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Preface

Knowledge Representation is the keystone of the Artificial Intelligence enter-
prise, and systems utilizing AI techniques. Any project with a knowledge
based content must choose some way of representing that knowledge, yet
too rarely is this choice informed or even conscious.

This book originated from a series of lectures on Knowledge Representa-
tion given by the authors at Rutherford Appleton Laboratory. The aim is to
explain and analyse a wide range of approaches to Knowledge Representa-
tion to assist in the process of rational design for knowledge based systems.
The book is divided into three parts.

@® The first is a discussion of the standard approaches to knowledge
representation: logic, semantic networks, frames and rule based systems.

® The second is a discussion of how we, as humans, appear to represent
knowledge.

@ Finally a selection of more advanced topics is presented - the represen-
tation of time, meta-knowledge, conceptual graphs, issues of computa-
tional tractability, and functional approaches.

The intended audience is final year undergraduates, first year graduate scu-
dents and computer professionals who are beginning to work in the areas of
Knowledge Engineering and Artificial Intelligence.
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1  Background and Introduction

David Duce and Gordon Ringland

1.1 Background

There is a sense in which every computer program contains knowledge about
the problem it is solving. A program for solving differential equations, for
example, certainly contains knowledge about that particular problem
domain. The knowledge is in the particular algorithms the program employs
and the decision procedure which determines which algorithm to employ in a
particular set of circumstances. However, it is a characteristic of most com-
puter programs that the knowledge they contain is not represented explicitly
and cannot be readily expanded or manipulated. Knowledge is in a sense
projected onto the program, like a 3-Dimensional image being projected
onto a 2-Dimensional surface, and cannot be reconstructed. Given a “tradi-
tional > payroll program it would be only possible to make fragmentary
deductions about, say, statutory sick pay legislation, yet this is a part of the
knowledge on which the program is based and which was used in the con-
struction of the program.

This scenario is to be contrasted with the field of Aurtificial Intelligence
(AI) where the concern is to “write down descriptions of the world in such a
way that an intelligent machine can come to new conclusions about its
environment by formally manipulating these descriptions” (Brachman and
Levesque, 1985a). As Sloman (1979) remarks, “work in Artificial Intelli-
gence, whether aimed at modelling human minds or designing smart
machines, necessarily includes a study of knowledge. General knowledge
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about how knowledge is acquired, represented and used, has to be embodied
in flexible systems which can be extended, or which can explain their actions.
A machine which communicates effectively with a variety of humans will
have to use information about what people can be expected to know in vari-
ous circumstances’.

Jackson (1986) in his excellent book Introduction to Expert Systems gives a
very succinct overview of AI. He identifies three periods in the development
of Al, the Classical Period, the Romantic Period and the Modern Period.
He identifies the Classical Period with the game playing and theorem prov-
ing programs that were written soon after the advent of digital computers.
The game playing (for example, chess) programs of this era were based on
the notion of searching a state space. Problems were formulated in terms of
a starting state (e.g. the initial state of a chess board), a test for detecting
final states or solutions (e.g. the rules for checkmate in chess), and a set of
operations that can be applied to change the current state (for example, the
legal moves in chess). In any but the simplest of cases, an exhaustive search
of the state spaces was infeasible and the trick then was to find some means
of guiding the search. This led to the use of rules of thumb or heuristics,
that could be used to guide the search in specific domains. Chess-playing
programs constructed according to this paradigm cannot be said to explicitly
represent the knowledge the chessmaster has about the game and the stra-
tegies he uses to reason about this knowledge.

Similar considerations apply to theorem proving systems of this era. Jack-
son describes the most important discoveries of this period as the twin reali-
zations that (a) problems of whatever kind could, in principle, be reduced to
search problems providing that they could be formalized in terms of a start-
ing state, an end state and a set of operations for generating new states, but
(b) that the search had to be guided by some representation of knowledge
about the domain of the problem. In most cases it was felt necessary to
have some explicit representation of knowledge about the objects, properties
and actions associated with the domain or to have a global problem solving
strategy.

The Romantic Period is identified with the research in computer under-
standing that went on between the mid-1960’s and mid-1970’s. Whatever
beliefs one may hold about the possibility of a computer understanding any-
thing, the ability to represent knowledge about real or imaginary worlds and
reason using these representations is certainly a prerequisite for understand-
ing. Much research was devoted in this period to the development of gen-
eral frameworks for encoding both specific facts and general principles about
the world, and although the whole enterprise turned out to be a very non-
trivial exercise, many of the approaches to knowledge representation to be
described in this book have their origins in this period.
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The Modern Period covers the latter half of the 1970’s to the present day.
There has been a growing conviction that the power of a problem solver lies
in the explicit representation of knowledge that the program can access,
rather than in a sophisticated mechanism for drawing inferences from the
knowledge. This period has seen the development of a number of expert
systems which perform well on non-trivial tasks. These programs generally
have two components, a knowledge base which contains the representation
of domain specific knowledge, and an inference engine which performs the
reasoning. Jackson observes that these systems tend to work best in areas
where there is a substantial body of knowledge connecting situations to
actions. Deeper representations of the domain in terms of spatial, causal or
temporal models are avoided, but these are problems that a general
knowledge representation system cannot side-step quite so easily.

1.2 The Knowledge Representation Problem

Brachman and Levesque in their introduction to Readings in Knowledge
Representation (1985a) remark that the notion of knowledge representation is
essentially an easy one to understand. It simply has to do with writing
down, in some language or communications medium, descriptions or pic-
tures that correspond in some salient way to the world or a state of the
world. As in other areas of computer science, it is also necessary to con-
sider the ways in which the representation is to be manipulated and the uses
to which it is to be put. As remarked earlier, the primary reason for want-
ing to represent knowledge is so that a machine can come to new conclu-
sions about its environment by manipulating the representation.

The first ingredient of the knowledge representation problem is to find a
knowledge representation language, that is some formal language in which
domains of knowledge can be described. Most systems of practical interest
then need to be able to provide their users with access to the facts implicit in
the knowledge base as well as those stored explicitly, and thus it is necessary
to have a component of the knowledge representation that can perform
automatic inferences for the user. The third component of the knowledge
representation problem is how to capture the detailed knowledge base that
represents the system’s understanding of its domain. This latter problem is
beyond the scope of this book, however.

David Israel characterized the knowledge representation problem as fol-
lows:

All parties to the debate agree that a central goal of research is that
computers must somehow come to “know” a good deal of what every
human being knows about the world and about the organisms, natural
or artificial, that inhabit it. This body of knowledge - indefinite no
doubt, in its boundaries - goes by the name “common-sense”’. The
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problem we face is how to impart such knowledge to a robot. That is,
how do we design a robot with a reasoning capacity sufficiently power-
ful and fruitful that when provided with some subbody of this
knowledge, the robot will be able to generate enough of the rest to
intelligently adapt to and exploit its environment? We can assume that
most, if not all, common-sense knowledge is general, as is the
knowledge that objects fall unless they are supported, that physical
objects do not suddenly disappear, and that one can get wet in the rain.

The following simple example, given by Minsky, points out that
knowledge representation is not a simple problem:

The only time when you can say something like, “if @ and b are
integers, then a plus b always equals b plus a”, is in mathematics.
Consider a fact like “Birds can fly”’. If you think that common-sense
reasoning is like logical reasoning, then you believe there are general
principles that state, “If Joe is a bird and birds can fly, then Joe can
fly”. Suppose Joe is an ostrich or penguin? Well we can axiomatize
and say if Joe is a bird and Joe is not an ostrich or a penguin, Joe can
fly. But suppose Joe is dead? Or suppose Joe has his feet set in con-
crete?

It is worth exploring this theme a little further. Some domains of
knowledge, for example mathematical knowledge, are well-behaved in a cer-
tain sense, and are relatively straightforward to deal with. For example, a
triangle is a 3-sided polygon, or the sum of the interior angles of a triangle is
180°. These facts are true of all triangles and can be used as definitions of
the concept of a triangle.

For other domains of knowledge, it is not quite so straightforward. Some
concepts, for example bachelor, have an explicit definition “a man who has
never married” (at least that is true when the terms are used strictly!). How-
ever, the majority of names do not have simple definitions of this form. An
important class of objects are natural kinds (naturally occurring species), for
example lemon, and elephant. The book Naming, Necessity and Natural
Kinds (Schwartz, 1977) contains a fascinating collection of papers on this
subject which is well worth studying, if only to remind oneself that the prob-
lems of knowledge representation did not arise with the advent of digital
computers, but have long been studied by philosophers whose writings ought
not to be ignored by computer scientists.

Putnam in his paper “Is Semantics Possible?”” in the above volume, looks
in detail at natural kind objects. In the traditional philosophical view, the
meaning of, say, “lemon”, is given by specifying a conjunction of properties,
akin to the definition of triangle. A lemon is something that has all of the
properties in the definition. Putnam and the other authors in (Schwartz,
1977) challenge this traditional view. Suppose the defining characteristics of
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a lemon are ‘“‘colour lemon”, “tart taste” etc. The problem is that a natural
kind may have abnormal members, for example there are green fruits that
cveryone would agree are lemons, and elephants with three legs are still
clephants. It is argued that nouns meant to designate natural kinds do not
have their extensions (the set of things to which they refer) determined by a
finite number of concepts.

Suffice it to say in this chapter, that it is important when choosing a
knowledge representation scheme for a particular domain of knowledge, to
consider the types of objects in the domain.

Some of the issues that arise in knowledge representation are summarized
below to give more of a feeling for the problems.

(1) Expressive adequacy. 1s a particular knowledge representation scheme
sufficiently powerful? What knowledge can and cannot particular
schemes represent?

(2) Reasoning efficiency. Like all representation problems in computer sci-
ence, a scheme that represents all knowledge of interest and is sufficient
to allow any fact of interest to be inferred by no means guarantees that
it will be possible to perform the inference in an acceptable time. There
is generally a tradeoff between expressive adequacy and reasoning
efficiency.

(3) Primitives. What are the primitives (if any) in knowledge representa-
tion? What primitives should be provided in a system and at what
level?

(4) Meta-representation. How do we structure the knowledge in a
knowledge base and how do we represent knowledge about this struc-
ture in the knowledge base?

(5) Incompleteness. What can be left unsaid about a domain and how do
you perform inferencing over incomplete knowledge and revise earlier
inferences in the light of later, more complete, knowledge?

(6) Real-world knowledge. How can we deal with attitudes such as beliefs,
desires and intentions? How do we avoid the paradoxes that accom-
pany self-referential propositions?

The remainder of the first part of this book describes four approaches to
the knowledge representation problem which have acquired some degree of
acceptability amongst researchers in the field. The four approaches are:
logic, semantic nets, frames, logic and rule based systems. Subsequent
chapters deal with each of these approaches in turn. The second part of the
book covers some current research directions, and problems common to all
of these basic approaches, for example the representation of time and the
trade-off between expressive power and the computational efficiency of
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inferencing.
The next section gives a brief introduction to the four basic approaches.

1.3 Overview of the Basic Approaches

1.3.1 Logic

Mathematical logic is an attempt to make rigorous the reasoning process
involved in mathematics. The starting point is the introduction of a sym-
bolic language whose symbols have precisely stated meanings and uses. The
next step is to define the rules by which these symbols can be combined and
manipulated and then the properties of the resulting formal system are
explored. Chapter 2 gives a detailed introduction to various systems of
mathematical logic and their application to knowledge representation. In
this introduction, we will give a flavour for the approach in a very informal
style.

A recent paper by Sergot et al. (1986) describes the use of a certain system
of logic to describe a large part of the British Nationality Act, 1981. The
system of logic is known as definite Horn Clauses, which are essentially rules
of the form:

A if Byand B, and - - - B,

which have exactly one conclusion 4, but zero or more conditions B. A
simple example of a Horn clause is the following:

(Socrates is mortal) if (Socrates is a man)
The first clause of the British Nationality Act is as follows:

1.-(1).A person born in the United Kingdom after commencement shall be a
British citizen if at the time of birth his father or mother is
(a) a British citizen; or
(b) settled in the United Kingdom.

Clause 1.-(1)(a) is represented as a first approximation by:

(x is a British citizen)
if (x was born in the U.K.)
and (x was born on date y)
and (y is after or on commencement)
and (z is a parent of x)
and (z is a British citizen on date y)

The symbols x, y and z are variables.
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Using a slight extension of this mathematical apparatus, a major part of
the British Nationality Act was represented. Having obtained such a
representation, it can then be manipulated using the rules of logical infer-
ence, appropriate to this system of logic, so that answers to queries such as
“is Peter a British citizen on 16 January 1984 given that he was born on 3
May 1983 in the U.K. and is still alive and his father William ...”, can be
given.

1.3.2 Semantic Networks

The study of semantics is an attempt to describe the concepts behind word
meanings and the ways in which such meanings interact. It is such a descrip-
tion which semantic networks were designed to provide. A network is a net
or graph of nodes joined by links. The nodes in a semantic network usually
represent concepts or meanings (e.g. BOOK, GREEN) and the links (or
labelled directed arcs) usually represent relations (e.g., a book IS
COLOURED green).

Semantic networks may be loosely related to predicate calculus by the fol-
lowing substitution: terms are replaced by nodes and relations by labelled
directed arcs.

A large number of semantic networks have been developed as variations
on this simple pattern since Quillian (1968) first used one in a computer sys-
tem. These networks share few assumptions, although they nearly all
represent the relations between concepts using a semantic representation
consisting of a network of links between nodes, a set of interpretative
processes that operate on the network, and a parser. They also show a gen-
eral commitment to parsimony.

The most often used link in semantic networks was introduced in
Quillian’s system to show that one concept is an example of another (e.g.
canary IS-A bird). More recent systems have chosen their link and node
types on the basis of epistemelogical concerns about how the knowledge will
be used. These have shown that even the apparently simple IS-A relationship
is more complex than had been previously believed.

Recent developments in semantic networks together with work on the
theoretical underpinnings of this approach are reviewed in the chapter by
Mac Randal.

1.3.3 Frames

The use of nodes and links to represent concepts and relations seems
straightforward, but contains many pitfalls.
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Some designers of network systems were not too careful about the way in
which they assigned meanings to nodes. Thus, a type node labelled
“elephant” might well stand for the concept of elephant, the class of all
elephants, or a typical elephant. Similarly token nodes labelled elephant
were open to interpretation as a particular elephant, an arbitrary elephant
etc. Different interpretations support different sets of inferences and so the
distinctions are important. There was thus a sense in which semantic net-
work formalisms were logically inadequate in that they could not make
many of the distinctions that can be easily made in mathematical logic, for
example between a particular elephant, all elephants, no elephant etc.

Frames are ways of grouping information in terms of a record of “‘slots”
and “fillers”. The record can be thought of as a node in a network, with a
special slot filled by the name of the object that the node stands for and the
other slots filled with the values of various common attributes associated
with such an object. Frames are particularly useful when used to represent
knowledge of certain stereotypical concepts or events. The intuition here is
that the human brain is less concerned with defining strictly the properties
that entities must have in order to be considered as exemplars of some
category, and more concerned with the salient properties associated with
objects that are typical of their class.

Frame systems reason about classes of objects by using stereotypical
representations of knowledge which usually will have to be modified in some
way to capture the complexities of the real world, for example that birds can
fly, but emus cannot. The idea here is that the properties in the higher levels
of the system are fixed, but the lower levels can inherit values from higher
up the hierarchy or can be filled with specific values if the ‘“‘default” fillers
are known to be inappropriate.

1.3.4 Rule Based Systems

A classic way to represent human knowledge is the use of IF/THEN rules.
The satisfaction of the rule antecedents gives rise to the execution of the
consequents - some action is performed. Such production rule systems have
been successfully used to model human problem-solving activity and adap-
tive behaviour.

More recently, substantial knowledge-based systems have been con-
structed using this formalism, for example the RI1/XCON computer
configuration system, implemented in the OPSS5 production rule language.
Chapter 5 describes the basic operations of a production system and the
problems which arise in systems involving large numbers of rules, as well as
considering the suitability of this formalism as a general knowledge represen-
tation.
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1.4 Psychological Studies of Knowledge Representation

The second part of the book is a review of how we, as humans, appear to
represent knowledge.

In this chapter the schemes which have been suggested as being those used
to represent knowledge in human memory are reviewed. These include the
use of frames, schema, semantic nets and production rules described in the
earlier chapters. Instantiations of these are described for which both the
representations and processes acting on them are specified in sufficient detail
to enable experimentally testable hypotheses to be drawn. Experimental evi-
dence is presented which supports an argument that schemes using only one
of these representation mechanisms are inadequate to account for the full
range of phenomena exhibited in human performance, although individual
models can account for the specific sets of phenomena which they are
intended to address.

A class of analogical representations is introduced which has not been
described in earlier chapters but which are capable of supporting the
phenomenon of visual imagery. Evidence is presented as to the use of
imagery by humans and the nature of the representations which would have
to support it. This suggests that although it is possible to account for visual
imagery by processes acting on a propositional representation, it seems more
likely that some form of analogical representation is used by humans.

One use of analogical representations is to form models of situations so
that reasoning can be performed on them. Johnson-Laird’s (1983) sugges-
tions as to how such mental models could be used to support inference are
described, along with findings which suggest the use of both propositional
and such analogical representations by humans. As well as describing the
limitations of suggested representation schemes and providing evidence that
supports the use of multiple forms of representation, this chapter provides a
set of phenomena for which any representation scheme will have to account
if it is to address the range of human performance.

1.5 More Advanced Topics in Knowledge Representation

The third part of the book reviews a selection of more advanced topics.

1.5.1 Conceptual Graphs

In Chapter 7 Jackman and Pavelin give an overview of the basic concepts of
the conceptual graph knowledge representation language. This includes the
concept of the conceptual graph, the type hierarchy, the basic operations
that may be performed on conceptual graphs, and logical deduction. Refer-
ence is also made to the “maximal join” - one of the fundamental derived
operations in the language. This operation would appear to be equivalent to
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the graph equivalent (with a type hierarchy) of unification.

1.5.2 The Explicit Representation of Control Knowledge

Production systems have been used in many knowledge-based systems to
model human expertise in classification. - For example, the MYCIN family of
expert systems can identify which microbial organisms are producing symp-
toms of disease in a patient. Important criticisms of such systems have been
made by Clancey and others. Although the systems effectively ‘“‘do the job”
of the expert physician, much of the knowledge has been compiled, which is
to say that it has been compressed and restructured into effective procedures.
Bainbridge in Chapter 8 shows this makes it difficult to re-use the knowledge
in explanation and knowledge acquisition subsystems, since the knowledge is
implicit and therefore unavailable.

An important research area involves reconstructing these systems to make
the knowledge explicit and available for use, and from these implementa-
tions extracting general principles for making better expert systems which
more effectively represent the knowledge in their domain.

1.5.3 Representing Time

One of the most fundamental, and deceptively simple, representations that
humans have is that of time. A great deal of effort has been expended on
attempting to formulate temporal representations for use by knowledge-
based systems. Chapter 9 considers first the basic issues in the representa-
tion of time, such as the choice of point or interval representations, the
treatment of fuzziness and granularity, and the problem of persistence. A
number of approaches are then presented, with reference to the systems in
which they have been used or the contexts in which they are appropriate.
State-space modelling, date-based methods and before/after chains are all
covered, along with temporal logics, which have attempted to place represen-
tations of time on a formal foundation.

1.5.4 Functional Approaches

An important approach to knowledge representation is the functional
approach pioneered by Levesque and Brachman. There is a relation to
mainstream computer science in that a knowledge base is regarded almost as
an abstract data type with a set of operations defining the services it pro-
vides. The approach is motivated by the misuses or misinterpretations of
knowledge representation formalisms which can occur when the user is
allowed unrestricted access to representational structures: for instance, the
nodes and links of a semantic net. Chapter 10 discusses some early work,
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and then describes Levesque’s formalization in which he defines operators
TELL and ASK for interacting with a knowledge representation system.
Finally, the KRYPTON system is dealt with. It is the most advanced imple-
mentation of functional ideas, and it also incorporates multiple representa-
tions in having a taxonomic component for defining absolute relationships
and an assertional component for making statements.

1.5.5 Expressive Power and Computability

There is a fundamental difference between a knowledge representation sys-
tem and a database: the former will in general perform inferencing of some
kind in order to answer queries about what is represented, while the latter is
limited to retrieving the facts it contains. Databases cannot therefore
represent incomplete information, for everything must be stored explicitly.
Knowledge representation systems are more expressive, and their inference
capabilities mean that they can act on incomplete knowledge. Indeed, when
there is incomplete knowledge, queries to a database concern no more than
what the database happens to contain; only a knowledge representation sys-
tem can go further and attempt to deal with the world it represents. Of
course the price to pay is in the computational effort needed to answer
queries - the trade-off between the two factors is discussed in Chapter 11 by
Williams and Lambert.

It is well-known that full first-order logic is not decidable, that is, a
theorem prover cannot be guaranteed to terminate. Restricting the expres-
sive power of the representation language results in systems that exhibit vari-
ous degrees of tractability: though decidable, some are NP-complete, while
others, less expressive, admit inferencing algorithms that operate in polyno-
mial time. A number of the knowledge representation schemes described
earlier in the book are discussed in these terms. It is not yet understood pre-
cisely how the tractability of a knowledge representation system depends on
its expressiveness though there are some indications, but the trade-off may
have important implications for our view of what service is expected of such
systems.
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2  Logic in Knowledge Representation

Cliff Pavelin

If your thesis is utterly vacuous
Use first-order predicate calculus
With sufficient formality
The sheerest banality
Will be hailed by the critics: “Miraculous!”

(Henry Kautz, from Canadian Artificial Intelligence, 9, 1986)

2.1 Introduction

Logic was originally developed to formalize the principles of valid reasoning.
It has been studied since the time of Aristotle, although what is now
regarded as Classical Logic was invented by Frege in the last century. His
notation was diagrammatic and cumbersome; the current symbolic notation
was introduced by Peano and perfected by Russell and Whitehead in ‘Princi-
pia Mathematica’.

Logic attempts to make rigorous the reasoning process involved in science
or mathematics; indeed Principia Mathematica was an attempt to reduce
mathematics to Logic. It thus arises naturally in areas where deductive
proof is required - for example proof of a geometrical theorem or proof that
a computer program has the effect expressed by its specification. But
Knowledge Representation problems typically relate not to formal domains
but to ordinary discourse, to problems of everyday life, which are solved by
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informal reasoning often difficult to characterize. It is in such domains that
the role of logic is not so clear.

An introduction to Moore’s paper (1985a) in ‘Readings in Knowledge
Representation’ observes ‘an often furious debate over the proper role of
formal logic in Knowledge Representation has raged almost unabated since
the very beginnings of the field’. Moore’s paper is in fact a prominent
representative of the ‘logicist’ position, as is Hayes (1977a), while well-
known expressions of the ‘non-logicist’ viewpoint are given in the Appendix
to Minsky (1975) and Newell (1980). McDermott (1987) presents an
account of the logicist position from the point of view of someone who has
become less convinced. The two sides are respective subsets of the ‘neats’
and ‘scruffies’ identified by Bundy (1982).

What is it all about? Like many debates the issues become confused.
Israel in a good analysis of some of these confusions (Israel, 1983) believes
that failure to sort them out is one of the reasons for the inconclusive nature
of the arguments. Not least of the problems is a lack of a consistent
definition of ‘logic’. In Al, it is likely to mean one of the following:

(a) First Order Logic (FOL) summarized in the next section.

(b) Some development of FOL which maintains its notation, its notion of a
formal language, a deductive proof theory and a well defined model
theory.

(¢) Any formally defined method of representing knowledge and making
inferences about it.

The alternative to all these is to have reasoning techniques that are embo-
died inside a computer program, non-explicit and without any general princi-
ples.

In this chapter we assume definitions (a) or (b) and examine the benefits
and deficiencies of logic, in these terms, for the representation of knowledge.
We do not take sides in the debate; indeed the cynic may suggest it is a
somewhat contrived polarization which came about to give stimulus and
sparkle to the development of the subject. However, long may it continue.

Logic is, by definition, formal, while this chapter, in an attempt to give an
insight into the basic principles, is informal throughout. There are
numerous modern textbooks on formal logic available and it should also be
noted that many books on Artificial Intelligence (e.g. Nilsson, 1982; Frost,
1986) give substantial introductions to logic.
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2.2 A Brief Introduction to First Order Logic

The modern basis of logic is ‘First Order Logic’ (FOL) - also known vari-
ously as Classical Logic, Predicate Calculus (PC), Lower PC, FO functional
calculus and general logic. Most of the other logics being studied in Al are
developments (in some cases supersets) of FOL and they inherit at least
some of its notation, limitations and advantages. This section gives a very
brief introduction to those elements of FOL which are most relevant to the
discussion on Knowledge Representation.

2.2.1 Basic Elements

FOL attempts to abstract the essential features of deductive reasoning and
express them in what could be called an algebra of propositions. Proposi-
tions are statements which can be regarded as either TRUE or FALSE - no
half measures are allowed. For example:

144 is a square number
the internal angles of triangle ABC total 180 degrees
Puccini wrote 10 operas

are three propositions (the last is false).

FOL is defined on two quite distinct levels. At one level it is a formal
language with formation rules to generate sentences (‘well-formed formulae’)
in the language. At this level propositions are typically denoted by symbols
like p,q,r etc. A correspondence can then be set up between the symbols of
the language and objects or values in some domain - which may be arith-
metic or Euclidean geometry or the ‘real world’ or whatever. The sentences
in the language then map on to statements about the objects in the domain.
Mapping on to a domain is known as interpretation. For example a sen-
tence in the language might simply be:

p

Under a particular interpretation this may map onto the TRUE proposition
that Puccini wrote 13 operas. If under a particular interpretation each of a
set of sentences is TRUE, the interpretation is termed a model of those sen-
tences.

It is important to maintain this distinction between language and interpre-
tation. To say ‘p is TRUE’ is really nonsense as p is a symbol that cannot
be true or false. The statement is just a shorthand either for ‘p is asserted or
can be proved’ or sometimes ‘under an interpretation currently being
assumed, p maps onto a predicate that is deemed to be TRUEFE'.
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Connectives

The next stage is to build up more complex expressions in the language by
use of a further set of symbols known as ‘connectives’. These correspond
(under interpretation) to well known Boolean operators. Typically the ones
used in logic are A (and), v (or), — (not) and — (implies).

pAq is TRUE only if both p and q are TRUE
pvq is TRUE if at least one of p and q are TRUE
p — q is TRUE unless p is TRUE and q is FALSE
- D is FALSE if p is TRUE and vice versa

A, v and — can be termed ‘Dyadic’ operators - they act on two truth values
and produce a third. Since each proposition can have two possible values
(TRUE or FALSE), there are four possible combinations of values, and the
result of a connective must define a TRUE or FALSE for each, there are
sixteen (four squared) possible connectives that could be defined (some are
well known as basic electronic operations like NOR, NAND etc). The
choice made in classical logic is somewhat arbitrary: those given above are
traditional and make sentences easy to understand. There is redundancy -
for example v can be defined in terms of — and A:

p Vv qis equivalent to = (—mp A = q)

It is possible to define all the connectives in terms of one carefully chosen
one (for example — (p A q)) and this is often done in formal mathematical
logic in order to minimize the basic concepts - but expressions and proofs
are then obscure to the human reader.

It is important to realize that ‘implies’ is just another logical connective.

pP—q
does not, under an interpretation mean there is a causal link between what-
ever p and q map onto. For example:

144 is a square number — Puccini wrote 13 operas
30 is a prime number - Puccini wrote 10 operas

are both TRUE in FOL although there is no causal link in either and nei-
ther the antecedent nor the consequent is true in the second (see section
2.3:2).

Using the connectives (and brackets) as above, expressions can be built up
of arbitrary complexity, for example:

PArqAD) > (VA APVD)

and there is an elementary algebra of these symbols which allows
simplification of expressions etc. As an example:
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— (p A q) is equivalent to (— p) v (— q)

such transformations being easily checked by a ‘truth table’ which gives all
possible assignments to p and q.

2.2.2 Predicates and Quantification

It is possible to construct a logic purely on the basis of representing proposi-
tions as above - generally known as ‘propositional’, ‘primary’ or ‘sentential’
logic’. But it is very limited in what it can express. First Order logic goes a
very significant stage further in the refinement by which it can represent pro-
positions by being able to represent statements about members of classes of
objects. Take as example two of the propositions given previously:

The angles of triangle ABC total 180 degrees.
Puccini wrote 10 operas

These might be generalized by writing

The angles of triangle x total 180 degrees
y wrote z operas

As written, with the ‘variables’ x, y, z, these sentences mean nothing, but the
statements acquire a meaning if the variables are quantified. In FOL, two
quantifiers are introduced: V (meaning ‘for all’...) and 3 (meaning ‘there
exists’ ..).

Thus the following are first order sentences:

For all x, the angles of triangle x total 180 degrees

There exists an x, y such that x wrote y operas
(i.e. someone wrote some Operas).

In the notation of FOL the above statements would be represented as:

Vx p(x)
Ixy qx.y)

p(x) represents the incomplete proposition ‘the angles of triangle x total 180
degrees’; p and q are predicate symbols; x and y are known as variable sym-
bols which must be quantified either by 3 or V.

A predicate thus (under interpretation) represents the set of objects for
which a certain property is true. In this case p represents all triangles. q is
true for all pairs of people and numbers such that the person wrote the given
number of operas.



18 Logic in Knowledge Representation

It is this ability to make statements about all objects or assert the
existence of objects, without necessarily mentioning the individuals, which
gives FOL its power.

The language of FOL also has constant symbols which represent specific
objects, and function symbols which map onto functions:

3 x q(x,c) where c is a constant symbol

Under an interpretation in which q had the meaning above and ¢ mapped
onto the number 10, this would mean:

Someone (i.e. some x) wrote 10 operas.

There is an algebra which allows some simplification of expressions and
transformation into certain canonical forms. A simple example (which
shows the redundancy in 3 and V) is

3 x (p(x)) is equivalent to — (V x —p(x))

Example

Vxy gxy) -
s(x,y) v 3 2 s(x,2) A g(z,y)

(For all x and for all y, g(x,y) implies either s(x,y) or the existence of some z
such that s(x,z) and g(z,y)).
One interpretation of this is in the domain of integers where

g(x,y) means x > y
s(x,y) means x = y + 1 (x is the successor of y)

Then this sentence means for any choice of integers x and vy, if x>y then
either x=y+ 1 or there is some number z which is greater than y and one
less than x. This is plainly true and therefore this interpretation is a model
of the sentence.

Another interpretation is the domain of people: g(x,y) means ‘x is an
ancestor of y’, s means ‘is a mother of’. This says that if x is an ancestor of
y then x is a mother of y or a mother of some ancestor of y. This interpre-
tation makes the sentence FALSE; it would be a model if ‘mother’ were
replaced by ‘parent’.

2.2.3 Interpretations and Models

The term ‘interpretation’ has been used as a mapping from the language (the
syntactic level) onto some domain in which ‘TRUE’ and ‘FALSE’ have
some meaning. This does not necessarily imply that an interpretation has
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any real-world connotations. A proposition p may correspond to an infinity
of statements but all that is relevant to Logic is whether it is TRUE or
FALSE - it has just TWO essentially different interpretations. A sentence in
propositional logic (i.e. no variables) involving n distinct propositions has
just 27 interpretations - corresponding to an assignment of TRUE or
FALSE to each proposition. The sentence:

PvadAalpPvr
has just eight interpretations - the meanings of p and q and r in the normal
sense, are irrelevant.
The same principle applies in predicate logic where there are variables, but
the range of values of the variables must be specified and since this may be
an infinite domain, the number of interpretations is typically infinite:

3 x p(x)

To give an interpretation of this sentence means giving the domain of the
variable - and then specifying the subset for which p is going to be desig-
nated TRUE. There is thus an infinite number of interpretations and all
those for which p is designated true in at least one instance are ‘models’.

An interpretation is thus rigorously defined, but it is concerned with no
more of the content of a proposition than simply ‘truth’ or ‘falsity’. This
definition of truth and falsity by mapping from the language onto a domain
is known as giving the logic a semantics (after Tarski). However, one should
not necessarily equate ‘semantics’ with ‘meaning’ in the real world.

2.2.4 Deductive Reasoning

Deductive reasoning consists of taking a set of sentences, inferring from it
new sentences which can form the basis of further inferencing and so on
until some ‘interesting’ conclusion is reached.

In this way an edifice of theorems is built up upon a few assumptions, the
system of Euclidean geometry being the exemplar. Each step in this process
1s the application of one of a few simple rules of inference. The aim of logic
is to formalize and automate this process of reasoning; an ideal might be the
mechanical generation of the whole of Euclid from his simple postulates.

Deductive reasoning is applied to sentences of the FOL languages without
reference to what they mean in any interpretation. Some scheme of infer-
ence (variously rules of inference, ‘axiom schema’ or sometimes a diagram-
matic method) is defined which effectively gives transformation rules which
can be applied mechanically to sentences to form new sentences.
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An example of a simple rule of inference is as follows. If

A-B
A

are given, then
B

can be derived as a theorem. In this rule (the well-known ‘modus ponens’), A
and B may stand for any well formed formulae. Other (fairly obvious)
examples might be:

If AAB is proved, then A  can be derived.

If Vx p(x) is proved, then p(c) can be derived
where c is any constant symbol.

Any scheme of inference must preserve truth in any model (i.e. in any
interpretation which makes the assumptions true). In the cases above this is
obvious by the definitions of the connectives.

A proof starts from a set of ‘axioms’ and that proof will then be relevant
to any model of these axioms. (A set of axioms, plus all the FOL rules etc.
is sometimes called a ‘theory’.) Since the same set of axioms may character-
ize many models, theorems in different domains may have a single proof
when the abstraction into logic is made. For example, from the statements:

All men are mortal
I am a man

it follows:
I am mortal.
Another argument might run:

All Al professors are mad )
Professor X. is an Al professor 2)
Therefore (theorem) Professor X. is mad  (3)

In first order logic, both these arguments are represented by:

Vx p(x) = qx) (1) assumption

p(©) 2) assumption
p(c) = q(c) (22)  from (1)
q(c) (3) from (2) and (2a)

There are many schemes of inference for FOL - they are all equivalent in
terms of what can be proved from a given starting point. An FOL proof
scheme should have the following properties:
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(a) It should be SOUND - any theorem must be true in any model of the
axioms.

(b) It should be COMPLETE. If some sentence is TRUE under every
model of its axioms, then it should be derivable from the axioms.

If (a) were not true, we could prove theorems which were false in a model
- equivalent to showing both p and — p.

If (b) were not true, we have two definitions of a theorem: (i) a sentence
derivable from the axioms, (ii) a sentence which is true in all models. In
higher order and other logics they are not necessarily the same - there are
for example ‘truths’ in arithmetic which cannot be proved from the normal
axioms of arithmetic. However FOL is complete in this sense.

2.2.5 Validity and Consistency

It is possible to construct sentences which are inconsistent - which no
interpretation can possibly make true. Examples are

pA(=D)
or

— p(10) A V x (p(x))

The second, for example, is saying (under any interpretation) that some pro-
perty is false of some object 10 but is also true for all possible objects. The
inconsistency is obvious in these simple examples but in general will not be
so. A set of sentences for which a model does exist is known as consistent.

Conversely a sentence can be a tautology - this means it is true in every
interpretation. Examples are:

Pra—-@va
p(c) » 3 x p(x)
Sentences like this are known as valid.

Since the rules of inference preserve truth under interpretation, a model of
a set of sentences is still a model for all sentences derived under the rules of
inference, i.e. for all theorems. Everything it is possible to prove from a set
of consistent axioms forms a consistent set.

If the axioms are inconsistent, the whole system breaks down - in fact
anything can be proved. If the axioms are valid, nothing can be proved
other than more tautologies which can be proved anyway using the rules of
inference and starting with nothing!
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Proving a theorem can easily be seen as equivalent to checking a set of
sentences for validity. Suppose A, B and C are a set of axioms and we wish
to know whether a theorem T can be derived from them. If it can, then T
must be TRUE under any interpretation which makes A, B and C TRUE.
In other words no possible interpretation could make:

AABACA(=T

true. The proof of T is thus equivalent to showing this set of sentences is
inconsistent - there is no model. It is also equivalent to showing that its
negation:

(=AY =Y =CvT

is always TRUE, i.e. the expression is valid.

How does one go about checking for validity? In propositional calculus,
it is obviously always possible since the value of the expression can be calcu-
lated for every possible assignment of truth values (although in practice this
may be a huge number). It is not so obvious for FOL, but in fact there are
decision procedures which guarantee to terminate if an expression is valid.
This is equivalent to the remark above that FOL is complete.

It can be shown there is no procedure which can be guaranteed to com-
plete if the set is non valid - FOL is said to be semi-decidable for this rea-
son. In other words it is not in general possible to prove that a sentence is
not a consequence of some theory.

2.2.6 Theorem Proving in FOL

We have said that rules of procedure can be devised which are sound and
complete for FOL, i.e. can, in principle, be used to derive any theorem.
Devising such rules is unfortunately not the difficult problem. The difficulty
which gives rise to most of the research into theorem proving is devising
rules which are efficient for the typical problems which arise in practice.
Issues of decidability are of little concern if proving a simple theorem takes
millions of years of Cray time. Much research into computer methods of
theorem proving was stimulated by a uniform method, suitable for
automated inference, known as ‘resolution’. Theorem proving in FOL is a
very active research area although it is unfortunately still the case that some
logical puzzles which may be very simple for an intelligent human to solve
are quite stringent tests of state-of-the-art theorem proving.
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2.3 FOL in the Representation of Knowledge

The semantics of FOL gives the basis of a powerful mechanism to represent
knowledge of the real world in logic. As will be seen, however, this is much
easier in ‘formal domains’.

2.3.1 Formal Domains

To map a domain onto FOL, it must be possible to regard the domain as
consisting of objects plus properties of, or relations between, the objects
which in any particular case can be designated as TRUE or FALSE. In
‘formalized’ domains - for example mathematics, the law, the information
represented in a computer database - this is likely to be the case and a map-
ping into FOL or some extension of it is normally a natural one.

A relational database can be regarded as already in FOL form: each rela-
tion type corresponds to a predicate and each relation to a proposition
expressed with this predicate. Thus one may have an office-building data-
base storing information about room numbers, occupants and telephones in
each room. Suppose there are two relations: OCCUPANT (giving room
numbers and occupants) and TELEPHONE (giving telephone numbers and
occupants):

OCCUPANT TELEPHONE
person room number room
D.Owen 1 345 1
D.Steel 1 123 1
M.Thatcher ) 639 2
N.Kinnock 3 639 3

Messrs. Owen and Steel share a room but it has two telephones in it, while
Thatcher and Kinnock each have their own room but have a party line.
Each relation can be viewed as a FOL predicate with an obvious interpreta-
tion in the real (or perhaps pretend) world represented by the database.
Thus the FOL sentences would be:

occupant(D.Owen,1)
telephone(639,2)

etc.

The interest in logic database systems is to add rules, which can be
expressed as logical implications, to such systems. The traditional use of
relational databases often assumes implicit rules, e.g.:
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(a) Objects have unique identifiers: room 1 and room 2 cannot stand for
the same thing.

(b) If a relation does not exist, one can assume its negation: there is no
telephone 639 in room 1 (this is known as the Closed World Assump-
tion).

(In fact neither of these implicit rules can quite be expressed in FOL.)
Logic Databases can introduce explicit rules written in FOL, e.g..

(¢) — 3 x occupant(x,4)
Room 4 is empty

(d) V x,r occupant(x,r) A even(r) —» nonsmoker(r)
Even numbered rooms contain non-smokers

This allows the construction of ‘deductive databases’ - one can infer much
more than those facts which are directly stored in the initial relations. How-
ever, there are a number of theoretical problems, for example databases get
updated. If a relation is added giving a definition of an occupant in room 4,
the database is inconsistent with the rule (c) given above. Once implications
are allowed, there are problems in avoiding inconsistency with the implicit
rules given above. Particularly (b) becomes tricky even to define because a
relation can be inferred from the rules rather than given explicitly in the
database. Such problems are an active research area (Gallaire and Minker,
1978; Flannagan, 1986).

The issues are of much more than theoretical interest; if full FOL deduc-
tion is allowed, anything at all can be deduced from inconsistent data.
However the problems are about consistency and proof in logic rather than
about Knowledge Representation itself. It should be noted that the mere
existence of a relational database assumes that the knowledge is highly struc-
tured already.

2.3.2 Non-formal Domains

In mapping formal systems like the database onto logic, the database system
itself is a model of a logical theory and there is likely to be a straightforward
mapping between the facts in the database and the real world. However in
the case of real-world knowledge of an unformalized type, the mapping is
not so obvious.

Take the example as a piece of ‘knowledge’:

John gives a book to Mary

This is a proposition, but simply representing it by a predicate p would be
totally unhelpful. One would have as many predicates as ideas that could be
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expressed and no way of analysing their content. The constituent concepts
that appear to be basic here are ‘John’, ‘Mary’, ‘book’ and ‘give’. A natural
approach may be to take ‘John’, ‘Mary’ and ‘book’ as objects and ‘gives’ as
a relation between them. The import of the above sentence is presumably
that John and Mary are specific individuals but that the book is some
unspecified book.

3 x book(x) A gives(John, x, Mary)
i.e. there is some x which is a book and John gives x to Mary

One may say in addition that John and Mary are human beings:

human(John)
human(Mary)

However this representation will make it impossible to treat this act of giv-
ing as an object about which one may want to specify information - the time
it took place (or does one want a special predicate for ‘gave’?), the place etc.
A more basic formulation can specify a ‘giving event’ and then associate
other predicates with this, e.g.:

giving (el) el is a giving ‘event’
agent(el,John) John was the giver
recip(el,Mary) Mary was the recipient

3 b, book(b) A object(el,b) A book is the object of giving

The act of ‘giving’ is then an individual in the domain just as are John,
Mary, etc. Temporal information could be added:

time(el,T) the giving was at time T

This would seem to be a reasonable FOL formulation of the sentence.
However one will presumably want to express also more general ideas about
‘giving’ which would allow reasoning about the situation. For example:

v el,y,t,x giving(el) A recip(el,y) A time(el,t) A object(el,x) —
Vi1, tl1 >t - owns(y,x,tl))

This is saying that if y was the recipient of x at time t then he becomes the
owner for all time after this. (Notice that > signs have slid in here - let us
assume they can be defined as a predicate.)

Of course this rule is not always true in the real world; in practice it is
difficult if not impossible to write universal rules about the real world uniess
they be true by definition (‘all dogs are mammals’, for example). However,
such a rule as above might be taken as true in some idealization of the world
which a certain application can assume. In representing the real world as a
logical model one has two problems - first idealizing the world and then
selecting the best FOL formulation.
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2.3.3 Semantic Networks

Various network and structured object representations described elsewhere in
this book have been developed specifically for dealing with knowledge about
the real world and it is very instructive to investigate the extent to which
they are equivalent to logic.

A semantic network can be mapped into FOL by taking its nodes as
corresponding to terms and its arcs to relations. Since all arcs link two
nodes, the predicates will be binary. As pointed out in Deliyanni and
Kowalski (1979), the semantic network representation draws attention to the
advantages of using only unary and binary predicates in a logic formulation
(as above). Some care must be taken because (typically) the nodes of a
semantic network may be individuals or types. Figure 1 adapts an example
from Deliyanni and Kowalski (1979), representing the example given in the
previous section. Here the links from Mary and John to Human are
‘instance-of” relations and are probably best represented by a predicate
‘human’ and statements of the form:

human(Mary)
human(John)

The ‘isa’ relation is often used in semantic networks to denote the subset
(subtype) relation, as well as the instance-of relation given above.

book Mary
‘wj ect recip \mtance
el human
’/nstance agent /ﬁstance
give John

Figure 1
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isa :
human ————= animal

I'his means ‘all humans are animals’; a translation into logic would read:
¥V x human(x) — animal(x)

One can treat these links like any others, by having predicates ‘instanceof’
und ‘isa’, but this would be introducing predicates for concepts that are
nlready built in to FOL and an additional set of axioms about these predi-
cites would have to be introduced.

In the ‘conceptual graph’ representation of Sowa (1984), there are two
types of node: concepts and relations (arcs are unlabelled apart from direc-
tion). Relations take the place of arcs in the normal semantic network. The
previous sentence is represented by the diagram in Figure 2. A common
confusion between ‘isa’ and ‘instance-of” is removed in Sowa’s system by
maintaining a type hierarchy external to the network. Thus the fact that:

isa I
human — animal

is not represented in the graph itself - indeed Sowa claims that being a
diffcrent ‘order’ of link from those given, it should not be.

The ‘instanceof’ relation is similarly specially treated: the ‘John’ attached
{0 the ‘human’ box is a referent which says that the individual John is of
type ‘human’. Sowa gives a formal mapping from conceptual graphs into
FOL; this one would be:

; @ book: *
: @ human: Mary

human: John @ give: *

Figure 2
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J el,bl human(John) A agnt(John,el)
A recipient(Mary,el) A gives(el)
A obj(bl,el)
A human(Mary) A book(bl)

Notice the concepts of Give and Book were not given individual referents
and so existential quantification appears in the FOL formulation. Fuller
details are given in Chapter 7.

These ‘isa’ and ‘instance-of® relations map into particular cases of
quantification in FOL. But there is no generally accepted notation for
quantifications, disjunctions (vs) and implications in semantic networks
although there have been a number of proposals (see Deliyanni and Kowal-
ski, 1979; Sowa, 1984).

2.3.4 Frames

Mapping properties of frames (see Chapter 4) into FOL demands some
assumptions about what they mean. Hayes (1979) makes assumptions but
then proceeds to show that an FOL mapping is, on the whole, straightfor-
ward. A frame type represents some generic concept; an instance of the
frame type, with appropriate values in the slots, represents an instance of
this concept. Suppose C is a frame type and x is an instance, then C(x) can
be taken as the predicate corresponding to ‘the object x is a concept of type
C’. Thus if C is the ‘house’ frame, and ‘10 Downing Street’ an instance,
then in FOL we would assert:

C(‘10 Downing Street’)

interpreted by the fact that ‘10 Downing Street’ is a type of house. The pro-
perties of ‘slots’ correspond to two sorts of logical implication. The first
says that frame instances have slots with appropriate values:

YV x C(x) - 3yl RCI(x,yl)
vV x C(x) » 3y2 RC2(x,y2)

The yn represent slot values. The RCn predicate represents the relation
between a frame and its nth slot; thus RC1(x,y1) would mean that the value
of the first slot of the frame x is y1, and furthermore it is appropriate for
that slot. If C is the house concept with the first slot giving the number of
rooms, then a model of RCI1(x,y1) would check that the yl was a number in
the right range.
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The second mapping is slightly more subtle: some applications of frames
assume that if some object has all its slots filled with appropriate values for a
certain type of frame, then indeed it is taken as an object of that type.

Y x,yl,....,yn RCI(x,y1) A ... A RCn(x,yn) - C(x)

In like manner the typing and inheritance characteristics of frames can be
largely mapped onto FOL. Suppose we wish to say that the frame type
‘bungalow’ is a ‘house’ with its ‘number of floors’ slot constrained to contain
the number one:

V x bungalow(x) — RBI(x,1)
V x bungalow(x) — house(x)

(It is assumed that the first slot gives the number of floors.) The second
implication would show, together with the axioms given formerly, that the
‘bungalow’ is constrained by properties of slots in the ‘house’ frame.

One common characteristic of frames - inheritance of default values where
no current values are given in the slot of a subtype - raises the same issues in
mapping onto FOL as those addressed by ‘non-monotonic logic’. We return
to this in section 2.6.1. A general discussion of Hayes’ ‘Logic of Frames’ is
given in section 4.4,

2.3.5 An Advantage of Network Systems

If semantic networks and structured object representations, designed a priori
to represent ad hoc knowledge, can map onto FOL or some extension of it,
what advantages do these somewhat ill-defined formalisms have over the
precise and well analysed language of logic?

The crucial advantage is practical rather than theoretical and is best
shown by examples.

In a semantic net, all the predicates about Mary will have a link to the
node Mary. A theorem-prover working on such a network and operating on
this node may naturally follow links from it: compare this with looking at
the set of predicates which contain Mary somewhere in them - an unlikely
operation for an FOL theorem-prover.

Similarly the ‘isa’ link (or type hierarchy in the Sowa formulation) is
explicit. In logic, to find out that Mary inherits the characteristics of a
human, a theorem-prover has to stumble across statements of the form:

human(Mary)
V x human(x) — some-property(x)

One further example (taken from Reiter, 1985) is where a network represen-
fution is used to show mutual exclusiveness (sece Figure 3). In some systems
the diagram shown would be an is-a hierarchy which was meant to imply
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thing
animate
reptile fish mammal
dog cat
Figure 3

that reptile/mammal/fish are mutually exclusive classes. Although it is easily
expansible into logic, the formulation is messy and the reasoning to discover
that, say, a dog is not a reptile, is cambersome.

This is all summed up by saying that a network representation embodies
as primitives certain important relations or reasoning steps which in a
theoretically equivalent logic representation may be deeply buried. The net-
work may thus be clearer to understand and easier to reason with.

