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Abstract

A detailed comparison of the times taken to perform elementary state-
ments in ALGOL 60 has revealed wide differences in performance. An ex-
amination of the machine code produced by five compilers (Atlas, KDF9
(Kidsgrove), 1900 (XALT), B5500 and 1108 (Trondheim compiler)) has
been undertaken to find the reasons for the disparities. The large range of
machine architecture means that very different techniques have been used
for code generation. This enables one to give guide lines for a suitable ar-
chitecture for good ALGOL 60 code generation to be possible. (Received
September 1971)

Very little is known about the relative merits of computer software except by
personal experience. ALGOL 60 is an excellent vehicle for a comparative study
because of its machine independence and the fact that compilers are available
for a wide range of machines. This paper considers only the characteristics of
the machine code generated by the compiler. Many other factors can be just
as important — such as compile-time, run-time and failure-time diagnostics,
compiling times, library facilities, etc., but they are not considered here. In
some previous work [9, 10, 11], the author found that the time taken for various
simple ALGOL 60 statements was often five times faster or slower than would
be expected. The expected statement times were found from the model:

(time for statement S on machine A) = (statement factor for S)
× (machine factor for A)

The statement factors and machine factors were calculated by a least squares
fit. Hence this took the overall speed of the machine into account as judged from
all the statement times. Such a large variation in the ratio of the expected to
observed statement times was, therefore, not to be expected. The statements
used are listed in Table 1.

The reason for this discrepancy is that totally different techniques have been
used by compiler writers in generating machine code. In an extreme case, one
system invokes a supervisor function for begin real a; end whereas another
system produces no machine-code at all! On the other hand, relatively small
variations were found in the time taken to evaluate the standard functions sin,
cos, exp, ln, sqrt and arctan.
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It has also been possible to assign weights to the ALGOL statements. This
gives an ALGOL mix similar to the Gibson mix (which uses basic instruction
times). The mix figure of merit is not very closely paralleled by the machine
factor found from the previous method. The reason for this is that some compiler
writers have been noticeably more successful than others in choosing which
features to implement efficiently.

It was clear from this work that the basic choices open to the compiler writer
would not be apparent without a detailed study of the machine and the com-
piled code. This would obviously not be possible for all of the 25 systems for
which statement times are available. Hence, four ALGOL compilers were se-
lected for further study. These were the Atlas ALGOL compiler. the Kidsgrove
compiler for KDF9, the 1900 compiler XALT (Mark IA) and the Extended AL-
GOL compiler for the B5500. These were chosen to include a wide range of
computer architect types apart from being conveniently available to the author.
In addition Dr. P. T. Cameron of Univac has kindly run all the tests on the ‘NU
ALGOL’ compiler for the 1108. This compiler is a recent replacement of the
manufacturer’s original compiler, and has been written in Trondheim, Norway.

The tests

The method adopted was to take four sample programs, compile them with each
compiler. and make a detailed examination of the machine-code produced. To
avoid any possibility of mispunching, the programs were converted automatically
from the KDF9 source text. Four main characteristics are measured for the
programs: the number of instructions compiled, the number of instructions
executed, the size in bits of the compiled program, and the execution time.

Test 1

The program consisted of CACM Algorithm 271 Quickersort [8] used for sorting
an array containing 10,000 random numbers. The four characteristics are mea-
sured for each of the three main procedures of the program, that is, quickersort,
inarray (which fills the array with the random numbers) and checksort (which
checks that the array is sorted).

Test 2

This really consists of 13 separate programs. They are ALGOL compiler tests
obtained by the author from M Woodger. Many of them were written by Randell
and Russell to test the Whetstone ALGOL compiler [7]. The major test is to
see that they compile and produce the correct answers. Execution time is not
measured in this case, except for the last test which is Knuth’s ‘man or boy’ [6].
This test uses call-by-name and recursive procedure calls very extensively.
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Test 3

This is a coding of GAMM loops sometimes used as a measure of computer
performance [4]. The five loops used consist of (a) adding two vectors of 30
elements. (b) multiplying two similar vectors, (c) calculating a polynomial of 10
terms, (d) finding the maximum of a vector of 10 elements. and (c) calculating
a square root by Newton’s method for five iterations. This test can, of course,
be coded in any computer language, but in ALGOL 60 it is a rather severe test
of one dimensional arrays and simple for loops. The program repeats the test
twice, once with formal arrays to a procedure, and once with the actual arrays.
The main characteristics are measured for the five loops, both in and out of the
procedure.

