Program Product

SC28-6852-1

IBM OS FORTRAN IV
(H Extended) Compiler
Programmer’s Guide

Program Numbers: 5734-FO3
5734-LM3

This publication describes the steps to compile, link edit,
and execute a FORTRAN 1V program using the
FORTRAN IV (H Extended) compiler, an IBM Program
Product that operates under the control of the operating
system. The methods of invoking each step, input to the
steps, and output from the steps, are detailed. In addition,
compiler options, features of the operating system used

by the FORTRAN programmer, and practices for coding
more efficient FORTRAN programs are discussed.

This publication is directed to programmers familiar with
the FORTRAN IV language. Previous knowledge of the
operating system is not required.

Information in this publciation pertaining to OS/VS2 is
for planning purposes until that product is available.

| Second Edition (June 1972)

This edition corresponds to Release 1 of the FORTRAN IV (H Extended)
Compiler.

Changes are periodically made to the specifications herein; any such
changes will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication, If the form has been removed, comments may be addressed to
IBM Corporation, Programming Publications, 1271 Avenue of the Americas,
New York, New York 10020.

© Copyright International Business Machines Corporation 1971

Summary of Amendments Number 1

Date of Publication: June, 1972
Form of Publication: Revision, SC28-6852-1

0S/VS Information Added

New: Programming and Documentation

The use of the FORTRAN 1V (H Extended) compiler with OS/VSI and OS/VS2 is described. A
brief overview of the virtual storage concept has been added to the Introduction, and the section
“Using Job Control Statements” has been updated to include descriptions of the VS REGION and
ADDRSPC parameters of the JOB and EXEC statements and the VS COPIES, DLM, and SYSOUT
parameters of the DD statement. The ORDER and PAGE control statements of the linkage editor
are discussed in the “Linkage Editor and Loader” section. In addition, publication references

throughout the text have been revised to include the appropriate OS/VS publications.

ERRSET Description Expanded

Maintenance: Documentation Only
The description of the inomes option of the ERRSET subroutine of the Extended Error Handling
Facility has been expanded to explain how an unlimited number of error messages may be printed.

Compiler System Requirements Information Removed

Maintenance: Documentation Only

Information about the system requirements of the FORTRAN IV (H Extended) compiler has been
removed from the “Programming Considerations” section. This information can be found in the
publication OS FORTRAN 1V (H Extended) Installation Reference Material, Order No. SC28-6861.

Descriptions of SPLIT and SUBALLOC Removed
Maintenance: Documentation Only
Information pertaining to the SPLIT and SUBALLOC parameters of the DD statement has been

removed from the section “Using Job Control Statements.” Detailed descriptions of these
parameters can be found in the job control language reference publications listed in the Preface.

System/360 Dependence of Some Direct Access Units Noted

Maintenance: Documentation Only
The use of the 2303, 2311, and 2321 direct access units with System/360 machines only is
indicated in Appendix C: Unit Types.

Description of XCAL Removed

Maintenance: Documentation Only
Information pertaining to the XCAL option of the linkage editor has been removed from the

section “Linkage Editor and Loader.” A detailed description of this option can be found in
the linkage editor and loader publications listed in the Preface.

Asynchronous 1/0 Information Expanded
Maintenance: Documentation Only

Added information includes the fact that blocked records may not be used with asynchronous I/0,
that a BUFNO specification of three buffers in a DCB parameter is limited to asynchronous I/O
only, and that a user-exit routine cannot perform any asynchronous 1/0 operation, even if the
error involved was not caused during asynchronous I/O processing.

SIZE Option Information Expanded

Maintenance: Documentation Only

The use of the SIZE option of the PARM parameter of the JOB or EXEC statements to reduce the
amount of storage required by the compiler in a multitasking environment is explained. The
restriction that SIZE may not be specified on a *PROCESS card is noted.

OPTIMIZE(2) Information Expanded

Maintenance: Documentation Only
The explanation of computational reordering results under OPTIMIZE(2) in the section
“Programming Considerations” is expanded.

Editqria.l changes having no technical significance are not noted here.
Specific changes to the text as of this publishing date are indicated by a vertical bar to the left of the text.
These bars will be deleted at any subsequent republication of the page affected.

This publication describes the use of the
operating system and the FORTRAN IV (H
Extended) compiler to process programs
written in the FORTRAN IV language. The
FORTRAN IV language is described in the
publication IBM System/360 and System/370:
FORTRAN IV Language, Order No. GC28-6515.

+diL $O N RO

users having various programming needs.
The programmer wWho wants tO process a
FORTRAN program using the compiler and
wants to interpret the output should read
the introduction and the first section "How
to Submit a FORTRAN Program" in "Part
I--Job Input." The introduction explains
system concepts to help the programmer
understand how the compiler and other
operating system resources process a
FORTRAN program and also describes the
forms of program output. The section "How
to Submit a FORTRAN Program" describes in
greater detail how a program is processed
under control of the operating system.

This publication is designed for FORTRAN
S

The remainder of the publication is
directed to programmers who required
detailed reference material regarding the
operation of the compiler and its
facilities.

The publication is organized as follows:

e Introduction. The introduction
provides an overview of the operating
system and how it interacts with the
compiler during the processing of a
FORTRAN program. Job control language,
cataloged procedures, data sets and
libraries, and program output are
described. The information contained
in the introduction is covered in
greater detail in subsequent sections.

e Part I--Job Input. Part I describes
how a FORTRAN program is processed
under control of the operating system.
The first section summarizes how a
FORTRAN program may be submitted for
processing. The remaining sections
describe job control language; the
three steps in processing a FORTRAN
program (compiling, link editing, and
executing a load module); and
IBM-supplied cataloged procedures.

e Part II--Job Output. Part II describes
the output from each step in FORTRAN
processing and includes examples of
both operating system and FORTRAN
program output.

PREFACE

e Part III--Programming Techniques. Part
III deals with program efficiency. The
first section describes programming
considerations for designing and coding
more efficient FORTRAN programs. The
remaining sections describe such
facilities as the compiler automatic
precision increase (API) facility, the
linkage editor overlay feature, and the
load module extended error handling
facility.

e Appendixes. The appendixes describe
sample FORTRAN programs; the use of
assembler language subprograms; the
input/output units available with
System/360 and System/370; and the
carriage control characters available
to the FORTRAN programmer.

The FORTRAN programmer using the FORTRAN
IV (H Extended) compiler and the FORTRAN IV
library (Mod II) should be familiar with
the information in the following
publications:

IBM System/360 and System/370
FORTRAN IV Language
Order No. GC28-6515

OS_FORTRAN IV Library
Mathematical and Service Subprograms
Order No. GC28-6818

OS FORTRAN IV Mathematical and Service
Subprograms

Supplement for Mod I and Mod II
Libraries

Order No. SC28-6864

OS FORTRAN IV (H Extended) Compiler
and FORTRAN IV Library (Mod 1I) Messages
Order No., SC28-6865

Information about the job control
language can be found in the following
publications:

OS/MFT and 0OS/MVT Job control Language
Reference, Order No. GC28-6704

0S/VS _Job_control Language Reference,
Order No. GC28-0618

Information about IBM-supplied utility
programs can be found in the following
publications:

OS/MFT and OS/MVT Utilities, Order
No. GC28-6586

0S/VS Utilities, Order No. GC35-0005 Information about assembler language
programming can be found in the following
publications:

Information about the linkage editor and
loader programs can be found in the
following publications: OS/MFT_and OS/MVT Assembler Language,
Oorder No. GC28-6514

0S/MFT and 0S/MVT Linkage Editor and
Loader, Order No. GC28-6538 0S/VS Assembler Lanquage, Order
No. GC33-4010

0S/VS Linkage Editor and Loader, Order

No. GC26-3813 OS/MFT and OS/MVT Assembler Programmer's
Guide, Order No. GC26-3756

Information about debugging techniques
can be found in the following publications: 0S/VS Assembler Programmer's Guide,
Order No. GC33-4021

OS/MFT and 0OS/MVT Programmer's Guide to
Debugging, Order no. GC28-6670 Information about System/360 and
System/370 machine characteristics can be
found in the following publications:

0S/VS1l Debugging Guide, Order
No. GC24-5093

IBM System/360 Principles of Operation,
Order No. GA22-6821

0S/VS2 Debugging Guide, Order
No. GC28-0632

IBM System/370 Principles of Operation,
Order No. GA22-7000

CONTENTS

INTRODUCTION ¢ « « o « « © o o o o ¢ o o 11 Naming a DD Statement .« « o« o« o« o« « U2
Control Program .« « « « « o o« « « o o 11 Data Set Location . « + « « « o « o 4
Processing Programs « « « « « « o o o 11 Data Set Identification . . + « « . 43
Problem Programs « « « o o o « o o o o 12 Data Set Disposition . . « U4

Processing A Fortran Program « « « « « o« 12 Assigning a Data Set to an
Job Control Language Statements . . . 12 Input/Output Device . . . e o o . 46

Compile Only (One Source Module) . . 13 Assigning Space to a Data Set on a

Compile Only (More Than One Source Direct Access Volume 47

Module) .« . « o o o @ « 13 Data Set Labels . « . « « &« « & « o U7

Compile and L1nk Edlt e o o o« o o o« 13 Assigning Channel Use . « « « « o+ o« U8

Compile; Link Edit; and Execute . . 13 Defining Record Characteristics . . U9
Cataloged Procedures « « « « o « « « « 13

Data SetS . o o ¢ ¢« o o o o o o » =« o« « 14 COMPILATION . . o o s o o o« o = o o o » 53

System Data SetS « ¢ « o « ¢ ¢ o o o« o 18 Ccompiler OptionsS « « « « « « « o o« « « 53
Compiler Data SetsS « « « « « » « » « 1l Changing Program Options During a
Linkage Editor Data Sets « « « o « « 14 Batch Compilation . « « « « ¢ « « « 55
Load Module Execution Data Sets . . 14 Compiler Data Sets « +« « o « & « o« « 55
Loader Data Sets « « « « ¢« ¢ ¢« ¢« o o 15 Data Sets Defined in Cataloged

User Data SetsS . « o ¢ o« o o o « o« « o 15 Procedures « 55

Cataloged Data Sets . . < <« <« « « « « 15 Data Sets That Must Be Deflned by

Libraries of Data Sets . + « « &« « « « 15 the Programmer . . . «. « « « o« o« o« « 56
System Libraries « « « ¢ o o« ¢« « « « 16
User Libraries . . « &« ¢« &+ o ¢ « « o« 16 LINKAGE EDITOR AND LOADER .« o« « - o o« o« 58

Program OULPUL o« o o « o« o o o o o =« « « 16 Choosing the Proper Linkage Program . . 58

Link Edit Job Steép « « « o o « ¢ o« o« « « 58
PART I -- JOB INPUT . . ¢« ¢ ¢« « « « « « 17 Linkage Editor Options . . + « + . + . 58
Linkage Editor Data Sets . . . « ¢« « 59
SUBMITTING A FORTRAN PROGRAM 19 Data Sets Defined in Cataloged
Defining Private Data SetsS « « « « « « « 21 Procedures « « o« « ¢ o o o« « « 59
Data Sets That Must Be Deflned by

USING JOB CONTROL STATEMENTS ¢« « « o o « 22 the Programmer « « « « « « o« o« « « o 60

Syntax For Parameter Description 23 Primary Input . «. « « o « « ¢ &« o« « 60

JOB Statement =« « « « o o o ¢ ¢ e o o o 24 Secondary Input . . « « « « . « . . 61

Naming the Job . . « ¢ ¢« ¢« « ¢« « . « 25 Linkage Editor Control Statements . 61
Specifying Accounting Information . 25 Ordering .and Page-Aligning Program
Specifying the Programmer's Name . . 27 Units Under OS/VS ¢ « o ¢ « o« o o« o« o« 62
Specifying System Messages . « o . o 27 System Loade€r . o« o « o o o « o o o o o 63
Specifying Condition Codes to Loader OptioONnsS « « « « o o « o« o o « & 63
Terminate a JOb . o ¢ o o o o o & « 27 Loader Data Sets . . . e o« & o » 65
Assigning JOb Priority « « « « « « o« 28 Data Sets Defined in Cataloged
Assigning an Output Writer 28 Procedures . « « o o o « o » « « 65
Assigning a Time Limit to a Job . . 28 Data Sets That Must be Deflned by
Assigning Storage to a Job Under the Programmer . . . « ¢« « ¢« ¢« « ¢« o« b6

MVT - - . - L] . . L Ll . L) . . L . L] 29
Assigning Storage to a Job Under Vs 29 LOAD MODULE EXECUTION . . « « + « o « - 67

EXEC Statement « « « « « « « o« « « o « « 30 Load Module Data Sets « ¢« ¢« ¢« « o « o 67
Naming an EXEC Statement 32 Data Sets Defined in Cataloged
Naming the Cataloged Procedure or Procedures e ¢« o o & o 67
Program to be Executed . . . « ¢« ¢« « 32 Data Sets That Must Be Defined by
Specifying Program Options 34 the Programmeér . « . « « « » » « «» . 68
Specifying Accounting Information . 35 Sequential Data SetS « « « « « « « « 68
Specifying Condition Codes to Partitioned Data Sets 70
Bypass a JOb Step o« « o o « o ¢« ¢ o 35 Retrieving More Than One Member . . 70
Assigning Step Priority 35 Deleting One Member 71
Assigning a Time Limit to a Job Direct-Access Data Sets .« « « « « « 71
SLEP ¢ o ¢ ¢ o o o o s s o e o o o « 36 DCB Parameter Considerations 71
Assigning Storage to a Job Step DCB Considerations for Sequential
Under MVT . . . &« ¢ o o o o « » « o« 36 EBCDIC Data Sets . + « ¢ o o &« o «» . 13
Assigning Storage to a Job Step DCB Considerations for ASCII Data
Under VS ¢ ¢ ¢ ¢ o 2 o o o « = » « « 36 SetS &« ¢ o 4 o e o e o o o ¢ e« o o o 16
DD Statement « « ¢ o ¢« ¢ ¢ ¢ « o o o o« o 37 DCB Considerations for

DD Statement UsSe€S . ¢« « o « o o« o o 841 Direct-access Data Sets « « « « « « 80

IBM-SUPPLIED CATALOGED PROCEDURES . .
Cataloged Procedure Restrictions . . .
FORTRAN PROCESSING Cataloged Procedures
Symbolic Parameters and the PROC
Statement .« ¢ ¢ ¢« ¢ ¢ ¢ ¢ o o o o
Compiling . « o« ¢ o ¢ o« o o o o o »

Link Editing . . . e« o s o @
Executing the Load Module . o o o
Loadlng « o . .« e o e

Modifying Cataloged Procedures .
Modifying PROC Statements . .
Modifying EXEC Statements . .
Modifying DD Statements .« « .

PART II -- JOB OUTPUT . . « o ¢ « o &«
JOB OUTPUT « « =« ¢ o « ¢ o o o o o« o »

COMPILER OUTPUT . & « &« o o o o e
Compiler Output With Default Options
Informative Messages « « « o ¢ o o«
Diagnostic MeSSages « « « « o o o
Source Listing . . + . .« . . .
Compiler Output With
Programmer-Specified Options .
Cross—-Reference Listing . .
Object Module Listing . « .
Edited Source Module Listing
Source Module Map .« « « « «
Object Module Deck . . « . =«

LINKAGE EDITOR AND LOADER OUTPUT
Linkage Editor Output . « o « o« o o
Linkage Editor Output With
Procedure-Specified Options . « «
Cross—-Reference Table &
Loader Output ¢ e 6 o e e e & o e o

L3

LOAD MODULE OUTPUT ¢« « « « o o o
MESSAgesS « « o « 2 ¢ ¢ o ¢ o o o
Error Code Diagnostic Messages
Using the Traceback Map .« .
Program Interrupt Messages
Requesting a Dump . . &
Operator Messages . « «
Program Output « « ¢ o« « o«

o o o

e o s

e o & » &
e 8 & o 8
e o & » 6 s o &

PART III -- PROGRAMMING TECHNIQUES

*
L]

PROGRAMMING CONSIDERATIONS .

FORTRAN Implementation . . .
Array Considerations . « « «
Arithmetic IF Statement .
Asynchronous Input/Output Programming
ConNsiderations « « o o « o o ¢ o o o
BACKSPACE Statement . .
COMMON and EQUIVALENCE Statements
Used Together . ¢« ¢« ¢ ¢ o o o o o &
COMMON Statement « « « ¢« « ¢ ¢ o o @
Data Initialization Statement --
SpeCi fying Literals e & e & o o o o
Direct-Access Input/Output
considerations « « « o « o
EQUIVALENCE Statement . « « « « « &
EXTERNAL Statement « « « o ¢ o o o o
GENERIC Statement o« ¢ « o « o o o

o o o .

.

91
91

95
97

99
99
99
101
101

101
101

<104

105

.105

106

.108

108
108

.108

.

.

110

111
111
111
112
113
115
115
116

119
121
121
121
121

121
122

122
122

123

124

.125

126
126

Input/Output Statements --
Unformatted Forms . . .
List-Directed Input/Output
Logical IF Statement . . .
Name Handling . . « e .
OPTIMIZE Compiler Optlon
READ Statement « « . . .
RETURN Statement « « « &
STOP Statement &
User-Supplied Subroutines . .
Job Control Language Considerations
Using Pre-allocated Data Sets
FORTRAN Library Considerations .
DUMP and PDUMP Subprograms . .
Extended-Precision Subroutines
Sense Light Subprograms . . .
System Considerations . « .+ « .
compilation Considerations . .
Compiler Storage Requirements . .
Compiler Restrictions . « « « o« &«
Load Module Considerations . « « « &
Load Module Restrictions
Boundary Alignment Considerations
Using Names Recognized by the
Compiler as Generic or an Alias .

" s s »

.
.
.
.
.

n

" 8 8 8 o s o
* & s o s s &

AUTOMATIC PRECISION INCREASE FACILITY
The Conversion Process . « « « o
Promotion . « « « « o«
EXEC Statement Options . . .

AUTODBL Subparameter
Coding Examples .« .
ALC Subparameter . . « « « « o o«

Programming Considerations With API
Effect on COMMON or EQUIVALENCE
Data Values « « « ¢« « o ¢ o o« o o
Effect on Literal Constants . . .
Effect on Programs Calling

Subprograms . ¢ o « o e 4 o ¢ @
Effect on FORTRAN lerary
Subprograms e« « ¢ ¢ o « o o o

Effect on CALL DUMP or CALL PDUMP
Statements « « ¢ ¢« ¢ « ¢ ¢ & @ o o
Effect on Direct-Access

Input/Output Processing « « « o« «

Effect on Asynchronous Input/Output

Processing « « . ¢ e o e & o
Effect on Unformatted Input/Output
Data Sets .« « « . .« e .« .

Effect on the Storage Map « o e e

LINKAGE EDITOR OVERLAY FEATURE .
Designing a Program for Overlay
Segments « o« ¢ o ¢ ¢ ¢ e o o«
Paths ¢ ¢ & ¢ ¢ ¢ ¢ ¢ o ¢ o o«
Communicating Between Segments
Inclusive References
Exclusive References . . « .
COMMON AXreas « « o o o o s o o
The OVERLAY Process « « o« o P
Construction of the OVERLAY Program
Linkage Editor Control Statements
OVERLAY Statement . .
INSERT Statement . . .
INCLUDE Statement . .
ENTRY Statement . . .
Linkage Editor OVERLAY Options
Overlay Example

* s o 8 o o
s o o o o @

5 & & 2 s ¢ o
-

. . o

« s
e o o
e o o
-

e & o o o
s 0
o v

.
.

«127
.127
<127
. 127
«127
.129
<129
.129
.129
.129
«130
130
.130
<131
.131
.131
.131
«131
.132
«133
.133
.133

.133

.134
«134
. 134
«135
. 135
. 138
.138
.138

. 13(
.13
.139
.139

. 139
. 140
.140

. 140
140

<141
141
<141
<142
. 143
. 143
. 144
144
. 1““
.146
<146
<146
.146
<147
. 148
.148

=

EXTENDED ERROR HANDLING FACILITY .

Functional Characteristics . .
Subprograms for the Extended
Handling Facility .« « « « o
ERRSAV Subroutine . « «
ERRSTR Subroutine . . .
ERRSET Subroutine . M
ERRTRA Subroutine . .
User-Supplied Error Handllng
User-Supplied Exit Routine
Option Table Considerations .

* ¢ o @

Considerations for the Library

Without Extended Error Handling

Facility « o o o ¢ o« o ¢ o o
APPENDIXES L] . L] - . . - . - .
APPENDIX A:

APPENDIX B: ASSEMBLER LANGUAGE
SUBPROGRAMS . © « o o« o o « =
Subroutine References . « o« «
Argument List
Save Area o+ » o s o o o o
Calling Sequence . . .
Coding the Assembler Language
SUbpProgram « o« o« ¢« o o« « ¢« o o

Error

-

EXAMPLES OF JOB PROCESSING

.

<154
154

.156
«156
«156
«158
160
<160
.161
«163

«163
<171
«173
179
<179
«179
179
179

.181

Coding a Lowest Level Assembler

Language Subprogram « « « « « o« o« «181
Higher Level Assembler Language
Subprogram « « « o « ¢ ¢« o ¢ o o« « 4181
In-Line Argument List183
Sharing Data in COMMON . « «. « « « .183
Retrieving Arguments From the Argument
LlSt - L) - - - L] - L . . . ‘183
RETURN i in an Assembler Language
Subprogram « « o« o« « o o « o o o o184
Object-Time Representation of FORTRAN
Variables . . « ¢« ¢« & & & o &« « « o« .184
INTEGER Type L] e - . . L) 185
REAL TYPE =« « « o « o o o o « o o 0186
COMPLEX Type e e o o o o o & o o o +187
LOGICAL TYPE « « o« « ¢ « &« o« « » o .188
APPENDIX C: UNIT TYPES .« . « . « « « « .189
Tape Units « e e o o s & & o o o ¢ <189
Direct Access Units . . « «189
Unit Record Equipment <« « « « « . 189
Graphic Units . . . ¢ ¢« ¢« ¢ ¢ o« « 189
APPENDIX D: AMERICAN NATIONAL STANDARD
CARRIAGE CONTROL CHARACTERS . . . « « .190
INDEX o o o o o o o o o o o o o o s « 2191

FIGURES

Figure I-1. Submitting FORTRAN
Programs Through Cataloged Procedures
Figure I-2. Job Control Statement
FOrmats =« « o « ¢ o o ¢ ¢ o o ¢« o o o

Figure I-3. Job Statement Format .«
Figure I-4. Sample JOB Statements . .
Figure I-5. EXEC Statement Format .
Figure I-6, Sample EXEC Statements .
Figure I-7. DD Statement Format . . .
Figure I-8. Sample DD Statements . .
Figure I-9. Compiler Options . . « .
Figure I-10., Linkage Editor Optiomns .
Figure I-10.1. Ordering and Aligning

Program Units on Page Boundaries . o
Figure I-11. Linkage Editor
Processing e & o s ¢ & o ¢ o s e ®
Figure I-12., Loader Options . . . « «
Figure I-13. Defining Unit Record -
Data Sets «
Figure I-14. Creating EBCDIC
Sequential Data Sets on Tape or Direct
Access VOlUMES ¢« o o & o« ¢ o o« o o o
Figure I-15. Retrieving Sequential
Data Sets .« ¢ o ¢ o ¢ ¢ ¢ ¢« o ¢ ¢ ¢ @
Figure I-16. Creating an ASCII Tape
Data Set e ¢ e e o s o 4 & e e o o o
Figure I-17. Creating Partitioned
Data Sets . o ¢ ¢ o ¢ o o ¢ o ¢ o o @
Figure I-18. Retrieving Partitioned
Data SetS « o o ¢ ¢ o ¢ « ¢ o o« o« o o
Figure I-19. Deleting a Member of a
Partitioned Data Set .« o+ « ¢ o o o« o
Figure I-20., Creating a Direct-Access
Data Set « o ¢ e « ¢ e ¢ « ¢ ¢ o« o ¢ o
Figure I-21. Retreiving a
Direct-Access Data Set « o o e o o
Figure I-22. EBCDIC Sequential Data
Sets--Structure of Formatted Records .
Figure I-23. EBCDIC Sequential Data
Sets--Structure of Unformatted Records
Figure I-24. ASCII Data Sets --
Structure of Records . « « o o o o o o«
Figure I-25. Direct-Access Data
Sets--Structure of Records . . « . .
Figure I-26. Cataloged Procedure
FORTXC ¢« o o & & & ¢ o o & s o o s
Figure I-27. Cataloged Procedure
FORTXCL ¢ ¢ ¢ o« « ¢ ¢ o o« ¢ o o o« o @
Figure 1I-28. Cataloged Procedure
FORTXLG L] - . L] - L - . . .
Figure I-29. Cataloged Procedure
FORTXCLG @ e o o o o e e o & e o o o
Figqure I-30. Cataloged Procedure
FORTXG e« e ¢ o & @ o s e« @« o o & o @
Figure I-31. Cataloged Procedure
FORTXCG ¢ ¢ o o o ¢ a o o s a s o o =
Figure I-32, Cataloged Procedure
FORTXL L] - . - . . L] L] L] . - - . - L
Figure I-33. PROC Statement Format .
Figure I-34, Effect of PROC Statement
in a Cataloged Procedure « « « « o « o

e & e o

64
65

69

69
69
69
70
70
72
72
72
75
76
78
80
82
83
84
85
86
87

88

89

Figure I-35. Submitting Modifications

to a Cataloged Procedure . . « « « « « o 93
Figure II-1. Sample Program as Coded . 97
Figure II-2. Sample Program as

Keypunched ¢« ¢ ¢ & & ¢« & « « o+ . 98
Figure II-3. Compiler Printed Output
Format e o o 2 e & o s o & s o e s o « 99
Figure II-4. Compiler Output from

Default Options . . . « . . « «100
Figure II-5. Compiler Output from
Programmer-Specified Options102
Figure II-6. Object Module Deck

Structure . . ¢ & 4 ¢ 4 . ¢ e e . .+ . 107
Figure II-7. Source Statements and

Storage Map for COMMON/EQUIVALENCE

Blocks e e s s e s e e o e o 2« » o 2107
Figure II-8. Linkage Editor Output

From Procedure-Specified Options109
Figure II-9. Loader Output « « o ¢ « 110
Figure II-10. Load Module Output with
Traceback Map .« « » « « o « o + o « » 2112
Figure II-11. Partial Object Code

Listing o ¢ & & ¢ ¢ o ¢ 4 e s s s . . L1184
Figure II-12. Comparison of FORTRAN
Statement as Coded and as Keypunched .114
Figure II-13. Program Interrupt

Message Format e e e e o s s o o e o-.116
Figure II-14. Operator Message Format 116
Figure II-15. Program Output117
Figure III-1. Record Chaining e« o 2125
Figure III-2. Writing a Direct-Access

Data Set for the First Time126
Figure III-3. Storage Structure Using

SIZE and REGION . « 4 & « « o o « « « 2132
Figure III-4. A FORTRAN Program
containing Three Program Units141
Figure III-5. Time/Storage Map of

Program Described in Figure III-4 . . .141

Figure III-6., Overlay Tree Structure of

Program Described in Figure III-4 . . .142
Figure III-7. Overlay Paths Implied by

Tree Structure in Figure III-6142
Figure III-8. Overlay Tree Structure

Having Six Segments « « . .143
Figure III-9. Overlay Paths Implied

by Tree Structure in Figure III-8 . . .143
Figure III-10. Overlay Configuration of
Program Described in Figure III-8 . . .1u44
Figure III-11. Communication Between
Ooverlay Segment .« « « « « » o « o o o o104
Figure III-12. Overlay Program Before
Automatic Promotion of Common Areas . .145
Figure III-13. Overlay Program After
Automatic Promotion of Common Areas . .145
Figure III-14. Linkage Editor Overlay
Input . & & ¢ & & o o & o s o « & o o 150
Figure III-15. Linkage Editor Overlay
Output -- Compile Job Step e o o o o o151
Figure III-16, Link Edit Overlay

Output -- Link Edit Job Step e e e . #2152

Figure III-17.
Output -- Load
Step ¢« « o o
Figure III-18. Sample Program Using
the Extended Error Handling Facility

Figure III-19. Option Table Preface

e o o o o & e e &

Figure III-20. Option Table Entry

Figure A-1.

Example 1 .

Figure A-2.
for Example
Figure A-3,

Figure A-4,
for Example

Table I-1.
Functions .
Table I-2.

Input/Output Flow for

e & e ¢ @ ¢ o e e & =

-

Job Control Statements

1 e o o o s e 8 e o e

Linkage Editor Overlay
Module Execution Job

Input Flow for Example 2

Job Control Statements

2 e @& ® o e e & e o o

Job Control Statement

3 e e e & & e o o

JOB Statement Functions

Table I-3. EXEC Statement Functions
Table I-4. DD Statement Functions

Table I-5.
Table I-6.
Table I-7.

Data Set Names . « « e«
Device Class Names . .
Compiler Data Sets. .

Table I-8. DCB Default Values for
Compiler Data SetS « « o ¢ o« o o o

Table I-9.

Table I-10.
Table I-11.
Table I-12.
Load Module
Table I-13.

Linkage Editor Data Sets

Loader Data SetS. « «
Load Module Data Sets
DCB Default Values for
Data Sets . [] . - L] -
Maximum BLKSIZE Values

.

.
.
.
L]
.
.

.

e« & o & o &

<153
. 162
L1684
.165
.173
[] 17“
.174

«175

Figure A-5. Block Diagram for Example

K e o o o o #1756
Figure A-6. FORTRAN Coding for
Example 3 .+ o ¢ o ¢ & o o o o o o o« o 2178
Figure A-7. Job Control Statements

fOr EXampPle 3 o o o o o o o« o o ¢ ¢ & 4178
Figure A-8. Save Area Layout and Word

Ccontents e e o o o s e o s s o o o o 180
Figure A-9. Linkage Conventions for

Lowest Level Subprogram181
Figure A-10. Linkage Conventions for
Higher Level Subprogram . . . «182
Figure A-11. In-Line Argument List . .183
Figure A-12. Assembler Subprogram

Example . ¢« o o ¢ o ¢ o o o o o o o o o185

TABLES

Table III-1. Built-In Functions --
Substitution of Single and Double
Precision « « ¢« « o« « ¢« s « « ¢« o« o « +136
Table III-2. Library Functions --
Substitution of Single and Double
Precision . « o« &« ¢ o o o o « o &
Table III-3. Option Table Default
VAlUES o « o o « o o o o o o o o o o o« o155
Table III-4. Corrective Action After

Error OCCUrXence . « « o« » o o o o o o« 2157
Table III-5., Corrective Action After
Mathematical Subroutine Error

OCCUXYENCE « o« o o s o o o o o o o« o o 1606
Table III-6. Corrective Action After
Program Interrupt Occurrence170
Table A-1. Linkage Registers . « « « .180
Table A-2.. Dimension and Subscript

FOXMAt o« o « « o o s o s s s o o o o« o« -184

. . .136

l

A program written for the FORTRAN IV

(H Extended) compiler is processed under
control of the IBM System/360 Operating
System. The compiler is a program product
included as part of the operating system in
a process called program installation. The
operating system consists of a control
program and a number of processing proqrams
that perform operations on problem

programs.

CONTROL PROGRAM

The control program supervises the
execution of the operating system and
provides services required by all other
programs. One of four control programs may
be specified for use with the FORTRAN 1V

(H Extended) compiler: Multiprogramming
with a Fixed Number of Tasks (MFT),
Multiprogramming with a Variable Number of
Tasks (MVT), and the virtual storage
control programs VS1 and VS2. Each control
program may handle up to 15 concurrently
operating programs, and each control
program has these major functions:

1. The supervisor is the control center
of the operating system and
coordinates all activity within it.

2. The job scheduler reads and analyzes
the input_ job _stream (control
statements and data entering the
system), alliocates input/output
devices as necessary, initiates the
execution of programs, and provides a
record of the work processed.

3. Data management routines control
input/output operations, regulate the
use of inputs/output devices after the
job scheduler allocates them, and
provide access to the data held in
them.

The MFT and VS1 control programs divide
computer storage into areas of fixed sizes
called partitions. Data entering the
system is directed to these partitions on a
priority scheduling basis; that is, data is
not processed in the order in which it is
encountered in the input stream but
according to a priority code assigned by
the user.

The MVT and VS2 control programs, like
MFT and VS1l, process data on a priority
scheduling basis, but direct it to storage

INTRODUCTION

areas of variable sizes, called regions;
each user indicates the amount of storage
he needs.

VSl is the virtual storage version of
MFT, and VS2 is the virtual storage version
of MVT. Both VS control programs provide
the same services as their non-relocatable
counterparts, but the partitions (VS1l) and
regions (VS2) to which job steps are
directed are represented in virtual, rather
than real, storage. Virtual storage is the
name given to the address space that
appears to the user as real (main) storage
and from which instructions and data are
mapped into real storage locations. The
size of virtual storage is limited by the
addressing range of the computing system,
not the number of real storage locations.
(Under 0S/VS the term real storage is used
to designate the physical main storage of
System/370 rather than its complete
addressing range.)

Virtual storage is provided by space on
direct access storage devices (DASDs) and
implemented by a combination of the Dynamic
Address Translation (DAT) hardware feature
of System/370 (often called the "relocate"”
feature) and the paging function provided
by the 0S/VS control programs. The
contents of virtual storage are formatted
into 2048 byte blocks (VS1l) or 4096 byte
blocks (VS2). These blocks are called
pages. During execution of a program, the
hardware system translates each virtual
storage address into a corresponding real
storage address that designates a physical
location, The translation process actually
amounts to relocation by a value that is a
multiple of one page. The VS control
program manages the transfer of pages
between auxiliary storage and real storage.
The number of pages that may reside in real
storage at any given time depends on the
amount of real storage available. The VS
control programs enable the central
processing unit to execute programs
residing in virtual storage without moving
all of the pages into real storage
concurrently.

PROCESSING PROGRAMS

Processing programs perform specific tasks,
such as language translation, 1link editing,
loading, sorting and merging, and various
utility functions. Language translators,
or compilers, include FORTRAN, COBOL, and

Introduction 11

PL/I. The linkage editor and the loader
programs combine many programs into one
executable unit. Sort and merge programs
sequence data into ordered formats prior to
further processing. Utility programs
provide the ability to create, print,
duplicate, and reformat collections of
data.

Processing programs of special concern
to the FORTRAN programmer are the FORTRAN
IV (H Extended) compiler, which translates
FORTRAN statements into executable
instructions; the linkage editor, which
combines the FORTRAN program with
subroutines from the FORTRAN library or
user libraries with other routines required
by the system; and the loader, which
combines a number of programs and
subprograms as does the linkage editor and
then executes the resulting programe.

PROBLEM PROGRAMS

Problem programs are written by the user
for the creation and maintenance of files,
creation of reports, solution of problems,
or for whatever use the user wishes to make
of the computer (for instance, a FORTRAN
program, designed to do some particular
work). Before it can do its work, however,
the FORTRAN program must be processed by
the operating system.

PROCESSING A FORTRAN PROGRAM

Three basic steps are taken to process a
FORTRAN program: the compile step, the
link edit step, and the load module
execution (or go) step. The input to the
compile step is the group of FORTRAN
statements called a source module. The
output from the compile step is a group of
compiler-translated statements called an
object module, which is the input to the
link edit step. The output of the link
edit step is the object module combined
with other modules and is called the load
module, the program that is executed in the
go step. If the loader is used in place of
the linkage editor, the last two steps
(link edit and load module execution) are
combined into one step.

Each step is termed a job_step--the
execution of one program. Each job step
may be executed alone or in combination
with other job steps as a job--an
application involving one or more job
steps. Hence, a job may consist of one
step, such as FORTRAN compiler execution,
or of many steps, such as compiler

12

execution followed by linkage editor
execution and load module execution,

The programmer defines the requirements
of each job to the operating system through
job_control lanquage statements.

JOB CONTROL LANGUAGE STATEMENTS

A job control language statement is
identified by the appearance of the
characters // or /#%# in the statement's
first two positions. The job control
statements most often used by FORTRAN 1V
programmers are the JOB, EXEC, DD,
delimiter, and null statements.

The JOB statement identifies the
beginning of a job. It is required for
each job, must be the first statement in a
job, and must have a name to identify the
job. It may also contain other information
such as the programmer‘'s name, accounting
information, certain system options, and
comments.

The EXEC statement identifies the
beginning of a job step. It is required
for each job step and must be the first
statement in the step. The EXEC statement
may be named to identify the step. The
statement must specify the name of the
program to be executed. It may also
contain other information such as processor
options and comments.,

The DD statement defines a data set. A
data set is an organized collection of
records such as a source program, a set of
input records, or a library of subprograms.
The DD statement specifies information
regarding a data set's characteristics, its
location, its name, format of records
contained in the data set, and the
disposition to be made of the data set at
the end of the job step.

The delimiter statement contains the
characters /* in the first two positions
and indicates the end of a data set
contained on cards.

The null statement contains the
characters // in the first two positions
and indicates the end of the job. The
remainder of the card must be blank.

The following examples illustrate the
positioning of job control statements.
within a job for some of the combinations
of FORTRAN processing.

Ccompile Only (One Source Module)

// JOB Statement

// EXEC Statement (to execute FORTRAN
compiler’

// DD Statements for compilation (as
required)

ISource module to be complledl
L -
/% Delimiter Statement (if source module is
on cards)
// Null Statement

Compile Only (More Than One Source Module)

// JOB Statement

// EXEC Statement (FORTRAN compiler)

/7 DD Statements for compilation 1 (as
required)

| Source module to be complledl
L p—
/* Delimiter Statement (if source module is
on cards)
// EXEC Statement (FORTRAN compiler)
// DD Statements for compilation 2 (as
required)

/% Dellmlter Statement (if source module is
on cards)

// EXEC statement (FORTRAN compiler)

// DD Statements for compilation 3 (as
required)

/% Delimiter Statement (if source module is
on cards)
// Null Statement

Compile and Link Edit

// JOB Statement

// EXEC Statement (FORTRAN compiler)

// DD Statements for compilation (as
required)

ISource module to be comp11ed|
L
/% Delimiter Statement (if source module is
on cards)
// EXEC Statement (Linkage Editor)
// DD Statements for link editing (as
required)
// Null Statement

Compile, Link Edit, and Execute

// JOB Statement

// EXEC Statement (FORTRAN compiler)

7/ DD Statements for compilation (as
required)

|Source module to be uomplledl

/¥ Dellmlter Statement (if source module is
on cards)

// EXEC Statement (Linkage Editor)

// DD Statements for link editing (as
required)

// EXEC Statement (Load Module)

// DD statements for load module execution
(as required)

|Data input statements to be processedl

/% Delimiter Statement (if data input is on
cards)
// Null Statement

As these examples show, the same job
control statements are used repeatedly. To
save programming time and to reduce the
possibility of error, IBM supplies sets of
job control statements that the programmer
may use in place of his own. Each set is
given a name and is stored in a data set
called the procedure library. The sets of
statements are called cataloged procedures.

CATALOGED PROCEDURES

To retrieve a cataloged procedure from the
library, the programmer specifies its name
in an EXEC statement in place of a program
name, The effect is the same as though the
job control statements in the cataloged
procedure appeared in the input stream in
place of the EXEC statement that called it.

Note that a cataloged procedure does not
execute a program; it merely supplies a set
of job control statements. These
statements must include appropriate EXEC
statements naming programs to be executed.

IBM provides seven cataloged procedures
for use with the FORTRAN IV (H Extended)
compiler, They are:

e FORTXC, which includes one EXEC
statement, to execute the compiler

¢ FORTXCL, which includes two EXEC
statements, to execute the compiler and
the linkage editor

¢ FORTXLG, which includes two EXEC

statements, to execute the linkage
editor and the load module

Introduction 13

¢ FORTXCLG, which includes three EXEC
statements, to execute the compiler,
the linkage editor, and the load module

which includes two EXEC
to execute the compiler and

e FORTXCG,
statements,
the loader

e FORTXG, which includes one EXEC
statement, to execute a load module

e FORTXL, which includes one EXEC
statement, to execute the loader

In addition to EXEC statements,
cataloged procedures contain DD statements
to define data sets needed by each job
step.

DATA . SETS

A data set resides on one Or more
volume(s). A volume is a unit of external
storage that is accessible to an
input/output device. For example, a volume
may be a magnetic tape, disk, drum, or data
cell.

An input/output device is the piece of
equipment that does the recording and/or
the reading of data from the volume. For
example, a device may be a tape drive or a
disk drive.

Several input/output devices may be
grouped together into a device _class when
the system is generated. A device class is
referred to by a collective name. For
example, the device class SYSDA may consist
of all direct access devices in an
installation; the device class SYSSQ may
consist of magnetic tape and direct-access
devices in an installation.

A data set may be a system _data set or a
user data set. A system data set is one
used by the system; for example, to store
an object module. A user data set is one
defined by the programmer for a specific
application; for example, to store
intermediate results during program
processings.

SYSTEM DATA SETS

System data sets are used in all three
steps of FORTRAN processing.

1u

Compiler Data Sets

Compiler data sets are defined in DD
statements named SYSIN, SYSPRINT, SYSPUNCH,
SYSLIN, SYSUT1, and SYSUT2.

¢ SYSIN specifies the primary input (the
source module) to the compiler.

e SYSPRINT specifies the output data set
used to write listings and messages.

* SYSPUNCH specifies the output data set
used to punch cards or to write output
in card image form.

¢ SYSLIN specifies the data set in which
the object module was produced by the
compiler.

¢ SYSUT1 and SYSUT2 specify utility data
sets required by the compiler.

Linkage Editor Data Sets

Linkage editor data sets are defined in DD
statements named SYSLIN, SYSPRINT, SYSLIB,
SYSLMOD, and SYSUTI1.

e SYSLIN specifes the data set in which
the object module was created in a
compile step and that is to be the
input to the 1link edit step.

e SYSPRINT specifies the output data set
used to write listings and messages.

s SYSLIB specifies the system data set,
SYS1l. FORTLIB, that contains
IBM-supplied FORTRAN subprograms. The
linkage editor uses this data set to
include FORTRAN subprograms called by
the compiler.

e SYSLMOD specifies the load module
produced by the linkage editor.

e SYSUT1 specifies a utility data set
required by the linkage editor.

Load Module Execution Data Sets

Load module execution data sets are defined
by DD statements with names in the form
FTxxFyyy, where xx is a data set reference
number and yyy is a sequence number. A
data set reference number may range from 01
to 99; a sequence number may range from 001
to 999. A data set reference number
equates the data set defined in the DD
statement to the data set referenced in the

READ or WRITE statement in the source
program. For example, the name FTO08F001
describes the data set referenced by the
READ statement:

T ™ i P
READ (8,X%X)

IBM~supplied cataloged procedures
contain DD statements named FTO5F001,
FTO6F001, and FT07F001 which reserve data
set reference number 5 for an input data
set, 6 for a printer, and 7 for a card
punch. All other data set reference
numbers are available to the programmer for
the definition of other data sets. These
standards may be changed by the individual
installation or they may be overridden by
the programmer. The following discussion
describes the data sets as specified in the
IBM~-supplied cataloged procedures.

FTO5F001 defines the input data set.
The FORTRAN programmer normally uses 5 as
the data set reference number in the READ
statement for input to his program.

FT06F001 defines the data set directed
to the printer. The FORTRAN programmer
uses 6 as the data set reference number in
the WRITE statement for printed output.

FT07F001 defines the data set directed
to the card punch. The FORTRAN programmer
uses 7 as the data set reference number in
the WRITE statement to direct output to the
punch.

Loader Data Sets

Because the loader combines two job steps,
it uses some of the same data sets as the
linkage editor and the load module, such as
SYSLIN, SYSLiB, FTO5F001, FT06F001, and
FTO7F001.

In addition, it uses a DD statement
named SYSLOUT to specify the output data
set used to write loader output.

USER DATA SETS

User data sets are those which the user
requires for his particular program. For
example, the programmer must define data
that will be created by a program or read
from a previous program as a user data set.
A user data set in FORTRAN may be one of
three types: sequential, partitioned, or
direct-access.

A sequential data _set is one in which
records are organized solely on the basis

of their successive physical positions
(i.e., arranged in sequential order). A
sequential data set may reside on cards,
tape, or a direct-access device. A FORTRAN
source module is an example of a sequential
data set.

A partitioned data set is one that is
composed of groups of sequential data, each
of which is called a member. Each member
has a name stored in a directory that is
part of the data set and that contains the
location of each member's starting point.
Partitioned data sets are used as libraries
(data sets containing a number of
programs). SYS1.FORTLIB, which contains
FORTRAN subroutines, is an example of a
partitioned data set.

A direct-access data set is one in which
records may be accessed individually by
specifying the position of the record
within the data set. For example, if the
100th record of a sequential data set is
needed, records 1 through 99 must be
transmitted; record 100 of a direct-access
data set can be accessed immediately.
Records in a direct-access data set may be
processed in FORTRAN only by direct-access
I/0 statements but may be processed in a
sequential fashion through use of the
associated variable in the direct-access
statements. Direct-access data sets may
reside only on direct-access devices. A
data set containing information on a
department store's customers, arranged
according to charge account numbers that
may be accessed individually, is an example
of a direct-access data set.

CATALOGED DATA SETS

Any partitioned or direct-access data set
and any sequential data set not on cards,
may be cataloged. A cataloged data set is
one for which certain information
describing the data set has been placed in
an index called the catalog. When a data
set is cataloged, the serial number of its
volume is entered in the catalog together
with the data set name, thereby providing a
cross-reference. A programmer can
subsequently refer to the data set without
specifying its physical location. (The
term cataloged data set should not be
confused with cataloged procedure.)

LIBRARIES OF DATA SETS

A library is a partitioned data set
containing a number of programs. Libraries
supplied by IBM or the installation are

Introduction 15

system libraries; libraries created by the
programmer are user libraries.

System Libraries

System libraries most useful to a FORTRAN
programmer are SYS1.LINKLIB, SYS1.FORTLIB,
and SYS1l.PROCLIB.

SYSl. LINKLIB contains frequently-used
programs, such as the FORTRAN compiler.

SYS1l. FORTLIB contains FORTRAN
subprograms used during FORTRAN processing.

SYS1.PROCLIB contains cataloged
procedures and may contain user-written
cataloged procedures as well as those
supplied by IBM.

User Libraries

A user library is created by the programmer
to serve a special application, such as
storing frequently-used programmer-written
programs. The programmer may adopt his own
convention in naming his libraries.

A programmer creates a user library and
adds programs or subprograms to it by
defining it on a SYSLMOD DD statement of a
linkage edit job step. He retrieves it
through a DD statement named STEPLIB or
JOBLIB. STEPLIB makes the library
accessible during one step of a job; JOBLIB
makes the library accessible for all steps
of the job. When JOBLIB is specified, the
DD statement must be placed immediately
after the JOB statement to ensure that the
library remains available for the duration
of the job. The STEPLIB DD statement may
appear anywhere among the DD statements
within a job step.

PROGRAM OUTPUT

In addition to object and load modules,
jobs produce other forms of output that

16

help the programmer analyze the job. The
compile step informs the user of the
success of the compilation by issuing
messages, including a severity code for any
error encountered. The following severity
codes are associated with compilation
messages:

¢ 0 to indicate an informational message;
that is, no errors was detected

* 4 to indicate a warning message; that
is, a possible minor syntactic error
was detected

e 8 to indicate an error message; a
syntactic error was detected

¢ 12 to indicate a serious error message;
a serious syntactic error that prevents
program execution was detected

e 16 to indicate an unrecoverable error
message; compiler processing was
terminated because of an error

Severity codes 0 and 4 require no action on
the part of the programmer; the program may
be executed. (Nevertheless, severity code
4 messages should be corrected.) The other
codes require corrections before the
program may be executed.

The compiler may also produce output,
such as a card deck of the object module, a
listing of the statements in an object
module (pseudo-assembler listing), and a
storage map that lists the names and
storage locations of variables appearing in
the object module.

.The link edit step produces a map of the
load module and may also produce a
cross-reference listing that shows where
the modules making up the program
interrelate.

The load module step produces program
output as required by the FORTRAN program
and also produces any messages describing
conditions encountered during execution,

PART I -- JOB_INPUT

Introduction 17

The simplest way to submit a FORTRAN
program is by calling one of the cataloged
procedures. The programmer calls a
procedure by submitting:

1. A JOB statement

2. An EXEC statement that names the
procedure

3. The input to the operating systen,
such as the FORTRAN program to be
compiled

4, A null statement at the end of the job
In addition, if the FORTRAN program is

submitted in card deck form, the programmer
must supply the following:

SUBMITTING A FORTRAN PROGRAM

1. A DD statement having the name SYSIN
immediately preceding the card deck.
The name SYSIN defines input data.

2. A delimiter control statement
immediately following the card deck to
mark the end of card input.

Figure I-1 lists all the cataloged
procedures for the FORTRAN IV (H Extended)
compiler and an example in submitting caxrd
input for each of them.

Note that in Figure I-1, the DD
statement named SYSIN may appear more than
once within a job. The qualified name
FORT.SYSIN defines the source module to the
compile step (which is named FORT in
cataloged procedures); the qualified name
GO. SYSIN defines data records to be
processed by the load module (go) step.

------ T T Inhahata e et |
| Cataloged | | |
| Procedure Name | Function | Calling the Procedure |
pr—mmm e t-—-—— - - e 1
FORTXC	Compile	//jobname JOB	
		/7 EXEC FORTXC	
		//FORT.SYSIN DD *	
] -		
			FORTRAN source modulel
	I 1		
		s	
! [77 i		
pommmmmm e $ommm e 1			
i FORTXCL	Compile and i //3jobname JOB		
	Link Edit	// EXEC FORTXCL	
		//FORT.SYSIN DD *	
		r 1	
			FORTRAN source module
		b 4	
]		/*	
	i 7/		
b + T 1			
FORTXCLG	Compile,	//jobname JOB	
	Link Edit	// EXEC FORTXCLG	
	and Execute I //FORT.SYSIN DD *		
		- ———=—	
] IFORTRAN source module]		
	I		
[/		
I	//GO.SYSIN DD *		
i [r~—-=1			
	[Data	
		b d	
	[/*		
	I %4]		
R SR _— _— e 1			

Figure I-1.
(Part 1 of 2)

Submitting FORTRAN Programs Through Cataloged Procedures

Submitting a FORTRAN Program 19

|
t
|
|

--------------- L e i s |
| Cataloged | |

| Procedure Name | Function | Calling the Procedure

pommmmmmmm e fommmomomm oo oo o 1
| FORTXLG | Link Edit | //jobname JOB

| | and Execute | Va4 EXEC FORTXLG

| | | //LKED.SYSIN DD *

| | T
| | | Iflrst FORTRAN object modu1e|
| | I e T
I | | .

| [| .

i I | .

| | I

| | | llast FORTRAN object module|
| | | e e

|] l /%

| | | //G0O.SYSIN DD *

| I | r-—=-1

| I | |Data|

| | | Lo

| | | /%

{ I 4

prmmm oo oo e et + mmmmmmme -

| FORTXG | Execute | //jobname JOB

| | | //JOBLIB DD (parameters to describe library)
| | | // EXEC FORTXG

| | | //GO.SYSIN DD *

| | | r———=1

I | | |Data|

| | | tomd

| | | /*

| | 4

—— et o o
| FORTXCG | Compile and | //jobname JOB

| | Load | Vo4 EXEC FORTXCG

| | | //FORT.SYSIN DD *

| I | _—

| | | |FORTRAN source modulel

| | | .

| | |/

i | I //G0.SYSIN DD *

| | | r-—=-1

| | | | Data|

| | | tomeed

| 1 |/

| | | 77

bommmmm oo ----- fommm -

| FORTXL | Load | //jobname JOB

| | | /7 EXEC FORTXL

| | | //LKED. SYSLIN DD (parameters)

| \ | //GO.SYSIN DD *

I I | r———-1

| | | {pata|

| | | —

| | | /%

| | | 77

b L A

Figure I-1. Submitting FORTRAN Programs Through Cataloged Procedures (Part 2 of 2)

The FORTRAN programmer should do one
more thing before submitting a program for

execution. If input and output data

consist solely of cards and printer

Cataloged procedure FORTXCLG (and FORTXLG)

contain DD statements that allocate the

card reader to data set reference number 5

and the printer to data set reference

listing, he should code data set reference number 6.
numbers for FORTRAN READ and WRITE
statements as 5 and 6 respectively.

20

e ot s e e e e e e e —— e e e e e e e e e s e e i e —— e e, T s e S — e, S e i — . e S e

The programmer need do no more than the
foregoing to process a FORTRAN program.
Use of the cataloged procedure FORTXCLG, as
illustrated, enables the control program to
read the source module, read the load
module input data set, and write program
output and system messages on the printer.

However, if the source module resides on
some media other than cards (i.e., on tape
or in a direct-access volume) or if the
programmer needs specific data sets during
program processing, he must make these
private data sets available to the control
program. To do this, he must define them
in DD statements. The following discussion
describes how to create and retrieve such

data sets.

DEFINING_ PRIVATE DATA_ SETS

A private data set may be temporary or
permanent. A temporary data set is one
that is created and deleted in the same
job; it is usually preferred when the
programmer needs space temporarily to store
data during program execution. The
following is an example of a DD statement
defining a temporary data set:

//GO.FT09F001 DD DSNAME=§&SET, UNIT=2311,
/77 SPACE=(TRK, (5, 5))

The name GO.FT09F001 identifies a data set
to be processed by the execute step and
links the data set to FORTRAN READ and
WRITE statements having 9 as the data set
reference number. DSNAME=§&SET assigns the
name set to the data set; the symbols &§& in
the first positions signify a temporary
data set. The UNIT parameter indicates
that the data set is to reside on a 2311
device. SPACE indicates the amount of
space allocated to the data set; space is
allocated in number of tracks on the 2311
device, five tracks initially and five
additional tracks each time the data set
needs more space.

A permanent data set is one that is
created and kept at the end of the job; it
is defined when the data set is to contain
information required in later jobs. To
respecify the data set in the previous
example as a permanent data set, the
programmer may submit the following
statement:

//GO.FT09F001 DD DSNAME=SET, UNIT=2311,

V4 SPACE= (TRK, (5,5)),
7/ VOLUME=SER=DA 003,
7/ DISP=(NEW, KEEP)

The DSNAME parameter names the data set
without the && symbols in the first
positions. The VOLUME parameter indicates

that the data set is to reside on the disk
pack having the serial number DA0OO3. The
VOLUME parameter is not mandatory when
creating a data set; if it is omitted, the
data set is assigned to any availabie
volume, However, to retrieve the data set
in a later job, the control program needs
to know which volume to access. The DISP
parameter indicates that the data set is
new and is to be kept. The DISP parameter
is mandatory; without it, the data set
would be deleted at the end of the job.

To retrieve the data set SET in a later
job, the programmer changes the DISP

parameter from NEW to OLD; i.e.,

//GO.FTO9F001 DD DSNAME=SET,UNIT=2311,
/7 VOLUME=SER=DA003,
/77 DISP=(OLD, KEEP)

OLD indicates that the data set existed
prior to the job. (The underscore in these
examples is for visual aid only and is not
part of the statement coding.) Note that
the SPACE parameter is not specified; it is
used only when creating a data set. Note
also that the UNIT and VOLUME parameters
are repeated. The programmer can avoid
repeating these parameters by cataloging
the data set, that is, entering the data
set's name and unit and volume information
in the control program index. To catalog a
data set, the programmer changes the DISP
parameter from KEEP to CATLG, i.e.,

//GO.FT09F001 DD DSNAME=SET, UNIT=2311,
7/ VOLUME=SER=DA003,
Vi DISP=(OLD, CATLG)

Alternatively, the programmer may catalog

the data set when he creates it, that is,

DISP=(NEW,CATLG), is valid. After a data

set has been cataloged, the programmer may
retrieve it by specifying only the DSNAME
and DISP parameters.

Finally, to delete the data set in a
later job, the programmer changes the DISP
parameter from CATLG (or KEEP) to DELETE,
i.e.,

//G0O.FT09F001 DD DSNAME=SET,

7/ DISP=(OLD,DELETE)

DELETE indicates that the space occupied by
the data set is to be released and made
available for other uses at the end of the
job.

The operating system contains many more
options that can be specified in the job
control language. The programmer may
choose those options he needs to tailor the
system's facilities to a particular
application. The following sections
describe some of those options and how he
may use them.

Submitting a FORTRAN Program 21

Job control statements provide a
communications link between the FORTRAN
programmer and the operating system. The
FORTRAN programmer uses these statements to
define a job, a job step within a job, and
data sets required by the job. A full
description of job control language can be
found in the appropriate job control
language reference publication, as listed
in the Preface.

three statements discussed in this section
can contain up to four fields: name,
operation, operand, and comments.

Table I-1 summarizes the function of job
control statements. Figure I-2 illustrates
the format of job control statements. The
brackets around some of the items
illustrated indicate that those items are
optional when using the statement.

This section describes the job control Table I-1. Job Control Statement Functions
statements most used by the FORTRAN fm————————— e 1
programmer: the JOB, DD, EXEC, delimiter, |Statement | Function |
comments and null statements. Another job W |jp--—-------- - |
control statement, the PROC statement, has | JOB |Indicates the beginning of a |
a special application in FORTRAN] |Inew job and describes that job|
processing; it assigns default values to p--————t -
program options specified in cataloged | EXEC |Marks the beginning of a job |
procedures. Because of its limited | |step and indicates the program|
applicability to FORTRAN programs, the PROC | |or cataloged procedure to be |
statement is not further discussed in this | jused |
section (see "IBM-Supplied Cataloged - - 4
Procedures" for a discussion of this | DD |Describes data sets and |
statement). | |controls device and volume |

| |assignment |
pommoe + oo 1

Job control statements are identified by |Delimiter [Separates data sets in the |
the characters // in columns 1 and 2, | | input stream from control |
except for the delimiter statement, which | |statements; it appears after |
is identified by the characters /% in | |each data set in the input]
columns 1 and 2, and the comments | |stream |
statement, identified by the characters //% b - 4
in columns 1, 2, and 3. The delimiter |Null |Indicates the end of a job |
statement may contain optional comments b—— -4-- ———— {
preceded by one or more blanks. The null | Comment |Contains miscellaneous remarksj|
statement may contain only the two slashes; | |written by the programmer; it |
the remainder of the statement must be | |can appear before or after any|
blank. The comments statement contains | |control statement |
notes written by the programmer. The other e - ————————— e 4
[~ ——————m—— oo - i Bttt ——== -
| FORMAT | APPLICABLE CONTROL STATEMENTS |

--- o
| //Name Operation [Operand]l [Comment] | JOB |
| i |
|7/({Name] Operation Operand [Comment] | EXEC, DD |
I | I
| /* (Comment] | delimiter |
| | I
|77 | null |
| | I
| 7/7*% Comment | comments |
T S 3

Figure I-2, Job Control Statement Formats

22

The name field begins in column 3,
immediately following the //.

The name field assigns a name to the
statement, identifying it to other
statements and to the operating system. A
name consists of from one to eight
alphameric characters or the characters #,
$, or a. The first character of the name
must be alphabetic. A DD statement may
contain a qualified name which is two names
joined together with periods; the name
FORT.SYSIN is an example of a qualified
name.

The operation field begins in any column
after the name field and is preceded and
followed by one or more blanks.

The operation field identifies the type
of control statement, e.g., JOB, DD, or
EXEC.

The operand field begins in any column
after the operation field and is preceded
and followed by one or more blanks. The
operand field identifies system options
requested by the programmer. Options are
specified through one or more parameters
separated by commas.

keyword. Positional parameters must appear
in a fixed order and are identified, or
given meaning, by their position in that
order. A keyword parameter is composed of
an identifying keyword, an equal sign (=),
and a value. Parameters may also comprise
a number of subparameters, which can be
either positional or keyword.

The comments field begins in any column
after the operand field (or the /% in the
delimiter statement) and is preceded by one
or more blanks. The comments field may
contain any information that is considered
helpful. There is no required syntax for
comments.

All statements (except the null
statement) may be continued onto succeeding
cards, using the following rules:

1. Interrupt operands after a completed
parameter or subparameter, including
the comma that follows it, at or
before column 71.

2. If comments are desired in the same
statement as an interrupted operand
field and there is sufficient room,
leave one or more spaces after the
comma that follows the last parameter,
and then code the comments.

3. For an interrupted comment, code any
nonblank character in column 72. For
an interrupted operand, the nonblank

character in column 72 is optional.

If a nonblank character is not coded
in column 72 of an interrupted
operand, but the conventions outlined
in the next two items are followed,
the job scheduler will treat the next
statement as a continuation statement.

4, Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

5. Continue the interrupted operand
beginning in any column from 4 through
16.

Note that excessive continuation cards (or
card images) should be avoided whenever
possible to reduce processing time for the
control program.

SYNTAX FOR_PARAMETER _DESCRIPTION

In describing the syntax for parameters,
this publication follows the conventions
listed in the following paragraphs.

1. The set of symbols listed below are
used to define control statements, but
are never coded in a control
statement.

a. hyphen -
b. 1logical or

C. underscore

d. braces

e. Dbrackets

f. ellipsis

g. superscript

B -
. e gt

The special uses of these symbols are
explained in paragraphs numbered from
4 to 10.

2. Uppercase letters and words, numbers,
and the set of symbols listed below
are coded in a control statement
exactly as shown in the statement
definition.

a. apostrophe
b. asterisk

c. comma

d. equal sign
e. parentheses
f. period

g. slash

* =

N ~ =

Using Job Control Statements 23

24

Lowercase letters, words, and symbols
appearing in a statement definition

represent variables for which specific

information is substituted when the
control statement is coded.

Example:
DSNAME=filename

may be coded as
DSNAME=MYNAME

Hyphens join lowercase letters, words,
and symbols to form a single variable.

Example:

PGM=program-name
may be coded as
PGM=MYNAME

Stacked items or items separated from
each other by the "logical or" symbol
represent alternatives.
alternative should be selected.

For example:

&

or an alternate designation:
{a|B|C}

The above two examples have the same
meaning and indicate that either A or
B or C should be selected.
Brackets also group related items; but
everything within the brackets is
optional and may be omitted.

Example:
ALPHA= ([A|B|C],D)

The preceding example indicates that a
choice can be made among the items
enclosed within the brackets or that
the items within the brackets may be
omitted. If B is selected, the result
is ALPHA=(B,D). If no choice is made,
the result is ALPHA=(,D).

An underscore indicates the standard
default option. If a default option
is selected, it need not be coded in
the actual statement.

DECK
PARM=
NODECK

Only one such

If the user wants the DECK option, he
will have to specify it; if he wants
the NODECK option, he may specify it,
but he does not need to do so.
8. Braces group related items, such as
alternatives.

Example:
ALPHA=({A|B|C},D)

The above example indicates that a
choice must be made among the items
enclosed within the braces. If A is
selected, the result is ALPHA=(A, D).
If C is selected, the result can be
either ALPHA=(C,D) or ALPHA=(, D).

9. An ellipsis indicates that the
preceding item or group of items can
be repeated many times.

Example:
ALPHA[, BETA]...

The preceding example indicates that
ALPHA can appear alone or it can
appear followed by ,BETA optionally
repeated many times in succession.

10. A superscript refers to a description
in a footnote.

Example:

NEW)*
OLD
MOD
SHR

11. Blanks are used to improve the
readability of control statement
definitions. Unless otherwise noted,
blanks may not appear in a statement
definition.

JOB_STATEMENT

A JOB statement initiates the beginning of
a job and assigns a name to it.

The JOB statement may also contain the
following information:

1. Accounting information relative to the
job

2. Programmer's name

3. The type of system messages to be
written

4, conditions for terminating the
execution of the job

5. Assignment of input and output classes
6. Job priority
7. Main storage requirements
8, A time limit for the job
Figure I-3 illustrates the format of the
JOB statement. Table I-2 summarizes the
functions of the JOB statement. Figure I-4§
shows sample JOB statements.
The job name is always required. All

other information is optional unless made
mandatory by each installation.

Naming the Job

Jobname identifies the job to the operating
system. Because a multiprogramming
environment permits many jobs to operate
concurrently, the programmer should select
a unique jobname for each job.

The accounting information and
programmer's name are positional parameters

and, if used, must be the first ones
specified in the operand field. All other
parameters are keyword parameters and may
appear in any order.

Specifying Accounting Information

Accounting information is used to store
installation-required accounting
procedures. It is specified as the first
parameter in the operand field. The
parameter has no predefined format; it
consists of a string of up to 142
characters. If it contains any special
characters (valid members of the character
set not alphabetic or numeric) other than a
hyphen, it is enclosed in apostrophes.

