RAL-89-082

Science and Engineering Research Council

Rutherford Appleton Laboratory

Chilton DIDCOT Oxon OX11 0QX RAL-89-082

SML-Yacc: A Parser-Generator System
in Standard-ML. A User Guide

B M Matthews and S K Robinson

August 1989

SML-Yacc : A Parser - Generator System in Standard-ML
A User Guide

Brian M. Matthews
Stuart K. Robinson

Rutherford Appleton Laboratory

1. Introduction

This paper describes SML-Yacc — a parser-generator in Standard ML. The system expects a grammar
specification as input and produces a parser for that language in Standard ML as output. The user may
include Standard ML expressions (parse actions) within the specification to be executed on recognising a
phrase of the language and thereby define the semantics of the language that the grammar specifies. For
example, the expressions may be used to build up a parse-tree in some representation defined by the user.
Parser-Generators can be used in the construction of compliers and they can also be used to produce a
variety of other software tools such as automatic type-checkers, automatic type-setters, and cross-
compilers, which rely on the syntactic structure of the input.

The overall structure of the process which must be undertaken to produce a parser is given in Fig 1. The
user supplies SMIL-Yacc with a grammar specification plus associated parse actions which describe the
language and its intended semantics. SML-Yacc generates a parse table for this language, which is then
combined with a driver routine to form the parser. The user then provides this parser with input which has
been preprocessed by a user defined lexical analysis function and the parser produces, if the input is syn-
tactically correct, the corresponding translated output as dictated by the parse actions.

Many people are familiar with Yacc, the standard parser-generator utility on UNIX} . Consequently we
have endeavoured to design the interface to the SML-Yacc system to be as similar to that of Yacc as possi-
ble. This should make the conversion of Yacc grammars simpler.

1.1. History

The primary motivation for the production of SML-Yacc was as a Rutherford Appleton Laboratory contri-
bution to the Alvey funded FORSITE project, a collaboration between the University of Oxford, Racal ITD
Ltd, and the University of Surrey. However, the resulting system is intended for distribution to the Standard
ML community at large to enhance the range of tools available in this language.

Parser-generator systems have been available since the late 1950’s as aids to the complex task of writing
translation tool (eg compilers) for programming languages. The use of such a system can significantly
reduce the time required to produce such a tool, although the efficiency of the tool produced may not be as
high as one which has been hand-coded and optimised.

The Yacc parser-generator is a standard tool provided on Unix and as such is a widely known and popular
system for this task. It is written in the UNIX standard language ‘C’ and also expects parse actions and
produces output code in ‘C’. The near standardisation of UNIX in the UK academic community makes this
system a natural choice on which to base our own parser-generator, and thus SML-Yacc input specifica-
tions contain many similar constructs to those found in Yacc. Existing specifications should thus be adapt-
able into the new format in a straightforward manner.

Standard ML is a strict polymorphic functional language developed at Edinburgh University. It was

+ UNIX is a registered trademark of AT&T in the USA and other countries.

- Introduction -

Grammar of Parser
Language L Generator
GENERATES
Parse Tables
A Sentence S Lexical Lexical _ | Compiled Representation
of Language L | Analyser |RepresentationofS| of Sentence S
Driver Function
Fig 1: Generating and Driving a Parser.

originally designed as a Meta-Language for the LCF theorem proving system, but since then it has been
developed independently as a general purpose programming language. Although it does have some
imperative features, we were interested in experimenting with parser-generation techniques in a functional
programming paradigm.

1.2. Technical Background and Related Work

For the theoretical background to contexi-free grammars, finite automata and parsing techniques see
[HopUI179]. SML-Yacc is a LALR(1) parser generator. For the technical details of this and for a descr_lp-
tion of the algorithm upon which SML-Yacc is based see [AhoUl77, AhoSetU1186]. For an alternative
approach to LALR(1) parser generation see [Trem85]. These books also give a good motivation to lexical
analysis and parsing.

The Yacc system [John75] is a well-known parser-generator system written in C as part of the toolkit sup-
plied with UNIX. [Pey83] describes an attempt to implement Yacc in the untyped functional language
SASL. Other systems include [Roth87] using New-Jersey ML at Edinburgh, mllama [Suf89] written in
Pascal with ML front and back ends as part of the Zebra (a Z specification type-checking tool), and
[Udd88] using Lazy ML at Chalmers University Gothenburg, which extends the basic Yacc functionality in
the context of attribute grammars permitting both synthesised and inherited attributes. This can be carried
out in a Yacc-like framework because of the lazy evaluation strategy of the implementation language.

For an introduction to Standard ML see [Wik87].

1.3. Organisation of this Manual

In §2 we describe the format of the input grammar specifications used in SML-Yacc, together with user
defined functions. In §3 we describe the parse actions, and how to use the parse funtion output by SML-
Yacc. There are some extra features available to SML-Yacc allowing the user more control over the parser
produced; these are described in §4. We then follow this by a fully worked out example in §5, installation
instructions in§6, and a description of the grammar of the input specifications to SML-Yacc in a SML-
Yacc acceptable form. We conclude with a note on maintainance.

- Input Features -

2. Input Features

2.1. Grammars

The language is specified using a grammar, which is then input to SML-Yacc. The grammar consists of a
set of terminal symbols representing the fundamental units of the input, a set of non-terminal symbols
which represent the higher structures of the language, and a set of productions which relate a single non-
terminal symbol (the left side) to a sequence of terminal and non-terminal symbols (the right side). The
theory of grammars can be found in the above references, and the detailed syntax for defining input gram-
mars for SML-Yacc is covered in subsequent sections of this paper.

