ESPRIT Project 322
CAD*1
CAD Interfaces

Status Report §

I. Bey and J. Leuridan (editors)

ESPRIT Subpogramme 5
Computer Integrated Manufacture (CIM)
R&D area CAD/CAE

March 1989

KfK-PFT 145

Pages 221
Figures 100
Tables 5
References 45

Ubersicht

Das Ziel des ESPRIT Projektes Nr. 322: "CAD Interfaces” ist die Definition der wichtigsten
Schnittstellen in CAD/CAM Systemen fiir. Datenaustausch, Datenbank, Finite Elemente
Analyse, experimentelle Analyse und fortgeschrittene Modellierung. Die Definition dieser
Schnittstellen wird in enger Zusammenarbeit mit den internationalen
Standardisierungsbemiihungen in diesem Bereich durchgefiihrt.

Das Projekt soll dazu beitragen, europédisches Know-how zusammenzutragen und den breiten
industriellen Einsatz von CAD/CAM Systemen zu beschleunigen. Der europaische Einfluss auf
die internationalen Standardisierungsgremien soll dabei gestarkt werden.

Der vorliegende Bericht ist eine Dokumentation der Ergebnisse der im vierten Projektjahr
durchgefiihrten Arbeiten.

Abstract

ESPRIT Project 322, "CAD Interfaces”, has been established to define the most important
interfaces in CAD/CAM systems for data exchange, data base, finite element analysis,
experimental analysis, and advanced modelling. The definitions of these interfaces are being
elaborated in harmony with international standardisation efforts in this field.

The Project is to contribute to the compilation of European know-how and to facilitate the
application of CIM methods in industry on a broad basis. In this way, the European influence
on international standardisation bodies is to be strengthened.

This report is a documentation of the results of work carried out in the fourth year of the
Project.

Editors’ addresses

1. Bey
Kernforschungszentrum Karisruhe GmbH

Postfach 3640, D-7500 Karlsruhe 1/FRG

J. Leuridan
Leuven Measurement and Systems
Interleuvenlaan 65, B-3030 Heverlee/Belgium

Partners in the Project are:

Bayerische Motorenwerke AG/FRG
CISIGRAPH /France

Cranfield Institute of Technology /UK
Danmarks Tekniske Hoejskole/DK
ERDISA/Spain

Geselischatt fuer Strukturanalyse mbH/FRG
Katholike Universiteit Leuven/Belgium
Kernforschungszentrum Karlsruhe GmbH/FRG
Leuven Measurement and Systems/Belgium
NEH Consulting Engineers ApS /DK
Rutherford Appleton Laboratory/UK
Universitaet Karlsruhe/FRG.

Table of Contents

Introduction
1. Working Group 1: Wire Frame/Draftingcccounsiccmeeeemnnnirecassnssnnceees 1
1.1 G T T T e 1
1.2 Goals stated at the beginning of the WOork............cceecrvnninieceninneciiiiniieens 1
1.3 Achievements SO far.............ocovoiviriiveeeieeencet et saene s 1
1.4 Contributions to international cooperation within Europe................c.c.c.c... 2
1.5 Contributions to the standardisation effort at international level.
Achievements SO FAr ... see e e es e e eeneeas 2
1.6 On dratting data modelling............cooeeeeeurieenereee e 3
1.7 CAD*| drafting data specification............cc..cccevreneeceeinennrcercnicrcenieens 5
1.8 The Neutral File Adapting System (NFAS)ccooceniniinenccececeeee 24
1.9 Experience gained using the Neutral File Adapting System (NFAS) 35
2. Working Group 2: SOlAS c..couvvueemmniimmncissercsnmsmmmmmiicesisisenenerseennneesneseses 43
21 Specification s mai i nm s T s cresss e rsesssesraserrsas 44
2.2 Semantics of the CAD*I data StrUGLUreS...........coceeeviieieecereinceereeerceenn 45
2.3 Algebraic specification of CSGi.........ccccvvvvviriinerrcrcinercrceenrc e 46
2.4 SCANNET ANA PATSEToecveeeeeeriieererireireeeertestessesseesasssessasssessassesssesaresssasenaes 54
25 Processor development for VErsion 3.3........c.cccocveirienvceniniesecnnncecenesineees 54
2.6 Results of solid model transfer tests during the 3rd international
CAD*I workshop in Copenhagen.........cicrinnerceieneneseenesseesseeneenans 85
27 Coordination of European efforts regarding STEPccccoconiriinninnenn. 89
2.8 EXPIOMALION «.veeseiiississsissnssnssiosssssnssnssnssassnssssasasssesonssnsssisssisissnnisessns ios iasiiias 90
29 REFEIENCES ...ttt sttt et s e eaeeemse e 90
3. Working Group 3: SUMacescccivecersssicsnmnmennireinssssnssnsesssssesssnnssssens 93
31 INETOAUCHION. ...ttt s ae st 93
32 RESUIS.... oo e e comeim et sve s s eeie s s ene s e e ereue s oneer a3
3.3 Standardisation ACtVItIeS .. s nviiumairm st n i ST 94
3.4 OUHOOK.....ceeeeeeeeeee ettt et e st e s aeessese e s e s ss e s s stesanes 95
APPENAIX Aottt ete e sae et sae e st e et e s na e st e s ene e eneasanas 96
APPENAIX Bi.......ooeeeeeeee ettt e e e se e 99
4.1 Working Group 4: Data Base........ccoccomrirecciicicniinccccccaessisssnaes 103
41.0 General INtrodUCHION...........ccooiieee et 103
4.1.1 Problems common to CAD users and CAD developers.........c..cccceeenuene. 104
4.1.2 The proposal of Working GroUp 4coeeeuienireneneeeie et 105
4.1.3 AChIBVEIMENES.......oiiiieeeeeeceec ettt ettt a et ae e s e ee e sre e 111
4.1.4 Main results and future taskscceceirenenesnnecncereeee e 127
41.5 Expected benefits for the users of the CAD*| subroutines...................... 127
T O 10T e e et o PRI e e 132

4.2

421
422
423
424

425
426

5.1
5.2
521
5.2.2
5.2.3
52.4
525
5.3
5.4
5.5

6.1
6.2
6.3
6.4

71
7.2
73

8.1
8.2

Working Group 4: Networkscccoeeveeeiieiicnnnisninscccensenseiiccecssnnenes 133
EETOTUCHION. .. eeeeeeeeeeeeeeetirsvreeseeesseeseeentesseeessesrbrssbross s et aas e e e ses st sbe s e nsaates 133
CAD data exchange and network ServiCesccuovinminienniniennnen: 133
FHETANSIONcoereeneeererensais cidisiiitanimnmnsatvmeossesoaeseivianaueass saidisivosanunssssnsionssis 137
Message XChANGE ..ottt ene s 158
CONCIUSIONSooeneeriitiererieeieeteeee et es e esseste et saesses s e sesssesseseeneasseassessann 169
RElETENEES, o rimrraiss rovierrrartrs e ST e i otk nfaameeesaEres s3 Tonte e s SR e EEL T SE s e st oo s 171
Working Group 5: Advanced Modelling........c.cccceieveeciessernnnvecsssannans 173
INtrOAUCHON = mirnrmaasmrn i G e R BT i e are e 173
Report on performed WOrK...........cccoevvecirecinieseesece e 174
Handsketching Input System (HIS)ccooeirerivnieee e 174
Design by Technical Terms Implementation (DTT)......ccccecevvnenrcrninncene. 176
Technical Modelling (TMI) and Geometric Associativity Interface (GAI) 187
Design DY fEAIUIES.......cccvviiiicietrrienineeneirericssesvessse e sesssessnsssessesssnssnens 194
Relevance Of :STEP . wiaimisimiinsiveinstisas el s ks st sitsiisbii ans 199
ResUItS it i s A e b PR e T e e 203
OULIOOK ...oovrieeieiineienesesessesesessessesse s st ssesbe st esessessesessessestessassessasenssens 206
REfEIENCESee ittt e s sres s e e e e e e s st et e e ban e aes 206
Working Group 6: FEM Model Description........ccceceeescceereircacrincnnens 209
O B I ON, s:sremm rrmimesesmesseesassvammesse s smessuseoss sonsanssesensionsasssssasssiaasasssves 209
Summary of Final REPOTtccocniriirinveniiiieneseninsesessssessesesessessenes 209
ACHIBVEMBNIS i, .. 255 siessvs iTeneestons sttt st Ak s TiEE oS L s s e e s e T s 209
CONCIUSION.......eeeeeeticeecieri e ecee et ee et e st e s s ee e e et e s e eneesssesasnsens 210
Working Group 7: Dynamic Model Optimization........ccccccccrreccunnnenne. 211
INErOAUCHION. ...ttt 211
Dynamic model optimization: aim and approaches.......c.....ccccececvinieeenn. 211
Contents of the final Working Group 7 report........cccvevvnvecenenecnennens 213
Working Group 8: Experimental Dynamic Structural Analysis......... 215
Synopsis of Working Group 8 final report...........cccovecennnincceeniniecenn 215
REIEIENCEScouviireeieeeteie ettt sve st et sta st e sressnasseens 217

Standardisation ACtiVItIeS.......ccccviirriireremesereennssmeensiseesssrasssniressssennase 221

M T e

e WSS TSI

introduction

This fifth Status Report of ESPRIT Project 322 "CAD
Interfaces" (CAD*I) is a summary of the main results of
the fourth year of the project’s running time, covering
the R&D work period from November 1987 to October 1988.

At this stage and taking into account the results of the
international standardisation efforts in the field of CAD
interfaces (especially after the Tokyo ISO TC 184 SC 4
meeting of Nov/Dec 1988) it is possible to state that the
CAD*I project has achieved most of the original goals
projected at the beginning: STEP, the first international
Standard for Exchange of Product Definition Data, has
reached the status of a Draft Proposal on ISO level.
CAD*I work and CAD*I staff have influenced this
standardisation process technically and politically in
many important issues in a very strong way, helping to
get European requirements to be included and accepted by
the international community active in this field. An
overview on the recent standardisation activities of the
project is given in section 9.

After four years of research and development work a lot
of results have been merged into prototype software
products. They are based on the specification for neutral
files done in the first part of the project and were
written using modern software tools. Hints to available
preprocessors, postprocessors, software tools, and other
software packages at the partners sites are given in the
different sections describing the project results. These
descriptions follow the line of the 8 different working
groups into which the R&D work was subdivided at the
beginning of ESPRIT Project 322: CAD*I. Especially in the
field of CAD data exchange and CAD-FEM interfaces pre-
and postprocessors have been developed for a big number
of commercial systems. Among them are: BRAVO3 (Applicon),
CATIA (IBM), EUCLID (MATRA DATAVISION), PROREN (ISYKON),
ROMULUS (Shape Data), STRIM (CISIGRAPH), TECHNOVISION
(Norsk Data), ANSYS, NASTRAN, PAFEC. The interest and
commitment of CAD and FEM vendors has steadily increased
in the 1last time and there is a very good chance for
vendors applying CAD*I results to be the very first ones
to have STEP processors available on the market.

The CAD*I project will continue its work %n the track of
good partnership and cooperation also in 1its fifth year.
Efforts to push standardisation and to convert research
results into finally marketable products will be done
with the wusual commitment to the goals of the ESPRIT
programme.