An example of the accounting parameter
is:

'215,46WX819"

If this parameter is not present but the
programmer's name is, a comma is reqguired
to indicate the omission. If both
parameters are omitted, no commas are
required. (The accounting field may be
required, at the installation's option.)

| Saiatatateebiitte Fo———m i - -
| Name | Operation | Operand |
e Fommmmmmmme- e 1
		Positional Parameters
//jobname	JOB	[,accounting-information]
		[,programmer-namel
: =	Keyword Parameters	
[[MSGLEVEL={x,y)]	
]	[COND=((code,operator)...)]	
		[CLASS=job-class]
		[PRTY=job-priorityl
I		[MSGCLASS=x1
]		[REGION=region-sizel?
		[TIME=(minutes, seconds)]?2
		[ADDRSPC=REAL
pommmm e S O {		
*MVT and VS only.		
2MVT and VS2 only.		
3VS only.		
L - - e e 1		
Figure I-3. Job Statement Format		
[T T T T T T T e oo oo —-—- o= 1		
] //CLH1 JOB NY237413,C.L.HARVEY, MSGLEVEL=1		
I		
//CLH2 JOB ,HARVEY,COND=(8, EQ),REGION=100K, TIME=60,		
] // CLASS=H, PRTY=10		
I		
//PROGRAM JOB 873, 'COVER-RAMSEY', MSGLEVEL=(1,1),MSGCLASS=C,		
// PRTY=10		
b e —————— _— e 1
Figure I-4. Sample JOB Statements
Using Job Control Statements 25

Table I-2. JOB Statement Functions

frmmm———m————— B e i e s 1
| Specification]| Purpose | How to Specify |
Y o R -
jobname	To identify the job to the	One to eight alphameric (alphabetic or
	operating system.	numeric) characters, the first of which must
		be alphabetic or one of the extended
		alphabetic characters #, a, or $.
poooommomoee- g e !		
accounting-	To identify the account	Up to 142 characters; if any special
information	number or other accounting	characters other than a hyphen, enclose in]
	information relating to the	apostrophes.
	job.	See "Specifying Accounting Information”
		for details. I
e P oo e y		
programmer-	To identify the person	Up to 20 characters; if special characters
{ name	submitting the job. lother than a period, enclose in apostrcphes.	
pommm oo T o e 1		
MSGLEVEL	To specify the type of	MSGLEVEL=(x,y), where x is 0, 1, or 2, to]
	system messages (i.e., job	indicate which job control statements and
	control statements,	diagnostic messages are to be written, and y
	diagnostic messages,	is 0 or 1 to indicate whether termination
	termination messages) to be	messages are to be written.
	written as part of the	See "Specifying System Messages"
	output listing.	for details.
pom e - T e T :		
COND	To specify those conditions	COND=((code,operator)...), where code is a
	that are to result in	number between 0 and 4095 (usually 0, 4, 8,
	program termination. {12, or 16) and operator is a 2-character	
		value that represents a comparison to be madej
		between code and a return code issued by the
		operating system. If the comparison is true,
		the job is terminated.
		See "Specifying Condition Codes to
		Terminate a Job" for details.
e + T I - - -		
CLASS	To assign an input class to	CLASS=job-class, where job-class is an alpha-
	the job.	betic character A thru O assigning the class
		represented by that character to the job.
pommm e oo T T 1		
PRTY	To assign a priority to the	PRTY=job-priority, where job-priority is a
	job.	number 0 through 13 assigning the priority
		represented by that number to the job; the
		higher the number, the greater the priority.
b - o e 1		
MSGCLASS	To assign an output class	MSGCLASS=x, where x is an alphabetic or
	to the job.	numeric character assigning the output class
		represented by that character to the job.
pommmmm oo oomemoe- -——4 —-		
TIME	To assign a time limit to	TIME=(minutes,seconds), where minutes is a
	the job.	number up to 1439, and seconds is a number up
		to 59.
L d e ————— A e e e e e e e e e e e e e e e J

(Part 1 of 2)

26

Table I-2. JOB Statement Functions (Part 2 of 2)
[m——m————————— B bt D e i st bttt 1
| Specification| Purpose | How to Specify |
; oo -———1 - -
| REGION | To assign storage to a job |For MVT, REGION=(nnnnn;XK[,nnnnn_.Kl}), where H
| |operating in the MVT or VS {nnnnn;K is a value up to 16383K and indicates|
| |environment. |the amount of storage to be allocated (K=1024]
| | |bytes); nnnnn,K is a value up to 2048K and |
] | |indicates the amount of additional storage to]|
		be allocated, usually from an IBM 2361 Core
		Storage device. For an IBM 2361 Model 1,
		nnnnn,K may be a value up to 1024K; for an
		IBM 2361 Model 2, nnnnny;K may be a value up
	[to 2048K. I	
		For VS, REGION=valueK, where valuekK
		represents the number of contiquous 1024-byte]
]	areas of real or virtual storage to be	
	lallocated. i	
		See "Assigning Storage to a Job Under MVT"%
		for details.
b= b oo o e e e		
ADDRSPC	To specify the mode of	ADDRSPC=REAL for real mode, and ADDRSPC=VIRT
	operation, real or virtual,	[for virtual mode.
	of the VS control program.	
Lmmm 1 R - _— -1
Specifying the Programmer's Name procedures, are written. When x=2, only
job control statements submitted with the
job (not taken from cataloged procedures)
The programmer's name is specified as the are written.
second parameter in the operand field. It

consists of a string of up to 20
characters. If it contains any special
characters other than a period, it is
enclosed in apostrophes.

Examples of the programmer-name
parameter are:

J.SMITH
' COVER-RAMSAY'

If this parameter is not present, no
comma is required to note the omission.

Specifying System Messages

The MSGLEVEL parameter is used to specify
whether job control statements and
termination messages are to be written.

MSGLEVEL has the format:
MSGLEVEL=(x,y)

The letter x represents a job control
message code and indicates whether job
control statements are to be written along
with program statements. The value of x
may be 0, 1, or 2. When x=0, the JOB
statement, job control statement errors,
and diagnostic messages are written. When
x=1, all job control statements, including
those appearing in called cataloged

The letter y represents a termination
message code and indicates whether
termination messages are to be produced.
The value of y may be 0 or 1, When y=0,
termination messages appear for normal
completion of the job; termination messages
appear for abnormal termination. Wwhen y=1,
termination messages appear under any
circumstances.

no

If the parameter is omitted, the default
values for x and y are those established by
the installation.

An example of MSGLEVEL is:
MSGLEVEL= (2, 0)

The example states that only control
statements submitted with the job are to be
written, and that termination messages are
to be written only if abnormal termination
occurs.

Specifying Condition Codes to Terminate a
Job

The COND parameter is used to specify which
condition codes terminate processing. It
is useful in helping the programmer reduce
computing time by making job continuation
dependent upon successful completion of a
previous job step.

Using Job Control Statements 27

The system issues a number, called a
return code, at the end of each job step.
The return code is an indication of how
well the job step ran, i.e., whether it
completed processing normally or whether
error conditions were detected. The COND
parameter indicates a comparison to be made
between the return code and the condition
code specified in COND; if the condition is
met, the job is terminated.

COND has the format:
COND=((code, operator) [, (code,operator)l...)
Ccode consists of a number., Operator
consists of two alphabetic characters

indicating a mathematical relationship
between the condition code and the return

code. There are six operators, as follows:
Operator Meaning
GT greater than
GE greater than or equal to
EQ equal to
NE not equal to
LT less than
LE less than or equal to

Up to eight sets of codes and operators may
be specified.

An example of COND is:
COND=((8,LT))
The example states that if 8 is less than
the return code issued by the system, the
job is to be terminated (any return code

less than or equal to 8 allows the job to
continue),

Assigning Job Priority

The CLASS parameter is used to assign a job
class; the PRTY parameter assigns a
priority within a class.

When a job is introduced to the system
it is assigned to an input queue according
to a code called a class. Main storage is
divided into a number of areas, each of
which handles jobs assigned a certain
class. When one job has completed
processing, that storage is given to the
next job having the same class. The
programmer determines the order in which
jobs are entered into the system by
specifying the CLASS parameter. He can
further refine the order in which jobs
within a class are entered into the system
by specifying the PRTY parameter.

28

CLASS has the format:
CLASS=a

The letter a indicates an alphabetic
character A throcugh 0. The meaning of the
characters is determined by each
installation at system generation time. If
the parameter is omitted, the default class
A is assumed.

PRTY has the format:
PRTY=n

The letter n indicates a number from 0
through 13; the higher the number, the
greater the priority. Whenever possible,
priority 13 should be avoided. This number
is used by the system for special
processing. If the parameter is omitted, a
standard default estaplished by each
installation is assumed.

An example of the CLASS and PRTY
parameters 1is:

CLASS=C, PRTY=10

Assigning an Qutput Writer

The MSGCLASS parameter is used to assign
messages to a specific output writer
through a class code.

The system assigns messages to a variety
of output devices according to the output
class. By assigning an output class, the
programmer directs output to a specific
device.

MSGCLASS has the format:
MSGCLASS=x

The letter x indicates an alphabetic or
numeric character. The meaning of the
characters is determined by each
installation at program installation time.
If the parameter is omitted, the default
class A (usually directed to a printer) is
assumed.

An example of MSGCLASS is:

MSGCLASS=B

Assigning a Time Limit to a Job

The TIME parameter is used to assign a
processing time limit. If the job is not

completed in the time specified, it is

terminated.
TIME has the format:
TIME=(minutes, seconds)

Minutes and seconds are expressed in
numeric characters. Minutes cannot exceed
1439; seconds cannot exceed 59. If a job
is expected to run longer than 24 hours,
the programmer may code TIME=1440 to
eliminate job timing. If the TIME
parameter is omitted, a default limit
established by each installation is
assumed.

If time is specified in minutes only,
the delimiting parentheses are not required
(e.g., TIME=10)., If time is specified in
seconds only, the parentheses and a comma
denoting the omission of minutes are
required (e.g., TIME=(,50)).

An example of TIME is:
TIME=(10,30)
The example states that the job may run up

to a maximum time of ten minutes and thirty
seconds.

Assigning Storage to a Job Under MVT

Under MVT, storage is assigned according to
the needs of each particular job. The
REGION parameter is used to specify the
amount of storage to be allocated. If the
parameter is omitted, a default size
established by each installation is
assumed.

The programmer may assign storage to
individual job steps rather than to the
entire job by coding the REGION parameter
in each EXEC statement instead.

REGION has the format:
REGION= (nnnnn,; K[, nnnnn,K1)

The term nnnnn;K indicates the number of
contiguous 1024-byte areas to be allocated.
The number specified may be from one to
five digits but cannot exceed the total
storage available., Parentheses are not
required if only nnnnn;K is specified
(e.qg., REGION=200K).

The term nnnnn,K is used only if the
installation has specified hierarchy
support. Hierarchy support indicates that
storage may be allocated from two regions,
one known as hierarchy 0, the other as

hierarchy 1. Hierarchy 0 is always
assigned from main storage and is specified
by nnnnn;K. Hierarchy 1 may be assigned
either from main storage or from the large
core storage device, IBM 2361 Model 1 or 2,
and is specified by nnnnn,K. If hierarchy
1 is assigned from main storage, the
combined value of nnnnn;K and nnnnn,K
cannot exceed the total storage available;
if hierarchy 1 is assigned from the IBM
2361, nnnnn;K cannot exceed 16383 and
nnnnn,K cannot exceed 1024 for an IBM 2361
Model 1 or 2048 for an IBM 2361 Model 2.

If storage is requested only from
hierarchy 1, a comma is required to
indicate the absence of nnnnn,X (e.q.,
REGION=(, 200K)).

An example of REGION is:
REGION=(100K,100K)

The example states that 200K bytes of

storage are to be assigned, 100K from
hierarchy 0 and 100K from hierarchy 1.

Assigning Storage to a Job Under VS

Storage can be allocated under the VS
control programs by use of the ADDRSPC and
REGION parameters.

The ADDRSPC parameter is used with the
VS control programs to indicate whether a
job or job step is to be run in real or
virtual mode. This parameter takes the
form ADDRSPC=REAL|VIRT, where REAL
specifies real mode and VIRT specifies
virtual mode. Most FORTRAN programs are
run in virtual mode as described under
"Operating System Control Programs" in the
Introduction, and the default value for
this parameter is ADDRSPC=VIRT. When
ADDRSPC=REAL is coded on a JOB or EXEC
card, all the pages of the job or job step
in question are brought into real storage
simultaneously and remain there for the
duration of the job or job step.

The REGION parameter for the VS control
programs takes the form REGION=valuek,
where valueK indicates the number of
contiguous 1024-byte areas of either real
or virtual storage (depending on the mode
of operation of the control program) to be
allocated to the job or job step in
question. There is no hierarchy support
under VS.

Under Vsl1l, in virtual mode, virtual
storage is automatically allocated in
partitions of installation-determined size
in a manner analogous to the allocation of
main storage under MFT. The REGION

Using Job Control Statements 29

parameter, if coded, is ignored when VS1 is
run in virtual mode. When VS1 is run in
real mode, the REGION parameter must be
coded to ‘indicate the number of contiguous
1024-byte areas of real storage to be
allocated, and valueK may not exceed the
total real storage available. If the
REGION parameter is not coded, a default
region of installation-determined size will
be allocated.

Under VS2, in virtual mode, the REGION
parameter may be used to specify the number
of contiguous 1024-byte areas of virtual
storage to be allocated, and valueK is
limited only by the addressing range of the
System/370. Under VS2 in real mode, the
REGION parameter must be coded to indicate
the number of contiguous 1024-byte areas of
real storage to be allocated, and valuekK
may not exceed the total real storage
available., If REGION is not coded, in
either virtual or real mode, a default
region of installation-determined size will
be allocated.

For a further discussion of storage
allocation under the VS control programs,
see the publication 0S/VS_Job Management
Services, Order No. GC28-0617.

EXEC STATEMENT

An EXEC statement indicates the beginning

The parameter indicating the program or
cataloged procedure to be executed is the
only one required and must be the first one
specified; all others are optional and may
appear in any order.

The EXEC statement also contains the
following information:

1. A job step name (a step name is
required only when it is necessary for
a later job step to reference
information from this job step)

2. Compiler, linkage editor, or other
options passed to the job step

3, conditions for bypassing the execution
of the job step

4, Accounting information relative to the
job step

5. A time limit for the step or cataloged
procedure
6., Main storage requirements

Figure I-5 illustrates the format of the
EXEC statement. Table I-3 summarizes the

of a job step and names the program or function of the EXEC statement. Figure I-6
cataloged procedure to be executed. shows sample EXEC statements.

r T B St 1
| Name | Operation | Operand |
b $-—mm- + - -—- -- e
]	Positional Parameter	
7/[(stepnamel	EXEC	{[PROC=]procedure—name
		PGM=program-name }
]
		Keyword Parameters
		[PARM=‘'option(,optionl..."
	i [ACCT=(accounting-information)]	
		[COND=((code, operator[, stepnamel) (...))
		[DPRTY=step-priorityl?
i		[TIME=(minutes, seconds)]t
		[REGION=region-sizel=
		{ADDRSPC=REAL
S A __ 1 e e {		
*MVT and VS2 only.		
2MVT and VS only.		
3Vs only		
G 1		
Note: To indicate the step of a cataloged procedure to which an option applies, any		
of the keyword parameters can be followed by a period and the name of the step to be		
executed; e.g., PARM.procstep=option		
L - e e e Pt o e 2 e o o e e 2 e o e e e e e e e e e e o e et s e ot e et s ot e e o o e e e e e e e o J
Figure I-5. EXEC Statement Format

30

Table I-3. EXEC

Statement Functions (Part 1 of 2)

r T D e -1
| Specification | Purpose] How to Specify |
O —— s St 1
{ stepname jTo permit other job steps to refer|One to eight alphameric characters, |
	to:	the first of which must be
		alphabetic or one of the extended
	1. The condition code resulting	alphabetic characters a, #, or $.
	from this step, and	
] 2« The data sets in this step.		
P O e 4		
procedure-name	To name the cataloged procedure to	procedure-name, Or
	be executed. A procedure-name	PROC=procedure-name, where
	initiates the processing of a	procedure-name is the name of the
	series of job control statements	cataloged procedure.
jthat has been previously written		
	in the system library,	See "Naming the Cataleged Prcceduref
] SYS1.PROCLIB, and cataloged in the	or Program to be Executed" for	
	system catalog.	details.
T o oo 1		
program-name	To name the program to be	PGM=program-name, where
	executed.	program-name is the name of a
: : iprogram. :		
		See "Naming the Cataloged Procedure
		or Program to be Executed" for
		details.
pommmmmm oo $-- T T -		
PARM	To specify program options.	PARM="*option[,optionl...', where
		option names a particular program
]option that is to be in effect
		during processing.
I		
		See "Specifying Program Options"
		for details in how to specify
		options. See the sections
		"Compilation” and "Linkage Editor
		and Loader" for descriptions of
		available options.
% T 1		
ACCT	To identify accounting information	ACCT=(valuel,valuel) where value
	relating to the job step.	indicates accounting information.
i I		
		See "Specifying Accounting
		Information" for details.
f——m e - - -—		
COND	To specify those condition codes	COND=
[from previous job steps that will	((code,operator({, stepnamel) (...)),	
	cause this job step to be	where code is a number between 0
	bypassed. fand 4095, operator is a two-	
]	character value that represents a	
		comparison to be made between code
		and a return code issued by a]
		preceding job step or the operating]
		system, and stepname is the name
		of the preceding job step issuing
		the return code.
[I I		
		See "Specifying Condition Codes
		to Bypass a Job Step" for details.
L L _— i - _-J

Using Job Control Statements 31

Table I-3. EXEC Statement Functions (Part 2 of 2)

it B i i R e bt bttt 1
| Specification | Purpose | How to Specify |
pommmm oo T frmm o .
DPRTY	To assign a priority to the job	DPRTY=(step-priority,n), where
	step.	step-priority is a number from 0
		to 15 that the system converts
		into an internal priority, and n
]	is a number from 0 to 15 that is	
		added to the internal priority to
		establish a step priority.
poom oo S At y		
TIME	To assign a time limit to the job	TIME=(minutes, seconds), where
	step. minutes is a number up to 1439,	
		and seconds is a number up to 59.
pommmm oo 4= -- + - -		
REGION	To specify the amount of main	For MVT, REGION=(nnnnn,;KI[, nnnnn;K1),
	storage to be allocated to a job	where nnnnnyK is a value up to

	step operating in the MVT	16383K and indicates the amount of
	environment.	storage to be allocated; nnnnn;K
		is a value that usually indicates
		the amount of additional storage
		to be allocated from an IBM 2361
i		Core Storage Device. For an IBM
	12361 Model 1, nnnnn;K may be any	
		value up to 1024K; from an IBM 2361
		Model 2, nnnnn,K may be any value

]	up to 2048K. The combined value of	
		of nnnnn;K and nnnnn,K may not
		exceed 16383.
		I
		For VS, REGION=valueK, where valueK
		represents the number of contiguousj
		1024-byte areas of real or virtual
l		storage to be allocated.
prmmmmm oo I et TG LT 1		
ADDRSPC	To specify the mode of operation,	ADDRSPC=REAL for real mode,
	real or virtual, of the Vs	ADDRSPC=VIRT for virtual mode.
]	control program. i	
b 1o S N J		
[T T T T T T T e e e e e e e e e e e e e — - 1		
] //STEPA EXEC PARM=(MAP, DECK)		
I		
//D0O EXEC PROC=FORTXCLG, PARM. LKED=DECK, ACCT=248		
// EXEC PGM=MYPROG, ACCT=NY12345,REGION=128K, TIME=3,		
// COND=(8,GT, HISPROG)		
e e e J

Figure I-6. Sample EXEC Statements

Naming an EXEC Statement

Stepname identifies the EXEC statement to
other control statements and permits them
to refer to information contained in the
Jjob step. Steps within cataloged
procedures should be given unique names so
that identification to the correct step can
be easily made.

32

Naming the Cataloged Procedure or Program
to_be Executed

The PROC parameter is used to specify a
cataloged procedure; PGM, to specify a
program.

The format of PROC is:

PROC=procedure-name

where:

rPL UbCUUL T laie
names the cataloged procedure to be
executed,

The word PROC is optional; if it is
omitted, PROC is assumed. For example, the
following are equivalent:

// EXEC PROC=FORTXCLG
// EXEC FORTXCLG

Note that a cataloged procedure does not in
itself execute a program; it permits
previously written job control statements
to be inserted into the job stream at the
point that the procedure was called. The
job control statements in the cataloged
procedure should contain at least one EXEC
statement having the PGM parameter which
names the program to be executed.

The PGM parameter may specify any load
module name accessible to the operating
system. For example, PGM identifies the
FORTRAN IV (H Extended) compiler as
PGM=IFEAAB; PGM identifies the linkage
editor as PGM=IEWL.

The format of PGM is:

program-name
PGM= {*,stepname,ddname

*, stepname. procstep. ddname

where:

program-name
names a program that resides in either
the system library or a private
library. The system library is a
partitioned data set named
SYS1.LINKLIB that stores
frequently-used programs such as
IFEAAB and IEWL. Private libraries
are partitioned data sets that store
groups of programs that are used by
individual users.

*, stepname. ddname
names a program found on a data set
defined in a previous job step of the
current job. The * indicates the

current job, "stepname" is the name of
the job step, and "ddname" is the name
of the DD statement defining the
program. (The "stepname cannot refer
to a job step in another job.i The
program referred to must be a member
of a partitioned data set.

This form of a program name is most
familiar to a FORTRAN programmer in an
execution step following a link edit
step. The linkage editor stores the
load module in the data set defined by
the SYSLMOD DD statement. For
example, in the following statements,
STEP4 executes the linkage editor.

The linkage editor stores the
resulting load module named ARCTAN
into the partitioned data set, MATH,
defined by the SYSLMOD DD statement.
STEP5 indicates that the program to be
executed (ARCTAN) is defined in the DD
statement SYSLMOD in the job step
named STEPY of the current job.

//XY% JOB ,JSMITH,COND=(7,LT)

PGM=I1EWL
DSNAME=MATH(ARCTAN)

.

//STEPU EXEC
//SYSLMOD DD

//STEPS5 EXEC PGM=%*.STEP4, SYSLMOD

*, stepname. procstep. ddname
names a program found on a data set
defined in a previously executed step
of a cataloged procedure. The *
indicates the current job, "stepname"
is the name of the job step that
invoked the cataloged procedure,
"procstep" is the name of a step
within the cataloged procedure, and
"ddname" is the name of a DD statement
that defines the data set within that
procedure step. Consider a cataloged
procedure, FORT, containing the
following statements:

//COMPFIL EXEC PGM=IExxx
//SYSPUNCH DD SYSOUT=B
//SYSPRINT DD SYSOUT=A

//SYSLIN DD

DSNAME=LINKINP

Using Job Control Statements 33

//LKED EXEC PGM=IEWL
//SYSLMOD DD DSNAME=RESULT (ANS)

Assume that the following
statements appear in the input stream:

//MAINJOB JOB ¢ SMITH, COND=(7, LT)
/781 EXEC PROC=FORT

/7/S2 EXEC
//FTO03F001 DD
//FT01F001 DD

PGM=%,S1.LKED. SYSLMOD
UNIT=PRINTER
UNIT=INPUT

Statement S1 calls the cataloged

procedure FORT.
nt S2 indicates that the program to be
executed is found on a data set described
by the DD statement SYSLMOD, located in the
procedure step LKED of the cataloged N
procedure FORT, which was invoked by the
statement S1. Consequently, the load
module ANS in the data set RESULT is
executed.

specifying Program Options

The PARM parameter is used to specify
program options applicable during execution
of a job step. Program options increase
the flexibility of a program by allowing
the programmer to choose the form of input
and output, the type of output, and
otherwise tailor the program to his needs.
A FORTRAN programmer may specify options
for the FORTRAN compiler, the linkage
editor, and the system loader.

See the sections "Compilation" and
"Linkage Editor and Loader" for a
discussion of these options.

If a PARM parameter is not specified,
the program being executed assumes default
values established at program installation
time. When the user's installation
receives a copy of the program product, it
will contain the default options indicated
in this publication. (Default values are
shown underlined in this publication.) The
user's installation can customize the
compiler for its needs and default options
may be permanently established at that
time.

PARM has the format:

34

PARM='option[,optionl..."
PARM.procstep=‘'option(,optionl..."

where:

procstep
is used when a cataloged procedure has
been specified in the PROC parameter.
Specified PARN options are to apply to
the job step in the cataloged
procedure identified by procstep. For
example, the following indicates that
changes are to be made to the FORT
step:

PARM. FORT ="' NOOBJECT"

option
indicates either a keyword that has an
intrinsic value to the program (e.g.,
LIST, SOURCE) or a keyword that is
assigned a value by means of an equal
sign or a pair of parentheses, for
example, LINECOUNT(nn). The option
field may contain up to 100 characters
of information.

The field of PARM options may be
enclosed in either apostrophes or
parentheses according to the following
rules:

1. If no individual option contains a
special character (such as an egual
sign or parenthesis), the programmer
may enclose the field in either
apostrophes or parentheses. For
example, either of the following
formats is valid:

PARM='LIST, SOURCE, NODECK"
PARM=(LIST, SOURCE, NODECK)

2. If an option contains a special
character, the programmer may enclose
either that option in apostrophes and
the entire field in parentheses, or
the entire field in apostrophes. For
example, either of the following is
valid:

PARM=(LIST, 'LINECOUNT (50) ', SOURCE)
PARM='LIST, LINECOUNT(50), SOURCE'

(This publication adopts the
convention of enclosing the entire
field in apostrophes,)

3. If the PARM parameter is continued
onto a following card, the programmer
must enclose the entire field in
parentheses and any individual options
containing special characters in
apostrophes. For example, only the
following is valid:

PARM=(LIST, ' LINECOUNT(50)"
NODECK)

+ SOURCE,

4. If only one option is specified, the
programmer need not enclose the option
in either apostrophes or parentheses
(except if that option contains a
special character, in which case
apostrophes are mandatory). For
example, any of the following is
valid:

PARM=LIST
PARM='LIST'
PARM=(LIST)

Specifying Accounting Information

The ACCT parameter is used to specify
accounting information for a job step.

Like the accounting parameter in the JOB
statement, the field may contain up to 142
characters and is enclosed in apostrophes
if it contains any special characters other
than a hyphen. Unlike the JOB statement
parameter, ACCT is a keyword parameter and
may appear anywhere in the operand field.

ACCT has the format:

ACCT.procstep—(value[valuel...)
where:

procstep
indicates in which step of a cataloged
procedure the accounting information
is to apply.

value
indicates some accounting information,
such as the account number to be
charged for machine time. If value
contains any special characters, it
must be enclosed in apostrophes. If
only one value is specified, it need
not be enclosed in parentheses.

An example of ACCT is:
ACCT='NYU432 777'.
Note that a blank is considered a special

character, requiring the use of
apostrophes.

Specifying condition Codes to Bypass a Job
Step

Tha C£COND narameotror 1o used +
The COND parameter

A=k e Sp iy
condition codes are to cause job step
processing to be bypassed.

Like the COND parameter in the JOB
statement, the parameter lists codes and
operators to test the return code issued by
the system. Unlike the JOB statement
parameter, if the condition is met, the job
step is not terminated but bypassed.

COND has the format:

COND=((code, operator{, stepnamel) (...))
COND. procstep=((code, operator(, stepnamel)
(eee))od))

where:

procstep
is used when a cataloged procedure has
been specified in the PROC parameter,
to indicate in which step of the
procedure the condition applies.

stepname
indicates the name of a previous job
step that issued the return code to be
tested against the code in COND.

The meanings of code and operator are
the same as described for the COND
parameter of the JOB statement.

An example of COND is:
COND.GO=((4, LT, FORT) (4, LT, LKED))
The example states that if 4 is less than
the return code issued by FORT or LKED, the
job is to be terminated (any return code

less than or equal to 4 allows the job to
continue).

Assigning Step Priority

The DPRTY parameter is used to assign a
dispatching priority to a job step. The
dispatching priority determines the order
in which job steps will use main storage
and CPU (central processing unit)
resources. If the parameter is omitted,
each job step is assigned the same priority
as the job, either through the JOB
statement PRTY parameter or by default.

DPRTY has the format:
DPRTY=(step-priority,n)
DPRTY. procstep=(step-priority, n)

Using Job Control Statements 35

where:

procstep
is used when a cataloged procedure has
been specified in the PROC parameter
to indicate in which step of the
procedure the dispatching priority
applies.

step-priority
is a number from 1 through 15
representing a priority. This
subparameter has the same meaning as
the PRTY parameter in the JOB
statement; that is, if PRTY=10 is
coded in the JOB statement and
DPRTY=10 is coded in the EXEC
statement, job and step priority are
the same. If the step priority is to
be different from that assigned to the
job, a different number is assigned.
The step-priority is converted by the
system into an internal priority; the
higher the number the greater the
priority. Whenever possible, the
number 15 should be avoided; this
number is reserved for certain system
tasks.

is a number from 0 to 15 that is added
to the internal priority to establish
the dispatching priority.

If the first value is omitted but the
second is specified, a comma is required to
indicate the absence (e.g., DPRTY=(,12)).
If the second value is omitted, the
delimiting parentheses are not required
(e.g., DPRTY=3).

An example of DPRTY is:
DPRTY=(10,9)
The example states that the number 10 is to
be converted into an internal priority and

the number 9 is to be added to the
resulting priority.

Assigning a Time Limit to a Job Step

The TIME parameter is used to assign a time

limit to the step. If not completed in the

time specified, the step is terminated.
TIME has the format:

TIME=(minutes, seconds)
TIME.procstep=(minutes, seconds)

where:
procstep

is used when a cataloged procedure has

36

been specified in the PROC parameter
to indicate in which step of the
procedure timing considerations apply.

If procstep is omitted, the time limit
applies to the entire procedure.

The meanings of minutes and seconds are
the same as described for the TIME
parameter of the JOB statement.

An example of TIME is:

TIME. FORT=5
The example states that the FORT step of a

cataloged procedure is to have a time limit
of five minutes.

Assigning Storage to a Job Step Under MVT

Under MVT the REGION parameter is used to
specify the amount of storage to be
allocated to a job step. A REGION
parameter specified on a JOB statement
overrides any EXEC statement REGION
parameters.

REGION has the format:

REGION={(nnnnn, K[, nnnnn,K1)
REGION. procstep= (nnnnn, K[, nnnnn;K1)

where:

procstep
is used when a cataloged procedure has
been specified in the PROC parameter,
to indicate in which step of the
procedure storage allocation applies.

If procstep is omitted, the allocation
applies to all steps of the procedure.

The meanings of nnnnnyK and nnnnnpK are
the same as described for the REGION
parameter of the JOB statement.

An example of REGION is:

REGION=100K
The example states that 100K bytes of

storage are to be allocated to the job
step.

Assigning Storage to a Job Step Under VS

Under the VS control programs, the REGION
and ADDRSPC parameters can be used to

specify the amount and type of storage to
be allocated to individual job steps. The

REGION and ADDRSPC parameters specified on
JOB statements override those specified on
EXEC statements. Rules for coding them are
the same as those described for the JOB
statement.

DD STATEMENT

DD statements describe and identify data
sets and the volumes in which they reside.
They also provide instructions for their
proper handling and disposition. DD
statements supply information which is used
by the job scheduler to alleocate
input/output devices and by data management
to supervise the input/output operations.

The DD statement is concerned with the
data set, records within the data set, and
the location of the data set.

The DD statement specifies the following
information:

1. A name for the DD statement

2. The location of the data set in the
system's resources

3. The name of the data set

4., The status of the data set at the
beginning and end of the job step

5. Labeling information for the data set
volume

6. Data set allocation to optimize the
use of input/output channels

7. The type of input/output device on

which the data set resides

8. ©Space allocation for data sets on
direct access devices

9. Characteristics of the records in the
data set

Figure I-7 illustrates the format of the
DD statement. Figure I-8 shows sample DD
statements. Table I-4 summarizes the
functions of the DD statement parameters.

Positional Parameters

*

/7 (ddname }
procstep. ddname

DATA
DUMMY

Keyword Parameters

VOL

Fiqure I-7. DD Statement Format

[_{VOLUME) (SER=serial- number)]

DSNAME
DSN
FHSP=(subparameter-list1

SYSOUT=x

[LABEL=(subparameter-1list}]
[COPIES=number]® :
[SEP=(ddname(,ddnamel...)]
[DLM=delimiter]*

[UNIT=(devicel, SEP=(ddname, «..11}1]

T
|

+

|

|

|

|

|

|

|

I

|

|

|

I

| DDNAME=ddname
I

|

|

I

|

I

!

I

|

I

|

I

|

I

|

| {SPACE=(subparameter-1list)]
|
|
1

REF=ddname

}=data—set—name

Using Job Control Statements 37

&
I
2
=
{(D

]
»
]
}%
[
o
(%)

Im
X
[\
5
’-J
)
T

[o — e o s o . o et o ot i W e, i . . s S i S e sy

Directing a data set to the printer:

//SYSPRINT
Creating a
//FT14F001
Creating a

//FT89F001
/7

Creating a
//FT31F001
/77
7/
Retrieving
//FT89F001

Retrieving

//FT37F001

Figure I-8.

38

DD SYSOUT=A

temporary data set (created and deleted within the same job):
DD DSNAME=§&&6TEMP, UNIT=SYSSQ
permanent data set:

DD DSNAME=MINE, VOLUME=SER=8342,UNIT=2400,
DISP=(NEW, KEEP) , LABEL=(, SL, EXPDT=71365)

permanent cataloged data set:
DD DSNAME=MATRIX,DISP=(NEW, CATLG, DELETE),
UNIT=2311, VOLUME=SER=AA69, SPACE=(TRK, (50,5, ROUND)) ,
DCB=(RECFM=FB, LRECL=604, BLKSIZE=1208)
the permanent uncataloged data set defined in Example 3:
DD DSNAME=MINE, VOLUME=SER=8342, UNIT=2400,DISP=(OLD)
the cataloged data set defined in Example U4:

DD DSNAME=MATRIX,DISP=(OLD)

Sample DD Statements

|
t

Lo o e e T — ——— — — — . — o, —— — — — — — o, S o . 0

Table I-4. DD Statement Functions (Part 1 of 3}
r T -—= - —-—= T - -
| Specification | Purpose | How to Specify |
O —— o T 1
|ddname | To identify the DD statement to | One to eight alphameric characters,|
i | other job control statements | the first of which must be |
| | that may need to refer to it. | alphabetic or one of the extended |
| | | alphabetic characters #, a, or $. |
T T B]
procstep.ddname	To identify the DD statement in	Procstep and ddname are each
	the particular jobstep identified	specified as one to eight alpha-
	as procstep.	meric characters, the first of
		which must be alphabetic or one of
		the extended alphabetic characters.
]		Procstep and ddname are separated
		by a period (.).]
pommmmmm oo +--- - 1- -		
] *	To indicate that the data set	When * is used, i
	appears in the input stream	
		¢ The data set must appear
		immediatedly following the DD *
		statement;
		e No other parameter except the
		DCB parameter has meaning on
		the DD statement.
	[
		See "Data Set Location" for i
]	details.	
e T oo o 1		
DATA	To indicate that the data set	When DATA is used, i
	appears in the input stream and]
	contains job control statements	o The data set must appear
	that are to be read as data and	immediately following the DD
	not as instructions. Used, for	DATA statement;
	example, when job control state-	¢ No other parameter except the
	ments are being entered into the	DCB parameter has meaning on
	system catalog as a cataloged	the DD statement, i
	procedure.	
		See "Data Set Location" for
		details.
pommmmmmmmmm oo t---—- $o—m- -—- —		
DLM	To specify a delimiter other than	DLM=delimiter, where delimiter
	/* to terminate a group of data	is any combination of two char-
i	in the input stream.	acters that will indicate the end
		of a group of data in the input
		stream.
F pommm oo oo cmmmemmmmees o m o o e 1		
DUMMY	To identify a data set on which	See "Data Set Location" for
	no operations are to be	details.
	performed (such as to defer	
	processing a data set in a	
	program segment that has already	
	been tested).	
P mm oo oo oo oo o o 1		
VOLUME	To identify the volume in which	VOLUME=SER=serial-number, where
	the data set resides.	serial-number consists of one
		through six alphameric characters
		identifying the volume, or
		VOLUME=REF=ddname, where ddname is
		the name of another DD statement
		and indicates that the data set is
		to share the same volume as the
		data set defined in ddname.
		See "Data Set Location" for
]	details.	
. A e e A e d
Using Job Control Statements 39

Table I-u.

O
Specification

DDNAME

s

DD Statement Functions (Part 2 of 3)

indicate that the data set is
have the same characteristics
a data set defined in another
statement,

name the data set or a member
a partitioned data set.

‘—————

To indicate whether the data set
is new or o0ld, and whether it

is to be kept or released at the
end of the job step.

To assign the output of the data
set to an output class.

To obtain between 1 and 255 hard
copies of the output data set.

To assign such information as
labels, whether the data set is
protected from unauthorized
processing, and how long the data
set should be kept.

o e e e e e e e s o i . — i . it o e S o . e . o i

____________________________________ 1
How to Specify

____________________________________ 4
DDNAME=ddname, where ddname is the |
name of another DD statement or the|
characteristics of the data set |
defined in ddname.

.................................... 4
DSNAME=data-set-name, where
data-set-name is the name of a
permanent data set, a temporary
data set, a member of a partitioned
data set, or a reference to a data
set defined in another DD
statement.

See "Data Set Identification"
details.
DISP=(subparameter-list), where
subparameter-list indicates:

for

® The disposition of the data set
at the beginning of the job
step (i.e., whether new or old)
The disposition to be made of
the data set at the end of the
job step (i.e., whether to be
kept, deleted, or passed to
another job step),

The disposition to be made of
the data set if abnormal
termination occurs (i.e.,
whether to be kept or deleted).

See "Data Set Disposition™ for
details.

SYSOUT=x, where x is an alphabetic
or numeric character assigning the
output class represented by the
character to the data set.
SYSOUT=A is usually specified for
printer output, SYSOUT=B for card
punch output.

See "Data Set Disposition" for
details and VS options.
COPIES=number, where number is
between 1 and 255,

|
|
|
|
|
[
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
|
4
|
I
|
|
|
|
|
|
|
|
4
|
|
4
See "Data Set Labels" for details. |
I
|
I
|
4

To assign the data set to a
different input/output channel
from the data set defined in
ddname.

o

40

SEP=(ddnamel, ddnamel...), where
ddname is tne name of another DD
statement.

|
|
I
|

________ -1

Table I-4., DD Statement Functions (Part 3 of 3)

== ————————— B e it B J ettt 1
| Specification | Purpose | How to Specify |
b + + -1
|UNTT ! To identify the input/output | UNIT={devicel,SEP={ddname, «s.3i i, i
| | device or device class on which | where device is a number or name |
| | the data set resides. | identifying the device and ddname |
| | | is the name of another DD]
| | | statement, SEP=ddname... is used |
| | | only for data sets on direct access|]
		devices and only when the data set
		is not to share device access arms
		with the data set defined in
		ddname.
		I
		See "Assigning a Data Set to an i
		Input/Output Device" for details.
i oo e e		
SPACE	Used only for a data set in a	SPACE=(subparameter-1list), where
	direct access volume, to	subparameter-list indicates
	allocate space to the data set.	whether space is to be allocated to]
]		a specific address or to any
		location in the direct access
		volume, and the amount of space to
		be allocated.
I		
i i	See "Assigning Space to a Data Set	
		on a Direct Access Volume" for]
		details.
poommmmmm oo -~ +		
DCB	To identify the characteristics	See "Defining Record
	of the records in a data set.	Characteristics" for details.
[, 1 1 -
DD Statement Uses statements. The DD statements are
equated to the data set reference
numbers through the DDNAME parameter
DD statements define the following types of which identifies the DD statement.
data sets: The ddname format for data sets used
in FORTRAN load module execution is:
1. System data sets. These include
SYSIN, SYSPRINT, SYSPUNCH, SYSLIN,
SYSLMOD, SYSUT1l, and SYSUT2. These FTxxFyyy
data sets are used by various system
components as work areas and temporary where xx is the data set reference
storage areas, and are necessary for number and yyy is a FORTRAN sequence
the execution of the compiler, linkage number (usually 001). The data set
editor, and loader. reference number is nothing more than
a numeric means of equating FORTRAN
2. FORTRAN load module data sets. If the input/output statements with the
FORTRAN programmer uses cataloged proper data set definition; it has
procedures and the standard data set nothing to do with the physical
reference numbers (5 for card input, 6 address of the device or its type.
for printer output, and 7 for
punched-card output), there is no need 3. A sequential data set on which a dump
to supply DD statements for those data can be written in the event of an
sets; they are contained in the abnormal termination. Definition of
cataloged procedures, this data set automatically requests
the dump facility; if no data set has
If the FORTRAN programmer uses other been defined for dump output, it is
forms of input/output, such as bypassed. A ddname of SYSUDUMP
magnetic tape or disk, it is necessary specifies a dump of the problem
to define those data sets with DD program area. A ddname of SYSABEND

Using Job Control Statements 41

specifies a dump of the problem
program area and the system nucleus.

4, Concatenated data sets (data sets
temporarily joined together), usually
consisting of one or more private
libraries and the system library
SYS1.LINKLIB. In other words, the
system library and the specified
libraries will be combined temporarily
to form one library. A ddname of
STEPLIB will retain the concatenated
library for the duration of the job
step; a ddname of JOBLIB will retain
the concatenated library for the
duration of the job.

In theory, all DD statement parameters
are optional; that is, no one parameter is
required for all DD statements. In
practice, however, some parameters are
required to describe a function properly.
For example, to create a permanent data
set, the DISP, UNIT, and DSNAME parameters
are required; to create a permanent data
set on a particular direct access volume,
the VOLUME and SPACE parameters are also
required.

Naming a DD Statement

The ddname identifies the statement to
other control statements and relates the
data set to I/0 statements in the FORTRAN
source module., The name may be a qualified
name with the format procstep.ddname to
associate the DD statement with a cataloged
procedure job step, such as FORT.SYSIN.

Data Set Location

The *, DATA, or VOLUME parameters are used
to specify a data set's location. The
DUMMY parameter is used to inhibit I/O
operations on a data set.

The * parameter defines a data set in
the input stream, usually a card deck or a
data set in card image form. An example of
the * parameter is:

//DSET1 DD *

The data set is physically placed after the
DD * statement, and it must be followed by
a /* statement to denote the end of the
data set.

The DATA parameter also defines a data
set in the input stream. It is used in
place of the * when the data set contains
records having the characters // in columns
1 and 2.

42

An example of DATA is:
//DSET2 DD DATA

When either the * or the DATA parameter
is used, no other operand in the DD
statement has meaning except the DCB
parameter which may specify block and
buffer information for the data set, e.q.,

DCB=(BLKSIZE=800, BUFNO=2)

(The DCB parameter is discussed in the
section "Defining Record Characteristics.")

In addition, under VS, the DLM parameter
may be coded with the * or DATA parameter
to allow the programmer to specify a
delimiter other than /* to terminate a
group of data in the input stream. By
assigning a different delimiter in the DLM
parameter, the programmer can include a
standard delimiter (/%) as data in the
input stream.

The DLM parameter has the format:
DLM=delimiter

where delimiter is any combination of two
characters that will indicate the end of a
group of data in the input stream. (If the
delimiter contains any special characters,
it must be enclosed in apostrophes.)

An example of the use of the DLM
parameter is:

//DD1 DD

*, DLM=AA

Data

AA

This example shows the DLM parameter
being used to assign the characters AA as
the valid delimiter for the data defined in
the input stream by DD1.

VOLUME specifies the location of a data
set not in the input stream (i.e., it is
used for data sets residing on tape or in
direct-access volumes). The parameter is
required when creating a new data set if
the programmer wants the data set assigned
to a specific volume; if the parameter is
omitted, the data set is assigned to any
available volume. The parameter is
required when retrieving an existing data
set except if the data set has been
cataloged. The VOLUME parameter contains
many subparameters. Two subparameters most
useful to the FORTRAN programmer are SER
and REF. SER specifies the volume serial
number. REF specifies the name of another
data set or the name of another DD

statement and indicates that more than one
data set is to share the same volume.

The format of VOLUME=SER is:
VOLUMF=SER=serial-number
where:

serial-number
is a 1 to 6 character serial number.

An example is:

YIAT TIRATI
vVuLurin=

The format of VOLUME=REF is:

dsname

*, ddname

*, stepname. ddname

*, stepname, procstep.ddname

VOLUME=REF=

See Table I-5 for an explanation of the
data set name formats.

An example of VOLUME=REF is:
VOL=REF=#%, DDNAM

The example states that the data set is to
share the same volume as the data set
described on the DD statement DDNAM in the
current job. Note that VOLUME may be
abbreviated VOL.

For a discussion of the other
subparameters available in the VOLUME
parameter, see the appropriate job control
language reference publication, as listed
in the Preface.

The DUMMY parameter is used to prevent
input/output operations on the data set. A
WRITE statement is recognized but no data
‘is transmitted. A READ statement is
recognized but permits further processing
only if the END= option is specified; if
the option is not specified, a read causes
an end of data set condition and
termination of load module execution.

Data.Set Identification

DSNAME and DDNAME are used to identify a
data set.

DSNAME specifies either the name of the
data set or the name of an earlier defined
DD statement that identifies this data set.
DDNAME specifies the name of a DD statement
to he defined later which is to identify
this data set.

DSNAME has the format:

dsname
dsname (member)
DSNAME & §dsname
= { £§dsname (member)
DSN *, ddname
*,.stepname.ddname
*, stepname, procstep. ddname

See Table DD3 for an explanation of the
data set name formats.

Examples of DSNAME are:

DSNAME=DSET
DSN=LIB(PROG1)
DSNAME=#%. FORT. SYSLIN

The first example states that the data set
name is DSET. The second example states
that the data set is a partitioned data set
named LIB and that the DD statement defines
the member named PROG1l. The third example
states that the data set is the one defined
in the DD statement named SYSLIN occurring
in the job step named FORT. (This last
example is how loader cataloged procedures
define the object module resulting from the
compilation job step.)

DDNAME has the format:
DDNAME=ddname
where:
ddname

is the name of another DD statement.

When this parameter is used, no other
parameter except the DCB parameter may be
specified on the DD statement.

An example of DDNAME is:

DDNAME=FT08F001
The example states that data set definition

is to be found on the DD statement named
FTO08F001.

Using Job Control Statements 43

Table I-5. Data Set Names

r - - T T -—- It ittty 1
| Format | Description | Example |
b t-----—-—— t-— - -—1
| dsnametl |A data set named dsname | NAME |
| | | I
dsnamel(element)?	A member of a partitioned data set	MYPROG(PROGA)
&&dsname?2	A temporary data set, to be deleted at the	&§&§TEMP
	end of the job	
86dsname(element)2	A member of a temporary partitioned data	&&TEMPP(PROG)
1>	%	
.ddname?	A data set defined in another DD statement	#.SYSPRINT
	within the current job step	
*.stepname.ddnamet	A data set defined in another DD statement	*.STEPA.SYSPRINT
	but in an earlier job step named stepname	
lof the current job		
		I
*.stepname.	A data set defined in a DD statement in	*.STEPA.LKED. SYSPRINT
procstep.ddnamel	the cataloged procedure step named	
	procstep called by the job step named	
	stepname.	
IS S S P 4		
*This format may appear in the DSNAME, VOLUME, and DCB parameters		
2This format may appear in the DSNAME parameter only		
L e e e e e e e e e e e e e e e e e e e o e e e e i e e e J

Data . Set Disposition

The SYSOUT and DISP parameters indicate the
status of a data set.

SYSOUT directs data set output to a unit
record device such as a printer or a card
punch device class. Table I-6 summarizes
device classes.

The format of SYSOUT is:
SYSOUT=x
where:
X
is an alphabetic or numeric character
that assigns the data set to the
device class represented by the
character.
An example of SYSOUT is:
SYSOUT=B
The example states that the data set is to
be directed to the device class B, usually
a card punch.
Under the VS1 and VS2 control programs,

the programmer has the additional options
of using the SYSOUT parameter to specify a

44

program in the system library which will
write the output data set, as well as a
special output form on which the data set
is to be printed or punched.

The format of the VS SYSOUT parameter
is:
SYSOUT=(x

s program name| [, form numberl)

where:

b4
is as described above.

s Program name
is the member name of a program in the
system library (other than the system
output writer) that is to write the
output data set to a unit record
device.

specifies that the system output
writer is to write the output data set
to a unit record device, and a form
number follows.

, form number
is from 1 through 4 alphabetic or
numeric characters (including a, §,
and #) which specify that the output

data set is to be printed or punched
on a special output form.

The parentheses are optional if the program

name and form number zre omitted.

An example is:

SYSOUT=(F,, 7402)

The example specifies that the data set is
to be written by the system output writer
to a unit record device corresponding to
class F. The data set is to be printed on
a special form. The form number is 7402,

Under VS, the programmer may also use
the COPIES parameter in conjunction with
the SYSOUT parameter to obtain between 1

and 255 copies of the output data set.
The format of the COPIES parameter is:
COPIES=number
where number may be between 1 and 255.
An example is:
//RECORD DD SYSOUT=W, COPIES=32

The example is a request for 32 copies of
the data set RECORD to be produced by a
unit record device corresponding to class
w.

If fewer than 1 or more than 255 copies
are specified, or if the COPIES parameter
is coded without an associated SYSOUT
parameter, the job will be canceled.

The DISP parameter indicates the status
of a data set not on a unit record device,
It contains three subparameters, the first
describes the data set status at the
beginning of the job step, the second the
disposition of the data set at the end of
the step, and the third the data set's
disposition if an abnormal termination
occurs.

The format of DISP is:

E KEEP + KEEP
DISP= (|OLD , DELETE , DELETE)
SHR s CATLG ¢+ CATLG
MOD » UNCATLG UNCATLG,
, PASS
where:
NEW

describes a data set that is being
created in the current job step. 1If
the status is NEW, that subparameter
may be omitted (NEW is the assumed
value) by indicating its absence with
a comma.

OLD
describes a data set that existed
before the current job step.

describes an existing data set which
resides on a direct-access volume that
is also available to other
concurrently-operating jobs.

MOD
describes a sequential or partitioned
data set that is to be added to.
Before the first input/output
operation occurs, the data set will be
automatically positioned after the
last record.

KEEP
specifies that the data set is to be
retained for future use in other jobs.
KEEP is the default value for old data
sets.

DELETE
specifies that the space occupied by
this data set is to be released and
made available for other uses. If the
data set was cataloged, the entry for
it will be removed from the catalog.
If the data set resides on a
direct-access volume, the entry for
the data set will be removed from the
volume table of contents. Once this
disposition has taken place, the data
set will have ceased to exist. DELETE
is the default value for new data
sets.

CATLG
specifies that a catalog entry that
points to the data set is to be
entered in the system catalog. The
data set can then be referred to by
name in subsequent jobs or job steps.
CATLG implies KEEP.,

UNCATLG
specifies that the catalog entry that
points to the data set is to be
removed from the system catalog.
UNCATLG implies KEEP., If the data set
resides on a direct-access volume, the
entry for the data set will remain in
the volume table of contents. The
area occupied by the data set is still
reserved for the data set, and is not
released.

PASS
specifies that the data set is to be
used in a later job step. A DD
statement in a later job step can
reference the data set using the
DSNAME parameter format
*, stepname. ddname. The final
disposition of the data set should be
given in the last job step that uses

Using Job Control Statements U5

the data set. When a data set is in
the PASS status, the volume on which
it resides remains mounted.

If the third subparameter is not
specified, the disposition is the same as
that specified in the second subparameter;
if the second subparameter specifies PASS,
the status of the data set reverts to the
status it had before the job step that
passed it. In other words, if the data set
had an initial disposition of OLD, MOD, or
SHR, the data set is kept; if it had an
initial disposition of NEW, it is deleted.

Examples of the DISP parameter are:

DISP=(NEW, CATLG, DELETE)
DISP=(OLD,DELETE, KEEP)
DISP=SHR

The first example specifies a new data set
that is to be cataloged; if abnormal
termination occurs, information in the data
set is considered useless and the data set
is deleted. The second example specifies
an existing data set that is to be deleted;
if abnormal termination occurs, information
in the data set is needed and the data set
is retained so that it may be resubmitted.
The third example specifies an existing
data set that is to be shared with other
jobs; it is implicitly retained. Note that
if only the first subparameter is specified
the delimiting parentheses may be omitted.

Table I-6. Device Class Names
------------------------ k Anfintatetette ittt
| Class| | |
| Name | Class Function | Device Type |
----- O s S e
| SYSsSQ| Reading, Writing | Magnetic Tape |
| | (sequential) | Direct Access |
O pommmmm oo —mmmmmmee- 1
SYSDA	Reading, Writing,	Direct Access
	Updating	
	(direct)	
p-—————14 % 1		
A	Printed Line	Printer
	output	Magnetic Tape
]		Direct Access
e e 1		
B	Card Image	card Punch
	Output	Magnetic Tape
		Direct Access
[T § L 3

Assigning a Data Set to an Input/Output
Device

The UNIT parameter assigns a data set to a
device. The device may be identified by
its identification number (e.g., 2400 for
tape, 2311 for a disk), or by its device

4e

class name (e.g., SYSSQ for devices
containing sequential data sets). A device
class is a group of input/output devices
performing similar functions, which is
given a collective name. Device class
names are assigned at program installation
time. See Table I-6 for a summary of
device class names supplied by IBM.

For data sets residing on direct access
devices, the UNIT parameter may also
specify those data sets that are not to
share the same device access arms, thereby
increasing operating efficiency for data
sets whose input/output operations occur at
the same time; these other data sets are
identified by naming the DD statements
defining them.

The format of the UNIT parameter most
applicable to FORTRAN programs is:

device-type
UNIT ¢ [, SEP=(ddname, «..) 1)

group-name
where:

device type
identifies an input/output unit by its
device number. For example, to
request a 2400 Magnetic Tape Device,
UNIT=2400 is specified; to request a
2311 Disk Storage Unit, UNIT=2311 is
specified. See "Appendix C: Unit
Types" for a list of device types that
can be specified in the UNIT
parameter.

groupname
identifies a device class name,
as SYSsQ.

such

ddname
identifies a DD statement defining a
data set that is to be on a separate
device access arm from the data set
defined in the current DD statement.
Up to eight ddnames may be specified.

Examples of UNIT are:

UNIT=SYSDA
UNIT=(2311, SEP=DDNAME1l, DDNAME3)

The first example states that the data set
may be assigned to any unit in the SYSDA
device class. Note that parentheses are
not required if only one value is
specifieds The second example states that
the data set is to be assigned to a 2311
device and is to use different access arms
from the data sets described in DD
statements DDNAME1 and DDNAME3.

For a discussion of the other
subparameters available in the UNIT
parameter, see the appropriate job control

language reference publication, as listed
in the Preface.

Assigning Space. to a Data Set on a Direct
Access Volume

The SPACE parameter is used to allocate
space to data sets residing on direct
access volumes. This parameter is required
when defining a new data set on a direct
access volume.

To assign space anywhere within a

volume, the SPACE parameter has the format:
TRK
SPACE=(< CYL
block-length
(,primaryl[,secondary] [,directoryl)
[, RLSE]
{,CONTIG]
[, ROUND])
where:
TRK

specifies that space is to be
allocated in number of tracks.

CYL
specifies that space is to be
allocated in number of cylinders.

block-length
is a number indicating the average
length of a block of records in the
data set; the system is to allocate
space according to the block length
specified.

primary
is a number indicating the amount of
tracks, cylinders, or blocks to be
allocated.

secondary
is a number indicating the amount of
tracks, cylinders, or blocks to be
allocated if additional space is
required. Additional space is
allocated up to fifteen times.

directory
is a number indicating the amount of
blocks of 256-byte areas to be
allocated for the directory of a
partitioned data set.

RLSE
is a keyword indicating the unused
space may be released at the end of
the job step.

CONTIG
is a keyword indicating that space is
to be assigned contiguously within the
volume.

ROUND
is a keyword indicating that space to
be allocated must be equal to one or
more cylinders.,

Examples of this form of the SPACE
parameter are:

SPACE= (TRK, (10,10,2))
SPACE=(400, (5, 5), CONTIG,RLSE)

The first example states that space is to
be allocated in tracks; 10 tracks are to be
allocated initially; 10 additional tracks
are to be allocated as needed; additional
space is to be reserved for 2 records of a
directory.

The second example states that space is
to be allocated according to the size of
each block of records (400 bytes). Space
to accomodate five blocks is to be
allocated initially. Space to accomodate
five more blocks is to be allocated as
needed up to a maximum of 15 times. Space
is to be assigned contiguously. Unused
space may be released at the end of the job
step.

Data Set Labels

The LABEL parameter is used to specify
label information for a data set. Labels
are used by the control program to store
information about the data set and to
identify the volume on which it is
contained. Data sets on direct access
volumes always have labels, data sets on
magnetic tape volumes usually have labels,
and data sets on unit record devices never
have labels.

The LABEL parameter consists of four
positional subparameters and one keyword
subparameter (any subparameter not
specified must have its position noted by a
comma, except the last subparameter).

The first subparameter indicates the
position of the data set relative to other
data sets sharing the volume (tape only).
The second subparameter identifies the type
of label associated with the data set. The
third specifies whether the data set is
protected against unauthorized processing.
The fourth specifies whether the data set
is to be processed for input or output
operations only. The fifth specifies a
date when the data set may be released.

Using Job Control Statements 47

LABEL has the format:
LABEL= ([sequence numbef]
1]
. SL [,PASSWOR?] , IN
. NL , , OUT

AL
, BLP

,EXPDT=yyddd]
[,RETPD=nnnn

where:

sequence-number
is used only for data sets residing on
magnetic tape to specify which data
set is to be processed in a volume
containing more than one data set
(e.g., 3 specifies the third data
set). The subparameter may consist of
up to four digits. If the data set is
the first or only data set in the
volume, the subparameter need not be
coded; the default value is 1.

specifies the absence of a
subparameter when following
subparameters are specified.

SL
specifies that the data set has
standard system-created labels.

NL
specifies that the data set has no
labels.

AL
specifies that the data set has ASCII
labels (American National Standard
code for Information Interchange, a
system of coding computer-processed
characters differently from the IBM
standard EBCDIC). ASCII data sets can
reside only on magnetic tape.

BLP
specified that label processing for
the data set is to be bypassed.

PASSWORD
specifies that the data set is
protected by a password. In order to
access the data set the operator must
issue the correct password on the
system console. Password-protected
data sets must have standard labels.

IN
specifies that the data set is to be
processed for input operations only.
IN will be recognized only if the
first input/output operation is a
READ. If it is not a READ, IN is

48

ignored and both input and output
operations are permitted; if it is a
READ, any subsequent WRITE will be
treated as an error and job processing
is terminated. 1IN also permits a
password-protected data set to be read
(if the correct password is supplied)
and avoids the need of operator
intervention when reading a data set
having a high expiration date (for an
explanation of the expiration date,
see the description of EXPDT). IN
must be specified to read a
partitioned data set or number.

ouT
specifies that the data set is to be
processed for output operations only.
OUT will be recognized only if the
first input/output operation is a
WRITE. If it is not a WRITE, OUT is
ignored and both input and output
operations are permitted. If it is a
WRITE, any subsequent READ will be
treated as an error and job processing
is terminated. OUT must be specified
to create a partitioned data set or
member and WRITE operations only may
be specified.

EXPDT=yyddd
specifies a date when the data set can
be deleted. The date is expressed as
a 2-digit number for the year and a
3-digit number for the number of the
day in the year (e.g., 72100 indicates
that the data set may be released on
the 100th day of the year 1972).

RETPD=nnnn
specifies the number of days that the
data set is to be kept.

Examples of LABEL are:

LABEL= (3, SL)
LABEL=(, SL, , OUT, EXPDT=71196)

The first example states that the third
data set of a magnetic tape volume has
standard labels. The second example
specifies a data set with standard labels
which is used only for output operations
and which may be released on the 196th day
of 1971.

Assigning Channel Use

The SEP parameter indicates a data set that
is to be assigned to a different channel
from other data sets.

A channel is a small control unit that
manages data transmission operations
between a number of input/output devices

and the system's central processing unit.
Processing time may be shortened by the use
of separate channels; assigning data sets
whose input/output operations occur at the
same time to separate channels increases
the speed of input/output operations.

SEP has the format:
SEP=(ddname, ¢«.)
where:

ddname
is the name of a DD statement whose
data set is not to share the same
channel as the data set being defined.
Up to eight ddnames may be specified.
If only one ddname is specified, the
enclosing parentheses are not
required.

An example of SEP is:
SEP= (NAMEA, NAMEB, NAMED)
The example states that the data set being
defined is to be assigned to a separate

channel from the data sets defined on DD
statements NAMEA, NAMEB, and NAMED.

Defining Record Characteristics

The DCB parameter defines characteristics
of records in a data set. The parameter
may specify the following:

¢ Record format, i.e., whether records
are fixed-length (all records in the
data set are of equal length),
variable-length (records are of
different length), or undefined-length
(no record length information has been
stated).

* Record length. For variable-length
records, the record length specifies
the length of the largest record.

e Block information, i.e., whether
records are accessed individually
(unblocked) or in groups (blocked),
the block size of blocked records.

and

¢ The number of buffers to be assigned to
a data set when data is transmitted
between system devices.

e Information identifying ASCII data
sets.

e Options to describe characteristics of
data sets residing on tape.

¢ Options to describe characteristics of
data sets residing on direct access
devices, :

¢ Characteristics of data sets to ke

wdead STTS

taken from another data set.

If the parameter is not specified, default
values are supplied according to the data
set description presented by other
parameters in the DD statement. Table C1
in the section "Compilation" lists DCB
defaults for compiler data sets; Table I-12
in the section "Load Module Execution"
lists DCB defaults for load module data
sets.

The format of the DCB subparameter 1is:

DCB=([data-set-namel
[, RECFM=record-format]
[, LRECL=record-lengthl
[, BLKSIZE=block-lengthl]
{, BUFNO=number-of-buffers]
[, BUFOFF=block-prefix]
[, DEN=tape-densityl
[, TRTCH=tape-recording-techniquel
[, DSORG=direct-access-organization]
[, OPTCD=0optional-services]

The data-set-name subparameter indicates
that DCB attributes are to be taken from a
data set defined earlier. Other DCB
subparameters may be coded on the same DD
statement to override any of the attributes
taken from the earlier data set. The
data-set-name subparameter is specified as:

dsname

*, ddname

*, stepname.ddname
_*.stepname. procstep. ddname)

data-set-name=

The form that data-set-name may take is
summarized in Table I-5.

An example of dsname is:
DCB=#*,STEP1.SMITH2
The example states the data set is to have
the same characteristics as the data set
defined in the DD statement SMITH2
appearing in job step STEP1.

RECFM is specified as follows:

RECFM= (Bl [s] [ﬁ] [T}

cou <

where:

F
indicates fixed-length records.

Using Job Control Statements 49

indicates variable-length EBCDIC
records.

indicates variable-length ASCII
records.

indicates undefined-length records.

indicates that records are blocked.
B may not be specified for
undefined-length records.

indicates spanned records, i.e., a
record spans over two or more blocks.
S may be specified only for
variable-length EBCDIC records.

indicates that carriage control
characters are used for formatting
purposes.

indicates that machine code control
characters are used. M may not be
coded for ASCII records.

indicates that the track overflow
feature is to be used. This feature
permits records to be written even
though the block size exceeds the
track size of a direct access device.
This feature results in more efficient
track utilization.

Examples of RECFM are:

RECFM=V
RECFM=FBA

The first example specifies variable-length
records. The second example specifies
fixed-length records which are blocked and
written according to carriage control
characters.

LRECL is specified as:
LRECL=record-length
where:
record-length
is a number indicating the length of
the largest record to be found in the
data set. The maximum value that may
be specified is 32756.
For fixed-length records, LRECL

indicates the actual length of the record.

50

For variable-length records, LRECL
indicates the length of the longest record,
plus four for a segment control word. A
four-byte Segment control word precedes
each variable-length record and specifies
the actual length of the record. For
undefined records LRECL is omitted.

An example of LRECL is:
LRECL=84

This example states that the record length
is 84 bytes.

BLKSIZE is specified as:

BLKSIZE=block-length

block-length
is a number indicating the length of
the block of records. The number
specified also determines the length
of the buffer, i.e., the number of
bytes of data transmitted between an
I/0 unit and main storage in one
operation. The maximum value that may
be specified is 32760.

For fixed-length unblocked records,
BLKSIZE is the same as the number specified
in LRECL (LRECL may be omitted; if it is,
the operating system determines the record
length from BLKSIZE). For fixed-length
blocked records, BLKSIZE is an integral
multiple of LRECL.

For variable-length unblocked records,
BLKSIZE is equal to LRECL plus four for a
block control word. A four-byte block
control word precedes each block of
variable-length records (whether the block
contains a single unblocked record or a
number of blocked records) and specifies
the actual number of bytes contained in the
block (including the length of the records,
the segment control words preceding each
record, and the block control word itself).
For variable-length blocked records, data
management will place records being written
in an output block until there is no more
room left for the next record and segment
control word. It will then write the
completed block (which does not have to be
as large as BLKSIZE) and will start a new
one with the new record.

For undefined-length records, BLKSIZE
should be specified to indicate the largest
record that might be encountered.

An example of BLKSIZE is:

BLKSIZE=300

This example states that the block size is
300 bytes.

BUFNO is specified as:
BUFNO=n
where:

n
is a number indicating how many
buffers are to be assigned to the data
set. One, two, or three buffers may
be assigned. (Three buffers may be
specified only with asynchronous I1/0.)
If the subparameter is omitted, two
buffers are assigned. If the
programmer specifies a number greater
than three, three buffers are
assigned.

An example of BUFNO is:
BUFNO=1

This example states that only one buffer is
to be assigned to the data set.

BUFOFF is used with ASCII data sets to
indicate the size of an optional block
prefix. The block prefix is a field that,
if specified, precedes each unblocked
record or the first record in a block and
contains information describing the record
or block. It may be up to 99 bytes in
length, and may be specified for
fixed-length, undefined-length, and
variable-length records. No use is made of
the block prefix by IBM System/360
Operating System except in certain cases
where the information contained in it is
used to determine the length of a block of
variable-length records.

BUFOFF is specified as:

n
BUFOFF=
L

where:

n
is a number from 0 to 99 indicating
the size of the block prefix.

BUFOFF=n may be specified only for
input data sets; the operating system
makes no use of the block prefix but
skips the number of bytes specified
before beginning record processing.

1f specified for output data sets,
BUFOFF=n causes an error message to be
written with abnormal termination
resulting (unless the extended error
handling facility is in force).

indicates that the block prefix is
four bytes long and that it is to be
used to compute the block size.
BUFOFF=L may be specified for both
input and output data sets but only
for variable-length records, that is,
when RECFM=D (or RECFM=DB) is also
specified.