SML-Yacc will accept Context-Free Grammars which are acceptable to a LALR(1) parsing algorithm.
Parsers for LALR(1) languages are often implemented using two components: a set of parse tables which
contain the information of the the structure of the particular language; and a driver function, which is the
same for all LALR(1) parsers, which uses the parse tables to process the input. SML-Yacc produces the
parse tables for a language by analysing the grammar, and also provides the driver fupction to operate the
parser.

LALR(1) grammars define a wide class of languages and most common programming language constructs
can be encoded in this framework. However, there are some language constructs which cannot be defined,
leading to ambiguities in the language; that is constructs where more than one legal parse is possible. One
of the strengths of SML-Yacc is the facility to resolve some language ambiguities by precedence rules set
by the user (see below).

Upon input, several checks are made upon the grammar specification:

1 All non-terminals used must be defined. That is, if a non-terminal occurs in the right side of any rule,
there must be a rule which has that non-terminal as its left side.

2 All non-terminals defined must be used. That is, if a non-terminal occurs on the left side of a rule,
then there must be some rule in which it occurs as part of the right side. Although not strictly neces-
sary for the correct implementation of the parser-generator, this check is made to improve efficiency
and to promote good style from the user by identifying unnecessary rules.

3 Rules which promote non-terminating loops are detected, reported and removed. The simplest
example is the definition of non-terminal S with the single production S — a.SB, but non-termination
can also arise from certain sequences of rules which mutually refer to each other.

4 Token identifiers and non-terminal identifiers must be taken from disjoint sets. That is no token iden-
tifier is found on the left side of a production.

In checks 2 and 3 above, the offending productions in the grammar are signalled with an appropriate error
message, and then removed from the grammar. Analysis then proceeds using the reduced grammar to
detect further errors.

2.2. User Supplied Functions

The user is expected to supply to SML-Yacc a type value, a function lex: unit — (int * value) and a func-
tion yyerror:(value list * (int * value)) — string. These three Standard ML objects provide the type of the
result of the parse actions given to productions, a lexical analysis function, and a function which outputs an
error message respectively. The two functions are given as arguments to the yyparse outlined in §3.3
below. The function yyerror is outlined in §4.3 below.

2.2.1. Type value

All the parse actions assigned to productions take their arguments from and return their results to a com-
mon value stack. The strong type discipline of Standard ML insists that all these arguments and results are
of the same type. The type value is declared to be this type in the driver function, but not defined. Conse-
quently, the user is required to give this type in advance, and to ensure that all given actions use this type
for all arguments, and results.

- Input Features -

2.2.2. Lexical Analysis

The lexical analyser performs a local analysis of the input, breaking up the input symbol stream into
tokens, which are used by the parser to analyse the grammatical structure of the _mput more deeply.. The
lexical analyser also can be used to perform routine tasks such as stripping out white space from the input,

removing comments, keeping a tally of the current line number for error diagnosis, and maintaining symbol
tables.

In order to perform lexical analysis, the user is expected to provide a function lex: unit — (int * value)
which returns the next token from the input stream when called with a null argument. This input token is in
the form of a pair. The first element of the input token is the ineger code (or token class-code) for the
token, and the second is the value of that token, which has already been coerced to be of type value. The
value of the integral class-codes for the tokens can be found in a list, Token_table:(string * int) list

(ordered on the second argument in reverse order), generated by SML-Yacc, and available to the lexical
analyser.

Thus for example, we might outline a lexical analysis function skeleton as follows.
datatype value = ... (* defines the type value *)

exception no_token : unit ;
fun search nil input = raise no_token
I search ((s,n)::list) input = if input = s then n
else search list input ;

fun read (():unit):string = ... (* reads a tokens string from the input *)
fun make_value (s:string):value = ... (* converts a string to the appropriate value *)

fun lex token_table) = (* Here we give the lexical analysis function *)
let val input = read ()
in
(search token_table input, make_value input)
end

(* We now load the parse tables as generated by SML-Yacc. *)
val Token_table = ...

(* and build the final lexical analysis function. *)

val Lexical = lex Token_table ;

This is rather crude, and the user would probably produce something more efficient, and tailored to his or
her own requirements,

2.3. The Form of the Specification File
The overall format of a SML-Yacc input specification of a language is as follows.

declarations
% %

rules

% %
programs

The declarations section contains the definitions of various token identifiers and symbols. The rules sec-
tion contains the productions (with optional parse actions) of the input grammar. The programs section
contains declarations of user-defined ML functions and datatypes which the user wishes to use in conjunc-
tion with the parser that has been defined. The lexical analysis function can be placed here, as can any

- Input Features -

user-defined parse error handling functions.

All declarations (apart from the start symbol declaration (see below)), can be omitted if they are not
required, as can the programs section. If the latter is done the second delimiter ‘%%’ can also be omitted.
Thus the smallest legal SML-Yacc specification is one of the form:

Jostart goal (* see later *)
%%
rules

Blanks, newlines and tabs are ignored for input purposes. Comments can be placed at any point in the
specification, being delimited by ‘(*’ and ‘*)’ as in Standard-ML.

2.4. Rule Format

The rule section consists of one or more grammar productions of the form:

n : BODY ;
where ‘n’ represents a non-terminal, and BODY represents a sequence of right sides separated by bars
("I"). The right sides themselves are sequences of token identifiers (terminals), literals and non-terminals,
followed by an optional parse action at the end. The BODY may be empty, or just consist of a parse
action, in which case it represents the empty string. The colon, bar and semi-colon are SML-Yacc punc-
tuation (metasymbols).

