
META II

A SYNTAX-ORIER'A'~u COMPILER WRITING LANGUAGE

D. V. Schorre
UCLA Computi~ Facility

META II is a compiler writing language which
consists of syntax equations resembling Eackus
normal form and into which instructions to output
assembly language cnmm-uds are inserted. Com-
pilers have been written in this language for
VALGOL I and VALGOL II. The former is a simple
algebraic language designed for the purpose of
illustrating META II. The latter contains a
fairly large subset of ALGOL 60.

The method of writing cempilers which is
given in detail in the paper may be explained
briefly as follows. Each syntax equation is trans-
lated into a recursive subroutine which tests the
input string for a particular phrase structure,
and deletes it if found. Backup is avoided by the
extensive use of factoring in the syntax equatiorm.
For each source language, an interpreter is writ-
ten and programs are compiled into that interpret-
ive language •

META II is not intended as a standard lan-
guage which everyone will use to write compilers.
Rather, it is an example of a simple working lan-
guage which can give one a good start in design-
ing a compiler-writing compiler suited to his own
needs. Indeed, the META II compiler is written
in its own language, thus lending itself to modi-
fication.

History

The basic ideas behind META llwere described
in a series of three papers by Schaidt, I Met-
calf, 2 and Schorre.3 These papers were present-
ed at the 1963 National A.C.M. Convention in
Denver, and represented the activity of the Work-
ing Group on Syntax-Directed Compilers of the Los
Angeles SIGPIAN. The methods used by that group
are similar to those of Glennie and Conway, but
differ in one important respect. Both of these
researchers expressed syntax in the form of dia-
grams, which they subsequently coded for use on a
computer. In the case of META II, the syntax is
input to the cemputer in a notation resembling
Backus normal fore. The method of syntax analy-
sis discussed in this pape~ is entirely different
frem the one used by Irons u and Bastian.7 All of
these methods can be traced back to the mathemat-
ical study of natural languages, as described by
Cheme~. °

Syntax Notation

The notation used here is s4m~lar to the
meta language of the ALGOL 60 report. Probably
the main difference is that this notation can be
keypunched. Symbols in the target language are
represented as strings of characters, surrounded
by quotes. Metalin~uistic variables have the
same form as identifiers in ALGOL, viz., a letter
followed by a sequence of letters or digits.

Items are written consecutively to indicate con-
catenation and separated by a slash to indicate
alternation. Each equation ends with a semicolon
which, due to keypunch limitations j is represented
by a period followed by a coma. An example of a
syntax equation is:

LOGICALVALUE = '.TRUE' / '.FALSE' .,

In the versions of ALGOL described in this paper
the symbols which are usually printed in bold-
face tYl~e will begin with periods, for example:

• PROCEDURE . TRUE . IF

To indicate that a syntactic element is optional,
it may be put in alternation with the word .qTY.
For exsmple :

SUBSECONDARY = '* ' PRIMARY / .~PTY •,
SECONDARY = PRIMARY SUBSECONDARY . 3

By factoring, these two equations can be written
as a single equation.

SECONDARY = PRIMARY('* ' PRIMARY / .EMPTY) .,

Built into the META II language is the abili-
ty to recognize three basic symbols which are:

i. Identifiers -- represented by . ID,

2. Strings -- represented by . STRING,

3- Nmnbers -- represented by .NUMBER.

The definition of identifier is the same in
META II as in ALGOLj viz., a letter followed by a
sequence of letters or digits. The definition of
a string is changed because of the limited char-
acter set available on the usual keypunch. In
ALGOL, strings are surrounded by opening and clos-
ing quotation marks 3 making it possible to have
quotes within a string. The single quotation mark
on the keYl~unch is unique, imposing the restric-
tion that a string in quotes can contain no other
quotation marks.

The definition of number has been radically
changed. The reason for this is to cut down on
the space required by the machine subroutine which
recognizes numbers. A number is considered to be
a string of digits which may include imbedded
periods, but may not begin or end with a period;
moreover, periods may not be adjacent. The use of
the subscript i0 has been eliminated.

Now we have enough of the syntax defining
features of the META I I language so that we can
consider a simple example in some detail.

The example given here is a set of four syn-
tax equations for defining a very limited class of

algebraic expressions. The two operators, addi-

tion and multiplicationj will be represented by +

and * respectively. Multiplication takes preced-

ence over addition; otherwise precedence is indi-
cated by parentheses. Some examples are :

DI.3-1

A
A+B
A+B*C
(A+~)*C

The syntax equations which define this class of
expressions are as follows:

= / 'c ' =l ,) , . ,

c , + , " ' = ~ . ~) . ,

EX is an abbreviation for expression. The
last equation, which defines an expression of or-
der i, is considered the mat, equation. The equa-
tions are read in this manner. An expression of
order 3 is defined as an identifier or an open
parenthesis followed by an expression of order i
followed by a closed parenthesis. An expression
of order 2 is defined as an expression of order 3,
which may be followed by a star which is followed
by an expression of order 2. An expression of
order i is defined as an expression of order 2,
which may he followed by a plus which is followed
by an expression of order i.

A l t h o u g h s e q u e n c e s c a n b e d e f i n e d r e c u r s i v e -
ly, it is more convenient and efficient to have a
special operator for this purpose. For example,
we can define a sequence of the letter A as fol-
lows:

SE~A = $ 'A'.,

The equations given previous~,7 are rewritten ,~ng
the sequence operator as follows:

=3 = ~/ '(' ~l ')'
= ~3 $ ('*' =3).,
= ~ $ (,+, ~).,

Output

Up to this point we have considered the
notation in META II which describes object la~-
@uage syntax. To produce a compiler, output com-
mands are inserted into the syntax equations.
Output from a compiler written in META II is al-
ways in an assembly ~n£naage, but not in th@ as-
sembly langus~e for the 1401. It is for an in-
terpreter, such as the interpreter I call the
META II machine, which is used for all cc~apilers,
or the interpreters I cell the VAI~OL I and VAL-
GOL II machines, which obviously are u s e d with
their respective source languages. Each machine
requires its own assembler, but the main differ-
ence between the assemblers is the operation code
table. Constant codes and declarations may also
be different. These assemblers all have the same
format, which is shown below.

LABEL CODE ADDRESS

l- -6 8- -lO 12- -70

An assembly l a n g u a g e record contains either
a label or an op code of up to 3 characters, hut
never both. A label begins in column i and may
extend as far as colmnn 70. If a record contains
an op code, then column i must be blank. Thus
labels may be any length and are not attached to
instructions, but occur between instructions.