Test 4

This consists of a program to time the 41 statements used in previous tests
[9, 10, 11]. By examining the machine-code produced from these statements,
it is possible to see if any ‘special coding’ has been used in these rather simple
statements. For each of these statements, the four characteristics are measured
as before. To these statements are added the characteristics of the loop code
involved in for i := 1 step 1 until n do. These statements ensure that the
principal ALGOL statements have been investigated.

Table 1

The declaration of identifiers used in the timing of simple statements was as
follows:

integer k, l, m;
real x, y, z;
integer array e1[1:1], e2[1:1, 1:1], e3[1:1, 1:1, 1:1];
procedure p0;;
procedure p1(x); value x; real x; ;
procedure p2(x, y); value x, y; real x, y; ;
procedure p3(x, y, z); value x, y, z; real x, y, z; ;

The variables were initialised as follows:
x := y := z := 1.0; l := k := m := e1[1] := 1;

The statements were:
x := 1.0 x := y/z k := l ÷ m
x := 1 k := 1 k := l
x := y k := 1.0 x := l
x := y + z k := l + m l := y
x := y × z k := l × m x := y ↑ 2
x := y ↑ 3 l := e1[1]
x := y ↑ z begin real a; end
e1[l] := 1 begin array a[1:1]; end
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e2[l,1] := 1 begin array a[1:500]; end
e3[l,1,1] := 1 begin array a[1:1,1:1]; end
x := abs(y) begin array a[1:1,1:1,1:1]; end
x := exp(y) begin goto abcd; abcd: end
x := ln(y) begin switch s := p; goto s[1];p: end
x := sin(y) x := sqrt(y)
x := cos(y) x := arctan(y)
x := sign(y) p3(x, y, z)
x := entier(y) p0
p1(x) p2(x, y)

In addition the loop time in for i := 1 step 1 until n do is also taken to
make 42 ‘statements’.

The results

Each characteristic was analysed in the same way as the statement times, that
is, it is assumed that

(Number of instructions generated for S on machine A)≈(Factor for S)×
(Factor for machine A)

The factors are again calculated by a least squares fit. If a particular ma-
chine always generates more instructions, then the corresponding factor for that
machine will have a large value. The factors for the statements, procedures and
programs are of no particular consequence, but allow estimates to be made when
any data is missing.

The factors for the four systems are only ratios, so Atlas has been taken as
unity. The factors for the four characteristics are:

Atlas 1108 KDF9 1907 B5500
Instructions

compiled 1.0 0.41 0.78 0.65 0.63

Compiled code
size in bits 1.0 0.31 0.35 0.32 0.16

Execution time 1.0 0.28 3.5 1.2 1.8

Instructions
executed 1.0 0.83 1.5 0.94 0.96

One can see from this that as far as the number of instructions generated
are concerned, Atlas generates significantly more and the 1108 significantly less
than the other three systems. With the code size in bits, Atlas is very much
worse and the B5500 very much better than the others. The speed comparison
in the third row is in line with the previous work [9]. The number of instructions
executed to do a fixed task in ALGOL varies remarkably little in view of the
wide range in architecture, except that KDF9 comes out significantly worse.
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The exceptional values

A complete list of those cases where the actual value was less than half or
more than twice the expected value are listed in Table 2. Some statements
give a wide range for this ratio indicating that completely different methods of
implementation have been used. For instance, with the statement x := abs(y)
two methods are used. The B5500 and 1108 produce open code thus giving very
fast times. On the other hand, Atlas and KDF9 use the standard procedure
calling mechanism giving relatively longer times.

