) which, for many character definitions,
has the appearance of being a lower limit of the character shape. A descender passes below this line. All
baselines in a font are in the same position in the character bodies.

3.4 bottomline: A horizontal line at the bottom of the character body (see figure 1) which is just below all des-
cenders in a font. All bottomlines in a font are in the same position in the character bodies.

op @000 semees

ap @420 2 aseesbosassssses

half @00 ssscmrhsssssoeis s e ma

base PP RSN IS = - P O .

bottom === —eee--

- e = -

left centre right

Figure 1 - Font description coordinate system

3.5 bundle index: An index into a particular bundle table,

3.6 bundle table: A workstation dependent table. A table exists for each class of bundled primitive. Each
table entry defines the values of the logical attributes for that class of bundled primitive corresponding to a

4
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particular value of the bundle index. Whether these values are bound to particular bundled primitives depends
on the settings of the corresponding ASFs.

3.7 bundled primitive: A type of output primitive for which significant control of appearance is allowed by
workstations.

3.8 capline: A horizontal line within a character body (see figure 1) which, for many character definitions, has
the appearance of being the upper limit of the character shape. An ascender may pass above this line and in
some languages an additional mark (for example an accent) over the character may be defined above this line.
All caplines in a font are in the same position in the character bodies.

3.9 cell array: A class of bundled primitive consisting on creation of a rectangular grid of equal size rectangu-
lar cells, each having a single colour index.

3.10 centreline: A vertical line bisecting the character body (see figure 1).

3.11 character body: A rectangle used by a font designer to define a character shape (see figure 1). All char-
acter bodies in a font have the same height.

3.12 choice device: A class of logical input device defining one of a set of alternatives.
3.13 closed path: A path where the last point is the same as the first.
3.14 colour index: An index into a particular colour table.

3.15 colour table: A workstation dependent table. Each table entry defines the colour corresponding to a par-
ticular value of the colour index.

3.16 contour: A shape which defines the outline surrounding a sub-path.

3.17 description table: A table whose entries specify the capabilities of an implementation (GKS description
table) or a workstation (workstation description table).

3.18 device coordinates (DC): The coordinates used to define logical and physical pictures on a workstation,
3.19 display space: The area available for displaying images on a particular workstation.

3.20 echo: The immediate notification to the operator of the current value of an input device.

3.21 fill area: A class of bundled primitive which is a closed polygon.

3.22 Generalized Drawing Primitive (GDP): A class of bundled primitive used to address special require-
ments such as curve drawing.

3.23 geometric primitive: A type of output primitive where the geometry is precisely defined in the NDC pic-
ture.

3.24 halfline: A horizontal line between the capline and the baseline within the character body (see figure 1),
about which a horizontal string of characters in a font would appear centrally placed in the vertical direction.
All halflines in a font are in the same position in the character bodies.

3.25 identification attributes: A type of attribute used to name output primitives.

3.26 locator: A class of logical input device providing a position in world coordinates and a normalization
transformation number.

3.27 logical attributes: A type of attribute which defines the appearance of a bundled primitive in the logical
picture. Logical attributes may have different values for different workstations.

3.28 logical input device: An abstraction of one or more physical devices that delivers logical input values to

the program. Specific logical input devices can be of class LOCATOR, STROKE, VALUATOR, CHOICE,
PICK and STRING.

3.29 logical input value: A measure value delivered by a logical input device.

3.30 logical picture: the view of the NDC picture for a particular workstation in which logical attributes are
bound to output primitives.

3.31 marker: A glyph with a specific appearance which is used to identify a particular position.
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3.32 measure: A value which is determined by one or more physical input devices and a mapping from the
values delivered by the physical devices.

3.33 nameset: An attribute in the form of a set of names associated with the output primitive.
3.34 NDC attributes: A type of attribute bound to primitives when they are created.

3.35 NDC picture: the picture in which graphical output is composed by the application program and with
which graphical input devices interact.