Identifiers for tokens and non-terminals can be of arbitrary length, and contain any characters apart from
those with a special meaning in SML-Yacc, that is:

‘;7 ‘:3 ‘I, t%’ c%%’
l(*’ c*)’ ey ‘%(’ s%)’

The recommended convention is to identify tokens by upper-case strings and non-terminals by lower-case
strings. Literals are denoted by enclosing characters in double quotes, eg ™:", and may contain any charac-
ter including the SML-Yacc reserved characters and the following escape sequences:

\n newline
\t tab
\ddd single character with octal Ascii code ‘ddd’
\" quote character "
\ backslash character \

Literals are regarded as terminal tokens, but they do not have to be entered in the declarations section of
the specification (see below) .

Several productions may have the same non-terminal symbol on the left side. In SML-Yacc we do not
insist that all the productions of a given non-terminal be presented together and separated by ‘I’. Hence the
following is allowed:

a | |b;

a, 4 ‘e
However, we do recommend, for the sake of readability, that this be written as:
ay % bilc

Further, as SML-Yacc ignores new-lines in the input specification, each right side can occupy a different
line. This style is recommended, with the *;’ on a further line, as this improves readability and makes any
subsequent modification of the specification easier. Thus the above example would be written:

- Input Features -

2.5. Declarations

Each identifier used to represent a terminal token must be declared in the declarations section. This
enables SML-Yacc to distinguish between terminal and non-terminal identifiers. If an identifier is not
declared it will be regarded as a non-terminal and cause an error message from input check 1 above. Not
all tokens need be declared however: literals delimited by double quotes are also regarded as terminal iden-
tifiers. Check 4 above prevents tokens and non-terminals from having the same identifier. Token identif-
iers are declared by a statement of the form:

%token identifierl identifier2 identifier3 ...
in the declarations section of the specification. There may be several such statements in the specification.
One non-terminal symbol, known as the start symbol, must be declared explicitly, by the statement:
Yostart symbol

in the declarations section. This symbol represents the most general structure which can be built up from
the grammar, and is used by SML-Yacc as an indication that the parsed input is a complete sentence of the
language specified by the input grammar.

A special endmarker token, EOF, with the token class code ~1 (the only negative class code) is the signal to
the parser produced that the input has been completed. It must be delivered by the user supplied lexical
function when the input has ended. If the tokens up to the endmarker form a sentence derivable from the
start symbol according to the specified grammar rules, then the input is accepted; otherwise an error
results.

The user can supply ML code to be used by the resulting parser in the initial declarations section. This is
done by placing the code within the delimiters ‘% (> and ‘%)’. This code is then copied to the beginning of
the generated parser output file filename.tab (see below). This is a useful place in which to put the defini-
tion of the type value, and the functions used by the parse actions (see below). Code can also be placed
after the final %%’ , which will be copied to the end of the output file filename.tab, after the code for the
generated parser.

- Output Features -

3. Output Features

When SML-Yacc is run on a correct input specification of a grammar, a parser is produceq which will
accept any input derivable from the grammar’s start symbol. The user can specify actions which are to be
performed when the parser accepts those sections of the input which match nonterminal structures in the
specifying grammar, to produce a processed version of the input.

3.1. Actions

The action to be performed on recognising a production’s right side can be specified by entering into the
input specification a Standard ML expression enclosed in parentheses at the end of the relevant right side.
For example, given the production

a : "COT (123);
then, on successfully parsing "(" b ")", the list [1,2,3] will be the resulting value of the production (assum-
ing that we have already declared type value = int list ;). :
Note that the Standard ML terminator symbol ’;’ should not be included in an action.

An action may contain pseudo-variables to pass values from the input to the output. These are written
v_1, v_2, v_3, .. and are bound to the values returned by the grammar symbols (terminals and non-
terminals) in the right side of the relevant production. The number ‘i’ of the pseudo-variable v_i,
corresponds to the position of the grammar symbol whose value it takes, counting from left-to-right, in the
right side of the production. For example, if we have the production

b : BODY (1);
then the expression ‘1 is perceived to be the ‘result’ of the parse of BODY, and becomes the value of ‘b’.

This value can be used when b is used within other productions by use of pseudo-variables. Thus if we also
have the production

a i ChY (v2);

then v_2 takes the value of the second element in the rule, which is then passed on as the value for a. In the
case where b is parsed using the above production, then this particular use of a returns the value ‘1°.

Standard ML tuple expressions and expression sequences need not be enclosed by additional parenthesis.
Thus:

a : ac 12);

is a valid action. Actions cannot be placed in the middle of the right side of a production, such as:

2 2 Blle xZ:w3):
Such actions can be simulated by adding extra rules:
d ! bde (v2:;v3):
d : (1); (* An Empty Production *)

but care must be taken. In changing the grammar, it may cease to be a grammar suitable for LALR(1)
parsing and conflicts may arise. Note that a Standard ML expression sequence is being used here, and so
the separator *;’ is being used legally in the first action.

One task of the lexical analysis function is to return the required value of the appropriate token to be used
in actions. As described earlier, all values (ie. those passed by the lexical analyser as the values of the
tokens, and those returned from the users parse actions as the value of non-terminals) must be of the same

type, value. Should they not be, the Standard ML type checker will produce an error when it comes to load
up the resulting parser.

- Output Features -

3.2. Actions on Empty Productions

The driver function for the parsers produced by SML-Yacc maintains a stack of values which have bpen
parsed. When the parser reads a token, its value is pushed onto the value stack. When the end of aright
side is recognised, the parser pops a number of values equal to the number of symbols in the right side, per-
forms the given action for the right side on the popped values, and places the result of the action on top of
the value stack.

