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GRAPHICS STANDARDS - THE CURRENT STATE

F R A Hopgood and D A Duce

This wvolume contains two papers presented by the authors at the

Ausgraph 86 conference held in Sydney, Australia from 6-11 July 1986.

The first paper, 'Graphics Standards - The Current State’, formed the
basis for an introductory tutorial on graphics standards. The tutorial
covers the GKS standard in some detail, together with descriptions of the
other standards in computer graphics currently under development,
including GKS-3D, PHIGS, CGM and CGI. This paper also contains a survey

of GKS implementations.

The second paper, 'Computer Graphics Programming’, formed the basis for a
professional seminar which examined the philosophy behind graphics
standardisation, the major concepts embodied in graphics standards, and
some of the problems that will be encountered when moving from existing
graphics packages to GKS. The paper discusses GKS-3D and PHIGS in more
detail than the introductory tutorial and discusses implementation
strategies for GKS. The final section in the paper discusses window

managers and the current state of standardisation activities in that
field.



INTRODUCTORY TUTORIAL

AUSGRAPH - 6 July 1986
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F R A HOPGOOD
D A DUCE

Informatics Division
Rutherford Appleton Laboratory, UK

il INTRODUCTION

After more than 10 years of effort by many people from a number of
countries, graphics has its first international standard in GKS, the
Graphical Kernel System. Rather than being the end of the road it is just
the beginning. GKS is the main building block of a set of inter-related
standards that are due to appear over the next few years with the aim of
producing a comprehensive set to cover the graphics area.

Standardisation in the area of computer graphics had a slow start partly
due to the rapid changes in hardware but also due to a number of different
methodologies that had grown up in separate communities. The origins of
the current standards activities can be traced back to 1974 when IFIP
Working Group 5.2 invited Richard Guedj of France to initiate a programme
of work which would establish a methodology for computer graphics.
A workshop of leading experts in the field was held in Seillac, France in
1976 and this proposed a strategy which directed future work [1].

The main thrust of that strategy was that existing graphics systems
confused the modelling side of computer graphics (where pictures were
composed) with the viewing side (where composed pictures were displayed in
a particular orientation on a specified device). The workshop recommended
a clearer separation between these two functions and proposed that the
viewing system should be the first area to be standardised. GKS is the
result of this initial activity. A description of the history and basic
concepts of GKS are given in [2].

Standards provide a mechanism for formally specifying the exchange of
information across an interface. GKS concentrates on standardising the
interface between the application and the graphics system together with
the interface between the graphics system and a workstation (which in GKS
terms can be thought of as an intelligent device capable of controlling a
variety of input devices, a display surface and providing local picture
manipulation and storage of a simple nature). Figure 1 gives a
representation of GKS and its interfaces.
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Figure 1: Interfaces defined by GKS

Both GKS interfaces are defined functionally with no specification of how
they should be realised in terms of a language interface to the
application or a protocol between GKS and an intelligent device.
Consequently, it is feasible for a wvariety of systems to arise all
conforming to the GKS definition but having totally different
characteristics.

The future standards activities are partially aimed at making the existing
interfaces more tightly specified but also introducing other interfaces
and providing greater functionality. Figure 2 shows how the current
standards activities fit together.
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Not all the interfaces are shown in Figure 2. For example, there will be
a range of language bindings to all the graphics standards rather than the
limited number shown. The main thrusts of the standardisation activities
following GKS have been:

il i3 To provide language bindings to be used with GKS.

20 To provide protocols for long-term storage of graphical information
(CGM - Computer Graphics Metafile).

35 To provide a standard interface to graphics devices (CGI - Computer
Graphics Interface).

4. To increase the functionality of the standards by extending GKS to 3D
and also providing a modelling facility (PHIGS).

The rapid increase in the number of activities has caused individuals
involved to concentrate on one or other of the standards activities. As a
result, there is a danger that the various activities will drift apart.
To avoid this, the aim is to standardise a Reference Model of how the
various standards interact.

2 ISO TERMINOLOGY AND MEETING SCHEDULE

More than 200 people are currently involved in the ISO graphics standards
activities with international and national meetings taking place each
year. There tends to be one full ISO Meeting each year but, depending on
a standard, there may be additional technical and editorial meetings. The
full ISO meetings and major technical meetings held have been:

1979 Budapest, Hungary

1980 Tiefenbach, W.Germany

1981 Melbourne, Florida, USA

1981 Abingdon, Oxon, UK

1982 Steensel, Netherlands

1983 Gananoque, Canada

1984 Benodet, France

1985 Timberline, Oregon, USA

1986 Frankfurt, W.Germany

1986 Egham, Surrey, UK (to be held in September)

Since the last full meeting at Timberline, there have been a number of

Technical Meetings held in Frankfurt and a GKS-3D editorial meeting in the
UsaA.

In any activity that involves communication between people, a few terms
are used so regularly that they become an extension to the vocabulary.
The standards area is no exception and it is important that a reader is
aware of the various stages that a standards document goes through within
ISO before becoming an international standard. These are:

1 WORKITEM: an official project with agreed scope and goals and
timescales. When an area has been identified for standardisation, a
proposal for a project is prepared. There is a ballot on the
proposal within the appropriate Technical Committee (TC) and, if
successful, the workitem is assigned to a particular Subcommittee



(SC), who manage the project and in turn assign it to a particular
Working Group (WG) who carry out the technical work. (The Working
Group for computer graphics is WG2 within SC21 (Open Systems) within
TC97 (Information Processing Systems) designated TC97/SC21/WG2.)

24 DRAFT PROPOSAL (DP): the Working Group produces successive working
drafts of the standard until the document is sufficiently mature that
it can be submitted to the Subcommittee for registration as a DP.
The DP is then circulated within the SC for technical review and
ballot. Comments submitted with the <votes are addressed and
resolution of them is sought. If sufficient agreement is reached the
document proceeds to the next stage. If not, or if the document has
undergone substantial change, then it has to be circulated for a
further DP ballot.

3ls DRAFT INTERNATIONAL STANDARD (DIS): when sufficient agreement is
reached on the DP document, the revised document is registered as a
DIS. The publication of a DIS should indicate that technical
agreement has been reached. The document is then circulated within
the TC for editorial review and DIS ballot. Comments submitted with
the votes are addressed and resolution sought. Any remaining
problems at this stage can cause another DIS ballot, but normally the
document proceeds to the next stage.

4, INTERNATIONAL STANDARD (1S): the DIS revised in the 1light of
comments received with the DIS ballot becomes the Final Text.
A final ballot within ISO Council ensures that all ISO members are
satisfied that ISO procedures have been followed in the production of
the standard and that the document is suitable for publication. The
IS is then published. The document will be reviewed 5 years after
publication at which time it may be endorsed, revised or abandoned.

The voting process in ISO is by letter ballot and takes many months each
time. Consequently progress is slow and getting to a full international

standard is a long and time-consuming activity requiring considerable
stamina.

A question immediately arises as to when a new standard proposal is
sufficiently well developed to warrant either implementing or using. In
theory, all technical change should be complete by the DIS stage and this
is, therefore, a reasonable time to start using a standard. However, the
move from DIS to IS inevitably includes some technical revisions if only
to remove ambiguities. Consequently, time should be allowed for updating
any programs written at the DIS stage when the IS finally arrives. In the
case of GKS, minor changes did occur between the DIS and IS stages. As a
result, most of the books currently on the market have minor errors. The
only one known to be up-to-date is [3].

Pilot implementations of standards often occur at the DP stage. This is
right and proper as such implementations often point out problems in
implementation. A danger with such products is that there is a tendency
to massage the DP version to produce the DIS one with a consequent loss of
efficiency and elegance. Choosing a particular implementation of the
standard should at least give some thought to the history of the product.
Probably the best product would be a new DIS one where the company had
tested out algorithms and techniques on an earlier DP prototype.



The dates for GKS were as follows:

Workitem Spring 1981
Draft Proposal February 1982
Draft International Standard June 1983
International Standard August 1985

Note the long elapsed time between Workitem and International Standard.
Predicted dates for future standards should be judged against this
schedule to decide how 1likely the progress will be made to keep the
predicted dates.

3 GKS

The Graphical Kernel System - GKS is formally defined in the standard
document itself [4]. A more detailed introduction and primer is given in
Hopgood et al [3] while a full and comprehensive treatment with many
examples is given in Enderle et al [5]. The latter book is in the process
of being updated to agree with the International Standard and current
FORTRAN binding. It should appear later in 1986. A computer graphics
text book based on GKS that can be recommended is Hearn and Baker [6].
Readers should be warned that it has a few errors as it uses an earlier
version of the FORTRAN binding.

Rather than give a full description of GKS here, we will concentrate on
those areas which are significantly different from previously accepted
packages or are major features of GKS and the related standards.

3.1 Dimensionality

GKS is a two-dimensional graphical system and provides no support for
three dimensions. The major reason for this was that it was realised that
the standardisation of a 3D system would take significantly longer than a
2D-only system. There was an urgent need for a standard and large parts
of industry had no interest in 3D. Consequently, the right approach was
to move quickly to the definition of a 2D standard with the intention of
defining a 3D standard above the 2D system at a later date. The extension
of GKS to 3D will be described later.

3.2 Primitives

The six basic output primitives are polyline, polymarker, fill area, text,
cell array and generalised drawing primitive (GDP).

Previous packages including the GSPC CORE system were based on the concept
of Current Position (CP). The wusual line drawing primitive in such
packages is to generate a line from CP to a specified point followed by
updating CP to be the specified point.

GKS, on the other hand, defines output of this type by specifying a
sequence of points and the polyline output primitive draws a set of lines
between the sequence of points. One advantage of this approach is that
aspects such as dotted or broken apply to the complete polyline rather
than individual 1line segments, a more natural view when drawing curves
depicted as polylines.



The polymarker primitive is similar to the polyline primitive but marks
the sequence of points with a specified symbol rather than connecting the
points with lines.

The text primitive in GKS provides considerable flexibility in defining
the quality of the text, its size and orientation, the origin etc.
Figure 3, where the asterisk defines the text origin, indicates the types
of text available in GKS. It also supports the text path being in any of
the major directions providing support for those languages not writing
from left to right.
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Figure 3

The fill area primitive is defined in terms of a set of points which
specify a closed curve. The primitive fills the enclosed area with a

solid colour or allows it to be filled by a specified pattern or hatch
style.

The cell array primitive is specifically aimed at the image processing
community where the cell array defines the colour or grey level to be
associated with individual elements of a rectangular array.

Finally, GDP defines a controlled method of adding more exotic primitives.
Particular implementations are free to add to the basic primitive set by
specifying particular GDP types as producing higher level shapes such as
circles, ellipses etc.

The appearance of primitives on a display is determined by the aspects of
the primitives. For example, the aspects of a polyline are: linetype,
linewidth scale factor and polyline colour index. Linetype may be solid,
dashed, dotted, dashed-dotted or other implementation dependent
possibilities. Linewidth scale factor defines linewidth as a function of
a standard linewidth for the output device. The polyline colour index
points to a colour description. The method of setting the values of
aspects will be described shortly.

3.3 Coordinate Systems and Workstations

GKS has introduced the concept of an abstract workstation to hide the
peculiarities of device hardware. A workstation consists of zero or one
display surfaces and zero or more input devices. GKS assumes that



applications will frequently want to use more than one workstation
simultaneously. For example, an operator may be interacting with a design
through a refresh display, whilst taking copies of completed parts of the
design on a plotter.

Coordinate data in the parameters of an output primitive are specified in
world coordinates (WC), a Cartesian coordinate system. Transformation to
the coordinate system of the display device is accomplished in two stages;
firstly, world coordinates are transformed to an intermediate coordinate
system called normalised device coordinates (NDC) by a window to viewport
mapping termed a normalization transformation, then a second window
viewport mapping, called the workstation transformation transforms these
coordinates to device coordinates (DC). The aspect ratios of window and
viewport may differ in the normalization transformation, but the
workstation transformation maps the workstation window to the largest
possible region of the workstation viewport with the same aspect ratio.

A major difference between GKS and other earlier systems is that it
provides multiple normalization transformations all defined at the same
time. Coordinates of primitives are transformed by the currently selected
normalization transformation. Figure 4 shows three different objects
(duck, tree and house) defined in different world coordinate systems.
Three different normalization transformations can be defined which map
these world coordinates onto specific areas of the NDC space.
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Figure 4

This leads to a different style of programming with the normalization
transformations, rather like declarations, being defined at the head of
the program and not changed. Earlier systems tended to mix calls of
primitives with changes in coordinate system.

The workstation transformation may be set differently for different
workstations, thus allowing different parts of the virtual picture to be
displayed on different workstationms.



The workstation can be regarded as a camera pointing at some part of the
NDC space. In Figure 5, the first workstation is pointing at the tree
while the second points at the house.

The boundary of the window of the currently selected normalization
transformation serves as a clipping rectangle against which output
primitives may be clipped. There is also a compulsory clip to the
boundary of the window of the workstation transformation.

The Viewing Pipeline in GKS is given in Figure 6.
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3.4 Attributes

As noted above, the appearance of a primitive displayed on a workstation
is determined by its parameters and by additional data termed aspects.
The values of aspects are determined by attributes. Aspects fall into two
categories: pgeometric and non-geometric. Geometric aspects control the
shape or size of a primitive, for example the height of a text primitive.
Each geometric aspect is controlled by a single geometric attribute.
Geometric attributes are specified in world coordinates, are set modally
and are subject to the normalization and workstation transformations.
A primitive has the same geometric aspect values on all the workstations
on which it is displayed. Only the text and fill area primitives in fact
have geometric aspects.

Non-geometric aspects control facets of the appearance of a primitive
which are not related to its shape or size, for example the linetype
(solid, dotted etc) with which a polyline is displayed. The values of
non-geometric aspects may be controlled in one of two ways: bundled
specification - there is one attribute per output primitive which controls



the values of all the non-geometric aspects; individual specification -
there is one attribute for each non-geometric aspect.

The polyline primitive will be used as an example. In the bundled scheme,
the values of all the polyline aspects are determined by the value of the
polyline index. A polyline index defines a position in a table, the
polyline bundle table. Each entry in this table is termed a bundle and
specifies values for all the non-geometric aspects of a polyline. The
bundle corresponding to a particular polyline index is termed the
representation of the index. When a polyline is created, the current
value of the polyline index is bound to it and cannot subsequently be
changed.

In Figure 4, the picture in NDC space has the various polylines making up
the picture identified by their polyline index value. The duck has the
same polyline index value (1) as the outline of the house. The tree has
the same index value (2) as the upper window. This effectively defines
that in the virtual world the duck and house outline will look the same
but they can be differentiated from the tree, upper window and also door
(polyline index value 3).

The important point about bundle tables is that each workstation has its
own bundle tables and so a polyline in the virtual picture may be
displayed with different representations (ie different bundles
corresponding to the same polyline index) on each of the workstations on
which it is displayed.

For example, the duck, which has a polyline index attribute equal to 1,
can be represented on workstation 1l by green solid 1lines while
workstation 2, if it is a monochrome device has the ability to define it
as a thick dotted line.

This is a powerful tool for achieving application program portability
between different workstation environments. If carefully constructed,
moving a program to a different environment will merely mean defining new
representations for the different indices used in the picture, to employ
in the best way possible, the characteristics of the workstations in the
new environment.

In the individual scheme the values of the polyline aspects will be the
same on all the workstations on which the polyline is displayed and each
workstation must do the best it can to display the polyline with the
requested aspect values.

The bundled scheme is important then when it is necessary to ensure that
primitives with different attributes can be differentiated on different
workstations; whilst the individual scheme is important when primitives
with specific attributes are to be represented on each workstation as
closely as possible to the specification.
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3.5 Input

One of the areas which was considerably refined during the GKS review
process was the model of graphical input. Just as output was defined in
terms of device independent primitives and attributes, the aim was to
specify a set of virtual input devices on to which real input devices
could be mapped.

All input devices in GKS were formalised as having a measure and a
trigger. The measure describes the type of input value returned by the
device (position, value, text etc) while the trigger causes the measure
value to be returned to the application program in certain styles of
input.

Six logical input devices are defined in GKS each delivering measures as
follows:

LOCATOR : a position in world coordinates and the associated
normalization transformation number used to convert back from
device coordinates via NDC to world coordinates.