To produce output beginning in the op code

field, we write .OUT and then surrou~l the infor-
mation to be reproduced with l~rentheses. A
string is used for literal output and an asterisk
to outl~At the special symbol Just f~md in the
inl~t. This is illustrated as follows:

=3 = .m '(' =i ,),
= =3 $ ('*' =3 -~-('lILT'))., "'
~ ~ ~ (,+, ~ .~('~')).,

To cause output in the label field we write
.LABEL followed by the item to be outl~t. For
example, if we want to test for an identifier
and outpAt it in the label field we write :

.ID .LABEL *

The META II cumpiler can generate labels of
the form AOi, A02, AO 3, ... A~, BOi, To
cause such a label to be generated, one uses *i
or *2. The first time *i is referred to in any
syntax equation, a label will be generated and
assigned to it. This same label is output when-
ever • i is referred to within that execution of
the equat~n. The symbol ~ works in the same way.
Thus a max imum of two different labels may he gen-
erated for each execution of any equation. Re-
peated executions, whether recursive or externa]/y
initiated, result in a continued sequence of gen-
erated labels. Thus all syntax equations con-
tribute to the one sequence. A typical example
in which labels are generated for branch co,hands
is now given.

IFSTAT~T = '.IF' EXP '.THe' .OUT('BFP' *i)
STAT~ERT '.EI~E' .0UT('B ' ~) .IABEL *i
STAT~4ENT • LABEL ~ .,

The op codes BFP a n d B are orders of the
VALGOL I machine, and stand for '+branch false and
pop" a n d '+branch" respectively. The equation also
contains references to two other equations which
are not explicitly given, viz., EXP and STATEMENT.

VALGOL I - A Simple Ccm~iler Written in META II

Now we are ready for an example of a compil-
er written in MESA II. VALGOL I is an extremely
simple 1~-~uage, based on ALGOL 60, which has been
designed to illustrate the META II compiler.

The basic information about VALGOL I is giv-
en in figure 1 (the VALGOL I compiler written in
META II) and figure 2 (order list of the VALGOL I
machine). A sample program is given in figure 3.
After each line of the program, the VALGOL I ccm-
mande which the cuEpiler produces from that line
are sho~n, as well as the absolute interpretive
language produced by the assembler. Figure 4 is
output from the sample program. ~t us study the
c~piler written in META II (figure i) in more
detail.

The identifier PROGRAM on the first line in-
dicates that this is the main equation, and that
control goes there first. The equation for PRI-
MARY is similar to that of EX3 in our previous
ez~mple, but here nmnbers are recognized and re-
produced with a "iced literal" command. TEI~I is
what was previously EX2; a n d EXPi what was pre-
viously EXi except for recognizing minus for sub-
traction. The equation EXP defines the relation-
al operator "equal", which produces a value of 0

Di. 3-2

or i by making a comparison. Notice that this is
hand.led Just like the arithmetic operators hut
with a lower precedence. The conditional branch
c~nds, '~branch true and pop" and '~branch false
and pop", which are produced by the equations de-
fining UNTILgT and CC~DITIONAIST respectively,
will test the top item in the stack and branch
accord~ly •

The "assig~ent statement" defined by the
equation for ASSIGNST is reversed from the con-
vention in ALGOL 60, i.e., the location into
which the computed valu~ is to be stored is on
the right. Notice also that the equal sign is
used for the ass~-,~ut statement and that period
equal (.=) is used for the relation discussed
above. This is because assignment statements are
more numerous in typical programs than equal com-
Pares, and so the simpler representation is cho-
sen for the more frequently occurring.

The omission of statement labels from the
VALGOL I and VALGOL II seems strange to most pro-
g r a m n e r s . Th i s was n o t done b e m u s e o f any d i f -
f i c u l t y i n t h e i r i m p l e m e n t a t i o n , b u t b e c a u s e o f a
d i s l i k e f o r s t a t e m e n t l a b e l s on t h e p a r t o f t h e
a u t h o r . I have p r o g r s ~ n e d f o r s e v e r a l y e a r s w i t h -
out using a single label, so I know that they are
superfluous from a practical, Is well as from a
theoretical, standpoint. Nevertheless, it
be too much of a digression to try to Justify
this point here. The "until statement" has been
added t o facilitate writing loops without labels.

The "conditional" statement is similar to
the one in ALGOL 60, but hers the "else" clause
is required.

The equation for "input/output", IOST, in-
volves two ccumands, "edit" and "print". The
words EDIT and PRINT do not begin with periods so
that they will look like subroutines written in
code. "EDIT" copies the given string into the
print area, with the first character in the print
position which is computed from the given expres-
sion. "PRINT" will print the current contents of
the print area and then clear it to blanks. Giv-
ing a print cne~and without previous edit com-
mands results in writing a blank line.

IDSEQ1 and II~E~ a r e given t o s i m p l i f y the
s y n t a x e q u a t i o n f o r DEC (d e c l a r a t i e n) . N o t i c e i n
the definition of DEC that a branch is given
around the ~ata.

From the definition of BLOCK it can be seen
that what is considered a compound statement in
ALGOL 60 is, inVALGOL I, a special case of a block
which has no declaration.

In the definition of statement, the test
for an 10ST precedes that for an ASSIGNST. This
is necessary, because if this were not done the
words PRINT and EDIT would be mistaken as identi-
fiers and the compiler would try to translate
"input/output" statements as if they were "assign-
ment" stat~nts.

Notice that a PROGRAM is a block and that a
standard set of cummands is output after each pro-
gram. The "halt" cowhand causes the machine to
stop on reaching the end of the outermost block,
which is the program. The operation code SP is
generated after the "halt" cn~--nd. This is a
completely l~Ol-oriented code, which serves to
set a word mark at the end of the program. It

would n o t be u s e d i f VALGOL I were imp lemen ted on
a f i x e d w o r d - l e n g t h m a c h i n e .

How the META II Compiler Was Written

Now we cume to the most interestin6 part of
this project, and consider how the META II cum-
piler was written in its own lan@uage. The in-
terpreter called the META II machine is not a
much longer 1401 program than the VALGOL I ma-
chine. The syntax equations for META II (figure
5) are fewer in number than those for the VALGOL
I machine (figure i).

The META II cumpiler, which is an interpret-
ive program for the META II machine, takes the
syntax e%uations given in figure 5 and produces an
assembly language version of this same interpret-
ive program. Of course, to get this started, I
had to write the first compiler-writing compiler
by hand. After the program was running3 it could
produce the same progr~n as written by hand. Sume-
one always asks if the compiler really produced
exactly the program I had written by hand and I
have to say that it was "almost" the same pro-
gram. I followed the syntax equations and tried
to write Just what the ccmpiler was going to pro-
duce. Unfortunately I forgot one of the redun-
dant instructions, so the results were not quite
the same. Of course, when the first machine-
produced compiler cunpiled itself the second time3
it reproduced itself exactly.

The compiler originally written by hand was
for a language called METAI. This was used to
implement the improved compiler for META II.
Sometimes, when I wanted to change the metalan-
guage, I could not describe the new metalanguage
directly in the current metalanguage. Then an
ln te rmecLia te l a n g ~ e was c r e a t e d -- one which
c o u l d be d e s c r i b e d i n t h e c u r r e n t l anguage and i n
which t h e new language c o u l d be d e s c r i b e d . I
t h o u g h t t h a t i t m i g h t somet imes be n e c e s s a r y t o
mo d i fy t h e a s s e m b l y l s ~ a g e o u t p u t , b u t i t seems
t h a t i t i s a lways p o s s i b l e t o a v o i d t h i s w i t h t h e
i n t e z ~ e d i a t e language.