For example, if we have the following section of a grammar definition:

%(
type value = int ;
%)

%token Num

% %o

add : Num"+"Num (v_1+v_3);

and the input contains the sequence ‘6 + 5’, we may recognise the end of the ‘add’ production with the fol-
lowing value stack (0 is an arbitrary value returned for the "+" symbol by the user’s lexical analyser).

5
0
6
3

The parser will then pop the top three values off leaving

and then, with the binding v_1 =6, v_2 = 0, v_3 = 5 (reverse order, since that is the order they have been

read in), it will perform the action (v_1 + v_3), evaluating to 11 which is then put on the top of the value
stack as the value of this use of ‘add’, yeiding:

11
3

Thus a value is required both for every terminal and for every non-terminal used in the grammar. If no
action is provided, then the parser uses the value of the first symbol onto the right side on the value stack
as the value of the left side. Thus if we have the production:

a o bic
then, after a has been recognised, the value of b will be left on the top of the stack.

The rule that every non-terminal used has a value applies equally to empty productions. On ‘recognising’
an empty production, no extra values have been placed on the value stack. If an action is provided for the
production then the result of the action (which cannot contain pseudo-variables) is used as the value of the
left-side non-terminal. For example, a common use for the empty production is in sequences of expres-
sions or list construction:

- Output Features -

%(

type value = int list;

%)

%%

list : singletonlist (v_1@ v_2)

I m (* Empty Production *)

Here the empty production returns the value ‘[}’ which is placed on the value stack.

If no action is provided on an empty production, a problem arises. We need a value to return, but have no
such value available. To overcome this problem, the user can declare a ‘dummy value’ to be used in such
circumstances in the declarations section of the SML-Yacc grammar. This is done using the keyword
‘%dummy’ followed by a element of type value to be returned by such empty productions which have no
action provided. Thus given:

%(

type value = int;
%)

%dummy 0

% %o

empty : (* Empty Production *) ;

then when the production empty is recognised, the value ‘0’ will be returned and placed on the value stack.
If an empty production is declared with no action provided, and no default value is supplied using
%dummy, then during the analysis of the grammar, SML-Yacc will fail and output the error message
"Error: No dummy value supplied for empty production”.

3.3. Using SML-Yacc and the Parser Function

SML-Yacc provides a function Yace : (string * string * string * string) — unit to generate parsers from
grammar specifications. Yacc takes four parameters used as follows.

- Output Features -

Argument Parameter Function

Ist “filename" | The file name containing
the input specification to
be processed.

2nd "v"or"" If set to "v" then SML-

Yacc produces a verbose
output outlining the states
of the resulting parser in a
file called filename.v.tab.

3rd "y"or"" If set to "y" then SML-
Yacc produces a file
called filename.err to
which any error and parser
conflict reports are sent.

4th "y" or "" If set to "y" then SML-
Yacc produces a file
called filename.out to
which all output, normally
displayed on the screen, is
sent.

The system produces, as a side effect, a file filename.tab containing the generated set of parse tables, which
include the following.

Token_table: (string * int) list , which is a list of all acceptable token identifiers and their numeric inter-
nal class codes. This list is organised as a reversed ordered list on the second (numeric) argument. This list
is essential for the lexical analysis, as lex needs to return the token-class codes for tokens.

Reduce_functions: (value list — value list) list which are the user supplied semantic actions embedded in
value stack manipulating functions.

The other tables contain the parser action information in a compacted form. When the parser is loaded, the
functions in the file make.ml are used to build the parse table used by the driver function, which is to be
found in the file driver.ml.

In order 10 use these tables, the user should first load his definitions of lex, the datatype value (this must be
provided as SML-Yace provides no default value type), the error function yyerror (see below), and any
functions utilised in parse actions, then the file containing the tables, filename.tab. This file automatically
loads the make and driver functions from the files make.ml and driver.ml respectively. Of course, if the
type value and the user defined functions are declared in the declarations section of the grammar specifica-
tion between the *%(’ and *%)’ delimiters, then they are already in the file filename.tab, and thus only this
file needs to be loaded.

In this way the user is provided with a function:
yyparse: (unit — (int * value)) — ((value list * (int * value)) — string) — unit — value.

This can then be supplied with the user’s lexical analysis function, lex and the user’s error message func-
tion, yyerror, to deliver a function of type unit — value. It is assumed that the user’s lexical analysis func-
tion handles input from the user’s file, or from the terminal.

After a successful parse, the final value will appear on top of the value stack and is presented to the user as
the result of the parse. Usually, this will still have the value constructor attached which will have to be
stripped away from the result before further use.

Note that all parse actions must have the type value™ — value. Thus, if functions defined on a variety of
types are used, then a union type must be defined for value to collect all the types together. Constructors

10

- Output Features -

and deconstructors must be extensively used to coerce the function arguments and results to the appropriate
types. This is a tedious necessity imposed on us by the strict type discipline of Standard ML. If only one
type is used as a value, then the type value can be set by simple aliasing.

3.4. Example: Actions and the Parser Function

Suppose we wish to construct a parse tree for a simple language described by the following grammar
specification:

Postart sum

%token NUMBER IDENTIFIER (* the values are passed from the lexical analyser *)
%0 %

sum ¢ atom "+" atom (action) ;

atom : IDENTIFIER v_1)

| NUMBER ~_1

The action on the first right side is undefined at present.
The required parse tree is of the following type:

datatype exp = mk_plus of (aexp * aexp)

and aexp = mk_int of int

I mk_real of real
| mk_string of string ;

NUMBER can either be an integer or a real, and IDENTIFIER is of type string. Since all values must have
the same type, we must declare a datatype that can embed objects of type exp and aexp. We will also need
deconstructors for these types.

