DAP FORTRAN-PLUS

These notes give a tutorial introduction to DAP Fortran-Plus, the main language used to write
programs for the AMT DAP. They are written from the view-point of a programmer used to
conventional Fortran but contain information sufficient for programmers used to other languages to
be able to learn the language constructs that make best use of the DAP's parallel processing
capabilities.

Some of the examples, diagrams and parts of the text are taken from AMT's own manuals. We
acknowledge AMT's kind permission to use the material.
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INTRODUCTION

Any program which runs on a DAP is called a DAP program. Any program which runs on a
DAP's host system and in conjunction with a DAP program is called a kost program. The host
program, which is entered first, controls the start of the DAP program and data is transferred
between the host and the DAP using special interface routines. The host program can be written in
any of the languages (or mixture of languages) supported by the host system provided that the
subroutine and function calling interface is compatible with the host's Fortran implementation.

DAP Fortran-Plus is a high-level language provided to write DAP progams. Its syntax is very
similar to conventional Fortran, with a number of extensions that allow you to take full advantage of
the DAP's parallel processing capabilities.

The most important feature of DAP Fortrtan-Plus is the ability to manipulate in parallel all the
components of one-dimensional and two-dimensional objects (called vectors and matrices). In
addition, a number of indexing techniques are provided that allow parallel processing of sub-sets of
vectors and matrices.

DAP Fortran-Plus does not support standard Fortran input/output. However, there are facilities to
transfer data between a DAP program and its associated host program (giving access to all of the
host's input/output capabilities) and a DAP program can access directly the host's filestore and its
standard input/output channels.

Some of the power of DAP Fortran-Plus is illustrated (below) by comparing Fortran and
Fortran-Plus solutions of a particular problem. The problem is to take a rectangular grid each node
of which has a value that represents the height above sea-level of the land at that point and to form a
character map of the area covered by the grid. All points below the mean height above sea-level are
to be marked with a ‘B, all points above the mean height above sea-level are to be marked with an
‘A’ and any actually at the mean height are to be marked with a blank. |

The DAP Fortran-Plus solution shows a function that accepts a rectangular matrix parameter (of any
-dimensions) and delivers a matrix result (with the same dimensions as the parameter). Two of
Fortran-Plus' many built-in functions (SIZE and SUM) are used and the technique known as
'masked assigniment’ is used to build the result.
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Fortran
subroutine mapit(height, map, m, n)
real height(m, n), mean, sum

character map(m, n)

¢ compute mean height above sea-level

c
sum = 0.0
dolj=1,n
doli=1,m-

1 sum = sum + height(i, j)
mean = sum /{m * n)

¢ mark map

do2j=1,n

doZ2i=1,m

if (height(i, j) .1t. mean) then
map(i, j) =B’

else if (height(i, j) .gt. mean) then
map(i, j) ="A’

else |
map(@, j) ="'

endif

2 continue
return
end

Fortran-Plus

function map(height)
real height(*, *), mean
character map(*size(height, 1), *size(height,2))

¢ compute mean height above sea-level

mean = sumcheight) / size(height)
c
¢ mark map
c
map=""
map (height .It. mean) = ‘B’
map (height .gt. mean) = 'A’
return
end
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FORTRAN-PLUS VARIABLES

In addition to the usual attributes of Type INTEGER, REAL, LOGICAL or CHARACTER —
there is no COMPLEX in DAP Fortran-Plus) and Length (REAL*8, INTEGER*2, etc), DAP
Fortran-Plus variables, arrays and functions also have a Mode (SCALAR, YECTOR or
MATRIX). The different modes are:

SCALAR
The same sort of variable / value as found in conventional Fortran — a single data item

VECTOR
A one-dimensional variable / value containing a number of data items, each of the same
type and length — an extension of a conventional one-dimensional array

MATRIX
A two-dimensional variable / value containing a number of data items, each of the same
type and length —an extension of a conventional two-dimensional array

The difference between conventional arrays (which DAP Fortran-Plus regards as collections of
Scalars) and Vectors and Matrices is that the ELEMENTS (called components) OF A VECTOR
OR MATRIX ARE PROCESSED IN PARALLEL. '

Vectors and Matrices are stored on the DAP in a way that allows the most effective use of the

parallel processing capabilities of the hardware. Hence, they are usually used in preference to
Scalar Arrays (which are not processed in parallel).

PRECISION / RANGE OF VALUES

Data lengths (precisions) are comparable to those found on other systems and will be familiar to
Fortran programmers, except there is a greater variety:

type length  precision / range (approx.)
real 3 bytes 3 digits /0.0, £(5.39-79 to 7.23e+75)

4 bytes  6digits /0.0, £(5.39760e-79 to 7.23700e+75)
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6 bytes
7 bytes
8 bytes
default

integer 1 byte
2 bytes
3 bytes
4 bytes
5 bytes
6 bytes
7 bytes
8 bytes
defauit

character 1 byte

logical 1 bit

11 digits /0.0, £(5.3976053469¢-79 10 7.2370055773e+75)

13 digits / 0.0, (5.397605346934¢-79 to 7.237005577332e+75)

15 digits / 0.0, £(5.39760534693402¢-79 to 7.23700557733226e+75)
4 bytes

-128 to +127

-32,768 to +32,767

-8,388,608 to 48,388,607

-2,147,483,648 to +2,147,483,647

-549,755,813,888 to +549,755,813,887
-140,737,488,355,328 to +140,737,488,355,327
-36,028,797,018,963,968 to +36,028,797,018,963,967
-9,223,372,036,854,775,808 to +9,223,373,036,854,775,807
4 bytes ' '

ASCII codes and collating sequence

FALSE. (represented by 0), .TRUE. (represented by 1)

DECLARING VARIABLES

Examples of DAP Fortran-Plus Declaration Statements are:

REAL RS1, RS2, RSA(2, 100)

CHARACTER CS

INTEGER*1 IV(*50), IVA(*30, 10)
LOGICAL LVA(¥*55, 5, 20), LM(*100, *80)
REAL*6 RMA(*60, *60, 3)

which declare default precision REAL (ie REAL*4) scalar variables RS1 and RS2 and two-
dimensional scalar array RSA, CHARACTER scalar variable CS, INTEGER*1 vector IV and set of
10 INTEGER*1 vectors IVA, two-dimensional set of 100 LOGICAL vectors LVA, LOGICAL
matrix LM and and set of 3 REAL*6 matrices RMA.

Notice how * in the dimensions of an object define it to be a vector or matrix. These ‘parallel’
dimensions may be followed by normal Fortran dimensions, to declare sets of vectors or matrices.
Earlier versions of DAP Fortran-Plus constrained the parallel dimensions to match the size of the
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DAP hardware — 32 on DAP 500 systems and 64 on DAP 600 systems — and declarations of
vectors, vector sets, matrices and matrix sets looked like:

INTEGER*1 IV(), IVA(, 10}
LOGICAL LVA(, 5,20), LM(,)
REAL*6 RMAC(,, 3)

Such declarations are still valid but their usage will probably decline, except in specialised cases.
The Fortran DIMENSION statement is also available to declare multi-dimensioned objects:
DIMENSION X(20, 30), Y(*500), Z(*20, *1000, 5)

with the * in the dimensions defining an object to be a vector or matrix. The lower bounds of
dimensions are always 1 in Fortran-Plus.

The * used to signify parallel dimension(s) has given rise to the informal name Fortran-Star to
denote the revision of Fortran-Plus that removed the constraints on parallel dimensions.