STROKE : similar to LOCATOR but delivering a complete sequence of world
coordinate positions.

VALUATOR : a real number.
CHOICE : an integer representing a selection from a set of choices.

PICK : the name of a selected segment and an identifier indicating
which set of primitives in the segment has been picked.

STRING : a string of characters.

A GKS implementation supporting input must provide a simulation of each
logical input type to the operator. They need not all be on one
workstation if he has several workstations under his control.

The three operating modes in which GKS input devices may be set to provide
input are:

REQUEST : rather like a FORTRAN READ. A request 1is made by the
application program for a measure of the specified device to
be returned. GKS will wait until the operator has set the
measure to the desired value and activated the trigger. The
measure value is returned to the application program which
then continues executing.

SAMPLE : the measure is continually updated and GKS returns the current
value of the measure whenever the application program requests
it. For SAMPLE input, the trigger is not required.

EVENT : a number of input devices may be active together. Each time
the trigger for a particular device is activated, the current
measure value is added to a single queue of input events for
all the devices in use in EVENT mode.

3§



The application program can interrogate the queue acting on
the events that have taken place. It is possible to couple
more than one input device to the same trigger so that
multiple events at the same time are possible.

The local installation decides how the real input devices are modelled to
provide the necessary logical input devices.

A major difference from many interactive graphics systems is that all
logical input devices can be used in all three operating modes.

3.6 Sepgments

The segment model in GKS is 1less innovative than some parts of the
standard. Associated with each workstation is a segment store in which
segments consisting of sets of GKS commands can be stored. Functions
exist to create, delete, rename and manipulate segments. Associated with
each segment are a set of attributes which control visibility,
highlighting, priority ordering for output when segments are overlayed and
detectability from a pick device. It 1is also possible to transform
segments such that the picture defined by the segment can be scaled,
moved, rotated etc.

As well as the segment store associated with the workstation, there is
also a workstation independent segment storage (WISS) which is used as a
central library. Segments can be moved from WISS to a workstation.
A macro facility is also provided so that segments in WISS can be inserted
into other segments.

3.7 Levels

Rather than insist that all facilities in GKS are supported by every
implementation, GKS is defined as a set of levels on two orthogonal axes:

0 : simple output

1 : output including segments

2 : full output including all the facilities for inserting
segments from WISS into the current segment

a : no input

b : REQUEST input only

c : all forms of input

There are, therefore, 9 levels in total with Oa the simplest and 2c¢ the
most comprehensive.

3.8 Summary

GKS is the first international standard. Its major limitation is that it
is a 2D standard. In compensation, its attribute and input models are
much better than those previously used. Its coordinate systems provide a
greater level of flexibility and device independence than most earlier
systems.
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3.9 GKS Implementations

The two early implementations of GKS which are still widely available are
GKSGRAL which derives from the version implemented at the Technical
University of Darmstadt and the joint ICL-Rutherford Appleton Laboratory
implementation which is widely used in the UK university environment.

Since these early implementations, there have been a number of additional
ones falling into three classes:

(1) Device Manufacturers: these implementations are oriented towards the

hardware of the particular manufacturer although the host package is
usually portable.

(2) Host Manufacturers: implementations by a mainframe manufacturer for

his range of systems hopefully with a good coverage of popular
devices.

(3) Software Houses: these are products aimed at being sold to other
organisations for their products (either device or host).

The following table 1lists some of the implementations that we have
knowledge of with details where known. The information is not complete
and absence of particular points does not necessarily imply that the
implementation does not have that facility (only that we are unaware of
it). Apgain the list of hosts and devices supported is not complete. The

intention is to give a flavour of the extent to which it has been made
generally available.

13



Company Level|Language | Hosts Devices |Metafile|GDPs Comments
Binding
(* under
devlmt)
(1
Rutherford 1b | FORTRAN PRIME Tektronix |GKSM Well established
Appleton/ going VAX Sigma implementation
ICL, UK to IBM Benson compatible with
2b GEC Calcomp the standard.
PYRAMID
UNIX
ICL2900
PERQ
(2)
GTS-GRAL 2c |FORTRAN APOLLO Benson GKSM Circle | Fast implementa-
Darmstadt, C* vax Calcomp |and Arc tion with good
W.Germany Pascal* PRIME DEC user Bezier | characteristics.
ADA% IBM Genisco |Defined |[Cubic Several packages
GIXI in USA SUN IBM available on top.
HONEYWELL |Ramtek
UNIVAC Tektronix
Versatec
(3)
NOVA Graphics | 2b |FORTRAN IBM Tektronix Distributed
Austin, Texas Pascal VAX Ramtek implementation
c UNIX IBM allowing part
ADA CRAY HP in workstation
IBM PC  |Sigma
Seiko
(4)
Centre for 2c |FORTRAN Various |Tektronix|GKSM Widely available.
Mathematics c AED Frequently sold
and Versatec by other
Informatics Ramtek companies under
(CWI) IBM their name.
Amsterdam
(5)
Tektronix Ltd | 2b {FORTRAN VAX Tektronix |[Non None Contains non-
IBM Skeleton |Standard standard routines
UNIX Driver to handle
GEC GKSM at Tektronix input.
next
release
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Company Level|Language | Hosts Devices |Metafile|GDPs Comments
Binding
=
(6)
CEEGEN Corp 2b | FORTRAN Pyramid | Tektronix Circle |Graphics
Los Gatos, VAX Epson Arcs Modelling System
Calif, USA Silicon |[Matrox Ellipses|on top of GKS
Graphics | Strobe Bezier
UNIX
Honeywell
IBM
L)
Whitechapel 2b | FORTRAN White- GKSM Based on
Ltd, UK Pascal chapel Mel Slater’s
c MG-1 QMC
Implementation
(8)
Prior Data 2b |cC UNIX Tektronix |GKSM Circle [Non-standard
Sciences Ltd VAX Versatec functions for
Ottawa, Ridge IBM deactivating
Ontario IBM PC HP segments have
Epson been added
Adage
AED
(9)
Precision 2b |FORTRAN IBM Various |GKSM Rich
Visuals VAX (80 in implementation,
Boulder, UNIX all) many linestyles
Colorado fonts etc
(10)
Dataplotting | 2b | FORTRAN VAX Various |GKSM Curve Interfaces to
Services Inc Pascal PRIME Arc Calcomp and
C CcDC Circle |PLOT10 packages.
IBM
INTEL
UNIX
Siemens
(11)
Ramtek 2b | FORTRAN VAX Ramtek
Norsk 2020-
Data 4220
Perkin firmware
Elmer support

15




Company Level|Language | Hosts Devices {Metafile|GDPs Comments
Binding
F?IZ)
Visual Pyramid
Engineering
San Jose
(13)
Advanced 2c | FORTRAN Various |Various
Technology C
Centre,
Culver City,
California
(14)
TEMPLATE 2b | FORTRAN Various |Megatek
(Megatek)
San Diego
(Derived from
NOVA-GKS)
(15)
UNIRAS 2b | FORTRAN CcDC Benson Many application
Burlington, Siemens |Calcomp packages built
Mass IBM Tektronix on top
and Free DEC Ramtek
University PRIME HP
Berlin UNIVAC Sigma
HARRIS Grinnell
DEC
DScan
Lexidata
Jupiter
(16)
DEC 0Ob | FORTRAN DEC DEC
(17)
Data 2b |FORTRAN Data Data
General General |General
(18)
IBM/ FORTRAN IBM PC IEM PC
Graphic C
Software Basic
Systems
(19)
Infolytica, mb | FORTRAN Various |Tektronix CAD System being
Montreal built on top.
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Company Level| Language | Hosts Devices |Metafile|GDPs Comments
Binding

(20)

AED-GKS, 2c FORTRAN vVaxX Tektronix

Bonn UNIX Mepgatek
GOULD Ramtek
UNIVAC Calcomp

(21)

CMC, 2b | FORTRAN VAX Tektronix

Bombay Plotters

(22)

SYSGRAPH, 2b FORTRAN VAX Tektronix

Vienna PRIME Calcomp
UNIX DEC
CDC HP
Siemens |Westward

(23)

Systen la |FORTRAN UNIX Westward

Simulation Megatek

Ltd, Calcomp

London HP

(24)

XGKS, 2b | FORTRAN UNIX Tektronix

Hungary DEC Calcomp

DEC

(25)

Harris ? Ada Harris

(26)

Queen Mary’'s | 2b | FORTRAN Several

College

London

i




4, GKS-3D

4.1 Introduction

This seeks to extend GKS to 3D by adding various capabilities, as can be
seen from the scope given in the Draft Proposal:

(a) the definition and the display of 3D graphical primitives;

(b) mechanisms to control viewing transformations and associated
parameters;

(c) mechanisms to control the appearance of primitives including
optional support for hidden 1line and/or hidden surface
elimination but excluding light source, shading and shadow
computation;

(d) mechanisms to obtain 3D input.

The aim is to specify the system in such a way that existing (2D) GKS
programs would run without any modifications and that the general style
of capabilities provided would match those included in GKS.

To achieve compatibility between GKS and GKS-3D, existing GKS 2D
functions are still provided in GKS-3D but, conceptually, have a Z=0
coordinate added to every position. As a result, existing GKS output
sits on the Z=0 plane. The default viewing transformations provided
will produce a parallel projection on to the same part of the

workstation display screen as if the output had come from a GKS 2D
system.

4,2 Output Primitives

GKS-3D has seven output primitives. Six of these correspond to the GKS
primitives, the seventh is fill area set which displays a set of
polygonal areas (this is particularly convenient for specifying areas
with holes or disjoint areas that are to be treated as a single entity).
This primitive was added because it was felt that in a 3D environment
rendering may be needed across a set of areas.

Text, fill area, fill area set and cell array are planar primitives in
arbitrary planes. Planar primitives have an obverse and a reverse side
(and zero thickness), determined uniquely from the parameters and
aspects of the primitives. Characters of the text primitive and
patterns of the area primitives are generated on the obverse. Viewing
the reverse displays a mirror image of the obverse. )
GKS-3D provides both 3D and 2D functions to generate instances of the
primitives. The 3D functions accept 3D coordinate data whereas the 2D
functions only accept 2D data and generate primitives in the Z=0 plane
(in world coordinate space).

The appearance of fill area set primitives is determined by the fill
area aspects and by a new set of aspects controlling the appearance of
the edges of the primitive. An edge bundle table has been introduced
with corresponding bundled and individual attributes.,
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4.3 Viewing

The Viewing Pipeline in GKS-3D is given in Figure 7. Similar to GKS, a
transformation exists to change the user defined world coordinates into
a consistent Normalised Device Coordinates for internal use within
GKS-3D. The next operation in the pipeline is to view the NDC picture.
For most workstations viewing consists of projecting the 3D image on to
a 2D projection plane. Functions are provided to assist with the
definition of this viewing operation. There is a change in coordinates
from Normalised Device Coordinates (NDC3) to Viewing Coordinates by
defining a View Reference Point and a set of axes associated with it.
The intention is that this point has some relationship to the object to
be viewed and makes the setting up of the projection transformation that
much easier.

Once the Viewing Coordinates are established, Front and Back Planes are
defined which specify the 1limits of the object to be viewed.
A Projection Reference Point can be specified and a Projection Plane
which allows the object to be viewed by projecting it onto the
projection plane. The View Window specifies that part of the projection
plane to be output to the workstation. Both parallel and perspective
projections are provided.

For some workstations, capable of providing 3D geometric transformations
and for genuine 3D devices, the viewing operation specified by the
functions provided may not be appropriate. Therefore, it is possible

for applications to construct their own viewing pipeline or ignore parts
of it.

4.4 Multiple Views and Hidden Surface Calculations

Each primitive in GKS-3D has a View Index associated with it which
defines which viewing transformation is to apply to it on a particular
workstation.

It was believed that, unlike GKS, there is a need for more than one view
to be available at a time on a workstation. This would, for example,
allow titles to be output using a parallel projection while a 3D object
to which the titles are associated is output using a perspective
transformation.

Support for Hidden Line and Hidden Surface calculations is provided at
the workstation level. Associated with primitives is an attribute
defining which method of rendering is to be used on the workstation.
The workstation can be asked to render or not and it has flexibility in
how it does the rendering. Consequently, a variety of workstations can
choose the most appropriate methods depending on their hardware
characteristics.
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B)e PHIGS

5.1 Introduction

A major problem with GKS-3D is that it does not cater for the most
sophisticated end of the device market nor does it adequately handle the
application where there is a need to make rapid changes to the complex
hierarchical pictures often found in some areas of CAD.

The problem is not so much with the primitive definitions, attribute
models or viewing transformations but with the segmentation facility which
does not allow the application database and graphical picture structure to
be closely integrated. 1In fact, the one-level segmentation facility in
GKS forces any hierarchical filestore to be built on top within the
application program. However, by doing this, it makes it almost
impossible to wuse hierarchical segmentation facilities if they are
available in the device.

The solution, in terms of standardisation activities, has been to extend
GKS in two different directions. The first is GKS-3D and the second is
the Programmers Hierarchical Interactive Graphics System (PHIGS).

5.2 Main Features

The primitives and attributes in PHIGS closely follow those in GKS-2D and
GKS-3D. The viewing models in GKS-3D and PHIGS are also very close. The
one major difference between PHIGS and GKS is that in PHIGS the creation
and display of a picture are very explicitly independent phases. (It is
worth noting that PHIGS and GKS are not as far apart as it might at first
appear, though this point cannot be developed here.)

At the heart of PHIGS is a single structure store. A structure consists
of a number of structure elements which can be both graphical and
non-graphical. Thus it is possible to keep application data associated
with graphics in the same database. The PHIGS structure store replaces
the GKS segmentation facility, though the two do not occur at the same
point in the viewing pipeline.

Structures are not displayed on workstations until they are posted to
workstations. Posting a structure to a workstation causes the structure
to be traversed, generating graphical output for display on the
workstation. Structure elements representing application data are ignored
by traversal. Once a structure has been posted, changes made to the
structure are reflected on the workstation until the structure is
unposted. Unposting a structure does not cause it to be removed from the
central structure store.

Particular features of the structure facility are:

(1) Hierarchy: structures can call other substructures and the same
substructure may be called more than once from a higher level. Thus

a car may need only a single wheel substructure which is called four
times.

(2) Modelling Coordinates: structure elements contain positional
information in modelling coordinates. Each structure has a global
and local modelling transformation which are concatenated to produce
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the transformation to be applied to points to turn the modelling
coordinates into the coordinates to be passed to the viewing
pipeline.

(3) Inheritance: substructures inherit attributes from the calling
structure. Thus, the global modelling transformation is the one
passed in by the calling structure. Similarly, attributes such as
colour can be passed to the substructure.

On completion of traversing a structure, control reverts to the
higher structure that called it and the attributes are reset to those
in force on entry to the substructure. Thus the substructure can
have no effect on the calling structure.

(4) Editing: 1labels can be placed in structures and there is a structure
element pointer. Consequently, it is possible to move around a
structure and edit it after initial creation. This is unlike GKS
segments which cannot be changed once the segment is created.

For high quality displays, it is possible for structure traversal to
be done by the hardware in the workstation allowing fast graphical

movement of complex pictures in 3 dimensions.

5.3 Implementations of GKS-3D and PHIGS

Only two implementations of GKS-3D are éommercially available at the time
of writing (as far as we know):

(1) GKSGRAL-3D: this is available from GTS-GRAL in Darmstadt. It is
upward compatible with the company’s GKSGRAL 2D system. The
implementation does include optional modules to support hidden
line/hidden surface calculations. Only a FORTRAN binding is
available. The system runs on a range of hardware from PCs to host
mainframes. The current implementation is to Level 2b. A number of
drivers are available for standard terminals.

(2) CMC: CMC Ltd of Bombay, India have a GKS-3D implementation which in
the UK is being sold through device manufacturers. The product has a
FORTRAN binding which predates the ISO DP and the company has
indicated that it will change the FORTRAN binding to agree with the
ISO one when it becomes stable.

With the current early stage of PHIGS in the standardisation process, it
is too early to talk about commercially available implementations.
However, a pilot implementation has been produced by IBM and Rensselaer
Polytechnic Institute. Details of this implementation are given in [8].

