
Systems Reference Library

IBM System/3S0 Model 195

Functional Characteristics

This publication describes the organization and functional characteristics
of the IBM System/360 Model 195, an information-processing system
designedfor ultrahigh-speed, large-scalescientific applications.
System components are described, and detailed consideration is given

to the functions of processor storage, central processingunit, input/output
channels, and operator-control and operator-intervention portions of the
system control panel. Codingand timing considerations are discussed.
The reader is assumed to have a knowledge of information-processing

systems and to have read the IBM System/360 Principlesof Operation,
GA22-6821.

File No. S360-01
Order No. GA22-6943-1



Second Edition (August 1970)
This is a major revisionof, and obsoletes,GA22-6943-Oand TechnicalNewsletter
GN22-0345.The section headed "Operator Intervention" has been revisedand
rearranged. Other changesto the text, and smallchangesto illustrations, are indi­
cated by a vertical line to the left of the change;changedor added illustrations are
denoted by the symbol. to the left of the caption.

Changesare periodicallymade to the specificationsherein; before usingthis publi­
cation in connection with the operation of IBMsystems,refer to the latest System/
360 SRLNewsletter,GN20-0360, for the editions that are applicableand current.

Requests for copies of IBMpublications shouldbe made to your IBMrepresentative
or to the IBMbranch office servingyour locality.

Thismanual has been prepared by the IBMSystemsDevelopmentDivision,Product
Publications,Dept. B98, POBox 390, Poughkeepsie,N.Y. 12602. A form for readers'
comments is providedat the back of this publication. If the form hasbeen removed,
commentsmay be sent to the aboveaddress.

©Copyright International BusinessMachinesCorporation 1969, 1970



Contents

System Description 5 2880 Block Multiplexer Channel 21
Relationship to Other Models of IBM System/360 5 Extended Channel Feature 21
System Components 6 Channel-to-Channel Adapter Feature 22

Central Processing Complex 9 System Control Panel 23
Central Processing Unit 9 System Control Functions. 23
Processor Storage 10 System Reset 23
Irtstruction Processor 10 Store or Display 23
Instruction Fetching 10 Initial Program Loading 23
Instruction Issuing 11 Controls 24
Execution of Branching Instructions 11 Operator Control. 24
Execution of Other Instructions 13 Operator Intervention Controls (Normal) 26
Handling Interrupts 13 Operator Intervention Controls (Special) 31

Storage Control Unit 16 Key Switch and Meters 34
Buffer Storage 16
Buffer Storage Operation 16 Appendix A: Coding Considerations 35

Fixed-Poin t/Varia ble-Field- Length/Decimal Execu tion
Element 17 Appendix B: Timing Considerations 36

Floating-Point Execution Element 18 Instruction Processor Delays 36
Add Execution Unit 19 Transmission Time 36
Multiply /Divide Execution Unit 19 Branches 36
E .••.tCIltlt:l..l E.x..t:',,,-:u iiUll \_illil 1::- Fixed-Point Lxecution -, :

Floating-Point Execution 37
Channels ~0 Selerted F~cC'uti0n. T'-irre" ?'O

2860 Selector Channel 20
2870 Multiplexer Channel 20 Index 39



The lHM Systemj36uMode! 195 is an information-processing
system designed for ultrahigh-speed, large-scale computer
applications. Its speed and power result primarily from ad­
vanced circuit technology, a high performance buffer for
processor storage accesses, buffering within the processor,
very fast execution times, a high degree of concurrency in
operations, and employment of exceptionally efficient
algorithms, particularly in floating-point operations.
Speed in accessingstorage and in executing instructions is

achievedwith a high-speedbuffer storage and multiple, inter­
leavedprocessor storage elements, by functional buffering
within the processor, and by an assembly-lineapproach to
instruction processing. All of these factors are controlled to
maintain a high degree of concurrent, continuous operation
in the instruction unit and in severalexecution units. A
unique internal bus system also plays a major role.
In the Model 195, five separate units - each to a large de­

gree autonomous - may be operating concurrently: proces­
sor storage, storage control unit and buffer storage, instruc­
tion processor. fixed-point/VFL/decimal processor. and
Goating-point processor. Furthermore, each ot these units
may be performing severalfunctions at one time. In the
floating-point processor, for example, asmany as three
floating-point operations may be taking place concurrently.
Becauseof the concurrency achieved in theModel 195, the

effective time required by a giveninstruction is not directly
related to the rate at which that instruction can be processed.
For example, one normalized floating-point-add operation
requires two cycles and one normalized floating-point-multi­
ply operation requires three cycles; if the operations are
logicallyindependent, it is possible in the Model 195 to
processup to two add and one multiply instructions concur­
rently for a total of three cycles, rather than sequentially
for a total of seven.
Although central processingunit (CPU) operations are to a

high degree performed in parallel, no special optimization is
required in preparing programs for CPUprocessing. In gen­
eral, Systemj360 coding is processed in the CPUwith a high
degree of efficiency. Using the interrupt mechanism as a
part of the problem program logic should be avoided. Al­
though this use of interrupts applies reasonably well to
slower, serialCPU's, such use degradeshigher performance
CPU's. In particular, certain program interrupts that occur
at the end of a particular "assembly line" are too late to act
as modifiers to the beginningof that line. This situation re­
stricts the user from taking unique, in-line action based on
exceptions like floating-point overflow.
Another consequence of the high-performance design is a

recommendation (not a functional requirement) that
FORTRANusers arrange arrays in COMMONso that long
precision data precedes short-precision data, etc. This ensures

System Description

that the data does not need to be aligned at execution time.
(See IBM System/360 FORTRAN IV Language,GC28-6515.)
Model 195machine cycle time is 54 nanoseconds; data

flow is eight bytes (one doubleword) in parallel. The proces­
sor storage cycle time is 756 nanoseconds, and the buffer
storage cycle time for successiveread or successivewrite
cycles is 54 nanoseconds. (Depending on the addressing
pattern, an occasionalWrite followed by a Read may
encounter a blank cycle.)
Monolithic circuitry is used in the Model 195. The ad­

vanced circuits have a basic delay time of less than 5 nano­
seconds, compared to SLT delay times rangingfrom 5 to 30
nanoseconds. In packaging, densities many times that of SLT
have been achieved.Boards approximately 8 by 12 inches
can hold pluggablecards containing up to 4,000 circuits. Two
of these boards can contain a-floating-point-addexecution
unit for 64 bits in which both preshifting and postshifting
are accomplished.
The buffer storage, also in monolithic technology, has a

54-nanosecond read cycle with an eight-byte data path. The
buffer storage capacity of 32,768 bytes is packaged, using
pluggablecards. 011 two 10-by 12-inchboards. Storage cir­
cuits lend themselves to much denser packagingtechniques,
with one board containing as many as 150,000 circuits.

Relationship to Other Models of IBM System/360

Becauseof the emphasis on high performance, the operation
of the Model 195 in the following casesdiffers from that
specified in the IBM System/360 Principles0/Operation,
GA22-6821.
1. The quotient of a floating-point-divideoperation may

differ in the Model 195 from that of other models by
an amount equal to one bit in the low-order fraction
position. For zero remainders, the results are indentical.

2. Severalprogram interruptions that should, according to
the IBM System/360 Principlesof Operation, store a
nonzero instruction-length code are imprecise in the
Model 195. An imprecise interruption is one that causes
an instruction-length code of zero to be stored; this code
indicates that the address of the instruction causing the
interruption has not been retained. When imprecise pro­
gram interruptions occur, the interruption-code portion
of the current PSWis used in a specialway. (See the
discussionof imprecise interruptions in "Instruction
Processor.")

3. Because floating-point overflow and underflow cause
imprecise interruptions on the Model 195, it is possible
that subsequent instructions will be executed using the
overflow or underflow results. For this reason, the re­
sults are made to differ from the standard Systemj360
results, which produce the correct fraction and a

System Description 5



wraparound exponent. In the Model 195, overflow pro­
duces the correct sign and the maximum fraction and
exponent; underflow produces a true zero result. For
those instructions that change the condition code, the
code is 1 or 2 for overflow and 0 for underflow.

4. The Model 195 is capable of executing CPU stores out
of sequence. Logical consistency is maintained within
CPU programs, including the beginning and ending of
I/O operations. However, if a CPU program is to modify
a string of CCW's while they are being used by the chan­
nel, steps must be taken to arrange the CPU program so
that the stores are made in sequence.

To provide a synchronization when other means are not
practical, a branch instruction may be used. This particular
branch instruction is a no-operation instruction for other
models of System/360, but is implemented in the Model 195
in such a way that its execution is delayed until all previously
decoded instructions have been completed. (See the handling
of interrupts discussion in "Instruction Processor.")

System Components

Major components of the Model 195 include an IBM3195
ProcessingUnit (which includes the Processor Storage), an
IBM2860 Selector Channel, and/or an IBM2870 Multi­
plexer Channel, and/or an IBM2880 BlockMultiplexer
Channel. Input/output (I/O) devicesare attached to the
channels through control units (Figure 1). The four pro­
cessormodels are termed J, K, KJ, and L, depending upon
the amount of processor storage available. (In this publi­
cation, main storage and processor storage are used inter­
changeably.)
Processing Interleave
Unit Model Processor Storage Factor

J 1,048,576 bytes 8
K 2,097,152 bytes 16
KJ 3,145,728 bytes 16/8
L 4,194,304 bytes 16

Figure 2 is an outline configuration of the 3195 J, K, KJ,
and L ProcessingUnits, including processor storage.
The standard features for any IBM3195 ProcessingUnit

(CPU) include:
Universal Instruction Set (including the Standard Instruction Set,
Floating-Point Arithmetic, Decimal Arithmetic, and storage pro­
tection)

Extended Precision Floating-Point Arithmetic
Byte-Oriented Operands
Direct Control
Protection Features (Store and Fetch Protection)

6

Buffer Storage
Interval Timer (9.6-kilohertz - about 104-microsecond interval)
2860 Selector Channel Attachment
2870 Multiplexer Channel Attachment
2880 Block Multiplexer Channel Attachment
Display Console
Remote Operator Control Panel Attachment
Emergency Power-Off Control

Resolution of the interval timer is 104 microseconds. The
timer is updated by decrementing bit position 28 every 104
microseconds (more precisely, at a frequency of 9.6 kilo­
hertz). The updating takes place with minimal interference,
and no backup storage for the timer is used.
The display console, similar to an IBM2250 Display Unit

Modell, is integrated with the system console, which is a
stand-alone unit. Positioning a switch connects the display
console with either an I/O channel or the system console.
(When connected to a channel, the display console may be
used for two-way communication with the system. When
the display console is connected to the system console, the
communication path is from the system console to the dis­
play console.) For connection to an I/O channel, the display
console requires one control unit position on a 2860 Selector
Channel, a 2880 BlockMultiplexer Channel, or on a selector
subchannel of a 2870 Multiplexer Channel.
Standard on the display console are an alphameric key­

board, character generator, light pen, 8,192-byte buffer
(4,096 bytes of which are reserved for maintenance pur­
poses and contain format control data), and operator con­
trol panel with one set of controls and indicator lights.
To control another System/360 processor, a second set of

controls and indicator lights may be added as an optional
feature to the operator control panel.
One set of the operator control panel controls and indi­

cators may be duplicated as a remote panel on a stand-alone
operator's console (IBM2150 Console or IBM2250 Display
Unit Modell). Provision for this attachment is a standard
feature.
A channel-to-channel adapter, an optional feature, may

be installed on an IBM2860 Selector Channel (maximum
of one per selector channel), permitting program-controlled,
storage-to-storageoperations to take place directly between
I/O channels.
A variety of control units and input/output devicesis

availablefor use with the Model 195. Descriptions of these
devicesappear in separate publications. Configurators for
I/O devicesand for system components are also available.
(See IBM System/360 Bibliography, GA22-6822.)



/_ 3195 PROCESSINGUNIT ./'" /" »:
(Inclu~~5=~~s~_S~el 2860 Selectcr Channel

3195J-l,048,576 Byt., First S8 ector Chcnne! TTTTTTTTa-Way Interleaving ( Channel-ta-Channel
3195K-2,097, 152 Byte,

I
Adapter t I

16-Woy Interleaving -:3195KJ-3, 145,728 Byte, ~R,.nnd Selector Channel - - -

Up to eight
control units

II
"I

I

Channel-ta-Channel
Adapter'

Channel-ta-Channel
Adapter'

_:..I.....LT-lT'-T.I-..lT-lT'-T.I-..lT----1T Up to .i.ht
--:r--------- .....<ontrol unih

Third S.lector Channel

ccch selector channel addresses up to 256 I/O devices, one at a time. Operation is in burst mode with overlapped processing.
The 2860 Selector Channel is ovai lable in three models:
Modell - one channel
Model 2 - two chonnels
Model 3 - three channels

Minimum requirement: one 2860, one 2870, or one 2680. If only a 2870 is installed, the first selector subchannel feature is
required. See table for maximum number of channels allowed.

First Selector
Subchannel

Up to eight control unih I
2870 MJltiplexer Channel

Up to eig,t control units t

Second Selector
Subchannel

Up to eight control units 1

/~----Th-,im--Se-ie-c-t~----~\ I '

\_ Subchonnel J 1.7-======:::- -----r I
Fourth Selector
Subchannel

Up to eight control units ;
Addresses up to 16 I/O devices

Up to eight control units *

frgmu'

S
8
8

A second 2870 may be installed; a maximumof two selector subchannels is allowed on the second 2870.

Iv\aximumAllowable Channels and Frcmes

Channel, U2mm*
2860 6 2
2870 2 2
2880 6 3
2860/2870/2880 7 7

Firs! Block Multiplexer Channel

( Two-byte Int.rfo<e ) Up to eight control unih t

Without Extended Channel Feature
2880 Block Multiplexer Channel

2880
With one or two 2870's
With zero 287015

~
13
14
13

Second Block Multiplexer Channel

( Two-byte lnterfcce )
Up to eight control unlh I

With Extended Channel Feature

"'Maximum~r frame: three 2860 channels,
two 2880 channels, or one 2870 channel

Each block multiplexer channel addresses up to 256 I/O devices. Sixty-four devices may operate concurrently through use
of the block multiplexing function. Operation is in burst mode with overlapped processing. The 2880 Block Multiplexer
Channel is avai lable in two models:
Modell - one channel
Model 2 - two chcmnels

The universal instruction set includes the standard instruction set, floating-point arithmetic, decimal arithmetic,
and storage protection.

A channel-to-c:hannel adapter option (one per 2860 channel) permits interconnection of two channels.
One 2860 chonnei position can connect to one channei polition on any other IBMSystem/360 channel. Only 0IlII

channel-to-channel adapter is needed per connection; it counh as one control unit on each channel.

Indicates Optional
Feature

Input/output control units and devices are shown on the IBMSystem/360 Input/Output Configurator,
"GA22-6823"

• Figure 1. Systemj360Model 195Configurator

SystemDescription 7



3086
Coolant

Distribution
Un!t* 3060 Modell

System Console'

30B5
Power

Distribution
Unit*

3080 3080 30BO
Modell Model 2 Model 3
CPU CPU CPU
Power Power Power
Unit* Unit' Unit*

'These items may be positioned elsewhere 0' required. See
IBMSy,tem/360 In,tallation Manual-Physical Planning,
GC22-6820 .