PARALLEL DIMENSIONS ALWAYS COME FIRST IN DECLARATIONS.

DEFAULT TYPES AND IMPLICIT STATEMENT

The usual Fortran default types apply. A variable, array or function whose type has not been
defined in a declaration statement has type / length REAL*4 (if the first letter of the object's name is
in the range A-H, O-Z) or INTEGER*4 (if the first letter is in the range I-N). These defaults may
be changed by IMPLICIT statements, of the form:

IMPLICIT type *length (letters)
where:

*  type may be CHARACTER, INTEGER, LOGICAL or REAL
»  length may be in the range 1 to 8 for INTEGER and the range 3 to 8 for REAL
» letters may be a single letter, a list of letters, 2 range of letters, or a combination
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For example:

IMPLICIT LOGICAL (A-C, L, X-Z)

indicates that an object whose name starts with one of the letters A, B, C, L, X, Y or Z should be
treated as LOGICAL unless over-ridden by a type declaration statement.

There is no:
IMPLICIT NONE

statement so some statement such as:
IMPLICIT CHARACTER (A-Z)

needs to be used to assist detection of the use of undeclared objects.

VECTORS AND MATRICES WITH SUBROUTINES AND FUNCTIONS

Jjust like other objects (scalars, scalar arrays, etc), vectors and matrices may be passed as
parameters to subroutines and functions. If the size of the parallel dimension(s) is not known at
compile time, a special form of declaration statement may be used. For example:

SUBROUTINE SUB (A, B)
REAL A(*), B{*, *)

introduces the definition of a subroutine which will accept a vector of any size as its first parameter

and a matrix of any shape as its second parameter. This technique of using 'assumed’ dimensions,
taken from the dimensions of the actual parameters, is not allowed for non-parallel dimensions.

Sometimes, it will be necessary to use in a piece of source code the actual dimension(s) of a
dimensioned object — the built-in function SIZE can be used for this. Its parameters are:

+ the object details of whose 'size’ is required

« the dimension (in the range 1 to 7) whose size is required. This parameter is optional — if
it is omitted, SIZE will retum the total number of elements of the object. If the object
does not have as many dimensions as the one whose size is requested (eg SIZE(A, 2) for
A above) the value zero is returned.
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Within a subroutine or function, parallel dimensions of local vectors and matrices may be set to
values passed via parameters or through COMMON blocks. This gives the ability to declare local
vectors and matrices with dimensions dectded at run-time. As an additional special case, parallel
dimensions may be set to values returned by the SIZE function. If this special case is combined
with the ability of user-written functions to return vector and matrix results, it becomes easy to
declare such functions without the need for parameters or values passed through COMMON to give
the dimensions of matrix and vector parameters and result. For example, the initial statements of a
‘matrix multiply' function would be:

FUNCTION MAT_MULT (A , B)
REAL A(*, *), B(*, %)
REAL MAT_MULT(*SIZE(A, 1), *SIZE(B 2))

A user-written function must be defined as EXTERNAL in the routine that references it. For
example, MAT_MULT (above) would need to be declared:

EXTERNAL FUNCTION MAT MULT
REAL MAT_MULT(¥*, *)

before it could be called. The assumed dimensions (*, *) indicate that the function will return a
matrix result but that its actual shape will not be determined untl the function returns its result.
CONSTANTS AND PARAMETER STATEMENT
In additon to the normal ways of writing constants, there is an occasional need to specify constants
of lengths other than the default (INTEGER*4 and REAL*4). This is achieved using a length
specifier. For example: :

160 (*1)
represents the INTEGER*1 constant 100; stmilarly:

1.2345678 (*5)

represents a REAL*S constant.
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Character constants may take either the Hollerith form:
nHce...c

where n must be in the range 1 to 512 and c...c is a sequence of characters, or the ‘literal form':

where c...c is a sequence of up to 512 characters with repeated ' used to represent *. Character
constants of more than one character may be used only for data initialisation within type or DATA
statements.

chadcéimal constants may be used only for data initialisation within type or DATA statements and
take the form:

#.f

where f..fisa scquenée of up to 1024 hexadecimal digits. Hexadecimal constants are most
commonly used for the initialisation of logical vectors and matrices.

The PARAMETER statement may be used to give a name to a constant expression. For example:
PARAMETER (IEDGE=512)

defines a compile-time integer constant IEDGE with value 512.

INITIALISING VARIABLES AND DATA STATEMENT
The usval Fortran ways of initialising variables in declaration and DATA statements are available:

REAL RS1/7.5/, RS2
CHARACTER CSV(*30)

DATA CSV/1H&, 'ZX', 20%#40/

PARAMETER (MINUS2=-2)

INTEGER*1 IV(*50)/1, 2, 3, 4, 10%5, 36*MINUS2/
LOGICAL LVA(*25)

DATA LVA/#AG70A/
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‘When a list of character constants does not fill a character variable or dimensioned object, the list is
extended to the right with spaces. Hexadecimal constants may be mixed with the character
constants in such a list but must consist of an even number of hexadecimal digits.

When a hexadecimal constant used to initialise a dimensioned logical object is too long, the constant
is truncated from the right. If the hexadecimal constant does not fill the object, the constant is
padded to the right with hexadecimal zeros.

Conversely, when a hexadecimal constant is used to initialise a logical scalar, or integer or real
scalar, element or component and the constant too long, it is truncated from the left. If the constant
does not fill the object that it is initialising, it is padded to the left with hexadecimat zeros.

Objects held in COMMON blocks may be initialised in DATA or type declaration statements in any
program unit in which the named COMMON block is defined. However, care must be taken to
ensure that the same parts of a COMMON block are not initialised in more than one program unit.
BLOCK DATA subprograms may also be used for initialising data in COMMON areas — an
EXTERNAL statement referencing the BLOCK DATA subprogram is required, to ensure that the
subprogram is loaded and the data initialisation takes place.
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ASSIGNMENT AND ARITHMETIC

SIMPLE ASSIGNMENT

The normal Fortran rules apply — the left-hand side and right-hand side of an assignment statement
should conform in type and length. As a general rule, the two sides should have the same mode
(SCALAR, VECTOR, MATRIX). Finally, if the two sides of the assignment are vectors or
matrices, they must have the same shape (ie their parallel dimensions must match). In practice,
most of the restrictions are not enforced, because the compiler is able to make sensible decisions
about what the meaning of particular assignment staternents.

THE COMPONENTS OF A VECTOR OR MATRD( ARE ASSIGNED IN PARALLEL.

Complete scalar arrays, sets of vectors and sets of matrices may not be assigned in a single
assignment statement. The normal Fortran rules apply — elements of a scalar array must be assigned
individually and vectors and matrices from vector and matrix sets must be assigned separately.

Length Compatibility

DAP Fortran-Plus requires that the length of the left-hand side and the right-hand side of an
assignment statement conform. If the lengths are not the same, the right-hand side is ‘lengthened'’ /
'shortened’ to match the left-hand side.

The built-in function LENGTH may explicitly be used to modify the length of an expression.
LENGTH's parameters are:

*  an integer or real object of any length and mode (SCALAR, VECTOR or MATRIX)
*  an integer constant —in the range 1 to 8 if the first parameter has an integer type or in the
range 3 to 8 if the first parameter has a real type ;

LENGTH is an example of an intrinsic componental function. These are functions which
deliver a result that has the same mode as their main argument (SCALAR, VECTOR or MATRIX).
They will not, however, accept parameters that are scalar arrays or vector or matrix sets.