The BUFOFF subparameter is optional;
if not specified, BUFOFF defaults to
0.

An example of BUFOFF is:

BUFOFF=40

This example states that 40 bytes are to be
skipped before record processing is to
begin.

The DEN and TRTCH subparameters define
characteristics of data sets residing on
magnetic tape.

DEN indicates the recording density of a
tape volume., It is specified as:

DEN=density
where:

density
is the number 0, 1, 2, or 3. The
number 0 indicates density of 200 bits
per inch of tape (bpi); 1 indicates
556 bpi; 2 800 bpi; and 3 1600 bpi.

Data may be stored on seven-track tape or
nine-track tape. Seven-track tape may be
written 200 bpi, 556 bpi, or 800 bpi.
Nine-track tape may be written 800 bpi or
1600 bpi. DEN is optional; if it is not
specified, 800 bpi is assumed for both
seven-track and nine-track tape.

An example of DEN is:
DEN=3

The example states that the data set has a
density of 1600 bpi.

TRTCH is used for seven-track tape to
indicate the recording technique to be
used.

TRTCH has the format:
C
TRTCH=)E

T
ET

Using Job Control Statements 51

where:

C
indicates the data conversion feature.
The data conversion feature converts
binary data between seven-track tape
and eight-bit main-storage. Because
of the difference in the number of
bits per character (seven-track tape
has six data bits and one parity-check
bit), four tape characters are stored
as three main-storage bytes.

indicates even parity. Parity is a
technique that determines whether any
bits were lost during data
transmission by counting the number of
bits in each character. The mode may
require the parity check to be even or

cdd; the defauvlt value is odd parity.

indicates data translation from BCD to
EBCDIC.

ET
indicates even parity and data
translation.

If this subparameter is not specified,
the default value is odd parity with no
conversion or translation.

DSORG defines the organization of a
direct-access data set. As applicable to a
FORTRAN program, it is specified as:

DA
DSORG=
PS

where:

DA
indicates direct access organization.
DA should be specified for
direct-access data sets that will be
processed by non-FORTRAN programs;
this specification causes a label to
be created indicating that the data
set has direct organization.

52

PS
indicates physical sequential
organization. PS 1is specified for
direct access data sets that will pe
processed only by FORTRAN programs.

OPTCD indicates optional services to ke
performed by the control program. As
applicable to a FORTRAN program, it is
specified as:

0
OPTCD=
C

where:

indicates an unlabeled ASCII data set.
If an ASCII data set has been
specified with a label (LABEL=(,AL)),
this option need not be specified.

indicates chained scheduling. Chained
scheduling is a technique whereby the
control program receives several
separate read or write operations as
one continuous operation; in a program
having extensive input/output
operations, chained scheduling may
result in a significant reduction in
processing time, particularly when
creating a FORTRAN DA data set.

Examples of the DCB parameter are:

DCB= (RECFM=F, BLKSIZE=100, DEN=2)
DCB=(RECFM=VB, LRECL=54,
BLKSIZE=850, BUFNO=1)

The first example describes fixed-length
unblocked records 100 bytes long on tape
written in 800 bpi. The second example
describes variable-length blocked records
with a maximum record size of 50 bytes plus
four for segment control word, a maximum
block size (including record control words
and block control word) of 850, and one
buffer to transmit this data.

The FORTRAN IV (H Extended) compiler is a
processing program that translates a
FORTRAN IV source module into an object
module.

The EXEC statement calls the compiler by
name, IFEAAB, in the PGM parameter, i.e.,

// EXEC PGM=IFEAAB

The EXEC statement may also specify other
parameters and compiler options.

COMPILER OPTIONS

Compiler options are specified in the PARM
parameter of the EXEC statement. They
increase the flexibility of the compiler.
For example:

e The SOURCE option lists the statements
in the source module

¢ The LIST option writes the object
module

e The MAP option writes a table of names
used in the source module

o The DECK option produces a card deck of
the object module.

All the options available are illustrated
in Figure I-9, Defaunlt cptions are
indicated by an underscore and need never
be specified explicitly. The default
options shown are standard IBM defaults;
when the compiler is installed, each
installation may establish its own set of
default options.

Options may be coded in any order and
may be separated by blanks or commas. As
many as 100 characters may be coded in the
PARM field. The options are enclosed in
quotation marks except when the PARM field
is continued onto a following card; the
field must then be enclosed in parentheses
rather than quotation marks, and each
option containing a parenthesis must be

enclosed in quotation marks. The following

is an example of a continued PARM field:
PARM=(NOSOURCE,
' LINECOUNT(50) * ,LIST)

For purposes of simplicity, the discussion
below lists only one affirmative and

COMPILATION

negative form of each option. For examples
of output that these options produce, see
the chapter "Compiler Output."

SQURCE
NOSOURCE
indicates whether the source module
listing is to be written, If SOURCE
is specified, the 1listing is produced
in the data set defined by the
SYSPRINT DD statement.

LINECOUNT (number)
indicates the maximum number of lines
to be assigned per page of the source
listing. The number may be in the
range 1 to 99. If the option is
omitted, the compiler assumes 60,

LIST

NOLIST
indicates whether the object module
listing is to be written. The object
module listing consists of statements
written in pseudo-assembler language
format. If LIST is specified, the
listing is produced in the data set
defined by the SYSPRINT DD statement.

OBJECT

NOOBJECT
indicates whether the object module
(not the listing) is to be written.
OBJECT must be specified if the
linkage editor job step is to be
called in the current job. If the
object module is to be written, it is
written in the data set defined by the
SYSLIN DD statement, which defines
primary input to the linkage editor
job step.

DECK

NODECK
indicates whether the object module in
card _image form is to be produced in
the data set specified by the SYSPUNCH
DD statement. DECK is usually
specified when the compilation step is
not immediately followed by the
linkage editor step; the deck is used
to supply input to the linkage editor
in a subsequent job.

OPTIMIZE({0]|1[2})

NOQPTIMIZE
indicates what optimizing level is to
be in force. NOOPTIMIZE indicates
that no optimization is to be
performed, and is equivalent to the
specification OPTIMIZE(O0).
OPTIMIZE(1) specifies that each source

Compilation 53

module is to be treated by the
compiler as a single program loop and
that the single loop is to be
optimized with regard to register
allocation and branching. OPTIMIZE(2)
specifies that each source module is
to be treated as a collection of
program loops and that each loop is to
be optimized with regard to register
allocation, branching, common
expression elimination, and
replacement of redundant computations.
Optimizing techniques are discussed in
greater detail in the section
"Programming Considerations."

FORMAT

NOFORMAT
indicates whether a structured source
module listing is to be written. A
structured source module listing
indicates loop structures and the
logical continuity of a source
program. This option is effective
only when OPTIMIZE(2) is in effect,
and a DD statement named SYSUT1 is
present; the listing is written in the
data set specified by the SYSPRINT DD
statement.

GOSTMT

NOGOSTMT
indicates whether internal sequence
numbers (ISN) are to be generated for
the calling sequence to subroutines
for a traceback map. (A traceback map
is a tool used in diagnosing execution
errors; it is discussed in "Load
Module Output.")

MAP

NOMAP
indicates whether a table of names_and
statement labels used by the source
program is to be written. If MAP is
speciried, the table is written in the
data set specified by the SYSPRINT DD
statement.

XREF

NOXREF
indicates whether a cross reference
listing of varjables and labels used
in the source program is to be
written. If XREF is specified, ISNs
are generated for each statement in
which a variable or label is used. 1If
XREF is specified, a DD statement
named SYSUT2 must be supplied; the
listing is written in the data set
specified by the SYSPRINT DD
statement.

54

NAME (name)

BCD

indicates the name to be given to the
main_source program. The name may be
from one to six characters. If NAME
is not specified, the compiler assumes
the name MAIN.,

EBCDIC

SIZE

indicates whether the source module is
written in BCD (Binary Coded Decimal)
or EBCDIC (Extended Binary Coded
Decimal Interchange Code). If BCD and
EBCDIC statements are intermixed in
the source module, BCD should be
specified. BCD characters are not
supported by the compiler as print
control characters or in literal data.
For example, the carriage control
character to specify same line
printing, +, is specified as a 12-8-6
punch in EBCDIC and as a 12 punch in
BCD; the compiler recognizes only the
EBCDIC code. Therefore, programs
keypunched in BCD should be carefully
screened for potential errors before
job submission.

MAX

nnnnk
indicates the amount of main storage
to be allocated to the compilation
step. The symbol nnnnK represents the
number, multiplied by K (102u-bytes),
to be allocated. The number may range
from 160 to 9999,

If SIZE(MAX) is specified, or if
the option is omitted, the compiler
uses all available storage in the
environment in which it is operating,
except for approximately 3K bytes
which are left for system routines.
SIZE should only be specified to
reduce the amount of storage required
by FORTRAN in a multitasking
environment,

AUTODBL(value)

(API) facility and indicates whether
data items are to be converted to
higher precision. API provides an
automatic means of converting single
precision floating point calculations
to double precision accuracy and
double precision calculations to
extended precision accuracy. The
AUTODBL option indicates which
particular data types are to be
converted. The AUTODBL option is
discussed in detail in the section
"Automatic Precision Increase".

If AUTODBL is omitted, no precision
increase is performed.

ALC
NOALC
indicates whether data items are to be

aligned on proper storage boundaries.
It is often used with the AUTCODBL
option to restore proper storage
boundaries when a conversion is
performed. ALC is discussed in detail
in the section "Automatic Precision

Increase. "

ANSF

NOANSF
indicates whether the compiler is to
recognize only those library and
built-in functions specified by th
American National Standards Institute,
(ANS), or the entire range of
functions specified by IBM in the
publication IBM System/360 and
System/370 FORTRAN IV_Language, Order
No. GC28-6515. If ANSF is specified,
any function not supported by ANS is
considered to be user-supplied.

FLAG(I)

FLAG(E)

FLAG{S)
indicates the level of diagnostic
messages to be printed. FLAG(I)
indicates that information messages,
warning messages (those generating a
return code of 4), error messages
(those generating a return code of 8),
and severe error messages (generating
a return code of 12 or higher), are to
be printed. FLAG(E) indicates that
only error messages and severe error
messages are to be printed. FLAG(S)
indicates that only severe error
messages are to be printed.

DUMP

NODUMP
indicates whether the contents of
registers, storage, and files
associated with the compiler are to be
printed if an abnormal termination
occurs. If DUMP is specified, a DD
statement named SYSUDUMP or SYSABEND
must be supplied; the dump is written
in the data set specified by the DD
statement.

changing Program Options During a Batch
Compilation

A batch compilation permits the programmer
to compile more than one source module in a
single job. The PARM options specified in
the EXEC statement apply to each of the
source modules unless the programmer
specifies different options for a source

module. To change the options for any
source module, the programmer precedes the
source module with a card containing the
characters *PROCESSb in columns 1 through 9
foliowed by the options up to column 72,
which must be left blank and which denotes
the end of the *PROCESS card.

An example of the *PROCESS card is:

*PROCESS LIST, MAP

If succeeding source modules are not
preceded by a *PROCESS card, options revert
to those specified in the EXEC statement.
Any option except SIZE may be specified on
the *PROCESS card.

COMPILER DATA SETS

The compiler uses up to seven data sets.

Table I-7 lists the function, device
types, and allowable device classes for
each data set. Table I-8 lists the DCB
default values for data set
characteristics.,

Data Sets Defined in Cataloged Procedures

If the programmer uses a cataloged
procedure, he need not define the DD
statements SYSPRINT, SYSPUNCH, SYSLIN,
SYSUT1, and SYSUT2; these are defined in

the catalcged procedure.

SYSPRINT defines printed output. Such
output may be directed to a tape, direct
access device, or to a printer. To specify
output to a printer, the DD statement is
coded:

//SYSPRINT DD SYSOUT=A

SYSOUT is the disposition for system data
sets, and A is the standard output class
for a printer.

SYSPUNCH defines punched output (output
in card image format). Such output may be
directed to a tape, direct access device,
or to a card punch. To specify output to a
card punch, the DD statement is coded:

//SYSPUNCH DD SYSOUT=B

B is the standard output class for a card
punch.

Compilation 55

e it bbbt 1
| COMPILER OPTIONS |
t S it i
| | Abbreviated |
| Form | Form |
R SR - 1
| SOURCE|NOSOURCE | S|NOS |
| I |
LINECOUNT(number)?t	LC(number)		
LIST	NOLIST		
OBJECT	NOOBJECT?2	OBJ	NOOBJ
I			
DECK	NODECK		
	!		
OPTIMIZE({0	1	2})2	OPT({0
NOOPTIMIZE	NOOPT		
FORMAT	NOFORMAT“	FMT	NOFMT
GOSTMT	NOGOSTMTS		
[
MAP	NOMAP		
XREF	NOXREF	I	
NAME(name) ¢			
	[
EBCDIC	BCD	EB	BCD
	I		
MAX			
SIZE()	f		
nnnnkK			
I ! I			
AUTODBL(value)	AD(value)		
ALC	NOALC		
ANSF	NOANSF I		
FLAG(I)	FLAG(E)	FLAG(S)	
I			
DUMP	NODUMP		
k - t 1			
Notes:			
*Compiler also accepts the old form:			
LINECNT=xX			
2Compiler also accepts the old form:			
{ LOAD	NOLOAD]		
3Compiler also accepts the old form:			
oPT={0}1]2}			
“Compiler also accepts the old form:			
EDIT	NOEDIT ’		
SCompiler also accepts the old form:			
ID	NOID		
€Compiler also accepts the old form:			
NAME=name			
e e 3

Figure I-9. Compiler Options

SYSLIN defines the object module created
by the compiler. The object module may be
directed to a tape or direct access device.
The following is a typical SYSLIN DD
statement:

56

//SYSLIN DD DSNAME=§&LOADSET,
7/ DISP=(MOD, PASS) , UNIT=SYSSQ,
// SPACE=(400, (200, 50))

In this example, DSNAME=§&LOADSET specifies
a temporary data set that is to contain the
object module. DISP=(MOD,PASS) specifies
that the data set is new or is to be
modified (in the event of multiple
compilations) and is to be passed to a
succeeding job step, in this case the link
edit step. UNIT=SYSSQ specifies that the
data set is to reside in a sequential
device class. SPACE=(400,(200,50))
specifies that space is to be allocated for
records whose average block length is 400
bytes; space is allocated initially for 200
such blocks and additional space is
allocated as necessary for 50 more such
blocks.

SYSUT1 and SYSUT2 define utility data
sets used by the compiler. SYSUT1 is used
if the compiler option FORMAT (structured
source listing) is requested. SYSUT2 is
used if the compiler option XREF (produce
cross reference listing) is requested.
Both data sets may reside on a tape or
direct access device. The following is a
typical DD statement for a utility data
set:

//SYSUT1 DD UNIT=SYSSQ,SPACE=(3465,(10,10))

In this example, UNIT=SYSSQ specifies that
the data set is to reside in the sequential
device class SYSSQ. SPACE=(3465,(10,10))
specifies that space is to be allocated for
records whose average block length is 1050
bytes; space is allocated initially for 10
such blocks, and additional space is
allocated as necessary for 10 more such
blocks.

Data Sets That Must Be Defined by the
Programmer

Cataloged procedures do not supply the DD
statements SYSIN, SYSUDUMP, and SYSABEND;
the programmer must define these, as
required, when he submits a program to be
compiled.

SYSIN defines the source module. The
source module may reside on a tape, on a
direct-access device, or on cards. To
specify a source module in the input
stream, the DD statement is coded:

//SYSIN DD *
The asterisk indicates that the source

module statements physically follow the
SYSIN DD* statement.

Table I-7.

Compiler Data Sets.

... 1

T
|Defined in Cataloged|

1This value is fixed by

the compiler and

statement is coded:

|] 1
| | | Applicable | Procedures Calling |
jddname | Function jbevice Types | Device Class | the Compiler |
t - } + po—mme 1
| SYSIN |Reading input source |Card reader |Input stream (defined] No |
| |module |Magnetic tape| as DD * or DD DATA) | i
| | |[Direct access|SYSSQ | |
| I |
| SYSPRINT|{Writing listings, |Printer |A | Yes :
	storage maps, mes-	Magnetic tape	SYSSQ	
	sages	Direct accessj		
	I I			
SYSPUNCH	Punching the object	Card punchl	[B	Yes
i jmodule deck jMagnetic tape	SYSCP			
! I IDirect access	SYSSQ I			
			SYSDA	
		I		
SYSLIN	Creating an object	[Direct access	SYSDA	Yes
jmodule data set as	Magnetic tape	SYSSQ		
	compiler output and	Card punch®	SYSCP	
}linkage editor input				
I		[I	
SYSUT1	Work data set for	Magnetic tape	SYSSQ	Yes
	structured source	Direct access		
	1isting; required if			i
	compiler option EDIT			
	is requested			
	I [I			
SYSUT2	Work data set for	Magnetic tape	SYSSQ	Yes
]	compiler cross	Direct access		
	reference listing;			
	required if compiler			
joption XREF is re-				
}	quested : % : :			
SYSUDUMP	Writing dump in event	Printer	A	No
or	of abnormal termina-	Magnetic tape	SYSSQ	
SYSABEND	tion	Direct access		
', 1 1 L 1 e e e e e e e e e e e e .'				
1SYSPUNCH and SYSLIN may not be directed to the same card punch.				
L e e e e e ——— e ——————— J				
Table I-8. DCB Default Values for Compiler SYSUDUMP or SYSABEND define data sets on				
Data Sets which abnormal termination dumps may be				
fmm——————— qm—————— - y—————— T————————— written if the DUMP compiler option has				
ddname	LRECL	RECFM	BLKSIZE	BUFNO
- 4 -t e ———— 4 the user wants to display the problem
| SYSIN | 80 | FB | 80 | 2 | program area in the event of an abnormal
| SYSPRINT| 137 | VvBA | 141 | 2 | termination, SYSABEND is requested when
| SYSLIN | 80 | FB | 3200 | 2 | the user wants to display the system
| SYSPUNCH]| 80 | FB | 3440 | 2 | nucleus and trace table in addition to the
|sYsuTl | 105 | FB | 34651 | 2 | problem program area. Abnormal termination
{sysuT2 | 1024~ | FB | 1024- | 2 | data sets may be directed to tape, direct
| | 40962 | | 40961 | | access devices, or to a printer. To
1 - 1 1 - specify the data set to a printer, the DD
|
|

may not be overridden.

the DCB parameter in the DD statement.)

(Values for

actual value is calculated during

I
2The value is within this range and the |
|
|

compiler execution,

b
|
| other entries may be overridden through |
|
|
[
[

//SYSUDUMP DD SYSOUT=A

//SYSABEND DD SYSOUT=A

Compilation 57

LINKAGE EDITOR_AND_ LOADER

The linkage editor and the loader are two
of the processing programs in the operating
system. They both perform the link edit
function, i.e., combining the object module
with other modules to form one executable
load module. They differ in the way they
store the load module. The linkage editor
places the load module into a library,
where it is called for execution by another
job step; the loader places the load module
directly into storage for execution in the
same job step.

CHOOSING THE PROPER LINKAGE PROGRAM

The choice of the proper linkage program
depends upon the facilities required. The
linkage editor provides the following
facilities:

1. The overlay feature. The overlay
feature separates a program into two
or more segments that do not have to
be in main storage at the same time,
thereby reducing storage size
requirements for large programs.

Control statements to provide
additional processing flexibility.
Linkage editor control statements
define additional libraries available
to the linkage editor, define the
structure of segments of a program,
and serve other uses,

Placement of the load module into a
library for execution at a later time.

The loader is the more efficient program
when:

LINK _EDIT JOB_STEr

The EXEC statement calls the linkage editor
by name, IEWL, in the PGM parameter, i.e.,

// EXEC PGM=IEWL

The EXEC statement may also specify other
parameters and linkage editor options.

LINKAGE EDITOR OPTIONS

Linkage editor options increase the
flexibility of the linkage editor. At the
time the operating system is generated,
each installation chooses its set of
default options. At execution time,
programmer may specify other options
through the EXEC statement PARM parameter.
Options available are illustrated in Figure
I-10. Options may appear in any order.

For examples of output that these options
produce, see the section "Linkage Editor
and Loader Output."”

the

MAP

XREF
indicates that a map of the load
module is to be produced, showing the
location and length of main programs
and _subprograms. The map is produced
in the data set defined by the
SYSPRINT DD statement. XREF indicates
that a cross reference listing is also
to be produced. If neither option is
specified, no map or cross-reference
listing is produced.

LET
indicates that the linkage editor is
to mark the load module executable
even though abnormal conditions, which
could cause execution to fail, have
been detected. The LET option is
useful in testing segments of a large
program that refer to segments not yet
coded; as long as the calls to absent
segments are not executed, the user
can still test the finished segments.

1. a small load module, not requiring the
use of overlay, is to be executed,

2. no linkage editor control statements
are needed, and

3. the load module is to be executed
immediately.

e

|

| MAP

| PARM="' , [LET] , [NCAL]

| XREF

|

|

(LIST] , f[ovLYl !

L e . —— an. W

Figure I-10. Linkage Editor Options

58

NCAL
indicates that the linkage editor is
to call no system libraries to resolve
external references. (The SYSLIB DD
statement, which defines system
libraries, need not be submitted.)
The load module is marked executable
even though references to other
programs may have been detected.

LIST
indicates that any linkage editor
control statements are to be listed in
the data set defined by the SYSPRINT
DD statement.

OVLY
indicates that the lcad module is to
be in the format of an overlay
rogram, i.e., segments of the program

may share the same storage area at

- different times during processing.
Overlay programs are described in
detail in the section "Linkage Editor
Overlay Feature.,"

LINKAGE EDITOR DATA SETS

The linkage editor normally uses five data
sets; others may be necessary if secondary
input is specified.

Table I-9 lists the function, device

types, and allowable device classes for
each data set.

Data Sets Defined in Cataloged Procedures

Cataloged procedures calling the linkage
editor contain the DD statements SYSLIN,
SYSLIB, SYSLMOD, SYSPRINT, and SYSUTI1.
(Note that the SYSUT1 DD statement for the
linkage editor should not be confused with
the SYSUT1 DD statement used in the compile
job step.)

SYSLIN defines the object module used as
input to the linkage editor. The following
is a linkage editor SYSLIN DD statement
that is the counterpart to the compiler
SYSLIN DD statement illustrated in the
section "Compilation":

//SYSLIN DD DSNAME=§LOADSET,
/7 UNIT=SYSSQ,DISP=(OLD, DELETE)

In this example, DISP=(OLD,DELETE)
specifies that the data set existed prior
to this job step and that it is to be
deleted at the end of the step.

SYSLIB defines the system library,
SYS1.FORTLIB, from which IBM-supplied
FORTRAN subroutines may be obtained by the
linkage editor to resolve references made
by the object module to other programs
(such references are called external
references). SYSLIB is specified if there
is a possibility that the compiler may have
generated calls to any FORTRAN subroutine.
SYS1l.FORTLIB exists prior to the job and
may be called simply by name. To specify
the library, the DD statement is coded:

//SYSLIB DD DSNAME=SYS1l.FORTLIB, DISP=SHR

In this example, DISP=SHR is coded to
permit other jobs to have access to the
library while this job step is still in
progress. If the NCAL option is specified,
the SYSLIB DD statement is not required.

SYSLMOD defines the load module created
by the link edit job step. The load module
may be directed only to a direct access
device and must be stored in a library as a
named member. The library may be the
system library, SYS1l.LINKLIB, a temporary
library, or a private library. The
following is a typical SYSLMOD DD
statement:

//SYSLMOD DD DSNAME=§GOSET (MAIN),
7/ UNIT=SYSDA,DISP=(,PASS),
V2 SPACE=(3072, (30,10,1), RLSE)

DSNAME=§GOSET specifies a
temporary library. MAIN specifies the
member name of the load module. UNIT=SYSDA
specifies that the data set is to reside in
a direct access device class, DISP=(,PASS)
specifies that the data set is new (by
default) and that it is to be passed to a
later job step. SPACE=(3072, (30,10,1),RLSE)
allocates space for 30 record blocks, whose
size is 3072 bytes, allocates space for 10
additional blocks as necessary, allocates 1
block of 256 bytes for the directory, and
specifies that unused space may be released
at the end of the step.

In this example,

The following example indicates how a
programmer may store the load module into a
private library:

//SYSLMOD DD DSNAME=USERLIB(PROG1),

/7 UNIT=SYSSQ, DISP=(, CATLG),
/7 SPACE=(TRK, (50,30,3),
7/ VOLUME=SER=34345

USERLIB specifies the name
of the library. PROG1 the member name of
the load module, UNIT=SYSSQ specifies that
the library (or data set) is to reside in a
sequential device class. DISP={(,CATLG)
specifies a new data set that is to be
cataloged. SPACE allocates 50 tracks
initially, 30 tracks if needed
subsequently, and 3 blocks of 256 bytes for

In this example,

Linkage Editor and Loader 59

the directory. VOLUME specifies the
specific volume which is to hold the data
set.

To execute the load module PROG1l in a
later job, the programmer must submit job
control statements containing the following
minimum information:

//3jobname JOB
//JOBLIB DD DSNAME=USERLIB, DISP=(OLD,KEEP)
// EXEC PGM=PROG1l

The DD statement defining a private library
must be named JOBLIB and must follow the
JOB statement and precede any EXEC
statements. 1t makes the private library
available. The EXEC statement names the
program to be executed. These statements
cause the operating system to search the
private library to locate the program as an
executable load module.

SYSPRINT defines printed output. As in
the compiler step, such output may be
directed to a tape, a direct access device,
or to a printer.

SYSUT1 defines a utility data set used
by the linkage editor. This data set may
reside only in a direct access device
class. The following is a typical SYSUT1
DD statement:

//SYSUT1 DD DSNAME=§SYSUT1, UNIT=SYSDA,

In this example, DSNAME=§SYSUT1 specifies a
temporary data set. UNIT=SYSDA specifies
that the data set resides in a direct
access device class. SPACE allocates space
to the data set. SEP=SYSLMOD specifies
that this data set is not to use the same
channel as the data set defined in the
SYSLMOD DD statement.

Data Sets That Must Be Defined by the

There are two kinds of input to the linkage
editor: primary and secondary. If any
secondary input is to be submitted, the
programmer must define it; cataloged
procedures do not supply DD statements for
secondary input.

Primary Input

Primary input is the data set defined in
the SYSLIN DD statement. Normally, this
data set consists of the output from a
previous compilation job step, but primary
input may also be linkage editor control
statements (discussed under "Linkage Editor

V4 SPACE=(1024, (200,20)), control Statements"). Primary input may
/77 SEP=SYSLMOD reside on tape, direct access, or cards.
Table I-9. Linkage Editor Data Sets

r —-———-T T T T T T
				Defined in
				Cataloged
				Procedures
			Applicable	Calling the
ddname	Function	Device Type	Device Class	Linkage Editor

4 1 4 4

""" T T - T T -
|SYSLIN | Primary input data, | Direct access |SYSDA | Yes |
i | normally output of | Magnetic tape |SYSSQ | |
	the compiler	card reader	input stream (defined	
			as DD * or DD DATA)	
SYSLIB	Automatic call library	Direct access	SYSDA	Yes
	(SYS1.FORTLIB)			
			i i	
SYSLMOD	Link edit output	Direct access	SYSDA	Yes
	(load module input)			
	[I	
[o I		i		
SYSPRINT	Writing listings,	Printer 1A	Yes	
	messages	Magnetic tape	SYSSQ	
		Direct access		
SYSUT1	Work data set	Direct access	SYSDA	Yes
user-	Additional libraries	Direct access	SYSDA	No
defined	and object modules	Magnetic tape	SYSSQ	
L L L L iy 4

60

Secondary Input

Secondary input consists of modules that
are not part of the primary input data set
but are to be included in the load module.
The linkage editor uses secondary input to
resolve external references between the
primary input and other programs which it
calls. Secondary input may be in the
following forms:

1. Object modules specified by the user.
These modules may be either sequential
data sets or members of a library.

2. Load modules specified by the user.
These modules must be members of a
library. They may contain linkage
editor control statements.

3. The automatic call library,
SYS1.FORTLIB. This is the data set
defined in the SYSLIB DD statement.
SYS1.FORTLIB contains the FORTRAN
library subprograms as its members.
The linkage editor uses this library
if unresolved references remain after
other input has been processed.

The user defines secondary input in a
linkage editor control statement and a DD
statement.

Linkage Editor Control Statements

Linkage editor control statements specify
an operation and one or more operands.

The first column of a control statement
must be left blank. The operation field
begins in column 2 and specifies the name
of the operation to be performed. The
operand field must be separated from the
operation field by at least one blank. The
operand field specifies one or more
operands separated by commas. No embedded
blanks may appear in the field. Linkage
editor control statements may be placed
before, between, or after either modules or
other control statements in primary or
secondary input data sets.

The INCLUDE and LIBRARY control
statements specify secondary input.

INCLUDE Statement: The INCLUDE statement
specifies additional programs to be
included as part of the load module. Its
format is:

ittt Bttt -
|Operation|Operand

|
__ 4
| INCLUDE |ddname [(member-name |
[, member-namel...)] |

{,ddname [(membexr-name |
[.member—name]...’]...] |
J

———

Each ddname indicates the name of a DD
statement specifying a library or a
sequential data set, and each member-name
is the name of the member to be included.
When sequential data sets (not members) are
specified, member-name is omitted.

The following is an example of the
INCLUDE control statement and its
corresponding DD statement:

//LIB1 DD DSNAME=MYLIB,DISP=OLD
//SYSLIN DD *
INCLUDE LIB1(PROG1)

LIBRARY Statement: The LIBRARY statement
specifies additional libraries to be
searched for object modules to be included
in the load module.

The LIBRARY statement differs from the
INCLUDE statement in that libraries
specified in the LIBRARY statement are not
searched until all other references (except
those reserved for the automatic call
library) are completed by the linkage
editor. A module specified by an INCLUDE
statement is included immediately.

The format of the LIBRARY statement is:

r T
| Operation|Operand |
__ ¥
|LIBRARY |ddname (member-name |
[,member-namel...) |
[, ddname (member-nane i
[, member-namel..e)Jee.l |
4

Each ddname indicates the name of a DD
statement specifying a library, and each
member-name is the name of a member of the
library.

The following is an example of the
LIBRARY control statement and its
corresponding DD statement:

//LIB2 DD DSNAME=ADDLIB, DISP=0LD

//SYSLIN DD *
LIBRARY LIB2(ADD1,ADD2)

Linkage Editor and Loader 61

Fiqure I-11 illustrates the use of
linkage editor control statements. STEP1,
STEP2, and STEP3 are compile job steps.
STEP1 compiles a main program, MAIN, and
places the object module in a sequential
data set called &§&GOFILE. STEP2 and STEP3
compile subprograms SUB1 and SUB2 and place
the object modules in separate sequential
data sets.

STEP4 is the 1link edit job step. It
uses the &§GOFILE data set as primary
input. The compiled subprograms are used
as secondary input through the INCLUDE
statements and the DD statements named DD1
and DD2. An additional data set, defined
in the LIBRARY statement and in the DD
statement named ADDLIB, is to be used if
external references are not resolved among
the three object modules. Note that the
INCLUDE and LIBRARY statements are entered
through the input job stream with a DD #*
statement.

After link edit processing, the load
module CALC is stored as a member of the
load module library PROGLIB. CALC contains
the main program, the two subprograms, and,
possibly, routines from the user library
MYLIB and the system library SY¥Sl.FORTLIB.

IDENTIFY Statement: For a description of
the IDENTIFY statement, see the 0S/VS
linkage editor and loader publication
listed in the Preface.

ORDERING AND PAGE-ALIGNING PROGRAM UNITS
UNDER 0OS/VS

Under the VS control programs, linkage
editor control statements may be used to
specify the sequence of FORTRAN program
units in the output load module and to
specify their alignment on page boundaries.
Such ordering and alignment can be used to
effect a lower paging rate and thus make
more efficient use of real storage.

ORDER_Statement: The ORDER statement
indicates the sequence in which program
units are to appear in the output load
module. The program units appear in the
sequence in which they are specified on the
ORDER statement. When multiple ORDER
statements are used, their sequence further
determines the sequence of program units in
the output load module; those named on the
first statement appear first, and so forth.

The format of the ORDER statement is:

62

r PR St 1
jOperation|Operand |
__ {
| ORDER |name{(P)] ,name [(P)] ... |
| PP J

where:

name

is the name of a FORTRAN main program,
subprogram, or COMMON block

(P)
indicates that the starting address of
the program of the program unit is to
be on a page boundary within the load
module. The program units are aligned
on 4K page boundaries unless the
ALIGN2 attribute is specified on the
EXEC statement. (Page boundary
alignment in the executing module can
only occur when the operating system
supervisor includes support for fetch
on a page boundary. This support is
available only with VS2.)

An ORDER statement may be placed before,
between, or after object modules or other
control statements.

PAGE Statement: The PAGE statement, like
the (P) operand of the ORDER statement,
aligns a program unit on a 4K page boundary
in the output load module. If the ALIGN2
attribute is specified on the EXEC
statement for the linkage editor job step,
use of the PAGE statement aligns the
specified program units on 2K page
boundaries within the load module. (As
with the (P) operand of the ORDER
statement, page boundary alignment in the
executing module can only occur when the
operating system supervisor includes

support for fetch on a page boundary. This
support is available only with VS2,)

The format of the PAGE statement is:
S DOttt bttt 1
|Operation{Operand |
i 4 .._.l

T
| PAGE |name [,namel... |
5 a
where:
name

is the name of a FORTRAN main program,
subprogram or COMMON block.

The PAGE statement may be placed before,
between, or after object modules or other
control statement.

In the example shown in Figure I-10.1.,
the program units RAREUSE and MAINRT are
aligned on 2K page boundaries by PAGE and
ORDER control statements used with the

r 1
I I
| INPUT MODULE QUTPUT LOAD MODULE |
I MAINROOT MAINROOT I
I S JCL AND CONTROL STATEMENTS) . |
I [//LKED EXEC PGM=IEWL,PARM='ALIGN2' I | |
I I . I I I
| | SBPRGA | . | MAINRT | |
b I . I I I
I | //SYSLMOD DD DSNAME=OWNLIB, ... | { [
T e { //SYSLIN DD * 2K p——mm—————e { |
| | RAREUSE | PAGE RAREUSE I I |
I i ORDER MAINRT (P) , SBPRGA, SUBPRG1 | I I
| | SUBPRG1 | INCLUDE SYSLMOD (MAINROOT) | SUBPRGA | I
I i % | I |
Lo ! | I |
L | i !
i | BOTTOM | | SUBPRG1 | |
L I R 1 I
Lo I I | I
I it 1 L i I
I | | RAREUSE | I
o I - 1 I
| | MAINRT | [I |
(. | | I |
| b 4 | BOTTOM | |
[I | I
I | I I
l O J |
I I
L J— —-d

Figure I-10.1.

ALIGN2 attribute. Program units SBPRGA and
SUBPRG1 are sequenced by the ORDER control
statement. Assume that each program unit
is 2K in length except for SUBPRG1l and
RAREUSE.

The linkage editor places the program
units MAINRT and RAREUSE on 2K page
boundaries because ALIGN2 is specified in
the EXEC statement. Program units MAINRT,
SBPRGA, and SUBPRG1 are sequenced as
specified in the ORDER statement. RAREUSE,
while placed on a 2K page boundary, appears
after the program units specified in the
ORDER statement because it was not
included. The program unit BOTTOM comes
after RAREUSE because it appeared after
RAREUSE in the input module.

SYSTEM LOADER

The loader combines into one job step the
functions of link editing and load module
execution. The loader combines the object
module with other modules to form one
executable load module. It places the load
module directly into main storage and then
executes it. By placing the load module
directly into main storage, the loader
eliminates the need for writing and then
reading the SYSLMOD data set. The EXEC
statement identifies the loader by either

Ordering and Aligning Program Units on Page Boundaries

IEWLDRGO or LOADER, in the

i.e.,

of its names,
PGM parameter,

//EXEC PGM=LOADER

The EXEC statement may also specify
other parameters and loader options.

LOADER OPTIONS

Loader options increase the flexibility of
the loader. At the time the operating
system is generated, each installation
chooses its set of default options. At
execution time, the programmer may specify
other options through the EXEC statement
PARM parameter. Options available are
illustrated in Figure I-12. Options may be
coded in any order.

MAP

NOMAP
indicates whether a map of the loaded
program is to be produced, listing
external names and absolute storage
addresses.

LET

NOLET
indicates whether the loader is to
mark the load module executable even

Linkage Editor and Loader 63

though abnormal conditions, which SIZE=nnnnn

could cause execution to fail, have SIZE indicates the amount of storage,
been detected. in bytes, that is to be allocated to
loader processing. The size of the
CALL load module must be included in this
NCAL number. If the option is not
indicates whether the loader is to specified, the default size, 100K, is
call a system library to resolve assumed.

external references. If the library
is to be called, the SYSLIB DD
statement must be submitted.

f——————— —— e
| //JOBX JOB

| //STEP1 EXEC PGM=IFEAAB, PARM=" NAME (MAIN) , LOAD"

l L)

| .

I .

| Step 1 (//SYSLIN DD DSNAME=§§GOFILE, DISP=(, PASS) , UNIT=SYSSQ
i //SYSIN DD *

‘ ______________________

| ISource module for MAINl

| L——_ -1

| %

| //STEP2 EXEC PGM=IFEAAB, PARM="'NAME (SUB1), LOAD"

| -

= .

| Step 2 ///SYSLIN DD DSNAME=§ § SUBPROG1,DISP=(, PASS), UNIT=SYSSQ
| //SYSIN DD *

| S

| | source module for SUEll

l L —-d

| %

] //STEP3 EXEC PGM=IFEAAB, PARM="'NAME(SUB2), LOAD'

| .

| .

l Ll

| Step 3)//SYSLIN DD DSNAME=§ § SUBPROG2, DISP=(, PASS) , UNIT=SYSSQ
| //SYSIN DD *

I | e

| |Source module for SUB2|

| L— _—

| /*

| //STEPU EXEC PGM=I1EWL

| .

| .

I .

| //SYSLIB DD DSNAME=SYS1. FORTLIB, DISP=SHR

| //SYSLMOD DD DSNAME=PROGLIB (CALC) , UNIT=SYSDA

| //ADDLIB DD DSNAME=MYLIB, DISP=0LD

| Step 4 (//DD1 DD DSNAME=%*, STEP2, SYSLIN, DISP=0OLD

| //DD2 DD DSNAME=%*, STEP3.SYSLIN, DISP=0OLD

| //SYSLIN DD DSNAME=#%, STEP1. SYSLIN, DISP=0OLD

| 74 DD *

| INCLUDE DD1

| INCLUDE DD2

| LIBRARY ADDLIB(X,Y,Z)

[/*

| 77

e e e e e

Figure I-11. Linkage Editor Processing

6u

ALL] ET

NCAL

-
| MAP ES

= [1}
| NOMAP NORES
H

Figure I-12. Loader Options

EP=name
indicates the name that is to be the
entry point of the program being
loaded.

PRINT

NOPRINT
indicates whether loader messages are
to be produced. Messages are produced
in the data set defined by the SYSLOUT
DD statement.

RES

NORES
indicates whether, in an MVT
environment, the link pack area queue
is to be searched to resolve external
references. The link pack is an area
of storage that contains a number of
modules needed for job processing. If
RES is specified, the link pack area
queue is searched prior to any search
of the SYSLIB data set.

LOADER DATA SETS

The loader normally uses six data sets;
other data sets may be defined to describe
libraries, loader output, and load module
data sets.

Table I-10 lists the functicn, device

types, and allowable device classes for
each data set.

Data Sets Defined in Cataloged Procedures

Cataloged procedures calling the loader
contain the DD statements SYSLIN, SYSLIB,
SYSLOUT, FTO05F001, FTO06F001, and FTO7F001.

SYSLIN defines the object module that is
primary input to the loader. Normally this
data set consists of the output from a
previous compile job step, but it may also
be an object module from a partitioned data
set. Input may reside on a tape, a direct
access device, or on cards. The following
is the loader SYSLIN DD statement
corresponding to the compiler SYSLIN DD
statement illustrated in the section
"Compilation."

//SYSLIN DD DSNAME=§§LOADSET,
// DISP=(OLD,DELETE)

SYSLIB defines the system library,
SYS1. FORTLIB, that is to be searched to
resolve external references made by the
input data set. The SYSLIB DD statement
may be coded as follows:

//SYSLIB DD DSNAME=SYS1l.FORTLIB, DISP=SHR

SYSLIB is not required if the NCAL loader
option is specified.

SYSLOUT defines the output data set to
store the loader map. A printed listing is
obtained if SYSLOUT is allocated to a
printer device class, as follows:

//SYSLOUT DD SYSOUT=A

SYSLOUT is not required if the NOMAP and
NOPRINT options are specified.

FTO5F001 defines the input data set to
the load module. The function of this
ddname is to associate the system input
unit to FORTRAN READ statements having 5 as
the data set reference number.

Since cataloged procedures may not
contain DD * statements, FTO5F001 defers
data set definition to the SYSIN DD
statement, which the programmer must
supply. The following FTO5F001 DD
statement appears in cataloged procedures:

//FTC5F001 DD DDNAME=SYSIN

The programmer completes card input
definition by supplying a SYSIN DD
statement as follows:

//GO. SYSIN DD *

GO identifies card input with the GO step
in cataloged procedures.

FT06F001 defines the system printer
unit. The function of this ddname is to
associate the system printer to FORTRAN
WRITE statements having 6 as the data set
reference number. It is defined as
follows:

//FT06F001 DD SYSOUT=A

FTO07F001 defines the system card punch
unit. The function of this ddname is to
associate the card punch to FORTRAN WRITE
statements having 7 as the data set
reference number. It is defined as
follows:

Linkage Editor and Loader 65

//FT07F001 DD SYSOUT=B

messages.

tape,

printer.
SYSPRINT is coded:

Data Sets That Must be Defined by the

Programmer

a direct access device,
To direct output to a printer,

Output may be directed to a
or to a

//SYSPRINT DD SYSOUT=A

The programmer must define the SYSIN DD

statement to complete the description of
and the SYSPRINT DD

the input data set,
statement.

SYSPRINT defines system printed output,
such as allocation and job control

Table I-10., Loader Data Sets.

| to be processed by
|the load module

|
FTO6F001 |Printed output data

rm————=——= T

| |

i |

| |

| |

| ddname | Function

_________ S

| SYSLIN |Input data to linkage
| function, normally

| |output of the compiler

| |

| |

| SYSLIB | Automatic call

| |library

| | (S¥YS1.FORTLIB)

|

| SYSLOUT |Writing listings

| |

| |

| |

| SYSPRINT |Writing messages

| i

| |

| |

| SYSIN |Input data to load

| jmodule function

] {

| |

| |

|FTO5F001 |Primary input data

|

|

]

|

|

|

|
| FTO7F001 |Punched output data
|

| FTnnFnnn#*|User-defined data set

|*nn and nnn cannot be set to 0.

|

e o e e o e o e i et e e e o e e o e e et o e . e e e e e e e o

Device Type

Direct access
Magnetic tape
card reader

Direct access

Printer
Magnetic tape
Direct access
Printer
Magnetic tape
Direct access
Card reader

Magnetic tape
Direct access

card reader

Magnetic tape
Direct access

Printer
card punch
Unit record

Magnetic tape
Direct access

The programmer may also define other data
sets as required by the load module

execution function.
Module Execution"
data sets.

See the section "Load
for a discussion of these

B e ittt T - R
	Defined in
	Cataloged
	Procedures
Applicable	calling the
Device Class	Loader
poommmmmmmm 1

sYspa	Yes
SYSsQ	
Input stream (defined	
as DD *)	I

| SYSDA | Yes |
! | |
| | |
{ | |
|A | Yes |
| 8SYSSQ | |
| | I
| I |
A | No |
| SYSSQ | |
| | |
| o |
Input stream (defined	No
as DD *)	
SYSSQ	
SYSDA	
I	
Input stream (defined	Yes
as DD * or DD DATA)	
sYSSQ I	
syspa [
!	I
A	Yes
B	Yes
]
SY¥sSsQ A,B	No
I |

| SYSDA | |
K 4

|

66

The load module execution job step executes
a load module. The load module may be
passed directly from a preceding link edit
job step, it may be called from a library
of programs, or it may form part of the
loader job step. If passed from the link
edit job step, the load module is called in
the PGM parameter of the EXEC statement,
i.e.,

// EXEC PGM=#*,LKED.SYSLMOD

This statement defines the load module as
consisting of the data set described in the
SYSLMOD DD statement in the link edit
(LKED) job step of the current job.

If the load module is called from a
library, it is called by name, as any
program, in the PGM parameter, i.e.,

// EXEC PGM=MATRIX

The library in which the load module
resides must also be made available to the
operating system via a DD statement. A
load module may reside on the system
library, S¥S1.LINKLIB, or on a private
library. A private library is defined in a
JOBLIB or STEPLIB DD statement. For
example, if the load module MATRIX is a
member of a private library named MATH, the
user may supply the following DD statement:

//JOBLIB DD DSNAME=MATH, DISP=(OLD, PASS)

The JOBLIBE DD statement must appear after
the JOB statement and before any other
control statement. This placement ensures
that the private library is kept available
for all steps within the job.

If the load module is executed as part
of the loader, it is not defined in an EXEC
statement. The loader combines the link
editing and load module execution into one
job step.

LOAD MODULE DATA SETS

The load module execution job step may use
many data sets. Table I-11 lists the

LOAD MODULE EXECUTION

function, device types, and allowable
device classes for each data set.

Data Sets Defined in Cataloged Procedures

Cataloged procedures calling the execution
job step contain the DD statements
FTO5F001, FT06F001, and FTO7F001.

FTO5F001 defines the input data set.
The programmer codes 5 as the data set
reference number in any FORTRAN READ
statement that reads card input. Since
cataloged procedures may not contain DD *
statements, FTO5F001 is coded to defer data
set definition to the SYSIN DD statement,
which the programmer must supply. The
following FTO5F001 DD statement appears in
cataloged procedures:

//FT05F001 DD DDNAME=SYSIN

The programmer completes card input
definition by supplying a SYSIN DD
statement as follows:

//GO.SYSIN DD *

GO identifies card input with the GO step
in cataloged procedures.

FT06F001 defines a printer data set.
The programmer codes 6 as the data set
reference number in any WRITE statement
writing data to be printed. The following
FT06F001 DD statement appears in cataloged
procedures:

//FT06F001 DD SYSOUT=A

FTO07F001 defines a card punch data set.
The programmer codes 7 as the data set
reference number in any WRITE statement
writing data to be punched. The following
FTO7F001 DD statement appears in cataloged
procedures:

//FT07F001 DD SYSOUT=B

Load Module Execution 67

Table I-11. Load Module Data Sets

f————————

|

— e o}

T ———

|
]
!
-

T -
| |Defined in Cataloged
|Applicable

b—— -

T
| [

| | | Procedures Calling the |
| ddname | Function |Device Type |Device Class|Load Module |
--------- T I DT e
FTO5F001	Input data to the	Card reader	SYSSQ	Yes
	load module	Magnetic tape	SYSDA	
		Direct access		
SYSIN	Input data to the	caxrd reader	SYSsQ	No]
	load module	Magnetic tape	SYSDA	
		Direct access]		
FTO6F001	Printed output data	Printer	A	Yes
FTO7F001	Punched output data	Card punch	B	Yes
				i
FTnnFnnn*	User-defined sequential	Unit-record	SYSsQ A,B	No]
i	data set	Magnetic tape]		
		Direct access]]	
FTnnFnnn#*	User-defined	Direct access	SYSSQ	No
	partitioned data set			
	containing sequential			
	members			
	_ '			
FInnFnnn#*	User-defined Direct-	direct access	SYSDA	No
	access data set			
i L N I, -l J

1

|

J

Data Sets That Must Be Defined by the
Programmer

The SYSIN DD statement must be defined by
the programmer to complete the description
of the input data set begun by the DD
statement FT05F001. (If no input data set
is to be submitted, the SYSIN DD statement
is omitted and the operating system ignores
the FTO5F001 DD statement.)

The FORTRAN programmer may define other
data sets for use in the load module
execution step. There are three types of
data sets: sequential, partitioned, and
direct-access.

Sequential Data Sets

A sequential data set may be coded either
in EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) or in ASCII (American
National Standard Code for Information
Interchange)., ASCII data sets may be
processed by the IBM System/360 Operating
System only if the option ASCII=INCRES or
ASCII=INCTRAN has been specified at the
time the operating system is generated.

68

An EBCDIC data set may reside on unit
record devices, magnetic tape volumes or
direct access volumes. Data sets defined
on a tape or direct access device may be
retained for use in later jobs; unit record
data sets are temporary and exist for the
current job only (although data from these
data sets may be transmitted to permanent
volumes during job processing). FTO5F001,
FTO06F001, FTO7F001, and SYSIN DD * all
define sequential data sets.

Figure I-13 illustrates DD statements to
define unit record data sets. Figure I-14
illustrates DD statements to create tape
and direct access data sets. Figure I-15
illustrates DD statements to retrieve data
sets.

An ASCII data set may reside only on
magnetic tape volumes. Essentially, a
programmer uses the same DD statement
parameters to define an ASCII tape as he
would an EBCDIC tape. The differences are
that an ASCII tape must be identified
either through the LABEL parameter
(LABEL=AL) or through the DCB subparameter
OPTCD (OPTCD=Q) and may be defined only on
9-track tape having a density of 800 bpi.
Figure I-16 illustrates the corresponding
DD statement for the one shown in Figure
ILM2 if an ASCII data set was being defined.

53]
x
]
3
—
@©
[y

=
»
]
=3
=
(1]
N

xample 3:

,..____._._..._..__._._,
F

Data set in the input stream:
//SYSIN DD *

Data set on the printer:
//SYSPRINT DD SYSOUT=A
Data set on the card punch:

//FT07F001 DD SYSOUT=B

25 sttt h)
|Example 1: Temporary Data set: |
| I
| //FT14F001 DD DSNAME= §TEMP, UNIT=SYSSQ, SPACE=(TRK, (50)) |
I |
|Example 2: Permanent data set on a tape volume: |
| I
| //FT36F001 DD DSNAME=ANY,VOLUME=SER=7342,UNIT=2400, |
| 7/ DISP=(NEW, KEEP, DELETE) , LABEL=(, SL, EXPDT=69365) I
| |
|Example 3: Permanent data set on a direct access volume: |
I |
| //FT41F001 DD DSNAME=SOME,DISP=(NEW,CATLG,DELETE),UNIT=2311, |
I /7 VOLUME=SER=AA69, SPACE= (300, (100,100)), |
| // DCB=(RECFM=VB, LRECL=304, BLKSIZE=612) |
L - S PP i
Figure I-14., Creating EBCDIC Sequential Data Sets on Tape or Direct Access Volumes
r - . -
|Example 1: Retrieving an uncataloged data set (to be kept at the end of the job): |
| I
| //FT36F001 DD DSNAME=ANY, VOLUME=SER=7342, UNIT=2400,DISP=0LD i
I |
|Example 2: Retrieving a cataloged data set (to be deleted at the end of the jobi: i
| I
| //FT41F001 DD DSNAME=SOME,DISP=(OLD, DELETE) |
L - -
Figure I-15. Retrieving Sequential Data Sets
r - - - 1
|Example 1: Using the LABEL parameter: |
| [
| //FT36F001 DD DSNAME=ANY,VOLUME=SER=7342,UNIT=2400, |
| 7/ DISP=(NEW, KEEP, DELETE) , LABEL= (AL, EXPDT=69365) |
| |
|Example 2: Using the DCB parameter OPTCD subparameter: |
| |
| //FT36F001 DD DSNAME=ANY, VOLUME=SER=7342,UNIT=2400, |
| // DISP=(NEW, KEEP, DELETE) , DCB=(OPTCD=Q) |
L e e e e e e e e o e e e e e e e e e e e o e e e e e e e S e e . e e e e . e i S S . i S e o 8 S e S e e i o S S S 22 e o o S o T o o e o o d
Figure I-16. Creating an ASCII Tape Data Set

Load Module Execution 69

Partitioned Data Sets

A partitioned data set (PDS) may reside
only on a direct access device; hence, any
DD statement parameters defining unit
record or magnetic tape data sets are not
applicable.

A PDS consists of groups of sequential
data which are called members of the data
set. Partitioned data sets are used to
contain libraries.

Figure I-17 illustrates DD statements to
define partitioned data sets.

Figure I-18 illustrates DD statements to
retrieve a member from a partitioned data
set. The first example indicates that the
member CASE2 is to be retrieved from the
data set USERLIB, that the member is to be
used for input operations (LABEL=(,,,IN)),
and that the data set is to be retained at
the end of the job (the absence of the
second subparameter in DISP causes old data
sets to be kept).

Like the first example, the second
example retrieves a member for input
operations, but the DELETE specification in
the DISP parameter deletes the entire data
set, including all members.

The following discussion describes how
more than one member may be processed in
the same job and how a single member may be
deleted from a partitioned data set.

Retrieving More Than One Member

Two or more members of the same partitioned
data set may be processed in one job in a
sequential manner, i.e., the PDS must be
closed for one member before attempting to
read or write another member. TwO Or more
members may be retrieved using either the
READ statement END= option or the REWIND
statement.

PDS Processing Using END=n Option: When
the END=n option is executed and a
subsequent READ or WRITE statement is
issued with the same data set reference
number, the FORTRAN sequence number is
incremented by one. This allows another
member of the PDS referenced by the same
data set reference number to be processed.

The following FORTRAN program
illustrates this method:

INTEGER*4 X(20),Y(20)

10 READ (2,1,END=98) X

1 FORMAT (20A4)
GO TO 10

93 READ (2,1, END=99) Y
GO TO 98

99 WRITE (6,2) X, Y
STOP
END

Execution of statement 10 results in
processing the first PDS member which is
referenced by the FORTRAN sequence number
001, Assume that this member has the name

Figure I-17. Creating Partitioned Data Sets

r 1
|Example 1: New Partitioned data set with its first member: |
| |
| //FT20F001 DD DSNAME=USERLIB(CASE1l),DISP=(NEW,CATLG),UNIT=2311, |
| 7/ SPACE=(TRK, (50,20,5)), VOLUME=SER=DA31 |
| |
|Example 2: Adding a member to an existing data set: |
I [
| //FT20F002 DD DSNAME=USERLIB(CASE2),DISP=0LD |
[|
|Example 3: Temporary data set (created and deleted in the same job): |
| I
| //FT21F001 DD DSNAME=§TEMPLIB(MY),DISP=(NEW,PASS),UNIT=SYSDA, |
| /7 SPACE=(TRK, (20,5,1)) |
b e e e 1

[Examgle 1: Retrieving a member of a data set: i
} //FT25r001 DD DSNAME=USERLIB(CASE2),DISP=0LD,LABEL=(,,,IN) ‘
=Examgle_g: Retrieving a member and deleting the data set at the end of the job: 1
i //FT26F001 DD DSNAME=USERLIB(CASEl),DISP=(OLD,DELETE, KEEP), LABEL=(,,,IN) J

Figure I-18. Retrieving Partitioned Data Sets

70

CASEl1 and resides in the cataloged
partitioned data set named USERLIB; the DD
statement that must be supplied is:

//FT02F001 DD DSN=USERLIB(CASE1),
/77 LABEL=(,,, IN),DISP=0OLD

When the END=n option is executed in
statement 10 and the next READ statement,
statement 98, is encountered, the FORTRAN
sequence number becomes 002. This closes
the PDS for the first member, Anocthex
member may then be processed. If its name
is CASE2, the DD statement that must be
supplied is:

//FT02F002 DD DSN=USERLIB(CASE2),

7/ LABEL={,,,1N},DISP=0OLD

PDS Processing Using REWIND: Execution of
the REWIND statement closes a data set.
Any subsequent READ or WRITE statement
opens the data set again,

The following example illustrates the
use ¢f the REWIND statement in reading two
members of the same PDS:

INTEGER*4 X(20),Y(20)
READ (2,1) X

REWIND 2

READ (3,1) Y

WRITE (6,2) X, Y

1 FORMAT (20A4)

2 FORMAT (' ', 20AH4)
STOP
END

Execution of the first READ statement
results in the processing of the first PDS
member which is referenced by the FORTRAN
sequence number 001. If the member has the
name CASE1l and resides in the cataloged
partitioned data set named USERLIB, the DD
statement that must be supplied is:

//FT02F001 DD DSN=USERLIB{(CASE1),
/7 LABEL=(,, , IN) ,DISP=OLD

When the REWIND statement is executed, the
PDS is closed for MEMBER1. The next READ
statement reopens the data set for another
PDS member. If the next member name is
CASE4, the DD statement that must be
supplied is:

//FT03F001 DD DSN=USERLIB(CASE.),
/7 LABEL=(,,,IN),DISP=0OLD

Deleting One Member

To delete a member while retaining the
remainder of the data set, the programmer
submits a separate job executing the

operating system utility program IEHPROGM.
(IEHPROGM is described in the appropriate
utilities publication, as listed in the
Preface.) Figure I-19 illustrates how a
job may be submitted to delete a member
only. The DD statement named DD2 defines
the data set., The utility program
statement SCRATCH releases the member named
CASEl1 from the partitioned data set named
USERLIB.

The SCRATCH statement deletes only the
directory entry that refers to the member;
the space occupied by the member is
released only if the entire data set is
reorganized. To reorganize a partitioned
data set, the programmer copies the members
into a temporary data set, deletes and
recreates the original data set, and copies
the members back into it. The operating
system utility programs contain facilities
for copying members of partitioned data
sets.

Direct-Access Data Sets

A direct-access data set may reside only on
a direct access device; hence, any DD
statement parameters defining unit record
or magnetic tape data sets are not
applicable,

A direct-access data set consists of a
number of records that may be accessed
individually; i.e., only the record that is
needed is accessed regardless of its
physical position within the data set. A
direct-access data set requires a
corresponding DEFINE FILE statement in the
FORTRAN program. Figure I-20 illustrates a
DD statement and the corresponding DEFINE
FILE statement to create a direct-access
data set. Note that the record
characteristics described in the DEFINE
FILE statement must agree with the space
allocation requested in the DD statement
(for example, in the example, both
statements specify records, whose average
length is 100 bytes, allocated in blocks of
50 records). Figure I-21 illustrates the
statements to retrieve the direct-access
data set.

Note that the data set created in Figure
I-20 was to be cataloged; therefore, to

retrieve it, only the DSNAME and DISP
parameters are required.

DCB PARAMETER CONSIDERATIONS

The following DCB subparameters define
record characteristics of a data set:

Load Module Execution 71

* RECFM, to specify the format of a
record, for example, whether
fixed-length, variable-length, or
undefined-length, and whether records
are blocked

e LRECL, to specify the size of a record
or the maximum size of a
variable-length record

R S
| //SCRTCH JOB

| 77/ EXEC PGM=IEHPROGM

| //SYSPRINT DD SYSOUT=A

| //DD2 DD UNIT=2311, VOLUME=SER=
| //SYSIN DD *

| SCRATCH DSNAME=USERLIB, VOL=2
| /+
gy g U USSP

Figure I-19. Deleting a Member of a Partit

| DEFINE FILE 8(50,100,L,I2)

e BLKSIZE, to specify the size of a
record or a block of records and the
length of the buffers required to
transmit data between main storage and
input/output devices

Table 1I-12 lists the DCB default values
for load module data sets. Table I-13
summarizes the maximum allowable values for
the BLKSIZE subparameter.

.
|
|
DA31,DISP=0LD |
|
311=DA31, MEMBER=CASE1 I

|

J

ioned Data Set

| |
| //FTO8F001 DD DSNAME=DADS, UNIT=SYSDA, VOLUME=SER=123478, I
|
|

177 DISP=(NEW, CATLG, DELETE) , SPACE= (100, (50,50)),

|77 DCB=(RECFM=F, BLKSIZE=100)

I - - —

Figure I-20. Creating a Direct-Access Data Set

T T T T T T oo 1

| DEFINE FILE 8(50,100,L,12) |
I

|//FT08F001 DD DSNAME=DADS,DISP=0OLD |

RPN _ 1

Figure I-21. Retreiving a Direct-Access Data Set

Table I-12. DCB Default Values for Load Mo

dule Data Sets

|*For records not under FORMAT control, the
| 2For records not under FORMAT control, the

72

r T e e h Suteteiintaietatebube bbbttt h]
| | Sequential Data Sets | Direct-Access Data Sets

| % T T T T % T T '-"‘
| | | | | | | | LRECL or | |
| ddname | RECFMT | LRECL2 | BLKSIZE | DEN | BUFNO | RECFM | BLKSIZE | BUFNO |
I' + + + + + + + + -—1
FTO3Fyyy	U	-	800	2	2	FA	The value	2
							specified as the	
FTOS5Fyyy	F	80	80 I -	2	F	maximum size of	2	
							a record in the	
FTO6Fyyy	UA	132	133 I - 2	F	DEFINE FILE	2		
1						statement.		
: FTO7Fyyy : F } 80 ! 80 : - : 2 : F : i 2 ‘								
all others	U	-	800	2	2	F		2
e —————— ¥ i S S Lo Lo ___ S b i S 4

default is VS. i
default is 4 less than shown. |

Table I-13. Maximum BLKSIZE Values
r - - T-———= e - -1
| | BLKSIZE Value |
| b-mom———————————————— o et |
| Device Type | Fixed-Length and Undefined-Length | Variable-Length Records H
| | Records (minimum value is 1) | (minimum value is 9)
s e oo 1
| Card Reader | 80 | 80 |
I | I
| Card Punch | 81 | 89 1
| I | |
| Printer | H i
120 characters	121	129
132 characters	133	141
144 characters	145	153
150 characters	151 ! 159 !	
I		I
Direct Accesst ! i]		
2301	20483	20483
2302	4984	4984
2303	4892	4892
2305		
Mod I	14136	14136
Mod II	14660	14660
2311	3625	3625
2314	7294	7294
3330	13030 i 13030	
I		
Magnetic Tape2	32760	32760
___________________ S OO		
1tWith track overflow, the maximum BLKSIZE value is 32760 for each device.		
2The minimum value is 18,		
4

DCB Considerations for Sequential EBCDIC
Data Sets

FORTRAN records in an EBCDIC data set may
be formatted or unformatted, i.e., they may
or may not be defined in a FORMAT
statement. List-directed I/O statements
are considered formatted. Formatted
records may be specified as fixed length,
variable length, or of undefined length.
Unformatted records may be specified only
as variable length. If records are to be
processed using asynchronous input/output,
they may not be blocked.

FORMATTED RECORDS: Formatted records are
specified as follows:

Fixed-Length Records: Unblocked
fixed-length records are specified as
RECFM=F; blocked records as RECFM=FB. For
unblocked records, BLKSIZE specifies the
record length, (e.g., BLKSIZE=80); the
buffer length is the same as the record
length. For blocked records, LRECL
specifies the record length and BLKSIZE the
block length, which must be a multiple of
LRECL, (e.g., LRECL=80,BLKSIZE=400); the

buffer length is the same as the block
length.

Varjiable-Length Records: Unblocked
variable-length records are specified as
RECFM=V; blocked records as RECFM=VB.

For unblocked records, LRECL specifies
the maximum length of any record in the
data set, plus four additional bytes for
the segment control word that precedes each
record, and BLKSIZE specifies the buffer
length, which is LRECL plus four bytes for
the block control word that precedes each
block, (e.g., LRECL=84,BLKSIZE=88); the
block control word is required even though
the record is unblocked. If the record is
smaller than the size specified in LRECL,
unused space is not written,

For blocked records, LRECL specifies the
maximum record length plus four bytes for
the segment control word, and BLKSIZE
specifies the block length, a number equal
to or larger than that specified in LRECL
plus four bytes for the block control word,
(e«g.y LRECL~=84,BLKSIZE=350). The block
accommodates as many records as possible
without exceeding the limit specified in

Load Module Execution 73

BLKSIZE. Unused space at the end of the
block is not written.

If LRECL is omitted, its default value is
set to BLKSIZE-4, resulting in having only
one record written in any block.

Undefined-Length Records: Undefined-length
records may be specified only as unblocked
records, i.e., RECFM=U. BLKSIZE specifies
the length of the buffer; this number must
take into account the largest possible size
record which may be encountered in the
FORMAT statement; e.g., BLKSIZE=80
indicates that no record larger than 80
bytes will be encountered. Unused space is
not written.

Figure I-22 illustrates the structure of
formatted records in sequential data sets,
using a FORTRAN record size of 80
characters. An example of a DCB parameter
describing a block of ten variable-length
records whose maximum size is 121 is:

DCB= (RECFM=VB, LRECL=125, BLKSIZE=1254)

UNFORMATTED RECORDS: Unformatted records
are those not described by a FORMAT
statement. The size of each record is
determined by the input/output list of READ
and WRITE statements. Unformatted records
are always specified as variable and
spanned. In addition, they may be blocked
or unblocked. Unblocked records are
specified as RECFM=VS, blocked records as
RECFM=VBS. Blocked records reduce

74

processing time substantially and are
recommended whenever possible.

For unblocked records, BLKSIZE specifies
the length of the buffer and is immaterial
to the size of the logical record, i.e., it
may be larger than, equal to, or smaller
than the logical record. The first eight
bytes of the block are reserved for the
block and segment control words. For a
record smaller than or equal to
BLKSIZE(-8), one record per block is
transmitted; unused space is not written.
For a record larger than BLKSIZE-8, the
record is transmitted over as many blocks
as necessary to accommodate it; such a
record is called a spanned record, since it
spans more than one block.

For blocked records, LRECL specifies the
maximum record length, and BLKSIZE
specifies a block length not necessarily a
multiple of LRECL. The block accommodates
as many records as possible. If necessary,
the last record of a block may span to the
next block.