2.3.6 Logic Programming

Any computer program is a representation of knowledge and some mention
must therefore be made of that programming paradigm known as ‘logic pro-
gramming’. In a logic program - the current manifestation being the now
widely used Prolog language - the statements of the program can be
regarded as assertions of a logical theory. The ability to make the
equivalent of quantified logical statements, e.g. all of a set of objects have a
certain property, gives a programming language of remarkable power. The
aim of the program is to exhibit relevant inferences. Running the program
is equivalent to proving a theorem in a sequential manner which makes
predicates the analogue of procedures in a traditional programming
language. The differences between running a program in Prolog and
expressing a problem and solving it in FOL are:

(1) A Prolog program cannot express the whole of FOL; the particular res-
triction (to ‘Horn clauses’) is equivalent to disallowing implications
which have disjunctions on the right hand side:
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A-BvC

(ii)) A Prolog program typically contains features which are not equivalent
to FOL (including the ‘Closed World Assumption’) or in some cases are
not ‘logical’ at all. The advantage of such features is that they allow
Prolog to be very effective as a general purpose programming language.
The disadvantage is that they detract from the declarative character of
the logical statement of the problem.

(iii) The built-in theorem-proving procedure is constrained to a specific
technique (known as SL resolution). It is a straightforward one for a
programmer to understand (at least when expressed in terms of implica-
tions given the Horn clause restriction) but, combined with the non-
logical features mentioned above, can make answers dependent on
statement ordering.

Current research into logic programming is attempting to design
languages nearer to logic which will thus increase the declarative nature. At
present however a typical logic program will combines features of pure logic
with ad hoc representation or reasoning steps typical of any computer pro-
gram.

2.4 Benefits of Logic

Before we discuss the deficiencies of logic in knowledge representation, it is
as well to summarize its very cogent benefits.

2.4.1 Precision and Analysis

I'he great feature of FOL is its precisely defined and well understood nota-
tion, with a model theory (semantics) which gives precision to the mapping
between the sentences of logic and some domain.
Thus the constructs:
isa

P Q (semantic net)

p is a Q (English)

are made unambiguous when given a logical formulation:



32 Logic in Knowledge Representation

V x P(x) - Q(x)
Q)

If a representation can be expressed in FOL (or any of its derivatives) it is
clarified not only to the reader but to the author. Subtle questions about
the interpretation of a ‘frame’ can be seen to be quite unsubtle when
expressed in logic.

It is difficult to think of any other ways than logic to explain precisely
what a particular network or structured object formalism is supposed to
denote. Sowa (1984) is careful to give all his constructs an expression in
FOL other than when they go beyond what FOL can express.

2.4.2 Expressiveness

FOL is expressive in the sense that its notions of quantification and negation
are not easy to represent unambiguously in network and structured data
form. The difficulties of deciding what a frame formulation is meant to sug-
gest will be returned to several times in this book - some of these problems
amount to the differences between existential and universal quantification.

Expressiveness is discussed in Moore (1985a) where he observes that prob-
lems of reasoning and representation involving incomplete knowledge are
typically solved only by systems of formal logic. Figure 4 shows his well-
known example. Is there a green block next to a non-green block? The
answer is clearly yes - but the statement of the problem and the reasoning
required for the solution are difficult to give in many knowledge representa-
tion systems and require precisely the constructs of FOL.

2.4.3 Proof Theory

The triumph of FOL is its proof theory - in particular the completeness
theorem that everything that is true in all models of a theory can be proved.
There is a continuing large amount of work in developing wholly automated
or computer-assisted proof mechanisms in FOL and its derivatives (some of
which do not have the completeness property).

GREEN ? BLUE

Figure 4



2.4 Benefits of Logic 33

This feature is of course one of reasoning rather than representation. and
one of the criticisms of logic below will be the extent to which deductive
proof is relevant to common-sense reasoning in a non-formal domain.

2.5 Limitations of Logic in Knowledge Representation

Any discussion of the limitations of Logic in knowledge representation must
take into account what function logic is expected to play. It can be used to
represent and analyse knowledge; it can also be used for (indeed was
invented for) deductive reasoning over this knowledge. It will be seen that
the limitations in representation have or are being successfully tackled by the
development of more advanced logics than FOL. But the deficiences of
logic in ‘common-sense’ reasoning (see sections 2.5.1, 2.5.3 below) appear to
be more fundamental and have led some critics to deny a role for logic in
representation. Israel (1983) analyses such criticisms; he concludes that
although logical proof is but one tool to be used in reasoning, this is not at
all a deficiency of logic in a representational role but an indication that one
must clearly distinguish between logic and reasoning. Notwithstanding, we
present here all the traditional arguments against logic.

2.5.1 Limitations of Deductive Reasoning

I'hc major objection to Logic in knowledge representation applies only to its
role in reasoning - this is the fact that most reasoning about the real world
is not deductive. This is eloquently argued in McDermott (1987); that the
argument is not new is shown in the following passage from Bertrand
Russell (1945):

The Greeks in general attached more importance to deduction as a
source of knowledge than modern philosophers do. In this respect,
Aristotle was less at fault than Plato; he repeatedly admitted the impor-
tance of induction, and he devoted considerable attention to the ques-
tion: how do we know the first premises from which deduction must
start? Nevertheless, he, like other Greeks, gave undue prominence to
deduction in his theory of knowledge. We shall agree that Mr Smith
(say) is mortal and we may, loosely, say that we know this because we
know that all men are mortal. But what we really know is not ‘all men
are mortal’; we know something rather like ‘all men born more than
one hundred and fifty years ago’ are mortal, and so are almost all men
born more than one hundred years ago. This is our reason for thinking
Mr Smith will die. But this argument is an induction, not a deduction.
It has less cogency than a deduction, and yields only a probability, not
a certainty; but on the other hand it gives new knowledge, which
deduction does not. All the important inferences outside logic and pure
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mathematics are inductive; the only exceptions are law and theology,
each of which derives its first principles from an unquestionable text,
viz. the statute books or the scriptures.

It should be noted that even in mathematics, real proofs are not really
checked, let alone designed, using FOL. Establishing a proof is typically by
vague intuition or by mental leaps; checking it is by a ‘consensus of the
qualified’ (see Davis and Hersh, 1981). The mechanization of proofs on high
speed parallel computers may well extend the domains in which formal proof
is practicable - but real problems take a lot of logic. It requires 362 pages to
show that 1+ 1=2 in Principia Mathematica.

2.5.2 Implications and Modal Legic

FOL is an extensional theory; it is described in terms of models which are
sets (the extension of a predicate is the set of entities which make it true).
Many of the ideas one may wish to express in knowledge representation
involve intension: the qualities implied by a concept, rather than the set of
objects it describes. An example from Sowa (1984):

All unicorns are cows
¥ X unicorn(x) — cow(x)

Any model of the real world makes this implication TRUE, as there are no
unicorns, whereas even in the real world we know that unicorns are mam-
mals with one horn and certainly not cows. It was mentioned in section
2.2.1 that the FOL definition of implication (known as material implication
or the ‘Philonian’ conditional) does not represent the normal ‘causal’
interpretation. This (again from Sowa, 1984) would be TRUE in FOL:

If elephants have wings then 2+2=35

There are logics which are designed to overcome some of these representa-
tional deficiencies; the most well known are a series of ‘modal’ logics origi-
nally presented by Lewis (1932). They were initially based on a new form of
implication (‘strict implication’) where

p=q
was true only if q ‘could be deduced’ from p. This concept is unrelated to
the truth or falsity of p; it is saying that if p were true, then q would follow.

This gives rise to ‘modalities’ of ‘possibility’ and ‘necessity’ that can be
attached to predicates (see section 2.6.2).
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2.5.3 Non-monotonicity and Defaults

‘Monotonicity’ is a feature of FOL which has come to be seen as a
deficiency of FOL both in representation and reasoning, and which has been
responsible for perhaps the greatest amount of work in logic in AL If we
have a domain defined by a set of logical axioms (a theory), then any addi-
tional axiom must be consistent with the original theory. Otherwise the
whole system breaks down - anything can be proved. Having said:

Y x bird(x) — flies(x)
bird(ostrich)

we cannot then add:
— flies(ostrich)

A new axiom cannot invalidate any of the previous conclusions. This pro-
perty does not map onto the real world. The fact that ‘Janet has no chil-
dren’ may be true now, false next week. An axiom that ‘all birds fly’ may be
established in good faith before an exception is found. If someone parks his
car outside, he will later reason on the assumption that it is still there - until
he finds it has been towed away.

One can of course accept that a logical theory applies to a situation as
cxists (or is believed) at a certain point, and when anything changes all the
necessary axioms change and one starts again. There are ‘truth mainte-
nance’ systems which attempt to keep track of valid inferences in a changing
situation. However, default assumptions do seem to be a necessary and
basic part of common-sense reasoning and, this being so, any representation
should itself include the fact that they are being made.

Changes in time can be incorporated by having an additional ‘time’
parameter in every predicate, although this in fact gives rise to need for
many more default assumptions of exactly the above type (see section 2.6.1).
Many ‘temporal’ logics are being designed to try and cope with the problem
of time (see Chapter 9).

Section 2.6.1 discusses ‘non-monotonic’ logics which have been developed
in an attempt to handle the representation of, and reasoning with, defaults.

2.5.4 Truth and Falsehood

Classical logics are based on the concept of a proposition which is either
I'RUE or FALSE. Propositions in the real world are not like that. There
are degrees of uncertainty, degrees of judgement to be made, and these will
be reflected in the inferences that can be drawn. From the statement that ‘a
man had large feet’, one can make inferences about his shoe size, but they
will be of the form ‘he is almost certainly at least size 10, probably 11°. A
representation which is constrained to truth or falsehood is not flexible
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enough to deal with much of the vagueness of the real world.

There are many schemes for representing and reasoning with uncertainty
but many of them could probably not be described as ‘logics’ under our
informal definition in section 2.2.1. Multi-valued logics have been developed
within FOL - changing the semantics to allow values other than TRUE and
FALSE in an interpretation. The most well known is a more radical depar-
ture known as ‘fuzzy’ logic where a predicate can take any real value
between zero and one. Fuzzy logic was developed by Zadeh (e.g. 1974) and
has influenced many expert system developments.

Some ‘uncertain’ logics are based on probability, some on numerical
‘weights’ whose interpretation in the real world may be as vague as the con-
cepts they are expressing. Others represent uncertainty in some qualitative
way. The success of these systems is only possible to assess in real life appli-
cations.

2.5.5 Reference to Predicates and Propositions

In FOL there is no way of referring to propositions or predicate names in
other propositions.

One requirement is to quantify over predicate names. An example is a
definition of ‘equality’. FOL is often defined with equality as a special addi-
tional ‘built-in’ predicate. If it is not, one can define some of the properties,
for example the reflexive property of equality:

Y x,y equals(x,y) — equals(y,x)
But what about substitution:

Y x,y p(x) A equals(x,y) — p(y)

We wish to say that if p(x) is true and y=x, then p(y) is true no matter what
the predicate p is. We cannot put a V p on the front in FOL. This would
be a statement of second-order logic. The statement: ‘there is a set of peo-
ple in this department whose members do not talk to anyone else’ refers to
the existence of a set with certain properties and is thus a second order
statement. Second and higher order logics are well defined but the proof
theories do not have the nice properties of completeness etc.

Perhaps a more common requirement in knowledge representation is the
need to represent statements about propositions. One class arises from the
modal logic mentioned previously:

It is necessary that ... some proposition.
It is possible that ... some proposition.

There are many circumstances in which propositions need to be referenced
and many other logics which have been and are being developed to try and
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cope with them. Examples are:

X knows that ... (epistemic logic)
It was true that ... (temporal logic)
It was always true that ...

It is permissible that .. (deontic logic)

It might be thought superficially that such expressions can easily be incor-
porated in FOL by expressing the modalities by a predicate. Thus one may
represent ‘John knows the proposition P’ by:

knows(John,P)

But we wish simultaneously to analyse P as a proposition; one may want to
say:

knows(John,P) — P
V x knows(John,Q(x))

and so on. Making propositions into objects is not defined in FOL and its
interpretation would become paradoxical. Modal logics introduce additional
notation for ‘modalities’ like ‘necessary that’, ‘knows that’ etc., together with
new rules of inference and semantics - a short discussion is given in section
2.6.2.

2.6 Non-standard Logics

Section 2.5 mentioned some of the many non-standard logics on which work
is being pursued vigorously and which have found application in Al as well
as other areas of computer science. Turner (1984) and several chapters of
I'rost (1986) survey advanced logics in this field. We discuss here two
flavours of non-standard logic which have had the greatest influence in
knowledge representation - non-monotonic and modal logics. Section 9.3.4
gives some discussion of temporal logic.

2,6.1 Non-monotonic Logic

As mentioned in section 2.5.3, non-monotonic logics have developed in an
attempt to deal with representation and reasoning using default assumptions

which appear to be a ubiquitous characteristic of ‘common-sense reason-
ing’. There are various formulations - notable are McDermott and Doyle
(1980), McCarthy (1980) and Reiter (1985). Although the theoretical bases
are very different, the difficulties are very similar and can be explained easily,
if in an entirely non-formal way.
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We wish to incorporate the idea of:
P normally-implies Q

i.e. if P is true we want to assume Q unless for some reason we know Q is
not true.
Thus:

V x (bird(x) normally-implies flies(x))

If bird(ostrich) we wish to assume flies(ostrich) unless we can deduce that an
ostrich cannot fly, for example there may be a statement:

— flies(ostrich)

Such a concept is not so easy to formalize in FOL. One obvious reason is
that finding out that — flies(ostrich) is not the case may not be decidable. A
much worse problem is that having introduced such an abnormal implication
we have to decide whether the inferences we make using it are allowed to be
used in determining whether further abnormal implications can be made.
An example with a simple model makes this clear:

1. P(gingko) a gingko is a conifer
2. R(gingko) a gingko is broad-leaved
3. V x P(x) normally-implies Q(x) conifers are evergreen

4. V x R(x) normally-implies - Q(x) broad-leaves are deciduous

P(gingko) and R(gingko) are given and not much that is useful can be
deduced with FOL reasoning. But since we cannot prove — Q(gingko), we
can assume (by 3) that Q(gingko). This presumably blocks the application
of 4. But if we start again, we might choose to make 4 the abnormal infer-
ence we start with, thus proving — Q(gingko). Whether we prove Q(gingko)
or R(gingko) depends on whether our reasoning starts with 3 or 4. This is
totally against the philosophy of logic where the set of theorems is not
dependent on the proof procedure. Non-monotonic logics get around this
problem by defining a theorem as that which is common to all the theories -
i.e. is always proved. In the above example nothing new could be proved,
but if 4 was not present, Q(gingko) would be provable.

Hanks and McDermott (1986) claim that in practice such logic is likely to
be very limited. Their example is very instructive as it not only demon-
strates this problem, but shows how non-monotonic argument naturally
arises when arguing about time due to the ‘frame’ problem (nothing to do
with frames). The example is thus worth presenting here, although in a
much simplified notation.
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Their problem concerns John and a gun which can be loaded or shot, and
a succession of states. States change when something happens. Predicates
are:

alive(s) John is alive in state s
loaded(s) The gun is loaded in state s

and functions:

result(load,s) the state which results if the gun is
loaded in state s

result(shoot,s) the state which results if the gun
is shot in state s

result(wait,s)  the state which result if we wait
for a minute in state s

The axioms are:

alive(s0) John is alive at s0 1)

V s loaded(result(load,s)) )
If someone loads the gun when in any state s
it becomes loaded in state result(load,s).

V s loaded(s) — — alive(result(shoot,s)) 3)
If someone shoots a gun when it
is loaded, John is not alive in the
resulting state

One cannot deduce very much without ‘frame’ axioms. We wish to say that,
for example if the gun is loaded at state s, it is loaded at whatever the next
state is, unless we can prove otherwise. Otherwise, for every possible change
of state in the world (for example someone walking into the room), we will
have to define that it does not change the effect on the loading of the gun.
I'his is the same as the ‘car-park’ assumption mentioned previously - the car
is there unless there is some statement that it has been moved. The exact
formulation of the non-monotonic axioms depends on which of the logics is
ndopted; in our informal notation we will say:

V s,a loaded(s) normally-implies loaded(result(a,s)) “
V s,a alive(s) normally-implies alive(result(a,s)) ®)

Ciuns stay loaded and people stay alive unless we can prove otherwise.

Suppose: result(load,s0) is denoted by sl
result(wait,s1) is denoted by s2
result(shoot,s2) is denoted by s3.
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We can deduce loaded(sl) from (2). We cannot prove directly loaded(s2)
but by the frame axiom (4) we can assume it since we cannot prove
—loaded(s2). Now from (3) with s=s2, we see John is not alive at s3. This
is all consistent and expected.

But even for such a simple problem, there is another solution, obtained by
doing the proof in a non-intuitive direction. Since we cannot prove directly
— alive(sl), we can assume (by 5) alive(s2). A further application shows
alive(s3). Then (3) shows that the gun was not in the state ‘loaded’ at s2.
This may seem strange as it was loaded at sl, but everything is consistent.
The only ‘abnormal’ inferences common to both scenarios are alive(sl) and
alive(s2). This small example appears to show that non-monotonic logics as
normally defined are not likely to be very useful.

2.6.2 Modal Logics and Possible Worlds

Many modern logics being studied in Knowledge Representation are derived
from ‘modal logic’ developed by Lewis (1932). Hughes and Cresswell (1968)
is a standard contemporary work. Modal logic was originally based on a
concept of ‘strict implication’ (see section 2.5.2). Just as a language and
theory of FOL can exist independently of its semantics, modal logic did not
have a generally accepted model theory until Kripke formulated the ‘possible
world’ semantics. This gave not only a precise model of various formula-
tions of modal logic; it seems to be one which is relevant to the world that
we wish to represent in an ‘intelligent agent’. A logic of Knowledge and
Belief, originally due to Hintakka, can be defined as an extension to the
same semantics and this is formulated by Moore (1985b) - one of the most
prominent attempts to apply modal logic in AL

The basic notions introduced in Lewis’ Modal Logic were ‘necessity’,
‘impossibility’, ‘contingency’, and ‘possibility’. Any of these can be
expressed in terms of the others so in fact only one need be defined as primi-
tive - generally this is either ‘possibility’ or ‘necessity’. Intuitively, ‘necessity’
is interpreted as ‘could not fail to be true’. This obviously has no place in
FOL where under an interpretation a proposition is either true or false; there
is no other quality about it. In modal logic an interpretation embodies a
parallel set of scenarios (see below) which could (for example) correspond to
different hypotheses about the world.

The apparatus of modality is added to existing FOL. Thus a proposition
p can still be asserted (and correspond to TRUE under interpretation) but
one can also assert:

Lp

saying ‘it is necessary that P’; and
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Mp

saying ‘it is possible that P’. The relationship between them is that p is pos-
sible if and only if it is not necessary that — p:

Mp is equivalent to — L (— p)

The strict implication (which was originally the primitive from which modal
logic was defined) is normally defined as:

p=>q is equivalent to — M(p and — q)

i.e it is not possible that p should be true without q being true.

Additional rules of inference or axiom schema must be added to the normal
FOL ones in order that deductive reasoning using these new modalities can
take place. All modal logics would contain the following:

LP->P
(i.e. if P - which can be any well-formed formula - is necessary, it is true)
and:
L(P-Q) - (LP-LQ)
Also any logical axioms (these are valid sentences in FOL) are necessary:
L(p—p) would be an example

A variety of modal logics can be defined by adding other rules of inference,
of greater or lesser intuitive meaning, to the basic system (which is known as
system T). For example:

Lp —» LLp if p is necessary, then it is necessarily necessary

Quantification gives more room for varieties of axiomatic system, for exam-
ple:

vV x Lp(x) = L(¥ x p(x))

The semantics of modal logic (without which the whole theory may seem
rather obscure) can be regarded as an extension of that for FOL. Rather
than having a single domain, an interpretation of a modal logic theory
specifies a set of domains (possible worlds), of which one is distinguished -
the actual world. This (say WO0) acts as the model of the theory in the FOL
sense, i.e. the non-modal propositions of the theory are interpreted in this
world. An accessibility relation is defined over the possible worlds:

r(W1,W2)

defines W2 to be accessible from W1. Intuitively this means that an agent in
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W1 can imagine a world as described in W2. The relation r is normally
reflexive, and there may be other constraints on it (transitive, symmetric etc.)
- it is the type of these constraints that precisely determines which of the
various classes of modal logic is defined.

In each possible world various assignments may be made to the values of
propositions just as with FOL interpretations (a complication is that the
domains in possible worlds may be different also). An interpretation is a
model of Lp just if p is TRUE in all worlds accessible from WO (intuitively
in all scenarios that someone in W0 can imagine). It is a model of Mp if p
is TRUE in at least one accessible world.

By extension, the interpretation is a model of LLp if Lp is TRUE in all
worlds accessible from WO, i.e. p is TRUE in all worlds accessible from
these.

Moore (1985b), following Hintakka, developed a modal theory of
knowledge.

Kap

means agent a knows proposition p. If a is kept fixed this becomes
equivalent to the ‘necessity’ modality. (This means that another and perhaps
better intuitive interpretation of Lp in ordinary modal logic could be ‘I
know that’; and the axiomatic structure may be much easier to follow.) The
semantics is as above with the additional feature that an accessibility relation
must be defined for each agent. A model of an agent’s knowing a proposi-
tion must make that proposition TRUE in all the worlds accessible from W0
for that agent. Moore expresses the semantics itself in FOL; thus a formal
translation can be made from the modal logic of knowledge into FOL,
proofs undertaken and a translation made back.

2.7 Summary Comments

Logic is now widely studied not just by philosophers and mathematicians
but by computer scientists and AI workers; the number of new logics being
proposed is too great even to reference in this short chapter. The debate
mentioned at the beginning of this chapter is but a continuation of argument
about logic in the representation of knowledge which has continued for over
two thousand years.

It might be thought that the development of mathematically sound seman-
tics not just for FOL but (for example) for quantified modal logics, should
have lessened the arguments, as much of the field becomes a part of
uncontroversial mathematics rather than controversial philosophy. However
this would be a mistake; the arguments are not about the soundness of
models but about the extent to which they represent the world that we wish
to reason about.
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This remains to some extent a philosophical question and it is not clear
whether the argument will ever be settled. But whatever the eventual role of
logic, a firm grounding in it would be advisable for any student of
knowledge representation, if only to understand and analyse the numerous
other recondite representation schemes which will no doubt emerge.
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3 Semantic Networks

Damian Mac Randal

3.1 Introduction

The study of language is usually divided into four fields: phonology, syntax,
semantics and pragmatics. Phonology investigates the mapping of words
onto sound. Syntax addresses the ordering of words and speech parts, often
involving a grammar which specifies the criteria for acceptable sentences.
Semantics is the study of the meaning of the individual concepts used in the
language. Pragmatics maps these meanings and the other aspects of language
onto the speaker’s intentions behind an utterance (e.g. when crying out ‘‘the
house is on fire” to someone standing in it, the intention is for them to
leave, although this is not stated in the exclamation). The study of semantics
is therefore an attempt to describe word meanings (and the usage of words
where their meaning is ambiguous) and the conditions under which such
meanings can interact to be compatible with the other aspects of a language.
It is such a description which semantic networks were designed to provide.

A network is a net or graph of nodes joined by links. The nodes in a
semantic network usually represent concepts or meanings (e.g. BOOK,
GREEN) and the links usually represent relations (e.g., a book IS
COLOURED green). Networks of this type not only capture definitions of
concepts but also inherently provide links to other concepts. A large number
of semantic networks have been developed as variations on this simple pat-
tern. Some of these networks have been proposed as models of human
memory and meaning representation, while others are used as components of
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language understanding and reasoning systems. The psychological validity of
semantic networks will be discussed in Chapter 6. The development of
semantic networks for computational purposes will be described here.

The origins of semantic networks lie in Aristotle’s associationism
(behaviour is controlled totally by associations learned between concepts)
and reductionism (concepts are built of more elementary concepts; e.g.
“bachelor” is built from “vnmarried”” and ‘“man”). Much later association-
ism was extended and refined by philosophers and psychologists. Around
1869 James Mills showed that the use of a single concept term to refer to
any occurrences of a concept leads to an ambiguity if that concept arose
more than once (e.g. a representation of BOOK would not distinguish
between “John’s book” and “Mary’s book”; one representation is required
for each book). However, he did not specify the currently dominant solution
to this problem of distinguishing between “‘types™ (e.g. the concept BOOK)
and tokens (individual occurrences of the concept; there are four tokens for
“book” in the previous sentence, although “book” is just one type). Thomas
Brown (c. 1820) contributed the notion of labelling links with semantic
information (e.g. the book BELONGS TO John) instead of just giving them
associative force (e.g. the book IS ASSOCIATED WITH John; the bird IS
ASSOCIATED WITH green). Otto Selz in 1926 further added to the com-
plexity of semantic networks by suggesting that paths between nodes across
the network could be used for reasoning. All of these ideas were taken up by
Quillian (1966) who proposed the first major computer system using seman-
tic networks.

Since Quillian (1966) a large number of semantic networks have been pro-
posed which share few features in common. A recent review of networks
(Johnson-Laird, Herrmann and Chaffin, 1984) could only discern four
assumptions which are common to the networks reviewed. These were:

(1) Network theories are designed to elucidate relations between concepts
(intensional relations), in particular between the meanings of words.
They embody no general principles concerning the relation between the
concepts and the real world objects (extensional relations).

(2) A corollary of this: semantic networks are constructed on the assump-
tion that intensional relations can be considered independently from
extensional ones.

(3) Network theories are based on a formalism containing three com-
ponents: a parser, a semantic representation consisting of a network of
links between nodes, and a set of interpretative processes that operate
on the network.
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(4) There is a general commitment to parsimony.

Since there are so few assumptions which a set of semantic networks
share, it is necessary to describe the details of several systems in order to
investigate the differences and follow the direction of developments in
semantic networks.

3.2 Outline

In section 3.3, two of the earliest and most influential systems, Quillian’s and
Winston’s, are described in some detail. As the inaugural systems in the
field, they tackled most of the basic components of semantic networks and
supplied the framework upon which a lot of later systems were built. In sec-
tion 3.4, the work on case frames leading up to Schank’s conceptual depen-
dency is described. Section 3.5 describes the work carried out in the mid to
late 70’s on the epistemological and logical basis for semantic network
representations of knowledge. This work placed the whole field of semantic
networks on a much sounder theoretical base and led to the development of
the KL-ONE system. This is, perhaps, the most influential semantic net-
work system that has been produced and has been the foundation upon
which a lot of current research in Knowledge Representation is based.

Although in section 3.6 the quintessential features of some later systems
are described, by this time, the mid eighties, single knowledge representa-
tions were not capable of handling the variety of knowledge structures that
had to be manipulated. As a result, hybrid systems, using multiple represen-
tations, started to appear, and the work on semantic networks became more
enmeshed with that on other representations. One such hybrid system is
described in more detail in Chapter 10.

3.3 Early Developments

Ross Quillian is generally acknowledged to have been the first to apply the
semantic network ideas in the Al field or, more specifically, in the field of
natural language translation/understanding. In his PhD thesis in 1966, the
central theme was “What sort of representational format can permit the
meanings of words to be stored, so that humanlike use of these meanings is
possible?”’. Towards this end, he proposed an associational model of human
memory which he called Semantic Memory (Quillian, 1968). His idea was to
capture the ‘‘objective’” meanings of words in an encoding scheme of
sufficient power to reflect the structure and capabilities of human memory,
but simple and uniform enough to be implemented in a computer. These
two goals conflict; implementation considerations require a smalli number of
simple node and link types, while the representation of human knowledge,
cven ‘“‘objective” knowledge, requires a complexity of representation
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approaching that of English itself. Figure 1 shows a fragment of Quillian’s
semantic memory, corresponding to two meanings of the word PLANT,
which will be used to illustrate his model. Each meaning is defined in a

“unit” bounded by a dotted line.

The other main, independent, example of the use of semantic networks
was Winston’s work on Structured Descriptions (Winston, 1975). He was
working in the field of machine learning and was concerned with the
learning-from-example of concepts behind common structures which he took
from the blocks world, for example, pedestals, arches, tents, etc. built from
rectangular blocks and wedges. The classical example used is his structured

description of an arch, shown in Figure 2.
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Figure 1 Quillian - Fragment of semantic memory for the word “PLANT”
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The main part of Winston’s work was on scene understanding and gen-
cralization from multiple instances. However, he recognized that the
representation of knowledge, or scene description, as he called it, was the
crucial part of the program. Like Quillian, Winston tried to develop a
knowledge representation that was similar to the way humans apparently
represented the concepts. The motivation for this was so that the examples
and counter examples that would seem most natural for teaching these con-
cepts to humans could be used to provide suitable input for his program.

3.3.1 Nodes

Quillian’s model consisted of a mass of nodes, interconnected by different
kinds of associative links. Each node basically corresponds to an English
Word Concept, and represents the meaning of this “word”” either directly or
indirectly. For direct representation of meaning, a type node is used. These
can be considered as the definition of the Word Concept, having associative
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links to other nodes (words) which define its meaning. Obviously, there is
one, and only one, type node for each Word Concept in the model. For
example, the two words contained in boxes in Figure 1, i.e. that appear at
the top of a definition, are type nodes.

In contrast, a token node is used simply as part of a type node definition.
In Figure 1, all words not in a box represent token nodes. The reason for
introducing these token nodes, instead of using the type node itself, becomes
apparent if a dictionary definition of one word in terms of other words
(““tokens™) is considered.

Dictionary definitions include sentences where words are ordered so that
the syntax of the sentence shows the relationships between them. It would
not be sufficient to present the words in a random order since their relations
would not be known. Similarly, in a definition expressed in a semantic net it
is necessary to have links between the nodes for the concepts. However, if
these links existed between the only representation of each word in a system
it would be impossible to follow any single definition since they would all
involve links through the same words. Consequently, the definition of the
type “plant” is a collection of nodes (e.g. “live’’) with links between them,
where the nodes are copies of the node when it itself is defined. As in the
paper dictionary, the word ““live” in the definition *“plant” is a copy (it looks
the same) as the word “live” that heads its own definition. These copies of
defined nodes are termed ‘““‘tokens”. In general for each type node there will
be many token nodes scattered throughout the model.

The explicit distinction between type and token nodes was one of the
important aspects of Quillian’s system. In his later work on the Teachable
Language Comprehender (TLC), he eliminated the explicit copying of type
nodes to token nodes and used pointers (a type of link meaning “a copy of”
rather than “is associated to”) to the type node instead. The conceptual dis-
tinction remains while a reduction is gained in storage space. He also
adapted the idea of Word Concept node to introduce “attribute values™ to
denote the strength of properties rather than simple association or its
absence. This provided a mechanism for handling negation (an attribute with
a value of 0) and quantification. For example in Figure 1, the token node
“ANIMAL” in the definition of “PLANT 1” has a value 0C, underneath it.
This indicates that the attribute ANIMAL is to be applied with a value (or
precisely C for Criteriality) of “not at all” (0), i.e. the structure is not an
animal. This introduction of values to properties was accompanied by a
third important modification, the introduction of property inheritance. This
mechanism allows a type node to inherit properties from superclass nodes in
definitions. That is, if “PLANT” has a superclass of “LIVE”, then it inher-
its the properties of “LIVE”. This use of inheritance further reduces storage
and is an illustration of the commitment to parsimony in semantic nets.
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Quillian’s work was directly taken up by J. R. Carbonell (1970), who used
it to represent geographical knowledge for his computer aided instruction
system, SCHOLAR. This provided students with a mixed initiative question
and answer interface to a database about South America.

While building on the ideas in TLC, Carbonell introduced two further
refinements to Quillian’s idea of a node. Firstly, he drew a distinction
between Concept nodes (e.g. latitude) and Example nodes (e.g. Argentina).
This, of course, is the basis of instantiation. Secondly, he allowed Lisp func-
tions to be attached to nodes to work out (infer?) properties that were not
explicitly stated. This facility is the basis of the slot daemons used in frame
systems.

Winston, in his system, also had two basic types of nodes. The first were
nodes for those concepts corresponding to the physical objects in the scene.
These were organized as a hierarchy, so that most of these nodes had a col-
lection of other nodes as constituents. For example, a brick would be
represented as a node, as would each of the faces that defined it.

The other type of node that Winston used was for concepts that
corresponded to relationships that existed in the scene between the physical
objects in the example being considered. For example, in an arch, the top
block must be supported by the uprights, so the relationship “supported-by”
was represented as a node. The reasoning behind this was that the nodes
alone should contain all the information extracted from the scene. This
simplified the comparison of different scenes for points of similarity or dis-
similarity.

One consequence of the use of nodes to represent relationships was the
ability to create new nodes (or “satellite nodes”) to represent new relation-
ships derived from old relationships. Since a node representing ‘“‘supported-
by” could be used in the representation of a counter-example to a concept,
the concept learned from this ought to include the relation “not-supported-
by”. Therefore a negation of a relationship should be derived creating a new
node. Similarly, if all the examples contained a relationship, then the learned
concept should contain some modal necessity for this relationship (e.g.
“must-be-supported-by””). Therefore a necessity modification had to be
added to a relationship, creating a new node. Thus from the basic concept
“supported-by”” would be created a small collection of related nodes.

3.3.2 Links

Without offering any justification other than that they were needed to cope
with the complexity of English definitions (but see below), Quillian intro-
duced a number of different kinds of associational links. One of the most
important link types is his Special link, where a token node ““points” to its
type node. For example, in the definition of PLANT 1, a link, drawn as a
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dashed line, points from the token node FOOD to the type node for this
word concept. These Special links form the backbone of the Semantic
Memory structure, linking related knowledge fragments into a graph. All
other links occur inside a type node definition, and fall into one of six
categories.

Four of these are:

Subclass links, used to indicate that the type node is a subclass of
another word concept (which, of course, is represented in the definition
by a token node). For example, in Figure 1, PLANT 2 is a subclass of
APPARATUS. This link permits the construction of taxonometric
hierarchy.

Modification links, used to show that the word concept represented by
a particular token node is modified by the presence of another word
concept, €.g. the concept APPARATUS is modified by the requirements
of the USE structure.

Disjunction/conjunction links, to indicate that two or more token nodes
must, or must not, be applied at the same time. For example, food can
be obtained from AIR, WATER or EARTH, so these token nodes are
connected by a multi-arc link labelled “or”, while a plant is a structure
satisfying the token nodes LIVE, WITH leaves “and” not ANIMAL.

Relationship links, used when a token node actually describes a rela-
tionship that must hold between two other token nodes. For example,
the USE concept relates the user, PEOPLE to an object “= A”.

One of the reasons for the poor performance of Quillian’s later program,
Teachable Language Comprehender, was that it did not take the semantic
meaning of the links into account. Later Carbonell, in his system, intro-
duced the idea of labelling the links.

In Winston’s system, each link denotes a particular relationship between
two Concepts. As there are many different relationships possible between
Concepts, there are many varieties of link. However, not all relationships
are represented as links, some being represented as Concept nodes. This
creates two basic types of links, those conventional links which are them-
selves the relationship, e.g. in Figure 2, the “one-part-is” link, and those
which are just associations between the object nodes and a relationship node
which relates the objects, e.g. the “supported-by” link. This hints at the
later separation, more fully developed by the case frame advocates, of rela-
tionships into syntactic ones (i.e. the grammar of the sentence) and semantic
ones (i.e. the words of the sentence). Unfortunately, Winston is rather
inconsistent about link types, the “supported-by” relationship sometimes
being shown by a simple link, sometimes, as in Figure 2, by a Concept node.
The only apparent criterion used to decide which link type to use is whether
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the relationship will be required to discriminate between the given examples
and counter-examples. It can be seen in Figure 2 that the labelled links refer
to relationships between nodes, while the relationship nodes refer to relation-
ships between the concepts the nodes represent.

3.3.3 Discussion

Quillian’s Semantic Memory model introduced, in some form or another,
nearly all the important aspects of semantic networks. His model is based
very heavily on the organization and layout long used by dictionary and
thesaurus compilers, and he claimed to be able to express anything that
could be expressed in natural language. Though in a sense this is true, the
problem is that the concept definitions rely very heavily on the reader’s
human intuition, obviously not available to a program, as to the meaning of
the nodes and, particularly, the links. Also, he recognized the apparent
conflict between the associative and schema memory models, but claimed
that the two could be handled in parallel by a sufficiently sophisticated pro-
gram.

Quillian’s notion of units contains the basis of a concept hierarchy, com-
plete with an inheritance mechanism. Unfortunately, the notation is not
sufficiently rich to distinguish between the different epistemological levels of
the concepts that are represented by the same type of nodes and links. For
example, the same interchangeable node type is used for a class, an instance,
an event and a relation. The other interesting feature of Quillian’s units was
the later definition of a concept by a property (attribute/value) list.

Though Winston’s semantic network was relatively successful for his pur-
poses, it shares a lot of the failings of Quillian’s. It contains both the idea of
a concept hierarchy, related by “‘has-part” and “kind-of”* links, and the dis-
tinction between class and instance nodes, although via the same “kind-of”
link used between classes. It also demonstrates quite clearly that the
representations of relationships as typed links and as Concept nodes are
interchangeable, though at the expense of notational obscurity and computa-
tional complexity,

However, like Quillian’s semantic memory, it also fails to identify the vital
distinction between the links used as part of the representation, e.g. the
“kind-of™ link used to build the concept hierarchy, and the domain specific
links, e.g. “supported-by”. This lack of distinction rather obscures the con-
cept hierarchy and forces the application, here a learn-by-example program,
to have this information built in.



54 Semantic Networks

3.4 Linguistic Influences: Case Grammar and Conceptual Dependency

Whereas Quillian and Winston based their knowledge representations on
psychological models of memory, other representations have been developed
based on models developed in linguistics. One of the most influential models
has been that of Case grammar, originally developed by Fillmore (1966) in
the light of the questioned validity of the relations of “‘subject” and ‘“‘object”
found in the influential linguistic text by Chomsky (1965: 63-73). In
Fillmore’s grammar “case relations” were semantic relation primitives link-
ing verb (and some other) structures to the nominal elements of sentences.
The relations for each verb can therefore be specified by a set of cases. The
set of cases which characterize a verb is called the “case frame” for that
verb.

Fillmore originally suggested six case relations (Agentive, Instrumental,
Objective, Dative, Factitive and Locative) as a “‘set of universal, presumably
innate, concepts”. However, it has been a recurring problem for Case gram-
marians to define a comfortable set of cases, and even Filimore himself
allowed the number and nature of cases to grow. A recently proposed set
(Sparck-Jones and Boguraev, 1987) involves 28 cases.

A large number of successful computational systems have been developed
which incorporate some aspects of Case grammar (e.g. the general purpose
language front-end of Somers and Johnson (1979); Marcus’ (1980) English
parser; Binot ez al.’s (1980) French parser; van Bakel and Hoogeboom’s
(1981) Dutch parser; Nash-Webber’s (1975) speech understanding system;
the medical expert system of Kulikowski and Weiss, 1971; Bobrow and
Winograd’s (1977) KRL). Simmons (1973) was the first to develop a seman-
tic network using the set of cases as the set of possible link types. This pro-
vided a firm theoretical foundation and a clearly specified semantics for each
link type, rather than choosing them on an ad hoc basis. In his system verbs
were represented by nodes and the case links connected them to nodes for
other concepts in order to represent sentences.

In contrast to these language oriented systems are others which claim to
capture some deeper cognitive aspect (e.g. the long term memory model of
Rumelhart and Norman, 1973; Norman er al., 1975; and more deeply,
Schank’s (1972) “Conceptual Dependency”). Conceptual Dependency is
different from other case-like systems since it is intended to be a language-
free representation of concepts whereas the others are language dependent.
Consequently both the set of cases used to describe relations and the
representation chosen for actions and objects had to use language-free
semantic primitives.
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3.4.1 Conceptual Dependencies

Schank’s (1972) conceptual dependency captures the underlying meaning of
utterances as ‘“‘conceptualizations” by reducing them to combinations of
primitive ‘‘predicates” chosen from a set of twelve “actions” plus state and
change of state, together with the primitive ‘“causation”, and seven role rela-
tions or “‘conceptual cases”.

Schank attempted to express all verbs as some combination of his primi-
tive actions. These included TRANS (transfer of possession); INGEST (the
taking in of an object by an animal); PTRANS (the transfer of physical loca-
tion of an object) and ATRANS (the transfer of an abstract relationship
such as possession, ownership and control). It can clearly be seen from this
subset of actions that a large number of verbs can be built up from them
given the appropriate relations. However, some of these appear weak when
considered. For example, walk can be defined as: PTRANS of x by x
through MOVEing the feet of x in the direction of y.

Surprisingly, the cases in conceptual dependency are no more primitive
than those of case systems which are more surface oriented. They are Object
(in a state), Object (change of state), Object (of action), Actor,
Recipient/Donor, From/To, and Instrument. This selection of high level
cases suggests that their nature may vary depending on which predicate they
are attached to (for example, is there a difference in Actor of “dance” and
Actor of “hit”’?). However, since there is such a small set of primitive acts,
even if this were so, there would only be 37 relations, which is comparable
to the number in some other Case systems. Each case is given a graphic
representation designed to make illustrations of the semantic nets more read-
able. Figure 3 shows an example of a conceptual dependency incorporating
primitive acts, conceptual cases (using this graphical representation) and
objects to describe a state in which “Joe is drinking some soup with a
spoon”’.

Schank’s proposals are unsurprisingly inadequate to fulfil his objective of
a universal language-free conceptual reasoning system. Conceptual depen-
dency has been criticized by linguists since it is not a theory of language
(although it was not intended to be); by psychologists since it requires an
unrealistically precise definition of concepts and provides no mechanism to
analyse pragmatics; by logicians since it does not capture the relative scope
of existential and universal quantifiers; and by computer scientists because it
is not described exactly enough to be understood and implemented.

Despite these failings conceptual dependency is important for two reasons.
Firstly, it enabled the development of an inference engine for Schank’s
memory structures which was able to handle a much larger and wider range
of language than any of the earlier systems. Secondly, it was the first major
attempt to derive both the conceptual nodes and the relational links in a sys-
tem from an abstract theoretical position.
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There have been many attempts in formal semantics to define sets of
semantic primitives which can be used to build the concepts with which we
reason (e.g. Wierzbicka, 1972; Miller and Johnson-Laird, 1976) and attempts
such as Case grammar to define the relations that hold between concepts.
Conceptual dependency brought these together with a computational
approach to knowledge representation and reasoning into a single system. It
showed that we do not have an adequate theoretical knowledge to develop
systems capable of universal reasoning, but it illustrates a methodology
which can be applied in a structured manner to smaller domains.

3.4.2 Discussion

One of the things that made case structures so important in semantic net-
works was the success they had in natural language understanding. The
impression is given, however, that a great deal of this was because the cases
were chosen with great care to match the language style, the number and
scope of the concepts were quite restricted, and the inference engines using
the representations were hand crafted to suit the particular domain.

On the other hand, their development firmly shifted the emphasis of
semantic networks away from the associative memory mould of the earlier
work. One aspect of this shift is the move away from what Brachman calls
the implementational level of semantic networks, where the network is inter-
preted simply as a data structure, to the conceptual level, where the links
have a well-defined semantic content representing conceptual relationships.
Another aspect was the attention they paid to the structure of the knowledge
they were trying to represent, as opposed to the structure of the domain
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containing the knowledge.

3.5 Theoretical Underpinning

Nearly all systems developed before 1975, including those described above,
and several after that date, generalized very badly from their test examples
to real world situations. In most cases, it was the attempt to build natural
language understanding systems that prompted the use of semantic net-
works, mainly because they fit so neatly onto the way humans verbalize their
knowledge. As the subject matter grew more complex, the notation became
less tightly defined and the more it was left to the user, or the application
program, to ensure that the correct interpretation of the notation was made.
As a consequence, the simple network formalism was extended to handle
knowledge from a particular domain, or a particular subset of natural
language, without much thought being given to the semantics of the struc-
ture used to represent the knowledge. This had several consequences,
besides making the applications very brittle (for example, Quillian’s Teach-
able Language Comprehender only worked on a handful of sentences).

The obvious problems were the logical and expressive inadequacy of most
of the proposed notations. Though this could be, and was, tackled in an
incremental manner, a large part of the difficulty was due to the lack of
understanding of the semantics of the semantic network itself. These prob-
lems were tackled by a number of people during the mid to late 1970s, in
particular Woods, Schubert and Brachman. They, among others, started
addressing the epistemological issues raised by these knowledge representa-
tions and laying the foundations for an adequate theory of semantic net-
works. In this section, the work which led to semantic networks being
placed on a sound footing will be described, together with the context in
which it was carried out.

3.5.1 The Semantics of Semantic Networks

Woods (1975) was really the first to tackle head-on the major epistemologi-
cal problems that beset earlier semantic networks. He strongly challenged
the logical adequacy of previous notations, focusing on the need for care in
the choice of conventions for representing facts as semantic networks, and
on the need for an explicit definition of the meaning of the links and arcs
used.

Firstly, however, Woods tried to clarify the meaning of the word “seman-
tics”. He identified in the literature three independent and conflicting usages
of the term, covering the translation of natural language into a formal
representation of its meaning(s), the meaning (truth value) of the formal
representation, and the procedures that operate on the formal
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representation.

Woods himself holds the view that all three stages are necessary, and had
earlier described such a mechanism based on procedural semantics, i.e. where
the semantics of an entity is defined by the procedures that operate on it.
He pointed out two common misconceptions of ‘‘semantics”, firstly in
extending the term to cover the retrieval and inference mechanisms of the
semantic network, secondly, at the other extreme, in denying a fundamental
distinction between syntax and semantics.

Having defined “‘semantics”, Woods went on to examine ‘“‘semantic net-
works”. His target was a formal notation which will accurately and unambi-
guously represent any (humanly) possible interpretation of a natural
language sentence. This he referred to as the logical adequacy of the seman-
tic representation. As well as this, he required that the representation facili-
tate the translation from natural language and the subsequent use of the
knowledge by an inference engine. One task he places outside semantic net-
works is the reduction of all equivalent propositions to their canonical form,
i.e. the conversion of all sentences with the same meaning to the same inter-
nal form, even though this could resolve paraphrases without a combinatoric
search. This is partly because he believes it impossible for full natural
language, but mainly because he believes that normally paraphrase is not
one of full logical behaviour, but only of logical implication in one direction.
For example consider the two phrases, ‘he is my mother’s brother” and “he
is my uncle”, where the first implies the second but not vice versa. Hence,
the mechanism for searching for equivalent propositions is still required. Of
course, on efficiency grounds, a certain amount of canonicalization might
still be beneficial.

3.5.2 What’s in a Link

As well as the semantics of the compete network, it is necessary to have a
clear idea of the semantics of the components of the network, i.e. of the
links and nodes themselves. One characteristic of the early semantic net-
work systems was that a lot of the “meaning” of the links depended on the
user’s intuitive understanding of the labels on the link. Of course, given a
user who was not totally familiar with the representation scheme, or attach
the representation to an automated retrieval/deduction system, and the
whole edifice collapses. Several people had considered this before Woods
addressed it in his 1975 paper.

One of the earlier efforts to remedy these problems was the semantic net-
work model developed by Shapiro (1971) to act as the database for a ques-
tion answering machine. Although, as usual, nodes represented conceptual
entities and the links the relations that held between them, he insisted, for
obvious pragmatic reasons, that anything about which information can be
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piven or questions asked, had to be represented by an item, i.e. a node. For
exumple, in Figure 4, the statement S241 “John hit Jim* can be believed,
discussed, and otherwise referred to, and therefore it must be represented as
nn item. Thus most relationships between items may also be required to be
held as items. Shapiro claimed that eventually, if this requirement were
ndhered to rigorously, there would be some relations that were not concep-
il but were merely used by the system to tie a fact-like item to the terms
fuking part in it. These could be represented as system relations, i.e. links.
Shapiro’s system relations were not part of the semantics of the domain,
hut purcly a part of the knowledge representation structure. This separation
ol the epistemological structure from the semantic structure was a major step
torward towards networks that were logically and semantically sound. It
win also a belated recognition that epistemology - the study of knowledge
and the methods used in that study - should be distinguished from the sub-
jeel of study. At the epistemological level, provision was made for different
types of system relations. Unfortunately, though his examples show several
different types, mainly linguistic cases such as object, agent, verb, etc., he
tloes not discuss the semantics of a system relation, or what properties the
wi ol system relations would have. In his quest for generality, he tries not
to restrict the number or type of system relations, leaving it to the
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application developer in the hope that many different semantic networks
could be built using his system.

Woods considered the links themselves from a more philosophical
viewpoint and identified two different types of link, structural and asser-
tional. An assertional link establishes a relationship between two existing
nodes, while a structural link is one which exists only to provide meaning to
a node, For example, in Figure 5, the link from “John” to “Mary” connects
two nodes which have an existence beyond the concept of the link ‘hit”” and
the link makes an ““‘assertion’” about a relationship between them. However,
the node “S1234” only exists as a focal point for the links “VERB”,
“AGENT”, “RECIP”, etc., and the sole function of these links is to provide
the “structural” support for the node “S1234” (which otherwise would not
exist). This is just the distinction that Shapiro made but his solution was to
eliminate assertional links, representing them as relational nodes, rather than
complicate the network by mixing the epistemological and semantic struc-
ture. Of course, this just relocated the problem in the semantic interpreta-
tion of the node, once again confusing semantics with epistemology.