The other intrinsic componental functions are: ABS, ATAN, COS, EXP, FIX, FLOAT, LOG,
SIN and SQRT. Apart from special uses of FIX and FLOAT, all these other functions retumn
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values with the same length as their parameter.

COMPONENTAL FUNCTIONS ACT IN PARALLEL ON THE INDIVIDUAL COMPONENTS
OF THEIR PARAMETER.

Type Compatibility

DAP Fortran-Plus requires that the type of the left-hand side and the right-hand side of an
assignment statement conform:

Integer Integer
Real Real
Logical =  Logical

Character = Character

A real value is ‘fix'ed before being assigned to an integer variable and an integer value is float'ed
before being assigned to a real variable. :

The normal Fortran functions FIX and FLOAT are available for explicit change of type and have.
the effect:

FIX returns its real argument converted (by truncation towards zero) to an integer value;
the length of the result is the same as the length of the parameter. The parameter
may also be of LOGICAL type - the INTEGER*4 value 1 is returned for . TRUE.
and 0 for .FALSE.

FLOAT returns its integer argument converted to a real value; the length of the result is the
same as the length of the parameter (which cannot be *1 or *¥2). The parameter may’
also be of LOGICAL type — the REAL*4 value 1.0 is retumed for .TRUE. and 0.0
for FALSE. ‘

Mode and Shape Compatibility

DAP Fortran-Plus requires that the mode of the left-hand side and the right-hand side of an
assignment statement conform:
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scalar = scalar

scalar =l vector INVALID

scalar =] matrix INVALID

vector =  scalar scalar is replicated
vector = vector dimensions must match
vector = 1atrix INVALID

matix =  scalar scalar is replicated
matrix =  vector INVALID

matrix = matrix dimensions must match

A scalar will be replicated to build a vector or matrix of the required dimension(s).

The built-in functions VEC and MAT are available for explicit building of vectors and matrices
each of whose component elements has the same value. The parameters to VEC are:

»  scalar value of any type and length
+ INTEGER*4 scalar value — the dimension of the vector to be built

and MAT's parameters are:

»  scalar value of any type and length
+«  INTEGER*4 scalar value — the number of rows in the matrix to be built
° INTE(_JER*4 scalar value — the number of columns in the matrix to be built

The type and length of the vectors and matrices returned by VEC and MAT match the type and
length of their main (je first) parameter. They are used mainly in calls of subroutines and functions,
to provide vector and matrix parameters built from scalar values.

A vector cannot antomatically be replicated and assigned to a matrix because a decision has to be
made about how the matrix is to be built (all rows the same? all columns the same?). The functions
MATC (and MATR) are available for explicit building of matrices each of whose columns (rows)
are identical. Their parameters are; -

«  vector value of any type and length
»  INTEGER*4 scalar value — the number of columns (rows) in the matrix to be built
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Talking the declarations:

INTEGER IV(*4)/3, 1,2, 5/
IMPLICIT LOGICAL (F, T)
PARAMETER (F=.FALSE.)
PARAMETER (T=.TRUE.)
LOGICAL LVI1(*4)/T, F, F, T/

then:

;o TEPFI

rE BT
MATRQV],S)willgive TF F T
TEFT

102 TR S

and:

3: 3
MATCOV, 3) wiltgive 1 1
22
55

W N = W

EXPRESSIONS

DAP Fortran-Plus uses the same syntax for expressions as Standard Fortran and there are the usual
arithmetic operators (+, -, ¥, /, **) and relational operators (.LT., .LE., .EQ., .GE., .GT., NE.).

The logical operators are . NOT., .AND., .OR,, .LEQ., .NAND., .NOR. and .LNEQ. The
operator .NOR. (NAND.) gives the logical converse of .OR. ((AND.) and the operator .LEQ.
(.LNEQ.) gives the logical equivalence (non-equivalence, ie ‘exclusive-OR’) of its operands.

OPERATIONS ON VECTORS OR MATRICES ARE PERFORMED IN PARALLEL.

The same sorts of conformance required for assignments apply to expressions also. The table
below illustrates the mode of the result of A°B, where © is any of the binary operators:
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A B Result
scalar  scalar scalar
scalar  vector  vector scalar is replicated
scalar  matrix  matrix scalar is replicated

vector  scalar vector scalar is replicated
vector  vector vector dimensions must match
vector —mafrix INVALID

matrix  scalar  matrix scalar is replicated
matrix  vector INVALID
matrix ~ matrix  matrix dimensions must match

Taking the declarations:

INTEGER 1V(*4), IM(*5, *4)
LOGICAL LV1{(*4), LV2(*4)

.. and the values:

T 9 1 2
ENVL T P
V2 T F

- W

- m
gy}

i0

W 0 N A A
— k-
P

o0 A O L oo
W

then:
IV+1

expands to:
IV+(1,1,1,1)

which is then evaluated (components in parallel) to give the vector result (4, 2, 3, 6).
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The logical expression:
LV1.0R.LV2

is evaluated in parallel to give the vector result (T, F, T, T). Finally, the relational expression:
IM .LT.5 |

expands to:

8 7
3 5 10
LL9 % BT
L & 2
5 8 7

W o N N A
th hh v » W
L thh b e a
W o a
th th a L ta

giving the matrix result:

R e
o T A
Mo
I ») =~ T T

SUMMING FUNCTIONS

There are three important built-in functions (SUM, SUMC and SUMR) that total the components of
their parameter in particular ways.

The function SUM takes a single vector or matrix parameter of logical values, or integer or real
values of any length and returns as a scalar value the sum of all the components of the parameter. If
the parameter is real, the result is a real scalar of the same length. If the parameter is logical, the
result is an INTEGER*4 scalar (. TRUE. is treated as 1, FALSE. is treated as 0 in the summation).
If the parameter is integer, the result is an INTEGER*4 scalar for parameters of length *1 to *4 and
is an INTEGER*8 scalar for parameters of length *5 to *8.
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Taking the declarations:

INTEGER IV(*4), IM(*5, *4)
LOGICAL LV1(*4)

and the values:

I & I 2
ENVI F F P

- W

W 00 N A A
—
p—
O
W

then:

SUM (IM) will give 107
SUM (IV) will give 11
SUM (LV1) will give 2

The function SUMC takes a single matrix parameter of logical values, or integer or real values of
any length and returns a (column) vector value with as many components as there are rows in the
parameter. Each component of the resulting vector contains the sum of all the components of the
corresponding row of the parameter. If the parameter is real, the result is a real vector of the same
length. If the parameter is logical, the result is an INTEGER*4 vector ( TRUE. is treated as 1,
JFALSE. is reated as 0 in the summation). If the parameter is integer, the result is an INTEGER*4
vector for parameters of length *1 to *4 and is an INTEGER*8 vector for parameters of length *5
to *8.

The function SUMR behaves in fashion similar to SUMC but returns a {row) vector with as many
components as there are columns in the parameter. '

Taking the declaration:
INTEGER IM(*5, *4)

and the matrix value:
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then:

W R0 N OB
ot
—
O
w

SUMC (IM) will give (20, 24, 25, 15, 23)
SUMR (IM) will give (23, 21, 34, 29)

MIXED TYPES, LENGTHS AND MODES

The following declarations are assumed in the examples below:

INTEGER 181, TVI(*30), IM1(*30, *50)
INTEGER*2 I2V1(*30)

INTEGER*3 I3V1(*30)

REAL RS1, RV1(*30), RM1(*30, *50)
REAL*3 R3S1, R352, R3V1(*30)

To evaluate:

IV1=SUMC(@S1*RM1I)

*

-

.