The o r d e r l i s t o f the META I I machine i s
given in figure 6.

All subroutines in META II programs are re-
cursive. When the program enters a subroutine a
stack is pushed down by three cells. One cell
is for the exit address and the other two are for
labels which may be generated during the execu-
tion of the subroutine. There is a switch which
may be set or reset by the instructions which re-
fer to the input string, and this is the switch
referred to by the conditional branch co,w, ands.

The first tb~ng in any META II machine pro-
gram is the address of the first instruction.
During the initialization for the interpreter,
this address is placed into the instruction
co~xnter

VALGOL II Written in META II

VALGOL II is an expansion of VALGOL I, and
serves as an illustration of a fairly elaborate
progra~ing language implemented in the META II
system. There are several features in the VAL-
GOL II machine which were not present in the

DI.3-3

VALGOL I machine, and which require some explana-
tion. In the VALGOL II machine, addresses as well
as numbers are put in the stack. They are marked
appropriately so that they can be distinguished at
execution time.

The main reason that addresses are allowed
in the stack is that, in the case of a subscripted
variable, an address is the result of a computa-
tion. In anassig~ent statement each left member
is compiled into a sequence of code which leaves
an address on top of the stack. This is done for
simple variables as well as subscripted variables,
because the philosophy of this compiler writing
system has been to compile everything in the most
general ~ay. A variable, simple or subscripted,
is always compiled into a sequence of instructions
which leaves an address on top of the stack. The
address is not replaced by its contents until the
actual value of the variable is needed, as in an
arithaetic expression.

A formal parameter of a procedure is stored
either as an address or as a value which is com-
Puted when the procedure is called. It is up to
the load co--rid to go through any number of in-
direct address in order to place the address of a
number onto the stack. An arg~nent of a procedure
is always an algebraic expression. In case this
expression is a variable, the value of the formal
parameter willbe an address computed upon enter-
ing the procedure; otherwise, the value of the
formal parameterwill be a n u m b e r c o m p u t e d u p o n
entering the procedure.

The operation of the load cn-~nd is now
described. It causes the given address to be put
on top of the stack. If the content of this top
item happens to be another address, then it is
replaced hy that other address. This continues
until the top item on the stack is the address of
scmething which is not an address. This allows
for formal parameters to refer to other formal
parameters to any depth.

No distinction is made between integer and
real numbers. An integer is ~ust a real number
whose digits right of the decimal point are zero.
Variables initially have a value called "un-
defined", and any attempt to use this value will
b e i n d i c a t e d a s a n error.

An assignment statement consists of any
nmnber of left parts followed bya right part.
For each left part there is compiled a sequence of
co~nds which puts an address on top of the stack.
The right part is compiled into a sequence of in-
structions which leaves on top of the stack either
a number or the address of a number. Following
the instruction for the right part there is a se-
quence of store co, ands, one for each left l~rt.
The first co,and of this sequence is "save and
store", and the rest are "plain" store c~--~ds.
The "save and store" puts the number which is on
top of the stack (or which is referred to by the
address on top of the stack) into a register
called SAVE. It then stores the contents of SAVE
in the address which is held in the next to top
position of the stack. Finally it pops the top
two itezs, which it has used, out of the stack.
The number, however, remains in SAVE for use by
the following store erm~ndS. Most assigv, m~nt
statements have o n l y one l e f t l~rt, so "plain"

store co,~nds are seldom produced, with the re-
sult that the number put in SAVE is seldom used
a~ain.

The method for calling a procedure can he
explained by reference to illustrations i and 2.
The arguments which are in the stack are moved to
their place at the top of the procedure. If the

XXXXXXXX Function

XXXXXXXX Arg~ents
XXXXXXXX

e O 0 e O O ~ e

XXXXXXXX

m ~ O 0 @ @ @ 0

e O @ O O Q I D

@ O @ O g @ @ @

R

Word of one blank char-
acter to mark the end
of the arg~nents.

Body. Branch co~-m~ds
cause control to go
around data stored in
this area. Ends with
a "retunl" C~"a~d.

Illustration i

Storage Map for VALGOL II Procedures

XXXXXXXX
XXXXXXXX
e o e e e e o e

XXXXXXXX
XXX Flag
XXX Address of

........ procedure
e o o e o e e e

Stack before executing
the call instruction

Arguments in reverse order

Exit XXX
e o e e . e o o

e e e , e e e e

S t a c k a f t e r e x e c u t i n g
the call instruction

Illustration 2

Map of the Stack Relating to Procedure Calls

number of arguments in the stack does not corre-
spond to the number of argmnents in the procedure,
an error is indicated. The "flag" in the stack
works like this. In the VALGOL II machine there
is a flag register. To set a flag in the stack,
the contents of this register is put on top of
the stack, then the address of the word above the
top of the stack is put into the flag register.
Initially, and whenever there are no flags in the
stack, the flag register contains blanks. At
other times it contains the address of the word
in the stack which is Just above the uppermost
flag. Just before a call instruction is executed,
the flag register contains the address of the word
in the stack which is two above the word contain-
ing the address of the procedure to be executed.
The call instruction picks up the argmnents from
the stack, beginning with the one stored ~ust

Di.3-4

above the flag, and continuing to the top of the
stack. Arguments are moved into the appropriate
places at the top of the procedure being called.
An error message is given if the nmaber of argu-
ments in the stack does not correspond to the
number of places in the procedure. Finally the
old flag address, which is Just below the pro-
cedure address in the stack, is put in the flag
register. The exit address replaces the address
of the procedure in the stack, and all the argu-
ments, as well as the flag, are popped out.
There are Just two op codes which affect the flag
register. The code "load flag" puts a flag into
the stack, and the code "call" takes one out.

The library function "WHOLE" truncates a
real number. It does not convert a real number
to an integer, because no distinction is made be-
tween them. It is substituted for the recommend-
ed function "ENTIER" primarily because truncation
takes fewer machine instructions to implement.
Also, truncation seems to be used more frequently.
The procedure ENTIER can be defined in VALGOL II
as follows :

.PROCEDURE ~IE~(X).,
• IF 0 .L~ X .THEN WHOLE (X) .ELSE
.~ ~oLE(x) -- x .~N x .E~E
WHOLE(X) -1

The "for statement" in VALGOL II is not the
same as it is in ALGOL. Exactly one list element
is required. The "step •. until" portion of the
element is mandatory, but the "while" portion may
be added to terminate the loop lw~diately upon
sume condition. The iteration continues so long
as the value of the variable is less than or
equal to the maximmn, irrespective of the sign
of the increment. Illustration 3 is an example
of a typical "for statement". A flow chart of
this statement is given in illustration 4.

• FOR I = 0 .STEP i .UNTIL N .DO
(statement)

Set switch to indicate first
SET

time through. Agl

Test for first time through.

Initialize variable.

A92

A93

A94

LD I

BFP

LDL 0 3]
SST
B A9

i]
ADS

Rj LD N
L~
BFP A9

<statement>

RST

B A91

Increment variable.

Compare variable to maximum.

Reset switch to indicate not
first time through.