• Figure 2. IBM 3195 J, K, KJ, L Processing Unit and Processor Storage Configurations
8



The central processing complex of the System/360 Model
195 is made up of seven stand-alone units: a CPU, three
CPU power supply units, a power distribution unit, a coolant
distribution unit, and a system console (Figure 2). (A motor­
generator set must be ordered separately and may be located
in a remote area.)

CENTRAL PROCES-S!NGUN!T

Functionally, the central processing unit consists of these
major logical elements: instruction processor, fixed-point/
variable-field-length (VFL)/decimal execution element,
floating-point execution element, high-speed buffer storage,
storage control unit, and processor storage (Figure 3). The
instruction processor and the two execution elements make
up the central processing element (CPE), also called the
processor.
The instruction processor is the major coordinating ele­

ment in the Model 195. For each instruction, it determines
what must be done and issues the operation to the proper
execution unit. Branching, status switching, and I/O instruc­
tions are handled by the instruction processor; other in­
structions are issued by the instruction processor to other
processor elements for completion.
The flxed-point/\rFL/de~inlal execution element contains

the general registers, which are used also by the instruction

Central ProcessingComplex

processor. Functionally, this element operates as an inde­
pendent stored-program computer; it has its own instruction
stream, its own execution circuitry, and a set of operand
buffers.
The floating-point execution element also operates as an

independent computer. Although most of the floating-point
instructions require more than one cycle of execution time,
this element is capable of sustaining an execution rate of up
to one instruction per cycle.
The storage control unit handles all fetching and storing

of data for the CPE. It is designed to minimize conflicting
requests for storage and to make the most efficient use of
storage.

The high-speed buffer storage provides the principal means
of reducing average access time to main storage. The most
current blocks (a block is eight doublewords) of storage are
maintained in the buffer storage, the operation of which is
not obvious to the programmer. The first processor fetch to
a block, for a storage address within that block, accesses the
addressed location and initiates a transfer of the block into
the buffer storage.
Subsequent accesses to that block can then be made di­

rectly from' the buffer storage. Processor stores are made to
both the buffer (if appropriate) and tv prv"::CSS0i~hjrdg~.

I/O fetches and stores are made to processor storage only.

Central Processing Unit (CPU)

I Processor Storage

Buffer I-- Storage
Control

Storage I--- Unit

r.-----~~------ ---------------,Central Processing Element

I !+ 1
Fixed-Point/

j
Flooting-Poi nt

VFL/Decimal Execution
Execution Element
Element

Instruction
Processor

IL________________________________ ~

Figure 3. Model 195 Logical Elements

I/O
Channels

Central Processing Complex 9



An I/O store to a location also currently held in the buffer
storage invalidates the appropriate block in the buffer storage.

PROCESSORSTORAGE
Up to 4,194,304 bytes of processor storage are available
with an individual accessof eight bytes (a doubleword).
Interleaving of processor storage is provided so that the ad­
dresses of successivedoublewords are in successive,func­
tionally independent units. Processor access to storage is
performed in combination with the high-performancebuffer
storage. The effect is that averageaccess time approaches
the access time .of the buffer storage. Transfers between the
buffer storage and processor storage are made in blocks of
eight doublewords. I/O accesses(eight bytes) to processor
storage do not involvebuffer storage except where necessary
for control.

Function Performed
Access time to buffer storage
Access time to processor storage if not in
buffer storage

Access time to processor storage for I/O
channels

Cycle time for buffer storage, successive
read or successive write cycles

Cycle time for processor storage

INSTRUCTION PROCESSOR

Time
(Nanoseconds)

162
810

648

54
756

The primary functions of the instruction processor are
fetching and buffering instructions from storage, fetching
required operands, issuinginstructions to the appropriate

Proccessor
Storage

UB

64 bits

Instructi on
Stack

Decoder
(64 bits)

I LB I IR__ :::J
____ -l

I
I

_ _j

}
General
Regilters

Storage
.__---~ Control

Unit

•...•- .....•Instruction Processor Execution Circuits
+---__'''Fixed-Point/VFL/Decimol Execution Element
'----- .....•Floating-Point Execution Element

Figure 4. Instruction Processor

10

execution elements, handling interrupts, and executing all
branching, status-switching, and I/O instructions.
The instruction processor has an instruction stack of eight

doublewords, a set of three instruction-control registers, a
set of temporary instruction buffer registers totaling two
doublewords, a decoder, and a three-input adder for the
generation of effective addresses(Figure 4). The instruction
processor uses the general registers in the fixed-point/VFL/
decimal execution element.

Instruction Fetching

Instructions fetched from storage are stored in the instruc­
tion stack of the instruction processor. An instruction stack
is used for two principal reasons:
1. To minimize storage access time for instruction fetching.
2. To reduce the number of instruction fetches required

while the program is executing a tight loop.
The instruction stack normally contains the current in­

struction doubleword, and sevendoublewords of either his­
tory (instructions already decoded) or instructions to be
executed. Keepinga number of doublewords ahead enables
the fetching mechanism to fit instruction fetches into slack
periods between data fetches and stores. The doublewords
of history in the stack minimize refetching of instructions
when a loop backward that can be contained in the instruc­
tion stack is detected.
The fetching mechanism operates differently under each

of three conditions: initialization, normal operation, and
recognition of a discontinuity. It is governedby three con­
trol registers: the instruction register (IR), the upper-bound
(UB) register, and the lower-bound (LB) register. The IR
points to the instruction being decoded, the DB register to
the most recent doubleword brought into the stack, and the
LB register to the earliest doubleword in the stack.

Initialization

Initially, the instruction stack is empty. When instruction
fetching is initiated, the main-storageaddress of the first
doubleword of instructions is set into the UBand LB regis­
ters, and part of the address of the first instruction is set into
the IR. The UBregister, which controls the actual fetching
of doublewords of instructions, brings the first doubleword
into the appropriate position of the instruction stack. At
the same time, the first doubleword is brought into the de­
coder.
As each instruction doubleword is fetched during initiali­

zation, the DB register is incremented (a doubleword being
brought into the stack for each increment) until any of
three conditions occurs:
1. The address in the UBregister is sevendoublewords higher

than that of the IR (Figure 4). Doubleword instruction
fetches are made whenever it does not delay data fetching
or storing.

2. A branch instruction is decoded that sets conditional
mode (see "Execution of Branching Instructions").

3. A discontinuity is recognized (see "Discontinuities").



Normal Operation

During normal operation, the instruction fetching mechan­
ism continually attempts to fetch a doubleword (Figure 4).
Fetching will not take place if any of the three conditions
just described is present.
Whenincrementing the VB register would cause the three

low-order bits of that register to match the three low-order
bits of the LB register, both the UBand LBregisters are
incremented. This incrementing of both registers causes the
.earliest (,,1..l,,0+) doubleword In +'h•• ot",.1.- t" 'h•• r,.nl",.,...l mit'h
""" AU •••.•••" \ ""._ .••.u'" .••_ ..•..•.•.••.••.•."'" uo•••••...•. " •.•••. ..,,, •. .., t'.&c.., ••.•",,- n'.•."•..L

the latest doubleword just fetched. The LB and liB registers
then point to a doubleword positioned one doubleword
higher in the stack. This relative positioning of the LB and
VBpointers (instruction stack addressing)remains constant
during normal operation.

Discontinuities
A branch operation, interrupt, or store into the instruction
stream may cause a disruption in fetching. (Branching oper­
ations and interrupts are discussedseparately. See "Execu­
tion of Branching Instructions" and "Handling Interrupts.")

If the store instruction results in the alteration of the
contents of a doubleword in the stack, the instruction fetch­
ing mechanism treats that doubleword slot as empty and
fetches the altered doubleword from storage.
BecausetheModel 195 can execute severalinstructions at

one time, the instruction STORE * + 4 presents a special
problem. This problem is solvedby making a check of the
effective address of each store operation to determine
whether the operation affects the instruction following the
store; if the next instruction might be affected, measures
are taken to preservethe logicalconsistency of the program.

Instruction Issuing

In addition to fetching and buffering instructions, the in­
struction processor fetches the required operands and issues
instructions to the appropriate execution elements.
During each machine cycle, the instruction processor checks

for interlocks. If there are none, the instruction selected by
the instruction register is decoded. After an instruction has
been decoded, the IR is incremented by the number of half­
words of the instruction just decoded, and the next instruc­
tion is then decoded. Decoding is the first of three possible
stagesin the issuingof the instruction.

Stage 1
During decoding, the following are determined:
1. The type of operation to be performed.

2. Whether the operation stack for the appropriate execu­
tion element can accept the operation.

3. If a storage operand is required, whether a buffer regis­
ter in the appropriate execution element is available to
receive the operand; or, if a store operation is specified,
whether a store address register is availablein the stor­
age control unit.

4. If an effective address is required, whether the three­
input adder and general registers used in generating the
effective address are available.

When the results of these checks indicate that the instruc­
tion can be processed, the decoding control determines
whether the instruction processor is operating in conditional
mode (see "Execution of BranchingInstructions"); if it is,
the operation is tagged as conditional, indicating to the exe­
cution element that it is not to decode or execute the opera­
tion until signaledto do so. The operation is then issued
for processing to the appropriate execution element (usu­
ally during stage 2), along with information about which
buffer registers in the execution element, if any are needed,
have been assignedby the instruction processor for use in
the operation.

Stage2
If address generation is required, the pertinent operand ad­
dresses are routed to the three-input adder. (Another in­
struction can now be processed at stage J ) If the instruc­
tion is a store, a quick check is made of the effective address
and, if this check indicates a possible store into the already
fetched instruction stream, processingof the instruction at
stage 1 is stopped until the processor determines whether
the store is actually into the instruction stream. If it is, the
processingat stage 1remains stopped until the processor has
issued a fetch to storage for the updated value of the in­
struction doubleword affected.
Fetches and stores can be made to operands that are not

on proper boundaries; however, performance is degraded.
Operands should be located on proper boundaries.

Stage 3
At this stage, the effective address of the storage operand
is passed to the storage control unit. If a fetch operation
is specified, the address of the buffer register to which the
operand is to be issued is also specified. (During stage 3,
another instruction can be processed at stage 1 and another
at stage 2.)

Execution of Branching Instructions

The instruction processor executes all branching instruc­
tions: The actions taken by the instruction processor as a
result of decoding a branch instruction are determined by

Central ProcessingComplex 11



the type of branch instruction to be processed, the availabil­
ity of circuitry for processing, and the following:
1. Whether the instruction processor is in conditional mode

(see "Conditional Mode").
2. Whether the instruction processor is in loop mode (see

"Loop Mode").
3. If loop mode is established, whether the current instruc­

tion is that which defined the current loop.
4. Whether the current instruction is the target of an

'execute' instruction currently being processed.
When a branch is taken, the target address of the branch

normally is set into the instruction register, and the VB and
LB registers and instruction stack are adjusted as required.
When a conditional branch is encountered and loop mode

is not set, the instruction processor operates as though either
direction could be taken. It continues to process the in­
structions in the instruction stack as long as conditions per­
mit, while issuing operations to the fixed-point and floating­
point execution elements on a conditional basis. These con­
ditional operations will not be executed until after the con­
dition code is set.
The instruction processor also makes use of two tempor­

ary buffers. Into these buffers it fetches the branch-target
doubleword and the succeeding doubleword. Therefore,
regardless of the outcome of the branch operation, the in­
struction processor will have a lead in the correct direction.

Conditional Mode

Conditional mode is established when the instruction proc­
essor executes a 'branch on condition' instruction for which
the condition code is not yet determined.
Whenconditional mode is set, no additional instruction

fetches are made beyond the first two doublewords at the
target address of the branch. The instruction processor con­
tinues to decode instructions, generate addresses, and issue
operations to the fixed-point and floating-point execution
elements. The operations issued, however, are tagged as
conditional and cannot be decoded or executed until the
condition code is set and the instruction processor sends a
signal to the execution element.
The instruction processor continues to decode instructions

conditionally until any of the followingoccurs:
1. The condition code is set.
2. No instructions are availablein the instruction stack.
3. The operation stack of the fixed-point or floating-point

execution element is full, and the currently decoded in­
struction needs the filled execution element.

4. An instruction to be executed within the instruction
processor is decoded, or a vanable-field-length instruction
is decoded. (However, a no-operation instruction or an
unconditional branch may be executed during conditional
mode.)

12

Loop Mode

Whenevera branch backward is taken to a target fewer than
eight doublewords back from the current address in the in­
struction register, loop mode is entered and the instruction
stack is reinitialized to contain the pertinent eight double­
words. The loop is then locked into the instruction stack
and, as a result, can be executed repetitively without re­
fetching the instructions. Thus, conflicts between instruc­
tion fetching and data fetching are eliminated, and branches
can be executed faster.
During loop mode reinitialization, when no data fetches or

stores are to be made, an instruction doubleword is fetched
every cycle until the instruction stack is full. If data fetches
or stores are to be made, instruction doubleword fetches
take second priority.
When loop mode is entered, the branch target address is

placed in one special register, and the address of the branch
instruction is placed in a second special register.Subsequently,
when a branch instruction is decoded during loop mode, that
instruction address is compared with the address (in the sec­
ond special register) of the branch instruction that initiated
loop mode; if they are the same, the branch is made to the
target address in the first special register. Becauseno time
is taken to re-form the address specified in the branch in­
struction, one cycle is saved.
If a conditional branch instruction is processedwhen loop

mode is already set, it is assumed that the branch will be
taken; therefore, during loop mode no temporary fetches
(down the no-branch path) are made for conditional branches.
Loop mode is turned off when any of the followingoccurs:

1. A branch out of the instruction stack is taken.
2. The instruction processor starts to decode the 32nd half­

word in the instruction stack.
3. The target of the quick loop is the sameas the target

of the outermost loop, and the branch closing the quick
loop is not taken. (If two nested loops fit in the instruc­
tion stack, the innermost loop is called the quick loop.)

4. The base register or index register of the quick-loop
branch is altered.

ProgrammingNotes: Becauseof item 2, a loop with 29-:;1
halfwords should be aligned on a doubleword boundary. If
the loop has fewer than 29 halfwords, the loop is executed
in loop mode regardlessof boundary alignment; if it has
more than 31 halfwords, it is not executed in loop mode.
Becauseof item 3, if the nested loops both have the same

target address, loop mode will be destroyed every time an
exit is made from the quick loop. To prevent loop mode
from being destroyed, a no-operation instruction may be
used as a dummy branch target for the outer loop.