With this report the CAD*I staff wants to present the new
CAD*I results again to a broad audience of experts in
industry and research institutions. Detailed final
reports of Working Groups 6 through 8 are to be published
in spring 1989 at Springer Verlag Heidelberg.
Acknowledgements are given to all partners, especially
for those who left the project as scheduled after four
years of productive work and personal commitment.

Karlsruhe, December 1988.

1. Working Group 1: Wire Frame / Drafting

1.1 General

During the fourth project year emphasis was placed on
drafting data specification. The CAD*1 Wire Frame
Specification, which was developed at the beginning of the
CAD*I project, is fundamental to CAD*I solids, hence these
data structures have been frozen, see: Specification of a
CAD*I Neutral File for CAD Geometry, Version 3.3 /1/.

1.2 Goals stated at the beginning of the work

- Specification of wire frame data to be integrated in the
CAD*I Geometry Specification.

- Transcription of atomic statements on contents of
technical drawings to have a basis, i.e. the so-called
statement catalogue, for the CAD*I Drafting Data
Specification.

- Specification of drafting data in a data definition
schema, which describes how technical drawings can be
represented in a neutral file for exchange or archiving.
Emphasis shall be placed on influencing design decisions
for STEP because no CAD*I processor for drafting data has
been planned.

- Improvement of CAD/CAM data exchange by adapting neutral
files to the requirements of the CAD system receiving the
data and of the applications for which the CAD system is
used for. The Neutral File Adapting System is the subject
of chapter 1.8.

1.3 Achievements so far (considering more the strategic
relevance of the resulits)

- The CAD*I geometry specifications had a strong influence
on STEP.

- CAD*I WGl initiated a working relationship with German
experts on drawing standards. The aim of this cooperation
is to develop a statement catalogue which is in fact a
CAD drawing standard. First steps towards international
liaison have been taken.

- Both CAD*I requirements for drafting and CAD*I views on
this topic are in ISO discussion. Some important facts
which have to be considered by each developer gf data
structures for data describing drawings are subject of
chapter 1.6.

- Experience gained using the Neutral File Adapting System
(NFAS) to adapt CAD models to the NC-programming
environment shows that the: expectations could be
exceeded. A large number of applications require the use
of NFAS to be integrated in an industrial production
process (see chapter 1.9).

1.4 Contributions to international cooperation within Europe

All CAD*I WG 1 members attend meetings of ISO/TC184/SC4/WG1l
with a DIN NAM 96.4 mandate. Up to now no European
standardisation body 1is represented within the STEP
community.

1.5 Contributions to the standardisation effort at international level.
Achievements so far

The CAD*I working groups 1 to 3 developed the CAD*I Geometry
Specification which became a contribution o
ISO/TC184/SC4/WGl. The specification was published /1/.

Chapter 1.7 of this report contains data structures for the
neutral representation of dimensions. These structures are
realisations of CAD*I requirements and illustrate the
necessary improvement on structures which are well-designed
for processor implementors but which do not represent
knowledge about the respective applications. The schema has
been written in Express because it needs to be discussed
within the ISO TC184/SC4 community which has chosen this
description language. Express is similar to CAD*I HDSL and
has been influenced by it.

Some examples showing how data according to the proposed
structures may appear are attached to the schema, that has
been contributed to ISO/TC184/SC4/WGl (doc no. N252) /2/.

iy T e e

S S o’

P T i p——

-y

1.6

On Drafting Data Modelling

Eight CAD*I theses for discussion within the ISO are noted
in the following.

I

B £ B

A

Awareness of ambiguity in technical drawings has led to
restrictive drawing standards. Queries which have to be
answered by interpreting drawings that comply with
conventional drawing standards can be answered without
any element of doubt, guesswork or having to refer back
to the originator. This certainty that has been
achieved for manually prepared drawings 1is also
required for drawings described according to an
exchange standard 1like STEP. That is to say, any
queries made concerning the received data must be able
to be answered without any element of doubt, guesswork
or having to refer back to the sender. Otherwise
additional effort at the receiving end would be
necessary and 1in the extreme instance it may be
senseless to archive exchange files.

A fundamental fact for the specification of data
structures is that developers of data structures and/or
processors never have equivalent know-how about the
applications. Consideration of this and of the role of
application experts, who may not have any data
processing knowledge, leads to the realisation that an
application data exchange specification needs to be
self-contained, 1i.e. for drafting: a drafting data
specification has to include the drawing standard.

When comparing a drawing standard that has been
incorporated in exchange standard documentation with
conventional drawing standards, it can be stated that

(1) ambiguity must be avoided to the same extent
regardless whether the technical drawings are manually
prepared or described by data according to the exchange
standard

(2) exceptional cases should be minimised for CAD
(conventional drawing standards cannot be perfectly
implemented in a CAD system due to too many admissible
exceptions)

(3) conventional drawing standards presuppose an
understanding typically possessed by technical
draughtsmen but not by programmers. Therefore, within
an exchange standard, documentation of constraints has
to be free of implicit assumptions, contain integrity
constraints (which are mostly self-evident for

Iv

VI

VII

technical draughtsmen), and contain constraints for the
graphical form.

The main task of data model development is to recogpise
the syntactical rules to which the elements described
by the data will be subject. In the context of the
drawing description these rules are determined by
conventional drawing standards. However, the drafting
rules are not always explicitly given. Therefore,
developers of a CAD exchange standard who are concerned
with drafting run the risk of 1looking over many
implicit rules. The recognised rules will become the
constraints of each drawing description.

Within data structure development constraints can be
taken into consideration in two ways:

(1) the data structures can be designed in such a
manner that many constraints are inherent, i.e. the
data according to the data structures cannot violate
such inherent constraints

(2) the data structures can be documented together with
the constraints (by WHERE-clauses or informally) for
the purpose of instructing processor developers to
provide consistent data by program code.

Only the exclusion of data processing knowledge by
presentation of the constraints which have been
considered by the design of data structures will enable
communication regarding the adequacy of the specified
data structure collection for a specific application.
Only if a common understanding is guaranteed by a
document that includes the following three points
potential users of the exchange standard will be able
to evaluate this standard. In this case they can leave
data structure design decisions to a small number of
experts.

(1) Which assumptions have been made about the
applications,

(2) which constraints governing the information
represented in exchange files have been considered,

(3) the degree of responsibility, that exchange data
will conform to applications remaining at the sending
system.

Concerning the requirement "to transfer consistent data
only", many developers take the contrary view that only
"functionality" has to be provided by exchange data.

-

This would mean, for instance, that nearly arbitrary
graphs, whether or not they can be regognlsed _apd
interpreted, can be described as carrying specific
semantics. In other words, nonsense may be representgd
by data which is syntactically correct. This opinion is
due to the fear of being too restrictive.

VIII Developers of data structures for data describing
technical drawings have to consider what happens if the
projected shape 2D geometry is derived from 3D shape
geometry applying presentation information in the
receiving system. In this instance the geometry to
which the dimensions have to be related is not
represented in the exchange file by named data. It is
therefore difficult to ensure that dimensions are
consistent and connected with the geometry to be
dimensioned.

1.7 CAD*| Drafting Data Specification

SCHEMA drafting;

(* Type names that are written in upper case letters are of
types not specified in this schema. *)

(* SUBSCHEMA dimensions *)

(* NB, the supertypes POINT and DIRECTION which are used as
attribute types can be realised by simple coordinates or by
data of complex structure which express the relations to
geometry. Thus these structures are really upward-
compatible. *)

(* If dimension descriptions according to the structures are
linked, the dimensions are connected. Syntactically correct
dimension descriptions always describe valid dimension
graphs. They are free of redundancy. *)

(* The informal descriptions of the structures may loock

somewhat complicate -~ but they contain no constraints
because all constraints have been described formal or are
inherent constraints, i.e. the data according to the

structures cannot violate such inherent constraints. NB.,
structures that provide redundancy (like those of IGES)
require a greater amount of formal or informal description.

%)

ENTITY dim predecessor SUPERTYPE OF (initial_dim_ attributes,
lin_dim, ang_dim,
arc_dim_par, arc_dim_rad);

END_ENTITY;

ENTITY initial_dim_attributes SUBTYPE OF
(dim_predecessor) ;
dim_line_dir : DIRECTION;
determinator : POINT;
DERIVE
pre_list : LIST [1,#] OF dim_predecessor
= CREATE_LIST (initial_dim_attributes);
reference : LOGICAL = id (.T.):
next dir : DIRECTION = id (dim_line_dir);
WHERE
DEFINITION SPACE (determinator)
DEFINITION_SPACE (dim_line_ dir)
END_ENTITY;

DRAWING SPACE;
DRAWING_SPACE;

(* An initial_dim_attributes occurrence cannot refer to (or
contain) a dim_predecessor occurrence. Therefore, it
terminates a list of dimension descriptions. The relation
between an element (n) and an element (m) of such a list,
where n < m, is "is successor of". If no "embedded entity"
is used, those lists are inverted in a physical file.

Both the logical value indicating whether the dimension or
dimension chain that is described by such a list starts with
an extension line and the real value designating the length
of the extension 1line can be calculated easily. Formal
specification of these derived attributes requires Express
procedures, which shall not be specified at the moment.
However, an informal specification shall be given in the
following.

Let the initial dim attributes occurrence (i.e. the 1list
terminator) be the last list element having the list index m
(the 1list contains two elements at 1least). Assume
element (i) being the element (MAX(n), 0 < n < m) that has a
true reference_line flag or make i = 1, if no such element
occurs. Then all elements from i to (m-1) represent

dimensions that are related to the determinator of the
initial dim attributes occurrence (hence to the extension
line in question, if one exists). Now we can state, that no
extension line appears at this determinator position, if and
only if all offsets of the elements i to (m-1) are zero or
omitted. Otherwise an extension line appears and its length
is determined as follows. Let S be the family of all
subintervalls of [i,m-1] that is contained in the index set
(i.e. all intervals ([j,k] with i <= j <= k <= m-1 are
elements of S). Then the extension line length is

MAX(|= g offset,|)

NeSe

where offset, is the offset value of list element n. ¥*)

1.7.1 Linear Dimension

(* 1in_dim is the structure of descriptions of 1linear
dimensions having no or two perpendicular extension 1lines.
The dimension that can be described according to this
structure may stand alone or be contained in a combined
dimension graph: *)

ENTITY lin_dim SUBTYPE OF (dim_predecessor):;
first_attribute : dim_predecessor;

note : NOTE;

terminator_inside : LOGICAL;

offset : OPTIONAL REAL;
determinator : POINT;
reference ¢ LOGICAL;
DERIVE

pre_list : LIST [1,*] OF dim_predecessor
= EXTEND_LIST (first_attribute.pre_list, 1lin_dim);
pre_ref : dim_predecessor
= LAST_TRUE_REFERENCE (first_attribute.pre_ list);
next _dir : DIRECTION
= id (pre_ref.next dir);
WHERE
DEFINITION_SPACE (determinator) = DRAWING_SPACE;
determinator <> pre_ref.determinator;
END_ENTITY;

(* The dimension line of the dimension that is described by
data according to this structure inherits its direction from
pre ref (one of its predecessors). Also its start_point 1is
given with regard to a predecessor (see offset below). The
dimension line terminates either at the determinator or at
an extension line that is defined by determinator and is
being perpendicular to the dimension line.

The flag reference is meaningful for succeeding dimension
descriptions only. A dimension description is successor if
it is in the relation "is successor of" to the 1lin_dim
occurrence, see initial_dim_attributes. A true reference
flag denotes either the extension line at the accompanying
determinator (if there is an extension line) or (otherwise)
the determinator itself. Dimension lines that are denoted by
succeeding dimension descriptions are related to this
determinator/extension 1line until another true reference
flag occurs in the sequence (i.e. until pre ref changes).