Figure I-23 illustrates the structure of
unformatted records in storage.

Note: The track overflow feature may be
specified with any of the record formats.
This feature permits more efficient
utilization of track capacity by allowing
records to be written when a block size
exceeds a track size. The feature is
requested by the letter T in the RECFM
subparameter, e.g., RECFM=VBT.

BCwW=Block Control Word
SCW=Segment Control Word

r - 1
| FIXED-LENGTH RECORDS |
| |
{1. Unblocked, e.g., DCB=(RECFM=F,BLKSIZE=80) |
I |
i e - 1 I
	FORTRAN Record 1	
	IR	i
0 80		
i		
{2. Blocked, e.g., DCB=(RECFM=FB,LRECL=80,BLKSIZE=400) I		
ittt B Sttt " e e ittt 1		
	o I	
i FORTRAN Record 1	FORTRAN Record 2	é\h
		i i

: I_ ____________ 1__ 1__2 i : ;
| 0 80 160 320 400 |
e ————— L 1
| VARIABLE-LENGTH RECORDS |
I |
|1. Unblocked, e.g., DCB=(RECFM=V,LRECL=84,BLKSIZE=88); record may be any size up to 80|
| bytes. |
| I
| At Sl St 1 |
I | Bl s | [i
| | €| C | FORTRAN Record 1 | |
I | Wi W] | |
l L i e ———— J l
| 0 4 8 88 |
| |
|2. Blocked, e.g., DCB=(RECFM=VB,LRECL=84,BLKSIZE=424); a record may be any size up to |
| 80 bytes, and the block will contain as many records as may be accommodated in 424 |
| bytes. |
] I
| fm——y———y——————-—--) St Dttt bt i B T---T1o-7 ———qm——y————————-- 1 [
| | B | S| | s | [s 1| I s | | s | I I
| | C|] C | FORTRAN | C | FORTRAN | C | FORTRAN | C | | C | FORTRAN | |
| | W| W] Record 1 | W | Record 2 | W | Record 3| W | | W | Record n | |
' L L 4 L L L L 1 4 '2___ L 4 4 I
| 0 4 8 424 |
e 4
| UNDEFINED-LENGTH RECORDS |
| |
| Unblocked only, e.g., DCB=(RECFM=U,BLKSIZE=80); a record may be any size up to 80 |
I I
| [romomm s e — e 1 |
. | 1 I
| | FORTRAN Record 1 | |
I | | |
| e |
] 0 80 |
prmmmm oo - 1
-

|

|

I

4

}
| Legend:
|
|

Figure I1-22, EBCDIC Sequential Data Sets--Structure of Formatted Records

Load Module Execution 75

r
1. Unblocked Records, e.g., DCB=(RECFM=VS,BLKSIZE=68); assume two FORTRAN records, one|
50 characters in length, the other 130 characters

f~T=1-————-—-- T L St St S L I Sk S St 1 T T 1
1B|S| | | |B|S|FORTRAN | |B|S|FORTRAN | |B|S|FORTRAN | |
|C|C|FORTRAN | | {C|ClRecord 2 | |C|C|{Record 2 | |C|C|Record 2 | |
|WiW|Record 1|Unused| |W|W|Segment 1 | |W|W|Segment 2 | |W|W|Segment 3 |Unusedj
| | | | | | 1(60 chars)| | | [(60 chars)| | | |(10 chars)| |
[S 1 Jol_r1_a o __ R SO T S, N T N SN R 3
0 48 58 68 0 4 8 68 0 4 8 68 0 4 8 18 68

records, the first 130 characters in length, the second and third 100 characters in

|
|
|
|
|
|
|
|
|
|
|2. Blocked Records, e.g., DCB=(RECFM=VBS, LRECL=130,BLKSIZE=200); assume three FORTRAN
|
|
|
|
|
i
|
|
|
|

[
|
|
I
|
I
|
|
|
I
I
|
|
|
|B|S|FORTRAN |S]| I oo
|
|
|
|
|
i
.{
|
I
|
4

length
[y T———————-————- T-T it I St St Sttt Hets i - T -1
{BlS]| | SIFORTRAN |
|C|C|FORTRAN Record 1|C|Record 2 | |C|C|Record 2 |C|FORTRAN Record 3| |
|WIW] (130 characters) |W|Segment 1 | |W|W|Segment 2 |W]|(100 characters) |Unused|
[| 1(58 chars)l | 1 142 chars)| | | |
[T S - L.l (I O S, 1_1 1 4
048 138 142 200 048 50 54 154 200
P e
o e o
| Legend:
| BCW=Block Control Word
| SCW=Segment Control Word
e e —_— J— -

Figure 1—23. EBCDIC Sequential Data Sets--Structure of Unformatted Records

DCB considerations for ASCII Data Sets length, which is the data length (a
multiple of LRECL) plus the length of the
block prefix if present. BUFOFF specifies

ASCII data sets may have sequential the size of the block prefix.
organization only and may reside only on
9-track tape having a density of 800 bpi BUFOFF may be specified for input data

(the DCB subparameter DEN=2 must be implied sets only; the operating system does not
or explicitly specified). 1If an ASCII data use the information contained in the block
set has not been identified by means of the prefix but skips the number of bytes

LABEL parameter (LABEL=AL), the programmer specified before beginning record
indicates the presence of an ASCII data set processing. If BUFOFF is specified for

by specifying the DCB subparameter OPTCD=Q. output data sets, abnormal termination may

result.
FORTRAN records in an ASCII data set
must be formatted and unspanned and may be The following example defines a block of
fixed-length, undefined-length, or five records, each 80 bytes long, with a
variable-length specified as follows: block prefix of 20 bytes:

DCB=(RECFM=FB, LRECL=80, BLKSIZE=420,
Fixed-Length Records: Like EBCDIC records, BUFOFF=20)
ASCII records may be blocked or unblocked.
Unblocked records are defined as RECFM=F;
blocked records as RECFM=FB.,

Undefined-Length Records: Records may be
For unblocked records, BLKSIZE specifies unblocked only, defined as RECFM=U.

the buffer length, which is the record BLKSIZE specifies the buffer length, which
length plus the length of an optional block is the size of the largest record that may
prefix. The block prefix is a field that, be encountered in the FORMAT statement plus
if present, precedes each unblocked record the size of the block prefix if present.

or the first record in a block. BUFOFF BUFOFF specifies the size of the block
specifies the size of the block prefix. prefix. It may be coded for input data

sets only. The operating system skips the
For blocked records, LRECL specifies the number of bytes specified before beginning
record length and BLKSIZE the buffer record processing. BUFOFF specified for

76

output data sets may result in abnormal
termination.

The following example specifies a buffer
length of 200 bytes with no block prefix:

DCB= (RECFM=U, BLKSIZE=200)

Variable-Length Records: Records may be
blocked or unblocked. Unblocked records

S 3 =Te MNTIAALAA o A~
are specified as RECFM=D; blocked records

as RECFM=DB.

For unblocked records, LRECL specifies
the maximum length of any record in the
data set plus four bytes for the segment
control word that precedes each record.
BLKSIZE specifies the buffer length, which
is the same size as specified in LRECL plus
the size of the block prefix if present.
BUFOFF specifies the size of the block
prefix.

For blocked records, LRECL specifies the
maximum record length plus four bytes for
the segment control word. BLKSIZE
specifies the buffer length, which is the
block length plus the size of the block
prefix if present. BUFOFF specifies the
size of the block prefix.

BUFOFF may be coded as BUFOFF=L or
BUFOFF=n. BUFOFF=L indicates that the
block prefix is four bytes long and is to
be used in calculating the length of the
block. BUFOFF=n indicates the size of the
block prefix (where n is a number between 1
and 99); the operating system skips the
number of bytes specified before beginning

record processing. (Note that BUFOFF=4 is
not equivalent to BUFOFF=L.) BUFOFF=L may
be specified for both input and output data
sets. BUFOFF=n may be specified for input

data sets only

Oniy.

The following example defines a block of
up to 10 maximum length records (defined as
100 bytes) with the block prefix to be used
to calculate the block length:

4, BLKSIZE=1044,

Notes:

1. ASCII data sets may specify only ASA
carriage control characters in the
RECFM subparameter (for example,
RECFM=FBA); machine control characters
(coded M in the RECFM subparameter)
are not available for ASCII data sets.

2. For efficient use of storage when
writing blocked records, the
programmer should always specify
LRECL. If LRECL is omitted, its
default value is set equal to the
value of BLKSIZE less eight bytes. 1In
output operations, the operating
system checks to see if there is room
in a block for a record of length
LRECL; if there is not, the current
block is written and a new one is
started. The default convention thus
results in having only one record
written in any block.

Figure I-24 illlustrates the structure
of records in ASCII data sets.

Load Module Execution 77

r
FIXED-LENGTH RECORDS

1.

Unblocked, with no block prefix, e.g., DCB=(RECFM=F,BLKSIZE=80).

Unblocked, with block prefix (input data sets only),
DCB=(RECFM=F, BLKSIZE=90, BUFOFF=10).

0

Blocked, with no prefix, e.g., DCB=(RECFM=F,LRECL=80,BLKSIZE=400).

r T
| |
| FORTRAN Record 1 FORTRAN Record 2 |
| I

L

e.g.,

!
|
L
0 80 160 320

Blocked, with block prefix (input data sets only), e.g.,

DCB= (RECFM=FB, LRECL=80, BLKSIZE=420, BUFOFF=20) .

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
!
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
I
L

r) ettt b Snintnhaintatinsh it T~~~ T ITTTTT oI T T T T a

|Block | | | |
| FORTRAN Record 1 | FORTRAN Record 2 | FORTRAN Record 5 |

|Prefix| | | |

L 1 1 1 —d

0 20 100 180 420

UNDEFINED-LENGTH RECORDS (Unblocked only)
1. With no block prefix, e.g., DCB=(RECFM=U,BLKSIZE=80); a record may be any size up

to 80 bytes.

| ettt ‘i

| FORTRAN Record |

| |

[N d

0 80

2. With block prefix (input data sets only), e.g.,

DCB(RECFM=U, BLKSIZE=100, BUFOFF=20).

r-—====- B 1

|Block | |

| | FORTRAN Record |

|Prefixi |

Lo B 3

0 20 100

Figure I-24., ASCII Data Sets -- Structure of Records

78

(Part 1 of 2)

r - A
| VARIABLE-LENGTH RECORDS |
| . |
| 1. Unblocked, no block prefix, e.g., DCB=(RECFM=D, LRECL=84, BLKSIZE=84); a record |
i may be any size up to 80 bytes. |
| |
| e 1 I
| | s | | I
i | C | FORTRAN Record | |
| | W | I [
i I J]
i 0 4 84 l
I I
| 2. Unblocked, with block prefix, e.g., DCB=(RECFM=D,LRECL=84, BLKSIZE=94, BUFOFF=10); a|
| record may be any size up to 80 bytes; a block prefix is not used to determine |
| block length and may be specified only for an input data set. |
I i
I e SO S 1 |
| |Block | S | | |
| | | C | FORTRAN Record | i
| |Prefix]| W | | |
] [I S _— 1 I
| 0 10 14 94 I
I I
| 3. Blocked, no block prefix, e.g., DCB=(RECFM=DB,LRECL=84,BLKSIZE=420); a record may |
| be any size up to 80 bytes, and the block will contain as many records as may be |
| accommodated in 420 bytes. |
| I
| r | 8 B e ittt D o Gttt Sttt 1 I
| | s | | s | | s | I |
| | C | FORTRAN Record 1 | C | FORTRAN Record 2 | € | FORTRAN Record n |

| | W | W I W I |
| L1t ——1 1 - R T N 3 [
| 0 4 420 |
| I
| 4. Blocked, with block prefix, e.g., DCB=(RECFM=DB,LRECL=84, BLKSIZE=424, BUFOFF=L) ; |
| block prefix is used to determine block length. |
| |
I R B B bbbttt SN ot i C e bty 1 |
| |Block | s | I 81 | S| I
|] | C |FORTRAN Record 1 | C |FORTRAN Record 2 | C |FORTRAN Record n| |
| |Prefix| W | | W | W |1
! | U R & 1 4 i i J I
| 0 4 8 424
e e 1
e o o e i
| Legend: |
| SCW=Segment Control Word]
b e e e e 3
Fiqure I-24, ASCII Data Sets -- Structure of Records (Part 2 of 2)

Load mModule Execution 79

DCB Considerations for Direct-access Data than BLKSIZE, the record is transmitted
Sets over as many blocks as are required to
accommodate it.

FORTRAN records may be formatted or

unformatted, put must be fixed and Figure I-25 illustrates the structure of
unblocked only. The DEFINE FILE statement records in a direct-access data set.
specifies the record length and buffer
length for a direct-access data set. This Notes:
provides the default value for BLKSIZE. 1. Track-overflow, denoted by the letter
T in the RECFM subparameter, may be
FORMATTED RECORDS: Record format is specified to permit more efficient use
specified as RECFM=F (fixed). Record of track capacity.
length is specified by BLKSIZE, e.g.,
BLKSIZE=80. 2. If a direct-access data set is to be
processed by non-FORTRAN programs,
UNFORMATTED RECORDS: Record format is DSORG=DA must be specified, i.e.,
specified as RECFM=F, BLKSIZE specifies a
pseudo block size, which, as for sequential DCB=(RECFM=F, BLKSIZE=80, DSORG=DA)
data sets, may specify a length different
from the record length. Unlike sequential This specification causes the creation
data sets, no bytes are reserved for block of a label indicating a direct-access
or segment control words. For a record data set. (If the data set is to be
smaller than or equal to BLKSIZE, one processed only by FORTRAN programs,
record per block is transmitted; unused the default specification, DSORG=PS,
space is left blank. For a record larger may be used.)
_— _— _ . _ e 1
| FORMATTED RECORDS |
|
| May be fixed, unblocked only e.g., DCB=(RECFM=F,BLKSIZE=80) |
| |
1 [mm——m————————————— 1 |
I I | !
| | FORTRAN Record 1 |]
| | | |
| b oo 4 |
| 0 80 |
| |
| UNFORMATTED RECORDS |
| |
| May be fixed, unblocked only |
| Assume: A. DCB=(RECFM=F,BLKSIZE=80) |
| B. Two Records i
| Record 1 is 80 characters |
| Record 2 is 100 characters |
| |
| fr—————————————-—-- S T et S I S et oo 1
			FORTRAN Record 2		FORTRAN Record 2		
	FORTRAN Record 1		Segment 1		Segment 2	Unused	
			(80 characters)		(20 characters		
J L J L 1 - 4 l							
0 80 O 80 0 20 80							
L o e e e e ——— 1

Figure I-25. Direct-Access Data Sets--Structure of Records

80

Cataloged procedures provide pre-coded DD
and EXEC statements for the most common
functions, such as compile, or compile and
execute. Cataloged procedures may be
easily modified to accommodate special
situatiomns.

Cataloged procedures are sets of EXEC
and DD statements that are placed in the
procedure library, SYS1.PROCLIB., Each
procedure is retrieved by specifying its
name in an EXEC statement; for example, to
retrieve the procedure named FORTXC, the
user submits the following EXEC statement:

// EXEC FORTXC
This statement retrieves the cataloged

procedure named and places the statements
from the procedure into the job stream.

CATALOGED PROCEDURE RESTRICTIONS

cataloged procedures may consist only of
EXEC statements, certain DD statements,
and, optionally, PROC statements. PROC
statements are used to assign default
values to parameters. The PROC statement
is discussed further in "Symbolic
Parameters and the PROC Statement" later in
this chapter.

The following statements may not form
part of a cataloged procedure:

1. The JOB statement
2. The JOBLIB DD statement

3. A DD statement containing * or DATA in
the operand field

4. The delimiter statement

5. The null statement

IBM-SUPPLIED CATALOGED_ PROCEDURES

6. An EXEC statement that calls another
cataloged procedure; that is, only the
form PGM=progname is valid

FORTRAN PROCESSING CATALOGED PROCEDURES

IBM supplies seven procedures for use with
the FORTRAN IV (H Extended) Compiler. They
are:

1. FORTXC, to compile, illustrated in

Figure I-26.

2. FORTXCL, to compile and link edit,
illustrated in Figure I-27.

to 1link edit and execute
illustrated

3. FORTXLG,
(load module execution),
in Figure I-28,

4, FORTXCLG, to compile, link edit, and

execute, illustrated in Figure I-29.
5. FORTXG, to execute, illustrated in
Figure I-30.

6. FORTXCG, to compile and load,
illustrated in Figure I-31.

7. FORTXL, to load,
I-32.

illustrated in Figure

The first job control statement in each
cataloged procedure is the PROC statement,
which assigns default values to symbolic
parameters. The statements identified by
the characters //* following the PROC
statement consist of comments only, giving
more information about the symbolic
parameters, A full discussion of the PROC
statement and symbolic parameters may be
found in the appropriate job control
language reference publication, as listed
in the Preface. The following discussion
briefly describes their use in FORTRAN
cataloged procedures.

IBM-Supplied Cataloged Procedures 81

MEMBER NAME
// FORTXC PROC
//

/7%

/1%

/1%

/1 *

// %

/1 *

/7 *

/1 *

/1%

/7%

// FORT EXEC
//

// SYSPRINT
//SYSUTL
//SYSUT2

// SYSPUNCH
//SYSLIN

//

FORTXC
FXPGM=IFEAABy FXREGN=256K, FXPDECK=DECK 4
FXPOLST=NOLIST,FXPOPT=0,FXLNSPC=13200,(25,6)"

PA

RAMETER

FXPGM
FXREGN
FXPDECK
FXPOLST
FXPOPT
FXLNSPC

DEFAULT-VALUE USAGE

IFEAAB COMPILER NAME

256K FORT-STEP REGION

DECK COMPILER DECK OPTION
NOLIST COMPILER LIST OPTION
0 COMPILER OPTIMIZATION
32004(2546) FORT.SYSLIN SPACE

PGM=&FXPGM,REGION=&FXREGN yCOND=(4,LT),
PARM="&FXPDECK, &FXPOLST,0OPT (&FXPOPT)?
SYSOUT=A,DCB=BLKSIZ2E=3429
UNIT=SYSSQ,SPACE=(3465,(3,3)),DCB=BLKSIZE=3465
UNIT=SYSSQ,SPACE=(2048,(10,10))
SYSOUT=B,DCB=BLKSIZE=3440
DSN=8&&LOADSET,DI SP=(MOD, PASS); UNIT=SYSSQ,
SPACE=(&FXLNSPC),DCB=BLKSIZE=3200

DD
DD
DD
DD
DD

+39450000
39500000
39550000
396C0000
39650000
39700C00
39750000
398C0000
3985C200
399C0000
39950000
40000000
+40050000
40120000
40150000
40200000
4025C000
403C00cC0
+40350600
40400000

Figure I-26.

82

Cataloged Procedure FORTXC

MEMBER NAME

//

/1%
/7%
/%
/*
/7%
/1%
/1 *
/1%
/1%
/7%
/7%

1

// SYSPRINT
/7 SYSUT1

| //SYSUT?2
// SYSPUNCH
//SYSLIN
/"

//LKED EXEC
1/
//SYSPRINT
//SYSLIB
//SYSUTL
//SY SLMAD
14
//SYSLIN
/"

// FORT EXEC PGM=&FXPGM,REGION=&FXREGNsCOND=(4,LT
M

FORTXCL

//FORTXCL PROC FXPGM=IFEAAB, FXREGN=256KyFXPDECK=NODECK,F XPOLST=NOLIST,

FXPNAME=MAIN, FXPOPT=0,PGMLB="E&&LGOSET?"

PARAMETER DEFAULT-VALUE USAGE
FXPGM IFEAAB COMPILER NAME
FXREGN 256K FORT-STEP REGION
FXPDECK NODECK COMPILER DECK OPTION
FXPOLST NOLIST COMPILER LIST OPTION
FXPNAME MAIN COMPILER NAME OPTION
FXPOPT O COMPILER OPTIMIZATION
PGMLB €6GOSET LKED .SYSLMOD DSNAME

)y
E},0PTY

PARM=1 EFXPDECK, EFXPOLST ; NAME(SFXPNAME),

AT N

SEXPOPTY
DD SYSOUT=A,DCB=BLKSIZE=3429

DD UNIT=SYSSQ,SPACE=(3465,(3,3)),0CB=BLKSIZE=3465
DD UNIT=SYSSQsySPACE=(2048,(10,10))

DD SYSOUT=B,DCB=BLKSIZE=3440

DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
SPACE=(3200,(25+46)),DCB=BLKSIZE=3200

PGM=I EWL REGION=96K,COND=(4,LT),
PARM=*LET,LIST,MAP,XREF"'

DD SYSOUT=A

DD DSN=SYS1.FORTLIB,DISP=SHR

DD UNIT=SYSDA,SPACE=(1024,(200,20))

DD DSN=&PGMLB.(&FXPNAME) yUNIT=SYSDA,
DISP=(NEW,PASS) ySPACE=(TRK,(10,1041),RLSE)

DD DSN=&&LOADSET,DISP=(0OLD,DELETE)

DD DDNAME=SYSIN

+41350000
41400000
41450000
41500000
41550000
41600000
41650000

41700000
41750000
41800000
41850000
41900000
41950000

+42000000

Qﬂf\ﬂf\ﬂnf\
CVIVU UV

42100000
4215000¢C
42200000
42250000
+42300000
42350000
+42400000
42450000
42500000
42550000
42600000
+42650000
42700000
42750000
428000006

Figure 1I-27.

Cataloged Procedure FORTXCL

IBM-Supplied Cataloged Procedures

83

MEMBER NAME FORTXLG
//FORTXLG PROC LKLNDD='DDNAME=SYSIN',GOPGM=MAIN, GOREGN=1COK,

// GOF5DD='DDNAME=SYSIN',GOF6DD="SYSOUT=A"',

l/ GOF70D='SYSQUT=8"

/1%

/%

//* PARAMETER DEFAULT-VALUE USAGE

/1% LKLNDD DONAME=SYSIN LKED.SYSLIN OPERAND
/7% GOPGM MAIN OBJECT PROGRAM NAME
/7% GOREGN 100K GO-STEP REGION

//* GOF5DD DDNAME=SYSIN GO.FTOSF001 OPERAND
/1% GOF6DD SYSOUT=A GO.FTO6F001 OPERAND
/7% GOFT7DD SYSOuUT=8 GO.FTOTFOC1 OPERAND
//*

//LKED EXEC PGM=TEWL,REGION=96KsCOND=(4,4LT),

// PARM=*LET,LIST,MAP,XREF"

// SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=SYS1.FORTLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,2C))

//SYSLMQOD DD DSN=&&GOSET(&GOPGM)4DISP=(,PASS) ,UNIT=SYSDA,
14 SPACE=(TRK,(10,10,+1),RLSE)}

//SYSLIN DD &LKLNDD

// GO EXEC PGM=%,LKED.SYSLMOD,REGION=&GOREGNyCOND=(4,LT)
//FTO5F0OCL DD &GOF5DD

//FT06F001 DD &GOF6DD

//FTOTFCCL DD &GOFTDD

+44850C00
+44900C00
44950000
45000000
45050000
45100000
45150ccC0
45200000
45250000
45300000
45350000
45400000
45450C00
+45500000
45550000
45600000
45650000
45700C00
+45750000
45800000C
45850000
45900000
45950000
4600000C
46050000

Figure I-28, Cataloged Procedure FORTXLG

84

MEMBER NAME

FORTXCLG

//FORTXCLG PRIC FXPGM=IFEAAB,FXREGN=256K,FXPDECK=NODECK,
FXPOLST=NOLIST,FXPOPT=0,GOREGN=10CK,
GOF5DND='DDNAME=SYSIN',GOF6DD="SYSOUT=A",

(a] TN C\, -0
GOF7DD=SYSOUT=8"

//
//
.'/ .',
/7%
// %
/7 *
//%*
//*
/%

Ty

rr

//%

/7%

/7%

/1%

/7%

/=

// F3RT EXEC
1/

/7 SYSPRINT
//SYSUT1
//SYSUT?2

// SYSPUNCH
//SYSLIN

//

//LKED EXEC
1/

// SYSPRINT
//SYSLIB
//SYSUT1
//SYSLMOD

//

//SYSLIN

/7

//G0 EXEC
//FTO5FQ01
//FTC6FCOL
//FTO7FOO1L

PARAMETER DEFAULT-VALUE USAGE
FXPGM IFEAAB COMPTILER NAME
FXREGN 256K FORT-STEP REGION
FXPDECK NODECK COMPILER DECK OPTION
FXPOLST NOLIST COMPILER LIST OPTION
FXPOPT C COMPILER OPTIMIZATION
GOREGN 100K GO-STEP REGION
GOF5DD DDNAME=SYSIN GO.FTO5F001 OPERAND
GOF&DD SYSOUT=A GO.FTO6FCCL OPERAND
GOF7DD SYSOUT=8B GO.FTO7FCO1l OPERAND

PGM=6FXPGM,REGION=&FXREGNsCOND=(4,LT),
PARM="'EFXPDECK, &F XPOLST,0OPT(&FXPOPT)*

DD SYSOUT=A,DCB=BLKSIZE=3429

DD UNIT=SYSSQsSPACE=(3465,(3,3)),DCB=BLKSIZE=3465
DD UNIT=SYSSQ,SPACE={5048,(1C,10))

DD SYSOUT=B,DCB=BLKSIZE=3440

DD DSN=&&LOADSET,DISP=(MODyPASS),UNIT=SYSSQ,
SPACE=(3200,4(2546)),0CB=BLKSIZE=3200
PGM=TEWL yREGION=96KCOND=(4,LT),
PARM='LET,LIST,MAP, XREF?

DD SYSOUT=A

DD DSN=SYS1.FORTLIB,DISP=SHR

DD UNIT=SYSDA,SPACE=(1024,(200,20))

DD DSN=&&GOSET(MAIN),DISP=(,PASS),UNIT=SYSDA,
SPACE=(TRK,(10,10,1),RLSE)

DD DSN=&&LOADSET,DISP=(OLD,DELETE)}
DD DDNAME=SYSIN
PGU=%,LKED.SYSLMOD,REGION=EGOREGN,COND=(4,LT}

DD &GOF5DD
DD &GOF6DD
DD &GOF7DD

+42900000
+429500C0
+430C0C0C
4310C000
43150C00
43200000
43250000
43300C00
43350000
434C0CC00
4345000C
435C0000
43550000
43600C00
43650000
43700000
+4375C000
43800000
43850000
43900000
439500C0
44000000
+44050000
44100C00
+44150000
44200000
44250000
44300C0C
44350000
+4440000C
44450000
44500000
44550000
44600000
44650000
44700000
44750000

Figure I-29.

Cataloged Procedure FORTXCLG

IBM-Supplied Ccataloged Procedures

85

MEMBER NAME
//FORTXG PROC
4

//

1/%

/7%

/7%

/7%

//*

/1 *

/1 *

/1%

/7%

// GO EXEC
//FTO5F001
//FTC6F001
//FTO7FO0L

FAORTXG
GOP GM=MAIN, GOREGN=1 00K,

GOF5DD=*DDNAME=SYSIN',GOF60D="SYSOUT=A"',

GOF7DD='SYSOUT=8"
PARAMETER DEFAULT-VALUE

GOPGM MAIN

GOREGN 100K

GOFSDD DDNAME=SYSIN
GOF 60D SYSOUT=A
GOFT7DD SYSouUT=8

USAGE

PROGRAM NAME

GO—-STEP REGION
GO.FTOS5F001 DD OPERAND
GO.FTO6FCC1 DD OPERAND
GO.FTO7FOC1 DD GPERAND

PGM=6GOPGM, REGION=&GOREGNyCOND=(4,LT)}

DD &GOFS5DD
DD &GOF6DD
DD &GOF7DD

+4050CC00

+4055C000
40600000
40650000
407C0C00
40750000
40800C00
40850000
40900000
40950000
41000000
41050000
41100000
41150000
412000060
41250000

Figure I-30.

86

Cataloged Procedure FORTXG

MEMBER NAME

FORTXCG

//FORTXCG PROC FXPGM=1FEAAB, FXREGN=256K, FXPDECK=NODECK,

4

4

//*

/7%

//*

/7 *

/1 *

/7%

//*

//*

/1 *

/7 *

/7 *

/1%

/1 *

// FORT EXEC
//

// SYSPRINT
//SYSUT1
//SYSUT2
// SYSPUNCH
//SYSLIN

// G0 EXEC

//SYSLOUT
/7/SYSLIB
//SYSLIN
//FTOS5FN01
//FT06F0C1
//FTOTFOOL

FXPOLST=NOLIST,FXPOPT=0,G0F5DD="DDNAME=SYSIN',
GOF60D=7SYSOUT=A",GOF7DD=7SYSOUT=B" yGOREGN=100K

PARAMETER DEFAULT-VALUE USAGE
GOREGN 100K GO-STEP REGION
FXPGM IFEAAB COMPILER NAME
FXREGN 256K FORT-STEP REGION
FXPDECK NODECK COMPILER DECK OPTION
FXPOLST NOLIST COMPILER LISYT OPTION
FXPOPT 0 COMPILER OPTIMIZATION
GOF5DD DDNAME=SYSIN GO .FTOS5F001 OPERAND
GOF6DD SYSOUT=A GO.FTO6FCO1 OPERAND
GOF 7DD SYSOUT=8 GO.FTO7TFOO1 OPERAND

PGM=E6FXPGM,REGION=6FXREGN,COND=(4,LT),
PARM=1EFXPDECK, &FXPOLST,0PT(&FXPOPT)?

DD SYSOUT=A,DCB=BLKSIZE=3429

DD UNIT=SYSSQ,SPACE=(3465,4(3,3)),DCB=BLKSIZE=3465
DD UNIT=SYSSQ,SPACE=(2048,(10,10))

DD SYSOUT=B,DCB=BLKSIZE=3440

DD DSN=&&LOADSET,DISP=(MCOD,PASS),UNIT=SYSSQ,
SPACE=(32004(25+,6})4DCB=BLKSIZE=32C0C
PGM=LOADER,COND=(4,LT)yREGION=6GOREGN
PARM='LET ,NORES yEP=MAIN®

DD SYSOUT=A

DD DSN=SYS1.FORTLIB,DISP=SHR

DD DSN=&&LOADSET,DISP=(0LD,DELETE)

DD &GOF5DD

DD &GOF6DD

DD &GOF70D

+46150000
+46200000
46250000
46300000
46350000
46400600
46450000
46500000
46550000
46600000
46650000
467C0000
46750000
46800000
46900000
+46950000
47000000
47050000
47100000
47150000
47200C00
+47250C00
47300000
+47350000
47400000
47450000
47500000
47550000
47600000
47650000
47700000

Figure I-31., cCataloged Procedure FORTXCG

IBM-Supplied Cataloged Procedures

87

MEMBER NAME FORTXL
//FORTXL PROC GOF5DD='DDNAME=SYSIN',GOF6DD="'SYSQUT=A" +
= 47800C00
1/ GOF7DD=*SYSOUT=B"',GOREGN=100K ' 47850000
//f 47900C00
//; PARAMETER DEFAULT-VALUE USAGE 47950000
//* 48000000
//: GOF5DD DDNAME=SYS IN GO.FTO5F001 OPERAND 48050000
/7 * GOF6DD SYSOUT=A GO.FTO6FO0L1 OPERAND 48100000
//f GOF7DD SYSOUT=8 GO.FTO7F001 OPERAND 48150000
;;: GOREGN 100K GO-STEP REGION 48200000
//go . _ 48250C00
XEC PGM=LOADER,COND=(4,LT),REGION=5GOREGN, +48300000
1/ PARM="LET,NORES EP=MAIN® 48350000
//SYSLOUT DD SYSOUT=A 48400000
//SYSLIB DD DSN=SYS1.FORTLIB,DISP=SHR 48450C00
//FT0O5F001 DD &GOF5DD 48500000
//FTO6F0QL DD &GOF6DD 48550000
//FTOTFOO01 DD &GOF7DD 4860000¢C

Figure I-32. Cataloged Procedure FORTXL

Symbolic Parameters and the PROC Statement

A symbolic parameter is a name preceded by
an ampersand (§). It appears in the
operand field of a statement and stands as
a symbol for a parameter, a subparameter,
or a value. For example, in the cataloged
procedure FORTXC, the EXEC statement named
FORT contains a number of symbolic
parameters, such as &§FXPGM and §FXREGN in
the expressions PGM=&FXPGM and

REGION=§ FXREGN.

Symbolic parameters are used to make a
cataloged procedure easily modified when it
is called. The programmer may assign
values to symbolic parameters when he calls
a cataloged procedure, or he may permit the
default value assigned by the PROC
statement to be in effect.

Figure I-33 illustrates the format of
the PROC statement. Since the statement

r

-
| Name Operation | Operand

deals only with the symbolic parameters,
the identifying ampersand is unnecessary
and is omitted. 1In the cataloged procedure
FORTXC, the PROC statement assigns default
values to &FXPGM and &FXREGN in the manner:

//FORTXC PROC FXPGM=IFEAAB, FXREGN=228K, ...

When the cataloged procedure is executed,
these default values are assigned if the
programmer does not override them. That
is, the EXEC statement named FORT would
appear as if it were coded:

//FORT EXEC PGM=IFEAAB, REGION=228K, ...

Figure I-34 is another example
illustrating how the PROC statement affects
symbolic parameters of a cataloged
procedure. For easier reference, the
symbolic parameters in Figure I-34 are
shown underscored.

T
|
k- +
|
___________ 1

Figure I-33. PROC Statement Format

88

symbolic-parameter=value(,««.] |

r 1
| PROC Statement in cataloged procedure FORTXCLG: |
| |
i //FORTXCLG PROC FXPGM=1FEAAB, FXREGN=228K, FXPDECK=NODECK, i
| 77 FXPOLST=NOLIST, FXPOPT=0, GOREGN=100K, |
| 77 GOFS5DD="* DDNAME=SYSIN', GOF6DD="'SYSOUT=A", |
| 77/ QQEZQQ='SYSOUT=B' |
| |
| . o . [
| Statements in FORTXCLG specifying symbolic parameters: |
| |
| //FORT EXEC PGM=§ FXPGM, REGION=§FXREGN, COND=(4, LT) , |
| 77 PARM=* § FXPDECK, § FXPOLST, OPTIMIZE (§FXPOPT) * I
| . |
| : |
| //GO EXEC PGM=%, LKED. SYSLMOD, REGION=§GOREGN, COND= (4, LLT) |
| //FT05F001 DD E§GOF5DD |
| //FT06F001 DD §GOF6DD |
| //FT07F001 DD §GOFTDD I
{ |
| |
| Substitution of default values at execution time: |
| |
| //FORT EXEC PGM=IFEAAB,REGION=228K, COND=(4,LT), |
| 77 PARM="'NODECK, NOLIST,OPTIMIZE(O)" |
| . |
| . |
| . |
| 77GO EXEC PGM=#%, LKED. SYSLMOD, REGION=100K, COND=(4, L.T) |
| //FTO5F001 DD DDNAME=SYSIN |
| //FT06F001 DD SYSOUT=A |
| /7/7FT07F001 DD SYSOUT=B |
L e e e o e e e e e o e e e e e e e e e o e o o S . e e e o o S o . o S S i T 2 o o i A i 2 2 S o S o 2 o i o i o e i S o 2 o e o o o o S o o i e J

Figure I-34,

COMPILING

The EXEC statement for the compilation step
is named FORT and, through the PGM
parameter, specifies the compiler as the
program to be executed (PGM=IFEAAB). The
DD statements describe data sets required
by the compiler. SYSLIN describes the
output of the compilation step, an object
module stored as a temporary data set named
§ELOADSET. (A double ampersand is assigned
to avoid confusion with symbolic
parameters, which are preceded by one
ampersand.) The DISP parameter is coded
(MOD, PASS); MOD permits more than one
object module to be stored (if many source
modules are submitted for compilation), and
PASS permits the data set to be used in
later job steps. The programmer specifies
the source module data set in a SYSIN DD
statement coded as follows:

//FORT.SYSIN DD #* (or appropriate
parameters to define

the data set)

LINK EDITING

The EXEC statement for the link edit step
is named LKED and specifies the linkage
editor as the program to be executed
(PGM=IEWL). In FORTXCL and FORTXCLG, the
EXEC statement COND parameter indicates
that the program is to be executed only if
the FORT step has returned a code less than
or equal to 4. (Each job step issues a
return code indicating the results of
processing, e.g., 0 for normal completion,
4 for minor errors detected, 8 for serious
errors.) The DD statements describe
required data sets. SYSLMOD describes the
output of the link edit step, a load module
named MAIN, which is stored as a member of
a temporary library named §&GOSET. SYSLIN
describes the input to the linkage editor.
When the linkage editor is to be the first
step executed, as in FORTXLG, SYSLIN
indicates the object module defined by a
SYSIN DD statement which the programmer
must supply, as follows:

//LKED.SYSIN DD * (or appropriate
parameters)

IBM-Supplied Cataloged Procedures 89

EXECUTING THE LOAD MODULE

The EXEC statement for the go step is named
GO, and specifies, as the program to be
executed, the load module created in the
link edit step (PGM=#*,LKED.SYSLMOD). The
COND parameter indicates that the program
is to be executed only if previous steps
returned a code less than or equal to 4,
The DD statements describe required data
sets. DD statement FTO05F001 indicates that
the input data set is to be defined by a
SYSIN DD statement which the programmer
must supply. FT06F001 defines a printer
data set; FTO7F001 a card punch data set.

The programmer specifies input to the
load module by a SYSIN DD statement coded
as follows:

//GO.SYSIN DD * (or appropriate parameters)

LOADING

The EXEC statement for the loader step is
named GO, and specifies the loader as the
program to be executed (PGM=LOADER). The
DD statements describe required data sets.
SYSLOUT describes printed output, such as a
module map. The other data sets are the
same ones as used by the linkage editor and
the load module. Note that a SYSLMOD DD
statement is not specified; the loader
places the load module directly into
storage for execution. When the loader is
to be the first step executed, as in
FORTXL, the object module must be defined
in a SYSLIN DD statement (not SYSIN),
supplied by the programmer, as follows:
//GO.SYSLIN DD #* (or appropriate
parameters)

Input to the load module is defined in a
SYSIN DD statement, as follows:
//G0O, SYSIN

DD * (or appropriate

parameters)

MODIFYING CATALOGED PROCEDURES

Except for the PGM parameter, any parameter
in the PROC, EXEC, or DD statements may be
modified, New parameters may be added;
existing parameters may be overridden.
Parameters not overridden continue to
remain in effect.

When a cataloged procedure is modified,

the changes apply only for the duration of
the job.

90

Figure I-35 at the end of this chapter
illustrates how a programmer may modify a
cataloged procedure using some of the
examples described below.

MODIFYING PROC STATEMENTS

The programmer modifies PROC statement
parameters by specifying the changes in the
EXEC statement that calls the procedure.
When he changes a PROC statement parameter,
the programmer is assigning a temporary
value to a symbolic parameter, and this
value is transferred to the appropriate
parameter in the EXEC or DD statement in
the cataloged procedure when it is
executed. :

For example, to change the region size
of the compiler from 228K to 200K, and to
change card punch output in the load module
from output class B to output class C, the
programmer may use the following statement
(assume that changes are being made to
FORTXCLG for this and for all examples in
this chapter):

// EXEC FORTXCLG, FXREGN=200K,
/7 GOF7DD="'sysour=C'

Note that the ampersand preceding a
symbolic parameter is not coded; note also
that a value containing a special
character, as in SYSOUT=C, is enclosed in
apostrophes.

Prior to being called, the appropriate
statements in FORTXCLG appear as follows:

//FORT EXEC PGM=§FXPGM, REGION=6FXREGN, «..

//FT07F001 DD &§GOF7DD

When the cataloged procedure is called, the
statements appear as though they were
coded:

//FORT EXEC PGM=IFEAAB, REGION=200K, ...

//FT07F001 DD SYSOUT=C

Note that a symbolic parameter not changed
(PGM=§FXPGM) retains its default value.

An alternative method to change a value
is by assigning the new value directly to
the parameter itself, not the symbolic
parameter associated with it. For example,
the region size may be changed by
specifying REGION=200K in place of
FXREGN=200K. (Actually, in this example,

the region size for all job steps would be
changed; to change the region size only for
the compile job step, the appropriate job
step name, FORT, must also appear in the
parameter, i.e., REGION.FORT=200K.)

MODIFYING EXEC STATEMENTS

The programmer modifies EXEC statement
parameters by specifying the changes in the
EXEC statement that calls the procedure.

The following rules apply to EXEC

statement modifications:

s Parameters are overridden in their
entirety. If the programmer wishes to
retain some options while changing
others, he must respecify the options
he wishes kept. (However, default
options remain in effect if not
overridden.)

¢ Parameters specified for individual job
stéeps use the form:

keyword.stepname=value

where:
keyword indicates the name of the
parameter
stepname indicates the name of the
procedure, for example,
REGION. FORT=value

Parameters not specifying stepname are
assumed to apply to all steps in the
procedure; for example, REGION=value
applies to the entire cataloged procedure.

¢ To make changes to more than one
step, the programmer must specify all
changes for an earlier step before
those for later steps.

¢ Changes to symbolic parameters and
EXEC statement parameters may be
combined on the same card.

The programmer may make the following
modifications:

1. Override existing parameters: For
example, to modify the LKED step by
raising the condition code from 4 to
8, he may use the statement:

//SOMENAME EXEC FORTXCLG,
// COND. LKED=(8, LT)

2. Add new parameters: For example, to
modify FORT by specifying the TIME
parameter, he may use the statement:

//ANYNAME EXEC FORTXCLG,TIME.FORT=5

3. Change more than one parameter: For
example, to modify FORT by changing
the region from 228K to 200K and the
PARM option NOLIST to LIST, he may use
the statement:

//SOME EXEC FORTXCLG,
/7 REGION. FORT=200K,
/7 PARM. FORT=LIST

4, Change more than one step: For
example, to modify FORT by specifying
TIME and to modify LKED by raising the
condition code from 4 to 8, he may use
the statement:

//BNY EXEC FORTXCLG, TIME. FORT=5,
/77 COND. LKED=(8, LT)

Note that the user may add a parameter
while revising an existing one.

5. Combine changes to symbolic parameters
and EXEC statement parameters: For
example, to modify the symbolic
parameter FXREGN, and to add the TIME
parameter to the FORT EXEC statement,
he may use the statement:

//ANY EXEC FORTXCLG,FXREGN=200K,
/7 TIME. FORT=5

MODIFYING DD STATEMENTS

The programmer modifies DD statements by
submitting new DD statements after the EXEC
statement that calls the procedure. As
with modifications to EXEC statements, the
user may override or add parameters to DD
statements in one or many steps. In
addition, he may add entirely new DD
statements to any step (whenever he
supplies a SYSIN DD statement, the
programmer is adding a new DD statement).

The following rules apply to DD
statement modifications:

* Parameters are overriden in their
entirety except for the DCB parameter
where individual subparameters may be
overridden

¢ Parameters are nullified by specifying
a comma after the equal sign in the
parameter, e.g., UNIT=,

e Parameters are overridden when mutually
exclusive parameters are specified in
their place, e.g., SPLIT overrides
SPACE

IBM-Supplied Cataloged Procedures 91

¢ DD statements must indicate the related

procedure step,
//stepname.ddname,

using the form
€.g., //FORT.SYSIN

To make changes in more than one step,
the user must specify all changes for
an earlier step before those for later
steps

To modify more than one DD statement in
a job step, the programmer must specify
the applicable DD statements in the
same sequence as they appear in the
cataloged procedure

The programmer may make the following

modifications:

1.

92

Ooverride existing parameters. For
example, to modify SYSLMOD so that the
load module is stored in a private
library rather than in the system
library, the user may submit the
statement:

//LKED. SYSLMOD DD DSNAME=PRIV(PROG),
// DISP=(MOD, PASS)

In this example the library PRIV is
assumed to be an old library and is
cataloged (that is, VOLUME and UNIT
parameters need not be specified).
Note that in subsequent uses of the
library a JOBLIB DD statement,
defining the private library, must
also be submitted to make the library
available to the system.
Add new parameters., For to
store the load module in
uncataloged library, the programmer
must specify the VOLUME, UNIT, and
SPACE parameters. He may submit the
statement:

example,
a new,

//LKED.SYSLMOD DD DSNAME=MYLIB(FIRST),

7/ DISP=(NEW, PASS),

/7 VOLUME=SER=11234,

/7 UNIT=SYSDA,

V% SPACE= (TRK, (50,10,2))

3‘

Add new DD statements. For example,
to add new data sets having data set
reference numbers 10 and 15 for
processing in the go step, the user
may submit the statements:

//GO.FT10F001 DD DSNAME=DSETI1,

/7 DISP=(NEW, DELETE),
/7 VOLUME=SER=T1132,
77 UNIT=TAPE
//GO.FT15F001 DD DSNAME=DSET2,

Vs DISP=(, DELETE),

77/ VOLUME=SER=DAUS,

/7 UNIT=2311,

/77 SPACE=(TRK, (10, 10))

Note that the
define a data
parameter for
the system to
default (DISP

user may explicitly

set as new (DISP
FT10F001) or may permit
assume a new data set by
in FT15F001).

Figure I-35 illustrates a deck setup for

FORTXCLG modified as follows:

e A SYSIN DD statement defines the source

module

A SYSIN DD statement defines input data
to the load module

Job steps are modified as shown in the
EXEC statement discussion in "Modifying
EXEC Statements", example 4% (TIME in
FORT, COND in LKED)

The SYSLMOD DD statement is modified as
shown in the DD statement discussion
above, example 1

Additional data sets to the load module
are defined as shown in the DD
statement discussion, example 3

Note that all changes to a job step
appearing earlier in the job processing
sequence must be made before changes for
later job steps.

//TEST JOB ACCT3,J.SMITH,MSGLEVEL=1
|7//J0BLIB DD DSNAME=PRIV,DISP=(MOD,PASS)

e e e e e e
|

|//ANY EXEC

FORTXCLG; TIME. FORT=5, COND. LKED=(8, L.T)

| //FORT.SYSIN DD *

1
| Source modulej
1

|
I
| lommmmmee e
I
i
3
|

/%

//LKED. SYSLMOD
| //GO. FT10F001

V2%

| //GO. FT15F001

V2%

Submitting Modifications to a Cataloged Procedure

Figure 1-35.,

DD DSNAME=PRIV(PROG), DISP=(MOD, PASS)

DD DSNAME=DSET1,DISP=(NEW,DELETE), VOLUME=SER=T1132,
UNIT=TAPE

DD DSNAME=DSET2,DISP=(,DELETE), VOLUME=SER=DAUS,
UNIT=2311, SPACE=(TRK, (10,10))

*

R
input|

IBM-Supplied Cataloged Procedures

93

PART II -- JOB_OUTPUT

IBM-Supplied Cataloged Procedures 95

JOB OUTPUT

Part II describes job step output for the keypunched; keypunch errors have been
FORTRAN program depicted in Figures II-1 introduced on purpose to provide instances
and II-2. Figure II-1 shows a program as of system diagnostic action.

coded. Figure II-2 shows the program as

PORTRAN Coding Porm __—_‘m
mOoRAM PR G QA M e e e ;::!LIICVI:‘ mlr
= SAMPLE PRO I Tk (2 = —
“0::::" §I TR R T T P N R R T AW R Y W n N ,,u’y?::R:N.DSI."ZM:N: 15 46 47 4 49 50 51 52 53 54 55 58 37 58 50 60 61 62 6) &4 85 66 67 68 69 70 7\ 72|73 74 :j::lnn#
E 3 4 3¢ ﬁlmf- MER PROBLE“ o ‘r . . ; . i .
ITE (68) | e
: £ : (52H FOLLOWING 15| A LIST OF| PRIME NUMBERS FROM I TO [f]
A9Xs>[TRT /719X THZ/19X]2 1H3) I N R NEEE
T =5 | | | 4 IT I ;
[3 A= I i ‘ . D I R S I S I RSN]
182 A=SIQRTI(A) L |
4 Dol 1] k=302 | | _ RN
g5 L=I/K | | 1 L |
T g6l [TFICILK-T)H 22 24 0 1 l
1| ICONT]INUE 1
167] WRITE (655X T
F R 1" (20‘ } l ! .
2 IQ.IH = . ' i ‘j ') | 1 i | ' ' 2
m [TE (69%) t
9| FORMAT (1M4H PROGRA ERROR) _ . -
7] WRIITIE] (636). ‘ , | P ‘
6| FORMAT (3[{H THIS IS| THE END OF THE[PROGRAM) | ' | !
{igo 5TiaP! [| | L R TR I |
Ii E§N+D ‘ . j i : !
l 1 \ i E E IV 0 4 1 4 36 17 38 30 40 41 47 43 u‘u 48 47 0’49 50 51 82 5!‘54;55 36 57 Sli”"w 61 62 63 M‘IH 5 uku‘ln 70 7 72 n‘" nln 77 78 19 0

Figure II-1l. Sample Program as Coded

Job Output 97

r 1
|C PRIME NUMBER PROBLEM |
I 100 WRITE (6,8) |
| 8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/ |
| 119X, 1H1/19X, 1H2/19X%, 1H3) |
| 101 1I=5 |
| 3 A=I |
| 102 A=SQRT(A) |
| 103 J=a |
| 104 DO I K=3,J,2 I
| 105 L=I/K |
| 106 IF (L*K-I)1,2,4 |
| CONTINUE |
| 1 CONTINUE |
| 107 WRITE (3,91 |
| S FORMAT (I20) |
| 2 I=I+2 |
| 108 IF (1000-I)7,4,3 |
| 4 WRITE (6,9) |
| 9 FORMAT (14H PROGRAM ERROR) |
| 7 WRITE (6,6) |
| 6 FORMAT (31H THIS IS THE END OF THE PROGRAM) |
| 109 sTOP |
| END]
e e J

Figure II-2. Sample Program as Keypunched

98

Each compilation produces the following:

e Informative messages letting the
programmer know the status of the
compilation

¢ Any diagnostic messages generated
during the compilation

e Qutput as determined by the options
selected by the programmer, either
explicitly or by default

The programmer may request the compiler
options he wishes to exercise through the
PARM parameter of the EXEC statement, or he
may permit default options to govern
compiler output.

Figure II-3 shows the sequence in which
output from compiler options is printed.

In addition to the options shown in
Figure II-3, the programmer may request the
DECK option, which produces no listing, but
generates a card deck of the object module.

COMPILER OUTPUT

COMPILER OUTPUT WITH DEFAULT OPTIONS

Default options cause the compiler to
produce informative messages, diagnostic
messages, compiler statistics, and a
listing of the source module. Figure II-4
shows a printout for the FORTRAN program

illustrated in Figure II-2.

Informative Messages

The first line of a compilation output
listing (Figure II-4, A) states the release
level number of the compiler, the
compiler's name, and the date of the run
shown in the format

year.date/hour.minute. second.

Date information in Figure II-4 is shown as
70.002/12.04.4, indicating the year 1970,
the second day of the year, and the time of
the day the job was completed, 12:04.4
(based on a 2u4-hour clock).

| *Specified as default option in cataloged procedures.

L -

{ Option ? Produces

{ - E Informative messages T T

i SOURCE* i Source module listing

} XREF : Cross-reference listing

: LIST } Object module listing:

| | Part I: Entry code, constants, external address constants
= FORMAT : Edited source module listing

: LIST : Object module listing:

| | Part II: Executable instructions, internal address constants
: MAP : Source module map

{ - } Diagnostic messages

i - i Compiler statistics

T S N Y S U —— SE—— |

Figure II-3. Compiler Printed Output Format

Compiler Output 99

e——o LEVEL 1 C MAR 71) MAIN 05/360 FORTRAN H EXTENDED DATE 71.057/09.59.01 PAGE

REQUESTED OPTIONS: NODECK,NCLIST,CPT=(C

e{ OPTIONS IN EFFECT: NAME(MAIN),NOOPTIMIZE,LINECOUNT(6C),SIZE(MAX),AUTOOBL(NGNE),
SOURCE+EBCCICyNOLIST yNODECK4CBJECT ¢ NOMAP ,NOFORMAT 4 NOGOSTMT yNOXREF 4 NOALC 4NOANSF,FLAG(T)

¢ PRIME NUMBER PROBLEM
1SN CCC2 1CC WRITE (6,8)
ISN CCC3 8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FRCM 1 TC 10€C/
119X, 1H1/19X, 1H2/19X,1H3)
ISN COC4 101 I=5
ISN €CC5 3 A=1
ISN GOC6 102 A=SQRT(A)
ISN €007 103 J=A
1SN ccce 104 DO 1 K=3,J,2
ISN €CCO 105 L=1/K
ISN €C10 106 TF(L¥K=111,244
e ISN 0011 CCONTINUE
ISN GC12 1 CCNTINUE
ISN 6013 107 WRITE(3,5)1
ISN €014 5 FCRMAT (120)
ISN CC15 2 I=1+2
ISN CCl6 168 IF(1CCC-1)744,3
ISN €017 4 WRITE (&,9)
ISN €018 9 FGRMAT (14H PROGRAM ERRCR)
ISN €C19 7 WRITE (€46)
ISN cc2¢ & FCRMAT (31H THIS IS THE END OF THE PROGRAM)
ISN 0C21 169 STOP
ISN €C22 END
A A A A A A A AN AR A AP AN NN AN AP AP PPN AN AN A AN N PN A PPN AP AP e
NUMBER LEVEL FORTRAN H EXTENDED ERROR MESSAGES
1FE2241 8(E) 1SN cc1l THE STATEMENT AFTER AN ARITHMETIC If, GO TC, CR RETURN HAS NG LABEL.
Q IFE2081 4(W) ISN 0011 THE CONTINUE STATEMENT DOES NOT HAVE A STATEMENT NUMBER.

*0PTIONS IN EFFECT*NAME(MAIN),NOCOPTIMIZE,LINECCUNT(6C),SIZE(MAX),AUTCCBLINONE),

*QPTIONS IN EFFECT*SQURCE,EBCDIC,NOLIST,NODECK,CBJECT NOMAP,NOFORMAT,NOGOSTMT ,NOXREF s NOALC4NOANSF,FLAG(T)

G *STATISTICS* SOURCE STATEMENTS = 21, PROGRAM SIZE = 706, SUBPROGRAM NAME = MAIN
STATISTICS 2 DIAGNCSTICS GENERATED, HIGHEST SEVERITY CCDE IS 8
*%k%kk%x END COF COMPILATION *#k%kikk 1C5K BYTES OF CORE NOT USED

Figure II-4. Compiler Output from Default Options

The second line (and a third line, if module size in decimal, and the number and
needed) shows the compiler options current severity of diagnostic messages.
at the time of job submission (Figure II-Uu,

B).

The last entry of a compilation is the
informative message:
At the end of the listing, compiler
statistics are printed (Figure II-4, E) ******%END OF COMPILATION#******
listing all current options, the number of
statements in the source module, the source

100

1

Diagnostic Messages

Compiler diagnostic messages are assigned

Severity
Code Meaning
0 Indicates an informational
message; messages with a 0
severity code act as notes to

the programmer

4 Is a warning message code;
usually, a minor error, which
does not violate the syntax of
the FORTRAN IV language was
detected

8 Is an error message code;
usually, an error which
violates FORTRAN IV syntax was
detected. The compiler
attempts to make a corrective
assumption.

12 Is a serious error message
code; an error which violates
FORTRAN IV syntax and for which
the compiler could make no
corrective assumption was
detected

16 Is an abnormal termination
message code; an error which
prevents the compiler from
continuing program processing
was detected

Messages with severity code 4 permit the
compiled object module to be passed to the
link edit step. Severity levels higher
than level 4 prevent link edit processing,
unless the programmer has increased the
permissible condition code in the COND
parameter of the compilation EXEC
statement.,

Diagnostic messages in Figure II-4 are
marked D. Messages display the call
letters IFE identifying the FORTRAN IV
(H Extended) compiler, an internal
statement number developed from the
original source statement, the severity
code, and explanatory text. 1In Figure
II-4, two diagnostic messages were
generated by statement 11, an extraneous
CONTINUE statement.

Source Listing

The source 1listing in Figure II-4 is marked
C. Scurce listing statements are identicai
to the original statements submitted in the
FORTRAN program, except for the addition of

internal sequence numbers (ISN).

COMPILER OUTPUT WITH PROGRAMMER-SPECIFIED
OPTIONS

The compiler always produces informative
and diagnostic messages. The programmer
may suppress the source listing by
specifying NOSOURCE and may also choose to
generate other forms of output.

Figures II-5 and II-6 show additional
output for the program illustrated in
Figure II-2, Figure II-5 illustrates the
following:

1. A cross-reference listing
2. An object module listing
3. An edited source module listing

4., A source module map

Figure II-6 shows the deck setup of an
object card deck.

Cross—-Reference Listing

The programmer requests a cross-reference
listing by specifying the compiler option
XREF and a DD statement named SYSUT2. The
cross-reference listing in Figure II-5 is
marked A.

A cross-reference listing shows the
symbols and statement labels in the source
module together with the internal statement
numbers in which they appear. Symbols
(which define variables) are listed by
name, according to length, in alphabetic
order, beginning with names one character
long. Statement labels are listed in
ascending order and display each internal
sequence number (ISN) in which they are
referenced.

Compiler Output 101

LEVEL 1 (MAR T1) MAIN 05/360 FORTRAN H EXTENDED DATE 71.062/21.06.44 PAGE 2

**x%%%F 0 R T R AN CROSS REFERENCE L1 ST I N Grksex
SYMBOL INTERNAL STATEMENT NUMBERS

A 0005 0006 0006 0007
1 0004 0005 ©ONS 0010 0012 0014 0O0l4 0015
J 00C7 0008
K 0008 0009 0010
L 00C9 0010
SQRT 0006
*xe44FE DR T R AN CROSS Rt FERENCE LIS T 1 N Geesss
LABEL DEFINED REFERENCES
0011 0008 0010
2 0014 0010
3 0005 0015
e 4 0016 0010 2015
5 0013 0012
6 0019 o018
7 oo18 0015
8 0003 0002
9 oc17 0016
1c0 0002
101 0004
102 2006
103 0007
104 0008
105 €009
106 0010
107 0012
108 00l5

109 0020
r

T o e © o (-]

o~ ——

0CCOCC 47 FC F 00C MAIN 8C 15,12(0415)
0000C4 07 nC XL1'07*
000005 D4C1C905404040 oc CLT'MAIN ¢
20099C 9C EC D 00C STM 14,12,12(13)
cOCOLn 98 23 F 020 LM 2¢3,32(15)
200014 5C 30 D CO8 ST 3,8(13)
200018 50 DO 3 004 ST 13,4(0,3)
000C1C 07 F2 BCR 15,2

TEMPORARY FOR FIX/FLOAT
000100 000C0200 oc XL4400000000*
000104 00000000 oC XL4'0C0000C0*
000108 4EQCOCOQ Dl XL4*4EGO0CO0!
0001CC 00000000 oc XL4*00000000*

CONSTANTS
000110 4F080CO0 oC XL 4 4F 080000
000114 90000000 oc XL4*00000000*
000118 4E000000 0 XL4*4E 0000001
00011C 80000000 oC XL 4*8000000C
000120 00000002 oC XL4*00000002*
000124 0C000003 DC XL4*000000031
000128 9000C0C5 oC XL4'00CC00C5!
00012C 000003E8 DC XL4'000003EB?

ADCONS FOR VARIABLES AND CONSTANTS

ADCONS FOR EXTERNAL REFERENCES
200148 0000000 oc XL4*00000000°* SQRT
0CC14C 00000000 nC XL4*0000000C* 18COM#

e 000178 58 FO D 09C 100 L 15, 156(0,13) 1BCOM#

0C017C 45 EC F CO4 BAL 14, 4(0,15
000180 00000006 oC XL4100000006* 6
000184 00000028 oC XL410000G028 "
500188 45 EO F OlC BAL 14y, 16(€,15
©7018C 58 00 D 078 101 L Cy 120{ 0,13} 5
500190 5C 00 D 084 ST 0, 132(C,13} 1
200194 58 OC D 084 3 L Cy 132(0,13) I
cor198 5C 00 D 05C ST ¢y 920 0,13)
€0019C 97 8C D 05C X1 92{13),128
0CO1AQ 68 00 D 058 Lo 0, 88l C413)
CCOlA4 6B 00 D 068 SD 0y 104(0,13} 4E00000080000000
000148 70 CO D 080 STE Oy 128(0,13) A
COC1AC 41 10 D 04C 102 LA 1, 76(0,13
£00180 58 FO D C98 L 15, 152(0,13} SQRT
700184 05 EF BALR 14,15
N0C1B6 7C 00 D 0AO STE 0, 160(0,13) «S0%
9CC1BA 78 CO D OAO LE 0, 160(0,13} +500
00018E 70 CC D 080 STE 0y 128{ C,13) A
c001C2 2B 00 103 SOR 0, 0
0001C4 78 00.D 080 LE 0, 1281 C,13) A
J001C8 6A 0O D 060 AD Oy 96(Cy13) 4F 0800000000000C
0001CC 60 00 D 05C STD 0, 80(0,13)
000100 58 00 D 054 L 0, 84(0,13}
90C104 5C 00 D 088 ST 0y 136(0,13) J
0001D8 58 00 D 074 104 L 0, 116(0,13} 3
90010C 50 00 B Q8C ST 0, . 140{ 0,13} K
OCO1E0 58 00 D 084 105 L 0y 132(0,13) 1
00C1E4 BE 00 O 020 SRDA 0, 32
0C01E8 5D 00 D €8C 0 0, 140{ 0,13) K
DOOLEC 50 10 D 09C ST Ly 144(0,13) L
COO1FO 58 10 D 08C 106 L 1, 1400 0,13} K
9001F4 5C 00 D 090 M 0y 1440 0,13) L

Figure II-5. Compiler Output from Programmer-Specified Options
(Part 1 of 3)

102

0C0LF8 58 10 D 084
0OC1FC 58 50 D OBC
006200 07 95
000202 58 50 D 0CO
000206 07 25
€C0208 58 CO D 08C
00020C 5A 00 D 070
300210 50 00 D 08C
000214 59 00 D 088
000218 58 50 D 0BO
00021C 07 DS
00021E 58 FO D 09C
000222 18 00
000224 45 EO F 004
000228 00000003
00022C 00000072
00023C 45 EO F 008
000234 0450D084
000238 45 EO F 010
00023C 58 00 D 084
000240 5A 00 D 070
000244 50 00 D 084
000248 58 00 D 07C
00024C 5B 00 D 084
000250 58 50 D 0C4
000254 07 45
000256 58 50 D 0CO
000254 07 95
00025C 58 50 D OAC
000260 07 25
000262 58 FO D 09C
000266 18 00
000268 45 EO F 004
00026C 00000006
000270 00000076
000274 45 EO F 010
000278 58 FO D 09C
00027C 45 EO F 004
000280 00000006
G 000284 00000088
000288 45 EO F 010
00028C 58 FO D 09C
000290 45 EO F 034
000294 05
000295 40
000296 40
000297 40
000298 40
000299 FO
ADDRESS OF EPILOGJE
00029A 58 FO D 09C
00029E 45 EO F 034
0002A2 0540
0002A4 404 040F0
ADDRESS OF PRILOGUE
0002AA 58 FO 3 09C
0002AE 45 EO F 040
000282 18 D3
000284 58 FO D 0A8
0002B8 07 FF
ADCON FOR PROLOGUE
00002C 000002AA
ADCON FOR SAVE AREA
000024 000000BO
ADCON FOR EPILOGUE
0000B0 0000029A
ADCONS FOR PARAMETER LISTS
0000FC 80000130
TEMPORARIES AND GENERATED CONSTANTS
000159 00000000
000154 00000000
ADCONS FOR B BLOCK LABELS
000158 00000178
00015C 00000194
000160 O0O00OOLEO
000164 00000208
000168 0O000021E
00016C 0000023C
000170 0C000262
000174 00000278
Figure II-5. Compiler

107

108

109

(2]
P

O
=

-

Fgl"ﬁmbr‘mr‘wrm
ol

-
x

BAL

BAL

BCR
BCR
BCR

LR
BAL
DC
DC
BAL

BAL
DC
DC
BAL

BAL
DC
DC
bDC
DC
DC
DC

BAL
DC
DC

BAL
LR

BCR
bC
DC
DC
ple

DC
bC

bC
DC
0C
0C
DC
DC
DC
DC

1y 132(0,13)
Sy 188(0,413)
9y 5

5y 192(0,413)
2y 5

0y 140(0413)
0y 112(0,13)

o 1401 85,138
Uy 15Uy Ueildi

Oy 136(0,13)
5y 176(0,13)
13, 5
15, 156(0,13)
0, O
14, 4(0,15)
XL 4100000003
XL 4'00000072°¢
14, 8(0,15}
XL 4'0450D084"
14, 16(0,15}
0y 132(0,13)
0, 112(0,13)
0, 132(0,13}
0y, 124(0,13)
0,y 132(0,13)
5 196(0,413)
5y 192(0,413)
5, 172(0,13)
2y 5
15, 156(0,13)
0, 0
14, 4(0,15)
XL 4'00000006"
XL4'00000076"
14, 16(0,15)
15y 156(0413)
14, 4(0,415)
XL4*00000006"
XL4*00000088"
l4y 16(0,15)
15, 156(0,13)
14, 52(0,415)
XL1'05¢"
XL1'40°"
XL1'40°?
XL1'40"
XL1'40"
XL1'FO*

15, 156(0,13)
14, 52(0,15)
XL2'0540°'

XL4*404040F0"

15, 156(0, 3)
14, 64(0,15}
13, 3

15, 168{ 0,13)
15,15

XL4*000002AA"
XL4'00000080"
XL 4*0000029A"
XL4*' 80000130

XL4'00000000°"
XL4*00000000"

XL4'0.000178°"
XL4*00000194"
XL4'000001EO"
XL4'00000208"
XL4'0C00021E"
XL4'0000023C"
XL4'00000262°
XL4'00000278"'

r N

« ANX

105

IBC OM#

—

100

N O N

IBCOM#

IBCOM#

6

IBCOM#

1BCOM#

I1BCOM#

Output from Programmer-Specified Options (Part 2 of 3)

Compiler output 103

/ STRUCTURED SOURCE LISTING /

c PRIME NUMBER PROBLEM
(05 1SN 0002 100 WRITE (6,8)
TSN 0003 8 FORMAT (524 FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/
119X, LHL/ 19X, IH2/19X 4 1H3)
ISN 0004 101 I=5
ISN 0005 3 A=I
(002 ISN 0006 102 A=SQRT(A)
ISN oco7 103 J=A
ISN 0008 104 DO 1 K=3,4,2
ISN 0009 105 L=1/K
(CO1 ISN 0010 106 IF(L¥K-1)11,2,4
ISN 0011 1 CONTINUE
ISN 0012 107 WRITE (3,5]1
ISN 0013 5 FORMAT (120)
oo1) c
ISN 0014 2 1=142
ISN 0015 108 IF(1000-117,443
ISN 0016 4 WRITE (6,9)
ISN 0017 9 FORMAT (14H PROGRAM ERROR)
002) c
ISN 0018 7 WRITE (6,6)
ISN 0019 6 FORMAT (31H THIS IS THE END OF THE PROGRAM)
ISN 0020 109 sTOP
1SN 0021 END
A A A A A A A A A A A A A N I A N A I A A A I I N AN AN AP NN I PSP IS ANNANANAANNANA
/ MAIN / SIZE OF PROGRAM 0DO2BA HEXADECIMAL BYTES
NAME TAG TYPE ADD. NAME TAG TYPE ADD. NAME TAG TYPE ADD. NAME TAG TYPE ADD.
A SFA R#4 000130 I SF I¥4 000134 J SF I#4 000138 K SF I#4 00013:
Ls I#4 000140 SQRT F XF R¥4 000000 IBCOM# F XF 000000
A A AN AN AN AN e A A AN AN
SJURCE STATEMENT LABELS
LABEL ISN ADDR LABEL ISN ADDR LABEL ISN ADDR LABEL ISN ADDR
10C 2 000178 NR 101 4 00018C NR 3 5 000194 102 6 000LAC NR
103 7 0001C2 NR 104 8 0001D8 NR 105 9 0001€E0 106 10 0001F0 NR
1 11 000208 107 12 00021F 2 14 00023C 108 15 000248 NR
4 16 000262 7 18 000278 109 20 00028C NR
COMPILER GENERATED LABELS
LABEL ISN ADDR LABEL ISN ADDR LABEL ISN ADDR LABEL ISN ADDR
100000 1 000178
FORMAT STATEMENT LABELS
LABEL ISN ADDR LABEL ISN ADDR LABEL ISN ADDR LABEL [ISN ADOR
8 3 000028 5 13 000072 9 17 000076 6 19 00088
Figure II-5. Compiler Output from Programmer-Specified Options (Part 3 of 3)
Object Module Listing The first column, labeled 1, indicates

The programmer requests an object module
listing by specifying the option LIST.
object module listing in Figure II-5 is
marked B.

