

RL-83-023

XPLANT for ELECTRIC users.
J C Gordon

Rutherford Appleton Laboratory
Chilton

Didcot

Oxfordshire

0X11 0QX

March 1983

FOREWORD

This document is not intended to be a complete technical description of the

XPLANT[1] system. It is a simple introduction aimed at people familiar
with the ELECTRIC editing system and the concepts of conditional editing
dynamic 'planting’ of strings and 'supplying’' of files. In this way it is

hoped to facilitate the migration of users from ELECTRIC to CMS. It should
be stressed that XPLANT is a powerful tool with many more facilities for
conditional editing than ELECTRIC. This document will only describe a few
of these to enable the experienced ELECTRIC users to transfer their work to
CMS. It is hoped that after this introduction, the user will then exploit
the greater power offered by XPLANT. The wuser is assumed to have a basic
knowledge of CMS[2] as used at the Rutherford Appleton Laboratory[3] at the
level of that given in the introductory guide[4] or on the introductory
course given to new users of the system[5].

Section 1 is an introduction to the uses of XPLANT by the wuse of several
annotated examples and comparison with similar ELECTRIC files. Section 2
contains a description of the XPLANT command and a few useful macros
together with a description of the XEDIT macros which can be used to make
conditional edits on a file. Section 3 lists the ELECTRIC delayed editing

commands and suggests simple replacements when using XPLANT. Section 4
discusses using some of XPLANT's more powerful features to improve on the
straightforward replacements suggested in section 3. For an overall

introduction and comprehensive description of XPLANT the wuser is referred
to Reference 1.

Foreword
Notation .

1

el
>N -

[4%]

—
—
N —

PN DN POLN
NNNQNUNANQNNNN
- T N N S E R
S

DOV
— = O 0 2
- O

3.6.1

WWww WWWWwWwWw
O oo~ OOV LN~

>R
> W N -

Appendix A:

References

CONTENTS

Introduction
Example 1 - A Slmple Job A x
Example 2 — Checking Data Types : :
Example 3 — Multiple Versions of a Program
Example 4 — Many Jobs in One File .

XPLANT
Brackets .
Bracket Processxng .
Unit Processing
Labels
Examples . .
The XPLANT Command
Examples a
$pP
Examples .
Special Xplant Xedlt Macros .
Examples of conditional edltxng
$ JOBCARD
Parameters . . 5 % 0§ 0§ 4 % @
User Dependent Parameters (PH ACCT ID, PROGNAME)
Examples : S %3 B 8 W 5
$CHECK . . :
$SET and SUNSET :
$ADD . .
$NOT .
$EXIT .

Replacements for ELECTRIC delayed edltxng commands.
Labels 4 3
$A . .

Emampiee

Extensions and Alternatives.
The CMS UPDATE Command .
Using Parameters and Functlons as Macro Arguments
Macro calls as Labels
User Defined Macros

Xplant Functions.

- iii -

The
(a)

(b)

(e)

(d)

(e)

NOTATION
following conventions are used in this report.

When a command, option or parameter is written in mixed case, the part
written in upper case shows the shortest possible abbreviation.

In the examples given, some lines are marked on the right by letters
in parentheses (eg(a)), these letters refer to the corresponding
points listed on the following pages.

A list of items separated by | and enclosed by <« > denotes a choice.
Only one of the list should be given, without the <« ».

XPLANT labels and macro names are given in upper case for clarity.
They can always be given in lower or mixed case.

Whenever an example is given of a CMS session with a mixture of user
input and replies from the system, the user input is emboldened.

1. INTRODUCTION

XPLANT is a program written by Systems Group at Rutherford Appleton

Laboratory. Its purpose is to provide dynamic and stored editing
facilities for CMS users in a way best suited to the VM/CMS and OS
environments. The editing scheme is based on the previous PLANT program

using special characters to introduce 'brackets’ within the input file.
All the text is in one file so it is easier to modify since existing edits

can be seen and there is no system housekeeping to be done on a separate
edit file.

The program performs a copy operation from a CMS file to the specified
output medium which may be

(a) The user's terminal
(b) Another CMS file

(¢) A job submitted to the MVT batch system, or the batch system at
another VNET node.

As it performs the copy, XPLANT interprets edit strings (or 'brackets’') in
the file and outputs text resulting from the contents of these brackets.
The selection of these edits can be controlled from the command line and
the values of parameters within the file may be given either on the command

line or in response to prompts from the file itself. The value of these
parameters can be checked against a range of data-types and if they are not
of the correct type a prompt may be issued for a correct value. The rest

of this section shows a number of typical ELECTRIC files with their
associated edit files and XPLANT files which perform equivalent tasks.
These examples are in increasing order of complexity and the user who does
not use all the power of ELECTRIC's delayed edits may wish to skip the
later ones.

1.1 Example 1 — A Simple Job
Take as an example the ELECTRIC file shown below with its edit file.
FL=PYMAINDR.TESTJOB NENT= 12 ,NBLK= 1

1://Us JOB (,.,,), 'TEST JOB'

2://* JOB TO COPY CARDS TO DISK

3://COPY EXEC GENER

4://IN DD *

5:C A SHORT DATA FILE.

6: 1 1 12.594 58.2379 42.1863 20.889 1563.4
7 1 2 5.239 45.259 73.1782 469.2 1269.47
8: 2 3 12.4578 25.699 144.0 487.28 1300.00
9

://OUT DD DSN=USER.USCOPY,VOL=REF=.DISP=NEW,
10:// DCB=CARDS,SPACE=(TRK,)

BEVE
EOP

Xplant For ELECTRIC Users Page 1

Chapter 1

FL=PYMAINDR.TESTJOB.ED NENT= 4 ,NBLK= 1
1 $P LN= 9. 1,Cl= 15,C2= 26,CH=NO,DF=YS,NM=DSN
1 $P LN= 9. 2,Cl= 36,C2= 35,CH=NO,DF=NO,NM=VOL
1 $P LN= 10. 1,Cl= 10,C2= 14,CH=NO,DF=YS,NM=DCB
1 $P LN= 10. 2,Cl= 27,C2= 27,CH=NO,DF=NO,NM=TRACKS

EOP
The ELECTRIC command
EXEC TESTJOB,VOL=RHELO1,DSN='USER.USCARD', TRACKS=1

will submit the file to the designated batch system. The parameters VOL
and DSN will be planted in the file. Note that some of the parameters (eg
DCB) have default values which will be planted if they are not given on the

command line.

A CMS file for processing by XPLANT to achieve a similar result would look
as follows. The lower case letters in parentheses are references to the

points on the following pages.

$$JOBCARD } o ola)
//* JOB TO COPY CARDS TO DISK ... (b)
//COPY EXEC GENER
/IN DD *
Cc A SHORT DATA FILE.

1 1 12.594 58.2379 42.1863 20.889 1563.4

1 2 5.239 45.259 73.1782 469.2 1269.47

2 3 12.4578 25.699 144.0 487.26 1300.00
;/OUT DD VOL=REF={$P VOL},DSN={$P DSN USER.USCOPY}, ... (e)(d)
// DISP=NEW, SPACE=(TRK, § TRACKS}), o (e)

// DCB=CARDS
x

The corresponding command to submit this file to the MVT batch system is:-
XPLANT TEST (SUBMIT(VOL RHELO1 DSN USER.USCARD TRACKS 1 (1)
This will produce the following output on the user's terminal

PUN 011 DEFINED
Jobname "US" submitting to OS batch system.

PUN FILE 5805 TO FEM COPY 001 NOHOLD
PUN 011 DETACHED
R;

and the following file would be submitted to the MVT batch system.

//US JOB (1111,US,,,,,..),
// 'VM/US/PH-37'

/* Command 1ine:XPLANT TEST(SUB(VOL RHELO1 DSN USER.USCARD TRACKS 1
//* $JOBCARD called from "TEST XPLANT A1 1"

/* Submitted from RAL CMS userid “JCG" on 09/20/82 16:05:54

//* JOB TO COPY CARDS TO DISK

/COPY EXEC GENER

//IN DD *

44 A SHORT DATA FILE.
1 1 12.594 58.2379 42.1863 20.889 1563 .4
1 2 5.239 45.259 73.1782 469.2 1269.47
2 3 12.4578 25.699 144.0 487 .26 1300.00

Page 2 Xplant For ELECTRIC Users

Introduction

//OUT DD VOL=REF=RHELO1, DSN=USER.USCARD
// DISP=NEW,SPACE=(TRK,1),
// DCB=CARDS

*

Note the following points.

(a)

(b)

(e)

(d)

(e)

(1)

This

(g)

(h)

(i)

This is a call to the XPLANT $JOBCARD macro. When XPLANT encounters
this call it places a HASP jobcard in the output stream. This jobcard
uses the wuser’'s MVT 1id and account. Here all other HASP jobcard
parameters assume their default values.

All text that is not enclosed in brackets is copied to the output
med ium.

The first bracket is a call to the $P macro. If the parameter VOL is
given a value on the command line then this will be output in place of
the bracket. If VOL is not given a value then $P will prompt for one
and replace the bracket by the value given in response to the prompt.

The second bracket on this line is another call to $P. This time the
value of the parameter DSN will be output in place of the bracket, but
if DSN does not have a value then the default value USER.USCOPY will
be used.

This bracket will be replaced by the value of the parameter TRACKS. If
TRACKS has no value then the bracket will be removed and nothing
output.

The XPLANT command has a SUBMIT option to direct the output file to
the MVT batch system.

Example introduced the following XPLANT concepts.

XPLANT processes special strings or 'brackets’ which appear in the
input file. In the output stream these brackets are replaced by text
strings. The values of these strings depend on the contents of the

brackets. All other text in the input file is copied directly to the
output stream.

XPLANT macros (whose names begin with §) are controlled by their
argument lists which may themselves contain brackets. Macros may or
may not produce output. (Examples $P,$JOBCARD)

If a bracket does not call a macro then its contents are treated as an
XPLANT parameter or ‘label’ and the value of this parameter is
returned. The parameter may be assigned a value either on the command
line or in a another bracket earlier in the file. If the parameter
has no value then nothing will be placed in the output file in place
of the bracket.

Xplant For ELECTRIC Users Page 3

Chapter 1

1.2 Example 2 — Checking Data Types

Below is a modified edit file for the ELECTRIC file shown above.

FL=PYMAINDR.TESTJOB.ED NENT= 4 NBLK= 1
1 $P LN= 9. 1,Cl= 15,C2= 14,CH=DS,DF=YS,NM=DSN
1 $P LN= 9. 2,Cl= 24,C2= 23,CH=AN,DF=NO,NM=VOL
1 $P LN= 10. 1,Cl= 10,C2= 14,CH=NO,DF=YS,NM=DCB
1 $P LN= 10. 2,Cl= 27,C2= 27,CH=IN,DF=YS,NM=TRACKS

EOP

In this file the values of VOL, DSN and TRACKS are checked to be of types
alphanumeric, OS dataset name and Numeric respectively.