If the flag terminator_inside is true, both termination
symbols of the dimension line are placed between and point
to both the reference that is valid for this 1lin dim
occurrence and the possible new reference that is
determined by determinator. If the flag terminator inside is
false, a standard elongation of the dimension 1line
(proposal: 5 times the termination symbol length) beyond the
part outlines and/or extension lines may be necessary. This
depends on whether there is a preceding or a succeeding
aligned dimension 1line. If two consecutive dimension
descriptions have a false terminator_inside flag while the
offset of the second is omitted or zero, the dimension lines
have a «circle 1instead of the arrow heads at their
intersection (see example 7).

If the offset value is not equal to zero it follows that an
extension line is given at pre ref.determinator.

If pre_ref is an initial_dim_attributes occurrence, offset
is the distance from the initial_dim_attributes.determinator
in the direction "initial_dim_attributes.dim_line_dir plus
ggsn,

If an offset that is not equal to zero is given and pre_ ref
is a 1lin_dim, ang _dim, or arc_dim _rad occurrence, this
offset represents the orthogonal distance (measured on the
extension line) of the dimension line from the dimension
line that is denoted by the immediate preceding dimension
description. Same applies, if the offset is not equal to
zero and the reference is given by an arc dim par which is
not the immediate predecessor. If the offset is not equal to
zero and the reference is given by an arc_dim_par which is
the immediate predecessor the offset is measured from the

arc centre in a direction which is centrifugal and which
points to the end point of the dimensioned arc.

A superimposed running dimension is given, blh 5 a)_ all
dimensions that descriptions are 1linked are 1linear
dimensions and b) all reference flags are false and c) all
offsets are 2zero or omitted. In this case the first
termination symbol is a circle (see example 6). *)

(* Propositions from the statement catalogue:
1. a linear dimension has a straight dimension line

2 a straight dimension line may be terminated by either 2
arrow heads or 2 circles or 1 arrow head and 1 circle

Bis a straight dimension line may exceed the arrow heads,
but not the circles

4. the 1length between the arrow heads or circles of a
straight dimension line corresponds to the dimensional
value with regard to the scale applied

5 where a dimension 1line has 2 arrow heads they are
oriented against each other

6. an extension line contacts the dimension line at the
arrow head or circle

7 a straight extension line is directed perpendicular to
the straight dimension line

8. a dimension line has exactly 1 dimension note

9. dimension notes may be placed either at leaders or

above dimension lines

10. the reading direction of dimension notes has to be
oriented parallel to the dimension 1lines they are
assigned to, except: If the dimension note is part of a
superimposed running dimensioning, the dimension note
may be placed near the arrow head, in line with the
corresponding extension line.

*)

SN0

1.7.2 Angular Dimension

(* ang_dim is the structure for descriptioqs of angular
dimensions having two dimension 1line terminations. The
dimension that can be described according to this structure
may stand alone or be contained in a combined dimension
graph: ¥*)

ENTITY ang_dim SUBTYPE OF (dim_predecessor) ;
first attribute : dim_predecessor;

note ¢ NOTE;

develop dir : LOGICAL;
terminator_inside : LOGICAL;
offset : OPTIONAL REAL;
determinator ¢ POINT;
reference ¢ LOGICAL;

next _dir : DIRECTION;
DERIVE

pre_list : LIST [1,*] OF dim_predecessor
= EXTEND_LIST (first_attribute.pre_list, ang_dim);
pre_ref : dim_predecessor
= LAST_TRUE_REFERENCE (first_attribute.pre_list);
WHERE
DEFINITION_ SPACE (determinator) = DRAWING_SPACE;
DEFINITION SPACE (next_dir) DRAWING_SPACE;
END_ENTITY;

(* The dimension line of the dimension that is described by
data according to this structure terminates either at the
determinator or at an extension 1line that is defined by
determinator and is having the direction "next_dir plus
900". The dimension line, which is an arc, is determined by
its start point that is given by offset (see 1lin_dim), by
the inherited dimension line direction which is a direction
of the tangent at its start point, by the flag develop dir
(see below), and by the arc centre point that can be
calculated because the direction next dir is given. If the
flag reference is true, next_dir becomes the dimension line
direction that is hereditaried to a succeeding dimension
description.

T s

—

- 11 -

The flag develop dir determines the side of the reference
that the dimension is positioned at according to the current
dimension 1line direction, that is inherited from the
predecessor pre_ref.

terminator_inside, and reference are defined as for the
lin_dim structure. #*)

(* Propositions from the statement catalogue:

s 8 an angular dimension has a circular dimension line

2's a circular dimension line may be terminated by either 2
arrow heads or 2 circles or 1 arrow head and 1 circle

D a circular dimension line may exceed the arrowheads,
but not the circles

4. where a dimension 1line has 2 arrow heads they are
oriented against each other

5 a dimension line has exactly 1 dimension note

6. an extension line contacts the dimension line at the
arrow head or circle

A dimension notes may be placed either at 1leaders or
above dimension lines

8. the extension 1lines of an angular dimension are
perpendicular to the tangents of the circular dimension
line at its terminators

#)

- 12 -

1.7.3 Arc Dimension

1.7.3.1 Arc Dimension Parallel extension lines

(* arc_dim par is the structure for descriptions of arc
dimensions having two parallel extension lines and two lines
(centre indication lines) that indicate the centre of the
dimensioned arc. The dimension that can be described
according to this structure may stand alone or be contained
in a combined dimension graph: *)

ENTITY arc_dim_par SUBTYPE OF (dim_predecessor) ;
first_attribute : dim_predecessor;
note : NOTE;

terminator inside : LOGICAL;

distance : POSITIVE_REAL;
determinator : POINT;
reference ¢ LOGICAL;
next_dir : DIRECTION;
DERIVE

pre_list : LIST [1,*] OF dim predecessor
= EXTEND_LIST (first_attribute.pre_list, arc_dim par);
pre_ref : dim predecessor
= LAST TRUE_ REFERENCE (first_attribute.pre list);
determined_arc : ARC_SEGMENT
= ARC_CALC (first attribute, determinator, next_ dir);
WHERE
DEFINITION_SPACE (determinator) = DRAWING_SPACE;
DEFINITION SPACE (next_dir) = DRAWING_SPACE;
ARC_LENGTH (determined_arc) <=
RADIUS (determined_arc) * I/2;
determinator <> pre_ ref.determinator;
next dir <> pre_ref.next dir
END_ENTITY;

-13 -

(* The circular dimension line is an arc that is.an offset
curve with the determined arc as basis curve and distance 1s
the distance from the basis curve. The dimension line lies
at the convex side of the determined_arc and is connected
with it by two parallel extension lines. Within a combined
dimension these two lines are not shared with any preceding
or succeeding dimension. terminator_inside is defined as for
the 1lin_dim structure.

The start point of determined_arc is the
pre_ref.determinator. A centre indication 1line with this
point as an end point has the directions "pre_ref.next dir
plus/minus 90°". The intersection of this line with the line
that has the direction "next _dir plus/minus 90°" and that
has determinator as an end point is the centre point of the
determined_arc. Thus we have two centre indication 1lines
(both with the centre point as end point) of which one is
the relevant for succeeding dimensions.

A true reference flag designates the centre indication line
through determinator as reference for successors. *)

- 14 -

1.7.3.2 Arc Dimension Radial extension lines

(* arc_dim_rad is the structure for descriptions of arc
dimensions having two extension lines through the centre of
the dimensioned arc. The dimension that can be described
according to this structure may stand alone or be contained
in a combined dimension graph: *)

ENTITY arc_dim_rad SUBTYPE OF (dim_predecessor) ;

first_attribute : dim_predecessor;
note ¢ NOTE;

offset : OPTIONAL REAL;
determinator : POINT;

next_dir : DIRECTION;
DERIVE

reference : LOGICAL = id (.T.);
pre_list : LIST [1,*] OF dim_predecessor
= EXTEND_LIST (first_attribute.pre_list, arc_dim_rad);
pre_ref : dim_predecessor
= LAST_TRUE_REFERENCE (first_attribute.pre list);
determined_arc : ARC_SEGMENT
= ARC_CALC (first_attribute, determinator, next_dir);
WHERE
DEFINITION_SPACE (determinator)
DEFINITION_SPACE (new_dir)
ARC_LENGTH (determined_arc) >
RADIUS (determined arc) * II/2
determinator <> pre_ref.determinator;
END_ENTITY;

DRAWING_SPACE;
DRAWING_SPACE;

(*offset and determinator are defined as for the 1lin_dim
structure. next_dir becomes the dimension 1line direction
that is hereditaried to a succeeding dimension description
(because reference is always true). Also terminator inside
is assumed to be always true and is therefore omitted. (For
reference and terminator_inside see lin_dim.)

The extension 1lines are elongated to the centre of the
determined_arc and serve therefore as centre indication
lines. A leader starts at the note and points to the
mid_point of the determined_arc. *)

10.

11.

*)

(*

- 15 -

Propositions from the statement catalogue:

an arc dimension has a circular dimension line

a circular dimension line may be terminated by either 2
arrow heads or 2 circles or 1 arrow head and 1 circle

a circular dimension line may exceed the arrowheads,
but not the circles

where a dimension 1line has 2 arrow heads they are
oriented against each other

a dimension line has exactly 1 dimension note

an extension line contacts the dimension line at the
arrow head or circle

dimension notes may be placed either at 1leaders or
above dimension lines

where the angle constituted by the terminating points
of the circular dimension line and the centre remains
under 90° the extension 1lines are parallel to the
bisector of the angle

where the extension lines are parallel the length of
the circular dimension 1line <corresponds to the
dimensional value

where the extension lines are not parallel, they are
perpendicular to the tangents of the circular dimension
line in its terminating points

where the extension lines are not parallel, there has
to be a leader pointing from the dimension note to the
dimensioned arc

END_ SUBSCHEMA dimensions ¥*)

END SCHEMA (* drafting *);

216 4

Neutral file examples

The preliminaries need not be given expl%citly but can be
given as projections, intersections, directions of any
directed curve, etc.. Therefore the keywords that are used
shall be considered as representatives of the respective

supertypes.
(¥ 8

Example 1: ?0
Arc dimension with N I A

parallel extension lines e ey

20.

! %

-- preliminaries (see figure for definition) --

@1= ARC_SEGMENT

@2= LINE_SEGMENT

@3= LINE_SEGMENT

@4= CARTESIAN_TWO_COORDINATE (assumed is the intersection of
#1 and #2)

@5= CARTESIAN_TWO_COORDINATE (assumed is the intersection of
#1 and #3)

@6= TWO_SPACE_DIRECTION (assumed 1is the direction of the arc
tangent at #4)

@7= TWO_SPACE_DIRECTION (assumed is the direction of the arc
tangent at #5)

-- data according to the drafting schema ~--

@8= NOTE (needs specification);

*1

@9= ARC_DIM PAR (INITIAL_DIM ATTRIBUTES(#6, #4), #8, .T.,
20., #5, :Ez; $7h

03

| ———— B s e T

= R e —— . e _ g et & 51 o

0 e TR T T TN e SRR e T e SR TR TR MRS ST =R WP R S NN g gt W S e pony W NS BV YN SRR Sy, T N RSP sl a R e

= 47 &

Example 2: i
angular dimension

01 &3

! %

-- preliminaries (see figure for definition) --

@l= LINE_SEGMENT

@2= ARC_SEGMENT

@3= LINE_SEGMENT

@4= CARTESIAN_TWO_COORDINATE (assumed is the intersection
point of edges #1 and #2);

@5= CARTESIAN_TWO_COORDINATE (as #7 - assumed is the
intersection point of edges #3 and #2);

@6= TWO_SPACE_DIRECTION (assumed is the direction of the
arc tangent at #4)

@7= TWO_SPACE_DIRECTION (assumed is the direction of the
arc tangent at #5)

-- according to the drafting schema --

@8= NOTE (needs specification);

* !