3.36 normalization transformation: A window-to-viewport transformation that maps positions in world
coordinates to normalized device coordinates.

3.37 normalization transformation number: An identification of a particular normalization transformation.

3.38 normalized device coordinates (NDC): The coordinates used to define the NDC picture and picture
parts.

3.39 output primitive: A basic graphic element that can be used to construct the NDC picture and picture
parts. Output primitives in GKS-N are of two types: geometric primitives and bundled primitives.

3.40 path: A sequence of sub-paths where the end of one sub-path is the start of the next.

3.41 physical picture: the picture constructed from the logical picture for a particular workstation by binding
physical attributes. The physical picture is displayed on the workstation’s display space.

3.42 pick: A class of logical input device providing the identification attributes attached to an output primitive.
3.43 pick identifier: An identification attribute of an output primitive.

3.44 picture part: A sequence of output primitives with associated attributes or an image.

3.45 picture part store: A collection of picture parts.

3.46 polyline: A class of bundled primitive consisting of a set of connected lines.

3.47 polymarker: A class of bundled primitive consisting of a set of positions.

3.48 prompt: An indication to the operator that a specific logical input device is available.

3.49 selection criterion: A rule for choosing elements from a sequence of output primitives. In GKS-N,
selection criteria are expressed as operations on namesets.

3.50 shape: An area defined by a set of closed paths.

3.51 state list: A list whose entries specify the current values of variables relating to GKS-N as a whole (GKS
state list) or to a specific workstation (workstation state list).

3.52 string: A class of logical input device providing a character string.

3.53 stroke: A class of logical input device providing a sequence of positions in world coordinates and a nor-
malization transformation number.

3.54 sub-path: A sequence of points defining the path between two end points.
3.55 text: A class of bundled primitive consisting of a position and a character string.

3.56 topline: A horizontal line at the top of a character body (see figure 1) which is just above the upper limit
of all character shapes in a font. Ascenders and accents are below the topline.

3.57 trigger: A condition which determines when a logical input value is delivered by a logical input device.
3.58 valuator: A class of logical input device providing a real number.
3.59 workstation: A display space and associated input peripherals.

3.60 workstation transformation: A workstation window-to-viewport mapping which transforms positions in
NDC to device coordinates, preserving aspect ratio.

3.61 world coordinate (WC): The coordinates used by the application program to define output primitives.
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4 Conformance

4.1 Specification

The set of functions known as GKS-N shall be as described in Clauses 4, 5, 6, 7, 8, 9 and 10. These functibns
are organized in two upward compatible levels. A GKS-N implementation shall be invalid if it lies between or

outside the two defined levels. In an implementation all graphical capabilities that can be addressed by GKS-N
functions shall be used only via GKS-N.

4.2 Registration

For certain parameters of the functions, GKS defines value ranges as being reserved for registration. The
meanings of these values will be defined using the established procedures. These procedures do not apply to

values and value ranges defined as being workstation or implementation dependent; these values and ranges
are not standardized.

Information concerning the Registration Authority and its procedures may be obtained on request to the Secre-

tary General, ISO Central Secretariat, case postale 56, CH-1211 Genéve, Switzerland, quoting the number of
this International Standard.
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5 Concepts

5.1 NDC picture

Graphical input and output in GKS-N is defined in terms of a set of virtual input and output devices. A central
concept of GKS-N is the virtual or NDC picture (Normalized Device Coordinate picture) where graphical out-
put is composed and with which the operator interacts using graphical input devices (see figure 2).

The NDC picture consists of a sequence of output primitives.

5.2 Output primitives and attributes

Output primitives are abstractions of basic actions a device can perform such as drawing lines and printing
character strings. Associated with output primitives are primitive attributes which define additional properties
of the primitive. For example, the size of characters to be output could be specified by a primitive attribute.

Output primitives have three sets of attributes:
a) identification
b) NDC
c) logical

Identification attributes can be used to partition output primitives into sets for a variety of purposes. The main
identification attribute is the nameset.

