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Preface

The symposium ‘Quantum Chemistry — The State of the Art’ was sponsored and organized
by the Science Research Council’s Atlas Computer Laboratory as ‘SRC Atlas Symposium No 4’
and held at St. Catherine’s College, Oxford, on 8-11 April 1974. The programme, consisted
of some forty papers presented to an international audience of approximately 100 scientists,
The scope of the programme was deliberately kept as broad as possible, and covered the
range of molecular scattering theory, correlated wavefunctions and Hartree-Fock theory and
applications. It is our hope that the meeting provided a useful way of drawing together
experts in each of these three important aspects of theoretical chemistry.

For the success of the meeting our thanks must first go to the director of the Atlas Computer
Laboratory, Dr. J. Howlett CBE, for allowing the meeting to be the subject of the fourth
Atlas symposium, and for allowing the administration group of the laboratory to be used
for organizational purposes, and to Mr. C.L. Roberts MBE, head of the administration group,
whose sound practical advice was always most welcome.

It is a particular pleasure to acknowledge the assistance rendered by Mrs. C. Davis, who acted
as conference secretary, and to Miss E.S. Butler whose perfectionism has played such a vital
part in the production of the present volume. Finally, our debt to Miss C. Brown of Imediaprint
Limited must not be left unacknowledged. She has been responsible for the typesetting of the
entire volume, an arduous task which has been completed with painstaking attention to detail
from copy remarkable for its ‘variable’ quality.

' . : V.R. Saunders
J. Brown

Atlas Computer Laboratory
Chilton Didcot Oxfordshire OX11 0QY

May 1975
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Review Notes on Molecular

Scattering Theory
M.S.Child*

Exact numerical solution of the quantum mechanical equations of motion for all but the simplest
model molecular collision problems would be prohibitive in computation time. Hence it may be
helpful to give a brief review of the available approximation methods.

At the highest level we have the close-coupling
approximation obtained by an expansion in unper-
turbed internal eigenfunctions ¢n(p) with energies £ .
r and p are used throughout to denote collections of
translational and internal coordinates respectively.

Vr.0) = Z 9o}, () (1)

The resulting coupled equations may be abbreviated
in the matrix form.

[.‘Qz + k? — U(r)]qr(r) = 0, (2)
dr

where

k2= [2m(E-E))M?]8,.. . U, 0) = 2mb (D,

and ¥ is the matrix of the interaction potential in the
basis of internal states. This is an approximation only
to the extent that it is necessary to truncate the basis
set. An efficient programme due to Gordon [1] is
available through QCPE.

First order perturbation solutions of (2) yield the
Born and Distorted Wave approximations, according
to which the scattering amplitude is given by

™ e f Vo0 U, D Ndr  G)

where the \pg(r) are solutions of (2), obtained in the

Born approximation by neglecting the matrix U ;

the diagonal elements Unn(r) are retained in the

distorted wave method. Solutions of this form
diverge as the Fourier component of U, .(r) at the
de Bro%Ie difference frequency in the product
W (r)y,. (r) increases.

Solutions of equations (2) by the amplitude density
method [2] may be combined to yield an exponential
form for the § matrix,

S = exp(id), (4)

where A4 is a hermitian matrix. Trunction of a series
for A by the first term yields the exponential
approximation [3]. according to which

8

A,
nn (k k )‘/1

w (r) Uy (1) Y Andr . (5)

The necessary integrals are therefore identical to
those which arise in the Born or distorted wave
expressions, but the unitarity of the § matrix is
necessarily preserved.

Other types of approximation are obtained by
representing the collision as a time-dependent dis-
turbance to the internal state, and the relation
between this formulation and the time independent
equations (2) above has recently been discussed [4-5].
An important limitation is that the translational
motion in all channels of interest should be adequately
described by a common trajectory (). This classical
path approach yields the following perturbation
formulae.

1 oo
Snn' = ﬁ [

and

¢

Voo [F(0)] exp oo .t)dt (6)

Soar = %f: [Vn,,, )] exp(é f e bl W, [r(t’)]}dt'>]dt , ™)

* Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG



where
hwnn' = En - En,
Wn(r) =) Vm(r).

Equations (6) and (7) are analagous to the Born and
Distorted Wave approximations respectively. An
exponential classical path approximation due to
Magnus [6] is also available, namely

S = explid] ,
1 oo
A""':-Ej-oo Voo @) expliw 1)dt. (8)

This reduces to the sudden approximation [7] if the
wpn are set equal to zero. Equations somewhat
similar to (6){8), but with classical Fourier com-
ponents in place of the matrix elements V..(r), have
been derived by correspondence principle arguments
(8].

The above equations all assume a quantum des-
cription at least of the internal state. This has been
replaced in an important recent series of papers by
a strictly semi-classical argument, derived either from
the Feynmann path integral [9] approach to quantum
mechanics [10], or from the multidimension WKB
solution of the time independent Schrddinger equation
[11,12]. The results, which have been described as
‘classical mechanics plus quantum superposition’, show
that the § matrix elements for classically allowed
processes take the form

. (V) :
S = Z[P,ﬁ,';?]‘/’ i ©)

14

V) V) : y i
where me, and ¢ are the classical probability and

classical action for the event in question, and the sum

is taken over all trajectories leading to that event.

Furthermore the theory may be extended into the
classically forbidden region by working with solutions
of Hamilton’s classical equations of motion in the
complex time and coordinate planes [13,14]. Prob-
lems arise at the classical threshold, but these may

be handled by special integration techniques [15].

Applications to electronically non-adiabatic (surface-

hopping) processes have also been discussed [16,17].
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Application of the Correspondence Principle
to Vibrational and Rotational Excitation

D.Richards*

The physical ideas behind Heisenberg’s form of the correspondence principle are described: it is shown
how this correspondence principle provides semi-classical approximations to the excitation of excited
systems when perturbed by time dependent fields.

A generalisation, the strong coupling correspondence principle (SCCP), is described.

Applications of the SCCP to both vibrational and rotational excitation are given, and where possible
these results are compared with quantum mechanical calculations.

Introduction

The correspondence principle methods described
here have proved to be a powerful tool for the
calculation of excitation cross sections. These
methods are based upon Heisenberg’s form of the
correspondence principle, and the main assumption
made is that classical perturbation theory - which is
quite different from quantal perturbation theory -
provides a good description of the classical collision.
For transitions between highly excited states this is
not a very restrictive condition, and its use has many
computational advantages; when classical perturbation
theory is not valid pure classical mechanics is often
sufficient to obtain cross section since then quantal
effects are often small. For transitions between low
‘lying states semiclassical methods are not firmly
established; new methods based upon correspondence
identities are now being developed to deal with these
transitions. These are briefly described later.

For atomic systems, where the interaction poten-
tials are known, the correspondence principle methods
described here together with pure classical calculations
have been successfully used to understand the ranges
of validity of the various theories and to obtain cross
sections for wide ranges of relevant parameters, and
processes, e.g. [1]. For molecular systems no such
program has yet been carried through and the validity
and accuracy of many approximations is still uncertain.

The Correspondence Principle

The correspondence principle states that as the
quantum numbers become large quantum mechanics
goes into classical mechanics. However, the principle
may be invoked in a variety of ways some of which
are more useful than others. One of the more useful

is Heisenberg’s form of the correspondence principle:
here quantal matrix elements are approximated by
Fourier components of the classical motion.

Since our approximations are based upon this
correspondence principle we shall consider the physical
ideas behind it before considering their applications.
Only a one dimensional system will be considered,
but the theory is essentially the same as for a many
dimensional separable system the time variable being
replaced by the angle variables (2}. No attempt will
be made to prove mathematically any of the approxi-
mations.

First consider a bound particle moving in one
dimension: its motion is periodic and of frequency
w(£), which usually depends upon the energy E
Thus the motion may be expressed as a Fourier series
in time:

x(t) = I X (E)exp-iswt (la)
§=-00
w {2/w
XS(E) = = dr x(7) exp iscor . (1b)
2n) o

and any function of the dynamical variables may be
expressed similarly.

According to classical radiation theory, an accele-
rating charge radiates energy as electromagnetic
radiation. If the energy loss over one period of its
motion is small the Fourier development of its
motion, equation (la), is still a good approximation
and it can be shown [3] that the system will radiate
at those frequencies present in the Fourier series (1a),

s Ww(E), (a)

* Mathematics Department, Open University, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA



and that the intensity of each frequency is

2 4
I SN IX(E)I. (2b)
3c3

Now consider the equivalent quantal system with
energy levels £, and states |[n>. Suppose that it is in
an excited level, n. Its behaviour is quite different
form that of the classical system; it decays to a lower
level, m, emitting a photon of frequency

E
w(m,n) = J‘h—’“ , (m<n) (3a)

and there is a known probability per unit time of a
photon of each frequency being emitted. An
ensemble of such systems will emit radiation at these
frequencies, (3a), and with intensities, per atom:

4e? w(m,n)®

I(n>m) = 303
¢

[<mlxi>|?. (3b)

According to the correspondence principle an
ensemble of classical and quantal systems would look
the same if the quantum numbers are large. Thus we
should expect the frequencies and intensities to be
approximately the same:

E -F
w(m,n) = —m—h—" ~ sw(E), (4a)

<mlxjn> ~ XS(E)
(4b)

w (21w

~ — dt x(7) exp iswt
27 0

wheres=n - m.

This is Heisenberg’s form of the correspondence
principie, named after him because of his use of it in
his formulation of matrix mechanics [4] .

There is some ambiguity present in these equations
since the orbit of the classical system has not been
specified. In fact it can not be specified uniquely
since one classical orbit is being used to connect two
quantal states of different energy. In practice it is
best to use some mean of the initial and final orbit
which is labelled by a quantum number n; the
relation between this quantum number and the energy
of the orbit is determined from the Bohr-Sommerfeld
quantisation conditions.

It is approximation (4b) and its generalisation to
arbitrary functions,

w (2nf/w )
<m|F(x)in> =~ 2—f dr F(x(1))exp iswr, (5)
n
0

(s=n-m)

which is the basis of our approximation to quantal
scattering amplitudes.

The accuracy of the approximations (4b) and (5)
depends upon the system to which it is being applied.
For harmonic oscillators and hydrogen atoms it is a
better approximation than should be expected from
the assumptions made, and is good even for small
quantum numbers:  this is a consequence of the
Correspondence ldentities [5.6].

As an elementary example consider the simple
harmonic oscillator. Its classical motion is given by
(unit mass)

h\v ;
x(t) = <,‘1L ) : (elwt+e—l(4)[)

where the energy of the system is quantised using
the Bohr-Sommerfeld quantisation rule:

nh = i pdx = ]— dx(2E — a® )P = —{5—
¢ ) om w

Thus a straight forward application of Heisenberg’s
form of the correspondence principle. equation (4b),
gives the selection rules
nlxein'> =0 n# nti

and

nch 73
<plxln x 1> = st I
2w

The quantal results are

<(Il + l)h) Y2
2w .
nh \ %
'5;_) D

so that the agreement improves as # increases, as
would be expected. In fact for this potential a
judicious choice of n, will give remarkably good
agreement for small n and for matrix elements
involving powers of x {7].

<lxjn + 1>

<nlxjn - 1>

Another relevant example is the Morse potential

V(x)=D)l—exp—a(x—xc)(2 (6)

For this potential exact quantal results are available
and in the table below comparisons of these and the
correspondence principle values are given.

In this example the correspondence principle
becomes worse as the quantum number increases.



this is because the Morse potential supports a finite
number of bound states and the correspondence
principle implicitly supposes an infinite number, an
approximation which gets worse as the quantum
number increases.

(b) First order time dependent perturbation theory.
(¢) The sudden approximation.

For our purposes the Born approximation is of little
interest. The transition amplitude according to time
dependent perturbation theory is

i oo i(E_, - E )t
S(n',n) =-HI dt<n’|Vix,t)In>exp —(“—r——"—)— (7a)
-0 1
w 2n/w i (oo <
= — drexp iswr {—— dt Vix(r+ -r),t)} . (7b)
27 0 h 2
(s=n-n")

where the correspondence principle approximations to the energy difference and matrix elements, equations (4a,b),

have been used in obtaining the last equation.

The sudden approximation gives

i -}
S(n'n) = <n'lexp——af dt V(x,t)In> (8a)
w [ 2n/w i [o°
~ — dtexpi{swr—— dt V(x(r),1)} (8b)
27 0 h 160
(s=n-n")

Table 1: Values of a2s*|<nlx|n + s>* for the Morse
potential of equation (6) with about 50 bound states for
s = 1,2 and various n (taken from (7]). The value of n_is
taken to be n, = [(n+5)!/n!]!/S following [7].

Tanion  Qpipsl  Corgipondence  Banig
1> 2 020406 .020408 0.01
Rkl 3 .030924 .030928 0.01
5> 6 .063822 .063830 0.01
10 » 11 .12358 12360 0.02
15 > 16 19043 .19048 0.02
1> 3 6.4440 (-4) 6.3051 (-4) 2
2% 1.3162 (-3) 1.2877 (-3) 2
s> 17 49142 (-3) 4.8023 (-3) 2
10 > 12 1.7289 (-2) 1.6849 (-2) 3
15 + 17 4.0169 (-2) 3.9005 (-2) 3

Application to Scattering Theory

The direct application of these elementary ideas to
scattering theory is straightforward if the scattering
amplitude may be expressed directly as a matrix
element; this is possible in three simple cases:

(a) Born approximation,

In equations (7) and (8), V(x,t) is the potential
perturbing the bound system which has energy levels
E, and eigenstates [n>.

These approximations, (7b) and (8b), are approxi-
mations to relatively simple quantal scattering
amplitudes: they are useful if the quantum numbers
are large since in general Fourier components are
easier to calculate than matrix elements, and they
have been used to obtain the excitation cross section
of hydrogen atoms by charged particles [8-10] .

From these two scattering amplitudes. (7b) and
(8b), a generalisation may be obtained which has no
closed form in quantum mechanics.

This generalisation is obtained by noting that in
the sudden approximation (8b) the bound particle
does not move during the collision - the classical
position is a function of 7 only and not of ¢; this is
in contrast to perturbation theory (7b) and reflects
the basic assumption of the sudden approximation.