At this point, it is worth jumping forward to Brachman’s paper (Brach-
man, 1983) on taxonometric links in semantic networks. One of the major
problems in earlier nets was the confusion they allowed between the subclass
type of link and the instantiation type of link. This occurred mainly because
in English both may be represented by the pseudo-word IS-A. For example
“Tweety is a canary” and ““A canary is a bird”. Since these links form the
taxonometric backbone of any semantic network and provide the inheritance
mechanism that is the raison d’étre of most implementations, it is important
to have a clear understanding of the epistemological role of these links.

John HIT Mary

AGT

/— Jobn
S1234 L] it
N\__RECIP .

Figure 5 Woods - Assertional vs Structural links
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Also, in order to consider the relationship of semantic networks to other
knowledge representations, especially first order predicate logic, it is neces-
sary that the function, or functions, of the IS-A link be clearly defined.

Brachman firstly divides IS-A links into two groups according to the type
of participating nodes, either generic, i.e. a description applicable to many
individuals, or individual, i.e. a description or representation of one indivi-
dual. He then goes on to enumerate the different meanings that IS-A takes
with these node types, including subset, superset and set membership, gen-
cralization, specialization and instantiation, etc. The more common of these
are shown Table 1 below.

From this, Brachman identifies two basic types of IS-A, those that take
one concept and form another out of it, and those that convey some sort of
information about the relation between two sets, or between the arguments
of two predicates. The latter category needs to specify: its assertional force,
i.c. whether it is a statement of fact or not; its modality, i.e. whether it is
part of the definition of the concept; its quantifier, whether it is universally
quantified, i.e. always true, or just a default, i.e. true unless cancelled; its
content, usually a set inclusion/membership or material conditional
(if..then..)/predication.

He points out in passing that a number of these requirements, for example
modalities and defaults, raise severe difficulties for standard predicate logics.

3.5.3 What’s in a Concept

IHaving teased out a number of insights relating to the semantics of a link,
the next step is obviously to tackle nodes. Like links, the early semantic net-
works relied on the user’s intuition for the correct specification and use of
nodes. They had been used to represent “facts™, “‘events”, “classes”,

Generic to similar Generic to Individual

Set Subset Member

Predicate Univ. Material conditional Predication

Structured description  Conceptual containment Description (falls under)
Prototype Sharing typical property Similarity to prototype
Role - Specifies filler

Predicate - Abstraction

Gieneric to different Generic gives

Set prototype/predicate Characteristic of set
Rolt prototype/predicate Constraint on filler

Table 1 Brachman - Summary of IS-A link flavours
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“predicates”, “relations” and even “meaning of sentences”. Usually they are
represented as groups of features, but again the structure of the grouping,
and even of the features, left a lot to the imagination.

Woods, once again taking a deeper philosophical approach, pointed out
the intensional nature of a lot of the concepts that semantic networks have
to represent. The classic example is Frege’s Morning star/Evening star, two
phrases with different meanings (intensions) but denoting the same planet
(extension). Handling extension (or denotation), i.e. representing the set of
objects satisfying the concept, is straightforward, but can be computationally
infeasible. Handling intension (or meaning), i.e. the concept itself, which
may or may not be true of a particular entity, is more difficult. For exam-
ple, as shown in Figure 6, representing the sentence “John’s height is 1.82m”
is straightforward: a link Height between an extensional node John and an
extensional node 1.82m. If the sentence ‘““John’s height is greater than Sue”
is added, it becomes clear that an intensional node representing
John’s height is required. The main problem that intensional nodes raise is
how the program distinguishes between the two types of node, ensuring the
correct type is created when building the semantic network, and that infer-
ences on these nodes are performed correctly. The solution Woods proposed
was to make all nodes intensional, and add a specific predicate of existence
where necessary. This also solves the problem of nodes which represent con-
cepts which do not or cannot have a real world instantiation.

There is also the need to distinguish those links to an intensional node
that are part of its definition, e.g. the Height link to John in Figure 6, and
those which are assertional, e.g. the Is link to 1.82m. Woods introduced the
idea of an “EGO” link, which was used by nodes to indicate their defining
links. Thus, following the EGO link from a node such as John would get
the information “I’'m the guy whose name is John Smith, who works down

(a) John Height 1 8om
) Jomn HEIght ybin’s Hisigis S ,1.82m
Height Greater-than
Mary Mary’s Height

Figure 6 Woods - intensional nodes
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the corridor, etc.”, whereas the EGO link from John’s height would give
““the height of the John described by that node over there”.

Later, Brachman (1977) addressed the epistemology of Concept nodes. In
a similar vein to Woods’ division of nodes into extensional and intensional
categories, he divided nodes into two main types, those which represent par-
ticular things in the world, and those which represent a class of particular
things. Examples of the former are nodes that represent objects, e.g. John,
factual assertions, e.g. “John’s height is 1.82m” or events, e.g. “John hit
Mary”. Nodes representing a class usually have links to instances of the
class and to subclasses/superclasses. Unfortunately, this notion of class is
frequently extended to try to capture the Concept behind the class, i.e. what
it means to be a member of this class, as well as representing the set of class
members. This is normally achieved by considering the node to be a collec-
tion of properties or predicates that somehow “define” the concept desired.

Apart from re-emphasizing the problems discussed by Shapiro, i.e. the dis-
tinction between structural and relational links, and Woods, i.e. the distinc-
tion between intensional and extensional nodes and between assertional and
descriptional links, Brachman pointed out several other sources of confusion
connected with nodes. Firstly, unlike properties of an individual which refer
to the individual itself, properties of a class node refer to the members of the
class, and not to the class itself. Of course, a way of talking about the class
s a class is still required. A second problem is that the value of a property
can cither specify a particular value that holds for every member of the class,
for cxample, “elephants are grey”, or specify a class of values of which one
must hold, for example, “John’s height is greater-than 1.82m™.

Brachman’s solution to these problems was to remove the definitional pro-
pertics of the Concept node to separate nodes called role descriptors. The
role descriptor then holds all the information about the function of this
definitional property, such as what class the property values belong to, the
number of instances of this property that this Concept can have, etc. It also
acts as a prototype for the instantiation of the appropriate part of the Con-
cept. As well as specifying the properties, or Roles, the relationships
hetween the properties are specified in a Structural Description. Thus, con-
cept nodes could be defined in terms of other nodes, c.f. Quillian’s planes,
Schank’s case frames, etc., by means of an organized collection of structured
links. These ideas are described in more detail in section 3.6.2 on KL-ONE.

3.5.4 Expressiveness of the Notation

Woods’ main criticism of extant semantic networks was their logical inade-
(uacy, that is, their inability to express precisely, formally and unambigu-
ously all the interpretations that a human listener would place on a sentence.
He was most concerned with the rather ad hoc way that quantification was
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handled.

Schubert (1976) addressed the problems that semantic networks have with
logical connectives, quantifiers, and modal operators. He approached this
from the viewpoint of Predicate Calculus, which he considers to be almost
isomorphic with semantic networks. Firstly, he developed a propositional
notation in which the basic unit of information is the atomic proposition.
This consists of a propositional node, a mandatory PRED link to a predicate
node and links to the concept nodes serving as arguments of the predicate.
This is simplified by replacing the propositional and predicate nodes with the
predicate name. Figure 7 shows, for monadic and triadic predicates, both an
atomic proposition and its simplified version, together with its predicate cal-
culus equivalent. One of the more interesting features is that it is unneces-
sary to coerce monadic predicates into dyadic form, so that this need for an
IS-A link is eliminated; at least in Brachman’s generic sense.

(London D+— CITY

Figure 7 Schubert - Atomic propositions
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Schubert also compared his notation to Schank’s conceptual dependencies
(see section 3.4.1). Although, as a semantic network, conceptual dependen-
cics can mostly be translated into Schubert’s notation, he claims that case-
structured action propositions lack expressive power and are anyway at a
semantically higher level than necessary, and are therefore not primitive.

Quantification

Woods discussed quantification, linguistic (definite and indefinite) as well as
numerical and logical (universal and existential). He pointed out the need,
not only for definite entities, which exist in the real world, and indefinite
entities, which do not have to exist, but also for definite and indefinite vari-
able entities, whose instantiation depends on the instantiation of those other
entities to which they are related. For example, the system has to be able to
deal with sentences such as “Every boy loves his dog” where “dog” is a
definite variable entity whose instantiation exists but is different for each
instantiation of “boy”, and such as “Every boy needs a dog”, where the
node “dog™ is an indefinite variable entity.

Woods also brought up the problems of numerical quantification using
the sentence “three men saw two boats”. He insisted that the three possible
interpretations of this sentence had to be representable separately in the
semantic network. Obviously, explicitly representing this with three nodes
for the men and two for the boats, though acceptable here, is not generally
possible, e.g. ““50 million frenchmen ...”. He also brought up the problem
with universal quantification of ensuring that future nodes of the same type
were created with the correct links. For example, after processing the sen-
tence “Every boy has a dog®, all new “boy” nodes must have a “has a dog”
proposition added to them.

Woods proposed three methods for dealing with quantification. Firstly,
(uantifiers were added explicitly as higher order operators, represented in the
network as a special node with assertional links to the quantification type,
range, variable and proposition. This adds several extra indirections to the
representation of the three men/two boats sentence, to hold the set of three
men with a “for-all” link, etc. This is the method used by Shapiro (see
nhove). Secondly, a standard resolution theorem proving technique was
used to remove all existentially quantified variables from the expression,
leaving all remaining variables universally quantified. This is reversible, so
there is no loss of information. The advantage of this in a semantic network
i that it is only required to indicate which nodes are universally quantified.
I'he problem with it is that, whilst the process is reversible, it is not easy.
I'hirdly, a quantifier can be converted into a relation between the set of
instances of the quantified variable and a predicate containing the rest of the
proposition. For example, “All men are mortal” is converted into a relation
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between a set (all men) and a predicate (mortal). This can also be applied to
existential quantification. Putting this into the network would require the
predicate to be held as a special type of node that has to have a link to a
“set” node.

Schubert in his system also addressed the issue of quantification, and
came up with a scheme very similar to the second one above. One further
enhancement, however, is that time is handled as quantification over the
moments at which the proposition holds. A number of notational abbrevia-
tions were introduced to simplify the network and make knowledge input
easier.

3.5.5 Discussion

The importance of Woods’ paper was that it focused attention on the
epistemology of semantic networks. Although the paper was rather negative,
concentrating on pointing out what was wrong with existing systems, and
the new ideas he put forward were rather weak, he did have a major impact
on the evolution of semantic networks. By challenging the logical adequacy
of previous systems, and clearly identifying the problems, he changed the
development of semantic networks from a series of implementations of
assorted psychological models of human memory into a serious knowledge
representation methodology with an emerging strong theoretical foundation.
The questions he raised were the focus for most of the work on semantic
networks over the following few years.

Schubert provided a strong, predicate calculus-based foundation for
semantic networks, which to a large extent satisfies Woods’ point about logi-
cal adequacy. However, he does not give much help in representing
knowledge in terms of his pseudo predicate calculus. Schubert himself
admits this, and when referring to the problems with conceptual dependen-
cies he suggests that higher order constructs, along the lines of the case
structure, may be needed to handle real natural language. This contains the
seeds of Brachman’s five-level structure for semantic networks.

3.5.6 Inheritance and Defaults

Before moving on to discuss the KL-ONE system, there is one other issue
that was raised and which had a major influence on the evolution of seman-
tic networks. This is the whole matter of inheritance and defaults, which
have an important role in the frame structures developed by Minsky. These
are dealt with in greater detail in Chapter 4, but as they have been shown to
be useful, not only in handling subset/superset and part/whole relations, but
also in controlling search and delineating contexts, their impact on semantic
networks will be mentioned here.
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Hayes (1977b), developed a higher level structure, along the lines of a
frame, but built and interlinked with a more conventional semantic network.
This was one of the earlier attempts to merge the frame representation and
semantic networks. These structures, called depictions, are really just subsets
of a larger semantic network, but with a definite, generic head node, the dep-
ictee, which is connected to the rest of the conceptual hierarchy via IS-A
links. Inside the depiction is a collection of other generic nodes called dep-
icters, which are related to the depictee by PART-OF or CONNECTED
links. Figure 8 shows a typical depiction, with the depictees being the solid
nodes and the dashed lines indicating the extent of the depictions. Links
leaving the depiction are ‘“‘inside”; links entering are not. This allows the
depiction to be viewed as an archetype, with the depictee universally

Animate Physical
Entry Object

Fred Fred's Fred's
Torso Arm

Figure 8 Hayes - An instantiation of a depiction of a human
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quantified and the rest existentially quantified within its scope. Upon instan-
tiation, a binder, e.g. the D-HUMAN#1 in Figure 8, creates an instance
node bound to the depicters and inheriting their connectivity structure. Not
all depicters need be instantiated: for example, there is not an instance for
head in the Fred instance. If needed, these other depicters can be instan-
tiated later.

The binder/depiction has a number of interesting features. It provides a
context mechanism capable of handling referents and resolving ambiguities.
For example, given an instantiation, Fred, of “human”, “his head”” would be
instantiated as Fred’s head, rather than the head of another person, of a
hammer, etc.

Inheritance can be handled by making the depicters instantiations of dep-
icters in a higher level depiction, e.g. dog-leg and human-leg are instances of
creature-leg. Hayes recognized that these instantiations were fundamentally
different from normal instantiation and had a different type of binder to
handle them.

Inherited properties (links and nodes) can be cancelled or augmented
without affecting the parent - the binder, in the child depiction, does the
instantiation. Also, since the same node name can be re-used, search up
through the hierarchy for defaults is fairly efficient.

Depicters can have numerical modifiers that specify the number of
instance nodes that the binder can link to them, e.g. a human can have two
arms represented by the same depictee. The different instances can option-
ally be modified by distinguishers, e.g. to distinguish right and left arms.

Depicter nodes can be defined further down the conceptual hierarchy by
their own depiction. Thus the same node can act as a depicter and a dep-
ictee, i.e. it acts as a role specifier in the encompassing depiction and as an
entity in its own right in its own defining depiction.

Since in some cases the role cannot exist without its depictee, e.g. an arm
requires a human, SQN links are provided to ensure that all necessary supe-
riors are instantiated when a subpart is instantiated.

The most important feature of Hayes’ notation is his use of a frame-like
construction to control instantiation. This, in common with most frame sys-
tems, provides a convenient, and easily controlled, mechanism for structur-
ing knowledge, A second important feature is the distinction drawn between
the use of a node in its own right to act as a prototype for an instance, and
its use to specify a role that needs to be filled in order to create another
prototype’s instance. Hayes’ attempt to capitalize on the work going on into
related representations was one of the first examples of the recent trend
towards hybrid systems.
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Brachman (1983), in his paper on IS-A links, notes that one important use
of IS-A in previous semantic networks was to give a default, i.e. a statement
that holds unless explicitly cancelled. This is important because it permits
exception handling, an essential for real world problems (this becomes clear
if an attempt to define ‘“‘elephant” is made), and was one of the reasons for
the development of Frames. The difficulty with cancellable defaults is that
they negate the usefulness of a concept hierarchy; for example if “Clyde IS-
A elephant”, then he has all the inherited elephant properties by default.
However, if “Gerry” has all the elephant properties, it cannot be assumed
that he is an elephant - he could be a giraffe with all giraffe properties can-
celled and a few elephant-like properties added. Thus the node “‘elephant”
does not represent the concept of an elephant any more, but merely acts as a
placeholder for a bundle of typical elephant properties. A semantic network
which permits the arbitrary use of cancellable defaults seriously jeopardizes
its utility as a knowledge base for an inference engine.

3.6 An Epistemologically Adequate Semantic Network, KL-ONE

The work described in the last section highlighted a number of problems
with the existing semantic networks. Although the problems were tackled
and potential solutions suggested or demonstrated, this was predominantly
carried out piecemeal and in isolation. Though they are all buiit on the
same basic associational structure, the various network formalisms described
above are all quite different from each other.

Following this period of exploration, Brachman produced his seminal
paper identifying five independent levels at which semantic networks can be
understood. This paper was a watershed in the development of semantic
networks, providing an integrating framework in which the emerging ideas
on logical adequacy and expressive power could be investigated. In it he
pathered together under one overall umbrella most of the ideas and trends
that had emerged from earlier systems. The epistemological framework was
the basis of the knowledge representation used in the KL-ONE system.
Since it first appeared, KL-ONE has been used in a number of applications,
ranging from natural language understanding, to question answering sys-
fems, to the modelling of office automation.

In this section, firstly, Brachman’s five-layer model will be examined,
slong with his proposed criteria for evaluating the “correctness” of semantic
networks, and then the implementation of these ideas in the KL-ONE sys-
tem will be described.
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3.6.1 Conceptual Levels

Brachman, by examining the various representational primitives used, shows
that these differences are a reflection of deeper and quite fundamental philo-
sophical differences (Brachman, 1979). Four of Brachman’s five layers con-
cern the conceptual levels or viewpoints into which the various network
primitives could be categorized. These levels are:

Implementational. This level is the most basic form of semantic net-
work, where links are merely pointers and nodes are merely destinations
for links. At this level, the network is simply a data structure, with no
real semantic content.

Logical. A semantic network can be understood as a set of logical
primitives with a structured index over those primitives. It bears a
strong relationship to predicate calculus, with the extra feature of the
network topology, and thus provides at least a basic method for factor-
izing and organizing knowledge. Nodes represent predicates and pro-
positions and links represent the logical relationships between these
nodes, such as “and”, ‘“subset”, “there-exists” etc. This level deals with
questions of logical adequacy, including quantification. It is best
exemplified in the work of Schubert, and was also obviously influential
in the work of Shapiro, Woods and Hendrix.

Conceptual. At this level, the real semantics becomes very obvious, and
the relationship with natural languages is strong. Nodes represent
word-concepts, i.e. language independent object, action and event types,
e.g. GRASP, INGEST, PTRANS etc., while links represent the case
structure, out of which all expressible concepts can be constructed, e.g.
AGENT, INSTRUMENT, RECIPIENT etc. This level deals with the
issue of expressive power, in that the types of node and link provided
dictate what language expressions can be handled. The champion of
this approach is Schank, though it has been adopted by many others,
for example, Rumelhart and Norman, Simmons, Rieger.

Linguistic. The top level is really natural language itself. The example
given by Brachman is the OWL system which, apart from the imple-
mentation level, has no structuring primitives other than those of
English. The nodes in this scheme are words, and have context-
dependent meanings, e.g. “fire” changes meaning when attached to
“man”, and the links represent real world relationships, e.g. Colour,
Hit, etc.
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In the above, each level is a self-contained network representation, more
or less independent of the levels above and below it. By separating out the
primitives like this, Brachman shows clearly that the primitives of different
levels, e.g. there-exists, AGENT and Colour, are fundamentally and philo-
sophically different from each other. This variety of primitive types had
been implicitly recognized by the developers of some of the networks men-
tioned above, although it was not formalized as clearly as here. A lot of the
problems that arose in the earlier networks were due to the mixing of primi-
tives from several levels. The four level scheme described above does not
quite cover all the notational features of previous semantic networks. For
example, the binders of Hayes, and even the ubiquitous inheritance, are not
logical primitives, and even though they are generally assumed by the case
structure, they are not represented in it.

Brachman proposed introducing a fifth level, the epistemological level, to
handle this formal structuring. The primitives of this level are for represent-
ing knowledge-structures and their interrelationships as knowledge-structures,
independently of the knowledge contained within them. For example, an
intensional entity has to be defined from lower level primitives, and has to
be related as a unit to other entities, using epistemological links.

This paper has had a major impact, partly because it tied together a
number of strands that were emerging in isolation, that is, it reconciled the
work on logical adequacy which was driving towards a variant of formal
logic, the conceptual dependency work which was driving towards more
expressive power and the epistemological work that was starting to examine
knowledge-structures as structures. A second reason for the impact was that
the five level structure put forward was the basis for the KL-ONE system,
and this, until recently, was the foundation for a large number of important
semantic network research projects.

3.6.1.1 Criteria for Assessing Semantic Networks

Since each level represents a particular type of semantic network, Brachman
explores the capabilities of the levels, and specifically the epistemological
level, against the three criteria, neutrality , adequacy and semantics. By neu-
trality he means that each particular type of semantic network must not con-
strain the choice of primitives for the next level up. For example, the logical
level must not contain features, such as inheritance links, that will affect the
design or operation of the epistemological level. This offers the usual advan-
tapes of modularity. Nearly all previous semantic networks violated this cri-
terion, and therefore not only were less flexible for building on top of, but
were confusing to use. However, some of the logical networks, for example
Schubert and Woods, go a long way towards this goal.
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By adequacy he means that the each level must provide the facilities
required to implement the next level up. For example, a conceptual level
should be able to support any possible linguistic system of knowledge. Con-
ceptual adequacy has been addressed in particular by Schank and Rieger.
Logical adequacy has already been relatively successfully tackled by Woods
and Schubert. The trend towards logical networks is partly explained by the
extra difficulty in achieving adequacy in a mixed level network.

By semantics he means the provision of a formal specification of the
meaning of each element and the operations that can be performed on them.
Here, he considers the meaning of a primitive to be specified by the pro-
cedures that operate on it. For the logical level, if a mapping to predicate
calculus is established, then the semantics is defined. At the conceptual
level, Schank and Rieger have specified the inferencing operations for each
primitive act. This is only possible since they have a fixed number of primi-
tives. At the linguistic level, a formal semantic specification of natural
language is next to impossible.

3.6.2 Overview of KL-ONE

Firstly, it should be pointed out that KL-ONE is more than just a represen-
tational language, as it includes facilities for the building, storing, querying
etc. of the network. KL-ONE is an evolving system with new ideas con-
stantly being added, and thus it is difficult to pin down. However, the main
interest is in its capabilities to explicitly represent conceptual information as
a structured inheritance network, a feature that has been fairly consistent
over the various implementations. The system described here is a fairly
recent implementation, and some of the elegance of Brachman’s earlier ideas
has been lost as new problem areas emerged (Brachman and Schmolze,
1985¢c). Although the various aspects of the system will be considered in
some detail in later sections, an overview of the complete system will be
given here.

KL-ONE is primarily an epistemological level network which provides the
necessary primitives with which to describe and handle knowledge. The
primitives are knowledge independent, in that they can be used to describe
the internal structure of a broad spectrum of concepts. Briefly, the primi-
tives used to represent the internal structure of a Concept are Roles, which
represent the attributes associated with the Concept. A Role not only holds
the information about the function of the attribute, that is, the intension of
the attribute, but also acts as a description of the potential fillers, that is, the
instances of the attribute. These Roles indicate the type and number of the
instances permissible for this attribute. The interrelations between the Roles
are handled by a Structural Description, which contains a set of relationships
between the Roles that must hold between the Role fillers when the Concept,
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and hence the Roles, is instantiated.

Given this notion of a Concept, the epistemological level primitives there-
fore consist of the relationships between Concepts, Roles and Structural
Descriptions, and the internal relationships of Roles and Structural Descrip-
tions. As well as this, the relationships between two Concepts, and indeed
between two Roles and between two Structural Descriptions, need to be
addressed. These relationships are the basis of the inheritance mechanism,
which, at its simplest, requires the Roles and Structural Descriptions of the
parent Concept to be linked to the child Concept. Obviously, a mechanism
must be provided to allow modification of the Role or Structural Descrip-
tion being inherited.

3.6.3 Concepts

KL-ONE Concepts correspond to conceptually primitive pieces of domain
knowledge, and are either primitive Concepts or defined Concepts. Primitive
Concepts are used for domain concepts that are atomic, i.e. have no internal
structure, or that cannot be defined in terms of necessary and sufficient pro-
perties. However, primitive Concepts can still specify necessary properties,
though they may not be able to define all of them. Defined Concepts are
built up from primitive Concepts and other defined Concepts and have their
necessary and sufficient properties defined. For example, the Generic Con-
cept (see below) for a natural kind such as “elephant™ cannot be defined by
necessary and sufficient properties, so it is primitive. However, in Figure 9,
the Generic Concept URGENT-MESSAGE is a defined Concept since it is
completely defined in terms of REPLY-REQUESTED-MESSAGE and the
“‘less than 1 hour” modification. Most Generic Concepts fall into the primi-
tive category.

The most important type of KL-ONE concept is the Generic Concept, i.e.
an intensional description of a class of domain objects, e.g. person, message,
date etc. Generic Concepts are either primitive, or are defined, using
SuperC links, in term of other Generic Concepts. This creates a basic tax-
onomy formed of those Concepts that subsume, or are subsumed by, other
Concepts. The subsumption criterion allows multiple SuperConcepts, and
the taxonomy is actually a lattice. By subsumption, Brachman meant that
an instance of the lower Concept would always, by definition, be an instance
of the higher Concept. Thus, a Concept gets its meaning from its Super-
Concepts, possibly modified locally either by additional specific properties,
or by restrictions on the SuperConcept’s properties. As an example of this,
in Figure 9 the Generic Concept URGENT-MESSAGE is subsumed by
REPLY-REQUESTED-MESSAGE since it is completely defined by adding
the local property “within one hour” to those properties of its SuperCon-
cept, REPLY-REQUESTED-MESSAGE. KL-ONE provides a method of
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deciding if one Concept subsumes another, and this is the basis of the
Classifier, which automatically places new Generic Concepts into their
correct place in the taxonomy.

3.6.4 Roles

Before considering other types of Concept the internal structure of a Generic
Concept will be discussed. The primitives used to represent the internal
structure of a Concept are Roles, which represent the attributes associated
with the Concept. Roles not only hold the information about the function
of the attribute, i.e. the intension of the attribute, but also act as a descrip-
tion of the potential fillers, i.e. the extension, or instances, of the attribute.
Since several different types of entities could satisfy these functional require-
ments, a set of Roles, called the Roleset, is needed to identify the different
types of filler allowed for this attribute, e.g. the sender of a message could be
a machine or a person. This identification is achieved by having a link,
Value|Restriction, point to the Concepts that satisfy the functional require-
ments. Similarly, the function might permit multiple instances, for example,
a message could have several recipients, so again the Role has to identify the
number of instances allowed. As an example of this, in Figure 9 the Con-
cept MESSAGE has a Role “Sender” whose Value/Restriction link is to the
type PERSON and whose number is shown (under the Role symbol) as hav-
ing a minimum of 1 and no maximum number of senders. Early versions of
KL-ONE also allowed the Role to be optional, and provided a modality flag
to indicate whether the role was a necessary part of the Concept, or was a
derivable or optional attribute. However, as Brachman pointed out earlier,
default cancellation destroys the logical adequacy of a semantic network, so
in later versions Roles were restricted to necessary attributes of the Concept.

3.6.5 Structural Descriptions

As well as specifying the Roles that define a Concept, the relationships that
must exist between the Role fillers have also to be specified. For example,
the sent-date must be before the received-date, the recipient of a message
might need to be the sender’s supervisor etc. This is a function of the Struc-
tural Descriptions. These relate two or more Roles in terms of another Con-
cept. For example, in Figure 9, an URGENT-MESSAGE is defined as a
REPLY-REQUESTED-MESSAGE, with a Structural Description which
rclates the Reply-By-Date Role to the Received-Date Role via a particular
version of the LESS-THAN Concept. This version is isomorphic with the
Gicneric Concept LESS-THAN, but is a parametric individual Concept,
parameterized by the URGENT-MESSAGE context. (There is also a short-
hand notation for the common parameterized Concepts of equality and
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subset.) The required Roles of the LESS-THAN parametric Concept,
identified by links to the corresponding Roles in the Generic Concept, are
co-referenced to the Roles in the URGENT-MESSAGE Concept being
related. Not all Roles of the Generic Concept have to be co-referenced, and
can be instantiated in any appropriate fashion.

3.6.6 Individuation and Individual Concepts

All KL-ONE Concepts are intensional, so there are no Concepts to directly
represent extensional objects, that is, objects in the real world. Individual
objects are denoted by Individual Concepts, which are individuations of the
appropriate Generic Concept. Brachman reserves the word instantiation for
the association between the Generic Concept and the real world object.
Individual Concepts individuate a specific Generic Concept, but describe at
most one individual. As the Concept is intensional, there is no implication
of existence of the individual being described. For each Role in the Generic
concept, there is a Role filler in the Individual Concept. As well as matching
Roles and Role fillers, the Individual Concepts pointed to by the Role fillers
must accord with the relationships specified in the Structural Description.

3.6.7 Inheritance

Individuation can be considered as an example of one aspect of inheritance.
In general, inheritance is the passing down of the properties of the parent
Concept to the child Concept. To do this in KL-ONE requires not only an
indication of the link between the parent and child Concept, that is the sub-
sumption link described earlier, but also, for each Role in the SuperConcept,
an indication of what, if any, restrictions are to apply. In the case where no
restrictions apply, there is no Role shown for the child Concept, and the
Role shown in the parent Concept is deemed to apply. If, as is usually the
case, the child is to be a specialization of the parent, the Role in the child
Concept has the new number of fillers or type of entity shown, along with a
restricts link to the corresponding Role in the parent Concept. For exam-
ple, the Concept REPLY_REQUESTED MESSAGE inherits the Role Reci-
pient from its SuperConcept MESSAGE, but restricts the number of Reci-
pients to 1. Structural Descriptions, on the other hand, must be inherited
intact.

Another controversial issue hinted at earlier was that of default values and
cancellation. Brachman’s stance, mentioned above, is that allowing cancell-
able defaults in the definitional, or description formation, aspect of a seman-
tic network undermines the logical adequacy of the representation. He
therefore insisted that Roles represent only necessary attributes of a Generic
Concept, and thus, from his definition of subsumption, they are not
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cancellable. Non-necessary properties, which may need to be cancellable,
are dealt with outside the taxonomy in the Assertion Language. The use of
Reiter’s default reasoning mechanism for this was suggested but no details of
how this could be done were given.

3.6.8 The Conceptual Coat Rack

Brachman, and later Woods (1983), give an analysis of procedural attach-
ment in KL-ONE, i.e. the mechanism by which the user of a semantic net-
work can access the implementation code (interpreter) directly to attach a
procedure to an entity. One reason for these procedural attachments is to
represent metaknowledge, for example, about a Concept as an entity. This,
called a metahook, is really a means for one level to perform functions of
the next higher level. A second reason is to attach special interpreter code
to an entity, for example, to short circuit, for efficiency, the normal code
sequence the interpreter follows when handling a specific Role. This, called
an ihook , is really a means for a level to modify the level below. (The hooks
form a “coat rack” upon which to hang auxiliary knowledge.) Both these
escape mechanisms are not philosophically necessary, and, if needed, demon-
strate inadequacies in the semantic network, either at the current level or the
one below (the interpreter). Brachman warns against abuse of these hooks.

3.6.9 Discussion

The main criticism of KL-ONE is the complexity of the Role and Structured
Description, due in large part to the evolutionary nature of their develop-
ment, which makes the system hard to use. However, there are also some
more fundamental weaknesses which appeared in use. It should be noted
that a number of these weaknesses are complementary, and the tradeoff
between them necessarily fails to eliminate both, or either, of the problems.
The most serious of these is the incomplete treatment of Roles, in that
they derived their semantics via other constructs, the Concept and its Struc-
tural Description. This lack of an adequate formalization led to the grafting
on of such kludges as Rolesets, and even then the system could only cope
with primitive Roles. Another shortcoming was the inability of the hierar-
chy to handle Concepts unless their necessary conditions could be specified.
This arose from the desire to ensure that the representation, and especially
the classifier, was demonstrably complete and sound, i.e. obtained all and
only all the right results. However, the tradeoff for this was less expressive
power, which did make the system less useful in practice. Finally, there was
a lack of support for such things as representing exhaustion or exclusion
among a Concept’s subsumees or indication sequence in Role fillers. Most
of these issues were tackled by one or another of the later systems that were
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built on or around KL-ONE, some of which are described in the next sec-
tion.

3.7 Recent Systems

As well as acting as a representational language for application systems,
KL-ONE has also been the foundation for some basic research in knowledge
representation. KL-ONE was extended and refined over a number of years,
with a number of new ideas being introduced. Most of these were applica-
tion oriented and thus were more interested in being usable than in address-
ing the theoretical issues. One such system is NIKL, described below. One
idea, that was raised but not fully developed in KL-ONE, was the separation
of the description formation aspects of the knowledge representation from
the assertion making aspects, and this led to the development of the KRYP-
TON system described in Chapter 10. In parallel with this work, several
other unrelated systems were being produced. One example of this is the
Conceptual Graph system of Sowa, which was biased towards the logical
representations to about the same degree as KL-ONE was biased towards
the schema representations. This is described in outline below and in detail
in Chapter 7.

3.7.1 NIKL

NIKL (a New Implementation of KL-ONE) is one of the many offshoots
from KL-ONE (Kaczmarek, 1986). As a new implementation, it follows its
parent system fairly closely. However, as well as improved efficiency, there
are some significant differences between the two systems and, interestingly, a
number of similarities with KRYPTON. The major change is in the
representation and use of Roles. Roles were now thought of as representa-
tions of conceptual Relations which are 2-place relations in the same way as
Concepts are 1-place relations. They could then be organized in a separate
taxonomy and given a domain and a range, i.e. restricted to a particular set
of Relations and particular range of values of each Relation. For example,
the Concept “parent” could have a Role “‘child” which is restricted to the
Relations “daughter” or “son” and with a numerical range “> 0. This
gives the advantages that the user, or system, can define and refer to Roles
in an analogous manner to Concepts.

Another of NIKL’s enhancements was the provision of better support for
reasoning, in particular classification-based reasoning. Unlike KRYPTON,
the emphasis was placed on efficiency, forgoing completeness in favour of
expressiveness. Firstly, facilities were provided to allow the user to specify
that a set of Concepts was disjoint, i.e. mutually exclusive in the real world,
or covered another Concept, i.e. every extension of the covered Concept is
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described by at least one of the set of Concepts. Secondly, support for par-
tial orderings of Roles is provided in the shape of Relations that allowed
sequences to be described. For example, an initialization phase can be
forced to come before the main phase, which in turn precedes the terminal
phase. Thirdly, the ability was provided to specify, as a Relation, a set of
Roles that are sufficient conditions for a Concept - the necessary conditions
having been defined by the Concepts position in the taxonomy. In coping
with these extra features, the classifier, which automatically classifies Con-
cepts in terms of Concepts already existing in the Concept hierarchy, is
actually carrying out quite sophisticated classification-based reasoning. This
greatly reduces the load on the user specifying the Concept hierarchy as well
as on the application program’s reasoning ability.

3.7.2 Conceptual Graphs

One modern semantic network not based on KL-ONE is the Conceptual
Graph system of Sowa (1984). Sowa was interested in natural language pro-
cessing and his system reflects this, though it is based strongly on logic and
was designed to support logical inference. A Conceptual Graph is a mini-
semantic network representing a sentence. A Concept node represents enti-
ties, attributes, states or events, while a Relation shows how the Concepts
are interconnected, i.e. the semantic relationship between two Concepts.
Links have no meaning in themselves, other than to indicate the Concepts
dealt with by each Relation. The Concepts and Relations have referents, i.e.
refer to either a specific individual, an unspecified individual or a set of indi-
viduals. For further details see Chapter 7 of this book.

3.8 Conclusions

The various “extensions” that are currently being grafted onto semantic net-
works seem to indicate that they are not sufficient in themselves to be an
adequate knowledge representation language, though they provide a power-
ful and flexible base on which more complex hybrid systems can be built.
However, there is a trend for the more philosophically sound of these exten-
sions to be subsumed into the network notation, e.g. Minsky’s notion of
schema was first tagged onto the network as KL-ONE Roles / Structured
Descriptions and then in NIKL became part of the infrastructure connected
with Relations. Certainly semantic networks appear to be a very intuitive
representation, but this very intuitiveness can lead to logically unsound sys-
tems unless a lot of care is taken with the notation. In common with most
other representations, the main outstanding problems are how to describe
natural kinds, how to handle defaults and negation and how to deal with
incomplete, or incorrect, information.
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4  Structured Object Representation -
Schemata and Frames

Gordon Ringland

4.1 Introduction

In this chapter we discuss the representation scheme called frames or sche-
mata. Though this representation has been attacked as adding nothing
really new to the tools of Al (Hayes, 1979) it remains widely popular both in
practical applications and in research. The reason for this popularity lies in
the fact that much knowledge has a structure, arising either out of the struc-
ture apparent in the domain to be represented, and/ or the structures we
have to impose to be able to deal usefully with large amounts of knowledge.
To the extent that structured object representations (afterwards called
frames or schemata) can reflect the structure natural to given sets of
knowledge then it will be advantageous to use them. Even in the cases
where frames are logically equivalent to representation by randomly ordered
sequences of clauses in first order logic, it does not follow that the readabil-
ity and expressive power of the two representations are equivalent.

In the next section we discuss Minsky’s original paper on frames (Minsky,
1975). The hope here is to give some help to those who will read this rather
difficult paper, and to motivate the discussion.

In section 4.3 we present examples of the use of frames which bring out
their usefulness in representing structure. Section 4.4 gives a presentation of
the influential paper by Hayes (Hayes, 1979) which argues there is little new
in the frame idea. Though we defer to the clarity and scope of the paper,
our conclusion is that Hayes’ claims are too strong. Section 4.5 reviews the
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most recent important contribution to the frames literature, that of Brach-
man (Brachman, 1985). Broadly speaking, Brachman shows that the use of
frames for ‘common-sense’ reasoning is, if not impossible, at least fraught
with traps for the unwary. In section 4.6, we review other approaches to
default reasoning and note that the problem of ‘common-sense’ reasoning is
still a major research issue and at the time of writing this problem cannot be
definitely asserted to be solved.

4.2 Minsky’s Paper (Minsky, 1975)

The notion of organizing perception into some kind of unitary whole dates
back as far as Kant’s Critique of Pure Reason, first published in 1781 (Kant,
1787) and is represented in this century by the work of Bartlett (Bartlett,
1932). Minsky squarely acknowledges his debt to Bartlett and observes that
similar ideas were in the air in Al two or three years before the publication
of the first version of his frame paper in 1975. However it cannot be denied
that the paper by Minsky has had great influence on the enterprise of
Knowledge Representation and is probably the most widely referenced con-
tribution to the field. For this reason alone it would be right to devote a
section to the paper, but it is also worth some discussion to allow us to com-
pare Minsky’s hopes with their realization.

The opening section of Minsky’s 1975 paper captures much of what has
been influential. He begins by asserting that most theoretical work on Al
and in psychology has been too fine-grained, local and unstructured to
account for effective common-sense thought. At this stage it is appropriate
to make explicit a significant part of Minsky’s argument. By linking work
on AI and psychology he has staked out a definite and contentious position
on Al essentially that though artifact is unavoidable we should try to
represent the real thing (human intelligence) as effectively as we can. For an
extensive discussion of human knowledge representation see Chapter 6. This
should be contrasted with McCarthy’s position which emphasizes the
A(RTIFICIAL) in Al and consequently makes psychological reality a subor-
dinate or even irrelevant issue (Kolata, 1982).

Next, his opening emphasizes ‘common-sense thought’ as a process that
Al must capture. There are two important issues here. The first is plain and
should not be contentious, namely the necessity for any satisfactory AI sys-
tem to display the sense and reasonability tests most humans apply most of
the time as a part of their ‘common sense’. For definiteness let us consider a
simple case. Suppose you, the reader, a human intelligence, accept, along
with a great many other things (the preceding qualification really is impor-
tant), that P implies Q and also accept the antecedent P. Are you then
forced to accept the consequence Q? Should you accept it? The answer
“not necessarily” is a display of common-sense. Clearly you could have
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excellent reasons for believing not-Q, and if so you might cease to accept
either the conditional P implies Q, or the antecedent P. The point here is
that while rules of proof sanction the conclusion Q, the rules are local to the
relation P implies Q, and the antecedent P, and apply to those individual
syntactic forms. But the overall excellent reasons for not accepting Q may
be global, involving reasoning and judgement over all ‘the great many other
things’ you accept. This is the reason for Minsky’s complaint against local-
ity.

The second and less obvious point is the use of ‘thought’ in the desidera-
tum ‘common-sense thought’. I believe that using ‘thought’ rather than ‘rea-
soning’ in this term is significant and is an example of a confusion on the
part of the anti-logicist school as exemplified by Minsky, and also the logi-
cist school as represented by McCarthy and Hayes (Hayes, 1977a). We dis-
tinguished, quite deliberately, rules of proof as in logic from the more gen-
eral ‘reasoning’. There has been a tendency to equate the two terms, leading
to a view that if one uses logic as a representation one is inevitably commit-
ted to a particular formal deductive machinery and, to avoid such a
machinery, one must avoid logic as a representation. We shall return to this
point in discussing Hayes’ critique of frames (Hayes, 1979) in the following
section.

Minsky asserts that ‘“‘chunks” of reasoning and the representation of
language memory and perception should be larger and more organized than,
say, production rules, and frames are the device to provide the structure.
This structured representation and the interaction of these structures is gen-
erally taken to be the essence of frames or schemata, and is surely the aspect
of Minsky’s essay which has had the most practical effect.

A simple example of a frame might be the frame for a domestic pet

FRAMENAME EET

SLOT 1 DISPOSITION: FRIENDLY
SLOT 2 HAS: OWNER

SLOT 3 HAS: A HOME

Minsky’s original idea is that the upper levels of the frame are fixed and
represent unalterable truths about the object or situation, while lower levels
consist of ‘terminals’ or ‘slots’ (the usual notation) which are filled with
specific instances. In practice this distinction between upper and lower levels
is not much used, except for the name of the frame itself.

No particular originality was claimed for the notion of frame and he ack-
nowledges the parallel work of others in attempting to move away from
representing knowledge as ‘collections of separate simple fragments’. More
novelty is claimed for the notion of ‘frame systems’, which are collections of
rclated frames which are linked together by the sharing of slots. This shar-
ing allows lower level frames to inherit the properties of higher level frames -
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the implementation of this mechanism is not very explicitly discussed, but
the idea is that the linkage mechanism is some sort of ‘information retrieval
network’ using a ‘matching’ process.

Consider the two linked frames in Figure 1 to see what results are
expected. Through the retrieval network the two frames are compiled to
produce a new explicit frame for DOG shown at the bottom of the figure.
Here the first three slots of the new frame for DOG are inherited from the
MAMMAL frame via a matching of the frame name MAMMAL with the
IS-A slot value MAMMAL.

Though some slots (higher level) are presumed to be inherited without
exception, Minsky required that a frame’s slots would usually be filled with
‘default’ and that these default assignments should easily be replaced by
values which better represent the situation. This requirement arose from
Minsky’s view of cognitive memory and he believes that much of the power
of the theory stems from these default assignments. He held that on consid-
ering a new situation a frame is selected from memory, and this remembered
framework is adapted to the actual situation by changing details (slot values)
as necessary. Indeed he asserts that this is the essence of the theory. The
role of the frame in memory (and knowledge representation) is to represent
stereotypical situations.

We illustrate this notion with the following very simple example of a
stereotype of elephant:

FRAMENAME ELEPHANT
SLOT 1 IS: A MAMMAL
SLOT 2 LEG: CARDINALITY: 4

Here the first slot is to be inherited without exception - an elephant must be
a mammal. But the second slot is a default of the stereotype elephant, in
that most people conjuring up the notion (frame?) elephant would attribute
four legs, but any specific elephant, inheriting the ELEPHANT frame might
have lost a leg and therefore have 3 for the second slot value. This slot then
has a default value which should be easily replaced according to cir-
cumstance. Stereotypes will usually have many (perhaps most) slot values
which are not strictly entailed by the top level node or frame name.

In summarizing what Minsky takes to be the essentials of frames and
frame theory, at least one thing should be clear - a snappy one line descrip-
tion is not appropriate. So two definitions of frames from the literature

® ‘A generalized property list” (Winston and Horn, 1984)
e ‘An example of a structured object’ (Bonnet, 1985)

hardly capture what Minsky was advocating. Sowa comes closest to captur-
ing some of the essence of Minsky with his one line description
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FRAMES & INHERITANCE

FRAMENAME MAMMAL
SLOT1 BODYCOVER : FUR
SLOT2 BIRTH : LIVE
SLOT3 SEX : MALE OR FEMALE

FRAMENAME

DOG

SLOT1 IS-A : MAMMAL

SLOT2 OFFSPRING : PUPPIES
SLOT3 VOCALISATION : BARK

FRAMENAME

DOG

SLOT1.
SLOT2
SLOT3
SLOT4
SLOTS

BODYCOVER : FUR
BIRTH : LIVE

SEX : MALE OR FEMALE
OFFSPRING : PUPPIES
VOCALISATION : BARK

Figure 1
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‘Prefabricated patterns assembled to form mental models’ (Sowa, 1984) but
clearly much is left out.

Another notion which Minsky wished to have embodied in ‘frames sys-
tems’ was what he called ‘view changing’. This could be the changes of view
a vision system experiences from relative rotation of the viewed scene, or in
language systems ‘procedures which in some cases will change the contextual
definitional structure to reflect the action of a verb’. No real idea was given
of how such a ‘view changing’ facility might be implemented. However the
notion appears to have been influential in the use of ‘viewpoints’ and ‘Kee
worlds’ in the ART and KEE commercial knowledge-based systems.

Minsky’s paper concludes with a criticism of logic in knowledge represen-
tation. I believe that in this he was partly right in spirit, but mostly wrong
in letter. These issues are discussed in the sections concerning Hayes’ and
Brachman’s critique of frames.

4.3 Applications of the Frame Idea

In the preceding section we discussed Minsky’s influential paper with some
difficulty - since the rather vague allusive style makes it hard to clearly
understand what exactly is being advocated. We now discuss some applica-
tions of the frame idea.

First we present story understanding, an application discussed by Minsky
in his original paper. Then we review a medical diagnosis system: CEN-
TAUR (Aikins, 1983).

An interesting application of frames is to story understanding. I am con-
cerned that as an outsider to natural language work I may give a wrong
impression to other outsiders. This concern arises because the results do not
look impressive. Presumably the moral to be drawn is that, since the
researchers are very able, then the problem is hard. Our example is taken
from work on understanding news stories (De Jong, 1979) about earth-
quakes. The frame construction anticipates what would be expected in a
short account of an earthquake:

FRAMENAME EARTHQUAKE
SLOT 1 PLACE: LOWER SLABOVIA
SLOT 2 DAY: TODAY

SLOT 3 FATALITIES: 25

SLOT 4 DAMAGE: 500,000,000
SLOT 5 MAGNITUDE: 8.5

SLOT 6 | FAULT: SADIE HAWKINS

The slot values are filled as above from the following news story.
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“Earthquake Hits Lower Slabovia

Today an extremely serious earthquake of magnitude 8.5 hit Lower Slabovia
killing 25 people and causing $500,000,000 in damage. The President of
Lower Slabovia said the hard-hit area near the Sadie Hawkins fault had
been a danger zone for years”.

Having obtained the slot values from the news story these are inserted
into the Earthquake Summary Pattern:

“Earthquake Summary Pattern

An earthquake today occurred in value in location slot value in day slot There
were value in fatalities slot fatalities and $ value in damage slot in property
damage. The magnitude was value in magnitude slot on the Richter scale,
and the fault involved was the value in the fault slot.”

This produces the following summary after instantiation:

“An earthquake occurred in Lower Slabovia today. There were 25 fatali-
ties and $500,000,000 in property damage. The magnitude was 8.5 on the
Richter scale, and the fault involved was the Sadie Hawkins™.

Now that seems quite good, though one might be worried about a news
story which mentioned 25 injured. Wouldn’t the system kill them off in the
summary? A cruder problem is what happens to a story concerning earth-
quakes but not actually reporting one. Take the following news story:

“Earthquake Study Stopped

Today the President of Lower Slabovia killed 25 proposals totalling
$500,000,000 for research in earthquake prediction. Our Lower Slabovia
correspondent calculates that 8.5 research expenditures are vetoed for every
one approved. There are rumours that the President’s close adviser, Sadie
Hawkins, is at fault™.

This would produce an identical summary to the earthquake story. The
solution, in principle, was stated by Minsky - namely give the frames
sufficient information and procedures for them to recognize when to act -
the solution in practice can be rather elusive.

The expert system PUFF (Kunz et al., 1978) for lung function test is of
considerable interest. Though not nearly so well known as MYCIN
(Shortliffe, 1976), it is in widespread everyday use, whereas MYCIN has only
ever diagnosed one patient ‘in anger’. Another reason for interest is that
Aikins, prompted by its deficiencies, produced CENTAUR (Aikins, 1983)
which makes extensive use of frames to improve upon PUFF. PUFF is a
clear descendant of MYCIN, using simple unstructured rules to represent
knowledge, strategy and control. This modular, uniform representation was
at one time held to be a positive advantage. In analysing PUFF, Aikins
noted that though PUFF was adequate as a problem solver it had important
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shortcomings which she traced to the flat knowledge representation of rules.
The problems found were:

(1) It was hard, or impossible, to represent typical sorts of patient and
disease patterns.