A number of manufacturers have indicated that their existing computer
graphics software is PHIGS compatible (for example, Apollo and Megatek).
We have been unable to assess these products to see how closely they
coincide with the PHIGS ISO working draft. As the Apollo one is based on
their current graphics system which has significant differences from
PHIGS, it is unlikely that full compatibility can be achieved either with
the current working draft or the future standard.
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6. LANGUAGE BINDINGS

6.1 Introduction

In the early days of ISO work on graphics standards, it was realised that
the different languages from which people used graphics made it necessary
to define the functional specification in a way that was independent of
any one language. For this reason, the GKS document does not specify the
interface from FORTRAN, Pascal, or any other language. Instead, a
separate ISO standardisation activity has been set up to cover all the
language bindings for GKS, GKS-3D and PHIGS.

The status of the various language bindings in progress is given in
section 9.

6.2 FORTRAN

The language binding gives FORTRAN representations of the data types of
GKS and FORTRAN subroutine names for the GKS functions. In most cases,
there is a one to one correspondence between the functions of GKS and
FORTRAN subroutines. The exceptions to this will be discussed shortly.

The GKS functional description uses very long function names. In the GKS
FORTRAN language binding these function names are mapped to subroutine
names which all begin with the letter ’'G’, thus leaving only 5 characters
in which to encode the rest of the name. After much discussion a complex
algorithm was devised which ensures that the mapping of names is
consistent. The algorithm is documented in the language binding.

In general, the order of GKS function parameters is preserved in the order
of subroutine parameters, though it is sometimes necessary to insert extra
parameters into the normal sequence, for example the lengths of arrays for
output parameters.

Some of the data type mappings are worthy of comment. GKS uses a data
type ’'point’ to describe points represented by (x, y) coordinates, and
lists of points to describe the parameters of the polyline, polymarker and
fill area primitives. Lists of points in the FORTRAN language binding are
represented as a pair of arrays containing x and y coordinates
respectively. This allows a natural extension to GKS-3D where points in
3-space are represented by three one dimensional arrays.

Character strings are represented by the CHARACTER*(*) data type.

The GKS cell array function requires an array of colour index values as
one of its arguments. The FORTRAN language binding allows this array to
be specified as a slice of a larger array. The relevant parameters to the
subroutine are:

INTEGER DIMX, DIMY the dimensions of COLIA which contains the
cell array

INTEGER SX, SY indices of start column, start row

INTEGER DX, DY number of columns, number of rows

INTEGER COLIA(DIMX, DIMY) colour index array

The way this works is shown in Figure 8.
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Figure 8

The GKS enumeration types (for example NOCLIP, CLIP) are mapped to FORTRAN
integers. A method for mapping the enumeration types to variable names is

also given. It is expected that the enumeration types would be defined in
PARAMETER or DATA statements.

The convention that GKS functions correspond one for one with FORTRAN
subroutines is not followed for certain inquiry functions, in particular
functions which return a list of values of variable length and functions
which return large amounts of information of heterogeneous types.

An example of the first type of function is INQUIRE SET OF SEGMENT NAMES
IN USE. The corresponding function in the language binding is:

SUBROUTINE GQSGUS(N, ERRIND, OL, SGNA)

Input parameters
INTEGER N set member required

Output parameters
INTEGER ERRIND error indicator
INTEGER OL number of segment names
INTEGER SGNA Nth member of set of segment names in use

An example of a function returning a large amount of heterogeneous data is
the function INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES. This is broken
down in the FORTRAN binding into one subroutine per individual attribute.
Only inquiry functions are bound in this way.

The ISO FORTRAN standard also defines a subset of the language. In order
to accommodate the subset in the binding, some alternative bindings have
to be given. Subroutines that have arguments of type CHARACTER*(*) have
alternative definitions for the subset that include fixed length character
strings, CHARACTER*80 and in some cases an additional parameter, the
number of characters in the string.

24



A full FORTRAN implementation must also provide the subset subroutines,
and so an application written for the subset language binding will also
run on a full implementation.

6.3 Pascal

The Pascal binding follows similar principles to the FORTRAN binding. GKS
functions are mapped to Pascal procedures.

The naming restrictions in Pascal are not so severe as those in FORTRAN.
Abbreviations of long names is still necessary, however, and a common list
of abbreviations was drawn up. This list is also used in other language
bindings, for example Ada, to minimise divergence between bindings.

Lists of points in the Pascal binding are represented by the data type:

type GRpoint = record
X, y: REAL
end

array [min..max : INTEGER] of GRpoint
The GKS enumeration types are represented by Pascal enumerated types.

GKS functions which are actually variants of one underlying function (for
example, SET POLYLINE REPRESENTATION, SET POLYMARKER REPRESENTATION ...)
are grouped together in a single Pascal procedure, for example:

GSetPrimRep(Polyline, WSid, 2, rep)

An enumerated type is used to select the required GKS function. In this
example a representation is set for polyline index 2 on workstation WSid,
using the values in the record 'rep’. This device considerably reduces
the number of procedures that a programmer has to know about.

The ISO Pascal standard defines two levels of Pascal, 1 and 0. In level 1
Pascal, it is possible to pass arrays of different lengths on different
calls to the same procedure. In Pascal level 0, procedures only accept
arrays of a declared fixed size. ANSI Pascal is equivalent to ISO Pascal
level 0. In consequence, additional procedures and data types have been
defined for level O Pascal. These procedures and data types are also
available in level 1 Pascal.

6.4 Ada

The proposed Ada binding follows similar principles to the Pascal binding.
The binding defines an Ada package called GKS. Procedure names are
prefixed by GKS, for example GKS.Polyline, unless a ‘with’ statement is
used.

Ada includes multi-tasking. The Ada binding allows an implementation to
refuse access from multiple tasks, but also allows the implementation to
permit such access so long as concurrent access to GKS functions does not
take place.
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6.5 ¢

There is currently no standardised version of the C language, and under
ISO rules it is only possible to standardise a language binding for
languages which are defined in '‘referenceable documents’. In practice
this means languages defined as ISO or mnational standards. An ANSI
standard for C is under development and when this is completed, formal
work in ISO to standardise a C binding can commence. This will be based
on work within ANSI on a C binding.

6.6 Future Bindings

One very important decision has been made. Bindings for future graphics
standards will be based on the GKS bindings. This means that once the
major problems have been resolved for a language binding of GKS, the same
solutions will be used in subsequent bindings. A common set of guidelines
for language bindings has been produced as a result of some 4 years hard
work. Language bindings are by no means as trivial as they might at first
sight appear.

s GRAPHICS INTERCHANGE

7.1 Introduction

GKS provides a standard for graphics in two dimensions (both input and
output). The philosophy in GKS is that the operations requested by the
application are for almost immediate action. The segmentation facility
provides an on-line method of storage of transient graphical information
but is not designed for long-term storage between sessions. Once the
workstation is closed, the segment store ceases to exist.

GKS recognised the need for storage of graphical information between
sessions and initially included within it a GKS Metafile facility as part
of the standard which allowed an audit trail of GKS commands (used to
create and manipulate pictures) to be stored and later retrieved and
executed.

Once it became clear that there was likely to be more than one graphics
standard at the functional level and all would have a need for long term
storage and retrieval, it was decided to separate out the metafile
function as a separate standard. That standard activity is the Computer
Graphics Metafile (CGM).

The final GKS standard retains a set of functions for reading and writing
metafiles. The intention is that these functions could be used to read
and write CGM metafiles. However, there is also a need to provide more
specific metafile facilities specifically for the GKS environment. GKS
provides an Annex to the standard where a protocol is defined for
communication in the GKS environment. This protocol will provide an audit
trail as described above. The Annex is not an intrinsic part of the
standard but, if present, will allow communication between GKS systems or
long-term storage and auditing within a GKS system. It has greater
functionality than CGM in the area of segmentation. The GKS metafile, for
example, can be used to store a set of segments. A later use of GKS could
read in these predefined segments. On the other hand, CGM is much more a
facility for picture storage.
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The GKS metafile looks very much like a workstation. Once the special
workstation defined as a metafile is opened, any graphical commands obeyed
are stored in the metafile. This continues until the metafile is closed.
This similarity between a workstation and metafile implies that there is a
close relationship between the protocol used to define the metafile and
that required to define the interface between GKS and the virtual device.
As shown in Figure 2, the standards activity to provide an interface to
the graphical device is CGI, the Computer Graphics Interface. 1In this
section, we will show the inter-relationship between CGM and CGI.

7.2 Computer Graphics Metafile - CGM

The Computer Graphics Metafile (CGM) is a file of more or less device
independent graphics orders. It provides a standard for:

(1) Retaining and transporting graphical data defined as pictures.

(2) A data interface for graphics packages.

(3) A picture transfer mechanism between different devices, installations
and systems. '

CGM is defined as being compatible with GKS but allows a wider range of
functionality so that it can be used for interchange of graphical
information in a wider context than just GKS. A key element in the
philosophy is that the process creating the information in the CGM can be
separated in time and space from the process using it. Thus CGM could be
used to generate a magnetic tape to be read at a remote installation many

weeks later using a different type of graphics system from the one that
generated it.

The elements making up the CGM are broadly split into seven classes:
(1) Description Elements: these elements specify the version of the CGM

used in defining the file and information concerning the capabilities
of the process needed to read the CGM.

(2) Control Elements: these elements define the size and orientation of
the space in which the CGM is defined.

(3) Picture Descriptor Elements: the CGM provides more flexibility in
some areas than GKS. For example, line width in GKS is specified by
giving the width of the line as a factor of the standard line width
on the specified device. The CGM allows as an alternative the width
to be specified in virtual device coordinates. The descriptor
elements declare the modes in use for this particular CGM.

(4) Graphical Elements: these describe the visual components of the
picture being transferred. They include the GKS output primitives as
a subset but also include elements for the efficient transfer of
circles and arcs.

(5) Attribute Elements: these specify the attributes of graphical
. elements and are equivalent to the GKS attribute model.

(6) Escape Elements: these describe device or system dependent elements
where no constraint is placed on the contents.
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(7) External Elements: these elements are used to include relevant
messages and application data not directly related to the graphical
image of the picture.

The CGM is effectively transporting a virtual picture and, consequently,
defines all picture elements in Virtual Device Coordinates which are
closely coupled to Normalised Device Coordinates.

The CGM description includes the coding of how the information is
formatted. The CGM standard document now consists of four parts. The
first contains the functional specification of any conforming metafile.
The other three parts contain specifications of three methods of encoding,
each with its own particular goal:

(1) Character Encoding: this is intended for use where it is important
to minimise the size of the metafile; where necessary, this is
regarded as more important than processing speed. This encoding
makes it suitable for transmission through ‘ASCII' networks.

(2) Binary Encoding: this encoding aims to minimise the processor effort
required to generate and/or interpret the metafile. It is therefore
highly suitable for storage and retrieval of graphical data within a
computer system.

(3) Clear Text Encoding: this encoding is aimed at the requirement of
having a metafile that can be read and edited by people. It is also
very safe to transport, even between systems with different native
character sets.

In addition, the document allows private encodings as long as they conform
to the Functional Description and general rules of conformance in Part 1.
An example of this would be a binary encoding using word lengths or
representations other than those specified in Part 3.

7.3 Computer Graphics Interface - CGI

There is a close affinity between the CGM standard and the Computer
Graphics Interface (CGI) standard. This is not surprising as both are
seeking to describe pictures by a linear sequence of commands.

The CGI defines the interface between the device independent and device
dependent parts of a graphics package. Unlike the CGM standard which
defines the output from a graphics package for transmission or storage,
the CGI standard must handle both output and input and it is assumed that
the device is on-line and capable of supporting dynamic interactive
graphics.

The CGI has to support a whole range of terminals from simple plotters to
high powered interactive terminals. To do this in a sensible way,
physical devices are required to support a minimum set of functions such
as line drawing and may support, but are not required to, a richer set of
functions including functions such as arc and circle generation.

The device driver on the device side of the CGI will generate the
necessary device codes for the required functions and will either emulate
the non-required functions in terms of the required ones if the device
does not support them or uses the device functions if it does.
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The CGI supports segmentation and input while the CGM does not.
Consequently, the set of elements defined in the CGM is augmented by input
elements and the picture description elements including segmentation. The
CGI, however, is not a superset of the CGM as the Descriptor Elements are
not provided in the CGI. Instead, interrogation of the device by the
graphics system establishes the attributes of a device prior to a session
starting.

At this point in time, there is also a major difference in that the CGI
contains a set of commands specific to the control of raster devices. As
well as cell array, CGI also includes a more device dependent primitive
called pixel array which performs functions on the actual physical pixels
of the device. The BITBLT operation is provided for moving, copying and
constructing bit maps.

The CGI includes a very large and complex set of functions (the current
document is 536 pages long). Many of the functions are inappropriate for
many devices. Consequently, the proposal is structured in terms of option
sets which provide access to a particular facility (for example, colour
and segmentation are two option sets). There are currently 7 option sets.
The intention is that particular device classes will correspond to some
subset of the option sets.

7.4 IGES

7.4.1 Background

IGES stands for 'Initial Graphics Exchange Specification’. It is a
standard for the transfer of CAD/CAM information. IGES is thus a standard
for the exchange of application data in contrast to CGM which is a
standard for the exchange of graphical data. The two standards thus
address very different requirements. i

IGES was developed 1initially as a format for the transmission of
representations of 2D engineering drawings between dissimilar CAD/CAM
systms, motivated by a very real practical problem being faced by many
large companies. However, since the development of IGES started, there
have been important changes in the way engineering parts are represented
by CAD/CAM systems. 2D draughting systems have given way to 3D wireframe
systems, including the capability for defining complex free-form surfaces.
The emerging generation of CAD/CAM systems are based on solid modellers.
The concern now is with complete product models, which will contain not
only the geometry of the part, but also a great deal of other information,
for example manufacturing information. IGES is evolving into a standard
for product definition data exchange.

The development of IGES started in the US in the late 1970’'s under the
auspices of the National Bureau of Standards. The first version was based
on a data exchange format developed by Boeing in the late 1960's which was
known to work. The format was finalised in 1980 and became an ANSI
standard in 1981. It 1is 1incorporated in ANSI Y14.26M 'Digital
Representation for Communication of Product Definition Data’. This is
IGES Version 1. Versions 2 (1982) and 3 (1985) incorporate wvarious
improvements, for example better facilities for representing surfaces.
Version 4, under development, is looking at incorporating solid modelling
information.

29



7.4,.2 Overview of IGES

The minimum requirement for a standard for the transmission of product
definition data is that it should be able to transmit geometric data,
annotation and organisational information. IGES treats a product
definition as a file of entities, each of which is represented in an
application-independent format, to and from which the representations of
specific CAD/CAM systems can be mapped. Three types of entity can be
transmitted; geometrical (lines, arcs, spline curves etc used to compose
the model), annotation (dimensions, construction lines, arrows and textual
notes such as appear on an engineering drawing) and structural.

Because of its origins, IGES (and its successors) is based on an 80-column
card image format. A binary format has been introduced more recently
which reduces the data storage requirements of an IGES file by at least
50%.

An IGES file consists of 5 sections.

(1) User comments. This section is meant to provide a human readable
introduction to the file.

(2) Global section. This section contains global information necessary
for interpreting the file, for example the units used in the file,
the characters representing certain delimiter functions.

(3) Directory Entry section. This is effectively a dictionary of all the
entities transmitted in the file.

(4) Parameter Data section. This section contains the data defining each
entity. Pointers link each directory entry with its corresponding
parameter data and vice versa. Pointers are in fact card sequence
numbers!

(5) Terminator card.
An additional Binary information section precedes a binary IGES file.
This contains information concerning precision and the length of each

section following.

7.4.3 The Future of IGES

Initially IGES was slow to gain acceptance, largely because CAD/CAM
vendors were not committed to the concept. Vendors were more keen to see
IGES files translated to their system than the other way round,
consequently preprocessor-translators were often in advance of the
corresponding postprocessors. However, increasing pressure from customers
has lead to major improvements over the last two years. There are some
incompatibility problems which remain, notably in the area of free-form
curves and surfaces.

IGES is being used by a number of large organisations and certainly goes a
good part of the way to solving the problem. There is no better
alternative at this point in time.