The

An object module listing is in an
assembler language format showing each
assembler language instruction. The
listing is arranged as follows:

104

the relative address of the instruction
in hexadecimal format.

The columns labeled 2 indicate the
storage representation of the
instruction in hexadecimal format.

The column labeled 3 indicates
statement numbers, which may be either
those appearing in the source program
or those generated by the compiler
(compiler-generated numbers contain six
digits).

e The columns labeled 4 indicate the
pseudo-assembler language format for
each statement.

¢ The column labeled 5 indicates any
significant items referred to by the
instruction, such as entry points of
subprograms or other statement numbers.

Edited Source Module Listing

The programmer requests an edited source
module listing by specifying the options
FORMAT and OPTIMIZE(2) and by including a
DD statement named SYSUT1. The edited
source module listing in Figure II-5 is
marked C.

This listing is independent of the usual
source listing; it indicates the loop
structure and logical continuity of the
source program.

Each loop is assigned a unique 3-digit
number. Entrance to the loop is indicated
by a left parenthesis followed by a 3-digit
number; exit from the loop is indicated by
the 3-digit number followed by a right
parenthesis on a separate line before the
next non-comment line,

Indentions are used to show dominance
relationships among executable source
statements. Statement A dominates
statement B if A is the last statement
common to all logical paths from which B
receives control. Statement A is called a
dominator, statement B is called a dominee.
By this definition, a statement can have
only one dominator, but a dominator may
have several dominees. For example, a
computed GO TO statement is the last
statement through which control passes
before reaching three other statements.
The GO TO statement is a dominator with
three dominees.

A dominee is indented from its dominator
unless it is either the only dominee or the
last dominee of that dominator. The line
of sight between a dominator and its
dominee(s) may be obscured by intervening
statements. This is a dominance
discontinuity and is indicated by C--- on a
separate line above the dominee.

Comments and non-executable statements
are not involved in dominance
relationships; their presence never causes
a dominance discontinuity. Comments are
aligned with the last preceding non-comment
line; nonexecutable statements are aligned
either with the last preceding executable
statement or with the first one following.

The edited source module listing in
Figure II-5 shows two loops; loop 001 is
nested within loop 002,

Source Module Map

The programmer requests a storage map by
specifying the option MAP. The source
module map in Figure II-5 is marked D.

A map indicates the use made of each
number within a program,

The first line of a map gives the name
and size of the program. The size is noted

in hexadecimal format.

The column headed NAME indicates the
name of each variable, statement function,
subprogram, or implicit function.

The column headed TAG indicates use
codes for each name and variable. Use
codes are the following:

1. The letter S for a variable appearing
to the left of an egnal sign; i.e., a
variable whose value was stored during
some operation

2, The letter F for a variable appearing
to the right of an equal sign; i.e., a
variable whose value was manipulated
during some operation

3. The letter A for a variable used as an
argument in a parameter list

4., The letter C for a variable in a
COMMON block

5. The letter E for a variable in an
EQUIVALENCE block

6. The letters-ASF for an arithmetic
statement function

7. The letters XF for an external
function

8. The letters XR for an external
reference to an array, variable, or
subprogram that is referenced by name.

9. The letter D for a promoted (doubled)
variable

10. The letter P for a padded variable

11. An asterisk (*) for a promoted library
function

Note that the combination code ASF should

not be confused with the individual codes
A, S, and F. The individual codes print

Compiler Output 105

out in the order SFA while the arithmetic
function code always prints as ASF.

The column headed TYPE indicates the
type and length of each variable.

The column headed ADD indicates the
relative address assigned to a name.
(Functions, arithmetic statement function,
subroutines, and external references have a
relative address of 00000.) For
non-referenced variables, this column
contains the letters NR instead of a
relative address.

The MAP option also produces a table of
statement numbers known as a label map
(marked E in Figure II-5). The label map
shows each statement number from the source
statement, from compiler generated labels,
and from FORMAT statements, the relative
address assigned to each statement, and the
symbol NR for each statement that is not
referenced,

If the source module contains COMMON or
EQUIVALENCE statements, the MAP option also
produces a storage map for each COMMON and
EQUIVALENCE block. Because the sample
program in Figure II-1 contained no COMMON
or EQUIVALENCE statement, no such storage
map is illustrated in Figure II-5. Figure
I1I-7 illustrates a section of another
program and the resulting storage map. The
map for a COMMON block contains the same
kind of information as for the main
program, Any variable eguivalenced to a
variable in COMMON is listed along with its
displacement (offset) from the beginning of
the block.

Object Module Deck

The programmer requests an object module
deck by specifying the compiler option
DECK. Figure II-6 shows a typical layout
of an object deck.

The object deck may be used as input to
the linkage editor in a later job. The
deck is a copy of the object module which
consists of dictionaries, text, and an
end-of-module indicator. Object modules
are described in greater detail in the
appropriate linkage editor and loader
publication, as listed in the Preface.

The object deck consists of four types
of cards identified by the characters ESD,
RLD, TXT, or END in columns 2 through 4.
Column 1 of each card contains a 12-2-9
punch. Columns 73 through 80 contain the
first four characters of the program name
followed by a four-digit sequence number.
The remainder of the card contains program
information.

106

ESD CARD: ESD cards describe the entries
of the External Symbol Dictionary, which
contains one entry for each external symbol
defined or referred to within a module.
For example, if program MAIN calls
subprogram SUBA, the symbol SUBA will
appear as an entry in the External Symbol
Dictionaries of both the program MAIN and
the subprogram SUBA. The linkage editor
matches the entries in the dictionary to
the entries in the dictionaries of other
included subprograms and, when necessary,
to the automatic call library.

ESD cards are divided into four types,
identified by the digits 0, 1, 2, or 5 in
column 25 of the first entry in the card,
column 41 if a second entry, and column 57
if a third entry (there can be 1, 2, or 3
external-symbol entries in a card).

ESD

Type contents
0 Name of the program or
subprogram and indicates the

beginning of the module.

1 Entry point name appearing in
an ENTRY statement of a
subprogram.

2 Name of a subprogram referred
to by the source module
through CALL statements,
EXTERNAL statements, and
explicit and implicit
function references (Some
usages of FORTRAN are of such
complexity, that a function
subprogram is called in place
of in-line coding. Such
calls are called implicit
function references).

5 Information about a COMMON
block.

TXT_CARD: TXT cards contain the constants
and variables used by the programmer in his
source module, any constants and variables
generated by the compiler, coded
information for FORMAT statements, and the
machine instructions generated by the

compiler from the source module.

RLD_CARD: RLD cards describe entries in
the Relocation Dictionary, which contains
one entry for each address that must be
resolved before a module can be executed.
The Relocation Dictionary contains
information that enables absolute storage
addresses to be established when a module
is loaded into main storage for execution.
These addresses cannot be determined
earlier because the starting address of a
module is not known until the module is

loaded. The linkage editor consolidates
RLD entries in the input modules into a
single relocation dictionary when it
creates a load module.

ESD, Type 2, ond
RLD for External
References in
CALL, EXTERNAL,
and Statements

RLD Cards for
the Branch List

Using Subprogroms

LA

TXT Cards for
the Branch List

ESD, Type 5
Indicating the

Existence of the
COMMON Arec

RLD cards contain the storage address of
subprograms called by ESD type 2 cards.

TXT Cords
for Object
Module Instructions

TXT Cards
for Compiler
Generated

Constants

ESD, Type 2 ond
RLD for Compiler

END_CARD: The END card indicates: TXT Cards for Generated External
Coded FORMAT References
. Statements
1. The end of the object module to the
1 1 £SD, Ty 1 Giving
linkage editor, oy Potets from X1 Cort
ENTRY Stotements A:‘ od‘;‘:‘gm”m“
2. The relative location of the main £SD, Type 0 —J//
£ int o Giving the Nams
entry point, and b e
Module
3. The length (in bytes) of the object
module.
Figure II-6. Object Module Deck Structure
ISN 0002 SUBROUTIE PO3ViC (P, T)
THIS SUBROUTINE COMPUTES AND PRINTS RS
CHARXRARRRRXX EIGENVALUES, CUMULATIVE PROPORTIONS OF TOTAL ittt
c
CRERRRRRXNRNX VARIANCES AND POSITIVE EIGENVECTORS. RRRRRK
C
ISN 0003 INTEGER P, T
ISN 0004 COMMON / SHARE1 / EIGVEC(80,80)
ISN 0005 COMMON / SHAREW4 / CUMPRO(80)
ISN 0006 COMMON / VALUE / EIGVAL(80)
ISN 0007 DIMENSION POSVEX(80,80), POSVAL(80)
ISN 0008 EQUIVALENCE (EIGVEC(1,1), POSVEX(1,1))
ISN 0009 EQUIVALENCE CEIGVAL(1), POSVAL(1))
ISN 0010 CALL EIGEN (P)
/ POSVEC / SIZE OF PROGRAM 000478 HEXADECIMAL BYTES
NAME TAG TYPE ADD, NAME TAG TYPE ADD. NAME TAG TYPE ADD. NAME TAG TYPE ADD.
I SF I=® 000180 J SF I¥4 000184 P SFA 154 000188 T SF %4 00018C
EIGEN SF XF RX4 000000 CUMPRO SF C R¥4 000000 EIGVAL F CE R¥4 000000 EIGVEC CE R¥®: 000000
IiBCcoM# F XF R¥Y 000000 IBERH# XF I*® N.R. POSVAL F CE R¥Y4 000000 POSVEC R¥®Y4 000100
POSVEX F CE R¥4 000000
#RRXX COMMON INFORMATION — X3k
NAME OF COMMON BLOCK ¥*SHARE1l%¥ SIZE OF BLOCK 006400 HEXADECIMAL BYTES
VAR. NAME TYPE REL. ADDR. VAR, NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR, VAR, NAME TYPE REL,ADDR.
EIGVEC R¥4 000000
EQUIVALENCED VARIABLES WITHIN THIS COMMON BLOCK
VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET
POSVEX 000000
NAME OF COMMON BLOCK *SHARE4# SIZE OF BLOCK 000140 HEXADECIMAL BYTES
VAR, NAME TYPE REL. ADDR. VAR, NAME TYPE REL. ADDR, VAR. NAME TYPE REL. ADDR. VAR. NAME TYPE REL. ADDR.
CUMPRO R¥4 000000
NAME OF COMMON BLOCK ¥ VALUE® SIZE OF BLOCK 000140 HEXADECIMAL BYTES
VAR. NAME TYPE REL. ADDR, VAR. NAME TYPE REL,., ADDR. VAR, NAME TYPE REL. ADDR. VAR, NAME TYPE REL. ADDR.
EIGVAL R4 000000
EQUIVALENCED VARIABLES WITHIN THIS COMMON BLOCK
VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET VARIABLE OFFSET
POSVAL 000000

Fiqure II-7. Source Statements and Storage Map for COMMON/EQUIVALENCE Blocks

Ccompiler Output 107

LINKAGE EDITOR AND LOADER OUTPUT

As with compiler output, output from the
link edit step depends upon the options in
effect at the time of job submission.

LINKAGE EDITOR OUTPUT

The cataloged procedures calling the
linkage editor specify the LET, LIST, and
XREF options; the programmer may override
or add to these options through the PARM
parameter of the EXEC statement,

LINKAGE EDITOR OUTPUT WITH
PROCEDURE-SPECIFIED OPTIONS

For the FORTRAN program illustrated in
Figure II-2, linkage editor output is shown
in Figure II-8. Options current at the
time of job submission are always listed
(Figure II-8, A) followed by any printed
output.

The linkage editor combines a number of
modules into one load module. The LET
option marks the load module executable
even though certain error conditions may
have been detected. LET does not result in
any printed output,

LIST causes linkage editor control
statements associated with the job step to
be printed. No linkage editor control
statements are shown in Figure II-8. See
the section "Linkage Editor Overlay
Feature" for an example.

Ccross-Reference Table

Unlike the compiler MAP and XREF options,
which are mutually independent, the linkage
editor XREF option produces both a module
map and a cross-reference listing., If the
programmer wants the only module map
printed, he specifies MAP in place of XREF,
The module map shows the name of each
program unit, the relative location of its
beginning point, its length, and any entry
names to the program unit, The module map
in Figure II-8 is labeled B.

108

A program unit (main program,
subprogram, or COMMON block) is termed a
control section in the link edit step. A
control section may be the object module
produced from the original source module,
or it may be a module called by the linkage
editor to perform such functions as
input/output operations, interface with the
operating system, or mathematical
operations required by the program.

Control sections called by the linkage
editor are identified on the module map by
the character * after the control section
name (for example, IHOECOMH* in Figure
I1-8).

In Figure II-8, the control section MAIN
begins at relative location 00 and has a
length expressed in hexadecimal format of
278 (equal to 632 bytes). The remaining
control sections are those called from the
FORTRAN library by the linkage editor.
Control section IHOECOMH begins at location
278 and has entry points named IBCOM,
FDIOCS, and INTSWTCH. IBCOM is also the
beginning point of the control section
since it too begins at location 278; FDIOCS
begins at location 334, and INSWTCH at
location 1196. Control section IHOCOMH2
contains only one entry point, SEQDASD,
beginning at a location within the section.

Following the map in Figure II-8 is the
cross-reference table (labeled C) which
lists the location of each reference within
the load module, the symbol to which the
reference refers, and the name of the
control section in which the symbol is
defined.

If an overlay structure has been
specified, a separate map and
cross-reference listing is produced for
each segment of the structure. See the
section "Linkage Editor Overlay Feature"
for an example.

The total length of the load module is
listed at the bottom of the cross-reference
table.

The message (Figure II-8, D) is not part
of the module map; it is a disposition
message issued by the linkage editor
stating that MAIN has been added to a load
module library.

F88~-LEVEL LINKAGE EDITCR CPTICNS SPECIFIEC XREF,LET,LIST
e VARIABLE OPTIONS USEC - SIZE=(92160,8192)- DEFALLT COPTICN(S) USED

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LCCATION NAME LCCATION NAME LOCATION NAME LCCATICN
MAIN o 278
IHCECCMH® 278 tC4
18COM# 204 FDICCSH 360 INTSWICH 1028
[HOCCMH2% 1040 975
SEQDASC 13AA
IHOSSQRT* 158 166
sarT 1988 IHESORT 1988
[HOFCVTH® 1820 ACT
ADCON# 1820 FCVACUTP 1BCA FCVLCUTP 1C5A4 FCVIOUTP 1CBé
FCVIOUTP 215A FCVEOUTP 224C FCVCCUTP 224C INT6SWCH 2448
IHOEFNTH® 2526 7c8
e ARITH# 2528 ACJSWTCH 2488
IFOEFIOS* 2CF0 10FC
FIOCSH 2CF0 FICCSBEP 2CF6
IHOFI0S2% 30EG 5AC
IHOUOPT * 4390 318
THOFCONI* 46A8 2FD
FQCONT# 46A8
[HOFCOND® 49A8 558
FCCONCH 4588
IHOERRM * 4FOC sec
ERRMON 4F00 IFOERRE 4F18
IHCUATBL® 54FC 208
IHOFTEN * 56F8 198
FTEN# 56F8
IHOETRCH* 585C 2h¢
IHOTRCH 5890 ERRTRA 5858
—
LOCATICN REFERS TO SYMBOL IN CONTROL SECTICN LCCATICN REFERS TO SYMBOL IN CONTRCL SECTION
150 SQRT IHOSSQRT 154 1BCCM# IHCECCMH
360 SEQCASD 1HOC CMH2 388 THCCCMA2 IHCCOMH2
F34 ADCON# THOFCVTH FaC FlOCSH IHCEFICS
F3s ARITH# THOEFNTH F54 ADJSWTCH IHCEFNTH
Fea IHOUCPT THOUCPT F3C FCVECUTP IHCFCVTH
F40 FCVLOUTP THOFCVTH Fa4 FCVIOUTP IHOFCVTF
F48 FOVCOUTP THCFCVTH Fac FCVAQUTP IHOFCVTH
F50 FCVZCUTP IHCFCVTH 162¢ IHOASYNC SUNRESCLVED(W)
E8C IHOERRM IHOERRM EEC IHOERRE IHCERRN
F10 IHOCOMK2 IHCCCMH2 EE4 IHOCCMH2 IHOCOMH2
EES IHOCOMH2 [HOCCMH2 EEC 1HOCCMH2 IHOCCMH2
EFO THOCOMK2 THOCGMH2 117¢ IHOECOMH IHCECCMH
1220 THCECOMH THOECCMH 1815 IHOECGMH IHOECOMH
1835 IHCECOMH IHGECCMH 1835 IHCECCHE THOECCHH
e 1A9¢C 1BCCH# THOECCME 1AC4 THOERRM IHCERRW
2318 1BCOM# THGECC MR 2314 LHOERRM IHOERRM
2368 FQCONO# IHOFCONG 236C FQCONI# IHCFCCNI
2AE4 1BCOM# THCECGMH 2AE8 INTShTCH IHCECCMH
2A84 INT6SWCH IHCFCVTH 2480 T1HOUGPT IHCUCPT
2AF0 ACCON# IHOFCVTH 2AEC FICCS# IFCEFICS
28F0 IHOERRM THCERRM 2E58 IHOASYNC SUNRESCLVED (W)
2E50 THOERRM IHCE RRM 2E54 IHOF 1052 IHOFICS2
387C THOUATBL 1HOUATBL 387C 1BCOM# IHCECCHH
3891 IHOF 1052 IHOF 1CS2 2pA8 THOF 1052 IHOFICS2
3009 IHOF 1052 THCF 1052 493C IHCGCCNT SUNRESCLVED(W)
4538 FQTEN# $UNRESOLVED (W) 4934 FTEN# IHCFTEN
4DA4 FTEN# IHOFTEN 4DAC THOQCONG $UNRESOLVED(W)
4DA8 FQTEN# $UNRESOLVED (W) 54DC IHCUCPT THCUGPT
54EQ 1BCOM# IHCECCMH 54E4 THOTRCH IHCETRCH
54E8 FI0CSBEP IHOEFIGS 5A20 LOFICH SUNRESCLVED (W)
5A18 I1BCCM# THCECCMH 5A1C ADCCN# IKCFCVTH
5A24 FIOCSBEP IHOEFICS
ENTRY ADDRESS 00
TOTAL LENGTH 5838
Q-»n*mun DOES NOT EXIST EBUT HAS BEEN ADDED TC CATA SET

Figure II-8. Linkage Editor Output From Procedure-Specified Options

Linkage Editor and Loader Output 109

LOADER OUTPUT

For the FORTRAN program illustrated in
Figure II-2, loader output is shown in
Figure II-9. Options current at the time
of job submission are always listed (Figure
I1-9, A) followed by any printed output.

MAP causes a load module map to be
produced (Figure II-9, B). The map
produced by the loader is somewhat
different from that produced by the linkage
editor. Like the link edit map, the loader
map shows the name and the location of each
program unit's beginning point. Unlike the
link edit map, this map shows the absolute
address rather than a relative address.

The loader map also has a different format;
it is designed horizontally, i.e., it is
meant to be read across from line to line
rather than down by column.

Each control section is mapped with
three entries: its name, its type, and its
beginning address. In Figure II-9, MAIN is

identified as a type SD program (Section
Definition, signifying a control section),
and begins at absolute address 90008.
IHOECOMH is also a type SD program and
begins at absolute address 902C8; it
contains IBCOM, FDIOCS, and INTSWTCH, all
identified as type LR (Label Reference,
signifying entry points within a control
section). Sections called by the loader
are identified by the character * after the
section name.

PRINT produces a message indicating the
length of the program and its absolute
entry point (Figure II-9, C).

The other loader options do not produce
any printed output. LET marks the load
module executable even though certain error
conditions may have been detected. CALL
permits the loader to search system
libraries to resolve external references.
RES permits the loader to search the MVT
link pack area queue to resolve external
references. SIZE indicates the amount of
storage allocated to the loader step.

CS/36C LCACER

@—-‘DPTIONS USED - PRINT,MAP,LET4CALL,RES,SIZE=6553¢

NAME

TYPE

ADDR

NAME

TYPE

ADDR

NAME

MAIN SD 82808 IHOECOMH* SD 82AC8 IBCOM# =*
THOCOMH2%* SD 8389C SEQDASD * LR 83BFA THOSSQRT=*
IHOERRM * SD 8437C ERRMON * LR 84370 IHOERRE *
ARITH# * LR 84(78 ADJSWTCH* LR 85108 IHOEFIOS*
IHOFT10S2* SD 8653C THOFCVTH* SD 86AEQD ADCON# *
FCVZOUTP* LR 86D76 FCVIOUTP* LR 8711A FCVCOUTP*
IHOFCONI* SD 874E8 FQCONI# * LR 874E8 THOFCONO*
IHOETRCH* SD 87F48 IHOTRCH * LR 87F48 ERRTRA *

(C I

TOTAL LENGTH
ENTRY ADDRESS

sac
828CR

Figure II-9. Loader Output

110

TYPE

ADDR

NAME

TYPE

ADDR

NAME

TYPE

ADDR

LR 82AF4 FDICCS# * LR 8288C INTSWTCH* LR 83878
SD 842C8 IH$ SQRT * LR 84208 SQRT * LR 8420G8
LR 84388 IHOUOPT * SC 8496C IHOEFNTH%* SD 84C78
SD 8544C FIOCS# * LR 85440 FICCSBEP* LR 85446
LR 86AEC FCVAOUTP* LR 86B8A FCVLOUTP* LR 86C1A
LR 872¢C FCVEOUTP* LR 872CC INTESWCH* LR 87468
sSb 877E8 FQCCONO# * LR 877E8 IHOQUATBL* SO 87D4C
LR 87FSC IHOFTEN * SO 881FC FTEN# * LR 881FC

Load module output consists of messages and
program output.

MESSAGES

Load module messages are generated in three
forms: error code diagnostics, program
interrupt messages, and operator messages.
Exrror code diagnostics indicate
input/output errors or misuse of FORTRAN
library functions. Program interrupt
messages indicate violations of system
restrictions., Operator messages indicate
interrupts caused by execution of STOP n or
PAUSE statements.

ERROR CODE DIAGNOSTIC MESSAGES

An error code diagnostic generates a
message followed by a traceback map written
in the error message data set (usually
FTO6F001). The traceback map provides a
guide to the programmer in determining the
cause of the error and shows the path of
calls made between routines in the program.

Figure II-10 shows an example of an
error code message and its related
traceback map, generated for the FORTRAN
program illustrated in Figure II-2. The
message, IH0219I, indicates that a call was
made to the FIOCS routine, which processes
input/output requests for a FORTRAN
sequential data set, and that the operation
could not be completed because of a missing
DD statement. The traceback map lists the
names of called routines, internal sequence
numbers within routines, and contents of
registers, as follows:

ROUTINE lists the names of all routines
entered during processing. Names are shown
with the latest routine called at the top
and the earliest routine called at the
bottom of the listing except when the
earliest name shown is IBCOM. Then, the
error could have occurred in one of the
subroutines called by IBCOM. In this
example, IBCOM, the FORTRAN input/output
subroutine, was the last routine entered,
called by MAIN, the main program. (IBCOM

LOAD MODULE OUTPUT

then called its subroutine FIOCS in which
the error occurred.)

The entry CALLED FROM ISN lists the
FORTRAN program's internal sequence number
(ISN) that called the routine, except when
calls were to IBCOM. ISNs are available to
the traceback routine only if the compiler
option GOSTMT was specified.

The entry REG. 14 lists the absolute
storage location of the instruction calling
ROUTINE.

The entry REG. 15 lists the absolute
location of ROUTINE's entry point.

The entry REG. 0 lists the results of
function subprogram operations, when
applicable. (In this example, the contents
of register 0 are meaningless.)

The entry REG. 1 lists the address of
any argument list passed to ROUTINE.

The message ENTRY POINT=01087730 shows
the entry point of the earliest routine
entered. In the example, the number is
identical to the number shown in register
15 for MAIN, The numbers do not
necessarily have to agree; for example, if
MAIN had several entry points, the number
in the ENTRY POINT message might show a
different entry point.

In Figure II1-10, the control program
executed its own routine to recover from
the error, and displays the following
message:

STANDARD FIXUP TAKEN, EXECUTION CONTINUING

If the data processing installation uses
its own error recovery routine, the word
USER would replace STANDARD.

After the fixup, execution continues.
In the example, additional instructions
calling for data set FT03F001 eventually
cause execution to terminate., Message
IHO900I explains that the number of errors
exceeded the number permitted by the
control program. A summary of errors is
printed at the end of the listing to assist
the programmer in determining how many
times an error was encountered.

Load Module Output 111

FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 100C

1
2
3

IHO02131 FIOCS -

TRACEBACZK ROUTINE CALLED FROM ISN REG. 14
IBCOM 00045680
MAIN 00COF98C

ENTRY POINT= 01045480

STANDARD FIXUP TAKEN , EXECUTION CONTINUING

1402191 FIOCS - MISSING DD CARD OR DCB ERROR FOR
TRACEBACK ROUTINE CALLED FROM ISN REG. 14
18COM 00045680
MAIN 0000F98C
ENTRY POINT= 01045480

STANDARD FIXUP TAKEN , EXECUTION CONTINUING

1402191 FIOCS - MISSING DD CARD OR DCB ERROR FOR

TRACEBACK ROUTINE CALLED FROM ISN REG. 14
18C0OM 00045680
MAIN 00O0CF98C

ENTRY POINT= 01045480

STANDARD FIXUP TAKEN , EXECUTION CONTINUING
1409001 EXECUTION TERMINATING DUE TO ERROR COUNT

1402191 FIOCS - MISSING DD CARD OR DCB ERROR FOR

TRACEBACK ROUTINE CALLED FROM ISN REG. 14
I1BCOM 00045680
MAIN 0000F38C

ENTRY POINT= 01045480C

SUMMARY OF ERRORS FOR THIS J0B ERROR NUMBER

219

Figure II-10.

Using the Traceback Map

In Figure II-10, the messages generated
during traceback processing indicate that:
1. The error results from a missing DD

statement for FTO3F001; hence, an
input/output operation is involved in
the error, and, therefore, a FORTRAN
input/output statement is involved.

112

MISSING DD CARD OR DCB ERROR FOR ASCII TAPE FOR FTO3F0O01

REG. 15 REG. 0 REG. 1
0004576C 00000005 FFFFFFFE
01045480 FFFFFF2E 0005D7F8
ASCII TAPE FOR FTO3F001

REG. 15 REG. o] REG. 1
0004576C 00000005 FFFFFFFF
01045480 FFFFFF2E 0005D7F8
ASCII TAPE FOR FTO3FOOL

REG. 15 REG. 0 REG. 1
0004576C 00000005 FFFFFFFE
01045480 FFFFFF2E 0005D7F8
FOR ERROR NUMBER 219

ASCII TAPE FOR FTO3FOO1

REG. 15 REG. o] REG. 1
0004576C 00000007 FFFFFFFE
01045480 FFFFFF2E 0005D7F8

10

NUMB ER OF ERRORS

Load Module Output with Traceback Map

The FORTRAN statement is encountered
many times rather than once, since
multiple occurrences of the same
traceback map result.

From the foregoing description, the
programmer can locate and correct either
the DD statement or the FORTRAN statement
containing 3 as its data set reference
number. For the small program illustrated,
the error may be easily located; if,

however, the source program is long and
contains many input/output statements, the
task of locating the error may be
formidable. The traceback map further
simpiifies error location by pinpointing
the exact FORTRAN statement involved.

If the GOSTMT compiler option is
specified, the traceback map lists the
internal sequence number (ISN) calling each
routine, From the ISN the source module
statement can be located. The example
illustrated in Figure II-10 cannot take
advantage of the GOSTMT option, however,
because calls to IBCOM do not generate
ISNs.

In addition, the programmer can take
advantage of the LIST compiler option. If
the option is specified, an assembler
language translation of the source module
is printed. The traceback map, used in the
following manner, locates the last
assembler language instruction executed:

1. For the topmost routine listed under
the heading REG. 14, subtract the 6
low-order digits in the number shown
under ENTRY POINT. This produces the
relative location of the instruction
in the listing. In Figure I1I-10,
location 087730 subtracted from 087960
yields 230.

2. Find the location in the
pseudo-assembler listing. A portion
of the pseudo-assembler listing
illustrated in Figure II-5 has been
reproduced in Figure II-11. Location
230 contains a BAL (Branch and Link)
instruction; this is the instruction
that would have been executed next if

— . |
the error had not occurred.

3. Using the location as a beginning
point, scan upward in the column that
identifies statement numbers to locate
the nearest number occurring before
the instruction; this will be the
statement number of the FORTRAN
statement involved in the error. In
Figure II-11, the statement number is
107,

4, Investigate the statement in the
source module deck. Figure II-12
illustrates statement number 107 as it
was coded and as it was keypunched.
The statement had a keypunch error,
designating 3 in place of 6 as the
data set reference number.

5. If the statement had been correctly
specified, the programmer would
investigate the corresponding DD
statement for accuracy. (In this
example, this step is, of course,
unnecessary since the programmer

intended no DD statement named
FTO3F001.,)

PROGRAM INTERRUPT MESSAGES

Program interrupt messages provide a guide
to the programmer in determining the cause
of the error; it indicates what system
restriction was violated. Program
interrupt messages are written in the
object error message data set (usually on
FTO06F001).

Figure II-13 shows the format of a
program interrupt message with and without
the extended error handling facility. The
extended error handling facility is
discussed in detail in Part III in this
publication.

The meaning of characters enclosed in
braces is as follows:

A or Alignment
indicates that the boundary alignment
routine has been executed. Boundary
alignment is performed to properly
align items in storage. It is
generally employed to ensure correct
alignment of variables in a COMMON
block or EQUIVALENCE group. Boundary
alignment is performed if the option
BOUNDRY=ALIGN is included at program
installation time; otherwise, boundary
violations cause the job to terminate.
When boundary alignment is performed,
message IHO210I is generated, for a
maximum of ten performances. After
ten performances, the message is

continue to be corrected.

indicates that the interruption was
precise, i.e., the PSW (program status
word) shown in message IHO0210I is the
one related to the interruption. 1In
some computer models, such as the IBM
System/360 Model 91, instructions may
be executed in a non-sequential order
such that if an interruptiomn occurs,
the printed PSW may not be the one
causing the interruption. Such
interruptions are called imprecise
interruptions.

O or operation
indicates that extended precision
simulation has taken place. The
simulator is a routine that forms part
of the supervisor. Some models of the
System/360 are equipped with hardware
to accomplish arithmetic operations
involving extended precision add,
subtract, and multiply floating-point

Load Module Output 113

0COLF8 5B 10 D 084 s 1, 132(0,13)
0001FC 58 50 D OBC L Sy 188(0,13)
000200 0T 95 BCR 9, 5
000202 58 50 D 0CO L 5, 192(0,13)
0C0206 07 25 BCR 2, 5
000208 58 00 D 08C L L 0, 140(0,13)
00020C SA 00 D 070 A 0, 112(0,13)
000210 50 00 D 08C ST 0,'140(0,13)
000214 59 00 D 088 c 0, 136(0,13)
000218 58 50 D 0BO L 5, 176(0,13)
0C021C 07 D5 BCR 13, S
00021E 58 FO D 09C 107 L 15, 156(0,13)
000222 18 0C LR 6, 0
000224 45 E0 F 004 BAL 14y, 4(0415)
000228 00000003 oC XL4°000C0CO3*
0C022C 0C000072 DC XL4'00000072°
000230 45 EO F 008 BAL 14, 8(0,15)
060234 04500084 tc XL4'04500084*
000238 45 EO F 010 BAL 14, 16(0,15)
00023C 58 00 D 084 2 L 0, 132(0,13)
€00240 5A 00 D 070 A 0, 112(0,13)
000244 50 0C D 084 ST 0, 132(0,13)
000248 58 00 D 07C 108 L 0, 124(C,13)
00024C 5B 00 D 084 s 0, 132(0,13)
000250 58 50 D 0C4 L 5, 196(0,13)
000254 07 45 BCR 4, 5
000256 58 50 D 0CO L 5, 192(0,13)
00025A 07 95 BCR 9, 5
00025C 58 50 D OAC L 5y 172(0,13)
00260 07 25 BCR 2, 5
000262 58 FO D 09C 4 L 15, 156(0,13)
000266 18 00 LR 0, ©
000268 45 EC F 004 BAL 14, 4(0,15)
00026C 00000006 DC XL4100000006*
000276 00000076 DC XL4100000076"
000274 45 EC F 010 BAL 14, 16(0,15)
00C278 58 FC D 0SC 7L 15, 156(0,13)
00027C 45 EQ F 004 BAL 14, 4(0,15)
Figure II-11. Partial Object Code Listing
instructions. On those models which

are not thus equipped,

performs these operations.
simulator is always required for
extended precision divide
instructions.

107 WRITE

107 WRITE

Figure II-12.

114

Statement 107 as coded:

(6,51

Statement 107 as keypunched:

(3,51

the simulator
The

e s e e e — i e, e .

Comparison of FORTRAN
Statement as Coded and as

Keypunched

N N

wmae XN X

18COMS

-

100

PN - N S

3

IBCOM#

IBCOM#

Exception codes themselves appear in the

eighth position of the PSW and indicate the
reason for the interruption. Their
meanings are as follows:

Code Meaning

1

indicates an operation exception,
i.e., the operation was not one that
could be defined by the operating
system.

indicates a protection exception,
i.e., an illegal reference was made to
an area of storage protected by a key.

indicates an addressing exception,
i.e., a reference was made to a
storage location outside the range of
storage available to the job.

indicates a specification exception,
i.e., a unit of information does not
begin on its proper boundary.

Code Meaning
7 indicates a data exception, i.e., the
arithmetic sign or the digits in a

number are incorrect for the operation

being nerformed
perfoc

D225 LG

9 indicates a fixed-point-divide
exception, i.e., an attempt was made
to divide by zero,.

C indicates an exponent-overflow
exception, i.e., a fioating-point
arithmetic operation produced a
positive number too large to be
contained in a register (the largest
number that may be contained is 16632
or approximately 7.2 x 107S),
Exponent-overflow generates the
additional message:

REGISTER CONTAINED number

where:
number is the floating-point number
in hexadecimal format. (When
extended-precision is in use, the
message prints out the contents of
two registers.,) If extended error
handling is specified, a standard
fixup is taken and execution
continues; otherwise, job
termination results,

D indicates an exponent-underflow
exception, i.e., a floating-point
arithmetic operation generated a
negative number too large to be
contained in a register (larger than
16-6S or approximately 5.4 x 10-79),

Exponent-underflow also generates the
message:

REGISTER CONTAINED number

(When extended-precision is in use,
the message prints out the contents of
two registers.) If extended error
handling is specified, a standard
fixup is taken and execution
continues; otherwise, job termination
results.

F indicates a floating-point-divide
exception, i.e., an attempt was made
to divide by zero in a floating-point
operation.

Floating-point divide also generates
the message:

REGISTER CONTAINED number

(When extended-precision is in use,
the message prints out the contents of
two registers.) If extended error
handling is specified, a standard

fixup is taken and execution
continues; otherwise, job termination
results.

Wote: Operation, protection, addressing,
and data exceptions (codes 1, 4, 5, and 7)
ordinarily cause abnormal termination
without any corresponding message.
Protection and addressing exceptions (codes
4 and 5) generate message IHO210I only if a
specification exception (code 6) or an
operation exception (code 1) has also been
detected. A data exception (code 7)
generates message IHO210I only if a
specification exception has also been
detected, When message IHO210I is
generated for codes 4, 5, or 7, the job
will terminate. The completion code in the
dump indicates that job termination is due
to a specification or operation exception;
however, the error message indicates the
true exception that caused the termination.

Requesting a Dump

Under MFT and VSl1l, program interrupts
causing abnormal termination produce a dump
called an indicative dump which displays
the completion code and the contents of
registers and system control fields.

To display the contents of main storage
as well, the programmer must request an
abnormal termination (ABEND) dump by
including a SYSABEND DD statement in the
appropriate job step. The following
example shows how the statement may be
specified for IBM-supplied cataloged
procedures:

//GO. SYSABEND DD SYSOUT=A

Information on interpreting indicative and
ABEND dumps is found in the appropriate
debugging guide, as listed in the Preface.

To specify a dump under MVT and VS2, the
programmer should include SYSUDUMP or
SYSABEND DD statements.

OPERATOR MESSAGES

Operator messages are generated when a
PAUSE or STOP n statement is executed.
Operator messages are written on the system
device specified for operator
communication, usually the console. The
message provides a guide to the programmer
in determining how far his FORTRAN program
has executed.

Load Module Output 115

r
1. Without Extended Error Handling Facility

IHO210I PROGRAM INTERRUPT ({P}) OLD PSW IS XXXXXXX

IHO210I IBCOM-PROGRAM INTERRUPT{

Figure II-13.

|
|
|
|
|
|
|
|
%
|2. With Extended Error Handling Facility:
|
|
|
|
|
|
|
|
|
L

A

(o)

ALIGNMENT

OPERATION

1

|

1 |
4 |
5 |
6 |
7) XXXXXXXX |
9 |
C |
D |
F I
|

1 I

4 |

5 I

6 |

OLD PSW IS XXXXXXX (7)) XXXXXXXX |
9 |

C |

D |

F I

1

Program Interrupt Message Format

Figure II-14 shows the form that the

operator message may take.

The meaning of

lowercase characters in the figure is as

follows:

Character

Meaning

YY

'message!

message identification number
assigned by the system.

string of 1 through 5 decimal
digits specified by the
programmer in the statement.
For the STOP statement, this
number is placed in register
15.

literal constant specified by
the programmer.

printed when a PAUSE statement
containing no characters is

executed, (Nothing is printed
for a similar STOP statement.)

A PAUSE message causes program execution
to halt pending operator response. To

resume program execution,

the operator

issues the command:

REPLY yy,‘'z'

where yy is the message identification
number and z is any letter or number,

A STOP message causes program

termination.

116

PROGRAM OUTPUT

Program structure dictates the form that
program output will take. Generally,
output that is to be used in future jobs is
directed to tape or direct access volumes
for storage; the programmer defines such
volumes on appropriate DD statements.
Output that is to be visible at job end is
directed to a unit record device; when
using cataloged procedures, the programmer
may conveniently direct such output by
assigning the appropriate data set
reference number in his WRITE statements,
or he may define his own DD statements.

Figure I1I-15 shows the program output
resulting from correct execution of the
FORTRAN program illustrated in Figure II-1
The first four lines are generated as a
result of the WRITE statement labeled 100
and the FORMAT statement labeled 8. All
the remaining lines except the last result
from WRITE statement 107 and FORMAT
statement 5; the last line results from
WRITE statement 7 and FORMAT statement 6.

Operator message caused by a PAUSE
statement:

n
yy IHOO001A PAUSE {'gessggg}
0

Operator message caused by a STOP n
statement:

IHO002I STOP n

Operator Message Format

b e e e s — — i, e s e el

r
|
I
|
I
|
|
I
|
|
|
|
|
L

Figure II-14.

FOLLOWING IS A LIST CF PRIME NUMBERS FROM 1 TO 1COC

8

2€3
269
271
277
281 //"“\
283
263 617
3C7 €19
311 631
313 641
317 €43
331 647
; 337 653
347 659
349 6€é1
353 673
359 677
3¢7 683
373 691
379 701
383 709
389 719
397 727
4C1 723
4€9 739
419 743
421 751
431 157
4323 761
769
773
787
797
8C9
811
g21
823
827
829
839
853
857
859
ge3
877
881
8e3
887
9G7
911
919
929
937
941
947
G553
967
971
977
583
991
997

THIS IS THE END OF THE PRCGRAM

Figure II-15. Program Output Load Module Output 117

PART III -- PROGRAMMING TECHNIQUES

Load Module Output 119

The programmer can significantly influence
the efficiency of a job by the manner in
which he uses FORTRAN statements and the
facilities of the operating system.

This chapter discusses the following:

s FORTRAN implementation considerations

e Job control language considerations

s FORTRAN library considerations

* System considerations

FORTRAN IMPLEMENTATIOLN

This topic describes how the programmer can
use FORTRAN statements and compiler
facilities to implement an efficient
program. Topics are arranged in alphabetic
order.

ARRAY CONSIDERATIONS

Wherever possible, arrays should be
specified as one-dimensional rather than as
multi-dimensional. References to higher
dimensioned arrays are slower than
references to lower dimensioned arrays.

ARITHMETIC IF STATEMENT

A test depending on the zero value of a
real floating-point number is not
recommended. Many real numbers must be
represented approximately (although to a
high degree of accuracy) in the internal
hexadecimal code of the computer. Slight
errors resulting from computation with
these numbers may prevent the anticipated
true zero condition from being obtained.

A fixed-point overflow condition in an
arithmetic IF statement causes the middle
branch (i.e., equal zero) to be taken.

PROGRAMMING CONSIDERATIONS

ASYNCHRONOUS INPUT/OUTPUT PROGRAMMING
CONSIDERATIONS

WAIT Statement: The WAIT statement need
not appear in the same program unit as the
corresponding READ or WRITE statement.
However, the WAIT statement must identify
the same list items as indicated in the
list of the corresponding READ or WRITE
statement. If OPTIMIZE(2) is requested,
the WAIT statement list must be specified

n order to ensure correct results.

3
a1 CLUGC NS re

REWIND, ENDFILE, and BACKSPACE Statements:
These statements should not be issued for
any data set on which a request is
outstanding, i.e., for any data set
expecting a WAIT statement.

Job_Control Language, System, and Library
Considerations: The DD statement DCB
parameter affects asynchronous input/output
processing as follows:

1. BLKSIZE specifies the block length.
If it is not specified, for direct
access devices the optimum block
length for the particular device is
assumed; for magnetic tape the block
length defaults to 10K bytes.

2. BUFNO specifies the number of buffers
(1, 2 or 3). If it is not specified,
two buffers are assumed.

3. RECFM specifies the record format and
may be specifed as either VS or VST.
If RECFM is not specified, VS is
assumed.

The following system restrictions affect
asynchronous input/output processing:

1. If track overflow is specified
(RECFM=VST), chained scheduling and
backspacing are not permitted.

2. The asynchronous input/output facility
does not check the characteristics of
the data it moves (e.g., whether
padded, promoted, REAL*16, etc.).
Specifying correct data types is the
programmer's responsibility.

3. A data set accessed by asynchronous
input/output may not be accessed by
any other type of input/output
facility unless the data set is
rewound before input/output facilities
are changed.

Programming Considerations 121

4, Asynchronous input/output is not
supported for unit record equipment,
or for direct-access data sets.

The following library considerations
affect asynchronous input/output
processing:

1. Asynchronous input/output operations
are assigned to a task having a higher
priority than the main program,
thereby permitting the operations to
occur asynchronously with computation.

2. Each logical record is assigned the
format RECFM=VS. The programmer may
specify track overflow by coding
RECFM=VST but blocked records are not
permitted. If blocked records are
specified, the RECFM request is
ignored and RECFM=VS is assigned.

BACKSPACE STATEMENT

The BACKSPACE statement may be used to
extend a data set, i.e., write additional
data. In a program containing DD
statements with more than one FORTRAN
sequence number, the execution of an
ENDFILE followed by the execution of a
BACKSPACE does not cause the sequence
number to increment; the latest data set
remains available.

The following restrictions govern the
use of the BACKSPACE statement:

1. It may not be used for any data set
specifying track overflow (e.g.,
RECFM=FT).

2. It should not be used for any data set
executing list-directed input/output
statements (e.g., WRITE(10,*)A)
because it would cause uncertain
record placement.

3. When asynchronous input/output
processing is specified, it should not
be executed for any data set on which
a request is outstanding, i.e., for
any data set expecting a WAIT
statement.

COMMON AND EQUIVALENCE STATEMENTS USED
TOGETHER

Increased efficiency occurs when
input/output operations are performed on
data stored in contiguous storage
locations., Normally, however, in input

122

operations data may be stored in locations
not necessarily contiguous; on output, data
may be gathered from diverse storage

locations. To make input/output operations
more efficient, the following technique is
suggested:

An I/0 list comprising many items in a
READ or WRITE statement should be
defined in a COMMON statement to
allocate contiguous storage space. An
EQUIVALENCE statement should be defined
which contains one item, equal in size
to all the items in the I/0 list, thus
permitting the same space to be referred
to by one name. Finally, an
input/output statement calling the one
name permits all items to be treated as
one unit. An example follows:

COMMON/LISTA/A(4),B(4),C,D, E, F, G(8)
REAL*4 A(4),B(4),G(8),LISTB(20)
EQUIVALENCE (A(1),LISTB(1))
WRITE(6) LISTB

Note that the variable and the
equivalenced array must be of the same
type.

COMMON STATEMENT

Use of COMMON to contain variables passed
among calling and called programs can
result in time and storage savings.
Consider the following example:

DIMENSION E(20),I(15)
READ (10) A,B,C
CALL SUBA (A,B,C,D,E,F, I)

END

SUBROUTINE SUBA (P,Q,R,S,T,U,J)
DIMENSION T(20),J(15)

RETURN
END

The compiler must assign storage to both
main program and subprogram variables and
must issue instructions required to
transfer the variables from one program to
another. Greater efficiency would result
by specifying a COMMON block as follows:

COMMON A, B,C,D,E(20),F,I(15)
READ (10) A,B,C
CALL SUBA

END
SUBROUTINE SUBA
COMMON P,Q,R,S,T(20),0,J(15)

RETURN
END

Neote, however, that the savings thus
made may be partially or completely
eliminated in a program compiled with
OPTIMIZE(1) or OPTIMIZE(2) in which calls
to user subprograms occur between two uses
of a variable. If the variable is in
COMMON, it will be stored before the call
and must be loaded from storage after the
call. If the variable is not in COMMON, it
can be retained in a register and thus used
more efficiently. This is true of
relatively high-activity variables.

DATA INITIALIZATION STATEMENT -- SPECIFYING
LITERALS

To initialize an array with literal data,
the programmer should consider the
following points:

1. He may initialize any element of an
array by subscripting the array name.
Only one element is initialized; if
excess characters are specified, they
are not placed, or spilled, into the
next element. (Overflow from one
element to the next is known as
spill.) An array element partially
filled is padded on the right with
blanks. The following example
illustrates how individual array
elements may be initialized:

DIMENSION A(10)

DATA A(1),A(2),A(U4),A(5)/*ABCD',

QRSTUVW' ,'123*, 6666,/

A(1)=ABCD

A(2)=QRST

A(3) not initialized (note that spill
does not occur for a subscripted
array name)

A(4)=123

A(5)=66606

A(6) through A(10) not initialized.

2'

He may initialize several consecutive
elements of an array with a single
constant by specifying the array name
without a subscript. Spill occurs
through as many elements as necessary
to insert the constant (as long as the
constant does not exceed the limits of
the array). The following example
illustrates how several array elements
may be initialized with one constant:

DIMENSION ARRAY(9)

DATA ARRAY/'ABCDEFGHIJKLMNOPQRS
TUVWXYZ' /

ARRAY (1) =ABCD

ARRAY(2) =EFGH

ARRAY(3)=IJKL

ARRAY (U) =MNOP

ARRAY (5)=QRST

ARRAY(6) =UVWX

ARRAY(7)=YZbb

ARRAY(8) and ARRAY(9) not initialized.

Note that spill normally begins only
at the beginning of an array. To
begin spill in the middle of an array,
the programmer uses the EQUIVALENCE
statement as in the following example:

DIMENSION ARRAYA(10) ,ARRAYB(5)

EQUIVALENCE (ARRAYA(6),ARRAYB(1))

DATA ARRAYB/'ABCDEFGHIJKLMNOPCRST'/

ARRAYA(1l) through ARRAYA(5) not
initialized

ARRAYA(6)=ABCD

ARRAYA(7) =EFGH

ARRAYA(8)=IJKL

ARRAYA(9) =MNOP

ARRAYA(10)=QRST

He may initialize individual variables
after initializing an array. Each
constant must be specified immediately
following the variable which it is to
initialize. The following example
illustrates how literal data for
arrays and variables may be specified
together:

DIMENSION ARAY(5)

DATA ARAY/'ABCDEFGH'/,X/'4uuuty
,Y¥/'5555"/

ARAY(1)=ABCD

ARAY(2)=EFGH

ARAY(3) ,ARAY(4), and ARAY(5) not
initialized

X=4444

¥=5555

If each constant is not specified
immediately after its associated array
or variable name, spilled data may be

Programming Considerations 123

overlaid, as shown in the following
example:

DIMENSION A(3)

DATA A,X/'ABCDEFGHIJKL',10.0/
A(1)=ABCD

A(2)=10.0

A(3)=IJKL

X is not initialized

In this example, the second element of the
array is overlaid by the second
initializing constant.

DIRECT-ACCESS INPUT/OUTPUT CONSIDERATIONS

Direct-access input/ocutput provides the
programmer with the ability to retrieve
selected records from a data set, i.e.,
records can be retrieved without the
necessity of reading all preceding records.

Direct-access input/output is suited to
applications where large tables must be
frequently searched during processing or
where data sets are constantly updated.

Master and Detai] Records: Records to be
updated are called master records. Records
containing information used to update
master records are called detail records.
In a direct-access data set, each master
record should be constructed such that it
contains a unique identification, or key,
distinguishing it from all other master
records. Each detail record should match
the key of the appropriate master record.
For example, astronomers assign numbers to
identify stars; these star numbers could be
used as the keys of master records, and
detail records update the correct master
record by matching the star number. Thus,
detail records to update information for
star number 383320 should contain a field
specifying 383320 as the key of the master
record.

A FORTRAN program indicates the record
to be processed by its position in the data
set. If star number 383320 is assigned to
record position 383320 in the data set, the
key can also be used to indicate the record
position. Sometimes, however, arranging
records in serial order is impractical (a
data set might not contain 383320
positions). 1In such cases, the programmer
can more conveniently arrange records in
the data set by using a randomizing
technique. For example, a randomizing
technique to arrange star numbers might be
to use the first four digits as the record
position and to ignore the last two digits.
Thus, star number 383320 is assigned to
position 3833.

124

Another method might be to perform an
algorithm on the number, such as squaring
the number and truncating the first four
and last four digits of the result. In
this example, star number 383320 is
assigned record position 3422. No general
randomizing technique works best for all
sets of identification numbers; the
programmer should devise his own technique
for each application,

Synonyms: Two problems arise when
randomizing techniques are used: waste of
space in a data set and duplication of
record position numbers, called synonyms

(e.g., by ignoring the last two digits,
star numbers 383320, 383352, and 383396
randomize to the same number, 3833). The

solution to the first problem should be
developed within the randomizing technique
itself. For example, if no star number
begins with zero, the first thousand record
positions are left blank (star number
123456 would be assigned to record position
1234). To eliminate this waste, a step
might be added to this randomizing
technique to subtract 1000 from the
randomized numbers (star number 123456
would then be assigned to position 0234),

Chaining: The solution to the second
problem is either to develop another
randomizing technique that results in fewer
synonyms, or to chain synonyms. Chaining
is a method of arranging non-contiguous
records in a chain such that each record
contains a field specifying the location of
the next record in the chain; the last
record in the chain may contain 0 in the
field to indicate the end of the chain.

For example, see Figure III-1 which
illustrates how star numbers 383320,
383396, and 383352, randomized to 3833,
might be chained together.

Since only one record can be assigned to
any one record position (if star number
383320 is assigned to record position 3833,
star numbers 383396 and 383352 must be
assigned elsewhere), space to accommodate
synonyms must be allocated to a data set.
For example, if no star number begins with
zero, the programmer may choose to keep the
first thousand positions of the data set
available for synonyms. Thus, star numbers
383396 and 383352 are assigned somewhere in
the first thousand record positions. To
keep track of the exact location of any
synonym, the programmer should create a
record location counter (a dummy record
that is initialized to the lowest record
position available for synonyms, e.gq.,
record position 1 in the example above).
When the first synonym is encountered, it
is inserted into record 1; address 1 is
stored in the chaining field of the
previous record having the same
identification; and the location counter is

incremented by 1. The next synonym is
allocated to the next record and the
address of that record is stored in the
chaining field of the previous record. The
same procedure is followed for each
succeeding synonym.

Creating a Direct-Access Data Set: To
create a direct-access data set, the
programmer initializes the volume by
writing "skeleton records" using an
installation-written routine. After the
data set has been initialized, the
programmer specifies DISP=OLD in the DD
statement that defines the data set, and a
FORTRAN load module can enter records into
it. However, if a data set cannot be
initialized prior to execution time, the
programmer can initialize it at execution
time by specifying DISP=NEW; the FORTRAN
load module writes skeleton records into
the volume as a series of blanks
(hexadecimal 40).

Figure III-2 shows a block diagram
describing the logic that can be used to
write a direct-access data set for the
first time. The block diagram does not
show any attempt to write skeleton records.

For an example showing how a
direct-access data set can be updated, see
the section "Appendix A: Examples of Job
Processing."

DEFINE FILE STATEMENT: The record
description information in a DEFINE FILE
statement must be consistent with space
allocation specified in the SPACE parameter
of the DD statement. The example below
illustrates this relationship.

DEFINE FILE 8(1000,40,E,I)

//DD1 DD SPACE=(40, (1000))«s.

Both the DEFINE FILE statement and the
SPACE parameter describe 1000 records, each
40 bytes in length.

The DEFINE FILE statement may not be in
a program unit that is overlaid; it may,
however, be in a program unit not overlaid
while the corresponding input/output
operations are specified in an overlaid
program unit. For example, the main
program may specify the DEFINE FILE
statement and a subprogram may perform
input/output operations.

e ettt 1
| Identifier Chain |
| pm=—=———- T————--- e 11
11 | Record] I
1383320 jPosition for| Data I
I | 383396 | 11
[S Lo T—————- N T Iy
! I i
] pm-——————= 4 |
I I I
| v I
| r—- T e 1
I | Record | I
11383396 |Position for| Data 1l
K | 383352 | Ll
[S S qe————= I 4
1 | |
] [-———————= 4 |
| I |
I v |
— - el
I | End I I
11383352 | of | Data 11
I | Chain | I
[S B B T, Iy
t

Figure III-1. Record Chaining

FIND STATEMENT: The FIND statement permits
record retrieval to occur concurrently with
computations of input/output operations,
thus resulting in a decrease in execution
time. The example below illustrates the
use of the FIND statement. In this
example, record 101 is retrieved while
arithmetic operations are performed and is
available for processing when the READ
statement is reached.

FIND (8'101)
10 A=SQRT(X)

E=ALPHA+BETA*SIN(Y)
WRITE (9)A,B,C,E
READ (8'101)X,Y

EQUIVALENCE STATEMENT

To reduce compilation time for
equivalence groups, the entries in the
EQUIVALENCE statement should be specified
in descending order according to
displacement. Consider the following
example:

EQUIVALENCE (VARA,ARAYA(3),ARAYB(5),
ARAYC(10))

Programming Considerations 125

Write Record
Containing
Record
Location
Counter

Set Record Position

in Read Statement
= Chain Variable

Figure III-2.

126

DEFINE FILE

Allowing enough
Space for Synonyms

Set Record
Location Counter =
Lower Limit of
Space for Synonyms

Read
Detail
Record

Randomize
Identification
Number to

Record Location

Build
Master
Record

Set Chain
Variable in Master
Record = Record

Location Counter

Set Record Position
in Write Statement
= Record
Location Counter

1

Increment
Record Location
Counter by 1

Writing a Direct-Access Data
Set for the First Time

This statement would be compiled faster by
reversing the order, i.e.,

EQUIVALENCE (ARAYC(10),ARAYB(5), ARAYA(3)
VARA)

To reduce compilation time and save
internal table space, equivalence groups
should be combined where possible.
Consider the example:

EQUIVALENCE (ARRA(10,10),VARL),
(ARRB (5, 5) VAR1)

This statement could be recoded more
efficiently as:

EQUIVALENCE (ARRA(10,10),ARRB(5,5), VAR1)

EXTERNAL STATEMENT

By placing an ampersand before a function
name in an EXTERNAL statement, the
programmer "detaches" that name, i.e.,
declares it to be the name of a
user-supplied function even though the name
may be the same as a function or subroutine
appearing in the FORTRAN library. If the
function name following the ampersand is
not the same as a library function, it is
still considered detached; no diagnostic
action is taken.

Also, by specifically typing a
subprogram name, the programmer detaches
the name from the library; for example, if
SIN is typed as REAL#*#8, it is detached from
the FORTRAN library.

GENERIC STATEMENT

The GENERIC statement requests the use of
the Automatic Function Selection facility;
i.e., the appearance of the generic name in
a program causes the appropriate function
name to be substituted according to the
length and type of the arguments specified.
For example, the generic name COS,
specified with arguments of REAL*8, causes
the function DCOS to be substituted.

In order to avoid conflict with specific
references to functions, the function names
substituted as a result of automatic
function selection are aliases, not
otherwise obtainable by the user. The
aliases are formed by prefixing the
characters IHOSS to function names three
characters in length, and IH$ to names four
to six characters in length. Names six
characters in length are reduced to five
characters by deleting the next to last

character before prefixing the name with
IH$. For example, the function DCOTAN
substituted for COTAN would appear to have
the name IHS$DCOTN.

INPUT/QUTPUT STATEMENTS -~ UNFORMATTED
FORMS

The unformatted form of an input/output
statement results in a faster data transfer
rate into and out of storage. When

" operations are being performed on
intermediate data sets, (those which are
not intended to be printed), use of the
unformatted forms increase program
efficiency. In the example below,
statement 11 is more efficient than
statement 10:

DIMENSION A(10),B(10),D(20)
EQUIVALENCE (A(1),D(1))

10 WRITE (20,9)A,B

9 FORMAT (10E13.3/)

11 WRITE (20) D

Note: A, B, and D must be the same type.

Unformatted input/output statements may
not be used for ASCII data sets.

LIST-DIRECTED INPUT/OUTPUT

The buffer length (specified by BLKSIZE)
must be large enough to contain the largest
data item other than a complex item or
literals in quotation marks; if it is not,
an infinite loop results as the operating
system attempts to get more space for the
item,

LOGICAL IF STATEMENT

Use of the logical IF statement may result
in more efficient compilation time. For
example, statement 5 below is more
efficient than statement 6:

5 IF (A.GT.B) GOTO 20
6 IF (A-B) 10,10,20
10 CONTINUE

When a choice between logical operators
can be made, the .OR. operator should be
selected in place of the .AND. operator.
For example, statement 7 below is more
efficient than statement 8:

7 IF (A.LT.B .OR. C.EQ.D) GO TO 15
8 IF (.NOT.(A.GE.B .AND. C.NE.D)) GO TO 15

In statement 7, the compiler analyzes each
set of comparisons separately; that is, the
statement is compiled as though it were
written:

IF (A.,LT.B) GO TO 15
IF (C.EQ.D) GO TO 15

Thus, at execution time, if the first test
is true, the remainder of the expression is
not evaluated. Statement 8, however, must
be evaluated in its entirety before a

branch decision can be made.

The programmer can further improve the
execution time of a logical IF statement by
specifying as the first test the comparison
that is most likely to be true. For
example, in statement 7 above, if the test
C.EQ.D is expected to be true more often
than the test A.LT.B, the programmer should
write the statement as follows:

IF (C.EQ.D .OR. A.LT.B) GO TO 15

NAME HANDLING

The compiler places names used for
variables, arrays, and subprograms into a
table and searches the table whenever a
reference is made to a name. The table is
divided into six strings. Names that are
one character long are placed into the
first string; names two characters long are
placed into the second string; and so on.
For faster compiling, the programmer should
allocate names as evenly as possible among
the sizes.

OPTIMIZE COMPILER OPTION

The OPTIMIZE option permits compiler
optimization techniques to improve
execution time and to reduce the size of
the object module.

OPTIMIZE(1l) causes the entire program to
be treated as a loop, with individual
sections of coding, headed and terminated
by labeled statements, treated as blocks.
The object code is made more efficient by:

e Improving local register assignment.
(vVariables that are defined and used in
a block are retained where possible in
registers during the processing of the
block. Time is saved because the
number of load and store instructions
are reduced.)

Programming Considerations 127

¢ Retaining the most active base
addresses and variables in registers
across the whole program. (Retention
in registers saves time because the
number of load instructions are
reduced.)

e Improving branching by the use of
assembler language RX format branch
instructions in the object code. (An
RX branch instruction saves a load
instruction and reduces the number of
required address constants.)

OPTIMIZE(2) performs object code
optimization beyond that performed by
OPTIMIZE(1) by:

e Assigning registers across a loop to
the most active variables, constants,
and base addresses within the loop.

e Moving outside the loop many
computations which need not be within
the loop.

s Recognizing and replacing redundant
computations.

e Replacing where possible multiplication
of induction variables by addition of
those variables. (An induction
variable is one that is only
incremented by a constant or a variable
whose value remains constant in the
loop.)

e Using, where possible, the BXLE
assembler instruction for loop
termination. (The BXLE instruction is
the fastest conditional branch; time
and space are saved.)

Registers 0, 1, and 12-15 are required
by the system. The remaining registers,
2-11, are available for use by optimization
techniques.

PROGRAMMING CONSIDERATIONS WHEN USING
OPTIMIZE(1) AND OPTIMIZE(2): Although
these options can result in more efficient
code, they place additional
responsibilities on the programmer in
coding his program with care.

Using COMMON Statements: Variables in
COMMON are normally not stored on exit from
a FORTRAN main program, unless an
input/output statement or a subroutine call
using them is issued.

Using Subprograms: If a programmer-defined
subprogram is given the same name as a
FORTRAN-supplied subprogram (e.g., SIN,
ATAN), errors could be introduced during
optimization. To avoid errors, the
programmer should specify the subprogram

128

name in an EXTERNAL statement (with an
ampersand preceding the subprogram name).

If the extended error handling facility
is specified and a user-supplied subroutine
uses program variables, there is no
guarantee that correct values will be
available.

If a subprogram is called at one entry
point for the purpose of initializing
arguments and at another entry point for
computations, the latter call must include
an argument list to ensure that the
subprogram will receive current values for
the arguments. This rule applies when the
subprogram refers to the arguments by name
(i.e., accesses them in their location in
the calling routine rather than through
local variables),

In the following example, the updated
value of I will be correctly stored and
transmitted to the subprogram. If the call
to the subprogram did not include the
argument list, I would be updated in a
register but not in storage.

CALL INIT(I)

10 CALL COMP(I)

I=I+1

GO TO 10

SUBROUTINE INIT(/J/)

ENTRY COMP(/J/)

Because each COMMON block is an
independent program unit, it is
independently relocatable and thus requires
a base address that specifies its beginning
point in storage. Each base address must
be stored into a register in order to be
accessible. If many COMMON blocks are
defined, the need to load base addresses
slows down processing time. If multiple
blocks can be combined into one block less
than 4096 bytes in length (the maximum
number that can be accommodated in a
register) one base register can serve to
address each variable.