Execution of Other Instructions

The instruction processor executes all status-switchingand
I/O instructions and plays a large part in the execution of
multiple-operation instructions. Whenone of these instruc­
tions is processed, the instruction processor usually does not
issue any succeedinginstruction until its part in processing
the first instruction is completed.
None of these instructions is executed while conditional

mode is set. Some require that all instructions being executed
when that instruction is decoded, be completed prior to its
execution. The instructions requiring this completion of
other instructions are the four I/O instructions and 'load
PSW', 'supervisor call,' 'set storage key,' and 'set program
mask' (except when the old and new mask bits are the
same). Also, one type of 'branch on condition' instruction
(a no-operation instruction) is implemented in the Model 195
in such a way that all other instructions being executed when
it is decoded must be completed before its execution. See
the programmingnote in "Handling Interrupts."
The following instructions are classedas multiple-operation

instructions:
Load Multiple (LM)
Store Multiple (STM)
Translate (TR)
Translate and Test (TRT)
And (NC)

Move With Offset (MYO)
Pack (PACK)
Unpack (UNPK)
Edit (ED)
Edit and Mark (EDMK)

Or (OC)
Exclusive Or (XC)
Compare LOglCallCLC)
Move Zones (MYZ)
Move Numerics (MVN)
Move (MYC)

Add Decimal CAP)
Subtract Decimal (SP)
Compare Decrmal u.P)
Multiply Decimal (MP)
Divide Decimal (DP)
Zero and Add (ZAP)

Thesemultiple-operation instructions have variable length
data fields and require the issuingof more than one opera­
tion from the instruction processor to the fixed-point exe­
cution element, which shares responsibility for execution
with the instruction processor. Also, each operation of a
multiple-operation instruction issued to the fixed-point area
contains information concerning at least one storage request.
The multiple-operation instructions are the only instruc­

tions, except 'convert to binary,' that causeoperands to be
fetched into the floating-point operand buffers for use in the
fixed-point area. Four of the six fixed-point operand buf­
fers are unavailable for reassignmentwhile a multiple-opera­
tion instruction is being executed.
Usually, the instruction processor is availableto issue the

succeedinginstruction after it has issued the last required
operation to the fixed-point area. If the next instruction is
in the SI format, it is not issued until the variable-field-length
execution for the multiple-operation instruction is complete.
If the multiple-operation instruction is a 'translate and test'
(TRT) or an 'edit and mark' (EDMK) instruction, the in­
struction processor will be available to issue subsequent
instructions only after the entire TRT or EDMKinstruction
has been executed.

Handling Interrupts

The Model 195 performs all interrupt functions defined for
the IBMSystem/360. (See IBM System/360 Principlesof
Operation, GA22-6821.) The supervisor call, external,
machine check, and I/O interrupts are logically handled as
defined,
The performance objectives of the Model 195, however,

require some deviations in handling program exceptions.
The program-exception deviations are basically those re­
sulting from an operation that has been sent by the instruc-
tion processor to another element for execution, so that the
current PSWno longer references the operation. Conse­
quently, the interrupt-causing instruction cannot be directly
identified. Such a program interrupt is called imprecise. An
imprecise interrupt is identified by the storing of zero as the
instruction-length code in the PSWcurrent at the time of
interrupt.
Logicalaccuracy is preserved in all situations where a

basic machine status change is involved. For example, all
instructions issuedunder a program mask are completed be­
fore the mask is changed to ensure that the mask stored is
that which allowed the interrupt.
The instruction-length codes (lLC) for program interrupts

on the Model 195 follow. The codes in this listing replace
those listed for ILC on program interrupts in the IBM
System/360 Principlesof Operation.
Program Excention
Operation
Privileged Operation
Execute
Protection
Addressing
Specification
Data
Fixed-Point Overflow
Fixed-Point Divide
Decimal Divide
Decimal Overflow
Exponent Overflow
Exponent Underflow
Significance
Floating-Point Divide

llr
1,2,3
1,2
2
o
0,1,2,3
1,2,3
o
o
o
o
o
o
o
o
o

Imprecise Interrupts

The followingprogram exceptions always cause imprecise
interrupts:
1. Data, fixed-point-overflow, fixed-point-divide, decimal

overflow, and decimal divide exceptions signaled from the
fixed-point/Vl-Ljdecimal execution element.

2. Exponent-overflow, exponent-underflow, significance,
and floating-point-divideexceptions signaled from the
floating-point execution element.

3. A protection exception when a protection violation is
detected.

Central Processing Complex 13



An addressing exception can produce either a precise or
an imprecise program interrupt, as determined by the prob­
lem.
When an imprecise interrupt is signaled, the instruction

processor ensures that all instructions that were decoded be­
fore the signal was recognized are completed before the
interrupt is honored. When the interrupt is taken, the in­
struction address stored in the program old PSW points to
the next instruction that would have been decoded, and for
which an attempt would have been made to issue it, had the
interrupt not occurred.
Imprecise interrupts that arise from conditional instruc­

tions (that is, instructions issued subsequent to a 'branch on
condition' instruction for which the condition code is not
yet determined) are noted and either activated or canceled,
as appropriate, when the conditional instructions themselves
are activated or canceled.
When an imprecise interrupt takes place, not just one but

several exceptions may have occurred, because all decoded
instructions are completed before the interrupt is taken.
Also, because instructions can be executed out of sequence,
the interrupt condition recognized first may not be the con­
dition that logically should be recognized first. To account
for both possibilities (an out-of-sequence detection and the
occurrence of more than one type of exception, either with­
in one or different instructions), the action taken when an
imprecise interruption occurs is that each type of exception
that took place is identified in bits 16-27 of the program
old PSW, and bits 28-31 are set to zero. Also, the instruc­
tion-length code (bits 32-33) is set to zero.
Bit Position in Program

ProgramOld PSW Exception
16 Protection
17 Addressing
18 Not Used
19 Data
20 Fixed-Point Overflow
21 Fixed-Point Divide
22 Exponent Overflow
23 Exponent Underflow
24 Significance
25 Floating-Point Divide
26 Decimal Overflow
27 Decimal Divide

Note: For an imprecise interrupt, the types of exceptions
that occurred, but not the number of exceptions of anyone
type that occurred, are identified in the program old PSW.

PreciseInterrupts

When the program interrupt is precise, bits 28-31 of the
program old PSWidentify the exception causing the inter­
rupt; the remainder of the interrupt code (bits 16-27) is all
zeros; and the instruction-length code (bits 32-33) is 1,2,
or 3, as appropriate.
A logical consistency is maintained when a precise pro­

gram interrupt precedes an imprecise program interrupt that
logically should have taken place first. If an imprecise inter­
rupt occurs during execution of outstanding instructions

14

before a precisely identifiable interrupt is honored, the in­
struction causing the precise interrupt is not executed, the
precise interrupt condition associated with this instruction
is not indicated, and the address of the instruction causing
the precise interrupt is placed in the instruction-address
portion of the program old PSW. In effect, the instruction
causing the precise interrupt is treated as never having
occurred, and a return to the program causes the original
interrupting instruction to be reinitiated. (The same opera­
tion takes place when a supervisor-callinterrupt is followed
by an imprecise program interrupt that logically should
have occurred first.)

Addressing Exceptions

An addressing exception resulting in a precise program
interrupt is produced if any of the followingconditions is
detected:
1. Any portion of the current instruction to be decoded lies

outside availablestorage.
2. The address generated for any of the following instructions

lies outside availablestorage: 'read direct,' 'write direct,'
'load PSW,' 'set systemmask,' 'set storage key', 'insert
storage key,' and 'diagnose.'

3. Any portion of the target instruction for 'execute' lies
outside availablestorage.
All other addressingexceptions, which are signaledafter

the completion of address generation leading to the fetching
or storing outside of availablestorage, result in imprecise
program interrupts.

Specification Exceptions

A specification exception resulting in a precise program
interrupt is produced if any of the following conditions is
detected:
1. An attempt is made to execute an instruction specified at

an odd-numbered location in storage.
2. The Rl field of an instruction specifiesan odd-numbered

register for the pair of general registers that contains a
64-bit operand.

3. A number other than 0, 2,4, or 6 is specified for a float­
ing-point register (0,4 - Extended Precision).

4. The block address specified in 'set storage key' or 'insert
storage key' has the four low-order bits not all zero.

5. The three low-order bits are not all zero in the address
generated for 'load PSW'or .'diagnose.'

6. The multiplier or divisor in decimal arithmetic exceeds
15 digits and sign.

7. The first operand field is shorter than or equal to the
second operand field in decimalmultiplication or
division.

Programming Notes

A program may not operate correctly on the Model 195 if
identification of the instruction that caused an imprecise
interrupt is required. When an imprecise interrupt occurs,
the program old PSWdoes not reference the operation that
caused it.



Also, a program may not operate correctly on the Model
195 if it requires the honoring of an imprecise interrupt be­
fore some instruction later in the program is executed. When
an imprecise interrupt is detected, all instructions decoded
by that time are executed before the interrupt is taken.
Therefore, several instructions following the instruction that
caused the imprecise interrupt may be executed before the
interrupt is taken. (How many of these subsequent instruc­
tions will be executed will vary, principally because the
Model 195 'can execute instructions concurrently and out of
sequence.) It is possible, at the programmer's option, to
return to the problem program but, because all decoded in­
structions are completed before the interrupt is taken, the
instructions executed after the interrupt may have been
adversely affected by the program exception.
If preciseness is a principal concern, the unwanted effects

of imprecise program interrupts can usually be eliminated
by testing and masking, as appropriate, and by using this
'branch on condition' instruction:

Mnemonic Mj Field

Not zeroBeR

This branch instruction is a no-operation instruction for
Sy::;tC:T:,.;J6U generally, but is implemented in the Medel 195
in such a way that its execution is delayed until all previously
ue(;uutu JmLLU(;l1Ull~nave been coiuprctcd.

Note: The address in the instruction counter is that of the
BCR instruction, and the instruction length code is as listed
at the beginning of this section. The use of this no-operation
instruction degrades the performance of the Model 195. It
should be used only to eliminate a problem for which there
is no other reasonable solution.

Note that a program may have,been naturally arranged so
that the adverse effects of certain imprecise program inter­
rupts are eliminated in advance. For example, in addition
to the branch (no-operation) instruction just mentioned,
execution of the following instructions is' delayed until all
previously decoded instructions have been completed: the
four I/O instructions, 'load PSW', 'supervisor call', 'set stor­
age key', 'diagnose', and 'set program mask' (except when
the old and new mask bits are the same).

The execution of instructions out of sequence may pre­
sent a problem in a situation other than the one concerning
imprecise interrupts. Although the CPU maintains a logical
consistency with respect to its own operations, including the
starting and ending of I/O operations, it cannot ensure
logical consistency between the CPU and asynchronous units
during their operations. For example, if an I/O channel pro­
gram relies on proper sequencing of stores by the CPU to
ensure proper channel operation, steps must be taken in the
CPU program to guarantee that the stores actually are made
in that sequence. The no-operation instruction can be used
to accomplish this.

Interrupt Example
The following example taken from the program controlled
interrupt (PCI) appendage for dynamic buffer allocation in
the basic telecommunications access method (BTAM) illus­
trates the dependence of an asynchronous channel program
upun serial execution. The example also demonstrates use
of the BCR instruction to effect serial execution.
The purpose of the PCI appendage is to maintain an un­

interrupted transmission of data into main storage. The
controlling factors in this transmission are the availability of
buffers and the ability (of the appendage routine) to modify
and chain two channel programs. Each channel program
consists of the following two channel command word (CCW)
chains:
Chain 1 CCWI READ into a buffer with data chaining (CD)

and PCI flags
CCW2 READ into CCW3 with skip (SKIP) and

suppress length indication (SLI) flags

Chain 2 CCW3 READ into a buffer with CD and PCI flags
CCW4 READ into CCWI with SKIP and SLI flags

1. In Chain 1, CCWI is initialized with the first available
buffer address.

2. The address fields for CCW2 and CCW4 initially contain
the storage addresses of CCW3 and CCWI, respectively.

3. When the PCI interrupt in CCWI occurs, the PCI append­
age routme determines the address of the next available
buffer and stores it into the address field of CCW3.

4. The command code in CCW2 is changed from a READ
to a transfer-in-channel (TIC), and the command code in
CCW4 is reset to READ as shown in Chain 2. (The first
time through the channel program, CCW4 is already set
to READ.)

5. When the PCI interruption in CCW3 occurs, the PCI
appendage routine determines the address of the next
available buffer (after the one indicated in step 3) and
stores it into the address field of CCWI.

6. The command code in CCW4 is changed from a READ to
a TIC, and the command code in CCW2 is reset to READ
as shown in Chain 1.
Steps 3 through 6 of the preceding sequence of events

continue until the input data transmission is completed.
The PCI appendage instructions that accomplish the alter­
ation of the CCWs are:

ST available buffer address into CCW3 (or CCWI)
BCR 15,0
MYI into CCW2 (or CCW4), the code for a TIC command
MYI into CCW4 (or CCW2), the code for a READ command

On the Model 195, use of the BCR instruction effects a
pipeline drain to ensure that the proper buffer address is
stored before the READ command is changed to a TIC com
mand. If, as could happen when the BCR instruction is
omitted, the MYI instructions were completed out of
sequence (i.e., before the ST instruction), the channel could
fetch a READ (into buffer) command with an old buffer
address. In such a situation, the new input would overlay
the old data.

Central Processing Complex 15



Note: In this example, it is assumed that the PCI appendage
instructions necessary to alter the format of the CCWs were
executed before the channel fetched the "READ xx (SKIP,
SLI)" command. If, in a given situation, this is not the case,
then the fetching of the "READ xx (SKIP ,SLI)" command
is executed without transfer of data and causes a normal
termination. Then, the appropriate channel program must
be restarted at the expense of additional input/output time.

STORAGE CONTROL UNIT

The storage control unit (SCU) is the intermediary between
main storage and the other system units. As such, it controls
central processing element (CPE) access to the high-speed
buffer storage backed up by the full capacity of main stor­
age. The SCU:
1. Provides and controls data and address paths to and from

main storage and the buffer storage for the central proc­
essing element, the channels, and the system console.

2. Controls the transfer of doubleword blocks of informa­
tion from main storage to the high-speed buffer storage.

3. Buffers store operations pending the availability of store
data.

4. Properly sequences ePE stores and fetches to the same
address.

5. Provides the storage protection function.

Buffer Storage

Because of the sequential nature of most programs, a CPE
fetch is likely to be followed by succeeding fetches to the
same storage block. Access time for subsequent fetches is
considerably reduced by placing the addressed block of
main storage in the high-speed buffer storage. Block trans­
fer is controlled by the storage control unit so that use of
the buffer storage is not obvious to the programmer.
The Model 195's increased performance is due in part to

the faster access to instructions and operands provided by
the high-speed buffer storage. Whereas norma! instruction
or operand fetches from main storage require 810 nano­
seconds, fetches from the buffer storage require only 162
nanoseconds.
Main storage and the high-speed buffer storage (Figure 5)

are similarly arranged. In main storage, eight doublewords
(64 bytes) occupy each of the 128 blocks that form a seg­
ment. The largest processor storage, in the Model 195 L,
has 512 segments. The buffer storage is arranged in a like
manner but with four segments. Also provided are four
data directories, one for each buffer segment, with 128 lo­
cations per directory. Each location in the directory contains
the main storage address of the block of data in the corre­
sponding block of the high-speed buffer storage.

16

Data
Director!

H;gn­
Speed
~Jff-er
Storage

1=:~~f Block
~ Identifier

i .• I

+0

512 Main Storage Addresses

-0---1-'-2-- ••••_125_~126_L-127_

4

512 Blocks

(

(64 (64
Bytes) Bytes)

Eight 2-Woy
Double Inter-
!word. leaved

~llm'-- -._ '- '-'-125 -'- 126 -127

Segment ••.