(2) During a consultation it was difficult to modify the order in which
questions were asked since these questions were generated by rule
firings controlled by the interpreter, and much of the control informa-
tion was implicit, buried in the rules themselves.

(3) Maintainability and modifiability were problems because of unantici-
pated side effects of rule changes or additions.

Frames provide, as Minsky intended, a suitable mechanism for represent-
ing stereotypical uses and also for embedding the specific stereotype in a
more general stereotype. So, for instance, Aikins has a frame for
OBSTRUCTIVE AIRWAYS DISEASE with lower order frames represent-
ing ASTHMA, BRONCHITIS and EMPHYSEMA, and also a set of four
frames representing the degree of severity of the disease.

The issue of control as a problem for flat rule based systems had also been
recognized by Clancey (1983) and Szolovits (1983). Szolovits noted that the
overall strategy of MYCIN - try the most probable .cause first - is nowhere
explicitly represented, but is instead encoded separately and implicitly in
each of the rule sets representing the 26 blood infections considered by
MYCIN.

In CENTAUR Aikins solved this problem by using frames to give an
explicit representation of how reasoning was to be controlled and to keep
this separate from inferencing from data. Hence the name CENTAUR - the
head is of different type to the body. The control of question asking mainly
resides in the stereotypical frames - which may contain sets of production
rules for inferring a required value - if the rule set does not instantiate a
value then the user is questioned.

A related benefit from grouping production rules in sets of frame slots is
that the rules are explicitly organized in relation to the stereotype being
matched to data. This makes for ease of understanding, maintenance and
modifiability. Though CENTAUR was no better as a problem solver than
PUFF, it was argued that the representation of knowledge for both disease
stereotypes and strategy greatly improved intelligibility and maintenance.
These benefits, both for the expert and knowledge engineer, are clearly much
more than symbol level implementation issues; they are of importance at the
knowledge level.
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Apart from Aikin’s original paper, a thorough discussion of CENTAUR
is given in Jackson’s excellent book (Jackson, 1986). Jackson also discusses
another medical expert system, INTERNIST, where frames were found
necessary to organize the knowledge comprehensibly.

4.4 The Backlash - Hayes’ ‘Logic of Frames’

Some four years after Minsky’s paper, Hayes (1979) analysed what frame
representation had achieved. His conclusions were mostly negative. He held
that with the exception of ‘reflexive reasoning’ no new insights had been
achieved from work based on frame representations. Though we record this
view as overly harsh, and indeed believe some of Hayes’ assertions to be
wrong, the paper is important in that it was the first attempt to subject
frame structures and theories to a systematic logical analysis.

In his introduction, concerned with representation and meaning, Hayes
loses no time in expressing a distaste for the lack of tight analysis in
Minsky’s paper and some subsequent work. ‘“Minsky introduced the termi-
nology of ‘frames’ to unify and denote a loose collection of related ideas on
knowledge representation: a collection which, since the publication of his
paper has become even looser. It is not clear now what frames are, or were
ever intended to be.”

He opens by discussing three different views of frames:

(1) as a formal language for representing knowledge, to be compared with,
say, predicate calculus (representational);

(2) as a system which presupposes that a certain kind of knowledge is to be
represented - this he calls the ‘metaphysical’ interpretation;

(3) as an implementation issue - frames are to be viewed as a computa-
tional device for the organization of memory, retrieval and inference.

Though he observes that Minsky seems to speak to the ‘metaphysical’ and
implementation (or heuristic) interpretations, he largely bases his analysis on
the representational interpretation. He notes that it has been common - and
still is - to confuse these views, particularly the representational language in
that it has a semantic theory which defines the meanings of expressions in
the language. It is the semantic theory that changes a formal language into
a representational language, and this theory must explain the way in which
expressions carry meaning.

Having discussed the meaning of meaning, Hayes is ready to address the
meaning of frames. To motivate his discussion he first considers a frame
representing a typical house and then specializes to an instance of a particu-
lar house by giving (some) slots values. This example he then rewrites as a
set of assertions in predicate calculus.
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He concludes that, used in this way, stereotypical frames are bundles of
properties expressible in predicate calculus, and particular instances are sim-
ply instantiations. This, then, suggests to him that frames are merely an
alternative syntax for predicate logic - i.e. expressions about the relationships
between individuals. However he notes that though the meanings appear to
be the same, the inferences allowed by frames may be different from those
sanctioned by logic, in some important way. It is then suggested that we
must examine how frames are used to get a better insight into their meaning.
Here ‘“‘use” is plainly meant to mean what inference rules are used. This is a
rather strange path given Hayes’ representation - Hayes’ prime focus is at
least partly separate from inference. In particular, commitment to a
representation does not automatically require commitment to a particular
inference mechanism. Indeed, commitment to logic as representation does
not commit one to deductively sound rules of proof. The reader is strongly
encouraged to read the article by Israel (1983) for an excellent account of
the distinctions (and confusions) between representation and reasoning.

Nonetheless, we shall follow Hayes’ discussion of the use of frames. He
considers a form of inference suggested by Minsky - ‘criteriality’. The idea
is simply that if we find values for all the slots of a frame, then we can infer
that an appropriate instance of the concept represented by the frame exists.
So if ‘Dunroamin’ has the appropriate slot fillers for kitchen, bathroom etc.,
then, by virtue of possessing these attributes, ‘Dunroamin’ satisfies the neces-
sary and sufficient conditions to be a house. Hayes simply takes this exam-
ple and maps it onto first order logic, where such slot names as kitchen
become the function kitchenof. This example reinforces Hayes’ belief that
frames are just another syntax for first-order logic, with the defect that it is
unclear whether criteriality is being assumed, whereas in clausal form this is
obvious.

Hayes now considers a third form of frames reasoning - matching as made
concrete by Bobrow and Winograd (1977). If we have an instance of a con-
cept frame, say John Smith as an instance of Man, we can regard John
Smith as an instance of another concept frame, say Dogowner. Hayes
observes that a match may be established if the man frame had a slot for pet
and this was filled by an object known to be a dog, or if the Dogowner
frame had a slot for owner name and dog and name was filled by John
Smith, and dog filled by anything. Either would be sufficient for the
instance John Smith to be matchable to Dogowner. He points out that the
knowledge is expressible in first order logic, and the result is obtained
through the standard inference rules of logic. He leaves out entirely the
situation where ‘matching’ fails - Minsky envisaged this as a trigger to seek
alternative frames, or construct new ones. Hayes allows that more profound
use of the matching process might be envisaged, but would probably be only
expressible as in higher-order logic, and remarks that it may not be possible
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to implement such schemes.

This hints at a tendency which becomes more marked in the discussion of
defaults and stereotypes - choosing examples which are expressible in first
order logic, or if they are not so expressible ignoring them.

Take first stereotypes, which Minsky asserts to be a very significant com-
ponent of the frame notion. Hayes distinguishes three ways in which stereo-
types may be used.

The first is simply filling in details - this may result in the satisfaction of
criteriality or in matching - in either case expressible in predicate calculus.

I'he second is as the correct way of looking at a single thing. Once again
this can amount to criteriality - but there can be a difficulty - a single thing
may have apparently contradictory properties or be seen from different
points of view. He takes an example of someone who is unfriendly at work
but friendly at home. This again is dismissed as a non-problem with three
sketched possible solutions; which, unless the solution is translated into
assertions with consequent contradiction, he has no theory for. There does
appear to be a solution at least partly in the spirit of Minsky; namely, the
‘Viewpoints” of ART or the ‘Kee worlds’ of KEE. This allows for the
maintenance of internally consistent hypothetical worlds which may contrad-
ict cach other, and for drawing inferences between these worlds. Though
Minsky appears to have some of the idea of this mechanism, and presum-
ibly influenced its development, his suspicion of inference apparently did not
nllow him to discuss consistency in each separate viewpoint. Nevertheless
this seems evidence against Hayes’ assertion that no new insights resulted
from the frame movement.

His third view of stercotypes is to understand them as representing a
metaphor or analogy. Frame-like structures were used for analogical reason-
ing in MERLIN (Moore and Newell, 1973) and Minsky acknowledges this
ns o major influence. The example considered is ‘pig’ as an (unkind) meta-
phor for man.

Hayes seems to make heavy weather of metaphor, noting at some length
that a man cannot literally be a pig. This means, in the jargon, that match-
ing ol a metaphor should never establish criteriality. But if matching does
establish criteriality, as it may to Bobrow and Winograd (1979) - but not to
Minsky - then frames have a problem in that they cannot distinguish a meta-
phor (or ‘mere caricature’ to Hayes) from a real assertion. Hayes does note
liowever that the bundling of the appropriate properties in the frame used in
metaphor would be a criterion for pig-likeness as distinct from pig-hood.
Huving scented ‘criterial’ he then notes that a systematic vocabulary transla-
tion could allow logic to do all (and more) than is claimed for the frame as
metaphor. Though he allows that logic itself does not provide the syntactic
muachinery for this translation, an analogy is sketched to an unreferenced use
of snalogy in mathematics. It is claimed that if a caricature frame contains
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the translation information then all is reducible to first order logic. Surely
the point here for frame aficionados is that once they are allowed to charac-
terize a frame as a metaphor, matching then validates the metaphor as a
metaphor and not a true assertion - so no translation is needed.

The weakest of all the discussion in ‘Logic of Frames’ concerns defaults.
One has the feeling in this section that Hayes’ considerable, but incompliete,
success in showing a correspondence between frames and first order logic has
now convinced him that all aspects of frames are expressible in first order
logic. He defines a default as the slot value in the absence of contrary infor-
mation, but does not add that with such contrary information the value
should be replaced. He does not say that defaults take us out of first order
logic - but only that they seem to do so. This apparent unequivalence is
asserted to be a consequence of a naive mapping of default reasoning onto
assertional reasoning. After discussing an example he concludes that what is
required for default reasoning is some process which subtracts previous
beliefs or assertions. The trouble is that classical logic does not allow this -
it is monotonic - beliefs can only be added and conclusions increase mono-
tonically. Hayes simply disagrees - he asserts that no new logic is needed -
merely some new primitives and the ability to ‘“talk about the system itself”.
This is firmly disputed by at least some of the workers cited as producing
such a system. Etherington and Reiter (1983) state ““... common sense rea-
soning about exceptions is non-monotonic, in the sense that new information
can invalidate previously derived facts. It is this feature which precludes first
order representations, like those used for taxonomies, from formalizing
exceptions™. We should conclude that Hayes fails completely to establish an
equivalence between first order logic and frame defaults. The situation is
clearer now (1987) than at the time of Hayes’ paper (1979) and it appears
that most workers in the field agree with the quote from Etherington and
Reiter.

For exceptionless hierarchies - which are representations of universal set
inclusion - it should come as no surprise that first order logic can represent
the knowledge as can frames and there is a mapping/transformation between
the two. This of course does not show frames are ‘merely’ first order logic.
It is hard to believe that anyone who has seen a frame representation for a
taxonomic hierarchy could fail to believe, whatever the logical equivalence,
that for this case frames are a superior representation to an unstructured
sequence of clauses. An example from physics - cartesian and spherical
polar coordinates are equivalent - but cartesian coordinates are far superior
for solving problems about particles in cubic boxes, spherical coordinates
superior for solving the hydrogen atom. So I would claim the ‘bundling’
aspect of frames, even for those cases where there is a mapping onto predi-
cate calculus, is by no means the triviality Hayes makes it out to be - and
has been one of the major practical attractions of the frame idea.
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Just because replaceable defaults cannot be handled by predicate calculus
does not mean that frames do not have problems and in the next section
Brachman’s concerns (Brachman, 1985) are discussed.

In the final section of ‘The Logic of Frames’ it is argued that one positive
product of the frames movement is the idea of reflexive reasoning. Reflexive
reasoning is that in which the reasoner thinks about himself, in particular
about his own reasoning process. Interestingly, the possibility of this
knowledge level activity arose in part out of an implementation (or symbol)
level issue. In some, but not all, frame systems the frames are implemented
as structured objects in the sense of Object Oriented Programming (OOPS) -
scc for instance (Bobrow and Winograd, 1979) and (Bobrow and Stefik,
1983). This implementation, at least in principle, allows for the possibility of
reflexive reasoning. So far there are only two or three pioneering examples
in the literature, and these suffer from a somewhat ad hoc style; however,
work is being pursued to put the basis of reflexive reasoning on a firmer
foundation - see (Maes, 1986).

Summarizing, then, Hayes set out to show that almost all of frames is
equivalent to some of first order logic, and so the movement had produced
no new insights. Although he did some of the job, he did not complete it .
His dismissal of the use of frames as stereotypes, their use for ‘seeing as’, is
unconvincing, and his section on defaults, where he asserts that no new logic
is required, is wrong. Still, the paper is important, and beautifully written -
whether or not one agrees with Hayes there is usually no doubt what he is
saying and why he says it - not something that can be said of Minsky’s
paper.

4.5 Problems with Defaults and their Cancellation - Brachman’s
Klephant Joke

In the discussion of Hayes’ ‘Logic of Frames’ we observed that though
Hayes was wrong to say that no new logic was needed to handle defaults,
this did not mean that all was well for every, or perhaps any, frame
representation of default reasoning. Brachman, in a superb essay (Brach-
man, 1985) which sets depressingly high standards for just what can be
nchieved in a popular account, brings out the problems of replaceable
defaults in frame (or semantic network) representations.

Very crudely summarizing, though Hayes argued that most of the frames
iden 18 equivalent to predicate logic, Brachman makes a case that none of
the default aspect of frames is logic, and indeed they let you do very little
consistently. Refining the above caricature a little, Brachman’s main point is
that once overrideable defaults are used uniformly then definitional (or cri-
terinl) conditions cannot be used, and without definitional power frames can-
not express simple composite descriptions such as ‘polygon with four sides’.
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The argument is organized as follows: first it is shown that the use of can-
cellable defaults forces us to represent everything in terms of defaults, and
this does not allow us to represent universal truths. Then comes the really
great problem - this means that even the simplest of composite descriptions
cannot be constructed - so every description must be a primitive.

Now one might think that the first problem is terrible - being unable to
represent universal truths - like ‘every rhombus is a quadrilateral’. But that
is not so, for two reasons. First, if you stick to the ‘ideal’ world of geometry
no default cancellation is needed, and frames, logic etc. work fine. But
much more importantly, if you do not stick to ‘ideal’ worlds but try to deal
with the real world as the frames movement wants to do, then you have to
recognize that ‘natural kind’ concepts like elephant cannot be defined (Put-
num, 1977). So it could be argued that the loss of definitional capability is
no great loss after all if our main goal is to represent the real world and the
real world is not amenable to definition. Similarly, classical logic is inade-
quate, in the sense that ‘natural kind’ concepts cannot be represented by a
finite number of necessary and sufficient conditions. Now what is devastat-
ing about Brachman’s argument is that though you can define ‘polygon’ and
you cannot define ‘elephant’ you surely should be able to conclude that an
ELEPHANT-WITH-THREE-LEGS is an elephant just as you can conclude
that a THREE-SIDED-POLYGON is a polygon. But, argues Brachman,
with cancellable defaults you cannot - ELEPHANT-WITH-THREE-LEGS
is not a composite description, it is a new primitive because we have lost all
definitional capacity.

Before wrapping up, he addresses the question of what frames in systems
with cancellable defauits might be, discussing various meanings of the IS-A
link.

A word of caution - before deciding you will never (again) have anything
to do with frames, keep in mind that Brachman’s argument bears on frame
systems with ““ .... a uniformly applicable facility to cancel properties”.
Brachman himself notes that it is possible to have systems where some
defaults are explicitly uncancellable whereas others are explicitly cancellable
and notes that thus explicit marking of defaults may also have expressive
value. So frames are not necessarily bad for you, but badly (or not at all)
thought out knowledge representation frameworks are.

Now to the argument. Brachman takes frames with inheritance to mean
that subframes inherit all the properties of their parent frame. The specific
example considered is the frame for elephant which is a subframe of the
parent mammal frame. This could be represented as:
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FRAMENAME ELEPHANT
SLOT 1 SELF: A MAMMAL
SLOT 2 TRUNK: A CYLINDER
SLOT 3 COLOUR: GREY

| SLOT 4 LEGS: CARDINALITY: 4

Now what does this mean? The first possible meaning discussed is essen-
tially that put forward by Hayes. If the inference mechanism of frame sys-
tems is inheritance, and no defaults are cancellable, then one could argue
that the elephant frame is stating the necessary conditions for class member-
ship. So if CLYDE is an elephant by virtue of some kind of IS-A link to
the ELEPHANT frame then CLYDE necessarily is a mammal, has a
cylindrical trunk, is coloured grey and has four legs. In this interpretation
Hayes would be quite right to interpret the slots of the frame as right-hand
sides of conditionals.

This interpretation simply will not do for the ‘natural kind’ concept
clephant. It is entirely thinkable that a given elephant would have none of
the properties specific in our frame, apart from being a mammal. Brachman
conceives of an unfortunate elephant suffering from hepatitis which is conse-
quently yellow not grey. (Honestly it won’t affect the argument if elephants
stricken with hepatitis do not go yellow, or even if elephants are immune to
hepatitis.) To handle this problem of exceptions most frame systems allow
the overriding or cancellation of a property that would normally be inher-
ited. Now once this is so we cannot use the Hayes interpretation of the
colour slot - ‘every elephant is grey’. Instead there has to be an interpreta-
fion such as ‘the typical elephant is grey’ and grey is a default value - in the
sense originally suggested by Minsky.

Brachman observes that typical has nothing to do with frequency - one is
not saying most elephants are grey (though probably they are) or even that
prey is the most frequently observed elephant colour. Instead, the force of
the statement is “in the absence of any evidence to the contrary, assume that
nny given elephant is grey”. This interpretation is consistent with Minsky’s
puper - though he does not give it - and also with subsequent more or less
formal approaches to default reasoning (Reiter, 1978).

At this stage we ask what has been given up to talk about conceivable real
vlephants. If the mechanism is the wuniform (my emphasis) possibility of
default cancellation then we have lost the possibility of representing neces-
siry universal truths like the truths of geometry or arithmetic. Of course we
might puzzle over why someone would like to represent and reason about
the abstractions of plane geometry in the same system that considers real
vlephants. Remember there is a subtle difference between the statement that
nll quadrilaterals are polygons’ and ‘all elephants are mammals.” The first is
frue by definition and cannot in principle be otherwise, the second is a
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matter of scientific discovery - we could have been wrong.

A slightly less obvious problem is that abandoning ‘every’ means that we
cannot represent contingent universal facts with a single statement. This is
definitely a nuisance. One might well observe that all the vehicles in the
parking lot are cars - there are no vans, motorcycles etc. Having a true
every, as in predicate calculus, allows us to capture this without even know-
ing, as one need not, how many cars there are, still less representing each
one. This is clearly a loss compared with predicate calculus - but not, as
Brachman brings out - the most severe loss.

The worst problem concerns that of description. The essence of the prob-
lem is simply represented - once we have the concept elephant, never mind
how we came by it, then we should be able to construct an indefinite
number of composite concepts, each of which is related to the parent con-
cept ELEPHANT by definition - i.e. necessity and sufficiency. So consider
the concept of an el¢phant with three legs - the frame for this might be
called ‘ELEPHANT-WITH-THREE-LEGS’. This concept is just the com-
position of two attributes, each necessary and both together sufficient. We
require that it is impossible to have an elephant with three legs that is not an
clephant, and that it is impossible for something that was both an elephant
and had three, and only three, legs not to belong to ELEPHANT-WITH-
THREE-LEGS. Stating the problem in a slightly different way,
ELEPHANT-WITH-THREE-LEGS should stand in the same relation to
ELEPHANT as POLYGON-WITH-THREE-SIDES stands in relation to
POLYGON. Now the ‘natural kind’ concept ‘elephant’ is very different
from the mathematical idealization ‘polygon’ in that the latter is a well and
simply defined concept, whereas the former has no definition at all. But still
we must, without fail, infer that an elephant with three legs is an elephant
just as we conclude that a polygon with three sides (the primitive triangle) is
a polygon. The crunch is that in allowing the uniform (my emphasis again)
overrideability of defaults we have lost the definitional capability to do this -
and cannot represent that ELEPHANT-WITH-THREE-LEGS and similar
compositions are more like POLYGON-WITH-THREE-SIDES than they
are like ELEPHANT. The analogy to natural language is clear - it is as if
we had given up the possibility of noun phrases and were just left with sim-
ple nouns - since now all frames are primitives.

At this point Brachman rather goes overboard and tells us that frame sys-
tems cannot deduce that a rhombus (a polygon with four equal sides) is also
a quadrilateral with four equal sides, and that the concept of a three-sided
rhombus would be just as acceptable. It must be noted that (most) frame
systems allow inheritance without cancellation, and that is just what is
wanted for completely definitional representation. Indeed the construction
of a frame system which never ‘lies about plane geometry is a standard
tutorial exercise used by the makers of one commercial Al-toolkit.
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One of Brachman’s parting shots concerns IS-A links. He observes that
the informal practitioners of knowledge representation often confuse
different meanings of IS-A. He gives three different meanings of IS-A:

(1) the concept of a kind of thing (e.g. elephant);

(2) a generic description specifying the properties that typically apply to
instances of a kind of thing;

(3) a “stereotypical” (he says prototypical) individual somehow typifying
the kind.

Confusing these different meanings is evidently no way of going about
knowledge representation - but it has happened. One might, in mitigation of
the informal school observe that the verb ‘to be’ has given philosophers a lot
of trouble - see, for instance Russell’s History of Western Philosophy
(Russell, 1945). The prosecution might argue that, not knowing the relevant
literature, particularly from another field, is a frequent failing in AI. Sowa
(Sowa, 1984) has made this point with many telling examples.

Brachman’s conclusion is that the very proper desire to represent ‘natural
kind” concepts had led to naive mechanisms that admit arbitrariness and
force ignorance of crucial facts. As he notes, when a/l rules (of inheritance)
arc made to be broken, then no rules are left. But the rule that elephants
with three legs are elephants is not to be broken. As he pithily remarks
“(some) AI systems have thrown out the compositional baby with the
definitional bathwater”.

As we have hinted, though Brachman’s argument is convincing, it does
not close the door on an effective and useful frame representation. What is
needed is a representation where some properties and property values (slot
values) are inherited without exception (‘sacred’) and others are explicitly
marked as replaceable. These ‘sacred’” markings should also distinguish
between the slot value being uncancellable and the slot name (or attribute)
being uncancellable. As he notes, the presence of an explicit cancel link
ndds to the representations’ expressiveness. A cancelled attribute could give
information about the property’s history and applicability. This is clearly an
nrea for more research and Brachman and friends have been active. One
npparently promising approach used in the system KRYPTON (Brachman,
Fikes and Levesque, 1983b) is to separate as completely as possible
definitional and factual information. Lambert discusses this work in
Chapter 10.

Iinally we should note that though the ‘informal’ school of knowledge
representation has suffered some well-aimed blows (and others not so well
nimed) as reviewed in these last two sections, the ‘formal’ school appears to
be having considerable problems with formalizing ‘common-sense’ reasoning.
We give a short account below.
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4.6 The Problems of Formalizing Default Reasoning

Hayes’ analysis of default reasoning in 1979 (Hayes, 1979) mentioned work
in progress by McDermott and Doyle and also by Reiter which it was hoped
would give a formally satisfactory account of default reasoning. This is also
referred to as work on the problem of non-monotonic logic. Classical logics
are monotonic in the sense that assertions once made cannot be retracted,
and so the numbers of conclusions increase monotonically with the number
of assumptions. In default reasoning one is allowed to retract assertions in
the light of evidence - the conclusions of a logic which allows this is non-
monotonic with respect to assertions.

The enterprise of formally representing default reasoning looked very
promising (see McCarthy, 1980; McDermott and Doyle, 1980 and Reiter,
1980). But prior to 1986 problems have surfaced in the work of Reiter and
Doyle and McDermott.

The problem is that the non-monotonic extensions to predicate calculus
seemed to allow only weak, or even no, conclusions be drawn. McCarthy’s
more elaborate formalism was not known to suffer from these problems until
the analysis of Hanks and McDermott (1986). In this paper they claim to
show by a detailed example that McCarthy’s approach also, in some cir-
cumstances, yielded no useful conclusions in the sense that the system
yielded two contradictory conclusions, and gave no guidance in selecting one
of them. At the time of writing this is still recent work and we cannot claim
any final conclusion. However there is at least some evidence that formal
methods may not be able to handle the sort of default reasoning required for
representing common-sense reasoning. Since this is one of the key issues in
Al we should expect much work and lively debate on these issues.

4.6.1 The ‘Frame Problem’ - a Brief Note

Since Hanks and McDermott mention the ‘frame problem’ it is worth noting
that this problem has nothing specifically to do with frames as discussed in
this chapter. The frame problem recognized by McCarthy and Hayes
(McCarthy and Hayes, 1969) concerns the problem of expressing informa-
tion about what remains unchanged by an event. The essential assumption
is that a state persists between events. This is discussed at greater length in
Chapter 9.
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4.7 Comparisons and Conclusion

The use of frames to represent knowledge about structured domains or
structured knowledge continues to increase in popularity, particularly as sys-
tems get larger. The wide variety of hopes (explicit and implicit) in Minsky’s
paper (Minsky, 1975) are unlikely to be fulfilled completely - in particular
‘common-sense’ or default reasoning cannot be effectively represented by the
cancellable inheritance of defaults.

Though Hayes (Hayes, 1979) showed a logical equivalence of a particular
use of frames to first order predicate logic, this does not diminish the utility
of the frame approach, since the additional structure which can be
represented or imposed by frames has considerable value.

One demonstration of this is the reconstruction of knowledge bases origi-
nally expressed in unstructured production rules into frame systems and the
consequent improvement in system understanding and ease of maintenance.

Frames have some similarity to semantic networks - a frame system whose
frames consist of the framename and top relation slot is just a semantic net-
work of nodes joined by relation arcs defined in the relation slot. The issue
of inheritance and cancellable defaults arises in exactly the same way for
semantic networks, though the argument may be a little less clear.
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5 Rule Based Systems

Tony Williams and Brian Bainbridge

5.1 Introduction

The knowledge representation that may be already familiar to the general
reader is the production rule formalism. In this chapter, the origin and
development of production rule systems will be examined, applications will
be described and an evaluation of the formalism will be made.

5.2 Basic Components and a Simple Model

In general, production systems have three main components: working
memory, rule memory and the interpreter. The architecture and execution
cycle of a simple production system comprising these three components is
given in Figure 1.

The working memory is a store containing objects defined by attribute-
value lists. These objects represent facts about the world, either given,
observed or inferred. As we shall see, they may also represent working
hypotheses, rather than real facts. These working hypotheses may be
modified or withdrawn in the light of subsequent information. The term
fact is used loosely in this chapter to refer to all kinds of object in working
memory.

FFor example, using a Lisp-like notation:
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( (Patient-ID 12345)
(Patient-name Smaug)
(Complaint Bad-breath)

( (Patient-ID 12345)
(Skin-condition Green-scaly)

This set of objects includes the information that a patient named Smaug has
complained of bad breath. The physician has observed that the patient has
green scaly skin. The system has assigned an identifier for this patient, and
no doubt has other information stored.

The rule memory contains rules governing the system’s behaviour. These
rules have the form

IF condition(s) THEN action(s)

At first sight, these rules appear similar to conditional statements in conven-
tional programming languages, such as the logical-if statement in Fortran.
The differences will be discussed later. The conditions govern the premises
for selection of this rule, and are sometimes referred to as antecedents or
left-hand sides. A condition defines a pattern to be matched against the
content of the working memory. Such a pattern can match one or more
objects whose attributes conform to requirements expressed in the pattern.

observed
data

Working
memory

modify

select /

Rule
memory

Interpreter |—— output

fire

Figure 1 Production system execution cycle
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An action defines modifications or additions to the working memory, and
may include side-effects, such as output. The resultant changes to working
memory play the role of inferences in an expert system. Actions are some-
times referred to as consequents or right-hand sides of the rule.

Contrived examples of rules might be:

IF (Complaint Bad-breath)
AND (Patient-species dragon)
THEN (assert (remedy mouthwash))

IF (remedy 7x)
AND (no-side-effects 7x)
THEN (print "Take” 7x “and see me in a month”)

(?x signifies a variable)

The first rule states that the way to cure bad breath in dragons is for them
to gargle with mouthwash. The second rule states that if a remedy has been
inferred (as indicated by the presence of a remedy attribute in working
memory) and there are no unwanted side-effects, then the patient can be
given the prescribed remedy.

Rules have a readily understandable form, provided that the condition
part does not become too complex. They can be used in explaining to the
user why the system made a particular deduction, because they directly state
the information on which the deduction was based, and the reason why the
deduction holds.

The interpreter (also called the inference engine) is the active component
of the system. It selects rules from the rule memory that match the contents
of the working memory, and performs the associated actions. This is termed
firing a rule.

Two factors distinguish rules from conventional conditional statements:

(1) the conditional part is expressed as a (possibly complex) pattern rather
than a boolean expression;

(2) the flow of control (as found in conventional languages) does not pass
from one rule to the next in lexical sequence but is determined entirely
separately, by the interpreter.

The first distinction can be seen as mere syntactic sugaring, as an
cquivalent pattern matching function can be called from within a boolean
expression. The second distinction is more significant. It allows separation
of the knowledge from control of how the knowledge is applied. Knowledge
bases can be expressed as sets of rules, each of which can be validated
independently of the control structure. Each rule expresses a relationship
between antecedents and consequents which must hold in a static way: the
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“truth” of the rule must hold independently of when it is applied. This
implies that the antecedents of the rule must adequately determine the con-
text in which the consequents apply.

5.3 Survey of Production Systems

Post (1943) used production systems in symbolic logic and invented the
name. In mathematics they first showed up as Markov algorithms (Markov,
1954), and they have been used in linguistics under the name of rewrite rules
(Chomsky, 1957). Later, the formalism was used in programming languages
such as SNOBOL (Farber, Griswold and Polonsky, 1964), and in compiler
translation languages (Floyd, 1961).

An illustration of the use of production systems in linguistics is in express-
ing a context-free grammar. For example, an insult grammar (a favourite of
introductory Al texts) could be expressed by these rules (after Bundy et al.,
1980):

insult = > suggest ’you misname
suggest = > ’buzz ’off

suggest = > ’go ’jump ’in ’a ’big ’hole
misname = > ’nasty 'fellow

misname = > ’little "toad

(2 quote signifies a literal)

This will generate such marvels as
‘““go jump in a big hole you little toad”

The first use of production systems in knowledge-based systems seems to
be in 1965, when Herbert A. Simon and Allen Newell at Carnegie-Mellon
University used them in a chess analysis program (Simon and Newell, 1965).
Since 1954, these researchers have worked on aspects of human problem-
solving (Newell and Simon, 1972). They have studied the performance of
intelligent adults on short (half-hour) tasks of a symbolic nature, tasks not
centrally concerned with perception or motor skill. Three main problem
areas have been used - symbolic logic, chess problems and algebra-like puz-
zles. Test subjects are asked to perform the task, and to “think aloud” as
they do so. These protocols are recorded and transcribed to form the data
to be represented in a production rule formalism. The resultant system
behaves in a similar way to the human problem-solver, and this can be inter-
preted as being a result of the similarity of the two information processing
systems.
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These studies have typically not been concerned with learning and age-
related differences or development. Later applications of production sys-
tems have been more concerned with such areas, and have dealt with such
domains as seriation (putting physical objects in order) and learning arith-
metic operations (Young, 1976, Young and O’Shea, 1982, Evertz, 1982).

In these types of research, the production system is regarded as being a
psychological model of human knowledge and skills. It is possible to model
adaptive behaviour by using rules which modify rule memory (seen as akin
to human long-term memory) and/or the working memory (seen as akin to
human short-term memory). For example, it has been suggested that user
interfaces to computer systems could be built which would adapt to the user,
and accelerate the more common interaction sequences (Hopgood and Duce,
1980). Conway and Wilson discuss this approach to modelling human pro-
cedural knowledge in Chapter 6 of this text.

The other main approach has been technological in thrust rather than
psychological. Whatever their significance for psychological modelling, it
can be said that production systems offer a useful ad hoc programming for-
malism. However, there are problems in using them for realistic knowledge-
based systems applications, some of which are touched on in succeeding sec-
tions. Useful work has been done to improve efficiency and representational
power, and commercial quality tools such as the OPS languages (Forgy,
1981, 1982) and ART (Laurent ez al., 1986) are now available. Large appli-
cations such as Rl (McDermott, 1982b) and MYCIN (Buchanan and
Shortliffe, 1984) have been developed. Finally production system architec-
tures are being designed, such as the RISC machine based on gallium
arsenide technology proposed by researchers at Carnegie-Mellon University
(Lehr and Wedig, 1987).

5.4 Extensions to the Simple Model

The simple model of production systems described in section 5.2 is inade-
quate for implementing commercial quality knowledge-based systems. In the
first instance, problems arise concerning rule selection, control strategy and
permissible actions.

5.4.1 Rule Selection

The first problem with rule selection is conflict resolution: determining which
rule to fire when more than one set of conditions match the working
memory. The simple solution is to fire the first rule whose conditions match.
However, this strategy means that the designer of the system has to ensure
that the rules are in the correct order. For example, it might be required to
deal with exceptions or unusual cases first. This means that rules with more
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antecedent clauses, ones with more conditions and which are therefore more
specific in their application, would have to be at the beginning of the rule
set. If a new rule were added, it would have to be inserted into the rule set
at the ‘correct’ position. One of the advantages of production rules, that the
rules are modular and represent a separate chunk of knowledge, only weakly
coupled to other rules, has been lost if ordering has to be done. More
sophisticated production systems, e.g. the OPS family of languages, provide
explicitly for a conflict set: the set of instantiations of rules that match the
current contents of working memory. The user is allowed to choose a par-
ticular conflict resolution strategy, such as giving preference to rules that
operate on the most recent information (this provides focus), or giving
preference to those rules that match the most items (to implement the stra-
tegy described previously). As a last resort, if the conflict resolution cannot
indicate which rule should be selected, a rule is chosen arbitrarily.

A second problem arises with large rule sets: there may be many rules to
choose from, only some of which lead to the desired result quickly. In this
case, some systems use heuristics, perhaps encoded as metarules, to perform
more sophisticated conflict resolution. (Metarules are rules which control
the use of domain rules.) The metarules could refer to particular domain
rules, either by name or by pattern matching their conditions and/or actions.
The conflict resolution strategy is thus embodied in the metarules. Figure 2
shows the schematic architecture of a production system with metarules.

An example might be a financial expert system which could contain the
metarule:

IF the company is seeking finance
THEN first consider rules that conclude medium-term finance

(possibly because experience has shown that medium-term finance is the best
candidate as a source of company finance). This is an instance of the more
general metarule which states that the most likely candidates should be tried
first. An example of the more explicit use of metalevel control is the latest
version of the ROSIE production rule language (Sowizral and Kipps, 1986),
a much augmented successor of the earlier RITA system (Anderson and Gil-
logly, 1976). ROSIE has become its own metalanguage, in that in the
language itself it is possible to define the action of the inference engine and
the conflict resolution strategy.

5.4.2 Control Strategy

The simple model given in section 5.2 describes a forward-chaining data-
directed production system. The system starts from observed data, and
proceeds to infer all possible consequences (at least in principle). Particu-
larly for usefully large rule sets, this may lead to a combinatorial explosion
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Figure 2 Production system with metarules

in the working memory, and in the conflict set.

An alternative control strategy is known as backward-chaining, or goal-
directed search. In this model, the system is given some goal to achieve.
The interpreter selects rules that may lead to that goal, and infers the
subgoals required to satisfy those rules. The subgoals are then put into
working memory, and the cycle continues until all subgoals are satisfied.
The intent is that the system will perform more efficiently and in a more
focused way, because the rules are being selected in a sequence which is
proceeding towards the desired goal. Again, conflict resolution is required,
and heuristics or metarules may be applied. The MYCIN series of medical
expert systems use a goal-directed control strategy to implement the
classification strategy of a doctor treating microbial disease, and are
described in Chapter 8 by Bainbridge (and see Buchanan and Shortliffe,
1984).

The forward-chaining production system architecture can be viewed as
one particularly suitable for dealing with data opportunistically, as it arrives.
It is also suitable for dealing with synthetic tasks, such as configuration of
computer systems or flexible manufacturing systems where there are very
large numbers of possible goal states and there is really no choice but to be
driven by the data to a suitable goal.

The possibility of backward-chaining and a goal-directed strategy
represents a considerable extension to the power of a production system.
Often a subtask will involve a small number of pre-enumerated goals. For
example, a medical diagnosis system dealing with microbial infections might
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have only 20 candidates. Backward-chaining gives a focused and efficient
way to deal with such a situation. Recent systems, such as ART, offer
hybrid strategies, with both types of chaining. Such systems have to be used
with care, as noted below.

5.4.3 Permissible Actions

The action part of a rule normally contain a series of actions to modify the
contents of working memory, by adding, removing or altering facts. Facts
are added to working memory as new information is inferred. Facts can be
retracted, to prevent their being matched in future rule selection. Facts can
be modified, to add information about them.

Other types of action may include side-effects such as output to the user
of the system, or to some other subsystem. Such actions make the effect of
a rule firing externally visible. Additionally, actions might alter some global
state information within the overall system, or even modify the rule memory
itself. Such assertion and retraction can cause problems, particularly with
hybrid control strategies. Such a strategy may find a rule sequence by
backward-chaining in an attempt to prove a goal. If in the course of this
chaining a rule fires forward, side-effects may destroy the justifications of the
current state, since facts (and rules) may be retracted or asserted that invali-
date that state. If it is desired to use such non-monotonic reasoning, the
programmer will have to be very careful indeed to ensure adequate control
of side effects. ART recognizes this problem by offering an assumption-
based truth maintenance system (known as Viewpoints). It would be fair to
say that this area is still not understood well.

Other possible forms of interference are global side-effects which alter
conflict-resolution strategies or heuristics. Again, it is the job of the pro-
grammer to deal with this in a principled way.

5.4.4 Improved Representation of Domain Knowledge

First, a production system provides an empty °‘shell’ in which domain
knowledge can be embedded. It can be used to implement any system you
want - a credit-card authorizer, a chemical spill disaster system, an assistant
to help intelligence analysts to deal with international terrorism, or whatever.
At least, that is what the vendors tell you.

Real-life experience serves to modify this simplistic view. Any given
domain will have specific representation requirements. For example, the
spill system might require the representation of a drainage system as some
sort of graph which can be searched. The international terrorist system
could involve the representation of a taxonomy of terrorist organizations. It
would be convenient if such representations were easily implementable and
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easy to manipulate.

Second, a production system is not really an empty shell. The interpreter
contains proceduralized metaknowledge about how to deal with rules. It
would be useful if this metaknowledge were available for use and manipula-
tion (Clancey, 1983).

We will now consider these two factors in detail.

5.4.5 Complex Domain Knowledge

The simple way in which facts about domain objects are recorded in a classi-
cal production system makes it difficult to represent complex information,
such as:

(1) a cluster of facts about a given object;

(2) complex relationships between objects, such as taxonomies;
(3) information about prototypical objects;

(4) exception information about object classes or instances.

Logic-based representations, semantic networks and frames are often more
convenient representations. For example, in a frame system, it would be
possible to define a frame to represent the class of small companies and to
create instance frames to represent individual companies. It would then be
possible to deal with

(frame - ABC lItd
(instance-of small-company)
(capitalization 100000)
(market-sector double-glazing)
(created 1984))

rather than the facts:

(small-company ABC Itd)
(capitalization ABC 1td 100000)
(market-sector ABC 1td double-glazing)
(created ABC 1td 1984)

Examples of additional representational power added to production systems
are CENTAUR (Aikins, 1983), which uses frames to represent knowledge
about the form of a consultation and the taxonomy of lung diseases (see
Chapter 8), and AM (Lenat, 1982), which uses frames to represent “interest~
ing” mathematical concepts.
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Other areas where there are particular representational problems are the
representation of uncertain knowledge and knowledge about time (temporal
knowledge). The latter is treated by Kwong in Chapter 9.

5.4.6 Domain-related Control Knowledge: R1 as a Case Study

One of the advantages of production systems is that the control knowledge
is simple and is embedded in the interpreter. But often we have a great deal
of domain-derived knowledge concerning control, and find some difficulty
fitting this into the Procrustean bed provided. We wish to use our own
metaknowledge, rather than that supplied.

As a case study, it is useful to consider the control aspects of the R1 sys-
tem used by DEC to configure VAX and PDP11 minicomputers (McDer-
mott, 1982b; Bachant and McDermott, 1984). (R1 is known within DEC as
XCON. The original name, according to McDermott, came from his reali-
zation in 1982 that “Four years ago I couldn’t even say knowledge engineer,
now I ...”).

The implementation language of the present version is OPS5. The syntax
of OPSS is similar to the simple system described in section 5.2. The
language has been optimized for maximum efficiency of the computationally
expensive process of pattern matching. It uses a mechanism known as Rete
match (Forgy, 1981, 1982) which avoids the repetition of attempted matches,
as a collection of production rule antecedents are matched with a collection
of working memory elements.

OPSS5 is a general-purpose production system language - it “knows” noth-
ing of the configuration task. However, it is used in R1 to represent the
knowledge used in configuration. The interesting question is how good, in
some sense, is the representation?

The task itself is complex, and divides into two subtasks:

(1) check that the order from the customer for the set of items that make
up a VAX (or PDP11) minicomputer system is complete, and correct it
if it is not;

(2) determine the spatial arrangement of the components.

The output is a correct component list and a set of diagrams specifying
the cabinets required, the position of the units within the cabinets, the con-
trol panels, the cabling and the floor plan.

What is required is a satisfactory solution, with no missing or unwanted
components, and without excessive unused space within the cabinets.

A sample rule, to illustrate the type of knowledge used, is:
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RULE VERIFY-SBI-AND-MB-DEVICE-ADEQUACY-3

IF the most current active context is verifying
SBI and Massbus adequacy

AND there are more than two memory controllers on the order

THEN mark the extra controllers as unsupported
(i.e. not to be configured)

AND make a note to the salesperson that only two memory
controllers are permitted per order.

(Rendered into near-English from OPSS5)

The meaning of this rule is reasonably obvious (even though what SBI
and Massbus mean might have to be guessed by the reader). What is not
apparent is the nature of the configuration strategy.

There are not a small number of configurations which can be recorded or
generated and then tested for suitability. There are a very large number of
possible configurations, and it is simply not possible to search the solution
space blindly. The search has to be massively constrained. Part of the
knowledge elicitation process was to get the technical editors (the domain
experts) to expose these constraints. McDermott determined that the
experts:

(a) have a highly reliable, if sparse, picture of their task domain, which
they describe in terms of the subtasks involved and the temporal rela-
tionships between these subtasks.

They describe 6 major subtasks:
1. determine gross errors in the order;
2. put the appropriate components in the cpu cabinets;

3. configure the boxes and the components in the boxes in the unibus
expansion cabinets;

4. put the panels in the expansion cabinets;
5. lay out the system on the floor;
6. do the cabling.

(b) have a great deal of detailed knowledge about how unconfigured com-
ponents (ones that have not yet been assigned positions etc.) and partic-
ular partial configurations can be extended in particular ways.
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He found that it was relatively easy to express this task knowledge as
rutes. Originally there were about 100 concerned with which subtask was to
be initiated and about 400 rules concerned with situations in which some
partial task was to be extended. The design process did contain a certain
amount of backtracking as a state was transformed into the succeeding state.
What McDermott did was to slightly redesign the process of transforming
from state to state (from partial configuration to slightly less partial
configuration) so that a possible solution is always available at any stage and
it will never be necessary to undo that solution and retry. This seems to be
possible since certain features of the domain are not too closely constrained.
For example, a power supply does not have to be fully loaded; a panel does
not have to be totally filled up, and nor does the space in a box; a data bus
does not have to have the maximum number of devices attached to it.
Search can be eliminated by providing a generously wide path.

The major stages of configuration are known in R1 as contexts. The
word “context” has been used with a variety of meanings in knowledge
engineering. It usually refers to some mechanism which provides some
degree of focusing of rule use, and involves metalevel knowledge, which
might be explicit or implicit. In R1, this metalevel knowledge is about
configuration stages. In other systems, it may be about other aspects of the
problem. As is explained in Chapter 8, the MYCIN medical system contains
metalevel knowledge about the types of objects relevant to a consultation
about a patient with a microbial infection, and this knowledge is represented
in a “context tree”. As far as the present discussion goes, the important
points are that both the types of knowledge elicited from the domain experts
have been represented in the Rl system, and that different expert systems
may have different architectures depending on their application domains.

R1 is a successful system, and has to date processed about 90000 orders,
each one taking about 2.5 minutes, including the printing of the results. Its
success has been facilitated by the careful design of OPSS, particularly by the
fast matching provided by the Rete algorithm. However, a great deal of its
success is due to McDermott’s knowledge engineering skill. His elicitation
and redesign of the experts’ heuristics have made it a realistic system - not
the rather limited representational power of OPSS.

R1 has now grown to 6200 rules, of which approximately 50% change
every year (Soloway et al., 1987). Its performance continues to be satisfac-
tory, but it is becoming increasingly difficult to change. It seems that the
problems of updating this large piece of software are growing more than
linearly. Soloway and his research partners at DEC attribute this to:

(1) the dynamic properties of rules. To obtain the required sequencing,
“tricks” have been used to override the domain-independent conflict
resolution strategy of OPS5. This explicit domain-dependent control
knowledge is encoded as extra clauses to rules, and can be hard to
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understand by the different programmers working on the rule-base.

(2) the static properties of rules. The action part of an OPS5 rule can be
almost anything. As pointed out in section 5.4.3, great care is needed
to avoid unwanted side-effects. When a new device is available from
DEC, what has happened is that the programmers have often created a
new rule to represent the system’s knowledge of that device by editing a
pre-existing rule for a similar device, possibly without always being sure
what the rationale for all the functions is.

This implies that what software engineers call a “degradation in integrity” is
occurring in R1°s rule-base. Parnas (1985) reports:

That example is always the same — a program designed to find
configurations for VAX computers. ... Recently I read a paper that
reported that this program had become a maintenance nightmare. It
was poorly understood, badly structured, and hence hard to change.

What Soloway et al. are proposing is a design for a re-implementation of R1
(XCON). The knowledge base is to be re-expressed in a language called
RIME, which will then be compiled into a runnable OPS5 form. It will be
possible in RIME to make domain knowledge more explicit, both in struc-
turing the rules themselves and in controlling rule firing, in a similar way to
that suggested and implemented by Clancey (1983) with respect to the
knowledge in the MYCIN systems. The new system (XCON-IN-RIME) will
be built with the help of the rule developers from DEC (by metaknowledge
engineers?)

The reader might find it of value to compare this short case study with
that done in Chapter 8 of MYCIN. Similar problems of metalevel control
and the encoding of different types of knowledge within a homogeneous rule
syntax seem to have come to light. At a lower level, the Rete algorithm of
OPSS is paralleled by fast hashing algorithms underlying EMYCIN (van
Melle, 1981) and Interlisp (Kaisler, 1986).

5.5 Summary

5.5.1 Advantages of Production Systems

(1) Production systems exhibit useful modularity, in that rules are indepen-
dent of each other, and of the rest of the system. Each rule encodes a
‘chunk’ of independent domain knowledge.
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The explicit representation of rules permits the system to allow
enquiries about rules, such as what rules would indicate a particular
conclusion.

The straightforward if-then form of a rule often maps well into English,
for purposes of explanation.

Simple chaining methods can be used to implement inference pro-
cedures which are not unlike those used by humans. Production rule
systems can be built which seem to model closely human problem solv-
ing in some domains.

Very large rule-based systems can be built which model expert
behaviour in narrow domains, e.g. medical diagnosis and computer
system configuration.

5.5.2 Disadvantages of Production Systems

)
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For each rule, information has to exist in the system somewhere as to
its context of use. This can result in overlarge rule antecedents, or in
implicit knowledge, such as that contained in rule order. Either way,
control knowledge is often not clear.

Rule sets have no intrinsic structure, which makes management of large
knowledge bases difficult.

Not all human problem-solving methods are easily represented in the
production method formalism.

The matching involved in the match-select-fire is an inherently
inefficient computational process. This has serious implications for
realistic applications.

Because of the independence of the rules from each other and from the
control strategy, it is all but impossible to determine rigorously proper-
ties of the system’s behaviour by static analysis. It is necessary to test
the system with the data of interest to see what it will do. Since realis-
tic production systems cannot be exhaustively tested, they cannot be
used in safety-critical applications.
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5.5.3 Further Reading

Introductory texts

Young (1987) gives a simplified account of the field with various clearly-
explained examples. Hasemer (1984) fully describes a Lisp implementation,
with special reference to matching and conflict resolution.

Research texts

There is a noteworthy collection of papers (Waterman and Hayes-Roth,
1978), now rather dated. Brownston et al. (1985) and Buchanan and
Shortliffe (1984) describe recent research.

Human problem-solving and its modelling

Simon and Newell’s work is well-documented (Newell and Simon, 1972). A
more recent reference is Klahr et al. (1986).

Applications

One of the largest users of production systems technology is Digital Equip-
ment Corporation (DEC). See Kraft (1987) and Polit (1985).