With entering and exiting from a dummy block (begin real a; end), the
code generated depends upon the method used to assign storage. If storage is
assigned at procedure level as on KDF9 and B5500, then there is virtually no
code generated. On the other hand Atlas and the 1108 assign storage at block
level so that several pointers must be updated. In fact Atlas generates further
code for diagnostic purposes. Array declarations also vary substantially. Atlas
performs very well by using a large amount of open code. On the other hand the
B5500 takes up to 12 times longer than might be expected as storage allocation
is a supervisor function. The 1108 is the only compiler to take longer to declare
an array of 500 elements than an array of one element which is due to zeroising
its contents.

Type conversion is another area where compilers differ substantially. There
is also a big difference in the speed of the relevant hardware for conversion from
fixed to floating point form (and the converse). With the statement x := 1, Atlas
and the B5500 store the 1 as an integer but can do the conversion rapidly. On
the 1108 and 1900 the integer I is converted to floating point form at compile
time. KDF9 is the worst, using quite a slow subroutine for the conversion.
The conversion in k := 1.0 is dealt with in a similar manner by the compilers
although it is much less worthwhile due to its rarity.

The exponential operator is handled very differently by the compilers. ↑2
and ↑3 on the B5500 are done by repeated multiplication using only the stack,
whereas the other systems use short subroutines except for Atlas which uses
open code. The coding of x := y↑z is done incorrectly on the KDF9 and the
1108. In both cases z is checked to see if it is integral, in which case repeated
multiplication is used. This has since been corrected by the author for the KDF9
which of course means that x : = y↑z with z = 1.0 is now much slower (since it
involves ln and exp).

Table 2

Anomalous values for measured characteristics

All the anomalous values are listed, together with the reason if this is known.
The ratio is actual value expected value of the instruction time, instructions
executed, size in instructions or size in bits. A small value for the ratio im-
plies good implementation of this feature in relation to the compiler’s overall
performance.
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Execution times

Ratio Algol source text Reason
ATLAS
0.43 ‘man or boy’ Display is held in registers
0.49 x := l Little difference between

reals and integers
0.21 to 0.36 array declarations Open code used
4.7 goto abcd Very general subroutine used
3.5 x := abs(y) General procedure

mechanism used
2.6 x := sign(y) General procedure

mechanism used

KDF9
0.37 ‘man or boy’ Call-by-name handled quite well
4.0 x := 1 Type conversion done by subroutine
2.6 k := 1.0 Type conversion done by subroutine
2.9 x := l Type conversion done by subroutine
2.3 e3[1, 1, 1] := 1 Slow subroutine used

suitable for any dimension
0.3 begin real a; end Storage assigned at

procedure level
0.47 array a[1:500]; Bad time for this on 1108 makes

KDF9 good in comparison
2.3 x := abs(y) General procedure

mechanism used
0.4 to 0.42 p0, p1, p2 and p3 These are ‘simple’ procedures,

which are optimized by using what is ordinarily
the stack pointer as the environment pointer
within the procedure

B5500
0.74 x := y↑z Not known in detail, but all

standard functions are slow
0.39 begin real a; end Storage assigned at

procedure level
3.5 to 12 array declarations Supervisor call, must set up descriptors

and allocate storage
0.33 x := abs(y) Open code
2.5 x := ln(y) Not known
0.32 x := entier(y) Open code
0.3 to 0.32 p0, p1, p2 and p3 Stack mechanism and

special instructions
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1900
5.9 ‘man or boy’ Environment control is poor due to

too few index registers
0.45 k := 1.0 Type conversion done at compile-time
0.39 to 0.46 array declarations Only just outside range due to poor 1108

and B5500 times
0.3 x := ln(y) Special coding for 1.0!

(This was the only value tested)

1108
0.35 k := 1.0 Type conversion done at compile-time
0.26 x := y↑z Error in ↑, codes as

x := y↑1
5.2 begin real a; end Storage assigned at

block level, assign zero to a
7.2 array a[1:500]; Assigns zero to elements of array
0.28 goto abcd Single instruction
2.9 switch Not known
0.23 x := abs(y) Only two instructions:

load magnitude y, store x
5.5 to 7.4 p0, p1, p2 and p3 Slow set-up, fast per parameter

Instructions executed

Since this is very similar to the execution times, only those exceptional cases of
listing which do not appear above, are listed.