Segment 3

Segment 2

Segment 1

t t
- Blocks ~

t Transmit t tt

64
Bytes

-
Eight
Doobl•
words

~Ill~__'--)_'--'-_2 1-1 _ 7_o
••

I
••

8 10

Figure 5. High Speed Buffer Storage'

24 Bit Address

Buffer Storage Operation

When the central processing element performs a store opera­
tion to main storage, the main storage address is placed in a
store address register to await arrival of data in a store data
buffer. See Figure 6. Comparing the address of the block
addressed by the store operation with the block addresses
in the data directory indicates whether the location also
resides in the buffer storage. If so, the store is directed to
both main storage and the buffer storage; if not, only main
storage is modified by the store operation.
A channel or system console store to main storage must

also determine when the addressed block resides in both
main storage and the buffer storage, but for a different
reason. Input from the channel or system console is
directed only to main storage. Therefore, when the store ad­
dress is also in the buffer storage, the addressed block is in­
validated in the data directory. Consequently, it must be re­
transmitted from main storage before a subsequent fetch to
that block is allowed.



Addresses !
from CPE

Doto Directory

~~
!Addre5Se5 ~~ TAR 1J ! ~ SAR 1 I I ...• Data Directory 1

from Chcnne! I I I ~~IUd I~l ...• Data Director}' 2 1 1

t 1 I 81 SAR 2 81 .... Data Directory 3 r----.8 1 L:J

i I I Boundcry I I I Data from CPU/Channels I ,----, I IT i I I II Alignment I
SC i f t- I>- 3195t- Buffer :::JR SDBI I- Channel 0 Processor0

SDB2 l- t- Storage ~ Storage
CPE

SDB3 I- ~ t-

SC I
Main Storage Addressing

Data to CPU and Channel. + +"
...

Buffer-Storage Addressing

~~.. I I I I y TAR3 I

~lr~1
t-1 SAR 3 I

I

COMP - Compere
CPE - Centrol Pree ••• ing Element
CPU - Centfol Processing Unit
SC - System Console
SAR - Store Addr •• Regist.,
SOB - Store Data Buffe,
SPf .•Storage Protection feature
TAR - Transfer Addr.,ssRagister

• Figure 6. Storage Control Unit Data Paths

CPE fetches from main storage are usually fetches from
the high-speedbuffer storage. The CPEfetch address is
placed in a transfer address register (Figure 6), and a
comparison is made with the store address register and the
directory. An equal compare with the store address register
causes the fetch to be delayed until the indicated store to
that address is completed.
An equal comparison of the CPE fetch address and the

data directory indicates that the data to be fetched resides
in the high-speedbuffer storage. The fetch is then made
from the buffer storage and the data placed on the bus to
the CPE.
When the fetch address does not reside in the buffer stor­

age, a block transfer to the buffer storage is called for. The
addressed doubleword is fetched from main storage and
placed on the bus to the CPE. This doubleword is also
ttansmitted to the buffer storage to become the first of
eight doublewords in the block transfer. Subsequent fetches
to this block can then be made from the high-speedbuffer
storage.
The block of doublewords transmitted to the buffer stor­

age is placed in a block location corresponding to its main
storage location as determined by the block address (Fig­
ure 5), and the block's main storage address is placed in
the corresponding data directory location. The block may
be placed, however, in anyone of four possible buffer stor­
age segments.

I
I I

Becauseall doublewords having the same block address
are assignedto the same buffer storage location, four
identical buffer segments are used to avoid conflicts. WhicH
of the four buffer segments is used or replaced is determined
by the replacement code. The replacement code is main­
tained to indicate the order of buffer storage segment usage.
It indicates the most recently, second most recently, third
most recently, and least recently accessedsegment for each
of the four possible blocks to be accessed.
The block transmitted from main storage replaces the

least recently accessed segment block. Thus, the buffer
always contains 512 blocks of main storage that have been
used most recently.
Channel fetches are made only from main storage. Ad­

dresses from channels are held until the requested storage is
free. Channel requests are then givenhighest priority to
ensure against channel overrun.

FIXED·POI NTIVAR IABLE-FI ELD·LENGTH/DECIMAL
EXECUTION ELEMENT

The fixed-paint/variable-field-length(VFL)/decimal execu­
tion element executes all fixed-point arithmetic, logical,and
variable-field-lengthand decimal arithmetic operations. It
consists of six major logical elements (Figure 7):
1. An operation stack (FXOS) of six positions
2. Sixteen general registers
3. Six 32-bit operand buffers (FXB)

Central Processing Complex t'1



General Registers Storage Control Unitf" d P " tIxe - of n
10 3 bits Operation ! FLPT Buffers
I Stock (FXOS) •2 1 1 32 blts
3 2 2
4 3 3 Fixed-Point
5 4 4 Buffe" (FXB)
6 5 5
7 6 6
B

I
9
10
11
12 I lromedlote Dote
13
14
15

1
I 1nstrucf on

1 j ,~

Processor

~
I I F;x:d-_Po;nt I . VFL Decimc l I

1,I-XtU) (VFLE:U) (DEU)

I Execution Units 1 Sto rage
Control Unit

Figure 7. Fixed-Point/VFL/Decimal Execution Element

4. A fixed-point execution unit (FXEU)
5. A VFL execution unit (VFLEU)
6. A decimal execution unit (DEU)
Fetches from storage of data fields necessary for processing

a fixed-point operation are initiated by the instruction proc­
essor, which also reservesin the fixed-point area the buffers
that are to receive the requested operands.
The instruction processor also maintains for its own use

counters that indicate whether: (1) the fixed-point opera­
tion stack has an availableposition, (2) which fixed-point
buffers are available, and (3) which general registers are
available to the instruction processor and which are being
used by the fIxed-point/VFL/decimal execution element.
During normal processing, operations in the FXOS are

decoded serially and issued to either the fixed-point execu­
tion unit or the VFL or decimal execution unit. An opera­
tion can be executed if it has been decoded, if the data is
available,and if the execution circuitry is free. Whendecod­
ing is completed, the instruction processor is notifled that the
stack position and operand buffers assignedto that operation
are free.
The execution of one operation is overlappedwhen possi­

ble with the decoding of the next. When a multiple-opera­
tion instruction is processed (see the discussionof multiple­
operation instructions under "Instruction Processor"), de­
coding of the next instruction in the FXOS does not begin
until the execution of the last of the multiple operations is
begun.
Operations tagged as conditional are not decoded or

executed until they are activated or canceled by the instruc­
tion processor. A canceled operation is decoded in one
cycle, and execution of the operation consists of freeing any
operand buffers previously assignedto the canceled opera­
tion without actual execution of the operation.
At any time during a fIxed-point/VFL/decimal operation,

the instruction processor can request a direct store into the

general registers, which, because the instruction processorhas
priority, may delay fixed-point/VFL/decimal processing.
Fetches made during the execution of a multiple-opera­

tion instruction may require the use of operand buffers in
the floating-point execution element; also, four of the six
fixed-point operand buffers are unavailable for reassignment
while such an instruction is being processed.

FLOATING-POINT EXECUTION ELEMENT

The floating-point execution element handles execution of
the floating-point arithmetic operations, including the
extended precision operations. (See "Extended Execution
Unit.") Severaloperations can be executed at one time
(maximum: two adds and one multiply or divide) if the
operations are logically independent. This performance
capability results largely from three significant features:
(1) operand and instruction buffering, (2) multiple execu­
tion units employing extremely efficient algorithms, and
(3) a common data bus, which links the severalsets of ex­
ecution circuitry so that the full power of the multiple
execution units is realized without a reliance on programming
for the special arrangement of instructions.
The floating-point area contains the followingmajor

logical elements (Figure 8):
1. An operation stack (FLOS) of eight positions.
2. Four floating-point registers (FLR).
3. Six operand buffers (FLB), which are also used by the

fixed-point area when any multiple-operation instruction
or the 'convert to binary' instruction is processed.

4. Three execution units: an add unit (preceded by three
reservation stations) capable of performing two add
operations concurrently, a multiply/divide (MID) unit
(preceded by two reservation stations), and an extended
execution unit (preceded by one reservation station).
Decoding of operations in the FLOS proceeds serially.

As an execution unit is selected for an operation (on the
second cycle), the decoding of the next operation (on the
first cycle) can begin. The FLOS issuesoperations subject
to only one principal constraint: a reservation station of
the appropriate type must be available.
The FLOS need not wait for all the operands to be avail­

able (as in the fixed-point area) before issuingthe operation.
Instead, the selected reservation station and controls hold
the issued operation until the required operands have been
collected and then engagethe execution circuitry.
Because severaloperations may be in various stagesof

execution at one time, provisionmust be made for properly
sequencingdependent operations. A system of taggingfor
usageof the common bus ensures proper sequencingand
also facilitates fastest execution of independent operations.
The FLB and the common data bus execute all RX load

operations. RR load and RR load and test operations are
executed by the common data bus and special testing
circuitry. Store operations are executed by the three store
data buffers. Multiply a~d divide operations are executed



i I , , , , •• Fixed-Point Area
I Floating-Point Register Bus I+ I I 1 Common Data Bus

t , • ~ • • l
Reservotion Reservation Reservation
Station 1 Stotion 2 Station

Reservotion Reservation
Station 2 Station 1

Reservation
Station 3

i MultiplyjDivide Extended
Execution Unit Execution

Unit

I
Add

IExecution I II Unit

Floati ng-Poi nt
Operation Stack (FLOS)

1
2
3
4
5
6
7
8

I

1

Floating-Peint t-;:;-____:::':"';:=-j
Registers (FLR)

FLRB
CDB

Flooting-Point Buffer Bus

Figure 8. Floating-Point Execution Element

by an MID unit, and the extended unit, if required. Add
operations are executed in either the add unit or the ex­
tended unit.
Fetches for data fields needed to process a floating-point

operation are initiated by the instruction processor, which
also reserves the buffers in the floating-point area that are
to receive the requested operands. The instruction processor
also maintains for its own use counters that indicate whether
the FLOS has an availableposition and which floating-point
buffers are available.
Whenthe FLOS completes decoding, it signalsthe instruc­

tion processor that the stack position is empty. If an opera­
tion has been decoded, the related operand buffer is set free
at the time it is filled; if the operand buffer is filled before
the related operation is decoded, however, the buffer is set
free one cycle after decoding is completed.
Operations tagged as conditional are not decoded or

executed until they are activated or canceled by the instruc­
tion processor. A canceled operation is decoded in one cycle,
and execution of the operation consists of freeing all oper­
and buffers previously assignedto the canceled operation
without actual execution of the operation.

Add Execution Unit

The add execution unit can begin execution if the opera­
tion has been decoded, the data is available,and another

1 64 bits FI
2 B
3
4
-

Storage
Cantral Unit

oating-Point
uffe rs (FLB)

I~
t j

Storage
Control
Unit

add operation of higher priority is not beginning on the
same cycle. Two add operations can be executed concur­
rently by offsetting the start of the second operation one
cycle from the start of the first. Whiletwo operations are
being performed, the third reservation station may be
acquiring data.

Multiply/Divide Execution Unit
The multiply or divide execution unit can begin execution
if the operation has been decoded, the data is available, an­
other multiply or divide operation of higher priority is not
beginning on the same cycle, and the execution circuitry is
free. The two MID reservation stations share a single execu­
tion section; therefore, only oneMID operation may be
executed at a time.

£xtended Execution Unit
The extended execution unit (Figure 8) is a standard feature
that provides additional logic for handling extended precision
(28-digit fraction) floating-point operands. The feature
includes seven instructions and additional controls for using
the multiply unit. (Details of the extended-precision
floating-point instructions are in IBMSystem/360 Principles
a/Operation, GA22-6821.)
Instruction execution beginswhen the operands are in the

reservation station. For an extended-precision multiply
operation, priority for the use of the multiply unit is required.

Central Processing Complex 19



Channels

The IBM2870 Multiplexer Channel, the IBM2860 Selector
Channel, and the IBM2880 BlockMultiplexer Channel pro­
vide for attachment of I/O devicesto the Model 195 system.
The channel relievesthe CPUof communicating directly
with I/O devicesand permits data processing to proceed con­
currently with I/O operations.
Channel priority is independent of the channel addressand

is selected at time of installation. Priority is determined by
pluggable circuit jumpers in the CPU. (Note: Only qualified
maintenance personnel may insert or remove these circuit
jumpers.) Guidelines for assigningpriority are:
1. Channelswith the 2301 Drum Storage or 2305 Fixed

Head Storage attached should be assignedhighest
priorities.

2. The 2870 Multiplexer Channels with overrunable devices
attached should follow in priority channels with a 2301
or 2305 attached.

3. Continue assigningpriority in decreasingdata rate order
to channels with overrunable devices, that is, lower pri­
ority to lower data rate device.

4. Channels with non-overrunable devices should have
lowest priority.
A standard channel-to-control-unit interface provides a

uniform method of attaching control units to channels. Data
is transferred a byte at a time between the I/O device and
the channel. An optional two-byte-wide interface on the
2880 channel provides for attachment of deviceswith very
high data rates. Data transfers between the channel and the
SCUare eight bytes (one doubleword) in parallel for both
selector and multiplexer channels.
The followingdescriptions include the maximum data

rates attainable by the different channels. During system
operation, the actual rates may be less than the maximums,
depending on (l) channel priority, (2) the number of chan­
nels operating concurrently, (3) the speed of the devices
operating on each channel, and (4) the type of channel pro­
gramming used; for example, single record versus chained
records.

2860 SELECTOR CHANNEL
The 2860 Selector Channel provides for attachment and con­
trol of I/O control units and associated devices. At least one
2860 (any model) is required if no 2870 Multiplexer or 2880
BlockMultiplexer Channel is attached. The 2860 is available
in three models:
Model 1 ~ provides one selector channel
Model 2 ~ provides two selector channels
Model 3 ~ provides three selector channels

20

The 2860 Selector Channel permits data rates of up to 1.3
million bytes a second. I/O operations are overlappedwith
processingand, depending on the data rates and channel
programming considerations, all selector channels can oper­
ate concurrently. A set of channel control and buffer regis­
ters permits each channel to operate with a minimum of
interference.
Eight control units can be attached to each selector chan­

nel. Each control unit may havemore than one I/O device
connected to it, but only one deviceper channel may trans­
fer data at any giventime. A selector channel operates only
in burst mode, and may be assignedaddresses one through
six only.