The generalisation is simply:

) w 2nfw )
S(n' n) = = B d‘rexpz{

This, strong coupling correspondence principle
(SCCP), can be obtained rigorously from the integral
equation for the scattering amplitude [2] and is
easily generalised to many dimensional separable
systems. The one dimensional theory has been
obtained independently [11], and a closely related
quantal approximation has also been obtained [12].

Two major approximations are used in deriving
equation (9). The first is the use of Heisenberg’s form
of the correspondence principle which restricts the
use of (9) to transitions between highly excited states.
The second is that classical perturbation theory must
provide a good approximation to the classical col-
lision; this is not the same as quantal perturbation
theory and for highly excited states is generally much
less restrictive, in fact the approximation of equation
(9) is valid when quantal perturbation theory is
totally inadequate.

The consequences of the assumption that classical
perturbation theory is valid are two fold. First, this
method can only be used when the classical constants
of the bound motion change by relatively small
amounts, although the changes in the equivalent
quantum numbers may be large. Second, that the
unperturbed classical orbit may be used in the cal-
culation; since this can often be obtained in closed
form the computations are considerably simplified so
making these methods exceptionally easy to use.
Further more, it should be added that when classical
perturbation theory is invalid it is often unnecessary
to use semniclassical techniques to obtain cross section
data as quantal effects are often small or negligible.
Also, when the change in quantum is large and when
classical perturbation theory is valid it can be shown
using a stationary phase argument that the probability
obtained from the SCCP, equation (9), reduces to
that obtained by classical perturbation theory.

Thus for large quantum numbers the region covered
by classical perturbation theory is treated adequately
using these correspondence principle methods; the
remaining region can often be treated using exact
classical trajectories using Monte Carlo methods.
These two methods are complementary and have both
been used to calculate the cross sections for collisions
between charged particles and hydrogen atoms. These
and other aspects of semiclassical methods were
discussed by 1.C. Percival at St. Catherine’s College in
1970 [13].

For low quantum numbers, and when the classical
action is comparable to h, there is no formal justi-
fication for the use of classical or semiclassical
mechanics. In these regions the application of classical

swT — I—J dr V(x(t + ‘r).ﬂ} (2
h - o0
(s=n-n)

or semiclassical methods is always dependent on the
particular classical and corresponding quantal repre-
sentation used. However for certain problems there
exist Correspondence ldentities [5,6]. These are
identities between the predictions of classical and
quantum mechanics. They include such cases as the
prediction by Rutherford, using classical mechanics,
of the correct quantal differential cross section for
scattering of a charged particle by a fixed charge.

There is also a ‘Feynman Identity’ for systems
having a Lagrangian, at most quadratic in the co-
ordinates and momenta. For such systems the
propagator is given exactly in terms of the classical
action in position,time representation (or momentum,
time). This identity does not exist in energy
representation.

Work is at present being carried out at Stirling by
Clark and Percival to utilize the Feynman Identity in
the field of Chemical Physics.

The main problems of applying semiclassical
mechanics in this field occur in the neighbourhood
of stationary points in the potential, for example

(a) The low states of a bound system. Here the
quanta of energy are comparable to the energy
of the system.

(b) In transition states where barrier penetration
occurs.

(¢) In collision problems involving vibrational ex-
citation where low quantum numbers are
usually involved.

Near the stationary points it is normally valid to
approximate the Hamiltonian of the system by a
Hamiltonian quadratic in p,q. It is thus advantageous

“to choose the classical position,time (or momentum,

time) representation for such problems and incor-
porate the Feynman Identity.

Although certain difficulties were encountered in
the formulation, these have been overcome. The
theory has, so far, only been applied to bound state
problems and the following quantities have been
evaluated.

(a) Bound State Spectra.

(b) Diagonal amplitudes due to a general time-
dependent perturbation.

(c) Transition probabilities due to a general time-
dependent perturbation.

The formulation depends only on closed loops
formed from classical paths and these may be repre-
sented by diagrams in position,time (or momentum,



time) space. It appears that it is the nature of these
loops that prohibits the direct evaluation of the ott-
diagonal transition amplitudes, despite the fact that
the probabilities can be calculated.

Calculations have been carried out using the Simple
Harmonic Oscillator as a model with a time-dependent
forcing term (this is the simplest model of vibrational
excitation). All the quantities above (a, b and c) have
been evaluated analytically and were found to be
identical to the exact quantum mechanical solutions
as required by the Feynman Identity.

In the near future it is expected that the formu-
lation will be generalised to other processes and
systems.

Application to Vibrational Excitation

The simplest model of vibrational excitation is a
simple harmonic oscillator forced by a time dependent
potential. The strong coupling correspondence prin-
ciple has been applied to this problem with potentials
of the form

(a) xF@)
(b) x%F(r)

see [14,15]. In both cases the solution to the
quantal problem may be obtained in closed form.

First, consider case (a). The quantal transition
probability may be expressed in terms of associated
Laguerre polynomials and AES, the phased averaged
classical energy transfer; the SCCP probability is
obtained in terms of Bessel functions of AE®, which
is the appropriate asymptotic limit of the Laguerre
polynomials. To be specific we take the time
dependent part of the potential to be

F(t) = a sech®bt

for which AE® may be obtained in closed form [14].

In figure 1 the probability for the 0> 1 transition
has been plotted against no, = AE®/2E, where E, is
the ground state energy. The exact quantal and SCCP
probabilities are shown together with the numerical
solutions of Schrodinger’s equation obtained by ex-
pressing the wavefunction as an expansion of N
unperturbed wavefunctions, for various N. It is seen
that the correspondence principle result breaks down
for no = 0.5, or when the mean classical energy
transfer is equal to the initial energy. For larger 7,
the correspondence principle gets worse, in keeping
with the assumption that classical perturbation theory
is still valid. However, even for such low quantum
numbers the correspondence principle is as good as
an 8-state quantal calculation.

For the 5 + 6 transition, shown in figure 2, it is
seen that the strong coupling correspondence pri:ciple
is in good agreement with the exact result for all ng

0.

Probability of 0+1 transition
o

TN UL I TE R TS JUW W

o

Adod L4 4 L2 3

Figure 1: The transition probabilities for the 0 > 1 transition
shown as functions of the phase-averaged classical energy
transfer 7.

Exact, is the exact quantal probability; CP the corres-
pondence principle probability and curves numbered 4, 5,
.9 are the 4, 5, ..9 state computer solutions [14]

shown, and that for a significant range of ng it is
better than a 16-state quantal calculation.

From these comparisons we see that the SCCP
results are good whenever classical perturbation theory
is valid, but as expected the results get progressively
worse as the energy transfer increases. For the
harmonic oscillator system we also see that corres-
pondence principle methods are good even for low
quantum numbers.

For a simple harmonic oscillator perturbed by a
quadratic potential (case b) the results are not quite
so encouraging due to the more rapid break down of
classical perturbation theory. Again we take F(¢) to
be of the form of equation (10):

- _ (BN (E)‘/zt -
) = s \s sec 3 ; )

In figures 3 and 4 [15] we show the probability
for the 0 » 2 and 2 » 4 traasition plotted against E,
defined in equation (11). It is seen that in both of
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Figure 2: The transition probabilities for the § > 6 transition
shown as functions of the phased-sveraged classical energy
transfer 7).

Exact, is the exact quantal probability; CP the corres-
pondence principle probability and curves numbered 10, 13,
..16 are the 10, 13, ...16 state computer solutions (14]

these cases the SCCP is substantially in error for a

 significant range of E. The reason for this is that
the bound orbit is significantly perturbed by the
potential. If E is small the maximum magnitude of
the force is small but its effect is spread over a long
time; if E is large the force is large but strongly
peaked in time. In either case the bound orbit is
significantly affected.

In figures 3 and 4 the results of a modified strong
coupling correspondence principle [15] are shown.
This theory partially accounts for the distortion of
the bound orbit and in this instance is a better
approximation than the SCCP of equation (9).

This modified theory is not always significantly
better; for the linearly perturbed oscillator the
modified and unmodified theories are identical, and
for charge particle-hydrogenic ion excitation and
rotational excitation of diatomic molecules by atoms
the bound orbit is not sufficiently perturbed, for most
collisions, for such modifications to be necessary.
However, the example of the quadratically perturbed
harmonic oscillator shows that care must be exercised
when applying these methods.

Application to Rotational Excitation

The SCCP has been applied to the rotational
excitation of diatomic molecules in I states by
arbitrary spherically symmetric atoms [16]. The
general formulation of the problem is presented in
the above reference: here we shall only consider the
rotational excitation of Ny by Ne Tor which close-
coupling results are available [17].

In this case. following [17], the interaction
potential may be taken to be

Vir,(0)) = Folry) +Fy(ry) Py(cos(®))

where r, is the radial distance between the incident
atom and the centre of the molecule and @ the
angle between the vector positions of the atom and
the molecular axis.

One of the difficulties in applying time dependent
scattering theory to this problem is that, through the
angle @ the interaction potential involves the co-
ordinates of the molecule; since the molecule and the
atom are treated assymmetrically in a time dependent
theory there is no consistent way in which the effect
of this part of the potential on the incident atom may
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Figure 3: The O > 2 transition probability, as a function of
E, equation (11), for a harmonic oscillator perturbed by a
potential x2F(¢). Exact is the exact quantal result, CP is the
strong coupling correspondence principle result, equation (9),
and MODCP is the modified correspondence principle result
(15]
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Figure 4: The 2 > 4 transition probability, as a function of
E, equation (11), for a harmonic oscillator perturbed by a
potential x2F(r). Exact is the exact quantal result, CP is the
strong coupling correspondence principle result, equation (9),
and MODCP is the modified correspondence principle result
(15]

be included. Thus it is necessary to suppose that the
incident atom is only affected by the spherically
symmetric part of the potential, Fo(r2). In general
this is the dominant part of the potential and so no
large errors are expected from this approximation.

Apart from this dynamical approximation the main
approximations are the replacement of matrix elements
by Fourier components, as in equation (5), and the
replacement of the sum over degenerate angular
momentum states by averages over a classical ensemble
of molecules. By comparing various quantal approxi-
mations with their equivalent correspondence principle
approximation it has been shown [16] that the
relative error of these approximations decreases as
(2j+172, where j is the quantum number of the rotor.

Partial Cross Sections

It is possible to make more detailed comparisons of
the partial cross sections by making a correspondence
between the impact parameter, b, and the angular
momentum of the incident atom, and between the
total angular momentum quantum number and the

angle between the angular momentum of the rotor
and the z-axis, §:

b = (R + %Wk

J2 _ ]'2 _ QZ
cosf = ———
2/2
where j is the initial rotational quantum number, and
k the wave number of the incident atom with angular

momentum quantum number £. With these corres-
pondences it is possible to compare the partial cross

Probability
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Figure 5: A comparison of the partial cross section SHi+ih
obtained from close-coupling calculations, indicated by the
dots, and the probability obtained from the strong coupling
correspondence principle, equation (9), indicated by the solid
line. The total angular momentum quantum number is J = 10,
the incident energy is £ = 2.2€ and the transitionisj=6>8
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Figure 6: A comparison of the partial cross section SIG»i9
obtained from close-coupling calculations, indicated by the
dots, and the probability obtained from the strong coupling
correspondence principle, equation (9), indicated by the solid
line. The total angular momentum quantum number is J = 10,
the incident energy is £ = 4.4€ and the transitionis /=6 >8



section sz( j » j') obtained from the close-coupling
calculation with the probability Pb(_j +j"s ¢cos B) ob-
tained from the SCCP before averaging over the
ensemble of molecules.

In figures S and 6 we show the partial cross
sections for the 6 > 8 transition for a total angular
momentum, J = 10. The close coupling results are
calculated using the j = 6 and j = 8 levels only using
the method of Gordon [18]. These comparisons
show that the strong coupling correspondence prin-
ciple can predict the details of the cross section with
reasonable accuracy.

At the low energy, £ = 2.2¢ (figure 5), the
agreement is good; this is reflected in the cross
section given in table 2. At the higher energy,
E = 4 4¢ the agreement is not so good; the reason for
this is that the close coupling results are too large
since at this energy more states need to be included;
this conclusion is suggested by the results given in
table 2.

Total Cross Sections

The strong coupling correspondence principle cal-
culations have been compared with the results of
Burke er al. [17] for the 2 > 4 transition (including
contributions from both bi-parities); for other tran-
sitions the quantal close coupling equations were
solved using the method of Gordon [18], QCPE
program 187. The results are summarised in table 2.

Table 2: Comparison of the present calculations (0 P) with
close coupling resuits (09). Results 2 are calculated using j
and j' levels only: results b use levels 0,2,4 and 6. E is the
energy of incident atom, in units of € the well depth of Fy(r9)

Transition 2+>4 2+6

E(€) 4.03 6.24 9.76 4.03 624 9.76
8.56 992119

09(na’ =

M0) 978 877 949 052 092 162
o “P(nad) 7.80 851 9.11 0.62 1.04 1.69
Transition 4>6 678
E(€) 332 553 9.05 2.21 4.42

270 5.27

Amazy ¢

Mad) ) 593 7.4 882
0°P(Ta3) 6.02 7.09 7.81 262 5.05

Starting with the 2 > 4 results, the agreement of
the correspondence principle with the larger basis

10

. close coupling calculations is excellent. The success
of the correspondence principle for such low quantum
numbers is both surprising and encouraging. The
results for 2 > 6 transitions are quite satisfactory, the
poorer agreement at lower energies almost certainly
arising from the inadequacy of a mean orbit when the
translational energy drops by about 407 in the
collision.

For 4 » 6 transitions the agreement is again
excellent, except at the highest energy considered.
Since the 2 » 4 cross section at this energy changes
considerably on going from the 2, 4 basis to the 0, 2,
4, 6 basis, it is quite likely that the close coupling
results require at least the j = 8 level to be included.
Correspondence principle calculations show the 4 > 8
cross section increasing from 0.17maz? at E = 3.32¢,
through 0.55ma3 at 5.53¢ to 1.15ma3 at 9.05¢,
suggesting that coupling to the j= 8 level is significant
at the higher energies.