datatype value = mk_vall of exp | mk_val2 of aexp ;

fun umk_vall (mk_vall ¢)=¢;

fun umk_val2 (mk_val2e)=e¢;
To get the parse tree of type exp as we desire, the action of the first production in the grammar above
might be:

(mk-vall (mk-plus (get (umk_val2 v_1), get (umk_val2 v_2)))
where get:aexp -> real is defined to be a function which returns a real number by looking up the assigned
value of a string in some predefined association list such as (without going into all the details)

fun get (mk_int i) =real i

| get (mk_realr)=r
| get (mk_string s) = lookup Assoc_List s ;

After the grammar specification has been processed by SML-Yacc, we can use the parse function yyparse
in our own program as follows. yyerror is the error message function as normal, and I assume that the
user has supplied a function makelex which given an instream, returns an appropriate lexical analysis func-
tion.

fun my_parse (file : string) =

let
val instream = open_in file
val lex = makelex instream
val value = yyparse lex yyerrror ()
val ((mk-vall parse_tree) = value
in
parse_tree
end;

The variable parse_tree will take the value of the parse tree which appears on top of the value stack after a
successful parse and is given as the result of my_parse.

11

- System Features -

4. System Features

Some features of SML-Yacc’s analysis of the input grammar are explicit and partially under the user’s con-
trol.

4.1. Ambiguity

If there is a set of productions in the input grammar which can structure an input string in two different
ways, then the grammar is ambiguous (and so not LALR(1)). There are two valid parses and we must make
a choice in the parser as to which production to apply. The choice may be incorrect and not lead to a valid
parse of the whole sentence, or not carry the semantic meaning we intend.

For example, consider the following productions for subtraction, where NUM is a token with a numerical
value:

"o

exp : exp
i NUM

.
’

exp (v_1-v-2)

Consider the input: NUM — NUM — NUM. This can be structured in two ways by the above productions:
(NUM - NUM) - NUM (left association)

or
NUM - (NUM - NUM) (right association)

On applying the parsing algorithm, the input can read up to ‘NUM — NUM’ which matches the right side of
the production, storing each value on the value stack. On reading the next ‘—’, it could then be reduced by
applying this production, and replacing the top three items on the stack by ‘exp’ and then carry on to read
‘~ NUM’. This is equivalent to left association. Alternatively, a shift action could performed on reading
the second ‘—’, going on to read all the input until it has read the entire sentence. It is then reduced from
the right. This is equivalent to right association. This situation, where there is a choice of parsing stra-
tegies is known as a shift / reduce conflict. If the parse action associated with the above production is nor-
mal arithmetic subtraction, it can be seen that these two different parsing strategies could lead to very dif-
ferent results.

The input grammar can also contain situations where there are two alternative reduce operations available.
For instance consider the following three rules.

x =+ ABICs
y ¢+ BC;
Zh G A YA

On reading ‘ABC’ two parse strategies are available. It can either be reduced using x, or it can be reduced
using y followed by a reduction using z. Such situations are known as reduce / reduce conflicts.

Productions where these conflicts could potentially occur can be detected during the analysis of the gram-
mar by the parser-generator. Some parser-generators, on detecting such conflicts, would halt and report
error messages. However, by default, SML.-Yacc will resolve them in a standard fashion according to the
following rules:

1 Shift/Reduce conflicts are resolved by taking the shift action - reductions are deferred if possible.
This leads to right association.

2 Reduce/Reduce conflicts are resolved by preferring one reduction over the other. The choice, which
is arbitrary, is signalled to the user. This is a very unsatisfactory solution to this problem, but such
conflicts can be regarded as near fatal. The situations where they occur are often artificial as in the
above where rules y and z could be dispensed with altogether.

In general it is better to try to rewrite the grammar to remove all conflicts. In particular, this should be done
in cases of reduce/reduce conflict. SML-Yacc will produce an error message indicating where in the gram-
mar the conflict occurs, before resolving the conflict by the above rules and recommencing the analysis of
the grammar. If many conflicts occur, or the grammar is long, we recommend that these error messages

12

- System Features -

are redirected to a file for later analysis. This can be done using the error redirection argument of the top-
level function Yacc as indicated above.

The resolution of shift/reduce conflicts by a shift is probably more useful than resolving by a reduction.
This can be seen by considering the following rules.

statement : IF "(" condition ")" statement
I IF "(" condition ")" statement ELSE statement

This is a construction which often occurs in programming languages, where a conditional may or may not

have an action on falsity. Consider how the following sentence is parsed using these productions:
IF(C)IF(D)SELSET

The ELSE token could either apply to the outermost or the innermost conditional. A shift / reduce conflict

occurs after reading statement S. If reduce is applied at that point, then the ELSE read, the resulting form
will be:

IF(C) {IF(D)S }ELSET

However if the shift option is taken at this point to read the ELSE then the resulting form will be:
IF(C) {IF(D)SELSET}

This is the form which most programmers would understand by this sentence.

4.2. Precedence

Ambiguities can be resolved in another way which overrides the default mechanism, and allows the user a
great deal of freedom in the way in which operators are parsed and used.

The user can declare precedence levels and associativities for operators in the following fashion. In the
declarations section of the input specification, the operator token identifiers or token literals can be
declared using the statements %left, %right, and %nonassoc instead of %token. %left / %right declare
the operator to be left / right associative respectively with operators of equal precedence, and the top to bot-
tom ordering of the declarations gives the precedence of the operators, with the least binding at the top and
the strongest binding at the bottom. Operators declared in the same statement have the same precedence.
The %nonassoc declaration is useful for detecting illegal constructs. It means that the operator does not
associate. For example, consider the conditional statements of FORTRAN, where the relational operators
may not associate with themselves. The declaration:

%nonassoc .LT. .GT. .LE. .GE. .EQ. .NE.

would would cause the generated parser to detect such phrases as
A GT.B GT.C

and flag a syntax error with an appropriate message.