If this file is submitted with the command line

PARM I1D=XX,ACCT=1234,PRI=12, JOBNAME=USCOPY, LINES=1
EXEC TESTJOB,DSN=USER.XXDATA,VOL=RHELO1, TRACKS=1

ELECTRIC would submit the file to the MVT system with the appropriate
values of the parameters given. If VOL, TRACKS or DSN do not have the
specified type of value then the command would fail. ELECTRIC also
recognises ID, ACCT, PRI, JOBNAME and LINES as parameter names and uses
these values when submitting the job.

The equivalent XPLANT file would look like:—

$§$JOBCARD }
//* JOB TO COPY CARDS TO DISK
//COPY EXEC GENER

/IN DD *
C A SHORT DATA FILE.
1 1 12.594 58.2379 42.1863 20.889 1563.4
1 2 5.239 45.259 73.1782 469.2 1269 .47
2 3 12.4578 25.699 144.0 487.26 1300.00
//OUT DD VOL=REF={$P VOL *CHECK=VOL}, DSN={$P DSN USER.USCOPY OSDSN},
I DISP=NEW, SPACE=(TRK, {$P TRACKS 5 NUM}),
;/ DCB=CARDS

The Command line for XPLANT to submit this file to MVT would be too long to
fit onto one line, so the user must use the PROMPT option. This option
will prompt the user for parameters and he can enter as many as he likes in
parameter-value pairs separated by a blank, one pair per line. The list is
terminated by a null line. For Example , the command line

XPLANT TEST JOB(SUB PROMPT (1D XX ACCT 1234 PRI 12 TRACKS 1

will produce the dialogue below at the terminal. XPLANT will process the
file as before but if any of the planted parameters VOL, DSN or TRACKS or
the $JOBCARD parameters do not have the required type of value then XPLANT
will prompt the user to enter a value of the correct type. In this example
the value of LINES is not NUMERIC and VOL is not ALPHANUMERIC so XPLANT
complains.

PUN 011 DEFINED

Enter keywords and values, terminated by null :-
lines a

vol rhelO*

Page 4 Xplant For ELECTRIC Users

When

Introduction

dsn user.xxdata
jobname copy

Jobname "“USCOPY" submitting to OS batch system, priority 12.
Value "A" for parameter "LINES"” in file "TEST JOB Al 1" is not of
type "NUMBER"

Give value of "LINES"

1

Value "RHELO*" for parameter "VOL" in file "TEST JOB Al 9" is not
of type "VOLSER"

Give value of "VOL"

rhelOl

PUN FILE 8570 TO FEM COPY 001 NOHOLD

PUN 011 DETACHED

R;

the correct type of values have been given, XPLANT continues as

before.

This
(a)

(b)

(e)

(d)

example introduced the following ideas:-

The $JOBCARD macro has a number of associated parameters. If any of
these parameters are set prior to the macro call, either by setting
them earlier in the file or on the command line, then these values are
used. Otherwise the default values are used. The defaults are
generally to put nothing on the jobcard and thus take the system
default. These parameters are PH, ACCT, ID, PROGNAME, PRI, JOBNAME,
TIME, LINES, CARDS, FORMS, COPIES, MSGLEVEL, LINECNT, NEEDS, COND and
USERTEXT. Most of the names are self-explanatory but see Reference 1
or the CMS Help file XPLANT $JOBFILE for a fuller explanation.

Macros may have an argument list. The call to the $P macro on line 10
of the CMS file has three arguments. The first, TRACKS, is the name
of the parameter to be planted. The second, 5, 1is the default value
which will be used if TRACKS is not set. The third, NUM, is a
check-type (see point (d)). In the first bracket on line 9, the
check-type is referred to by its name *CHECK because it is the third
positional argument and the second is not given. An alternative would
be to give the special value % for the second. This allows subsequent
arguments to be given positionally without setting the second. The
second bracket on this line is a call to $P with a default value given
so the check type can be given as the third argument. For the names
and positions of macro arguments see Reference 1 or the individual CMS
Help files for each macro (eg for $JOBCARD type HELP XPLANT $JOBCARD)

The XPLANT command has a PROMPT option which causes the user to be
prompted for a list of parameter value pairs.

The $P macro allows the checking of a parameter’'s value before
planting it into the output file. If the value is not of the
specified type, then the user is prompted for a value of the correct
type and this value is subsequently used.

Xplant For ELECTRIC Users Page 5

Chapter 1

1.3 Example 3 — Multiple Versions of a Program

This example shows how to store a second version of a program in the same
physical file.

The file listed below, contains a short FORTRAN77 subroutine.

SUBROUTINE VNORM(A,N)

* NORMALIZE VECTOR A , LENGTH N
DIMENSION A(*)

* MODULUS OF A
AMODUL=0.0
DO 10 I=1,N

10 AMODUL=A (I)**2+AMODUL

* SCALE A
FACT=1.0/SQRT(AMODUL)
DO 20 I=1,N

20 A(1)=A(I)*FACT
END

In ELECTRIC to create another version of this routine a separate edit file
was created containing the edits to the original file. A short edit file
for the above file is shown below.

FL=PYMAINDR.VNORM.ED NENT= 7,NBLK= 1

1 G LN= 0. 1,DG=ONLY(1) : ORIGINAL VERSION.

1 $G LN= 0. 2,DP=ONLY(2) : DOUBLE PRECISION VERSION.
2 $I LN= 2. 1 :* USE DOUBLE PRECISION INTERNALLY .
2 $1 LN= 3. 1 : REAL*8 AMODUL,FACT

2 $E LN= 5. 1,Cl= 14,C2= 16 :0.D0O

2 $DIN= 9. 1,L2= 9

2 $I LN= 9. 2 : FACT=1.0D0/DSQRT (AMODUL)
EOP

When this file is used by ELECTRIC, the original version will be taken by
default. To have the edits applied the edit group DP had to be specified.

With XPLANT., to create another version of this routine which is in the file
VNORM XPLANT the XPLANT XEDIT macros are used when editing. The console
listing for the editing session is shown below with a listing of the final
file.

x vnorm xplant
EDITING FILE: VNORM XPLANT Al

XEDIT:

xplant double ... set the xplant label
Warning: file made RECFM V

2

* NORMALIZE VECTOR A , LENGTH N
xXi e insert a line
INPUT MODE:
* use double precision internally .
XEDIT:
1xi
INPUT MODE:
real*8 amodul, fact
XEDIT:
2xchange/0.0/0.0d0/
AMODUL=${DOUBLE:0.0DO|:0.0% change a string

Page 6 Xplant For ELECTRIC Users

Introduction

/FACT/xrep fact=1.0d0/dsqrt(amodul) replace a line
file

R:
t vnorm xplant

SUBROUTINE VNORM(A,N)

* NORMALIZE VECTOR A , LENGTH N
§ DOUBLE : * USE DOUBLE PRECISION INTERNALLY .}
DIMENSION A(*)
{ DOUBLE : REAL*8 AMODUL,FACT}
* MODULUS OF A
AMODUL=§DOUBLE: 0.0D0| :0.0}
DO 10 I=1,N
10 AMODUL=A (I) **2+AMODUL
* SCALE A
§ DOUBLE : FACT=1.0D0/DSQRT (AMODUL) |
: FACT=1.0/SQRT(AMODUL)}
DO 20 I=1,N
20 A(1)=A(1)*FACT
END
R;

The command
XPLANT VNORM XPLANT A VNORM FORTRAN A

will copy the original version of this routine to the CMS file
VNORM FORTRAN.

The command
XPLANT VNORM XPLANT A VNORM FORTRAN = (DOUBLE REPLACE

would overwrite VNORM FORTRAN with the alternative version of the routine.

1.4 Example 4 — Many Jobs in One File

In the previous examples the brackets have been simple macro calls (eg $P)
which were unconditionally obeyed. XPLANT also allows conditional editing
by the labelling of brackets and the combination of several macro calls in
one bracket, only one of which may be executed.

XPLANT will treat a text string before a macro call (ie before a $) as a
number of labels, eg -

{labell label2 label3 $TYPE 'stringl’ }
This bracket has three labels : labell, label2, label3. $TYPE is a macro

which outputs 'stringl’ to the terminal. XPLANT tests the values of the

labels from left to right. If any of them have a value then $TYPE will be
executed.

These labels are of two types.

(a) Labels with definite values. These are the parameters introduced
earlier (eg VOL,DSN,TRACKS in Example 1).

Xplant For ELECTRIC Users Page 7

Chapter 1

(b) Labels used as 'switches’ These can either be 'set’' when their value
is 'ON' or 'unset’' when they have no value. These labels may be set
ON by including them in the list of options (like SUBMIT and PROMPT)
after the first left parenthesis on the command line.

The bracket may also be subdivided into sub-brackets or 'units’'. These are
separated by vertical bar characters (]|). eg:

{L1 $TYPE ‘stringl’| L2 $TYPE 'string2'| L3 $TYPE 'string3'}

XPLANT scans the bracket from left to right and whenever it finds a unit
that is active (ie one that has either a label with a value or no label at
all), then it executes that unit and ignores the rest. So if L1 had a
value then stringl would be $TYPEd. If L1 had no value and L2 did, then
string2 would be typed etc.

The following example uses both of these features and another three macros.
(a) $SET — This macro sets a parameter to a given value.
{$SET A 1 $ A is set to 1 }

would give parameter A the value '1'. Note that the argument list for
$SET is terminated by $. Any text following this second § will be
copied to the output stream with any brackets resolved.

(b) $GROUP — This macro will set a number of labels 'ON'. If the macro is
made conditional, then setting one label on the command 1line would
allow several more labels to be set inside the file.

{ GI $GROUP L1 L2 L3 L4 L5 }
If Gl is set then L1, L2, L3, L4, L5 will be set also.

(c) &1 — This macro does nothing but allows the temporary setting of
parameters for other macro calls. It also has a special form of
"colon’ (:) which is equivalent to 1 ~ ie output any text following.

{: A text string for output }

would copy the text string following the colon to the output stream
with any imbedded brackets resolved.

The ELECTRIC file listed below, when used with its edit file, can create a
job to copy either a dataset on tape or a catalogued disk dataset to a
dataset on tape or disk by specifying one of four options TT, TD, DD or DT.
In addition, the options SI or SO indicate that the input/output dataset is
on a demountable disk.