Illustration 3

Compilation of a typical "for statement"
in VALGOL II

YES

Initialize
variable

i-~I

I Set switch
to indicate
first time
through

NO

Increment
variable
I+i-~ I

to indicate
not first

time through

|

Illustration 4

Flow chart of the "for statement"
given in figure 12

Figure 7 is a listing of the VALGOL II com-
piler written in META II. Figure 8 gives the or-
order list of the VALGOL II machine. A sample pro-
gram to take a determinant is given in figure 9.

Backup vs. No Backup

Suppose that, upon entry to a recursive
subroutine, which represents some syntax equation,
the position of the input and output are saved.
When same non-first term of a component is not
found, the compiler does not have to stop with an
indication of a syntax error. It can back-up the
input and output and return false. The advantages
of backup are as follows :

i. It is possible to describe languages,
using backup, which cannot be described
without backup.

2. Even for a language which can be de-
scribed without backup, the syntax equations
can oif~en be simplified when backup is al-
lowed.

Di. 3-5

The advantages claimed for non-backup are as
follows :

i. Syntax aualysis is faster.

2. It is possible to tell whether syntax
equations will work Just by examining them,
without following through numerous examples.

The fact that rather sophisticated languages
such as ALGOL and COBOL can be implemented without
backup is pointed out by various people, including
Conway,5 and they are aware of the speed advant-
ages of so doing. I have seen no mention of the
second advantage of no-backup, so I will explain
this in more detail.

Basically one writes alternations in which
each term begins with a different symbol. Then it
is not possible for the compiler to go down the
wrong path. This is made more complicated because
of the use of ".EMILY". An optional item can
never be followed by something that begins with
the same symbol it begins with.

The method described above is not the only
way in which backup can he handled. Variations
are worth considering, as a way may be found to
have the advantages of both backup and no-backup.

Further Develol~ment of META Languages

As mentioned earlier, META II is not present-
ed as a standard language, but as a point of de-
parture frum which a user may develop his own META
Is~uage. The term "META Language," with "META"
in capital letters, is used to denote any cumpiler-
writing language so developed. _

The language which Schmidt I implemented on
the PDP-i was based an META I. He has now imple-
mented an improved version of this language for a
Beckman machine.

Rutman9 has implemented LOGIK, a compiler
for bit-time simulation, on the 7090. He uses a
META language to compile Boolean expressions into
efficient machine code. Schneider and Johnson I0
have implemented META 3 on the IBM 7094, with the
goal of producing an ALGOL compiler which gener-
ates efficient machine code. They are planning a
META language which will be suitable for any block
structured language. To this compiler-writing
language they give the name META 4 (pronounced
metaphor).

References

i. Schmidt, L., "Implementation of a Sym-
bol Manipulator for HeuristicTranslation," 1963
ACM Natl. Conf., Denver, Colo.

2. Metcalfe, Howard, "A Parameterized Com-
piler Based on Mechanical Linguistics," 1963 ACM
Natl. Conf., Denver, Colo.

3. Schorre, Val, "A Syntax - Directed
SMALGOL for the 1401," 1963 ACM Natl. Conf., Den-
ver, Colo.

4. Glennie, A., "On the Syntax Machine and
the Construction of a Universal Compiler," Tech.
Report No. 2, Contract NR 049-141, Carnegie Inst.
of Tech., July, 1960.

5. Conway, Melvin E., "Design of a Sel~rahle
Transition-Diagram Compiler," Comm. ACM, July 1963.

6. Irons, E.T., The Structure and Use of
the Syntax-Directed Compiler," Annual Review in
Autumatic Progra~ing, The Macmillan Co., New
York.

7. Bastian, Lewis, "A Phrase-Structure lan-
guage Translator," AFCRL-Rept-62-549, Aug. 1962.

8. Chumsky, Noam, "Syntax Structures ,"
Mouton and Co., Publishers, The Hague, Nether-
lands.

9. Ru~m~n, Roger, "LOGIK, A Syntax Directed
Cumpiler for Cumputer Bit-Time Simul~tion," Master
Thesis, UCLA, August 1964.

i0. Schneider, F. W., and G. D. Johnson, "A
Syntax-Directed Compiler-Writing Compiler to Gen-
erate Efficient Code," 1964 ACM Natl. Conf.,
Philadelphia.

Di.3-6

THE VALGOL I CORPILER WRITTEN IN META I I LANGUAGE
FIGURE 1

*SYNTAX PROGRAM

PRIMARY " * I O *OUT(*LD * •) /
*NUMBER *OUT I *LOL* • 1 /
* (* EXP t i t * *

TERM * PRIMARY S (* • * PRIMARY * O U T (* M L T *)) . ,

EXPl m TERM S (* + * TERM * O U T I t A D D *) /
t - * TERM *OUT(ISUG t)) * *

EXP m EXP1 I * *m* EXPI *OUTI *EGU*) / *EMPTY) , ,

ASSIGNST " EXP . .m * I D * O U T I * $ T * •1 * ,

UNTILST = meUNTILt *LABEL • 1 E X P **DO* *OUT(eBTP m • 2)
ST *OUT(mS * e l l .LABEL • 2 * ,

CONDiTIONALST " * * I F * EXP **THEN* *OUT(*BFP* e l)
ST * *ELSE* *OUT(mS * e2) *LABEL eZ
ST .LABEL • 2 * ,

IOST - *EDIT* * (v EXP * , * *STRING
*OUTI *EDT* •) * l * /
PRINT , O U T (t P N T *) *m

IDSEQI • * I D *LABEL • *OUT i *BLK I t) *m

IDSEQ - I D S E Q 1 S l m t * I D S E Q l l * ,

DEC = * *REAL* . O U T I * B * e l l IDSEO *LABEL • 1 * ,

BLOCK - m.BEGIN* IDEC * * * * / ,EMPTY)
ST S (* , , * ST) m.END* * *

ST = IOST / ASSIGNST / UNTILGT /
CONDITIONALST I BLOCK * *

PROGRAM • BLOCK *OUT(mHLT *)
*OUTI *SP 1 ') * O U T I * E N D * I *e

*END

ORDER L IST OF THE VALGOL I MACHINE
FIGURE 2

MACHINE CODES

LD AAA LOAD PUT THE CONTENTS OF THE ADDRESS AAA
ON TOP OF THE STACK,

LOL NUMBER LOAD L ITERAL PUT THE GIVEN" NUMBER ON TOP OF
THE STACK*

ST AAA STORE STORE THE NUMBER WHICH IS ON TOP
OF THE STACK INTO THE ADDRESS AAA
AND POP UP THE STACK.

ADD ADD REPLACE THE TNO NUMBERS WHICH ARE
ON TOP OF THE STACK WITH THEIR
SUN*

SUB SUBTRACT SUBTRACT THE HUNGER WHICH IS ON
TOP OF THE STACK FROM THE NUMBER
WHICH IS NEXT TO THE TOPI THEN
REPLACE THEN By THIS DIFFERENCE,

MLT MULTIPLY REPLACE THE TWO NUMBERS WHICH ARE
ON TOP OF THE STACK WITH THEIR
PRODUCT,

EGU EQUAL COMPARE THE TWO NUMBERS ON TOP OF
THE STACK* REPLACE THEN BY THE
INTEGER 1 . IF THEY ARE EQUAL* OR BY
THE INTEGER O. I F THEY ARE UNEQUAL*

G AAA BRANCH BRANCH TO THE ADDRE5S AAA*

BFP AAA BRANCH FALSE BRANCH TO THE ADDRESS AAA IF THE
AND POP TOP TERM IN THE STACK IS THE

INTEGER O. OTHERWISE. CONTINUE
IN SEQUENCE, IN EITHER CASE*
POP UP THE STACK.