NDC attributes are bound to the output primitive on creation and describe the output primitive in the NDC pic-
ture.

Logical attributes define the rendering of the logical picture to be displayed on the workstation.

5.3 Workstations

GKS-N defines a workstation as an abstract display space and associated input peripherals. Multiple worksta-
tions can be in operation together.

A selection criterion based on the namesets of the output primitives in the NDC picture defines what subset of
the NDC picture is displayed on a workstation.

For each workstation, the NDC picture is transformed into a logical picture on the workstation. The logical
picture is defined in NDC coordinates. Output primitives in the logical picture have all logical attributes and

relevant NDC attributes bound to them. Logical attributes may be bound to output primitives in the NDC pic-
ture in which case the same values are bound to the equivalent output primitive in the logical picture.

The logical picture is transformed into the physical picture which is realized on the workstation display space.

The physical picture is obtained by applying all relevant attributes to the output primitives in the logical pic-
ture.

5.4 Coordinate systems

Output primitives are defined by the application in a world coordinate system. The world coordinates are
specified by the application. More than one world coordinate system can be specified.

The application specifies the transformation from world coordinates to NDC. NDC is a workstation indepen-
dent coordinate system.
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Figure 2 - GKS-N structure
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The display space of a workstation has a device coordinate system (DC) associated with it. The logical pic-
ture is defined in NDC and the physical picture in DC. The application specifies the mapping from NDC to
DC for each worksation.

Output primitives and attributes are mapped from WC to NDC by normalization transformations and from
NDC to DC by workstation transformations.

5.5 Logical input devices

A logical input device is an abstraction of one or more physical devices. An application can define how it
receives logical input values from logical input devices.

Logical input devices are divided into classes dependent on the datatype of the logical input value, All logical
input devices of one class deliver logical input values of the same datatype.

Several operating modes are defined for every logical input device. The operating modes specify whether the
operator or the application has the initiative in controlling input.

5.6 Picture part store

Sequences of output primitives with associated attributes can be defined as a picture part and retained in pic-
ture part store. Positions associated with output primitives and attributes are stored in NDC coordinates. The
NDC picture can be augmented by adding the sequence of output primitives in a picture part. By applying dif-
ferent transformations to the output primitives in a picture part, several instances of a picture part can appear in
the NDC picture.

Some predefined picture parts exist in GKS-N which are used in the definition of output primitives.

5.7 Shape store

One type of output primitive in GKS-N consists of a shape through which a picture part is extruded. The
shape store contains both pre-defined shapes and shapes defined by the application. An example of a pre-
defined shape is a character form. The picture part store contains some pre-defined picture parts - in particular
a solid colour area covering the whole of NDC space. This picture part is used in the definition of solid colour

characters and areas. Predefined picture parts are available that correspond to the colour index values avail-
able.

5.8 State lists

State lists in GKS-N precisely describe the current state of an application in its use of graphics. Two types of
state list exist in GKS-N. The GKS state list describes the current state of the NDC picture, picture part store
and the associated logical input devices. The workstation state list describes the current state of a workstation.
Several workstation state lists can be in use at the same time.

5.9 Description tables

The details of a particular GKS-N implementation are defined in a set of description tables. The GKS descrip-
tion table contains information about the specific implementation of GKS-N. The workstation description
table defines the characteristics of a type of workstation,

5.10 Metafiles and Archives

The contents of the NDC picture and physical picture can be stored and retrieved from metafiles. Metafiles at
the physical level can be used for hardcopy output and video input.

The picture part store can be archived.

10
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6 The New Graphical Kernel System

6.1 Initialization

To activate GKS-N, the function OPEN GKS is invoked. This defines a set of data structures (called state lists
and description tables ) which define the characteristics of the implementation of GKS-N in use. State lists are
dynamic and may change during program execution. Description tables are static and define the characteristics
of a particular system. The following data structures are initialized on GKS-N being opened:

a) Operating state list: defines the state of GKS-N.

b) GKS description table: gives information about the workstations available, size of picture part store and
number of normalization transformations allowed.

c) GKS state list: provides information about the state of GKS-N as the execution of a program progresses.
On OPEN GKS being invoked, it is set up with predefined default values.

d) Workstation description table: describes the characteristics of a class of workstations. One is provided
for each class in the GKS-N implementation accessed.