Finally, for 6 » 8 transitions good agreement is also
obtained. Again the correspondence principle results
lie below the close coupling calculations. As the
introduction of further levels in the close coupling
calculation is likely to reduce the cross section this
would probably improve the agreement. Simply
adding the j = 4 and j = 10 levels would give a 32
state calculation, taking about eight times as long
as that reported here.

Subsequent calculations, which will be reported
elsewhere, on 0 > 2 transitions show that the SCCP
gives remarkably accurate cross sections even for
these low quantum numbers.

The 0—2—-4—6 level close coupling calculations are
about two orders of magnitude slower than the
correspondence principle calculations, even though
steps of 5 were taken in the total angular momentum
quantum number.

Conclusion

When classical perturbation theory adequately
describes the classical collision we have shown that by
applying Heisenberg’s form of the correspondence
principle appropriately accurate transition proba-
bilities for transitions between highly excited states
may be obtained. For such transitions the main
inaccuracy of the theory is due 1o the breakdown of
classical perturbation theory. For transitions between
low quantum numbers the fundamental assumptions
of this, and any semiclassical, theory are invalid even
though these theories sometimes give remarkably
accurate results in this region.

For transitions between highly excited states the
theory described here is accurate and uses relatively
little computer time, for example a large close
coupling calculation can take up to two orders of
magnitude longer to obtain a cross section 5% more
accurate.
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Semiclassical Methods in Reactive and
Non-reactive Collisions

W.H Miller*

In the last few years it has been shown how exact classical mechanics (i.e., numerically computed
classical trajectories) can be used as input to a general semiclassical theory of complex (i.e., inelastic
and reactive) molecular collision processes. This semiclassical model of ‘classical dynamics’ plus
quantum superposition includes all quantum effects in molecular systems at least qualitively, and the
description is often quantative. The primary emphasis of this paper will be the description of
classically forbidden processes, i.e., those which do not occur via ordinary classical mechanics. This
is essentially a generalization of the concept of tunneling to dynamical systems of more than one
degree of freedom and is one of the most important aspects of this ‘classical S-matrix’ theory.
Examples of reactive and non-reactive atom-diatom collisions are used to illustrate the ideas.

* Inorganic Material Research Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of
California, Berkeley, California 94720, USA
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Canonical Integrals in Semiclassical

Collision Theory
J.N.L.Connor*

A basic problem in semiclassical collision theory is the derivation of uniform approximations for
quantities such as § matrix elements and scattering amplitudes. The uniform approximations can be
expressed in terms of certain canonical integrals and their derivatives. It is shown how the canonical
integral is determined by the topological structure of the classical trajectories. The case of two and
three nearly coincidental trajectories is considered in detail.

Introduction

The semiclassical theory of molecular collisions
involves an asymptotic solution of Schrddinger’s
equation. It requires real and complex valued
solutions of Hamilton’s equations [1-5]. An important
part of the theory applies asymptotic methods to the
evaluation of integrals. These asymptotic approxi-
mations can be written in terms of canonical integrals.
This paper discusses how the topological structure of
the classical trajectories determines the canonical
integrals.

Coalescing Trajectories

An S matrix element in semiclassical theory is
represented by an integral of the form [2-5],

S(a) = [g(x) explif(a;x)] dx (1)

in the one dimensional case. Similar integrals arise
in the evaluation of scattering amplitudes [1]. In (1),
« is a set of parameters such as collision energy, final
quantum numbers of the collision and any potential
parameters.

When integral (1) is evaluated by asymptotic
techniques, the main contribution comes from the
saddle points of f. These are the real or complex
points {xi},i = 1,2,...,n satisfying

a .
Mlex) 5
ox

()

Physically the saddle points correspond to real or
complex valued classical trajectories. Equation (2)
shows the positions of the saddle points depend on a.

As a varies, so do the positions of the saddle points
and for a certain value of a they may come close
together or coalesce. This is illustrated in figures
1 and 2.

Figure 1 shows a plot of the elastic deflection
function against impact parameter [6,7]. The
parameters are the collision energy and the scattering
angle. There are three nearly coincident classical
trajectories.

Figure 1: The elastic deflection function plotted against
impact parameter for four values of the collision energy.
The dashed line is a reactive deflection function. There are
three saddle points.

* Department of Chemistry, University of Manchester, Brunswick Street, Manchester, MI13 9PL
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Figure 2 shows a plot of the final action against
initial angle for a collinear collision [8]. The para-
meters in this case are the collision energy and the
final vibratienal quantum number. Tais example has
tfour coalescing trajectories.

The problem is to derive an asymptotic approxi-
mation that is valid regardless of whether the classical
trajectories are close together or far apart.

Uniform Approximation and Canonical Integrals

The simplest asymptotic method for evaluating
integral (1) is the saddle point or stationary phase
method:

S ~ 2ri)t T~ A exp [if(a:xp)].  (3)
1

[f.”(a:xi)] A

The sum is over all contributing trajectories. Equation
(3) is valid when all the trajectories are well separated
from one another. For example, for two well
separated real trajectories 1 and 2. the transition
probability P = |S|? becomes [59]

P=p, +py + 2ppy)’sin(e; - 1), (4)

where p, and p, are classical transition probabilities
and ¢, and ¢, classical action integrals.

Equations (3) and (4) become invalid when the
two trajectories approach one another (because /> 0).
A uniform approximation for this case is [9]

P = a(p® + p ) tRAR(-8) + n(p, - p ) iR A(-§) (5)

Figure 2: Final action-initial angle plots for a collinear
collision at four values of the collision energy. There are
four saddle points. The real saddle points lie where the
horizontal lines intersect the action-angle points.
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where
¢ = [Ble, ~01)]%"°

and Ai(-¢) is the regular Airy function:
Ai(-¢) = (Zn)"fm expli(-fu + )l du.  (6)

Equation (5) is uniformly valid for two real trajec-
tories close together or far apart. The regular Airy
function is the canonical integral for this case.

Equation (5) becomes non-uniform however when
three trajectories are close together. A uniform
approximation for this case can be derived [7] in
terms of the canonical integral

P(x,y) =f_ exp [i(xu + yu® +u®)]du . 7)

Figure 3 shows a plot of |P(x,y)| and figure 4 one
of arg P(x,v). Since P(-x,y) = P(x,y), it is only
necessary to plot the upper half plane.
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Figure 4: The phase of P(x,y) in degrees.

For n coalescing real or complex valued classical trajectories, the canonical integral is (8]
o0
U(§1.825 oo $n-1) =f exp [i(§u + §au® + .+ o qu™ ™+ u™du, (8)
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The integral (8) includes (6) and (7) as special cases.
It can be seen the number of coalescing trajectories
determines the canonical integral.

An important property of equations (4) and (5)
is they only involve quantities characterizing the
classical trajectories. This is also true for uniform
asymptotic approximations in terms of integrals (7)
and (8).

The uniform approximations discussed above be-
come invalid if g possesses zeroes, poles or branch
points near a saddle point or if end point contributions
to the integral are important. They also become
invalid if f is a slowly varying function [10,11]. The
use of non-uniform approximations may explain
discrepancies that have been reported between semi-
classical calculations and sxact quantum results [12-
15]. -

When an S matrix element is represented by a
multidimensional integral, the derivation of uniform
approximations is more difficult. For certain cases,
the canonical integral is again integral (8) [8,16-20].
In general however the canonical integral is non
separable and multidimensional [19,20].

Conclusions

Semiclassical integral representations for S matrix
elements and scattering amplitudes can be evaluated
asymptotically in terms of a canonical integral. The
canonical integral is determined by the number of
coalescing real or complex valued classical trajectories.
The uniform approximation involves only quantities
characterizing the classical trajectories.
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Cross Sections for the Rotationally Inelastic
Scattering of Ne+ N, : Application of the
Exponential Semi-Classical Distorted Wave
Approximation (Preliminary Results)

S.Bosanac and G.G.Balint-Kurti*

Exact quantum-mechanical close-coupling, and approximate calculations are presented for Ne + Ny
collisions using a model potential. The calculations take account of the coupling only between the
J = 0 andj = 2 rotational states of N;. The approximate calculations are performed using an improved
form of the exponential semi-<classical distorted wave approximation which is outlined in the paper.
Cross sections evaluated using the approximate method compare very well with the exact ones over
the entire range of energies of chemical interest. Total and differential inelastic =0 +j=2) cross
sections are presented and their variation with energy is examined. The present results disagree
significantly with previously published results using the same potential

Introduction and Theory

The Ne + N, system has been studied by Burke et al. [1] who treated the system as a structureless atom
colliding with a rigid rotor diatomic molecule. The potential is taken to be

12 6 12 6
V(Rr) = & (%) - 2(%)] + &m,,(%) Py(cos0) — 28aq (%ﬂ) Py(cos 6) (1)

where R is the distance from the atom to the centre
of mass of the diatomic, 13 is the corresponding vector,
F is a unit vector along tlle bond of the diatomic and
is the angle between R and 7. These variables are
illustrated in figure 1. There are four potential energy
parameters [2] &R,,,a,, and as. The first two are
the well depth and the equilibrium distance of the
spherically symmetric part of the potential, which is ¢
- taken to be a Lennard-Jones potential. a,, and a4 are A
the so called anisotropy parameters.

of

* School of Chemistry, University of Bristol,
Cantock’s Close, Bristol, BS8 1TS
(present address of S.B.) Institute ‘Ruder Bosko-
vi¢', 41001 Zagreb, Bijenicka C.54, Yugoslavia Figure 1: Definition of coordinates.
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Arthurs and Dalgarno {3] have discussed the
atom-rigid rotor problem using the time-dependent
Schridinger equation. They expand the total wave-
function in terms of angular functions which are
eigenfunctions of the total angular momentum J. In
this way they obtain a set of coupled differential
equations for the radial functions u;')Q.(R). These
equations are of the form

d* @ +1)
2 7
=5 + (kj, il UJ..Q.,J..Q.(R)>

where the U-J,Q,, ann(R) are essentially the matrix
elements of the potential between the angular func-
tions. The j’s are rotational quantum numbers for
the diatomic and the ®’s are the orbital angular
momentum quantum numbers corresponding to the
relative motion of the atom and diatomic molecule.
There is a different set of such coupled equations for
every total angular momentum quantum number J
and each set in principle involves an infinite number
of differential equations. In practice we truncate both
the number of J values considered and the number of
coupled differential equations for each value of J.

The boundary conditions on the radial functions
'R
lel( )are

2o
uj,’ﬂ,(R)R_,0 0

3 1 ., .
JiR ~ __ |, -ikyR=-Rm/2) 5
o R)g3e0 = 3 [e . 8- 0p' 3)

k: \% , D
B e (k. .R - '71/3)
(" st 2orm -2

Thus the § matrices (whose elements are SJ-JvQ:, jQ) may
be found from the asymptotic behaviour of the radial
functions. The total cross section o};f_" may be
expressed as a sum involving the squares ofJ elements

of the § matrix.

i

(jmJ-m|jJR0) etc. are Clebsch-Gordon coefficients [4].
The quantum numbers /n and m' correspond to the
components of the rotational angular momentum of
the diatomic along the relative direction of motion of
the reactants and products respectively. The use of
angular functions referred to these axes is called the
helicity representation {5,6].

(R) = ) Z UjJ,Q,'j,,Q,,(R)quQ (R) (2)

jI'Q"#jIQ' J‘"Q"

Several numerical techniques have recently been
developed for the efficient solution of a finite set of
coupled differential equations such as those of
equation (2). We have used a program written by
R.G.Gordon [7] to perform the ‘exact’ close-coupling
calculations discussed in this paper. The whole
program, including the part which evaluates the cross
sections (written by S.B.) was tested by reproducing
exactly the total and differential cross sections
reported by Hayes and Kouri [8] for the He + H,
system.

For problems involving atoms and molecules of
moderately large mass the number of J values needed
and the number of coupled channels required for each
J value often becomes so large as to make the exact
solution of equation (2) impractical. One frequently
used method of approximating the solutions of
equation (2) for such cases is the Distorted Wave
Born (DW) approximation {9]. In this method the
coupling terms in equation (2) (i.e. the terms on the
right-hand side of the equation) are ignored and the
solution of the equation

d? L(R+1)
R + <ka = —(RT = U;Q.jQ(R)>] XJ'JQ(R) =0, &)

with boundary conditions
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The differential cross section may similarly be R>oo sin( j /2 JQ)
expressed as
= b ! 3 ofs " 3
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J — 'Q_Q' . J . - . AR S rehro!
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The d).m(0) are simple angular functions which are the reduced representations of the rotation group and
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is found [10]. The § matrix elements, which are needed to calculate the cross sections, may then be approximated as

2y
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.
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In the Distorted Wave Born (DW) approximation
we avoid the necessity of solving the set of coupled
differential equations, equation (2), and instead have
to solve several uncoupled equations, equation (7),
and then take integrals over the solutions to obtain
the § matrix elements needed to evaluate the cross
sections. One of the principle drawbacks of the DW
approximation is that the § matrices calculated in
this way are not in general unitary, as is required by
the condition that the total number of particles
should be conserved. An Exponential Distorted Wave
(EDW) procedure, in which the approximate §
matrix is unitary, has been proposed [11]. In this
procedure the § matrix is written as:

i6 10! s a) i85,
Spgrig = € 1% ["'A ]j’sz,',-sze - (10)

where 47 is a Hermitian matrix with zero diagonal
elemznts and whose off diagonal elements are given by

o

Apgria =
2 1= 3
—\/kjk_j,f Xjrgr(R) Uprgr ig(R) X;p(R)AR  (11)
0

Clearly when the exponential in equation (10) is
expanded in a power series the first two terms give
the same result as the DW approximation, equation
(9). The higher terms can be shown to correspond
to parts of the higher order terms in the Distorted
Wave Born series [12].