Using the Assigned GO TO Statement: If the
list of statement numbers is incomplete,
errors that were not present in the
unoptimized code may appear. The
programmer should correct such GO TO
statements.

PROGRAMMING CONSIDERATIONS WHEN USING
OPTIMIZE(2): OPTIMIZE(2) evaluates
expressions and eliminates common
expressions. For example, if an expression
occurs more than once such that the program
path always passes through the first
occurrence to reach a later occurrence with
no change in the expression's value, the
first value is saved and used instead.
consider the following example:

A=C+D

The common expression C+D is saved from its
first evaluation occurring in A and is used
in F.

computational Reordering: Computational
reordering performed by OPTIMIZE(2) may
produce unexpected results. For example, a
test of an argument of a FORTRAN library
function may be executed after the call to
the function. This is caused by the
movement of the function call to the back
target of the loop when the function
argument is not changed within the loop.
consider the following example:

DO 11 1=1,10

DO 12 J=1,10
9 IF (B(I).LT.0) GO TO 11
12 C(J3)=SQRT(B(I))
11 CONTINUE

The optimization technique moves the
library function call to before statement
9, causing the square root computation to
occur before the test for zero. To avoid
this situation, the program could be

reconstructed in the following manner:

DO 11 1I=1,10

9 IF (B(I).LT.0) GO TO 11
DO 12 J=1,10

12 C(J)=SQRT(B(I))

11 CONTINUE

READ STATEMENT

The ERR parameter in the READ statement
causes a branch to another statement if an
input error is encountered. The READ
statement encountering the error does not
bring the data into working storage; the
data remains in the buffer when the branch
is taken. The next READ statement brings
in the data. Thus, the programmer can
direct the ERR parameter to an error
processing routine that reads in the error
and disposes of it prior to returning to
normal processing. An example is:

5 READ (4,100, ERR=200) A
100 FORMAT (I10)

200 READ (4,100) AX
GO TO 5

If the ERR parameter is not provided, an
input error causes the program to terminate
processing, unless the extended error
handling feature is in effect. For a
discussion of this feature, see the chapter
"Extended Error Handling Facility."

RETURN STATEMENT

The RETURN statement issues the following
codes in register 15:

Code Meaning
0 A RETURN statement was executed

in either a main program or a
subprogram

4*j A RETURN i1 statement was
executed in a subprogram

16 A terminal error was detected
during execution of a library
subprogram

STOP STATEMENT

In the STOP n statement, any number
specified larger than 4095 causes an
overflow into a system return code field;
the return code that will be issued is n
modulo 4096, that is, the remainder after
dividing n by 4096. However, the number
specified by the programmer will be
displayed.

USER-SUPPLIED SUBROUTINES

A user-supplied routine having the same
name as a FORTRAN-supplied subroutine or
function causes the linkage editor to issue
the following warning message:

IEWO024TI EXTERNAL SYMBOL PRINTED IS DOUBLY
DEFINED ~-- ESD TYPE DEFINITIONS
CONFLICT.

JOB_CONTROL LANGUAGE CONSIDERATIONS

The following list describes how DD
statement parameters can improve efficiency

Programming Considerations 129

of a program (see the section "Using Job
Ccontrol Language" for examples in coding DD
statements) :

e The SEP parameter may assign data sets
whose input/output operations occur at
the same time to separate channels,

e The SEP subparameter in the UNIT
parameter may assign data sets to
separate direct access device arms.
The SEP subparameter results in device
optimization; the SEP parameter,
described above, results in channel
optimization.

e The DISP parameter may specify the
CATLG option for frequently used data
sets to make use of the system's
cataloging capability.

¢ Subparameters in the DCB parameter may
be used as follows:

a. BUFNO may be specified as BUFNO=2
to provide double buffering,
resulting in an input/output
overlap advantage.

b. BLKSIZE may be specified to provide
a large buffer, resulting in fewer
input/output requests.

c. OPTCD=C may be specified to provide
chained scheduling, which may
result in decreased transfer time
for input/output operations.

USING PRE-ALLOCATED DATA SETS

Installations operating under MVT or VS2
can provide pre-allocated.data sets as an
aid in reducing the time required by the
system to allocate data sets used on a
temporary basis.

Whenever a data set is defined in a DD
statement, the system must search for
allocation space and must build storage
tables to describe data set
characteristics; the more data sets
defined, the greater the time required to
perform these operations.

Pre-allocated data sets are allocated
once, when the system is initiated and
remain available for use by all jobs
submitted to the system. Use of
pre-allocated data sets avoids the
necessity of having the system repeat the
allocation process.

If his installation provides

pre-allocated data sets, the FORTRAN
programmer can use them by coding the

130

parameter DSNAME=¢ddname in a DD statement,
replacing ddname with the name of a
pre-allocated data set. (Pre-allocated
data sets are defined in the cataloged
procedures calling the MVT or VS2
initiator.) The programmer codes the other
DD statement parameters that he normally
would to define a new data set, i.e., UNIT,
SPACE, DCB. An example is the following:

//MYNAME DD DSNAME=§DED1, UNIT=SYSSQ,
4 SPACE=(80, (100,10)),
// DCB=(RECFM=F, BLKSIZE=80)

The following restrictions apply when
using pre-allocated data sets:

¢ Data sets must be on direct access
devices.

* Space is provided only for the duration
of the job; if the programmer wishes to
keep a data set after job completion,
he should not use pre-allocated data
sets,

e If the system cannot assign a
pre-allocated data set, the
programmer-coded DD statement is used
to create a temporary data set.

Detailed information on pre-allocated
data sets may be found in the publication
IBM System/360 Operating System: System
Programmer's Guide, Order No. GC28-6550,
0S/VS1l Planning and Use Guide, Order
No. GC24-5090, or 0S/VS2 Planning Guide,
order No. GC28-0600, as appropriate.

FORTRAN LIBRARY CONSIDERATIONS

The uses of the utility subprograms DUMP
and PDUMP, the sense light subprograms, and
detaching library subprogram names, are
discussed in the following paragraphs.

DUMP AND PDUMP SUBPROGRAMS

The DUMP and PDUMP subprograms write the
contents of storage onto the system output
data set; DUMP causes the program to
terminate processing and PDUMP permits the
program to continue processing.

In using either subprogram, the user
specifies the following:

1. The variables delimiting the storage
areas to be dumped. More than one
area may be specified.

2.

The format of the items to be dumped,
coded as follows:
code Format
0 Hexadecimal
1 LOGICAL*1
2 LOGICAL*Y
3 INTEGER*2
4 INTEGER*4
5 REAL*Y4
6 REAL*8
7 COMPLEX#*8
8 COMPLEX*16
9 LITERAL
10 REAL*16
11 COMPLEX*32

The following examples illustrate how a

user may specify storage areas to be
dumped:

1.

2.

To dump a single variable, the user
specifies the variable name as both
the beginning and the ending point.
For example,
real format and to terminate

processing, the user specifies the
statement:
CALL DUMP (B,B,5)

To dump more than one variable
individually, the user specifies each
variable. For example, to dump
variables A, B, and C in real format
and to continue program processing;
the user specifies:

CALL PDUMP (A,A,5,B,B,5,C,C,5)

To dump all of main storage between
variables, the user specifies the
first and last variable to be dumped.
For example, to dump main storage
between variables A and C in real
format and to continue program
processing, the user specifies:

CALL PDUMP (A,C, 5)

To dump an array, the user specifies
the first and last elements of the
array. For example,
TABLE containing 20 elements in
hexadecimal format and to terminate
program execution, the user specifies:

CALL DUMP (TABLE(1),TABLE(20),0)

to dump the variable B in

to dump the array

EXTENDED-PRECISION SUBROUTINES

The extended-precision subroutines are

desigoned for

ca whars mawim et 3
oo L ISTS wIm FIITY S U H
use iS

gaesignec o1 WiNere€ maximum alluracly
required. Note, however, that each
extended-precision subroutine increases the
execution time of a program (approximately
3 to 9 times longer than the corresponding
double precision subroutine).

SENSE LIGHT SUBPROGRAMS

If the programmer intends to use the SLITE,
SLITET, DVCHK, or OVERFL subprograms, he
should initialize the indicators to zero at
the beginning of his program since the
system does not automatically initialize
them.

SYSTEM CONSIDERATIONS

Compilation and load module considerations
are discussed in the following paragraphs.

COMPILATION CONSIDERATIONS

Included in this topic are discussions of
compiler restrictions and storage
requirements.

Compiler Storage Requirements

The compiler itself requires a minimum of
160K bytes of main storage. Approximately
200 to 300 source statements can be
compiled when this amount of storage is
available to the compiler.

The compiler's secondary storage
requirement is 160 tracks on an IBM 2311
Disk Storage Unit.

The compiler itself requires a minimum
of 160K bytes of main storage for compiler
code and work areas. Approximately 200 to
300 source statements can be compiled when
this amount of storage is available to the
compiler.

The compiler code includes two tables
whose sizes are determined at installation
time. The adcon table NADCON handles
address constants, parameters and

Programming Considerations 131

temporaries. If the table is exceeded the

message
ADCON TABLE EXCEEDED

is issued and compilation is terminated.
The backward connector table CMAJOR is used
for certain optimization features. It
receives backward connector information for
each block in the source program, a block
being the unit of instructions associated
with a single user or compiler-generated
label. If CMAJOR is too small to handle
all of the blocks in the source program,
the message

TABLE EXCEEDED OPTIMIZATION DOWNGRADED

is issued and the compilation is affected
as follows: No branching optimization will
be performed with either OPTIMIZE(1l) or
OPTIMIZE(2). With OPTIMIZE(2), no text
optimization will be performed and register
assignment will treat the whole program as
one loop, as in OPTIMIZE(1). The result is
longer and less efficient object code,

If either of these tables overflows
without having been installed at the
maximum size, it may be desirable to
re-install the compiler with a larger size
specified for the table in question (see
the publication QS FORTRAN IV (H Extended)
Compiler and Library (Mod II) Installation
Reference Material, Order No. SC28-6861 for
details). Note that such a procedure will
slightly change the amount of main storage
required for compiler code.

In the partition or region in which the
compiler is running, any available space in
excess of that required by the compiler
code is used as a work area. In a
multitasking environment, to limit the
amount of storage for the compiler plus the
work area, thereby making more storage
available for other tasks, the FORTRAN
programmer can reduce the amount of storage
to be allocated through use of the SIZE
option.

During compilation, if the unused work
area is more than 10K bytes, the compiler
prints the following informational message:

nnnnK BYTES OF CORE NOT USED

This message indicates how much smaller the
specified SIZE value could be. This
message may also be generated when SIZE has
not been specified; in such a case, the
message indicates how much smaller a region
or partition size could be.

Note that the SIZE option indicates only
the space required by the FORTRAN option
and has no effect on space required by
operating system facilities. The partition

132

or region in which the compiler is running
must be at least 10K bytes larger than the
specified SIZE value to accommodate
facilities required by the system,
buffer allocation routines.

such as

If the SIZE option is specified
incorrectly, a compiler diagnostic message
is produced and the SIZE parameter is
ignored.

Figure III-3 illustrates a sample
storage structure using the SIZE option and
the REGION parameter.

___ 1
|Assume: REGION=200K,PARM='SIZE(180K)"* |
| |
[0 fr—- 1, 0 [
	Compiler Code	
REGION=200K [f-——-----—mmmmm— {/SIZE(180K)		
	I	
	Work Area	
	Vo	
	System-required	180
	facilities	
L 4 200		
I		
L J

Figure III-3. Storage Structure Using SIZE

and REGION

Compiler Restrictions

Compiler restrictions are the following:
1. For DO loops:

e The maximum number of nested open DO
statements is 25

e The maximum number of implied DOs
per input/output statement is 20

2. For FORMAT statements:

¢ The maximum value for the repetition
field (a) is 255.

* The maximum value for the character
specification field (w) is 255.

3. For statement functions:

¢ The maximum number of arguments per
function definition statement is 20.

¢ Within a function definition, the
maximum number of nested references
to other statement functions is 50.

e Within a function reference, the
maximum number of nested references
to other statement functions is 50.

4, For CALL statements:

e The maximum number of arguments is
196; any argument containing a
subscript is counted as two
arguments.

5. For PAUSE statements:

& The maximum number of characters
permitted is 255.

6. For literal constants:
¢ The maximum number of characters
permitted is 255; this restriction
applies to literal constants
specified in list-directed input

statements (statements with no
corresponding FORMAT statement).

LOAD MODULE CONSIDERATIONS

Included in this topic are discussions of:
1. Load module restrictions
2. Boundary alignment considerations

3. Using names that the compiler
recognizes as generic,

Load Module Restrictions

The following is a list of load module
restrictions:

e The minimum record length for records
on a magnetic tape volume is 18.

¢ A data set reference number cannot
exceed the maximum data set reference
number specified by the installation
when the system is generated.

Boundary Alignment Considerations

Greater efficiency results if the
programmer specifies proper boundary

alignment for items in COMMON or
EQUIVALENCE lists. If items are not
properly aligned, further processing is
dependent upon the BOUNDRY option specified
at program installation time. If
BOUNDARY=ALIGN was specified, boundary
alignment is performed through execution of
a subprogram from the SYS1.LINKLIR library;
if BOUNDARY=NOALIGN was specified, the job
terminates.

Using Names Recognized by the Compiler as
Generic or an Alias

When automatic function selection has been
requested, the H Extended compiler
recognizes as generic the list of function
names given in Appendix H of IBM System/360
and System/370 FORTRAN IV Language, Order
No. GC28-6515-8, and subsequent revisions.
Of this list, eight names are aliases; that
is, they are common abbreviations for
certain existing function names. In
program units specifying GENERIC, they are
also the generic names for the classes of
function. For example, the name LOG, an
alias, is recognized as generic for the
family of natural logarithmic functions.

In any program unit in which GENERIC has
been specified, user-supplied external
procedures whose names coincide with a
generic name will not be executed unless
they are "detached;" that is, used in a
conflicting Type statement or specified in
an EXTERNAL statement and preceded by an
ampersand; for example, REAL*8 LOG, or
EXTERNAL 6LOG. When a generic name has
been so detached, it loses its generic
status. Each member of that family of
functions must then be referred to
specifically within the program unit.

Aliases are recognized as substitute
specific names even in program units not
using the automatic function selection
Therefore, user-supplied
external procedures whose names coincide
with aliases for built-in functions must be
detached as described above or else they
will not be executed. For example, if a
user-supplied function, MAX, is to be used,
the name MAX must be detached. In
references to the FORTRAN-supplied function
within the program unit, the specific
function name, MAXO, rather than the alias,
MAX must be used. The aliases for built-in
function names are: MAX for MAXO, MIN for
MINO, and IMAG for AIMAG.

Programming Considerations 133

AUTOMATIC PRECISION INCREASE FACILITY

The Automatic Precision Increase facility
of the FORTRAN compiler automatically
converts single precision floating point
calculations to double precision and/or
double precision to extended precision. It
is designed to be used with programs
originally written for earlier computers
that offered greater precision than that
available with System/360; the conversion
facility may be used to convert programs
where this extra precision may be of
critical importance.

The facility is not meant to be used
with new programs (those written for
System/360 compilers). If such programs
require operations with greater precision,
they should be coded using the precision
forms available in FORTRAN. Although the
facility will convert new programs, the
cost in programmer and compilation time and
the increase in storage space makes its use
inefficient.

No recoding of source programs is
necessary to take advantage of the
facility. Conversion is requested through
an EXEC statement option at compilation
time.

THE CONVERSION PROCESS

The conversion process comprises two
functions: promotion and padding.
Promotion is the process of converting
items from one precision to a higher
precision, for example, from single
precision to double precision. The
promotion function is described in greater
detail below. Padding is the process of
doubling the storage size of non-promoted
items. Padding helps the user preserve the
size relationships between promoted and
non-promoted items sharing storage.

Promotion

The user may request either or both of the
following conversions:

1. Single precision items to be promoted
to double precision items, that is,
REAL*4 to REAL*8 and COMPLEX*8 to
COMPLEX*16.

134

2. Double precision items to be promoted
to extended precision items, that is,
REAL*8 to REAL*16 and COMPLEX*16 to
COMPLEX*32.

Note that single precision items cannot be
increased directly to extended precision
items.

Promotion converts the following:

Constants: Single-precision real and
complex constants are promoted to double
precision. Double-precision real and
complex constants are promoted to extended
precision. Logical and integer constants
are not affected.

Examples of promoted constants are:

Promoted Form

Constant of Constant
3.0 3. 0DO

4.24E5 4, 24D5

4.24D5 4, 24Q5

(3.2,3.1416E0) (3.2D0, 3.1416D0)
Variables: REAL*4 and COMPLEX*8 variables
are promoted to REAL*8 and COMPLEX*16,
respectively. REAL*8 and COMPLEX#*16
variables are promoted to REAL*16 and
COMPLEX*32, respectively.

Examples of promoted variables are:

Promoted Form

Variable of Variable
REAL STAR, REAL#*#8 STAR,
MOON, PLANET MOON, PLANET
IMPLICIT IMPLICIT
REAL#*8 (S, T, U) REAL*16(S, T, U)
COMPLEX*8 COMPLEX*16
A,B,C,D A,B,C,D
Functions: The correct FORTRAN-supplied

functions are substituted when a program is
converted. For example, a reference to SIN
causes the DSIN function to be substituted
if double precision calculation is to be
performed; a reference to DINT causes QINT
to be substituted if extended precision
calculation is performed. Table III-1
lists FORTRAN-supplied built-in functions
that are substituted. Table III-2 lists
FORTRAN-supplied library functions that are
substituted. Function values are promoted
in the same manner as constants; that is,
single precision values are promoted to
double precision, double precision values
are promoted to extended precision.

Previously compiled subprograms must be
recompiled to be converted to the correct
precision. For example, if a user-supplied
subprogram accepts only single precision
arguments and it is to be used with a
program being converted to double
precision, it must be recompiled using API
to accept double precision arguments.

'XEC STATEMENT OPTIONS

The programmer requests the automatic
precision increase facility through the
PARM parameter in the EXEC statement
calling the compiler. The PARM parameter
specifies the AUTODBL subparameter to
indicate the form that the conversion will
take and the ALC subparameter to indicate
whether storage alignment is to take place.

AUTODBL Subparameter

The AUTODBL subparameter takes one of the
following forms:

AUTODBL (NONE)
to indicate no conversion.
the default condition.

This is

AUTODBL(DBLPAD)
to indicate promotion and padding of
single and double precision items.
REAL*4, REAL*8, COMPLEX#*8 and
COMPLEX#*16 types are converted.
of other types are padded if they
share storage space with converted
items.

Items

AUTODBL (DBLPADUY)
to indicate promotion of single
precision items only, and padding of
other items that share storage with
promoted items.

AUTODBL (DBLPADS)
to indicate promotion of double
precision items only, and padding of
other items that share storage with
promoted items.

The promotion and padding options,
DBLPAD, DBLPAD4, and DBLPADS8, ensure that
the storage-sharing relationship that
existed prior to conversion is maintained.

Note, however, that padding reduces the

efficiency of input/output operations for

padded arrays.

ATITODRL.(DRL)
to indicate promotion (but no padding)
of both single and double precision
items. Items of REAL#*4 and COMPLEX*8
types are converted to REAL*8 and
COMPLEX*16., Items of REAL*8 and
COMPLEX*16 types are converted to
REAL*16 and COMPLEX*32,

AUTODBL (DBL4)
to indicate promotion of single
precision items only.

to indicate promotion of double
precision items only.

Note: If AUTODBL is specified, and an
error in coding the parameter is detected,
the compiler substitutes the option DBLPADS
as a default.

For most programs, one of the above
forms is sufficient. The following form
offers greater flexibility to the user who
wishes to tailor the conversion process to
a particular program; however, it also
increases the chance of error and should be
used with care.

AUTODBL(abcde)
indicates that the program is to be
converted according to the value of
abcde, a five-position field. Each
position is coded with a numeric value
that specifies how a particular
conversion function is to be

The leftmost position (position a)
describes the promotion function, that
is, whether promotion is to occur and,
if so, which jtems are to be promoted.
The second position (position b)
describes the padding function, that
is, whether padding is to occur and,
if so, the sections in the program
(such as COMMON or argument lists)
where padding is to take place. The
third, fourth, and fifth positions
describe whether padding is to occur
for particular types (LOGICAL,
INTEGER, and REAL, respectively)
within the program sections specified
in position b.

Automatic Precision Increase Facility 135

Table III-1.

Built-In Functions -- Substitution of Single and Double Precision

[T e T T T T T T TS ssT oo B B ittt 1
| | Corresponding Corresponding |
| Single Precision Function | Double Precision Function | Extended Precision Function|
pom oo m oo oo oo o i
Argument Function	Argument Function	Argument Function
Name Type Value Type	Name Type Value Type	Name Type____ Value Type
AMOD REAL* 4 REAL*U4	DMOD REAL*8 REAL*8	OMOD RERL*16 REAL#*16
ABS REAL*Y REAL*4	DABS REAL*8 REAL*8	OABS REAL*16 REAL*16 I
INT REAL*4 INT*4	IDINT REAL*8 INT*4	IQINT REAL*16 INT*4
AINT REAL*Y REAL*L	DINT REAL*8 REAL*8	QINT REAL*16 INT*
AMAX01 INT*4 REAL*U4]
AMAX1 REAL#*4 REAL* Y	DMAX1 REAL*8 REAL*8	OMAX1 REAL*16 REAL#*16
MAX11 REAL*Y4 INT*Y]
[AMINOL INT*4 REAL*Y4		i
AMIN1 REAL#*Y4 REAL*L4 ! DMIN1 REAL*8 REAL*8	QMIN1 REAL*16 REAL*16	
{MIN11 REAL*U4 INT*4		
FLOAT INT#*4 REAL*Y	DFLOAT INT*4 REAL*8	OFLOAT INT*4 REAL*106
IFIX REAL* Y INT*4	IDINT REAL*8 INT*4	IQINT REAL*16 INT*4
HFIX®* REAL#*4 INT*2		
SIGN REAL*Y4 REAL*4	DSIGN REAL*8 REAL*8	OSIGN REAL*16 REAL*16
DIM REAL* 4 REAL*Y	DDIM REAL*8 REAL*8	ODIM REAL*16 REAL*16
REAL COMPLEX*8 REAL*Y4	DREAL COMPLEX*16 REAL#*8	OREAL COMPLEX*32 REAL#*16
AIMAG COMPLEX*8 REAL*Y	DIMAG COMPLEX*16 REAL*8	QIMAG COMPLEX#*32 REAL*16
CMPLX REAL*Y4 COMPLEX*8	DCMPLX REAL*8 COMPLEX#*16	QCMPLX REAL*16 COMPLEX*32

| CONJG COMPLEX*8 COMPLEX*8

| DCONJG

COMPLEX*16

COMPLEX#*16 | QCONJG COMPLEX*32 COMPLEX*32|

- o 4

|1The corresponding double precision function does not exist by name, but the single 1
| precision function is expanded as though the double precision function existed. |

b — -

Table III-2. Library Functions -- Substitution of Single and Double Precision

r e | e 1
| i corresponding | Corresponding |
| Single Precision Function | Double Precision Function | Extended Precision Function|
bomm oo + + - -
Argument Function	Argument Function	Argument Function
Name Type Value Type	Name Type Value Type	Name Type Value Type
EXP REAL* 4 REAL*L	DEXP REAL*8 REAL*8	QEXP REAL*16 REAL*16
CEXP COMPLEX*8 COMPLEX*8	CDEXP COMPLEX*16 COMPLEX*16	CQEXP COMPLEX*32 COMPLEX*32
ALOG REAL*U REAL*4	DLOG REAL*8 REAL*8	QLOG REAL*16 REAL*16
CLOG COMPLEX#*8 COMPLEX*8	CDLOG COMPLEX#16 COMPLEX#16	CQLOG COMPLEX*32 COMPLEX*32
ALOG10 REAL*Y REAL*Y4	DLOG10 REAL#*8 REAL*8	QLOG10 REAL*16 REAL*16
ARSIN REAL*Y REAL*4	DARSIN REAL*8 REAL*8	OARSIN REAL*16 REAL#*16
ARCOS REAL*Y4 REAL*4	DARCOS REAL#*8 REAL*8	QARCOS REAL*16 REAL#*16
ATAN REAL*4 REAL*L	DATAN REAL+*8 REAL*8	OATAN REAL*16 REAL*16
ATAN2 REAL*Y4 REAL*Y4	DATAN2 REAL*8 REAL*8	QOATAN2 REAL*16 REAL*16
SIN REAL*Y REAL*Y	DSIN REAL*8 REAL*8	OSIN REAL*16 REAL#*16
CSIN COMPLEX*8 COMPLEX*8	CDSIN COMPLEX*16 COMPLEX*16	CQSIN COMPLEX#*#32 COMPLEX*32
Ccos REAL* 4 REAL*L	DCOS REAL#*8 REAL*8	QCos REAL*16 REAL*16
ccos COMPLEX*8 COMPLEX*8	CDCOS COMPLEX#*16 COMPLEX*16	CQCOS COMPLEX#*32 COMPLEX#*32
TAN REAL*4 REAL*4	DTAN REAL*8 REAL*8	QTAN REAL*16 REAL*16
COTAN REAL#*4 REAL*Y	DCOTAN REAL#*8 REAL*8	QCOTAN REAL*16 REAL*16
SORT REAL#* 4 REAL*4	DSQRT REAL*8 REAL*8]OSQRT REAL*16 REAL*16
CSQRT COMPLEX*8 COMPLEX*8	CDSQRT COMPLEX*16 COMPLEX*16	CQOSQRT COMPLEX#*32 COMPLEX#*32
TANH REAL*Y REAL*Y4	DTANH REAL*8 REAL*8	QTANH REAL*16 REAL#*16
SINH REAL*Y4 REAL*Y	DSINH REAL*8 REAL*8	QSINH REAL#*16 REAL*16
COSH REAL#*4 REAL* Y4	DCOSH REAL*8 REAL#*8	QCOSH REAL*16 REAL*16
ERF REAL#*Y4 REAL*Y	DERF REAL#*8 REAL*8	QERF REAL*16 REAL*16
ERFC REAL* Y4 REAL*Y4	DERFC REAL*8 REAL#*8	QERFC REAL*16 REAL*16
GAMMA1 REAL*Y4 REAL*Y	DGAMMA® REAL*8 REAL*8	
ALGAMAIREAL* 4 REAL*Y	DLGAMA1 REAL*8 REAL*8	
CABS COMPLEX*8 REAL*4	CDABS COMPLEX*16 REAL*8	COABS COMPLEX#32 REAL*16
_________________________ L L o ——		
1The extended precision equivalences of these functions do not exist. In promoting		
REAL*8 to REAL*16, the double precision function will be used.		
Lo 4

136

All five positions must be coded;
if a function is to be omitted, the
corresponding position is coded with a

zero. The values for each position
are as follows:

e Position a, the promotion function:

Value Meaning
0 No promotion

H Promote REAL*4% and COMPLEX*8

items only

2 Promote REAL*8 and
COMPLEX*16 items only

[*%)

Promote all real and complex
items
e Position b, the padding function:

Value Meaning
0 No padding

i Pad COMMON statement and
argument list variables

2 Pad EQUIVALENCE statement
variables equivalenced to
promoted variables

3 Pad COMMON and EQUIVALENCE
statement variables related
to promoted variables and
argument list variables

4 Pad EQUIVALENCE statement
variables that do not relate
to variables in COMMON
statements

5 Pad variables everywhere

The code specified in this position
determines in which areas of a program
the padding requested by positions c
to e is to take place.

s Position ¢, padding logical
variables in program sections
specified in position b:

Value Meaning

0 Pad no logical variables

1 Pad LOGICAL*1 variables only
2 Pad LOGICAL*Y4 variables only
3 Pad all logical variables

e Position d, padding integer
variables in program sections
specified in position b:

Vaiue Meaning
0 Pad no integer variables
1 Pad INTEGER#*2 variables only
2 Pad INTEGER*4 variables only

3 Pad all integer variables

» Position e, padding real and complex
variables in program sections
specified in position b:

Value Meaning

0 Pad no real or complex
variables

1 Pad REAL*4 and COMPLEX*8
variables

2 Pad REAL*8 and COMPLEX*16
variables

3 Pad REAL*Y4, REAL#*S,
COMPLEX#*8, and COMPLEX*16
variables

4 Pad REAL*16 and COMPLEX*32

variables

5 Pad REAL*4, COMPLEX*8,
REAL*16, and COMPLEX#*32
variables

6 Pad REAL*8, REAL*16,
COMPLEX*16, and COMPLEX*32
variables

7 Pad all real and complex
variables

Note that promotion overrides padding.
For example, if the first position
specifies promotion to occur for single
precision items, REAL*4 and COMPLEX#*8 items
are promoted regardless of the padding
function specified in position e.

Automatic Precision Increase Facility 137

Coding Examples

The AUTODBL(abcde) settings that correspond
to the mnemonic options are:

NONE(00000)
DBL(30000)
DBL4 (10000)
DBL8(20000)
DBLPAD(33334)
DBLPADY (13336)
DBLPAD8(23335)

The following examples illustrate other
possible selections of the AUTODBL(abcde)
format.

Example 1: AUTODBL(12330)

Promotion is performed and padding is
performed for all EQUIVALENCE
statements, logical variables, and
integer variables.

Example 2: AUTODBL(01001)

No promotion is performed, but padding
is performed for all REAL*4 and
COMPLEX#*8 variables in common blocks and
argument lists. This code setting
permits a program not requiring double
precision accuracy to link with a
subprogram compiled with the option
AUTODBL(DBL).

Example 3: AUTODBL(01337)

No promotion is performed, but padding
is performed for all integer, logical,
real, and complex variables that are in
COMMON or are used as subprogram
arguments. This code setting permits a
non-converted program to link with a
program converted with the option
AUTODBL(DBLPADY) .

AILC Subparameter

The ALC subparameter is used to specify
storage alignment. It takes one of the
forms:

AIC

NOALC
to indicate whether storage alignment
is to take place. NOALC is the
default value.

138

Ordinarily, to increase execution-time
efficiency, COMMON statements are coded so
that variables in COMMON blocks are aligned
on proper boundaries: doubleword variables
on doubleword boundaries, fullword
variables on fullword boundaries, and
halfword variables on halfword boundaries.
When the conversion facility is used, these
alignments may become altered. The ALC
option restores alignment.

The ALC option should be used with care
for it may cause previously matched COMMON
blocks to become mismatched. For example,
consider the two COMMON statements below
where the variable INTER is to be shared:

Program 1 Program_z
REAL*8 R8 REAL*Y4 RY

COMMON/X/A, R8, INTER COMMON/X/A,I,R4,INTER

With neither the AUTODBL nor the ALC
option specified, both occurrences of the
variable INTER will be at an offset of 12
bytes from the start of COMMON block X.

If ALC alone is used, INTER would be 16
bytes from the start of COMMON X in Program
1 since R8 would have been placed on a
double word boundary. COMMON X in Program
2 would have been unaffected.

If AUTODBL(DBL) and ALC are specified,
INTER would be 16 bytes from start of block
X in Program 1 and 24 bytes from start in
Program 2. (This is because of the
promotion of REAL*U4 to REAL*8 and
subsequent alignment.)

It is recommendea that ALC be used only

when the COMMON variables are identical in
type.

PROGRAMMING CONSIDERATIONS WITH API

This section provides a brief discussion of
how use of the Automatic Precision Increase
facility affects program processing.

Effect on COMMON or EQUIVALENCE Data_ Values

Promotion and padding operations preserve
the storage sharing relationships that
existed before conversion. However, in
storage sharing items, data_valu
preserved only for the following:

1. Variables having the same length

2. Real and complex variables having the
same precision

For example, the following items retain
value sharing relationships:

LOGICAL*4 and INTEGER*4 (same length)

REAL*4 and COMPLEX*8 (same precision)

The following items do not retain value
sharing relationships:

NTEGER*4 (different lengths)

INTEGER*Z and I

REAL*8 and COMPLEX#*8 (different precision)

Effect on Literal Constants

Care should be exercised when specifying
literal constants as data initialization
values for promoted or padded variables, as
subprogram arguments, or in NAMELIST input.
For example, literals should be entered
into arrays on an element by element basis
rather than as one continuous string.
Consider the following statements:

DIMENSION A{(2),B(2)
DATA A/'ABCDEFGH'/,B(1)/'IJKL'/,B(2)
/' MNOP* /

Array B will be initialized correctly but
not array A, because padding takes place at
the end of each element.

Effect on Programs Calling Subprograms

FORTRAN main programs and subprograms must
be converted so that variables in COMMON
retain the same relationship to guarantee
correct linkage during execution. The
recommended procedure is to compile all
program units using AUTODBL(DBLPAD). If an
option other than DBLPAD is selected, care
must be taken if the COMMON variables in
one program unit differ from those in
another; COMMON variables that are not to
be promoted should be padded.

Any non-FORTRAN external subprogram
called by a converted program unit should
be recoded to accept padded and promoted
arguments,

Effect on FORTRAN Library Subprograms

1. If a call to a FORTRAN library
subprogram contains promoted

arguments, the next higher precision
subprograms are substituted for the
original ones. The extended symbol
dictionary, used by the linkage editor
to resoclve references between program
units, will contain the double and
extended precision names for each
single and double precision library
program promoted.

2. If the programmer has supplied his own
function for a FORTRAN-supplied
function, but has neglected to detach
the name through an EXTERNAL
statement, the wrong function may be
executed.
Example: AUTODBL(DBL#4)

REAL*Y4 X, Y

4 Y=SIN(X)

STOP
END

FUNCTION SIN(X)

RETURN
END

In this example, because the compiler
cannot recognize SIN as a
user-supplied function, it substitutes
the name of the FORTRAN-supplied
function DSIN in statement 3.

However, the compiler does not change
the function definition statement; the
name remains SIN. At execution time
the user-supplied function SIN is
ignored and the FORTRAN-supplied
function DSIN is executed in its
place.

The programmer can avoid this
confusion either by making sure he
detaches the name SIN, preceded by an
ampersand, in an EXTERNAL statement or
by changing the name of the function
to DSIN.

Effect on CALL DUMP or CALL PDUMP

If a CALL DUMP or CALL PDUMP statement
requests a dump format of either REAL*L or
COMPLEX#*8, output from a converted program
is shown in single precision format. Each
item is displayed as two single precision
numbers rather than as one double precision
number.

Automatic Precision Increase Facility 139

For variables that are promoted, the
first number is approximately the value of
the stored variable; the second number is
meaningless.,

For variables that are padded, the first
number is exactly the value of the

variable; the second number is meaningless.

Effect on Direct-Access Input/Output
Processing

When a DEFINE FILE statement has been
specified, any record exceeding the maximum
specified record length causes record
overflow to occur.

For converted programs, the programmer
should check the record size coded in the
statement to determine if it can handle the
increased record lengths. If not
sufficient, the size should be increased
appropriately.

Effect on Asynchronous Input/Qutput
Processing

Extreme care should be exercised in using
the Automatic Precision Increase facility
for programs containing asynchronous
input/output statements.

The asynchronous input/output facility
transmits the number of bytes as specified
by the transmitting or receiving areas.
These areas for any given data set must
have the same characteristics regarding
promotion and padding; e.g., both must be
padded or both must be promoted.

Effect on Unformatted Input/Qutput Data
Sets

Unformatted input/output data sets which
have not been converted are not directly

140

acceptable to converted programs if the I/0
list contains promoted variables.

To make an unconverted data set
accessible to the converted program, the
programmer should code BFALN=F in the DCB
parameter at load module execution time,
causing data to be transmitted in its
unconverted form. For example, assume that
a program contains the statement:

WRITE (3)I,J, (ARRAY(N),N=1,J)

If the program is converted such that ARRAY
contains promoted items, the programmer
should code the following DD statement to
write unconverted ARRAY records:

//FT03Fxxx DD DCB=(BFALN=F...)...

The BFALN parameter is not specified
for:

s Programs and data sets having the same
conversion characteristics,

e Formatted data sets, regardless of
conversion characteristics; the FORMAT
statement controls the correct
transmission of data.

Effect on the Storage Map

The storage map produced by the MAP option
contains the following codes:

Code Meaning

D Promoted variable

P Padded variable

* Promoted library function name

Overlay is a feature of linkage editor
processing that allows the FORTRAN user to
reduce the main storage requirements of his
program by breaking it up into two or more
segments that need not be in main storage
at the same time. These segments can be
assigned the same storage addresses and can
be loaded at different times during
execution of the program. The user
specifies linkage editor control statements
to indicate the relationship of segments
within the overlay structure. FORTRAN
programs run under VS seldom require
overlay processing.

DESIGNING A PROGRAM FOR OVERLAY

Programs are placed in an overlay structure
according to the size, frequency of use,
and logical relationships between the
program units that they comprise. The
basic principle of overlay is illustrated
by the simple example in Figure III-4,
This figure shows a FORTRAN program
consisting of a main program and two large
subprograms named SUBA and SUBB. Normally,
all three program units would be loaded
into main storage at the same time and
would remain there throughout execution of
the entire program. However, if there is
not enough main storage space available to
accommodate all three program units at
once, and if SUBA and SUBB do not have to
be in main storage at the same time, the
user could design an overlay structure in
which the MAIN routine resides in main
storage at all times, while subprograms
SUBA and SUBB make use of the remaining
space as they are needed.

Figure III-5 shows what happens at
execution time to the program in Figure
III-4. The MAIN routine is loaded and
processing begins. When the MAIN routine
calls SUBA, SUBA is loaded and processing
continues until SUBB is called. SUBB then
overlays SUBA in main storage and remains
there until SUBA is called again. The main
storage requirements of the program are
thus reduced from the total number of bytes
in all three program units to the total
number of bytes in the MAIN program plus
the larger of the two subprograms.

LINKAGE EDITOR_OVERLAY FEATURE

SEGMENTS

The relationships among the program units

preceding paragraphs can be graphically
represented by an overlay "tree" structure
as shown in Figure III-6. Each "branch" of
the overlay tree consists of a separately
loaded unit of the program to which the
linkage editor assigns a number. Such
overlay units, or segments, may contain one
or more subprograms totaling 524,288 bytes
(512K).

2 s 1
I MAIN I
- ———————— = 1
| SUBA |
b e]
| SUBB [
e e e e e - 1

Figure III-4. A FORTRAN Program Containing
Three Program Units

MAIN STORAGE

| sheteteteibeth ettt 1

| |

| I

| |

b _ — -

| i\

| MAIN |

i |
b-——--- T-——=—-- T-———=--- T--———-= 1

| | | |- |

| | | | |> Problem
| | | SUBB | | program
| | | | I\ area
| | SUBA | | suBA |

| I 1 |

| | | | |
b= Lo ___ Lo i S, 4

| |

I |

| |

| |

| |

1 |

L e e e e J

Time O0-=———=—— e >n

Figure III-5. Time/Storage Map of Program

Described in Figure III-4

The first segment in any overlay program
is called the root segment. The root
segment remains in main storage at all

Linkage Editor Overlay Feature 141

times during execution of the program. It
must contain:

e The program unit which receives control
at the start of processing. Usually
this is the main routine in which
processing begins at the entry point
named MAIN.

* Any program units which should remain
in main storage throughtout processing.
For greater efficiency, subprograms
that are frequently called should also
be placed in the root segment if
possible.

e Any program units containing DEFINE
FILE statements.

e Certain information needed by the
operating system to control the overlay
operation. Like FORTRAN library
subprograms, this information is
automatically included in the root
segment by the linkage editor.

PATHS

The relationships among the segments of an
overlay program are expressed in terms of
"paths." A path consists of a given
segment and any segments between it and the
root segment. The root segment is thus a
part of every path, and when a given
segment is in main storage, all segments in
its path are also in main storage. The
simple program in Figure II1I-6 is made up
of only two paths as shown in Figure III-7.

The paths of an overlay program are
determined by the dependencies between
program units. A program unit is

ROOT
Segment 1
i 1
| MAIN |
Lo g
Segment 2 | Segment 3
| i D a
| ALPHA]
..... 1o ——
i SUBA | { SUBB |
b 1 S J

Figure III-6. Overlay Tree Structure of
Program Described in Figure

ITI-4

142

Path 1 Path 2
r——=—== b T o
| MAIN | | MAIN |
el [

[|

| |
r——+t---1 -=t-—-
| SUBA | | SUBB |
b 1 b J

Figure I1II-7. Overlay Paths Implied by
Tree Structure in Figure

I11I-6

considered to be dependent on any other
program unit which it calls or whose data
it must process.

Figure III-8 shows a FORTRAN program in
an overlay tree structure. The paths
implied by that structure are illustrated
in Figure III-9. The MAIN routine and
subprograms SUB1 and SUB2 remain in main
storage for the duration of execution time;
they occupy the root segment. The segment
containing subprograms SUB3 and SUBY4 use
the same area of main storage as the
segment containing subprograms SUB11 and
SUB12. Likewise, the main storage area
used by the segment containing SUB5, SUB6,
and SUB7 are used by the segment containing
SUB8 and SUBY9, as well as by the segment
containing SUB10., Figure III-10 is a
time/storage map of the program shown in
Figures III-8 and III-9.

The structure in Figures III-8 and III-9
consists of segments numbered 1 through 6,
with segment 1 being the root segment.
Segments 2 and 6 have the same relative
origin; that is, they will start at the
same location when in main storage. This
origin has been given the symbolic name
ALPHA by the user (on an OVERLAY control
card). The relative origin of segments 3,
4, and 5 has been given the symbolic name
BETA.

The relative origin of the root segment,
also called the relocatable origin, is
assigned at 0. The relative origin of any
segment other than the root segment is
determined by adding the lengths of all
segments in its path, including the root
segment. When the program is loaded for
execution, the first location of the root
segment (the relocatable origin of the
program) 1is assigned to an absolute storage
address. All other origins are
automatically increased by the number of
that storage address, i.e., given an
address relative to the address assigned to
the root segment.

ROOT COMMUNICATING BETWEEN SEGMENTS

Segment 1
fo—————= 1
| MAIN | Overlay segments can be related to one
b——————— 4 another either by being inclusive or
| SUBL | exclusive. Inclusive segments are those
e 9 which can be in main storage
| SsuB2 | simultaneously; in other words, those which
beeqend lie in the same path. Exclusive segments
Segment 2 | Segment 6 are those which lie in different paths.
fr————————- A 1 Thus, in the program shown in Figures III-8
| ALPHA | and IITI-9, segments 2 and 5 are inclusive,
——t-—-— pm——Ll——— while segments 2 and 6 are exclusive.
| SUB3 | | SuB1l |
_______ 4 —————
| SuB4 | | SUB12 |
[Lo J
| Inclusive References
[
|
Segment 3 Segment 4 Segment 5 An inclusive reference is a reference from
fm————————— Tm———————— 1 a segment in main storage to a subprogram
| | | which will not overlay the calling segment.
pm——t—m— Ll iy When a CALL is made from a program unit in
| SsuB5 | | SUB8 | | SUB10O | one segment to a program unit in an
O { - {4 le———_—— 4 inclusive segment, control may be returned
| SUB6 | | SUBY9 | to the calling segment by means of a RETURN
b { e 4 statement.
| SUB7 |
[4
When a CALL is issued to a subprogram
Figure I1I-8. Overlay Tree Structure which is higher (closer to the root
Having Six Segments segment) on the overlay tree, the called
subprogram must return control to the
calling segment by a RETURN statement
before any exclusive overlay segments may
be loaded.
Path 1 Path 2 Path 3 Path 4
r————=—=- T prTTem 1 F-——=—== 1 e 1
| MAIN | | MAIN | | MAIN | | MAIN |
pommmom- N 1 pommmmmm 1 pmmmmm 1
| SUBL | Segment 1 | SUB1 | | sUB1 | | suBi |
p-——mmm { (room) po==-——- pmmmmmm i pmmmmm e
| suB2 | | suB2 | | suB2 | | suB2 |
| SR S [
| I [|
| I | I
| | |]
l'-""l'_"_'l r-’-l'"-'l r'—_l—'-'l r-""'-~-1
| SUB3] | SUB3 | | suB3 | | SUB11 |
i 1 1 { Segment 6
| SUB4 | Segment 2 | suB4 | | SuB4 | | suBl2 |
Lo gl Lo gt lemeqmed [, 1
| | |
| | |
I [|
P S —_——a pmm—dee o
| SUBS | | SUBS8 | | SUB10 | Segment 5
b . S {4 Segment 4 O e 4
| SUB6 | Segment 3 | suB9 |
b 1 e .
| SUB7 |
L J

Figure III-9. Overlay Paths Implied by Tree Structure in Figure III-8

Linkage Editor Overlay Feature 143

Exclusive References

An exclusive reference, one made in any
segment to another segment which will
overlay it, can be either valid or invalid.

An exclusive reference is considered
valid only if there is a reference to the
called routine in a segment common to both
the segment to be loaded and the segment to
be overlaid. Assume, for example, in
Figure III-11 that the main program (common
segment) contains a call to Segment A but
not to Segment B. A reference in Segment B
to a routine in Segment A is valid because
of the inclusive reference between the
common segment and Segment A. (A table in
the common segment, supplied by the linkage
editor, contains the address of Segment A.
The overlay does not destroy this table.)
An exclusive reference in Segment A to a
routine in Segment B is invalid since the
common segment contains no reference to
Segment E.

Both valid and invalid exclusive
references are considered errors by the
linkage editor; however, the user can allow
a program containing a valid exclusive
reference to be executed. (See the
discussion of XCAL and LET options later in
this chapter.) Programs containing invalid
exclusive references are never executable.
For more detailed information on exclusive
references, see the appropriate linkage
editor and loader publication, as listed in
the Preface.

MAIN STORAGE

I i

| Segment 1 (ROOT) |

| |

prmm oo oo qmoo-mem 1

| | |

| Segment 2 | Segment | Problem
| | 6 | Program
| | | Area
- T T--—-=—= - 8|

i | | SEGMENT | |

| | Segment | 5 | |

| Segment |) b 4 |

| 3 b 4 |
pommmmm ! |

I |

| |

prmmm e i

| |

| |

| |

(- e 1

Time O-memm——rmmm e >n

Overlay Configuration of
Program Described in
Figure III-8

Figure III-10.

144

1
INCLUSIVE | COMMON |

REFERENCE

EXCLUSIVE
REFERENCE

Communication Between
Overlay Segment

Figure III-11.

COMMON AREAS

The linkage editor treats all FORTRAN
COMMON areas as separate subprograms.
modules containing COMMON areas are
processed by the linkage editor, the COMMORN
areas are collected. That is, when two or
more blank (unnamed) COMMON areas are
encountered in the input to the linkage
editor, only the largest of them is
retained in the output module. (In the
case of named COMMON areas, the question of
different lengths does not arise since all
named COMMON areas of the same name must be
the same length.)

When

THE_OVERLAY PROCESS

Overlay is initiated at execution time in
response to a reference to a subprogram
which is not already in main storage. The
subprogram reference may be either a
FUNCTION name or a CALL statement to a
SUBROUTINE name. When the reference is
executed, the overlay segment containing
the required subprogram, as well as any
segments in its path not currently in main
storage, is loaded.

When a segment is loaded, it overlays
any segment in storage with the same
relative origin. It also overlays any
segments that are lower (farther from the
root segment) in the path of the overlaid
segment. For example, if segments 1, 2,
and 3 in Figures III-8 and III-9 are in
main storage when the main program executes
a call to subprogram SUBll, segment 6 is
called into main storage and segments 2 and
3 will not be available for as long as
segment 6 is in main storage.

Whenever a segment is loaded it contains
a fresh copy of the program units that it
comprises; any data values that may have

been established or altered during previous
processing are returned to their initial
values each time the segment is loaded.
Thus, data values that are to be retained
for longer than a single load phase should
be placed in the root segment.

Overlay is not initiated when a return
is made from a subprogram or when a segment
in main storage executes a reference to a
subprogram that is already in main storage.

In an overlay program, when blank or
named COMMON areas are encountered by the
linkage editor; they are cecllected as
described above. Their ultimate location
in the output module depends upon which
linkage editor control statements are used
in the building of the overlay structure
(see the discussion of linkage editor
control statements below). Overlay
structures built without the use of INSERT
statements (in which the program units for
each segment are included between OVERLAY
statements) produce an output module in
which the linkage editor "promotes" the
COMMON areas automatically. The promotion
process places each COMMON area in the
lowest segment on the overlay tree which
will always be in main storage with any
segment containing a reference to it.

Figures III-12 and III-13 show an
overlay program as it appears before and
after the automatic promotion of COMMON
areas. The position of a promoted COMMON
area within the segment to which it is
promoted is unpredictable.

If INSERT statements are used to
structure the overlay program, a blank
COMMON area should appear physically in the
input stream in the segment to which it
belongs. A named COMMON area should either
appear physically in the segment to which
it belongs or should be placed there with
an INSERT statement.

COMMON areas encountered in modules from
automatic call libraries are automatically
promoted to the root segment. If such
COMMON areas are named, they may be
positioned by the use of an INSERT
statement.

Named COMMON areas in BLOCK DATA
subprograms must be exactly as large as any
identically named COMMON areas in FORTRAN
programs that are to be link edited with
the BLOCK DATA subprograms.

| MAIN |
| suBl |
fommm 1
| suB2 |
beem gl
|
fmo—————-=- Lo 1
[|
r———4-——3 m-=t--—q
| COMMONA | | COMMONA |
pommmmmm 1 pommmmm- 1
| SuB3 | | SUB11 |
b=~ R
| suB4 | | sUB12 |
L-__T___J [, a
|
f-——————--- - 1
I | I
i -9 1 1 L -1
|COMMONB| | SUB8 | |COMMONE]|
.............. 4 ——————
| SUBS | | SUB9 | | SUB10 |
_______ Lo 4 L J
| SUB6 |
| suB7 |
[|
Figure III-12. Overlay Program Before
Automatic Promotion of
Common Areas
| MAIN |
| SUB1 |
e 1
| suB2 |
| COMMONA |
gl
!
| ittt e 1
| |
—_ 1___
| SUB3 | | suBil |
— 4 pm—-—=- i
| SUB4 | | suB12 |
e 1 R L
| COMMONB |
S
|
[m————————= - 1
| | |
-9 ¢ L -t
| SUB5 | | SuUB8 | | SUB10 |
....... . [|
| suB6 | |SuB9 |
_______ 4 leey
| suB? |
[4
Figure III-13. Overlay Program After
Automatic Promotion of
Common Areas
Linkage Editor Overlay Feature 145

CONSTRUCTION OF THE OVERLAY PROGRAM

The programmer communicates his overlay
strategy to the operating system in two
ways: through the use of special
processing options which he specifies in
the PARM parameter of the EXEC statement
that calls the linkage editor, and through
the use of linkage editor control
statements. The general functions of these
options and statements are described in the
section "Linkage Editor and Loader." Those
which are of particular interest to the
programmer constructing an overlay program
are discussed immediately below.

LINKAGE EDITOR CONTROL STATEMENTS

Oonce the programmer has designed an overlay
tree structure for this program, he places
the program in that structure by indicating
to the linkage editor the relative
positions of the segments that make up the
tree. The control statements which
accomplish this are placed in the input
stream following the //SYSLIN DD statement,
or after the //LKED.SYSLIN DD statement if
a cataloged procedure is used.

The most important control statements
for implementing an overlay program are the
OVERLAY, INSERT, INCLUDE, and ENTRY
statements. The OVERLAY statement
indicates the beginning of an overlay
segment. The INSERT statement is used to

rearrange the sequence of object modules in

the resulting load module(s). The INCLUDE
statement is used to incorporate input from
secondary sources into the load module.

The ENTRY statement specified the first
instruction to be executed.

OVERLAY Statement

The OVERLAY statement indicates the
beginning of an overlay segment, Its
format is:

o mm e
| Operation

| OVERLAY

L -

_____________________ 1
Operand |

et
[}
[}
[}
|
|
|
[}
[}
]
[}
1
[}
1
[}
t
[}
1
]
1
]
4

where name indicates the beginning of the
segment, that is, the symbolic name of the
relative origin. The following statement

146

may be used to indicate overlay of segments
2 and 6 in Figure III-8:

OVERLAY ALPHA

OVERLAY statements are placed directly
before the object decks of the first
program unit of the new segment, before an
INSERT statement specifying the program
units to be placed in the segment, or
before an INCLUDE statement specifying the
program units to be placed in the segment.
Assuming that object decks were available,
the input deck to the linkage editor for
the program in Figures III-8 and III-9
could be arranged as follows:

Ittt]
| Object deck for MAIN |
| SUB1 I
| SUB2 |
b 1
| OVERLAY ALPHA I
| Object deck for SUB3 |
| SUBUY |
b 1
| OVERLAY BETA |
| Object deck for SUBS |
| SUB6]
| SUB7 |
b o i
| OVERLAY BETA I
| Object deck for SUBS |
i SUB9 |
b !
| OVERLAY BETA |
| Object deck for SUB10 |
t T 1
I OVERLAY ALPHA |
| Object deck for SUB11 |
| SUB12 |
| ENTRY MAIN |
e ;]

INSERT Statement

There are many instances in which it is
inconvenient or impossible for the user to
position object decks physically in the
input stream. Library routines, normally
placed in the root segment, and routines
compiled in an earlier step in the same job
are examples of program units for which the
object decks are not available for
positioning at the time the job is set up.

The INSERT statement is used to position
such control sections in an overlay
structure. A control section, or CSECT, is
the operating system designation for the
smallest separately relocatable unit of a
program. Examples of FORTRAN control
sections are main programs, subprograms,
and blank or named COMMON blocks.

The format of the INSERT statement is:

r——- T
| Operation | Operand |
b= + 1
| INSERT | csect-namel,csect-namee..]]|
I, e 4

where csect-name indicates the name(s) of
the control section(s) to be positioned.

The INSERT statement is placed in the
input sequence directly following the
OVERLAY statement that specifies the
segment origin in which the control section
is to be positioned. If the control
section is to be positioned in the root
segment, the INSERT statement is placed
before the first OVERLAY statement.

Using INSERT statements and a FORTRAN
source deck, the overlay structure
specified in Figures III-8 and III-9 could
be implemented as follows:

Input to the compiler:

| MAIN through SUB12 |

ENTRY MAIN]
INSERT MAIN, SUB1, SUB2 |

OVERLAY ALPHA |
INSERT SUB3, SUB4 |

OVERLAY BETA |
INSERT SUBS5, SUB6, SUB7 |

OVERLAY BETA |
INSERT SUBS, SUB9 o

OVERLAY BETA ' I
INSERT SUB10 I

OVERLAY ALPHA I
INSERT SUB11,SUB12]

If INSERT statements are used more than
once in the same program for a control
section of the same name, the CSECT will be
positioned in the segment specified by the
first occurrence of the CSECT name in the
input stream. Any additional INSERT
statements referring to the CSECT will be
ignored, and, at execution time, all
references to the CSECT will resolve to the
first one positioned. Thus, if a

subprogram is required in more than one
path, it must be either inserted in the
root segment or renamed before being used
with an INSERT statement.

INCLUDE Statement

The INCLUDE statement is described in the
section "Linkage Editor and Loader." When
used in an overlay program, the INCLUDE
statement is generally placed in the input
stream in the position where the material
to be included is required.

It is possible to manipulate the control
sections that were added by an INCLUDE
statement through the use of the INSERT
statement. Assume that the control
sections of the overlay program from the
previous examples resided in libraries as
follows:

where LIBA is a partitioned data set with
members BOOK1 and BOOK2 and LIBB is a
sequential data set.

Then the overlay structure could be
implemented by the use of the following
control statements:

ENTRY MAIN |

INCLUDE LIBA(BOOK1) |
INCLUDE LIBB |
OVERLAY ALPHA |

INCLUDE LIBA(BOOK2) |
OVERLAY BETA |
INSERT SUB5,SUB6, SUB7 |
OVERLAY BETA I
INSERT SUB8,SUB9 I
OVERLAY BETA [
INSERT SUB10 I
OVERLAY ALPHA |
INSERT SUB11,SUB12 I

4

o ——— e s o e ey s . e oy —
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
t
|
|
t
|
[
|
|
|
|
|
|
|
t
|
|
|
|
|
|
i
|
!
|
|
|

-

Linkage Editor Overlay Feature 147

ENTRY Statement

The ENTRY statement specifies the first
instruction of the program to be executed.
Its format is:

e ikttt Sttt e 1
| Operation Operand |

i
bommmm o mmmmmm oo R —— 1
4

external-name |
_____________________ 3

where external-name indicates the name of
an instruction in the root segment.
Usually it will be the name MAIN.

The ENTRY statement may be placed
before, between, or after the program units
or other control statements in the input
stream. An ENTRY statement is necessary in
all overlay programs because, after linkage
editor processing, the first part of the
root segment contains special overlay
control information rather than executable
code. See the previous examples of overlay
implementation for the use and placement of
the ENTRY statement.

LINKAGE EDITOR OVERLAY OPTIONS

In addition to the necessary linkage editor
control statements, the user implementing
an overlay structure must provide certain
information to the operating system by
means of the PARM parameter of the EXEC
statement that calls the linkage editor.

Linkage editor options are described in
the section "Linkage Editor and Loader."
Those options which are of special interest
to the user of the overlay feature are
discussed in the following paragraphs.

OVLY indicates that the load module
produced will be an overlay structure, as
directed by subsequent linkage editor
control statements. OVLY must be specified
for all overlay processing.

LIST indicates that linkage editor
control statements are to be listed in card
image format on the system output data set,
SYSPRINT.

MAP indicates that the linkage editor is
to produce a map of the output module. The
map of the output module of an overlay
structure shows the control sections
grouped by segment. Within each segment,
the control sections are listed in
ascending order according to their assigned
origins. The number of the segment in
which each appears is also printed.

148

XREF indicates that the linkage editor
is to produce a cross-reference table of
the output module. The cross-reference
table includes a module map and a list of
all address constants that refer to other
control sections. Since the
cross-reference table includes a module
map, XREF may be substituted for MAP,.

XCAL indicates that a valid exclusive
call is not to be considered an error, and
that the load module is to be marked
executable even though improper branches
were made between control sections.

LET indicates that any exclusive call
(valid or invalid) is accepted. The output
module will be marked executable even
though certain error or abnormal conditions
were found during link editing. At
execution time, a valid exclusive call may
or may not be executed correctly. An
invalid call will usually cause
unpredictable results; the requested
segment will not be loaded.

OVERLAY EXAMPLE

Assume that the program suggested by Figure
III-8 consists of a main program and twelve
subroutines. The sole function of the main
program is to call the subroutines, and
each subroutine prints the message "IN
SUBx", where x is a number identifying the
subroutine.

Figure III-14 illustrates the input and
Figure I1I-15 the output of the program.

Figure III-14 shows the program in card
deck form, as it might be submitted for
execution. The EXEC statement specifies
the cataloged procedure FORTXCLG, to
process three job steps to compile, link
edit, and execute. The EXEC statement also
specifies the linkage editor options OVLY,
XREF, and LIST.

Input to the compile step consists of
the statements in the main program unit and
in the subroutines.

Input to the 1link edit step consists of
INSERT, OVERLAY, and ENTRY statements,
which define the overlay structure of the
program.

There is no input to the load module
step; however, output from the step is
directed to the printer, as defined by the
DD statement //GO.FTO06F001.

Output from the compile job step is
shown in Figure III-15. Note that each
program unit is compiled separately. The

FORTRAN IV (H Extended) compiler recognizes
the FORTRAN END statement as the last
statement in a unit.

from the link edit job step is
shown in Figure III-16. The LIST option
causes the linkage editor control
statements to be listed (labeled A). The
XREF option causes a cross reference table
to be printed for each overlay segment.
Each overlay segment consists of the
FORTRAN program units specified in an
INSERT statement together with any modules
called by the linkage editor. For example,

the following statement defines one overlay
segment:

INSERT MAIN, SUB1,SUBZ
The overlay segments are labeled B through

G. The OVLY option causes nc printed
output.

Output from the load module execution
job step is shown in Figure III-17. The
messages generated by the subroutines are
labeled H.

Linkage Editor Overlay Feature 149

Figure III-14.

150

/!

15

15

15

15

15

15

EXEC
//FORT.SYSIN DD ¥

suBl
SuB2
suB3
suBl
SUBS
suB6
SUB7
SuB8
SUB9
SUB10
SuBl1
suBl2

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
STOP
END
SUBROUTINE SUB1
DIMENSION A(100,10)
FORMAT (1HO,8HIN SUB1)
WRITE (6,15)

FORTXCLG,PARM,LKED='OVLY ,XPEF,LIST!'
INPUT TO COMPILE JOB STEP

SUBROUTINE SUB7
DIMENSINN AC100,10)
FORMAT (1H0,8HIN SUB7 D
WRITE (6,15)

RETURN

END

SUBROUTINE SUBS

PETURN
END DIMENSION A(100,10)
SUBROUTINE SUB2 15 FORMAT (1HO0,8HIN SUB 8)
DIMENSION A(C100,10) WRITE (6,15)

FORMAT (1HO0,8HIN SUB2) RETURN

WRITE (6,15) END

RETURN SUBROUTINE SUB9

END DIMENSION A(C100,10)
SUBROUTINE SUB3 15 FORMAT (1HO,8HIN SUB 9)
DIMENSION A(C100,10) WRITE (6,15)

FORMAT (1HO,8HIN SUB3) RETURN

WRITE (6,15) END

RETURN SUBROUTINE SUB10

END DIMENSTON4AC100,10)
SUBROUTINE SUBY4 15 FORMAT (1HO,8HIN SUB 10)
DIMENSION AC100,10) WRITE (6,15)

FORMAT (1HO,8HIN SUB4) RETURN

WRITE (6,15) END

RETURN SUBROUTINE SUB11

END DIMENSION A(100,10)
SUBROUTINE SUBS 15 FORMAT (1HO,8HIN SUB 11)
DIMENSION A(100,10) WRITE (6,150

FORMAT (1H0,8HIN SUBS) RETURN

WRITE (6,15) END

RETURN SUBRNUTINE SUB12

END DIMENSTON AC100,10)
SUBROUTINE SUB6 15 FORMAT (1HO,8HIN SUB 12)
DIMENSION A(C100,10) WRITE (6,15)

FORMAT (1HD,8HIN SUB6) RETURN

WRITE (6,15) . END

RETURN /%

END //LKED.SYSIN DD ¥ INPUT TO LINK EDIT JOB STEP

/¢

/

INSERT MAIN,SUB1,SUB2

OVERLAY ALPHA

INSERT SuB3,SuUBL

OVERLAY BETA

INSERT SUB5,SUB6, SUB7
OVERLAY BETA

INSERT SUB8,SUB9
OVERLAY BETA

INSERT SUB10

OVERLAY ALPHA

INSERT SUB11,SUB12
ENTRY MAIN

/GO.FTO6F001 DD

77

Linkage Editor Overlay Input

SYSOUT=A OUTPUT FROM LOAD MODULE JNB STEP

REQUESTED OPTIONS: NODECK,NOLIST,0PT=0

CPTIONS IN EFFECT: NAME(MAIN),NOOPTIMIZE,LINECOUNT (60),SIZE(MAX),AUTODBL (NONE),
SOURCE EBCDICyNOLIST,NODECK,0BJECT,NOMAP, NOFORMAT yNOGOSTMTy NOXREF ¢4 NOALC yNOANSF,FLAG(I)

ISN 0002 CALL SuUBl
ISN 0CO03 CALL suB2
ISN 0004 CALL suB3
ISN G003 CALL SuUBs
ISN 0006 CALL SUBS
ISN 0007 CALL SuBe6
[SN 0008 CALL SUB7
1SN 0009 CALL suBs8
ISN 0010 CALL SUB9
ISN OCl1 CALL SuUB10
ISN 0012 CALL SuBll
ISN 0013 CALL SuB12
ISN 0014 sTop

ISN 0015 END

HMIPTIONS IN EFFECT®*NAME(MAIN),NOOPTIMIZE,LINECOUNT(6C),SIZE(MAX),AUTODBL (NONE),

*JPTIONS IN EFFECT*SOURCE,EBCDIC,NOLIST,NODECK,0BJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREF yNCGALC s NOANSF,FLAG(I)

*CTATICTTV‘S\? Cf\UDf‘E STATEMEKITQ = LA DODNARAM CT 70 — 210 CHODDDNODAM AAMC — MA TAI
STATISTIC SOURCE STATEMENTS 14, PROGRAM SIZE 318, SUBPROGRAM NAME MAIN
STATISTICS NO DIAGNOSTICS GENERATED

Fkkkx END OF COMPILATION ki 105K BYTES OF CORE NOT USED

REQUESTED OPTIONS: NODECK,NILIST,0PT=0

CPTIONS IN EFFECT: NAME(MAIN),NCOPTIMIZE,LINECOUNT (60) +SIZE(MAX),AUTODBL (NONE) ,
SOURCE, EBCDIC,NOLIST,NODECK,0BJECT,NOMAP, NOFORMAT ;NOGOSTMT, NOXREF yNOALC yNOANSF,FLAG(L)

ISN 0002 SUBROUTINE SuB1

ISN 0CO03 DIMENSION A(100,1C)

ISN 0004 L5 FORMAT (1HO,8HIN SUBL)
ISN 0C05 WRITE (6,15)

ISN 0006 RETURN

ISN 0007 END

*OPTIONS IN EFFECT*NAME(MAIN),NOOPTIMIZE,LINECOUNT(60),SIZE(MAX),AUTODBL (NONE),

*0PTIONS IN EFFECT*SOURCE,EBCDIC,NOLIST,NODECK,0BJECT, NOMAP,NOFORMAT,NOGOSTMT ,NOXREF yNOALC,NOANSF,FLAG (I}
S TATISTICS* SOURCE STATEMENTS = 6y PROGRAM SIZE = 218, SUBPROGRAM NAME = SuBl
STATISTICS NO DIAGNOSTICS GENERATED

Frxxkx END OF COMPILATION *%kkkkk 105K BYTES OF CORE NOT USED

.
.