BTP AAA BRANCH TRUE BRANCH TO THE ADDRESS AAA 1F THE
AND POP TOP TERM IN THE STACK IS NOT THE

INTEGER O* OTHERWISE, CONTINUE
IN SEQUENCE* IN EITHER CASE,
POP UP THE STACK.

EDT STRING EDIT ROWND THE NUMBER WHICH IS OH TOP OF
THE STACK TO THE NEAREST INTEGER N*
MOVE THE GIVEN STRING INTO THE
PRINT AREA SO THAT ITS FIRST CHAR-
ACTER FALLS ON PRINT POSITION N*
IN CASE THIS WOULD CAUSE CHARACTERS
TO FALL OUTSIDE THE PRINT AREA* NO
MOVEMENT TAKES pLACE*

PNT PRINT PRINT A L I N E * THEN SPACE AND CLEAN
THE PRINT AREA*

HLT HALT HALT*
CONSTANT AND CONTROl. CODES

SP N SPACE N u 1 - - 9 * CONSTANT CODE PRODUCING
N BLANK SPACES*

BLK NNN BLOCK PRODUCES A 8LOCK OF NNN EIGHT
CHARACTER WORDS*

END END DENOTES THE END OF THE PROGRAM*

D1.3-7

A PROGRAM AS COMPILED FOR THE VALGOL I MACHINE
FIGURE 3

*BEGIN
• REAL X * * 0 " X * *

B A01 OOOO G 0012
X 0004

BLK 001 0004
A01 0012

LDL 0 0012 A
ST X 0021 B 0004

• U N T I L X .m 3 *DO .BEGIN
A02 O025

LD X 0025 0 0004
LDL 3 0029 A
EQU 0038 F
BTP A03 0039 K 0097

EDIT(X•X • 10 + 1 . * • ' 1 , * PRINT * * X + 0 ,1 • X
LD X 0043 0 0004
LD X 0047 0 0004
NLT 0 0 5 1 E
LDL 10 0052 A
MLT 0 0 6 1 E
LDL 1 0062 A
ADD 0 0 7 1 C
EDT 0 1 * e * 0072 I
PNT 0074 0
LD X 0075 0 0004
LDL 0*1 0079 A
ADO 0088 C
ST X 0089 B 0004

*END
B A02 0093 G 0025

A03 0097
.END

HLT 0097 J
SP 1 0098
END 0099

OUTPUT FROM THE VALGOL I PROGRAM GIVEN I N FIGURE 5
FIGURE 4

t

THE NETA 11 COMPILER NRITTEN IN ITS ONN LANGUAGE
FIGURE 5

• SYNTAX PROGRAM

OUTI ~ 'tl' * O U T I ' G N i ') / ,e2, eOUTI 'GN2' I /
,e, eOUTI IC I I) / .STRING eOUTI'CL ' " l e t

OUTPUT I I,eOUT t e l ,
$ OUT1 !) , / ' .LABEL ' .OUTIeLBOl OUTII eOUTI 'OUTt l ey

EX3 J e lD ,OUT (' C L L ' e l / .STRING
.OUTItTST ' e l / ' * I D t . O U T I ' I D o) I
'.NUMBER' eOUTI°NUN ') /
'*STRING o oOUTI 'SR') / e ly EX1 l i t /
' ,EMPTY' .OUT I 'SET ') /
t$1. .LABEL t l EX3
• OUT ('BT ' e l l eOUTI ISETt Ie ,

EX2 a IEX3 eOUT('BF ' t l) / OUTPUT)
S (EX3 .0UT IeBE I) / OUTPUT)
• LABEL Ol et

EX1 u EX2 E l ' / ' eOUTIOBT , O l l EX2)
• LABEL t l et

ST • e lD eLABEL • m., EX1
tee' . O U T (' R e) . .

PROGRAN " ' .SYNTAX' * ID oOUTI'ADR' ~)
$ ST °.END° eOUTI tEND°)* ,

eEND

R RETURN

SET SET

B AAA BRANCH

BT AAA BRANCH IF TRUE

BF AAA BRANCH IF FALSE

BE BRANCH TO ERROR
IF FALSE

CL STRING COPY LITERAL

CI COPY INPUT

GNI GENERATE 1

GN2 GENERATE 2

LB LABEL

OUT OUTPUT

RETURN TO THE EXIT ADDRESS, POPPING
UP THE STACK BY ONE OR THREE CELLS
ACCORDING TO THE FLAG. IF THE
STACK IS POPPED BY ONLY ONE CELLy
THEN CLEAR THE TOP TNO CELLS TO
BLANKS, BECAUSE THEY WERE BLANK
NHEN THE SUBROUTINE WAS ENTERED,

SET BRANCH SWITCH ONe

BRANCH UNCONDITIONALLY TO LOCATION
AAAe

BRANCH TO LOCATION AAA IF SNITCH IS
ONe OTHERNISE, CONTINUE IN SEQ-
UENCE*

BRANCH TO LOCATION AAA IF SWITCH
IS OFF, OTHERW|SEY CONTINUE IN
SEQUENCE,

HALT IF SNITCH IS OFF, OTHERWISE*
CONTINUE IN SEQUENCE.

OUTPUT THE VARIABLE LENGTH STRING
GIVEN AS THE ARGUNENTo A BLANK
CHARACTER WILL BE INSERTED IN THE
OUTPUT FOLLONING THE STRING.

OUTPUT THE LAST SEQUENCE OF CHAR-
ACTERS DELETED FROM THE INPUT
STRING. THIS COM/4ANlll NAY NOT FUNC-
TION PROPERLY IF THELAS~ COMMAND
WHICH COULD CAUSE DELETION FAILED
TO DO SO.

THIS CONCERNS THE CURRENT LABEL 1
CELL, IE .y THE NEXT TO TOP CELL IN
THE STACK, NHICH IS EITHER CLEAR OR
CONTAINS A GENERATED LABELe IF
CLEAR, GENERATE A LABEL AND PUT IT
INTO THAT CELL. NHETHER THE LABEL
HAS JUST BEEN PUT INTO THE CELL OR
NAB ALREADY THEREy OUTPUT I T .
FINALLY. INSERT A BLANK CHARACTER
IN THE OUTPUT FOLLOWING THE LABEL.