In the present work we use an exponential semi-
classical distorted wave approximation (ESCDW) in
which equations (10) and (11) are used to calculate
the § matrix but the further approximation is made
that the distorted waves ij(R) are evaluated using a
semi-classical JWKB type approximation. A pre-
liminary study, using a very similar approximation
has been published [13]. The method used here
differs from [13] in that the distorted waves are
represented as linear combinations of Airey functions
in the region from well inside the innermost classical
turning point to well beyond the outermost one. In
this region the wavefunction had the form

8101 211 -55-899) (> } .

3 R 273
and qu(_R) = - T " leQ(R)IdR
)

and R, is a turning point. When raising the right
hand side of the expression for qjg(R) to the power
of 2/3, the quantity in the square brackets should
first be squared and then the third root taken.

These wavefunctions are continuous in the neigh-
bourhood of the turning points and in regions where
the JWKB method is valid they go over smoothly to
the correct JWKB wavefunction [14]. They have
been used in the present work to provide an
approximate description of the shape resonances
which can arise when the effective potential (i.e.
including the centrifugal term) has three classical
turning points and the two colliding particles can be
temporarily trapped inside the centrifugal barrier.
The coefficients a and B are determined by the
boundary condition at small R. The precise details
of how the distorted waves are calculated and some
other technical aspects of the calculations will be
reported at greater length elsewhere [15].

Results and Discussion

The semi-classical IWKB approximation is designed
to provide a good description of the scattering in the
short wave length or high energy limit. In order to
test the validity of the ESCDW approximation in
one of the situations where it might be expected to
be the least valid, we examined the scattering of
Ne+N, in the very low energy region where there
were three classical turning points in channels with
j=2. Only rotational states j=0 and j=2 were included
in the calculations (i.e. 4 coupled channels) and a
sufficiently large number of J values were considered
to ensure convergence of the total cross sections to
better than 17%. (This corresponded to J values up
to J=20 for low relative kinetic energies £ = .0016 eV
and J=100 for £=0.136 ¢V.)

XjgR) = a2m™ qio(RY*IP,o (R)™" Ai(g;g(R))+ b1 gy (RY* 1P (R) ™% Bia;o(R)) (12)

(2+%)
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2

= J N
where ij(R) = kj - Ujgym(R)
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Figure 2 compares the exact close coupling cal-
culation results and the ESCDW results for the
j=0 > j=2 total inelastic cross section in the energy
range 0.00158 eV to .00174 eV. This energy range
is just above the threshold for the j=0 > j=2 excitation.
The asymptotic kinetic energy of the particles in the
lower channel (j=0) corresponds to a wavelength about
equal to R, (the characteristic range parameter of
the potential), while in the higher channel (j=2) the
asymptotic wavelength is considerably larger than R .
These calculations therefore constitute an extremely
severe test of the semi-classical aspect of the ESCDW
approximation. We see from figure 2 that the
" agreement between the exact and ESCDW cal-
culations is, in fact, remarkably good [15]. The
maxima in the cross section arise from the shape
resonances in the upper channels (j=2) [1].

Energy x 103(eV)

Figure 2: Comparison of total inelastic cross sections for
j=0»j=2 transition as calculated by exact close coupling
method (- — — —) and ESCDW approximation ( ) in
small energy range just above threshold. £ = .00158 eV -
.00174 eV.

)
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Figure 3: Varistion of the total inelastic j=0 > j=2 cross
section with energy. The calculations were performed using
the ESCDW method.
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In figure 3 the variation of the total j=0 » j=2
inelastic cross section, as calculated using the ESCDW
approximation, is shown over a much larger energy
range. The agreement between the exact and
ESCDW cross sections was checked at an energy of
0.136 eV. They were found to agree within 6.8%
(19.7 A [2] for the exact as compared with 21.0 A
[2] for the ESCDW). The cross sections shown in
figure 3 are about an order of magnitude larger than
those reported for the same system in [1]. At the
lower energies corresponding to figure 2, the cross
sections reported here are of the same order of
magnitude as those of [1] but differ from them
in detail.

Figure 4 shows a differential inelastic cross section,
for the j=0 » j=2 transition, calculated using the
ESCDW approximation at an energy of .001601 eV,
which corresponds to the first shape resonance in
figure 2. The quasi-bound state which gives rise to
this resonancs is in the channel J=7,j=2,¢=9. The
differential cross section consists of a series of
regularly spaced maximum. The minimum in intensity
at around § = 70° is thought to arise from an inter-
ference effect with the neighbouring resonance in the
channel J=11,j=2,2=7. In figure S the differential
cross section is shown at an energy of 0.046 eV.
The structure of the cross section is now much more
complex than in figure 4. This arises from the fact
that the contributions from many channels are now
of comparable importance.
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Figure 4: Differential cross section for j=0+j=2 transition
at £=0.001601 eV.
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Figure 5: Differential cross section for j=0*j=2 transition
at £=0.046 eV.

Conclusion

In this paper we have presented the first application
of an exponential type approximation to the cal-
culation of actual cross sections. We show that for
the calculation of rotationally inelastic cross sections
for the Ne + N, system in the present four channel
approximation (i.e. j=0 and j=2 only), the ESCDW
method yields results in quantitative agreement with
exact close coupling calculations. This agreement is
found to hold good from extremely low energies to well
above those corresponding to room temperature.

The results presented here should be regarded as a
partial test of the validity of the ESCDW approxi-
mation. From a very preliminary investigation of
the effect of including more coupled channels
(i.e. rotational states /=0, 2 and 4) it is thought that
the j=0 » j=2 cross sections will be significantly
reduced in magnitude, at least in the higher energy
range. The elastic cross sections seem to be relatively
insensitive to the inclusion of additional channels.
Clearly a much more extensive investigation of the
effect of including more coupled channels is needed,
and this is currently being undertaken.

For the four channel calculations reported here
the present computer programs for calculating the
ESCDW cross sections are somewhat faster than
those used to calculate the exact close coupling
results. When a larger number of coupled channels
are included (and for many systems a far greater
number will be needed), the time needed to perform
the exact calculations should increase as N, where
N is the number of coupled channels {7]. The time
needed to perform the ESCDW calculations is
expected to increase only as N2, and it is therefore
in such situations when there are a large number of
coupled channels, that the main computational ad-
vantages of approximations such as the ESCDW are
expected to be realised.
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Proton-Molecule Collisions : Interacting
Potentials and Inelastic Scattering*

F.A.Gianturco t

Gas phase protonation processes and, in general, proton encounters with molecular systems require
both the knowledge of interacting potentials through all the regions of space and an efficient way
of solving the coupled integro-differential equations, generated in the usual time-independent equation,
which are necessary to obtain the relevant scattering observables of both reactive and pre-reactive
processes. We are reporting a numerical treatment of the atom(proton)-diatom problem by considering
it within a laboratory frame of reference and by having the target described as a rigid rotor [1].
The necessary potential surface has been computed by considering first its static part and by producing
it via a suitable multipolar expansion of the relevant bound-state single-particle MO’s of Hartree-Fock
quality. The polarization effects have also been included by adopting a suitable functional form which
would give the necessary cut-off within the inner molecular region.
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Until very recently experimental investigations of
translational-rotational and/or vibrational energy trans-
fers in biomolecular collisions were confined to
various relaxation techniques [1]. For a more
complete description of the process, however, one
likes to have information which is more microscopic
in nature and more sensitive to local dynamical
variables like impact parameters, internal quantum
states, initial and final, of the involved partners and
differential distributions of the inelastic cross sections.

Whenever such information becomes available from
crossed molecular beam experiments, our theoretical
models usually require a stepping up in sophistication
to explain the newly acquired data 2] and indeed
the scattering of a proton by a molecule at very low
energies clearly requires quantum mechanics for a
complete description of the non-classical behaviour
detected recently [3] in the angular distribution of
the scattered protons.

In the course of the collision the integrated
response of each individual molecular atom, assumed
as interacting with the incoming proton, is in general
different. This causes excitation of molecular degrees
of freedom, which may also be the consequence of
the electronic structure of the target having been
altered by the passing third atom making the nuclei
accelerate toward the new potential minimum [4].
For systems like N, and CO, however, the changes
of molecular internuclear distances upon protonation
are probably only 1 to 2%, depending on the geometry
{3], a result which implies that a rather small

stretching force was applied to the molecule in the
field of the proton. Even when the Hydrogen Fluoride
system is concerned, recent experiments [5] and the
following computations [6,7] indicate an overall
bond variation of 0.066 au, i.e. also around 2%, in
going from the HF structure to the fluoronium ion.

The above results seem therefore to suggest a
possible way for efficiently constructing the relevant
potential surfaces that may then be employed within
completely a priori scattering calculations in a three-
dimensional, quantum-mechanical sense. If one looks
at the parallel problem of electron moderation in
gases, one sees that a fair, if still far from satisfactory,
amount of information has recently been accumulated
due to remarkable progress in experiments and also
to concomitant theoretical developments [8]}. The
circumstances thus seem to make it worthwhile for
us to carry out the analogy with proton collisions as
far as is allowed by physical intuition and compu-
tational feasibility.

The most direct analogy is, of course, with the
problem of slow positron scattering; however the
proton potential surface in the Born-Oppenheimer
sense is given by the same equations if one disregards
charge-transfers thus suggesting that a great deal can
be learned from this analogy. Some notable differences
between electron and positron scattering have already
been recognized and investigated, particularly for
some simple atoms [9]. The disparity originates from
the changed interaction between the target molecule
(or atom) and the impinging projectile since the mean

* Work supported by the Italian National Research Council (C.N.R.)
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static molecular field seen by a positron is repulsive
whereas it is attractive for an electron. Moreover,
the all-important effects of electron exchange’with
the bound particles are absent both in positron and
proton scattering. Finally, the long-range part of
the interactions, which has been known to play
an important role in slow electron scattering, can
generally be written as:

R)e? R
a(R)e ¥ ‘%_Pl(cosﬂ) ——{ z 23 }P2(C°S‘9)+ @ ()

V(r,R) = -
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where the F;’s are Legendre polynomials, cos 9 = R#/Rr
and the upper and lower sign refer to an electron
and proton, respectively. Further, u(R) and 2R)
respectively represent the electrostatic dipole and
quadrupole moments of a diatom with bond distance
R:o(R) and o'(R) the spherical and non-spherical part
of the dipole molecular polarizability. The above
equation exemplifies a significant contrast of the two
types of interaction: the electrostatic part changes its
sign, whereas the polarization part remains the same
on going from electron to proton (or positron).

An immediate consequence is that there should
be a substantial difference between computed obser-
vables for those processes in which the two parts of
the interaction are operative in an explicit manner.
A good example is provided by the rotational
excitation (or de-excitation) of an homonuclear
molecule for which the third term with P, (cos &)
in equation (1) is mainly responsible and where the
same or opposite signs of the static and polarizability
parts lead to very different results. For vibrational
excitations the same argument can be applied, the

very differently, at different energies for different
targets, a fact that has not yet been extensively |
investigated from a theoretical viewpoint.

For thermal energy scattering it is fairly straight-
forward to develop the quantum mechanical form of
the dynamics involved for a proton impinging on a

a'(R)e* = QR)e

2,,4

rigid rotor. According to the standard treatment the
problem is in fact reduced to solving a set of coupled
equations (11].

& Q% +1
{Eﬁ b J(—;z—)}Fi’(r) =z vIiorin @

where the channel numbers (i,k) label both the
rotational level of the target (j) and the partial-wave
angular momentum (2). A good quantum number is
given by the total angular momentum J and the
relative energy for the system is embodied in the
wave vector K.

Whenever a multipolar form can be used for the .'
potential of equation (1) one can write:

Vi (riR) = 2u<ilV(r:R)Im>

2 § ¥y (riR) A3 (€372 3)

where the A-matrix can be written in the form:

A G20 = I (DD WYY TNE )0 (W) (4)

major modification being essentially the replacement
of the molecular parameters o'(Ro) and Q(Ro) by
their derivatives with respect to R.

The rotational excitation of a strongly polar
molecule appears to provide another interesting case.
If the dipolar interaction, the second term in equation
(1), plays a predominant role in the long-range region
of interaction, cross sections for electrons and posi-
trons will turn out to be the same within any first
order theory (such as the Born approximation) and
the proton-molecule cross sections will have a similar
energy-dependence behaviour.

Moreover, because of the repulsive nature of the
static potential for proton scattering, the resonances
usually detected for low-energy electron scattering
(representing properties of the combined system of
n+1 ‘molecular’ electrons) should be less likely to
appear; if they exist they should show themselves
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For homonuclear diatomic system, A only assumes
even values; it then follows from the above Clebsh-
Gordon coefficients that the relevant potential de-
couples equation (2) into at least four different sets
corresponding to even-even, even-odd, odd-odd and
odd-even values of (J,2). Further decoupling is
obtained from the chosen values of A\ and the
particular | j{ set.

Each coupled set is solved for the open channel
K-matrix whose eigenvalues give the channel phase
shifts, since the standard eigenphase equation can be
written as:

K =Utané U (5)

where U is a real orthogonal matrix and tan & a




diagonal matrix. The partial cross section is then
given vig the T-matrix as:

J+j J+j’
(2J+1
U'J-y’ = “‘*) ITJ(/"IZ';]'Q)I2 (6)
PEOKRQ2+1)
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Jo being the lowest rotational level included and k2/2u
the associated relative kinetic energy.

The total cross section for the relevant transition now
becomes:

=3 0‘.I N (9)
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Recognising that the electronic motion is rapid
when compared to nuclear motion [12]. one can
assume an effective field depending upon nuclear
coordinates, and hence regard the nuclei of the
target+projectile system as adiabatically moving on a
many-dimensional potential energy surface.

Instead of computing such a surface over the
whole relevant space for scattering encounters from
some ab initio model for the effective electronic
Hamiltonian, one can attempt a possible partitioning
of the various contributions in the following form:

+V

Veg(rR) ~ Vygp + Voo * Ve * Ver

(10)

Here the V},(r, R) represents the potential generated
at r' by the electronic and nuclear charge distribution
of the molecule as given by the Hartree-Fock bound

R 2
a(Ro)e 2

r',Pw, an element of the bond-order matrix, and the
indices 4 and v range over all orbitals on all centres «.