FL=PYMAINDR.TESTJOB2 NENT= 12 NBLK= 1
://MYCOPYAB JOB (,,.).'GENERAL COPY JOB'
:/*SETUP INVOL,R,DEN6250

:/*SETUP DSN=INDSN

:/*SETUP OUTVOL,W,DEN6250

Z//' A JOB TO COPY A DATASET FROM SETUP DISK TO SETUP DISK

*

o~
N

.//STEP1 EXEC GENER
://IN DD DSN=INDSN,VOL=SER=INVOL,UNIT=DEN6250,

OO WN -

Page 8 Xplant For ELECTRIC Users

Introduction

10:// LABEL=(1,SL,,IN),DISP=0LD

11://0UT DD DSN=OUTDSN, VOL=REF=0UTVOL , UNIT=DEN6250,

12:// LABEL=(1,SL, ,0UT),SPACE= (TRK (5,5)),DISP=(NEW, CATLG)
EOP

FL=PYMAINDR.TESTJOB2 .ED NENT= 61,NBLK= 2

$E LN= 10. 1,Cl= 12,C2= 28 :

$P LN= 10. 2,C1l= 19,C2= 19,CH=NO,DF=YS,NM=INLABEL
$P LN= 10. 3,Cl= 34,C2= 36,CH=NO,DF=YS,NM=INDISP

$P LN= 11. 1,Cl= 16,C2= 21,CH=DS,DF=NO,NM=OUTDSN

$E LN= 11. 2,C1= 27,C2= 29 .SER

$P LN= 11. 3,C1= 31,C2= 36,CH=NO,DF=NO,NM=OUTVOL

$E LN= 11. 4,C1= 38,C2= 50 :

$P LN= 11. 5,Cl= 43,C2= 49,CH=NO,DF=YS,NM=OUTUNIT
$E LN= 12. 1,Cl= 12,C2= 29 :

1 $G LN= 0. 1,SO=ONLY(9) :SETUP OUTPUT DISK

1 $G LN= 0. 2,TD=ONLY(1, 2, 5, 6,12) - TAPE TO DISK
1 $G LN= 0. 3.DD=ONLY(1; 8; 9 6; Y1118} DISK TO DISK
1 $G LN= 0. 4,DT=ONLY(1, 3, 4, 6, 7, 9,11,13) : DISK TO TAPE
1 $G LN= 0. 5,TT=ONLY(1, 2, 4, 6, 9) : TAPE TO TAPE
1 $G LN= 0. 6,S0= NOT(5) : SETUP OUTPUT DISK

1 $G LN= 0. 7,SI= NOT(6) : SETUP INPUT DISK

1 $X LN= 0. 8 : OPTION TT —— COPY FROM TAPE TO TAPE
1 $X LN= 0. 9 : TD — COPY FROM TAPE TO DISK
1 $X LN= 0. 10 : DD — COPY FROM DISK TO DISK
1 $X LN= 0. 11 : DT — COPY FROM DISK TO TAPE
1 $X LN= 0. 12 : SI — INPUT DISK IS SETUP

1 $X LN= 0. 13 : SO —— OUTPUT DISK IS SETUP

1 $X LN= 0. 14 : LB=1 GENERAL EDITS

2 $X LN= 0. 15 : LB=2 TAPE INPUT

3 $X LN= 0. 16 : LB=3 DELETE INPUT SETUP

4 $X LN= 0. 17 : LB=4 TAPE OUTPUT

5 $X LN= 0. 18 : LB=5 DELETE OUTPUT SETUP

6 $X LN= 0. 19 : LB=6 DELETE SETUP DSN

7 $X LN= 0. 20 : LB=7 DISK INPUT

9 $X LN= 0. 21 : LB=9 TAPE OUTPUT
11 $X LN= 0. 22 : LN=11 DISK INPUT DELETE VOL=
12 $X LN= 0. 23 : LB=12 DISK OUTPUT

2 $E LN= 1. 1,C1= 9,C2= 9 :T

7 $E LN= 1. 2,C1l= 9,C2= 9 :D

4 $E LN= 1. 3,C1= 10,C2= 10 :T
12 $E LN= 1. 4,Cl= 10,C2= 10 :D

3 $D LN= 2. 1,L2= 2

2 $P LN= 2. 2,C1= 9,C2= 13,CH=NO,DF=NO,NM=INVOL

1 $P LN= 2. 3,Cl= 17,C2= 23,CH=NO,DF=YS,NM=INUNIT

6 $D LN= 3. 1,L2= 3

1 $P LN= 3. 2,C1= 13,C2= 17,CH=DS,DF=NO, NM=INDSN

5 $D LN= 4. 1,L2= 4

1 $P LN= 4. 2,C1= 9,C2= 14,CH=NO,DF=NO,NM=OUTVOL

1 $P LN= 4. 3,Cl= 18,C2= 25,CH=NO,DF=YS,NM=OUTUNIT
2 $E LN= 6. 1,Cl= 34,C2= 43 :TAPE

6 $E LN= 6. 2,Cl= 34,C2= 38 :

5 $E LN= 6. 3,Cl= 48,C2= 52 :

4 $E LN= 6. 4,Cl= 48,C2= 57 :TAPE

1 $P LN= 9. 1,Cl= 16,C2= 20,CH=DS,DF=NO, NM=INDSN
11 $E LN= 9. 2,C1= 22,C2= 35 :

2 $P LN= 9. 3,Cl= 30,C2= 34,CH=NO,DF=NO,NM=INVOL
11 $E LN= 9. 4,Cl= 36,C2= 48 :

2 $P LN= 9. 5,Cl= 41,C2= 47,CH=NO,DF=YS ,NM=INUNIT

7

2

1

1

9

1

5

9

2

—

Xplant For ELECTRIC Users Page 9

Chapter 1

4 $P LN= 12. 2,Cl= 19,C2= 19,CH=NO,DF=NO,NM=OUTLABEL
4 $E LN= 12. 3,Cl= 30,C2= 47 :
12 $P LN= 12. 4,Cl= 37,C2= 39,CH=NO,DF=YS,NM=ALLOC
12 $P LN= 12. 5,Cl= 42,C2= 42,CH=NO,DF=YS,NM=PRIMALLO
12 $P LN= 12. 6,Cl= 44,C2= 44,CH=NO,DF=YS,NM=SECALLO
1 $P LN= 12. 7,Cl= 54,C2= 56,CH=NO,DF=YS,NM=OUTDISP
4 §E LN= 12. 8,Cl= 58,C2= 62 :KEEP

1 $§P LN= 12. 9,Cl= 58,C2= 62,CH=NO,DF=YS,NM=DISPAFT
EOP

This 1is achieved by labelling the edits in the edit file in distinct
numbered sets and then grouping these sets to provide the edits required
for an option.

For example, ELECTRIC command

PARM INVOL=GCG0O1,0UTVOL=938571, INDSN=TAPE.DATA1,OUTDSN=TAPE.DATAZ2
PARM INLABEL=3,0UTLABEL=2, INUNIT=DEN1600
COPY TESTJOB2(TT), TESTOUT

would create the following ELECTRIC file.
//MYCOPYTT JOB (,,,), 'GENERAL COPY JOB'

*SETUP GCGOO1,R,DEN1600
/*SETUP 938571, W,DEN6250
x

*

//‘ A JOB TO COPY A DATASET FROM TAPE TO TAPE
/
/

//STEP1 EXEC GENER

//IN DD DSN=TAPE.DATA1,VOL=SER=GCGOO1,UNIT=DEN1600,

// LABEL=(1,SL, , IN),DISP=OLD

//OUT DD DSN=TAPE.DATA2,VOL=SER=938571,UNIT=DEN6250,

S LABEL=(1,SL, ,0UT),DISP=(NEW,KEEP)

The edit group TT selects the appropriate edits for a job to copy a dataset
from tape to tape.

Similarly, the command

PARM OUTVOL=RHELO4, INDSN=USER.DISK03
PARM OUTDSN=USER.DISK04
COPY TESTJOB2(DD,S!),TESTOUT2

would select the edits to create the following file.

//MYCOPYDD JOB (,.,),'GENERAL COPY JOB'
/*SETUP DSN=USER.DISK03
*

//* A JOB TO COPY A DATASET FROM SETUP DISK TO DISK
*x
//STEP1 EXEC GENER
/IN DD . DSN=USER.DISKO03,
DISP=0OLD
//OUT DD DSN=USER.DISK04,VOL=REF=RHELO4,
// SPACE=(TRK, (5.5)),DISP=(NEW, CATLG)

Page 10 Xplant For ELECTRIC Users

Introduction

An XPLANT file to perform a similar function would look as follows.

{ TAPETAPE $GROUP TI TO} g3 (D)
{TAPEDISK $GROUP TI DO}
{DISKDISK $GROUP DI DO}
{DISKTAPE $GROUP DI TO%

§$SET JOBNAME COPY{TI:T|DI:D}§TO:T|DO:D}} ... (e)
§$JOBCARD}

//* COPY A D/S FROM {SI:SETUP }{TI:TAPE|DI:DISK} TO §SO

/SETUP { {T0: TAPE|DO: DISK] .. (d)
iTI :/*SETUP §$P INVOL % VOLSER},R, { INUNIT| : DEN6250} | ... (e)

:/*SETUP DSN=§{$P INDSN % OSDSNii
;To SO :/*SETUP {$P OUTVOL *CHECK=VOLSER},W, {OUTUNIT| :DEN8250}}
//STEP1 EXEC GENER

/IN DD DSN=§SI:§INDSN}|$P INDSN % OSDSN}, B i
{T1 :// VOL=SER={INVOL}{,(UNIT={INUNIT|:DEN6250} , LABEL=(} INLABEL. . (g)
|:1},SL,,IN),}

DISP=OLD

//OUT DD DSN=§{$P OUTDSN % OSDSN},VOL={TO SO:SER|:REF}=§OUTVOL},
§TO :LABEL=({$P OUTLABEL % N} ,SL,,0UT) |
DO :SPACE=(§ALLOC| :TRK}, ({PRIMALLO| :5}, {SECALLO|:53))},
// {TO SO:UNIT=§OUTUNIT| :DEN62503}, }DISP=({DISP
| :NEW$, {DISPAFT|TO:KEEP| : CATLG})

If a second file is named on the XPLANT command line, XPLANT performs a
copy to a CMS file similar to ELECTRIC's COPY with edits.

The CMS command

would

XPLANT COPY JOB A TESTOUT (TAPETAPE PROMPT
prompt the user to enter the parameter values.

Enter keywords and values, terminated by null :-
INVOL GCGOO1

OUTVOL 938571

INDSN TAPE.DATA1

OUTDSN TAPE.DATAZ2

INLABEL 1

OUTLABEL 1

INUNIT DEN1600

OS jobname is "PYCOPYTT"
R

would produce the following output in the CMS file TESTOUT JOB A (Filetype
and filemode default to those of the input file.)

//PYCOPYTT JOB (4300, PY, sia) i

// 'VM/JCG/PH-33'

//* Command 1ine:XPLANT COPY JOB A TESTOUT (TAPETAPE PROMPT
//* $JOBCARD called from "COPY JOB Al 72¢

;; Submitted from RAL CMS userid "JCG" on 11/12/82 17:24:08
//* COPY A D/S FROM TAPE TO TAPE

Xplant For ELECTRIC Users Page 11

Chapter 1

Note
(a)

(b)

(c)

(d)

(e)

(1)

(g)

(h)

*

/*SETUP GCG001,R,DEN1600

/*SETUP 938571, W,DEN6250

//STEP1 EXEC GENER

//IN DD DSN=TAPE.DATA1,

// VOL=SER=GCGOO1,UNIT=DEN1600,LABEL=(1,SL,,IN),

L/ DISP=0OLD
//OUT DD DSN=TAPE.DATAZ2,VOL=SER=938571,
i LABEL=(1,SL,,0UT),

// UNIT=DEN6250,DISP=(NEW,KEEP)
the following points:

The options are not restricted to two characters so they can be given
more self-explanatory names, like TAPEDISK instead of TD.