New architectures

Both hardware and software architectures are being designed. See Lehr and
Wedig (1987) and Rosenbloom ez al. (1985).

5.6 Concluding Remarks

Production systems have a long and respectable history as a knowledge
representation formalism. They have been used for the modelling of human
cognitive processes and as an implementation language for knowledge-based
systems. It has been possible to abstract from the implementations guide-
lines and metrics which are being used to design new hardware and software
architectures to embody problem-solving strategies.
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6 Psychological Studies of Knowledge
Representation

Tony Conway and Michael Wilson

6.1 Introduction

The only model we have for a working intelligent system which uses and
represents large amounts of knowledge is the human. This chapter describes
psychological studies which investigate some of the knowledge representation
schemes suggested as structures for representing human knowledge. By
including a psychological viewpoint on knowledge representation it is being
argued neither that the human should be a model for machine representa-
tion, nor that artificial intelligence studies should be the model on which
psychological descriptions should be based. It is, however, assumed that an
exchange of ideas would be fruitful between two fields where an understand-
ing of knowledge representation is desired, both to examine possible
representations and to identify phenomena against which to evaluate them.

The first section of this chapter will outline the motivations and concerns
that guide psychological studies, so as to provide a background in which to
place the remainder of the chapter. The second section describes various
forms of representation that have been suggested for human knowledge of
procedures, semantics and images which specify control and representation
to different degrees. The third section then describes the use of reasoning by
humans and the representation formulated as mental models. This approach
illustrates how more than one type of representational format can be com-
bined to represent the knowledge required to support the inferencing
demanded by a variety of tasks.
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6.1.1 Methodology in Cognitive Psychology

Common-sense psychology provides explanations for people’s actions in
terms of motives and desires. In contrast, explanations in cognitive psychol-
ogy, are phrased in terms of the mental processes and representations drawn
on during the performance of tasks such as problem solving and comprehen-
sion. Unlike explanations in common-sense psychology, explanations in cog-
nitive psychology are presented as theories and models which can be tested
experimentally.

Experiments designed to test hypotheses about knowledge representation
do so by testing differences in the performance of tasks when some aspect of
those tasks is manipulated. Since such experiments are performed by measur-
ing behavioural phenomena, models are described in terms of the constraints
of the experimental situation as well as the theoretical mental processes and
representations. For example, experiments that test the representation of
conceptual relationships such as ‘DOG is a MAMMAL’ will actually test
subjects’ performance on tasks involving the confirmation of statements such
as ‘a dog is a mammal’ and the disconfirmation of statements such as ‘a dog
is a fish’. For models of performance on such tasks to yield testable
hypotheses, they must include accounts of the decisions and the responses
which are made, as well as the representation of knowledge. Therefore, it is
these models of task performance, rather than the theories of knowledge
representation, which are actually being experimentally tested. Consequently,
much of the psychological debate about knowledge representation will be a
debate about details of the models of experimentally testable performance,
rather than abstract representation schemes themselves. It has even been
forcefully argued (Anderson, 1978) that it is impossible to evaluate any claim
for a particular sort of representation unless the processes that operate on
that representation are specified in the theory. In the descriptions which fol-
low, these issues of task performance will be avoided as much as possible,
but it should be borne in mind that they provide the basis for any statements
that are made about knowledge representation.

Different experimental tasks offer different views of the underlying
knowledge representation. Therefore, models developed for different tech-
niques will be models of the cognitive system from different viewpoints.
Theories will, consequently, also be presented from different viewpoints on
knowledge representation. If these theories use different terms, it does not
follow that they are incompatible, merely that they focus on different aspects
of the cognitive system. In cognitive psychology (as in other sciences) there
can, of course, be more than one theory that explains the data: no observa-
tions can ever establish definitely that a single unique theory is the correct
one, although the converse is, of course, true.
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6.1.2 Levels of Description

In order to interpret psychological theories it is necessary to understand the
level of description they offer, not only of the data, but also of the cognitive
system.

When providing explanations of psychological phenomena there are at
least four possible levels of description. Firstly, there is a general competence
level. Descriptions at this level include linguistic theories of grammar that
describe the knowledge which an individual may tacitly hold about a
language, but do not describe how an individual puts that knowledge to
work in speaking and understanding. An example of an explanation at this
level in the field of computer science would be the theory of possible data-
base structures. Secondly, there is an algorithmic level of description. A
computational example at this level would be a specification of the algorithm
for a relational database. Thirdly, there is an implementational level descrip-
tion. This would describe the details of the algorithm as implemented in a
particular program. Fourthly, there is an implementational description which
includes details of the substrate in which the implementation is made. In a
computational example, an explanation of the structure of the circuitry on
which a particular algorithm for a database is implemented would be at this
level. A psychological example of this level of explanation would be a theory
of visual perception which specifies the neurophysiological structures that
perform the required computation. Newell (1982) has also argued that a
theory of cognition in a particular domain first demands a theory of the
domain itself, which he calls the knowledge level. This is not a level on the
same dimension as the four levels of description of process or representation,
but is a requirement for a theory of content. In Newell’s terms, the levels
distinguished here are all at the symbol level since they appertain not to the
content of the information that is represented but the form of representation
described.

Most theories in cognitive psychology are described at the algorithmic
level, in that they draw functional distinctions between mental processes and
explanations, without giving details of the exact implementation or the neu-
rophysiological structures. For example, three forms of mental representa-
tion are generally posited. The first is a propositionally based approach in
which knowledge is assumed to be represented as a set of discrete symbols or
propositions. The second is to use an analogical representation in which the
correspondence between the represented world and the representation is as
direct as possible, traditionally using images and other analogical representa-
tions. The third form is a procedural representation in which knowledge is
assumed to be represented in terms of active processes or procedures,
directly interpretable by action systems. This distinction is one at the
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algorithmic level, since at the implementational level everything could
undoubtedly be reduced to a common code in the language of the brain, just
as the data structures of high level programming languages can be reduced
to patterns of bits in the machine code of a computer. There has recently
been great interest in the proposal for a common code of representation
{McClelland, Rumelhart and the PDP Research Group, 1986) in terms of
parallel distributed processing. It is an issue of debate (see Broadbent, 1985;
Rumelhart and McClelland, 1985) whether this description lies at the algo-
rithmic or the implementation level; however, it will not be discussed further
here. Within the algorithmic level of description, most theories in cognitive
psychology are built on the view that the human is an information process-
ing device.

6.1.3 The Human Information Processing Paradigm

The currently dominant view of cognitive processing is that it proceeds in a
linear, sequential fashion through a series of stages (Norman and Bobrow,
1976). Details of the stages vary from one author to another, but the gen-
eral assumption is that processing in task performance proceeds from the
perception of cues; the processing of these cues in a short-term memory to
retrieve action plans from long-term memory and then the execution of
plans by effector systems responsible for the articulation of sounds or physi-
cal movement.

A more detailed description of the working model would be that signals
(auditory, visual, tactile) are received by transducers, which transform them
into a form which can be stored in a temporary sensory information store.
Pattern recognition processes then attempt to identify the physical signals by
matching them against stored patterns in long-term memory. If a match is
found, then a word or concept which identifies that pattern will be stored in
short-term memory (STM). Without this information being actively main-
tained in STM (by methods such as its rehearsal) it will be lost within a few
seconds. The concept will be processed to construct a description which will
be used to retrieve items from long-term memory. After processing, a plan
will be passed to effector systems where it will become an action. The per-
ceived concept and a record of processing may themselves be encoded and
stored more permanently in long-term memory than in STM.

There are several memory systems used by the general human information
processor. The perceptual memory systems are very short term stores of the
transducers’ output. The short-term memory is more complex. Early experi-
ments (Miller, 1956) illustrated that educated adults can repeat back about
seven digits, words or letters. This storage could be increased if there was a
structure to the items which permitted their chunking into categories. For
example, twenty words could be remembered instead of seven, if there were
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five words from each of four categories. This initial description of a device
with a limited capacity which can apparently be increased by the imposition
of categorization has been developed so that contemporary theories (for
example, the working memory model of Baddeley, 1983) include not only
the main short-term memory (or central executive) but also limited capacity
stores for verbal material (an articulatory loop), and spatial imagery (a
visio-spatial scratchpad). Similarly, it has been suggested that the long-term
memory store can be divided. Tulving (1972; 1984) has suggested that in our
long-term memory we have both a memory for procedures and a declarative
memory which is further split between episodic knowledge and semantic
knowledge. Episodic knowledge concerns temporally dated episodes or
events, and temporal-spatial relations among them, whereas semantic
knowledge is information which a-person possesses about words, their mean-
ing, and rules for the manipulation of symbols, concepts and relations.

Much of the research on the representation of knowledge in short-term
memory has focused on issues about the sensory form in which that infor-
mation is perceived and processed. In contrast, most of the research on
long-term memory has focused on how it is encoded, indexed and retrieved.
Some of these studies and the models that resuit from them will be discussed
in the remainder of this chapter.

6.2 Suggested Knowledge Representation Schemes

Several forms of knowledge representation will be described along with the
arguments as to their relevance to the general model of the human informa-
tion processor outlined above. It was noted above that, at the algorithmic
level of description, there are generally suggested to be three forms of
representation: procedural representation; propositional representation; and
analogical representation. A complementary distinction between forms of
knowledge representation is in the way that the control of the representation
is handled. The first form of representation discussed focuses on the control
of the representation while specifying a very general structure for that
representation itself. The second form discussed is a procedural representa-
tion which combines the control and representation into a single form. The
other forms use: propositional representations with other levels of more
abstract content patterns to organize and index the propositional informa-
tion (schemata and frames); lower level propositional representations of con-
cepts (semantic nets and semantic feature models); and analogical represen-
tations. The focus of these forms of representation is on the structure of the
representation rather than on their control. The later sections will describe
an approach which suggests how a combination of these approaches can be
used to represent the knowledge used to make inferences in a variety of
tasks.
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6.2.1 Headed Records

The Headed Records approach to memory has been proposed as a powerful
framework within which a wide range of data and observations can be
encompassed (Morton, Hammersley and Bekerian, 1985). In particular, the
framework is aimed at encompassing observations of day to day remember-
ing and forgetting. The model of memory suggested is very simple in princi-
ple. It consists of a set of discrete records into which our experience has
been divided by some means. Each record is associated with a heading. The
heading is made up of a number of distinct elements, not necessarily related
or of the same kind. Thus, the heading for a record about a particular indi-
vidual may include his name, a representation of his face, and his relation-
ship to the owner of the record. Single events may be encoded in more than
one record, but there are no explicit pointers from one record to another to
indicate a relationship or continuation.

These records are accessed much as a file is accessed in a filing cabinet. To
locate a file of which a description is known, a drawer is searched by reading
the headings on the files until a heading is found which matches that
description; then that file is retrieved for further examination. Within the
headed records framework, the demands of a specific task are turned into a
retrieval specification. This is an intermediate stage in which relevant
material is assembled. The specification can include the purpose for which
the information is required, such contextual information as one has concern-
ing the conditions under which the information sought was originally
encoded, and a more or less complete description of the information being
sought. Unlike other theories where descriptions have direct access to record
contents (e.g. Norman and Bobrow, 1979; Williams, 1978), in the headed
records framework the description is used to match with only the headings
of memory records. Not all the elements in the heading need be matched by
the description, nor all the description be found in the heading. When the
heading is matched, the consequence is that the record is accessed. The
information in the heading will not be made available for further processing;
the heading is solely a means of accessing the record. When a record is
accessed it has to be evaluated for suitability according to criteria established
with the retrieval specification. As a result of this evaluation, the record may
be judged to be the one sought. Alternatively, information in the record may
be used to refine the description or the verification process; then the record
will be rejected, and the cycle recommenced.

One feature which distinguishes the headed records approach from most
other attempts to describe complex remembering using semantic nets or
frames (e.g. Norman and Rumelhart, 1975; Anderson, 1976) is that there are
no direct connections between records. When the system is operating to
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narrate a story which covers several records, each record will provide the
information required to produce a suitable description for the next one in
the sequence. This information will always be content based, and never a
direct internal pointer. There are two further principles of the headed
records framework which make it unusual. Firstly, unlike many other
theories that demand overwritable or decaying records (e.g. Loftus and
Loftus, 1980), once a record has been laid down there will be no loss or
change to it other than what might be called ‘physiological decay’.
Secondly, unlike several other accounts, in the headed records framework,
when memory is being searched for a record, headings are scanned strictly in
sequence from the most recent backwards in time.

This simple model of memory and knowledge representation is able to
account for many of the phenomena associated with remembering and for-
getting information. A full description of these phenomena cannot be given
here, but an account of one may make the operation of the memory model
more clear.

It has been suggested that memory representations for scenes and events
can be altered by subsequent presentations of misinformation concerning
what had been presented. In one study (Loftus, 1975), subjects were
presented with a filmed car accident. Later they were told that a barn had
appeared in the film. Although the barn had not appeared in the film, over
17% of the subjects, when questioned a week later, agreed that they had
indeed seen a barn. This compared to 3% of agreement by subjects who had
not been given this piece of misinformation. This result may be explained by
a representation scheme which permits the overwriting of the record of the
original event by the misinformation. It can also be explained in the headed
records framework by assuming that when the misinformation is given, a
new record is laid down describing the accident. When the subjects are later
(uestioned, they search their memory starting at the most recent events and
locate the record containing the misinformation before the original record of
the accident. A second study (Bekerian and Bowers, 1983) using a similar
technique and materials has shown that when sufficient cues are given during
the questioning to facilitate subjects’ access to the original memory, that
memory is retrieved instead of the misleading information. This evidence is
consistent with the original record being maintained, and inconsistent with
the view that the original record is updated. This example also illustrates
two general mechanisms for forgetting in this framework. Firstly, that new
records are laid down after an event with headings that satisfy descriptions
which would be created to access the original record, and yet the new
records do not contain the detail in their bodies that the originals did.
Secondly, that the description used at a second retrieval may not be as rich
us that used at the retrieval that illustrated that the knowledge was encoded,
und subsequently could not access the relevant record.
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6.2.2 Procedural Knowledge

Most of our knowledge is declarative, in that it makes statements about the
world. For example, a statement of the form “This chapter was written by
two authors” is a typical declarative statement. Knowledge about how to
change gear when driving a car is a typical piece of procedural knowledge.
We can generally describe our declarative knowledge, as it tends to be acces-
sible, but procedural knowledge is rarely accessible or describable. Thus,
although we can change gear in our cars when driving, in order to describe
how we do it, we have to imagine the movements of the foot on the clutch
and the hand on the gear stick, and enact the procedure. Then we can
describe this enactment. We do not have access directly to the knowledge we
use when performing the task. One can obviously represent a procedure for
performing a task as a declarative sequence of propositions. Therefore, the
feature of procedural knowledge that distinguishes it from declarative
knowledge is that it cannot be retrieved in the same form as declarative
knowledge. This distinction is therefore one concerning the control of the
representation as well as the representation itself.

One can separate the control and the representation mechanism for pro-
cedural knowledge to give rise to the required effects. For example, one
could represent procedural knowledge in the headed records framework by
having headings to the records for procedural knowledge that were inaccessi-
ble to descriptions produced for the task of describing the contents of those
records. Alternatively, one could allow access to procedural knowledge by
the process that verbalizes descriptions, but those records would be written
in a code that this process could not interpret. However, the major form of
representation suggested for procedural knowledge is the production system
(Newell, 1973) which uses a procedural representation rather than a separa-
tion of representation and control. Productions are active data structures
that sit above a database (or ‘working memory’) waiting for patterns
relevant to them. Whenever such conditions occur for a production, it will
be ‘triggered’, and perform its actions. These actions usually involve writing
something to working memory, deleting or changing items in working
memory. These actions will set up conditions which will allow other produc-
tions to ‘trigger’. A production therefore contains a procedure to be enacted
and a representation of a control structure, thereby containing a combina-
tion of the two elements required to differentiate procedural from declarative
knowledge. The common data structure in a production system is usually
called the ‘working memory’, and the ‘condition — action’ relation is stated
within each production (or production rule) and commonly has the follow-
ing structure:
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IF condition-for-triggering — THEN do-these-actions.

The architecture of production systems with a working memory and a
body of production rules is argued to match that of human processing. Con-
sequently, various models of human processing have been proposed which
incorporate production rules (e.g. Anderson, 1983; Kieras and Polson, 1985).
Three properties of production systems in particular have been equated with
aspects of human processing. Firstly, working memory may correspond to
short-term memory, but the unlimited size of working memory in such
models, and the actual size of working memory required to get production
systems to work correctly, far exceed estimates for human short-term
memory. Secondly, production rules are modular, which can permit their
addition and deletion from carefully structured systems without affecting
other knowledge or control structures in the system. This property has been
employed to model learning and the acquisition of new skilled procedures
(e.g. Anderson, 1983). Thirdly, the control mechanism of production sys-
tems permits a conflict between rules with the same conditions, or subsets of
one another’s conditions, as to which should act. This conflict has been
used to model the failures in skilled behaviour exhibited by humans when we
select the wrong skill routine. For example, when one hears the door bell
and the telephone ring at the same time, picks up the telephone and says
“Come in”. Such action sequences can be described by the firing of a pro-
duction rule to lift the telephone and then another to respond to the door,
because its conditions appear to be met, although the resulting actions are
inappropriate. There are various conflict resolution procedures that can be
used by production systems to order the operation of rules which give rise
to, or avoid, such conflicts (e.g. the computer language OPSS5). However, to
be experimentally testable a particular production system must have such
details exactly specified. There is a body of research which investigates par-
ticular production systems (e.g. Anderson, 1983) but this does not bear on
the potential of production systems in general for representing knowledge.
I'he major limitation on production systems in general as models of human
knowledge representation remains the lack of a limitation on the size of
working memory. Until this fundamental inconsistency is overcome, produc-
tion systems remain a form of representation which alone cannot represent
the architecture of cognition, but must be incorporated with other mechan-
isms and forms of representation. The most obvious forms of representation
which must be included are those which will account for declarative, verbally
describable knowledge, such as schemata or semantic nets.
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6.2.3 Schemata and Frames

Schemata and frames are discussed at length in Chapter 4 of this volume: in
this chapter, they will only be discussed as possible forms of human
knowledge representation. Although the idea of schemata has roots which
go back as far as Kant (1787), its introduction to psychology was through
the work of Bartlett. In one of his most famous studies (Bartlett, 1932) he
used a story based on a North American Indian Legend ‘War of the
Ghosts’. He gave this story to people to read and then tested their recall for
it after various time intervals. Bartlett was concerned with the systematic
errors which non-Indians made in recalling the story (he deliberately chose a
story which did not fit with the cultural pre-conceptions of the subjects in his
experiment). His subjects forgot aspects of the story which were incompati-
ble with their knowledge.

To account for his findings, Bartlett proposed that when the story was
read, subjects recruited abstract representations of knowledge which are gen-
erally used for encoding and retrieval. These abstract representations are not
tied into any specific event knowledge; they are called schemata. Secondly,
he proposed that they created a schematized representation of the story. In
this version, the “irrelevant” event-specific information will have been lost
and schematic default information will have been assumed to apply and be
stored as being present. To be confusing, this schematized representation of
an event is also called a schema (e.g. Bartlett, 1932; Rumelhart and Ortony,
1976). In general, it is the deduced schematized representations of an event
which are cited as evidence for the existence of schemata. There is evidence
that schematized representations exist (Bransford and Franks, 1971; Bartlett,
1932; Owens, Bower and Black, 1979; Friedman, 1978; Galambos, Abelson
and Black, 1986). However, schematized representations could arise through
the type of post-event restructuring of knowledge suggested in the headed
records approach. The more problematic and significant issue is whether
abstract schemata exist.

The most influential introduction of schemata into the AI community has
been as frames (Minsky, 1975), which were developed to show how
knowledge should be interrelated so that computational systems could use
knowledge efficiently. However, the form which has resulted in most
psychological study is that of scripts (Schank and Abelson, 1977). These
were developed to account for the ability of readers to fill in information
required to understand the simplest text. For example, to understand the
two sentences ‘Tony sat down in the restaurant. The waiter took his order.’
we need to have a lot of knowledge about restaurants. We need to know the
role of the waiter, and that ‘ordering’ refers to a request for food prepared
in restaurants. Schank and Abelson referred to such social knowledge
frames, or schemata, as ‘scripts’. Scripts represent performed, ordered sets of
knowledge about stereotyped cultural events. There would therefore be a
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script for visiting the restaurant, the doctor or the dentist. The possession of
a script allows a speaker to leave many things unsaid with the certainty that
a listener will fill them in by default. If enough is stated to elicit the
appropriate script then it can be used to fill in unstated detail. Since scripts
only describe stereotyped events, a separate mechanism was envisaged which
would create plans of less usual events.

Among the psychological studies following this work, Bower, Black and
Turner (1979) demonstrated that when people read a story about a visit to a
dentist and a story about a visit to a doctor they were confused in their later
recognition of which events were in which story. They found that such con-
fusions were situated within similar scenes across different scripts. This led
Schank to reform the notion of scripts so that they describe smaller units,
such as the paying scene, which would apply to various situations, or the
waiting room scene which would apply to visits to both doctors and dentists.
Schank (1980) proposed that, instead of scripts, we have many general
scenes in memory called MOPS (Memory Organization Packages) which are
dynamically assembled into higher level structures. These are built into struc-
tures that resemble scripts, but also account for the memory confusions
found experimentally. However, the main limitation on scripts remains that
they only specify knowledge about events that are stereotyped, whereas
knowledge is also used to understand events and discourse which are not
stereotyped.

One area of knowledge where stereotyping is less problematic is the
representation of word meaning. Berlin and Kay (1969) asked native speak-
crs of twenty different languages to select coloured chips which represented
the best examples of each of their language’s basic colour terms. They also
asked their subjects to select chips which delineated the boundaries between
colour terms. There was very little consistency in the choice of boundary
chips; however, there was a reliable consensus about the choice of the best
cxemplars of a colour. Indeed, this agreement extended across many of the
twenty languages. This, and subsequent studies by Rosch (e.g. Rosch, 1976),
have been used to argue that many natural categories are mentally
represented by prototypes. These prototypes are schemata of a category’s
most characteristic members: in the way that a robin is a prototypical bird,
whereas other birds have a greater distance from the schema, e.g. a chicken.
Although this approach has been developed for ‘kind’ notions (like dog,
hird, and animal), ‘artifact’ notions and simple descriptive notions (e.g. ‘tri-
angular’), it has not been extended to intricate concepts such as belief,
desire, and justice and it is an open question whether or not the theory can
be cxtended to cover these cases. The second problem with prototype theory
lies in the mechanism for conceptual combination. Methods such as fuzzy
logic have been suggested for the combination of prototypes, but these seem
to result in as many new problems as they solve (see Osherson and Smith,
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1981).

Schemata offer high level representations and rules about representation-
specific processes. It is argued by their proponents that these are required to
supplement the descriptions of processes and representations which are
derived from a small number of general principles. The experimental evi-
dence from psychological studies of schemata supports the view that
representations are constructed which appear to be schematized. However,
there is little evidence for the existence of abstract schemata themselves.
Although there are effects which are best explained by stereotyping and the
use of defaults, the size of the units that are stereotyped is not certain.
Although such problems still exist with the suggested human use of schemata
to represent knowledge they do not detract from the potential of schemata
as a form of representation for machine use. The problem of the combina-
tion of concepts which are represented as schemata or stereotypes and the
use of stereotypes to represent non-stereotypical concepts are problems both
for the psychological representation of stereotypes and machine representa-
tion. These issues are discussed in Chapter 4 of this volume.

Schemata and frames have been suggested as top-down mechanisms to
represent general high level knowledge, and prototypes have been used to
represent concepts. A second class of representations which use bottom-up
processes to represent concepts and word meanings includes the semantic
net, and semantic feature models.

6.2.4 Semantic Nets and Semantic Feature Models

The ‘semantic net’ was developed by Quillian (1966) and others both as an
exercise in artificial intelligence and as a possible psychological model of
human associative memory. Semantic nets are an extension of the well esta-
blished idea in psychology of associations. In behavioural psychology these
took the form of associations between stimuli and responses, but the best
known example is that of word association. Quillian argued that among the
properties of concepts were several special property relations that are com-
monly found. They are special because they permit certain kinds of infer-
ences to be made. A frequently used kind is the superset or superordinate
relation (e.g. a mammal is an animal). These superset relations will chain
like: dog — canine — mammal — animal — living thing — object. Each
item in such a structure is termed a ‘unit’ which can have properties attached
to it. A property represents some descriptive feature of a unit, such as would
be represented by an English verb phrase. Thus the unit MAMMAL might
be linked with a number of properties, such as has hair, provides milk and so
forth. Each property is stored in the highest level to which it applies. Hence
has hair is stored with MAMMAL rather than with each individual instance,
thereby reducing the amount of storage space. All properties of a superset
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can also hold for the instances of that superset unless otherwise indicated.
In the case of an exception, the fact that the property does not apply is
stored with the unit itself. Therefore, to determine a property of a concept a
simple three-step procedure can be applied which avoids conflicts which
could arise from inconsistent data in a network:

Step 1. In determining properties of concepts, look first at the node for the
concept.

Step 2. If the information is not found, go up one node along the relation and
apply the property of inheritance.

Step 3. Repeat step 2 until either there is success or there are no more nodes.

This work attracted little attention until a series of experimental studies by
Collins and Quillian (1969). The model was tested by presenting subjects
with a series of sentences and measuring the time taken to decide whether
they were true or false (reaction time). The model predicts that reaction
time should depend, first, on the number of levels of the hierarchy that must
be traversed (e.g. a dog is an animal) and, second, on whether or not a pro-
perty must be retrieved (e.g. a dog has hair). As predicted, reaction time
increases linearly with the number of levels of the hierarchy that must be
traversed, in that it takes longer to decide that a canary has feathers than
that a canary is yellow. Although this evidence supports the network
representation, there is evidence against this simple view of processing. In a
hierarchical representation of the sort suggested, the decision that a pine is
not a flower would be made by finding that there was no path joining the
two items. This would imply that the nature of the negative instance should
be unimportant, so long as no legitimate path exists. However, as Schaeffer
and Wallace (1969) and Wilkins (1971) showed, it takes longer to decide that
a pine is not a flower, than that a chair is not a flower, suggesting that some
sort of discrimination takes place, even though no permissible path exists.
I'he more features a negative instance has in common with a category, the
longer it will take to reject. A second body of evidence against a hierarchi-
cal model is that it fails to predict differences within categories, while such
differences have often been found. Subjects can verify a dominant or typical
member of a category consistently more rapidly than they can in the case of
o less typical one. That is to say, it takes less time to verify that a robin is a
bird, than that a chicken is. A third problem for the simple hierarchical
model comes from a study by Rips, Shoben and Smith (1973), who showed
that subjects took longer to decide whether some items were members of the
class MAMMAL than to decide if they were ‘animals’ despite the fact that
MAMMAL is a subset of the class ANIMAL. This probably reflects sub-
jects” greater familiarity with the concept of an ANIMAL than the concept
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of a MAMMAL, since these judgements correlate with the rated semantic
distance between an instance and its category.

Two alternative classes of representations arose to account for this evi-
dence against the early hierarchical networks as models of human represen-
tation. Firstly, more complex theories of processing were developed for
semantic network representations themselves which would be capable of
representing sentence meaning as a network of labelled associations rather
than just being a simple hierarchy supporting inheritance. Secondly, Smith,
Shoben and Rips (1974) proposed a ‘feature comparison’ model as an alter-
native to a hierarchical structure, using inheritance as a model of the
representation which supports performance in the class of tasks investigated.

The basic representational assumption of this model is that words
representing categories can be represented by a set of features that vary in
their relationship to the formal definition of the category. Features are of
two types: ‘defining features’, must be true if an item is a member of a
category; ‘characteristic features’ usually apply, but are not necessary for a
definition. Thus ‘has feathers’ is a definitional feature for the concept BIRD,
whereas ‘can fly’ is a ‘characteristic feature’ (although most birds fly, it is not
part of the definition since some birds do not show this characteristic). They
suggested that category membership was not a pre-stored attribute, but was
computed by a comparison of a set of features. They proposed a two-stage
model of the verification of category membership. The first stage involved a
quick comparison of all the features, both definitional and characteristic. If
the comparison was good enough, the statement would be confirmed. If the
comparison was poor enough, the statement would be rejected. Intermediate
comparisons would result in a slower comparison process using only
definitional features. This model accounts for the basic experimental results
in that: true statements using items typical of categories are quickly
confirmed; false statements involving typical items are quickly rejected; deci-
sions on less typical items take longer.

Although feature models offer good accounts of the experimental data,
they are almost always limited to nominal concepts, and it is not clear how
such models could represent propositions. Although semantic feature models
were intended to account for propositions, this inability is a limitation when
compared to recent semantic networks.

The second development following the early hierarchy representations of
concepts was to add more complex processing mechanisms to semantic net-
works in order to enable them to be able to represent sentence meaning as a
network of labelled associations. The major processing mechanism proposed
was a development of Quillian’s notion of ‘spreading activation’ (Collins and
Loftus, 1975).
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The semantic network is a highly interconnected structure with relations
connecting together nodes, very much like the transport links connect
together towns and cities. ‘Activation’ is an abstract quantity which
represents how much processing is taking place in the structure. If a network
representing the structure of animals were used to answer the question
“Does a dog have hair?”’, the nodes for DOG and HAIR would both
become activated. The activation could then spread down the links con-
nected to these nodes, and onto the nodes at the ends of these relational
links. Activation would then spread on down the links from these nodes, and
so on. If one imagines spreading rings of activation originating from each
starting point, like the ripples extending away from the sites where two peb-
bles are dropped in a pond, these rings will eventually meet. When the
activation patterns meet, a path has been established between the two nodes.
The path can be found by following the activation traces, and given the
nature of the path, the question can be answered.

There are several properties of activation theories of semantic network
processing which have led to empirical investigation. Most research has
focused on the time course of activation (e.g. Neely, 1976), or have used one
aspect of activation called ‘priming’ as a tool to examine the details of
representation (e.g. Meyer and Schvaneveldt, 1971). The theoretical assump-
tion behind priming is that, once a node has been activated, it will take some
time for that activation to decay. Therefore if a second node is accessed the
spread of activation will be faster than if the first item had not been
activated. This has given rise to many studies where items are presented
together or in succession and the reduction in time for some decision on
items is used as an indicant of the relation between them. For example, sub-
jects may be asked to read two strings and decide if they are words or not
(c.g. “nurse” ‘“‘plame”). When the two words are related, (e.g. “‘bread”
“butter’”), the judgements are considerably faster than if they are not related
(c.g. “bread” ‘“‘nurse”). Sophisticated experiments have used stimuli with
multiple meanings (e.g. “bank™ with “money” or “river’”) or embedded
words with related meanings (e.g. “‘cot” “ton” ‘“cotton” ‘“‘wool” “cot-
tonwool™) to investigate the interrelationships of items in memory. Using a
similar method, Collins and Quillian (1970) showed that decisions are made
more quickly when they require the traversal of recently used paths across
the network than when the required paths have not been recently used as
evidence for their hierarchical model of memory.

A second aspect of the spreading activation model which has received
much investigation has been termed the ‘fan effect’. This has been particu-
larly investigated in relation to the detailed model of cognition proposed by
Anderson (1976, 1983). This model makes the processing assumption that
the activation that crosses a link is inversely proportional to the number of
links that “fan out” from, or leave, that link. This results in the prediction



132 Psychological Studies of Knowledge Representation

that the more nodes that are connected to an item, the harder it will be to
retrieve information about that item. A series of experiments (summarized in
Anderson, 1983) show that when subjects are shown a number of sentences
to learn, and then tested on their ability to recognize test sentences, they are
slower to recognize sentences involving concepts about which they have
learned other information, than those which contain items which do not
occur elsewhere. These studies support the prediction derived from the pro-
cessing assumption: that the more the facts, the slower the recognition time.

When semantic networks are used to represent sentences, a distinction has
to be drawn between ‘tokens’ and ‘types’. That is to say, between BOOK
representing any book (the type) and ‘book’ referring to a particular book
(the token). This distinction is required to prevent a confusion about which
book is being referred to when two books occur in the same text. For exam-
ple, to represent the sentence ‘John picked up a book and Mary threw a
book at John’, there must be a node representing each of the books. A
variety of mechanisms have been devised to overcome this problem, but a
common one (e.g. Norman and Rumelhart, 1975) is to use general identifiers
as nodes (e.g. numbers) with links to the type concept. However, this
mechanism does not overcome a fundamental problem with semantic net-
works as models of human memory: that they deal with the connections
between concepts rather than their connections with the world. This problem
was well summarized by Johnson-Laird, Herrman and Chaffin (1984: 306):
“Any psychological theory of meaning should account for these phenomena
[the relations among intensional relations, ambiguity, anomaly, instantiation
and inference]; semantic networks contain mechanisms designed to do so,
but nevertheless fail to deal with them adequately, a failing that also applies
to theories based on semantic features or on meaning postulates.”

A variety of semantic network theories has been developed (e.g. Quillian,
1968; Anderson and Bower, 1973; Norman and Rumelhart, 1975; Glass and
Holyoak, 1974; Collins and Loftus, 1975; Anderson, 1976; 1983; Sowa,
1984). Each of these theories makes specific predictions, some of which have
been empirically investigated, and a few of which have been described above.
But these studies relate to specific aspects of individual theories. What can
be said of semantic network theories as a class? There are few features
which all network theories share: they are designed to elucidate the relations
between words (intensional rather than extensional relations); they assume
that the evaluation of intensional relations can be considered separately from
those of extensional relations; they are based on a framework composed of:
a parser, a semantic memory consisting of a network of links and nodes, and
a set of processes that operate on, and interpret, the network; they have a
general commitment to parsimony. These four features in themselves restrict
the class of network theories very little. Anderson (1976) has shown that his
ACT network system is equivalent in power to a Universal Turing Machine
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(i.e. the processes it invokes are capable of computing anything that can be
computed at all), and it is likely that this equivalence could be proved for
other network theories. Although individual network theories may have
testable properties, and when used in conjunction with other forms of
representation and processing may overcome the problems of extensionality,
as a class, they offer no theory which can be assessed in terms of psychologi-
cal validity. An extreme expression of this position is provided by Johnson-
Laird, Herman and Chaffin (1984: 305): “We have no quarrel with the for-
malism or notation of networks: A commitment to them is little more res-
trictive, and no more open to criticism, than is a commitment to a particular
programming language such as LISP.” Consequently, semantic networks
remain only a form of computer implementation, as discussed by Mac Ran-
dal in Chapter 3 of this volume.

6.2.5 Analogical Representations: Imagery

The representations discussed so far employ symbolic representations of the
world. In contrast, there is a class of analogical representations which are
much closer to the world being represented. One of the major sources of
support for the existence of this class of representation comes from the
phenomenon of mental imagery. The study of imagery has had a chequered
history in psychology, but unlike the representational forms discussed so far,
the analogical representation suggested to support it has hardly been
addressed as a computational form of representation in Al

6.2.5.1 What is Imagery and Why Study it?

People, when asked to describe what they experience when they think, often
say that they have the sensation of “pictures in their heads”. These images
are reported as varying in intensity, in the degree of detail present and in
their manipulability. Generally there is no difficuity in distinguishing them
from the reality of perception; i.e. these images are distinct from hallucina-
tions. If asked to imagine say a cat, specific characteristics of the images
(such as colour of fur, length of tail, size relative to an image of a mouse,
whether the cat is sitting upon a mat? ...) can often be given. Frequently
there is the impression of “zooming-in”’ on part of the image to obtain more
detail.

This human ability to form images has been known and utilized for many
years: for example it is the basis of the method of loci as an aid for orators
(formalized by the Greek poet Simonides: where a speech is remembered as
a trip through the rooms of a familiar building, and the objects in the vari-
ous rooms act as cues to the next topic). Various mnemonic techniques rely
upon imagery ability; and some of these have been explored by psychologists
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(Paivio suggested that this accounts for the advantage of concrete words
over abstract words in memory tasks, and Bower has investigated the use of
bizarre associations as a memory aid). It is also likely that imagery is used
routinely, and perhaps unconsciously, in problem-solving. In some of these
problem-solving situations there may be practical implications: consider stu-
dies of “common-sense” or naive assumptions about physical processes (for
example: Caramazza et al. (1981), diSessa (1982), Shanon (1976)).

However there seem to be wide individual differences in imagery ability:
from spectacular examples such as those claimed for Nikola Tesla (e.g.
O’Neill (1980)) to those people who report not having experienced images at
all. There are also developmental complications arising chiefly from the slip-
pery area of eidetic imagery (‘photographic memory’, see Haber, 1979) and
its apparent relationship to verbalization (e.g. Glanzer and Clark (1964)).

Other internal vehicles for thought (such as some form of internal speech,
symbolisms related to mathematics) are also reported but imagery is
currently of great interest within cognitive science because:

(i) it seems to suggest a form of (knowledge) representation that is analogi-
cal rather than propositional in nature (and thus presents an interesting
problem to workers in artificial intelligence as well as to psychologists),
and

(ii) it suggests, to some psychologists, that there may be more than one cen-
tral representation underlying cognitive processing.

6.2.5.2 Does Imagery Exist as a Real Process?

To the extent that people report such experiences, “imagery” exists as a
psychological phenomenon, and is therefore worthy of investigation. It is,
however, difficult to experiment on such mental processes and to produce
acceptable behavioural data for sceptical colleagues.

At one stage in psychology it was hoped that physiological approaches to
psychology might come to the rescue by providing correlates between the
electroencephalogram (EEG) and various psychological traits. This followed
closely from the hopes of such pioneers of the EEG as Berger (1929), in one
of the first papers on the human EEG, that the techniques would prove use-
ful for psychiatric diagnosis.

One exploration attempting to relate ‘“‘imagery types” to EEG alpha
rhythm (electrical activity in the range 8-12Hz: tending to dominate the
occipital scalp when the subject is relaxed with eyes closed) was carried out
by Golla et al. (1943). They classified their subjects into groups as (self-
reported) visualizers or non-visualizers and into three EEG-categories:
persistent-alpha (those subjects who produced alpha when relaxed with their
eyes open or closed), responsive (subjects producing the ‘normal’ responses
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of alpha when their eyes closed but not when their eyes were open), and
alpha-minus types (those subjects who produced no alpha during the experi-
ment). The report indicated a large number of visualizers in the alpha-minus
category and non-visualizers in the persistent-alpha category. However (as
shown by Oswald (1957)) very few people produce no alpha (if allowed
sufficient time to relax in the experimental situation). Oswald’s visualizers,
when allowed to settle down, produced almost as much normal (responsive-
category) alpha as his non-visualizers. Further, there is a close relationship
between alpha rhythm and the activity of the visual system (as suggested by
Lippold (1970) and Wertheim (1974, 1981)). This might suggest that any
correlations found between some aspects of EEG and differences in cognitive
style might be more correctly attributed to differences in habits of visualiza-
tion.

At present psycho-physiological measures offer little evidence which can.
be drawn upon to support or reject hypotheses concerning high-level cogni-
tive representations and processes: in the same way as data concerning the
voltages across components in a digital computer are not appropriate to
describe the current (high-level) program operation.

Psychologists are chary of subjective (introspective) reports as primary evi-
dence, which leaves the major experimental attack upon imagery relying
upon the behavioural consequences of tasks in which subjects may use
“imagery” (and perhaps subjects pre-selected for such ability, trained and
encouraged in its use in the experimental situation).

6.2.5.3 Pre-history of Recent Work on Imagery

In the early days of scientific psychology, imagery was a major area of study
for those interested in cognition. For Wundt (1904) introspection was seen as
the “sine qua non of any psychology”; although this was introspection as a
controlled experimental technique with highly trained observers. However, a
major problem for the introspectionist position was the description and
theoretical justification of the distinction between thought involving images
and ‘imageless thought’.

However with the emergence of Behaviourism (e.g. Watson (1913)) and the
predominance of a logical-positivist inspired methodology, at least in the
United States, through to the 1960s, the study of such mental phenomena
declined. Imagery was viewed essentially as epiphenomenal to visual process-
ing, in much the same way that ‘imageless thought” was reduced to sub-vocal
movements of the throat and larynx. An interesting example of the change
in approach at this time is Warden’s (1924) report on the relative efficiency
of using imagery, verbal coding or motor memory in human maze learning.
It is also an early example of protocol analysis (the analysis of verbal
accounts of tasks while they are being performed) which has since become
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an important technique in many ‘ecologically-valid’ (real-life) experiments.
Against this general background there were only a few examples of a ‘men-
talistic’ approach to the area before the “Cognitive Revolution” of the early
1960s. However, imagery did feature (as Spatial Visualization) in a number
of aptitude tests (e.g. Army Air Force test battery constructed by Guilford et
al. (1952)).

With the re-emergence of a cognitive psychology (ushered in by such
books as Miller, Galanter and Pribram (1960)) it again became respectable
to experiment on such mental processes as imagery. This was backed up in
1964 by Holt’s paper in the American Psychologist - “Imagery: The return
of the ostracized.” Within ten years of this paper a number of major texts
on imagery had been produced (e.g. Horowitz (1970), Paivio (1971), Sheehan
(1972)) and a new range of experimental strategies to tackle these difficult
problems had been developed (see, for example, Chase (1973)). With the
emphasis within cognitive science on representation it has assumed an impor-
tance perhaps equal to that it had achieved around 1900. A number of ear-
lier experiments have essentially been re-interpreted within a more cognitive
frame, for example, the study by Carmichael et al. (1932) where there were
distortions in the reproduction of line-drawings from memory after the
drawings had been associated with a verbal label. From this it is suggested
that images held in memory might be more malleable than perceptions.
Interestingly, some of the same problems are recurring: imageless thought,
the relationship to self-awareness and the problem of infinite (mental)
regress.

6.2.5.4 Experimental Findings: What Do We Know of the Nature of
Imagery?

The following are brief descriptions of a selection of psychological studies on
imagery. They have been selected as typical examples of the work in the
area. For more comprehensive reviews of the area: see Kosslyn’s (1980)
“Image and Mind” or Pinker’s (1985) “Visual Cognition™ (which integrates
considerations of the mechanisms supposedly underlying imagery with work
on visual perception).

6.2.5.5 Mental Rotation

Shepard and his colleagues have been performing experiments on mental
rotation from around 1970. In one of their early studies (Shepard and
Metzler, 1971) subjects were presented with two drawings of three-
dimensional objects (examples of the type of drawing are shown in Figure 1).
The experimental task was to report if the represented objects were identical
except for orientation. Subjective reports suggested that subjects attempted
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to match by mentally rotating one of the shapes until it fitted with the other.
The decision-time for matching pairs suggested that the process being used
seemed to be an analogue of physical rotation of the object because the
greater the angular disparity between objects the longer it took subjects to
give a decision. The speed of rotation seemed uniform at about 50°/second
(although there are differences between subjects). A similar finding was
found by Cooper and Shepard (1973) using rotated letter and mirror-image
letters (see Figure 2). The subjects’ task here was to decide if the letter was
well-formed or backward. Again the result suggested that a mental analogue
of rotation was being performed. A faster, though still uniform, rotation
speed of 300°/second was found, possibly because less complex and more
familiar shapes were being used. There is some suggestion from Metzler
(1973) (also discussed in Metzler and Shepard, 1974) for the process being
continuous. She used an image as an aid to a subsequent perceptual match
task. However, there are some difficulties in her technique owing to subject
variability.

Schwartz (1979), using a version of a technique pioneered by Cooper and
Podgorny (1976), produced some results that, whilst generally supporting the
earlier rotation studies, suggest that some refinements may be needed. The
experimental design is shown in Figure 3. The results again showed that a
greater rotation needed a longer time to carry out. With larger angles of
rotation larger patterns needed more time to rotate than small ones but it
takes no longer to rotate complex patterns than to rotate simpler ones.

1

“SAME"

“DIFFERENT"

Figure 1
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Example configurations for one stimulus: after
Cooper & Shepard, 1873.

Normal Mirror Image
0 degrees 300 degreas 0 degrees 60 degrees
60 degrees 240 degrees 60 degrees 240 degraes
120 degrees 180 degrees 120 degrees 180 degrees
Figure 2

There was some confirmation, that subjects were actually rotating an image,
from results of a template-matching task where subjects had to match their
images against an actual “probe’” pattern: in that responses were faster when
the probe and image had the same orientation.

6.2.5.6 Mental Paper Folding

Shepard and Feng (1972) used a task in which subjects were required to
make judgements about paper cubes which had been unfolded to make pat-
terns of six squares. Some examples are given in Figure 4. The task was to
determine from the two-dimensional pattern if the heads of the two arrows
marked on the pattern would or would not meet if the squares were folded
into a cube. Shepard and Feng found that there was an approximately linear
function between the number of folds required to test for a meeting and the
time taken to make a decision. That the function was linear rather than
exponential in nature would be expected from the nature of the search space.
This was congruent with their subjects’ reports that they were mentally
refolding the squares in order to solve the problem.
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J

rotate image

see cue of blob and
study blob f ; report when done:
or rotation
probe presented

for template matching

Figure 3 Schwartz (1979) experimental procedure

Do the heads of the arrows meet when the patterns are folded into cubes?

[ | [ = [ |

* =
il

(2 folds) (5 folds) (Non-match)
Figure 4 Examples of diagrams used by Shepard and Feng (1972)

6.2.5.7 Scanning Mental Images

Kosslyn, Ball and Reiser (1978) attempted to investigate the amount of
movement on, or of, an image. Subjects were given a map of a fictitious
island. The island had a number of features (including a hut, a rock, areas
of sand). Subjects were trained on the map until they could reproduce the
drawing with great accuracy. The main experimental task consisted of the
following sequence. An object on the map was named. Subjects were asked
to imagine the map and focus upon that object. A second object was named
five seconds later. Subjects were instructed to scan the map for this second
object and to press a button when they had mentally focused upon it.
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Analysis of the data supports the view that the time needed to perform
this task increases linearly with the distance apart of the objects (on the real
map and presumably on the image). Again this suggests that imagery is a
process similar to a physical operation: an analogue.

6.2.6 The Uses of Imagery?

The examples of processes described above relate specifically to imagery
rather than to the use and possible relationship of imagery to other forms of
cognitive activity. Imagery can take the form of photographic recall of
images, but it can also involve the mental construction, representation and
manipulation of images of diagrams, and figures. With the acceptance of
imagery as a phenomenon and of processes which operate on imagery, two
parts of the argument that imagery is an example of an analogical represen-
tation being used in human reasoning have been established. The third part
of this argument is to attempt to establish the representation upon which
imagery is based and to confirm that this representation is indeed analogical
in nature. To do this we need to consider the relationships between this form
of representation and others which have been described in earlier sections of
this chapter.

6.2.6.1 Analogue Representation, Imagery and Inference

There are examples in the psychological literature of tasks which may be
helped by the formation of appropriate images. There are also examples
where an incorrect image can be misleading. Additionally some operations
which may be easy to perform on a picture seem hard for most people to
perform on an image. (McKim (1980) is a useful source of examples in this
area.)

As an example of the former:

A Buddhist monk visits a shrine at the top of a sacred mountain. It is a
difficult climb. He leaves on Monday at 08.03h, reaching the top at 16.30h
(with a 15 minute lunch break sharp at noon). At 08.03h the next morning he
descends the mountain using the same path. He makes good time in the descent
arriving at the bottom of the mountain at 13.05h on Tuesday afternoon.

The question is: Is there any time of day (you do not need to say what time)
when the monk was at exactly the same point on the path on Monday and
Tuesday?

In this case one can attempt to solve the problem by imaging a saffron
robed monk climbing a hill, or a time-distance graph of the movement. The
former image does not aid the solution whereas the second image of a graph
rather than a picture can lead to a solution.
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A number of psychologists working on problem solving in the 1930s and
1940s made extensive use of imagery-like processes as explanatory concepts.
For example, a typical study in Maier’s (1931) experimental series is the
“two-string problem”. Two strings hanging from the ceiling have to be tied
together, but the strings are positioned so far apart that the subject cannot
grasp both at once. The room contains a number of objects, including a
chair and a pair of pliers, that may be used to find a solution to the prob-
lem. Maier found that subjects tried various solutions involving the chair
but these did not work. The suggested solution is to tie the pliers to one
string and set that string swinging (like a pendulum), then to get the second
string and bring that to the centre of the room, to wait for the first string to
swing close enough to grasp and then to tie the strings together. Only 39%
of Maier’s subjects were able to see the solution within ten minutes. In this
problem the difficulty does not arise because subjects view a picture of the
situation rather than constructing a diagram, but when they construct either,
they do not perceive the pliers as a weight that can be used as part of a pen-
dulum, but as a tool for gripping objects. This difficulty is called functional
fixedness (fixity): so named because subjects are fixed on representing the
object according to its conventional function and fail to represent the novel
function.

Similar results can be found in Duncker’s (1945) studies. One task that he
posed for subjects was to support a candle on a door, ostensibly for an
experiment on visual perception. Materials supplied for the task were a box
of drawing-pins, matches and a candle. The suggested solution here is to
fasten the box to the door with drawing-pins and then to use the box as a
platform for the candle. This task is apparently difficult for subjects because
they see the box as a container not as a support or platform. Subjects have
greater difficulty with the task if the box is filled with drawing-pins, reinforc-
ing the perception of the box as a container.