Vet includes the contributions due to electronic
charge transfer over the incoming proton, i.e. is a
measure of the charge density variation on the target
molecule during encounters. They are usually re-
cognized to be small for strongly bonded systems [3]
and will be tentatively disregarded in the present
treatment.

Vp and Vpoi contain respectively the centrifugal
barrier due to the various partial waves contributing
to the target expansion and the polarization contri-
butions already indicated in equation (1).

In order to represent properly the nuclear singu-
larities contributing to the short-range interaction
with the static mean field, we have performed a one-
centre expansion of the bound Molecular Orbitals
given by the MO-LCAO-SCF description of some
typical diatomic systems like NV,, CO and HF [13,14]
and have used them to construct the static potential
surface of equation (10):

14
Vup®R) = V.. (hR) = xZo K(:R) B (cos9) (13)

Such a description was already shown to be very
effective in treating electron-molecule scattering at
low energies [14,15]. Moreover, it represents a
collision-oriented version of the static potential model
which recently has been given a great deal of
attention [16,17].

It is, however, well known from electron-atom
scattering studies [12], that the polarization force
which arises from a temporary and partial excitation
of the molecule during the encounter has an important
influence on the scattering of slow charged particles.
Therefore we have included such an effect, indicated
by the second term on the right hand side of equation
(10), by ‘mimicking’ its behaviour in the inner region
of the molecule and smoothing out the usual ‘switching’
technique previously used [18].

a'(Ro)e?

VPol(r"R) = - 5

orbitals:

Pup(FR) = —ARE() + £ Z, 8(Fr = Ryl) (1)
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where g is a structureless point charge located at
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Py(cos B) ¢ [1-exp(y)] (14)

where y = (— ,—’0)6. The last term on the right
represents a cut-off factor with one free parameter
(7o), removing singularities from Vpoi(r:R) which now
behaves as r? near to the origin. The parameter was
adjusted for the point charge of the electron-scattering
problem so that the experimantal resonances of the
elastic cross sections could be well reproduced with
the given static potential [13,19]. In other words,
equation (14) takes from other theoretical models the
necessary knowledge to describe the perturbing effects
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of a positive structureless charge approaching the
target, i.e. the simplest basis for a protonation
reaction potential.

The homonuclear diatomics are the simplest target
molecule for which a systematic study of static
potential surfaces can be performed. We began with
the N, system for which an extensive analysis of the
cusp behaviour and asymptotic values of the multi-
polar coefficients had already been performed [14].

A critical examination [20] of SCF wavefunctions
of various accuracies suggests that minimal basis sets
(MBS) and semiempirical methods manage to repro-
duce, albeit qualitatively, only the first few terms of
the expansion (3) and in spatial regions very close to
the molecule, thus failing both in giving correct cusps
and realistic long-range terms.

Figure 1: Proton potential energy surface (Kcal/mole)
resulting from the static charge distribution of the ground-
state N, molecule.

Figure 1 shows the present results with only the
Vur term of equation (12). Chemical intuition is
satisfied by the shallow basin existing along the bond
distance and the steeply repulsive field closer to the
nuclei: electronic attraction does not manage to offset
the main repulsive character of the mean static field.

The large class of simple molecules possessing
permanent dipole moment has received considerable
attention in recent times, since in a quantum mecha-
nical treatment the electric dipole field exhibits a
critical binding property for non-neutral particles [21].
Moreover, because of the very long-range nature of
this interaction, there is considerable contribution
from partial waves with large £ values so that in the
inner region the lower partial wave modifications do
not cause a drastic change in the total cross section.
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Figure 2: Same as figure 1 for the CO target system.

Figure 2 shows again our results for the CO
molecule, using the rather extended basis set of STO’s
reported by McLean and Yoshimine [22] to construct
the Vg up to about 25 au from the centre of mass
of the H*-CO system. The lone-pair region of the
Oxygen atom presents here a much deeper minimum
than before (49.7 Kcal/mole at 3.44 Bohr radii from
centre-of-mass), but the attractive well is by and large
more evident for reaction paths impinging on the
‘multiple’ bond of the system: a steeper basin then
appears, at about 65° and 2.3024, with a minimum
of 637.8 Kcal/mole. The different nuclei cause large
changes of sign for the various multipolar components
and this is also reflected in the overall behaviour of
the static surface.

Polarization effects are obviously very important
in the subreactive region we are examining, and this
is shown by the changes on the adiabatic potential
surface when such effects are included. The cut-off
parameter was adjusted to be equal to 1.592 au, thus
reproducing the experimental 2I1g resonance of the
€ — N, scattering [19] process. The physical
simplifications here introduced implies negligible
charge-transfer in going from positron to proton
scattering, a fact already suggested by experiments
[3,4] but which certainly needs further investigation.

Figure 3: Poluization contributions to the static potential
surface of the H'— N, system.



The results are reported in figure 3 where sub-
stantial differences appear from the case of figure 1:
the more polarizable bond region has now become
attractive thus overpowering the repulsive, anisotropic,
character of the electric quadrupole term. The lone-
pair region has been affected in an analogous manner
thus deepening the previously shallow well. The
minima now appear at ¢ =0° and 90°, with »=3.13 au
and 1.68 au respectively.

The method used for solving the coupled equations
(2) within the Arthurs and Dalgarno formalism was
the De Vogelaere method {23], a fourth-order step-
by-step method based on difference formulas and
already used for both neutral-molecule scattering
[24] and electron-molecule collisions [15].
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Figure 4: Energy behaviour of the partial cross section in the
near threshold region for J=1. The matrix elements of equa-
tion (3) were computed via the potential surface of figure 1.

The effect of possible resonances at low energies
is illustrated in an exploratory way by figure 4 on
the J=1 partial cross section when j=0 and j=2
rotational states are coupled: one sees that no re-
sonances seem to be superimposed on an oscillating
background contribution, contrary to what was found
for neutral projectiles [24] or for electron scattering
[19] but as expected from the main repulsive
character of Vyg.

The relevant results for H+N, when polarization
contributions were included are reported in figure (5),
and the marked increase of oscillations seems to
indicate a greater presence of superimposed resonances
when a more realistic form of the interaction is
employed.
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Figure 5: Same as figure 4, with Vpoy included when
computing the matrix elements of equation (3).
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A Critical Look at Conjectures in the
Theory of Autoionizing States of Atoms

C.S.Sharma*

The present status of the theory of autoionizing states of atoms is reviewed with the particular aim
of isolating and formulating precisely the outstanding weaknesses of the theory. Particular attention

is paid to the following conjectures:

The autoionizing states are supposed to correspond to certain complex eigenvalues of the
Hamiltonian, even though according to one of the most fundamental postulates of quantum
theory a Hamiltonian is necessarily self-adjoint and therefore cannot have complex eigenvalues.

One of the weaknesses of the Feshbach formalism is that there is no way of defining the projection
operators uniquely, but it is generally believed that the calculated energy provided the level-shift
has been properly included is independent of the choice of the projection operator used in the
calculation. The source of the belief is traced and the underlying argument is shown to be fallacious.

There are many derivations in the literature of the so-called golden rule for the calculation of the
decay constant of an autoionizing state; some of these derivations are believed to be rigorous.
It is shown that this belief is unfounded.

Introduction

Hylleraas [1] obtained a value for the znergy of
the ground state of helium which differed by less
than 0.000 015 eV from the mean experimental value
at a time when the limits of experimental errors were
_ten times higher and this indeed was one of the finest
triumphs of quantum theory. Calculations of much
greater accuracy are now possible on most bound
states of helium. However, when one comes to
consider the doubly excited states of helium which
give rise to the so called autoionizing states, the
situation is not so happy. Some of the best cal-
culations on such states have been done for the
252p'P state of helium: the difference between the
best calculated and experimental values is 0.012 eV
and the bounds on the experimental error (£+0.015eV)
have the same order of magnitude. The task of
improving the accuracy of either the experimental
of the theoretical value is fraught with difficulties of
the most fundamental kind because the energy of an
autoionizing state is not well-defined. The purpose
of this work is to describe briefly the model on
which the more successful calculations are based and
then to discuss the difficulties in finding rigorous
definitions of some of the concepts used in the model.

The Model

The model which is relatively more successful in
predicting the position of an autoionizing state is

based on the Feshbach formalism [2,3]. In this model
the underlying Hilbert space is divided into two
orthogonal subspaces so that the corresponding pro-
jection operators P and Q satisfy

P+Q=1 (1)
and
PQ=0P=20 )

If the operator QHQ where H is the Hamiltonian of
the system has a point eigenvalue & in that interval
of the real line which constitutes the continuous
spectrum of H, then this eigenvalue may be associated
with an autoionizing state and if it is then the energy
of the autoionizing state is & + A& where

A& = . #<d, |QHP PHQI®,>  (3)

&-QHQ-PHP

®, is the eigenvector belonging to the point eigenvalue
& and .# denotes that the Cauchy principal value is to
be taken of the integral implicit in the expression on
the right hand side. The projection operator Q is
not uniquely defined, but it is generally believed that
& + AE& is and only if this belief is well founded, the
energy of the autoionizing state in this model can
be said to be well defined. With the energy of an
autoionizing state is associated a ‘width’ ' and this
is related to the decay constant of the autoionization.
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The value of T in this formalism is given by the so
called Fermi’s golden rule:

I = 20<b,|IQHPS(& + A& — H)PHQ o> “4)

For a judicious choice of Q the point eigenvalue &
corresponding to the autoionizing state is either the
lowest or a low-lying eigenvalue (that is, it has only
a finite number of point eigenvalues lying below it)
and & can be calculated with great accuracy by a
variational calculation based on either the Hylleraas
(1] or the Hylleraas-Undheim [4] variational principle.
Until recently there has not been any mathematically
satisfactory method (that is, a method which does
not use an approximation not bounded by calculable
error terms) for the calculation of A&. Sharma and
Bowtell [S] have recently described a method for
this calculation which seems to be fairly satisfactory.
In this method the integral for A& is converted
into another one involving the solution of a non-
homogeneous differential equation and the singularity
in the original integral manifests itself in the form
of an undetermined additive term, which is the
solution of the corresponding homogeneous problem,
in the desired solution of the non-homogeneous
problem. The new integral is free from singularities.
Sharma and Bowtell [5] have developed a procedure
for removing the unwanted homogeneous solution
and their work provides a rather novel method for
the evaluation of the Cauchy principal value of the
integral in equation (3). The results of this method
of calculation are justified not only by an improved
agreement with experiment for each of the three
cases for which all the numbers arising out of a
single coupled set of calculations provide the values
of A& but also by internal self-consistency (the theory
tells us that two of the numbers calculated with the
help of solutions of two different differential equa-
tions should have the same value and they do).
Furthermore the procedure was developed with the
help of purely mathematical arguments. In view of
all this one could be tempted to say that this
procedure is quite rigorous. However, it is a search
for a genuinely rigorous justification of the method
which has led the author to question certain aspects
of the model. '

Before concluding this section it should be pointed
out that the author and his collaborators have
developed their own algorithms for the calculation
of both & and T for autoionizing states of atoms,
the first of these is described in [5] and the second
will be described in due course elsewhere. Due to
lack of facilities and resources it has not been possible
to use these algorithms for the actual calculation of &
and T but since these methods are based on sound
mathematical principles one can confidently predict
that in due course they would become one of the
standard algorithms for carrying out these calculations.

32

The Mathematical and Logical Foundations of
Quantum Theory

Since the criticism which the author wishes to
make is of the most fundamental nature, it might be
worthwhile to recapitulate briefly the mathematical
and logical foundations on which the edifice of
quantum theory is built.

Assuming that it is known empirically that laws
governing observations on a quantum system are
essentially probabilistic, that not all observables can
be simultaneously observed and that certain aspects
of the collective behaviour of an ensemble of non-
interacting identical quantum systems can be
described in terms of a single system which represents
a kind of average system, one can, by mathematical
and logical analysis, deduce the structure of the
propositional calculus for the description of a system
which behaves in accord with the above assumptions.
The abstract mathematical structure which provides
the basis of this description is called a o-complete
orthocomplemented weakly modular lattice. A study
of lattice theory more or less immediately suggests
that the lattice structure of a separable Hilbert space
might provide a concrete realization of the structure
of this particular lattice and a study of abstract
Hilbert spaces confirms that this is so. Thus a Hilbert
space provides a possible model for the description
of a quantum system and if this model is adopted
then the postulates of formal quantum statics follow
rigorously from the description of a quantum system
in terms of its propositional calculus. These pos-
tulates are:

(a) There is a bijective correspondence between the
states of a quantum system and the positive self-
adjoint operators of unit trace on a Hilbert space K
of dimension Ro over C. The pure states are in bi-
jective correspondence with the projection operators
on one dimensional subspaces of 3. (Note that such
projection operators are positive self-adjoint operators
of unit trace and that it is this correspondence which
enables one to represent a pure state by any unit
vector in the range of the corresponding projection
operator.)

(b) There is a bijective correspondence between the
observables of the quantum system and self-adjoint
operators on . If an observable corresponds to the
operator A then the expectation value of the obser-
vable in a state which corresponds to the operator S
is trace (AS). (For a pure state S is a projection
operator on a one-dimensional subspace, in this case
if u is any unit vector satisfying Su = u, then it can
be shown that the expectation value of the observable
in this state is Trace (AS) = <ulA|u>.)

In order to get the postulate of quantum dynamics
one assumes that the time evolutions of the probability
distributions associated with the system are continuous
and that the time evolution preserves convex com-
binations of states. After some work one arrives at



the postulate of quantum dynamics: The time
evolution of a quantum system is determined by a
one-parameter unitary group U, of automorphisms
of the states S such that for each sequence o

in' S and each real positive sequence { Y } with sum 1

Ut(izyiai) = zi:'Yi U, () (%)
forall t 2 0.

This brief description is based on the author’s [6]
exposition of the works of Birkhoff and von Neumann
[7], Gleason [8] and Mackey [9]. This model is
supposed to provide a good description of quantum
phenomena only when relativistic efforts are ignorable.
It has not been proved that this model is the only
possible one consistent with the basic assumptions,
but this is the only model we have which has sound
mathematical and logical foundations.