Another facility available with precedence is the %prec keyword which allows the precedence of an
operator to be locally changed in one particular grammar rule. This is particularly useful, for example, in
the case of a language with a unary minus where the binding is much stronger than the binary minus opera-
tor, but the same symbol is used.

We give as an example of these precedence rules, the following specification of a language of arithmetic:

13

- System Features -

%token ID

%righ["="

%left "+ll ll_ll

%left ll*ll 'I/ll

%left NEGATIVE

%%

arith exp : "(" arith_exp ")"
arith_exp "=" arith_exp
arith_exp "+" arith_exp
arith_exp "-" arith_exp

arith_exp "/" arith_exp
"—" arith_exp %prec NEGATIVE

i

i

|

| arith_exp "*" arith_exp
|

|

| ID

Here ‘+’ and ‘-’ are both left associative and have a lower precedence than “*’ and */’. However, in the
seventh right side of ‘arith_exp’, ‘-’ precedence has been locally changed to have the precedence of the
dummy token NEGATIVE, which has the strongest binding of any of the operators. Hence the input

x=y+z*w-~a/b+c+d
would be structured as:
x=({((y+@*W)) - ((-a) /b)) +c) +d)

In these rules, expressions with brackets would parse as would be expected; they would reduce to one
arith_expr as if they had top precedence. Declared precedences and associativities override the default
activity in conflict resolution in favour of the correct associativity when precedences are equal (left gives a
reduce , right a shift) or in favour of the highest precedence when precedences differ.

The %prec keyword and its token should appear in a production after all the grammar symbols, but before
any action on the production.

Contlicts resolved in such a manner are not reported and care should be exercised that errors in the specifi-
cation are not being disguised by the misintended use of these constructions.

4.3. Error Handling
SML_Yacc provides the user with a basic error handling facility.

Under normal circumstances, when the parser generated by SML_Yacc discovers an error in parsing, the
system displays an error message, aborts the parse and returns a Standard ML exception
PARSE_ERROR: unit. The driver function’s error handling routine will provide the initial message

"Parse Error : Unexpected Input Token".

The user must provide a function yyerror:(value list * (int * value)) — string which should give a more
complete error message to follow this. The first argument is the current value stack, giving information on
what has been recognised; the second argument is the current input token (of the same form as the output
from the (user provided) lex function considered earlier). A basic function would thus be

fun yyerror (vals,input_token) = "ERROR"

but the user will probably want to produce a more detailed error message providing details about the
current state of the parse. In addition, he or she may wish to provide extra information provided by the lex-
ical analysis, such as the current line number.

Further, the user can provide recovery facilities to handle situations where errors are foreseen. This is car-
ried out by adding, at a non-terminal where the user believes that errors arc likely to occur, the extra

14

- System Features -

production:
non-terminal . error o ;

where error is a predefined reserved token identifier, and o is a possibly empty string of terminal and
non-terminal symbols. When an error occurs the parser will look back down its stack of previously
accepted non-terminals. If it finds one with the error token at the start of one of its right sides, it will then
try to match the input with the string a.. If the input is not acceptable to ¢, it is silently consumed and the
next input token is taken. If the token is acceptable to o the parser will attempt to resume parsing. How-
ever, it remains in an error state until three consecutive, acceptable tokens are found in order to prevent a
cascade of error messages. For example if the user wishes to consume the input until some end of state-
ment marker is reached, such as a semi-colon in Standard ML, then a production such as:

statement : error";"

can be added. The input will then be consumed silently until a semi-colon marking the end of a statement
is reached. The parser will then attempt to resume. If the subsequent input is valid to follow a statement,
then the parse will proceed as normal. Otherwise it will silently consume input until three tokens are suc-

cessfully read. The string of non-terminal and terminal symbols may be empty as in:
statement : error

k]

In this case the parse will resume on any token which can legitimately follow the non-terminal statement.
This is a very uncontrolled form of error recovery.

15

- Example -

5. An Example .
We give here a complete example of a simple language which defines a calculator with assignable regis-
ters.

A simple calculator.

This grammar will parse, and evaluate line-by-line, simple arithmetic in floating point numbers. It
can also assign values to registers and use them in later expressions. Allows up to 52 registers,
denoted by single upper or lower case letters of the alphabet.

Input is terminated by entering a single exclamation mark character, "!".
As we are using ML’s limited floating point capacity, the answers may not be entirely accurate!

%(

(* The datatype value is a union type of strings (for registers) and reals *)

datatype value = mk_string of string
| mk_real of real

| dummy ;
fun unmk_string (mk_string s) = s ;
fun unmk_real (mk _real r) = r ;

(* Functions used in the semantic actions *)

fun curry £ x vy = £(x,y¥)

val plus: (real -> real -> real) = curxy (op +) ;
val minus: (real -> real -> real) = curry (op -)
fun prod (rl:real) r2 = rl * r2

val quot = curry (op /) :

fun power rl r2 = exp (r2 * 1n rl) ;

val neg:(real -> real) = ~ ;

val Assignments = ref ([]:(string * real) list);
exception UnAssigned : string ;

fun assign s r =
let fun insert [] = [(s,r)]
| insert ((a,b)::1) = if a = s then (s,r)::1 else if a < s then
(a,b) ::insert 1
else (s,r)::(a,b)::1
in (Assignments := insert (!Assignments) ; dummy)
end ;

fun lookup s =
let fun search [] = raise UnAssigned with s
| search ((a,r)::1) = if a = s then r else if a < s then search
1
else raise UnAssigned with s
in search (!Assignments)
end ;

fun Output (r:real) = (output(std_out,"The Expression has value "