@9= ANG_DIM (INITIAL DIM_ATTRIBUTES (#6, #4), #8, .T., .F.,
20., #5, .F., #7)3

-18 -

Example 3:
chain dimension

- 60 -
S0 2582 "5
. ¢
25 o @
(@¢
2 (@3 oc @7

I %

~- preliminaries (see figure for definition) --

@1= LINE_SEGMENT @2= LINE_SEGMENT @3= LINE_SEGMENT

@4= LINE_SEGMENT @5= LINE_SEGMENT @6= LINE SEGMENT

@7= LINE_SEGMENT

@11= TWO_SPACE_DIRECTION (assumed is the x- direction of
edge #2)

@12= CARTESIAN_TWO_COORDINATE (assumed is the intersection
point of edges #1 and #2)

@13= CARTESIAN_TWO_COORDINATE (assumed is the intersection
point of edges #3 and #4);

@14= CARTESIAN_TWO_COORDINATE (assumed is the intersection
point of edges #4 and #5);

@15= CARTESIAN_TWO_COORDINATE (assumed is the intersection
point of edges #6 and #7);

-- according to the drafting schema --

@8= NOTE (needs specification);
@9= NOTE (needs specification);
@10= NOTE (needs specification);

*1

@16= LIN_DIM (LIN DIM (LIN DIM (INITIAL DIM ATTRIBUTES (#11,
#12), #8, .T., 25., #13, .F.), #9, .T., 15. , #15, .T.),
#10, .F., =-15., #14, .F.);

-19 -

Example 4:
chain dimension
used in piping

- 20 -

1%
-- preliminaries (see figure for definition) --

@4= ARC_SEGMENT

@5= ARC_SEGMENT

@6= LINE_SEGMENT

@7= CARTESIAN_TWO_COORDINATE (assumed
is the intersection point of edges
#5 and #6);

@8= CARTESIAN_TWO_COORDINATE (assumed
is the intersection point of edges
#4 and #6);

@9= CARTESIAN_ TWO COORDINATE (assumed
is the end point of arc #4 that is
not #8);

@10= CARTESIAN_ TWO_ COORDINATE (assumed
is the end point of arc #5 that is
not #7); '

@11= TWO_SPACE_DIRECTION (assumed is
the direction of the arc tangent at
#8)

@12= TWO_SPACE_DIRECTION (assumed is
the direction of the arc tangent at
#9)

@13= TWO_SPACE_DIRECTION (assumed is
the direction of the arc tangent at
#10)

-- according to the drafting schema --
@1= NOTE (!* needs specification #*!);
@2= NOTE (!* needs specification *!);

@3= NOTE (!* needs specification #*!);

@14= ARC_DIM_PAR (INITIAL DIM ATTRIBUTES(#12, #9), #1,

.T., 25., #8, .T., #11);
@15= LIN DIM (#14, #2, .T., 45., #7, .T.);

@l6= ARC_DIM RAD (#15, #3, , #10, #13);

L S, Sl L e

i i b, |

- 21 -

@1 @z

Example 5: "y
ool -
3

chain dimension <y

40.

3

(5

1%

-~ preliminaries (see figure for definition) --

@5= LINE_SEGMENT @6= LINE_SEGMENT @7= LINE_SEGMENT

@8= LINE_SEGMENT @9= LINE_SEGMENT

@10= CARTESIAN_TWO_COORDINATE (assumed is the intersection
point of edges #5 and #6);

@11= CARTESIAN_TWO_COORDINATE (assumed is the intersection
point of edges #6 and #9);

@12= CARTESIAN_ TWO_COORDINATE (assumed is the intersection
point of edges #9 and #7):

@13= CARTESIAN_TWO_ COORDINATE (assumed is the intersection
point of edges #7 and #8):

@14= TWO_SPACE_DIRECTION (assumed is the x direction of
edge #6);

@15= TWO_SPACE_DIRECTION (as #14 - assumed is the direction
of edge #9 minus 900):;

-- according to the drafting schema --

@1l= NOTE (needs specification);
@2= NOTE (needs specification);
@3= NOTE (needs specification);
@4= NOTE (needs specification);

*1

@16= LIN_DIM (ANG DIM (LIN_DIM (LIN DIM
(INITIAL DIM ATTRIBUTES (#14, #10), #1, .T., 40., #12,
.T.), #2, .T., , #13, .F.), #4, .F., .F., -10., #$12,
.F., #15), #3, .T., , #11, .F.);

- 22 -

Example 6:
superimposed
running dimension

~o ™ o9 o %
S & Q> @
5
20. .i
< o R

53

-- preliminaries (see figure for definition) --

@5= LINE_SEGMENT

@6= CARTESIAN_TWO_COORDINATE @7= CARTESIAN_TWO_COORDINATE

@8= CARTESIAN_TWO_COORDINATE @9= CARTESIAN TWO_COORDINATE

@10= CARTESIAN TWO_COORDINATE

@11= TWO_SPACE_DIRECTION (assumed is the x-direction of
centerline #5):

-- according to the drafting schema --

@1= NOTE (needs specification);
@2= NOTE (needs specification);
@3= NOTE (needs specification);
@4= NOTE (needs specification);

* !

@l2= LIN_DIM (LIN DIM (LIN DIM (LIN_DIM
(INITIAL_DIM_ ATTRIBUTES (#11, #6), #1, .T., 20., #7,
.F.), #2, .T., , #8, .F.), #3, .T., , #9, .F.), #4,
.T., , #10, .F.);

Y R —

-923 -

Exanmple 7:
chain dimension @1 @2 P2
5.6

| %

60

20.

@3

¢ | 06| | Jow

__@Dg

-~ preliminaries (see figure for definition) --

@4= LINE_SEGMENT @5= LINE_SEGMENT @6= LINE_SEGMENT

@7= LINE_SEGMENT @8= LINE_SEGMENT @9= LINE_SEGMENT

@10= LINE_SEGMENT

@11= TWO_SPACE_DIRECTION (assumed is the x-direction of
edge #5):;

@12= CARTESIAN_ TWO_ COORDINATE (assumed is the intersection
point of edges #4 and #5);

@13= CARTESIAN_ TWO_COORDINATE (assumed is the intersection
point of edges #5 and #6):

@14= CARTESIAN_TWO_COORDINATE (assumed is the intersection
point of edges #7 and #8);

@15= CARTESIAN_TWO_COORDINATE (assumed is the intersection

point of edges #9 and #10);

-- according to the drafting schema --

@1= NOTE (needs specification);
@2= NOTE (needs specification):;
@3= NOTE (needs specification);

%1

@16= LIN_DIM (LIN DIM (LIN DIM (INITIAL DIM ATTRIBUTES
(#11, #12), #1, .T., 20., #13, .T.), #2, .F., , #14,
.T.), #3, .F., , #15, .T.);

- 24 -

1.8 The Neutral File Adapting System (NFAS).
A Practical Approach to the Improvement of Data Exchange

1.8.1 Introduction

One great problem in transferring data between different CAD
systems is the different representation of information in
different systems. It is not sufficient to define a neutral
file format which includes all representations of all
systems, because most postprocessors do not interpret
information represented in a form that does not match the
form used in the receiving system. In figure 1 it can be
seen that an extended standard improves the facilities of
data exchange, but there will always be a 1loss of
information.

INFORMATION REPRESEN~
TABLE IN CAD SYSTEM B

INFORMATION REPRESEN-
TABLE IN CADSYSTEM A

INFORMATION REPRESEN-
TABLEIN IGES FORMAT

' INFORMATION REPRESEN-
TABLEIN CAD SYSTEM B

INFORMATION REPRESEN-
TABLE IN CAD SYSTEM A

INFORMATION REPRESEN-
TABLEIN STEP FORMAT

Fig. 1.8-1: Transferable information via CAD/CAM interfaces

= 95,

The hatched area in figure 1.8-1 describes the transferable
data with equal representation in CAD system A, CAD system B
and the neutral format.

1.8.2 Adaption as a possible means of overcoming
differences in data representation

The solution of the problem described above is the
conversion from one representation of data into another.
This can be done by a system dependent postprocessor or by a
system independent adapting program, that works on the basis
of a neutral format and can therefore be used for any
combination of CAD/CAM systems which have the required
interface processors.

[INFORMATION REPRESEN-
TABLE IN CAD SYSTEM B
INFORMATION REPRESEN-

TABLE IN CAD SYSTEM A
INFORMATION REPRESENTABLE

N F A S IN NEUTRAL INTERFACE FORMAT

Figure 1.8-2: Necessity for neutral file adapting

- 26 -

1.8.2.1 Examples for Practical Applications of a Neutral File Adapting System.
Conversion of Attributes

NFAS perfomance

I. Conversion of attributes

Application : color conversion CD2000 / CATIA

without NFAS:

cD2000

with NFAS:

CD2000 = IGES1 «— NFAS<+— IGES2 <= CATIA

v BE RN S [T

HE

green 2 3) '
red 1 2 red
Further possibilities: Layer
Line font

Pen number
Visibility

Use

Example 1: Conversion of attributes

7 =

NFAS performance

2. Gecomcetry operations

Application : position alternation CATIA / CADCPL

without! NFAS:

 CATIA s JGES —————+ CADCPL

~ ... 2D system:

with NFAS.:

. CATIA <> 1GES1 <= NFAS<— IGES2 «— CADCPL

“lEo
—

x

=~ 2D'zs_ystem

Example 2: Conversion of geometry

.28 -

NFAS performance

3. Structurc opcrations

Application : structure handling CD2000 / CATIA

without! NFAS.

. CD2000 IBES T M— " CATIA

GROUP1 SET
GROUP2{[GROUP3

[LiNET J||[LINE4] [LiNet] [LiNE4]
| LINE2|[{[LINES] [LiNE2] [LINES]

structure .elemer_\l'GR'O‘

nestable

UpP. -

'sifuciure' element SET
“ not nestable

with NFAS.

€D2000 “— IGES1 +— NFAS+— IGES2 «— CATIA

GROUPH
GROUP2||GROUP3 Layer100 | Layer200
LINEY LINE4 SR o s LINE1 LINEA4
{LLINEZ} {LINES]' ol n { uwsz% } LINESJ]
:-intormatiop '—H LINE3

"slr.uctuvre element GRO'

- nestable

SETH1

UP

struciure eiement SET
. not nestable

Example 3:

Further possibilities :

Conversion of

attachment to

structures

t

colors

line fonts
pen numbers
visibility

NFAS performance

4. Type conversion

3D surface model ¥

parametric spline surface

3D wire frame model or
2D representation '

parametric spline curves

ruled surface

paint set
or lines

surface of revolution

conic arcs

&

3D surface model

’ 3D surface model

tabulated cylinder

ruled surface

=

Examples for mapping of CAD model classes

-30 -

NFAS performance

4. Type conversion

composite curve

conic arc

-l

set of points

+ 4+
+

point vector set

piane

i

Examples for entity type

group

parametric spline curve

C

points in group

+ 4
+

points + lines
in group

<

conversion

ruled surface

or

point set :—“‘
or /

lines

-

T T e

- 31 -

1.8.2.2 Example of the Practical Application of a Neutral File Adapting System
Based on the Format of IGES

In order to prove the possibilities of adapting' neutral
files, a system was developed that works on the basis of the
IGES format.