2870 MUL TIPLEXER CHANNEL
The 2870 Multiplexer Channel provides for attachment of a
wide range of low- to medium-speed I/O control units and
associated devices. The basic 2870 Multiplexer Channel with
192 subchannels can attach eight control units and can ad­
dress 192 I/O devices. The basic multiplexer channel can
operate severalmultiplex-mode I/O devicesconcurrently or
a singleburst-mode device.
Two 2870's can be attached to the Model 195: the first

one provides 196 subchannels including four optional selector
subchannels; the second one provides 194 subchannels in­
cluding two optional selector subchannels. The address of
the first 2870 must be zero; the second 2870 may be assigned
any address from one through six. The address priority as­
signed to the second 2870 should be as high as possible, but
not higher than a selector channel with a 2301 drum attached
Selector subchannels are optional. Each selector subchan­

nel can operate one I/O device concurrently with the basic
multiplexer channel.
Each selector subchannel permits attachment of eight con­

trol units for certain deviceshavinga data rate not exceeding
180 kilobytes (kb) a second. Regardlessof the number of
control units.attached, a maximum of 16 I/O devicescan be
attached to a selector subchannel.
The maximum aggregatedata rate for the multiplexer chan­

nel ranges from 110 kb to 670 kb, depending on the number
of selector subchannels in operation. The first three selector
subchannelsmay operate concurrently at up to 180 kb for
each subchannel. When all four selector subchannels operate
concurrently, the fourth has a.maximum data rate of 100 kb.
Each selector subchannel in operation diminishes the basic

multiplexer channel's maximum data rate of 110 kb; the



maximum data rates for concurrent selector subchannel op-
erations are:
Basic

Multiplexer
Channel
1l0kb
88 kb
66 kb
44 kb
30 kb

DataRates for Selector Subchannel
1st or 2nd 2870 1st 2870 Only
1st 2nd 3rd 4th

180 kb
180 kb
180 kb
180 kb

180 kb
180 kb
180 kb

180 kb
180kb 100kb

Note: The 180-kb maximum data rate for 2870 selector sub­
channels pertains to attachment of magnetic tape devices;
timing factors other than data rates may preclude attachment
of direct-accessstorage devicesthat have lesser data rates.
Also, note that when other channels in addition to the 2870
are in operation, the total system I/O data rate must be
analyzed.

2880 BLOCKMULTIPLEXER CHANNEL

The functional use of the 2880 BlockMultiplexer Channel
closely parallels that of the 2860 Selector Channel; devices
that attach to the Model 195 through a 2860 may also attach
through a 2880 assignedone of the addressesone through
six. The 2880 is capable of higher data rates than the 2860,
however, and also offers a block multiplexing capability. A
two-byte I/O interface used with the high-speed data trans-
fer mode permits data rates of up to three million bytes per
secund.
Unlike the 2860 and 2870 channels, the 2880 performs a

channel logout on occurrence of a channel data check condi­
tion. The logout occurs at the completion of the current
command and into locations 272 through 399. Data check
logouts may be eliminated during selector mode operation
by inserting the bypass-logout circuit jumper. (Note: Only
qualified maintenance personnel may insert or remove the
bypass-logout circuit jumper.)

At least one 2880 BlockMultiplexer channel is required if
no 2860 Selector or 2870 Multiplexer channels are attached.
The 2880 always transfers data in burst mode, and may be
assignedany address from one through thirteen.
Two models of the 2880 BlockMultiplexer Channel are

available:
Modell - provides one channel
Model 2 - provides two channels
The standard features of the 2880 are the high-speed data

transfer mode (up to 1.5million bytes per second) and the
block-multiplexing capability (concurrent operation of up to
64 devices).
An optional feature is the two-byte interface which pro­

vides for a data transfer rate of up to 3.0 million bytes per
second.
The basic 2880 BlockMultiplexer Channel attaches to the

standard one-byte I/O interface. The 2880 utilizes a high­
speed data transfer mode that incorporates two additional
interface tag lines, Data-In and Data-Out, to allow I/O data

rates up to 1.5 million bytes per second. Data rates of 1.5 to
3.0 million bps are achieved through additional buffering and
use of an optional two-byte I/O interface. All data transfers
over the two-byte interface are in the high-speed data trans­
fer mode.
The block multiplexing function provides 64 subchannels

to be block multipiexed over the standard IiO interface.
Blockmultiplexing is similar to the byte multiplexing capa­
bility of the 2870 Multiplexer Channel; the principal differ­
ence is the quantity of data transferred per transmission. The
2880 multiplexes blocks (bursts) of data; that is, burst mode
devicesshare the channel facilities and transmit data in burst
mode. When the channel is multiplexing (interleaving)blocks
of data on the single data path it may also control the non­
data transfer activities of multiple devices.
Eight control units can be attached to each 2880 Block

Multiplexer Channel. Each control unit may have more than
one I/O deviceconnected to it, but only one deviceper chan­
nel may transfer data at any given time. However, as many
as 64 channel programs may be in concurrent execution in
each 2880 channel through use of the block multiplexing
function.
To facilitate conversion, the 2880 also operates in selector

channel mode, thus permitting operation under the current
operating system. A switch is provided on the system con­
sole for selection of either the selector or hlock multiplex
mode.

EXTENDED CHANNEL FEATURE

This feature permits attachment of as many as 14 channels
to the Model 195, in which case bit 6 in the system mask of
the PSWmasks channels 6-13 as a group rather than channel
6 alone.
Without the extended channel feature, one or two 2870's

and up to six 2860's and/or 2880's may be attached to the
CPUas follows:
2870's
o
1
2

2860's and/or 2880's
1 to 6
o to 6
o to 5

With the extended channel feature the number of channels
and frames allowed is as follows:

Maximum Number Allowed
Channels Channels Frames*
2860 6 2
2870 2 2
2860/2870 7 4
2880 13 8
2860/2880 l3 8
2870/2880 14 8
2860/2870/2880 14 8

* Maximum channels per frame:
3 - 2860
2 - 2880
1 - 2870

Channels 21



CHANNEL-TO-CHANNEL ADAPTER FEATURE

A channel-to-channel adapter is available as an optional fea­
ture on the 2860. The adapter provides a path for operations
to take place between two channels and synchronizes those
operations. It may be used in multiple-processor or single­
processor systems: in a multisystem, to achieve rapid com­
munications between the channels of two System/360
models; in a single system, to move blocks of data from one
main storage area to another.
The adapter uses one control-unit position on each of the

two channels, but only one of the two connected channels
requires the feature. In the Model 195, one adapter may be
installed per 2860 selector channel.
When the 2870 or 2880 channel is connected to a 2860

channel, the channel-to-channel adapter is installed on the
2860 channel, not on the 2870 or 2880.
For restrictions on channel attachments for another IBM

System/360 model used with the Model 195, refer to the
Systems Reference Library (SRL) functional characteristics
publication for that model.

22



The system control panel on the system console contains the
switches, keys, and indicator lights to operate and control
the system (CPU, storage, channels, on-line control units,
and input/output devices). Off-line control units and I/O
devices, though part of the system environment, are not
considered part of the system.
System controls are divided into three classes: operator

control, operator intervention, and customer engineering
control. This section of the manual discusses operator con­
trol and operator intervention.
Using the control panel, the operator can perform the fol­

lowing system control functions:
1. Reset the system.
2. Store and display information in storage, registers, and

program status word (PSW).
3. Load initial program information.

SYSTEM CONTROL FUNCTIONS

System Reset

The system-reset function resets the CPU, channels, and on­
line nonshared control units and I/O devices.
The CPUis placed in the stopped state, and all pending

interrupts are eliminated. All error-status indicators are re­
set to zero.
In general, the system is placed in such a state that proc­

essingcan be initiated without machine checks occurring,
except those caused by subsequent machine malfunction.
Addresses in the data directory of the high-speed buffer

storageare reset to zero by a system reset. Subsequently,
the contents of the high-speedbuffer storage are replaced,
block by block, as required by ensuing fetch requests.
The reset state for a control unit or device is described in

the appropriate Systems Reference Library (SRL) publica­
tion. A system-reset signalfrom a CPUresets only the func­
tions in a shared control unit or devicebelonging to that
CPU. Any function pertaining to another CPUremains un­
disturbed.
The system-reset function is performed when the system­

reset key is pressed, when the PSW-restartkey is pressed,
when initial program loading is initiated, or when a power­
on sequence is performed.

Programming Note: If a system reset occurs in the middle
of an operation, the contents of the PSWand of the result
registers or storage locations are unpredictable. If the CPU
is in the wait state when the system reset is performed, and
no I/O operation is in progress, this uncertainty does not
exist.
A system reset does not correct parity in registers or stor­

age. Becausea machine check Occurswhen information

System Control Panel

with incorrect parity is used, the incorrect information
should be replaced by loading new information.

IStore or Display

The store-or-display function permits manual intervention
I ill the progress of a program. The storing or displaying
of data may be provided by a supervisorprogram, proper
I/O equipment, and the interrupt key.
In the absence of an appropriate supervisorprogram, the

controls on the operator intervention panels allow direct
storing or displaying of data. This is done by placing the
CPUin the stopped state and subsequently storing or
displaying information in main storage, in general and
floating-point registers, and in the instruction-address part
of the PSW.The stopped state is achievedwhen the stop
key is pressed, when singleinstruction execution is specified
and the instruction has been executed, or when a preset
address is reached.
In Model 195, the transition from operating to stopped

state includes completing all instructions that were decoded
at the time stopped state was called for. The store-or-
display function Is achieved by use of the stcrc , display, ui-1d
set CAR keys, address switches, data switches, store/display/
storage select switch, scan key, and CRT display switch.
Once the desired intervention is completed, the CPU can be
started again.
Normal stopping and starting of the CPU in itself does not

cause any alteration in program execution other than in the
time element involvedin the transition from operating to
stopped state.
Machine checks occurring during store-or-displayopera­

tions do not log immediately but create a pending log condi­
tion that can be removed by a system reset or CPUreset.
The error condition, when not disabled,forces a log-out and
a subsequent machine check interrupt when the CPU is re­
turned to the operating state.

Initial Program Loading

Initial program loading (IPL) is provided for initiation of
processingwhen the contents of storage or the PSWare not
suitable for further processing.
Initial program loading is initiated manually by selecting

an input devicewith the load-unit switches and pressing
the load key.
Pressingthe load key causes a system reset, turns on the

load light, turns off the manual light, and initiates a read
operation from the selected input device. When the IPL is
completed satisfactorily, a new PSWis obtained, the CPU
starts operating, and the load light is turned off.

System Control Panel 23



The system reset suspends all instruction processing, inter­
rupts, and timer updating and also resets all channels, on­
line nonshared control units, I/O devices, and the data
directory. The contents of general and floating-point reg­
isters remain unchanged.
When IPL is initiated, the selected input device starts trans­

ferring data. The first 24 bytes read are placed in storage
locations 0-23. Protection, program-controlled interrupt,
and a possible incorrect length indication are ignored. The
doubleword read into location 8 is used as the channel com­
mand word (CCW) for reading more than 24 bytes. When
chaining is specified in this CCW, the operation proceeds
with the CCW in location 16. Either command chaining or
data chaining may be specified.
When the device provides channel end for the last opera­

tion of the chain, the I/O address is stored in bits 21-31 of
the first word in storage. Bits 16-20 are made zero. Bits
0-15 remain unchanged.
The CPU subsequently fetches the doubleword in location

o as a new PSWand proceeds under control of the new PSW.
The load light is turned off. No I/O interrupt condition is
generated. When the I/O operations and PSWloading are
not completed satisfactorily, the CPUidles and the load
light remains on.

Programming Notes: Initial program loading resembles a
'start I/O' that specifies the I/O device selected by the load­
unit switches and a zero protection key. The CCWfor this
'start I/O' is simulated by CPUcircuitry and contains a read
command, zero data address, a byte count of 24, chain­
command flag on, program-controlled-interrupt flag off,
chain-data flag off, and skip flag off. The CCWhas a virtual
address of zero.
Initial program loading reads new information into the

first six words of storage. Becausethe remainder of the
IPL program may be placed in any desired section of storage,
it is possible to preserve such areas of storage as the timer
and PSWlocations, which may be helpful in program debug­
ging.
If the selected input device is a disk, the IPL information

is read from track O.
The selected input devicemay be a channel-to-channel

adapter connecting the channels of two CPU's. After a sys­
tem reset is performed and a read command is issued to this
adapter by the requesting CPU, the adapter sends an atten­
tion signal to the addressed CPU,which then should issue
the write command necessary to load a program into main
storage of the requesting CPU.
Whenthe PSWin location 0 has bit 14 set to 1, the CPUis

in the wait state after the IPL procedure. (The manual sys­
tem and load lights are off, and the wait light is on.) Inter­
rupts that become pending during IPL are taken before in­
struction execution.

24

CONTROLS

System controls are divided into three groups: operator
control, operator intervention, and customer engineering
control. Figure 9 shows the location of panels used to per­
form the operator control and the operator intervention
functions. Figure 10 shows controls and indicator lights
used in operator control, and Figure 11 shows the controls
and indicator lights used in operator intervention.

·Panels containing operator controls. Sea Figure 10.
·*Panels containing operator intervention controls. See Figure 11.

• Figure 9. System Console Panels

Operator Control
The operator-control section of the system console panel
(Figure 9) contains controls and indicator lights required
by the operator when the CPUis operating under full super­
visor control. Under supervisor control, a minimum of di­
rect manual intervention is required because the supervisor
performs operations similar to store and display.
To control another System/360 processor, a second set of

controls and indicator lights (an optional feature) can be
provided on the operator control panel (Figure 10). One
set may be duplicated as a remote panel on a stand-alone
operator's console (IBM2150 Console or IBM2250 Display
Unit Modell). Provision for the remote panel is a standard
feature.
The main functions provided by the operator controls are

the control and indication of power, the indication of sys­
tem status, operator-to-machine communication, and initial
program loading.
The operator controls and indicator lights (Figure 10) are:

Name Type :
Display Power Off Key
Display Power On Key (backlighted)
Emergency Pull Pull switch
Interrupt Key
Load Key
Load Indicator light



I
II

i·,,·""loooool u •• I I I~I I~I
~ L_--_--_--_--_-_--_--_--_-_--~l~l ~

r - - - - - - - - - - - - - ----,

OPERATOR CONTROL PANEL

Figure 10. Operator Control Panel and Power Panel

Name
Load Unit
Manual
Power Off (System)
Power On (System)
System
Test
Wait

Type
Rotary switches (3)
Indicator light
Key
Key (backlighted)
Indicator light
Indicator light
Indicator light

Display Power Off

The display-power-off key UIi the power panel initiates the
power-off sequence of the display console integrated with
the system control panel. The contents of the upper 4,096
bytes of display console buffer storage (containing format
control data) are preserved after a power-off to the display
console.

Display Power On

The display-power-on key on the power panel initiates the
power-on sequence of the display console integrated with
the system control panel. While power is on the display
console, the key is backlighted white. The contents of the
upper 4,096 bytes of display console buffer storage (con­
taining format control data) are preserved after a power-on
to the display control.

EmergencyPull

Pulling the emergency-pull switch turns off all power, be­
yond the power-entry terminal, on every unit that is part
of the system or that can be switched onto the system.
Therefore, the switch controls the system proper and all
off-line and shared control units and I/O devices. A second
emergency-pull switch is on the power distribution unit.
The switch latches in the out position and can be restored

to its in position by maintenance personnel only.

Interrupt

The interrupt key is pressed to request an external interrupt.
The interrupt is taken when it is allowed and when the CPU
is not stopped. Otherwise, the interrupt remains pending.

eoNT,,"O!.. PANEL
FOR SECONDCPu

(O~TIOHAL)

POWERPANEL

When the interrupt is taken, bit 25 in the interrupt-code por­
tion of the current PSW is set to 1 to indicate that the inter­
rupt key is the source of the external interrupt. The key is
effective while power is on the system.

Load (Key)

The load key begins initial program loading. (See "Initial
Program Loading.") It is effective while power is on the
system.

Load (Light)

The load light is on during initial program loading. It turns
on when the load key is pressed and turns off after the new
PSW is successfully loaded.

Load Unit

The three load-unit switches provide the 12 rightmost I/O
address bits of the device to be used for initial program
loading. They are 16-position switches labeled hexadecimally
O-F. (Positions 7-D of the leftmost switch are used only if
the extended channel feature is installed.)