Inquiry functions are provided to access all the information in the data structures that define the implementa-
tion and current state of GKS-N in use.

6.2 Graphical output

6.2.1 Output primitives

The graphical information that is generated by GKS-N to produce the NDC picture or picture parts in the pic-
ture part store is a sequence of output primitives.

Output primitives in GKS-N are of two types:
a) Geometric primitives
b) Bundled primitives.
Relevant primitive attributes are bound to an output primitive when it is created. The SET PRIMITIVE

ATTRIBUTE function specifies the current value of an attribute in the GKS state list. The binding of attri-
butes for bundled primitives is described in 6.2.9.

All output primitives have the following two classes of identification attributes associated with them:
¢) NAMESET
d) PICK IDENTIFIER

Output primitives that make up the current NDC picture can have their NAMESET attributes changed by
invoking one of the functions ADD NAME TO NDC PICTURE or REMOVE NAME FROM NDC PICTURE.

The values of all other attributes cannot be changed once they have been bound to an output primitive. How-
ever, attributes can be discarded in the transformation from NDC to logical picture if they are no longer
relevant.

6.2.2 Geometric primitives

Geometric primitives are defined by a shape positioned in NDC space and a picture part (also positioned in

NDC space) which is extruded through the shape to produce a patterned area in the NDC picture of the picture
part being created.

Shapes can be as simple as a square area or as complex as the outlines of a text string. The picture part
extruded through the shape can be as simple as an infinite plane of a single colour or as complex as a fully

11
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coloured image.

Line drawings are defined in terms of shapes which form the contour of the line. A specific function is defined
for creating a shape associated with the contour of a line,

Shapes are defined in world coordinates which are transformed to NDC coordinates. The creation of
geometric primitives takes place in the NDC space.

6.2.3 Shape store

All shapes that are created are stored in the shape store. A GKS-N implementation will have a set of pre-

defined shapes in the shape store available to the application. These include the character fonts, markers and
other useful glyphs.

Shapes are defined in three ways:
a) Set of Closed Paths . functions are proviced to define a shape consisting of a set of closed paths.

b) Path Contour: a function is provided to create a shape which is the contour of a sub-path such as a
sequence of line segments.

c) Concatenation: a shape can be created out of a sequence of already created shapes by specifying the
relative positioning of the original shapes in defining the new shape.

Shapes can be deleted from shape store when they are no longer required.

6.2.4 Shape as a set of closed paths

A shape can be defined as a set of closed paths between the invocation of the function BEGIN SHAPE and the
invocation of the function END SHAPE.

A closed path is defined by the sequence of sub-path definitions between the invocation of the function
BEGIN CLOSED PATH and the invocation of the function END CLOSED PATH.

Paths are defined using the following four sub-paths:
a) LINES: GKS-N defines a sub-path as a connected set of straight lines defined by a point sequence.

b) CURVES : GKS-N defines a sub-path as a Bezier cubic curve by specifying the start point, two control
points and end point.

¢) ARC: GKS-N defines a sub-path as an arc of a circle by specifying the start point, tangent point, end
point and radius. A straight line is drawn from the start point to arc of circle of radius required followed by

straight line. The arc is tangential to the two lines from the start point to the tangential point and from the
tangential point to the end point.

d) ELLIPTICAL ARC: GKS-N defines a sub-path as an arc of an ellipse by specifying a start point,
tangential point and end point. An elliptic arc is drawn from start point to end point that is tangential to the
two lines from start point to tangential point and from tangential point to end point.

€) NUB CURVE: GKS-N defines a sub-path as a Non Uniform B-spline curve. The spline order, knots and
control points are provided as parameters. A range specifies the extent of the curve.