System Structure
The system is divided into two subsystems:

- the application interface with control and processing
routines for the adaption itself, so that this part can
also be used for other neutral formats.

- and the call interface with information on the neutral
file structure which allows a neutral file to be read and
written.

APPLICATION INTERFACE

— offers directive commands to the application programmers
— translates the directive commands into a sequence of NFAS callsr
— guaranties the permissibility of product model manipulation

— allows product model adaption to certain applications

CALL INTERFACE

- guarantees the conformance to the specification
- knows about neutral data structure

— manages the data access

- allows high level application programming

Figure 1.8-3: Conception of the Neutral File Adapting System

-32 .

Application interface

The application interface is a subsystem of NFAS inc}uding
control and processing routines for the adaption. It i1s not
dependent on a specific neutral format.

APPLICATION INTERFACE

e ~ CONTROL | | PROCESSING

LOOP CONTROL - I SELECT, ENDSELECT

1 — CONVERT [[Gomp Core
COMMAND ANALYSIS | L [Com Grosp

1 ; BERNG as R R e

=i - . S R e e
DISPATCHING — L MODIFY
L
SEe £l e - 2 TS s At S D 5 i
ERROR HANDLING : 5 I DELETE

P ——_ PN . | O
z

g

CALL INTERFACE

Figure 1.8-4: Neutral File Adapting System

The application interface works with a directive file as
input. Therefore it is possible to run the adaption without
interactive input in the background.

The aim of using directives was to define a user friendly
simple language by a set of words and parameters. Figure 5
shows an overview of the possible combinations of keywords
and parameters.

33| =

Command ' Parameter Description
PROTOCOLLTOLABEL | YESINO Generation of a protocoll
SELECT {TYPE EQ <enttyp>11 [<attrib> EQ <value>] Definition of a target set
ENDSELECT
CONVERT {TYPE:=<enttyp>] Conversion into entity type
MODIFY <modatt>{start}=<value> | <modatt>:=<refatt> Modification of attributes
NORMALIZECONICARC Conversion of conics into normal form
DELETE Deletion of entities
TREEDELETE Deletion of entities inclusive all subordinates
MAKEMEMBERS [<attrib>[startk=<value>] Generation of a group
MARKEMEMBERS [<attrib>[start}=<value>] Mark of members in structures
MAKEDISJUNCT Copy of multi referenced entities

Figure 1.8-5: Examples of directive commands

SELECT TYPE EQ COMPCURV
CONVERT TYPE: = GROUP
MARKMEMBERS COLOR START =2

ENDSELECT

0000000000666 060000000

COMP ‘ A g o 3 7 GROUP
d>| NFAS
cireLe | Jspune u : : i i I) I
| INE ; S spune| fl circLE
==t Sy -casis tug

(3=] o] fom] (o] e)

Figure 1.8-6: Example for Neutral File Adapting. Application
with the corresponding directive file

- 34 -

1.8.2.3 Status of NFAS

The actual status of the developed system, working on the
basis of an IGES call interface is as follows:

- modification of attributes

- modification of character strings in general note
entities (212)

- type conversion between group (402) and subfigure
(308/408) in both directions

- translation of geometry

- rotation of geometry round x-, y-, 2z-axis

~ deletion of entities

- deletion of trees with dependent entities

- generation of groups (402)

- disjunction of groups

All these action functions are executed for the whole
neutral file, or a selected subset of the neutral file. The
possibilities of selection of subsets were also extended.
The actual status is:

- selection by attributes as:
type/form number or name, line font pattern, level
number, blank status, entity use flag, line weight,
colour and combi- nations

- selection of dependent entities by conditions (like
above) of parent entities.

1.8.3 Future Development

After the development of this basic performance, the system
will now be optimized concerning running time and storage
conditions. First experiences in productive environment have
shown, that the system is not only usable for compensation
of system differences, but also for application dependent
adaptions.

e e el L L

i e e N

= Ay T e e T e N T e

- 35 -

1.9 Experience Gained Using the Neutral File Adapting System (NFAS)

1.9.1 Introduction

CAD/CAM Systems are specialised for certain applications
even if they are constituted by several specific moduls.
Therefore problems occur while exchanging data between them
to realise an industrial production process. A lot of these
problems do neither depend on the documentation of the data
interface nor on the implementations of the processors. But
they are caused by the principle differences of CAD/CAM
systems and the special requirements of the applications for
which the data are intended.

Figure 1.9-1 shows the expected advantages of neutral file
adapting.

Neutrat File Adapting System

Neutral File Adapting System offers a possibility to adapt CAD
data according to system and application specific requirements.
This leads to the following advantages:

- Optimising of data exchange by adapting neutral files to
compensate system differences.

- Rationalization of application series by directive
controlied and application orientated model adapting.

-+ Minimizing of costs for subsequent treatment and
processing of design in the receiving system.

-+ Reduction of running time.
-+ Guarantee of standards (VDA/VDMA 66319). (Extensions

to VDAFS or STEP format are possible without
difficulties.)

Fig. 1.9-1: Principle advantages of Neutral File Adapting

- 36 -

1.9.2 The Scope of NFAS

Firstly, NFAS has been intended to optimise the data
exchange between CAD/CAM systems of different capabilities
like:

- different geometric models
. 2D wireframe model
. 3D wireframe model
. surface model
. solid model

- use of synonymous data that cannot be easily mapped onto
each other
rational B-spline <-> polynomial curve
. group <-> set

- use of homonymous data that must be mapped to keep the
original meaning. Especially this is the different
semantic of used

levels
. colours
. groups

Fig. 1.9-2 shows a specific use of NFAS for system adaption.

Neutral File Adap'ing System

Task: System adaption

neutral

format

.--.... / /"l' \\/
' 3 i«»‘ qm

; \ \\“)J -

adaption to

receiving system

noutral
format

e.g. CATIA e.g. MEDUSA 2D, INTERLEAF ...
3D - system 2D -system
surface model 2D -wire frame model

Fig. 1.9-2: Example for a system adaption by NFAS

B dmemn Canoe B

=57 =

Secondly, NFAS will be used to modify neutral files
according to the requirements of the application receiving
the data. First experiences show that this capability of
NFAS offers a wide area of usage to it. Examples for such
adaptions are:

- selection of relevant data by filtering the content of
the neutral file

- manipulation of the data by applying operations such as
projection, scaling, rotation, etc. to achieve an

external representation that is adequate for the
application.

N eutral File Adapting S ystem S

Task: Application orientated modification of CAD/CAM models

neutral

format

application dependent
selection of relevant
geometry and
rotation x,z2 - >x,y

o) o e
T i o s e e T

e.g. CATIA e.g. CADCPL
3D -~ system 2D - system
raw and finlshed part geometry with dimensions use of finished part geometry without
definition In x,z -plane dimensions for two axis NC machining

representation in x,y - plane

Fig. 1.9-3: Example for an application adaption by NFAS

- 38 -

1.93 Using NFAS

For a first test of NFAS under productive conditions the
application chain: "part design -> NC-programming" was
selected. To establish this 1link at BMW the 3D-CAD system
CATIA and the 2%D CAM-system CADCPL (EXAPT) had to be
connected via the IGES interface.

At this following points had to be considered:

- projection of 3D-geometry onto the x-y plane

- different implementation of the view mechanism in the
CATIA IGES and the CADCPL-IGES-processors

- enormous size of CATIA-models which have to be
transferred to CADCPL

Up to using NFAS, the realisation of this application chain
(see Fig. 4) required the interactive creation of CATIA
submodels to achieve the points mentioned above.

DATA EXCHANGE CATIA — CADCPL

&2

H_

CATIA
modcl

Sl D)
CKﬂA PRE |— ~—s | POST | — | CADCPL
Model B model

interactive creation of a CATIA to IGES IGES to CADCPL
submodel containing the processing processing
NC geometry

Fig. 1.9-4: CAD data flow without NFAS

This kind of proceeding did not provide a suitable solution.
Main disadvantages were:

- effort for interactive submodel creation

- production of redundancy (in CATIA) that must be
maintained

- incomplete adaption to the receiving system in the
sending system

On the other hand, the adaption using NFAS proceeds as shown
below and avoids the disadvantages mentioned above.

DATA EXCHANGE CATIA

CATIA
model

PRE

IGES
file A

—+ | NFAS

-39 -

’.

automatic creation of a
submodel containing
the NC — gcometry

POST

— NFAS — CADCPL

Fig. 1.9-5: CAD data flow using File Adaption

For instance,

specific application of NFAS shall be
described by the following sequence of figures:

1) The original CAD model in CATIA containing the shape that
is necessary for the NC-programming

Fig. 1.9-6: Original CAD model

2)

- 40 -

The command file that was edited for this application
controls the file adaption

1okl bbb bbb bbb b bbb kbbb ot kbbb bbb ek ok kot |
! NFAS DIREKTIVE: CADCPL !
1 AR FFAXRFFFARRRFFARARRFFA AR R R R F AR AR TR A AR TR AT Rkt |
! Diese Direktive dient zur Selektion von Konturen fur !
die Drehbearbeitung aus komplexen CATIA Modellen zur
Weiterverarbeitung und NC-Programmierung mit CADCPL.

!
!
!
!
!
!

1

!

!

! CATIA V2R2 PTF4 Prozessor: V2R2 PTF4
!

! CADCPL V5.9 Prozessor: V2.0

R T T e e e e |
! Historie: !
! !
! erstellt von: H. Scheder FI-100 am: 06-10-1988 !
! !
1 3eskeale e dest ol ek stk ek o sk e e s sk st st st o s ek sk sk s e sk st s e e sk st e sk e sk s oot |

! Selektion und Léschen der nicht relevanten Layer

SELECT LEVEL.NE. 20
TREEDELETE
ENDSELECT

SELECT TYPE.EQ.202.0R.TYPE.EQ.206.0R.TYPE.EQ.210.0R.TYPE.EQ.212
TREEDELETE

ENDSELECT

SELECT TYPE.EQ.106.AND.FORM.EQ.31
DELETE

ENDSELECT

SELECT
TRANSFORM AUTO XY
ENDSELECT

Table 1.9-1: NFAS command file

- 41 -

3) The result of this adaption allows the user to proceed
with the NC-programming without subsequent treatment.

an

Fig. 1.9-7 Received CAD model after application adaption

194 Summary

The experience gained using NFAS shows the following
advantages:

- avoidance of redundant CATIA models

- avoidance of pre- and subsequent treatments
- minimising of errors

- minimising of information losses.

It was confirmed that the existence of a detailed model
structure is decisive for a good result of neutral file
adapting.

- 42 -

1.9.5 Outlook

Due to the success of NFAS it is planned to use it for links
between the various CAD/CAM systems of the suppliers and
BMW. Also the CAD system ROBCAD shall be connected with
CATIA via NFAS. The multi-purpose NFAS is expected to be
used for optimising the data exchange of further
applications.

More work has to be done in the area of CAD model
structuring and product model definition as assumption for
complete data transfer in the future.