16

- Example -

~ (makestring r) “"\n") ;dummy) ;
%)
(* tokens used *)
%token EOL BRA KET NUM IDENT EQ
Yoleft MINUS
Yoright PLUS
%left QUOT
Yoright PROD

Yoright EXP
%right UMINUS (* a dummy token used for the unary minus with %prec *)

%dummy dummy
Yostart session

(* Now we have the definition of the grammar *)

%%
session (* empty *))
I session line EOL
line T expr (Output (unmk_real v_1))
| assign
] error (* Error recovery will take place on a new line *)
i (* empty *)
assign : IDENT EQ expr (assign (unmk_string v_1) (unmk_real v_3))
expr : BRA expr KET v_2)
I bexpr
bexpr : NUM
| IDENT (mk_real (lookup (unmk_string v_1)))
I expr PLUS expr (mk_real (plus (unmk_real v_1) (unmk_real v_3)))
I expr MINUS expr (mk_real (minus (unmk_real v_1) (unmk_real v_3)))
| expr PROD expr (mk_real (prod (unmk_real v_1) (unmk_real v_3)))
| expr QUOT expr (mk_real (quot (unmk_real v_1) (unmk_real v_3)}))
I expr EXP expr (mk_real (power (unmk_real v_1) (unmk_real v_3)))
| MINUS expr %prec UMINUS (mk_real (neg (unmk_real v_2)))
%%
(*
When passed through SML-Yacc, the above grammar results in 28 parse states, with no conflicts.
*)

17

- Example -

ﬁ

We now define the lexical analysis functions.

First some Utility functions for manipulating input, characters and floating point numbers.
*)

val Instream = ref (open_in L))
val line num = ref 1 ;
val file name = ref ""

fun digit ¢ = ¢ >= "0" andalso ¢ <= "9" ;
fun lower c c >= "a" andalso ¢ <= "z"
fun upper ¢ = ¢ >= "A" andalso ¢ <= "2"
fun digitval d = real(ord d - ord "0%)

fun getdecimal dec r =
(case lookahead(!Instream) of
"o o=>r
| ¢ => if digit c
then getdecimal (10.0 * dec)
(r + (1.0/dec * digitval (input (!Instream,1))))
else r

fun getreal r =
(case lookahead(!Instream) of
" =>r
[*." => (input(!Instream,l) ;r + getdecimal 10.0 0.0)
| ¢ => if digit ¢
then getreal (10.0*r + digitval(input (!Instream,1)))
else r

(*
Then we give the lexical analysis function proper. Note that we lookup the token number in an list
input as an argument. This can be assigned the Token_table as output by SML-Yacc.

e/

local

fun search ((a,r)::1) s =
if a = s then r
else search 1 s
| search [] s = raise UnAssigned with s

in
fun lex token_list () =
if lookahead(!Instream) = " " orelse lookahead(!'Instream) = ""
then
(input (!Instream,1l) ; lex token_list ()) else
let val token = input (!Instream,l)
val (tn,vn) = (case token of

"!u => ("eof",dummy) l

"+" => ("PLUS",dummy) |
"-" => ("MINUS" ,dummy) |
"xv => ("PROD",dummy) |

18

- Example -

"/ => ("QUOT",dummy) |
wew => (“EXP" ,dummy) |
w(" => ("BRA",dummy) |
wyw => ("KET",dummy) |
"=t => ("EQ",dummy) |
T, => ("NUM",mk_ real(getdecimal 10.0 0.0)) |
"\n"=> (line num := (!line num + 1); ("EOL",dummy)) |
=> if upper token orelse lower token
then ("IDENT",mk string token) else
if digit token
then ("NUM",mk real (getreal (digitval token)))
else raise UnAssigned with token

in
(search token list tn,vn)
end
end (* of local *) ;
(*
Now the yyerror function.
*)
local

fun search ((a,r)::1) s =
if r = s then a
else search 1 s
| search [] (s:int) = raise UnAssigned with (makestring s)
in fun yyerror token_list (_, (token,value:value)) =
"Error at symbol " ~
(case search token_ list token of
"NUM" => makestring(unmk_real value) |
"IDENT" => unmk_string value |
"SUM" => nyw I
"MINUS" => "-" |
"PROD" => "*" |
"QUOT"™ => "/" |
"EXP" => """ |
"BRA" => " (" |
PREEY s> W) |
YEQT => =" |
=> uw) >
" on line number "™ ° (makestring (!line num))
end (* of local *) ;

(*
Finally we tie everything together in the function Calculator, which opens the appropriate input

file, evaluates lex and yyerror with the argument Token_table generated by SML-Yacc, and then
evaluates the input file.

If Calculator is called with the argument "", then the parser works interactively, evaluating lines
as the user types them in from the terminal.

%

19

- Example -

fun Calculator (filename:string) =
"" then (Instream

let val _ = if filename =
else (Instream :
val = (line_num :=

in

(if filename = "" then ()
else close_in (!Instream)
value)

end ;

open_in filename)

- 1 ; Assignments :=
val Lex = lex Token_table

val Yyerror = yyerror Token table

val value = yyparse Lex Yyerror ()

’

20

(1

std_in)

- Installation -

6. Installation Instructions

SML-Yacc was written using FAM Version 3.3 of Standard ML from Edinburgh. The SML-Yacc parser-
generator system fries to keep to the definition of the core Standard ML language as closely as possible.
There are however a few places where difficulties may occur in porting the system to other versions of
ML. Polymorphic references are used in one or two places (such as declaring a reference to be bound to
the empty list). Non-functional arrays are used in the final output tables. If any difficulty arises due to
these, then the files top.ml and make.ml contain alternative functional definitions of the datatype con-
tained in comments, which can be used directly to replace the use of the imperative arrays with the loss of
some speed. No use is made of Standard ML’s Module system.