IS1 is 'float'ed and replicated to form a (30 row, 50 column) matrix
the expression is evaluated in REAL*4 precision

the resulting matrix is summed into a (30 component) column vector
the column vector is truncated to INTEGER*4 and assigned to IV1.

To evaluate:

RM1=RS1*®R3S1 + R352)

*

the addition is carried out in REAL*3 precision

the result of the addition is length'ened to REAL*4 precison

the multiplication is performed in REAL*4 precision

the resulting scalar is replicated to a (30 row, 50 column) matrix and assigned to RM1
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To evaluate:
I3V1=I2V1i*RV1)/R3VI
. 12V1 is converted to 4 bytes and 'float'ed
. the multiplication is carried out in REAL*4 preciston
. R3V1 is converted to 4 bytes and the division is then carried out in 4 byte precision

. the result is truncated to INTEGER*4 and shortened to INTEGER¥3.

Typically, nothing like as much mixing of types, lengths and modes as shown in these examples is
used in normal programs. It is, however, quite normal to write statements such as:

RM1 =IM1 * 0.5
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SIMPLE INDEXING TECHNIQUES

The most important feature of DAP Fortran-Plus is the ability to manipuiate whole one- and
two-dimensional data structures (VECTOR and MATRIX) in parallel. An important companion
feature is the wealth of facilities for selecting pans of these data structures, for use in expressions
and for updating by assignment statements.

This part of the course reviews the indexing techniques that a Fortran programmer would expect to
find and introduces some simple extensions. Further techniques will be introduced later.

LEFT-HAND SIDE AND RIGHT-HAND SIDE INDEXING

The terms left-hand side indexing and right-hand side indexing are used to distinguish between the
positions to the left and to the right of an = in an assignment staternent. On the right-hand side, a
value (scalar, vector or matrix) is selected for use in a expression; the term selecting is used in
these notes to signify right-hand side indexing. On the left-hand side, a destination (scalar, vector
or matrix variable) is chosen to be updated. DAP Fortran-Plus allows logical masks to control
which parts of a vector or matrix are updated and the term masked assignment is often used; the
term masking is used in these notes to signify left-hand side indexing of parts of vectors and
matrices.

There are subtle-but important differences between the two contexts that will be explained later.
Selecting (RHS)
There are three cases to consider:

»  Selection from scalar arrays

»  Selection from vectors {(and sets of vectors)

+  Selection from matrices (and sets of matrices)

Selection from scalar arrays

Selection from a scalar array is exactly the same as in Standard Fortran and selects a single scalar
value. For example:
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REAL S1, S2, SA(10), SB(10, 20)

.0 ote

S1=SA(5)
S2=_SB(8, 19)
have the effect expected.

You cannot select the scalars from a scalar array in parallel, each individual scalar must be
processed separately.

Selection from vectors and arrays (sets) of vectors

Selection from a vector has the same effect as selection from an ordinary Fartran one-dimensional
array and selects a single scalar value. For example:

REAL §, V(*200)

00 (124

S=VQ17)
will have the effect expected.

Selection of (all the components of) a vector for processing has already been described. For
example:

INTEGER IV1(*100), IV2(*100), IV3(*. 100)

414 L 124

IV3=1IV1 +IV2

adds the two vectors IV1 and IV2 (component by component, in parallel) and assigns the result to
IV3 (in parallel).

Selection of a vector from a set of vectors is a simple extension of the selection of a scalar from a
scalar array:

REAL V(*200), VA(*200, 5), VB(*200, 4, 3)

o0 .00

V=VA(,3)-VB(, 1,2
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You can process a complete vector in parallel but you cannot process all the vectors from a set of
vectors in parallel, each individual vector must be processed separately. '

Selection from matrices and arrays (sets) of matrices

Simple selection from a matrix has the same effect as selection from an ordinary Fortran two-
dimensional array and selects a single scalar value. For example:

REAL S, M(*35, *25)

o0 e

S=M(27,11)
will have the effect expected.
Selection of a row vector from a matrix is written:

REAL VR(¥25), M(¥35, *25)

*8e e

VR =M(17,)

which selects row 17 from M and assigns it to VR. The trailing ','in '(17, )' is very important — as
will be explained later.

Selection of a column vector from a matrix is written:

REAL VC(*35), M(*35, *25)

tee ose

VC=M(,5)
which selects column S from M and assigns it to VC.

Selection of (all the components of) a matrix for processing has already been described. For
example:

INTEGER IM1(*100, *50), IM2(*100, *50), IM3(*100, *50)

o0 00

IM3 =IM1 * IM2
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multiplies the two matrices IM1 and IM2 (component by component, in parallel) and assigns the
result to IM3 (in parallel).

Selection of a matrix from a set of matrices is a simple extension of the selection of a scalar from a
scalar array:

REAL M(*25, *55), MA( ¥25, *55,7)

eee 00

M=MAC(,, 6)

You can process a complete matrix in parallel but you cannot process all the matrices from a set of
‘matrices in parallel, each individual matrix must be processed separately.

Assignment and Masking (LHS)
As for selecting on the right-hand side, there are three cases to consider:

< assignment to scalar arrays
-  assignment to vectors (and sets.of vectors)
»  assignment to matrices (and sets of matrices)

Assignment to scalar arrays

Assignment to a scalar array is exactly the same as in ordinary Fortran and updates a single element.
For example: '

REAL S, SA(10), SB(10, 20)

SA(S) =S
SB(8,19) =S

have the effect expected.

You cannot assign to all the elements of a scalar array in paralie!, each individual element must be
assigned separately.
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Assignment 1o vectors and arrays (sets) of vectors

Assignment to a component of a vector has the same effect as assignment to an ordinary Fortran
one-dimensional array. For example:

REAL S, V(*200)

e 00

V(17)=S
will have the effect expected. However, this is a simplified view — more will be explained later.

Assignment (in parallel) to (all the components of) a vector has been described already. DAP
Fortran-Plus also allows a logical vector value to control the assignment to a vector:

INTEGER 1V1(*100), IV2(*100), IV3(*100)
REAL M1(*35, *100)

0@ e

1IvV2dv3 .LT. 0) =1V1 + M1(17,)

The logical vector controlling the assignment can be a completely general expression. Whatis
important is that it must provide a logical vector that matches the dimension of the vector that is
being updated. Taking as a simple example the declarations:

INTEGER IV1(*4), IV2(*4), IV3(*4)
with initial values:

IVi=(3,2,1,5)

IV2=(5,4,3,2)

IV3=(9,8,7,6)
then after the assignment:

IV2(avi .GT.2)=1V3

IV2 will have the value 9, 4, 3, 6). This is an example of masked assignment.

Assignment to a vector in a set of vectors is a simple extension of the assignment to an element in a
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scalar array:

REAL V(¥200), VA(*200, 5), VB(*200, 4, 3)

VA(,3) =V
VB(,1,2)=V

You can assign to a2 complete vector in parallel but you cannot assign to all the vectors of a vector
set in parallel, each individual vector must be assigned separately.

Assignment to matrices and arrays (sets} of matrices

Assignment to a component of a matrix has the same effect as assignment to an ordinary Fortran
two-dimensional array. For example:

REAL S, M(*35, *25)
M7, 11)=S$

has the effect expected. However, this is a simplified view — more will be explained later.

Assignment of a vector 10 a row of a matrix is written:

REAL VR(*25), M(*35, *25)

.0 *°00

M(17,) = VR

which selects VR and assigns it to row 17 of M. The trailing *,"in '(17, )' is very important ~ as
will be explained later.