If the end point of a sub-path is not equal to the start point of the next sub-path in a closed path definition, a
single line sub-path is added to link the two points. If the start point of the first sub-path is not equal to the end
point of the last sub-path, a single line sub-path is added to link the two points.

6.2.5 Inside rule

The inside of a shape is defined by the set of closed paths defining the shape and an associated inside rule.
Two inside rules are defined in GKS-N:

a) Even-odd rule;

12
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b) Non-zero winding number rule.

The even-odd rule determines whether a point is inside the shape by creating a straight line starting at the
point and going to infinity in any direction. If the number of intersections between the straight line and the
sub-paths making up the shape is odd, the point is inside the shape; otherwise it is outside the shape.

The non-zero winding number rule determines whether a point is inside the shape by creating a straight line
starting at the point and going to infinity in any direction. Each sub-path has a direction associated with it. In
the case of the LINES sub-path, it is assumed that the sub-path goes from the start point to the end point. The
other sub-paths have a precise definition of direction also. Starting with a count of zero, for each intersection
between the straight line to infinity and a sub-path, one is added to the count for each intersection where the
line crosses the sub-path when the sub-path is going from left to right, One is subtracted from the count if the
sub-path is going from right to left. If the resulting count is zero, the point is outside the shape; otherwise it is
inside.

For a simple shape consisting of a set of non-intersecting closed paths none of which intersect themselves, the
two inside rules have the same definition of inside and outside.

Only the points inside the shape are affected by the extruded picture part in the geometric primitive.

6.2.6 Path contours

A function CREATE CONTOUR defines a shape as the contour surrounding a sub-path. The precise form of
the shape created depends on the following attributes associated with the sub-paths:

a) STYLE: defines the style of the shape created. For example, DASHED would generate a shape consist-
ing of a set of equal length sub-shapes interspersed with gaps of the same length.

b) WIDTH . defines the width of the shape created. The width can be specified using the current X or Y
world coordinate or NDC. In each case, it defines a width in NDC space by the appropriate conversion.

c) CAP: defines the form of the two ends of the sub-path assuming it is not closed. Butted, rounded or
square ends are defined.

d) JOIN : for sub-paths consisting of a sequence of lines this attribute specifies the join between line seg-
ments. Mitred, round or bevel joins are defined. For mitred joins, a mitre limit is defined which limits the
spikes for two lines with a small angle between them.

6.2.7 Shape attributes

Each shape can have a set of shape attributes associated with it. These attach specific names to points or coor-
dinate values within the shape. The attributes for a shape are defined explicitly by invoking the SET SHAPE
ATTRIBUTE function as part of the shape creation. The following attribute names are predefined:

a) TOPY, CAPY, HALFY, BASEY, BOTTOMY, CENTREY
b) LEFTX, RIGHTX, CENTREX

c¢) CENTRE, ORIGIN

d) TOP, BOTTOM, LEFT, RIGHT

e) TOPLEFT, TOPRIGHT, BOTTOMLEFT, BOTTOMRIGHT
f) START, MIDDLE, END

The names in sets a) and b) define coordinate values. The names in sets ¢), d) and €) define positions in NDC
space. The names in set f) only apply to path contours and define positions in NDC space.

6.2.8 Shape concatenation

A shape may be defined as a sequence of existing shapes with an associated concatenation criterion. The con-
catenation criterion defines the position of the second shape to the first, the third shape to the second and so on.

If P is a shape attribute name of the first shape and Q is a shape attribute name of the second shape, a possible
concatenation criterion might be Q at P .

13
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For example, a text string output from left to right would be defined as a sequence of predefined character
shapes with the concatenation criterion LEFT of NEXT at RIGHT of CURRENT.

6.2.9 Bundled primitives
Bundled primitives are divided into the six classes:

a)

D)
<)

d)

e)

POLYLINE:

POLYMARKER:

TEXT:

FILL AREA:

CELL ARRAY:

GENERALIZED DRAW-

ING PRIMITIVE(GDP):

GKS-N generates a set of connected lines defined by a point
sequence.