The following problem, it is suggested, is relatively difficult to solve using
an image but is easy using a picture (adapted from Simon (1978)):

Imagine (but do not draw) a rectangle 2" wide and 1”7 high, with a vertical
line cutting it into two 1”7 squares. Imagine a diagonal from the upper-left-hand
corner to the lower-right-hand corner of the 2" x 1” rectangle. Call this line
Diagonal A. Now imagine a second diagonal from the upper-right-hand corner
to the lower-left-hand corner of the right hand square. Call this line Diagonal
B. Consider where Diagonal A cuts Diagonal B.

What is the relationship of the length of B above the cut to the length of B
below the cut?

The above problems also give good examples of the wide range of indivi-
dual differences found in this area. Some people report using images (“like a
drawing”), to others it is “just obvious”. A number of people find it difficult
to solve such problems without resort to external means (such as pencil-



142 Psychological Studies of Knowledge Representation

and-paper). It is not clear that these differences relate well to measures of
intelligence, personality or ‘cognitive style’.

6.2.6.2 Imagery and Interference

Brooks (1968) conducted a series of experiments on processing of visual
images contrasting performance here with performance on non-visual tasks
reckoned to be of equal difficulty.

For the Visual task subjects had to scan imagined diagrams such as Fig-
ure 5. Scanning round, starting at the * and moving in the direction of the
arrow, subjects were asked to categorize each corner as a point at the
extreme top or bottom (“‘yes”) or a point in between (“no’’). For the figure
below the correct sequence of responses should be YYYNNNNNNY. The
Non-visual task was to hold a sentence, with the same number of words as
there are corners in the diagram, in memory (such as ““ A bird in the hand is
not in the bush *’), and then to classify each word as a noun or not. The
correct sequence of response for the example sentence is NYNNYNNNNY.
Three response conditions were used (a) say “yes” or “no”, (b) tap with the
left hand for “yes” and the right hand for “no”, and (c) point to successive
Ys and Ns on a sheet of paper.

The following table gives the mean classification time in seconds:

OUTPUT CONDITION
Pointing Tapping Vocal
Visual Imaging task 28.2 14.1 11.3
Non-visual task (sentence) 9.8 7.8 13.8

This pattern of results suggests that scanning a sheet for the responses
interfered with the scanning of a mental image. The interpretation, again, is
that subjects are scanning a representation that is an analogue of a physical

display.
]
1]

Figure 5 Example of diagram to be imagined and scanned: after Brooks (1968)
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It has been suggested that Brooks’ result was caused by the interference
generated from having to do a visual pointing task and at the same time
scan a visual image. Later results (such as Baddeley and Lieberman (cited in
Baddeley, 1976)) would suggest that the problem was at a more abstract
level than a visual one: that is, the interference is spatial. This latter result
also points to the image being an analogue of a physical structure.

6.2.6.3 Distortions of Cognitive Maps

One topic of interest to people from a variety of areas has been how mental
(cognitive) maps of the environment are formed and used. Many people
report having some form of mental map, and the geographic information
that would be encoded in such maps is obviously drawn on in everyday navi-
gation around the world. However, when people are asked to draw such
maps, systematic distortions of reality are often produced. For example, Bos-
ton Common is usually drawn as a square although in reality it has five
sides; the standard New Yorker’s view of the United States or Londoner’s
view of the United Kingdom distort the geography so that the part of the
world the author inhabits is overly large, and other areas are reduced. This
anecdotal evidence is supported by an experimental study (Milgram and
Jodelet, 1976) which shows that Parisians’ view the Seine as making a rather
gentler arc through Paris than it does. This results in some Right Bank dis-
tricts being placed (mentally) on the Left Bank. These effects could be due
to a greater familiarity, recency or frequency of experience with one area
than another (a useful summary of some of the work on mental maps can be
found in Gould and White, 1985).

Many mental maps are based on information derived from printed maps
rather than directly from experience. The persistence of distortions found in
such sources accounts for some people’s belief that Greenland is much larger
than it actually is, because the Mercator projection used to produce flat
maps of the earth distorts its size (a belief usually dispelled when Greenland
is viewed on a globe). The persistence of such information is in itself of little
interest, however, yet more pronounced distortions can be found in diagram-
matic maps such as those of the London Underground. The London Under-
ground map has been found to be very satisfactory for its role, and has been
emulated in many similar situations. Since these descriptions are spatial in
nature, they are often assumed to represent geographic distance relations.
However, they actually represent the connectivity in a network. Conse-
quently, Bayswater station is a third of the map away from Queensway on
the London Underground map, whereas, spatially, it is only 50yd away.
Here a spatial representation is being used to represent information which is
itself not spatial. A similar translation may underly many of the distortions
found in cognitive maps.
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Stevens and Coup (1978) collected a set of misconceptions about Ameri-
can geography. They analysed their results in terms of the influence from
more abstract facts about the relative locations of large physical bodies (such
as individual states) producing distortions on the finer detail. They then
repeated their experiment and analysis with a set of simplified maps and
found the same error patterns, thereby supporting a view that the knowledge
of abstract facts results in the distortions in mental maps.

Thorndyke and Hayes-Roth (1978) investigated how mental maps are
developed through experience rather than from paper maps. They studied
secretaries working in the maze-like Rand Building (Santa Monica, Califor-
nia). They found that ‘route-maps’, for cxample how to get from one’s office
to the photocopying room or to the lunch room, were acquired fairly easily
but that it took much longer to develop ‘survey-maps’, which would enable
accurate decisions as to the direction of the lunch room from the photocopy-
ing room (a potential route that was not used). It was suggested. that secre-
taries had typically to have ten years’ experience of the building before they
developed such ‘survey-map’ knowledge! This finding is supported by
developmental evidence (Hart and Moore (1973)) which suggests that chil-
dren develop from using route-maps to survey-maps.

Although many of these studies appear to suggest that subjects are using
an image (equivalent to a paper map) and can produce a drawing of such an
image, backed by subjective report: there are again differences of opinion.
For example: Hintzman er al. (1981), investigating the way that people
orient themselves in somewhat familiar environments, suggest that subjects
use propositions not mental images. Reed (1974) has examined the relation-
ship between structural descriptions and mental images, emphasizing the lim-
itations of visual images. Consequently, when information is held as a
route-map, a route may be mentally represented and not a two- or three-
dimensional representation of geography. These are only produced as draw-
ings when requested by experimenters. Although maps may be viewed as
images, they may be constructed from propositions rather than being stored
as images themselves. Further, although mental maps are viewed in a spatial
manner, the information represented is not always itself spatial in nature.

6.2.6.4 Imagery and Visual Perception: Constructed Analogues or
Recalled Pictures?

As described above, a number of authors have investigated the relationship
of visual imagery to other cognitive processes: e.g. problem solving (Kauf-
man, 1979), learning (Fleming and Hutton, 1973), and memory and cogni-
tion (Richardson, 1980, Yuille, 1983). These have shown that images that
have been seen can be recalled, but also that representations can be
developed to aid problem solving and reasoning. Since imagery is easiest to
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characterise as a phenomenon similar to vision, the most obvious process to
compare it to is perception. Although there is a similarity between imagery
and perception, some of the evidence as to the nature of imagery is per-
suasive that images are rather different from perceptions.

For example: Yuille and Steiger (1982), using a modification of the
Metzler and Shepard (1974) mental rotation task, described above, have
been able to find effects resulting from the complexity of the concepts
imaged. This is in contrast with earlier investigations such as Cooper and
Podgorny (1976), and suggests a piecemeal (feature analysis) processing sys-
tem rather than an holistic process.

However, a number of workers in the area still suggest that images take
on some of the properties of objects. The idea that images are just (faint)
echoes of perceptions has been around for years. There have been attempts
to investigate this directly. For example, Perky (1910) found that her sub-
jects confused a faint projection with their own images although there are
some methodological problems with this study.

One attempt at a direct test as to the dependence of imagery upon access
to ‘visual perception processes’ was carried out by Mamor and Zaback
(1976). They investigated mental rotation by blind subjects using a tactile
analogue of the Shepard and Metzler (1971) task. One inspiration for this
work appears to be an interview study of dreaming by Jastrow (1888).
Mamor and Zabach describe Jastrow’s study as indicating that those blind
after seven years old reported experiencing visual imagery in their dreams,
whereas those blind before five years old made no such claim. The Mamor
and Zabach task used tear-drop-shape wedges with a ““bite” taken out of the
left- or the right-hand side of the wedge. The left-hand wedge was always
presented upright, the right-hand wedge was presented at a rotation of 0°,
30°, 60°, 120° or 150° in a clockwise sense. The subjects had to decide if the
wedges presented were the same or different. Analysis of these decision times
were interpreted by Mamor and Zabach as indicating rotation rates of
54°/sec for their early-blind (before five years old) subjects, 114°/sec for their
late-blind subjects, and 233°/sec for the control group of blindfolded, sighted
subjects. This study would seem to offer some support for the facilitation of
imagery-based tasks, such as mental rotation, by visual processing. However,
there is some suggestion in the paper that a verbal strategy may have been
used by some subjects.

As a supporter of the view that imagery closely resembles visual percep-
tion, Finke has carried out a number of experiments that attempt to use the
formation of an image as a potential help or hindrance to a subsequent per-
ceptual task. His experiments tend to support the position that there are
some mechanisms that are used both by imagery and by perceptual
processes. Some of his studies indicate that imagery can influence percep-
tions. (This is perhaps not unreasonable if one’s view of perception is close
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to the idea of the brain forming hypotheses about the world outside (one
held by Richard Gregory or by the late David Marr and his co-workers).)
Finke has a paper in the Psychological Bulletin (1985) which discusses these
issues and the related theories: a more accessible source for the non-
psychologist reader might be Finke (1986).

In direct contrast to the position that imagery resembles visual perception,
Pylyshyn (1984) offers an account of the data from imagery experiments that
does not involve analogue representations by drawing on four assumptions.
Firstly, that the instructions in imagery experiments lead subjects to recreate
as accurately as possible the perceptual events that would occur if they were
observing the situation. Secondly, subjects draw on their tacit knowledge of
both the environment and human perceptual processes in order to decide
how to behave in the experiment. Thirdly, that subjects have the skills neces-
sary to simulate the performance that would arise if they were using a spa-
tial medium. Fourthly, that no special processes are recruited to perform ‘as
though one were using a spatial medium’ when simulating such performance
using a representation composed only of propositions. This account is not
experimentally falsifiable since tacit knowledge “could obviously depend on
anything the subject might tacitly know or believe concerning what usually
happens in the corresponding perceptual situations” and that “the exact
domain knowledge being appealed to can vary from case to case’ (Pylyshyn,
1981: 34). Consequently, an assessment of this position depends on whether
one can accept that subjects could both possess and apply the tacit
knowledge capable of simulating visual perception to the extent experimen-
tally observed.

The influential interpretation of the psychological evidence on imagery
favoured by Kosslyn (and his co-workers) seems to be as follows. Imagery
(to include the generation, inspection, and transformation of mental images
together with their role in fact retrieval) is more than a simple mirror of the
equivalent perceptual or physical processes. Because the underlying psycho-
logical processes are analogue in nature they are easily performed on an
analogue representation and are not easily realized for a propositional
representation. He considers it unlikely, given the limited degree of conscious
control and access to such processes, that subjects are merely trying to
behave as if they were carrying out the equivalent physical tasks. The level
of theory specified (for example in Kosslyn and Schwartz, 1978) to emphaz-
ise the (cognitive) representation is considered both appropriate and better
specified than alternatives such as those offered by Pylyshyn (1984) and
Johnson-Laird (1983). He feels it inappropriate, at this stage, to specify the
processes at the level of nerve-cell activity. He assumes that these analogue
mental representations are actually processed when we have an experience of
mental imagery and that processing differences are reflected in external
behaviour. These analogue processes are better suited to certain types of
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data manipulation than propositional forms of representation: and it is in
this context that Kosslyn suggests the usefulness of psychological work on
imagery for workers in the area of artificial intelligence.

There are still differences of opinion as to the interpretation of many of
the experimental results in the area of imagery. A number of authors (e.g.
Johnson-Laird, 1983) still see the results as not discriminable from the pred-
ictions derived from a propositional model, whereas others (e.g. Kosslyn,
1980) interpret the results as convincing evidence for a unique, analogical
processing system - visual imagery. (Discussion on these points can be
found in Kosslyn et al., 1979, and in Hilgard, 1981.) It should be remem-
bered that most of the work on imagery has been in the area of ‘visual
imagery’ and not concerned with equivalent processes related to other sen-
sory modalities. One problem that still remains to be solved in the area of
imagery, and one in which computer science and other disciplines may be of
assistance, is the lack of a suitable formalism for representation.

6.3 Reasoning with Concepts

The use we associate with human action that gives it an advantage over
those of machines is that of thinking, or reasoning. The process of reasoning
depends on principles that establish some sort of relation between premises
and conclusions. There have been several suggestions as to the identity of
this set of principles.

Logic specifies the principles of valid reasoning (in certain domains). Most
psychologists have assumed that there is a form of mental logic that enables
us to reason. According to this doctrine of mental logic an inference is made
by translating its premises into a mental language, drawing on the relevant
general knowledge from long-term memory, and then applying formal rules
of inference to these conclusions to derive an inference from them. The doc-
trine suggests that valid inferences are encountered by children, in the same
way as well-formed sentences, and the formal rules of inference are derived
in the same way as rules of syntax. The question that follows from this doc-
trine is: what logic does the mind contain, and how is it represented there?

Jean Piaget argued that the formal reasoning which children are supposed
to master in their early teens is “nothing more than the propositional cal-
culus itself” (Inhelder and Piaget, 1958: 305). (For an explanation of the
propositional calculus and other terms from logic used in this section, see
Chapter 2.) One of the major difficulties with this suggestion that the mental
logic is the propositional calculus is that the rules of inference would hold
true no matter what the content of the propositions. However, there is a
body of psychological research to support the argument that the difficulty
with which inferences are drawn by humans is dependent on the content of
the propositions in the premises. Some of the most dramatic examples of this



148 Psychological Studies of Knowledge Representation

dependence occur in a task which has been used by a number of researchers.
The task seems quite simple; the experimenter lays four cards in front of a
subject displaying the following symbols:

E K 4 7

The subject already knows that each card has a number on one side and a
letter on the other. The experimenter then presents the following generaliza-
tion:

If a card has a vowel on one side then it has an even number on the other
side.

The subject’s task is to select those cards which have to be turned over to
determine if this statement is true or false. The order in which cards would
be turned over is not considered, merely the question as to which would
determine the truth of the generalization. The problem seems easy; try it
before continuing.

In a study by Wason and Johnson-Laird (1972) nearly every subject chose
to turn over the card showing a vowel; if it reveals an even number, the gen-
eralization is unaffected, if it reveals an odd number then the generalization
is false. Similarly, most subjects appreciate that turning over the card with a
consonant on would be irrelevant to the generalization. Some subjects chose
to turn over the card showing an even number; if it shows a vowel, it would
be consistent with the generalization, but would not either prove it true or
false; if it shows an odd number it would not affect the generalization since
nothing is stated about what should be on the other side of cards that have
an even number. To select this card is an error of commission, since it is not
relevant, but it does no harm. However, very few subjects select to turn over
the card which presents an odd number. If this were to have a vowel on the
other side it would disprove the generalization; therefore this error of omis-
sion is more serious. Selecting this card, as in selecting the card showing a
vowel, might demonstrate a card bearing a vowel and an odd number which
would refute the generalization.

If the same test is performed with cards showing a different content by
using more realistic materials, there is a change in subjects’ selections. With
cards showing the modes of transport and place names:

Manchester Train Sheffield Car

and the general rule:



6.3 Reasoning with Concepts 149

Every time I go to Manchester I travel by car

over 60% of subjects chose to turn over the card with ‘car’ on it, whereas
with the abstract materials only 12% did (Wason and Shapiro, 1971). The
finding that performance on this task is different when abstract materials are
used from when realistic materials are, has been consistently replicated by
many researchers (see Evans, 1982, for a review of studies using this task).
This task illustrates that the content of the premises to an inference has an
effect on the difficulty of a deduction. This is inconsistent with the principles
of the propositional calculus, which suggests that the semantics of the pro-
positions is irrelevant to the inference. This is strong evidence that the pro-
positional calculus is not the mental logic used by humans to perform infer-
ences.

There are two further arguments against the propositional calculus being
the mental logic. The first is that it requires the inference of all valid conclu-
sions when it is obvious that only non-trivial conclusions are drawn by peo-
ple. The second is that inferences that hinge on quantifiers such as ‘all’ and
‘some’ cannot be captured within this calculus. They require a
quantificational calculus, which includes an additional apparatus for
quantifiers.

This requirement suggests first order predicate calculus as a candidate for
the mental logic. Johnson-Laird (1983) has pointed out five problems with
this suggestion.

The first difficulty that such a suggestion must overcome is that some
inferences are more difficult than others. This is easy to illustrate. In a
study by Johnson-Laird and Steedman (1978), subjects could readily formu-
late a valid conclusion that follows from premises of the type:

Some of the children are scientists
All of the scientists are experimenters

whereas hardly any could formulate a valid conclusion from the following:

All of the bankers are athletes
None of the councillors are bankers

From the first problem there are two equally valid, if converse, conclusions:
Some of the children are experimenters;, Some of the experimenters are chil-
dren. For the second problem the only valid conclusion is Some of the ath-
letes are not councillors. For this problem, the converse (Some of the council-
lors are not athletes) is not valid, as would be the response that ‘there is no
valid conclusion of interest’.
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Several theorists have suggested sets of rules of inference within a first
order logic which attempt to capture differences in the difficulties of infer-
ences (e.g. Rips, 1983). However, such attempts still suffer from the four
other reasons which Johnson-Laird argues prevent first order logic from
being the method of human reasoning.

Firstly, that although there are algorithms that will determine that an
inference is valid for first order logic, there can be no such procedure to dis-
cover that an inference is invalid (Boolos and Jeffrey, 1980). This lack of a
decision procedure prevents it from being used to produce the response often
given to inferential problems that ‘there is no valid deduction that can be
made’.

Secondly, that as for the propositional calculus, the semantic content of
premises should be irrelevant from processing, which it is not in the case of
humans (as was demonstrated above).

Thirdly, that in first order predicate calculus all valid conclusions should
be drawn whereas humans only draw non-trivial conclusions. This problem
could be overcome by some form of relevance testing filter operating on the
products of the logical inference, but this would be sufficiently complex to
construct to leave the logic as a minor part of the inferencing system.

The fourth problem for first order predicate calculus is that, although it
accounts for quantifiers which the propositional calculus does not, there are
still quantifiers such as ‘more than one’ across which it cannot be used to
draw inferences, while humans easily can.

This last problem could be overcome by a higher order calculus that can
cope with more complex quantifiers. Although second order predicate cal-
culus can operate over such quantifiers, there is no way to specify the formal
inference rules by which the complete set of valid deductions can be derived
with it. Because of this lack of specification, it would appear that appealing
to higher and higher order calculi will not provide the mental logic required.

Looking elsewhere than logical calculi for a mental logic, there are several
candidates. Euler circles have been suggested. However, although there is a
complexity in expressing different problems in Euler circles, this complexity
does not relate to the difficulty people have in making inferences. Another
difficulty with them is that, like the propositional calculus, they cannot give
rise to the answer ‘no valid conclusion’. A second graphical alternative
would be Venn diagrams, but these offer no way of predicting the errors that
are made in human inference. There are also several candidates available in
goal-directed programming languages. These allow rules of inference to be
formulated with a specific content, with every general assertion taking the
form of such a rule (such as the production rules discussed above). Although
these overcome the problem of the effect of propositional content on infer-
ence, they go too far, and provide absolutely no machinery for general
inferential abilities. There is a need for the sensitivity to content which they
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offer, in conjunction with the general inferential ability offered by the logical
calculi.

One suggestion which attempts to combine this sensitivity and ability into
a single approach is that of mental models, proposed by Johnson-Laird
(1983). In contrast to the syntactic method of the formal rules of inference
this method is semantic in nature. The general spirit of the suggestion is that
the reasoner imagines a situation which would be described by a set of prem-
ises. Then, after drawing a conclusion from the situation, which would not
be stated in the premises, an attempt is made to construct another situation
from the premises in which this conclusion would be false. The reasoner can
reach any deduction by applying a three-step procedure for this process
(from Johnson-Laird and Bara, 1984: 5):

Step 1: construct a mental model of the premises, i.e. of the state of affairs
described.

Step 2: formulate, if possible, an informative conclusion that is true in all
models of the premises that have so far been constructed. An informative con-
clusion is one that, where possible, interrelates terms not explicitly related in
the premises. If no such conclusion can be formulated, then there is no interest-
ing conclusion from syllogistic premises.

Step 3. if the previous step yields a conclusion, try to construct an alternative
model of the premises that renders it false. If there is such a model, abandon
the conclusion and return to step 2. If there is no such model, then the conclu-
sion is valid.

What complicates this procedure is that there are usually alternative situa-
tions which are compatible with the truth of the premises. Given a premise,
such as:

All the scientists are experimenters

how is one to build a single model that captures its content? The answer is
to draw on some simple assumptions which can be revised later. Therefore,
one can imagine a set of scientists which will be consistent with the word
‘all’ but as small as possible; for example, three. The information that all the
scientists are experimenters can now be added to the model. This would give
the resulting model :
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scientist =  experimenter
scientist =  experimenter
scientist =  experimenter

(experimenter)

where the item in brackets represents an experimenter who is not a scientist.
Although the premise and the reasoner’s general knowledge do not require
such an individual, they allow for the possibility of one.

If this were turned into a syllogism with the addition of another premise:

None of the children are scientists
All the scientists are experimenters

the deductive procedure can be applied to yield the conclusions. Firstly, the
model would be expanded by the use of the first step of the procedure, to
include this premise too, incorporating a barrier to represent set boundaries:

child

child

child
scientist = experimenter
scientist = experimenter
scientist = experimenter
(experimenter)

Applying the second step of the procedure to this model suggests the conclu-
sion: None of the children are experimenters, or its converse that None of the
experimenters are children. Most subjects erroneously report these conclu-
sions without continuing to apply the third step of the rule (Johnson-Laird
and Bara, 1984) which results in a second model:

child

child

child =  (experimenter)
scientist = experimenter
scientist = experimenter
scientist = experimenter

(experimenter)

which falsifies these conclusions. Applying the second step of the procedure
again, the two models together yield the conclusions: Some of the children
are not experimenters and Some of the experimenters are not children which
by the application of the third step again, gives rise to a third model:
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child =  (experimenter)
child =  (experimenter)
child =  (experimenter)
scientist = experimenter
scientist = experimenter
scientist = experimenter
(experimenter)

which eliminates the first of the previous pair of conclusions, leaving the
valid conclusion that: Some of the experimenters are not children.

The solution of this syllogism has required three mental models. The
theory suggests that the greater the number of models required to draw a
valid deduction, the harder the task wiil be. The results of experiments which
show the comparative difficulty of reaching valid conclusions from syllogisms
in both adults (Johnson-Laird and Bara, 1984) and children (Oakhill,
Johnson-Laird and Bull, 1986) can be accounted for by a combination of the
number of models called for by this theory and effects of the ordering of the
items in the syllogisms (or more formally, the figure of the premises).

It should also be noted that this theory can also account for the types of
quantification that the first order predicate calculus could not. For example,
given the two premises:

more than half the experimenters are scientists
more than half the experimenters are children

a mental model can be constructed:

scientist =  experimenter
scientist =  experimenter = child
experimenter = child
scientist child

which yields the valid conclusion: at least one scientist is a child.

These examples of the use of mental models are limited to logical syllo-
gisms involving quantifiers of various forms. However, models can also be
used to represent and draw inferences across spatial relationships. This use is
best illustrated by a particular problem. Given a problem where 12 individu-
als are seated equally spaced around a circular table, and a description of
the relationships between them:
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A is on B’s right
B is on C’s right
C is on D’s right

K 1s on L’s right

the transitive inference that A is on F’s right is unacceptable, since A is close
to being opposite F. The criterion for the validity of a conclusion to such a
problem is purely semantic, depending on the impossibility of constructing a
model of the premises and their context in which the conclusion is false. The
application of syntactic inference rules as formalized in the quantificational
calculi would not yield it. This example iilustrates how spatial problems can
be solved by the construction of a model, where other techniques would fail.
It has been argued that similar examples of the usefulness of mental models
for reasoning can be found not only for quantificational and spatial relation-
ships but also for temporal and other continuous relationships.

6.3.1 The Representation of Mental Models

This evidence suggests that mental models are a realistic mechanism for
human reasoning, but how is the information they draw on represented?
Johnson-Laird suggests that “discourse can be represented either in a propo-
sitional form close to the linguistic structure of the discourse, or in a mental
model that is closer to the representation of the state of affairs [...] than to a
set of sentences” (Johnson-Laird, 1983: 160). The evidence to support this
claim comes from a series of experiments which show that subjects tend to
form mental models of a spatially determinate descriptions, while relying on
propositional representations for indeterminate descriptions consistent with
more than one spatial layout. In one study (Mani and Johnson-Laird, 1982),
subjects heard a series of spatial descriptions, such as :

The spoon is to the left of the knife
The plate is to the right of the knife
The fork is in front of the spoon
The cup is in front of the knife.

After each description they were shown a diagram such as:

spoon knife plate
fork cup

and they had to decide if the diagram was consistent or inconsistent with the
description. Half the descriptions presented to the subjects were spatially
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determinate (in that they described only one possible arrangement of the
objects) and half were indeterminate (in that they described more than one
possible arrangement). After the subjects had judged the descriptions and
diagrams, they were given an unexpected test of their memory for the
descriptions. On each trial, subjects had to rank four alternative descriptions
in terms of their similarity to the original. These four were: the original
description itself; an inferable description; and two descriptions with a
different meaning as confusion items. The inferable description for the
example contained the sentence:

The fork is to the left of the cup

in place of the sentence relating the spoon and knife. The inferable descrip-
tion is therefore not a paraphrase of the original, but it can be inferred from
the layout of the original description. Mani and Johnson-Laird argue that
this inference is only likely to be made if subjects construct mental models,
and not if they maintain a propositional representation of the sentence.
Further, the model they create would have to be symmetrical, since if they
construct an asymmetrical model they will probably fail to consider the fork
to be on the left of the cup. An asymmetrical model of the above example
will illustrate this point:

spoon knife plate
fork

cup

The results show that subjects remember the gist of the determinate
descriptions much better than that of the indeterminate ones, but they tend
to remember the verbatim detail of the indeterminate descriptions better
than that of the determinate descriptions. This cross-over effect requires the
existence of at least two sorts of representation. Models do not encode the
surface linguistic form of the sentences they represent, and when using them,
subjects confuse inferable descriptions with the original. Propositional
representations, however, do encode the surface form of the sentences. This
result therefore suggests that subjects use a representation such as mental
models to represent determinate descriptions and a propositional representa-
tion for indeterminate ones. One motivation that has been suggested for this
change in representation is that, because models require a greater amount of
processing for their construction than propositions, they are easier to
remember, although they cannot express indeterminacy when it is noticed. It
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is possible that the introduction of propositional elements into mental
models (such as the bracketing notation used in the models above) could
also be used to represent alternative models of indeterminate descriptions,
but it does not appear to be drawn upon in this study.

Further evidence for the construction of mental models is provided by a
study of continuous and discontinuous descriptions by Ehrlich and
Johnson-Laird (1982). In this study, subjects listened to three sentences
describing the spatial relations between four common objects, e.g.:

The knife is in front of the spoon
The spoon is on the left of the glass
The glass is behind the dish

and then attempted to draw a diagram of the layout of the objects thus
described. If subjects attempt to construct a mental model of the layout the
task should be easier if a single model can be progressively constructed from
the assertions (as in the above example), than if the description is discontinu-
ous where the first two statements refer to no item in common, e.g.:

The glass is behind the dish
The knife is in front of the spoon
The spoon is on the left of the glass

In this case subjects may either construct a mental model for each of the first
two assertions which must then be combined, or else represent the informa-
tion in propositional form until some point after all the sentences have been
heard. If the effect were one caused by the continuity of the sentences them-
selves rather than the construction of a single mental model, then a ‘semi-
continuous’ description where the third sentence had no items in common
with the second, but did with the first, should also prove difficult to recall,

e.g.

The spoon is on the left of the glass
The glass is behind the dish
The knife is in front of the spoon.

However, if a mental model is being constructed from a description such as
this, it should prove no more difficult than the continuous example, since
there is no requirement to construct two models because the third assertion
refers to the spoon which has already been introduced in the first assertion.
The results confirm this prediction of difficuity, since significantly more of
the diagrams based on continuous descriptions were correct than those based
on discontinuous descriptions, while the semi-continuous condition was not
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reliably different from the continuous.

These experiments support the view that mental models are used to
represent various spatial knowledge, and may be used to represent the prem-
ises used to reason without the rules of logic, as described above. Although
mental models have an analogical structure, they are not the same as images.
The relationship between images and mental models can be seen as one
where images can be described as views on the represented mental model. It
is this dimensional nature of the representation of mental models that allows
them to be manipulated in ways that can be controlled by dimensional vari-
ables and give rise to the performance described.

However, there are classes of representation which are currently prob-
lematic for mental models. One case is that of infinite regresses which can be
exemplified by the representation of the mutual knowledge (Lewis, 1969,
Schiffer, 1972) of two participants in a conversation or event. For example,
if two people are standing in full view of one another amidst a downpour,
then the fact that it is raining is mutual knowledge between them. In gen-
eral, if the observers are X and Y, and the fact p, then it follows that X and
Y mutually know p. This may be described in terms of the concept ‘know’,
by the following series of statements:

X knows p

Y knows p

X knows Y knows p

Y knows X knows p

X knows Y knows X knows p
Y knows X knows Y knows p

etc. ad infinitum

There are two classes of solutions to the apparent paradox of this infinite
regress. The first class requires the choice of a stage in the series at which to
cut it off, either at a fixed point, or at a point which is selected as a function
of the inferential or memory limits of the agents. The second class involves
the use of a recursive notation in possible worlds or other advanced logics
(c.g. Cohen, 1978). The same apparent paradox can exist in a mental model
notation. Then, there will be an infinite number of models representing the
situation, as there are an infinite number of statements in the series above. It
would be possible to select a cut-off point in the sequence, but the decision
as to where to place that point is no easier in a mental-models representation
than for the series above. Although it is possible to represent recursiveness
in diagrammatic or model form without using an infinite number of models
(see Power, 1984), this representation requires the introduction of more
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special conventions and notations (like the horizontal bar and brackets in
the models above) that make the models look more like expressions in
higher order logic. This consequently reduces at least the face validity of
mental models as representations to support reasoning which can be attri-
buted to the simple models given above.

6.4 Conclusion

Representations and the processes which operate on them must both be
specified for a system to be testable (Anderson, 1978). As a class, semantic
networks and possibly the other major classes of representation (e.g. schema,
frames) do not specify the processes which operate in them in sufficient
detail to be testable. Individual models employing different representations
are testable, and there has been found evidence which supports different
aspects of many of them:

People do appear to produce schematized representations of events;
although there is little evidence for the existence of base schemata
themselves. People do appear to produce successive records of events
they experience, of which the most recent is retrieved (unless the
description used for searching is specific enough to locate earlier
records), as described by the headed records framework. People do
seem to use a two-stage checking process based on the typicality of con-
cepts to determine if statements such as ‘a dog is an animal’ are true as
the semantic feature models suggest. People do find it easier to verbal-
ize some knowledge (declarative) than other (procedural), as is
accounted for by the use of production systems. People do retrieve
information in regard of its connections to other information so as to
give rise to the counter-intuitive ‘fan effect’, as predicted by some
semantic networks (e.g. Anderson, 1976; 1983). People do solve some
syllogisms with greater ease than others, as is consistent with the use of
mental models.

However, there are few data that can be used to decide which of these
phenomena arise because of the representation used to store information,
rather than the processes which operate on them. There has been a debate as
to whether information is stored procedurally or declaratively. The outcome
for most theorists (e.g. Anderson, 1983) has been to produce models which
contain procedural representations (production rules) for skilled procedures
and declarative representations (semantic networks) for other factual infor-
mation with processes to translate declarative information into procedures to
model skill acquisition. There has been a debate about whether information
is represented analogically (see Kosslyn, 1981) or whether it is always
represented propositionally, but is processed to ‘give rise to the effects of
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imagery and analogical reasoning (see Pylyshin, 1981). Again, most theorists
(e.g. Johnson-Laird, 1983) have compromised and proposed the use of pro-
positional representations to account for the surface effects found in recall
and analogical representations (i.e. mental models) to account for analogical
reasoning effects.

This chapter has summarized various phenomena and models composed
of representations and processes which have attempted to account for them
as parts of theories of human knowledge representation and reasoning. A
model which claims to be a model of human processing must account for all
of these phenomena. Al models which claim to offer the range of representa-
tion and reasoning exhibited by humans must also use these phenomena as
tests. But what have these psychological studies to offer as criteria by which
to assess and select representations for Al systems which are not intended to
have any psychological validity? Simon (1978) has suggested that the infor-
mational and computational equivalence of representations should be the
core criteria. Informational equivalence is achieved when the information
inferable from one representation is also inferable from another. Computa-
tional equivalence is only achieved if two representations not only have infor-
mational equivalence but also the processes used to draw inferences for a
task from one representation can be performed as ‘easily’ as for another.
This introduces two important notions: firstly, that the computational
equivalence of two representations can only be judged in the light of a par-
ticular task, or set of tasks; secondly, that there is some measure of ‘ease’ of
drawing inferences which may be measured in time and effort to program, as
well as time and resource usage at point of computation.

Models of human performance must be capable of accounting for the
phenomena listed above, and use representations as close to those that
humans do. They must also use the range of processing available to the
human, to perform the large range of tasks that humans can. Most recent
theories attempt to include such a range (e.g. Anderson, 1983; Johnson-
Laird, 1983; Sowa, 1984). However, when producing computational Al pro-
grams, it should be possible to define both the tasks to be performed and
criteria for ‘ease of computation’ which are independent of the tasks per-
formed by humans. If the task is one involving the use of images, the com-
putation may be ‘easier’ if both the processes operate on spatial units and
the representation is more analogous to a picture than is a set of proposi-
tions. We know that humans have processes which can quickly draw infer-
ences from pictorial representations since they quickly respond to changes in
their visual environment (e.g. when driving). It is therefore reasonable to
suggest that analogical representations may be more computationally
cfficient for the performance of some tasks by humans - especially when peo-
ple draw external diagrams as aids to solve problems (see Larkin and Simon,
1987). However, for the computation to be more efficient using an
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analogical than a propositional representation for computational Al, there
must be machine processes which operate on such representations. Without
these, if the task is to solve propositional syllogisms, the ‘easier’ representa-
tion from which to compute may be one which is itself propositional despite
the evidence supporting the applicability of the mental-models approach to
human syllogistic reasoning.

In a similar way, for different tasks with different criteria for ‘ease of com-
putation’, any of the representations discussed in this chapter may be the
most suitable for computational Al (see Sloman, 1985). What psychological
studies have to offer the writer of computational Al programs is an example
of one (or more) ways in which the task can be achieved. The other
chapters in this book describe specific tasks and the representations which
appear most suited to them for the computational purposes of AL

6.5 Further Reading

Although some aspects of cognitive psychology have been described in this
chapter, many have been omitted. The interested reader may wish to consult
a standard introductory text to cognitive psychology which covers more of
these (e.g. Lindsay and Norman 1977, Anderson, 1985). The details of
experiments which have led to the contemporary view of human memory are
particularly well described in Baddeley (1976). There are also two more
recent books which present individual authors’ views of the cognitive system
from a cognitive science perspective (Anderson, 1983; Johnson-Laird, 1983).
Two issues have been deliberately omitted from this review since their inclu-
sion would have considerably lengthened it: firstly, connectionist theories of
representation which are currently a focus of much research (McClelland,
Rumelhart and the PDP Research Group, 1986) and secondly, the psychol-
ogy of language (see Garnham, 1985).
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7  Conceptual Graphs

Michael Jackman and Cliff Pavelin

7.1 Introduction

The Conceptual Graph is a graph based notation for the representation of
knowledge. It was developed by Sowa in his encyclopaedic work (Sowa,
1984) and subsequent papers (Sowa and Way, 1986; Sowa and Foo, 1987
Fargues et al., 1986) and investigated by numerous workers in knowledge
cngineering applications (Garner and Tsui, 1985). As a representation
scheme it draws on and integrates ideas from much previous work and,
although there may be little new, the result is arguably a more flexible, more
cxtensive and more precisely defined knowledge representation system than
any of its predecessors. The notation gives the full representational power of
lirst-order logic and the mapping onto logic is precisely defined. The nota-
tion can also cope with higher order and modal statements.

[t is not enough simply to represent; the aim of a representation language
is to be able to permit computer-based reasoning also. Sowa defines opera-
tions on conceptual graphs which are useful in reasoning. The most impor-
tant 1s the “maximal join” which looks for the greatest match (appropriately
defined) between two conceptual graphs; it is a substantial generalization of
the unification operation under a suitable mapping. A methodology for per-
forming first-order deductive reasoning on conceptual graphs is developed at
length in (Sowa, 1984). There are also proposals about how conceptual
praphs can be used in ‘common-sense’ reasoning although the ideas are far
from fully developed.
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Clancey (1985) writes: “‘every Al and cognitive science researcher should
study the conceptual graph notation and understand its foundation in logic,
database, and knowledge representation research.” We are following that
advice in this book and giving a summary of the essential facts of the con-
ceptual graph formalism as an example of a contemporary knowledge
representation scheme whose essentials can be grasped fairly easily.

The theory as originally described in (Sowa, 1984) begins from a psycho-
logical model of perception, but an understanding of this model is not at all
necessary to appreciation of conceptual graphs and the scheme is described
here purely in analytical terms. It is emphasized that this account can only
be a selective summary and the interested reader should consult the substan-
tial works referenced.

7.2 Types, Concepts and Relations

The primitives of the theory are concept-types (which comprise a type-
hierarchy), concepts which are individuals (instantiations of concept-types)
and conceptual relations which relate one concept to another.

7.2.1 Concept-types

Concept-types represent classes of entity, attribute, state and event. Exam-
ples may be: CAT, SIT, READ, PRICE, JUSTICE - they broadly
correspond to nouns, verbs, adjectives etc. in language. It is assumed that in
any conceptual graph (cg) system there is a pre-defined set of such types. A
relation < is defined over the set to embody the notion that some concept-
types are wholly subsumed in others. (Technically this is a partial ordering
relation - like the set inclusion relation or the ‘less than’ in arithmetic, it is
transitive and antisymmetric.) For example if PHYSICAL-OBJECT,
ANIMAL, MAMMAL and CAT were concept-types, the relations

CAT < MAMMAL < ANIMAL < PHYSICAL-OBJECT

would exist. The meaning would be that every cat (i.e. instance of CAT) is
also a mammal, every mammal is an animal etc. CAT is said to be a sub-
type of MAMMAL, mammal a super-type of CAT. The type-hierarchy, as
it is called, need not be tree-like. For example, one might have a hierarchy
in which:

ELEPHANT < MAMMAL
ELEPHANT < WILD-ANIMAL
RATTLESNAKE < WILD-ANIMAL
TIGER < MAMMAL

TIGER < WILD-ANIMAL
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The hierarchy must form the mathematical structure known as a lattice -
this implies that every two types must have at most one maximal common
sub-type and one minimal common super-type. In the above example the
fact that ELEPHANT and TIGER are sub-types both of MAMMAL and
WILD-ANIMAL would necessitate the definition of a somewhat artificial
WILD-MAMMAL as a separate concept in order to maintain the lattice.
The lattice property is difficult to defend in cognitive terms but essential to
some of Sowa’s cg algorithms.

Although a type-hierarchy is taken as pre-existing in a system, there are
also facilities for new type definitions to be given in conceptual graph form -
for example, one may define a type ‘WILD-CAT’ to be a sub-type of CAT
which has certain specified qualities, in this case those of being wild. Sowa
calls this an ‘Aristotelian’ definition of a new type. But many concept-types
will not have such a precise definition: Wittgenstein (1953) in a well known
example, pointed out that the concept of ‘game’ has no precise definition;
various types of game have family resemblances to each other. The
concept-type GAME might well be a sub-type of ACTIVITY in a type-
hierarchy but it would be impossible to give it a type definition which would
specify the properties which define a game. The cg representation supports
such problematic concepts as well as Aristotelian type definitions.

The type-hierarchy represents the subsumption relation between concept-
types, sometimes represented by IS-A links in semantic networks. Sowa
objects to mixing the higher order relationship represented by IS-A, a rela-
tion between types of individuals, with other relations such as ‘agent of* etc.
between individuals themselves.

7.2.2 Concept

A concept is an instantiation of a concept-type. In the cg notation it is writ-
ten as a rectangle with the name of the concept-type inside. Thus Figure 1
represents an (unnamed) object of type CAT. A concept on its own like this
forms the simplest type of conceptual graph. It has a meaning ‘there exists a
cat’.

cat

Figure 1
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To refer to specific individuals a referent field is added. So Figure 2
represents the particular cat #123 (the referent is a name unique in the sys-
tem). Interpreted as a conceptual graph this would mean ‘the individual
#123 is a cat’. Referent fields can also indicate much more complicated
instantiations, e.g. a set of, one of a set of, etc.

For clarity we will denote referents here by names in quotes (e.g.
cat:‘fred’) although names actually have a special treatment in the concep-
tual graph scheme.

7.2.3 Conceptual Relations

Conceptual relations show the roles that concepts play in relation to each
other. Typical examples are as follows.

ATTR BIG is an artribute of MAN

AGNT MAN is an agent of DRINK

OBJ WHISKY is an object of DRINKing
MANR  SLOW is a manner of DRINKing
LOC An EVENT takes place in a location

In language, conceptual relations are indicated by word-order, case end-
ings, prepositions etc. As with concepts there will be a pre-defined set of
relation-types in any given system.

Normally a conceptual relation specifies the link between two concepts
although there are some unary relations (see sections 7.3.3, 7.3.4) and Sowa
defines ternary examples like BETW; this links three concepts which are
physical objects, one of which lies between the other two.

Each relation will be constrained as to the concepts it can connect to.
Thus an AGNT - which is a relation connecting the instigator or agent of an
action to that action itself - will link to two concepts one of which is a sub-
type of ANIMATE and one which is a sub-type of ACT.

cat:#123

Figure 2



7.2 Types, Concepts and Relations 165

7.3 Conceptual Graph

7.3.1 Definition

A conceptual graph is a connected graph formed from concept and relation
nodes. Each relation is linked (only) to its requisite number of concepts,
each concept to one or more relations - apart from the special case of a
graph consisting of a single concept.

Figures 3 and 4 give examples of simple cgs, with an English interpreta-
tion. Note that the arcs have a direction but its significance is minor - the
most important use is to increase computational efficiency. There is an ela-
borate ‘linear’ notation to facilitate input and output of cgs on alpha-
numeric devices, but all examples here are given in graphical form.

7.3.2 Assertions

A basic cg, such as those given above, represents an assertion about indivi-
duals which exist in the domain being described. A precise mapping is
defined from a cg into first-order logic; it gives a conjunction of predicates,
one corresponding to each node of the graph. A concept C with no explicit
referent will map onto the assertion that there exists an individual of type C:

3 x C(x)

while if there is an explicit referent ‘fred’, it simply maps onto the assertion
C(‘fred’). A binary conceptual relation R linking the concepts C(x) and D(y)
would map onto R(x,y). Thus, for example, Figure 4 would correspond in
logic to:

3 x,y man(‘john’) A agent(‘john’)y) A look(y)
A object(y,x) A foot(x) A partof(x,‘john’)

x and y respectively denote a foot and a ‘looking event’.

Figure 3 A black cat sits on a mat
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Ggnt>—<+100k|—>—(obD

man: john

Figure 4 The man ‘John’ looks at his foot

It should be noted that the type hierarchy embodies obvious logical impli-
cations. If MAN is a sub-type of PERSON, then by definition the followmg
is implicitly assumed:

V x man(x) — person(x)

(in particular the above ‘john’ is a person.) If the type hierarchy is regarded
as complete, it is possible to make other inferences; for example if concept-
types A and B have no common sub-type:

Vx Ax) - = B(x)

Because these relatively complex logical assertions are implicit in the type
hierarchy, the reasoning operations on conceptual graphs (see section 7.4
below) are likely to be more efficient than theorem proving methods based
directly in logic (see Chapter 2, section 2.3.5 where a similar general point is
made).

7.3.3 Negation and Quantification

To give assertions the full power of first-order logic (and allow extensions to
higher order and modal logics) demands an extension of this notation above.
Effectively a new concept-type ‘PROPOSITION’ is introduced. PROPOSI-
TION can take one or a number of conceptual graphs as a referent. A con-
cept of this type then asserts the conjunction of the graphs in the referent.
In the graphical notation, a concept of type PROPOSITION is denoted by a
box drawn round all the graphs in the referent as shown below.

The simplest use of PROPOSITION is the notation used to specify nega-
tion. A NOT operator (regarded as a unary conceptual relation) is applied
to the proposition. The graph inside the box in Figure 5 asserts ‘there exists
a person with a mother’. Applying the NOT relation denies this proposition.
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person mother

Figure 5

Propositions can be nested indefinitely in this way, and concepts at
different levels in this nesting can be identified as referring to the same indi-
vidual (they are joined by a dotted line known as a coreferent link). This
enables full first-order logic to be represented. An example is given in Fig-
ure 6 - it corresponds to the denial of ‘there exists a person and this person
does not have a mother’, i.e. the graph asserts ‘every person has a mother’.
However, Sowa uses an extension of the referent notation to make such
universally quantified statements more simply (see Figure 7). The graphical
notation with boxes indicating ‘negative context’ etc. derives from one origi-
nally introduced by C.S.Peirce who devised an elegant and complete deduc-
tion system for first-order logic based on simple operations on graphs of this

type.

7.3.4 Modalities and Tense

An advantage of the above notation is the ease by which it can be extended
by a range of relations to indicate possibility, necessity, tense, knowledge,
etc. These are equivalent to the modalities of case grammars (€.g. Simmons,
1973). An example is given in Figure 8.

7.3.5 Abstract and Definition

We have seen that a conceptual graph represents an assertion - generally
about individuals in the world. There is another class of information to be
represented - information about typical objects or classes of objects in the
world. (There is a rough correspondence between this information and the
Tbox of KRYPTON (Brachman et al., 1983b) which is used for constructing
structured definitions as distinct from the Abox, the assertion language - see
Chapter 10.) The type hierarchy is one element of this information, but con-
ceptual graphs themselves are also used to define new concepts in terms of
old, give default information about a concept, give the constraints on con-
cepts which relations can attach to, etc. It is assumed that, like the type
hierarchy, these ‘definition’ graphs are pre-existing in any system - they are
said to form a canonical basis for the domain.
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person mother

P

o

... person

Figure 6

person:V —— @—. mother

Figure 7

person:
\ think
” John”

proposition: | cat sit mat

Figure 8 John thinks that a cat sits on a mat

A Canonical Graph is an example of one of these. It is a template for a
concept or conceptual relation; it defines and puts constraints on the sort of
links that can occur. For example a canonical graph associated with the
concept-type TEACH may be as Figure 9. This says that the TEACH con-
cept may be associated with AGNT (the agent), RCPT (the recipient, i.e.
whoever is being taught) and OBJ (the object or subject matter); if so the
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| teacher [~<+Cagnt>—<teach [ >Crep>—>

@ >‘l subject-matter

Figure 9

attached concepts must be the same as, or sub-types of, those given in the
conceptual graph. The assumption is that all assertions must be derived
from a starting set of canonical graphs according to certain rules (see section
7.4.1).

Canonical graphs are incorporated into a number of special types of
definition known as ‘abstractions’ (Sowa gives a mapping from them onto
lambda expressions in logic). Examples of two important types are given
here.

A Type Definition defines a new concept-type in terms of an existing one
with the additional properties which characterise it being expressed in con-
ceptual graph form. This is the ‘Aristotelian’ definition of section 7.2.2.
Thus a concept of a KISS may be defined as a sort of TOUCH done by a
person with their LIPS in a TENDER manner; this would be expressed in cg
form as shown in Figure 10. The ‘generic’ referent x-x is used to link the
defining concept TOUCH with the new one KISS. If KISS appears in
another cg, it can be ‘expanded’ by an operation described below.

A Schematic Definition of a concept-type is a canonical graph which gives
plausible or default information about that concept. An example (from
(Sowa, 1984)) is given in Figure 11. The set of all such schema for a given
type is called a schematic cluster. A schema is supposed to act rather like a
generalized frame giving typical properties and default values, but its use is
far from precise in the current documents. A concept like GAME, impossi-
ble to define precisely (see section 7.2.2), would exist in the system as a
schematic cluster giving a set of typical usages.

Various other categories of definition (e.g. prototypes, individuals) using
conceptual graphs are proposed in (Sowa, 1984).
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person [~<+(agnt>—< touch:*x [—>(pan) > tender |

\Y
arcy > lips

Figure 10

speed: <=55mph

Figure 11
7.4 Fundamental Operations

A number of operations are defined on conceptual graphs. They are all for-
mation rules by which one can derive allowable (not necessarily meaningful)
conceptual graphs from a canonical basis.
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7.4.1 Canonical Formation Rules

Canonical formation rules act as a generative grammar for allowable cgs
from the canonical basis. Such graphs will not necessarily have any mean-
ingful interpretation but they will at least obey certain selectional con-
straints. The important rules are as follows.