REQUESTED OPTIONS: NODECK,NOLIST,0PT=0

CPTIONS IN EFFECT: NAME(MAIN),NOOPTIMIZE,LINECOUNT (60),SIZE(MAX), AUTODBL (NONE},
SOURCE,EBCDIC ¢NOLIST,NODECK yOBJECT, NOMAP, NOFORMAT yNOGOSTMT, NOXREF ;NOALC s NOANSF,FLAG(I)

ISN 0602 SUBROUTINE SUBLl2

ISN 00C3 DIMENSION A(100,10)

ISN CC24 15 FORMAT (1HO,8HIN SUBL2)
ISN 0005 WRITE (6,15)

ISN 2006 RETURN

ISN G007 END

HIPTIONS IN EFFECT®*NAME(MAIN),NOOPTIMIZE,LINECOUNT(60) ,SIZE(MAX)},AUTODBL (NOINE),

#*)PTIONS IN EFFECT*SOURCE,EBCDIC,NOLIST,NODECK,0BJECT,NOMAP,NOFORMAT,NOGOSTMT,NOXREF sNOALC,NOANSF,FLAG(I)
STATISTICS SOURCE STATEMENTS = 6, PROGRAM SIZE = 218, SUBPROGRAM NAME = SUBl2
FSTATISTICS* NO DIAGNOSTICS GENERATED

dakkk END OF COMPILATION #kxokskx 105K BYTES OF CORE NOT USED

TATISTICS NO DIAGNOSTICS THIS STEP

Figure III-15. Linkage Editor Overlay Output -- Compile Job Step

Linkage Editor Overlay Feature

151

FB88-LEVEL LINKAGE EOITOR OPTIONS SPECIFIED OVLY,XREF,LIST
VARIABLE OPTIONS USED - SIZE=(92160,8192)- DEFAULT OPTION(S) USED
IEW0 000 INSERT MAIN,SUB1,SUB2
TEW0000 OVERLAY ALPHA
1IEW0000 INSERT SUB3, SUB4
IEWON00 OVERLAY BETA
IEW000C INSERT SUB5,SUB6,SUB7
eIEHOOOO OVERLAY BETA
1EWO0000 INSERT SUuB8,SUBY
IEW0000 OVERLAY BETA
IEWO000 INSERT Suslo
IEW0000 OVERLAY ALPHA
IEW0 000 INSERT SUB11,SUB12
IEW0000 ENTRY MAIN
A _FEEXMAIN DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET
CROSS REFERENCE TABLE
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATIGN NAME LOCATION
$SEGTAB 00 30 1
MAIN 30 13E 1
SuBl 170 DA 1
suB2 250 DA 1
IHOECOMH * 330 DC4 1
IBCOM# 35C FDIOCSH# 418 INTSWTCH 10E0
IHOC OMH2 * 10F8 975 1
SEQDASD 1462
IHOFCVTH* 1A70 AO7 1
ADCON# 1A70 FCVAQUTP 1B1A FCvLOUTP 1BAA FCVZOUTP 1D06
FCvIOuTP 20AA FCVEOQUTP 219C FCvcouTe 219C INT6 SWCH 23F8
IHOEFNTH* 2478 7C8 1
ARITH# 2478 ADJSWTCH 29D8
IHOEFINS* 2C40 10F0 1
FIOCS# 2C40 FIOCSBEP 2C46
IHOFI0S2* 3D30 5AC 1
IHOUQPT * 42E0 318 1
IHOFCONI * 45F8 2FD 1
FQCONI# 45F8
IHOFCONO* 48F8 558 1
FQCONO# 48F8
IHOERRM * 4ES0 5EC 1
ERRMON 4E50 THOERRE 4E68
THOUATBL * 5440 208 1
IHOFTEN * 5648 198 1
FTEN# 5648
IHOETRCH* 5TEO 2A6 1
ITHOTRCH 57€E0 ERRTRA 57TE8
$ENTAB 5A88 84 1

0

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG, NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG.

NO.
A8 SUB1 suB1 1 AC sus2 suB2 1
80 sus3 suB3 2 B4 SuB4 SuB4 2
88 suBs SUBS 3 8C suBs SUB6 3
co sus? suB7 3 C4 suss suss 4
c8 SUB9 SUB9 4 cc SuB10 SUB 10O 5
DO suB1l SuB11 6 D4 suB12 suB12 6
D8 18COM# THOECOMH 1 208 1BCOM# THOEC OMH 1

2€8 1BCOM# THOECOMH 1 418 SEQDASD THOCOMH2 1
470 1HOCOMH2 THOCOMH2 1 FEC ADC ON# IHOFCVTH 1
FE4 FI0CS# IHOEF 10§ 1 FFO AR TH# THOEFNTH 1
100C ADJSWTCH IHOEFNTH 1 FCO THOUOPT 1HOUOPT 1
FF4 FCVEQUTP IHOFCVTH 1 FF8 FCVLOUTP IHOFCVTH 1
FFC FCVIOUTP IHOFCVTH 1 1000 FCVCOUTP IHOFCVTH 1
1004 FCVAOUTP THOFCVTH 1 1008 FCVZOUTP IHOFCVTH 1
10E4 THOASYNC $UNRESOLVED (W) Fas4 THOERRM THOERRM 1
F98 THOERRE THOERRM 1 FC8 IHOCOMH2 IHOCOMH2 1
F9C THOCOMH2 THOCOMH2 1 FAO THOCOMH2 THOCOMH2 1
FA4 THOCOMH2 THOCOMH2 1 FA8 IHOCOMH2 THOCOMH2 1
1228 THOECOMH THOEC OMH 1 1208 THOEC OMH THOECOMH 1
18CD THOEC OMH THOECOMH 1 180D IHO ECOMH THOECOMH 1
18ED IHOECOMH THOECOMH 1 2268 1BCOM# THOEC OMH 1
2264 THOERRM THOERRM 1 2288 FQCONO# IHOFCONO 1
228¢C FQCONT # IHOFCONI 1 2A34 18COM# THOECOMH 1
2A38 INTSWTCH IHOEC OMH 1 2904 INT6SHCH IHOFCVTH 1
2900 IHOUDPT THOUOPT 1 2440 ADCON# IHOFCVTH 1
2A3C FI0CS# LHOEF 10S 1 2840 THOERRM IHOERRM 1
20A8 THOASYNC “$UNRESOLVED (W) 20A0 THOERRM IHOERRM 1
20A4 IHOFI0S2 IHOF10S2 1 3AC0 THOUATBL THOUATBL 1
3ACC 1BCOM# THOEC OMH 1 3AEL THOF 10S2 IHOF1052 1
3AF8 IHOF10S2 THOF10S2 1 3029 [HOF10S2 IHOFEOS2 1
4884 FTEN# THOFTEN 1 4CF4 FTEN# THOF TEN 1
542C THOUOPT THOUOPT 1 5430 18C OM# THOEC OMH 1
5434 THOTRCH THOETRCH 1 5438 FIOCSBEP [HOEFI0S 1
5968 1BCOM# THOEC OMH 1 596C ADCON# IHOFCVTH 1
5974 FIOCSBEP IHOEF 10S 1
Figure III-16. Link Edit Overlay Output -- Link Edit Job Step

152

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

SuB3 5810 DA 2

e SUB4 5BF0 DA 2

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

5BAS8 1BCOM# THOEC OMH 1 5C88 IBC OM# 1HOEC OMH 1
 CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
SUBS 5CD0 DA 3
SUB6 5DBO DA 3
3

Q SuB7 5E90 DA

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

5068 IBCOM# ITHOEC OMH 1 5E48 1BCOM# IHOECOMH 1
5F28 IBCOM# THOEC OMH 1
{ CONTROL SECTION ENTRY
NAMF ORTGIN LENGTH SEG. NO. MAME LOCATICN NAME LOCATION NAME LOCATION NAME LOCATIUN
suss 5CDO DA 4

e sus9 5DBO DA 4

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO.

5068 IBCOM# THOECOMH 1 5€48 I1BCOM# THOECOMH 1
CONTROL SECTIGN ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

G suslc 5CO0C DA 5

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NQ.

5068 1BCOM# IHOECOMH 1
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
suBll 581C DA 6

@ suBlz2 58FC DA 6

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMgOL IN CONTROL SECTION SEG. NO.

58A8 I1BCOM# THOFCOMH 1 5C88 TRCOMA 1HOECOHH i
ENTRY ADDRESS 30
TOTAL LENGTH 5F70

Figure III-16. Link Edit Overlay Output -- Link Edit Job Step (Part 2 of 2)
IN SUB1
IN SUB2
IN SUB3
IN SUB4
IN SuB5
IN SUBé6
IN SuUB7
IN SuB8
IN SUBS
IN SUB10
IN SUR11

IN SUB12
Figure III-17. Linkage Editor Overlay Output --. Load Module Execution Job Step

Linkage Editor Overlay Feature 153

EXTENDED_ERROR HANDLING FACILITY

The extended error handling facility
provides the FORTRAN programmer with
greater control over load module errors.
This facility is specified at program
installation time through the parameter
OPTERR=INCLUDE in the FORTLIB macro
instruction.

When a program error occurs, the user is
given:

¢ Messages more informative than those
issued with standard diagnostic
facilities

¢ The ability to continue execution after
the error

¢ Either standard FORTRAN corrective
action with continued execution or,
optionally, user-specified corrective
action

When an error occurs with extended error
handling in effect, a short message text is
printed along with an error identification
number. The data in error (or some other
associated information) is printed as part
of the message text. A summary error
count, printed when a job is completed,
informs the user how many times each error
occurred.s For a complete listing of
compiler and library messages, see the
publication 0S FORTRAN IV (H Extended)
compiler and Library (Mod II) Messages,
Order No. SC28-6865.

A traceback maps, tracing the subroutine
flow back to the main program, is printed
after each error occurrence; execution then
continues. (If the extended error handling
facility is not specified, a traceback map
is printed only for errors causing program
termination and for error IHO218I if the
ERR= option has been specified in a READ
statement.)

For each error condition detected, the
user has both dynamic and default control
over:

* The number of times the error is

allowed to occur before program
termination

154

e The maximum number of times each
message may be printed

e Whether or not the traceback map is to
be printed with the message

¢ Whether or not a user-written
error-exit routine is to be called

The action that takes place is governed by
information stored in an area of main
storage called the option table. (A
permanent copy of the option table is
maintained in the FORTRAN library.)

FUNCTIONAL CHARACTERISTICS

When an error is detected, the FORTRAN
error monitor (ERRMON) receives control.

The error monitor prints the necessary
diagnostic and informative messages and
then takes one of the following actions:

* Terminates the job

e Returns control to the calling routine,
which takes a standard corrective
action and then continues execution

e Calls a user-written closed subroutine
to correct the data in error and then
returns to the routine that detected
the error, which then continues
execution

The actions of the error monitor are
controlled by settings in the option table.
The option table consists of a doubleword
preface, followed by a doubleword entry for
each error condition. (If the extended
error handling facility is not specified,
the option table is reduced to the preface
alone.) 1IBM provides a standard set of 97
entries; the programmer can provide
additional entries at program installation
time. Table III-3 shows the values for
each error condition. If an option
recorded in a table entry does not apply to
a particular error condition, it is shown
as not applicable (NA).

Table III-3. Option Table Default Values
Option Bits

1No corrective action is taken except to continue execution. For boundary alignment,
the corrective action is part of the support for misalignment.

21f a print control character is not supplied, the overflow line is not shifted to
incorporate the print control character. Thus, if the device is tape, the data is
intact, but if the device is a printer, the first character of the overflow line is
not printed but is treated instead as the print control. Unless the user has planned
the overflow, the first character would be random and thus the overflow print line
control can be any of the possible ones. It is suggested that when the device is a
printer, the option be changed to provide single spacing.

|3Corrective action consists of return to execution for SLITE.

|¢It is not considered an error if the END parameter is present in a READ statement. No

| message or traceback is printed and the error count is not altered.

| SFor an input/output error, the buffer may have been partially filled or not filled at

| all when the error was detected. Thus, the buffer contents could be blank when

| printed. When an ERR parameter is specified in a READ statement, it is honored even

| though the error occurrence is greater than the amount allowed.

| The count field does not necessarily mean that up to 10 missing DD cards will be

| detected in a single debugging run, since a single WRITE performed in a loop could

| cause 10 occurrences of the message for the same missing DD card.
L

r T T - T ¥ T H T L I |
] | Number of |Number of] | |Print | | Standard | |
|Error| Errors | Messages| [Modifiable|Buffer |Traceback|Corrective |User|
| Code| Allowed | Allowed |Print Control | Entry |Content| Allowed | Action |Exit|
b= pommmmmeee A fresmmmeemamee et oo $----ommeeee $----4
205	1	1] NA	No	No	No	No	No	
206	10	5	NA	Yes	NA	Yes] Yes	No	
207	10	5	NA ! Yes	NA i es i Yes i No				
208	Unlimited	5	NA	Yes	NA	Yes	Yes	No
209	10	5	NA	Yes	WA	Yes	Yes	No1
210	Unlimited	10] NA	Yes	NA	Yes	Yes1	No	
211	10	5	NA	Yes	NA	Yes	Yes	No
212	10	5	No2	Yes	Yes	Yes	Yes	No
213	10	5	NA i Yes	WA i Yes i Yes	No			
214	10	5	NA	Yes	NaA	Yes	Yes	No
215	Unlimited	5	NA	Yes	Yes	Yes	Yes	No
216	10	5	NA	Yes	NA	Yes	Yes3	No
217	14	1	NA	Yes	NA	Yes	Yes	No
218	10s	5	NA	Yes	Yess	Yes	Yes	No
219	106	5 i NA	Yes	NA i Yes	Yes	No		
220	10 I 5 [NA	Yes	NA	Yes	Yes	No		
221	10	5	NA	Yes	Yes	Yes	Yes	No
222	10	5	NA	Yes	Yes	Yes	Yes	No
223	10	5	NA	Yes	Yes	Yes	Yes	No
224	10	5	NA	Yes	Yes	Yes	Yes	No
225	10	5	NA	Yes	Yes	Yes	Yes	No
226	10	5	NA	Yes	NA [Yes	Yes	No	
227	10	5	NA	Yes	NA	Yes	Yes	No
229	10	5	NA	Yes	NA	Yes	Yes	No
230	1	1	NA	No	NA	Yes	No	No
231	10	5	NA	Yes	NA	Yes	Yes	No
232	10	5	NA	Yes	NA	Yes	Yes	No
233-} 10	5	NA	Yes	NA	Yes	Yes	No	
237]								
240	1	1	NA	No	NA	Yes	No	No
241-	10	5	NA	Yes	NA	Yes	Yes	No
I 285	I I							
286	10	5	NA	Yes	NA	Yes	Yes	No
287	10	5	NA	Yes	NA	Yes	Yes	No
288	10	5	NA	Yes	NA	Yes I Yes	No	
289-] 10	5	NA	Yes	NA	Yes	Yes	No	
I 301}	[!					
b i Lo B S) S B — Y T, Lo Y G								
I								
I [
I I								
I								
[
I |

|

|

|

I

|

|

|

|

I

|

J

Extended Error Handling Facility 155

The field that is defined as the
user-exit address also serves as a means of
specifying standard corrective action.

When the table entry contains an address,
the user exit is specified; when it
contains the integer 1, standard correction
is specified. It is not possible at
program installation time to create an
option table entry with the user-exit
address specified. The user exit must be
specified by altering the option table at
execution time. To specify that no
corrective action, either standard or
user-written, is to be taken, the table
entry must specify that only one error is
to be allowed before termination of
execution.

To make changes to the option table
dynamically at load module execution time,
the programmer calls one of four
subroutines; these subroutines are
summarized below.

SUBPROGRAMS FOR THE EXTENDED ERROR HANDLING
FACILITY

IBM provides four subroutines for use in
extended error handling: ERRSAV, ERRSTR,
ERRSET, and ERRTRA. These subroutines
allow access to the option table to alter
it dynamically.

Certain option table entries may be
protected against alteration when the
option table is set up. If a request is
made by means of CALL ERRSTR or CALL ERRSET
to alter such an entry, the request is
ignored. See Table III-3 for those
IBM-supplied option table entries that
cannot be altered.

Changes made dynamically are in effect
for the duration of the program that made
the change. Only the current copy of the
option table in main storage is affected;
the copy in the FORTRAN library remains
unchanged. All passed parameters, unless
otherwise indicated, are u4-byte (fullword)
integers.

ERRSAV Subroutine

The CALL ERRSAV statement is used to modify
an entry temporarily. The statement causes

156

an option table entry to be copied into an
8-byte storage area accessible to the
FORTRAN programmer. CALL ERRSAV has the
format:

CALL ERRSAV (ierno, tabent)
where:

ierno
is the error number to be referenced
in the option table. Should any
number not within the range of the
option table be used, an error message
will be printed.

tabent
is the name of an 8-byte storage area
where the option table entry is to be
stored.
An example of CALL ERRSAV is:
CALL ERRSAV (213, ALTERX)

The example states that error number 213
is to be stored in the area named ALTERX.

ERRSTR Subroutine

To store an entry in the option table, the
following statement is used:

CALL ERRSTR (ierno,tabent)
where:

ierno
is the error number for which the
entry is to be stored in the option
table. Should any number not within
the range of the option table be used,
an error message will be printed.

tabent
is the name of an 8-byte storage area
containing the table entry data.
An example of CALL ERRSIR is:
CALL ERRSTR (213, ALTERX)
The example states that error number

213. Stored in ALTERX, is to be restored
to the option table.

Table III-4. Corrective Action After Error Occurrence (Part 1 of 2)

r

T —-—T———- T - ittt 1

|Parameters| | |

|Error| Passed to| | |

Code | User? | Standard Corrective Action | User-Supplied Corrective Action]

pomesedmmmmmoean oo e o e 1

205 | A,B,D |Program Termination | See Note 2 |

I | | |

206 | A,B,I |I=1low order part of number for |User may alter I |

| | input too large. | (See note 3). |

| | | |

211 | A,B,C |Treat format field containing C|(a) If compiled FORMAT statement, put]

| |las end of FORMAT statement. | hexadecimal equivalent of |

(| | character in C (see Note 1). |

| | |(b) If variable format, move EBCDIC |

| | | character into C (see Note 1). |

I] | I

212 | A,B, |Input: Ignore remainder of I/0|See Note 2. |

| |1list. | |

| |Ooutput: Continue by starting | |

| |new output record. Supply | |

| |carriage control character if | |

| |required by Option Table. | |

| | | |

213 | A,B,D | Ignore remainder of I/0 list. |See Note 2. |

| | | |

214 | A,B,D |Input: Ignore remainder of I/O|If user correction is requested, the |

| {list. 1Ignore input/output |remainder of the I/0 list is ignored. |

| |request if for ASCII tape. | |

| |Qutput: If unformatted write | |

| |initially requested, change | |

| |record format to Vs. If | |

| | formatted write initally | |

| |requested, ignore input/output | |

| | request. | |

| |

215 | A,B,E | Substitute zero for the invalid|The character placed in E will be sub-|

| |character. |stituted for the invalid character;]

| | |input/output operations may not be |

| | |performed (see Note 1). |

| | | |

217 | A,B,D | Increment FORTRAN sequence |See Note 2, |

| |number and read next file. | |

i i i |

2182| A,B,D,F |Ignore remainder of I/O list. |See Note 2. |

| | I

219-| A,B,D |Ignore remainder of I/0 list. |See Note 2. |

224 | : 1
|

225 | A,ByE | Substitute zero for the invalid|The character placed in E will be sub-|

| |character. |stituted for the invalid character |

| | | (see Note 1), |

I I | |

226 | A,B,R |R=0 for input number too small; |User may alter R. |

| |R=166€3-1 for input number too | |

l ilarge. : ‘

227 | A,B,D |Ignore remainder of I/0 list. |See Note 2. |

I | | |

229 | A,B,D | Ignore remainder of I/0 list. |See Note 2. |

I I | |

231 | A,B,D | Ignore remainder of I/0 list. |See Note 2, |

_____ O O R

[s o G — o ————— — — — — ——" —— —— —— — —— —— — o st — — — — — — sttt DD st} aoeos e o e s o e oot o S

Extended Error Handling Facility 157

Table
————

| Exror
| Code

|. _____

234-
236

|

|

!

|

I

|

|

I

| 237
|

| 238
|

|

|

|

!

|

| *tPara

III-4, Corrective Action After Error Occurrence (Part 2 of 2)

i Sttt 8 ettt B S it beb kit b
| Parameters| |

| Passed to] |

| Uset | Standard Corrective Action | User Supplied Corrective Action
I pommm - + o
| A,B,D,G |Ignore remainder of I/0 list. |See Note 2.

| | I

| A,B,D |Change record number to list |See Note 2.

| |maximum allowed (32,000). |

| |

| A,B,D | Ignore remainder of I/0 list. |See Note 2.

| | |

| l _ . |

| A,B,D,F |Ignore remainder of I/0 list. |See Note 2.

I | |

| A,B,D | Ignore remainder of I/0 list. |See Note 2.

| | |

| A,B,D | Ignore Request |See Note 2.

| | |

| A,B,D | Ignore Request |See Note 2.

| I |

| A,B,D |Implied Wait |See Note 2.

i . P e

meter Code Meaning

Address of return code field (INTEGER*U4)
Address of error number (INTEGER*4)

Address of data set reference number (INTEGER*4)
Address of invalid character (LOGICAL*1)
Address of DECB

Address of record number requested (INTEGER#*4)
Result after conversion (INTEGER*4)

Result after conversion (REAL*4)

THQREEUODOW P

|2If error condition 218 (input/output error detected) occurs while error messages are
| being written on the object error data set, the message is written on the console and

| the

3
|
|
|

i
|
|
|
|
|
|
]
|
|
|
|
|
I
{
|
|
|
i
|
|

Address of invalid format character (LOGICAL*1) |
|
|
|
|
[
|
|

job is terminated. |
|
|
4
|
|
|
|
|
|
|
|
]
|
|
|
|
J

| If no DD card has been supplied for the object error data set, error message

| IHO219I is written out on the console and the job is terminated.

P e m o

| Notes:

| 1. Alternatively, the user can set the return code to 0, thus requesting a standard

| corrective action.

| 2. If the error was not caused during asynchronous input/output processing, the user

| exit-routine cannot perform any asynchronous I/0 operation and, in addition, may

| not perform any REWIND, BACKSPACE, or ENDFILE operation. If the error was caused

| during asynchronous input/output processing, the user cannot perform any

| input/output operation. On return to the library, the remainder of the

| input/output request will be ignored.

| 3. The user exit routine may supply an alternative answer for the setting of the

| result register. The routine should always set an INTEGER#4 variable and the

| FORTRAN library will load fullword or halfword depending on the length of the

| argument causing the error,

L o o e

ERRSET_ Subroutine end of the list require no place notation.)
CALL ERRSET has the format:

The CALL ERRSET statement permits the user CALL ERRSET (ierno,inoal, inomes,

to change up to five different options. It itrace,iusadr, irange)

consists of six parameters. The last four

parameters are optional, but each omitted where:

parameter must have its place noted by a

comma and a zero if succeeding parameters ierno

are specified. (Omitted parameters at the is the error number to be referenced

158

in the option table. Should any

number not within the range of the
option table be used, an error message
will be printed. (Note that if ierno
is specified as 212, there is a
special relationship between the ierno
and irange parameters. See the
explanation for irange.)

inoal

is an integer specifying the number of
errors permitted before execution is
terminated. If inocal is specified as
either zero or a negative number, the
specification is ignored, and the
number-of-errors option is not
altered. If a value of more than 255
is specified, an unlimited number of
errors is permitted.

inomes

is an integer indicating the number of
messages to be printed. A negative
value specified for inomes causes all
messages to be suppressed; a
specification of zero indicates that
the number-of-messages option is not
to be altered. If a value greater
than 255 is specified, an unlimited
number of error messages is permitted.

1. An error number higher than that
specified in ierno. This number
indicates that the options
specified for the other parameters
are to be applied to the ent
range of error conditions
encompassed by ierno and irange.
(If irange specifies a number
lower than ierno, the parameter is
ignored, unless ierno specifies
the number 212,)

1o
irc

2. A print control character if ierno
specified 212, The value 1 is
specified to provide single
spacing for an overflow line
(standard fixup for WRITE
statements)., If a value other
than 1 is specified, no print
control is provided.

The default value 0 is assumed if the
parameter is omitted (i.e., no print
control is provided, and the values
specified for all parameters apply
only to the error condition number in
ierno).

Examples of CALL ERRSET are:
itrace

is an integer whose value may be 0, 1,
or 2. A specification of 0 indicates
the option is not to be changed; a
specification of 1 requests that no
traceback be printed after an error
occurrence; a specification of 2
requests the printing of a traceback
after each error occurrence, (If a 1.
value other than 1 or 2 is specified,

Example 1:
CALL ERRSET (310,20,5,0,MYERR, 320)

This example specifies the following:

Error condition 310 (ierno)

the option remains unchanged.) 2. The error condition may occur up to 20
times (inoal)
iusadr
specifies one of the following: 3. The corresponding error message may be

printed up to 5 times (inomes)
1. The value 1, as a U4-byte integer,
indicating that the option table 4,
is to be set to show no user-exit
routine (i.,e., standard corrective
action is to be used when 5.
continuing execution).

The default for traceback information
is to remain in force (itrace)

The user-written routine MYERR is to
be executed after each error
occurrence (iusadr)
2. The name of a closed subroutine
that is to be executed after the 6.
occurrence of the error identified

The same options are to apply to all
error conditions from 310 to 320

by ierno. The name must appear in (irange)
an EXTERNAL statement in the

source program, and the routine to

which control is to be passed must Example 2:

be available at link editing time.
CALL ERRSET (212,10,5,2,1,1)
3. The value 0, indicating that the

table entry is not to be altered. This example specifies:

irange 1. Error condition 212
serves a double function. It
specifies one of the following: 2. The condition may occur up to 10 times

Extended Error Handling Facility 159

3. The corresponding message may be
printed up to 5 times

4, Traceback information is to be
displayed after each error occurrence

5. Standard corrective action is to be
executed after an error

6. Print control is to be employed

For illustration purposes, this
example explicitly specifies all
default options except in requesting
print control.

Example 3:
CALL ERRSET (212,0,0,0,0,1)

This example illustrates an alternate
method of specifying exactly the same
options as the second example. It states
that no changes are to be made to default
settings except in requesting print
control.

ERRTRA Subroutine

The CALL ERRTRA statement permits the user
to dynamically request a traceback and
continued execution. It has the format:
CALL ERRTRA

The call has no parameters.

USER-SUPPLIED ERROR HANDLING

The user has the ability of calling, in his
own program, the FORTRAN error monitor
(ERRMON) routine, the same routine used by
FORTRAN itself when it detects an error.
ERRMON examines the option table for the
appropriate error number and its associated
entry and takes the actions specified. If
a user-exit address has been specified,
ERRMON transfers control to the
user-written routine indicated by that
address. Thus, the user has the option of
handling errors in one of two ways: (1)
simply by calling ERRMON without supplying
a user-written exit routine; or (2) by
calling ERRMON and providing a user-written
exit routine.

In either case, certain planning is
required at the installation level. For
example, error numbers must be assigned to
error conditions to be detected by the
user, and additional option table entries

160

must be made available for these
conditions. The routine that uses the
error monitor for error service should have
the status of an installation
general-purpose function similar to the
IBM-supplied mathematical functions. The
number of installation error conditions
must be known when the FORTRAN library is
created at program installation time, so
that entries will be provided in the option
table by the ADDNTRY parameter of the
FORTLIB macro instruction. The error
numbers chosen for user subprograms are
restricted in range. IBM-designated error
conditions have reserved error codes from
000 to 301. Error codes for
installation-designated error situations
must be assigned in the range 302 to 899.
The error code is used by FORTRAN to find
the proper entry in the option table.

To call the ERRMON routine, the
following statement is used:

CALL ERRMON (imes,iretcd, ierno
[,datal,data2,...]1)

where:

imes
is the name of an array aligned on a
fullword boundary, that contains, in
EBCDIC characters, the text of the
message to be printed. The number of
the error condition should be included
as part of the text, because the error
monitor prints only the text passed to
it. The first item of the array
contains an integer whose value is the
length of the message. Thus, the
first four bytes of the array will not
be printed. If the message length is
greater than the length of the buffer,
it will be printed on two or more
lines of printed output.

iretcd
is an integer variable made available
to the error monitor for the setting
of a return code. The following codes
can be set:

0 -- The option table or user-exit
routine indicates that standard
correction is required.

1 -- The option table indicates that a
user exit to a corrective routine
has been executed. The function
is to be reevaluated using
arguments supplied in the
parameters datal,data2
For input/output type errors, the
value 1 indicates that standard
correction is not wanted.

ierno
is the error condition number in the
option table. Should any number not
within the range of the option table
be specified, an error message will be
printed.

datal,data? . . .
are variable names in an error-
detecting routine for the passing of
arguments found to be in error. One
variable must be specified for each
argument. Upon return to the error-
detecting routine, results obtained
from corrective action are in these
variables., Because the content of the
variables can be altered, the
locations in which they are placed
should be used only in the CALL
statement to the error monitor;
otherwise, the user of the function
may have literals or variables
destroyed.

Since datal and data2 are the
parameters which the error monitor
will pass to a user-written routine to
correct the detected error, care must
be taken to make sure that these
parameters agree in type and number in
the call to ERRMON and in a
user-written corrective routine, if
one exists,

Note: If optimization has been
requested, current values of variables
may not be correct.

An example of CALL ERRMON is:
CALL ERRMON(MYMSG,ICODE, 315,D1,D2)

The example states that the message to
be printed is contained in an array named
MYMSG, the field named ICODE is to contain
the return code, the error condition number
to be investigated is 315, and arguments to
be passed to the user-written routine are
contained in fields named D1 and D2.

Figure III-18 illustrates the use of the
CALL ERRSET and CALL ERRMON statements in a
program utilizing a user-supplied
subprogram to handle divide-by-zero
situations. The CALL ERRSET and CALL
ERRMON statements are highlighted for
easier reference.

User-Supplied Exit Routine

When a user-exit address is supplied in the
option table entry for a given error
number, the error monitor calls the

specified subroutine for corrective action.
The subroutine may be user-written and is
called by assembler-language code
equivalent to the following statement:

CALL x (iretcd, ierno,datal,data2...)
where:

X
is the name of the subroutine whose
address was placed into the option
table by the iusadr parameter of the
CALL ERRSET statement.
(Interpretations of the other
parameters -- iretcd, ierno, datal,
data2 -- are the same as those for the
CALL ERRMON statement.)

If an input/output error is detected
(i.e., an error for codes 211-237,
286-288), and the error originally was
caused by a FORTRAN input/output statement,
subroutine x must not execute any FORTRAN
input/output statements, but may issue an
asynchronous input/output statement. If
the original error was caused by an
asynchronous input/output statement,
subroutine x may issue a FORTRAN
input/output statement but must not issue
an asynchronous input/output statement.
Similarly, if errors for codes 216 or
241-301 occur, the subroutine x must not
call the library routine that detected the
error or any routine which uses that
library routine. For example, a statement
such as

R = A *%¥x B

cannot be used in the exit routine for
error 252, because the FORTRAN library
subroutine FRXPR# uses the function
subprogram EXP, which detects error 252.

Note: Although a user-written corrective
routine may change the setting of the
return code (iretcd), such a change is
subject to the following restrictions:

1. If iretcd is set tc 0, then datal and
data2 must not be altered by the
corrective routine, since standard
corrective action is requested. If
datal and data2 are altered when
iretcd is set to 0, the operations
that follow will have unpredictable
results.

2. Only the values 0 and 1 are valid for
iretcd. A user-exit routine must
ensure that one of these values is
used if it changes the return code
setting. A value other than 0 or 1
will cause unpredictable results.

Extended Error Handling Facility 161

//SAMPLE JOB 1, SAHPLB.HSGLEVEL—l
//STEP1 EXEC FORTXCLG
//FORT.SYSI& DD *

c MAIN PROGRAM THAT USES THE SUBROUTINE DIVIDE
COMMON E
EXTERNAL FIXDIV

c SET: UP OPTION TABLE WITH ADDRESS OF USER EXIT

CALL ERRSET(302,30,5,1,FIXDIV)

e e e e, e .S,

Figure III-18. Sample PrOgram Us:.ng Extended Error Handllng Fac111ty

162

The user-written exit routine can be
written in FORTRAN or in assembler
language. In either case, it must be able
to accept the call to it as shown above.

3 3 PR T~3 W - ~1 A=~
The user-exit routine must be a2 closed

subroutine that returns control to the
caller.

If the user-written exit routine is
written in assembler language, the end of
the parameter list can be checked. The
high-order byte of the last parameter will
have the hexadecimal value 80. If the
routine is written in FORTRAN, the
parameter list must match in length the
parameter list passed in the CALL statement

issued to the error monitor.

When the extended error handling
facility encounters a condition or a
request that requires user notification, an
informative message is printed.

The error monitor is not recursive; if
it has already been called for an error, it
cannot be re-entered if the user-written
corrective routine causes any of the error
conditions that are listed in the option
table. Boundary misalignment is therefore
not allowed in a user-exit routine.

Actions the user may take if he wishes

to correct an error are described in Tables
I1r-4, III-5, and III-6.

OPTION TABLE CONSIDERATIONS

Figures III-19 and III-20 describe the
fields of the option table and list the
default values for the contents of these

fields.

When a user-written exit subroutine is
to be executed for a given error condition,
the programmer must enter the address of
the routine into the option table entry
associated with that error condition.

Addresses for user-exit subroutines
cannot be entered into option table entries
during program installation. An
installation may, however, construct an

option table containing user-exit addresses
and place that option table into the
FORTRAN library. (Each address must be
specified as a V-type address constant.)
Use of this procedure, though, results in
the inclusion, in the load module, of all
such user-exit subroutines by the linkage

editor.

If the user-exit address is not
specified in advance through the use of
V-type address constants, the programmer
must issue a CALL ERRSET statement at
execution time to insert an address into
the option table that was created during
program installation.

The programmer should be warned that
altering an option table entry to allow
"unlimited" error occurrence (specifying a
number greater than 255) may cause a
program to loop indefinitely.

CONSIDERATIONS FOR THE LIBRARY WITHOUT
EXTENDED ERROR HANDLING FACILITY

When the extended error handling facility
is not chosen, execution terminates after
the first occurrence of an error, unless it
is one caused by boundary misalignment,
divide check, exponent underflow, or
exponent overflow. The messages for errors
205, 215, 216, 218, 221-230, 228, and
238-301 are the same as those with the
extended error handling facility. The
other error messages are of the form
"IHOxxxI" with no text.

Without the extended error handling
facility, ERRMON becomes an entry point to
the traceback routine. User programs that
call the error monitor do not have to be
altered. The error message will be printed
with a traceback map and execution will
terminate.

Note, that if the facility is not
selected, the ERRTRA, ERRSET, ERRSAV, and
ERRSTR subprograms are assumed to be user
supplied if they are called in a FORTRAN
program.

Extended Error Handling Facility 163

r T T .25 1
[| Field | [[
| Field | Length | | |
| Contents | in Bytes | Default | Field Description |
T s e oo 1
| Number | 4 | 97 | Number of entries in the Option Table. |
| of entries| | | |
pmmm - fommomooem f--mmmoomm- T 1
| Boundary | 1 | 40 | Bit 1 indicates whether boundary alignment was

| alignment | | (hexa- | chosen at program installation time. Bits 0 and 2

|] | decimal) | through 7 are reserved for future use. |
| | | | I
| | | | Bit 1: 0 indicates NOALIGN |
| | | | 1 indicates ALIGN |
t + e e T 4
Extended	1	FF	Indicates whether extended error handling was chosen
error		(hexa-	at program installation time.
handling		decimal)	
			FF indicates that extended error handling was
			excluded.
			00 indicates that extended error handling was
			included.
pommmmmmmm- oo e = —			
Alignment	1	10	Maximum number of boundary alignment messages
count			allowed when extended error handling is not chosen.
b + ¥ + - -			
Reserved	1	0	Reserved for future use,
) N L e e e e i			
Figure III-19. Option Table Preface

164

r—————=— T T T - T TT T T T T R
	Field	I	
Field	Length		
Contents	in bytes	Defaultl	Field Description
O oo P RO T — 1			
Number	1	102	Number of times this error condition should be
of error			allowed to occur. When the value of the error count
occurrences			field (below) equals this value, job processing is
l	allowed		
			value of 0 means an unlimited number of
			occurrences. 3
T fommmommoo- O T e T 1			
Number	1	54	Number of times the corresponding error message is
messages			to be printed before message printing is suppressed.
to print			A value of 0 means no message is to be printed.
t + + B et - - -—1			
Exror	1	0	The number of times this error has occurred. A

| count i i |value of 0 indicates that no occurrences have been |
| | | |encountered. |
b t P Lt e PR
Option	1	42	Eight option bits defined as follows (the default		
bits		thexa-	setting is underscored) :		
		decimal)	Bit	Setting	Explanation
			0	0	[No control character supplied for
		I		overflow lines. I	
				1	control character supplied to provide
					single spacing for overflow lines.
1		s et T 1			
			1		Table entry cannot be modified.S
				1	Table entry can be modified.
l	R e T 1				
			2	4]	Fewer than 256 error have occurred.
				1	More than 256 errors have occurred.
					(Add 256 to error count field above to
					determine the number.)
		ot B g 1			
			39	Q	Do not print buffer contents with error
		I [message.		
			l 1	Print buffer contents.	
		S T 1			
		I 4	1]	Reserved.	
		b-——1 + — -			
		1 51 4]	Print messages default number of times		
	[P ,only.				
		1	1	Unlimited printing requested; print for	
					every occurrence of error.
I	I F——-+ + - i				
			6		Do not print traceback map.
				1	Print traceback map.
		b-—-1 + mmm e i			
			7 i)] [Reserved.	
pommm oo pommmmm - fommmmmmme oo e o e 1					
User	4	1	Indicates where a user corrective routine is		

|exit | | |locateds A value of 1 indicates that no user- |
] | | |written routine is available. A value other than 1 |
| | | |specifies the address of the user-written routine. |
I 1 ———de P 4
|1The default values shown apply to all error numbers (including additional user |
| entries) unless excepted by a footnote. |
| 2Errors 208, 210, and 215 are set as unlimited, and errors 205, 217, 230, and 240 are |
| set to 1. |
|2An unlimited number of errors may cause the FORTRAN job to loop indefinitely until the]
| operator intervenes. |
| “Error 210 is set to 10, and errors 205, 217, 230, and 240 are set to 1. |
| *The entry for errors 205, 230, and 240 cannot be modified. |
| The entry is set to 0 except for errors 212, 215, 218, 221, 222, 223, 224, and 225. |
L i

Figure III-20. Option Table Entry

Extended Error Handling Facility 165

Table III-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 1 of 4)

r T T T)]
I | | | Options |
| | | - e — i
	FORTRAN	Invalid	Standard	User-Supplied
Error	Reference	Argument	Corrective Action	Corrective Action
Code	(See Note 1)	Range	(See Notes 2 and 3)	(See Note 4)
L i 1 1 4 4
L 8 1 T B

| 216 | CALL SLITE (I) | I>4 |The call is treated | I i
| | | las a NO OP (an instruc-| |
| | | |tion that requests no | i
| | | |action be performed) | |
I | | | | |
216	CALL SLITET	I>4	J=2	I
I (1,3				
241	K=I#*%J	1=0, J<0	K=0	1,3
282	Y=X#**I	X=0, I<0	If 1=0, ¥Y=1	X,I
			If I<0, Y=e	
243	DA=D#*I	D=0, I<0	If 1=0, Y=1	DI
			If I<0, Y=e	
2u4	XA=X#**Y	X=0, ¥<0	XA=0	X,Y
i			I	
245	DA=D*#*DB	D=0, DB<O	DA=0	D,DB
		1	I	
286	CA=C**I	¢c=0+0i, I<O	If 1I=0, C=1+0	c,I
[!	If I<0, C=e+40i	[
247	CDA=CD#*I	c=0+40i, I<O	If I=0, C=1+0	cb,I
			If I<0, C=e+0i	
251	Y=SQRT (X)	X<0	IY=	X
i			I	
252	Y=EXP (X)	X>174.673	Y=o	X
I				I
253	Y=ALOG (X)	X=0	Y=~o	X
= ‘ } X<0 =Y=log	X	{ X =		
	¥=ALOG10 (X)	X=0	Y==e	X
} : } X<0	¥=1log40	X	} X ;	
254	Y=COS (X)		X	2218m
	¥Y=SIN (X)			
i				
255	Y=ATAN2 (X,Xa)	X=0, XA=0	Y=0	X, Xa
'L, L L - L L ‘1I				
Notes:				
1. The variable types are as follows:				
variable Type				
I,J INTEGER*4				
X, XA, Y REAL* Y4				
D,DA,DB REAL*8				
C,CA COMPLEX*8				
2,Xy,X2 Complex variables to be given the length of the functioned				
argument when they appear.				
CcD COMPLEX#*16				
2 The largest number that can be represented in floating point is indicated by the				
symbol e,				
3. The value e=approximately 2.7183.				
4. The user-supplied answer is obtained by recomputation of the function using the				
value set by the user routine for the parameters listed.				
L 1

166

Table III-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 2 of 4)

r L) T T 1
| | | | Options |
| | | - T 1
	FORTRAN	Invalid	Standard	User-Supplied
Error	Reference	Argument	Corrective Action	Corrective Action
Code	(See Note 1)	Range	(See Notes 2 and 3)	(See Note 4)
L i 1 1 IR d				
1) L] T T 1				
256	Y=SINH (X)	1X}<175.366 [Y=(SIN X)e	X	
	Y=COSH (X)		Y=o	
! 257 i Y=ARSIN (X) ! IX1>1 !IIf X)l.O,ARSIN(X);g . ! X =				
i		If X<-1,0,ARSIN(X)=-3		
	¥Y=ARCOS (X)		If X>1.0,ARCOS=0	
i		If X<-1.0,ARCOS="m	i	
258	Y=TAN (X)	1X]2(218) %4	Y=1	X
	Y=COTAN (X)			
		I	I	
259	Y=TAN (X)	X is too close	y=e	X
		to an odd		
		multiple of ¥		I
}	Y=COTAN (X)	X is too close	Y=e	X
i		to a multiple		
		of 7	-	
				I
261	DA=DSQRT (D)	D<O	DA=	D
				I
262	DA=DEXP (D)	D>174.673	DA=e	D
263	DA=DLOG (D)	D=0	DA=-e	D
} : = D<O ‘DA=1og	x	} :		
	DA=DLOG10 (D)	D=0	DA=-e	D
264	DA=DSIN (D)	ID	=250%nm	DA=V272
	DA=DCOS (D)]
]	
265	DA=DATAN2(D,DB)}	D=0,DB=0	DA=0	D,DB
266	DA=DSINH (D)	ID}=2175.366	DA=(SIN X)e] D	
	DA=DCOSH (D)		DA=e	
I				
267	DA=DARSIN (D)		D	>1
I		If X<-1.0,DARSIN(X)=-T	I	
	DA=DARCOS (D)]If X>1.0,DARCOS=0	
]If X<-1.0,DARCOS=*	
% L L 1 i ‘JI				
Notes:				
1. The variable types are as follows:				
Variable Type				
1,J INTEGER#4 [
X,XA,Y REAL*Y				
D, DA, DB REAL#*8				
i Cc,CA COMPLEX*8				
Z,X3,X2 Complex variables to be given the length of the functioned				
argument when they appear. l				
CD COMPLEX*16				
2. The largest number that can be represented in floating point is indicated by the				
symbol e,				
3. The value e=approximately 2.7183				
4. The user-supplied answer is obtained by recomputation of the function using the				
value set by the user routine for the parameters listed.				
L -1

Extended Error Handling Facility 167

Table III-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 3 of 4§)

r T T -7t " - N . |
| | | | Options |
| I | ¢ T 1
	FORTRAN	Invalid	Standard	User-Supplied
Error	Reference	Argument	Corrective Action	Corrective Action
Code	(See Note 1)	Range	(See Notes 2 and 3)	(See Note 4§)
t + + + - + -1				
268	DA=DTAN (D)	1X	2250%nm	Da=1
	DA=DCOTAN (D)			
269	DA=DTAN (D)	D is too close	DA=e	D
		to an odd		
		multiple of z		
	I			
	DA=DCOTAN (D)	D is too close	DA=e	D i
		to a multiple		
		of m [
ll' L 4 1 i %				
For errors 271 through 275, C=X,+iX,				
} T L} T T <	'			
271	Z=CEXP (C)	X4>174.673	Z=*(COS X+ SIN X,)	C
272	Z=CEXP (C)	[Xa	2218%7	z=e¥1+0#i
]				
273	2=CLOG (C)	C=0+0i	=—e+01i	C
		I		
274	Z=CSIN (C)		Xyp	<238%m
	z=ccos (C)		Z=COSH(X;)+0%*i	
275	Z=CSIN (C)	X2>174.673	Z=s(SIN X +iCOS X,)	¢C
			2	
	l	_		
	Z=ccos (C)		Z=e(COS X,-iSIN X;)	¢
			2	
[. [
	Z=CSIN (C)	X,<-174.673	Z=e(SIN X,-iCOS X,)	¢
I		2 I		
	zZ=ccos (C)		Z=e(COS X,;+iSIN X;)	C
			2	I
1 - L L L]				
T 1				
Notes:				
1. The variable types are as follows:				
Variable Type				
l I,J INTEGER#* 4				
X,XA,Y REAL#*Y4				
D, DA, DB REAL+*8				
c,CA COMPLEX#8				
2,X4,4X2 Complex variables to be given the length of the functioned				
argument when they appear.				
i CD COMPLEX#16 i				
2. The largest number that can be represented in floating point is indicated by the				
symbol e,				
3. The value e=approximately 2.7183				
4. The user-supplied answer is obtained by recomputation of the function using the				
value set by the user routine for the parameters listed.				
L - ¥

168

Table III-5. Corrective Action After Mathematical Subroutine Error Occurrence (Part 4 of 4)

r T T - T T TTTTTT T T T h)
| | | Options]
| | | t 3 {
i ! FORTRAN ! Invalid ! Standard | User-Supplied |
| Error | Reference | Argument | Corrective Action | Corrective Action |
| Code | (See Note 1) | Range | (See Notes 2 and 3) | (See Note 4) |
L L L L 1

F - -1
| For errors 281 through 285, CD=X,+iX, i
i

[3 T T T L] "
| 281 | Z=CDEXP (CD) | X4>174,673 | Z=*(COS X,+iSIN X,) | CD |
i i i i | |
282	Z=CDEXP (CD)	1X2]225%%7n	z=eX140%i	CD
283	Z=CDLOG (CD)	CcD=0+0i	Z=-e401i	cD
! | | | | |
1] L L

| 284 | Z=CDSIN (CD) | 1Xy|=250%m | Z= O0+SINH(X,)*i | ¢D |
i j zZ=CDCOS (CD) i i Z= COSH(X,)+0%i { H
284	2Z=CDSIN (CD)	1X4	2250%7	2Z=0+0i	¢CD
} Z=cDCcos (CD)					
285	Z=CDSIN (CD)	X2>174,.673	2Z=¢(SIN X,+iCOS X;)	¢CD	
			2		
[_		
	Z=cDcos (cD)		Z=¢(COS X,-iSIN X,)	¢D	
			2		
			'		
	Z2=CDSIN (CD)	X24=-174.673	Z=8(SIN X,-iCOS X;)	€D	
		I 2			
	Z=CcDpCcos (cCD)		Z=e(COS X,+iSIN X,)	¢D	
i		2			
290	Y=GAMMA (X)	X<2-252 or	Y=o	X	
		X=57.5744			
291	Y=ALGAMA (X)	X<0 or	Y=o	X	
		X>4.,2937#%#1073			
300	DA=DGAMMA (D)	D<£2-252 or	DA=e	D	
		D=57.5774 i			
a			u		
301	DA=DLGAMA (D)	D<O or	DA=e	D	
		D24,2937#%1073			
L 4 1 - i 4					
3 a					
Notes:					
1. The variable types are as follows:					
Variable Type					
1,J INTEGER*4					
X, XA, Y REAL* Y4					
D,DA,DB REAL*8					
Cc,CA COMPLEX* 8					
Z2,X5 X2 Complex variables to be given the length of the functioned					
argument when they appear.					
CcD COMPLEX#16					
2. The largest number that can be represented in floating point is indicated by the					
SymbOl o, I					
3. The value e= approximately 2.7183					
4. The user-supplied answer 1is obtained by recomputation of the function using the					
value set by the user routine for the parameters listed.					
L J

Extended Error Handling Facility 169

Table 1I11-6.

Corrective Action After Program Interrupt Occurrence

| Program Interrupt Messages | Options |
p----- S Sttt B - B bbb 1
	Parameters			
	Passed to			User-Supplied
Error	User Exit	Reason for Interrupt		Corrective
Ccode	(Note 1)	(Note 2)	Standard Corrective Action	Action
b-—--- 1= e bttt i 1				
207	D,I	Exponent overflow	Result register set to the	User may alter
		{Interrupt code 12)	largest possible floating	D. (Note 3)
			point number. The sign of	
			the result register is not	
			altered.]
I		I I		
208	D,I	Exponent underflow	The result register is set	User may alter
		(Interrupt Code 13) jto zero.	D. (Note 3)	

| | | | I |
| 209 | None |Divide check, integer |For floating point divide, |See Note 5. |
] | |divide (interrupt code 9), |where n/0 and n=0, result | |
| | |decimal divide (Interrupt |register is set to 0; where| |
| | |Code 11), floating point |[n#0, result register set to|]
		Code 11), floating point	largest possible floating	
		divide (interrupt code	point number. No standard	
	115). See Note 4,	fixup for other interrupts.		
I			I	
210	None	Specification interrupt	No special corrective	See Note 5.
		(interrupt Code 6) occurs	action other than correct-	
]	for boundary misalignment. [ing boundary misalignments.			
		Operation exception		
		(interrupt code 1) occurs		
		for operation interrupt.		
		Other interrupts occur		
		during boundary alignment		
		adjustment or extended		
		precision floating point		
		simulation, They will be		
		shown with this error code		
		and the PSW portion of the]		
		message will identify the		
		interrupt.		
S R A e e P 4				
Notes:				
} 1. The variable types and meaning are as follows:				
Variable Type Meaning				
D REAL*8 This variable contains the contents of the result				
register after the interrupt.				
I INTEGER*U The variable contains the "exponent" as an integer				
value for the number in D. It may be used to				
determine the amount of the underflow or overflow.				
The value in I is not the true exponent, but what was				
left in the exponent field of a floating point number				
after the interrupt.				
2. A program interrupt asynchronously. Interrupts are described in the appropriate				
principles of operation publication, as listed in the Preface.				
3. The user exit routine may supply an alternate answer for the setting of the result				
register. This is accomplished by placing a value for D in the user-exit routine.				
Although the interrupt may be caused by a long or short floating-point operation,				
the user-exit routine need not be concerned with this. The user-exit routine				
should always set a REAL*8 variable and the FORTRAN library will load a short or				
long data item depending upon the floating-point operation that caused the				
interrupt.				
4. For floating-point divide check, the contents of the result register is shown in				
the message.				
5. The user-exit routine does not have the ability to change result registers after a				
fixed-point divide check. The boundary alignment adjustments are informative				
messages, and there is nothing to alter before execution continues.				
L e J

170

Appendixes 171

The following examples show several methods
of processing load modules.

Submitting a Job Consisting of
One Job Step

Example 1:

Problem Statement: A previously created
data set, SCIENCE.MATH.MATRICES, contains a
set of 80 matrices. Each matrix is an
array containing REAL*Y4 variables., The
size of the matrices varies from 2x2 to
25%25; the average size is 10x10. The
matrices are inverted by a load module
MATINV in the library MATPROGS. Each
inverted matrix is written (assume FORMAT
control) as a single record on the data set
SCIENCE.MATH. INVMATRS. The first variable
in each record denotes the size of the
matrix.

The input/output flow for the example is
shown in Figure A-1. The job control
statements used to define this job are
shown in Figure A-2,.

SCIENCE.
MATINV MATH.
INVMATRS
Printed
Output

Input/Output Flow for
Example 1

Figure A-1.

Explanation: The JOB statement identifies
the programmer as JOHN SMITH and supplies
the account number 537. Control statements
and control statement error messages are
written in the SYSOUT data set.

The JOBLIB DD statement indiceates that
the private library MATPROGS is to be
concatenated with the system library.

APPENDIX A: EXAMPLES OF_ JOB PROCESSING

The EXEC statement indicates that the
load module MATINV is the program to be
executed.

DD statement FTO08F001 identifies the
input data set, SCIENCE.MATH.MATRICES.
(Data set reference number 8 is used to
read the input data set.) Assume that this
data set has been previously created and
cataloged; therefore no informaticn cther
than the data set name and disposition has
to be supplied.

DD statement FT10F001 identifies the
printed output. (Data set reference number
10 is used for printed output.)

DD statement FTO4F001 defines the output
data set. (Data set reference number 4 is
used to write the data set containing the
inverted matrices.) Because the data set
is to be created and cataloged in this
job step, a complete data set specification
is supplied. The DSNAME parameter
indicates that the data set is named
SCIENCE.MATH. INVMATRS. The DISP parameter
indicates that the data set is new and is
to be cataloged. SPACE indicates that
space is to be reserved for 80 records,
characters long (80 matrices of average
size); when space is exhausted, space for 9
more records is allocated. The space is
contiguous; any unused space is released,
and aliocation is to begin and end on
cylinder boundaries.

408

DCB indicates that records are
variable-length (because the size of
matrices vary). The record length is
specified as 2504, the maximum size of a
variable-length record. The maximum size
of a record in this data set is the maximum
number of elements (625) in any matrix
multiplied by the number of bytes (#)
allocated for an element, plus 4 for the
segment control word (SCW). The buffer
length is specified as 2508 (the 4 extra
bytes are for the block control word (BCW)
that contains the length of the block).

SEP indicates that read and write
operations are to take place on different
channels.

Appendix A: Examples of Job Processing 173

-40_ 1

Sample Coding Form

41-5G ! 51-60

61-70 1 71-80

/1 INVERT JOB 5371J0HNSMITH7MSGLEV‘EL 1

11JOBLIB DD DSNAME=MATPROGS3DISP=0LD

[[|
|BLEBEDBBMM& 4bB7LBDIREBLEUNBNHEQ4B&JSQOLLQBE_HWBQLLLL§67890|234567890|23456789
| L | NIRRT

RTINS

|
b 'Li%[AlllxllllllllllillélLlllLlll
IL/LIINVJERIT EXIEPA AP]GMJMAJ—INV ‘ [t l [N E R B! i il L l iy A JE Lo l Lol 11 Lot l 114] L1l
IIAFATgalFlglqll ADID DSNAMEI §CJIXEJNCE MATH MIATRICES,DISP OLD 1 j_l N l‘; L1l li I I | LLLI 1 1
/L/AFxTAll¢|wa|®11,|r ADJD &Y‘SAOJUJ 1A; PR A S SR [I BTN B N AU A A;I Lt l O ; I
//FTQUFO@Y, DD DSNAME-SCIENCE.MATH-INVMATRSS .\ . . (... b.iii...
I4/1 T B ! L LDIS (NEW’ICATLG)’UNIT DACLASS’JVOLUME SER! 1x¢18|9l LI A LLLLLI 1ol
Moo, T [SPACE (‘”.Qaﬂ(sﬂ"?)7RLSELJCJONIIAG"ROUND)7SEPJ;F.T‘¢81F¢.¢.1AM . | 3.
4/.,.,,“.*.1..1016.8 (RECFM=VB,LRECL=250%>BLKSTZE=2508 | (.. .\ (. \\\ (. \i'isss.,
AT ETEVENI AT TS R ST RSN SRR ST BT s b b e b g b b gy
Figure A-2. Job Control Statements for Example 1
;QOW
Data
Example 2: Submitting a Job Consisting of .
Multiple Job Steps ”ngd f;iﬁ;;
Problem Statement: Raw data gathered from Refined
a rocket test firing is to be converted in Dore
a report and graphs describing the success
of the test. The data set RAWDATA contains Job Step 2:

the information gathered from the test
firing.

Job step 1 executes the load module
PROGRD. PROGRD compares the raw data in
RAWDATA against forecasted results
contained in the data set PROJDATA, and
generates the data set &REFDATA containing
refined data to be passed to the second job
step.

Job step 2 executes the load module
ANALYZ. ANALYZ processes §REFDATA against
the data set PARAMS which contains
parameters used in developing values, and
generates the data set &VALUES containing
results to be passed to the third job step.

Job step 3 executes the load module
REPORT. REPORT prints the values in
§VALUES as a series of reports and graphs.

Figure A-3 shows the I/0 flow for this
example. Figure A-4 shows the job control
statements for the job. The load modules
PROGRD, ANALYZ, and REPORT are contained in
the private library FIRING.

174

Parameters

Develop Values

A

Job Step 3:
Generote
Graphs and
Reports

Figure A-3. Input Flow for Example 2

Sample Coding Form

1-10 11-20 21-50 T 51—] I
112[3[4]5]6]7[8 9&123456.89 %1JQJMJHQQQHEQWBentwLmBMbez;pr2brbmwwwmhRBMBMWMSMMHHHMHHN%O

....... ‘_‘l.. L

-

rt\i....liv...iltl.!A|4_LJ....

1/ JOBLIE DD_DSNAME= FIBLJBL&E,(OLDJ’PASS). e e e e
1/ STEP1, EXEC PGM= BAJGRQ ‘i,4i44,,|4,,,§i[1,;‘,,,If,‘kl,,‘,3,<.,."‘.L;;,,,,..
/1 FTAGF@BL, DD_DSNAME= RAWQATAzQLSP T R
/1FTA4FOY DD quAME PROJDATA9DISP= pLD .
//FTiZF@QhﬁQDLDSNAME &REFDATA)DLSR‘(NEWsPASSlgpyLJLIAP&QLSy;,,11i‘,|1;,L,l,l,ll
/1i... . NVOLUME= (7RETAIM9$ER.21¢7), TR
AR l,ll(DEN ZsRECFlepBLKSI%E uﬁq\ll.ﬁ;‘lil‘l,‘[,J,.[,,ll L
//STEP2 EX@C PGM= ANA¢YZ ,lll,l.J,J‘,Ajl,il,li|,L4;TJ,LL,I L
//EIiJFQQlLDD,pSNAME[* STEP1. FﬁlZFﬁQipDIﬁP;QhD_L,‘il‘lLl,“‘I“‘|lllll o

—+

//FTA8FOPL DD _DSNAME=PARAMS 3DISP=OLD, ‘.;l.um TR
//FTzaLpaiLDD DSNAME=EVALU ESaDISPIINEW1 ASS) JUNIT=TAPECLSs

Al lllllllllll

Mooy, DCB= (DEN 2 RECFLFpBL[KﬁIéE 2¢ILI1)AVQLTUM E=SER- ‘2111¢|8| l
//1STEP3 EXlEC PGM=; REPORT

- 4- 34— 4+ 4 4+— 4 4— 4= A
=

RS S le:llJ_LJ_._LK—LJl!tLIALA_LixLl|x||||tl!l111J_LL11 lJlI]LLll
/A' IFITIGI8IFA¢A¢|1LJDID DSIN]AJM * STEP2 F|T291Epp J_’_A_A__PP OLD |_| I W N | I T | Ll i1l 1 I 1t 4 I .
//FJIqutFxglalljl_LDIDx UJNIIA[L |PRJIJN|TER L2 J}_J‘,‘i 11 [S ' (] \J_J___| R B JJA Jat 4 T [. [N B
TR BTN YU BTSN R BRI B S SRR RV .] L N I | I
Figure A-4. Job Control Statements for Example 2
Explanation of Job_Control Statements: In job step. UNIT indicates that the data set

Fiqure A-4, the JOB statement indicates the
programmer‘'s name, JOHN SMITH, and
specifies that control statements and
control statement error messages are to be
written in the SYSOUT data set. Because
the first positional parameter indicating
accounting information is omitted, its
absence is noted by a comma.

is to be written con one of the units
contained in the device class TAPECLS.
VOLUME indicates that the volume whose
serial number is 2107 is to be used to
contain the data set. DCB indicates that
the volume is written in high density and
that records are fixed-length with FORMAT
control and a buffer length of 400,

The JOBLIB DD statement indicates that
the private library FIRING is to be
concatenated with the system library.

The EXEC statement STEP1 indicates that
the load module PROGRD is to be executed.

DD statement FT10F001 and FT11F001
identify the data sets containing raw data
(RAWDATA) and the forecasted results
(PROJDATA) respectively.

DD statement FT12F001 defines the
temporary data set &§&REFDATA (data set
reference number 12 is used to write
§6REFDATA). DISP indicates that the data
set is new and is to be passed to the next

Appendix A:

The EXEC statement STEP2 indicates that
the load module ANALYZ is to be executed.

DD statement FT17F(001 identifies the
data set containing refined data. It
specifies the data set as the one defined
on DD statement FT12F001 appearing in job
step STEP1l. DISP indicates that the data
set is to be deleted after execution of
this job step.

DD statement FT18F001 identifies a
previously created and cataloged data set
PARAMS.

DD statement FT20F001 defines the
temporary data set &VALUES containing the

Examples of Job Processing 175

values to be printed. DISP indicates that
the data set is new and is to be passed to
the next job step. VOLUME and UNIT
indicate that the data set is to be written
on volume 2108 using a device in the device
class TAPECLS. DCB indicates high density
and fixed-length records (written under
FORMAT control) with a buffer length of
204,

The EXEC statement STEP3 indicates that
the load module REPORT is to be executed.

DD statement FTO8F001 identifies the
data set containing the values to be
printed.

DD statement FT06F001 indicates that the
device class PRINTER is to be used to print
the reports (data set reference number 6 is
used to write the data set).

Example 3: Updating a Direct-Access Data
Set

A data set has been created that contains
master records for an index of stars. Each
star is identified by a unique 6-digit star
identification number. Each star is
assigned a record position in the data set
by truncating the last two digits in the
star identification number. Because
synonyms arise, records are chained.

Problem Statement: Figure A-5 shows a
block diagram illustrating the logic for
this problem.

A card data set read from the input
stream is used to update the star master
data set. Each detail record in this data
set contains:

1. The star identification field of the
star master record that the detail
record is to update.

2. Six variables that are to be used to
update the star master record.

The following conventions are observed
in processing this data set:

1. The star master record that contains
the record location counter pointing
to space reserved for chained records
is assigned to record location 1.

2. A zero in the chain variable indicates

that the end of a chain has been
reached.

176

Write Star
Master
Record

Read Star
Master

Record
No. 1

Read Star
Detail
Record

Ident
in Star Detail
=999999

Randomize Star
Number to a
Record Location

Set Record Position
in Read Statement
= Chain Variable

Figure A-5.

Read Star
Master
Record

ldent
in Star Detail =
Ident in Star
Master

Chain
Variable in
Master =

Set Chain
Variable = Record
Location Counter

Write
Master
Record

Set Record Position
in Write Statement
= Record
Location Counter

Increment
Record Location
Counter by 1

1

Build Star

Write Star
Master
Record

Update
Variable in
Star Master

Master Record

Block Diagram for Example 3

3. The first variable in each star master
record is the star identification
field; the second variable in each
star master is the chain variable
pointing to the next record in the
chain.

4, Each record contains six other
variables that contain information
about that star.

When a detail record is read, its
identification field is randomized and the
appropriate star master record is read. If
the correct star master record is found,

the record is to be updated. If a star
master is not found, then a star master
record is to be created for that star.

The last record in the star detail data
set contains star identification number
999999 to indicate the end of the data set.

Explanation: Figure A-5 is similar to the
diagram shown in Figure III-2 except Figure
A-5 includes blocks that describe updating
variables in master records already present
in the data set. (Figure III-2 includes
blocks describing certain operations that
must be performed when a direct access data
set is created.) Also, Figure A-5 is
adapted to Example 3, while Figure III-2 is
more general. Figure A-6 shows the FORTRAN
coding for this program.

The star master record that contains the
record counter is read, placing the record
location counter in LOCREC. Whenever a
detaill record is read, the identificaticn
variable is checked to determine if the end
of the detail data set has been reached.
The star detail records contain the
variables A, B, C, D, E, and F.

The identification number in the detail
record is randomized and the result is
placed in the variable NOREC, which is used
to read a master record. The master record
contains the star identification number
(IDSTRM), a chain record location (ICHAIN),
and six variables (T, U, V, X, ¥, and Z)
which are to be updated by the variables in
the star detail records. IDSTRM and IDSTRD
are compared to see if the correct star
master is found. If it is not found, then
the variables containing the chain record
numbers are followed until the correct star
master is found or a new star master is
created.

Job_Control Statements: The program shown
in Figure A-6 is compiled and link edited,
placing the load module in the data set
STARPGMS and assigning the load module the
name UPDATE. The data set that contains
the star master records was cataloged and
assigned the name STARMSTR when it was
created. Figure A-7 shows the job control
statements needed to execute the module
UPDATE.