SAME AS GN1, EXCEPT THAT IT CON-
CERNS THE CURRENT LABEL 2 CELL*
I E , , THE TOP CELL IN THE STACK,

SET THE OUTPUT COUNTER TO CARD
COLUMN 1,

PUNCH CARD AND RESET OUTPUT COUNTER
TO CARD COLUMN 8e

P:l.gur e 6 .2

ORDER LIST OF THE NETA l i MACHINE
FIGURE 6

TST STRING TEST

MACHINE CODES

AFTER DELETING I N I T I A L BLANKS IN
THE INPUT STRING, COMPARE IT TO THE
STRING GIVEN AS ARGUMENT. IF THE
COMPARISON IS NET, DELETE THE
MATCHED PORTION FROM THE INPUT AND
SET SNITCH. IF NOT NET, RESET
SNITCHe

ID

NUN

SR

CLL AAA

IDENTIFIER

NUMBER

STRING

CALL

AFTER DELETING I N I T I A L BLANKS IN
THE INPUT STRING. TEST IF IT BEGINS
WITH AN IDENTIFIER, I E , t k LETTER
FOLLOdED BY A SEQUENCE OF LETTERS
AND/OR DIGITS. IF SO, DELETE THE
IDENTIFIER AND SET SWITCHe IF NOTe
RESET SWITCH,

AFTER DELETING I N I T I A L BLANKS IN
THE INPUT 5TRINGJ TEST IF IT BEGINS
WITH A NUMBER. A NUMBER 15 A
STRING OF DIGITS WHICH MAY CONTAIN
IMBEDED PERIODSy BUT HAy HOT BEGIN
OR END WITH A PERIO0, NOREOVERy NO
TWO PERIODS NAY BE NEXT TO ONE
ANOTHER, IF A NUHBER IS FOUND,
DELETE IT AND SET SWITCH, IF NOT,
RESET SWITCH,

AFTER DELETING I N I T I A L BLANKS IN
THE INPUT STRINGy TEST IF IT BEGINS
WITH A STRINGJ IEey A SINGLE QUOTE
FOLLOWED BY A SEQUENCE OF ANY
CHARACTERS OTHER THAN SINGLE QUOTE
FOLLOWED BY ANOTHER SINGLE QUOTED
IF A STRING IS FOUNDy DELETE IT AND
SET SWITCHo IF NOTi RESET $ i lTCHo

ENTER THE SUBROUTINE BEGINNING IN
LOCATION AAAe .IF THE TOP TWO TER~IS
OF THE STACK ARE BLANK, PUSH THE
STACK DOWN BY ONE CELL, OTHERNISEt
PUSH IT DOWN By THREE CELLS, SET A
FLAG IN THE STACK TO INDICATE
NHETHER IT.HAS BEEN PUSHED BY ONE
OR THREE CELLS, THIS FLAG AND THE
EXIT ADDRESS GO INTO THE THIRD
CELL. CLEAR THE TOP TWO CELLS TO
BLANKS TO INDICATE THAT THEY CAN
ACCEPT ADORESSES WHICH HAY BE
GENERATED WITHIN THE SUBROUTINE.

AOR IDENT ADDRESS

END END

CONSTANT AND CONTROL CODES

PRODUCES THE ADDRESS WHICH IS
ASSIGNED TO THE GIVEN IDENTIFIER AS
A CONSTANT,

DENOTES THE END OF THE PROGRAM*

Figure6.3

PiEure 6.1
Di.3-8

VALGOL |1 COMPILER MRITTEN I N META I !
FIGURE T

*SYNTAX PROGRAM

ARRAyPART • I I * * EXP t ,) o . O U T I O A I A O l * *

CALLPART • ' 1 ' .OUTIOLDF t) (EXP $ (t t t EXP) /
*EMPTY) t i t , D U T (o C L U) * t

VARIABLE • B ID * O U T (° L D t e | (ARRAYPART / .EMPTY) e l

PRIMARY m oMHOLEt o(o EXP t i e * O U T (' W H L ') /
* I O * O U T I t L D ' ~) (ARRAYPART / CALLPART / °EMPTY) /
e .TRUE t ,OUT(O$ET e) / % F A L S E t oOUT(ORGT t) /
oO ' * O U T I O R S T t | / ' 1 ' , O U T (' $ E T t) /
*NUMBER , O U T I I L D L ° ~) /
t i t EXP t l ' ° *

TERM • PRIMARY $ (l e o PRIMARy *OUT(OMLTOl /
I l l PRIMARY * O U T I I D I V l) I
, , / . o PRIMARY * O U T | g D I V o) * O U T (° U H L °)) • o

EXP2 " t - o TERM *OUTIONEG ') /
e+ t TERM / TERM * t

EXP1 • EXP2 $ (' + ' TERN . O U T I t A D D ~) /
t . o TERM * O U T I o S U B O I I *,

RELATION " EXPX (
' , L • ° EXP1 * O U T I I L E Q °) /
O * L ' EXP1 *OUT(OLES t) /
% • a E X P l * O U T I ' E Q U O l /
' * - - ' EXPI *DUTI~EQU t) * O U T (t R O T °) /
t * G • t EXP1 *OUT(OLESOl . O U T I O N O T t) /
l e G I EXP1 • O U T I t L E Q I) *OUTI tMOT I) /
*EMPTY) ,~

BPRIMARy • , . . o R E L A T I O M ' . O U T (t N D T , ~ /
RELATION * t

BTERM " BPRIMARY $ (l . ~ o .OUTIOBF , i l)
. O U T I I P O P I) 8PR1MARYI
. L A B E L 11 * t

BEXP1 • BTERM S(' * V ° .OUTIOBT o t 1 |
*OUT(oPOP *) BTERM)
*LABEL t l . t

I M P L I C A T I O N 1 • I , I M p t . O U T I I M O T I ~
, O U T I I B T I ~11 eOUTI IPOP t)
BEXP1 *LABEL • 1 i t

I M P L I C A T I O N • BEXPI $ I M P L I C A T I O N 1 * t

l~.&~w • T . X

EOUIV m I ~ L I C A T I O N S I , . E Q O ,OUTIOEQUO) I * t

EXP a * . I F * EXP ° . T H E N ° *OUTIOBFP t t l)
EXP . O U T I t B ' QZ} , L A B E L e l
' . E L S E ' EXP *LABEL • 2 /
EOUIV * ,

ASSIBNPART • emo EXP (ASSIGNPART , O U T (e S T e) /
*EMPTY *OUT(OSGT I) I °e

ASSIGNCALLST • * I D *OUTIOLD ' e l (ARRAYPART AS$1GMPART /
ASS1GNPART / (CALLPART / *EMPTY
* O U T I O L D F t) . O U T I t C L L o))
* O U T I I p O p I)) e l

U N T I L S T " I . U N T I L ° *LABEL t l EXP
eeDOO ,OUT(OBTP ~ t 2) ST
.OUT(OB t t 1 | *LABEL • 2 *o

WH1LECLAUSE " l . W H I L E ' o O U T I I B F e ~1)
, O U T I O P O P t l EXP *LABEL t l / ,EMPTY o j

FORCLAUSE • VARIABLE *so .OUTIOFLpO)
.OUTIOBFP I t l) EXP ' * S T E P °
* O U T I ' S S T ') . O U T I I B t ~ 2)
*LABEL t 1 E X P I e U M T I L I . O U T I t A D S t)
. L A B E L o2 *OUT IORSRI) EXP
* O U T I t L E Q °) MHILECLAUSE **DO* * t