Manual

The manual light is on when the CPU is in the stopped state.
Several manual controls are effective only when the CPU is
stopped, that is, when the manual light is on.

Power Off (System)

The power-off key initiates the power-off sequence of the
system. The contents of main storage (but not the keys in
storage associated with the protection features nor the con­
tents of the high-speed buffer storage) are preserved if the
CPU is in the stopped state and all I/O operations are com­
plete. The key is effective while power is on the system.

System Control Panel 25



Power On (System)

The power-on key initiates the power-on sequence of the
system. As part of the power-on sequence, a system reset is
performed in such a way that the system performs no in­
structions or I/O operations until explicitly directed. The
contents of main storage are preserved.
The power-on key is backlighted white when power is on

the entire system. The key is backlighted red during the
power-on sequence and when any remote/local power con­
trol switch in the power system is in the local position. If
there is a loss of power in some section of the processor,
main storage units, or channels, the light will change from
white to red. The power-on key is effective only when the
emergency-pull switch is in its in position.

System

The system light is on when the CPU-clusterusagemeter or
customer engineeringmeter is running. These meters are on
the display console.
The states indicated by the wait and manual lights are

independent of each other; however, the state of the sys­
tem light is not independent of the states of the wait and
manual lights. The possible conditions when power is on
are:
System Manual Wait CPU I/O
Light Light Light State State
Off Off Off * *
Off Off On Wait Not working
Off On Off Stopped Not working
Off On On Stopped, Wait Not working
On Off orr Running Undetermined
On Off On Wait Working
On On orr Stopped Working
On On On Stopped, Wait Working

* Abnormal Condition

Test
The test light is on when a manual control is not in its
normal position or when a maintenance function is being
performed for the CPU, channels, or main storage.
Any abnormal setting of a switch on the system control

panel or on any separate maintenance panel for the CPU,
main storage, or channels that can affect the normal opera­
tion of a program causes the test light to go on.
The test light may be on when certain diagnostic functions

are activated or when certain abnormal circuit-breaker or
thermal conditions occur.
The test light is on when any of the following controls is

not in its normal position:
Address Compare
Address Increment (Beat BSM/Beat ADR)
Address Increment (Block Scan)
Block Multiplex Channel Mode
CRT Display and Tape Operation
Decimal Alternate Sign
Disable Interval Timer

26

Enter Instruction
Inhibit Overlap
Inhibit Replace Buffer 1,2,3, or 4
Mach Check Stop
MCWActive/Chari Sim
Rate
Repeat/Repeat and Reset
Reverse CBR PTYS/Block DD Reset
Storage Reconfiguration
Storage Test (Store/Fetch)
System Console Test, Rotary

The wait light is on when the CPUis in the wait state. The
wait state exists wheneverbit position 14 of the current
PSWcontains a 1. The wait state can be changed to the
running state only by loading a new PSWin which bit posi­
tion 14 contains a 0; it cannot be changedby pressingthe
system reset key.

.Operator Intervention Controls (Normal)

This section of the system control panel (Figure 11) con­
tains controls required by the operator to intervene in nor­
mal programming operation. These controls are intermixed
with the customer engineer controls, which are not used
by the operator.
Operator intervention controls, classifiedin the Model 195

as either normal or special operator intervention controls,
provide the system-reset function and the store or display
function. The following are normal operator intervention
controls:

Name Type Panel

Address/Address Compare (8-31 + Key Switches M
3 parity)

CBR To Ones Key L
CBR To Zeros Key M
CRT Display and Tape Operation Rotary Switch N
Data (0-63 plus eight parity) Key Switches M
Display Key M
PSW Restart Key N
Scan Key N
Set CAR Key M
Set IC Key N
Set PSW Key N
Start Key L
Stop Key L
Store Key M
Store/Display /Storage Select Rotary Switch N

Address/Address Compare (PanelM)

The 27 address switches (24 address switches and three
parity SWitches)are locking key switches and are used to
set an address into the console address register (CAR) or
are used as the comparand in an address compare operation.



L STORAGE
RECONFIGURATION

CYCLIC PIIOCIII ••• COUNT[II ENTII'f STONAGE TESTSYSTEM CONSOLE
TEST

ADORnS
COMMAE

FORCE
MACH CHK BOODSYSTEM

CONSOLE
TEST

[_111<101[1_1
10000 1000' 1 0010 1 con 1 0100 1 0,0' 1 0'10 1 Oil' 1 '000 1 '00' JM

r-;;l
~ 10~MI

au"'!:11 ADDRESI

N STORE/O'SPLAY!STG SELECT MACH CHECK

t="•••••••""l STOP'''H_*~U --- ...•
'L~'" .eu • ~-.••.•.",..-
D"PI-A"

CRT DISPLAY CHANNEL
8 TAPEOP INDICATION

I'-~ _ ... .-'-"-- --l~ '''J:'''U' "9' ••.

@] B EJ @J IYSTEM
MlnW T

[!J ~ ~ DD••• T

.Figure 11. Operator Intervention Controls and Indicator Lights

System Control Panel 27



The address switches have locking set positions. The
associated bit position of the console address register is set
according to the position of the switch when the SET CAR
key is pressed. (When this switch is down, the bit position
is set to 1; in the center position, the bit position is set to
0.) The console address register addresses storage or a
register as specified by the address compare, CRT display
and tape operation, or store/display/storage select switches.
When used for address compare, the value set in the

switches is the comparand (CAR may contain a different

The console address register can also be altered by the
address stepping circuitry. The contents of the console
address register are indicated continuously.
The three low-order bit positions and positions 8 and 9

are not used in main-storage addressing and are not affected
by the address stepping circuitry. Thus, main-storage ad­
dressing always specifies a doubleword boundary. In the
performance of the address-compare and for register selec­
tion, however, the entire address is used.
Parity for each byte is indicated by the parity indicators

in the address register and is generated automatically when­
ever the address register is used. The three parity switches
do not affect address usage; when activated, they turn the
associated address-register bit on or off, but parity is auto­
matically updated in the address register before the address
is used.

CBR to Ones (PanelL)

Depression of this key sets all I-bits (including the parity
bits) in the console buffer register.

CBR to Zeros (PanelM)

Depression of this key sets all O-bits(including the parity
bits) in the console buffer register.

CRT Display and TapeOperation (PanelN)

This switch connects the display console with either an I/O
channel or the system control panel. The CRT-displaypor­
tion of this switch, labeled "scan," determines the type of
display to be produced on the CRT when the scan key is
pressed. The enable diagnostic messageand tape operation
portions of this switch are used by the customer engineer.
When the switch is in any position other than process, the

test light is on.

Process: When the switch is in this position, the display con­
sole is connected to either a 2860 channel, a 2870 selector
subchannel, or a 2880 channel, and is under program control.

Storage: When the switch is in this position, the type of
storage scan operation performed is determined by the
storage select setting of the store/display/storage select
switch.

28

Processor: When the switch is in this position and the CPU
is in the stopped state, pressing the scan key initiates an
operation by the system console in which all of the CPU
displayable data is placed sequentially into the console
buffer register and then transferred to the display console
buffer storage. An integrated program in the display con­
sole selects the proper data to be displayed along with the
identification of the registers (Figure 12).

FLP Regs: When the switch is in this position and the CPU
is in the stopped state, pressing the scan key initiates an op­
eration identical to that described for the processor posi­
tion, except that the floating-point registers are scanned
and displayed (Figure 13).

Data (PanelM)

The 72 data switches (64 data switches and eight parity
switches), labeled CBR, are nonlocking key switches and
are used to enter data into selected areas of the CPUor
storage.
The contents of the console buffer register (CBR) are

normally the output of the data switches; the contents of
this register are altered by manipulation of these switches,
by a storage fetch operation, or by a log-word or register
display.
The switcheshave nonlocking set and reset positions; they

are in a neutral position when they are not being operated.
The associated bit position of the buffer register is set or
reset depending on the position to which the switch is
operated. (When the switch is operated down, the bit posi­
tion is set to 1.) The contents of the console buffer register
are indicated continuously so that any manipulation of the
data switches can be seen.
Data is stored according to the contents of the console

address register and the setting of the store/display/storage
select rotary switch. The store key must be pressed to
initiate the store operation. Parity is automatically gener­
ated whenever the data is transferred.
Data cannot be stored into the high-speedbuffer-storage

data directory from the data switches.

Display (PanelM)

The display key is pressed to place data into the console
buffer register, as determined by the setting of the store/
display/storage select rotary switch and by the contents of
the console address register. The lights for the console buf­
fer register continuously display the contents of that register.
Whenthe designated location is not available, the dis­

played information is unpredictable.



TEMP J
IBFR 0

J
2
3

PROCESSOR DISPLAY

00 00 00 00 00 00 00 00
00 ~o 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

OP REG 00 00 00 00
OP STG 00 00 00

GPR 0
2
4
6

FXB A
C
E

DEC G
J

L ACC

TAR I
2
3

BOO CONTROL

SAR J
2
3

rHAN SOB

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 vv 00 vv

A
C
E

00 00 00 00
00 00 00 00
00 00 00 00

LB 00 00 00 00
UB 00 00 00 00

GPR 00 00 00 00

TEMP 2
I BFR 4

5
6
7

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00 00

CL ADDRESS RS SA
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

AD RS LS SA
00 00 00 00

ADDRESS MK
00 00 00 00
00 00 00 00
00 00 00 00

3 00 00 00 00

7
00 00 00 00
00 00 00 00

IR 00
AOC 00

SLT
SLClR

00
00

':I

D
F

00 00 00 00
00 00 00 00
00 00 00 00

FXB B
o
F

DEC H

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

SVIR 00
ISR 00 SLCB 00

SLCX 00
DWCR 00
BYT BUF 00

SV RJ
XECOR

00
00

L REG o BUF

TEMP 00 00 00 00
WR 00 00 00 00

FXOS J
2
3
4
5
6

00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00

R ACC 00 00 00 00 0

PIB CTR 00
PIC eTR 00

P CTR 00

PI P2 ADDRESS

saD

00 00 00 00 00 00 00 00

,-.." ,..,,.., ""1" ""'" '" ,,'._ '''J ',J~.

00 00 00 00 00 00 00 00

SIM REG BC
J 00
2 00
3 00

STO KEY 00
PRO KEY 00

DEC SHF 00 00 00 00 00 00 00 00
BOO SHF 00 00 00 00 00 00 00 00

SDa J
2
3

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

MKI MK2

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

Note: A blank followingany byte indicates correct parity;
en asterisk denotes incorrect parity .

• Figure 12. Sample Processor Display

FLOATING POINT DISPLAY

FLB 1
2
3
4
5
6

00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0

FLB 0
2
4
6

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

FLOS 0 00 00
1 00 00
2 00 00
3 00 00
4 00 00
5 00 00
6 00 00
7 00 00

RSLT EXP
o PSI 00

L/R PSI 00
o PS2 00

L/R PS2 00
EP 00

Ai SRC
SNK

A2 SRC
SNK

A3 SRC
SNK

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

ADR INT 00 00 00 00 00 00 00 00 0
AD RSLT 00 00 00 00 00 00 00 00

MUL DEC 00 00 00 00 00 00 00
CSA SUM 00 00 00 00 00 00 00 00 00
CSA CAR 00 00 00 00 00 00 00 00 00
FA RSLT 00 00 00 00 00 00 00 00 00

MDI SRC 00 00 00 00 00 00 00 00
SNK 00 00 00 00 00 00 00 00

MD2 SRC 00 00 00 00 00 00 00 00
SNK 00 00 00 00 00 00 00 00

EP SRC 00 00 00 00 00 00 00 00
SNK 00 00 00 00 00 00 00 00
SUM 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 0

Note: A blank following any byte indicates correct parity;
an asterisk denotes incorrect parity.

Figure 13. Sample Floating-Point Display

System Control Panel 29



PSW Restart (Panel N)

The PSW-restartkey is pressed to initiate the followingop­
erations in sequence:
1. System reset.
2. Loading a new PSWfrom location O.
3. Instruction fetching, starting at the new program loca­

tion specifiedby the new PSW.
4. Execution of instructions as specified by the setting of

the rate switch.
The PSW-restartkey is effective in all CPUstates.

Scan (PanelN)

The scan key is pressed to produce a display on the cathode­
ray tube of the display console. The display produced is
determined by the settings of the CRT display and tape op­
eration switch and the store/display/storage select rotary
switch.
This key should be used only while the CPUis in the

stopped state; otherwise, the results are unpredictable.

Set CAR (PanelM)

Pressing the set CAR key transfers the setting in the 24 ad­
dress switches to the console address register.

Set IC (PanelN)

The set IC (instruction counter) key is pressed to enter the
contents of bit positions 40-63 of the console buffer register
into bit positions 40-63 (the instruction address part) of the
current PSW.
This key is effective only while the CPUis in the stopped

state.

Set PSW(PanelN)

The set PSW(program status word) key is pressed to enter
the contents of bit positions 0-15 and 32-63 of the console
buffer register into bit positions 0-15 and 32-63 of the
current PSW.
The key is effective only while the CPU is in the stopped

state.

Start (Panel L)

The start key is pressed to start instruction execution as
specified by the setting of the rate switch.
Pressing the start key after a normal halt causes instruc­

tion processing to continue as if no halt had occurred,
provided the rate switch is in the process, instruction-step,
or multiple-step position.
Pressing the start key after system reset without first hav­

ing introduced a new instruction address yields unpredict­
able results.
Pending interrupts that are allowedwill be honored be­

fore the first instruction is executed.
The key is effective only while the CPUis in the stopped

state.

30

Stop (PanelL)

The stop key is pressed to terminate machine operation
without destroying system status. The CPUenters the
stopped state after all previously decoded instructions have
been executed, after all pending interrupts have been pro­
cessed, and after any interrupts that became pending while
the CPUwas in the decode or stop-decode state have been
processed.
When the CPUenters the stopped state, the manual light

turns on. After stopped state has been entered, no inter-
rupts are processed.
The stop key is active while power is on the system.

Store (PanelM)

The store key is pressed to store data from the console buf­
fer register into the location specifiedby the setting of the
store/display/storage select rotary switch and by the con­
tents of the console address register.
Store protection is ignored. When the location designated

by the console address register and by the setting of the
store/display/storage select rotary switch is not available,
no data is stored.
If data is stored into a main storage location that is also

resident in the high-speedbuffer storage, the buffer storage
block containing this information is invalidated to maintain
the integrity of storage.
Data cannot be stored into the high-speedbuffer-storage

data directory from the system control panel.
The store key is active only while the CPUis in the stopped

state.

Store/Display/Storage Select (PanelN)

The store/display positions of this rotary switch specify the
sections of the CPUthat are addressed by the console ad­
dress register when the store and display keys are used.
Store data is set in the 72 data key switches.
The storage select positions of the rotary switch specify

the parts of storage affected by the console address register
when the CRT display and tape operation switch is in the
storage position.

Gen Regs: When the switch is in this position and the CPU
is in the stopped state, the contents of the general register
(indicated by the console address register) can be placed in
the console buffer register by pressing the display key, or
can be replaced by the contents of the console buffer regis­
ter by pressingthe store key. The contents of the general
register are displayed left-justified in the console buffer
register. For store operations, the data must be placed in
the upper half of the 72 data key switches.