Ratio Algol source text Reason
ATLAS
2.2 k := l÷m Requires to test the sign of the

numbers — done as open code

KDF9
3.0 x := ln(y) Large number of register (stack)

manipulation instructions used

B5500
0.41 l := y Type conversion done by hardware
0.42 x := y↑2 Done by repeated multiplication
0.42 x := y↑3 in the stack

1900
0.44 switch Simple switches are optimised
2.0 p3
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Code size in instructions

Very much less variation occurs. listed.

Ratio Algol source text Reason
ATLAS
0.43 x := l type conversion very straightforward
2.2 array a[1:1, 1:1, 1:1] Open code used

B5500
2.1 goto abcd Dummy instructions used so that

label starts at word boundary

1900
0.32 p0 Special coding used when no parameters

1108
2.5 p0 Produces code in the same way as if parameters

were used. Sets aside word containing number
of parameters

Code size in bits

The variations in this characteristic are similar to those of the code size in
instructions. The only additional anomalous one was:

Ratio Algol source text Reason
ATLAS
2.0 begin real a; end Block level storage, also sets

up information for diagnostics

gotos in ALGOL are, in general, very complex. Atlas does no elementary
optimisation with them but uses a subroutine. KDF9 and the 1108 generate
a single instruction for a goto within a block, but KDF9 generates extra code
for passing a label, which is used for diagnostic purposes. Switches also present
problems because the element of a switch list can be a complex designational
expression rather than a label. The B5500 and 1900 compilers optimise simple
switches.

A measure of the difficulty of handling call-by-name parameters with the
associated environment control is given by the time to execute Knuth’s ‘man
or boy’. Atlas performs very well because all the environment information (the
display) is kept in registers. On the other hand, with only three index registers
on the 1900, the time taken for Knuth is nearly six times the expected value.

The times taken to execute the simple procedure calls varies substantially.
Not surprisingly the B5500 comes out best, because of the stack mechanism and
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special instructions for procedure calls. KDF9 does well because the dummy
procedures are classified as simple. In this case, the stack pointer is used as
the environment pointer within the procedure. This substantially simplifies the
calling mechanism. The 1108 does very badly due to a long set-up process,
although the length of time to deal with a parameter is quite short.

The anomalous values for execution time and the number of instructions
executed are, of course, very similar. In the same way the anomalous values for
the code size in instructions and the code size in bits are very similar. However,
there is not the large variation in the size of object code compared with the
execution times. This means that the overall ratios used to predict the number
of instructions generated and the compiled code size in bits is fairly accurate.

The individual compilers

Atlas

The large number of registers (about 90), and the rich instruction set is a great
advantage. The compiler does very little optimisation and yet produces very
tolerable machine-code. The current environment is stored entirely in registers,
so that every variable is accessed by a single instruction which is a small offset
from one of the address registers. The disadvantage of Atlas is that a large
proportion of the 24 bits of the address field in every instruction is zero. Added
to this, the compiler produces open code for virtually everything except gotos.
Hence the size of the compiled code is large in terms of the number of instruc-
tions and enormous in terms of bits. This is only tolerable due to the paging
mechanism. Because of the lack of optimisation amid use of open code, the
machine code is extremely easy to understand, so the author would recommend
study of this for anybody who wished to know how ALGOL 60 is compiled.

KDF9

The Kidsgrove compiler for KDF9 [3] was produced with the aim of doing very
extensive array subscript optimisation. Unfortunately this sometimes produces
incorrect code, so the option to do the optimisation is rarely used. Without this
optimisation, the array accessing code is very poor. Some improvements have
been made by Oxford University and the author to overcome this defect, but
they are not considered here. The KDF9 itself presents substantial problems to
the compiler writer. The stack mechanism does not allow for automatic overflow,
so the compiler must empty the stack on procedure and function calls. Environ-
ment control and array accessing are not very convenient on KDF9 because the
address registers must be loaded and unloaded via the stack. Although KDF9
does execute more instructions than many machines quite a large proportion of
the instructions only involve the stack and so are relatively fast.
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B5500