1.9.6 References

/1/ E.G. Schlechtendahl, ed.
Specification of a CAD*I Neutral File for CAD Geometry.
Wireframes, Surfaces, Solids. Version 3.3. Research
Reports ESPRIT. 3rd, Revised Edition. Springer-verlag,
1988.

/2/ German
Contribution to Drafting Model Standardization, ISO
Document Number N 252, 1988

2. Working Group 2: Solids

One of the goals of the ESPRIT project CAD*I (CAD
Interfaces) is to develop techniques for the exchange of
CAD information between CAD systems. Working Group 2
(WG2) in the project 1is mainly concerned with Solid
Modelling. As solid modelling is based upon curves and
surface information in many respects, WG2 also has the
responsibility to integrate wireframe and surface
representation where appropriate.

This part of the Status Report documents the results
achieved by CAD*I Working Group 2 (Solids) in the fourth
year of the project. The principal achievements of the
first three years have been documented elsewhere /1,2,3/
and are summarized here briefly.

- The development of an overall metafile format which
has been accepted by the CAD*I project as a whole.

- A file format for descriptive text (called "letters")
which is to be transmitted together with CAD data on
the same file. Provisions have been made to allow for
all European national characters in such letters.

- Identification of the possible methods of interfacing
CAD systems to a neutral file.

- Textual description of the overall structure of pre-
and post-processors.

- The development of a formal language for defining CAD
system data structures (HDSL = high level data
specification language).

- Formalised specification of all syntax elements on the
neutral file (alphabet, alphabet extensions, tokens,
statements, and entity/property representations).

- Documentation and publication of complete and
consistent CAD*I specifications for geometry.

- Development of pre- and post-processors according to
these specifications.

- Performance of the cycle tests and intersystem tests
with solid models of CSG, B-rep, and polyhedron type
on a routine basis.

- Influencing the international standardization
activities in order to make the future standards
conform with essential elements of the CAD*I
specification.

The essential results of the fourth project year are:

- Conversion of the processors to version 3.2 of the
specification.

- Development and publication of version 3.3 of the
specification.

- Enhancement of all processors to version 3.3.

- Begin and completion of a CAD*I pre-processor for
Catia (polyhedron models and sweep primitives).

- Development of a formal specification of the semantics
of CSG models and CSG-based systems using the methods
of algebraic data types.

~ Completion of the processor development for elementary
solid models for most systems. Emphasis has shifted to
advanced capabilities like parametric modelling,
instancing, and external references. The processors
for all but one system (Geomod) have reached the state
of fully operational prototypes. This was the project
goal with respect to processor development.
Documentation has begqun.

- Beginning exploitation of the techniques and the
processors developed outside the CAD*I project.

21 Specification

The specification version 3.2 /4/ of a neutral file for
CAD geometry had been published in year 3 of the project.
During the first months of project year four, a number of
enhancements and corrections were introduced as a
consequence of feedback from processor development.
However, there were also three more important changes
necessary in the syntax resulting from the first transfer
of solid model data into the finite element domain. The
FEM neutral file syntax is more restrictive than the one
allowed for geometry files. These changes required a new
version of the specification (version 3.3) to be defined.
The resulting specification version 3.3 /5/ 1is now
published and constitutes the basis for all processor
developments.

- 45 -

2.2 Semantics of the CAD*| data structures

Several semantic levels have to be distinguished:

1) The semantics of the neutral file which is to define
the reconstruction of a data structure that conforms
to the CAD*I reference schema.

- This level of semantics is defined in terms of a
finite state machine in /5/.

2) The semantics of the constituent elements of the
specification language HDSL, which is to define the
effect of low level operations like

- enter scope

- leave scope

- create entity, property

- identify entity, property

- pass entity, property to some application function

- inquire attributes in the context of the HDSL
terminology

- ENTITY

- PROPERTY

- ATTRIBUTE

- SCOPE

This level of semantics is also specified in /5/. A
part of that specification has become an integral
portion of the STEP standard document on the physical
file structure.

3) The semantic meaning of the data-structures on the
information level which is to define what the data
actually means and what can be done with that
information.

This level of semantics is formally spelled out in the
CAD*I specification as far as curves and surfaces are
concerned. The method uses common mathematical
notation for vectors and parametric representations.

For solids, however, there is no equivalent formal
representation. In order to develop an unambiguous
formal representation for solids various specification
techniques were investigated. The most promising
technique available in computer science today is based
on "algebraic data structures". This method is now
being utilized for specifying the semantics of CSG
models and is outlined briefly in the following
chapters.

23 Algebraic specification of CSG

In the past, it has become evident that the specification
of CAD-modellers /6/ and thus the specification of CAD-
entities using the natural language leads to
misunderstandings. In order to avoid these
misunderstandings formal specification methods have to be
used. One of these methods - the algebraic specification
- allows a unique specification of CAD-modellers (CAD-
entities) and abstracts from the implementation of these
objects. The basic idea of the algebraic specification
is, that formally a CAD-modeller is a many-sorted algebra
and is specified by a hierarchical abstract type. In the
CAD*I project investigations have showed, that a CAD-
modeller can be specified by a special hierarchical type:
hierarchical object specification /6/. The idea is, to
separate the operator sets of a hierarchical abstract
type T 1in constructors, attributes, relations and
modificators and the sort-set of S in entities and
values. Nevertheless, one has to make some restrictions
to a hierarchical object-specification: unique,
sufficiently complete, consistent, based on special Horn-
clauses as axioms, regular, and primitive-recursive /7/.

The following system of object type specifications
describes CSG solids. For the sake of simplicity, the set
of primitives consists only of boxes, spheres, cylinders
and cones. The abstract type STANDARD specifies an
incomplete but (for this example) sufficient modelling
concept for the attribute values of CSG solids. Besides,
values of sort real, values of sort bool and values of
sort string are models of the standard modeltypes REAL,
BOOL, and STRING. The specification 1language is an
extension of CIP-L. REAL and BOOL terms are written in
infix notation (i.e. a+b stands for +(a,b)).

value STANDARD

sort real, bool, string

funct false : bool,

funct true . bool,

funct and : (bool,bool) bool,
funct or : (bool,bool) bool,
funct not : (bool) bool,
funct + : (real,real) real,
funct — : (real,real) real,

funct x : (real,real) real,

- A7 =

funct = : {real,real) real,
funct Sqrt : (real) real,

funct Qrt : (real) real,

funct = . {real,real) bool,
funct < : {real,real) bool,
funct =, : (string,string) bool

end of value

For b=TRUE and b=FALSE we write only b and not(b). The
operator sqrt denotes the real square root function, Qrt
the real square function and + the real division. For
sqrt(x) we write J/x, for qrt(x) we write x2.

The Euclid Space

The euclid space is a 3-dimensional vector space with the
euclid norm |<x,y,2z>| = J/(x2+y2?+22). The following object
specification 1is not complete but for this example
sufficient.

object EUCLID
based on VALUE
sort euclid

cons P : (real,real real) euclid,
modi Add : (euclid,euclid) euclid,
modi Sub : (euclid,euclid) euclid,
modi Inv : (euclid) euclid,

attr DX : (euclid) real,

attr DY : {euclid) real,

attr DZ : (euclid) real,

attr Abs : (euclid) real,

rela Le : {euclid,euclid) bool

axioms all {(p,, p,, p;, ry, 1. r;:real, pk, pk,euclid)

Add(P(p,p2p3),P(r,rar3)) = P(py+1ry,pp+ rpp3+13),

Sub(P(py,p2,P3),P(r1.r2:r3)) = P(pyr.par2.p5713),

INV(P(p1,02,P3)) = P(-p1,-P2,-Pa),
DX(P(p1tp23p3)) = Py
DY(P(p;,p2,03)) = P2

DZ(P(p1,p2.p3)) = P3,

AbS(P(p1,02,03)) = /(012 + (02 + (3 .

Le(P(py.p2.P3).P(r,rr3)) = (p1=<ry and p,<r, and p,<r,)

end of object

One can show, that the axiom set of EUCLID consists only
of primitive-recursive equations. So EUCLID is
sufficiently complete, consistent and semantically
unique. Therefore the existence of initial and final
models of EUCLID is guaranteed /8/.

Algebraic Specification of CSG Primitives
For this example the primitives are boxes, that are
bounded by the xy-plane, yz-plane and the xz-plane of the

euclid space, spheres (with arbitrary midpoint),
cylinders, and cones.

object PRIMITIVE

based on VALUE, EUCLID

sort prim,

cons Kugel : (euclid,real) prim,
cons Quader : (euclid) prim,
cons Zylind : (real,real) prim,
cons Kegel : (real,real) prim,
rela Defined : {(prim) bool,

rela Prim_El : (euclid,prim) bool

axioms all (r s:real, d x,s:euclid, p,q:prim)

Prim_El(x,Kugel{m,r)) = if Defined(Kugel(m,r)) then
Abs(Sub(m,x))<r else false,

Prim_El(x,Quader(d)) = if Defined(Quader(d) then
(Le(P(0,0,0),x) and Le(x,d)) else false,

- 49 -

Prim_EI(x,Zylind(r,s)) = if Defined(Zylinder(r,s) then
(DX¥x)+DY¥x) <rsup2 and DZ(x)<s) else false,

Prim_El(x,Kegel(r,s)) = if Defined(Kegel(r,s) then
(DX%(x) +DY?*(x) < (r — (= x DZ(x)))* and DZ(x)<s) else false,

Defined(Kugel{m,r)) = (r>0),
Defined{Quader(d)) = Le(P(0,0,0),d),
Defined(Zylind(r,s)) = (r>0 and s#0),

Defined(Kegel(r,s)) = (r>0 and s#0)
end of object

One can show that the axiom set of PRIMITIVE is a
primitive-recursive set of equations. So PRIMITIVE is
sufficiently complete, consistent and semantically
unique. The relation Defined was only introduced to get
total constructors for PRIMITIVE.

The terms (r>0) and Le(P(0,0,0),d) of sort bool are the
context conditions of PRIMITIVE and are called static
semantic. The sufficient completeness of PRIMITIVE
guarantees that the static semantic of PRIMITIVE is
decidable. For the processor development, this means that
the static semantic of PRIMITIVE can be evaluated and
checked by the CAD processors.

Algebraic Specification of CSG Solids
In this case, a CSG solid consists of objects of type
PRIMITIVE. The following object specification is self-

embedded, and so objects of type CSG can not be declared
in a object-oriented database.

object CSG

based on VALUE EUCLID,PRIMITIVE

sort csg

cons Empty : €sg,

cons Constant : (prim) csg,
cons Union : {(csg,csg) csg,

cons Differ : {csg,csg) csg,

- 50 -

cons Inters : {csg.csg) csg,
cons Transl : (euclid,csg) csg,
rela Csg_el : (euclid,csg) bool

axioms all (x,y:euclid, c,c,,c,:csg, p:prim)

Csg_el(x,Empty) = false,

Csg_el(x,Constant(p)) = Prim_el(x,p),
Csg_el(x,Union(c,,c,)) = {Csg_el(x,cy) or Csg_el(x,c,)),
Csg_el(x,Inters(c,,¢,)) = (Csg_el(x,c,) and Csg_el(x,c,)),
Csg_el(x,Differ(c,,c,)) = (Csg_el(x,c,) and —~Csg_el(x,c,),

Csg_el{x,Transl(y,c)) = Csg_el(Sub(x,y),c)

end of object

The set of axioms of CSG 1is primitive recursive. So CSG
is sufficiently complete, consistent and semantically
unique. CSG is not syntactically unique.