FLP Regs: When the switch is in this position and the CPU
is in the stopped state, the contents of the floating-point
register (indicated in the address register) are placed in the
console buffer register by pressing the display key, or are
replaced by the contents of the console buffer register by
pressing the store key.

Log Wora tnsptay: When the switch is in this position and
the CPU is in the stopped state, the log word that has its
pseudo-address (01-97) in the console address register is
displayed in the console buffer register lights.

Core Storage: In this position, 16 doublewords of main
storage are displayed. The starting doubleword address
must be placed in the console address register (Figure 14).

STORAGE DISPLAY

ADDRESS
000000

DATA
00 00 00 00 00 00 00 00

000008 01 02 03 04 05 06 07 08

09 OA OB OC 00 OE OF 00000010

000018 11 12 13 14 15 16 17 18

l'J .L-"- ' no ..!.,~ II) , '['"IF .,.!,...!".

00002B 20 21 22 23 24 25 26 27

000030

000038

28 29 2A 2B 2C 20 2E 2F

30 31 32 33 34 35 36 37

000040 38 39 3A 3B 3C 3D 3E 3F

000048

000050

40 41 42 43 44 45 46 47

48 49 4A 4B 4C 40 4E 4F

50 51 52 53 54 55 56 ,57

58 59 5A 5B 5C 50 5E 5F

000058

000060

000068 60 61 62 63 64 65 .6 67

000070 68 69 6A 6B 6C 60 6E 6F

000078 70 71 72 73 74 75 76 77

Note: A blank following any byte indicates
correct parity; an asterisk denotes
incorrect parity.

Figure 14. Sample Main Storage or Buffer Storage Display

scu Buffer: In this position, 16 doublewords of high­
speed buffer storage are displayed. Console address regis­
ter bit positions 17 and 18 select the buffer storage seg­
ment, and bit positions 19-28 select the first doubleword
within the segment for display. The address displayed on
the screen represents the buffer storage location only
(Figure 14).

SCU DD: In this position, 16 double words from the data
directory, including the chronology array, are displayed.
Bit positions 19-25 in the console address register address
one of the 128 locations in the data directories and chro­
nology array (Figure 15). For each address, reading from
left to right, characters 1,2, and 3 of the display refer to
the contents of data directory 1; characters 5, 6, and 7 to
data directory 2; characters 9, 10, and 11 to data directory
3; and characters 13, 14, and 15 to data directory 4. Char­
acters 4, 8, and 12 are hexadecimal representations of
special chronology array bits (denoted by C above the char­
acter). Character 16 is always F.

Note: With the CRT display and tape op switch set to the
storage position, pressing the display key causes a single
directory display in the CBR lights. (Storing into the data
directories is not allowed.)

ADDRESS
DIRECTORY

DATA
, C 2 C 3 C 4

00 05 00 05 00 05 00 OF00 00 00

00 00 40 00 05 00 05 00 05 00 OF

00 00 80 00 05 00 05 00 05 00 OF

00 00 co 00 05 00 05 DO 05 DO OF

00 01 00 00 05 00 05 00 05 00 OF

00 01 40 00 05 00 05 00 05 00 OF

00 01 80 00 05 00 05 00 05 00 OF

00 01 CO 00 05 00 05 00 05 00 OF

00 02 00 00 05 00 05 00 05 00 OF

00 02 40 00 05 00 05 00 05 00 OF

00 02 80

00 02 CO

00 05 00 05 00 05 00 OF

00 05 00 05 00 05 00 OF

00 03 00 00 05 00 05 00 05 00 OF

00 03 40

00 03 80

00 03 CO

00 05 00 05 00 05 00 OF

00 05 00 05 00 05 00 OF

00 05 00 05 00 05 00 OF

Note: A blank following any byte indlcctes correct parity;
an asterisk denotes incorrect parity .

• Figure IS. Sample Data Directory Display

• Operator Intervention Controls (Special)

The special operator intervention controls are used by the
operator in special situations such as the loading of stand­
alone programs (for example, DASDI-Direct Access Stor­
age Device Initialization program) or use of error recovery
procedures.

System Control Panel 31



Name Type Panel

Address Compare Rotary Switch L
Block Multiplex Channel Mode Key Switch L
Check Reset Key N
CPU Reset Key N
Decimal Alternate Sign Key Switch L
Disable Interval Timer Key Switch L
Force Machine Check Key L
Inhibit Overlap Key Switch L
Inhibit Replace SCU Buffer Key Switches (4) L
Segments

Machine Check Stop Rotary Switch N
Rate Rotary Switch L
Start Storage Test Key L
Storage Reconfiguration Rotary Switch L
Storage Test Rotary Switch L
Storage Test Key Switch L
System Reset Key N

Address Compare (PanelL)

The address-compare rotary switch controls synchronizing
pulses, program loops, and machine stops by means of ad­
dress comparisons during instruction-fetch or data-store
operations. The switch has ten active positions, sevenof
which are used by the customer engineer (soft stop-channel
setting, the CPChard stop settings, and the CPCloop
settings). If the switch is in other than the process position,
the test light will be on.
The address-compare switch can be manipulated among

the three customer settings, described below, without dis­
rupting CPUoperation, other than by causing the address­
comparison stop.

Process: When the switch is in this position, a synchroniz­
ing pulse is provided when the address specified in the ad­
dress register matches the instruction address. The pulse
occurs when decoding of the instruction begins and may
be used to synchronize an oscilloscope at the start of an
instruction. This position is in the normal operating posi­
tion for the switch; program execution proceeds normally
at the rate specifiedby the rate rotary switch.

Insn Soft Stop: When the switch is in this position, the
CPUenters the stopped state when the address specified in
the address register matches the instruction address. This
position may be used to control the stopping point of a
program. The instruction-fetch operation, all other out­
standing operations, and all pending interrupts that are
allowed are completed before the CPUenters the stopped
state.

SCU Store Soft-Stop: When the switch is in this position,
the CPUenters the stopped state when the address speci­
fied in the address register matches a main-storage address
specified in any CPE store operation or in an 1/0 store op­
eration into main storage. The store operation, all other

32

outstanding operations, and all pending interrupts that are
allowed are completed before the CPUenters the stopped
state.

Block Multiplex Channel Mode (PanelL)

This switch, in conjunction with a selector mode circuit
jumper in the channel, determines the mode of operation
for each attached 2880 BlockMultiplexer Channel. In the
BLKMPX(center) position, all attached 2880's are en­
abled for block multiplex operation. In the selector (down)
position, all channels that have the selector mode jumper
inserted operate as selector channels; those channels that do
not have the selector mode jumper in place continue to
function in the block multiplex mode.

Check Reset (PanelN)

Pressingthis key resets all CPUand storage error checks.

CPU Reset (PanelN)

Pressingthis key resets all CPUand storage error checks, all
CPUcontrol triggers, and all high-speedbuffer data direc­
tories; it also forces the CPU into the stopped state.

Decimal Alternate Sign (PanelL)

This key switch determines which decimal arithmetic sign
codes are recognized. With the switch in the down position,
codes 0 100 and 0101 are recognized as plus signs, and code
0110 is recognized as a minus sign(in addition to the normal
plus codes 1010, 1100, 1110, 1111,and minus codes 1011
and 1101). With the switch in the normal (center) position,
only the normal set of codes is recognized.

Disable Interval Timer (PanelL)

Whenset in the down position, this switch prevents updating
of the interval timer (the test light is on). It is used when
address-stop or error-recovery procedures are utilized. This
switch is set in the center position for normal program ex­
ecution.

Force Machine Check (PanelL)

Pressingthis key causes a hard stop. A log-out, computer and
check reset, and a machine check interruption occur. Its pri­
mary function is to clear an abnormal CPUcondition (loop
or wait) that did not generate a machine check.

Inhibit Overlap (PanelL)

This key switch is set in the down position during SYSGEN
to force the CPU to execute instructions serially;that is,
each decoded instruction is executed before the next se­
quential instruction is decoded. Normal program execution
is allowed when this switch is in the center position.



Inhibit Replace SCU Buffer Segments (Panel L)

Each of these four key switches is set down to inhibit block­
transfers into one of the four buffer storage segments.
Fetches to main-storage locations contained in buffer storage
are made from buffer storage, assuming the address is not
invalid in the data directory. Fetches to main-storage loca­
tions not contained in buffer storage are made from main
storage, and the corresponding main-storage block is trans­
fered to one of the remaining buffer storage segments (the
one used least recently). The normal (center) position of
the segment key switch allows the block transfer to take
place.
When all four segment switches are set down, and the

computer reset key is pressed, subsequent processor opera­
tions bypass the buffer storage entirely. (The inhibit­
replace switches do not affect stores/fetches to buffer stor­
age from the system console.)

Machine Check Stop (PanelN)

This rotary switch determines the resultant action because
of machine check. The test light is on except in the normal
(process) position.

Disable: For customer engineer use only.

Process: All errors are handled by the operating system.

Hard Stop: A machine check causes the CPU to enter the
hard stop state.

Rate (PanelL)

The rate rotary switch indicates in which way the instruc­
tions are to be performed. The test light is on if the rate
switch is set to any position other than process.
The position of the rate switch should be changed only

while the CPU is in the stopped state. Otherwise, results
are unpredictable.

Process: When the switch is in this position, the system
operates at normal speed after the start key is pressed. The
decoding of instructions is halted by pressing the stop key.

lnsn Step: When the switch is in this position, one instruc­
tion is completely executed each time the start key is
pressed. The CPU automatically halts in the stopped state.
When the start key is pressed, but before the one instruction
is processed, interrupts that were allowed but became pend­
ing during the stopped state are processed before execution
of the next instruction.

Mple Step: When the switch is in this position, an instruc­
tion is executed every 100 milliseconds for as long as the
start key is pressed. The CPU automatically halts in the
stopped state when the start key is released.

Single Cycle: This position is used by the customer
engineer.

SinglePulse: This position is used by the customer
engineer.

Start Storage Test (Panel L)

Pressing this key starts a storage test as specified by the
storage test key switch. The storage test rotary switch
determines the stop condition.

StorageReconfiguration (PanelL)

This rotary switch provides a manual reconflguration of
main storage to operate at one-half its normal storage
capacity when the switch is set at any position to the left
of "normal." The switch setting indicates which half (low/
high) of main storage is to be utilized. Regardless of the
switch setting (except normal), the first half (low order) of
main storage addresses are applicable. Use of addresses in
the upper half of main storage causes an address exception.
(Reconfiguration does not change Model L interleaving,
but changes 16-way Model K interleaving to 8-way, and
changes 8-way Model J interleaving to 4-way.)

Storage Test (PanelLJ

This rotary switch controls the stop conditions that are
available for terrrunaung tile storage ietcn tests. I he con­
sole address register, decremented by one, indicates the
main-storage address from where the invalid data was
fetched during a test.

Stop On Compare: When the switch is in this position, a
fetch test is terminated by a compare signal. (The contents
of the console auxiliary register are compared with the
contents of the console buffer register.)

Stop OnParity Check: When the switch is in this position,
a fetch test is terminated by a data parity error.

Process: This is the normal position of the switch; no stor­
age test stops are performed.

Stop OnNo Compare: When the switch is in this position,
a fetch test is terminated by a no-compare signal.

Stop OnParity Check/No Compare: When the switch is in
this position, a fetch test is terminated by either a data
parity error or a no-compare signal.

Storage Test (PanelL)

This key switch specifies the storage test mode when the
start-storage-test key is pressed. In the store/fetch posi­
tions, the test light is on.

System Control Panel 33



Fetch: Whenthe switch is in this position, doublewords of
data are fetched from main storage to the console buffer
register starting with the address indicated by the console
address register. The fetch operation continues until the
storage test key is returned to the center position, unless
stopped by a condition specifiedby the storage test rotary
switch.

Store: When the switch is in this position, the contents of
the console buffer register are stored in each main-storage
doubleword address starting with the address indicated by
the console address register. The store operation continues
until the storage test key switch is returned to the center
position, unless stopped by a condition specifiedby the
storage test rotary switch.

System Reset (Panel N)

The system-reset key is pressed to reset on-line channels,
control units, and CPUcontrols to their initial states. All
check indicators are reset and the contents of the high-

34

speed buffer storage data directory are cleared. The current
PSW,data flow registers,keys in storage, and main storage
are not reset. The CPUis placed in the stopped state, and
all pending interrupts are eliminated. The reset function
does not affect any off-line or shared devices.
This key.is active while power is on the system.

Key Switch and Meters

The customer usage and the customer engineer (CE) meters
for the CPUcluster are on the left side of the display console.
The Model 195 CPU cluster includes: CPU,processor

storage, processor system console, CPUpower supplies, and
power and coolant distribution units.
A key switch controls which meter is to run while the sys­

tem is in operation, that is, initiating, executing, or com­
pleting instructions, including I/O and assignableunit op­
erations.



Although the Model 195rperforms CPU operations in a highly
parallel fashion, no elaborate optimization plan is required to
prepare programs for CPU processing. For the most part,
they may be written in a straightforward IBM System/360
code. If a program will benefit by some modification, how-
ever, the following suggestions may be helpful.

1. Place index loading and incrernenting instructions 'Nell
ahead of instructions that use them for address genera­
tion. In a loop, a convenient place for an indexing in­
struction such as 'add' (AR) is at the end of the loop,
just before a 'branch on index low or equal'; by the time
the branch is completed, the index registers will be ready
for use.

2. The instructions 'load address', 'branch on count' (BCT,
!3CTR), 'branch on index low or equal', and 'branch on
index high' use the address adder to change a general
register. As suggested in item 1,make sure that the
registers required are available.

3. The 'load address' instruction requires three cycles that
cannot be overlapped; it is also subject to delays if regis­
ters are unavailable. Instructions such as 'add' (A, AR)
require only one unc:verlapped cycle and are not subject
to delays if registers are unavailable. In most cases,
therefore, replace the 'load address' instrucuon with an
AR instruction. In some situations, the 'load address'
instruction is preferable:
a. When the register to be used is needed for addressing

by the next instruction.
b. When the fixed-point execution element is busy with

a lengthy instruction sequence and a register is needed
for addressing within the next few cycles.

c. When the condition code must not be changed.
4. Because the Model 195 fetches and stores doublewords,

align operands on doubleword boundaries for faster op­
erations. Operands that are not aligned to doubleword
boundaries can be used in fixed- and floating-point
arithmetic and in variable field length (VFL) operations,
but performance is affected adversely.

5. In normal coding, a condition-setting instruction im­
mediately precedes most 'branch on condition' instruc­
tions. On the Model 195 , place neutral instructions,

Appendix A: Coding Considerations

such as those dealing with loads and stores, between the
condition-setting instnwtion and the cnndit iorial branch,

6. Avoid storing into the next several words of the instruc­
tion stream.

7. Whenever possible, contain a loop in the instruction
stack so that it is executed in loop mode. (See the dis­
cussion of loop mode in "Instruction Processor.")

8. Because all-instructions that store data use the same
three store address registers (SAR) and the same three
store data buffers (SDB), if a fourth store is encountered
before a store address register is freed, the instruction
processor must wait. When possible, avoid more than
three stores in a row. For example, if it is necessary to
store data from six registers by using one 'store multiple'
instruction, only three SAR's are required if the first
address started on a doubleword boundary; four stores
are required otherwise.