Restriction takes a graph and replaces any of its concept nodes either by
changing the concept-type to a sub-type or adding a referent where there
was none before. Thus ANIMAL may be restricted to CAT, which may be
restricted again to CAT: ‘fred’.

Note that the system assumes the existence of a predefined set of individu-
als whose conformance with concepts must be checked on such operations.
For example if ‘rover’ were an individual DOG, the restriction of ANIMAL
to CAT: ‘rover’ would be disallowed.

Joining takes two graphs with a common concept, and joins them over
this concept, linking up the arcs from both graphs to form a single graph.
Joining may also join a graph to itself, i.e. merge two concepts within the
graph.

Simplifying removes any duplicate relations between two concepts - these
can arise after a join.

Deduction

A graph that is canonically derived from others in this way is termed a spe-
cialization of any of the originals. In logical terms, existential variables may
have been instantiated, predicates replaced by more constraining ones (i.e.
sub-types) or additional constraints added by conjoining with further predi-
cates. If graph gl is a specialization of g2, then g2 is a generalization of gl.
It should be fairly obvious that a graph representing an assertion when
translated in logic will imply any generalization of it (i.e. generalization
preserves truth). If the girl Susan eats soup quickly, then certainly a girl eats
soup.

It is possible to use these operations and properties of conceptual graphs
to perform logical deduction using methods similar to resolution (see Far-
gues, 1986; Rao and Foo, 1987). In particular making two graphs identical
by restriction is equivalent to unification in sorted logic.

[person [ Cagnd—<teat [~ (ob D> pie]

Figure 12(i)
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girl[—<CGegnto—<eat[ > (ran > fast|

Figure 12(ii)

l9irl[~<—Ggno—<leat[~>(obD > Tpie

Figure 12(iii) Restriction of (i)

pie

L> fast

Figure 12(v) Simplification of (iv)
7.4.2 Maximal Join

The sequence of examples in Figures 12(i) to 12(v) form what is known as
the maximal join: a join of two graphs followed by a sequence of restric-
tions, internal joins and simplifications so that as much matching and merg-
ing of the original graphs as possible is performed. The maximal join is used
in a number of operations; the following is an example of the process of type
expansion where an assertion containing a concept defined by a type
definition is expanded by incorporating the type definition. Figure 13(i) is
an assertion containing the concept KISS which is expanded using the



7.4 Fundamental Operations 173

definition given in Figure 10.

We equate a concept KISS with its super-type TOUCH in the type
definition (Figure 10) and then, working out from here, match relation and
join concepts restricting the common sub-types if possible. In this case
MAN: ‘john’ joins with person after restriction to give Figure 13.

A schematic join is very similar but uses the maximal join to link in
default information defined in a schema. This could be a first stage in a
cOmmon-sense reasoning process.

If two graphs gl and g2 have a maximal join G, then it is clear that gi
and g2 are generalizations of G, i.e. if gl and g2 represent assertions, then
each is implied by the assertion represented by G. G itself cannot be
deduced from gl and g2 but in certain circumstances it may be a plausible
deduction based on matching concepts which are compatible, i.e are the
same or have some common restriction.

Thus if a graph declares that Mary loves a man John and Mary loves a
Scots person, the maximal join will result in the assertion that Mary loves a
Scotsman John. The extent to which the default assumptions of typical
common-sense reasoning can really be mapped into this form can only be
guessed.

As has been said above, there are similarities between matching graphs by
making appropriate restrictions and the process of unification familiar in
automated theorem proving and Prolog. The maximal join can be regarded
as a generalized unification operation (see Jackman, 1987, 1988).

7.5 Summary

The conceptual graph notation, many features of which could not even be
touched upon in this account, is a flexible, consistent and precisely defined
notation for the representation of knowledge. A number of operations are
defined which are related to the sort of inferences that can be made by using
the ‘type hierarchy’, the conformance of concepts with the names of indivi-
duals, and the standard principles of first-order logic. Potentially this may
be useful for efficient deductive reasoning and (perhaps more important)
methods of plausible reasoning in real-world problems.

woman:mar

Figure 13(i)
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man: john [

Y 2\
GnsD) (obP—>{ woman:mary |
V
> lips

Figure 13(ii) Type expansion of KISS in (i) using type definitions in Figure 10

Clancey (1985) was perhaps going too far when he described the cg
scheme as embodying ‘the unification of logic, plausibility, and meaning con-
straints, setting a formal notation with four definitions, proofs, and algo-
rithms for plausible reasoning’. The representation notation is very fully
worked out but the reasoning processes require much research. However,
there is sufficient world-wide interest in the cg formalism that the ideas are
being developed and tested in real systems.
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8 The Explicit Representation of Control
Knowledge

Brian Bainbridge

8.1 Introduction

It has often been suggested (Bundy, 1983, Jackson, 1986) that a suitable stra-
tegy in knowledge-based systems research is to view some working program
from a higher level of abstraction in order to see what has been learned from
its implementation. A way to proceed is then to perform a ‘rational recon-
struction’ to achieve its ends in a more principled way and to increase the
performance of the original program.

The history of the MYCIN experiments of the Stanford Heuristic Pro-
gramming Project provides good material to illustrate this approach.
Chapter 5 gives an overview of the programming formalism employed. In
this chapter, some features of expert systems control knowledge which
MYCIN well exemplifies will be discussed.

Originally MYCIN formed the subject of E. Shortliffe’s Ph.D. thesis
(Buchanan and Shortliffe, 1984). The program was designed to aid a physi-
cian on the diagnosis and treatment of blood infections. It decides on the
basis of clinical and laboratory tests:

(1) whether the infection is significant;

(2) what organisms are involved;
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(3) what are the potentially useful drugs;
(4) what drug regime is best for the given patient.

These goals are expressed as antecedents in the top-level rule used by the
backward-chaining MYCIN system, viz.

RULE 092

IF 1) There is an organism which requires therapy, and
2) Consideration has been given to the possible existence of additional
organisms requiring therapy

THEN 1) Compile the list of possible therapies which, based upon
sensitivity data, may be effective against the organisms requiring
treatment, and
2) Determine the best therapy recommendations from the compiled list.

The main objects (contexts) to be reasoned about in the MYCIN domain
are:

(1) the patient;

(2) cultures prepared in the laboratory from samples taken from the
patient;

(3) organisms identified as present in these cultures;
(4) drugs suitable for dealing with these organisms;
(5) prior operations, and drugs associated with these operations.

These are organized into a data structure termed the context tree (see Fig-
ure 1). The reasoning process in MYCIN instantiates the context tree by
exhaustive backward-chaining of an AND/OR tree, dynamically generated
by the application of the inference engine to the rules whose top goals are
expressed in rule 092 (above).

As well as obtaining a list of recommended therapies, the user can ask
general questions about the knowledge base, for example ‘What rules men-
tion meningitis?”. This facility is not a full ‘natural language’ front-end - it is
implemented by key-word scanning. It is also possible for the user to ask
‘how’ and ‘why’ at points in the consultation when the system is requesting
information. ‘Why’ is interpreted as ‘why is it important that you have this
information?’, which inevitably results in the printing-out of the rule
currently being considered. Another ‘why’ will produce information about
rules referencing the current rule, and so on - up to the top-level goal. The
goal-tree is ascended. Similarly, a ‘how’ question asked in response to the
system’s statement of some conclusion produces a trace of how the
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PATIENT-1

TS

CULTURE-1 CULT-2 CULT-3 OPERATION

SN

ORGANISM-1  ORG-2 ORG-3 ORG-4 DRUG-4
DRUG-1 DRUG-2 DRUG-3

Figure 1 Domain of Mycin (Context Tree for Sample Patient)

information was inferred - it involves a descent of the goal tree.

The simple backward-chaining used in MYCIN was found to give rise to
a reasoning process at expert level. The chaining mechanism focuses
requests for data, is simple to implement and is also easy to explain to the
expert involved in the knowledge elicitation process. It also has the advan-
tage that the description of this line of reasoning can form the basis of an
explanation subsystem.

The context tree, in the first place, literally provides rule context, in that it
enables the system to relate one object to another. For example, in Figure
1, the tree indicates that organism-4 came from culture-3 and not from
culture-1 or culture-2. However, the need to build up the context tree also
provides constraints which focus the dialogue with the user, and gives an
extra degree of focus to that provided by the depth-first search of the
AND/OR goal tree. A fairly natural dialogue results ((Buchanan and
Shortliffe, 1984) has examples).

Figure 2 is an attempt to generalize MYCIN’s control structure, and
could also be used to describe a variety of expert systems, e.g. a blackboard
system as in (Aeillo, 1983).
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Figure 2

Control is mediated through the agenda - a list of tasks to be done. In
the case of MYCIN, this is a first-in last-out queue. To illustrate its opera-
tion, we can consider what happens when the value of a parameter has to be
inferred. To do this, a list of rules which can be used to deduce the value is
retrieved, and the planned execution of these rules is posted as a new task on
the agenda.

The way in which the agenda is manipulated is ‘wired-in’ to the inference
engine as a procedure. Similarly, the way in which the context tree is instan-
tiated is represented procedurally. There is no way in which the action of
the inference engine can be changed (unlike other systems such as OPS5
(Brownston et al., 1985)). The strategy for rule use is, as noted above,
‘wired-in’ and is not available for examination, changing or reasoning by the
consultation, explanation and knowledge elicitation subsystems. As men-
tioned in Chapter 5, knowledge about knowledge - metaknowledge - is
needed for higher performance expert systems.

8.2 Metaknowledge

To illustrate this point, let us consider the problem of knowledge acquisition
in MYCIN. In the original system, the knowledge acquisition system was
little more than an editor which could be used to edit the Lisp data struc-
tures representing the rules, lists and tables of the knowledge base. R. Davis
in his Ph.D. thesis expanded this system and made it knowledge-based
(Buchanan and Shortliffe, 1984). The system uses some of the methods used
by the knowledge engineer when modifying the knowledge base. When the
knowledge engineer peruses the knowledge, perhaps with a view to adding a
new rule, he already knows a lot about the form and contents of the rules
and facts. He is able to criticize any suggested new rule and to ensure that it
can be incorporated into the knowledge base with no unforeseen side-effects.
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TEIRESIAS uses such knowledge about knowledge - metaknowledge. It
could be said to ‘know what it knows’. This enables the program to make
multiple uses of its knowledge. The domain knowledge is not only used
directly by the system, but can be examined and generalized about
(abstracted), and the system can direct precisely how it is used.

Because the knowledge acquisition system has to be able to add new data
structures to the knowiedge base, it needs knowledge about syntax. Davis’
approach involves a data structure schema which provides a framework in
which representations can be specified. Taking rules as an example, the
antecedent and consequent clauses of the internal representation of a rule
are coded as Lisp functions. Function templates are provided which indicate
the order and generic types of the arguments in a typical call of that func-
tion. For example, the function SAME has as template

( object attribute value ).

An instance of its use might be
( SAME CNTXT INFECT PRIMARY-BACTEREMIA ).

The system is thus able to examine its own data structures.

Besides representation-specific knowledge about data structure syntax, i.e.
about encoding, TEIRESIAS also has knowledge about the contents of
rules. This knowledge is specific to the domain of application. Examples
would be information about the possible uses of a piece of knowledge (e.g.
information about the seriousness of an illness) and its requirements for time
and space. Thus information about patterns and trends in object-level
knowledge can be represented and used. This metaknowledge is held as rule
models - abstract descriptions of rulesets built from empirical generalizations
about the rules. The system examines the ruleset and builds up clusters of
knowledge about rule patterns. The central idea is the characterization of a
typical member of the ruleset (a prototype). This idea is, of course, used in
other systems, such as the CENTAUR system of (Aikins, 1980), and usually
involves some sort of frame representation.

A use of such a rule model could be when a new rule to categorize an
organism is being formulated by the knowledge engineer. If the engineer
suggests a rule with no clause concerning the morphology (shape) of organ-
isms, the system can offer some useful criticism, since the rule models suggest
that most rules of this type would include such a clause. TEIRESIAS actu-
ally offers to write such a clause, and will even include a plausible value for
the type of morphology, e.g.

“The morphology is rod’

since it also knows that rod is a typical value of morphology.
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Besides these metadata (function templates and rule models), TEIRESIAS
also has metarules which guide the use of knowledge and decide what rules
and methods are to be applied. At the implementation level, their effect is
to modify the list of relevant rules retrieved when an attempt is made to
evaluate an antecedent of a rule.

There are two types of metarules. First, a pruning metarule can fire.
The effect of this is to exclude particular rules from consideration. In terms
of the goal tree, this amounts to a decision not to explore a given branch. It
amounts to a judgement on the overall utility of a rule, as to whether it is
any use at all in a specific context. The other type of metarule used by
Davis encodes knowledge on the relative importance of object-level rules.
At the implementation level the metarule acts to reorder object-level rules
relevant to some goal before invoking them.

An example:

METARULE 004

IF 1) There are rules which are relevant to positive cultures
AND 2) There are rules which are relevant to negative cultures

THEN 1t is definite that the former should be done before the latter.

This amounts to a less drastic decision about restructuring the goal tree.
The branches are reordered rather than pruned.

At any node expansion, Davis’ system chooses complete expansion
(exhaustive search), reordering of goals or pruning of goals, and thus allows
several types of metaknowledge. Together with the prototypical knowledge
of rule models and function templates, it gives rise to a pattern of search
which is not ‘blind’” but which is guided by heuristic knowledge. Only one
level of metaknowledge has been described, but the scheme could be
extended to indefinite metalevels. The inference engine used is still simple
and a number of extensions are possible. For example, metalevel rules could
select different types of inference mechanism (such as forward- or
backward-chaining) at appropriate points in the search process.

In the past the system performance has been enhanced by adding large
quantities of domain-specific knowledge. However, there seems no reason to
believe that performance is linearly related to the number of rules. Indeed,
it might well be that performance will ‘flatten out’ - although there are more
rules, there is also a harder problem of search. Building the high perfor-
mance systems of the future could need strategies for acquiring metalevel
knowledge which would guide the use of other, lower-level, knowledge.
TEIRESIAS is an important implementation which gives guidelines as to
how such additional knowledge and mechanisms can increase functionality..
It also demonstrates how knowledge can be reused - the MYCIN medical
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knowledge base is used as a knowledge source from which function tem-
plates, for example, can be abstracted.

8.3 Classification of Metaknowledge

Davis’ work indicates that metaknowledge is not uniform. It can, for exam-
ple, be held as rules or data. It can be applied at various levels. It can be
used by different subsystems. Clancey (1983, 1986) has suggested an
interesting classification of metaknowledge. He has certainly raised the level
of abstraction in this research field by providing a useful metaknowledge
taxonomy and suggesting how we can elicit and use such knowledge.

Clancey points out that MYCIN-style systems are often described in terms
of the language of graph search - we use terms such as rules, goals and
chaining. He argues that we need a vocabulary which is independent of the
implementation language, whatever it may be. The description language
should be at the knowledge level and should embody a more psychological
and human-oriented approach.

This interest in metalevel description derives from Clancey’s Ph.D. work,
in which he developed a tutoring system called GUIDON by using the
MYCIN knowledge base together with additional knowledge about teaching.
It was hoped to develop a tutoring ‘shell’ which could be used to teach a
variety of subjects by using different domain knowledge bases.

By using system-derived knowledge about rules in a similar way to that
developed by Davis, Clancey’s system abstracts patterns from the domain
rules. These rule models are descriptions of typical groups of factors in the
rules. By doing this, it becomes possible to annotate a rule with a reference
to the corresponding rule model. At a slightly higher level, rule schemas
were used to represent abstractions from the object-level rules of descrip-
tions of different kinds of rules. For example, a rule schema description
could designate a rule to a type that provided identification (‘covers’) for a
specific disease (say meningitis) and could describe the context of its applica-
tion (say clinical). Knowing what is typical for a given rule, the system can
then determine what is untypical by ‘subtracting’ the rule antecedents com-
mon to all rules of this type, leaving a ‘key factor’ description. This key fac-
tor forms another annotation which is of use to the explanation and tutoring
system. The knowledge engineer can provide other annotation, e.g. litera-
ture citations, which can prove useful as support knowledge for explanation.

Some knowledge is made explicit and therefore available by these
methods. However, Clancey found many glaring examples of implicit
knowledge.
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Consider the following example :
RULE 123

IF 1) The age of the patient is greater than 17, and
2) The patient is an alcoholic

THEN Diplococcus might be causing the infection.

The medical knowledge contained in this rule is that the diplococcus
organism is associated with alcoholism. What, then, is the function of the
first clause? It is to guide the application of the rule in that it prevents the
system asking a patient whose age is 17 or less about alcoholism. A ‘hidden’
rule is being applied, viz.

IF The age of the patient is 17 or less
THEN The patient is not an alcoholic.

The problem is that in the course of a tutoring dialogue, the student user
might proffer the relation between alcoholism and diplococcus, but since this
item of medical knowledge is not recorded explicitly, the system will not be
able to record that the student has offered some possibly relevant and valu-
able evidence. It seems that as well as knowledge about rule use and form,
we also need to unpack a whole range of knowledge which has been encoded
into the knowledge representation language. Further examples abound - for
instance, consider the effect of rule order. A purported advantage of pro-
duction rule systems is that each rule is an independent ‘chunk’ of
knowledge. Rule order is seen to be unimportant because the rules are
essentially uncoupled. In fact, rule order can govern the order in which
rules are applied, and this can cause the focus of the questioning to jump
around, to be defocused. If we start tuning rule order to achieve a more
satisfactorily focused dialogue, we are effectively embedding a strategy of
rule selection and of knowledge use. Clancey terms this embedding pro-
ceduralization and points out how this makes knowledge unavailable to the
system.

This proceduralization enters many areas of computing. Consider what
happens when a programmer using a low level language, say assembly code,
decides at some point in the program to initialize a variable to zero, and at
some later point to increment that same variable and if the result is less than
100 to perform a branch to a prior address. The programmer’s intent is to
loop 100 times, although this is not explicit in the program.

A higher level language might allow the programmer to achieve the same
effect by stating :
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repeat 100

.....
.....

.....

end-repeat.

Here the ‘repeat’ is explicit - the programming style has become slightly
more declarative (and the execution possibly slightly less efficient). As in the
other examples, the writing of an efficient procedure tends to hide the intent
of the programmer. Clancey advocates unpacking or decompiling pro-
cedural knowledge. In particular, he wishes to represent explicitly domain-
independent problem-solving knowledge in the medical and tutoring
domains and thus to reveal the bases of medical diagnostic strategy. He has
developed a framework that (as so often happens) seems to be useful not
only in description of medical knowledge but also in the process of eliciting
knowledge from the domain expert.

The divisions of his taxonomy are:

(1) Heuristic knowledge, e.g. associations between patient data and thera-
pies or diagnoses.

(2) Strategic knowledge - control knowledge - how to apply rules.

(3) Structural knowledge - the taxonomy of domain objects, e.g. therapies,
diagnoses, cultures, organisms.

(4) Support knowledge - knowledge used in justifying rules, ranging from
‘deep’ (causal) knowledge to reference citations.

In NEOMYCIN, a reimplementation of GUIDON developed with these
principles in mind (Clancey, 1983, 1986), Clancey concentrates on structural
and strategic knowledge to supplement the object-level knowledge. He
points out that there can be problems with the use of support knowledge in
explanation. If we have rules which encapsulate a causal model, for exam-
ple, we need to use these rules in appropriate situations. For example, it
might be useful to explain the action of a virus by following the causal chain
associated with the viral infection. However, there are instances where this
is an inappropriate way to explain a conclusion. For example, a system
might decide not to prescribe tetracycline for a young patient because this
drug can cause permanent blackening of developing teeth. If the user of the
system queries this decision and asks for some justification, an explanation
of the causal chain which leads from the administration of the drug to the
blackened appearance of the teeth is probably not appropriate. It would be
better to form an explanation based on the general medical principle that
therapies which have socially undesirable side-effects should be avoided. If
the system is able to reason about general principles, it will also be able to
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override them when necessary. For example, if no other drug were available
or usable in the case described and the patient’s life were at risk, it might be
expedient to prescribe tetracycline, since saving life is a high order goal for
all medical systems.

In NEOMYCIN, the strategic metarules encode general diagnostic stra-
tegy. The structural knowledge is organized as explicit representations of
disease taxonomies, taxonomies which represent patient types (old, young,
alcoholic) and taxonomies of goals relating to patients (save life, restore to
normal physical state).

Clancey claims that his implementations decouple the perceived high-level
inferencing procedure from the system’s reasoning with domain knowledge
and data. The original MYCIN program used, as stated above, exhaustive
depth-first search. Clancey’s later work seems to involve a more data-
directed style. Clearly, the guidance provided by metalevel knowledge is
sufficient to focus the consultation as well as providing a good basis for
explanation facilities.

8.4 The CENTAUR Implementation

It is of interest to examine in some detail some work which illustrates in a
particularly lucid way the abstraction of strategic and structural knowledge
suggested by Clancey. Aikins (1980) has implemented a ‘rational reconstruc-
tion’ of PUFF, a system used to diagnose pulmonary (lung) disease which
was originally implemented in the EMYCIN shell (i.e. the inference system
remaining when the domain knowledge is removed from MYCIN). CEN-
TAUR was discussed by Ringland in Chapter 4. Here we will examine it in
more detail.

CENTAUR uses prototypical knowledge, viz. descriptions of typical lung
diseases and a typical consultation, to guide the consultation and explana-
tion process. Effectively, the prototypes choose which rules to use - they
provide the broad context of action and the rules themselves provide the
finer detail. Input data are matched to the prototypical data and this
enables the system to classify the data and identify untypical patterns. The
prototypes provide the focusing, facilitating clear control and grouping of
data.

Control knowledge is represented by rules attached to prototype ‘control’
slots. This gives the knowledge context and separates it from other system
knowledge. Aikins’ general strategy is to represent explicitly the various
types of knowledge possessed by the system. She criticizes the ‘flat’ rules of
the original MYCIN. The problem is that their structural uniformity and
seeming independence hide groupings which exist. Rules have different uses
in different stages of a consultation, depending on the particular situation
which has come about in response to input data. Domain rules to infer new
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information should not look similar to rules which control other rules and
rules which set default values.

Frame systems (Minsky, 1975) have been put forward as an appropriate
way to provide the required grouping, and are used by CENTAUR to
organize rule-groups and hence to bring rules into play where appropriate.

The prototypes are organized into a hierarchy whose structure is related
to the taxonomy of lung diseases (Figure 3). At the root of the tree is the
consultation prototype. This has control slots whose values represent the
various consultation stages. A consultation starts by the choosing of this
prototype, which represents a primitive plan of the consultation. The user is
allowed to set built-in options, for example the selection strategy for the
current list of prototypes. A strategy which could be chosen is to pursue the
disease prototype with the highest certainty measure (a scoring factor) first.
Aikins comments that the explicit representation of the consultation stages
means that they can be reasoned about by the system and, for example,
could be re-ordered. (This was not actually done by the implemented sys-
tem.)

CONSULTATION

PULMONARY-DISEASE

OBSTRUCTIVE
AIRWAYS
RESTRICTIVE LUNG DISEASE DIFFUSION
DISEASE | DEFECT
| | I l | I |
MILD MOD MOD-SEV SEV ASTHMA PRON-  EMPH-

CHITIS YSEMA

Figure 3 CENTAUR Prototype Tree
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The next prototype chosen is the Pulmonary Disease prototype, which
controls the acquisition of initial data. This data entry triggers other proto-
types. Each triggered prototype is given a certainty measure, similar to the
certainty factors used in MYCIN.

A summary of the prototypes which have been triggered is now printed
out and the system chooses the ones to be followed up. In considering these
active prototypes, the system takes into account all the data (including nega-
tive evidence) and so modifies the certainty measures. Since plausible values
and possible error values are stored, other values are regarded as ‘surprise’
values and are printed out by the system for the information of the user.

After considering all the triggered prototypes, the system orders the
hypothesis list and indicates the current best prototypes. The next stage is
one of refinement, instigated by refinement rules stored with the relevant
prototypes, and further questions are asked.

Next the ‘summary’ rules of the relevant prototypes are executed, which
prints out a summary of the information that has been obtained in filling in
the prototypes, i.e. the main inferences the system has made.

Lastly, the ‘actions’ slots of the confirmed prototypes are executed, which
prints out the main data and conclusions in the same style as the reports
produced by the human pulmonary disease experts.

Explanation facilities are provided by the Review prototype, which pro-
duces a review of the instantiated data associated with any given prototype.
The system uses an agenda which is not only used as a mechanism for con-
trol by providing the system with a way to post tasks for execution, but also
stores verbal descriptions of the tasks, their origins, and the reasons for plac-
ing them on the agenda. This information is thus available for explanation
purposes.

CENTAUR is a research system specifically constructed to explore issues
of representation and control. Compared with its precursor systems, it has
access to a great deal more knowledge. The system knows what sort of
stages occur in a consultation, knowledge nowhere explicitly represented in
PUFF (Kunz et al., 1978). It can respond to incomplete and inaccurate data
in a reasonable way. Aikins has not explicitly set out to produce a psycho-
logical model of the expert (as does Clancey), but the system produced does
proceed in the style of an expert in lung disease. The control mechanism is
flexible and understandable to the user, moving between data-driven and
model-driven phases. The use of the certainty factor mechanism gives the
system the ability to ‘change its mind’ by, for instance, the arrival of new
data causing less weight being given to a previously highly favoured
hypothesis.
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Certainly a great deal of the knowledge in PUFF has been ‘unpacked’ and
made available, together with some new knowledge elicited from the expert.
An indication of the greater knowledge is given by the number of rules,
which have risen from 50 in PUFF to 300 in CENTAUR, and this does not
take into account the wealth of prototypical knowledge.

8.5 Comments on CENTAUR and Conclusion

Jackson (1986), in his critique of Aikins’ work, points out that a larger sys-
tem built in the style of CENTAUR could have much larger numbers of
triggered prototypes and that this could give rise to difficult scheduling and
focusing problems, of the type encountered in the INTERNIST internal
medicine system (Pople ez al., 1975). No attempt is made in CENTAUR to
let the system itself derive metaknowledge, as was implemented in
TEIRESIAS and GUIDON (Clancey, 1983). Clancey (1983) comments on
knowledge of various sorts which was not made explicit by CENTAUR.
For example, the control steps that specify on each level what to do next,
c.g. “after confirming obstructive airways disease, determine the subtype of
obstructive airways disease”, are compiled into the prototype hierarchy.

However, CENTAUR can certainly be said to exhibit the explicit
representation and use of a wide variety of metaknowledge and to be a
significant pointer to what might be called the ‘second’ generation of expert
systems. Whether the specific architecture is of much general use can be
argued about. At least one system has been implemented with a similar
architecture (Gale, 1985). Possibly it is unwise to take too much account of
the specific architecture, but instead we should attempt to abstract the essen-
tial feature - the explicit representation and use of a wide variety of metak-
nowledge. Clancey (1983) comments that the metalevel analysis which the
‘sccond generation’ of expert systems will require will impose on the expert
(and the knowledge engineer) the extra burden of becoming a knowledge
taxonomist. This task will require considerable assistance, patience and
tools.
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9 Representing Time

Charlie Kwong

9.1 The Need for a Temporal Representation

We understand the world around us with relationships between the entities.
When we consider something, an elephant for example, we know that it is an
animal. Furthermore, we retrieve other identifying attributes to give a pic-
ture of a large four-legged creature with a greyish colour, big ears, etc.
When told that John gave Mary a book, there is an automatic attachment of
attributes to the entities within the discourse: gender to the named persons,
perhaps that the book is made of paper leaves bound within covers.

To build AI systems, representations of these entities and their attributes
need to be generated. These representations have to be easily manipulated,
stored and retrieved. Other chapters in this book have looked at how it is
possible to do this, and have discussed the issues involved. Here we examine
temporal representation, the time aspect of relationships between universal
entities.

First of all one might ask the difficult question - “What is TIME?” and
try to think of an answer in the general everyday context. This is highly phi-
losophical and I should not even try to touch upon the answer here. The
rcader is referred to an in-depth study of Time by van Benthem (1982).

How is time represented in general? We can take an analogue watch and
say that it represents the passage of time by the rotation of its hands at a
certain rate and it expresses the current time by the positions of its hands.
A more appropriate question we should ask is “How do we humans
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represent time?”. Humans can hold time representations in a variety of
ways, by visualizing a pair of clock hands or the numbers of a digital time
display to represent an instant or an angle for an interval of some minutes,
for example. But our representations are more complex than that. We do
not use angles to represent weeks or months. We reason about different
time intervals and their relationships, possibly converting between different
representations to achieve this. To express different time instances or inter-
vals we use language embedded with ways to express temporal knowledge.
In addition to pure temporal representations that we hold, it is more often
the case that we associate temporal knowledge with other knowledge, i.e.
that they are often intermingled.

The aim of Al is to build systems that will automate processes like prob-
lem solving, planning, natural language understanding/ translation and medi-
cal diagnosis, to name but a few. One important criterion is that these sys-
tems should employ intelligent means to tackle the problems given. A large
number of experimental systems built to try out ideas have identified that
modelling physical relations between entities is difficult, and have tended to .
concentrate on solving that problem using different physical models, ignoring
the temporal aspects altogether.

In the domain of general problem solving many early implementations
concentrated on physical relationships. The laws of ‘physics’ gave a seem-
ingly better foundation for testing knowledge acquisition, storage and appli-
cation theories. Certainly this was necessary so that the program controlling
a robot did not request it to do physically impossible things. For example,
trying to place a spherical object on top of a pyramid shape or to move
some shapes from one side of a low wall to the other without lifting them
over the wall. However, dealing with the temporal relationships is equally
important in many areas of AI applications. Problem solving methods
require sophisticated world models that can capture change over time within
them.

Early attempts at building a medical diagnosis system examined ways of
diagnosing a patient’s symptoms to produce a set of possible diseases. Doc-
tors do not stop there. They prescribe medicine to combat the diseases and
apply a monitoring procedure to check the effects of the medication over
some period. Time is sometimes quite an important factor in this process.
If the course of the disease is not significantly stemmed by the medication
the doctor may alter the medication to increase the dose or change it. A
medical diagnosis system must be able to encapsulate time in a manner that
allows it to reason about the progress of diseases and the effects of medica-
tion on them.
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Temporal reasoning systems, like truth maintenance systems, are limited
now by the models of the world that they manipulate. One commonly cited
example problem for truth maintenance systems is keeping a fact that there
is an ice-cube on a table. Excepting extraordinary conditions, the ice-cube
melts at a given rate and hence the fact about the ice-cube being on the
table has to be altered into facts about the diminishing size of the cube, its
eventual disappearance and an expanding pool of water on the table. If the
world model that the truth maintenance system resides in, is 2 world model
without any representation of time the quality of the truth maintenance is
doubtful. Temporal representations must be included for there to be an
acceptable quality of truth maintenance.

Planning generally involves choosing from a selection of available
resources and arranging them so that their use is maximized to solve a given
problem. Sometimes a problem can be solved only with certain arrange-
ments of some of the resources, and planning involves finding what that
arrangement is. Examples of resources that come under consideration are
space, time, money and even people. The earliest planning systems like
STRIPS (Nilsson and Fikes, 1971) had no built-in notion of time whatso-
ever. Actions in the world model took an insignificant amount of time to
execute; hence, changes in the world took place instantaneously. Where this
has been applied to real robot arms that exhibit the strategy of those plan-
ning systems, the time intervals of the actions are modelled by the robot arm
receiving a command, executing it and then signalling that it has completed
the request. This is all very well when the object of the exercise is to test the
planning strategy or the interface to the robot’s arm. Later planners used
temporal world models (see Allen, 1981; Allen and Koomen, 1983) in which
there were explicit time intervals, and the planner tried to fit them together.

Natural language processing has to cope with a lot of tense and temporal
information in its input. Linguistics as a subject of its own has produced
much formal study into the temporal aspects of language. Dowty (1979) has
identified a number of temporal phenomena. From the sentence “John was
leaving on Thursday yesterday.” there are:

Past/Future relations

Deictics - (now, yesterday, Thursday)
Vague event durations

Alternate worlds and times
Adpverbial phrase interval bounds
Expectation/uncertainty

Any true generalized natural language understanding system must be
capable of handling all these aspects. Some of them have been quite exten-
sively exercised in “story understanding systems” and “question and answer”
systems like “BORIS” (Lehnert et al., 1983) and “CHRONOS” (Bruce,
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1972).

Many representations in working systems are a side-effect of modelling the
main application domain, although there has been work on producing sys-
tems that provide reasoning and representation on time alone. Some of these
time reasoning systems were designed to test out methodologies, others were
meant as part of other larger applications which needed a ‘specialist’ to han-
dle temporal information. We shall see examples of these later when we
examine the different approaches.

9.2 Characteristics of Temporal Modelling

What characterizes the representation of time? When we are examining a
model that uses time what do we have to look for? Temporal information
that is received can be absolute or relative to another referenced point in
time. It can be an interval that is microseconds long or decades. Separate
events can relate to each other in uncertain terms. What about persistence?
Let us look at ‘now’ and what issues this brings up. We also do not want to
be limited to retrieving data solely by their temporal references.

9.2.1 Temporal Determinism

Some information is timeless. The statement ‘3 is a prime number’ is an
example. It poses no relevant problem as there is no time information that
can be meaningfully attached. Any general knowledge representation tech-
nique that incorporates a form of temporal representation should be able to
handle timeless information with ease.

Statements can have two types of temporal information attached. The
first of these is a date or time attached to the non-temporal part of the state-
ment. Instances of these are:

“The atom bomb was first used in warfare on 6th August 1945”
“Karl Marx was born on May 5th 1818
“At 8:45am this morning, I was driving to work”

These statements all give an absolute reference of time that is either a
calendar date or a time. In contrast to the explicitly stated times or dates, a
relative reference can be used:

“Yesterday was a rainy day”
“The workers will go on strike tomorrow”

In addition to whether the time expression within any statement is relative
or absolute, the whole statement can be temporally definite or indefinite.
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The time that the statement is made is important in determining whether
the statement is temporally indefinite. The truth value of a definite state-
ment is unaffected by the time that the statement is made. The definite
statement can be stated at any different time and still hold the same truth
value. The following statements illustrate this:

“It is always sunny in Barbados”
“It rains every Sunday in Athens”

Both these statements are false because it does sometimes rain in Barba-
dos and sometimes the sun does shine on Sunday in Athens.

The truth values of temporally indefinite statements are not independent
of the time of their assertion. Take the statements

“It is now raining outside”
“It was raining outside yesterday”

The first will hold true if it is factually true that at the time of the asser-
tion it is raining. If it rained on Monday but not on Tuesday then the
second statement is true if asserted on Tuesday and false if asserted on
Wednesday.

9.2.2 Granularity

Representations of time must be capable of encapsulating large timespans
depending on the context. This can range from microseconds in the world
of digital computer circuit design to millions of years in the subject of
palaeontology. In everyday life the span probably ranges from decades to
hundredths of seconds. Within narrower domains this span may be reduced
cven further. It may well be that not many systems need to be able to hold
representations of time of such a wide range granularity. Perhaps it might
be sufficient to have a representation that can be easily adjusted to cope with
different kinds of granularities.

9.2.3 Points or Intervals

Do we represent time as a set of points or a set of intervals? Perhaps this is
one of the most prominent conflicts in representing time. If we see a set of
intervals then it is possible that something might be lost within the interval.
Il we see time as a set of points then we could have very large sets of points
to represent long durations, each one representing every instant of the smal-
lest granularity that we care to go down to.
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9.2.4 Fuzziness

Often, fuzzy time information is given because it is unnecessary to expand in
detail. It would not be useful to do more processing than necessary to try
and remove the fuzziness. Words and phrases like ‘yesterday’, ‘tomorrow’,
‘three weeks ago’ often introduce fuzzy intervals.

When uncertain information is given, the representation must be able to
handle this. If given two statements

“Yesterday, I went swimming™
“Yesterday, I went shopping”

The representation should be able to hold both of these without imposing
any order on the events.

9.2.5 Persistence

Many situations in the real world require us humans to model persistence. 1
switch on a light in a room and then leave the room. I would normally con-
tinue to believe that the light was switched on until told or observe for
myself otherwise. Several things could have happened. For instance, some-
one else switched it off or the bulb might have blown. Whether the light is
in reality still on, or off, without any reason to believe otherwise I normally
hold to the belief that it is as I left it.

The notion of persistence or truth maintenance is currently an area of
intense research. Given a sequence of events at times as denoted by the
times of their assertion t(n):

t(0): I (now) pick up a loaded gun.
t(1): I unload it.

t(3): I point the gun at my head.
t(4): I pull the trigger.

Any deductive system should give negative answers to the questions “Was
there a noise?”’, “Am I alive?” asked at time t(5). The temporal representa-
tion must be able to denote that, from that time t(1) onwards, the gun that I
picked up is unloaded. It would be no good if, at a time later than t(1), the
representation did not contain the information that the gun was still
unloaded. The default deduction from the action of pulling a trigger might
be that there is a loud noise and a bullet projected at what the gun points at.
If this is so, then the deductive system would answer that there was a loud
noise at t(5) from the given facts. This is a major problem in AI which has
been coined the FRAME problem.



9.2 Characteristics of Temporal Modelling 195

Persistence is usually easily gained in a modelling system. Any facts
asserted to the system should remain there until explicitly contradicted or
removed. This leads to the point of historical representationality. Consider
the gun scenario. The immediate known history of the gun is that before
t(1) it is loaded and not after. It is possible to have persistence in that at
t(now) the gun is still unloaded, but there is no way of telling what time the
gun was unloaded. What is needed is the representation of the history.
When the assertion is made at t(1), simply replacing ‘fact(the gun is loaded)’
by ‘fact(the gun is unloaded)’ in our world state model does not maintain a
history. Replacing it with ‘fact(the gun is unloaded, t(1)) & fact(the gun is
loaded, <t(1))’ will represent the history more accurately.

9.2.6 What is Between the Past and Future

In the last paragraph we saw, briefly, a notation t(now) to indicate a particu-
lar instant. The dimensionality of time is such that there is a boundary
between what has already happened and what is yet to come. This boun-
dary is not simply a separation of the past and future. It often has a dura-
tion of its own right we call the present. Furthermore the present illustrates
one of the qualities that makes modelling time difficuit: it is a dynamic inter-
val, constantly shifting in the direction of the future.

The present can take up different durations dependent on some context.
Perhaps it is our human model of time that gives us the view of the present
as it is. Time travel can be seen as simply the ability to shift the present that
we exist in freely along the time dimension. But whatever it is, the present
has a varied duration as shown by our language. Natural language allows
different meanings for the word ‘now’ and we use it to express different
things. In the following two sentences this is illustrated:

“I will clean the floor now.”
“I am cleaning the floor now.”

The first is normally used to express the intention of starting the action of
cleaning the floor. That is, the interval of time which contains this action
starts shortly AFTER the utterance of the sentence, whilst the second utter-
ance usually occurs WITHIN this time. It may be used to refer to the
instant or small interval in which an assertion using it is made:

“Now, I take the knife and slice through ......”

Also there is often an implied ‘now’ that is used in reference to events of
the past or future. Take the scenario:
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Mary says to me, “I am setting off NOW, so I will see you in twenty
minutes”.

Later, I meet John at the cinema entrance and say to him, “Mary said
she was setting off THEN so she should be here any minute”.

In my communication to John I am implying that Mary said something to
the effect of “I am leaving NOW ...

9.2.7 Co-existence of Time and Other Knowledge

So far, we have mostly concentrated on the characteristics that have to be
taken into account when modelling time. Many temporal logics and tem-
poral representation schemes have time as the central concept on which
other knowledge is hinged. The temporal aspect of knowledge representa-
tion should lie orthogonal to the representation of other knowledge. It
should not be restricted to knowledge manipulation using the temporal part
of a fact only. .

To illustrate what I mean here take the statement ‘I was watching the 9
o’clock news on BBCl last night’. The temporal part of the information
conveyed here is the time (9pm) of the night before the sentence was uttered.
The non-temporal information is the fact that I was watching the news on
BBCl, if the only index used to store and retrieve this fact is the time I did
it. The query of what channel I was watching cannot be answered directly
without reference to the time index.

Very often the temporal factor in some knowledge is very insignificant or
irrelevant compared to some other aspect. Some things are done just for the
sake of doing them, others out of necessity. Often some other factor takes
higher precedence in the order of things and then WHAT rather than HOW
LONG is more important.

9.3 The Alternative Approaches

Having looked at some of the characteristics that exist in temporal represen-
tations and modelling, let us take a look at how these are exhibited in past
and existing systems, whether explicitly or implied.

9.3.1 State Space Modelling

This method of space representation is an example where the temporal
representation is implied. In state space modelling, a state is a snapshot of
the current world state. Take an early planning system like STRIPS (Nils-
son and Fikes, 1971) for example. It planned the sequence of actions neces-
sary to achieve a requirement for a set of blocks to be in given positions. A
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typical statement giving a world state might be:
world-state(on(A,B),on(B,C),on(C,table),on(D,table))
Actions are functions which map between states:

move(block,dest)
if clear-top(block)& clear-top(dest)
then delete(on(block,X)) & add(on(block,dest))

Because each state is a snapshot, it is taken to represent the world at that
instant in time (i.e. point-based representation).

In general we have a series of world states {(S1), (S2), (83),...} to represent
the passage of time as a sequence of instants. There are different temporal
semantics that we can apply here.

One is that each state is an instant and there exists an interval between
these instants during which the function which maps from one state to the
other is active.

Alternatively, we can say that the states are the intervals during which the
facts are known to be true. The functions which map between the worlds
now are the instants between the intervals and it is during these instants that
some of the world facts change from true to false, some disappear or others
appear. What is wrong in this interpretation is that the functions take place
instantly and that does not reflect the real world closely enough. In addi-
tion, there are events as McDermott (1982) pointed out which are not fac-
tual changes. He used the example of a person running around a track 3
times. How would a state space modelling representation cope with this?

Using either of the two interpretations above, there is still the problem
that there is no distinction of different time interval durations. In the first
one, all the operations take the same length of time to execute, whilst in the
second there is one common denomination of time for the facts that exist in
any world (the duration of each state, which is identical). Therefore in this
weak representation we need to store explicitly, in the state, information
about how long the function took or how long a state persists. This makes
the temporal representation in state space modelling explicit.

In general, state space systems keep copies of old states as new ones are
created. This requires a large amount of storage capacity if the worlds get
large. Keeping copies of states, however, facilitates history and allows the
answering of questions like

“What was the red block on before it was last moved?”’

Because the mapping functions only need to change the relevant world
objects, and copy the rest into the new state, this provides a very neat way
of handling persistence. It demonstrates causality where ‘“things only change
when cause exists to change them”.
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These models, however, have a big disadvantage when it comes to han-
dling tensed information. Consider the assertion “Sue said yesterday morn-
ing that she would come tomorrow”. The state that represents the world
‘yesterday morning’ will have to be altered to fit in the new information.
This would then have to be propagated through all the intervening states
between then and now. It is arguable that changing the world model in this
way is altering the belief model and is actually wrong. Because, if we take
the view that a world state model like this represents a person’s belief about
the world around her/him, then doing modifications like these is akin to
changing history. We are changing the fact that that person did not know
what Sue said prior to the instant of the assertion of the statement above.

STRIPS was typical of the early AI systems which chose to ignore the
temporal aspect of solving any given problem. They concentrated on the
‘physical’ side of things. Later however, some systems took a more direct
approach and just concentrated on the temporal aspect of a problem solu-
tion. The system by Kahn and Gorry (1977) employed two different types
of representation within the same system. Their system was designed to take
temporal statements and then answer questions on the temporal part of the
information given.

9.3.2 Date Based Method

Intuitively, every event/occurrence starts at a certain time. Using the date
based method, these events are stored using this time as the index. Informa-
tion with relative temporal content is resolved to a fixed time and this is
used as the key. Cross referencing tables are needed here, one to hold the
times and dates, another to hold the factual information. This or some
other mechanism is needed to facilitate the accessibility from the temporal
and non-temporal information.

However, there is a need to distinguish between the end time of an event
and the start time of the event immediately following. If a switch is
activated to turn on a light for example, the model should not allow there to
be an instant when the light is both on and off. Figure 1 shows the analogy
to the real number line in mathematics for representing ranges of reals.

There is the question of which time is used as the key. The choice is
between the time of assertion or the temporal information in the sentence.
If the first is used, any relative temporal information within the assertion can
be resolved to an absolute time. However, some information may be
changed in this transformation. Take, for example, the sentence “The bul-
lion delivery will take place at dawn tomorrow” asserted at 3pm on
December 31st 1988.

December 31 3pm  bullion delivery dawn tomorrow (€))]
December 31 3pm  bullion delivery dawn January Ist 1989  (2)
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Figure 1 Real line representation of f{x)

In the second entry (2), it is not stored that the word tomorrow was actually
used in the statement.

If we choose to use the implicit or explicit temporal information as the
access/store key, then relative temporal references have to be resolved to a
time or date. Again, this loses information (unless the time of assertion is
also kept):

January 1 dawn  bullion delivery [3pm 31/12/88] (3)

The big drawback with this method is that disjunctive temporal
knowledge cannot be stored if we choose to index it on the contained tem-
poral data. For example, the two assertions are made on the 1st of January:

“Yesterday, there was a demonstration of sausage making”
‘“Yesterday, there was a jumble sale”

The ‘yesterday’ will have to be resolved to the date 31st December. This
will be placed in the events table.

December 31 sausage making demonstration, jumble sale (4)

Care must be taken to ensure that the textual ordering or the order of the
utterance of the sentences is not taken as an ordering of the events. This
however can be interpreted more broadly in that there is an ordering based
on the times of the assertions of the statements. However, can we really
imply this sort of ordering based simply on the sequence of utterance of two
statements? In addition, if we have the statements also asserted on the 1st of
January:



200 Representing Time

“Yesterday, there was a demonstration of sausage making
followed by a jumble sale”

“Yesterday, there was a demonstration of sausage making
during the jumble sale”

We can have an entry in the events table exactly like that of (4) above for
both sentences. Clearly the same representation for two distinctly different
statements is not good enough. In the first case the two intervals do not
overlap; the implication is that the end of the sausage making interval was
the start of the jumble sale interval. In the second, the sausage making
interval is contained within the jumble sale interval.

Here we see the illustration that shows that straightforward ‘time-
stamping’ of events is not powerful enough to represent certain kinds of
temporal information. Firstly, the entries for the events in the table are sim-
ply attached to the ‘date’ of the event. There is no indication of the dura-
tion of the events. The sausage making and sale could have taken 24 hours
or 12 hours. They may have different durations. How would it be possible
to use time-stamping to obtain default durations for jumble sales? How
would that be fitted into the event entry of the table?

So far, some of the relative temporal information like ‘dawn’, ‘yesterday’
and ‘tomorrow’ has been converted to a date. Most often we use general
terms to describe a time rather than specifically stating the exact time
because there is no need to divulge additional information. Therefore if a
system has to be more specific than necessary there is no harm. Sometimes,
however, we are uncertain of the exact time of things we are referring to. So
we intentionally use fuzzy time intervals or boundaries. This is especially
true when talking about the future. In a purely time-stamping system fuzzy
time will be extremely difficult to handle:

“Three and a half weeks ago I was ill”
“In four months’ time I will be a millionaire™

It would be inaccurate to resolve the temporal information in these sen-
tences to a date or time. If the times of assertion of the sentences are used
as the indices for storage, there would be no need to resolve the fuzzy time.

9.3.3 Before/After Chains

Many events naturally fall into a sequence. By linking them together using
pointers, we have a representation for the temporal relations of these events.
The simplest method would just have bi-directional pointers between events
(Figure 2):
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next event
——ﬁ
Event A Event B
 —
prev event

Figure 2 Events connected into a chain

This now forms the basis for building a chain of events (Figure 3a):
paint «—— cook <«—— wash <«—— wash
house ————s lunch =~ car ——— dog

Figure 3a A simple chain

These chains do not explicitly represent the durations or any time units.
These have to be incorporated into the nodes which hold the information
about the event. If Xh means that associated activity took X hours, we thus
have an interval based representation (Figure 3b):

paint(3h) «—— cook «—— wash -e—— wash(30min)
house = ~—— lunch(lh) —— car(lth) ——— dog

Figure 3b A chain with events containing their durations

If instead we have the start time of the activity associated, then we have a
point-based representation. Simply by looking at the time of the activity
after the current one, the duration of the activity can be computed (Figure
3c):

paint(0800) €—— cook <«—— wash ——— wash(1345)
house —— lunch(1200) ——— car(1315) ——  dog

Figure 3¢ A chain with events containing their start times
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This allows the mixing of events of varying duration alongside each other
in a chain. Parallel events can be modelled by a splitting node with two
pointers to its successor events. At the end of these two separate chains they
merge again.