Algebraic Specification of CSG Environments

Since the type CSG is self embedded, it is not possible
to declare the type CSG in the object-oriented database
R?D?, Therefore, we specify the types CSG_TERM,
CSG_EXPRESSION, CSG_ENTITY and CSG_ENVIRONMENT.

object CSG_TERM
based on VALUE,EUCLID

sort csg_term

cons Prim_const . (prim) csg_term,

cons ldentifier : {string) csg_term,

cons Plus : {string,string) csg_term,
cons Minus : (string,string) csg_term,
cons Mult : {string,string) csg_term,
attr Term_el : (euclid,csg_term) bool

axioms all {p:prim, x:euclid, i,j:string)

g——— -

A T e g

-51 -

Term_el(x,Prim_const(p)) = Prim_el(x,p),

Term_el(x,ldentifier(i)) = false,

Term_el(x,Plus(i,j)) = false,

Term_el(x,Minus(i,j)) = false,

Term_el(x,Mult(i,j)) = false
end of type

One can show, that the axiomset of CSG_TERM is primitive
recursive. Therefore CSG_TERM is sufficiently complete,
consistent and semantically unique. Furthermore, all
constructors of CSG_TERM are regular. So CSG_TERM can be
declared in R2DZ /9/.

object CSG_ENTITY
based on STANDARD,CSG_TERM
sort db_entity

cons Assign : {(string,csg _term) csg_entity,
attr Ident : (csg_entity) string,
rela Get : (csg_entity) csg_term

axioms all (i:string, t:csg_term)

Ident(assign(i,t)) = i,

Get(assign(i,t)) =t

end of object

Since the constructor Assign is not self embedded, it is
possible to declare the type CSG_ENTITY in a R2D?
database system. The axiom set of CSG_ENTITY is
primitive-recursive. So CSG_ENTITY is sufficiently
complete, consistent, and semantically unique.

- 52 -

object CSG_ENVIRONMENT
based on STANDARD,CSG_EXPR,CSG_ENTITY
sort csg_enviro

cons Empty : csg_enviro,
cons Insert : {(csg_entity,csg_enviro) csg_enviro,
attr Contains : (csg_enviro,csg_entity) bool

axioms all (x:euclid, ce,ce,, ce,.csg_entity, env:csg_enviro)

contains(empty,ce) = false,
contains(insert(ce,,env),ce,) = (ident(ce,)=,ident(ce,) or contains(env,ce,)),

contains(ce,env) = (insert(ce,envj=env)

end of object

The object type CSG_ENVIRONMENT is right-recursive. So it
is possible to declare CSG_ENVIRONMENT in a R2?D? database
system. Furthermore one can show, that the axiomset of
CSG_ENVIRONMENT is primitive recursive. This implies that
the type CSG_ENVIRONMENT is sufficiently complete,
consistent and semantically unique.

A model of type CSG_ENVIRONMENT corresponds to a CAD
database. In general one has to specify not only Insert
but also database operations like Delete, Modify, etc..

object CSG_EXPRESSION
based on VALUEEUCLID,CSG_TERM,CSG_ENTITY,CSG_ENVIRO

sort csg_expr

cons Base : (csg_term) csg_expr,

cons @ : (csg_expr,csg_expr) csg_expr,

cons © : (csg_expr,csg_expr) csg_expr,

cons & : (csg_expr,csg_expr) csg_expr,

modi Subst : (csg_expr,csg_expr,string) csg_expr,
modi Value : (csg_expr,csg_enviro) csg_expr,

rela Expr_el : (euclid,csg_expr) bool

] TS aadNEE RSSee A

I it TP s ¥, pmm——_— i TR, T g SRR W WA | SRR NSNS

- 53 -

axioms all (i:string, e, e,, e, :csg_expr, t:csg_term, ce:csg_entity, env.csg_enviro)

Expr_el(x,Base(t)) = Term_el(x.t),

Expr_el(x,(e,@e,)) = (Expr_el(x,e;) or Expr_el(x,e,)},
Expr_el(x,(e,Qe,)) = (Expr_el(x,e,) and —~Expr_el(x,e,)),
Expr_el(x,(e;®e,)) = (Expr_el(x,e,) and Expr_el(x.e,)),
Subst(Base(Prim_const(p)),e,i) = Base(Prim_const(p)),
Subst(Base(ldentifier(j)),e,i) = if (Eq(i,j) then e else Base(ldentifier(j)),
Subst(Base(Plus(j,k)),e,i) = (Subst(Base(j),e,i) @ Subst(Base(k),e,i)),
Subst(Base(Minus(j,k)),e,i) = (Subst(Base(j).e,i) © Subst(Base(k),e,i)),
Subst(Base(Mult(j,k)),e.i) = (Subst(Base(j),e,i) ® Subst(Base(k),e,i)),
Subst((e,®e,),e,i) = (Subst(e,e.i) cplus Subst(e,.e,i)),
Subst((e;0e,),e,i) = (Subst(e,,e,i) cminus Subst(e,,e,i)),
Subst((e,®e,).e,i) = (Subst(e,.e,i) ctimes Subst(e,,e,i)),
Value(e,Empty) = e,

Value(e,Insert(ce,env)) = Subst(Value(e,env),Base(Get(ce)),Ident(ce))

end of object

One can show, that the axiomset of CSG_EXPRESSION is
primitive recursive. So CSG _EXPRESSION is sufficiently
complete, consistent and semantical unique. One notices
that CSG_EXPRESSION is self-embedded, i.e. CAD models of
type CSG_EXPRESSION cannot be stored in a R2?D? database
system.

object REGULAR.CSG
based on VALUE,EUCLID,CSG_ENTITY,CSG_ENVIRO
sort reg_csg

cons Mk_csg : (csg_entity,csg_enviro) reg_csg,
rela Reg_csg_el : (euclid,reg_csg) bool

B4 =

axioms all (i:string, t:csg_term, env:csg_enviro)
Reg_csg_el(x,Mk_csg(assign(i,t),env)) = Expr_el(x,Value(Base(t),env))
end of object

One can show, that the axiomset of REGULAR CSG is
primitive recursive. One notices that REGULAR_CSG is
regular so that all models of type REGULAR CSG can be
stored in a R2?D? data base.

24 Scanner and parser

As a consequence of the changes in the specification from
2.1 via 3.2 to 3.3, the parser tables had to be
regenerated a few times. As an additional capability a
type checking mechanism was introduced in the parser. The
parser can now test whether a reference to an entity
refers in fact to an entity of the proper type.

New tables were also required for interpreting STEP files
according to the STEP specification, St. Louis version.
All these changes could be accommodated easily with the
parser generator which, thus, has proven to be a very
useful software tool. In order to be able to read
immediately the syntax specification for STEP files,
which will be in WSN syntax form rather than BNF, a new
version of the parser table generator was developed that
accepts this form directly.

2.5 Processor development for version 3.3

Processors for solid model transfer according to the
specification have been developed for the following
commercial systems:

e Bravo (Applicon) at KfK
- Catia (Dassault) by KfK at JET
- Euclid (Matra Datavision) at KfK
- Geomod (SDRC) at UKA
- Icem (Control Data) at NEH
= Proren (Isykon) at KfK
= Romulus (Shape Data) at CIT

- Technovision (Norsk Data) at DTH

|

B N N W G TN | g e et RN G ENE p——— e W W WP e

R e——

T —_

PR

- 55 -

Systems (Solid Modelling) Overview
BRep capabilities (CAD*I-V3.3)
= => Released on: November 14, 1988

| system | CATIA | GEOMOD | PROREN | ROMOLUS | TECH3D |
|CAD*T entity | POS |PRE POS |PRE POS |PRE POS |PRE POS |

Point	4	4 d	M M	M M	M M
Direction	4	2 2 1D DM M	D D		
Line	d	d 4	D D	M M	D D
Circle	d4	4 4	D DM M	D D	
Ellipse	4 12 20D p = m - A				
Batsbela, o & 12 &	B 5	& & [= &			
Hyperbola	@	2 2	0 D [& @& T- A&		
Polygon	d	d d	[D D	d d	M M
Bospline-Cv.] 4	2 2	a a	a 29-77727		
Planar-S£.	d	d d	D D	M M	D D
Conical-sf.	d4	? ?	D D	M M	D D
Cylind.-S£.	d	d d	D D	M M	D D
Spherfeal-8f.	a	d &	[D D X ¥	D D]	
Torus- SE.	a	? 2	- - IM m [D) D)		
B-Spline-Sf.	d	? 2	a a	? 27	2 2
SE. ofRev.	d	d d	- - 12 2 (2 2		
Sf. of Trans.	7	d d	- - 17 2 17 2		
Vertex =~	d	? 2	D D	M M	M M
'Bdge	d	? 2 (D D	M M	D D	
Loop	a	2 21D DM M	D D		
[Vettewloop] &	2 T 1& @	[H & [& &]			
P Face	a1 T s Th M My o				
'shell	4	2 21D DM M	D D		
PRep=result	d	2 2	[D D	2 m[D D	
Assembly	2 1?2 72 ja a M m D 4				
Tablet

- 56 -

Systems (Solid Modelling) Overview
CSG capabilities (CAD*1-V3.3)
= => Released on: November 14, 1988

...

| system | BRAVO3 |CATIA| EUCLID | ICEM |PROREN| GDS |
|CAD*I entities|PRE POS|POST |PRE POS|PRE POS| POST |PRE POS|
Rrerec oA I N N T
| Assembly I I I I | I I
| (la=8) |- M| - |M M|- M| a |[M M|
| Instancing | - M| m [m m|- m] ? |M M|
| Component | M - | M |[D D|M M| M |D D]
| Construet | M M| M | M M |M M| M |M M|
| ROTMATRIX | - m| m |[D D|M m| 2?2 |D D]
| ROTGLOBAL | - m| - |4 |M m| ? |M M|
| ROTAXIS |- m| - |d d|M m| ? |d 4dj
| Operands Ty

| Primitives |
BOX M M	M	A A[M M	M	M M		
S.SPHERE	M M	M	A A[M M	M [N M		
S. CYLINDER	M M	M	M M	M M	M	M M
TR.CONE	M M	M	M MM M	M	M M	
TR.PYRAMID	- ?	a	- -	- -	M	D D]
REG. PRISM	- ?	A	a al- M	M	D D]	
TORUS	M M	M	a a	M M	A	M M

Table 2

W R Ly Sy p—

bRt e C e ey B e, B e g el e, B e . Y ol e

i s e

T e TR e R P—

PR T TEp e N v m————

- 57 -
Systems (Solid Modelling) Overview
CSG (sweeps) capabilities (CAD*1-V3.3)
==> Released on: November 14, 1988
| CAD*I | BRAVO3 |CATIA| EUCLID | ICEM |PROREN| GDS
| entities |PRE POS|POST |PRE POS|PRE POS| POST |PRE POS
| ROTATIONAL & |
| LINEAR SWEEP |
| contour | | | | | |
| element | M M| m | - M|mnm m| m |m m
| point | M M| m | - M|m m| m |d d |
| 1line | M M| m | - | m m| m Id |

| circle | M M| m | - | m m| m |d |
| ellipse |m m| - |- |- -] m [- -]
| parabola |m m| - |- -|m m| 2 |- -]
| hyperbola |m m| - |- - [- -] ? |- -|
| poly curve | - 2] -] - -] - -1 ? |- -
| cumve ~ lasgmees| 10 1T T 1T T