Depending on the option selected, two other labels are set. These are
then used as labels in several other edits. This was done for
brevity. The label TI could be replaced everywhere by the two labels
TAPETAPE and TAPEDISK but the file would then become more cumbersome.

The name of the job may be given by setting the parameter JOBNAME or
as the second positional parameter in a call to the $JOBCARD macro.

Line 6. The labels TO and DO are mutually exclusive so they can be
used in the same bracket.

/*SETUP etc will be output if label TI is set. If INUNIT has a value
it will be output.

If SI is set then INDSN was set three lines previously so $P need not
be used, otherwise call $P to check for a value of DSNIN.

1f the label INLABEL has a value, it will be output, otherwise the
text string ‘1’ will be output. This 1is an alternative method of
specifying a default value for a parameter without type checking.
Th;s method is used several times (eg ALLOC, PRIMALLO, SECALLO on Line
21).

The first bracket shows the use of several labels in a bracket.

Compare the length of the XPLANT file on page 11 with the combined length
of the ELECTRIC file and edit file listed starting on page 8.

Page 12 Xplant For ELECTRIC Users

Introduction

2. XPLANT

This section describes in more detail the structure of XPLANT edits. Lt
defines the terms bracket, label and unit and shows the use of the XPLANT
command. The user is then given a brief description of a few useful XPLANT
macros and introduced to the set of XEDIT macros specially written to help
the creation of XPLANT brackets.

2.1 Brackets

A 'bracket’ is started by a special character and terminated by another.
At the start of the input file these characters are the left 'curly’
bracket (}) hex 8B and the right ‘curly’' bracket (}) hex 9B but these, and
other special characters, may be changed at any time during the processing
of the file.

The term 'bracket’ is used to refer to these special characters and all

characters between them. Within a bracket, the characters dollar
($) vertical bar (|) and colon(:) are also recognised as special.

2.1.1 Bracket Processing

A bracket may be subdivided into any number of 'units’. These units are
separated by vertical bars.

f————

| bracket
|

L -

i uanitd | unit2.] .0 unitn } I

|

—_— — Jd

Only one, if any, of these units will be processed.

The bracket is scanned from left to right until an executable (or 'active')
unit is found (See Section 2.2). That wunit is then executed and the rest
of the bracket is skipped. If no active units are found then the bracket
produces no output. Each bracket may contain any number of nested
brackets, the inner brackets being processed first. Line feeds within a
bracket are ignored unless they are part of a text string, in which case
they will be output.

Xplant For ELECTRIC Users Page 13

Chapter 2

2.1.2 Unit Processing

Each unit within a bracket can take one of the following forms:

T TU s et a o eomdeifal el)

| unit | labels |

| ! labels $opcode parameters

| l $opcode parameters

| ! $opcode parameters $text |

I I labels $opcode parameters $text

I |

| | labels :text

| | ctext

| I

| S -— . & o g S S 5 S D S A P O S D P < S S S e S S P s i i e o)

where:

labels Each label is a string of characters up to 255 long (special
characters in quotes). (see the following section.)

opcode This is the name of the XPLANT function or macro to be
executed. User defined macros may also be used here. See
Appendix A for a one-line description of each system provided
function, and Section 4 and Reference 1 for more details on
macros. Information on all macros and functions is also
available in CMS by typing -— Help XPLANT $opcode
The colon (:) form is simply a special opcode equivalent to
"18" without any parameter settings.

parameters These are the parameter settings passed to the macro. The
settings may be positional and/or keyword but special
characters (including space in a value) must be enclosed in
single quotes. Positional parameters may be skipped (and not
set) by providing the special value of "%".

text This text is introduced by the "$" which also terminates the
parameters. It is processed as normal (any internal brackets
being resolved on the way) and copied to the output stream.

2.2 Labels

Labels are names which can occur at the beginning of each "unit” in a
bracket processed by XPLANT (see Section 2.1) and they control the
operation of that unit within the bracket. If one or more of those names
have a value then the labels are considered "on" and that unit will be
processed and all subsequent wunits within that bracket will be skipped.
Note that only one unit out of the bracket is executed at most.

Page 14 Xplant For ELECTRIC Users

XPLANT

2.2.1 Examples

The macros used have the following effects;

$TYPE - outputs text to the terminal.
$SET A B - sets parameter A to the value 'B’

(a) {X} - returns the value of X

(b) {X Y! - returns the value of X if it has one. If not it returns the
value of Y if it has one. If neither X nor Y have values then nothing
is returned.

(c) 1{$SET A 123} - gives parameter A the value '123' but returns nothing.

(d) {X$SET A {X}} — If X has a value, then set A to the value of X. Here
X is used both as a label and as a parameter value.

(e) {$SET A 123 $ A = {A}} — unconditionally set A to 123 then output the
text string 'A = 123'. nb {A} will return '123"'.

(f) {A:A has a value|:A has no value} — If A has been set, either as in
example (c) or on the command line, then the first unit is active and
the bracket will return the text string 'A has a value’'. If A has not

been set, then the first unit is skipped, the second is processed and
the text string 'A has no value’' is output.

2.3 The XPLANT Command
The XPLANT command has the format

- RS |

]

XPlant | fn ft fm ofn oft ofm (booleans (key-value pairs |
|
4

bamaacamedaceas P s e S P e Pt el |

Where

fn,ft,fm name type and mode of the file to be planted. Default of
XPLANT , XPLANT, *.

ofn,oft,ofm name type and mode of the output file. Default values are

the name, type and mode of the input file unless the input
filetype is XPLANT in which case the output filetype used
is XPLANTED.

Note that all the filenames are optional, and that omitted components of
the output file default to values related to the corresponding component of
the input file.

XPLANT allows two types of option.

(a) Simple switches (or booleans). These are options which are set to a
non—null value if specified by the user and unset if not.

Xplant For ELECTRIC Users Page 15

Chapter 2

(b) Options with values. These option names are set to the given value
for the duration of the XPLANT run or until reset or unset.

XPLANT MY JOB A (OPTIONA (OPTIONB valueb
The OPTIONA form is useful for setting a user’'s labels 'on‘. They can then
be used to control the processing of brackets. There are also a number of
system boolean options which have no values but are just executed if given.

File Causes output to be written into the file. FILE is implied if
neither TERM nor SUBMIT nor PRINT are specified, or if part of the
output filename is supplied.

Terminal Causes output to appear on the terminal.
Print Causes the output to be printed on the virtual printer.
PRT Is an alternative to PRINT.

Submi t Causes the output to be submitted as a job to the OS system
defined by the CMS VROUTE EXEC. This implies VALUES (qv).

TRACE Causes trace output of XPLANT operations to be written to the
console as planting proceeds. Useful for debugging.

DUMP Causes the values of the variables currently set to be displayed
if an error occurs.

NOUse Prevents an error if there are any $SETed variables left at the
end of the XPLANT run that have not been used. The default is to
check them and end with a non-zero return code (and to purge the
submitted file). The error message specifies which variables were
set and their values.

VALues Causes a list of the names and values of the wuser variables that
have been used during the XPLANT run to be generated at the end of
the output file in the form of JCL comments. This 1is implied by
the SUBMIT boolean.

NOValues Suppresses the JCL comments that would normally be created by
SUBMIT or VALUES.

Mixed Causes information read from the terminal to be left in mixed
case. This is the default for files with filetype MEMO, GEROFF,
SCRIPT or LAYOUT. For other filetypes, information read from the
console is uppercased.

PRompt Causes a request for keywords and values to be entered from the
console as XPLANT starts up. The first token is the keyword to be
set, the remainder of the line (after the first space) is the
value to which it 1is set Quotes (') are not allowed in these
lines.

REPlace Unless REPLACE or APPEND is specified, the output file must not

already exist. [If REPLACE is specified, and the output file
already exists, it is erased and a new one created.

Page 16 Xplant For ELECTRIC Users

APPend

The OPTIO
the XPLAN
any of t
system op
RECFM F|V

LRECL n

SETFILE f

MEMBER me

ROUte pri

SECROUTE

TOCMSID u

XPLANT

Unless REPLACE or APPEND is specified, the output file must not
already exist. If APPEND is specified, and the output file already
exists, the new output is appended to the end of the existing
file. If the output file does not already exist, then it is
created. RECFM or LRECL cannot be specified with APPEND.

NB form is used to set parameters to a value for the duration of
T run. Values so set can be used as labels or processed by $P or
he other macros. There are also a number specially recognised

tions with values. These are shown below.

The value of this should be F or V, and is the recfm of
the newly created output file. The default is F.

Record length of the output file (in the range 1 to 256).
The default for LRECL is 80. N.B. LRECL is ignored if the
output has recfm V.

n The name of a file containing variables to be set (like
PROMPT above, but taken from a file). The filetype of the
file is always XPLANT and the filemode *. See the
$SETFILE function for the format to be used inside the
file.

mbername If the input file specified is a MACLIB, this membername
if the name of the member of the maclib that is actually
XPLANTed. If it is ommitted, the whole file is processed.

<sec> This option is used with the "SUBMIT" option to allow you
to temporarily override the default routing which has
been defined earlier by calling the VROUTE EXEC. The
routing defined here or the default set with VROUTE will
effect all jobs within the file wunless overridden by
/*ROUTE cards within the job. Note that if the secondary
address is given, this parameter cannot be given on the
XPLANT command line because only one value 1is permitted
per parameter. To give both addresses, use the "PROMPT”
option or supply the value of "ROUTE” in a file and use
the "SETFILE” option. See also the SECROUTE parameter
below. Note that if the VROUTE EXEC is wused to direct
job submission to another batch system, then this
parameter will be ignored.

sec This option is used in a similar way to "ROUTE” but only
overrides the secondary routing address.

id This option 1is exactly equivalent to specifying "ROUTE
RLVM370 wuid"” which will cause the default routing of
output from all jobs sent in the spool file, to be sent
back to the virtual reader of the specified CMS user
(provided the individual jobs do not contain overriding
/*ROUTE cards). N.B. This parameter can only be used
when job submission is to the RAL OS/MVT system i.e. the
value of SUBROUTE (see below) is (or defaults to)
RLVM370.

Xplant For ELECTRIC Users Page 17

Chapt

er 2

SUBRoute n This option temporarily overrides the routing of the job

input. If “n" is a valid NJE-linkid known to the RAL VNET
system, (e.g. CERN whose linkid is GEN), then this job
will be submitted down that link to run at the remote
site. Note that the special value RLVM370 for "“n”
represents the RAL OS/MVT system. Only when the value of
SUBROUTE is (or defaults to) RLVM370 can the output
routing options (ROUTE, TOCMSID see above) be used.

MACRO memname If this parameter is set to the member name of a macro in

2.3.1

(a)

(b)

(¢)

Page

one of the maclibs available to XPLANT, then this macro
will be executed using only the arguments set on the
command line. This can be useful for testing macros in
maclibs. See "HELP XPLANT MACLIB” for details about how
to make maclibs available to XPLANT.

Examples

Submitting a job to the OS batch system:
XPLANT COMPILE JOB (SUBMIT

This will process the CMS file "COMPILE JOB” (including any other
files which may be $ADDed in) and punch the output to the OS batch
machine, tagged correctly to route the output according to your VROUTE
settings. If the VROUTE SUBMIT setting is not the local RAL Batch
system then the settings of the ROUTE, SECROUTE and TOCMSID options
are not obeyed and the job must contain a /*ROUTE card (or
equivalent).