When the SML-Yacc system has been loaded from tape, the user will be provided with two directories,
examples and system. The directory examples contains example grammars for use with SML-Yacc, includ-

ing the calculator example above. The directory system will contain the ML source code for the SML-
Yacc system. In order to install the system, the following modifications should be made.

Change the line in the file load from

val source = "/u/bmm/forsite/system/";
fo
val source = "your directory/system/";

and in the file I0.ml from
val source = "/u/bmm/forsite/system/";
to

val source = "your directory/system/";

To load and run the system, enter ML (we recommend with an expanded heap space — say 4Mb), and enter
the expression

use ["your_directory/system/load"]

and the system should load up. If you are already in the directory your_directory/system this part of the
pathname can be omitted. An image can then be saved to avoid loading the entire system up again, as this
is rather time consuming. This can be done (in the above version of Standard ML) by entering the expres-
sion:

Save_SML_Yacc ()

to Standard ML after loading the SML-Yacc system. This creates an image and stores it in the file
SML_Yacc.x. This image can then be reinvoked by calling Standard ML with the image file
SML Yacc.x.

21

- SML-Yacc Grammar -

7. The Grammar of the SML-Yacc.

We give the grammar of the input specifications used in SML-Yacc in a format suitable for processing by
SML-Yacc. SML-Yacc uses a cut-down variant of this grammar for its own parser. However, the the
declarations are handled by a preprocessor, and there are a variety of modifications to handle special cir-
cumstances.

(**)

* Grammar of the input specifications for SML-Yacc. *)
(**)

Yodummy 0 (* a dummy dummy value!! *)

%token TOKEN NONTERMINAL ACTION EOF VALUE ML_CODE
%start specification

%%

specification : declarations "%%" grammar end

(* declarations ensure that the %start declarations occurs once in any spec *)

declarations : nonstart_decs "%start” NONTERMINAL nonstart_decs

»

(* nonstart_decs ensure that the %edummy occurs at most once in any spec *)

nonstart_decs : token_decs "%dummy" VALUE token_decs
| token_decs
token_decs ¢ "(%" ML_CODE "%)" token_decs

| "%token" token_list token_decs

| "%left” token_list token_decs

I "%right" token_list token_decs

| "%nonassoc” token_list token_decs
| (* empty *)

token_list . token_list TOKEN
| TOKEN

(* end allows for the code to be placed at the end of the spec *)

end : (* empty *)

I "%%II

| "%%" ML_CODE
grammar : prods

22

prods

prod

clauses

action_clause

clause

symbol

% %

- SML-Yacc Grammar -

prods prod
(* empty *)

NONTERMINAL ":" clauses

et

action_clause ";

action_clause "I" clauses

clause ACTION
clause (* no action *)

(* empty clause such as this one *)
clause symbol
clause symbol "%prec" TOKEN

NONTERMINAL
TOKEN

23

- Maintainance -

8. Maintenance and Distribution

SML-Yacc will be maintained and distributed by the Systems Engineering Division, Informatics Dcpa.r[-
ment at the Rutherford Appleton Laboratories. An improved version, which runs more efficiently and with
extra features such as improved error handling is under consideration for future development.

A lexical analyser generator similar to the Unix utility lex is under development, using the SML-Yacc sys-
tem. This system, known as Yalag (Yet Another Lexical Analyser Generator), should be compatible with
the SML-Yacc system, and should make the construction of the lexical analysis function lex more straight-
forward. It is hoped that it can be distributed with the SML-Yacc system.

Problems, errors and suggestions for future improvements should be directed to:

B. M. Matthews,

Systems Engineering Division,
Informatics Department,
Rutherford Appleton Laboratory,
Chilton,

Nr Didcot,

OXON 0OX11 0QX.

e-mail : bmm@ uk.ac.rl.inf

Acknowledgements

This work was carried out under the Alvey Software Engineering support program at Rutherford Appleton
Laboratory. Our thanks to Dr David Duce and Dr Rob Witty for their support and encouragement during
this project. Mikael Hedlund was involved in its early stages. Bernard Sufrin gave helpful advice. Thanks
to John Kalmus for proof reading this document.

24

- Bibliography -

References

AhoUl177. Alfred V Aho and Jeffrey D Ullman, Principles of Compiler Design, Addison-Wesley (1977).

AhoSetUlI86. Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman, Compilers: Principles, Techniques and
Tools, Addison-Wesley (1986).

HopUI179. John E Hopcroft and Jeffrey D Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley (1979).

John75. Stephen C Johnson, ‘‘Yacc — Yet another Compiler-Compiler,”” Bell laboratories Technical
Report (1975).

Pey83. Simon L Peyton-Jones, ‘‘Yacc in SASL,”” INDRA Working Paper, No. 1533 (1983).
Roth87. Nick Rothwell, ‘‘Parsing Utilities for Standard ML,”’ Draft note, University of Edinburgh (1987).
Suf88. Bernard Sufrin, ‘‘mllama - ML Translator Generator,”” Unpublished Notes (1988).

Trem85. Jean-Paul Tremblay and Paul G Sorenson, The Theory and Practise of Compiler Writing,
McGraw-Hill (1985).

Udd88. Goran O Uddeborg, ‘A Functional Parser Generator,”” Programming Methodology Group report,
Chalmers University, Goteborg, Sweden (1987).

Wik87. Ake Wikstrém, Functional Programming using Standard ML, Prentice-Hall (1987).

25