FORST " * *FORt *OUTIOSETO) *LABEL ~1
FORCLAUSE * O U T (t B F p ° 1 2) ST
,OUT IORSTe | .OUTIOB t ~ 1)
*LABEL e2 *e

IOCALL • ' R E A D ' e (t VARIABLE ° t o EXP o ie , O U T (I R E D t) /
mNRITEO m (l VARIABLE m l l EXP mI t ,OUT i tWRTO) /
OEDITO t (~ EXP ' * ' ,STR ING
,OUTIOEDT ~ i l l i d /
, P R I N T o . O U T I t P N T ') /
'EJECT t , O U T I ° E J T ' ~ . t

]DSEQ1 " * I D . LABEL ~ .OUTIOBLK I t) , ~

;DSEQ " IDSEQI $ (o ~ , IDSEQ1) * j

TYPEDEC m ' . R E A L * IDSEO . *

ARRAY1 • * I D *LABEL • o (, i tOO o . . t °NUMBER
.OUTIOBLK l t l , O U T I , B L K t •) , .) o * t

ARRAYDEC m l e A R R A y I ARRAY1 $(o , i ARRAY1) ~ l

PROCEDURE - oePROCEDUREt , I D , L A B E L t
, L A B E L e l o O U T I I B L K 1 ') r i o
I IDSEG / *EMPTY! t) , * O U T I ' S P 1 ' 1 t . l °

GT . O U T I I R i t ~ i i s

D 1 . 3 - 9

DEC a TYPEDEC / ARRAYDEC / PROCEDURE . *

BLOCK - ' . B E G I N ' * O U T I ' B , e l l S i D E C '.t')
• LABEL t l ST $ (° * o o ST) ' * E N D °
(* I D / .EMPTY) * ,

URCONDITIONALST • IOCALL / ASSIGNCALLST /
BLOCK *o

CONDST " ' * I F ° EXP ' . T N E N ' - O U T I ' B F P ° ~1)
IUNCONDIT IONALST IOeELSE ' e O U T I ' B ' t 2)
• LABEL ~1 ST *LABEL t 2 I *EMPTY
• LABEL ~1) / (FORST / U N T I L S T)
• LABEL O l) , l

ST " COMDST / UNCOMD|TIONALST / FORST /
U N T I L S T / *EMPTY *p

PROGRAM • BLOCK
• O U T l a H L T ') * O U T I I S p 1 ') . O U T I ' E N D ') .,

*END

~Igu.~ e ~.3

ORDER LIST OF THE VALGOL I I MACHINE
FIGURE S

MACHINE CODES

bD AAA LOAD PUT THE ADDRESS AAA ON TOP OF THE
STACK*

LDL NUMBER LOAD LITERAL

SET SET

RST RESET

ST STORE

ADS ADD TO STORAGE
NOTE 1

SST SAVE AND STORE
NOTE 1

RSR RESTORE

ADD ADD
NOTE 2

SUB SUBTRACT
NOTE 2

NLT MULTIPLY
NOTE 2

DIV DIVIDE
NOTE 2

PUT THE GIVEN NUMBER ON TOP OF
THE STACKm

PUT THE INTEGER 1 ON TOP OF THE
STACKe

PUT THE INTEGER O ON TOP OF THE
STACKo

STONE THE CONTENTS OF THE REGISTERo
STACKIt IN THE ADDRESS WHICH IS ON
TOP OF THE STACKm THEN POP UP THE
STACK,

ADD THE NUMBER ON TOP OF THE STACK
TO THE NUMBER WHOSE ADDRESS lS NEXT
TO THE TOP, AND PLACE THE SUM IN
THE REGISTERD STACK1* THEN STORE
THE CONTENTS OF THAT REGISTER IN
THAT ADURE$St AND POP THE TOP TWO
ITEMS OUT OF THE STACK*

PUT THE NUMBER ON TOP OF THE STACK
INTO THE REGISTER. STACK1. THEN
STORE THE CONTENTS OF THAT REGISTER
IN THE ADDRESS HHICH IS THE NEXT
TO TOP TERN OF THE STACK. THE TOP
TWO iTEMS ARE POPPED OUT OF THE
STACK*

PUT THE CONTENTS OF THE REGISTERt
STACKlt ON TOP OF THE STACK,

REPLACE THE TWO NUMBERS WHICH ARE
ON TOP OF THE STACK WITH THEIR
SUM°

SUBTRACT THE NUHBER NHICH |SON
TOP OF THE STACK FRON THE HUHBER
WHICH IS NEXT TO THE TOP, THEN
REPLACE THEN BY THIS DIFFERENCE,

REPLACE THE TWO NUHBERS WHICH ARE
ON TOP OF THE STACK WITH THEIR
PRODUCT,

DIVIDE THE NUMBER WHICH IS NEXT TO
THE TOP OF THE STACK BY THE NUMBER

MHICH IS ON TOP OF THE STACK, THEN
REPLACE THEM BY THIS QUOTIENT.

Pigure 8.1

MEG

WHL

HOT

LEG

LEG

EQU

B AAA

BT AAA

SF AAA

BTP AAA

BFP AAA

NEGATE
NOTE 1
WHOLE

NOT

LESS THAN OR EQUAL
NOTE 2

LESS THAN
NOTE 2

CHANGE THE 51GN OF THE NUMBER ON
TOP OF THE STACK*
TRUNCATE THE NUMBER WHICH IS ON
TOP OF THE STACK*

IF THE TOP TERN IN THE STACK IS THE
INTEGER O, THEN REPLACE IT WITH THE
INTEGER i t OTHERWISE, REPLACE iT
WITH THE INTEGER 0*

IF THE NUMBER WHICH IS NEXT TO
THE TOP OF THE STACK IS LESS THAN
OR EQUAL TO THE NUMBER ON TOP OF
THE STACK, THEN REPLACE THEM WITH
THE INTEGER 1o OTHERWISE, REPLACE
THEM WITH THE iNTEGER 0*

IF THE NUMBER WHICH IS NEXT TO
THE TOP OF THE STACK IS LESS THAN
THE NUMBER ON TOP OF THE STACKp
THEN REPLACE THEM WITH THE
INTEGER le OTHERNISE~ REPLACE THEM
WITH THE INTEGER U*

EQUAL
NOTE 2

BRANCH

BRANCH TRUE

BRANCH FALSE

BRANCH TRUE
AND POP

BRANCH FALSE
AND POP

CO0~OARE THE TWO NUHBERS ON TOP OF
THE STACK. REPLACE THEM BY THE
INTEGER 1, IF THEY ARE EGUALo OR BY
THE INTEGER 0 t IF THEY ARE UNEQUAL*

BRANCH TO THE ADDRESS AAAo

BRANCH TO THE ADDRESS AAA IF THE
TOP TERN IN THE STACK IS HOT THE
INTEGER 0* OTHERHISE. CONTINUE
iN SEQUENCE* DO NOT POP UP THE
STACK.