The developers of IGES are currently developing a proposal called PDES
(Product Data Exchange Specification) which builds on the IGES experience
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and will be much more forward looking. Two notable influences on the
design of PDES are XBF (Experimental Boundary File, developed by the
international organisation CAM-I, for the transmission of solid modelling
data) and PDDI (Product Definition Data Interface developed under the US
Air Force ICAM program).

The French company Aerospatiale have developed a format called SET
(Systeme d'Echange et de Transfer) which it is claimed gives 5 or 6-fold
improved translation times over IGES.

IS0 technical committee 184 now has a working group in this area
developing a standard called STEP (Standard for Transfer and Exchange of
Product Model Data) which is attempting to merge the above work into one
common approach. This work is unlikely to result in an international
standard before 1990.

8. REGISTRATION

During the evolution of all these standards it has become obvious that it
is not possible to standardise everything at once. 1In particular, there
are a number of graphical elements that can be found in a bewildering
number of varieties. An example would be the set of all ‘'useful’ marker
types. Any one person could probably think of a hundred or more:
a specialist could probably think up a thousand in just his own field.

Rather than delay the standards in progress by trying to get agreement on
extensive lists of such elements for each standard in turn, the documents
now just refer to a single registration mechanism and mandate only a very
small number of such elements. The registration mechanism is being set up
to deal with the standardisation of the following elements initially.

- Generalised Drawing Primitives (GDPs)
- Escapes

- Line types

- Marker types

- Hatch styles

- Text font usage
- Prompt/Echo types
= Error messages

This registration mechanism will, by default, provide for the extension of
each relevant graphics standard in each of these areas. Thus for an extra
marker type, it will define the appearance of the marker, allocate a
marker type number for GKS, do the same for the CGM (including each of the
bindings) and so on for each standard. In some cases, the element will

not be appropriate (for example, Prompt/Echo types are not relevant to the
CGM).

By this means, it is expected that the requirement for extensions to the
standards in these areas will be met - without having to update each
standard - and also that all the standards will stay in step with minimum
effort and confusion.

The US National Bureau of Standards has been approved as the Registration
Authority for the Register of Graphical Items. However, the precise
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procedures to be followed by the Registration Authority are still being
defined.

9. STATUS OF GRAPHICS STANDARDS

Only GKS has so far reached full International Standard status. The
following table gives our best guess (in April 1986) as to when each
project will reach its next stage in the ISO pipeline. By their very
nature, such dates are approximate as they depend on the results of ISO
ballots. Any decision to have a second DP or DIS Ballot will increase the
timescales. As each DP Ballot is out for voting for three months and DIS
Ballots for six months, any second iteration will cause a significant
delay.

Once a project has reached DIS stage, it can be regarded as reasonably
complete and unlikely to change in significant ways. At that stage,
products could be based on the standard proposal with only minor
retrofitting being necessary. On the other hand, if a proposal has only
reached the DP stage, it is quite likely that significant changes will
appear before it reaches DIS status.

From the dates below, it can be seen that GKS and the FORTRAN and Pascal
Bindings are almost complete. GKS-3D and CGM are getting to a stage where
major changes will not occur in the future. It should be stressed that
both CGI and PHIGS are at a very early stage of standardisation and will
inevitably have changes made to them before they become Draft
International Standards.
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Project Ref Doc Status Expected Progress
DP DIS IS
GKS 1507942 Published - - -
15 Aug 1985
GKS Language Bindings
FORTRAN DP8651/1 | DIS Ballot expected - May 86 | Aug 87
Pascal DP8651/2 | DIS Ballot started - Feb 86 |May 87
Feb 1986
ADA DP8651/3 | Second DP Ballot - Oct 86 | 1988
completed
c Working draft in Sep 86?7
circulation
GKS-3D DP8805 Second DP Ballot Sep 86 | 1988
completed
GKS-3D Language Bindings
FORTRAN - Working Draft Jul 86
Pascal - Planned
ADA - Planned
C - Planned
PHIGS SC21 N819 | Working Draft Dec 86 | 1988
PHIGS Language Bindings )
FORTRAN ) Approved as Work 1987
Pascal ) Item
ADA )
CGM
Functional Description |DP8632/1 | DIS Ballot started Feb 86
Character Encoding DP8632/2 | Feb 1986 Z
Binary Encoding DP8632/3 " d
Clear Text Encoding DP8632/4 " a4
CGI SC21/WG2 | Working Draft Dec 86 |1988
N356 Available
The dates given for expected progress are the dates at which the DP and
DIS ballots start. A minimum of 15 months delay is likely between the

start of the DIS ballot and the publication of the IS.
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PROFESSIONAL SEMINAR
COMPUTER GRAPHICS PROGRAMMING
F R A HOPGOOD
D A DUCE

Informatics Division
Rutherford Appleton Laboratory (RAL), UK

1. PRINCIPLES OF COMPUTER GRAPHICS AND THE GRAPHICAL KERNEL SYSTEM

1.1 Introduction

In many areas of computer science, standardisation is an activity which
is aimed at formalising current practice. However, it is often the case
that the act of standardisation reveals flaws in what was assumed to be

a well understood area. This leads to a rethinking and strengthening of
the original methodology.

To a large extent, computer graphics fits this picture. At the start of
the graphics standardisation work, most people believed that the basic
methodology was well understood yet, during the standardisation process,
many changes to the methodology have been accepted.

This section gives an overview of the major concepts which any graphics
system has to embody and discusses how they have been incorporated into
the first ISO standard for computer graphics programming, the Graphical
Kernel System (GKS). Later sections review how these concepts are
addressed by other emerging graphics standards.

1.2 Principles of Computer Graphics

There are a number of fundamental topics that must be addressed by any
computer graphics system. The most important of these are listed below.

(1) Output Primitives. The primary purpose of generative computer
graphics is to generate a picture on the display surface of some
graphics device. Graphical output is defined in terms of basic
building blocks which we will call output primitives. Points,
lines and areas are examples of output primitives which may or may
not be included in any particular graphics system. The questions
facing a graphics standard is what is the fundamental set of output
primitives, and at what level of abstraction are they defined.
Clearly such a set must be rich enough to cover all possible
graphical pictures in the field of application of the standard.

(2) Primitive Aspects. When an output primitive is displayed on a
graphics device it will have a particular appearance, for example
lines may be displayed with a particular colour, and solid or
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(4)

(3

(6)

dotted. Those facets of a primitive which determine its appearance
when displayed are termed the aspects of the primitive. 1In the
example given, colour and linestyle would be aspects. A standard
needs to decide what the aspects should be for each type of output
primitive. The number of aspects recognised governs the
flexibility given to the programmer to control the appearance of
pictures.

Coordinates. It is accepted that the user of a graphics system
should be able to define graphics in a coordinate system relevant
to the application. It 1is e&lso accepted that this coordinate
system is unlikely to be the one specified for the device by the
manufacturer. As a result, there is a need to transform user
coordinates to device coordinates. The problem that arises is what
kinds of user coordinate system should be supported (for example,
cartesian, polar, spherical polar), and how should the mapping to
device coordinates be specified.

Input Primitives. Interactive programs need to be able to accept
graphical and non-graphical input. These data correspond to a
number of different types, for example coordinate positions,
character strings for labelling and values for identifying groups
of primitives. The different types of input data are termed input
primitives. Questions facing a graphics standard include what
kinds of input primitive should be provided, should all input be
handled by the graphics system or just graphical input? Should
graphical and non-graphical input be differentiated?

Input Model. An input model describes how input primitives are
related to physical input devices, the degree of control provided
to the application (for example selection of the way in which input
values are echoed to the device’s operator), and the styles of
interaction available to an application program (for example, can
the operator generate input values asynchronously from the
execution of the program?). What kind of input model should a
graphics standard support?

Device Independence. Most high level standards are defined so that
the user can be isolated from specific characteristics of the
graphics output and input devices being used and can concentrate on
defining graphical output and input in a device independent way.
It might be deemed desirable to be able to move an application from
one device environment to another without having to make major
changes to the program structure. Issues that arise in connection
with device independence include how is the user to be insulated
from the details of device hardware whilst having some degree of
control over the appearance of pictures on devices with differing
capabilites (for example colour and monochrome), how is the
transformation from user to device coordinates to be specified so
that different device coordinate systems can be accommodated? How
can the user retain some degree of control over the mapping from
abstract input and output to physical input and output so that the
devices can be used in an optimal way?




1.3 Principles of GKS

1 Bl Introduction

This section examines how the principles of computer graphics are
realised in the graphical kernel system. Other graphics standards under
development embody these principles in very similar ways. It . s
appropriate to examine GKS first, since GKS is currently the only system
that has been all the way through the standardisation process and has
been approved and published as an International Standard. A full
description of GKS is given in [1,2]. GKS is a 2D graphics system
providing both graphical output and input.

1,532 Qutput Primitives

The output primitives in GKS are abstractions from the output primitives
typically provided by graphical output devices. GKS defines six output
primitives.

(1) polyline: which draws a sequence of connected line segments.

(2) polymarker: which marks a sequence of points with the same symbol.
(3) £ill area: which displays a specified area.

(4) text: which draws a string of characters.

(5) cell array: which displays an image composed of cells with
specified colours or grey scales.

(6) generalized drawing primitive (GDP): a controlled method of adding
more exotic primitives, for example conic arcs and splines.

This choice of primitives calls for some comment.

Many existing graphics packages use the concept of current position. CKS
does not. There are several problems with current position, for example
should there be one current position or should each type of primitive
have its own assoclated current position; what happens to current
position when transformations are changed - there are several answers to
these questions, each of which has 1its merits for particular
applications. GKS therefore did not incorporate this concept, though it
is interesting to note that current position has been introduced in a
controlled way in at least one application oriented layer (see later).

Another notable feature of the GKS output primitives is the absence of
relative coordinates. All coordinate data are absolute. Relative
coordinates were omitted on the grounds that they could be implemented
on top of GKS.

The line drawing primitive in GKS draws a sequence of lines rather than
a single 1line. This choice stems from the observation that many
applications deal in sequences of lines rather than single lines and the
decomposition to single 1lines is rather unnatural, and also the



observation that aspects of polylines such as dotted or broken apply to
the complete polyline rather than individual line segments which is a
more natural view when drawing curves or contours depicted as polylines.

The text primitive is the most complex of the output primitives and
aroused the most discussion during the development of GKS. The
difficulty with text is that text has a variety of functions in graphics
ranging from graphics art quality text which is a part of the picture
(for example writing on the side of a building) to low quality text used
for messages to the operator of an interactive display. The GKS text
primitive attempts to encompass all these varying requirements and
provides a rich set of facilities including support for languages not
written from left to right.

Implementors of GKS might 1like to know of the existence of an
algorithmic description of the text primitive contained in a paper by
Brodlie and Pfaff {3]. They give an algorithm for calculating the
starting position of each character in a text string.

The fill area and cell array primitives are abstractions from the kinds
of primitive typically provided by raster devices. However it is
important to notice that they are abstractions; the primitives are
defined in world coordinates rather than device coordinates, and they
have well-defined meanings for devices other than raster devices.

The GKS output primitives have a rich set of aspects, allowing a high
degree of control over the way primitives are rendered on displays. The
aspects of a polyline primitive for example allow control over the
linetype (solid, dotted etc), linewidth and colour. The mechanisms by
which the values of apsects are determined are‘described shortly.

1383 Coordinate Systems and Device Independence

The GKS concept of a workstation is the key to device independence in
GKS. A workstation consists of zero or one display surfaces and zero or
more input devices plus associated software. The GKS 1idea of a
workstation is an abstraction from physical device hardware.

A major difference from many earlier graphics systems is that GKS allows
more than one workstation to be in use simultaneously. For example, an
operator may be interacting with a design through an interactive
display, whilst taking copies of completed parts of the design on a
plotter.

The GKS viewing pipeline is shown in Figure 1.
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Output primitives are specified in a Cartesian world coordinate system
(WC). Applications requiring other user level coordinate systems, for
example polar or logarithmic coordinates, must first transform these
user coordinates to world coordinates.

Transformation to the coordinate system of the display device is
accomplished in two stages: firstly, world coordinates are transformed
to an intermediate coordinate system called mnormalized device
coordinates (NDC) by a window to viewport mapping termed a normalization
transformation, then a second window to viewport mapping, called the
workstation transformation transforms these coordinates to device
coordinates (DC).

The purpose of the normalization transformation is to facilitate the
composition in NDC space of pictures defined in different WC spaces.
Different device coordinate systems are accommodated in the workstation
transformation. Thus to use an application program with different
devices, it is only necessary to change the workstation transformation.
The composition of the picture in NDC space does not need to be changed.

A major difference from earlier systems is that GKS allows multiple
normalization transformations to be defined at the same time. This leads
to a different style of programming as will be seen later. The GKS
philosophy is that it should be possible for the system to still have
knowledge of all output currently being displayed to the operator or
user,

Figure 1 shows two different objects defined in two different world
coordinate systems, mapped onto specific areas of the NDC space.

The workstation transformation may be set differently for different
workstations, thus allowing different regions of the virtual picture to
be displayed on different workstations as shown in Figure 1. Through the
workstation activation and deactivation mechanism, not all primitives in
the virtual picture need be displayed on all workstations viewing the
picture. This provides a kind of filtering mechanism. A trivial
application might be if one only wanted to display annotation on the
plotter recording the final version of a drawing, rather than on the
interactive workstation on which it is being created.

The aspect ratios of window and viewport may differ in the normalization
transformation, but the workstation transformation maps the workstation
window to the largest possible region of the workstation viewport with
the same aspect ratio. This is illustrated in Figure 2. The philosophy
is that the normalization transformation provides picture composition
while the workstation transformation views the already composed picture.
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L3kl Aspects

The appearance of primitives on the display surface of a workstation is
controlled by their aspects. One of the more innovative parts of GKS is
the mechanism by which the values of aspects are determined. Earlier
graphics packages tended to associate values of aspects directly with
primitives. Thus an application would request that a line be drawn in
red and it was up to the implementation to determine how red lines would
be represented on monochrome devices. The application programmer had no
control over this. A consequence of this was that it was difficult to
move programs from device to device, because the code controlling the
appearance of primitives was typically scattered throughout the program.
It was also difficult to write device independent library routines. The
solution adopted by GKS 1is a table-driven approach. Aspects of a
primitive in GKS belong to two classes:

(1) Global aspects are applicable on all workstations and take the same
value on all workstations on which the primitive is displayed.

(2) VWorkstation dependent aspects may vary from workstation to
workstation so that the same primitive may be displayed quite
differently on different workstationms.

The aspects of each type of primitive are listed below.



Aspects

Primitive
Workstation Dependent Global

Polyline Linetype
Linewidth scale factor None
Polyline colour index

Polymarker Markertype
Marker size scale factor None
Polymarker colour index

Fill area Fill area interior style Pattern reference point
Fill area style index Pattern size
Fill area colour index

| Text Text font and precision Character height

Character expansion factor Character up vector
Character spacing Text path
Text colour index Text alignment

Cell array None None

The values of aspects are controlled by attributes. For global aspects
there is one attribute per aspect.

There are two modes for specifying the workstation dependent aspects of
a primitive, bundled specification and individual specification.

Bundled specification uses a lookup table approach. A single attribute
per primitive, the primitive index, controls the values of all the
workstation dependent aspects of the primitive.

The polyline primitive will be used as an example. The values of all the
aspects of a polyline (linetype, linewidth scale factor and polyline
colour index) are determined by the value of the polyline index
attribute. A polyline index defines a position in a table, the polyline
bundle table. Each entry in this table specifies wvalues for all the
non-geometric aspects of a polyline. Each workstation has its own bundle
tables and so a polyline in the virtual picture may be displayed with
different representations on different workstations.



Bundled specification also provides a convenient mechanism for writing
library routines. This approach has been used to good effect in the NAG
library graphics chapter [4].

GKS does also provide the traditional method of aspect control through
the individual specification mechanism. In this case, there 1is one
attribute for each workstation dependent aspect, and thus each aspect
has the same value on each workstation on which the primitive is
displayed. How each workstation approximates this value is workstation
and implementation dependent.

A set of aspect source flags control the mode of specification of each
aspect. It is possible to have some aspects specified by & bundle and
others individually. The paper by Duce and Fielding [5] looks at these
mechanisms from a formal specification viewpoint.