Appendix A: Examples of Job Processing 177

‘ot manC ATON

"‘.__T"_’— JUkteAN TATEMEL Pl
DEFINE FILE 7(1200@a13DaEaNEXT) I L
¢ READ RECORD CONTAINING RECORD LOCATION‘COUNTER | T
READ(7'15101) IDSTRMILOCREC b
T READ STAR DATA AND_CHECK FOR UKET STAR DATA RECORD _]
26 READ(ial@Q)IDSTRDyA)B)CyD)EaF) :]
CIF(IDSTRD-999999)26999299 [
C RANDOMIZE IDENTIFICATION FIELD IN STAR DATA AND READ STAR MASTER |
20 NO%CIDﬁ RD/110¢ ;]
27 | IREAD(7'NORECH1 3)IDSTRMaLQﬂA7NsT)UpVaX>Y12 o
C 15 THIS CORRECT STAR MASTER ' ~——T*——-f —]
TF(IDSTRD-IDSTRM) 2122521 , ’ T
C 15 THERE A CHAIN VARIABLE |
21 IF(ICHAIN)Z%Z% 23 ; ; R
© NO-BEGIN CONSTRUCTING NEW MASTER AND c AIN N
C UPDATE CHAIN &4RIABLE IN LAST STAR MASTER EECORD AND WRITE‘LAST RECORD
24 TCHAIN=LOC | o
WRITE(T' NﬁREC)1@3)IDSTR ICHAIN1T3U3V7X,Y’Z *
C SET| RECORD NUMBER TO BEGIN CONSTRUCTION OF INEW STAR MASTER‘ UPDATE
¢ RECIORD LOCATION COUNTER. BUILD NEW STAR MASTER RECORD . . o
NORE|C = LOCREC] |] ,,\.,A [1]
I LOCREC-LOCREC+t | .| _ ,,,,+ 1 Lv |
7 * . ; \ | | . f It [
€ GO [To WRITE STAR M%STE% RECORD l § \
ko Tp 25 | ‘ D
c IF [RECORD IS fOUND’ upa%TE AND_WRIITE SITAR Mwsrea . N]
27 | [F=A/jB , | | | R
. ! 1 i | [0 R
— . : - - “ — 1
25 WRITE(7’NORE611@3)IDSTRMvICHAIN,TaUaV’XsYal | |-
c 60 |TO READ NEXT STJAR DATA REICORD | _ _ | . | e
60 TO 26 ; R
C IF ICHAIN VARIABLE [IN Rekono READ [THE N[EXT S[TAR M%STER;IN THE CHAIN. | 1
23 | NOREC=ICHAIN | | L o 1 L
6o To 27 ; r r
C IF [END OF STAR oArp’WRIHE STIAR MAISTER [CONTAING RECORD| LOCATION |COUNTER
99 | IDSTRM=0 7 |]
WRITE(7'1161)IDSTRM» LOCREC N
STOP 99999 ; | o
101 | FORMAT(16bTY). | ‘ ;
1027 | FORMAT (T656F10.3) | \
103 | [FORMAT (T6)y1416F20.3)) A
"~ |Eno R G o T
: ; | i
— ._L_‘L_J—_(i }

Figure A-6.

FORTRAN Coding for Example 3

Sample Coding Form

41-50

=10 T 1-20 I I 3= [| 51-60 | 61-70 [71-80
IZBMHMHBWMHRBHBMWBBDIRBMbmhmBmlmthBWBEmHRBMHBWBBWHRBMBMleDHRBMbmwmmwhmhhbmhmmw

//STARDAUP, JOB 3239 J.ASTRONOMER' 1MSGLE

VEL=1

eSS e e

L

L

Lol

i

1

Laaa

//JOBLIB DD_DSNAME=STARPGMSDISP=OLD

[NEN I SRR T S

L

|

4

1

ISR IR

// EXEC PGM UPDATE

11(11

L !

1

b b

Lol

R IR

/IFT077001 DD DSNAME STARMSTRY

sDISP oLb

|
\Illllill
I
L

4L
SR
.

TETEE N IR

//FT@lF@Dl DD *

L

L

STAR DETAILS FOLLOW‘

v by

Star Detall Data Set

NSRRI R R S S N RO AR

/%

A R

S

|
END OF STAR DETAILS ' }

I T VT RN S

i

I

n

FUDE,

[SR S

Figure A-7.

178

Job Ccontrol Statements for Example 3

A FORTRAN programmer can use assembler
language subprograms with his FORTRAN main
program. This section describes the
linkage conventions that must be used by
the assembler language subprogram to
communicate with the FORTRAN main program.
To understand this appendix, the reader
should be familiar with the appropriate
assembler language publication and
assembler programmer's guide, as listed in
the Preface.

SUBROUTINE REFERENCES

The FORTRAN programmer can refer to a
subprogram in two ways: by a CALL
statement or a function reference within an
arithmetic expression. For example, the
statements:

CALL MYSUB(X,Y,2)
I=J+K+MYFUNC(L,M, N)

refer to a subroutine subprogram MYSUB and
a function subrpogram MYFUNC, respectively.

For subprogram reference, the compiler
generates:

1. A contiguous argument list; the
addresses of the arguments are placed
in this list to make the arguments
accessible to the subprogram.

2. A save area in which the subprogram
can save information related to the
calling program.

3. A calling sequence to pass control to
the subprogram, using linkage
conventions (Table A-1 jllustrates the
use of registers during linkage).

Argqument List

The argument list contains addresses of
variables, arrays, and subprogram names

Appendix B:

APPENDIX B: ASSEMBLER LANGUAGE SUBPROGRAMS

used as arguments. Each entry in the
argument list is four bytes and is aligned
on a fullword boundary. The last three
bytes of each entry contain the 24-bit
address of an argument. The first byte of
each entry contains zeros, unless it is the
last entry in the argument list. If this
is the last entry, the sign bit in the
entry is set to 1.

The address of the argument list is
placed in general register 1 by the calling
program.

Save Area

The calling program contains a save area in
which the subprogram places information,
such as the entry point for this program,
an address to which the subprogram returns,
general register contents, and addresses of
save areas used by programs other than the
subprogram. The amount of storage reserved
by the calling program is 18 words. Figure
A-8 shows the layout of the save area and
the contents of each word. The address of
the save area is placed in general register
13.

The called subprogram does not have to
save and restore floating-point registers.

Calling Sequence

A calling sequence is generated to transfer
control to the subprogram. The address of
the save area in the calling program is
placed in general register 13. The address
of the argument list is placed in general
register 1, and the entry address is placed
in general register 15. 1If there is no
argument list, then general register 1 will
contain zero. A branch is made to the
address in register 15 and the return
address is saved in general register 14.

Assembler Language Subprograms 179

Table A-1. Linkage Registers

r==——==—7== T T T T T T T T T-—= et g 1
|Register| | |
| Number |Register Name | Function |
b S +-- T e i
0	Result Register	Used for function subprograms only. The result is returned in
		general or floating-point register 0. An extended precision
		result is returned in floating-point registers 0 and 2. A
		complex result is returned in floating-point registers 0 (real
		part) and 2 (imaginary part).
I		
		Note: For subroutine subprograms, the result(s) is returned
		in a variable(s) passed by the programmer.
b + - O e e :		
1	Argument List	Address of the argument list passed to the called
	Register	subprogram.
b 4 4 -—— - -		
2	Result Register	See Function of Register 0.
p-mommm- fommmmmmm oo e R LT R		
13	Save Area	Address of the area reserved by the calling program 1
	Register	in which the contents of certain registers are stored by the
		called program.
pomm oo — - ———- -		
14	Return Register	Address of the location in the calling program to which con-
		trol is returned after execution of the called program.]
p--mmm- +--- -+ -		
15	Entry Point	Address of the entry point in the called subprogram.
	Register	
		Note: Register 15 is also used as a condition code register,
i		a RETURN code register, and a STOP code register. The parti-
		cular values that can be contained in the register are: i
		16 - a terminal error was detected during execution of a sub-
		program (an IHOxxxI message is generated)
		4*i - a RETURN i statement was executed
		n - a STOP n statement was executed
		O - a RETURN or a STOP statement was executed
b T N 1		
Subetet ettt -		
AREA-————— e D . 1 I		
(word 1)	This word is used by a FORTRAN-compiled routine to store its	
	epilogue address and may not be used by the assembler language	
	subprogram for any purpose.	
AREA+H————— e 5 T T —— i		
(word 2)	If the program that calls the assembler language subprogram is	
	itself a subprogram, this word contains the address of the save	
	area of the calling program; otherwise, this word is not used.	
AREA+8——c——e——mem Y — - -]		
(word 3)	The address of the save area of the called subprogram,	
AREA+12-———-o-c——— > —————————————————————————————— - q		
(word u4)	The contents of register 14 (the return address). When the sub-	
	program returns control, the first byte of this location is set	
	to omes.	
AREA+16 >h-—- et e e T P e 4		
(word 5)	The contents of register 15 (the entry address).	
AREA+20-——————=- S e i		
(word 6)	The contents of register 0.	
AREA+24—————e >h— - -		
(word 7)	The contents of register 1,	
oo '		
. ! .		
.	. [I	
AREA+68——---—=—- > b 4		
(word 18)	The contents of register 12.	

L e J

LTI ,'
Figure A-8., Save Area Layout and Word Contents

180

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler language subprograms
are possible: the first type (lowest
level) assembler subprogram does not call
another subprogram; the second type (higher
level) subprogram does call another
subprogram.

Coding a Lowest Level Assembler Lanquage
Subprogram

For the lowest level assembler language
subpregram, the linkage instructions must
include:

1. An assembler instruction that names an
entry point for the subprogram.

2. An instruction(s) to save any general
registers used by the subprogram in
the save area reserved by the calling
program. (The contents of linkage
registers 0 and 1 need not be saved.)

3. An instruction(s) to restore the
"saved" registers before returning
control to the calling program.

4. An instruction that sets the first
byte in the fourth word of the save
area to ones, indicating that control
is returned to the calling program.

5. An instruction that returns control to
the calling program.

Figure A-9 shows the linkage conventions
for an assembler language subprogram that
does not call another subprogram. In

r T

T v
| Name |Oper. |Operand Comments
+4 1

addition to these conventions, the
assembler program must provide a method to
transfer arguments from the calling program
and return the arguments to the calling
program.

Higher Level Assembler Langquage Subprogram

A higher level assembler subprogram must
include the same linkage instructions as
the lowest level subprogram, but because
the higher level subprogram calls another
subprogram, it must simulate a FORTRAN
subprogram reference statement and inciude:

1. A save area and additional
instructions to insert entries into
its save area.

2. A calling sequence and a parameter
list for the subprogram that the
higher level subprogram calls.

3. An assembler instruction that
indicates an external reference to the
subprogram called by the higher level
subprogram.

4. Additional instructions in the return
routine to retrieve entries in the
save area.

Note: If an assembler language main
program calls a FORTRAN subprogram, the
following instructions must be included in
the assembler language program before the
FORTRAN subprogram is called:

L 15,=V(IBCOM#)
BAL 14, 64(15)

I' - T 1
| deckname |START |0

| | BC |15, m+1+4(15)

| |DC | X*m*

| |DC | CLm' name"

| * | | WITH BLANKS.

| | STM |14,R,12(13)

| * | I

| * | | NUMBER FROM 2 THROUGH 12.
| |BALR |B, 0

| |USING |*,B

| | | (user-written source statements)

| I I

| L

| | LM |2,R,28(13) RESTORE REGISTERS

| | MVI 112(13),X'FF*

| |BCR |15,14 RETURN TO CALLING PROGRAM
b F S A

Figure A-9.

Appendix B:

BRANCH AROUND CONSTANTS IN CALLING SEQUENCE
m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM
STARTS ON A HALFWORD BOUNDARY.

THE CONTENTS OF REGISTERS 14,
STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY

ESTABLISH BASE REGISTER (2<B<12)

INDICATE CONTROL RETURNED TO CALLING PROGRAM

THE NAME CAN BE PADDED

15, AND 0 THROUGH R ARE

e e o — — — —— i — e S et e — — —

Linkage Conventions for Lowest Level Subprogram

Assembler Language Subprograms 181

These instructions cause initialization of of the FORTRAN subprogram. If control is

return coding, interruption exceptions and to return to the assembler language
opening of the error message data set., If subprogram, then register 13 contains the
this is not done and the FORTRAN subprogram address of its save area. If control is to
terminates either with a STOP statement or return to the operating system, then
because of an execution-time error, the register 13 contains the address of its
data sets opened by FORTRAN are not closed save area.

and the result of the termination cannot be

predicted. Register 13 must contain the Figure A-10 shows the linkage

address of the save area that contains the conventions for an assembler subprogram
registers to be restored upon termination that calls another assembler subprogram.

r T -T———- T —— T - e m e 1
| Name |Oper. |Operand Comments |
s i T i
|deckname |START |0 |
| |EXTRN |name2 NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGKAM |
i | BC |15, m+1+4(15) |
| |bC | X'm' |
| |DC |CLm' namel" |
| * | | SAVE ROUTINE I
	STM	14,R,12(13) THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE
*		STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS
*	ANY NUMBER FROM 2 THROUGH 12.	
	BALR	B,0 ESTABLISH BASE REGISTER
	USING	*,B
	LR 19,13 LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE	
*		CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT 0,
*		11, 13, AND 15.
	LA	13, AREA LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO
*		REGISTER 13.
	ST [13,8¢0,Q) STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE	
*		CALLING PROGRAM'S SAVE AREA
	ST	1Q, 4¢(0,13) STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE
*		AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO-
*		GRAM'S SAVE AREA
	BC 115, probl	
AREA	DS	18F RESERVES 18 WORDS FOR THE SAVE AREA
*		END OF SAVE ROUTINE
probl		(user-written program statements)
*		CALLING SEQUENCE
	LA	1,ARGLIST LOAD ADDRESS OF ARGUMENT LIST
	L {15, ADCON	
	BALR	14,15
		(more user-written program statements)
*		RETURN ROUTINE
	L	13, AREA+U LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO
*		REGISTER 13
	LM	12,R,28(13)
	L 114,12(13) LOADS THE RETURN ADDRESS INTO REGISTER 14.	
	MVI 112(13), X' FF*	
	BCR 115,14 RETURN TO CALLING PROGRAM	
*		END OF RETURN ROUTINE
ADCON	DC	A(name2)
*		ARGUMENT LIST I
ARGLIST	DC	AL4 (arg,) ADDRESS OF FIRST ARGUMENT
I	.	
L 1		
{DC [x*80°* INDICATE LAST ARGUMENT IN ARGUMENT LIST.		
	DC	AL3 (argn) ADDRESS OF LAST ARGUMENT
. S A e J
Figure A-10. Linkage Conventions for Higher Level Subprogram

182

In-Line Arqument List

The assembler programmer may establish an
in-line argument list instezad of cut-of-
line 1list. 1In this case, he may substitute
the calling sequence and argument list
shown in Figure A-11 for that shown in

Figure A-10.

r e h]
| ADCON DC A(probil) |
| . I
! . [
| . |
i LA i4, RETURN |
| L 15, ADCON |
| CNOP 2, 4 |
| BALR 1,15 |
| DC AL4arg,) |
| DC ALU4(argy) |
[. |
I . |
I . |
i DC Xt g0t |
| DC AL3(argp) |
| RETURN BC 0,X'isn" |
L e J

Figure A-11. In-Line Argument List

Sharing Data in COMMON

Both named and blank COMMON in a FORTRAN 1V
program can be referred to by an assembler
language subprogram. To refer to named
COMMON, the V-type address constant

name DC V(name of COMMON)
is used.

If a FORTRAN program has a blank COMMON
area and blank COMMON is also defined (by
the COM instruction) in an assembler
language subprogram, only one blank COMMON
area is generated for the output load
module. Data in this blank COMMON is
accessible to both programs.

To refer to blank COMMON, the following
linkage may be specified:

COM

name DS OF

______________ > cname CSECT
L 11 ,=A(name) .
USING name, 11 .

Appendix B:

RETRIEVING ARGUMENTS FROM THE ARGUMENT LIST

The argument list contains addresses for
the arguments passed to a subprogram. The
order of these addresses is the same as the
order specified for the arguments in the
calling statement in the main program. The
address for the argument list is placed in
register 1. For example, when the
statement:

CALL MYSUB(A,B,C)

is compiled, the following argument list is

generated.
Fm—————== B Sttt ettt et e i 1
] 00000000| address of A |
—— 4 ——

1
| 00000000 address of B |
.. 4
110000000] address of C |
[1 - -

For purposes of discussion, A is a REAL*8
variable, B is a subprogram name, and C is
an array.

The address of a variable in the calling
program is placed in the argument list.
The following instructions in an assembler
language subprogram can be used to move the
REAL*8 variable A to location VAR in the
subprogram.

L 0,0(1)
MVC VAR(8),0(Q)

where

Q is any general register except 0.

For a subprogram reference, an address
of a storage location is placed in the
argument list. The address at this storage
location is the entry point to the
subprogram. The following instructions can
be used to enter subprogram B from the
subprogram to which B is passed as an
argument.

L Q,4(1)

L 15,0(Q)

BALR 14,15
where:

Q is any general register except 0.

For an array, the address of the first
variable in the array is placed in the
argument list. An array [(for example, a
three-dimensional array C(3,2,2)] appears
in this format in main storage.

Assembler Language Subprograms 183

c(1,1,) c(2,1,1) c(3,1,1) ¢c(1,2,1) -—

r
Lt-c(3,1,2) c(1,2,2) C(2,2,2) C(3,2,2)

Table A-2 shows the general subscript

format for arrays of 1, 2, and 3
dimensions.

Table A-2. Dimension and Subscript Format
| Spiabekebaiee bt B Snieintededed ettt e 1
|Array A | Subscript Format |
b 4 - 1
A(D1)	a(s1)
A(D1,D2)	A(s1, S2)
A(D1,D2,D3)	A(S1, S2,S3)
e T 1	
D1, D2, and D3 are integer constants used	
in the DIMENSION statement. S1, S2, and	

| variables.

I
|
1S3 are subscripts used with subscripted |
|
L 3

The address of the first variable in the
array is placed in the argument list. To
retrieve any other variables in the array,
the displacement of the variable, that is,
the distance of a variable from the first
variable in the array, must be calculated.
The formulas for computing the displacement
(DISPLC) of a variable for one, two, and
three dimensional arrays are:

DISPLC=(S1-1)*L
DISPLC=(S1-1) *L+ (S2-1) *D1*L
DISPLC=(S1-1) *L+ (S2-1) *D1*L+ (S3-1)*D2*D1*L

where:
L is the length of each variable in
this array.

For example, the variable C(2,1,2) in
the main program is to be moved to a
location ARVAR in the subprogram. Using
the formula for displacement of integer
variables in a three-dimensional array, the
displacement (DISP) is calcualted to be 28.
The following instructions can be used to
move the variable,

Q,8(1)

R,DISP

S, 0(Q, R)
T S,ARVAR

Qe

where:
Q0 and R are any dgeneral registers
except 0.
S is any general register. Q and R
cannot be general register 0.

184

Example: An assembler language subprogram
is to be named ADDARR, and a real variable,
an array, and an integer variable are to be
passed as arguments to the subprogram. The
statement:

CALL ADDARR (X,Y,J)
is used to call the subprogram. Figure

A-12 shows the linkage used in the
assembler subprogram.

RETURN i in an Assembler Language
Subprogram

When a statement number is an argument in a
CALL to an assembler language subprogram,
the subprogram cannot access the statement
number argument.

To accomplish the same thing as the
FORTRAN statement RETURN i (used in FORTRAN
subprograms to return to a point other than
that immediately following the CALL), the
assembler subprogram must place 4*i in
register 15 before returning to the calling
program.

For example, when the statement:
CALL SUB (A, B,§&10,820)

is used to call an assembler language
subprogram, the following instructions
would cause the subprogram to return to the
proper point in the calling program:

LA 15,4 (to return to 10)

BCR 15,14

LA 15,8 (to return to 20)

BCR 15,14

OBJECT-TIME REPRESENTATION OF FORTRAN
VARIABLES

The programmer who uses FORTRAN in
connection with assembler language may need
to know how the various FORTRAN data types
appear in the computer. The following
examples illustrate the object-time
representation of FORTRAN variables as they
appear in System/360 and System/370.

- -

T
| Name |Operation|Operand

|

-------- o e e
| ADDARR |START |0 |
iB {EQU i8 i
	BC [15,12(15)	
	DC	X' 7
	DC	CL7* ADDARR®
	STM [14,12,12(13)	
!	BALR	B, 0
	USING	*,B I
	L 12,8(1) MOVE 3RD ARGUMENT TO LOCATION CALLED	
	MVC	INDEX(4),0(2) INDEX IN ASSEMBLER LANGUAGE SUBPROGRAM.
	L [3,0(D) MOVE 1ST ARGUMENT TO LOCATION CALLED VAR	
	MVC	VAR (U4) , 0(3) IN ASSEMBLER LANGUAGE SUBPROGRAM.,
i in 4,4(1) LOAD ADDRESS OF ARRAY INTO REGISTER 4.]		
		(user-written statements)
	[I	
I	I	
	LM 12, 12 28(13)	
	MVI 112(13), X*FF*	
	BCR	15, 14
	DS	OF
INDEX	DS	1F
VAR	DS	1F
L i i RS 1

Figure A-12. Assembler Subprogram Example

INTEGER Type

INTEGER values are treated as fixed-point operands by the compiler, and are governed by
the principles of System/360 and System/370 fixed-point arithmetic. INTEGER values are
converted into either fullword (32-bit) or halfword (16-bit) signed integers.

Example: INTEGER*2 ITEM/76/,VALUE
INTEGER*Y4 F,F64/100/
F = 15
VALUE =-2

The values of the variables ITEM, VALUE, F, F64 appear

D 2 Bytes—--———-— > Lemmmm 2 Bytes ------ >
FyY——"—=-=--7 - =—-=---- 1 -1
ITEM |O|0000000|01001100| VALUEIlI1111111[11111110|
S I S L—1_ Lo—_
s 1 15 s 1 15
Lemmmm e 4 Bytes--—e—e——mmeee o >
——
F |0|0000000|00000000|00000000|00001111|
| S I S S N,
S 1 31
G e ———— 4 Bytes ——————————————— >
58 SO IS Bttt e 1
Fou |0|0000000|00000000|00000000|01100100|
| W S |
S 1 31

where S in bit position 0 represents the sign bit. All negative numbers are represented
in two's complement notation with a one in the sign-bit position. (For a more complete
explanation of fixed-point arithmetic, refer to the appropriate principles of operation
publication, as listed in the Preface.)

Appendix B: Assembler Language Subprograms 185

REAL Type

All REAL variables are converted into short (32 bit), long (64 bit), or extended (128
bit) floating-point numbers by the compiler. The length cf the numbers is determined by
FORTRAN IV specification conventions.

Example: REAL*4 HOLD,R/100./
REAL*8 A,RATE/-8./
REAL*16 X
HOLD = -4.
A = 8.0D0
X = 2.0Q0

N

The values of the variables appear in storage as follows:

Lemmmrmm e 4 ByteS—-—-emecmemeee >
s C F
e O
HOLD|1|1000001|01000000|00000000|00000000|
L—1_ — A
01 7 8 31
Lo 4 Bytes—w———emm >
s cC F
r~T- -=—1
R |0|1000010|01100100|00000000|00000000|
L—di_ e ___
01 7 8 31
e 8 Bytes—————————— >
S C F
T TS — - —————p———— ———=-1
A |O|1000001|10000000|00000000[00000000|0000}5:0000|
b4 __ ——-1
01 7 8 31 63
et 8 Bytes - -=>
S C F
RATE|1|1000001|10000000|00000000]00000000]0000%%:0000|
I IO [SEUNEPPUI GPIGIUNPY DRSPS DU -__-J
01 78
<——= ————— e — 16 Bytes—-— ——
S C F S C
-T - -=T-T 1
X {0} 1000001| 00100000| 00000000} 000; {OO 101 0110011]0000} <g:OOOO]
IS WY U RPN R, JERT TS T S -
01 78 63 64 65 71 72 127
Legend:

S (sign bit) occupies bit position 0.

C (characteristic), or exponent, occupies bit positions 1 through 7.

F (fraction) occupies either bit positions 8 through 31 for a short, floating-point
number; bit positions 8 through 63 for a long, floating-point number; or bit
positions 8 through 63, 72 through 127 for an extended-precision floating-point
number (bit positions 64-71 represent a sign + characteristic having a value 14
less than the data represented in bits 0 through 7).

186

COMPLEX Type

A COMPLEX variable has two parts (real and imaginary) and is treated internally as a
of REAL numbers. The COMPLEX parts are converted into two short, long, or extended
floating-point numbers.

Example: COMPLEX D/(2.1,4.7)/,E%16,2*32
E = (55,5D0-55.5D0)
7=(2.0Q0, 4. 000)

The values of the variables D, E, and Z appear in storage as follows:

r-r T T T -1
D |011000001}00100001110011001|10011001| 2.1

B o oo L fomemoeee 1
|0|1000001|01001011|00110011|00110011| 4.7
bede

01 7 8 31
e 4 Bytes ->
L e 8 Bytes—————cemm >
s C F
r~T -T T T T |

E |0}1000010{00110111]10000000}00000000|0000 0000| 55.5D0
b=+- + o e T $-——-% -4
|1|1000010|00110111|10000000]0000000010000 0000] -55.5D0
Lo 3

01 7 8 31 63
< 8 Bytes _—
o e 16 Bytes-—--——ccccmmee e —— >
S C F S C F

[P —=—————qem——m———pe——— C————=f———————p———— _———

Z |0|1000001]00100000|000 0000|0|0110011|0000 0000] 2.000
podemoeee $=mmmmme s S B e o B B
|0|1000001|01000000|000 0000]0]0110011]0000 0000| u4.00Q0
t-L_ PN o SUNVNVEVI W WP R ———

01 7 8 63 eu 65 71 72 127
N e e L L e TR P 16 Bytes-——=-———cccmmm >

Appendix B: Assembler Language Subprograms

pair

187

LOGICAL Type

FORTRAN IV LOGICAL variables may specify only 2 values:
.TRUE. or .FALSE.

These logical values are assigned numerical values of '1' and '0', for .TRUE. and
.FALSE., respectively.

Example: LOGICAL*1 L1,L2/.TRUE./
LOGICAL*4 L3, L4/, FALSE./
L1 = .FALSE.
L3 = .TRUE.

The variables L1, L2, L3, and L4 are assigned the following values (using hexadecimal
notation):

<--1 Byte-->

|
L1 | 00 I

[m————————= 1

L2 | 01]
b J
D G 4 Bytes————— >
[Antubaiut Suboiubh Subntatel fbabede |

L3 | 00 | 00 | 00 | 01 |
b4 _1____1J
e 4 Bytes---—--- >
rm———7———- L At Sutatae

T T]
L4 | 00 | 00 | 00 | 00 |

The DUMP or PDUMP subroutine can also be used as an additional tool for understanding
the object-time representation of FORTRAN data. Refer to the "Use of DUMP and PDUMP"
section in the "Programming Considerations" chapter of this publication or consult the
FORTRAN IV Library Subprograms publication.

188

The UNIT parameter of the DD statement can
identify an input or output unit by its
actual address, its type number, or its
group name. Type numbers, automatically
established at system generation,
correspond to units entered into system
configurations. Type numbers and
corresponding units are listed here for the
reader's convenience,

Tape_Units

‘Description

2400 series 9-Track Magnetic
Tape Drive that can be
allocated to a data set
written or to be written
in 800 bpi density

Iype
2400

2400-1 2400 series Magnetic Tape
Drive with 7-Track
Compatibility and without
Data Conversion

2400-2 2400 series Magnetic Tape
Drive with 7-Track
Compatibility and Data
conversion

2400-3 2400 series 9-Track Magnetic
Tape Drive that can be
allocated to a data set
written or to be written
in 1600 bpi density

2400-4 2400 series 9-Track Magnetic
Tape Drive having an 800
and 1600 bpi capability

Direct Access Units

Type Description
2301 2301 Drum Storage Unit
2302 2302 Disk Storage Drive

APPENDIX C: UNIT TYPES

2303 2303 Drum Storage Unit#*#*

2311 Any 2311 Disk Storage
Drive*x*

2314 2314 Storage Facility

2321 Any bin mounted on a 2321
data cell drive*x*

3330 3330 Disk Storage Facility*

2305 2305 Drum Storage Unit#

Unit Record Equipment

Type Description

1052 1052 Printer-Keyboard

1403 1403 Printer or 1404 Printer
(continuous form only)

1442 1442 card Read Punch

1443 any 1443 Printer

2501 2501 Card Reader

2520 2520 Card Read Punch

2540 2540 Card Read Punch (read
feed)

2540-2 2540 Card Read Punch (punch
feed)

2671 2671 Paper Tape Reader

3211 3211 Printer+*

Graphic Units

Type Description

1053 1053 Model 4 Printer

2250-1 2250 Display Unit, Model 1

2250-3 2250 Display Unit, Model 3

2260-1 2260 Model 1 Display Station
(Local Attachment)

2260-2 2260 Model 2 Display Station
(Local Attachment)

2280 2280 Film Recorder

2282 2282 Film Recorder-Scanner

*#Used with System/370 models only.
**Used with System/360 Models only.

Appendix C: Unit Types 189

APPENDIX D: AMERICAN NATIONAL STANDARD CARRIAGE CONTROL_CHARACTERS

The following are the carriage control characters supported by the FORTRAN IV language.

Code Interpretation

blank Space one line before printing

0 Space two lines before printing
+ Suppress space before printing
1 Skip to first line of a new page

190

(Where more than one page reference is given,

to define temporary data sets 21,44
in EXTERNAL statement 126

in symbolic parameters 88
use in library functions 126

as a DD statement parameter
description of 42
example of 42
function of 39
restriction with cataloged
procedures 81
to define a data set in a job step
to describe compiler map variables
to identify linkage editor control
sections 108,109
/*
as job control statement identifiers
//
as job control statement identifiers
//*
as job control statement identifiers
' (apostrophe) in PARM parameter 34
*PROCESS statement 55

to describe compiler map variables
to identify carriage control
characters 50
as an output class 55,28
in program interrupt message
ABEND dump 115
abnormal termination
dump 115
message 101
accounting information
in EXEC statement 35
parameter in JOB statement
description of 25
ACCT parameter
description of 35
function of 31
AD (see AUTODBL compiler option)
addressing exception code 114,116
ADDRSPC parameter
in EXEC statement 36-37,32
in JOB statement 29-30,27
ALC compiler option 55,138
alignment routine 113
ALIGN2 subparameter 62
American National Standards Institute
(ANS) 55
ANSF, as a compiler option 55
API (see Automatic Precision Increase)
apostrophe, in PARM parameter 34

113,116

i

the major reference appears first.)

argument list 179
in-line 183
retrieving arguments G

Arithmetic IF statement 12

array
dumping an 131
initializing an 123-124
notation in input/output statement
overflow of element in 123
programming considerations 121
retrieving element from 183

ASCII data sets
contrasted with EBCDIC data sets 68
description of 68
example in specifying 69
identifying an 51
job control language considerations

BUFOFF subparameter 51-52

DCB parameter 76-79

DEN parameter 76

LABEL parameter 76

OPTCD subparameter 52
restrictions in use of 68,77

assembler language

subprogram, example of 185
use of 179-184

Assigned GO TO statement 128

associated variable 16

asynchronous input/output
affected by automatic precision

increase 140
extended error handling
considerations 161
programming considerations

AUTODBL compiler option
description of 135-137,54
examples of 138

automatic call library 60

Automatic Function Selection 126

Automatic Precision Increase
description of 134-135
programming considerations 138-140
use of AUTODBL option 54,135-137

£
Lo

[
[ee]

=8

121-122

B
to specify blocked records
description of 50,73
example in 75
as an output class 55
BACKSPACE statement
asynchronous input/output
considerations 121
programming considerations 122
restrictions with 122
BAL assembler instruction

use in tracing errors 113,114

Index

NDEX

121

191

base registers 128
batch compilation
example of placement of job control
statements 13
BCD, as a compiler option 54
BFALN subparameter 140
bits per inch 51
BLKSIZE subparameter
ASCII data set considerations 76-79
asynchronous input/output
considerations 121
compared to LRECL subparameter 50
default values of
for compiler data sets 57
for load module data sets 72
description of 50
direct-access data set
considerations 80
EBCDIC data set considerations 73-76
example of 50
maximum values of 73
programming considerations 130
use of
in fixed-length records 73
in undefined-length records 74
in variable-length records 73
block control word 50,73
BLOCK DATA subprogram
use in overlay programs 145
block length
maximum value of 50
specifying 50
block prefix 76,77
boundary alignment considerations 133
BOUNDRY option 133,113
bpi (bits per inch) 51
braces, use in job control language 24
brackets, use in job control language 24
branch considerations 128
buffer length
specifying 51
buffers
programming considerations 130
specifying number of 51
BUFNO subparameter
asynchronous input/output
considerations 121
default values of
for compiler data sets 57
for load module data sets 72
description of 51
programming considerations 130
BUFOFF subparameter
description of 51
examples of 78-79
built-in functions 136
BXLE assembler instruction 128

C

to describe compiler map variables 105

to specify chained scheduling 52
CALL loader option 6U4
CALL statement, restrictions 133
calling sequence 179
card deck input, specifying 19

192

card punch
BLKSIZE values for 73
card reader
BLKSIZE values for 73
carriage control characters 50
summary of 190
cataloged data set
contrasted with cataloged procedure 15
description of 15
cataloged procedure library 13,81
cataloged procedures
contrasted to executable program 13
description of 81-93,13
examples in use of 19-20
location of 15
modifying
example in 93
DD statement 91-92
EXEC statement 91
PROC statement 90
with symbolic parameters 88-89
naming through PROC parameter 33
overriding parameters in 91
restrictions 81
CATLG, as a DISP subparameter 45
chained scheduling
restrictions 121
specifying 52
chaining
in direct access programming 124-125
channel, input/output u48-49
CLASS parameter
description of 28
function of 28
comments field, in job control statements
description of 23
function of 22
COMMON area
using assembler language
instructions 183
in overlay programs 144-145
COMMON block
storage map of 106,107
COMMON statement
automatic precision increase
considerations 138-139
with EQUIVALENCE statement 122
with OPTIMIZE option 128
programming considerations 122-123
compilation
batch 55,12
cataloged procedures for
description of 89
FORTXC 82
FORTXCG 87
FORTXCL 83
FORTXCLG 85
compile job step
cataloged procedures describing 89
example of job control statements 13
input to, description of 53-57
output from, description of 99-107
compiler
cataloged procedures 89
map
affected by automatic precision
increase 140
description of 105-106

example of 104
specifying with MAP option 54

messages 101
name of 53
names

s 49
< ric 1 2
gencric i35

handling of 127
optimization techniques
output 16
program

as a language translator 12

as a processing program 53
restrictions 132-133
statistics 100
storage requirements 131-132

use of SIZE option 54

compiler data sets
DCB default values for 57
description of 55-57
summary of 14,57
compiler options
changing during a batch compilation 55
description of 53-56
example of output from
format of 53
summary of 56
COMPLEX items
padding 137
promoting 134-135
storage representation of 187
COND parameter
cataloged procedure use of 89
in EXEC statement
contrasted with JOB statement
parameter 35

description of 35
in JOB statement

description of 27-28

function of 27-28

condition code
compared to return code 28
specifying to bypass job step
processing 35
specifying tc termin
processing 28
constants, promotion of 134
CONTIG, as a SPACE subparameter 47
continuation of job control statements 23
control program, description of 11
control section 108
in overlay programs 146
control statements, linkage editor
ENTRY statement 148
IDENTIFY statement 62
INCLUDE statement 61,147
INSERT statement 146-147
LIBRARY statement 61
ORDER statement 62
OVERLARY statement 146
PAGE statement 62
control word
segment 50
block 50
COPIES parameter
description of 45
function of 40
cross reference listing
compiler

127-129

100,102~-104

ate job

description of 101
example of 102
specifying 54

linkage editor
description of 108
example of 109
in overlay programs
specifying 58

148

CcYL,
as a SPACE subparameter 47

D
to describe compiler map variables
to specify variable-length
records 50,77
DAT feature 11
data

alignment 55
conversion of
exception code
padding 134
promotion 134-135
Data Initialization Statement
programming considerations 1
data management routines
description of 12
DATA parameter
description of 42
function of 39
restrictions 81

134-140, 54
115,116

data set

ASCII
DCB considerations 76-79
DCB subparameters 49-51
description of 68
example of 69

cataloged 15

channel assignment for 48-49

concatenating a 42

creating a 21,69

DCB
considerations 71-80
default values 57,72

defined 14

direct-access
DCB considerations 80
DCB DSORG subparameter 52
description of 71,15
examples of
creating and retrieving
updating 176-178
space allocation for 47
disposition of 4u4-46
EBCDIC
DCB considerations
description of 68
examples of 69
identifying a 43
input/output allocation for
job step use of
compiler 55-57,14
linkage editor 59-61,14
load module 67-72,14
loader 65-66,15
label 47-48
location of

73-76

42-43

23-124

72

46-47

Index

105

193

naming a 42,43
partitioned
DCB considerations for 73-76
description of 70-71,15
examples of
creating 70
deleting a member of 72
retrieving 70
permanent 21
pre-allocated 130
record characteristics of Uu48-52
retrieving a 21
sequential
DCB considerations for
ASCII 76-79
EBCDIC 73-76
description of 68,15
examples of 69
space allocation for 47
system 14-15
temporary 21
unit record 69
user 15
data-set name
as a DCB subparameter 49
data set reference number
defined 14
restriction 133
use of 41,67
DBL, as an AUTODBL value 135
DBLPAD 135,139
DBLPADY4 135
DBLPAD8 135
DBL4 135
DBL8 135
DCB parameter U49-52
asynchronous input/output
considerations 121
data set definition considerations
description of 77-80
summary of 71-72
default values
for compiler data sets 57
for load module data sets 72
description of 49-52
examples of 52
function of 41
programming considerations 130
use with * DD parameter 42
DD statement
description of 37-52,12
examples of 38,173
format of 37
function of 39-41,22
modifying in cataloged procedures
naming a 42
summary of 37
uses of 41-42
ddname
description of 42
function of 39
qualified 19
DDNAME parameter
description of 43
function of 39
deck, object module
description of 106-107
specifying 53

194

DECK compiler option 53

dedicated workfile (see pre-allocated data

set)
DEFINE FILE statement
direct-access data set relationship
overlay program use 142
programming considerations 125
DELETE
as DISP subparameter 45,21
contrasted with KEEP subparameter 21
delimiter statement
cataloged procedure
considerations 81,19
description of 12,22
DEN subparameter of DCB parameter 51
default values for load module data

sets 72
detail record 124
device

class 14,46
type, summary of 189
diagnostic messages
description of 101
example of 100
specifying level of to be printed 55
dictionary
external symbol 106
relocation 106
direct-access data set
creating a 72,125-126
DCB considerations 80,52
default values for 72
description of 71,15
retrieving a 72
updating a 176-178
using with non-FORTRAN processors 80
direct access device
BLKSIZE values for 73
space allocation for 47
summary of types 189
direct-access input/output
considerations 124-126
affected by automatic precision
increase 140
DISP parameter
description of #45-46
example of 46,21
function of 40
programming considerations 130
disposition message 108,109
divide by zero
exception code generated 115
DLM parameter
description of 42
91-92 function of 39
DO, implied 121,132
DO loop 132
dominance relationships 105
DPRTY parameter
description of 35-36
function of 32
DSNAME parameter
description of 43
function of 40
DSORG subparameter
description of 52
direct-access data set consideration

71

80

DUMMY parameter
description of 43
function of 39
dump
requesting a 115-116
specifying DD statements 42
using DUMP and PDUMP subprograms 131
DUMP compiler option 55
DUMP library subprogram 139
DVCHK subprogram 131

E
to describe compiler map variables 105
EBCDIC
compiler option 54
data set
DCB considerations
description of 68
EDIT (see FORMAT compiler option)
edited source listing
(see also structured source listing)
description of 105
example of 104
element, array 123
ellipsis, use in job control language 24
END card in object module 107
END= option in READ statement 70-71
ENDFILE statement
asynchronous input/output
considerations 121
ENTRY linkage editor control statement
description of 148
example of 149
environment, operating (see
Multiprogramming with a Fixed Number of
Tasks; Multiprogramming with a Variable
Number of Tasks)
EP loader option 65
EQUIVALENCE statement
affected by automatic precision
increase 138-139
COMMON statement considerations 122
DATA statement considerations 123
padding items 137,138
programming considerations
storage map for 106,107
ERR parameter in READ statement 129
ERRMON
description of 160-161,154
example of 162
error code diagnostic message
description of 111
example of 112
error correction
extended error handling facility
considerations 156
summary of
for mathematical subroutines
for program interruptions 170
user-supplied 160-161
error message, description of 101
error monitor 160-161,154
ERRSAV subroutine 156
ERRSET subroutine
description of 158-160
examples of 159-160,162

73-76

125-126

166-169

ERRSTR subroutine 156
ESD card 106-107
exception codes 114-115
exceptions, correction for
exponent overflow 170
exponent underflow 170
floating-point-divide 170
operation 170
specification 170
exclusive references, in overlay
programs 144
EXEC statement 30-37
automatic precision increase
options 135-138
calling cataloged procedures 13
description of 30-37,12
examples of 32
format of 30
functions of 31-33,22
modifying in cataloged procedures 91
restriction in use of 81
summary of 30
execute job step (see load module execution
job step)
exponent-overflow exception code 115,116
exponent-underflow exception code 115,116
expression evalvation 129
extended error handling facility
description of 154,156
message IHO210 with 116
OPTIMIZE option considerations 128
option table 154-156
READ statement considerations 129
sample program using 162
subprograms in use of 156,158-160
external function
in compiler map 105
external references
defined 59
in compiler map 105
EXTERNAL statement
programming considerations 126
external symbol dictionary 106

F
to describe compiler map variables 105
to specify fixed-length records
description of 50,73
example of 75
FIND statement 125
fixed-length records
BLKSIZE value for 73
DCB considerations
for ASCII data sets 76,78
for direct-access data sets 80
for EBCDIC data sets 73,75
description of 73,50
examples of 75
fixed-point-divide exception code
fixed-point overflow 121
FLAG compiler option 55
floating-point-divide
error, correction for 170
exception code 115,116
FMT (see FORMAT compiler option)

115,116

Index 195

FORMAT compiler option
example of output 104
relationship to OPTIMIZE option 54
FORMAT statement
restrictions 132
formatted records
ASCII data sets 76
DCB considerations for
description of 73-74
examples of 75-77
direct-access data sets 80
EBCDIC data sets 73-74
FORT, as a name in cataloged
procedures 85,89
FORT.SYSIN 19
FORTLIB, as subroutine library (see
SYS1. FORTLIB)
FORTLIB macro instruction
FORTRAN library
programming considerations
subprograms
affected by automatic precision
increase 139
location 16
FORTXC
format of 82
placement of job control statements
FORTXCG
format of 87
placement of job control statements
FORTXCL
format of 83
placement of job control statements
FORTXCLG
format of 85
placement of job control statements
FORTXG
format of 86
placement of job control statements
FORTXL
format of 88
placement of job control statements
FORTXLG
format of 84
placement of job control statements
FTO5F001 DD statement
DCB default values for 72
description of 67,15
SYSIN DD statement 67
FT06F001 DD statement
DCB default values for 72
description of 67,15
FTO7F001 DD statement
DCB default values for 72
description of 67,15
functions, promotion of
built-in 136
library 136,134

154,160

130-131

generic names 133
GENERIC statement
programming considerations 126
GO, as a name in cataloged
procedures 85,90
GO.SYSIN 19

196

19

20

19

19

20

20

20

GOSTMT compiler options
description of 54
relationship to traceback map 111
use in tracing errors 113
graphic units
summary of types 189

(H Extended) compiler 12
location of 16
hierarchy support 29

IBCOM 111
ID (see GOSTMT compiler option)
IDENTIFY statement 62
IEHPROGM 71,72
IEWL 58
IEWLDRGO 63
IF statement
Arithmetic 121
Logical 127
IFE, to identify the compiler 101
IFEAAB 53
IHO210I error message
description of 113-115
format of 116
implied DOs 121
restrictions 132
imprecise interruption 113
IN, as a LABEL subparameter 48
INCLUDE linkage editor control statement
description of 61
in overlay program 147
example of 61
inclusive references, in overlay
programs 143
INCRES, as an ASCII option 68
INCTRAN, as an ASCII option 68
indicative dump 115
induction variables 128
information message 101
informative messages
description of 99
example of 100
input, card deck 19
input job stream 11
input/output
affected by automatic precision
increase 140
asynchronous programming
considerations 121-122
direct access considerations
list-directed 127
operations 48
unformatted 127
input/output statements
array notation in 121
relationship to DD statements 14-15
INSERT linkage editor control statement
description of 146-147
example of 149
INTEGER items
padding 137
storage representation of 185

124-125

internal sequence number
example of 100
specifying 54
use in traceback map 111,113
interruption code
(see also exception code)
imprecise 113
precise 113
ISN (see internal sequence number)

job
defined 12
naming a 25
priority 28
processing, examples in 173-178
relationship to JOB statement 12
termination 27-28
time limit assignment 28-29
job control language
description of 12
processing, examples of 13
programming considerations 129-130
job control statements
DD statement 37-52
delimiter statement 12,22
examples of 173-178,19-20
EXEC statement 30-37
format of 22
JOB statement 24-30
null statement 12,22
PROC statement 88-89
rules for continuing 23
syntax of 23-24
job output writer 28
job scheduler
description of 11
JOB statement
description of 24-30,12
examples of 25
format of 25
functions of 26-27
restriction in use of 81
summary of 24-25
job step
compile
cataloged procedures 89
description of 53-57
output from 99-107
defined 12
description of 12
example of job control
statements 174-175
link edit
cataloged procedures 89
description of 58-62,64
output from 108-109
load module
cataloged procedures 90
description of 67-72
output from 111-117
loader
cataloged procedures 90
description of 63-66
output from 110
naming a 33

priority 35-36
relationship to EXEC statement 12
time limit assignment 35
job stream
input, defined 11
JOBLIB DD statement
concatenating a data set with 42
contrasted with SYSLIB DD statement 67
example of 173-174,60
restrictions 81
retrieving a library with 16
jobname, parameter in JOB statement
description of 25
function of 26

KEEP, DISP subparameter
contrasted with CATLG subparameter 21
description of 45

key, record 124

keyword parameters 23

L
in BUFOFF subparameter 51
label
data set U47-48
reference 110
statement 104-106
label map (see compiler map or map,
compiler)
LABEL parameter
to define an ASCII data set 68
description of 47-48
function of 40
language translators 11-12
large core storage (see hierarchy support)
ILC compiler option 53
LCS (see hierarchy support)
LE1 linkage editor option 58
use in overlay programs 148
LET loader option 63-64
library, automatic call 60,61
library
description of 15-16
FORTRAN
asynchronous input/output
considerations 122
error correction for mathematical
routines 166-169
in link edit job step 61-62
programming considerations 130-131
restrictions with extended error
handling facility 161
relationship to partitioned data
set 70,15
storing load module into 59
subprograms
affected by automatic precision
increase 139
SYS1l. FORTLIB 16
use of NCAL linkage editor option 59
library functions 136
detaching 126
aliases 126

Index 197

LIBRARY statement
description of 61-62
example of 61,64

line printing, specifying 53

LINECNT compiler option 53

link edit job step
cataloged procedures describing 89
example of job control statements 13
input to, description of 58-63,64
output from, description of 108-109
primary input 60
secondary input 61-62
summary of output 16

link pack area queue 65

linkage conventions
coding, example of
summary of 180

linkage editor
cataloged procedures 89
contrasted with loader 58
control statements

description of 61-62
in overlay programs 146-148
example of 149-153

181-183

map 58
name of 58
options 58-59

overlay processing 141-145
example of output 148-153
processing 64
linkage editor data sets
description of 59-61,14
linkage editor options
description of 58-59
example of output from 109
overlay options 148
LIST compiler option 53
example of output 102-103
use in tracing errors 113,11t
LIST linkage editor option 59
example of overlay output 153
use in overlay program 148
list-directed input/output 127
listing
compiler cross reference
linkage editor cross
reference 108-109,58
object module 102-103,53
source module 100,53
structured source 104,54
literal constants
affected by automatic precision
increase 139
restriction 133
LKED, as a name in cataloged
procedures 85,89
LOAD (see OBJECT compiler option)
load module execution job step
cataloged procedures describing 90
example of job control statements 13
input to, description of 67-72

102,54

messages
error code diagnostics 111
operator 115-116

program interrupt 113-116
output from, description of 111-117
summary of output 16

198

load module
called from library 67
cataloged procedures 90
defined 12
description of 67
length of 108,109
map 108-110,63
marking for execution
restrictions 133
retrieving from a library 60
storing into a library 59
load module data sets
description of 67-72,14-15
summary 68
LOADER, as a name for the loader
program 63
loader
cataloged procedures 90
contrasted with linkage editor 58
name of 63
options 63-65
storage allocation 6l
loader data sets
description of
summary of 66
loader job step
cataloged procedures describing 90
input to, description of 63-66
output from, description of 110
loader options 63-65
Logical IF statement 127
LOGICAL items
padding 137
storage representation of 188
logical operators 127
loop, optimization of 128
LR (label reference) 110
LRECL subparameter
default values of
for compiler data sets 57
for load module data sets 72
description of 50
example of 50
relationship to BLKSIZE subparameter

63-64

65-66,15

M
to identify machine code control
characters 49-50,77
magnetic tape
data set 68
ASCII 68
creating, example in 69
DEN subparameter 51
device
BLKSIZE values for 73
summary of types 189
volume
record length restriction 133
main storage
allocating through SIZE option 54
map
compiler
affected by automatic precision
increase 140
description of
example of 104

105-106

50

specifying through MAP option 54
linkage editor
description of 108
example of 109
output from overlay program 153
specifying through MAP option 58
loader 63
MAP compiler option 54
example of output 104
MAP linkage editor option 58
contrasted with compiler option 1
contrasted with loader option 110
example of output 109
overlay program output 148
MAP loader option 63
contrasted with MAP linkage editor
cption 110
description of 110
example of 110
map, traceback (see traceback map)
master record 124
MAX, as a SIZE option value 54
member, partitioned data set 70-72,15
messages
compiler 101,99
diagnostic 100,101
FLAG compiler option to obtain 55
informative 99,100
linkage editor 108,109
load module 111-116
summary of 111
operator 115-116
program interrupt 113-116,170
system, use of MSGLEVEL parameter 27
MFT (see Multiprogramming with a Fixed
Number of Tasks)
MOD, as a DISP subparameter 45
module
load 12
object 12
source 12
MSGCLASS parameter
description of 28
example of 28
function of 26
MSGLEVEL parameter
description of 27
example of 27
function of 26
Multiprogramming with a Fixed Number of
Tasks
description of 11
partitions in 11
requesting a dump under 115
Multiprogramming with a Variable Number of
Tasks
description of 11
REGION parameter
regions in 11
requesting a dump under 115
MVT (see Multiprogramming with a Variable
Number of Tasks)

no
voO

29, 36

NAME compiler option 54
name field, in job control statements 23

names
compiler handling of 127
device class, summary of U6
NAME compiler option to spec
qualified 19

NCAL linkage editor option 59

NEW, as a DISP subparameter 21
considerations with direct access
programming 125
contrasted with OLD subparameter 21

nine-track tape, density of 51

NOALC (see ALC compiler option)

NOANSF (see ANSF)

NODECK (see DECK compiler option)

NODUMP (see DUMP compiler opticn)

NOEDIT (see FORMAT compiler option)

NOFORMAT (see FORMAT compiler option)

NOGOSTMT (see GOSTMT compiler option)

NOID (see GOSTMT compiler option)

NOLET (see LET loader option)

NOLIST (see LIST compiler option)

NOLOAD (see OBJECT compiler option)

NOMAP compiler option (see MAP compiler

option)

NOOBJ (see OBJECT compiler option)

NOOBJECT (see OBJECT compiler option)

NOOPT (see OPTIMIZE compiler option)

NOOPTIMIZE (see OPTIMIZE compiler option)

NOPRINT (see PRINT loader option)

NORES (see RES loader option)

NOSOURCE (see SOURCE compiler option)

NOXREF (see XREF compiler option)

NR, in compiler map 106

null job control statement 12
function of 22

OBJ (see OBJECT compiler option)
ORJECT compiler option 53
object module
considerations with OPTIMIZE option 127
defined 11
specifying 53
object module deck
DECK option to specify 53
description of 106-107
example of 107
object module listing
example of 102-103
description of 104-105
LIST option to specify 53
use in tracing errors 113,114
OLD, as a DISP subparameter 45
considerations with direct access
programming 125
contrasted with NEW subparameter 21
operand field, in job control statement 23
operating environment (see Multiprogramming
with a Fixed Number of Tasks;
Multiprogramming with a Variable Number of
Tasks)
operation field, in job control
statements 23
operator exception code
corrections for 170

114,116

Index 199

operator message
description of 115-116
example of 117
summary of 111
operators, in COND parameter of JOB
statement 28
OPT (see OPTIMIZE compiler option)
OPTCD subparameter
to define ASCII data set 68
description of 52
programming considerations 130
OPTERR parameter 154
optimization techniques
specifying 53-54
OPTIMIZE compiler option 53

COMMON statement considerations 123

example of output 104
FORMAT option relationships 54
programming considerations
OPTIMIZE(1) programming
considerations 127-128
OPTIMIZE(2) programming
considerations 128-129
example of output 104
option table
changing entries in
default values 155
description of 154
format of 164-165
preface of 154,164

158-160,156

specifying a user-supplied routine
options
ASCII 68
compiler
description of 53-56
example of output 100,102-104
format of 53
summary of 56
linkage editor
description of 58-59
example of output 109
loader
description of 63-66
example of output 110
PARM parameter considerations

ORDER statement 62
OUT, as a LABEL subparameter 48
output
compiler 99-107
linkage editor 108-109
load module 111-117
program output 116-117
loader 110
summary of 16
output class
A for printer 55
B for card punch 55
output writer 28
OVERFL subprogram 131
overflow condition 121

overlay
linkage editor control
statements 146-148

linkage editor options 148

output, example of 149-153
paths 142-143

process, description of 141-145
program

200

127-129

34-35

159

constructing a 146-148
designing a 141-144
programming considerations 125
references
exclusive 144
inclusive 143
segments 141-142
structure
example of 147
tree 141-142
OVERLAY statement
description of 146
example of 149
OVLY linkage editor option 148,59
example of output 153

P
to describe compiler map variables 105
in program interrupt message 113,116
padding data 134
PAGE statement 62
parameters
keyword 23
positional 23
symbolic 88
parentheses, use in PARM parameter 34-35
PARM parameter
description 34
examples of 34-35
function of 31
options specified in
compiler 53-56
ALC option 138
AUTODBL option 135-138
linkage editor 58-59
overlay options 148
loader 63
rules for continuing 34-35
partitioned data set
adding members to 70
creating 70
deleting 71,72
description of 70-71,15
LABEL parameter considerations 48
relationship to library 70
restrictions 70
retrieving 70-71
partitions, in MFT and VS1 control
program 11
PASS, AS A DISP subparameter Uu45-46
paths, overlay 142-143
PAUSE statement
message generated by 115-116
restriction 133
PDS (see partitioned data set)
PDUMP library subprogram 139
permanent data set
contrasted with temporary data set 21

description of 21
PGM parameter
description of 33-34
example of 33-34
function of 31
specifying
compiler 53
linkage editor 58

load module 67
loader 63
positional parameter 23
pre-allocated data set 130
precise interruption 113
primary input, to link edit job step 60
PRINT loader option 65
example of output 110
printer, BLKSIZE values for 73
private data sets
(see also user data sets)
defining 21
storing load modules into 59
problem program
description of 12
PROC parameter

description of 32-33

function of 32-33
PROC statement

description of 88-89

format of 88
modifying cataloged procedures with 90
procedure library 13
procedure-name, parameter in EXEC statement
(see PROC parameter)
PROCESS statement 55
processing program
description of
procstep.ddname 39
program
control program 11
FORTRAN
as a problem program 12
restrictions in use by other
processors 80
naming a, through the EXEC statement 33
processing program 11-12
sample of a 97-98
source program, listing of 100
program interrupt message
corrections for, with extended error
handling facility 170
description of 113-11i5
example of 116
program options
use of PARM parameter
program output 116-117
summary of 16
program status word 114-115,116
program unit
relationship to control section
use in overlay structure 141-144
program-name, parameter in EXEC statement
(see PGM parameter)
programmer—-name, parameter in JOB statement
description of 27
example of 27
function of 26
promoting data 134-135
protected storage, violation of 114
protection exception code 114,116
PRTY parameter
description of 28
example of 28
function of 26
restriction 28
PSW (program status word) 114-115,116
punch, card (see card punch)

11-12

34-35

108

Q
to define ASCII data set
qualified names 19

52,68

randomizing technique 124
READ statement
END= option
to process partitioned data
set 70-71
FIND statement with 125
programming considerations 129
relationship to partitioned data set
reader, card (see card reader)
REAL items
padding 137
promoting 134-135
storage representation of 186
real mode 29-30
RECFM subparameter
ASCII data set considerations
asynchronous input/output
considerations 121
default values of
for compiler data sets 57
for load module data sets 72
description of 50
direct-access data set
considerations 80
EBCDIC data set considerations
use of
in fixed-length records 73
in undefined-length records 74
in variable-length records 73
record key 124
record location counter
records
(see also fixed-length records,
undefined-length records,
variable-length records)
BLKSIZE values for 73
chaining of 125
characteristics of, defining
detail 124
format of 50
length of 50
master 124
spanned 74,76
structure of
ASCII 78-79
direct-access 80
formatted 75
unformatted 76
region,
REGION parameter
in EXEC statement 36,32
in JOB statement 29,27
SIZE compiler option relationship 13
register
in linkage conventions 179,180
OPTIMIZE option considerations
relocate feature 11
relocation dictionary 106
RES loader option 65
return code 129,184
compared with condition code 28

76-79

73-76

124

49-52

128

Index

48

in MVT and VS2 control program 11

2

201

RETURN statement 129
REWIND statement
asynchronous input/output
considerations 71
partitioned data set considerations 71
RLD card 106-107
RLSE, as a SPACE subparameter 47
root segment 141-142
ROUND, as a SPACE subparameter 47

S
to describe compiler map variables 105
to specify spanned records 50
sample program 97
save area 179-180
SD (section definition) 110
secondary input, to link edit job step 62
section definition 110
segment control word 50,73
segment, overlay
communication with 143-144
OVERLAY statement to define 146
relation origin of 142
root segments 141-142
SEP parameter
description of 49
function of 40
programming considerations 129
SEP subparameter in UNIT parameter 46
programming considerations 130
sequence number
defined 14
description of 41
processing partitioned data sets
with 71
sequential data set
creating 69
DCB considerations for
ASCII data sets 76-79
EBCDIC data sets 73-76
default values for load module 72
description of 69,15
retrieving 69
serious error message, description of 101
seven-track, density of 51
severity code
explanation of 16
listing of 101
SHR, as a DISP subparameter U5
simulator 113-114
SIZE compiler option 54
REGION parameter relationships 132
SIZE loader option 64
SLITE subprogram 131
SLITET subprogram 131
sort and merge program 12
SOURCE compiler option 53
source module
defined 12
listing of
description of 101,100
LIST option to specify 53
naming 54
SPACE parameter
DEFINE FILE statement relationship 125
description of 47
function of 41

202

spanned records

description of 74

example of 76
special characters

in job control language
specification exception code

correction for 170
spill, array element 123
statement function

restrictions 132
statistics, compiler 100
STEPLIB DD statement

to concatenate data sets 42

to retrieve a user library 16
stepname, in EXEC statement 33,31
STOP n statement

message generated by 115-11¢6

restrictions 129

27,34
114,116

storage
allocation
job 29

job step 36
dumping 131
SIZE option 54
storage map
for COMMON blocks
description of 106
example of 107
defined 16
structured source listing
(see also edited source listing)
example of 104
description of 105
FORMAT option to specify 54
subprograms
affected by promotion of data items 135
assembler language
coding 181-183
description of 179
examples of 181-183
entry points to 183
extended error handling
considerations 158-160,156
OPTIMIZE option considerations 128-129
programming considerations 130-131
return codes 129
subroutine
extended-precision 131
mathematical, error corrections
for 166-169
user-supplied 129
summary of errors listing 111,112
superscript, in job control statements 24
supervisor, description of 11
support, hierarchy (see hierarchy support)
symbolic parameters
description 88
example of 89
modifying cataloged procedures with 90
synonyms, in direct-access programming 124
SYSABEND DD statement
contrasted with SYSUDUMP DD statement
description of 57
DUMP compiler option relationship 55
requesting a dump 115,41
SYSDA device class 14
SYSIN DD statement

cataloged procedure use of 89,19

default values of 57
description of 56,67
FTO5F001 DD statement relationship 67
function of 14
as a qualified name 19
SYSLIB DD statement
CALL option relationship 63
contrasted to JOBLIB DD statement 67
description of 59
function of 14
SYS1.FORTLIB library relationship 59
SYSLIN DD statement
default values of 57
description of
for compiler data set 56
for linkage editor data set 59
for loader data set 65
function of 14
OBJECT compiler option relationships 53
SYSLMOD DD statement
cataloged procedure use of 89
creating a user library with 16
description of 59-60
function of 14
as the name of a load module 67
SYSLOUT DD statement
cataloged procedure use of 90
description of 65
function of 14
PRINT loader option relationship 65
SYSOUT parameter
description of 44-45
function of 40
SYSPRINT DD statement
default values of 57
description of 55
function of 14
SYSPUNCH DD statement
DECK compiler option relationship 53
default values of 57
description of 55
function of 14
SYSSQ device class 14
system data set 14-15
system library 16
system messages
specifying through MSGLEVEL
parameter 27
system storage requirements 131-132
SYSUDUMP DD statement
contrasted with SYSABEND DD
statement 57
description of 57
DUMP compiler option relationship 55
requesting a dump 115,41
SYSUT1 DD statement
default values of 57
description of
for compiler data sets 56
for linkage editor data sets 60
FORMAT compiler option relationship 54
function of 14
SYSUT2 DD statement
(see also SYSUT1 DD statement)
default values of 57
description of 56
XREF compiler option relationship 54

SYS1l, FORTLIB

as automatic call library 61
as partitioned data set

SYSLIB DD statement relationship

SYS1.LINKLIB 42,16

15

SYSLMOD DD statement relationship

SYS1.PROCLIB 81,16

T

to indicate track overflow
table of names (compiler map)

50
54

tape, magnetic (see magnetic tape)

temporary data set

contrasted with permanent data set

creating a 69
description of 21
as a partitioned da

ta set

termination message 101,27

time limit
assigning to a job
assigning to a job
suppressing 29
TIME parameter
in EXEC statement
description of
function of 32
in JOB statement
description of
function of 26
traceback map
description of 111
example of 112
use of 112-114
requesting print

28-29
step

36

28-29

ing of

69

36

160

requesting suppressing of 159

track overflow

for direct-access data sets 8

restrictions 121,1

use of 74,50
translators, language
TRK

22

11-12

as a SPACE subparameter

TRTCH subparameter 51
TXT card 106-107

U

-52

47

0

to specify undefined-length records

description of
example of 75

50, 74

UNCATLG, as a DISP subparameter
undefined~length records

BLKSIZE values for
DCB considerations
for ASCII data s
for EBCDIC data
description of 49

73

ets 7
sets

6,78
T4-75

45

59

59

21

underscore, use in job control language 24

unformatted input/outp

ut

affected by automatic precision

increase 140
unformatted records
DCB considerations

74,76

Index

203

direct-access data sets 80

input/output list relationship 74
UNIT parameter

description of 46-47

examples of U6

device types 189

function of 41
unit record

data sets 68-69

devices, summary of 189
unit types 189
user data sets

(see also private data sets)

defining 21,15
user library

description of 16
user-supplied subroutines 129
utility program

description of 12

v
to specify variable-length records
description of 50,73
example of 70
variable items
dumping 131
promotion of 134
retrieving address of 183
storage representation of 185-188
variable, associated 16
variable-length records
BLKSIZE values for 73
DCB considerations
for ASCII data sets 76,78
for EBCDIC data sets 73,75
description of 50
examples of 75
virtual mode 29-30
virtual storage 11
volume, defined 14

204

VOLUME parameter
description of 43
function of 39

vsl 11

vs2 11

WAIT statement 121
warning message 101
WRITE statement
relationship to partitioned data set

XCAL linkage editor option 148
XF external function 105
XR external reference 105
XREF compiler option 54
example of output 102
XREF linkage editor option 58
contrasted with XREF compiler
option 108
example of output 109
use in overlay program 148,153

0 as a severity code 101,16

4 as a severity code 101,16

5 as a data set reference number 67,20
6 as a data set reference number 67,20
7 as a data set reference number 67

8 as a severity code 101,16

12 as a severity code 101,16
16 as a severity code 101,10
2311 direct-access device 189
2314 direct-access device 189
2361 larger core storage device 29
2400 magnetic tape device 189

48

READER’'S COMMENTS

TITLE: [IBMOS FORTRAN IV ORDER NO. SC28-6852-1

(H Extended) Compiler

Programmer’s Guide

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

$C28-6852-1

fold fold
FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.
]
]
BUSINESS REPLY MAIL []
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES R
]
I
POSTAGE WILL BE PAID BY . . . T
L]
L]
IBM CORPORATION ——
1271 Avenue of the Americas
]
New York, New York 10020
Attention: PUBLICATIONS
fold fold

TSI

International Business Machines Corporation
Data Processing Division
1123 Westchester Avenue, White Plains, New York 10604

[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

[International]

aurf sty Buore Inod

ce0scsessrecenn

2seeee sovsceesavcecscrsccace

1-CG89-820S 'V'S'N ul patuld "D d 4911dwo) (X3 H) Al NVH.LHO4 SO W4

5C28-6852-1

JISIM

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
{U.S.A. only)

1BM World Trade Corporation
821 United Ngtions Plaza, New York, New York 10017
(International)

1-2989-820S VSN Ul paYuLd "D *d Jolidwo) (X3 H) Al NYHLHOA SO 8l

	001
	002
	002a
	002b
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	replyA
	replyB
	xBack