BRANCH TO THE ADDRESS AAA IF THE
TOP TERM IN THE STACK IS THE
INTEGER O* OTHERNiSEt CO~TINUE
IN SEQUENCE* DO NOT POP UP THE
STACK*

BRANCH TO THE ADDRESS AAA iF THE
TOP TERM IN THE STACK IS NOT THE
INTEGER O. OTHERWISEP CONTINUE
IN SEQUENCE. iN EITHER CASE. POP
UP THE STACK*

BRANCH TO THE ADDRESS AAA IF THE
TOP TERN IN THE STACK IS THE
INTEGER O* OTHERWISE. CONTINUE
IN SEQUENCE* IN EITHER CASE,
POP UP THE STACK.

CLL CALL

LDF LOAD FLAG

R AAA RETURN

AIA ARRAY INCREMENT
ADDRESS

FLP FLIP

POP POP

EDT STRING EDIT
NOTE 1

PRT PRINT

EJT EJECT

RED READ

ENTER A PROCEDURE AT THE ADDRESS
WHICH IS BELOW THE FLAG.

PUT THE ADDRESS WHICH IS lH THE
FLAG REGISTER ON TOP OF THE STACKt
AND PUT THE ADDRESS OF THE TOP OF
THE STACK INTO THE FLAG REGISTER.

RETURN FROM PROCEDURE.

INCREMENT THE ADDRESS WHICH I$ NEXT
TO THE TOP OF THE STACK BY THE
INTEGER WHICH IS ON TOP OF THE
STACKJ AND REPLACE THESE BY THE
RESULTING ADDRESS.

INTERCHANGE THE TOp TWO TERNS OF
THE STACK*

POP UP THE STACK.

ROUND THE NUMBER WHICH IS ON TOP OF
THE STACK TO THE NEAREST INTEGER N*
MOVE THE GIVEN STRING INTO THE
PRINT AREA SO THAT ITS FIRST CHAR-
ACTER FALLS OH PRINT POSITION No
IN CASE THIS WOULD CAUSE CHARACTERS
TO FALL OUTSIDE THE PRINT AREAj NO
HOVEHENT TAKES PLACE*

PRINT A LINEr THEN SPACE AND CLEAR
THE PRINT AREA,

POSITION THE PAPER IN THE PRINTER
TO THE TOP LINE OF THE NEXT PAGE.

READ THE FIRST N NUMBERS FROM A
CARD AND STORE THEM BEGINNING IN
THE ADDRESS WHICH IS NEXT TO
THE TOP OF THE STACK* THE INTEGER
N IS THE TOP TERM OF THE STACK,
POP OUT BOTH THE ADDRESS AND THE
INTEGER. CARDS ARE PUNCHED WITH UP
TO 10 EIGHT DIGIT NUNBERS. DECIMAL
POINT IS ASSUMED TO BE IN THE
MIDDLE. AN 11-PUNCH OVER THE
RIGHTNOST DIGIT INDICATES A NEG-
ATIVE NUHBER*

Pigur • 8 . 3

WRT

HLT

WRITE

HALT

PRINT A LINE OF N NUMBERS BEGINNING
IN THE ADDRESS WHICH I$ NEXT TO
THE TOP OF THE STACK. THE INTEGER
N IS THE TOP TERM OF THE STACK*
POP OUT BOTH THE ADDRESS AND THE
INTEGER. TWELVE CHARACTER POSI-
TIONS ARE ALLOWED FOR EACH NUMBER*
THERE ARE FOUR DIGITS BEFORE AND
FOUR DIGITS AFTER THE DECIMAL.
LEADING ZEROES IN FRONT OF THE
DECIMAL ARE CHANGED TO BLANKS.
IF THE NUMBER IS HEGATIVEi A MINUS
SIGN lS PRINTED IN THE POSITION
BEFORE THE FIRST NON-BLANK CHARACT-
ER*

HALT,

SP" N

BLK NNN

END

NOTE 1.

NOTE 2*

CONSTANT AND CONTROL CODES

SPACE H " 1 - - 9 , CONSTANT CODE PRODUCING
N BLANK SPACES,

BLOCK PRODUCES A BLOCK OF NNN EIGHT
CHARACTER WORDS*

END DENOTES THE ENO OF THE PROGRAM*

IF THE TOP ITEM IN THE STACK lS AN ADDRESSe IT IS
REPLACED BY ITS CONTENTS BEFORE BEGINNING THIS
OPERATION.

SAME AS NOTE lo BUT APPLIES TO THE TOP TWO ITEMS.

Pigu~e 8.4

Figure 8.2

D1.3- I0

EXAMPLE PROGRAM IN VALGOL I I
FIGURE 9

,BEGIN
.PROCEDURE DETER/41NANT(At N) * *
*BEGIN
• PROCEDURE DUMP() * t
,BEGIN
,REAL D * *
• FOR O • O *STEP 1 *UNTIL N-1 *DO

WRITE¢MATRIX(* NtD ,) t N) e t
PRINT
• END DUMP * *
• PROCEDURE ABS(X) . ,

AB$ • , I F 0 *L • X *THEN X ,ELSE -X , t
• REAL PRODUCTe FACTOR* TEMPe Re l o J . ,
PRODUCT • I * *
• FOR R • 0 *STEP I . U N T I L R-2
• WHILE PRODUCT , - • 0 .DO *BEGIN

I ' R . J
• FOR J • R+I *STEP I . U N T I L N - I .DO

• IF ABS(A (* N ' I ÷ R *) | *L
ABS(A (* N I J ÷ R * }) ,THEN

I • J . e
• IF A (. Ne l + R * | * " O *THEN

PRODUCT " O
,ELSE

e l F [, - 0 R ,THEN *BEGIN
PRODUCT • -PRODUCT * *
°FO~ J • R .STEP I *UNTIL N - I oDD
*BEGIN

TE/4P • A (* NI'R + J o) * t
A(* NeR ÷ J .) • A I * N t I + J *) . *
A (• No l + J ,) s TENP ,END oENO , t

T E N P • A (. NtR ÷ R *) * *
• FOR I • R+I ,STEP I , U N T I L N--1 ,DO
*BEGIN

FACTOR " A (, N t l + R .) / TE/4P . t
• FOR J • R °STEP I *UNTIL N-1 .DO

A l e NeI + J *) " A (, N t l ÷ .J e)
-FACTOR • A (* NeR + J *) , ,

DUMP
• END * E N D . ,

• FOR I • O *STEP I *UNTIL N-1 *DO
PRODUCT • PRODUCT • A (* N~I + I o) ° *

DETERNINANT • PRODUCT
• END DETERMINANT * ,
• REAL N t N t T . t .ARRAY NATRIX (. O , . 24 .) . *
• UNTIL .FALSE .DO ,BEGIN

E D I T (l , *F IND DETER/4|NANT OF 0) , t P R I N T * , PRINT. o
READ(/4* 1| . ,
,FOR 14 " 0 ,STEP I ,UNT IL /4-1 °DO *BEGIN

READINATRIX l * NON o | t H) e ,
NRITE(NATRIX (. NeN ,) * NI .END o9

PRINT . * T • DETER/41NANT (MATRIX, N) . *
N R I T E (T * 1) . , P R I N T * t PRINT *END

• END PROGRAM

DI.)-i1