Bundled specification is important when it is necessary to ensure that
primitives with different attributes can be differentiated on different
workstations; whilst the individual scheme is important when primitives
with specific aspects are to be represented on each workstation as
closely as possible to the specification.

Each workstation has its own colour table. The aspects of primitives
specifying colour (polyline colour index, polymarker colour index etc)
all point into this one colour table. The specification of colour is a
complex subject. GKS uses the RGB colour model (entries in the colour
table define RGB triples). This is an area in which more work is needed
in a standards context.

There is another difference between aspects specified by bundles and
aspects specified individually, which is worth mentioning briefly. The
values of a primitive’s attributes are bound to the primitive when it is
created, and cannot subsequently be altered. Thus the value of the
primitive index associated with a primitive cannot be changed, nor can
the value of, say, the linetype attribute. A direct consequence of this
is that the values of aspects specified individually cannot subsequently
be changed. However bundle table entries can be changed and GKS allows
these changes to affect primitives previously as well as subsequently
displayed. Thus if a polyline bundle table entry is changed, the
workstation is expected to change the aspects of all polylines that use
that entry. The mechanisms controlling this are rather complicated and
in fact the change is only guaranteed for primitives stored in segments.

1345 Graphical Input

A major innovation in GKS is the model of input. The paper by Rosenthal
et al [6] gives a detailed exposition of this model.

The data that can be input to an application program by the operator are
divided into six different types and six classes of logical input device
are defined corresponding to these six data types. Logical input devices
in GKS are characterised by a measure and a trigger. The measure
describes the type and value of the input to be returned to the
application. The trigger is an event, which for certain styles of input,



determines when the measure value is returned to the application
program.

The six logical input data types are:

LOCATOR: a position in world coordinates and the associated number of
the normalizaion transformation used to convert back from
device coordinates via NDC to world coordinates. The
normalization transformation used is that whose viewport
contains the data point. Overlapping viewports are dealt
with by a priority mechanism; viewport priorities are under
the control of the application program.

STROKE: similar to LOCATOR except it represents a sequence of world
coordinate positions rather than a single position.

VALUATOR: a real number in some range.
CHOICE: an integer representing a selection from a set of choices.

PICK: the name of a selected segment and an identifier indicating
which set of primitives in the segment has been picked.

STRING: a character string.

The idea that different parts of the picture can be defined in different
world coordinate systems and input can subsequently be returned to the

application program in the right world coordinate system is a very
powerful feature of GKS.

Logical input devices may operate in one of three modes:

REQUEST: rather 1like FORTRAN READ. A request 1is made by the
application program for a measure to be returned from a
specified device. GKS waits until the operator has set the
measure to the desired value and has activated the trigger.

SAMPLE: the current measure value is returned whenever requested by
the application program. The trigger is not used by SAMPLE
input.

EVENT: a number of input devices may be active together. Each time

the trigger for a particular device is activated, the current
measure value and data identifying the device are added to a
single queue of input events for all the devices used in
event mode. The application program can interrogate the queue
to retrieve the input events. It is possible to couple more
than one input device to the same trigger so that multiple
events can be generated from a single trigger event.

Figure 3 shows the relationship between the measure and trigger for
different operating modes.

10



REQUEST mode

Single value returned to
application program on trigger

firing. Interaction lasts for
single request.

( measure = Jor < trigger )

SAMPLE mode

Trigger inoperative. Value
returned for each call to SAMPLE.

SAMPLE Multiple calls to SAMPLE in
* a single interaction.
C measure C trigger )
EVENT mode Value and device identification

AWAIT EVENT S.eljlt to single queue on trigger
firing and removed by a call
to AWAIT EVENT.

QUEUE
C measure-, j % C trigger )

Note: “ thick arrows represent flow of input data
—— thin arrows represent control

Figure 3
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Some degree of control over logical input devices is provided to the
application program through device initialisation functions. These
enable the program to define the initial value for the device, the
prompt/echo type (for example a locator device may be echoed as a rubber
band line, a tracking cross etc), the area of the display space to be
used for displaying the echo, and further device dependent data.

The implementation decides how the physical devices of a particular
workstation are to be mapped onto logical devices.

The input model of GKS is very rich and enables some sophisticated user
interfaces to be created with the expenditure of 1little effort on the
part of the programmer. The main difficulty with the input functions in
GKS is that much of the richness is implementation dependent in the
sense that it is not mandatory for an implementation to provide it. For
example, menus can be conveniently provided by a CHOICE device, however
it is not mandatory that all implementations supporting a CHOICE device
also support the menu prompt/echo type.

2. CHANGING TO GKS

2.1 Current System

The problems encountered in reprogramming an existing application to run
using GKS clearly will differ depending on the graphics software used in
the original implementation. Consequently, this section has to be a
generalisation from the experience encountered in the UK. The major
systems in use in the UK prior to GKS were GINO-F, GHOST, PLOT10 and, to
a minor extent, GSPC-CORE. Even now, the extent to which existing
applications have been reprogrammed is 1low. Probably the major
community is the image processing community in Astronomy. At the time
when GKS was a Draft Proposal, they were installing a new facility
called STARLINK which comprised a set of networked VAX/VMS systems using
SIGMA ARGS displays for image processing. The community decided to
standardise on GKS and have been early users of the Rutherford Appleton
GKS system.

2.2 Output Primitives

2.2.1 POLYLINE

Probably the main cultural shock when using GKS is the fact that the
basic line primitive is a POLYLINE and there is no Current Position
concept. Using pidgin FORTRAN as a vehicle for explanation, to draw a
sine curve in many of the existing packages would be achieved by
commands of this form:
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MOVE ABS (0,0)

DO 100 J=2,21

X = (J-1)%0.1*PI

LINE ABS (X,SIN(X))
100 CONTINUE

Similarly, a routine for drawing symmetric axes about a given origin
(see Figure 4) might be:

SUBROUTINE AXES (XORIGIN,YORIGIN,DX,DY)
MOVE ABS (XORIGIN-DX,YORIGIN)

LINE REL (2*DX,0)

MOVE REL (-DX,-DY)

LINE REL (0,2*DY)

RETURN

END

Figure 4

In both examples, the code has to be rewritten in terms of POLYLINEs
using only absolute coordinates. The simple change in the first example
would be:

REAL  XA(21),YA(21)

DO 100 J=1,21

XA(J) = (J-1)*0.1%*PI

YA(J) = SIN(XA(J))
100 CONTINUE

POLYLINE (21,XA,YA)

The major changes are that the user needs to define array storage and
the two graphics calls, MOVE ABS and LINE ABS, are replaced by a single
POLYLINE call. 1If the code in the original application is transparent,
this tends not to be a problem. However, older programs may well have
the MOVE ABS away from the loop and there is then a difficulty in
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associating the origin with the rest of the loop. The advantage of the
new code is that it is easier to read, the graphics is more clearly
differentiated from the data definition and aspect setting for the sine
curve as a whole is straightforward. 1In some existing systems, it would
not be possible to produce a dotted line through the sine curve without
major changes to the program. Some systems such as GINO-F recognise the
need for applying the aspect dotted to the complete set of line segments
and provide special facilities which are not particularly attractive
either in concept or programming. A disadvantage may be the mneed to
define data storage for the individual points. Normally this is done
within the package. The attraction of the GKS approach may be that the
user has more control over the size of data arrays used for buffering.
A GKS implementation is, for this reason, likely to be smaller than an
equivalent GINO-F one.

The major educational change 1is to remove the concept of Current
Position. Unfortunately it has been ingrained into the subconscious of
many programmers and it may be difficult to get them to change. The
motivation for the removal of Current Position was the view that it had
dangerous interactions with coordinate changes which were frequently not
understood by programmers. Also, using the same Current Position for
several different primitives often led to bad programming practices.
Consequently, a solution which re-establishes a Current Position and
reverts to the standard line primitive is not recommended. For example,
an early German implementation redefined a Current Position established
by a MOVE ABS routine added on top of GKS. Graphical calls such as LINE
REL or LINE ABS were converted into POLYLINE(2,XA,YA) calls so that
almost all POLYLINE calls were for single line segments. Apart from
being inefficient, it re-establishes the problems that GKS was
attempting to cure. :

The STARLINK implementation adopted a slightly different approach which
allows Current Position in a modified form while not violating the
central GKS philosophy. STARLINK have introduced a set of routines for
putting data into arrays: ‘

(1) BEGIN POLY initialises an array and stores the point specified in
the first array element.

(2) ADD POLY adds another absolute point to the array incrementing the
count of points stored.

(3) OUTPUT POLY outputs a polyline whose length is given by the
previous calls of type (1) and (2).

These routines can only be used for creating polylines and have no
interaction with other primitives. The values stored in the array are
World Coordinate positions and the Current Position is just a useful
concept to reduce the number of parameters to routines without having
any real graphical significance.

The previous example to generate a sine curve would look like:
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BEGIN POLY (0,0)

DO 100 J=2,21

X = (J-1)*%0.1*PI1

ADD POLY (X,SIN(X))
100 CONTINUE

OUTPUT POLY

Notice the similarity with the original coding although the semantics
have changed significantly with the DO loop not generating graphical
output any more.

The second example of the AXES subroutine shows GKS in its worst light.
The equivalent GKS code would be:

SUBROUTINE AXES (XORIGIN,YORIGIN,DX,DY)
REAL XA(2),YA(2)
XA(1l) = XORIGIN-DX
XA(2) = XORIGIN+DX
YA(1) = O

YA(2) = O

POLYLINE (2,XA,YA)
XA(1) =0

XA(2) = 0

YA(1l) = YORIGIN-DY
YA(2) = YORIGIN+DY
POLYLINE (2,XA,YA)
RETURN

END

Variants can be defined which shorten the code somewhat but GKS is not
designed for the production of single line segments. An early survey in
Germany showed that most real applications tended to be dominated by
multi-line output. Consequently, examples such as the AXES routine
should be relatively infrequent in real programs. Some implementations
have added & single line routine on top of GKS when it has been felt to
be appropriate. The danger is that it will be used in the wrong places.

22 L Qutput Primitives - Fill Area, Text

Most of the existing systems have much less control over area fill and
text output than GKS. Consequently, there tends to be an .easier 1-1

mapping from earlier systems when the equivalent facilities are
provided.

In some systems, area fill is not provided. Consequently, if the
facility is used, a considerable amount of existing code may be replaced
by a single call.

2.2.3 Cell Array
The Cell Array primitive has been much criticised in the GKS development

as not providing the facilities needed and not fitting into the GKS
primitive set. However, STARLINK have found [7] that the primitive does
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give them what they need and the ability to define it in World
Coordinates while still controlling its mapping to the display allows
them to overlay contour information easily and efficiently.

One function frequently required by astronomers is to toggle between two
images so that the differences can be identified. STARLINK have
included ESCAPE functions for this purpose.

2.2.4 GDP

Many of the existing implementations do not provide a rich set of
Generalized Drawing Primitives. Those that do have tended to provide
arcs, conics, and various curve fitting routines. There is 1little
standardisation and it is probably wise to clearly identify any use of
such facilities as they are bound to change once some of the more
frequently used examples are registered and assigned specific forms by
the CGKS Registration Authority.

2.3 Coordinates

Most existing systems provide WINDOW/VIEWPORT mapping as a concept
although GINO-F has a more primitive mechanism for converting world
coordinates to device coordinates.

A simple method of reprogramming would be to wuse a single GKS
normalization transformation in place of the existing system. None of
the systems in common use have multiple normalization transformations.
This may not be a sensible approach for several reasons:

(1) Multiple normalization transformations allow you to separate
coordinate specification from their wuse. For static wuse of
multiple coordinate systems, it 1is possible to declare the
coordinate systems in GKS once and for all at the head of the
program. The attraction is that redefinition is no 1longer
necessary, only reselection. As GKS has a number of attributes and
functions whose meaning changes on redefinition of normalization
transformation, using a single normalization transformation and

redefining it may lead to run time inefficiency in a GKS
environment.

(2) Multiple normalization transformations were included to allow
LOCATOR input to be returned to the user in appropriate world
coordinates. Depending on the application, it may be that correct
use of normalization transformations will simplify the input side
of an application.

The mapping from Normalized Device Coordinates (NDC) to Device
Coordinates appears to be a lesser problem. Either the earlier system
had a similar facility or the system went straight from world to device
coordinates. In the latter case, NDC can be treated as the device
coordinates with a default workstation transformation.

GKS provides a wide range of inquiry functions which allow the
application to access information in various internal GKS state tables.
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Precise scaling of output provides a good example of the use of inquiry
functions. For example, an application may require to output to a
plotter a scale drawing at a precise size. Suppose the application
defines the picture in NDC space so that the range O to 0.5 in the x and
y directions correspond to 400 centimetres on the plotter output. If
the application is to be used in a number of different enviromments, it
will be unaware of the sizes of the plotters available or the device
coordinates that they use. The inquiry function:

INQUIRE DISPLAY SPACE SIZE(WSTYP,IND,UNITS,RX,RY,IX,IY)

returns the characteristics of a workstation of type WSTYP. UNITS
indicates whether the device is addressed in metres or not. RX and RY
give the maximum size of the display either in metres, 1if precise
scaling is possible, or the device coordinates used if not. IX and IY
give the display size in terms of addressable positions. To achieve the
desired effect would require:

INQUIRE DISPLAY SPACE SIZE (WSTYP,IND,UNITS,RX,RY,IX,IY)
IF (UNITS .NE. METRES) GOTO 100
IF (MIN(RX,RY) .LT. 0.4) GOTO 100

SET WORKSTATION WINDOW (wWS,0,0.5,0,0.5)
SET WORKSTATION VIEWPORT (WS,0,0.4,0,0.4)
100 ERROR
2.4 Aspects

The richer aspect model of GKS does present a problem in reprogramming
existing applications. Most will have been defined with an attribute
model similar to INDIVIDUAL specification rather than BUNDLED
specification in GKS.

A decision has to be made whether the BUNDLED mode of working which
provides maximum differentiability across a range of workstations is an
asset for the particular application. If it is and the number of
variants in a particular primitive’s aspects is small, a move to BUNDLED
working is appropriate. If it is large (greater than the number of
bundle table entries allowed in the implementation) either a hybrid
scheme or INDIVIDUAL working will still be needed. 1If only one aspect
is being used with many different values, it is possible to define that
as an INDIVIDUAL aspect while leaving the rest bundled.

Each workstation has a number of predefined bundles. It is unlikely
that these will be appropriate for your application. The tendency has
been for implementations to have only one aspect changing in the
predefined bundles. For monochrome displays, the polyline linetype
tends to vary with the other aspects being set to the default value.
For colour displays, the colour changes and the other aspects are set to
the default. Clearly, some thought has to go into the reorganisation
and choice of settings.

GKS does allow more generic library functions to be defined. If aspect
handling is changed significantly, it may be sensible to consider how
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library routines can be used for maximum effect. For example, contour
routines can be defined with bundle table indices being the only
mechanism used for differentiation. The application can then tailor the
use by suitable definition of bundle table entries. Use at RAL and in
the NAG Graphics supplement, has demonstrated that the structure of
library routines can be simplified while retaining or increasing their
flexibility.

2.5 Input

Input is the area where existing systems differ most from GKS. For a
full GKS Level 2c implementation, the GKS input model is sufficiently
rich and flexible that most existing input models can be handled without
too much reprogramming. For example, GINO has different input models
depending on the device and these can now be unified into one.

A problem that does exist is how to map the Tektronix input from tablet
or thumb wheels which delivers both a locator position and a key hit.
The device is a hybrid between a LOCATOR device and a CHOICE device.
A good Level 2c implementation would model this as two devices with a
single trigger, the key hit. Two simultaneous events would be delivered
to the event queue where one gives the locator position and the other
the CHOICE from a set of possible key hits.

For Level b implementations, there is a problem in that only REQUEST
input is available and simultaneous events are not allowed. The
tendency has been for implementations to provide a LOCATOR input device
and an ESCAPE function which provides the key hit that activated the
trigger for the previous event. An alternative approach, which has been
proposed for the RAL implementation, is to regard the thumbwheels as a
1OCATOR device and CHOICE device as above. REQUEST LOCATOR will return
the position and REQUEST CHOICE the key hit, arising from a single
operator event, the LOCATOR and CHOICE measures being held as an
internal state of the devices in GKS. An ESCAPE function will be used
to associate particular LOCATOR and CHOICE devices with the thumbwheels.
The theory is that if an application program written in this way is
moved to an environment which does not support this combination, the
ESCAPE function will fail, but the application will still work, although
the operator would have to input the position and key hit on separate
events. Different implementations have taken different approaches and
care should be taken as to the need to use this facility and how it is
identified in the program. It is one where the user may well have to
modify the application when he changes to a different GKS or when GKS
itself is updated.