Table 3

- 58 -

Systems (Solid Modelling) Overview
Polyhedron capabilities (CAD*I-V3.3)
= => Released on: November 14, 1988

systems	CATIA	EUCLID	GEOMOD	ICEM	PROREN	TECH3D
CAD*I entities	PRE POS	PRE POS	PRE POS	PRE	POS	PRE
Assembly	M -	M M	? ? M	M	M	
(la=3) I I I	I	I				
Assembly	M -	M M	? A I B			
(1a=8) I I I I I I I						
Instancing	M -	m m	? ?lm	-	m	
POLYHEDRON	M -	M M	d m	M	D	D
[POLY_ SHELL	D -	D D	d m	M	D	D
POLY_FACE	M -	M M	d m	M	D	D
POLY_LOOP	M -	M M	d m	M	D	D
Table 4

The given Solid Modeling capabilities (CSG, B-Rep and Polyhedron) are
available under the System Version/Release:

| BRAVO3 CATIA EUCLID GEOMOD ICEM PROREN ROMULUS TECH3D

v o]1.4/
R]2.0 24512 4.2 87.1 6.0/J HOO
Legend:

: not mappable

: not known yet

exactly derivable, not implemented

exactly derived, implemented

exactly mappable, not implemented

exactly mappable

can be approximated, not implemented

approximated, implemented

only partial open torus can be implemented

only realized for penetrating bodies with no tangent surfaces

PP RE D

~~r~
Nt Nt
es e o0 se

- 59 -

In addition processors for parametric CSG models are
being developed for the R&D system

- GDS (DTH) at DTH

The table at the end of this chapter gives an overview on
the capabilities of the CAD*I processors for solid model
transfer as of October 1988.

In addition to these processors which are related to
individual CAD systems, a pair of converters has been
developed between the CAD*I format and the STEP format.
The St.Louis version of the STEP specification was used
as a reference. The similarity between the CAD*I approach
and the STEP approach is perhaps best illustrated by the
fact that it took no more than two months to implement a
pair of converters for a subset of CSG and B-rep
capabilities to the extent that cycle tests could be
performed successfully. The converters were tested with
the CSG models shown in Fig. 2.5-1 and the B-rep models
shown in Fig. 2.5-2. During 1988, the STEP specification
developed even closer towards the CAD*I specification so
that CAD*I has decided not to support the converter
approach any longer, but rather to convert its processors
to conform with the STEP file format. This conversion
will be performed as soon as the STEP specification
becomes sufficiently stable which is expected to happen
at the ISO/TC184/SC4 meeting in Tokyo, early in December
1988.

2.5.1 Status of processors for Bravo3 (Applicon)

The CAD*I processors for the CAD system Bravo3 were
enhanced from specification version 2.1 via version 3.2
to the present state which corresponds to version 3.3.
CSG geometry and assembly structures can be transmitted
from and received by Bravo3. Emphasis was then put into
implementing more advanced capabilities of the
specification:

- instancing and
- external references.

The post-processor can accept instances and reconstruct
the corresponding data structures in Bravo3. The pre-
processor does not provide for this feature as the
information is already lost when the solid model is
written to the Synthavision file (which serves as input
to the pre-processor). All instances (in the data base)
are replaced by copies of the instanced entity on the
Synthavision file. The external referencing mechanism has
been analyzed and implemented in the post-processor.

Tests are presently being prepared with CAD*I files from
DTH containing external references.

Fig. 2.5-3 shows the result of a test in which a
geometric model consisting of a block with holes and a
doubly instantiated bolt was transmitted from the system
GDS at DTH to Bravo3. The left-hand part of the figure
shows the result immediately after the transmission.
then, the bolt (which exists only once in the data base)
was modified by slotting its head. This immediately
changes both instantiations. This test proves that the
CAD*I approach to solid model transfer not only maintains
the proper shape of solid models in a static sense, but
also maintains the intended behaviour of models which
contain instances of other models.

Bravo3 was used as the test system for performing the
cycle tests from a CAD system via a CAD*I file onto a
STEP file and back via CAD*I into the system. Test
results are shown in Fig. 2.5-1.

The Bravo3 processors are now complete with respect to
the project goals except for the testing of the external
referencing mechanism. The documentation of the
processors has begun.

25.2 Status of processors for Catia (Dassault/IBM)

The CAD system Catia

catia, distributed by 1IBM, is a two- and three-
dimensional CAD system developed by Dassault Systems,
France. Catia runs only on the IBM mainframes (e.g. IBM
3090) and on the IBM6150 workstation. It is written in
Fortran 77 and Assembler and operates currently under
Version 3, Release 1.

Catia works on the following three layers:

* The Base layer with data and communication management,
library functions, and data base access routines (i.e.
CATGEO and CATMSP) ;

* The Geometry modelling layer comprising
drafting/drawing, 3D design, advanced surfaces, and
solid modelling capabilities;

* The Application dependant layer with Catia modules for
different applications like numerical control,
robotics, kinematics, and building design.

- 61 -

Fig. 2.5-1:
csG models used for STEP/CAD*1 conversion tests

)

HYPERBOLA

PARABOLA

Fig. 2.5-2:
B-rep models used for STEP/CAD*I conversion tests

Fig. 2.5-3:

A CSG model in which a bolt is instantiated twice.
left-hand side: immediately after transfer from GDS (DTH)
Right-hand side: after modifying the (only one) bolt
model.

The Catia Solid Geometry Module (SGM) is a planar-facet
approximation type of solid modeller. Ad@itionally _the
SGM provides the exact representation (Catia: ‘canonical
form’) of basic primitives and the corresponding boolgan
operators. Currently Catia (SGM) provides the followilng
CSG-primitives:

Box, Sphere, Cylinder, Cone, Torus, Prism, Pyramid,
Pipe, and Solid of Revolution.

The corresponding boolean operations are:
Union, Subtraction, and Intersection.

Besides the possibilities creating solids by Boolean
operands and operations, surfaces may be converted to
solids by associating a thickness to the surface or
projecting the surface onto a plane. Also volumes
(created by complex surfaces in the Catia surface
modeller) may be converted into a solid on condition that
each surface element has at most 3 or 4 edges.

Catia provides an assembly mechanism (within Catia called
’SET’) with up to 124 components. Nesting of assemblies
is not possible.

Instancing of already existing assemblies (instancing of
up to one assembly) comprising one or more solids is
possible as internal ‘DETAIL’ (within a Catia model) and
as an external ‘DETAIL’ brought in from an external
library.

Interfacing Catia

The geometrical data is stored in a binary database form,
a text file form (i.e. Jjournal file) is not available.
Catia has different geometry interface concepts and is
thus able to acquire data originating from other CAD
systems as well as ©providing data for different
applications, e.q. FEM systems. The Catia systen
interfaces are:

* CATGEO - allows access to the Catia database by a
Fortran subroutine library in batch mode;

* CATMSP - means Catia Mathematical Subroutine Package,
which is available with Version 3.1 to evaluate and
calculate mathematical properties of curve and surface
elements;

* JUA - an interactive Catia interface concept by means
of IUA-specific procedural language elements. IUA

allows the interactive user access to the
functionalities of CATGEO and user specific Fortran

routines.

Both CATGEO and IUA allow the user to create, modify, and
interrogate solid model data. The current version (V3R1)
allows creating and reading of the following solid
models:

* CSG - models comprising a number of Boolean operands
and operations as mentioned before;

* the facetted boundary representation, also known as
polyhedron;

* the exact boundary representation by using the surface
capabilities of Catia, this has to be converted
internally (Catia) into a so-called polyhedron solid.

In order to communicate with other Cxx-systems Catia
already provides pre- and post-processors, related to
IGES 3.0, VDAFS 1.0, and SET 1.1. It is not possible to
transfer so0lid model information, by these interface
concepts.

Status of CAD*I processor development

The Catia/CAD*I processor development comprises pre- and
post-processors, according to the CAD*I neutral file
specification version 3.3 and Catia version 2.2. The
following processors have been implemented:

- Polyhedron pre-processor, and
- CSG post-processor.

The software 1is written in Fortran 77 and has been
implemented on an IBM 3090XA under MVS environment. Both
the pre- and post-processor interrogate the Catia
database by CATGEO (V2.2) subroutine calls. The
processors have been developed to enable the data
transfer of solid models between Catia and the real-time
robotic simulation system KISMET. The actual data
transfer comprises:

* manipulator geometry parts (geometry especially
created in Catia for the robotic simulation system),
and

* ’static’ geometry parts of the robotic environment.

Furthermore, the processors are in common use for the
data transfer between Catia and other CAD systems (e.g.
Euclid) and vice-versa.

Pre-processor

The main purpose of the Catia - pre-processor is to map
the catia data structure (polyhedron elements) onto the
CAD*I neutral file, which is realized with some
exceptions (calculation of inner shells and 1loop
orientation) straightforward.

The pre-processor handles currently (in CAD*I terms):

- ASSEMBLY (assembly level la=8: the hierarchy is world,
assembly, subassembly, and component) ;

- INSTANCE (instances of assemblies);

- INDEX_ENTRY (user defined names of assemblies,
instances, and polyhedron) ;

- RENDER_POLYLINE (colour attributes of the polyhedron
entity, an extension to the CAD*I schema);

-~ POLYHEDRON (POLY_SHELL, POLY_ FACE, POLY_ ILOOP, and
POINT) ;

In all cases where the evaluated polyhedron model on the
Catia database is the result of a Boolean operation on
non-intersecting primitives (Boolean operations of
primitives with contacting surfaces) the pre-processor
writes onto the CAD*I neutral file a polyhedron model
with all edges and faces of all previously defined
primitives. This Catia system fault constrains the user
to check each Catia solid model for non-intersecting
solids before running the pre-processor.

The next step of the pre-processor development will be a
revised implementation of the current pre-processor
(Version 1.0) according to CATGEO Version 3.1.

Post-processor

The post-processor is based on the limited capabilities
of CATGEO Version 2.2, which allow only the creation of a
subset of available CSG operands (within cCatia).
Furthermore it is not possible to map the Boolean
operations union, subtraction, and intersection
(available on the CAD*I-NF) onto the Catia database.

The following organizational data can be mapped onto the
CAD*I neutral files:

- ASSEMBLY (assembly structure with three levels, no
nested assemblies);

- 67 -

- INDEX_ENTRY (user-defined name of an assembly and
construct) ;

The Catia post-processor handles up to now the following
subset of CAD*I CSG operands:

- BOX;

-~ SOLID_SPHERE;

- SOLID_CYLINDER;
-~ TRUNCATED_CONE;
- REGULAR_ PRISM;
= SOLID_TORUS.

The next steps will be:

- implementation of the current post-processor
capabilities under CATGEO V3.1.

- the implementation of the Boolean operations
(union, subtraction, and intersection), using CATGEO
v T

Performed tests

A number of intersystem data exchange tests have been
performed in order to check the above mentioned pre- and
post-processor capabilities. The testparts which have
been used were either provided by industrial partners or
especially developed test parts for Catia (some correct,
and some faulty, such as empty ones, models without any
solid geometry). The following solid modelling systems
were involved in intersystem tests:

- the data transfer of polyhedron models (CAD*I neutral
file version 3.3) from Catia to Euclid and to Proren,
an example of an industrial testpart is given in Figqg.
2.5-4;

- the data exchange of polyhedron models (especially for
robotic simulati