Copying to a new CMS file:
XPLANT ANALYSE XPLANT * TEMP FORTRAN A

The CMS file "“ANALYSE XPLANT *" is processed and the output is written
to a new CMS file "TEMP FORTRAN A”. The default output format for CMS
files is recfm F, Irecl 80 so that it is convenient for feeding into
the CMS compilers which demand fixed length record input. An error
would be issue for this command if the output file already existed.
Outputting on the terminal and setting some labels and parameters:

XPLANT TEST (TERMINAL NOLKED (COMP H
This performs a copy from file “"TEST XPLANT *" to the terminal - this

can be a useful way of testing the effect of plants and edits. After
the first left bracket are two labels; “terminal"” is the system label
which causes the output to be directed to the terminal. "nolked” is a
private label which could (for example) prevent the execution of the
link—-edit step in a job contained in the file. After the second left
bracket is one key-value pair which sets “"COMP" to have the value "H".
Thus within the files processed by XPLANT in this example, " ${COMP}"

will be replaced by "H" unless the parameter "COMP" is unset or reset.

18 Xplant For ELECTRIC Users

XPLANT

2.4 $P

This macro returns the value of a variable which has been previously set,
it can take a default or can prompt for a value. Value checking can be
performed. This is the equivalent of ELECTRIC's $P plant command.

The arguments for the $P function are :-—

e s e e g o S R S S b |

Parameters

*PARM This is the name of the variable whose value is to be determined
or checked. The variable may have been given a value on the
command line or internally prior to execution of this macro. If

it is not set at this point, the default is taken if one is set,
otherwise an error prompt appears for the value to be given

*DEFPARM This is the default value to be used if the parameter specified
for *PARM has no value. It is not checked against the check-type
and may be null (for a null default) or omitted to force a value
to be given because no default is allowed. If given as "Z%", it
is considered unset.

*CHECK This is the check type for the value of the variable named in
*PARM. See Section 2.7 for a list of check types available. If
this check type 1is omitted, no checking is performed. If the
resulting value does not correspond to the check type, an error
message is sent to the terminal followed by a prompt for the
value to be given again. Note that if the label NOPROMPT is set
on, then this prompt will not occur and the XPLANT program will
exit with condition code 1.

*MESS This is the prompt to be used for the value if the variable named
in *PARM has no value. If it is absent, no prompt is given. If it
is set to "YES”, then the default prompt is used. N.B. a null
reply to this prompt will cause the default to be taken if a
default was specified.

Operation of the $P macro:

(a) 1If the variable whose name is specified as *PARM is already set, its
value is taken and is checked against the check-type if this was
specified. If no check-type was given, no checking is performed and
the value is returned. If the value does not match the check-type, an
error message appears on the terminal followed by a prompt to give the
value again. Only a value matching the check-type will be finally
accepted.

(b) If the variable whose name is specified as “*PARM” is not set, the

default value is taken if it exists. This default value is not
checked against any check-type even if this was given. If the default

Xplant For ELECTRIC Users Page 19

Chapter 2

is omitted or specified as "%", no default is allowed. A terminal
error message appears followed by a prompt to specify the value. This
value must match the check-type if the one was specified.

(¢) If the label "“*NOPROMPT" is set (e.g. on the command line) the macro
will not prompt if the value is of incorrect type or if no default is
allowed, but will end the program with condition code 1. This can be
of use if the program is run in a batch system.

(d) nb If the default value is taken, the parameter name is NOT set (with
$SET - see HELP XPLANT $SET) so that different defaults may be taken
for different calls to the $P macro. However if the value does not fit
the check—-type, or if no default is permitted, then the parameter IS
set (with $SET) so that later calls to macro get the new (possibly
corrected) value and will accept it without further prompting.

2.4.1 Examples

Consider the following lines of JCL.

//FTO1F001 DD VOL=SER={$P VOL USDSK! VOLSER},DSN=USER.FRED
//FTOZFOOI DD VOL=SER=}{$P VOL RHELO2 VOLSER}
/FTO3F001 DD VOL=SER=§{VOL}, A DSN=USER. JOE

If the variable "VOL" was set (eg on the command line), then this will be
accepted and used by the two $P calls provided the value was of type
"VOLSER"”. 1If not, a terminal prompt would request the value to be given
again and this new value would override the old value and be accepted by
the call on the second DD card. nb if "VOL"” was NOT set before XPLANT
processes these lines, both defaults for the two calls will be taken and
variable "“VOL" will NOT be set (and so a null would be returned in the
third DDcard).

Values may be passed to the macro as positional or keyword parameters, so
the bracket on the first line could have been written as

§$P VOL USDSK1 *CHECK=VOLSER}
or {$P VOL *CHECK=VOLSER *DEFPARM=USDSK1 }
or {$P *CHECK=VOLSER *DEFPARM=USDSK1 *PARM=VOL}

// DSN=§$P DSN % OSDSN}
The "DSN” call to $P has no default (because "%" means not set), so if
"DSN" is not set before, an error prompt will be produced and the value
accepted (which must be of type "OSDSN"), would be $SETed so that later
calls to the macro would use it (provided they also required values of type
"OSDSN").

// DSN=§$P DSN % OSDSN 'Give name of your dataset'}

This call behaves exactly as above, but will prompt you for the dataset
unless the variable has been previously set.

// DSN=§$P DSN}

Page 20 Xplant For ELECTRIC Users

XPLANT

This call will return the value of DSN if it is set but prompt you with an
error message if not. No checking is performed on the value at all.

2.5 Special Xplant Xedit Macros

To help create files for processing by XPLANT, two sets of XEDIT macros
have been written.

One set of macros closely mirror existing XEDIT subcommands (like Change),
except that they perform the operation conditionally. These editing
commands all begin with "X" followed by the name of the normal XEDIT
command for that function. So XCHANGE is the conditional form of CHANGE and
XREPLACE is the conditional form of REPLACE etc. These commands have
identical syntax to the corresponding XEDIT commands but instead of
immediately performing the edits, they insert a bracket in the file which
will perform the required edit when the file is processed by XPLANT. The
edit will be conditional on a label. This label is the one currently set
by the XPLANT xedit macro (see below).

The second group of subcommands provide the ability to insert plants ($P
commands),supply files ($ADD commands) and group definitions (like
ELECTRIC's groups) into a file. These do not mirror existing commands and
have their own separate help files. The names are listed below and in the
XEDIT menu.

Before using any of these special commands in an editing session, it is
essential to call the XPLANT sub-command. This sets up synonyms and
provides an opportunity to set or change the editing label.

The XPLANT xedit command has the form

|5 T IS Lt - = oo R e e 3 2

l
<label <left-bracket <right-bracket»>» l
{ $ I

- . S —— 4

where label is the current XPLANT label and left and right bracket are the
XPLANT bracket delimiters as defined in Section 2.1. nb The conditional
edit commands do NOT take account of existing edits in the file, so it is
the user’'s responsibility to make sure the brackets remain properly nested.
Given these restrictions, it is possible to use these edit commands to
perfo§m simple editing and even to edit existing edits (see examples
below).

As a result of the conditional edits, lines will become longer and it may
be necessary to invoke XEDIT with an increased WIDTH option to permit more
edits to be inserted.

Note that only a subset of the XEDIT commands have conditional forms and
these appear in the list below with their minimum abbreviation shown in
capitals.

XAfter XAPpend XBefore XCAppend XChange XClnsert XCOpy
XDelete XDUplica Xlnput XMOve XReplace XSElect XUnder

Xplant For ELECTRIC Users Page 21

Chapter 2

Below is a list of other XEDIT subcommands which are wuseful for planting,
adding and group definitions:

GRoup inserts a group definition at the top of the current file. Line
pointer is repositioned after the insert.

PLant inserts one or more $P brackets. Existing strings in the file
become the default strings of the plants.

PLAFter inserts one or more $P brackets. The plant brackets are inserted
AFTER the specified strings in the file and do not replace them.

PLBEfore inserts one or more $P brackets. The plant brackets are inserted
BEFORE the specified strings in the file and do not replace them.

ENCLOSE makes an existing block of text look like a conditional insert.

SUPPLY add a CMS file to the output stream.

2.5.1 Examples of conditional editing.

Here is the console from a short editing session to modify a short job for
use by XPLANT.

t general job

/*PRIORITY 12

//MYJOB JOB (XXXX,ID),'JOB'
//* A NULL JOB

//STEP1 EXEC NULL

R;
xedit general job a
xplant xt
Warnin Serialisation removed and file made RECFM V
lxc/12§10
/*PRIORITY §XT:10]: 12}
1xc/my/us
//$XT:US|:MY}JOB JOB (XXXX,ID),'JOB’
xc/xxxx/1234/
//3$XT:US| :MY}JOB JOB ({XT:1234|:XXXX},ID),'JOB'
xc/id/us
//{XT:US| :MY}JOB JOB (§XT:1234| :XXXX}, §{XT:US|:1D}), ' JOB’
xb job/xtape / 1 1 3
//3XT:US| :MY}JOB JOB ({XT:1234] :XXXX}, {XT:US|: ID}), ' {XT:XTAPE} JOB'
1xdel 1

iXT RUN XTAPE.}
run xtape.
‘setu

fvoli
xc/null /XTAPE TAPE-{VOL} OPT=E2/
//STEPI EXEC §{XT:XTAPE,TAPE={VOL},6OPT=E2]| :NULL}
fil
R;

Page 22 Xplant For ELECTRIC Users

XPLANT

type

/*PRIORITY §XT:10|:12}

//3iXT:US| :MY}JOB JOB ({XT:1234]|:XXXX},{XT:US|:ID}), ' {XT:XTAPE|:A} JOB
§XT://* RUN XTAPE.}

$XT:/*SETUP {VOL}}

//STEP1 EXEC {XT:XTAPE, TAPE=§VOL}, OPT=E2| :NULL}

R;
xplant general job (term
/*PRIORITY 12
//MYJOB JOB (XXXX,ID), 'GENERAL JOB'
//* A NULL JOB
//STEP1 EXEC NULL
R;
xplant general job (term xt (vol 123456
/*PRIORITY 10
//USJOB JOB (1234,US), 'XTAPE JOB'
/* RUN XTAPE.
/*SETUP 123456
//STEP1 EXEC XTAPE,TAPE=123456,0PT=E2
R;

2.6 $JOBCARD

Returns a /*PRIORITY and HASP // JOB card. All parameters can be planted
and values are checked.

The arguments for the $JOBCARD function are :—

M s et Maiaahrs - st o afacion B

{$JOBCARD *PRI=pri *JBNM=jbnm *TIME=time *LINES=1lines
*CARDS=cards *FORMS=forms *COPIES=copies
*MSGLEVEL=msglevel *LCNT=linecount *NEEDS=needs}

Override with parameters:

PH, ACCT, ID, PROGNAME,

PRI, JOBNAME, TIME, LINES, CARDS, FORMS, COPIES,
MSGLEVEL, LINECNT and NEEDS

see also parameter "COND" below

2.6.1 Parameters

*PRI This is the the priority for the /*PRIORITY card.
* JBNM This parameter will form the last part of the OS jobname (the

first part being the pigeon-hole parameter) This parameter may be
overridden by setting "“JOBNAME".