A GKS implementation providing good prompt/echo facilities may well do a
number of functions currently handled by the application. At RAL,
several applications have been able to remove significant amounts of
code and replace them by a single input call.

For devices with mouse or tablet input, positioning has often been used
as the mechanism for menu input (pull-down and pop-up menus frequently
use a mixture of mouse button pressing and positioning to define a
CHOICE). In such cases, the GKS implementation should provide CHOICE
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implementations that use the echo area to define the extent of the
pop-up menu, provide echoing via inversion etc. If such devices are in
wide use in your installation, it may well be important to compare the
richness of the input devices provided. They may seriously alter the
amount of work needed in reprogramming.

2.6 Summary

This section has only really touched on the reprogramming problems
likely when moving to GKS. The main points are:

(1) Keep to the GKS philosophy rather than modifying GKS to fit to your
own practice. The reprogramming may be higher but the later
benefits will be well worth it.

(2) Look seriously at the attribute model you need in your area now and
in the future.

(3) A Level 2c implementation may well make it easier to reprogram your
application particularly if it is highly interactive. Failing
that, be careful to assess the sophistication of the standard input
defaults provided by the system. If you use a window manager or

User Interface Management System, GKS may need to be compatible
with it.

The communities that have moved to GKS appear to be satisfied with the
change. However, it should be clear that GKS is a 2D system that is not
designed for highly interactive environments where a close coupling is
required between the application database and the graphies. In such
environments, it may well be worth waiting until an appropriate standard
is provided.

3. GKS IMPLEMENTATIONS AND LANGUAGE BINDINGS

3.1 Implementation Differences

Choosing a GKS product will depend significantly on your current and
future needs. Some points that need to be considered are:

(1) GKS Level: the majority of implementations on the market are
either Level 1b or 2b at the moment. That means that complex
interaction is not possible. There is no SAMPLE and EVENT mode
input. An implementation which has a rich set of echo types may
make the need for these modes less essential. A particularly good
test of an implementation is how it handles Tektronix 4010 input
from a cursor position and key hit. The Level 2b implementation
has to provide some non-standard action to cover this.

The richer the implementation, the larger it will be. Thus if you
are only looking for a minimal graphics package, Level 0a may be
all you need. The ANSI standard defines a Level ma which is even
smaller. For flexbility, a Level 2b implementation should also
allow the user to access it as a Level 0a with reduction in space
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(2)

(3)

(4)

()

(6)

7

and, hopefully, some improvement in speed. Again, implementations
vary as to whether this is possible.

ASF Settings: the default setting of the ASF Flags to INDIVIDUAL
or BUNDLED is a cultural difference between the USA and Europe.
Many USA implementations have the default as INDIVIDUAL while the
European ones favour BUNDLED. This provides a clue to which mode
of working the implementation 1is optimised for. If the
installation only requires one or other mode of working, looking at
the default may help iIn making a decision between two GKS
implementations.

Font Definitions: most of the laser printer output devices now
have a wide range of fonts available. For good previewing of text,
a range of fonts is essential. Again in the presentation graphics
area, multi-font use is frequent. Implementations vary between two
or three fonts being available to 30 or 40.

Language Binding: there are effectively three FORTRAN language
bindings, a FORTRAN 77, a FORTRAN 77 subset and a FORTRAN 66. Some
FORTRAN compilers cannot handle the £ull FORTRAN 77 dialect.
Consequently, the FORTRAN 77 subset has been introduced to ensure
that these compilers can be used. The major problem is whether or
not variable length strings can be defined using CHARACTER*(*).

For other languages, a number of implementations allow Pascal and C
programs to call the FORTRAN binding. You should be aware that
this is non-standard and Pascal programs should use the correct
Pascal binding. The major differences will be in how enumeration
types, lists of points and character strings, are handled. An
implementation which has genuine FORTRAN and Pascal bindings may be
worthwhile if you make use of both languages.

Some C implementations have used features of the C language which
go against the GKS philosophy (for example, amalgamating many
INQUIRIES dinto a single function), but these implementations
predate the ISO working drafts of the C binding.

Minimal Support: GKS insists that a particular level of GKS must
have a minimal 1level of richness. Implementations should be
checked against this criteria. Otherwise, it is feasible that
applications ported from other sites may not work. Table 1 gives
details of minimal support.

Devices: some devices provide the facilities of a GKS workstation
including segment operations. Effective use of these devices may
not be possible with some implementations which have limited
internal workstation interfaces.

Richness: Table 1 gives a minimum set of requirements. GKS
implementations vary considerably in their richness. Particular
areas of concern are the number of workstation types supported,
variety of linetypes, number of GDPs, colour table size etc.
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Table 1 - Minimum support required at each level

Level
CAPABILITY O0a Ob
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Foreground colours (intensity)

Linetypes

Linewidths

Predefined polyline bundles

Settable polyline bundles

Marker types

Marker sizes

Predefined polymarker bundles

Settable polymarker bundles

Character heights (see note 1)

Character expansion factors (see note 1)
String precision fonts

Character precision fonts

Stroke precision fonts

Predefined text bundles

Settable text bundles

Predefined patterns (see note 2)
Settable patterns (see notes 2 and 5)
Hatch styles (see note 3)

Predefined fill area bundles

Settable fill area bundles

Settable normalization transformations
Segment priorities (see note 4)

Input classes

Prompt and echo types per device ' -
Length of input queue (see note 5) -
Maximum string buffer size (characters) -
Maximum stroke buffer size (points) -
Workstations of category OUTPUT or OUTIN
Workstations of category INPUT or OUTIN | -
Workstation Independent Segment Storage | -
METAFILE OUTPUT workstations 0
METAFILE INPUT workstations 0
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0 indicates explicitly defined and non-required at that level.
- indicates not defined at that level.

NOTES

15 Relevant only for character and string precision text.

2. Relevant only for workstation supporting pattern interior style.

3. Relevant only for workstation supporting hatch interior style.

4, Relevant only for workstation supporting segment priorities.

S Since available resources are finite and entries have variable

size, it may not always be possible to achieve the minimum values
in a particular application.
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(8)

(9)

Input: Levels of GKS which support input require the user to have
access to at least one input device of each class at his work
space. That does not imply that all workstations have to support
all input device classes but an installation is required to ensure
that a workstation cluster fulfills this requirement. An
application program can expect to have at least one input device of
each class available to it.

A number of implementations provide workstations with only a subset
of the input devices available. For example, LOCATOR, STRING,
VALUATOR but not CHOICE, STROKE and PICK. An organisation needs to
decide if the workstations provided by the implementation are valid
within its environment.

As mentioned above, GKS insists on a minimum of prompt/echo types
of which the first is natural to the device. Again implementations
differ as to this first echo method chosen and how many additional
ones are provided.

For devices such as STROKE and STRING, a buffer is needed to hold
the individual elements of the input. This buffer size must be
appropriate for the installation.

Environment: any GKS implementation chosen must fit into your
local environment. At the simplest level, it must support the
devices available and run on the hosts owned by the site. A useful
facility is to have a skeleton driver available which can be used
as a basis for constructing new drivers. A portable implementation
available on a range of hosts might be desirable if there is a
range of hosts on a particular site. Most suppliers are tending to
prefer a single implementation of GKS on their system. Large sites
may therefore run several different implementations of GKS in which
case compatibility between implementations is important. For
example, metafiles should be transportable from one implementation
to another.
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3.2 Language Bindings

352 Introduction

In the early days of ISO work on graphics standards, it was realised
that the different languages from which people used graphics made it
necessary to define the functional specification in a way that was
independent of any one language. For this reason, the GKS document does
not specify the interface from FORTRAN, Pascal, or any other language.
Instead, a separate ISO standardisation activity has been set up to
cover all the language bindings for GKS, GKS-3D and PHIGS.

The GKS FORTRAN binding for GKS was the first binding to be completed
technically. During the development of the FORTRAN binding, a number of
issues were identified that are relevant to all programming language
bindings. These issues fall into the following categories: goals and
scope, naming/abbreviations, data typing, error handling, and
multi-language environment considerations.

3.2.2 Goals and Scope

The first problem to be considered is the status of the programming
language to which the binding is being made. An ISO standard language
binding may only be promulgated for a programming language defined in a
referenceable document. 1In practice this means that the programming
language must have been defined in an ISO standard or a national
standard. Bindings to languages not in this category (for example
Algol 68) have been published in the technical literature, but have not
been and cannot be standardised. This constraint causes problems where
there is pressure from the user community for a binding to a language
that has not been standardised, C is a good case in point. There is a
document describing a C language binding for GKS, however this cannot be
standardised by ISO until C has been standardised. Processing of the
ISO C language binding has started, but cannot progress significantly
until the C language is standardised.

A second problem following on from the above is how to cope with the
situation in which the ISO standard definition of a programming language
differs from a national standard. Pascal is a case in point. 1ISO
Pascal has two levels, with conformant arrays. ANSI has one level,
without conformant arrays. The view taken is that national differences
must not be allowed to impose artificial constraints.

The GKS Pascal binding may be used under either level 0 or 1level 1
Pascal, and a mechanism is defined for replacing conformant array
parameters with fixed length array parameters for level O.

Another important issue is the extent to which language facilities
should be used in the binding. Should the full richness of the language
be exploited or should a minimal subset of features be wused to
facilitate portability between languages? This problem is a difficult
one.
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Some languages provide more capabilities than the functional
specification requires. The multi-tasking and exception handling
capabilities of Ada are a good example of this. Should an Ada binding
exploit these capabilities, or should the binding be close to the Pascal
binding? Other 1languages are mnot able to provide the functional
requirements in a one-for-one way. For example, some of the GKS inquiry
functions return a 1list of related, but heterogeneously typed data
items. These would result in extremely long parameter lists if bound
one for one with FORTRAN subroutines, but can be handled neatly in
Pascal using records. Should the single GKS function be split into
several subroutines in the FORTRAN binding, but remain as a single
procedure in the Pascal binding? These questions do not have simple
answers.

Further problems are caused when the language standard describes several
subsets or levels. The FORTRAN standard defines a subset to maintain
compatibility with FORTRAN 66; however the subset imposes severe
limitations on the data-types available. Where bindings have to be
defined for subsets, to what extent should the subset bindings be
compatible with the full language binding, ie should the full language

binding be compromised so that compatibility is maintained with subset
bindings?

What account should be taken of compilers that impose more or 1less
restrictions than the standard requires. For example, the Pascal
standard allows 32 character identifiers, however many compilers for
micros impose a 6 character limit. Do you bind for the ‘real world’' or
the standard? Again there is no easy answer to this problem.

3.2.3 Naming/Abbreviations

The GKS functional description uses very 1long function names, for
example, INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED. This posed an
immediate problem for the FORTRAN binding, because of the language'’s
restriction on the length of external names. Should a consistent scheme
be used to map these names to a (probably) meaningless acronym or should
a more ad hoc scheme be used which would admit more meaningful acronyms?
Eventually it was agreed that the mapping needed to be consistent and a
complex algorithm was devised and documented in the FORTRAN binding.

Having devised such & naming scheme should it be used across similar
languages? This problem was solved by devising a common abbreviation
scheme that allows names longer than 6 characters.

It is clear that GKS function names should be distinguishable from other
functions in the application, however, how should this be done? 1If a
sentinel character is used, what character or characters should it be?
In the case of FORTRAN all GKS function names start with the letter G,
however this then leaves only 5 characters for the remainder of the
name!

A good attempt has been made to devise a consistent abbreviation scheme,
and this is evident from the similarities between the Pascal, Ada and C
bindings.
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3,24 Data Types

Selecting function names is a major task in developing a language
binding. An equally major task is defining the mapping between the data
types of the GKS functional description and the data types of the
programming language. The GKS functional description uses structured
data types including enumeration types for the specification of a
limited number of choices, record data types for grouping heterogeneous
primitive data types and a point data type to represent 2D coordinate
data.

One for one mappings of the GKS data types can easily be given for
languages such as Pascal and Ada which have equally rich or richer
typing structures. However, for languages such as FORTRAN, which offer
a more restricted typing structure, significant problems arise.

In the case of languages with rich typing structures, should similar
representations of the GKS data structures be used, or should the
capabilities of each language be fully exploited?

File access mechanisms are a problem in all programming languages.
Interactions between languages and operating systems have meant that in
some cases some data types and values have to remain implementation
dependent.

Some languages support pointer manipulation. Taking advantage of this
facility could give the application access to implementation data
structures. Should this be allowed? The decision has been made that
parameters defined as ’‘input’ parameters in GKS must be input parameters
in language bindings.

If all the parameters in a GKS function definition are bound one-to-one
with procedure parameters, unnecessary parameters may result, for
example the length of a text string when the text string is represented
by the FORTRAN CHARACTER type. The decision has been made to eliminate
redundant parameters, but stick closely to the GKS definition of input
and output parameters.

3.2.5 Error Handling

The error handling mechanisms defined in the GKS document are very
FORTRAN-1ike. Should modern methods for exception handling (such as
that found in Ada) be used in a language binding?

3.2.6 Multi-Language Environment

Some implementors and users feel it is important to be able to access
GKS functions from more than one language, within a single
implementation. This type of environment poses many problems. One
approach would be to define a single ’‘generic’ binding, which would
probably look like a FORTRAN subset binding.

So far only single language bindings have been developed and this area
remains open.
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32l Future Bindings

One very important decision has been made. Bindings for future graphics
standards will be based on the GKS bindings. This means that once the
major problems have been resolved for a language binding of GKS, the
same solutions will be used in subsequent bindings. A common set of
guidelines for language bindings has been produced as a result of some 4
years hard work. Language bindings are by no means as trivial as they
might at first sight appear.

3.3 Availability of GKS Implementations

The two early implementations of GKS which are still widely available
are GKSGRAL which derives from the version implemented at the Technical
University of Darmstadt and the joint ICL-Rutherford Appleton Laboratory
implementation which is widely used in the UK university environment.

A list of implementations (to Level 2b unless indicated) with FORTRAN as
the main binding (unless indicated) is:

(1) Rutherford Appleton (RAL)/ICL (Level 1b going to 2b)
(2) GTS-GRAL (Level 2c¢)

(3) NOVA Graphics, Austin

(4) CWI Amsterdam (Level 2¢)

(5) Tektronix

(6) CEEGEN, Los Gatos

(7) Whitechapel, UK

(8) Prior Data Sciences, Ottawa (C Binding)
(9) Precision Visuals, Boulder

(10) Dataplotting Services Inc

(11) RAMTEK

(12) Visual Engineering, San Jose

(13) Advanced Technology Centre, Culver City (Level 2c)
(14) TEMPLATE

(15) UNIRAS, Mass

(16) DEC (Level 0Ob)

(17) Data General

(18) IBM/Graphic Software Systems

(19) Infolytica, Montreal (Level mb)

(20) AED-GKS (Level 2c¢)

(21) CMC, Bombay

(22) Sysgraph, Vienna

(23) System Simulation Ltd, London (Level la)
(24) XGKS, Hungary

Fuller details are given in ’Graphics Standards - The Current State’,
AUSGRAPH 86 Introductory Tutorial.
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3.4 Conformance

3.4.1 Introduction

The existence of standards for computer graphics immediately raises the
important question: how can one be sure that an implementation of a
standard adheres to the standard? In the absence of an answer to this
question, it is arguable that standardisation is a pointless activity.

At the present time, the only practical approach to this question is to
consider methods of falsification, in which systematic efforts are made
to demonstrate that an implementation is incorrect. This approach has
been adopted for programming languages. Typically a compiler is
subjected to a large suite of test programs, specially designed to
uncover likely errors or possible misinterpretations of the standard.
This approach has been adopted for Cobol, Pascal and now Ada. There are
some deep philosophical questions raised by this approach, for example
how does one know the behaviour prescribed for the test suite adheres to
the standard. However, with current programming technology, it is the
best that can be done.