Assignment of a vector to a column of a matrix is written:
REAL MSQ(*35, ¥35)

MSQ(, 5) = MSQ(17,)

which selects row 17 of the (square) matrix MSQ and assigns it to column S of MSQ.
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Assignment (in parallel) to (all the components of) a matrix has been described already. DAP
Fortran-Plus also allows a logical matrix value to control the assignment to a matrix:

REAL M1(*35, *100)

ads o0

MI(M1 .LT.7.0)=7.0

The logical matrix masking the assignment can be a completely general expression. What is
important is that it must provide a logical matrix that matches the dimensions of the matrix that is
being updated.

Assignment to a matrix in a set of matrices is a simple extension of the assignment to an element of
a scalar array:

REAL M(*25, *55), MB(*25, *55, 2, 5)

e oce

MB(,.2,4)=M

You can assign to a complete matrix in parallel but you cannot assign to all the matrices in a matrix
set in parallel, each individual matrix must be assigned separately.

REDUCED RANK INDEXING AND LONG VECTORS

A special form of index, consisting of a single integer scalar expression, may be used with a multi-
dimensioned obj"ect of any mode (scalar array, vector, set of vectors, matrix, set of matrices) and
is called a reduced rank index. It always sclects a single element / component, using the natural
Fortran ordering of the left-most subscript varying the most rapidly. For example, if MA is a
matrix with dimensions (*¥32, *64, 5) then the ordering is:

MA(, 1, 1), MA(Z, 1, 1), ... MA(32, 1, 1), MA(], 2, 1), MA(2, 2, 1), ... MA(32, 64, 1),
MA(1, 1, 2), ... MA(32, 64, 5)

and MA(33) is the same as MA(], 2, 1).
In right-hand side indexing positions, a reduced rank index selects a scalar. When used in left-hand

side indexing positions, it requires that the value to be assigned to the single element / component is
a scalar.

© Centre for Parallel Computing, QMW University of London, 1990 Fortran-Plus (Simple Indexing)/7



This form of indexing means that the trailing ',' in:

REAL VR(*25), M(*35, *25)

eee 400

VR =M(17,)
is very important. Without the trailing ',":

REAL VR(*25), M(¥35, *25)

soe e

VR =M(17)

selects the scalar value M(17, 1) and assigns its value to each component of VR. There is similar
importance attached to the trailing ', in:

REAL VR(*25), M(*35, *25)

546 teo

M(17,)=VR
However:

REAL VR(*25), M(¥35, *25)

(223 [ 214

M(17) = VR

would not compile (because a scalar is required on the right-hand side of the =) and it is only in
cases such as:

REAL S, M(*35, *25)

M(17,)=S

that there is danger if the ', is forgotten.

Some built-in functions that will be described later treat a matrix whose dimensions match the size
of the DAP's array of processors (32*32 for DAP 500, 64*64 for DAP 600) as a special case —a
long vector whose elements are ordered in the same fashion as for reduced rank indexing.
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BUILT-IN FUNCTIONS

DAP Fortran-Plus provides a large number of built-in functions. Some have been described
already. In this section of the notes, further very important groups of built-in functions are
introduced. -

FUNCTIONS THAT EXTRACT THE MAXIMUM / MINIMUM VALUE FROM A
VECTOR OR MATRIX

Sirﬁple selection of a scalar from a vector or matrix has been introduced already. Sometimes there
is a requirement to obtain the maximum (or minimum) value of all the components in a vector or
matrix. There are two built-in functions (MAXYV, MINYV) to do this:

MAXV takes a vector or matrix parameter with type integer or real and any length. The
function returns a scalar value of the same length and type as its parameter and which
is equal to the maximum value of all the components of its parameter

MINV takes a vector or matrix parameter with type integer or real and any length. The
* function returns a scalar value of the same length and type as its parameter and which
is equal to the minimum value of all the components of its parameter

Taking the declarations: |
INTEGER IV(*4), IM(*5, *4)
and the values:

N 3 12 .5
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then:

MAXV(IM) will give 11
MINV(V) will give 1

Note that both MAXYV and MINV have a second (optional) parameter. Itis a logical mask thatis
used to select the components of the main parameter that will be considered by the function. If this
second parameter is present, at least one of its components must be . TRUE.. If this second
parameter is omitted, all the components of the main parameter are considered.

FUNCTIONS THAT OBTAIN THE POSITION(S) OF THE MAXIMUM /
MINIMUM VALUE(S) OF A VECTOR OR MATRIX

The built-in function MAXP (MINP) finds the position(s) of the maximum {minimum) value of all
the components in a vector or matrix. The descriptions of MAXP and MINP are:

MAXP takes a vector or matrix parameter with type integer or real and any length. The
function returns a logical value of the same mode and dimensions as its parameter.
The result returned has components set .TRUE. in the positions corresponding to the
maximum value of all the components of its parameter and .FALSE. eisewhere

MINP takes a vector or matrix parameter with type integer or real and any length. The
function retumns a logical value of the same mode and dimensions as its parameter.
The result returned has components set .TRUE. in the positons corresponding to the
minimum value of all the components of its parameter and .FALSE. elsewhere

Taking the declarations and the values of IV and IM (above):

MAXP(IM) will give

m mom o
Mo~ ST
2o o il (oo B o
M T o om

and:

MINPIV) will give FETF F
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Note that both MAXP and MINP have a second (optional) parameter. It is a logical mask that is
used to select the components of the main parameter that will be considered by the function. If this
second parameter is present, at least one of its components must be TRUE.. If this second
parameter is omitted, all the components of the main parameter are considered.

FUNCTIONS THAT RETURN LOGICAL PATTERNS (MASKS)

Logical paiterns play a very important part in writing programs to run on the DAP, especially
because of their use in masked assignment statements. DAP Fortran-Plus provides a large number
of built-in functions that retum Jogical vector and matrix patterns — some of the most important ones
are described here.

The function FRST takes a logical vector and returns a logical vector of the same dimension and
that has one component set .TRUE., corresponding to the first . TRUE. component in its parameter.
In addition, FRST will acccept a logical matrix parameter of any shape, which it treats as a long
vector, and return a logical matrix. For example, taking a logical vector LV and a logical matrix LM
with values: |

m oA A
oo e » I B s I |

then:

FRSTL.V)willgive F T F F

F F F
FTEF
FRST(LM) will give F F F
F F F
F F F
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Building alternating patterns

The function ALT builds a logical vector value consisting of an alternating pattern of .FALSE.s
followed by .TRUE.s. Its parameters are:

i an INTEGER*4 scalar value
s an INTEGER*4 scalar value - the dimension of the vector

The logical vector returned has s components of which the first i mod s are .FALSE. followed by
i mod s .TRUE. components and so, until all the components have a value. For example:

ALT@3,8) willgive FFFTTTEEF
If i mod s is zero, a vector with all components set FALSE. will be returned.

The function ALTC builds a logical matrix value consisting of an alternating pattern of .FALSE.
columns followed by .TRUE. columns. Its parameters are:

i an INTEGER*4 scalar value
r an INTEGER*4 scalar value — number of rows in the matrix
¢ an INTEGER*4 scalar value — number of columns in the matrix

The logical matrix returned has dimensions r by ¢. Iis firsti med ¢ columns will be .FALSE,
followed by i mod ¢ " TRUE. columns and so, until all the components have a value. For

example:
EFETT
ALTC(@3,3,5) willgive FFETT
FFETT

If i mod c is zero, a matrix with all components set .FALSE, will be returned.