GKS-N generates symbols of one type centred at given positions.
GKS-N generates a character string at a given position.

GKS-N generates a polygonal area which may be hollow or filled
with a uniform colour, a pattern, or a hatch style.

GKS-N generates an array of cells with individual colours.

GKS-N addresses special geometrical output capabilities of a works-
tation such as the drawing of spline curves, circular arcs, and ellip-
tic arcs. The objects are characterized by an identifier, a set of
points and additional data. GKS-N applies all transformations to the
points but leaves the interpretation to the workstation.

The interior of a FILL. AREA primitive is defined in the following way (see figure 3). For a given point, create
a straight line starting at that point and going to infinity. If the number of intersections between the straight
line and the polygon is odd, the point is within the polygon; otherwise it is outside. If the straight line passes a
polygon vertex tangentially, the intersection count is not affected. If a point is within the polygon, it is
included in the area to be filled, subject to clipping. This is equivalent to the even-odd inside rule for shapes.

in(n=1)

P, out (n = 2)

out(n=0)

Figure 3 - Area inside a fill area boundary

When a FILL. AREA primitive is clipped, the resulting new boundaries become part of the area boundaries
(see figure 4). Multiple subareas may be generated.

14
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Figure 4 - Examples of FILL AREA clipping

A CELL ARRAY primitive is specified by a pair of points P, Q and an array of colour indices. The points P
and Q define a rectangle aligned with the world coordinate axes which is divided into a grid of DXXDY cells,
where DX and DY are the dimensions of the colour index array. The colour index array is oriented with
respect to the rectangle as shown in figure 5. The grid is subject to all transformations, potentially transform-

ing the rectangular cells into parallelograms. The rules for mapping the transformed cells onto the pixels of a
raster display are stated in 8.6.

Py 213 . DX
1 YEEEEEN
2 JNNNEEN
3 > M LTI
IREANEN
RN
[ [ ]]

DY DY
) [
Q Q
CELL ARRAY TRANSFORMED
DXxDY CELLS CELL ARRAY

Figure 5 - Mapping of CELL ARRAYs

NDC attributes associated with the bundled primitives are:

15
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POLYLINE POLYLINE INDEX
POLYMARKER POLYMARKER INDEX
TEXT TEXT INDEX
CHARACTER HEIGHT
CHARACTER UP VECTOR
TEXT PATH
TEXT ALIGNMENT
FILL AREA FILL AREA INDEX
PATTERN REFERENCE POINT
PATTERN SIZE
CELL ARRAY none

GENERALIZED DRAWING PRIMITIVE  no explicit NDC attributes but can
use attributes of other bundled prim-
itive classes

The bundled primitive INDEX is an index into a bundle table (stored in the workstation state list) which exists
on each workstation. The values in a particular bundle (or entry in the bundle table) may be different for dif-
ferent workstations. They control how the NDC picture is transformed to produce the logical picture. A full
description of logical attributes is given in Clause 8.

Bundled primitives have both NDC and logical attributes. Current values of NDC attributes defined in world
coordinates are stored in the GKS state list. When the NDC attributes are bound to their respective primitives,
the values are subject to the same transformations as the geometric data contained in the definition of the prim-
itive. Hence, current values are unaffected by changes in the normalization and workstation transformations.
The difference in attribute binding for geometric and bundled primitives is illustrated in figure 6.

Logical attributes can be bound to a bundled primitive either when the primitive is created or when the primi-
tive is added to the logical picture. The GKS state list contains a set of ATTRIBUTE SOURCE FLAGS
(ASFs) which determine which attributes are bound in the NDC picture and which are postponed to the logical
picture. This is described in 8.6.