The EEC, recognising the importance of the area, sponsored a number of
workshops during 1982, aimed at developing a falsification procedure for
validating GKS implementations. A comprehensive test suite for GKS was
subsequently developed by the University of Leicester (UK) and the
Technische Hochschule Darmstadt (Germany) with support from funding
agencies in the UK and Germany.

3.4.1 The GKS Test Suite

The candidate GKS implementation is stimulated in different ways and the
response to the stimulation is then checked. The stimulus in the case
of CKS takes the form of a GKS function call or sequence of GKS function
calls, possibly in conjunction with an operator action on an input
device. The response can be in the form of graphical output on one or
more devices, a change to the GKS data structures, or data returned as
an output parameter of a GKS function.

There are two interfaces across which stimuli can be sent and responses
observed, the application program interface and the human operator
interface.

The GKS conformance testing scheme 1iIs based upon a suite of test
programs coupled with operator action on input devices to provide the
stimulation. The test suite is described in some detail in [8,9,10].
The checking of responses is automated as far as possible.

GKS defines a large set of data structures that maintain the current
values of GKS data such as the current polyline index. The standard
defines precisely the action of each GKS function on these data
structures. Data in the GKS state lists can be accessed through inquiry
functions. One part of the test suite is devoted to testing the effect
of each GKS function on the state lists. Checking in this case can be
done automatically without the need for human interaction.
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GKS has a well-defined error reporting mechanism, with an explicit set
of error messages associated with each function. Another part of the
test suite is devoted to testing the response of each GKS function in
error situations.

Response at the human interface is a much more difficult problem,
consisting of output on one or more graphical output devices. The
problem is compounded by the workstation dependencies allowed by the GKS
standard, for example whether linetype is continuous or restarted at the
start of a polyline, at the start of a clipped piece of polyline and at
each vertex of a polyline.

This part of the GKS test suite consists of a series of test programs
which generate visual images. The (human) tester then has to check each
image generated against a reference image in the testing manual and has
to decide whether or not the image from the candidate implementation
conforms to the reference image. A great deal of care has been taken
with this part of the test suite to design images which check large
amounts of GKS with a small amount of visual effort. The images are
carefully annotated to aid the tester, for example a test of fill area
interior style can attempt to produce the four styles HOLLOW, PATTERN,
SOLID and HATCH, and then label each to indicate which it is, or is not,
mandatory for the workstation to display. The visual aspects of the
test suite are discussed in [10].

The test suite is structured so that testing proceeds with increasing
complexity, fundamentals being tested first. On the output side, for
example, the tests are organised in six classes, simple control, output,
primitive attributes, normalization transformations and clipping,
workstations and workstation attributes, workstation transformations.

3.4.2 Conformance Testing Services

The Commission of the European Communities has taken the first steps
towards establishing European Conformance Testing Services for standards
in the information technology and telecommunications areas. Three
European laboratories are collaborating to establish a testing service
for GKS; BNI in Paris, GMD in Bonn and the National Computer Centre in
the UK. Contracts have just been signed with these organisations and it
is expected that basic testing services will emerge in a 6 to 18 month
timescale (from February 1986).

The GKS testing service is based on the GKS test suite described in
3.4.1.

Further details of the testing service can be obtained from:

Jane Pink

Language and Validation Services
The National Computing Centre Ltd
Oxford Road

Manchester M1 7ED

U.K.
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4. IMPLEMENTATION PHILOSOPHIES

4.1 Introduction

References [11] to [22] give details of some of the GKS implementations.
If we look at these in detail, differences in implementation philosophy
can be seen. These differences give some clue as to the audience that
the implementation is targetted at. This section aims to give some
pointers towards the key implementation features.

4.2 Positioning the DI/DD Interface

GKS does not have a well defined internal interface between the device
independent (DI) front-end part of GKS which the application calls and
that part of GKS, the device dependent part (DD), which is responsible
for the interface to devices. The reason for this is that devices vary
a great deal in capability and a rigid specification of this interface
would cause problems for specific devices. Intelligent devices might
not be able to use all their features and dumb devices might have a
large amount of simulation to do. Looking at the interfaces available,
they can be categorised as follows:

(1) Thin Back-End: the DI/DD interface is positioned very close to the
devices. The device independent part maps all GKS functions to a
simple device order code. This approach decreases the amount of
code to be written and makes device drivers simple to implement.
The penalty is that intelligent devices are unlikely to be able to
make use of many of their features. The Amsterdam CWI
implementation was originally of this type. The motivation for
this was that it was a portable implementation to be used in a UNIX
environment on a variety of sites.

(2) Thin Front-End: all GKS functions are passed to the workstation
for execution with a minimal amount of workstation independent
code. There is some GKS State information that needs to be kept
centrally. However, primitives can be passed to the workstation in
world coordinates leaving all attribute binding, coordinate
transformation and segment storage to the workstation. The
advantages of this approach are that intelligent workstations have
maximum flexibility to use their facilities. A disadvantage is
that simple devices may have very large and complex drivers with
the possibility of enormous duplication.

With the appearance on the market of a number of GKS workstations
with a high level interface, this approach becomes more applicable.

(3) Fixed WVorkstation Descriptors: it 1is feasible to define e
TERMCAP-like facility (GRAPHCAP?) which provides a data file which
describes workstation characteristics. The front-end code modifies
the protocol to be sent to the workstation dependent on the data
file. The major problem with this approach is being able to define
a data file which encapsulates the characteristics of a wide range
of devices. Herman's implementations have attempted to provide a
flexible way of doing this description and automatically modifying
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the code in the GKS system loaded so that it is tuned to the
workstation set available.

Such an implementation tends to have most GKS functions simulated
in the device independent part as well as similar code being
available in the drivers.

(4) Nepotiation: a technique pioneered by GINO-F was to allow
negotiation between the front and back-ends to decide who is
responsible for particular functions. A well defined protocol
between the two parts is maintained but the device dependent part
has the ability to refuse to do certain operations. There is a
minimal set that it has to handle but that is all. For example,
the front-end may request the back-end to draw a dotted polyline.
It can refuse, in which case the front-end is forced to simulate
the dotted polyline sending individual line segments to the back
end for output.

This is a more flexible variant than (3) in that the back-end can
pick and choose which functions it can handle and do a partial set
of one type if it is appropriate. For example, it may be able to
handle short dashed polylines and solid ones but that is all.

(5) Device Dependent Tool Set: the major disadvantage of the thin
front-end technique is the duplication of code at the driver level.
An approach that solves this is to produce a large tool kit for
individual drivers to use. The RAL/ICL implementation has taken
this approach.

(6) Layered: it is possible to define more than one internal interface
in GKS. Between the device independent and device dependent code,
there is a set of operations that apply to all workstations that
are currently active. It is possible to define an interface
between the device independent part and the workstation manager.
A second interface can be defined between the workstation manager
and a particular workstation. This has some similarity with the
window manager in a single user system. This approach 1is
particularly wuseful in a distributed environment where data
physically crosses the interface with the possibility that the two
sides of the interface are in different processors. For example, a
set of simple devices could be controlled by a single workstation
manager remote from the host system where the application resides.
This can be a considerable saving in communications traffic.
Segments to be displayed on several workstations attached to the
workstation manager need only be sent across the network once to
the workstation manager. This approach was pioneered in the NOVA
GKS implementation. :

The positioning of this interface in a particular implementation is an

important attribute of the implementation and will have a considerable
effect on the properties of the implementation.
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4.3 Immediate/Delayed Execution

Many functions in GKS cause changes to the overall GKS state which needs
to be up-to-date before the next input or output occurs. For example,
changes to primitive attributes will affect the way the primitive is
output. A particular example is changing the TEXT FONT AND PRECISION
aspect which may require a different font to be loaded or a switch from
direct execution in the workstation to simulation in the f£front-end.
When should this work be done? Depending on the positioning of the
DI/DD interface, there are choices that can be made which depend on the
assumed usage of GKS.

Stretching the above example further than may be sensible, it is
possible that an application may change TEXT FONT AND PRECISION several
times before it outputs any text. Imagine an interactive application
where the user selects a font and inquires its characteristics before
deciding on which one to use. Another application may select the font
required initially and make no further changes throughout the program
execution. Implementation efficiency will vary depending on which of
these two scenarios is most likely.

One approach is for the implementation to delay all operations until it
is essential that they be done. In the example above, the resetting of
TEXT FONT AND PRECISION will just set a flag indicating that the font
available is not correct and that is all. Each output of the text
primitive will then need to check whether the selected font is the
current one or & new one has to be loaded.

The alternative approach is for the implementation to load the font as
soon as the TEXT FONT AND PRECISION aspect is changed. Each output of

the text primitive can now assume that the correct font information is
available.

In GKS, there are a large number of features of this type. The
situation 1is complicated by the decision on whether BUNDLED or
INDIVIDUAL mode of working is in place. Particular GKS operations (for
example, setting primitive aspects) can be negated or made temporarily
inaccessible by other operations (setting ASFs). Other data are defined
by more than one function call. For example the normalization
transformation is defined by setting the window and viewport in two
function calls that can be done in either order. Does the

implementation update the transformation each time one or other is
called?

Some implementations have made the decision to do immediate execution of
all GKS functions while others (for example, RAL/ICL) delay the
execution as long as possible. These strategies will cause the GKS

implementation to have different properties that can be tested by
benchmarks.
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4.4 Segment Storage

Conceptually, each workstation has its own segment store. For
intelligent workstations this is sensible as it makes it possible for
good interaction to be achieved at the workstation. If the level of GKS
in use is Level 2, GKS also has a Workstation Independent Segment Store
(WISS) which contains a set of segments which can later be manipulated
and moved from WISS to specific workstations under application control.

There are a variety of strategies that can be taken to achieve the
desired results:

(1) Central Segment Store: a single central segment store could be
implemented with tables indicating which segments are available to
which workstations. Segment updating at the workstation generates
traffic from the central store to the workstation. If all or
nearly all the devices in use are relatively unintelligent, this is
a valid approach. Implementing WISS is achieved by adding WISS
functions to the central store.

(2) Phantom Workstation: all workstations are assumed to be capable of
holding their own segments. An unintelligent workstation can ask
the phantom workstation to hold its segments for it. This means
that the only segments stored centrally in the phantom are the ones
required by unintelligent workstations. An interesting aspect of .
this approach is to label WISS as unintelligent in which case the
phantom workstation will also handle the workstation independent
segment store.

(3) Distributed Sepment Store: assuming at least one intelligent
workstation capable of storing segments, it is feasible to
distribute all segments including WISS to the workstations.
Intelligent workstations can hold both the WISS and the segment
stores of unintelligent workstations. As a particular application
tends to only use WISS for intermediate storage of segments
ultimately destined for a workstation and the unintelligent
workstations have a close affinity to the intelligent workstation
(a plotter attached to a raster display), this approach is more
sensible than it may at first seem.

To do this, it does require the workstation to have the ability to
read back segments to the host for manipulation and display on
other workstations. Some intelligent GKS workstations on the
market do not have this capability.

Another feature of GKS is that segments can be created with random
names. On creating a new segment, the segment store needs to be checked
to see if the name is already in use. This can be a significant table
handling problem that needs to be done efficiently particularly if a
large number of segments are in use. As the population of legal segment
names is very large, some kind of hashing technique or caching of
recently used segment names is essential for rapid picture updating. It
is worth checking the performance of implementations in this area if it
is important in the GKS environment where it is to be used.
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Finally, as segments cannot be reopened they are effectively linear and
can be stored in contiguous locations. However, gaps appear in storage
as soon as segments are deleted. This produces a typical garbage
collection problem. A simple implementation of segments store may
produce fast traversal but slow garbage collection. Alternatively, the
garbage collection problem can be largely solved by allowing segments to
be stored in fragments with 1links between them. This slows down
traversal but speeds up garbage collection. Again, benchmarks can
easily be designed to test an implementation against the environment
where it is to be used.

5. RELATED STANDARDS

5.1 Reference Model

Following the development of GKS, standardisation activities have
expanded to include 3D graphics and various interfaces.

The work has tended to fragment with individual groups of experts
concentrating on one or two of the many activities. As a result, there
has been a tendency for the standards to drift apart. In order to bring
the standards more into 1line, an overall Reference Model for the
graphics standards activities is being defined. This will help to
clarify the interrelationship between the various standards and indicate
their area of applicability.

The major standards in progress are:

(1) GKS - a set of basic functions for 2D device-independent computer
graphics programming.

(2) CGM - a device independent data exchange format for computer
graphics pictures.

(3) CGI - a set of basic elements for the control and data exchange
between device-dependent and device-independent levels in graphics.,

(4) GKS-3D - an extension of GKS to provide the basic functions for
computer graphics programming in 3D.

(5) PHIGS - a set of functions for computer graphics programming in
environments requiring rapid modification of graphical data that
describes geometrically related objects.

(6) Language Bindings - bindings of the functions and data types of the
functional standards to standardised programming languages.

(7) Registration - a registration mechanism is being set up to deal
with the standardisation of line and marker types, GDPs, Escapes
etc.
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These various standards fit together as follows:

The

€Y

(2)

(3)
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€))

(6)
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APPLICATION

N

Language Binding
GKS GKS-3D PHIGS

WORKSTATION

N

Computer Graphics
METAFILE DEVICE Interface

main points of the model are:

Applications access the functional standards via well defined
language bindings.

There is no explicit standard for the 1interface between the
functional standards and the workstation.

Workstations talk to devices or metafiles via a Computer Graphics
Interface.

The Computer Graphics Interface is comprehensive and can be
tailored for most devices. It is divided into Option Sets related
to the major features. A workstation is likely to use only a
fraction of the option sets available.

CGI 1is the protocol used to generate the picture part of the
Computer Graphics Metafile (CGM). Consequently, there is a close
relationship between CGI and the computer graphics metafile.

Language Bindings have a consistent structure for each of the
functional standards.

Functional Standards

three functional standards GKS, GKS-3D and PHIGS, are closely

related in that they share the same:

(1)

(2)

3)

(&)

Output Primitives: with an additional primitive FILL AREA SET for
GKS-3D and PHIGS. There is an obvious extension of the GKS 2D
primitives to 3D.

Attribute Model: the attribute model is the same for all three
standards with bundled and individual modes of specification.

Input Model: with obvious extensions to 3D for LOCATOR and STROKE
devices.

Workstation Concept: all provide for intelligent workstations
having at most one display screen and multiple input devices.
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The major differences are:

(1) PHIGS Structures: PHIGS allows graphics and applications data to
reside in structures. When structures are traversed, primitives
are created with associated attributes which are processed by the
same pipeline as GKS-3D. A modelling transformation can be applied
to PHIGS structure elements at the start of the pipeline.

(2) Segments: assuming PHIGS 1is used with high quality terminals
capable of doing structure traversal in the terminal, it is
believed that no segment storage is required. Effectively, PHIGS
creates primitives which are immediately output.

5.3 GKS-3D and PHIGS

The two functional standards that extend GKS to 3 dimensions are GKS-3D
and PHIGS. GKS-3D is a minimal extension to GKS to allow 3D working.
PHIGS builds on GKS-3D to provide a structure facility for dynamic
picture changes. In this section, the aim will be to highlight the
similarities and differences. It is worth making the point that the two
standards are at different stages in their evolution consequently
differences in the standard proposals now may be removed during the
review process.

5.3.1 Scope and Goals

The scope of GKS-3D is similar to that of GKS except that GKS-3D
provides application programs with the capability to define and display
3D graphical primitives specified using 3D coordinates. 1In addition,
the GKS input model has been extended to provide 3D locator and stroke
input. A major goal is that existing GKS programs should run without
change where possible.

Neither GKS or GKS-3D satisfy the requirements of application programs
where modification of the graphical data is required in an efficient
manner, where the objects to be displayed consist of geometrically
related parts and where rapid dynamic articulation of graphical entities
is required. PHIGS is aimed at addressing that community. As rapid
movement will tend to require hardware assistance, PHIGS is oriented
towards high class 1intelligent workstations with the ability to
manipulate display files locally.

5.3.2 Segments and Structures

The Segment Store in GKS-3D is identical to that in GKS except for the
extension to 3 dimensions. Segments are normally stored on
workstations. In addition, there is a central Workstation Independent
Segment Store (WISS) to allow movement of segments from this central
store to workstations as required.