9. When only two registers are to be loaded, using two load
(L) instructions is faster than using a 'load multiple' in­
struction; however, when four or more registers are to
be loaded, prefer the 'load multiple' instruction. Also,
the 'store multiple' instruction is usually better than re­
peated 'store' (ST) instructions because it requires fewer
SAR's and SDB's,

10. Avoid repeated accesses to different doublewords in the
same storage module; conflicts result. For example,
with I6-way interleaving of processor storage, a Model
195K that is storing by column into a 16 x 16 array
of doublewords is storing consecutively into the same
storage module. This does not take advantage of the
interleaving, nor of the buffer storage because it is a
store operation.

11. Try not to use the interrupt mechanism to effect logical
program branches; operation is slow because of the re­
quired program interlocks. Also, some logical program
operations available through the interrupt mechanism
in slower, more serial processors are not available in the
Model 195 'if the interrupt in question is not precise.

12. Efficiency is increased by eliminating short records.
Avoid excessive use of SIO for small quantities of data,
because the 1/0 device response time is included as a
part of the instruction.

Appendix A 35



Appendix B: Timing Considerations

For other models of the IBMSystem/360, average times can
be given for each instruction. For a parallel system like the
Model 195,however, no averagetimes are meaningful, be­
cause the amount of overlap varies from program to program.
The following information givesan appreciation of some

major aspects of timingin the Model 195 but it is not in­
tended to be comprehensive. In the discussion, "cycle" re-
fers to a major-machine-cycle time of 54 nanoseconds.

Instruction Processor Delays

Any of the following conditions delay the instruction proc­
essor:
1. The next instruction is unavailable.
2. The system is in conditional mode, and the next in­

struction is an instruction to be executed by the instruc­
tion processor or is a variable-field-lengthinstruction.
(An unconditional branch or a no-operation instruction,
however, can be executed in conditional mode.)

3. A general register is unavailablefor the addressingof
the next instruction.

4. A general register is unavailable for modification by the
next instruction - a condition that applies only to an
instruction-processor instruction, such as 'load address'
or 'branch on index low or equal,' which changes a
general register.

5. The next instruction requires an address generation, but
a previous instruction will not be able to complete its
address generation for another cycle.

6. The next instruction requires a fixed-point buffer regis­
ter, but all fixed-point buffer registers are busy.

7. The next instruction requires a floating-point buffer
register, but all floating-point buffer registers are busy.

8. The next instruction is a fixed-point operation, but the
fixed-point operation stack is full.

9. The next instruction is a floating-point operation, but
the floating-point operation stack is full.

10. The next instruction requires a store, but all store ad­
dress registers are busy.

11. An instruction is decoded whose execution is delayed
until the completion of all previously decoded instruc­
tions.

Transmission Time

Each of the following transmissions requires one cycle. In
most cases, these transmissions take place concurrently with
other operations, but instances may occur in which delays
due to these transmissionswill directly affect the timing.
I. A fixed-point or floating-point operation from the in­

struction processor to the fixed-point operation stack
or the floating-point operation stack, respectively.

36

2. An activate or cancel Signalfrom the instruction proc­
essor to the fixed-point operation stack or the floating­
point operation stack.

3. A condition-code indication from an execution unit to
the instruction processor.

4. A general-register-availableindication from the fixed­
point execution element to the instruction processor.

S. A buffer-free indication from the fixed-point execution
element or the floating-point execution element to the
instruction processor.

6. An operation-stack-position-free indication from the
fixed-point execution element or the floating-point exe­
cution element to the instruction processor.

7. A store-address-register-freeindication from the storage
control unit to the instruction processor.

Branches

Whenloop mode is not set, the first cycle of a branch is the
usual decoding in the instruction processor. The next two
cycles are address generations for the target and target +I
doublewords; the two temporary fetches are initiated im­
mediately after the address generations. Minimumtime for
any branch out of the instruction stack, therefore, is two
cycles plus the accesstime.
The test for a conditional branch is normally made after

the address generation. The two types of conditional
branches are: those whose condition is set by the instruction
processor, and those whose condition is set by the fixed­
point or floating-point execution element. For the instruc­
tions 'branch on count' (BCT,BCTR), 'branch on index
high,' and 'branch on index low or equal,' the condition is
set by the instruction processor. For the 'branch on condi­
tion' (BC, BCR) instruction, the condition is set by the exe­
cution elements. (Masksof 0 and IS are special casesand
are detected during the decoding cycle.)
When the condition is set by the instruction processor, no

further instructions are decoded until all tests have been
completed. Instruction processor times (in cycles) for some
of the more important branches are:

Target in Stack Target Not in Stack
Loop Quick Loop Not Loop
Mode Mode Mode Mode

BX, Branch 4 3 6 + access 8 (or 2 +
time access time) *

BX, No Branch 6 5 5 6
BCT, Branch 4 3 5 + access 7 (or 2 +

time access time)*
BCT, No Branch 5 4 4 5

* The actual time required is the longer of the two times listed.



When the condition is set by an execution element, the
first three cycles of the branch are taken by the instruction
processor, and the temporary fetches are made. The instruc­
tion processor then enters conditional mode until the condi­
tion code is determined.
In conditional mode, no additional instruction fetches are

made. The instruction processor continues to decode in­
structions, generate addresses, and issue operations to the
fixed-point operation stack and the floating-point operation
stack; the operations are conditional and cannot be decoded
or executed until an activate signal is sent by the instruction
processor.
The instruction processor continues to decode instructions

conditionally until any of the following conditions occurs:
1. The condition code is set.
2. No more instructions are available in the stack.
3. The fixed-point or floating-point operation stack is filled,
4. An instruction-processor or variable-field-length instruc­

tion is encountered (except for an unconditional branch
or a no-operation instruction, which can be executed in
conditional mode).

When the condition code is set, the instruction processor
takes one cycle to make a decision. If the branch is not
taken, an activate signal is sent to the fixed-point and float­
ing-point operation stacks, and the instruction processor con-
ti:1UCS decoding instructions. If the branch is taken, a cancel
signal is sent to the fixed-point and floating-point operation
'[01""" o1UJ LVdu; SAR'" o1llJ the Ht'lt uctiuu pi ucessur be­
gins decoding instructions along the new path. When condi­
tional mode is ended, instruction fetching resumes along the
correct path.
When the machine is in loop mode, no temporary fetches

are made for conditional branches.
An unconditional branch (BC 15 or BCR 15) takes either

six cycles or two cycles plus the access time. A branch with­
in the stack takes five cycles, and a branch closing a loop
takes two cycles.
The 'branch and link' instructions (BAL, BALR) require

four cycles plus the time required for access or plus the time
required for the condition code to be determined, which­
ever is longer. The 'branch and link' instruction destroys
loop mode.
A no operation (BC O,X; BCR O,R; BCR C,O) requires one

cycle; a count without branching (BCTR R,O), three cycles;
a link without branching (BALR R,O), five cycles or the time
until the condition code is determined; and an 'execute,'
five cycles plus the access time plus the target execution
time.

Fixed-Point Execution

The following information is pertinent to fixed-point execu­
tion timing:
1. Decoding proceeds serially.
2. No conditional operation can be decoded until it has

been activated or canceled.

3. Canceled operations are decoded in one cycle.
4. An active operation is not completely decoded until the

cycle before its execution starts.
5. Execution can begin if the following conditions are met:

a. The operation is decoded.
h. The data is available.
c. The execution circuitry is free.

6. As soon as decoding is completed for a one-cycle opera­
tion, the instruction processor is notified that the stack
position is free. For operations of more than one cycle,
the stack-position-free notification is delayed until the
second or third cycle. Notification that the fixed-point
buffers are released is given to the instruction processor
during the first cycle for all instructions except 'convert
to binary' and 'divide' (D), which do not release the buf­
fers until during the last cycle.

Floating-POint Execution

In the following information, pertaining to floating-point
execution timing, precision conflicts (differences in precision
between overlapped floating-point operations using the same
floating-point register) and RR instructions for which both
registers 3fC free may cause exceptions to items 1-·6:

1. Decoding proceeds serially.
L. No conditional operation can be decoded until it has

been activated or canceled.
3. Canceled operations are decoded in one cycle.
4. Operations that do not require an execution unit can

be decoded in one cycle.
5. Operations that require an adder or a multiplier can be

decoded in one cycle if a reservation station is available.
6. If a decode is waiting for a reservation station, it can be

completed on the cycle before the result of that reser­
vation station goes on the common data bus.

7. The test for 'load and test' (LTDR and LTER) is made
during the common data bus cycle,

8. An operation in which the adder is used can begin if
the following conditions are met:
a. The operation is decoded.
b. The data is available.
c. Another add with higher priority is not beginning

on the same cycle.
d. The execution circuitry is free.

9. A multiply or divide can begin if the following condi­
tions are met:
a. The operation is decoded.
b. The data is available.
c. Another multiply or divide with higher priority is

not beginning on the same cycle.
d. The execution circuitry is free.

10. If more than one unit request the common data
bus Simultaneously, the following operations are given

Appendix B 37



priority in the order indicated: loads, short- and long­
precision adds, short- and long-precision multiplies,
extended-precision operations.

11. As soon as an operation has been decoded, the instruc­
tion processor is notified that the stack position is free.

12. If the operation has already been decoded, the buffer
is set free as soon as the data enters it.

13. If the buffer is filled before the operation is decoded,
the buffer is set free one cycle after the decoding,

Selected Execution Times

Becauseof the concurrency achieved in the Model 195, the
effective time required by a given instruction is not directly
related to the rate at which the instruction can be processed.
The following is a list, by category, of the number of cycles

required by the appropriate execution element to process
certain instructions. These times do not include any of the
other processing times required for that instruction and do
not reflect the effects of simultaneous operations or over­
lap. Instructions are listed by their mnemonics.

No. of Machine
Cycles

Fixed-Point Instructions
A, AH, AL, ALR, AR, C, CH, CL, CLR, CR, )C
L,LCR,LH,LNR,LPR,LR,LTR,N,NR,O,
OR, S, SH, SL, SLR, SR, ST, STC, STH, X, XR

SLA,SLL,SRA,SRL 2

SLDA, SLDL, SRDA, SRDL

MH

M,MR

3-4

7

7-11

38

Fixed-Point Instructions

D,DR
CVB

CVD

Immediate Instructions
retch only: CLI, TM

Store only: MV)

Fetch and Store: NI, 01, XI

Floating-Point Instructions
LD,LDR,LE,LER,LTDR,LTER,STD,STE

AD, ADR, AE, AER, AU, AUR, AW, AWR, CD,
CDR,CE,CER,HDR,HER,LCDR,LCER,
LNDR, LNER, LPDR, LPER, SO, SDR, SE,
SER, SU, SUR, SW, SWR

MD, MDR, ME, MER (normalized numbers)

MD, MDR, ME, MER (unnormalized numbers)

DE,DER

DO, DDR

No. of Machine
Cycles

36·37
17-18

17-32

1

2

o
2

3

4

9

11

The Ocycle instructions do not require an execution unit. The
2-cycle instructions are executed in the adder. The 3-, 4-, 9-, and
12-cycle instructions are executed in the multiplier.

Extended-Precision Floating-Point Instructions

LRDR. LRER

AXR,SXR

MXR (normalized/unnormalized)

MXDR, MXD (normalized numbers)

MXDR. MXD (unnormalized numbers)

2

9

25/29

7/8

7/8



Index

Adapter, Channel-to-Channel 22
Add Execution Unit I~

Address Compare Rotary Switch 32
Address Key Switches 26

Execution of 11

Features
Optional 6
Standard 6

Fixed-Point/Variable-Fieid-Length/Decimai Execution Element 17
Fixed·Point Timing Considerations 37
Floating-Point Execution Element 18
Floating-Point Timing Considerations 37
Force Machine Check Interrupt Key 32

Block MUltiplexer Channel, 2880 21
Branch Instructions

Timing Considerations 36
Buffer Storage 16
Burst Mode 20
Byte Oriented Operands 6

Initial Program Loading (lPL) 23
I/O Interface, Two-Byte 21
Instruction
Execution Times 38
Fetching 10
Processor 10
Timing Considerations 36

Interleaving 9
Interrupts
Handling of 13
Imprecise 13
Precise 14

Interrupt Key 25
Interval Timer 6

Central Processing Complex 9
Central Processing Element (CPE) 9
CPU Cluster 34
Channel-to-Channel Adapter 22
Channels 20
Channel Priority 20
Circuitry, Logic 5
Coding Considerations 35
Conditional Mode 12
Configurations of Models 8
Configurator, Model 195 7
Console. System 24
Control Panel, System 23
Controls 24
CPL ;i
Central Processing Unit 9
CRT Display and Tape Operation Switch 28
Customer Engineering Usage Meter Switch 34
Cycle Time
Buffer Storage 10
Machine (CPU) 5
Main Storage 10

Key Switch and Meter, ,4
h.ey~,up.cratoI LonllOi 1.:;.

Luau
Key 25
Light 25
Unit Switches 25

Logout 21
Log Word Display Switch 31
Logic Circuitry 5
Loop Mode 12

Data Key Switches 28
Data Rates, Channel 21
Decimal Alternate Sign 32
Decimal Execution Unit 17
Discontinuities 11
display
Console 6
Function, Store or 23
Ke-y 28
Power-Off Key 25
Power-On Key 25

Emergency-Pull Switch 25
Execution Element
Fixed-Point/Variable Field Length 17
Floating-Point 18

Execution Times of Instructions 38
Execution Unit
Add 19
Extended 19
Fixed-Point 17
Multiply /Divide 19
Variable Field-Length 17

Extended Precision 19

Machine Cycle Time 5
Main (Processor) Storage 10
Capacity 6

Manual Light 25
Meter Switch
Customer Engineering 34
Customer Usage 34

Mode
Conditional 12
Loop 12

Models of System/360
Configurations 8
Relationship 5

Monolithic Circuitry 5
Multiple Operation Instructions 13
Multiplex Mode 20
Multiplexer Channel, 2870 20
Multiply/Divide Execution Unit 19

Normal Operator Intervention Controls 26

Operator Controls 24
Operator Intervention Controls
Normal 26
Special 31

Index 39



Rate Rotary Switch 33

Store/Display /Storage Select Rotary Switch 30
Subchannel 20
System
Components 6
Console 24
Control Panel 14
Description 5
Light 26
Reset 23
Reset Key 34

System/360 Model Relationship 5
Switches, Operator Control 24

Operator'. Control Panel (OCP) 24
Optional Features 6

Power-Off (System) Key 2S
Power-On (System) Key 26
Processing Unit (CPU) 9
Processor (Main) Storage 10
PSW-Restart Key 30

Scan Key 30
Selector Channel, 2860 20
Selector Subchannel 20
Set CAR Key 30
Set IC Key 30
Set PSW Key 30
Special Operator Intervention Controls 31
Standard Features 6
Start Key 30
Stop Key 30
Storage
Buffer 16
Control Unit 16
Data Paths 17
Processor (Main) 10

Store or Display Function 23
Store Key 30

Test Light 26
Timer, Interval 6
Times, Instruction Execution 38
Timing Considerations 36
Transmission Time 36
Two-Byte I/O Interface 21

Usage Meter
Customer 34
CE 34

Variable-Field-Length Execution Unit 17

Wait Light 26

40



International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
IUSA Only I

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)