16
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Figure 6 - Attribute binding for primitives

6.2.10 Text attributes

ISO 7942-NEW(E)
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picture

logical
picture
on
workstation

CHARACTER HEIGHT specifies the nominal height of a capital letter character. The CHARACTER UP
VECTOR gives the up direction of a character. TEXT PATH has the possible values RIGHT, LEFT, UP and
DOWN. It specifies the writing direction of the text string. For RIGHT, the text string is written in the direc-
tion of the baseline of a character implicitly specified by the CHARACTER UP VECTOR. For LEFT, the
baseline direction is the opposite direction to RIGHT. For UP, the character path coincides with the direction
of the CHARACTER UP VECTOR. For DOWN, it is the opposite direction to the CHARACTER UP VEC-
TOR. For the UP and DOWN text path directions the characters are arranged so that the centres of the charac-
ter bodies are on a straight line in the direction of the CHARACTER UP VECTOR (see figure 7).

17
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CHARACTER HEIGHT

UP path RIGHT path

e X
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DOWN path
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Figure 7 - Text geometric attributes

TEXT ALIGNMENT, although an NDC attribute, is more appropriately described in 8.7.4.
The initial values of the text attributes are:

CHARACTER HEIGHT WC | 0.01 (i.e. 1% of the height of the default win-
dow)

CHARACTER UP VECTOR | WC | (0,1)

TEXT PATH RIGHT

TEXT ALIGNMENT (NORMAL, NORMAL)

The alignment settings in figure 7 are not the NORMAL settings for text path UP and DOWN (see 8.7.4).

6.2.11 Fill area attributes

The FILL AREA primitive has the NDC attributes PATTERN REFERENCE POINT and PATTERN SIZE. If
the fill area is to be rendered by a pattern in the logical picture on a workstation, the origin of the pattern and
its size are the same on each workstation and are defined by these two attributes. A full description of render-
ing fill areas is given in 8.7.5.

6.3 Normalization transformations

In GKS-N, the application programmer can compose his graphical picture from separate entities each of
which, conceptually, is defined with its own world coordinate system (WC). The relative positioning of the
separate entities is defined by having a single normalized device coordinate space (NDC) onto which all the
defined world coordinate systems are mapped. A set of normalization transformations define the mappings
from the world coordinate systems onto the single normalized device coordinate space, which can be regarded
as a workstation independent abstract viewing space. On creation, output primitives have world coordinate
positions transformed to NDC coordinates before being added to the NDC picture or picture part store. Shapes
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are stored in NDC coordinates. A single normalization transformation is current at any one time and this is
used for the transformation.

A normalization transformation is specified by defining the limits of an area in the world coordinate system
(window) which is to be mapped onto a specified area of the normalized device coordinate space (viewport).
Window and viewport limits specify rectangles parallel to the coordinate axes in WC and NDC (see figure 8).
The rectangles include their boundaries. The normalization transformation performs a mapping from WC onto
NDC that includes translation and differential scaling with positive scale factors for the two axes.

Although NDC space conceptually extends to infinity, the region of NDC space in which the viewport needs to
be located and that can be viewed at a workstation is the closed range [0,1]x[0,1]. In addition, an implementa-
tion may support only a restricted range of NDCs. However, this range is always sufficiently greater than the
[0,11X[0,1] square. In particular, NDCs in the range [-7,71x[-7,7] are always handled.

Each normalization transformation is identified by a transformation number which is an integer between 0 and
31 inclusive. The normalization transformation with transformation number O is the unity transformation
which maps [0,1]x[0,1] in world coordinates to [0,1]x[0,1] in normalized device coordinates. It cannot be
changed.

Initially, all other normalization transformations are set to a default transformation which is the same as
transformation number 0. Different transformations can be specified at any time when GKS-N is open. Since
GKS-N provides a number of different normalization transformations, it is possible for the application pro-
gram to specify them prior to outputting the graphical picture. The separate entities in the picture are output by
selecting a particular normalization transformation before outputting the associated graphical primitives.
However, specifying a normalization transformation, while the graphical output is taking place, is allowed.