Xplant For ELECTRIC Users Page 23

Chapter 2

*TIME This is the HASP job time limit.

*LINES This is the HASP thou-line limit.

*CARDS This is the HASP card limit.

*FORMS This is the HASP forms parameter.

*COPIES This is the HASP copies parameter.

*MSGLEVEL This is the HASP message-level control including the brackets.

*LCNT This is the HASP linecount parameter which must be numeric. It
may be overridden by setting parameter "LINECNT"

*NEEDS 1f this or parameter "NEEDS" is set (say on the command line), a
"/*NEEDS" card will be inserted. The value is not checked, but
the value of “NEEDS" overrides the default set with "*NEEDS" on
the call to this macro.

COND If this parameter is set (say on the command line), then a
“/*COND" card is inserted containing the value of COND.

2.6.2 User Dependent Parameters (PH, ACCT, ID, PROGNAME)

The defaults for the parameters pigeon-hole (which forms the first part of
the jobname), the OS account and identifer and the programmer name are all
obtained from a QSET variable called SYJBCARD. They may all be overridden
by settings of the above names on the XPLANT command line. The QSET
variable may be set up conveniently by calling the CMS EXEC JOBINFO from
the PROFILE EXEC (See HELP CMS JOBINFO).

The macro is executed in three stages as follows.

(a) The /*PRIORITY and JOB cards are created using the overridden
parameters (from the command line) and taking defaults from the the
macro call. Nothing is inserted for parameters like CARDS if the value
is not overridden and there is no default.

(b) JCL comment cards are also created giving the original XPLANT command
line, the fileid and line number of the file from which the $JOBCARD
macro was called and the submitting CMS userid, date and time. A
message to the terminal also informs you what the final jobname is.

(¢) Any parametér values which do not fit the correct check-types, will be

faulted and a prompt will be issued for the parameter(s) to be given
again. The new value will be $SETed to override the faulty value.

Page 24 Xplant For ELECTRIC Users

XPLANT

2.6.3 Examples

{$JOBCARD 12 TEST 1-30 % 200 555}%
with the following XPLANT command:

XPLANT TEST JOB (SUBMIT (TIME 2 COPIES 3
would produce the following JCL.

/*PRIORITY 12

//LRTEST JOB (1234,ab,2,,200,555,3,,),

// 'VM/DEMO/PH-xx'

//* Command 1ine:XPLANT TEST JOB (SUBMIT (TIME 2 COPIES 3

//* $JOBCARD called from "“TEST XPLANT A1 1"

/* Submitted from RAL CMS userid "“DEMO" on 01/19/83 14:24:39
The LINES parameter has been skipped in the macro call by giving the value
as "%". The "TIME" and "“COPIES" defaults have been overridden.
2.7 $CHECK

Checks that a string is of a valid format for a specific object.

The arguments for the $CHECK function are :-—

IS - - —id

where
*TXT is the string to be tested.
*TYPE is the check—-type required. This is a substring of the check-types
described below, with the minimum length shown in capitals.
$CHECK returns YES or NO according to whether *TXT is of ihe type specified
by *TYPE, or not.
The possible check-types are
Alpha (a string consisting of either case letters)
ALPHANum or AN (a string consisting of upper case letters and digits)
ANY ‘ this matches any string
Ddname (a valid OS/MVT DDname)
File (a valid CMS file—identifier (filename filetype {filemode}))

FLoat (a valid FORTRAN floating point number (with or without exp)

Xplant For ELECTRIC Users Page 25

Chapter 2

FM (a valid CMS filemode)
FN (a valid CMS filename)
FT (a valid CMS filetype)

Integer (a string consisting of digits, maybe with a sign)
Number (a string consisting of digits)
Osdsn (a valid OS/MVT dataset name, without a member name)
OSPds (a valid OS/MVT dataset name, with or without a member name)
Volser (a valid 0OS 360 volume serial number)
Example
§ $$CHECK ' §{XXX}' OSP}{$T 'OS PDS name is {XXX}'}
will only type the message if XXX is a valid OS dataset name, possibly with
a member name/generation data group.
2.8 $SET and $UNSET
$SET

Sets a variable to a value.

|
! {$SET *A=name *B=value} |
|

| I — 4

The name, the value of *A has its value set to the value of *B. This
setting remains until the variable 1is reset, by $SET or $UNSET. $SET
returns nothing.

For example, if at the top of the XPLANT file, {$SET X YYY} occurs, then
from there on, {X} will become YYY.

$UNSET

Unsets a variable.

{$UNSET *A=name} |

Page 26 Xplant For ELECTRIC Users

XPLANT

The specified name has its value removed. The name must have been $SET, not
just locally bound. Note that if a variable has been $SET more than once,
the value does not return to its previous value; the variable does not have
any SET value after $UNSET.
For example,

{$SET X YYY}

$X}
$$UNSET X}
§X}

The first {X{ returns YYY, but the second returns nothing at all

2.9 $ADD
Includes all or part of a specified file.

The arguments for the $ADD ($A) function are

r— - . e e e e e e e e o e e e e e . o o o o . o . . o o o o T o o . o ot e s e

| {$ADD *FN=fn *FT=ft *FM=fm *FROM=ln *FOR=n *PLANT=<yes|no»} |
l

, PP PR i i S B S e d
where

*FN,*FT,*FM are the filename,filetype and filemode of the file to be
included. If * is specified, then the file with the specified

name first in the CMS search order is included. The default
values are those of the file from which the call to $ADD was
made.

*FROM - is the line number of the first line to be included.

*FOR is the maximum number of lines to be included.

*PLANT should be YES or NO. The file included is searched for plants

and these are performed, if and only if *PLANT is VYES.
*PLANT=YES is the initial value.

Usage Notes
A file can $ADD itself, recursively.

The output from $ADD (ie the contents of the file) can be used as input to
other functions.

For more information and examples, see section 3.2.

Xplant For ELECTRIC Users Page 27

Chapter 2

2.10 $NOT

Performs a 'NOT' function on the specified argument.

The arguments for the $NOT function are

- e i e e e i s J

$NOT returns “NO” if the name specified by *A has a value, otherwise it
returns "YES".

For example,
§ §$NOT FOO}$T 'foo was not set'}
will type the message if and only if the variable "FOO" does not have a
value.
2.11 $EXIT
Terminates execution of XPLANT with a return command.

The arguments for the $EXIT function are

r==—T==7=7"7"7"7"7 hl

| |
{ {$EXIT *RETCODE=number} |

| s s Jd

Xplant stops executing, with the specified return code.

$STOP is a synonym for $EXIT

Page 28 Xplant For ELECTRIC Users

XPLANT

3. REPLACEMENTS FOR ELECTRIC DELAYED EDITING COMMANDS.

This section lists the ELECTRIC editing commands which are relevant to
delayed editing and suggests ways of reproducing their effect when using
XPLANT. These should suffice for the user who persists in thinking in
terms of 'ELECTRIC-type’' editing but once he becomes familiar with XPLANT,
the user will find simpler ways of achieving the same results and avoid the
complex and often cumbersome edit files which often occurred with ELECTRIC.

To summarize this section;

(a) The user who wishes to create an alternative version of a file should
use the XPLANT XEDIT macros.

First call the XPLANT macro to define a label L1. Then use the macros
XDELETE XINSERT XCHANGE to edit the file. When XPLANT is subsequently
used to process this file, specifying L1 will give the original file.
This use is similar to the YS and NO edit groups in ELECTRIC. Later
version can be created by repeating the procedure.

(b) To dynamically PLANT text strings and SUPPLY files (ie $P, $A and $S
in ELECTRIC), use the $P and $ADD XPLANT macros. The PLANT and SUPPLY
Xedit macros make this easier.

(¢) The ELECTRIC concept of numeric line labels has been extended to allow
any string to be used as the label of an edit, so the group edit is no
longer needed. For the useful facility of entering one label on the
command line and activating many edits, use the $GROUP macro.

(d) It is no longer necessary to have many group edits to allow for all
eventualities, XPLANT allows the user to manipulate and test the
values of parameters and take appropriate action.

3.1 Labels

The concept of labels in XPLANT is much wider than in ELECTRIC (see Section
2.2), so their wuse in flagging edits 1is simple. To define the current
label use the XPLANT XEDIT macro. This will also remove any serialisation
which exists and change the line length of the file to accommodate edits.

The use of the XPLANT XEDIT macros to change(XCHANGE), delete(XDELETE) or
insert (XINSERT) etc.(see section 2.5) will result in these edits being
performed conditionally on the label being set when XPLANT is run on the
file.

With the ELECTRIC edit file
1 $G LN= 0. 1,DG=ONLY(1) : DEFAULT
1 $G LN= 0. 2,DB=ONLY(5) : DEBUG PRINTING
5 $1 LN= 5. 1 : WRITE(6,*)A,B,C,D
5 $1 LN= 10. 1 : WRITE(6,*)1,J

DB is used on the command line to activate the edits with label 5.

Xplant For ELECTRIC Users Page 29

Chapter 3

In an XPLANT file, the lines

{DEBUG : WRITE(6,*)A,B,C,D}
{DEBUG : WRITE(6,*)1,J}

in the appropriate places would have the same effect if DEBUG was set when
XPLANT was used.

Instead of having separate labels and parameters as in ELECTRIC, XPLANT
allows a parameter to be used as a label. The line

{TAPE :/*SETUP §{TAPE}.R,SL}

would only be output if TAPE had a value, in which case its value would
appear on the line in place of {TAPE}.

3.2 $A
The $ADD macro will add the contents of a CMS file to the current file.
§$ADD MY DATA A 11 10}

will add 10 lines starting at line 11 from file MY DATA A to the output
file. XPLANT brackets in this file will be interpreted and obeyed unless
the additional argument *PLANT=NO is given. The example below shows how a
simple file can fetch several other files. Thus several jobs could access
the same source or data files without the need for duplication.

PEJOBOARD B BTC. ..o s navinesinms 3
//STEP1 EXEC F{COMPILER|:H}CLG,PARM.L="'NOMAP,OVLY',
/ CPRINT=§CPRINT| : YES}
//C.SYSIN DD *
{$ADD EXAMPLE FORTRAN A }
{$ADD SUB1 FORTRAN A L1=ON DIM1=10 }
{$HIDING DEBUG ${$ADD SUB2 FORTRAN A }}
//L.LIB1 DD DSN=ULIB.MYLIB,DISP=SHR
{$ADD OVERLAY STRUCTUR A}
INCLUDE LI1B1(PROG{VERSION|:0})
ENTRY MAIN
//G.SYSIN DD *
}$ADD CURRENT DATA A}
*

All label settings are passed to the file to be added. The example show
three ways of using this fact.

(a) All the current label settings are passed to EXAMPLE FORTRAN A so any
additional labels required in the added file should be set on the
command line or using the $SET macro before the $ADD macro is called.