The companion function ALTR builds a logical matrix value consisting of an alternating pattern of
JFALSE. rows followed by .TRUE. rows. Its parameters are:

i an INTEGER*4 scalar value
r an INTEGER*4 scalar value — number of rows in the matrix
¢ an INTEGER*4 scalar value — number of columns in the matrix
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The logical matrix returned has dimensions r by ¢. Its first i mod r rows will be .FALSE.
followed by i mod r TRUE. rows and so, undl all the components have a value. For example:

B FER
ALTR(, 4,6y will give TTTTTT

EFFFFF

TTTTTT .

If i mod r is zero, a matrix with all components set .FALSE. will be returned.

Building patterns with selected component(s), row(s) or column(s) set .TRUE.
The built-in function EL builds a logical vector with one .TRUE. component. Its parameters are:

« an INTEGER*4 scalar value — the number of the component that wili be . TRUE.
« an INTEGER*4 scalar value — the dimension of the vector

For example:
EL(G, 7) willgive FFEFTEF

The built-in function ELS builds a logical vector with a sequence of .TRUE. components. Its
parameters are:

« an INTEGER*4 scalar value — the number of the first component that will be TRUE.
+ an INTEGER*‘@ scalar value — the number of the last component that will be .TRUE.
+ an INTEGER*4 scalar value — the dimension of the vector

For example:
ELS(3,5, ) willgive FFTTTFF

There are also functions (COL, COLS, ROW and ROWS) that build logical matrix pattems For
example:

W g

ROWS(1, 2, 3, 4) .AND. COLS(1, 3,3,4) will give TTTF
FFFF
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COL (ROW) accepts a first parameter as for EL, to specify column (row) number that is to be set
.TRUE., and its second and third parameters specify the dimensions of the matrix. Additionally,
COL (ROW) will accept an integer vector as its first parameter and its second parameter specifies
the number of columns (rows). For example, if the 5-component INTEGER*4 vector IV has the
value (4, 3, 2, 1, 5) then:

FEFT
E TR
COL(IV,4)wiligive FTFF
TFFF
FFEF

SIMPLE ENQUIRIES OF LOGICAL PATTERNS

The function ALL (ANY) takes a logical vector or matrix and returns the logical scalar value
.TRUE. if all (any) of the components of its pammétcr are TRUE., otherwise the function returns
.FALSE.. There are many other functions that come into this category — consult AMT's own
documentation for further details.

SHIFT FUNCTIONS

A number of algorithmic techniques exploit the good connectivity between the DAP's individual
processing elements by moving data between the processors in a regular way. The routines that
support this impércant feature are the built-in shift functions, which operate on vectors (and long
vectors) and matrices.

Vector (and Long Vector) Shifts

These functions take a vector (long vector that matches the DAP’s edge dimensions) and return a
result that conforms (type, length, mode, dimension) but in which the values have been SHifted to
the Left or to the Right. There are two possibilities for what happens at the 'ends’ of the object;
values can wrap round from one end to the other — Cyclic shift; constant values can be shifted in —
Planar shift. The values shifted in for planar shifts are 0, 0.0, .FALSE. and null. For example, if
the components of the vector IV have the values (4, 1, 2, 1) then:

SHLCIV) will return (1, 2, 1, 4) and SHLP(IV) will return (1, 2, 1, 0)
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The shift functions have an optional second parameter — the number of places to shift is taken as the
value of that parameter (an INTEGER*4 scalar) modulo the dimension of the vector. So:

SHRCQAV, 5) willremurn (1, 4, 2, 1)
SHRP(1V, 4) will reurn (4, 1, 2, 1)

If the matrix:
1234
IM with components 3 4 § 6
S eT 8
7 89 10

were shifted (as a long vector) on a 4*4 DAP then:

0345
SHRP(IM, 3) wouldgive 0 5 6 7
) o
1234

Matrix Shifts

These functions take a matrix and return a result that conforms (type, length, mode, dimensions)
but in which the values have been SHifted to the North, South, East or West. There are two
possibilities for what happens at the 'edges’ of the object; rows/columns can wrap round from one
edge to the other — Cyclic shift; constant rows/columns can be shifted in — Planar shift. If:

1234

IM has components 3 4 5 6

Se78

78910

then:

7 8 9 10
SHNP(IM, 3) wouldgive 0 ¢ 0 0
A
0 000
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4 1
SHEC(IM, 5) would give 6 3
8 5
10 7

o N AN
O Nk W

The shifts on the various rows/columns of a matrix may be different, specifed by an INTEGER*4
vector. For example, if the components of the vector IV have the values (4, 1, 2, 1) and the matrix:

1234
M has components 3 4 5 6
5678
% & 9 10
then:
: 1 0 0 0
SHSP(IM, IV) would give 3 2 0 4
5 4 3 6
76 5 B
1 2 3 4
SHEC(IM, SHRP(IV)) wouldgive 3 4 S 6
B 3 6 Z
9 107 8
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DAP PROGRAM STRUCTURE

DAP Fortran-Plus programs have an overall structare similar to ordinary Fortran programs. They
are made up of SUBROUTINEs and FUNCTIONs with one (or more) special ENTRY
SUBROUTINES that act as the main entry points from the host. ENTRY SUBROUTINE: are
the same as ordinary SUBROUTINE:S except that they cannot have parameters.

Statements that control the flow of program execution are very much the same as in Standard
Fortran and the non-executable statements (type statements, DIMENSION statements, END
statements etc) and rules about statement ordering will be familiar to Fortran programmers.

CONTROL STATEMENTS
The main control statements are:

block IF
IF (logical_scalar expression;) THEN

e

ELSEIF (logical _scalar_expressiony) THEN

ees

ELSE IF (logical_scalar_expression,) THEN

ENDIF

arithmetic IF

IF (numerical_scalar_expression) label;, label,, labely

logical IF
IF (logical_scalar expression) statement

GOTO
GOTO labe!
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computed GOTO
GOTO (label;, label,, ... label,), integer _scalar expression

DO and CONTINUE
DO label imteger_scalar_variable = start, terminator, increment

label CONTINUE
CALL

CALL subroutine_name
CALL subroutine_name(actual_arguments)

RETURN, PAUSE and STOP
»  RETURN returns control to the calling subroutine/ function.
It is also the way to pass conirol back from an entry subroutine to the host

«  PAUSE optional_integer constant
The integer constant is passed back to the run-time diagnostic system and the DAP
program's execution is suspended

«  STOP optional_integer constant
The integer constant is passed back to the run-time diagnostic system and the DAP and
host programs' execution is abandoned

TRACE .
TRACE level (list_of variables)
Depending on compile time request for trace level level ‘and that request not having been
modified since the source code was compiled, the values of list_of variables is sent to the
diagnostic output channel

LOCAL DATA AND RECURSION
A Fortrtan-Plus subroutine may call itself recursively. New copies of local data are declared on
each recursive call. New copies of local data initialised in type declaration and DATA statements are

not declared on each call of a subroutine.

Fortran-Plus functions may not directly call themselves recursively. They may, however, be
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entered recursively via intermediate routines.
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HOST / DAP INTERFACE

The DAP is a processor attached to a host computer system. The host operating system does not
know much about the DAP —it regards it as a peripheral — nor do its linker and loader know about
DAP programs. This means that special interface routines have to be used to handle entry to DAP
programs and the transfer of data between the DAP and its host. In all other respects, the host
program is a ‘normal’ program.