A normalization transformation may be selected by SELECT NORMALIZATION TRANSFORMATION, and
it will be used for all output until another is selected. By default, normalization transformation 0 is selected.
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Figure 8 - Normalization transformations
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6.4 Picture part store

6.4.1 Picture part creation

In GKS-N, output primitives on creation will either be added to the NDC picture or a picture part. When
GKS-N is opened, primitives on creation are added to the NDC picture. When a BEGIN PICTURE PART
function is invoked, primitives stop being added to the NDC picture and are added to the picture part just
started instead. When END PICTURE PART is invoked, the sequence of primitives that make up the picture
part are added to the picture part store (PPS) and subsequent primitives revert to being added to the NDC pic-
ture. The picture part is identified by a unique, application specified picture part name. Primitives in the pic-
ture part have attributes bound to them in the same way as primitives added to the NDC picture.

6.4.2 Picture part functions

The following functions are provided to manipulate picture parts:
a) RENAME PICTURE PART: changes the name of the picture part specified to a new name.
b) DELETE PICTURE PART: removes a picture part from the picture part store,

¢) BEGIN PICTURE PART AGAIN: reopens a picture part. Qutput primitives created are added in
sequence to the end of the specified picture part until END PICTURE PART is invoked.

d) APPEND PICTURE PART: adds one picture part to the end of the other picture part.

6.4.3 Adding picture parts to the NDC picture

A picture part can be added to the NDC picture by invoking COPY PICTURE PART TO NDC PICTURE. In
sequence, each output primitive in the picture part is transformed by the specified transformation matrix and
the specified NAMESET is added to the NAMESET already associated with the output primitive. This allows
several instances of a picture part to appear in the NDC picture in different positions and these can be differen-
tiated by their different NAMESETs.

6.4.4 Picture parts as images

Geometric primitives can consist of a coloured image defined as a picture part extruded through a shape. A
special function is provided in GKS-N to allow flexible definition of images. The function CREATE IMAGE

PICTURE PART defines a function associated with the picture part which returns a colour index given a point
in NDC space.

6.5 The NDC picture

6.5.1 Introduction

The NDC picture at any time consists of a sequence of output primitives which have been added to the picture
in one of three ways:

a) on creation outside the definition of a picture part;
b) by copying from a picture part;
¢) on input from an NDC metafile.

The order of appearance of output primitives in the NDC picture is important in that if two output primitives
overlap, the second primitive in the sequence will obscure some part of the first.

Each workstation that is open is responsible for selecting the subset of the NDC picture to be viewed and
rendering it.

Associated with each output primitive in the NDC picture is a set of attributes and the clipping set and shield
set in effect when the primitive was added to the NDC picture.
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6.5.2 NDC picture operations
The following operations can be applied to the NDC picture:

a) DELETE PRIMITIVES: primitives whose NAMESET attribute in the NDC picture satisfies the selec-
tion criterion are deleted from the NDC picture.

b) REMOVE NAME FROM NDC PICTURE: the specified name is removed from the NAMESET of all
primitives in the NDC picture.

¢) ADD NAME TO NDC PICTURE: the specified name is added to the NAMESETSs of all primitives in
the NDC picture which satisfy the specified selection criterion.

6.5.3 NDC metafiles

It is useful to be able to capture the contents of the NDC picture and store it away for future use or transmis-
sion to another system. The function COPY NDC PICTURE TO NDC METAFILE will store the NDC picture
as a picture on the specified metafile. The picture can be recovered at a later time and added to the current
NDC picture by invoking COPY NDC METAFILE PICTURE TO NDC PICTURE.

6.6 Selection criterion

Functions in GKS-N select subsets of the current NDC picture according to a selection criterion based on the
namesets of the sequence of output primitives that define the NDC picture. A function of this type is ADD
NAME TO NDC PICTURE. The selection criterion is based on the Structured Query Language (SQL). The
comparison operations allowed are;

a) CONTAINS

b) DOES NOT CONTAIN
c)ISIN

d)ISNOTIN~

e) EQUALS

f) NOT EQUALS

Each operation specifies a nameset which is compa