When calculations are done on the bound states
of atoms, all the concepts and formulae used in the
calculations are completely consistent with the above
model. The purpose of the present paper is to show
that many of the concepts and formulae used in the
theory of autoionizing states are such that not only
they cannot be reconciled with the above model
but cannot be consistent with any mathematically
meaningful model.

The Complex Eigenvalue

The Feshbach model is a formalism and justifies
itself by claiming formal equivalence with the complex
eigenvalue theory which is supposed to have a better
foundation. The idea of a complex eigenvalue is a very
old one and is originally due to Gamow {10]. Since
then perhaps more has been written on this subject
in both mathematics and physics journals than on
any other single problem of quantum theory. By
analytically continuing Green’s function of the re-
solvent of the Hamiltonian to the second sheet one
gets an operator which has complex eigenvalues. The
real part of a complex eigenvalue is supposed to
define the energy and the imaginary part the width
of the autoionizing state. This description is obviously
inconsistent with the model described above: since
the operator has a complex eigenvalue it cannot be
self-adjoint and therefore it does not correspond to
an observable. However, it is known by experience
that calculations based on the complex eigenvalue
theory (or an equivalent form of the theory) do
provide good approximations to both the positions
(on the energy spectrum) and the widths of these
states, Furthermore the use of complex dynamical
observables is quite common in both hydrodynamics
and electrodynamics and therefore it could be possible
to add an extra postulate to those of formal quantum
theory to get a more powerful model. Though an

early attempt on these lines was tentatively made
more than thirty years ago by Kembie [11]. this
extra postulate does not yet find a place in the
standard elucidations of quantum theory. One finds
that in most texts assumptions regarding the complex
eigenvalue are invariably introduced surreptitiously
through the back door.

As the author sees it the purpose of theoretical
science is to establish bijections between physical
reality and abstract mathematical structures and
whenever this is done in a meaningful way one gets
a good mathematical model for the description of
physical reality. A concept is mathematically meaning-
ful if and only if it is well-defined and something is
well defined if and only if it has a unique meaning. It
is precisely here that one meets the most fundamental
difficulty. The Hamiltonian H of a single system is
a single operator which is self-adjoint (or at least
essentially so) and thiere is no way in which it can be
made to yield a complex eigenvalue other than by
making a change in 4. The complex eigenvalues are
not obtained by making a completely arbitrary change.
One writes H as H = Hy + H, where both H, and H,
are self-adjoint (or essentially self-adjoint), then a real
parameter € is introduced in the second term to yield
a family of cperators Hy + eH; to which H belongs
(for € = 1); € is then allowed to take complex values.
This is a somewhat simplified account of how non
slef-adjoint operators are obtained for these problems.
The most up to date and rigorous accounts follow
one of the following two prescriptions:

(a) H, is factorized into two operators thus

H, = AB, then Ag—ep—B is analytically

continued to complex values of €, the poles of
this continuation are called resonances [12,13].

(b) A similarity transformation of H is made with
the help of a dilatation U(9) defined on L*(R")
by

WO )r) = Mgy (6)

for complex values of 8 this yields a non
self-adjoint operator

H(@9) = UQ)H UEY" (7)

which may have complex eigenvalues which
are called resonances [14,15].

It becomes clear from the work of these authors
that a complex eigenvalue is not an intrinsic property
of the total Hamiltonian H, but of a pair (H,Hy)
(note that once H, is defined H, gets defined too:
H, = H-Hy). Simon [15] argues that such a pair
is well defined in two body scattering: H, is the
Hamiltonian when the two particles are an infinite
distance apart. However, this concept cannot be
easily extended when scattering involves more than
two particles. For example in the case of He™e
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scattering the asymptotic Hamiltonian is (in natural
atomic units):

H, = —%V? - %W — A ®
ry
and then
Z 1
77 R S s ©)
r I

However, since it is impossible to distinguish between
the first and the second electron it could be argued
that Hy should be symmetric in r; and r,. Should
we now take

Hy=-up-up-2_2 (10)
ry nr

or should it be

Hy = —%Vq’—%v,’-ﬁ . ? ¢8))
2ry 2rn,

In this case the pair (H,H,) is not at all well defined
and in the most successful calculations H, includes
part of ;l—lz‘ as well.

Thus the complex eigenvalue of the scattering
problem is not well defined for a system consisting
of more than two particles. What is worse that
not all poles (see, for example, [16]) one gets in
this way correspond to resonances. Unless these
difficulties are circumvented, there cannot be a
rigorous theory of resonances.

& + A8

It is generally believed that though the Q-operator
of the Feshbach formalism is not uniquely defined
and both & and A& depend on Q, & + A& is unique.
This belief corresponds to the hope that the complex
eigenvalue is an intrinsic property of the total
Hamiltonian H which according to Simon [15] is
clearly not the case. What then is the source of this
belief? Let us look at the corresponding problem
for an isolated point eigenvalue X of H. As long as H,
has a point eigenvalue A, which can be enclosed
together with X in a closed contour C in the complex
plane in such a way that C neither encloses any other
eigenvalue of either H or H, nor passes through a
point in the spectra of either H or H,, a convergent
perturbation expansion of A exists and provided the
calculations are carried out to sufficiently high orders

no matter what Hy is chosen one will always get the
same value of X on summing the perturbation series

[17,18]. Anisolated point eigenvalue of H, of course,
represents the energy of a bound state. It is analogy
with this case which has led to the above mentioned
belief. However, for the autoionizing case no contour
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C with the requisite properties exists; the formal
perturbation series for different choice of Hy are
necessarily different [19] and carrying out calculations
to higher orders is not practicable. In all probability
all higher order terms in the formal expansion diverge
(there already is a singularity in A& which has to be
removed by taking the Cauchy principal value). In
fact if it could be proved that & + A& is unique, this
would be formally equivalent to proving that the
resonance poles are intrinsic properties of the total
Hamiltonian H thus contradicting the works of
Howland [12,13] and Simon [15].

The Golden Rule

While developing an algorithm for calculating the
width according to the golden rule the author became
interested in finding a derivation of the rule which
could be acceptable to mathematics students as a
deduction. from the postulates of quantum theory.
The author received advice from numerous kind
experts: in each case he was directed to look up a
perfectly rigorous proof by a named author and in
each case he found a justification based on plausibility
arguments. In view of the foregoing discussion the
precise difficulties are evident:

(a) One needs a perturbing term H, which causes
the transition and we have already seen that
there is no unique way of defining H,.

(b) The golden rule does not have a prescription
for going to higher order terms.

(c) The rule needs the value of & + A& which itself
is not uniquely defined.

The width calculated by the golden rule thus depends
heavily on the choice of A, and as there is no unique
way of making this choice I' calculated by this rule
is not well defined. It is needless to say that a rule
for an ill-defined quantity cannot possibly have a
rigorous derivation, Furthermore, in its more usual
form the formula contains a continuum wavefunction
(that is, a function with a §-function normalization):
such wavefunctions are outside the realm of rigorous
quantum mechanics; Though the form used in
equation (4) circumvents this particular difficulty, for
an actual calculation one still has to use such a wave-
function. An even more meaningful expression can
be given in terms of spectral measures [15], but this
does not make it either more rigorous or more
amenable to actual computation. The golden rule is
a formula which calculates to the lowest order the
transition rate between two states under a perturbation;
until the perturbation is well defined by the physical
problem it is difficult to justify the validity of
computations based on this rule except on purely
empirical grounds. Finally the relation between line
width and transition rate depends on a tenuous
interpretation of the time-energy uncertainty relation’
and does not have a rigorous justification.



hF S‘ta_te or Mixed State

~An isolated quantum system cannot have a width
in its energy nor can it have a decay constant. Both
these concepts are essentially statistical as are most
of the concepts peculiar to scattering experiments.
One is not talking about what happens when a single
electron hits a He' ion, but a whole ensemble of
such occurrences. The autoionizing state, therefore,
is quite likely a mixed state in which case it cannot
be represented by a wavefunction (note that a linear
superposition of wavefunctions does not give a mixed
state but a pure one!). As explained above such a
state can be represented only by a positive self-adjoint
operator of unit trace. It is possible that this trace
class operator 4 which represents such a state does
not differ very much from the projection operator
[$o><®Py | on the subspace spanned by the eigen-
function ®, of QHQ belonging to the eigenvalue &
for the more successful choice of Q. This might
explain why the Feshbach formalism with a particular
choice of Q consistently gives good answers. At
present this is just another conjecture, but the author
is trying to construct a model based on a mixed state
representation of the autoionizing state. Whether or
not such an attempt succeeds it is expected that at
the end one will have gained a better understanding
of the structure of a Hilbert space and a better insight
into the phenomenon of autoionization.

Concluding Remarks

The theory of autoionizing states contains a number
of unresolved difficulties of the most fundamental
kind. Nevertheless, the model most commonly used
(the Feshbach formalism) is able to predict for helium
both the positions and the widths of these states with
accuracy comparable to that of experiment. Hence
the model is directly useful to the experimentalist in
locating a resonance and has phenomenological and
empirical justifications. This suggests that the model
though not deducible rigorously form the fundamental
postulates of quantum theory is nevertheless a good
description of an autoionizing state. It is, therefore,
quite likely to have a heuristic value in the discovery
of a more satisfactory model.

The author believes that it is a healthy attitude
to have a somewhat sceptical attitude towards the
theory one is using in one’s calculations: this leads
not only to a better understanding of the theory itself
but often helps one in finding both better models and
better algorithms for the computations. Quantum
chemists are often criticized for carrying out lengthy
calculations for the sake of calculations without
looking carefully into precisely what or why they are
calculating. It is hoped that this work will show that
not all quantum chemists are guilty of this failing.

Before concluding the author would like to draw
attention to a paper by Mayers et al. [20] which

has laid to rest another popular misunderstanding
about autoionization and correlation. Many experts
have been known to assert that correlation bv keeping
electrons apart lowers the energy and hence makes a
system more stable. Therefore in the Hartree-Fock
approximation where correlation is completely ignored
all autoionizing states have ‘run away’ solutions.
Mayers er al. [20] have shown convincingly that the
contrary is true: in the Hartree-Fock approximation
autoionizing states are bound states and it is a certain
part of the correlation which causes these states
to decay.
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Experimental Results on Initial Energy
Distributions in Simple Atom-Molecule
Reactions Producing Hydrogen Fluoride

P.Beadle, N.Jonathan and S.Okuda*

The aim of this brief review paper is to bring to the attention of theoretical chemists the experimental
information which is now available for energy distributions in some simple atom-molecule reactions.
Particular emphasis is placed on reactions which produce hydrogen fluoride. Data from infrared
chemiluminescence experiments for the reactions of atomic fluorine with hydrogen, methane, the
hydrogen halides and other molecules, are presented and compared where possible with the results
from molecular beam experiments. Initial vibrational and rotational energy distributions are given.
These are discussed along with the relative rate constants. The need for trajectory calculations
using ‘good’ potential surfaces is pointed out in the light of features of the experimental results,

Introduction

Tie infrared chemiluminescence technique is one
which provides complementary information to that
obtained from molecular beam studies concerning
initial energy distributions in simple atom-molecule
reactions of the type

A+BC>AB,_ +C (1)

>

In certain cases it has also been possible to obtain
some information regarding reaction mechanisms [1,
2,3}. . Another use has been to place more accurate
limits on bond dissociation energies. However, the
major use is undoubtedly in providing accurate in-
formation on the initial vibrational and rotational
energy distributions in reactions such as (1). In this
respect the reactions which yield either hydrogen
fluoride or deuterium fluoride are particularly im-
portant. Not only do they form the bases of efficient
chemical laser systems, but also, because of the ease
with which atomic fluorine abstracts either a hydrogen
or deuterium atom from a molecule, they provide
the most extensive series of reactions which can be
studied. Under such circumstances it is possible to
find a series of related reactions whereby the factors
which may be of some importance in determining
initial energy distributions may be varied in a sys-
tematic fashion. It is then possible to compare the
information with predictions made using trajectory
calculations and various semi-empirical potential
energy surfaces. However, such an approach is not
entirely satisfactory and the need for more detailed
quanturmn mechanical calculations is evident. The main
purpose of this paper is to point out various

experimental results which have been obtained and
where perhaps better calculations are necessary.

Experimental

The spectrometer used for detection of infra-red
emission has been described on previous occasions [4,
5,6]. The reaction cells were designated as methods
1and 11 by other workers [7].

Method 1 has been described in earlier work [4,5,6]
and was of the basic flow-tube design. It consisted
of a stainless steel tube with a Teflon liner. Infra-red
emission was detected at four lithium fluoride win-
dows placed equidistantly down the tube. Since time
resolution of the emission was important, runs were
only made under conditions in which the infra-red
emission at the window which detected back diffusion,
was less than 5%. The monochromator was mounted
on rails running parallel to the flow-tube so that it
could be reproducibly focused on any of the windows
by a worm-screw assembly. The populations of the
various vibrational energy levels were determined
from the fundamental vibration-rotation spectra using
the Einstein transition probabilities calculated by
Cashion [8]. Since the flow-tube pressure was in the
range 75-100 mtorr it was found that in all reactions
studied except the F + HI reaction, that the
rotational energy level populations followed a Boltz-
mann distribution corresponding to temperature in
the range 300-350 K. Determination of initial
vibrational energy level distributions was complicated
by the short radiative lifetime of vibrationally excited
hydrogen fluoride as well as by collisional deactivation.
The technique used was to take measurements as a

* Department of Chemistry, University of Southampton, Southampton, SO9 SNH
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function of time down the flow-tube and to extra-
polate relative populations back to zero time.