The overall structure of the host program, as far as its dealings with the DAP part of the complete
program are concerned, is:

«  CONNECT TO DAP MODULE
+ SEND DATA

+ ENTER DAP PROGRAM

-  PULL DATA BACK

+ RELEASE DAP

AMT provides interface routines to initiate all of these steps.

CONNECTING TO DAP MODULE

The INTEGER function DAPCON loads a DAP program into the DAP hardware (or simulator),
ready for subsequent entry. The host compilation system does not know anything about DAPCON
—it treats it as a user-written function — so you must REMEMBER TO DECLARE IT AS AN
INTEGER IN THE PART OF YOUR HOST PROGRAM FROM WHICH IT IS CALLED.

DAPCON's single parameter is:

« aCHARACTER string, to specify the name of the file containing the executable (ie
compiled and linked) DAP program

DAPCON returns an INTEGER value, indicating success / failure when loading the DAP program.
The possible values returned are:

0  success —the DAP program module has been loaded
I  unable to open executable DAP program file — perhaps the filename was mis-spelled
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OVERALL STRUCTURE — DAP
The overall structure of a DAP program is:

» CONVERT DATA TO DAP FORMAT

+  PROCESS

» CONVERT DATA BACK TO HOST FORMAT
+  RETURN TO HOST

STORAGE MODES AND CONVERSION ROUTINES
There are 4 different storage modes on the DAP:

= MATRIX - individual components are stored vertically under different DAP PEs

< VECTOR —1individual components are stored vertically under different DAP PEs
but in an order different from MATRIX mode - they are not stored in the order
that matches reduced rank indexing (long vector) of a MATRIX

. SCALAR / SCALAR ARRAY - packed horizontally in DAP row(s)

. HOST — packed horizontally in DAP row(s), as sent from the host

and a set of conversion routines to change data between these different internal formats. The
conversion routines are subroutines that run on the DAP and have names:

CONV<>TO<t>
<f><t>
H @HOSTMODE)
D (DAPMODE)

Conversion from / to host format

The subroutine CONV_H_TO_D (CONV_D_TO_H) converts data from host (DAP) format to
DAP (host) format. Iis parameters are: ;

« startof data
the 'thing' (scalar, vector, matrix) at the start of the area of data that is to be converted.
Usually, this will be a variable at the start of common block

*  Integer scalar value — an optional parameter
the number of 'thing’s to convert. Each ‘thing’ must bave the same type, length, mode
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and dimensions

Canversion between DAP modes

There is also a conversion routine that will convert between the internal data storage formats of the
different DAP modes (scalar, vector, matrix). As these facilities are needed only by advanced

users, the routine is not described here.

EXAMPLE

An example host program section that passes values of a number of different types / lengths to the

DAP might look like:

INTEGER DAPCON, FAILCODE

INTEGER X, Y

DOUBLE PRECISION A, B

LOGICALL

INTEGER*2L, 1, K

INTEGER EQV

EQUIVALENCE (EQV, D)

COMMON /B1/ X(64, 64), Y(64, 64)

COMMON /B2/ A(20)

COMMON /B3/B(32, 3)

COMMON /B4/ L(16)

COMMON /B5/L J,K

FAILCODE = DAPCON('mydapprog’) !

IF (FAILCODE .NE. 0) THEN
<take_error_action>

ENDIF

CALL DAPSEN(B1', X, 4096%2) 2

CALL DAPSEN('B2, A, 40)3

CALL DAPSEN(B3', B, 64*3) 4

CALL DAPSEN('B4', L, 16)5

CALL DAPSEN(BS', EQV, 2)¢

CALL DAPENT('mydapentry') ?

<get values back, if needed>
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Notes:

CALL DAPREL?

sd0

load the executable DAP program stored in the host's filestore, filename is mydapprog,
into the DAP and inspect result code. Note that DAPCON has been declared as an
INTEGER in the host program, as has FAILCODE

pass 64*64 INTEGER*4 arrays X and X to common block B1 in the DAP program

pass one 20 element DOUBLE PRECISION (ie REAL*8) array, A, to common block B2
in the DAP program

passs one 32*3 DOUBLE PRECISION array, B, to common block B3 in the DAP
program

pass one 16 element LOGICAL array, L, to common block B4 in the DAP program

Here we wish to pass some INTEGER*2 values. Because DAPSEN requires word
aligned addresses for the start of the area of data that is to be sent, we have used the
technique of equivalencing an INTEGER*4 variable with the start of the set of
INTEGER*2 variables. Note also that we have to send over complete words from the
host; we send 2 (I, J, K and a half-word of random junk)

transfer control to the DAP program's entry point, mydapentry

finished with the DAP so release it

The associated DAP example program might took like:

ENTRY SUBROUTINE MYDAPENTRY
INTEGER MX, MY

DOUBLE PRECISION VA, VB

LOGICAL VL(*16), VLD(*16, 32) 1
INTEGER*2 S], SJ, SK

COMMON /B1/ MX(*64, *64), MY (*64, *64)
COMMON /B2/ VA(*20)

COMMON /B3/ VB(*32, 3)
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Notes:
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COMMON/B4/ VLD
EQUIVALENCE (VLD, VL)!
COMMON /B5/ 81, 81, SK
CALL CONV_H _TO_DMX, 2)
CALL CONV_H_TO_D(VA)
CALL CONV_H_TO_D(VE, 3)
CALL CONV_H_TO_D(VL)
CALL CONV_H_TO_D(S], 3)
RETURN

END

we have had to make sure that there is enough space for the logical values sent. Each

logical value on the host is 32 bits (ie one host word) long, Each logical value on the

DAP takes up one bit only
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INDEXING RE-VISITED

We have already looked at simple indexing techniques. As indexing techniques play such an
important part in writing programs for the DAP, we will look again at the topic (as a reminder of
what has been covered so far) before looking at further techniques.

SELECTING (RHS)

Selecting a vector from a set of vectors or a matrix from a set of matrices is a simple extension of
selection of a scalar from a scalar array:

REAL §, SA(10), SB(10, 10)
S =SA(S)
S =SB(8,9)

REAL V(*20), VA(*20, 5), VB(*20, 4, 3)

V=VA(, 3)

V=VB(, 1,2)

REAL M(*25, *¥35), MA(*25, *35, 7), MB(*25, *35, 2, 5)
M=MA(,, 6)

M=MB(,,2,4)

Selecting a scalar from a vector, set of vectors, matrix or set of matrices is a simple concept:

REAL S, V(*20)
S=V(17)

REAL S, VA(*20, 10)
S =(VA(, 5))(13) is normally written S = VA(13, 5)

REAL S, M(*25, *35)
S =M(17, 11)

REAL S, M(*25, *35, 10)
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S=(M(,, 8)(7,21) is normally written § = M(7, 21, 8)
Selecting a column / row vector from a matrix or set of matrices is written:

REAL VC(*25), VR(*35), M(*25, *35)
VC=M(,3)
VR =M(17,)

Remember that the trailing ',' is important — to distinguish the above from a reduced rank index.