Chains, however, can get long, and to search for an event will require
starting at the head of the chain and traversing all the way down the nodes
until it is found. This can be overcome by abstractions of time intervals
and/or event information. For example, at a higher level abstracted chain,
there would be a chain of the main events in a working day and the sub-
chains of these main events would carry more detail. There will have to be
two different types of information abstraction, one temporal the other non-
temporal. If we omit the latter, then to find out what time something hap-
pened will still require an exhaustive search of the chain. By abstracting the
non-temporal information, it may be possible to search only the relevant
sub-chains.

The time specialist was implemented and used to gain experience on the
problems of having a time specialist integrated with specialist(s) of other
domains for general problem solving and to see if this approach of trying to
segment temporal information from non-temporal information is feasible.

The final conclusion of this work depended on the actual implementation
of other specialist problem solvers which could interact with the time special-
ist and testing this out on some real problems. On its own, the time special-
ist produced interesting results when given stories of time travelling to
understand.

More recently, the emphasis in temporal representations and reasoning
systems has shifted towards the more formal and rigorous approach.

9.3.4 Formal Temporal Logics

These are often based on standard Predicate Logics. Formal Logics are very
powerful and expressive for representations. In their book “Temporal
Logic” (Rescher and Urquhart, 1971) Rescher and Urquhart give a clear and
understandable introduction to a simple temporal logic based on a topologi-
cal logic. They then go on and develop this further, including incorporation
of more than two truth values.

In topological logic there is a positional realization operator, p. Applied
to a proposition P(x), the predicate then reads that P(p)(x) is true at that
place p. In Rescher and Urquhart’s simple system R of Temporal Logic
there is a temporal realization operator, t. This operator says that its associ-
ated predicate is true at that time and it is denoted as R(t)(A) where t is a
time and A is a statement. For example, R(December 25)(it is Christmas
day) says that, on December the 25th, it is Christmas day. To represent the
important case of ‘now’ the symbol n is used. Therefore the statement
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R(n)(the sun is shining) reads as ‘“‘the sun is now shining”.
There are axioms of R:

(T1)  R()(= A) = = R(t)(A)

(T2)  R()(AAB) = [R()(A)AR(t)(B)]
(T3) R(m)A) = A

(T4)  R(DI(YOA)] = (V)[R(t1)(A)]
(T5)  R(DIR()(A)] = R(t)(A)

(T6) R(t)n=tl) =t=tl

(T7) R@®(1=t2) = tl=t2

(T8) (VA >A*t/n

The rules of inference, in addition to modus ponens, are:

(R1) If |- A then |- V()R(t)(A)
(R2) If |- A=B then |-(..A..)=(..B..)

The proof theory of this system of logic is given in (Rescher and
Urquhart, 1971).

What is of most interest to us here is the model theory of this temporal
logic. The main idea of the development of the model theory is that the
‘truth or falsity of the statements within the logic can be determined for any
time.

As temporally definite statements have constant truth value over time they
can be set aside. Whilst conventional Propositional Logic utilizes a Truth
Table, Temporal Logic uses a Truth Cube. This simply has a third axis to
represent a set of times. Then for each ‘time-slice’ of the cube, we have a
table and this is treated in the conventional way. The exception is the treat-
ment of “n”. The interpretation of “n” is that it takes the value of the time
at which it is being evaluated.

Since Rescher and Urquhart there have been many more approaches to
Formal Logic time representation. Of the latest examples, Ladkin is in the
process of implementing a system which uses an interval-based formalism.
He has developed a formalism (Ladkin, 1986a, Ladkin, 1986b) based on
Allen’s work (1983). McDermott (1982a) presents a point-based one.

Alongside the development of formal logic as temporal representation,
formal logic as temporal reasoning mechanisms is undergoing heavy
research. So far there has been no mention of temporal reasoning, mainly
because this book concentrates on the representation side of things. Some
understanding of the complexity of reasoning with time is needed to see why
the more formalized approaches are necessary.

McDermott (1982a) designed a temporal logic to take into account con-
tinuous change and the indeterminacy of the future. He shows how it is
necessary to be able to model different futures. Just as in applying different
functions that alter the physical world model, different events happening
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cause different possible futures. To be able to model branching futures is
crucial in supporting reasoning about planning for the future. If there is
only one future then any reasoning mechanism sees only one outcome of
anything that it schedules. (If it were really intelligent, it would see the futil-
ity of its actions and give up altogether!!)

Continuous change modelling is supported to allow reasoning about
things that change over time, for example, the level of water which rises dur-
ing the action of filling the bath-tub. A more practical need to model a
changing value is for the temperature of the bath water. If the water tem-
perature is rising above a comfortable threshold before the required water
level is reached then perhaps the cold tap should be turned on more or the
hot one turned down. Furthermore, normally some adjustment of the taps
is done and we decide upon a rough estimate of a time lapse after which we
will check the water.

9.4 Concluding Discussion

As with most issues in computing, there is a question to be asked about the
trade-off between expressibility and tractability. How tractable are temporal
representation systems? The time specialist described by Kahn and Gorry
(1977) is intended as a representation/reasoning system that handles tem-
poral information. It is designed to operate alongside other ‘specialists’ to
be a general reasoning system. How large will the final system be? Is it fast
enough?

Sceptics of Al in the computing world are querying the necessity for all
the complex techniques for modelling, planning and expert systems, to name
but a few. Their arguments point out that many of the so-called Al systems
are very large in terms of size, amount of processing power required and
manpower to build, and, despite all this, seem to have very little practical
impact. Why not use conventional programming languages, conventional
computers?

Applying this argument to the more specific domain of time representa-
tion, why not just time-stamp something else that is representing the infor-
mation that we want to attach a temporal reference to? Indeed, why not?
As we saw earlier, time/ date-stamping is one of the methods of temporal
representation but we also looked at it’s drawbacks. In the naive simple way
that time/ date-stamping works, it falls short in supporting deep reasoning
about temporal relations.

Really, the question that has to be addressed is why do we want a good
representation and how important is it to the application that requires some
form of temporal reasoning capability. It may be that time-stamping is
sufficient for the purposes so “why use a mainframe when a micro will do?”.
We cannot let ourselves be content that, when a simple temporal
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representation works, we stop looking for better ones.
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10 Functional Approaches to Knowledge
Representation

Simon Lambert

10.1 What is a Functional Approach to Knowledge Representation?

The word ‘functional’ has a number of usages in computer science. In sys-
tem design, for example, a functional specification is a statement of how the
components of a system will behave without reference to how they are to be
implemented: their interfaces are defined but their internal operations are of
no concern outside themselves. A similar idea is found in the development
of programming languages, formalized as the abstract data type and
described in for example (Liskov and Zilles, 1974), ‘What we desire from
abstraction is a mechanism which permits the expression of relevant details
and the suppression of irrelevant details. In the case of programming, the
use which may be made of an abstraction is relevant; the way in which the
abstraction is implemented is irrelevant... An abstract data type defines a
class of abstract objects which is completely characterized by the operations
on those objects.’

The usual example of an abstract data type is the stack with its operations
of Push and Pop. The practical development of abstract data types has
perhaps reached its zenith in Ada, with its packages and ideal of reusable
code (see for example (Freedman, 1982), ‘A package is a collection of data
types and allowable operations between objects defined from these types.’).
We shall see, however, that in knowledge representation it is a whole
knowledge base with associated operations that may be regarded as an
abstract data type.
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At this point it is worth mentioning that some work has been done on the
application of functional languages to the needs of knowledge-based systems.
Thus SYNTEL (Reboh and Risch, 1986) is a knowledge representation ‘pro-
gramming language’ designed to suit the development of expert systems, and
is functional in nature (by which the authors mean that there is no variable
assignment as such but only function definition). Languages of this sort are
not, however, the concern of this chapter. Our interest is in the knowledge
base as abstract data type, and the ideas which have become associated with
it. Work in the area has centred around the figures of Hector Levesque and
Ronald Brachman. Levesque’s remarks from (Levesque, 1984) set the scene:

‘... a knowledge base... interacts with a user or system only through a
small set of operations... The complete functionality of a KB is meas-
ured in terms of these operations; the actual mechanisms and structures
it uses to maintain an evolving model of the domain are its own concern
and not accessible to the rest of the knowledge-based system.’

Some interesting results and powerful systems have appeared within the
compass of this definition. But their roles are not as restricted as the suc-
cinctness of the definition might at first suggest, for there are other themes
which have become bound up with the functional approach in various ways.
They include procedural semantics - in this context, the definition of
behaviour by means of programs attached to entities in a knowledge base -
and hybrid representation schemes, the latter being an important feature of
KRYPTON, the most highly developed of the systems to be considered.
The following sections discuss these related topics in roughly the order they
were developed; first, though, we consider why a functional approach to
knowledge representation should be desirable.

10.2 Why a Functional Approach?

The definition given in the last section of what it means for a knowledge
representation scheme to be functional made clear its links with software
engineering principles. Here lies some of the motivation for investigating
functional approaches. One should not be over-literal and claim that there
is any connection with programming ‘style’, or that thirty years of high level
language design are having a direct influence on knowledge representation,
for the concerns of the two areas do not coincide. However, the principle
behind the abstract data type, that the user should be prevented from
interfering where he should not, from making assumptions about implemen-
tation and taking advantage of them, is very applicable to knowledge
representation schemes, and in quite a precise way.
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What is it that the user of a knowledge representation scheme is to be dis-
tanced from? The answer, of course, is the ubiquitous frame or semantic
network, and for two reasons: firstly that the interpretation of the links in
semantic nets (or slots in frames) is not well defined, so that different users
are liable to put different interpretations on them, sometimes confusing levels
of abstraction or imparting their own private interpretations; and secondly -
though related - that frames/semantic nets are susceptible to treatment as
mere data structures for manipulation. We turn to a paper by Woods for a
starting point in the analysis of these issues.

One of the major contributions of Woods’ famous paper ‘What’s in a
link.....” (Woods, 1975) is the distinction drawn between structural and asser-
tional links in semantic nets (for the purpose of this chapter, there is no real
difference intended between semantic nets and frames - both are regarded as
means of organizing knowledge for representation purposes). Structural
links simply describe, whereas assertional links are intended to make a posi-
tive statement: Woods’ example is of a representation of ‘telephone’ which
has a link to (or slot containing) the colour ‘black’, of which he asks
whether the resulting structure is a description of a black telephone or an
assertion that telephones are black. The distinction is an important one, and
Brachman takes it up in, for instance (Brachman et al., 1983a), where he
observes that Hayes assumed the assertional interpretation when reducing
frames to first order logic (Hayes, 1979). (See Chapter 4 in this volume for a
fuller discussion of Minsky’s original idea of frames and Hayes’ response to
it.) Brachman goes on to point out that the assertional interpretation is a
limited one for two reasons. First, instantiation (i.e. slot filling) is inade-
quate for representing incomplete knowledge. A slot must be filled with a
definite value, and no progress can be made if the value is not known pre-
cisely, but is subject to some known constraints. Second, there is no distinc-
tion between essential and incidental properties. This point is of great
importance because the drawing of such a distinction is a vital feature of the
KRYPTON system described in section 10.5. For the moment let us say
that an assertional interpretation sees no distinction between sentences such
as ‘Every triangle is a polygon with three sides’ and ‘Every car is red [in the
restricted world represented]’.

Having pointed out the limitations of the assertional interpretation of
frames, Brachman considers the purely structural alternative. In such sys-
tems (exemplified by KL-ONE (Brachman and Schmolze, 1985c)) the frames
do not state facts but just create descriptions like ‘a car with a steering
wheel’. It comes as no surprise to find that the great drawback is precisely
the inability to make assertions; or rather, because there is a need to do so
but no mechanism available, that the structures are often misused and given
assertional interpretations. As Brachman says, ‘even if the structures of a
frame system are taken non-assertionally, their presence or absence can still



210 Functional Approaches to Knowledge Representation

be misread assertionally and used to encode facts about the world.’

The fact is that frames, especially with the structural interpretation, are
crying out to be manipulated as data structures. The standard notation,
with its Lisp-like syntax, makes this all too apparent:

(CAR
(IS-A VEHICLE)
(OWNER person)
(WHEELS 4)

)

The user (by which is meant whoever employs the frame package to inter-
face to another part of the system or directly to the outside world) may well
feel at liberty to treat the slots/links as he likes, pursuing IS-A chains (for
instance) with happy disregard for what they really mean. This is another
problem that has taxed Brachman: in (Brachman, 1983) he analyses some of
the many interpretations that have been put on the overworked IS-A. An
example will show just how far frames can go in becoming mere data struc-
tures for manipulation, and what effects this can have on the representation
of knowledge. Consider Figure 1, a classification of students at a hypotheti-
cal university. Intuitively, the classes are all on the same ‘level’, and one
feels happy answering the question ‘How many kinds of student are there?
with ‘Three’. But suppose we throw caution to the winds and attempt to
represent students in more detail as in Figure 2. The result is incoherent
confusion, and the question of how many kinds there are becomes

COMPUTER
SCIENCE
STUDENT

Figure 1 Kinds of Student
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Figure 2 More Kinds of Student

meaningless. Yet one could make a case that all the links shown in the
figures are IS-A links. All that seems to have been achieved is an arbitrary
encoding without any logical structure. Clearly, many different arrange-
ments of nodes and links could have been chosen, and any inference engine
out to use such representations would be on very uncertain ground. In fact,
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Brachman gives a definite example of the dangers of uncontrolled use of net-
works in considering two definitions of ‘bachelor’: one sees a bachelor as
being a person, with the qualifications of male-ness and being unmarried
(two slot values), while the other regards him as a conjunction of a ‘man’
and an ‘unmarried-person’, themselves both kinds of person (Figure 3). As
Brachman points out, the ‘conceptual distance’ from person to bachelor is
different in these two representations, and ‘spreading activation theories of
processing in semantic nets might consider this distance to be significant.’

As well as his analysis of IS-A links, Brachman has also considered the
nature of semantic nets in general (Brachman, 1979). He gives a comprehen-
sive overview of the history and development of semantic nets, and provides
an analysis of the levels of primitive employed, ranging from ‘implementa-
tional’ up to ‘linguistic’. What all his work has done is to show how
dangerous it is to allow direct access to the structures representing
knowledge, for there are almost bound to be unstated assumptions made
about the significance of slots or links, and the cause of knowledge represen-
tation in general will not have been advanced. Hence the need is seen for a
functional approach.

The above discussion was based on Brachman’s work, which led to the
development of KRYPTON in an attempt to eliminate some of the problems
described. Levesque’s more formal work on functional approaches has a
more formal justification, in terms of bringing out the full implications of a

PERSON

UNMARRIED-PERSON
MARRIED : NO

BACHELOR
SEX : MALE
MARRIED : NO

BACHELOR

Figure 3 Two Definitions of a Bachelor
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set of beliefs - what he calls ‘competence’. Ultimately, though, his work
needs little justification; like mathematics, its interest lies in the very fact of
being able to prove results.

10.3 The Procedural Semantics of Mylopoulos and Levesque

It was mentioned in section 10.1 that one idea associated with functional
approaches to knowledge representation is procedural semantics, or at least
one manifestation of it, for the term has a wider applicability beyond the
scope of this chapter. The time has now come to examine it, for the work of
Levesque and others predates the work on functional approaches but
possesses its important characteristics. Woods uses the term in his paper
(Woods, 1975) introducing the structural/assertional distinction; though he
says that his interpretation ‘differs slightly from that which is intended by
other people who have since used it’, his definition, though very vague, con-
veys some of its later meaning:

‘...a specification of truth conditions can be made by means of a pro-
cedure or function which assigns truth values to propositions in particu-
lar possible worlds. Such procedures for determining truth or falsity are

9 9]

the basis for what I have called “‘procedural semantics”.

For something more concrete, we turn to the work of Levesque and
Mylopoulos, and in particular their paper (Levesque and Mylopoulos, 1979).
This paper has a number of important themes, but essentially springs from
an attempt to formalize the semantics of semantic networks by using pro-
grams to define behaviour. In the introduction the authors express this
motivation, take a swipe at the usefulness of logic as a representation scheme
(‘there is no distinction between an inference rule that can be used and one
that should be used’), and make two significant statements from our point of
view:

“To interpret this diagram [of a semantic net] as a model of a data struc-
ture within a computer memory simply postpones the problem [of what
it really means] since we must now ask what the data structure
represents.’

‘These diagrams [i.e. those used by Mylopoulos and Levesque to illus-
trate their scheme] should be understood by the reader as convenient
visual aids, not to be confused with the representation itself (defined by
the operators of a formalism) or a possible implementation of this
representation (defined by an interpreter of the formalism).’



214 Functional Approaches to Knowledge Representation

The first of these points is precisely the justification for a functional
approach that we have seen in the previous section; the second states the
essence of that approach.

Mylopoulos and Levesque begin by taking the usual semantic net primi-
tives (in their terminology, objects are instances of classes and have relations
between them), and they determine to associate programs with them to per-
mit inferencing in an efficient and modular way. There are eight operations
which the programs implement, four on relations and four on classes:

to assert that a relation holds between two objects;

to assert that a relation no longer holds between two objects;
to fetch all objects related to another by a given relation;

to test whether a given relation holds between two objects;
to create an object as an instance of a class;

to destroy an instance of a class;

to fetch all instances of a class;

to test whether an object is an instance of a class.

Here we have our functional interface, the interface to the knowledge base
by means of TELL and ASK operators which Levesque was later to formal-
ize.

Mylopoulos and Levesque go on to discuss hierarchies within their model,
specifically IS-A (taking account of the assertional/structural distinction) and
PART-OF. They introduce metaclasses, unifying the whole representation
scheme and making the handling of inheritance more consistent. Finally
they consider the nature of the programs attached to classes (which now
include classes themselves and relations). There is some divergence of
interest from the purely functional approach here, but the idea of having
operators defining behaviour is exactly right.

Procedural semantics in the sense of Mylopoulos and Levesque came to
fruition in the system unimaginatively called PSN, developed at Toronto
since 1976 (Mylopoulos et al., 1983). The system is based very closely on
the ideas described above. Instances of classes are now called tokens; rela-
tions are defined between classes and are instantiated to form links between
tokens (Figure 4). Programs specify operations on classes and relations,
exactly as above. There are three primitive relations for creating hierarchies:
INSTANCE-OF (relating tokens to their classes), IS-A (with inheritance)
and PART-OF (‘aggregation’, using slots to represent parts of a concept).
The attached programs are themselves objects, and have their own class with
slots (for parameters, prerequisites and actions). A new idea in PSN is the
similarity link, which suggests other classes to be tried when a match fails,
and may owe something to Minsky’s suggestion of ‘sharply localized
knowledge that would naturally be attached to a frame itself for recom-
mending its own replacement’ (Minsky, 1981).
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RELATION
CLASS —————CLASS

INSTANTIATIONl

LINK
TOKEN————TOKEN

Figure 4 Entities and Relationships in PSN

A number of applications have been developed using PSN. Mentioned in
(Mylopoulos et al., 1983) are two in the domain of cardiology.

Before going on to look at Levesque’s later work, when he abandoned the
procedural aspect and considered the functional interface alone, it is worth
mentioning some work by Rich, described in (Rich, 1982). Here we see
another theme of importance in our area, that of mixed representations.
Rich was working on the Programmer’s Apprentice at MIT, for which a
representation scheme called plan diagrams had been devised to suit the type
of knowledge being represented. ‘During this period we took a fairly ad hoc
approach to the semantics of our knowledge representation. This is not to
say that we did not know what plan diagrams meant, but just that ultimately
the meaning of the representation was implicit in the procedures we were
writing to manipulate it.” Rich began to develop a formal semantics for plan
diagrams using predicate calculus, and found that the two representations
could co-exist in the system implementation. It is a hybrid representation, in
which both levels of language are used for various levels of reasoning in the
application domain, depending on which is appropriate. A mixed represen-
tation scheme, though on a more formal footing, is an important of feature
of KRYPTON, described in section 10.5.

Procedural semantics played an important part in the evolution of func-
tional approaches to knowledge representation, but ultimately it is rather
limited because it is not suitable for theoretical amplification. Rich makes
no bones about this:

‘Before going any further it is crucial to understand that this paper is
about pragmatic rather than philosophical issues in knowledge represen-
tation.’

His concluding remarks are couched as advice for representation
designers. Similarly, the procedural semantics of Mylopoulos and Levesque,
though undoubtedly fruitful, seems unlikely to lead to any new directions.
Defining behaviour by means of programs is clearly advantageous for
efficiency of search, but there is not much one can say about it. The
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programs seem to be at too low a level, despite attempts to impose structure
on them. It is not clear how the approach can be extended beyond the prag-
matic. Indeed, Levesque realized this when he came to investigate the func-
tional interface in isolation, and it is to his work that we now turn.

10.4 Levesque’s Formalization

In the preceding section we have seen that Mylopoulos and Levesque’s pro-
cedural semantics attached programs to classes and relations in a knowledge
representation scheme in order to perform basic operations on those classes
and relations. It is these operations that constitute the functional interface,
and Levesque’s next step was to abandon the procedural aspect and investi-
gate what could be said in the abstract about a knowledge base with such an
interface. In a lengthy and important paper (Levesque, 1984) he describes
his results.

Levesque begins by specifying the interface by means of two operators
TELL and ASK, the former asserting that a statement (made in some
language L) is true in the knowledge base, the latter querying whether this is
the case:

TELL: KB x L —» KB;
ASK: KB x L — {yes, no, unknown}.

He goes on to discuss the requirements on the language L, paying particu-
lar attention to the need to represent incomplete knowledge. Arguing that
‘it must be possible for the KB to find out about the world in an incremental
way’, he maintains that TELL and ASK must permit weak statements about
the world: saying what something is not, for instance, or giving a range of
possible things it might be. A formal discussion of the semantics and proof
theory of the language L follows; then Levesque outlines some of the prob-
lems arising from the use of L (roughly speaking, if it is possible to make
weak statements to the KB, it may return unhelpfully weak answers). He
introduces an operator which applies to a sentence of L and returns ‘true’ if
the sentence is currently known in the knowledge base, ‘false’ if not, and he
defines an extended language KL incorporating this operator. Making
assumptions of ‘competence’ (that every consequence of what is known is
itself known) and ‘closure’ (that a pure sentence is true exactly when it is
known), semantics is defined for the extended language, and the operators
TELL and ASK are redefined.

The argument then takes another dive into formalism: Levesque considers
what sort of knowledge (in a formal sense) is representable in his language,
and having established it, asks what effect a TELL operation has, and how
ASK works. The result is a ‘Representation Theorem’, which states in
essence that communication with the knowledge base in the language KL
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may be achieved completely in first order terms, just as with the original L.

Having surfaced from the proof of his Representation Theorem, Levesque
considers possible extensions to the theory he has established. The most
immediately interesting concerns default reasoning. Levesque proposes two
possible lines of attack by extending respectively the ASK and TELL opera-
tors to take defaults into account. He introduces an operator which, applied
to a one-place predicate, yields a predicate of being a ‘typical example’. It is
possible to assert that ‘typical birds fly’ and ‘typical birds have two legs and
two wings’ using the operator - and these are necessary properties of typical
birds, not just typical properties. In Levesque’s words, ‘all of the “content”
of the default is put into knowledge about the properties of typical instances
of the predicates’. The ‘is known’ operator is now the key, for the represen-
tation language can express that if an entity is not known to be atypical then
it should be treated as typical - hence default reasoning.

As a final aside, Levesque mentions the possibility of defining new terms
from existing ones. His formalization is complete, and we can consider the
system which embodies much of it. KRYPTON has a functional interface
with TELL and ASK operators, a powerful inferencing mechanism, and a
separation of definitions from assertions about the world, and we go on to
examine it now.

10.5 KRYPTON

KRYPTON is an experimental knowledge representation system, chiefly the
work of Brachman and Levesque (Brachman et al.,. 1983a, 1983b, 1983c,
1985b). Its origins lie in KL-ONE (Brachman and Schmolze, 1985c) which
is a highly influential representation system founded on a formalization of
the ideas of frames and semantic nets and intended to allow the formation
of complex structured descriptions. Manifesting Brachman’s interest in the
semantics of such terms, KL-ONE pays particular attention to ‘concepts’,
‘descriptions’, ‘attributes’ and the like. It has undergone several implementa-
tions in a variety of languages, and has been used in a number of applica-
tions. Its emphasis is very much on the description of concepts by struc-
tured inheritance networks at the expense of an assertional capability, and
although the distinction was gradually recognized and some account was
taken of it, the two have never been on an equal footing. We have already
seen how a purely descriptive approach is defective, and KRYPTON is an
attempt to combine it with an assertional approach, clearly defining the
responsibilities of each. and their interrelation.

KRYPTON also has a functional interface with TELL and ASK opera-
tors like those of Levesque’s work described in the last section. Published
reports on the work differ in the emphasis they place on the functional inter-
face and the mixed representation scheme: the papers (Brachman et al,
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1983a, 1983Db), for instance, are entitled ‘KRYPTON: a functional approach
to knowledge representation’, whereas (Brachman et al., 1983c) is ‘KRYP-
TON: integrating terminology and assertion’ and (Brachman ef al., 1985b) is
‘An essential hybrid reasoning system’. In fact the two ideas are orthogonal,
but it is perhaps natural that they should be associated, for the interface
between assertional and definitional components is certainly the kind of
semantic minefield that Brachman would like to see guarded by a firm func-
tional interface.

KRYPTON’s representation involves two components called the TBox
and the ABox, intended respectively for structured definitions (‘terminology’)
and for making assertions. The ABox assertions refer to terms defined in
the TBox in order to make their statements. Before examining the operators
available for communicating with a KRYPTON knowledge base, we shall
look briefly at the TBox and ABox in turn.

The TBox language is essentially that of frames, with an important
difference. There are concept expressions which correspond roughly to
frames and role expressions which are the equivalent of slots. Importantly,
there is no direct access to the value of a slot, and hence no danger of these
frames becoming data structures; rather, new concepts and roles are formed
by combining or restricting others. A range of operators is available for this
purpose (not to be confused with the operators defining the functional inter-
face to the system as a whole). Some examples will illustrate this. One of
the operators is ConGeneric, which yields a concept which is the conjunction
of the concepts which are its arguments. Thus a bachelor might be defined
as

(ConGeneric man unmarried-person)

where ‘man’ and ‘unmarried-person’ are pre-existing concepts. Another
operator is VRGeneric, whose arguments are a concept, a role and another
concept, and which returns the first concept restricted so that all specified
roles are instances of the second concept.

(VRGeneric paper author scientist)

yields the concept of a paper all of whose authors are scientists. A third
operator is RoleChain.

(RoleChain child child)

would yield a ‘grandchild’ role. Other operators are described in the earlier
papers, but it appears that only these three have been fully implemented. It
can be seen that considerable power is available for making structured
descriptions, but in a form very different from usual frame systems.
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Another interesting feature of the TBox is in its handling of ‘primitive’
concepts and roles. Obviously the construction of concepts and roles has to
start somewhere, and the basic ones chosen may be entirely independent of
each other. However, it is possible to declare a new concept or role to be a
primitive specialization of an existing one, meaning that any instance of the
new type is necessarily an instance of the old, but there are no sufficient con-
ditions for determining membership of the new type. Thus an elephant
might be declared to be a primitive specialization of a mammal: all elephants
will be mammals, but the system will not be able to deduce that anything is
an elephant unless explicitly told so. This is KRYPTON?’s rather defensive
answer to the problem of ‘natural kinds’ - it favours safety and simplicity at
the expense of expressiveness.

The ABox is a language for making assertions about the world. It is in
fact standard first order predicate calculus, but the basic non-logical symbols
are not mere atoms but refer to the terms of the TBox. Because the
language is a logical one, incomplete knowledge may be expressed using the
usual operators of disjunction, negation and existential quantification.

Operators are provided to define the functionality of a knowledge base
from a user’s point of view. The ABox has the expected TELL and ASK,
the former asserting that some sentence is true, the latter querying it. The
corresponding operators for the TBox are called DEFINE and SUBSUMES.
DEFINE is used for setting up definitions of concepts and roles, as in the
examples above, while SUBSUMES queries whether one TBox term is sub-
sumed by another (as for instance ‘bachelor’ is subsumed by ‘unmarried-
person’). There are in fact other TBox operators which return sets of sym-
bols rather than just a truth value.

The two representation schemes of KRYPTON are tightly integrated,
meaning that there is no simple translation from one to the other (as, for
instance, TBox definitions might be re-expressed as logical sentences indistin-
guishable from ABox statements). Rather, the two are kept separate and
their interrelation is closely defined. There is a requirement for competence
in deriving conclusions from given definitions and assertions, in that using
the definitions and their relationships together with its (incomplete)
knowledge in the form of ABox assertions, KRYPTON can answer correctly
quite general queries. The structure of the whole system is shown diagram-
matically in Figure 5. The principle of having ABox sentences refer to TBox
terms seems straightforward enough, but as Brachman et al. (1985b) observe:

‘It is not enough to say that KRYPTON has a frame-style description
language for forming terms and a first-order predicate language for
forming sentences - we must explain how the interpretations of the sen-
tences by the theorem prover depend on the definitions of the terms.’
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Figure 5 The Structure of KRYTON

Some effort is expended on formalizing the hybrid semantics of the two
components, and the TELL and ASK operations are then defined in terms
of it. It is possible to prove certain simple results about these operations
that are clearly desirable, for instance that a term subsumes any ConGeneric
involving it.

The implementation issues of KRYPTON are complicated and this is not
the place to discuss them in detail, involving as they do unification algo-
rithms taking account of the hybrid representation scheme. However, there
are some points worth making. Because of the functional interface, the way
in which reasoning is implemented is irrelevant as long as it yields the
required behaviour as defined by KRYPTON’s semantics. The ABox incor-
porates a specialized theorem prover, Stickel’s Connection Graph theorem
prover, for drawing its inferences, but there is no reason why it could not be
replaced by an equivalent mechanism, or why performance could not be
improved by preceding use of the theorem prover with an efficient database
lookup. In the TBox, the relation of subsumption between terms is of great
importance, and a classifier may be used (as in KL-ONE) to place newly
defined terms in their correct places in the taxonomy, but the details of how
it works are independent of the semantics it implements.

KRYPTON is very much a research tool. It would almost certainly not
be possible to develop large applications in its current state. In some areas it
is not complete - the theorem prover is only partially integrated with the ter-
minological component. There is no doubt that KRYPTON has been a
valuable experiment in representing incomplete knowledge, in functional
interfaces and in responding to the fact that ‘an intelligent system has more
than one kind of representation need’. Its distinction between definitions
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and assertions, which have no definitional import even if expressed as
‘universally quantified biconditionals’, is attractive. Yet such a distinction
may not always be appropriate for representing certain kinds of knowledge:
it may be suitable for an abstract domain like geometry in which one can
define a triangle precisely and then state properties of particular triangles,
but when one comes to look at natural kinds the situation is less clear. We
enter the domain of stereotypes, defaults and redundancy in definitional
knowledge, and the structural/assertional distinction begins to look unsure.
However, a full discussion is well outside the scope of this chapter, and we
can conclude by remarking that KRYPTON is the most advanced imple-
mentation of functional ideas, though whether the principle has a future,
and how it will resolve with such issues as mixed representation schemes, it
is not yet possible to say.
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11 Expressive Power and Computability

Tony Williams and Simon Lambert

11.1 Introduction

It should not be forgotten that all the knowledge representation formalisms
introduced in previous chapters are intended for implementation on a com-
puting machine, however ulterior their origins. That is how Al proves itself,
and is the raison d’étre of this book. Logic sprang from the head of Aristo-
tle, while Newell and Simon looked into the heads of those around them and
saw production rules. Semantic networks too have been proposed as
‘models of cognition’. Yet all are amenable to encoding and manipulation
within a computer program. The variety of manipulations permitted is of
great importance, for a knowledge representation system must do more than
just represent; it must be able to respond to queries about what it represents.
Algorithms are needed to act upon it: and the study of their properties leads
us into one of the provinces of mathematics. It may be that there is no
algorithm guaranteed to terminate for a particular task, or that its intrinsic
resource requirements are hugely expensive. The complexity of the tasks will
depend on how much is expected of the knowledge representation system:
there is a trade-off between computability and expressive power, and it has
been explored by Levesque and Brachman in their paper (Levesque and
Brachman 1985). This chapter serves as an informal introduction to their
work, and attempts to relate it to some of the subjects described elsewhere in
this book.
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11.2 Setting the Scene: What’s in a Knowledge Base

Levesque and Brachman start from the Knowledge Representation
Hypothesis formulated by Brian Smith (Smith, 1982). It states that an intel-
ligent system has components that:

(a) appear to contain a propositional representation of the knowledge that
the system as a whole possesses;

(b) cause the system to behave in a way that manifests that knowledge.

A knowledge-based system satisfies this hypothesis by design. Its
knowledge representation component is the subsystem that maintains
knowledge in some explicit representation, called the knowledge base. (The
separation of the knowledge representation component from the rest of the
system is very characteristic of Levesque and Brachman’s work. It is the
essence of the ‘functional’ approach to knowledge representation described
in Chapter 10.) The knowledge representation subsystem is in general more
than just a database manager, for it has inference mechanisms enabling it to
answer queries whose results are not explicitly stored as facts in the
knowledge base. Logic has its rules of inference, while semantic networks
lend themselves to operations which we would think of graphically, such as
the pursuit of IS-A links.

According to Levesque and Brachman, the knowledge representation sys-
tem should be capable of accepting new knowledge and incorporating it into
the knowledge base; and they mention too the possibility of having it con-
tain reasoning tactics separate from the declarative domain knowledge.
Compare the definition of ‘ancestor’ as the transitive closure of ‘parent’ with
the reasoning tactic that says that to determine the truth of

X ancestor-of Y

it is better to search up from Y rather than down from X. Levesque and
Brachman are unsure how such reasoning tactics may be represented, sug-
gesting that in practice they will tend to be implicit, or else take advantage
of the sort of pragmatically motivated features that cause Prolog to differ
from first-order predicate calculus. There has, however, been some work on
the control of reasoning within rule-based systems, described in Chapter 8.

Given that the knowledge representation component is seen as a subsys-
tem, it should be dependable. That is to say, it should respond to queries
with results that are ‘correct’ according to the knowledge it contains. Furth-
ermore, its resource consumption, such as the time taken to respond to a
query, should not grow unmanageably as the size of the knowledge base
increases.
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11.3 First Order Logic

A good place to start our exploration of expressiveness and computability is
with first order logic (FOL, see Chapter 2). It permits statements of very
unrestricted scope, and its expressive power lies not so much in the proposi-
tions that can be expressed directly as in those that need not be explicitly
stated. The rules of inference enable the knowledge representation system to
generate the implicit information when it is required. As an example, con-
sider,

V x Friend(George ,x) = 3 y:Child(x.y)

which states that all George’s friends have children, without stating who
those friends are or even that there are any. Given that
V x — Child(Harry ,x), one can deduce (in FOL) that Friend(George ,Harry)
is false, without any explicit knowledge of who George’s friends are. Simi-
larly, the sentence

Child(Ian, Anne) or Child(John, Anne)

asserts that Anne is the child of Ian or John but without specifying which.
This property of providing expressive power through the use of implicit
information is not unique to FOL, but is used (perhaps in weaker form) in
any knowledge representation system that will perform inference. As we
shall see, it appears to be a major cause of computational intractability.

A fundamental property of first order logic is that the question of whether
or not a statement is implicit in the knowledge base is equivalent to whether
the corresponding sentence is a theorem. Answering a query becomes
theorem proving: the statement to be queried is expressed as a proposition,
and the system attempts to prove it from the axioms (‘facts’) it contains.
There is a problem, though, in that provability in FOL is ‘semi-decidable’,
meaning that, although a suitable procedure can always prove the theorem-
hood of a sentence that does follow from the axioms (see e.g. (Bundy, 1983)
for a proof of the soundness and completeness of resolution theorem prov-
ing), it cannot be guaranteed to terminate when presented with one that does
not. In other words, for some queries the knowledge representation system
might simply not respond. The problem of undecidability of FOL is related
to Godel’s famous results for formal arithmetic. However, any system
whose power is equivalent to or greater than arithmetic is not only undecid-
able but also incomplete, in that there are sentences that can be neither
proved nor disproved. See, for example (Rosser, 1939), or for a more enter-
taining account including relations to many other phenomena (Hofstadter,
1979).
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Even when the query is answerable (i.e. it represents a theorem in FOL),
the computational expense of proving it may be too great. An interesting
example of a problem which is effectively intractable for a standard FOL
system is Schubert’s Steamroller. In English, it is stated as follows:

Wolves, foxes, birds, caterpillars and snails are animals, and there are
some of each of them. Also there are some grains, and grains are
plants. Every animal likes to eat either all plants or all animals much
smaller than itself that like to eat some plants. Caterpillars and snails
are much smaller than birds, which are much smaller than foxes, which
in turn are much smaller than wolves. Wolves do not like to eat foxes
or grains, while birds like to eat caterpillars but not snails. Caterpillars
and snails like to eat some plants. Therefore there is an animal that
likes to eat a grain-eating animal.

The problem may be easily axiomatized in FOL, using predicates for ‘is-
wolf>, ‘is-fox’, etc., and ‘is-animal’, ‘is-plant’, ‘likes-to-eat’ and ‘is-much-
smaller-than’. It is possible to prove the final proposition by hand, but it
has utterly defeated all resolution theorem provers because the search space
is just too large. Many-sorted logics do permit a solution (Walther, 1985),
as does the KRYPTON system described in Chapter 10.

It seems therefore that knowledge representation systems with expressive
power equivalent to FOL are not dependable in the sense given above,
though it should be noted that the intractability represents worst case
behaviour, and that many queries will terminate quickly. One might ques-
tion whether FOL-equivalent systems are useless: the answer must be that it
depends on the problem the system is designed to solve. For example, if one
were trying to find a proof for Fermat’s Last Theorem, one might be happy
to leave a FOL system running for several months, looking periodically to
see if it appeared to be making progress and perhaps redirecting it if not.
On the other hand, a robot must not get bogged down trying to prove or
disprove a low-level subgoal, because it must come to a decision about what
to do within a defined amount of time. Aeroplanes and nuclear power
plants will not wait.

One could ensure that the knowledge representation system returns some
answer within a definite time limit, returning ‘unknown’ if the decision pro-
cedure has not terminated. But if this solution is adopted, it becomes
difficult to characterize the class of queries the system can answer. Attempt-
ing to make the system dependable in resource consumption by this means
will compromise its ‘correctness’.
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11.4 Limiting Expressive Power

Levesque and Brachman distinguish between queries about the information
so stored (‘Is Harry included in the list of George’s friends?””) and queries
about the world which the knowledge base is supposed to represent (‘Is
Harry a friend of George?). The distinction is important when the
knowledge base does not explicitly store complete information about the
world; database form is completely incapable of expressing incomplete infor-
mation, but retrieval of what it does contain is computationally inexpensive.
An alternative to the arbitrary termination of queries after a time limit is to
achieve termination with a valid answer by restricting the inferential capabil-
ity of the knowledge representation system. This of course limits the range
of queries that can be made of it. It is possible to circumscribe the compu-
tational complexity of the inference procedure by limiting the degree of
unstated information that can be used in inference. Instead, such informa-
tion must be explicitly present in the knowledge base. An extreme case is
the database form, where all information that is to be retrieved must be
explicitly stored.

Databases and full first order logic are two widely separated points on the
trade-off between computability and expressiveness. Levesque and Brach-
man consider three other formalisms in the same context: logic program-
ming, exemplified by Prolog; semantic networks; and frame systems. In each
case they are careful to point out their logical foundations, explicit and
implicit (Prolog’s Closed World Assumption, for example). This preoccupa-
tion with clearly defined semantics is very characteristic of Brachman’s work;
indeed he and Levesque are rather dismissive of inference mechanisms sug-
gested by the knowledge representation formalisms themselves and lacking
such a foundation. Of semantics networks, they say (op. cit.),

‘For better or worse, the appeal of the graphical nature of semantic nets
has led to forms of reasoning (such as default reasoning) that do not
fall into standard logical categories and are not yet very well under-
stood. This is a case of a representational notation taking on a life of
its own and motivating a completely different style of use not neces-
sarily grounded in a truth theory. It is unfortunately much easier to
develop algorithms that appear to reason over structures of a certain
kind than to justify its reasoning by explaining what the structures are
saying about the world.’

And of frames,

‘Like semantic networks, frame languages tend to take liberties with
logical form and the developers of these languages have been notori-
ously lax in characterizing their truth theories’.
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Though they mention three of what many people would regard as major
features of frame systems - default values, restrictions on slots, and attached
procedures - it is only to dismiss them when formalizing their own system
for the purposes of exploring expressiveness and computability, as we shall
see in section 11.5. This does not affect their argument, for the services they
expect from their system would probably have to be satisfied by any frame
system, and indeed the restrictions are necessary to allow precision in estab-
lishing criteria for comparison. One might feel that frames have lost some-
thing in the process; but the important conclusion is that when the semanti-
cally doubtful accretions have been jettisoned all the above formalisms can
be seen as restrictions of first order logic, exhibiting various degrees of
expressiveness and computational tractability.

11.5 An Hlustration of the Trade-off

In the context of frame systems, Levesque and Brachman have constructed
an example to illustrate the trade-off. They define a ‘frame description
language’ similar to that provided by KRYPTON’s TBox (see Chapter 10),
which allows the user to build composite type definitions from existing types
and attributes, starting from some set of primitives (a ‘type’ defines a set of
frames; an attribute corresponds to a slot in a frame). To be specific, a type
may either be an atomic symbol or take one of the following forms:

(AND type-1 type-2 ... type-n)
(ALL attribute type)
(SOME attribute).

An attribute can itself be an atom or have the form:
(RESTRICT attribute type).

(AND type-1 ... type-n) is a type denoting the set of frames which are
members of all the types listed. That set is the intersection of the sets
denoted by the individual types. (AND doctor male) denotes the set of male
doctors.

(ALL attribute type) is a type which denotes the set of things for which, if
they have the given attribute, its value is of the given type. For example,
(ALL friend doctor) denotes the set of frames whose ‘friend’ attributes (if
any) all have type ‘doctor’.

(SOME attribute) is a type which denotes the set of frames which have
that given attribute, whatever its value might be. For example (SOME
friend) is the set of frames that have any ‘friend’ slot.
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(RESTRICT attribute type) defines a new attribute from the old one by
requiring its values to be of the stated type. (RESTRICT friend doctor)
defines an attribute ‘friend who is a doctor’. Forms using RESTRICT are
appropriate for use in constructing type expressions in the above compound
forms, particularly ALL. For example, (ALL (RESTRICT friend male) doc-
tor) denotes everyone all of whose male friends (if any) are doctors. Noth-
ing is determined about friends who are not male. (SOME (RESTRICT
friend male)) denotes everyone with at least one male friend, irrespective of
the types of their other friends. The RESTRICT operator therefore provides
a way of qualifying expressions leaving certain information unspecified.

The above constructs can be used to create complex descriptions of
frames:

(AND person
(ALL (RESTRICT friend male)
(AND doctor
(SOME speciality)
)

)

denotes the set of frames of type ‘person’ for which each ‘friend’ attribute of
type ‘male’ (if any) is of type ‘doctor’ and has an attribute ‘speciality’, i.e.
every person whose male friends are all specialist doctors. There may be
frames in the resulting set that have friends who are not doctors with a
speciality, but those friends will not be male.

One might well ask what on earth this little language has to do with the
frames of Minsky and those who followed him, as described in Chapter 4.
The point is that Levesque and Brachman have to be precise about what
they mean by expressiveness and computational complexity. They admit
that the frame description language is highly restricted, but at least it meets
some of the possible requirements on a general frame system. They are able
to furnish it with a formal semantics, and to define the idea of ‘subsumption’
between two types, which they use in their analysis of complexity. Subsump-
tion is a simple idea, and is essentially set inclusion: one type subsumes
another if all instances of the second type are necessarily instances of the
first. For example, (AND doctor male) subsumes (AND doctor (ALL friend
female) male).

The language defined above with its operators AND, ALL, SOME and
RESTRICT is called FL. Levesque and Brachman denote by FL the
language without the RESTRICT construction. Not surprisingly, the loss of
RESTRICT means that there are some frame descriptions that can be
expressed in FL but not in FL™: so FL is more expressive. To show this in
some more detail, we can examine the forms in which RESTRICT can be
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used. To take the earlier example, (ALL (RESTRICT friend male) doctor)
would have to be written without RESTRICT as something like

(ALL friend (OR
(AND male doctor)
(NOT male)

)

requiring negations and disjunctions (with suitable definitions). (SOME
(RESTRICT friend male)), by contrast, has no obvious representation even
using OR and NOT.

But there is a price to pay. For they show that the operation of determin-
ing whether one type subsumes another is perfectly tractable in FL (being
O(n?) but not in FL, in which it is technically co-NP hard (for an intro-
duction to the complexity of algorithms, including the significance of NP-
complete and NP-hard problems, see for instance (Machtey and Young,
1978)). Levesque and Brachman prove their results by, in the first case, pro-
ducing an algorithm and analysing it, and in the second case by showing
equivalence to the problem of deciding logical implication, whose complexity
is strongly believed to be intractable (detailed proofs are given in the aug-
mented paper (Levesque and Brachman, 1987)). These two methods of
proof are unrelated and so do not together show why the addition of the
RESTRICT operator causes the threshold of intractability to be crossed, but
some light is shed on the matter by examining the algorithm for computing
subsumption in FL~. (The authors are indebted to Ronald Brachman for
discussing this line of work, currently in progress. Any errors in this discus-
sion are the fault of the authors, not of Brachman.)

The algorithm proceeds by converting an expression into a ‘flattened’
form, by combining nested AND expressions and collecting together ALL
expressions that have the same attribute. For example,

(AND (ALL friend (AND male
redhead
athlete

) -- people whose friends are all male redheaded athletes

doctor
(ALL friend (AND ambidextrous
blind

) -- people whose friends are all blind and ambidextrous
)

denotes doctors whose friends are all blind male redheaded ambidextrous
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athletes. This can be rewritten as

(AND doctor
(ALL friend (AND male
redhead
athlete
ambidextrous
blind

)

We can see that the above expression is subsumed by
(AND doctor (ALL friend redhead))

by determining that the ALL expressions refer to the same attribute and that
‘redhead’ subsumes the AND expression. It can be shown that the conver-
sion to flattened form can be performed in O(#?) time, and that subsump-

tion of flattened forms can be determined in the same time complexity. The
subsumption algorithm is recursive in the case of ALL expressions, as (ALL
al tl) subsumes (ALL a2 t2) if and only if al = a2 and tl subsumes t2.
The flattened form ensures that, at each level of recursion, the size of the
problem is reduced.

We now consider the example modified as follows:

(AND (ALL (RESTRICT friend male)
(AND redhead
athlete

) -- people whose male friends are all redheaded athletes

doctor
(ALL friend (AND ambidextrous
blind

) -- people whose friends are all blind and ambidextrous
)

This denotes doctors all of whose friends are blind and ambidextrous, but
only the male ones need be redheaded athletes. The restriction on the friend
attribute means that the ALL expressions cannot be combined, and the sub-
sumption algorithm must examine these attributes separately for each such
expression. Subsumption of the modified expression by

(AND doctor (ALL friend redhead))

can only be determined by establishing whether there are any doctors with
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non-male friends. This type of determination could potentially be as com-
plex as the original problem, and so the problem does not necessarily reduce
in complexity with each recursion.

11.6 Conclusion

Knowledge representation formalisms may be viewed as forming a spectrum
of varying inferential power. Databases fall at the low end, and the scale
goes through frame languages, logic programming and other schemes up to
first order logic and beyond. As one moves along this scale the computa-
tional complexity of answering queries about the knowledge base increases,
and eventually the problem becomes intractable. It is not yet known how to
categorize a knowledge representation scheme into its position on the scale
until it is completely specified. It appears that the ability to use information
not explicitly stored, but inferrable from other information, adds to the
expressive power, but is a major contributor to the computational complex-
ity.

There are two implications. Firstly, it remains useful and interesting to
develop knowledge representation formalisms which are subsets of FOL in
order to explore this dimension of computability. There may be knowledge
representation systems which are computationally tractable, and sufficiently
expressive to be useful in some domain. Secondly, if such studies show that
inference becomes intractable for any useful knowledge base, the Knowledge
Representation Hypothesis would have to be reconsidered. It may be that
intelligent systems which can operate in real time will be composed of some
number of simpler, tractable representation and reasoning components, with
some sort of overseer which arbitrates among them and endows the system
as a whole with apparently intelligent behaviour.

If the provision of a full inferencing capability is liable to be intractable,
perhaps some restricted capability should be offered. In the words of
Levesque and Brachman (op. cit.),

‘Instead of automatically performing the full deduction necessary to
answer questions, a knowledge representation system could manage a
limited form of inference and leave to the rest of the knowledge-based
system (or to the user) the responsibility of intelligently completing the
inference.’

Of course, what is meant by this is not at all clear. Just as they shy away
from those features of frames that have not (yet) been given a clear seman-
tics, so Levesque and Brachman are hesitant when faced with this prospect:

‘First of all, it is far from clear what primitives should be available...
Finding such a service that can be motivated semantically (the way logi-
cal deduction is) and defined independently of how any program
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actually operates is a non-trivial matter, though we have taken some
steps towards this...’
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