Method Il used the ‘arrested’ relaxation technique.
In this method the reactant gases were mixed at
pressures of 1074-107° torr in a 24" reaction cell
which was continuously evacuated by means of an
oil diffusion pump and appropriate backing pump.
The reaction cell was equipped with two pairs of
gold-coated mirrors to increase the light gathering
power of the system. The reaction volume was
surrounded as far as practicable by a copper shicld
which was continuously cooled by liquid nitrogen.
This technique helps to maintain low pressures
because of cryogenic pumping of some gases and also
‘helps to ‘arrest’ the relaxation process. The latter
phenomenon occurs because energetically rich species
are trapped for sufficient time at the walls so that

is interesting because it is one of the simplest atom-
molecule reactions which can be studied by the
infra-red chemiluminescence technique. Because hyd-
rogen fluoride can be formed in high vibrational levels,
this reaction provides a very thorough test of any
potential energy surface used in trajectory calculations.
This situation is to be contrasted with that found
for many other reactions where only a few vibrational
levels can be populated. lence these do not provide
very sensitive tests of theoretical models. Reaction
(2) has been studied using both the ‘arrested’ relaxation
[9] and the flow-tube [6] methods. The agreement
between the experimental results for vibrational
energy distributions is excellent as can be seen from
table 1. The arrested relaxation method gave the
fractions of available energy distributed between
vibration, and rotation as f;,:f;o, = 0.53:0.03

whereas the flow-tube method gives f ;= 0.58.

Table 1: Relative rate constants k(v") for the reaction # + Fy > HF + F

k(0) k() k(2) k(3) k(4) k(S) k(6) k(7) k(8) k(9) k(10)
flowtube methoc}Gl 0.04 0.09 0.11 0.13 0.45 0.89 [1.00] 0.45 020 <0.04 <0.04
‘arrested’ relaxati[ogti <0.1 0.12 0.13 0.25 0.35 0.78 11.00| 0.40 026 <0.16 -
they lose all their excess energy rather than undergo 1.0
stepwise loss. The residence time of reactants in the
cone of sight of the spectrometer is difficult to Ny
calculate because of problems of measuring pressure
accurately and of knowing the effective volume of
the system. The problems arise because one attempts 00 |

: 01 2 3456 78 V

to work with crude molecular beams of gases rather
than with a diffusely mixed system. However, within Figure 1: Experimental and calculated vibrational energy

these limitations, the residence time is thought to be
<0.2 msec. The agreement between the product
vibrational distributions measured for F + H, by the
two methods provides a useful check on the accuracy
of the techniques.

In general the ‘arrested’ relaxation method is the
more useful in that in addition to measurement of
initial vibrational energy level distributions, it also
provides estimates of the initial rotational distri-
butions. However the flow-tube method provides a
somewhat easier way of measuring vibrational distri-
butions; Boltzmannization of rotational energy making
summation of populations in the various vibration-

rotation lines less difficult since in general problems

of overlap are less in low J value levels.

Results and Discussion

The reaction of atomic hydrogen with fluorine: The reaction

H+F "Hf;)sm +F AH;’“ =-98 9kcalmole? (2)
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level populations for the / + F, reaction

The energy distribution has been calculated using
trajectory calculations of a modified LEPS form [6].
The vibrational level energy populations for the
H + F, system along with the experimental findings
are given in figure 1. As can be seen, within the
limitations of this semi-empirical approach the agree-
ment is reasonable. The data for rotational energy
level distributions became available after the trajectory
calculations had been compieted. It is interesting to
compare these in figure 2. One of the features of
the LEPS type surface was that it predicted a too
narrow distribution of vibrational energies. As a
consequence it was not possible to calculate rotational
distributions in the first three excited vibrational
levels. Figure 2 shows that experimentally there is
little change in rotational energy or its distribution
as the vibrational excitation decreases. Hence there
must be a correspondingly large increase in the
translational energy of the products. The experimental
results are broadly in agreement with these findings.
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Figure 2: Experimental and calculated rotational level
populations for the H + F, reaction

We also believe that a test of a potential energy level
surface should be the degree of accuracy with which
it predicts the overall rate constant of the reaction,
the A factor and activation energy. The values are
given in table 2,

Table 2: Experimental and calculated kinetic data for the
reaction H + F

Rate Constant Activation
at 300_K_ cl: r::lc_tlof, Energy Reference
cc.mol 1§71 2 $ kcal mol
1.8 x 10'2 10'33 1.5 [10]
2.1 x 102 104! 2.4 [11]
2.3 x 102 1 = 3.2 calculated

Within the accepted limitations of the LEPS type of
potential energy surface, the agreement is satisfactory.
However, there is a clear need for a less empirical
surface which could be tested by the experimental
data now available for this reaction.

The reactions of atomic fluorine with hydrogen, hydrogen
chioride and methane: These particular reactions are
interesting in that their exothermicities are very
similar. In each case only v'€3 may be populated
directly by reaction.

The reaction of F + H, has been studied inde-
pendently by other workers [12] using the ‘arrested’
relaxation technique. Their results for both vibrational
and rotational energy level distributions are virtually
identical with the ones presented here. In addition,
the data are in very good agreement with those of
flow-tube studies [4]. These results give us some
confidence in the i.r. chemiluminescence methods.
It should be added that the data are markedly different
from those obtained by chemical laser studies [13].

Table 3: Summary of results from arrested relaxation

F+ H, HCI CHgq
Fi'M 0.70 0.58 0.67
<.E,,'>_l 23.25 20.40 21.90
kcal mol
fr 0.05 0.12 0.08
R’>-1 1.56 4.36 2.59
kcal mol
fr- 0.25 0.30 0.25
<l'?7~'>_l 8.32 10.53 8.18
kcal mol
Erora 33.25 35.06 32.72
kcal mol
1.0
Ny
0.0 = - e =

Figure 3: Relative vibrational energy level populations for
the reactions F + H, CH4 and HCI, F+ Hy
—«—+—F+CHy ————— F+ HC

A summary of the results obtained by the ‘arrested’
relaxation method is given in table 3. It can be seen
that the fraction £+ of available energy which enters
vibration, is very similar in each of the three cases.
However the actual distribution between the three
excited vibrational levels is rather different as can
be seen from figure 3. In the F + H, case markedly
more of the HF is formed in the v' = 3 level than in
the other two cases. In the case of the F + HC!
reaction a considerably larger proportion of HF is
formed in the v’ = | level. This accounts for the
lower fraction of available energy which enters
vibration for this reaction.

39



va ,’ ‘v
’
l._‘_
s ) 2 ; v’
v'=y
s 6 17 18 J'
v=2
N
00“23‘567I9|0l||7|J|‘l516J
1 _—
// | ] V‘-—-J
NG L
A
t o [y
, A
[} \~
O B [ -
0 1 2 3 4 S 5 7 8 9 Vw0 iy
Figure 4: Experimental and calculsted vibrational and

rotational energy level populations for the F + H, reaction

1.0 P
/ \\
\
/,, \
Nv' 'S \\
AY
A)
A
ol | R " A
o ] 2 3 v
1.0
s
e ~ Vel
/r \\
V‘ AY
e \\
N:" \
10
A
0 ‘
7 8 9 10 11 12 13 14 15 16 17 18 19 20 J
1.0
":__\\ V'=2
v \
2 ]
] \
N,. ///’ N
= A
/' \,
-—- 1
et [T :

[e] ]
2 3 4 5 6 7 8 9 1011 121314 15 16 J
1.0

/ \Q\\ v'-3
Yd \
’ N
Nr rd \\
/ .
d
,(
o] 1 '
© 1 2 3 4 5 6 7 8 # 10 J
Figure 5: Experimental and calculsted vibrational and

rotational energy level populations for the F + HCI reaction

40

1o b
AN
Y
4/
A
' / \
N, 7 \
{ %
5 % i B
[ 1 7 3 ‘. v
! ¥
" v'=]
Lty
4
1 -
PR
Ny v \
¥ A
) b
)
/ ) [‘
ol 4 ,
o 10 20 N
1
i v'=2
2 ‘\\
1 .
’ SSRs
N, TR
3 T
.\‘
o e e 3
0 s 0 15 J'
t
ot S~ TN v'=3
\
/’ 3 L=
/
/
NJ' ’
t‘l
.
y 1
0 + - '
0 s 10 15 J
Figure 6: Experimental and calculated vibrational and

rotational energy level populations for the F + CH, reaction

The differences between the reactions show up
more markedly when one examines the experimental
rotational energy level populations. The fraction f
of available energy rotation is small in each case,
although considerably larger in the F + HCI reaction.
The reasons for the difference in f+ are obvious from
figures 4, 5 and 6. There is a markedly greater
population in the higher J levels for HCI reaction
than the other two, although the same trend is evident
for CH,; compared with H,. However, perhaps the
most significant feature which arises from the rota-
tional analysis is the apparent double maxima in
the methane case.

The reasons for this are not obvious but there is
little doubt that it is a real effect. Studies of the
reactions of atomic fluorine with C,H, show a similar
double maxima and the effect is particularly obvious
in the corresponding reaction with SiHCI; [14].

The results of trajectory calculations are shown in
figures 4, 5 and 6. The calculated vibrational energy
level distributions are in satisfactory agreement with
the experimental results but as we mentioned earlier,
this is not a very severe test of a potential energy
surface since only levels v’ < 3 can be populated.
The rotational level populations are in much poorer
agreement especially for the v’ = 1 levels and for the
F + CH,4 case. The former may be due to partial



collisional relaxation of HF' from higher levels
although it is difficult to see why this should affect
the v’ = 1 level significantly more than the others.
There is no evidence from the calculations for the
double maxima. Hence one cannot be sure whether
these are due to general inadequacies in the chosen
LEPS surface or to the treatment of the methyl group
as a single particle. It is not clear whether all reactions
in which the departing species C in reaction (1) is
a multi-atom group, yield double maxima. An
examination of the reactions of atomic fluorine with
hydrogen bromide and hydrogen iodide might help
to clarify this point. However, up to the present
time the phenomenon has only been observed when
C consists of more than one atom. Since double
maxima are not observed in the HCI case, the mass
of group C does not appear to be the determining
factor and hence one suspects that the HBr and HI
reactions will behave similarly to HCI,

Table 4: Calculated kinetic data for the reactions of atomic
fluorine with hydrogen, methane and hydrogen chloride

Rate constant Activation
. A factor
Reaction at 30Q1K_ i ce.mol-1g! Energy_l
cc.mol™’s kcal mol
F+ Hy 22x10'? 6.8x10'3 2.1
F + HCl 31x10!! 21x10"3 25
F + CH, 46x10"! Lix10'3 0.8

The calculated kinetic data for the three reactions
are shown in table 4, Unfortunately there are not
good experimental data available for comparison. The
relative rate constants for the three reactions have
been measured to an estimated accuracy of +10% [5].
The calculated results for H, and H(I fit in quite well
but the value for CH, is low by about a factor of 6.
Hence once again we find the poorest agreement be-
tween calculations and observed data in the CH,, case.

The examples quoted illustrate the limitations of
the classical trajectory calculations applied to this
sort of problem. Although the general trend of energy
distributions can be rationalized in terms of the
semi-empirical surfaces and the type of energy release,
and although such surfaces can be used to predict
the effect of excess reactant energy, they fail to give
a detailed picture. It is hoped that the information
now forthcoming from the infra-red chemilumi-
nescence studies and fram molecular beam techniques
will stimulate more work from the quantum mecha-
nical standpoint.

Acknowledgements

The generous support of the Science Research
Council in the form of equipment grants, various

Fellowships and computing facilities through the
Atlas Computer Léboratory is gratefully acknowledged
as is the support from the United States Air Force
through the European Office of Aerospace Research.

References

[1] PErRONA, M.H., SETSER, D.W. and JOHNSON,
R.L. (1969). J. Phys. Chem., 73, 2091.

[2] CroucH, P. N. and THuRs, B. A. (1968).
Chem. Comm., 1351.

(3] Creex, D. M., MELLIARSMITH, C. M. and
JONATHAN, N. (1970). J. Chem. Soc. A, 646.

[4] JoNATHAN, N., MELLIAR-SMITH, C. M. and
SLATER, D.H. (1971). Mol Phys., 20, 93.

[S] JoNATHAN, N., MELLIAR-SMITH, C.M., OKUDA,
S., StAaTer, D.H. and TmMLIN, D. (1971).
Mol. Phys., 22, 561.

[6] JONATHAN, N., OkupA, S and TIMLIN. D.
(1972). Mol. Pnys., 24, 1143.

[7] ANLAuF, K.G., KuNTZ,P.J., MAYLOTTE, D.H,,
Pacev, P.D. and PorLaNyi, J.C. (1967).
Discussions Faraday Soc., 44, 183,

[8] CasHioN, JK. (1962). Aeronautical Research
Laboratories Technical Report, ARL 62-412.

[9] Poranyi, J. C. and Sroan, J. J. (1972).
J. Chem. Phys., 57, 4988.

{10] Levy, J.B. and CoPELAND, BK.W. (1968).
J. Phys. Chem., 72, 3168.

[11] Doponov, A.E., GORDON, EB., LAVROVSKAYA,
G.K., Morosov, LI, PoNOMAREV, A.N. and
TALROSE, V.L. (1970). Int. J. Chem. Kinet.,
2, 66.

[12] Poranyl, J.C. and WoopaLL, K.B. (1972).
J. Chem. Phys., 57, 1574.

[13] PARKER, J.H. and PIMENTEL, G.C. (1969).
J. Chem. Phys., 51, 91.

{14] BEADLE, P. and JONATHAN, N., (unpublished
work).

41



Procedure for Averaging Differential
Cross Sections over the
Experimental Angular Resolution

S.Bosanac and G.G.Balint-Kurti*

Differential cross sections for collisions of molecules in the thermal energy range normally oscillate
rapidly with angle, the oscillations becoming more rapid with increasing relative kinetic energy.
The angular resolution in crossed molecular beam experiments is generally insufficient to resolve
these rapid oscillations. A method is proposed for averaging differential cross sections over small
angular ranges without actually evaluating them at many angles. The method permits the calculation
of averaged cross sections, which are much more directly comparable with the experimentally
determined ones than those evaluated without averaging. Illustrative calculations are presented for
three examples. One for elastic scattering (Ar + Kr) and two for retationally inelastic scattering
(Ar + CsF and Ne + N;). When the differential cross section oscillates rapidly, as it does in the
first two cases, it requires less computational effort to plot the relatively smoothly varying averaged
differential cross section, than to plot the non-averaged cross section.