REAL VC(*25), VR(*35), MA(*25, *35, 5)
VR =(MA(,,2)3,) isusually written VR = MAQ3, , 2)
VC=MAC(,,3))(,27) isusually written VC = MA(, 27, 3)

A logical vector (matrix) can be used to select a scalar value from a vector (matrix), provided that
the dimension(s) of the logical vector (matrix) match those of the object it is indexing. The
restriction is that one and only one component of the logical index must be . TRUE.:

REAL S, V(*25), VA(*25, 7), M(*25, *35), MA(*25, *35, 5)
LOGICAL LV(*25), LM(*25, *35)

S = V(LV)

[ 1 2]

S =(VA(, 4)(LV) is usually written S = V(LV, 4)

*e s

S=MLM)

s00

S =(MA(, ,3)(IM) isusually written S = MA(LM, 3)
It is a simple further extension to use a logical vector to select a column / row from a matrix:

REAL VC(*25), VR(*35), M(*30, *35), MA(*25, *30, 5)
LOGICAL LV(*30)

VR =M(LV,)
VC=MAC(,,4)(,LV) canbe wrtten VC=MA(, LV, 4)

Again, one and only one component of the logical index must be .TRUE..
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The next fairly simple further extension is to use an integer vector as an index that gathers a
column/row vector. For example, if the components of the vector IV have the values (4, 1, 2, 1)
and the matrix;

1 2 3 4
IM hascomponents 3 4 5 6

5 6 7 8

7T 8 & 30

then:

IM(1V, ) would give a ‘row’ vector 7 2. 5 4
IM(, IV) would give a ‘column’'vector 4 3 6 7

Finally, it is a fairly simple further extension to use a logical matrix to gather a row or column from
a matrix:

REAL VC(*25), VR(*35), M(*25, *35)

LOGICAL LM(*25, *35)
VR =M(LM,) selects a ‘row' vector

one and only one component per column must be .TRUE.
VC=M(,LM) selects a 'column’ vector

one and only ome component per row must be .TRUE.
Shift-Indexing

Shift-indexing is a way of expressing a single position (nearest neighbour) shift using an
indexing notation. If M is a matrix and V is a vector:

M(+,) means shift north

M(-,) means shift soath

M(, +) means shift west

M(,-) means shift east

M(+, +) means shift north-west
et

V(&) means shift left
V©) means shift right
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M®H+) means long vector shift left but is only valid if M's dimensions match the DAP's
M¢-) means long vector shift right but is only valid if M's dimensions match the DAP's

There remains the need to inform the compiler whether a shift should be cyclic or planar. This is
achieved using the non-executable GEOMETRY statement:

GEOMETRY (option) controls vector (and long vector) shifts
GEOMETRY (ns, ew) controls matrix shifts and zs also controls vector (and long
vector) shifts

where option, ns and ew may be CYCLIC or PLANAR.

An example that calculates for all the points on a grid (32*100) the ‘average' of its four neighbours
might look like:

REAL A(*32, *100), M(*32, *100)
GEOMETRY (PLANE, PLANE)

il

A=025% MH, )+ M(-, ) + M(, +) + M(, -))

MASKING (LHS)

All of the indexing constructs described above apart from shift-indexing are allowed on the
left-hand side of an assignment. In addition, a logical index may have any number of components
(from none up to all) set TRUE..

Further, a vector (matrix) expects a vector (matrix) value to be assigned EVEN IF SUBSCRIPTED
AS THOUGH IT WERE A CONVENTIONAL ARRAY. This gives rise to surprises:

VECTOR V1(¥25), V2(*25), M1(*25, *35), M2(*25, *35)

V2(6)=Vl1

M2(17,) =M1

But remember that M2(17) would use reduced rank indexing and:
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M2(17) =Ml
is not allowed.

Remember that the logical expressions controlling masked assignments can be completely general
and that there are a large number of built-in functions that generate logical patterns.

Also, remember that a scalar will be replicated as necessary for assignment to a vector or matrix and
a vector will be replicated as necessary (using hints from the actual way that the index is written to
decide whether to replicate by rows or by columns).

Finally, brackets around an indexing construct, such as in (M(, , 3)(IV, ) and (M(, » INALM),
produce a value and hence cannot be assigned to — such constructs must be written in the form
MOV, , 3) and M(LM, 3) (which is different from M(LM, , 3)!)

More complicated indexing facilities are also available but not covered in this course as they are less
frequently used. Consult AMT's reference documentation for further details.
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FURTHER BUILT-IN FUNCTIONS

The built-in funcion MERGE builds a vector or matrix, selecting its components from its first two
parameters and returning an object with the same mode and dimensions as its third parameter
(which must be a logical vector or logical matrix). For example, if IV1 has the value (1, 3, 5, 7),
IV2 has the value (2, 4, 6, 8) and LV has the value (TRUE.,, .FALSE., .FALSE., .TRUE.) then:

MERGE(IV1,IV2, LV) gives (1, 4, 6,7)

The restrictions on the first parameter are that it must match the mode and dimension(s) of the third
parameter (or may be a scalar). The second parameter must match the first in type and length and
match the mode and dimension(s) of the third (or may be a scalar). '

EXTRACTING SUB-VECTORS AND SUB-MATRICES

The built-in function GETVEC (GETMAT) extracts a sub-vector from a vector (sub-matrix from
a matrix). GETVEC's parameters are:

«  the vector value from which a sub-vector is to be extracted
«  an integer scalar — the index of the first component of the sub-vector
+ an integer scalar — the number of components in the sub-vector

and GETMAT's parameters are:

+  the matrix value from which a sub-matrix is to be extracted

»  aninteger scalar — the row index of the first row of the sub-matrix

«  an integer scalar — the column index of the first column of the sub-matrix
*  aninteger scalar — the number of rows in the sub-matrix

+  aninteger scalar — the number of columns in the sub-matrix

The type and length of the vector (matrix) returned matches that of the vector (matrix) from which it
is extracted. For example, if the components of the vector IV have the values (4, 1, 2, 1) then:

GETVEC(V, 2, 3) gives (1, 2, 1)

and if the matrix IM has components:
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1254
3456
260 O 8
78910

then:

4 5
GETMAT(IM, 2,2, 3,2) gives 6 7
8 9

ASSIGNING TO SUB-VECTORS AND SUB-MATRICES

The DAP Fortran-Plus subroutine SETVEC (SETMAT) assigns a vector (matrix) value to the
components of a sub-vector within a vector {sub-matrix within a mamix). SETVEC's parameters

are:
» the vector variable within which a sub-vector is to be assigned to
+  an integer scalar - the index of the first component of the sub-vector
« the vector value to be assigned to the sub-vector

and SETMAT'"s parameters are:

«  the matrix variable within which a sub-matrix is to be assigned to

»  aninteger scalar — the row index of the first row of the sub-matrix

«  aninteger scalar - the column index of the first column of the sub-matrix
+ the matrix value to be assigned to the sub-matrix '

The type and length of the vector (matrix) value must match that of the vector (matrix) to which it is
to be assigned. For example, if the components of the vector IV have the values (4, 1, 2, 1) then:

CALL SETVEC(V, 2, VEC(3, 2)) changes IV to (4, 3, 3, 1)
and if the matrix:
1:2: 834

IM has components 3 4 5 6
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5678

78 910
then:
. 2, 3 @4
CALL SETMAT(M, 2, 2, MAT(0, 2,2) gives 3 ¢ O 6
5 0 0 8
78 9 10
as the new value for IM.
MANIPULATING BIT VALUES

The built-in function GETBIT extracts a logical value from a scalar, vector or matrix, returning a
value of the same mode and dimensions with . TRUE. representing the bit being set and JFALSE.
representing the bit being clear. GETBIT's parameters are:

«  the value from which the bit' is to be extracted
«  aninteger scalar — the number of the 'bit' that is to extracted

For example, if IM is an INTEGER*4 matrix then:
GETBIT(IM, 32)

returns a LOGICAL matrix of the same dimensions as IM and each of whose components contains
the least significant bit of the corresponding component of IM. It is like having a set of logical
matrices equivalenced over IM, but not quite the same — tricks using EQUIVALENCE will work
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