In PHIGS, to achieve its objectives, the segment store has been replaced
by a structure store which has greater functionality than the GKS-3D
segment store and appears at a different place in the viewing pipeline.
The difference can be seen in Figure 5.
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The major points are that, in GKS-3D, primitives created when a segment
is open are stored in the segment storage for all active workstations.
The normalization transformation is applied to the primitive before it
is stored in the segment but not the associated clip. Consequently,
each primitive is stored in segment store in normalized device
coordinates (NDC3) with the associated clipping volume. When a segment
is displayed on the workstation, the primitive is read from segment
store, the segment transformation is applied, the normalization volume

clipping is done and the primitive 1s then presented to the viewing
pipeline.

GKS-3D PHIGS

primitive structure element

| Normalization Transformation | Structure

Store

N
Store Clip Volume
and View Index

primitive

Segment
Store

Segment
Transformation

| Normalization Clip |

Viewinél

| Workstation Transformation |

Workstation

Figure 5
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The PHIGS pipeline for viewing is identical but the creation of the
primitive is significantly different. PHIGS provides a set of functions
which define structure elements. There is a 1-1 correspondence between
primitives and structure elements. In addition, PHIGS has structure
elements for attribute setting and specification of application data.
A major feature of the structure store is that it 1is hierarchical.
Structure elements are provided which call other structures.

Structures are displayed when they are posted to a workstation. Posting
causes the structure to be traversed and interpreted. A complex
modelling transformation is applied to coordinates in the structure
elements as they are interpreted.

The primitives generated by PHIGS enter the viewing pipeline immediately
prior to the viewing operation. The complex modelling transformation
provides a similar function to the normalization transformation.

Another difference between the two storage structures is that the
Structure Store is held centrally. Posting a structure effectively
causes a display file to be moved to a workstation. For those
workstations specifically designed for PHIGS, it is assumed that
structure traversal and viewing are both performed by the workstation.

5.3.3 Viewing

Viewing consists of projecting the 3D image on to a 2D projection plane.
The Viewing Pipeline is given in Figure 6. Functions are provided to
assist with the definition of this viewing operation. These are shown
in Figure 7. The initial coordinates (NDC3 in GKS-3D) are changed to
Viewing Coordinates by defining a View Reference Point and a set of axes
associated with it. The intention 1is that this point has some
relationship to the object to be viewed and makes the setting up of the
projection transformation that much easier.

Once the Viewing Coordinates are established, Front and Back Planes are
defined which specify the 1limits of the object to be viewed.
A Projection Reference Point can be specified and a Projection Plane
which allows the object to be viewed by projecting it onto the
projection plane. The View Window specifies that part of the projection
plane to be output to the workstation. Both parallel and perspective
projections are provided.

For some workstations, capable of providing 3D geometric transformations
and for genuine 3D devices, the viewing operation specified by the
functions provided may not be appropriate. Therefore, it is possible
for applications to construct their own viewing pipeline or ignore parts
of it.

Each primitive has a View Index associated with it which defines the
view bundle table entry on the workstation to be used. This contains
details of the viewing transformation and clipping to be applied. It
was believed that, unlike GKS, there is a need for more than one view to
be available at a time on a workstation. This would, for example,
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allow titles to be output using a parallel projection while a 3D object
to which the titles are associated is output using a perspective
transformation. The view bundle is analogous to the polyline bundle in
that it allows views to be significantly different on different
workstations.

GKS-3D provides support for Hidden Line and Hidden Surface calculations
at the workstation level. Associated with primitives 1is an attribute
defining which method of rendering is to be used on the workstation.
The workstation can be asked to render or not and it has flexibility in
how it does the rendering. Consequently, a variety of workstations can
choose the most appropriate methods depending on their hardware
characteristics. No similar facility is provided in PHIGS at the
moment. Consequently, for rendered images, GKS-3D is more appropriate
than PHIGS.

VIEW ORIENTATION TRANSFORMATION

NPC

WORKSTATION CLIP

WORKSTATION TRANSFORMATION
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5.3.4  Structures
Particular features of the PHIGS structure facility are:

(1) Hierarchy: structures can call other substructures and the same
substructure may be called more than once from a higher level. Thus
a car may need only a single wheel substructure which is called four
times.

(2) Modelling Coordinates: structure elements contain positional
information in modelling coordinates. Each structure has a global
and local modelling transformation which are concatenated to produce
the transformation to be applied to points to turn the modelling
coordinates into the coordinates to be passed to the viewing
pipeline.

(3) Inheritance: substructures Iinherit attributes from the calling
structure. Thus, the global modelling transformation is the one
passed in by the calling structure. Similarly, attributes such as
colour can be passed to the substructure.

On completion of traversing a structure, control reverts to the
higher structure that called it and the attributes are reset to those
in force on entry to the substructure. Thus the substructure can
have no effect on the calling structure.

(4) Editing: 1labels can be placed in structures and there is a structure
element pointer. Consequently, it is possible to move around a
structure and edit it after initial creation. This is unlike GKS
segments which cannot be changed once the segment is created.

To 1illustrate the difference between GKS-3D and PHIGS, consider the
following example. A wire frame aeroplane is to fly around the screen
with its propellor rotating as the aeroplane flies. The aeroplane could
be defined by:

AEROPLANE (PLANETRANS)
where (PLANETRANS) defines the position of the nose cone of the aeroplane
where the propellor is attached and the transformation defining the
orientation of the aeroplane relative to the nose cone.
Given the orientation of the aeroplane, the propellor’s position can be
defined by a second transformation relative to the aeroplane’s position.
For example:

PROPELLOR (PLANETRANS, PROPTRANS)
Clearly the second transformation has constraints on it so that the
propellor stays perpendicular to the length of the aeroplane but we shall
ignore that in the example!

To generate this scene in PHIGS would be done by defining two structures:
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OPEN STRUCTURE (PLANE)

SET LOCAL TRANSFORMATION (PLANETRANS)
AEROPLANE (IDEN)

EXECUTE STRUCTURE (PROPELLOR)

CLOSE STRUCTURE

OPEN STRUCTURE (PROPELLOR)

SET LOCAL TRANSFORMATION (PROPTRANS)
PROPELLOR (IDEN, IDEN)

CLOSE STRUCTURE

We have taken a few liberties with the definitions above to simplify the
example. Each structure has a local transformation that can be set up.
In the example, we have set up the aeroplane transformation and the
propellor transformation as local transformations to be applied to the
structure. The plane and propellor are drawn using the identity matrix,
IDEN. The EXECUTE STRUCTURE command creates the structure hierarchy by
effectively calling the PROPELLOR structure as part of the PLANE
structure. The PROPELLOR structure inherits the PLANE's orientation as a
global transformation applied to it and this gets concatenated with the
local transformation.

To make the aeroplane fly around, we need to generate a loop which updates
both transformations and redisplay. This would be achieved in PHIGS by
editing the two structures. When a structure is reopened, the editing
position is situated at the last element. Consequently, it would need to
be repositioned:

OPEN STRUCTURE (PLANE)

SET ELEMENT POINTER (1)

SET LOCAL TRANSFORMATION (NEWPLANETRANS)
CLOSE STRUCTURE

OPEN STRUCTURE (PROPELLOR)

SET ELEMENT POINTER (1)

SET LOCAL TRANSFORMATION (NEWPROPTRANS)
CLOSE STRUCTURE

REPEAT

Note that all we have done is edit the two structures by replacing the
local transformation matrices.

In GKS-3D, the problem is different in that we can define a transformation
matrix to be applied to the aeroplane but there is no way in which the
propellor can appear at a different orientation if it is part of the same
segment as no editing is possible on the segment. A possible approach
would be:
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CREATE SEGMENT (PROP)
PROPELLOR (IDEN, IDEN)
CLOSE SEGMENT

Start loop
DELETE SEGMENT (PLANE)
CREATE SEGMENT (PLANE)

SET SEGMENT TRANSFORMATION (PLANE, NEWPLANETRANS)
AEROPLANE (IDEN)

INSERT SEGMENT (PROP, NEWPROPTRANS)

CLOSE SEGMENT

REPEAT

Here the segment PLANE has the transformation NEW PLANE TRANS applied to
it. The loop consists of deleting the PLANE segment each time and
defining a new one where the propellor is inserted as part of it.

This 1is clearly a great deal more work than in the PHIGS case. You can
imagine garbage collection of the old segment taking place and a large new
segment having to be created. The display is likely to go blank when the
old segment is deleted and before the new one can be regenerated. Given
the correct hardware, the PHIGS editing could be achieved almost
instantaneously.

The example chosen above is one which is reasonably sympathetic to GKS-3D.
If primitives in the structure are being changed, GKS-3D has no
alternative but to regenerate the segment from scratch or via inserting
segments.

Sr3)-'S Primitives

Both GKS-3D and PHIGS have attempted to keep the same primitives as GKS
except they are extended to work in the 3D environment. Existing GKS
functions can be called and produce the equivalent GKS-3D primitive on the
Z=0 plane (effectively, a Z=0 coordinate is added to each position in a
GKS function call).

In GKS-3D and PHIGS, text, fill area, and cell array remain planar
primitives but can be positioned in an arbitrary plane. Polyline and
polymarker become genuine 3 dimensional primitives with no constraints on
the positions used in the function call.

One additional primitive has been added, FILL AREA SET, which specifies a
set of fill areas all of which will be patterned together as a single
entity. For rendering 3 dimensional objects, it was believed that this
extension was necessary. For the same reason, FILL AREA SET has more
control on how the boundary edge is rendered than the original fill area
primitive.
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5.3.6 Input

The input models in all three standards are very similar. Both GKS-3D and
PHIGS extend the logical input devices by allowing 3 dimensional LOCATOR
and STROKE devices as well as the six logical input devices defined in
GKS.

PICK input in PHIGS has been extended to give more information about what
has been picked. In GKS and GKS-3D, the PICK device returns the name of
the segment and the PICK identifier within the segment. As a structure in
PHIGS could be executed as part of one or more parent structures, some
applications will need to know more than just the local structure name.
Consequently, in PHIGS it 1is possible to recover the names of the
structures in the hierarchy that led to the invocation of the structure
that has been picked.

5ot il Summary

This section has only given an informal introduction to the new facilities
available and the differences between PHIGS and GKS-3D concentrating on
the ones that are major.

There are many minor differences which, in some cases, turn out to be
applicable in the other environment. Consequently, as both standards are
progressing together, there tends to be a retrofitting of extensions from
one to the other.

The aim is to only have differences between the two standards where
absolutely necessary to allow them to perform effectively in their defined

user community. Consequently, many minor differences now will be sorted
out during the review process.

6. WINDOW MANAGEMENT

6.1 Introduction

With the advent of single user systems with bit map displays, it is
possible for a single operator to work effectively on a number of separate
tasks allowing the window manager to provide individual windows which
appear to the operator like separate devices. For a single application,
it is possible for the window manager to multiplex several workstations on
the same bit map display. The graphics system needs the window manager to
define areas of the screen as virtual devices. The window manager needs
the graphics system to define icons, window borders etc. A key problem is
how should the two relate. This section will pose some problems and
indicate some possible solutions. For further discussion of these issues
see [23].

6.2 History
The earliest mention of a window management system is in Alan Kay'’'s 1969

thesis [24] at the University of Utah where he states that ‘the display
for FLEX was a large virtual screen on which displays may be tacked rather
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like notices on a notice board’. The major input device associated with
window management systems is the mouse which Doug Engelbart designed at
Stanford Research Institute in 1963. These dates show that the concepts
were available early on but progress was restricted to a few research
laboratories due to the high cost of hardware.

The first realisation of a window management system was at Xerox PARC
where Larry Tesler, Dan Ingalls and Alan Kay produced a system for
SMALLTALK which introduced the overlapping window paradigm. Windows on
the screen could be put on top of one another like papers on a desk.
Operations were provided to rearrange the order of the window. 1In the
early SMALLTALK system, you could only interact with the top exposed
window.

Later systems at Xerox PARC (several produced by Warren Teitelman)
introduced and experimented with features such as scrolling, window
borders, pop-up menus, icons etc. the overlapping window paradigm was
questioned and tiled window managers were tried whereby individual windows
were carefully positioned in a regular order on the screen with no
overlapping.

The appearance of the Three Rivers PERQ meant that there were commercially
available single user systems with high resolution bit map displays
capable of supporting a window management system at low cost. APOLLO and
SUN systems soon followed and the appearance of the MACINTOSH at the low
end of the market made window management systems and the associated
paradigm widely available.

6.3 Model

A general model of window management systems is given in Figure 8.
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Three major areas for discussion are:

(1) Application Interfaces: at what level should the application
interface be placed. At the two extremes you could have the
graphics system producing pixel changes in windows or being
incorporated as part of the window management system. Almost
certainly, the interface will be somewhere between those two
extremes.

(2) Architectural Model: both the user and the application need to
understand the architectural model of the window management system.
As can be seen from the history, various facilities have been tried
without them being put together in a sensible reference model.

(3) User Interface: many of the existing systems appear the same on
the surface but frequently have different philosophies. once the
surface is scratched. Some consistency in design principles, while
still leaving the ability to do commercial tailoring, is essential.

The following sections will point to some of the issues.

6.4 Application Interface

Standardisation at the Application Interface is important now. Without
it, much of the application portability achieved by the introduction of
graphics standards will be lost. This is already being seen. At RAL,
we have attempted to port applications from one window management system
to another with enormous difficulties due to the differences in
philosophies adopted.

A major issue is whether the application can control the amount of real
estate allocated to it by the window manager. For example, if an
application requires a window of a certain size, who is responsible for
its allocation? 1If the operator has to define all windows, it may be
difficult for the application to signal its needs and may be tedious for
the operator. If the application is allowed to do it, there is the
possibility that it will monopolise the resources available making it
impossible for other applications to run. For example, one window
management system on the market allows an application to seize the whole
of the display space and inhibit interrupts causing the whole system to
be locked solid. If the window manager itself allocates screen space to
windows, it may not allocate sufficient space for the application to
run. This is the typical dilemma of the person defining the window
management system.

The application/graphics package needs to know what facilities are
provided by the window manager. It is generally assumed that the window
manager will draw 1lines, for example. Will it support GDPs and
patterning?

Many window systems provide some ability to split windows into

sub-parts. Often frames are provided with control information and
titling. Again, what control does the application have over these
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activities? Can it provide the title information? Can it redefine the
control functions?

6.5 Architectural Model

Probably the major question concerns the management of the overlapping
window paradigm. When a window is uncovered, moved or deleted, who has
responsibility for repainting the pixels? If it is the window manager,
it needs to keep bit maps of all the windows and if they are in colour,
that could be very large. If it is the application, this may require
unacceptable restructuring of the application to allow it to accept
random demands to repaint the picture. However, if storage is a major
constraint, it may be the only acceptable approach.

Any architectural model needs to define the relationship between windows
and icons and the extent to which windows can be grouped together or
sub-structured. Some window managers use icons as alternatives to
windows while others use them as well as windows. Sometimes they relate
to processes rather than windows. If windows can be sub-structured,
what is made available to the application? Can it, for example, change
the cursor echo as the cursor moves between sub-windows?

Most window systems have some concept of the current window which is
listening to the input device. How is that window specified and is
there a single window which listens to all input devices or a listener
per input device?

A frequent requirement is to move information from one window to
another. Can this be done between windows of different applications?
What is the structure of the information being moved?

6.6 User Interface

The current window systems have confusing sets of concepts. Facilities
available in one are often achieved in a significantly different way in
another. As with driving a car, minor variations are acceptable and
often desirable but major changes, like putting the brake pedal where
the accelerator is, are unacceptable and dangerous. Icons are a good
example of a facility which has significantly different meanings in
different implementations.

The window management system is &a necessary evil and should be as
unobtrusive as possible. In the user interface context, there should be
simple functions for manipulating windows, undoing actions, etec. If
possible, the window manager should not constrain the operator and
application. Having dedicated resources for the window management
system is probably unacceptable. Thus a window manager might wuse
buttons as accelerators for window manager functions but it should be
possible to return the use of that button to the application.
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6.7 Summary

This section has indicated the many problems to be addressed before any
uniform methodology for window management systems can be achieved.
Standardisation of the application interface has just started but it
will be many years before substantial progress is made.
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