The stack mechanism for this machine is designed explicitly for ALGOL. Un-
fortunately only two registers are available for the top of the stack and hence
the stack instructions are not necessarily very fast. The special instructions for
procedure call, array access, name call, etc, ensure that no more instructions are
executed on this machine than with conventional ones even though it is a zero
address computer. The real advantage of the B5500 is that it has very compact
instructions (12 bits) and a short address length (10 bits). This allows B5500
ALGOL programs to be half the size (in bits) of their conventional counterparts.
The space required for data, is. of course, unaffected. ‘Man or boy’ does not
work on the B55OO due to a restriction on the stack size.

1900

This computer series has a conventional one-address architecture. From the
point of view of ALGOL it has the disadvantage of only three index registers.
This makes environment control and call-by-name very difficult, and is reflected
in the time taken to execute ‘man or boy’. The compiler assigns store sometimes
at procedure level and sometimes at block level. The author has been told that
the current versions of this compiler now assign all simple variables at procedure
level. The compiler does a fairly extensive amount of simple optimisation, so
that there are very few short sequences of code that could be radically improved.

The address of the front of the stack is not kept in a register, which means
that procedure entry and exit is not very fast. In order to simplify the parameter
handling problem, a simple ‘thunk’ mechanism is used for all parameters [5].

1108

The 1108 is a multi-register one-address machine. It has a large instruction
set which is moderately well utilised by the compiler. Storage allocation is at
block level which incurs a significant penalty on block entry, and probably on
procedure call. Unfortunately the compiler specification states that all variables
are assigned a value of zero on declaration. Apart from the substantial overhead
on array declaration, this means that block entry must always generate some
code. The intelligent use of the different registers on the machine is the main
reason why the compiled code is notably more compact than with the other
conventional machines.

The compiler does some surprising optimisation including the evaluation of
constant subexpressions. In one case this evaluation was incorrect. The main
weakness of the compiler is the long time for a procedure call.

Conclusions

The main advantage of a non-conventional architecture for the compilation of
ALGOL 60 appears to be the production of extremely compact object code.
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This is achieved with the B5500 by a very short address length within an in-
struction. Because of the dynamic storage allocation of ALGOL 60, access to
simple variables is always by a small offset from an environmental pointer. Hence
an address length within an instruction of only 9 bits is adequate. Anything in
excess of 9 bits is likely to be wasted. On the other hand, several index registers
or their equivalent are necessary for environment control and array accessing.
Such registers must be capable of being updated rapidly for procedure entry
and exit, and for access to name parameters.

Access to array elements is usually via an array word which can be addressed
in the same way as a simple variable. A short address length may preclude
some array access optimisation, for instance if a is a global array of fixed size
a[200] could be accessed by a single instruction provided the address field was
large enough. In fact the B5500 does not allow array accessing optimisation
because the storage protection system depends upon access via the array word
(descriptor). The optimisation produced by the ALCOR compilers [2], could be
done on a machine with a short address length, but not the B5500.

Array bound checking is an area where special hardware can be used to great
advantage. Unfortunately the hardware on the B5500 does not deal with the
general value of the lower bound, so that explicit code must be generated by
the compiler to subtract the value of this lower bound if it is non-zero. Options
to do bound checking on other machines tend to be very expensive in processor
time. The 1108, although having no built-in hardware for array accessing, has a
convenient instruction for bound checking. With this instruction. a single test
can be made to see if the operand lies within the range defined by two registers.

Apart from the production of compact code from ALGOL 60, it is clear that
in many scientific fields non-conventional machines can have other substantial
advantages. Array bound checking has already been mentioned, but other ex-
amples lie outside the scope of this paper, for instance distinction between data
and program and the ability to share the available core store between processes.
The majority of these advantages are in the field of operating system design,
and so are not considered here. Such advantages are likely to have a substantial
effect upon the performance of the compiling system itself, and the easy way in
which such systems can be developed.
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A Notes

Original Computer Journal publication was double column.
Corrections to transcription, January 2004.
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