(b) In addition to the labels set in the top level file, when
SUB1 FORTRAN A is $ADDed L1 will be set ‘ON’' and DIMI will have the
value 10. These labels only have values inside this bracket so there
can be no clash with label names in the top level file.

(c) The $HIDING macro temporarily unsets the label DEBUG so that even if

Page 30 Xplant For ELECTRIC Users

Replacements for ELECTRIC delayed editing commands.

it is set on the command line it will have no effect in SUB2 FORTRAN A

The easiest way to insert $ADD macro calls into a file is to use the SUPPLY
Xedit macro(See Section 2.5).

3.3 $C

The ELECTRIC edit command $C prevented an existing edit from being
performed even if its label was selected. The XPLANT bracket structure
allows several edits in a bracket, only one of which will be performed.
So, provided care is taken in providing separate labels for logically
separate groups of edits, it should never be necessary to 'cancel’' edits.
To prevent an edit being performed, do not set the relevant label!

However, in some circumstances it may be easier to stop certain edits being
performed than to relabel a complex structure of edits. The method of
achieving this depends on the type of edit and the desired result.
(a) To prevent any output from a bracket
EITHER — conditionally delete the whole bracket
To delete {L1: Some text}
Use : set arbchar on &
xplant L2
XDelete /i&}/
This will produce §L2:|:{L1:Some text}}

OR —— add another unit at the beginning of the bracket which will
produce no output. eg change {Ll1:Some text} to {L2:|L1:Some text}

In both of these examples, if L2 has a value the resultant bracket
will produce no output even if L1 has a value.

(b) In some cases the whole bracket cannot be deleted because it contains
further edits or a default string.

The first {L1:new|:old} line

When cancelling the edit with label L1 the bracket must still output
the default string.

To do this, conditionally change the label L1 to 'NO’.

XPLANT L2
Xc/L1/No/

This will change the above line to
- The first §}L2:NO|:L1}:new|:0ld{ line

This bracket will output 'new’ only if L1 has value and L2 does not.
Any other combination of L1 and L2 will return ‘old’.

(c) $P edits with a default value can be cancelled as follows.

{L1$P VOL USDSK1}

Xplant For ELECTRIC Users Page 31

Chapter 3

should be changed to
${L2:USDSK1 |L1$P VOL USDSK1}

Then if L2 has a value, the default string will be output.

3.4 $D
A line can be conditionally deleted by enclosing it in brackets as below:
{L1:]: The line of text }
Several lines may be deleted at once
{L1:|: One line of text
Another line
Yet another line. }

In both of these examples nothing would be output if label L1 has a value.

These edits are easily applied to existing lines of text by using the
XDELETE xedit macro (see section 2.5).

Note that conditional deletion of a line is identical to insertion of a
line conditional on a label NOT being set. So the line

§§$NOT L1}: The line of text.}

would have the same effect as the first example.

3.5 $E
To conditionally change a string of text a bracket is needed which will
output one string if a label has a value and the original string if it has
??;é This is achieved by using the XChange xedit macro. Thus, given the
This is an old line of text.
First set the label to L1
XPLANT L1
Then
XC/n old/ new/
will produce
This is afLl: new|:n old} line of text.
which will output

This is a new line of text.

if L1 has a value and the original line if it does not.

Page 32 Xplant For ELECTRIC Users

Replacements for ELECTRIC delayed editing commands.

3.6 $G

The $GROUP macro sets a number of labels to the value 'ON'. This macro
allows the logical grouping of edits and helps in the organisation of
complicated edit structures. If the macro call is made conditional on

another label then only one label need be set on the command line and the
others associated with it can be set inside the file.

XPLANT allows the user to take the logical OR (by using several labels)
or the logical AND (see Section 4.3) of labels, so it is not as
necessary, as in ELECTRIC, to have a number of edit labels which are
selected by a 'Group edit'.
{G1 $GROUP L1 L2 L3}
will set the labels L1,L2,L3 if Gl has a value.
To UNSET a group of labels (the opposite of $GROUP), use the UNSETS macro.
{G3 $UNSETS L1 L2 L3}

This will remove any values that L1, L2, L3 may have had.
3.6.1 Examples
The following file has three labelled edits in two logical groups.

{G1 $GROUP L1 L2}
§G2 $GROUP L1 L3}

{L1: The first line.}
{L2: The second line.}
$L37 The third line.}

So if G1 has a value, then when the file is XPLANTed ,

The first line.
The second line.

would be output. Similarly if G2 had a value then

The first line.
The third line.

would be output.

Note that, wunlike ELECTRIC edits, XPLANT brackets may have several labels
so the same effect could be achieved more simply by

Gl G2: The first line.}
Gl:- The second line.}
G2: The third line.}

or even,
Gl G2: The first line.
Gl: The second line.}
G2: The third line.}}

Xplant For ELECTRIC Users Page 33

Chapter 3

This last is more efficient because if neither Gl nor G2 is set then the
second and third brackets are not processed at all. In all of these
examples if both Gl and G2 have values then all three lines will be output.

If a third group is defined which always removes label LI1.
$G1 $GROUP L1 L2}

§G2 $GROUP L1 L3}
§G3 $UNSETS L1}

$L1: The first line.}
1L2: The second line.}
1L3: The third line.}

Then using XPLANT with G1, G2 and G3 set will result in

The second line.
The third line.

being output.

3.7 §1

Lines may be conditionally inserted in a file by using the method shown in
Section 3.6 . The easiest way to achieve this construction is to use the
XEDIT macro XInsert. This is used in the same way as the XEDIT command
Insert but the resultant edits are conditional on a label being set. This
label is set by the XPLANT sub—-command and remains the same until reset.
To make existing lines in a file only be output if a certain label is set,
use the ENCLOSE macro. This will enclose the lines in brackets and make
their insertion conditional on the current label being set.

Below is a record of a short editing session to conditionally insert some
lines in a file.

X SHORT FILE
EDITING FILE: SHORT FILE Al
XEDIT:
/it
IF(1.EQ.1)THEN
teé
IF(I.EQ.1)THEN
J=0
K=0
ELSE J=J+1
K=K+1
ENDIF
u3
K=0
xplant output
xi . write(6,'(1x,10f10.4)"')x
2
K=K+1
xi write(6,101)x(i),x(j),x(k)
xi write(6,102)y(i)
d
ENDIF
xi

input mode:

Page 34 Xplant For ELECTRIC Users

Replacements for ELECTRIC delayed editing commands.

101 format(5x,' x cords ',3f10.4)
102 format(5x,’' height *‘,f10.4)

XEDIT
~-/if
IF(1.EQ.1)THEN
t11
IF(1.EQ.1)THEN
J=0
K=0
§OUTPUT : WRITE(6, ' (1X,10F10.4)"')X}
ELSE J=J+1
K=K+1
§OUTPUT: WRITE(6,101)X(I),X(J).X(K)}
$OUTPUT: WRITE(6,102)Y(1)}

ENDIF
{OUTPUT: 101 FORMAT(5X,' X CORDS ',3F10.4)
102 FORMAT(5X,' HEIGHT ',F10.4)}

3.8 ¢P
A simple replacement for $P is provided by using the fact that a bracket
containing only a label returns the value of the label. Using the desired
keyword as a label will plant its value in the file.

/*SETUP {TAPE},R,SL,BLP
will be output as

/*SETUP 912345,R,BLP
if TAPE has the value 912345.
To make this conditional on label 1 being set replace {TAPE{ by {1:{TAPE}}.
To allow a default value

/*SETUP {TAPE|:900001},R,BLP

will return the value of TAPE if it has one, otherwise it will return
900001 .

A unit is processed from left to right until a label is found with a value.
This enables the user to give one of several different keywords in the same
place.

/*SETUP {TAPE T VOL VOLSER},R,BLP

would replace the bracket by the first of the four labels to have a value.
Thus the keyword planted could have abbreviations or alternative spellings.

The $PLANT (or $P) macro (see section 2.4) provides a more powerful
facility which will optionally check the value of the keyword and/or prompt
for a value and/or allow a default value.

/* SETUP {$P VOL % VOLSER ’'Give the Volume name '}

Xplant For ELECTRIC Users Page 35

Chapter 3

[f VOL is already set its value will be checked to be of type VOLSER If it
is not , a prompt ' Give the Volume name ' will be issued. [f the entered
value is correct, then VOL will be set to it and the bracket replaced by
the value of VOL.
3.9 $R
To replace a line one constructs a bracket that outputs the new lines if
the label is set and outputs the old one if the label is not set. For
example if the label is set to L1 by,

xplant L1
and the current line is

The old line.
then using the xreplace xedit macro thus

xreplace The completely new line

will result in

{11:The completely new line|
:The old line.}

This will output 'The completely new line’ if L1 is set and 'The old line’
if L1 is not set.

If XREPLACE is called with no arguments, then Xedit will enter input mode
thus allowing several lines to replace one. So in the example above

XREPLACE
followed by
The first new line.
The second new line.
<null»
will result in
{L1:The first new line.

The second new line. |
:first old line.}

Page 36 Xplant For ELECTRIC Users

Replacements for ELECTRIC delayed editing commands.
4. EXTENSIONS AND ALTERNATIVES.

4.1 The CMS UPDATE Command

The CMS product as delivered by IBM also contains a method of delayed
editing and of storing multiple versions of a file. This is the UPDATE
command. If the XEDIT editor is invoked with the UPDATE option then, as in
ELECTRIC, any edit sub-commands given are stored in a separate file and not
performed on the file being edited although the file displayed at the
terminal will appear to have changed. This means that, wunlike ELECTRIC,
the user can see the edits he has made as he makes them.

If the UPDATE command is used on the original file then a new file can be
created which will contain the original file with the edits performed. The
user can specify the name of the 'edit’ file so multiple versions of a file
require multiple electric files, unlike ELECTRIC. A number of these edit
files may be applied sequentially to the same source file allowing edit
structures similar to that provided by the labels in ELECTRIC.

Although this method does not allow dynamic planting of strings or any of
the other powerful features of XPLANT, it is supported by IBM and might be
preferable for the user who frequently transfers files to other CMS
installations. For more information on the UPDATE command, see the
relevant IBM manual[6]

4.2 Using Parameters and Functions as Macro Arguments.

In most of the examples in the previous sections, XPLANT macros have been
called with arguments which are simple text strings.

{ $ADD EXAMPLE FORTRAN A }
Here $ADD has three arguments EXAMPLE, FORTRAN and A. Any of these
arguments may contain brackets. These will be resolved before the macro is
called. So

{$ADD {FORT1|:EXAMPLE{ FORTRAN A !} changes the filename

{$ADD EXAMPLE FORTRAN §{MODE} } changes the filemode

{$ADD EXAMPLE{NUMBER{ FORTRAN A } changes part of the filename
An argument may also be a macro call itself.

{$ADD §$P FORT! % FN 'Fortran Filename ?'} FORTRAN A }
will check the value of FORT! to ensure that it is a valid CMS filename and
prompt the user with the message 'Fortran Filename ?" if it is missing or
incorrect. This gives the user greater flexibility in calling macros. In
the above examples, FORT1,MODE or NUMBER could be supplied when the file is
XPLANTed effecting the choice of file to be $ADDED.

Users should differentiate between using the name of a parameter and using
its value.

§$JOBCARD % §{TAPE}}
{/*SETUP § $P TAPE % VOLSER }

Xplant For ELECTRIC Users Page 37

Chapter 4

On the first line the value of TAPE 1is passed to the $JOBCARD macro as the
jobname. On the second the text string TAPE is used by $P. For these 2
lines

XPLANT TEST (TERM(TAPE 901234

would produce

OS jobname is "PY901234"
//PY901234 JOB (1234,PY, ¢ 5.0

// 'VM/JCG/PH-33"
* Command line:XP TESTIT (TERM (TAPE 901234

//* $JOBCARD called from "TESTIT XPLANT Al 1"

//* Submitted from RAL CMS userid "JCG" on 11/18/82 14:54:52
*SETUP 901234

4.3 Macro calls as Labels

Most of the previous examples have used labels to make conditional calls to
XPLANT macros. If a parameter is used as a label then the bracket will be
‘active’ if the parameter has a value and ignored otherwise. If the label
is a bracket then this will be resolved when the label is evaluated, so the
label will be whatever is output by the bracket. Several XPLANT macros
have been provided which return different values depending on the values of
their arguments so they can be used as labels to test the values of
parameters, not merely whether or not the parameter has a value.

For example, the macro $EQUAL has two arguments. These arguments are
compared and if they are equal then the string 'YES' will be returned. If
they are not equal then 'NO' will be returned. When XPLANT processing
starts, the parameter YES is set on while NO is unset.
If the parameters X and TEST1 have the same value then the bracket

{$EQUAL §X} {TEST1}}
will be replaced by YES. This means that

{ 1$EQUAL {X} {TEST1}} $TYPE X is OK }
is equivalent to

{ YES $TYPE X is OK }

and as YES has a value, then the $TYPE macro will be executed.

Similarly {$LESS A B} will return YES if A has a value numerically less
than that of B. ;

If in the foilowing bracket , A=5 and B=1 _
{{8LESS A B} $SET L §{A}{${A}|{$LESS B A}$SET L {Bi{$i{B}|$TYPE A=B}
the bracket will be equivalent to

{ NO $SET L 5 $ 5| YES $SET L 1 § 1| $TYPE A=B}

Page 38 Xplant For ELECTRIC Users

Extensions and Alternatives.

As YES has a value and NO does not, then the first unit will be skipped and
the second unit executed. L would be set to "1’ and '1l' would be output.

Similar use can be made of :-
(a) $CHECK To check the type of a value.
(b) $MORE First argument numerically greater than the second.

(c) $AND Logical AND of the two arguments.

So the sequence

{$SET FTAPE 980001} {$SET LTAPE 980999}
$ {TAPE $CHECK TAPE VOLSER}:
$ $$LESS TAPE FTAPE } {$MORE TAPE LTAPE}$TYPE {TAPE} is not one of your

will first check that TAPE is a proper Volume Serial Number, then it will
complain if TAPE is outside the range FTAPE to LTAPE.

Note that there is no need for a $OR macro because of the way that Xplant
processes labels. If more than one label is given then Xplant will evaluate
them from left to right searching for one with a value. This is equivalent
to a logical OR of all the labels given.

4.4 User Defined Macros
In order to avoid repetition of sequences of text and brackets many times
in a file, XPLANT allows users to define their own macros. These contain a

number of lines which are processed every time the macro is called.

The arguments for the $MACDEF function are

- - e e e e e i e e e e et e S S " S e S o o o S 1

{$MACDEF macro-name first—argname second-argname . . .$first-line
second-line

iast—linef

|
l
|
l
|
|
|

- [E— i e e e e i s e e e s i e s i s s i s S d

This macro defines a macro called macro—-name. The positional arguments are
first-argname, second-argname, etc. The body of the macro is the lines
following the second $.

For example, the following Fortran file defines three macros. The first

inserts a block of comment cards with an imbedded text string. The other
two insert common blocks with numbers imbedded.

Xplant For ELECTRIC Users Page 39

Chapter 4

$MACDEF CREDIT *A $

!

C

€ ROUTINE WRITTEN BY

C §*A§

g USER SUPPORT GROUP

é ———— PLAGIARISTS BEWARE. ——-
C
!

§
$MACDEF CB1 $
PARAMETER (LEN=100)
! COMMON / BLOCK1 / A(LEN),B(LEN),C(LEN)
o
{SMACDEF CB2 $
PARAMETER (LEN2=1000)
i COMMON / BLOCK2 / X(LEN2),Y(LEN2,10),Z(16,16)
5
PROGRAM MAIN
§$CREDIT 'JOHN GORDON'}
{$CB1}
$$CB2}
CALL SUBI
CALL SUB2
END
SUBROUTINE SUBI
$CREDIT 'JOHN GORDON'}
$CB1}
CALL SUB3
END
SUBROUTINE SUB2
$CREDIT ' JOHN GORDON'}
$CB2}
CALL SUB4
END

XPLANT TESTIT XPLANT A TESTIT FORTRAN A
PROGRAM MAIN

ROUTINE WRITTEN BY
JOHN GORDON
USER SUPPORT GROUP
——— PLAGIARISTS BEWARE. e

aoaoaaa

PARAMETER (LEN=100)
COMMON / BLOCK1 / A(LEN),B(LEN),C(LEN)

PARAMETER (LEN2=1000)
COMMON / BLOCK2 / X(LEN2),Y(LEN2,10),Z(16,18)

CALL SUB1

CALL SUB2

END

SUBROUTINE SUBI

ROUTINE WRITTEN BY
JOHN GORDON
USER SUPPORT GROUP
———— PLAGIARISTS BEWARE. S

aoaoaaa

Page 40 Xplant For ELECTRI(

Extensions and Alternatives.

PARAMETER (LEN=100)
COMMON / BLOCK!1 / A(LEN),B(LEN),C(LEN)

c
CALL SUB3
END
SUBROUTINE SUB2
C
C ROUTINE WRITTEN BY
5 JOHN GORDON
C USER SUPPORT GROUP
e ———— PLAGIARISTS BEWARE. ———
C
PARAMETER (LEN2=1000)
COMMON / BLOCK2 / X(LEN2),Y(LEN2,10),Z(16,18)
C
CALL SUB4
END

Macros are particularly useful in this case for they ensure that the text
is identical each time it is repeated so the updating of common blocks
structures is made easier.

Xplant For ELECTRIC Users Page 41

Chapter 4

Appendix A
XPLANT_FUNCTIONS.

This is a list of intrinsic functions and macros available in XPLANT,
arranged in groups according to function.

For more detail, there is an XPLANT MENU, and separate HELP files for each
function, e.g. HELP XPLANT $ADD. When calling any of these functions, note
that the parameters may be given as either positional or keyword=value
pairs. Parameters for controlling the system—provided functions begin with
"*" to prevent confusion with user-defined variables.

Common Functions for JCL and planting:

$JOBCARD generates a /*PRIORITY and HASP jobcard fully planted with
checking.

$P obtains a value from the command 1line or the terminal with
value-type checking (equivalent of ELECTRIC $P), can also
prompt for value.

$PLIST obtains a value from the command 1line or the terminal (like $P
above) but checks value against list instead of type.

CMS and Spool File Handling and terminal 1/0:

$ADD includes all or part of a specified file — equivalent of the $A
and $S in ELECTRIC

$LOOPA prompts for list of CMS fileids to be $ADDed

$ERASE erases a CMS file

$STATE obtains information relating to a CMS file

$FILESTAT useful for coping with the output from $STATE
$OUTFILE selects the output file name

$PRINT selects the device address for printer output

$PUNCH selects the device address for punch output

$PAGE throw a page on the current printer output stream

$READ reads a line from the terminal

$LOOPI prompts for input lines to be optionally checked and justified
before being output

$TYPE types a line on the terminal

$STACK stack a line in the CMS console stack

$LISTVAL stack selected XPLANT variable names
$TERMINA turns on and off output to the terminal

String Manipulation:

$CHANGE substitutes a substring of a string for another string

$COMLINE returns the invoking command 1line

$ INDEX finds the character offset of one string in another

$POSITION returns index of word from a list of words (like &POSITION in
EXEC2)

Page 42 Xplant For ELECTRIC Users

$JUSTIFY

$LENGTH
$LOWER
$UPPER
$OPTION
$QSET
$WORD
$FIRST
$REST
$LAST
$SUBSTR

Appendix A

generates fixed width fields with text justified to left or
right

finds the length of a string

translates a string to lower case

translates a string to upper case

reads a token from the command line

gets the value of a CMS set variable (QSET)
returns the Nth word in a list of words

returns the first word in a list of words

returns all but the first word of a list of words
returns the last word in a list of words

gets a specific substring of a string

Functions useful as labels:

$CHECK

$CKLIST
$AND
$NOT
$EQUAL
$LESS
$MORE

Control:

$RETURN
$STOP
$EXIT
$QUIT
$HIDING
$ INSERT

$TRACE
$SETSYNTAX
$MAP

checks that a value is of a specified type e.g DDname — result
is useful as a label

checks that a value is one of list of values.

logical AND of two variables to make a label

logical NOT of a variable to make a label

compares two values — used as a label

arithmetically compares two numbers — used as a label
arithmetically compares two numbers — used as a label

returns out of a file that is being $ADDed

stops XPLANT (same as EXIT)

stops XPLANT (same as STOP)

aborts XPLANT

evaluate data with a variable temporarily unset

performs no special function but is useful to process the text
after the second "“$" and set the parameters - wuseful for user
macros

alters the level of XPLANT trace and dump

changes definition of special characters

apply a function to lists of arguments many times

Settings variables globally:

$SET
$SETFILE
$SETVARS
$UNSET
$UNSETS
$GROUP

sets the value of a variable globally throughout the program
sets variables from data in a file

sets multiple variables to multiple values

unsets a $SET variable

unsets a number of variables

sets many variables to the value ON - useful for setting ON
several labels together $UNSETS unsets many variables
whether they have been $SET or not.

Miscel laneous, date, CP/CMS commands, addition, subtraction etc:

$CMs
$Cp
$DATE
$MINUS

issues a CMS command
issues a CP command
gets the date and time
subtract two numbers

Xplant For ELECTRIC Users Page 43

Appendix A

$PLUS add two numbers

$TIMES multiply two numbers

$QUOTIENT quotient of two numbers

$REMAINDER remainder of two numbers

$SETVALUE find the 'SET' value of a variable

$USERID obtains the username of the current XPLANT user
$VALUE obtains the value of a variable

$WHERE finds the current XPLANT filename and record number
$MACDEF define a macro

$MACLIB attach a library of macro definitions

Page 44 Xplant For ELECTRIC Users

Appendix A

REFERENCES

[1] XPLANT Introduction and Reference Manual, D M Asbury RL-83-?77°?
[2] CMS users guide SC19-6210

[3] RAL VM Reference Manual RL-79-083

[4] Introduction to CMS at RAL RL-80-008

[5] For information on these courses contact the Program Advisory Office at
Rutherford Appleton Laboratory.

[6] IBM VM/SP CMS Command and Macro Reference SC19-6209

Xplant For ELECTRIC Users Page 45