Introduction

Differential cross sections for elastic and inelastic
molecular collisions in the thermal energy range
normally oscillate rapidly with angle [1, 2]. The
angular frequency of the oscillations increases with
relative kinetic energy and also, in general, with the
masses of the collision partners. The detectors used
to measure cross sections have finite apertures and are
often unable to resolve these oscillations. A method
is proposed for averaging the differential cross section
over the angular resolution of the detector, without
actually evaluating it at the large number of angles
which would be needed to follow its oscillations.
The theory underlying the method is given and three
illustrative applications of the method are presented.
The systems treated are the elastic scattering of
Ar + Kr and the rotationally inelastic scattering in
model systems which represent Ar+CsF and Ne+N,.

The results show that although it is faster to
calculate the non-averaged differential cross section
than the averaged one at a single angle, in order to
follow the oscillations of the non-averaged cross
section it must be evaluated at very many more angles
than the smoothly varying averaged cross section.
The time required to plot the highly oscillatory non-
averaged cross section may exceed manyfold that
required to plot the averaged one.

Theory

The differential cross section, in the centre of mass
reference frame, for the scattering of two atoms
whose interaction potential is spherically symmetric,
is given by [3]:

a(8) = $|€(22+ 1) TQPQ(COSO)I2 )

where £ is the orbital angular momentum quantum
number of the relative motion, k is related to the
relative kinetic energy by k? = 2uE/h? and T® is
related to the phase shift by
™ = —2ie16Qsin62 )
The phase shifts 65 may be calculated by numerical
solution of the Schrédinger equation or by approxi-
mate methods such as the JWKB method [4].
For inelastic collisions of an atom with a rigid
rotor diatomic molecule, the differential cross section
in the helicity representation is given by [5];

|>:(2J+1)T’ (3)

jm <—Jm(0) = kz m'jm m m(e)[2

Each of the quantities in this equation are essentially
generalisations of those for the elastic scattering case
of equation (1). The angular functions dfn'm(()) are

* School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 ITS
(present address of S.B.) Institute ‘Ruder Boskovi¢, 41001 Zagreb, Bijenicka C 54, Yugoslavia
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reduced representations of the rotation group [6].

The T-matrix elements Tj",m.,jm are related to the more

commonly encountered ones in the total angular momentum representation [7] by a matrix transformation

involving the Clebsch-Gordan [8] coefficients:

T im = 5157 Thy g Gmd ~mijI20) (/'m'd — | 1I20) @)

jm,jm Q'

The largest contributions to the differential cross
section come from those total angular momentum (J)
values for which the term (2J+1)7}"m',jm- is close
to its maximum value, (see equation (3)). The value
of J for which this term is a maximum will be denoted
by Jo. It is just a bit larger than the J value
corresponding to the maximum in a partial integral
cross section ~J plot [9]. If we neglect all the terms
in equation (3) except that arising from the maximum
contribution to the sum, then the differential cross
section can be written as:

jm<jm

(20, +1)?
o1 (0) > —“912?——|7}?Pm,’jml’ldf;\>,m(0)l’ )
)

For large Jo (and Jo>m' and m) the asymptotic form
of !0, (8) may be used [5,10]:

(6

dj" ) ~ (2) cos[Jo0+6/2+n(m'- m-Vz)/2]

mJy (sinf)*»

When this is substituted into equation (5) we obtain:

0 ~ QI+ TR 0|

order as the angular period (A6), the rapid oscil-
lations of the differential cross section will at least
be damped and may not be observed at all. A recent
report on molecular beams [11] indicates that the
smallest attainable angular resolution should be be-
tween 0.3° and 0.8°, while a recent experimental
paper [12] reports an angular resolution of A6, = 1.6°.
In the present paper we use this latter value as
representative of a typically attainable resolution.
The values of J, for which A8 = 0.3°, 0.8° and 1.6°
are J, = 600, 225 and 113 respectively. Total angular
momentum quantum numbers of this magnitude are
often important in molecular scattering experiments.

If the angular resolution of the experiment is
larger than or comparable to A@, the period of the
oscillations in the true differential cross section, then
it will be necessary to average the calculated dif-
ferential cross section over the experimental angle of
resolution before a meaningful comparison between

2 cos?[Jo0+8/2+m(m’-m-14)/2]

ijml‘_jm( ijzﬂ.’o

Thus the differential cross section (in this approxi-
mation is an oscillatory function with a period of
L

A0 =~ — 8
2 ®

Even when full acoount is taken of all the terms
arising from the summation over J in equation (3),
we expect the differential cross section to exhibit
oscillations with approximately the above period.
if the resolution of the detector (A6 ) is of the same

1

0 -
i) = GG sin(as 4?2

where 0, = 04 * AOd/Z.

™)

sinf

experiment and calculations can be made. The
averaged differential cross section is given by:

m<—jm 0 Q 'm'e<jm
J A AQ:’ J 4

@y@ae 9

where AQy is the solid angle spanned by the aperture
of the detector. As 0j'm’«jm(9) is a function of 6
only, the integration over ¢ is trivially performed and
we obtain:

6,
f Jm(_Jm((i)sm@dﬂ (10)

If the expression for the differential cross section equation (3) is substituted into the right hand side of equation
(10), then the average differential cross section may be expressed as:

1
smeo sin(Af d/2)

oj'm’<—jm(0°) =
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where

Pl (00,00,) = S50 0)d’, (0)sin6do
m'm\’ 04%g 0 m’'m m’'m

(12)

For sufficiently large J and J' the angular functions dm:m(O) may be replaced by their asymptotic forms, equation (6).
The integration in equation (l”) may then be carried out analytically. If we denote the integral evaluated using

these asymptotic forms by C” we can write:

m’

Al (80,00,) =

Ay B {(J—f)" cos[(J-J)8o]sin[(/-T)A0,/2] + (- ™™ (T 1) sin[(J+7'+1)0,] sin[(J+J'+l)A9d/2]} (13)

Test calculations show that if J—|m|—|m'|[>11,
and both |m| and |m'| are less than 3, then the
asymptotic approximation of equation (6) is valid to

better than 6%, for angles between 14° and 166°.

The approximation becomes rapidly better as the
angle moves towards the middle of the range and asJ
increases. For inelastic cross sections involving larger
values of |m] it will be necassary to use the asymptotic
form, equation (6), only for larger values of J. In
the present calculations the analytic form of equation
(13) is used when both J and J' satisfy the inequality
J>11+|m|+|m'|. A test calculation on the j=0+j=2
differential cross section for Ne + N, (see figure 3

) 10+|m|+|m'|
Oy s (B0) = Z
'm—m 2 ;
8kj sinfg s1n(A0d/2) =7
10+m|+|m'| % .
+ 22 Z R Bmrm 0,48, +

J=0 J=11+|ml+|m’|

below) showed that it was only negligibly affected
by imposing the more stringent condition that
I>20+ | ml+|m'|.

If either J or J' are smaller than 11 +|m|+|m’|,
alternative means must be used to evaluate the integral
of equation (12). When both J and J' are small
(i.e. J<11+|m|+|m'l) the integral is denoted byA;'nJ'm,
“and it is evaluated using a two point Gaussian
numerical integration rule [13]. This should give
relatively accurate values as the limits of integration
are much smaller than the period of oscillation of
the integrand. For J=10 the period of oscillation of
the integrand is approximately 18° as compared with
a range of integration of Afy = 1.6° which we use
here. When one of the J values is smaller and the
other larger than 11+|m|+|m’| then the integrand is
the product of a slowly varying function (dfn:m(O)
for J<11 +|m|+|m'|) and a rapidly oscillating one,
equation (6). In this case we use a four point Filon’s
integration formula [13] which is specially desi ned
for such a situation, and denote the integral byB

m'm““m'm

The notation used for the integral of equation (12)
in the various different cases is:

1y
1 6.48,)

AL (6,46,) for J and J'<11+[m|+|m

H

B, (6,86,) for J<I1+{m|+|m|<J (14)

Cfnjr'm((?,AGd) for J and J'=11+|\m |+ |m’|

The averaged differential cross section, equation (11),
may therefore be written as:

o A (6,06,) (28,

o0
e JJ'
Z Ry Corn 6,46,) (28,4 (15)
J>T =11+ mi+|
where
1y
R = (2J+1)(20' +1) Re[TJIm erj,m, -

Re denotes the real parts of a complex number and
8yy is a Kronecker delta symbol. The most time
consuming part of the calculation is the second
summation (involving B;"f,' m)> €ven though the third
summation includes many more terms. This is
because the various sines and cosines involved in
evaluating C"mm, equation (13), can be computed
and stored before the main calculation. If this is done
each of the terms in the last summation becomes very
simple to evaluate.

Illustrative Applications
As a test of our averaging procedure we applied
it first to the elastic scattering of Ar + Kr, for which

both experimental results and calculated averaged
differential cross sections have already been reported
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[12]. We used the same potential (Schlier-type),
angular resolution and energy as those used [12]. At
this energy (0.061728 eV) 300 partial waves were
required in the partial wave expansion, equation (1).
The largest maximum in the partial integral cross
section occurs at around £ = 160, from which the
angular oscillations in the differential cross section
may be estimated to have a period A9 = 1.1°. Both
the averaged and non-averaged differential cross
sections, calculated using a semi-classical approxi-

mation slightly better than the standard JWKB one
[14], are shown in figure 1. The period of oscillation
of the non-averaged cross section agrees roughly with
our estimate. The broken line corresponds to the
differential cross section averaged over the angular
resolution of the detector (1.6°). This averaged cross
section seems to be in good agreement with that
reported by Parson et al. [12,15]. This example
demonstrated that an averaging procedure is necessary
before meaningful comparison can be made between
theory and experiment.
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40
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Figure 1: Differential scattering cross sections for Ar + Kr at £ = 0.061728 eV. The solid line corresponds to the non-averaged cross
section while the broken line is the cross section averaged over the angular resolution of the detector (1.67) [12].
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Figure 2: Rotationally inelastic (j=0>/=1) differential cross sections for Ar + CsFatE =0,

cross section while the broken line corresponds to the cross section averaged over an angular resolution of 1.6°. See [16] for

detnils of the model used in the calculation.
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Figure 2 shows averaged and non-averaged rota-
tionally inelastic (j=0+j=1) differential cross sections
(summed over the final m’ quantum numbers) for a
model calculation [16] on Ar+CsF at an energy of
E=0.04eV. The required T matrix elements were
calculated using an exponential semi-classical distorted

wave approximation [17] which will be discussed in. .

a future publication. The number of J values needed’
for this case was 450 and the main maximum in the

partial total inelastic cross section occurred at J=240. .

From this we would estimate that the oscillations in
the cross section should have an angular period of
about A8 ~0.75°, which is close to the calcujated
period (figure 2, solid line) of A8~ 1.0°. The broken
line in figure 2 shows the inelastic differential cross
section averaged over an angular resolution of 1.6°.
The averaged differential cross section varies smoothly.

The rapid oscillations of the true differential cross’

section cannot be observed using a detector of this
resolving power. The time needed to evaluate a single
point on the averaged differential cross section curve,
equation (15), (excluding the time for the evaluation
of the Tj"m',jm matrix elements) is about twice that
required to evaluate a point on the non-averaged cross
section curve, equation (3). As the non-averaged curve
oscillates so rapidly, however, many more points (most
probably at least six times as many) are needed to
_plot it as to plot the smoothly varying averaged curve.

sind®) x0(gaz) (A2)
LR

08

g° 10° g8 20°
: D
Figure 3: Rotationally inelastic (=0 »;=2) differential cross
sections for Ne + N3. The solid line is the non-averaged cross
section while the broken line corresponds to the cross section
sveraged over an angular resolution of 1.6°. See [18] for
details of the model used in the calculation

When the angular resolution of the detector is
smaller than the angular period of oscillation of the
cross section, then the general form of the differential
cross section will not be affected by the averaging
procedure. Some of the details of the cross section,
however, such as the heights of the peaks in the
oscillations may well be affected. Figure 3 shows

the averaged and non-averaged rotationally inelastic
(7=0+j=1) differential cross sections (summed over
the final m' quantum numbers) for a model calculation
on Ne+N, [18]. At the energy used in the calculation
(E=0.046 eV) 80 total angular momentum quantum
numbers (J) were required. The partial integral cross
section had two maxima at about J=30and 67. The
figure shows oscillations with an angular frequency
of about Af=3° at low scattering angles. This is
consistent with the qualitative concept that the low
angle scattering is dominated by the large J partial
waves, even though the maximum at larger J (= 67)
makes a much smaller contribution to the total cross
section. The averaging process does not significantly
affect the form of the differential cross section, the
peaks of the oscillations are, however, considerably
damped.
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Figure 4: Differential cross sections for Ar + Kr at different
energies. All the cross sections are averaged over an angular
resalution of 1.6°. The relative kinetic enetgies corresponding
to the different lines are (---) E=0.061728 eV
(F+++) E=0.064728 eV
(----- ) E=0.058728 eV

Besides the size of the detector, there are several
other factors contributing to the resolution in a
crossed molecular beam experiment. There is the
angular spread of the molecular beams and the fact
that they are not mono-energetic, but have a distri-
bution of velocities. When comparing theory with
experiment, both of these factors should be taken
properly into account. In some cases it is possible
that the averaging over the angular resolution of the
detector will be the dominant effect and that it will
be permissible to largely ignore the averaging over the
velocity distributions in the beams. In figure 4 the
effect of a variation in the energy by about 5% either
way on the Ar + Kr differential cross section is shown.
The broken line corresponds to the averaged dif-
ferential cross section at an energy of £=0.061728 ¢V,
the line with the plus signs is at £=0.064728 ¢V and
that with the minus signs at £=0.058728 ¢V. The
variation in the energy by 5% is seen to have a
relatively small effect on the overall shape of the
curve, and for this case the process of averaging over
the angular resolution of the detector is seen to yield
a cross section which, in the first approximation, may
e directly compared with experiment.
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Conclusions

The procedure presented in the paper provides a
method for the direct calculation of differential cross
sections averaged over the angular resolution of the
detector. Because the procedure does not involve
following the details of the rapid oscillations of the
non-averaged differential cross section, it should
provide a faster and more convenient method of
calculating differential cross sections for comparison
with experiment. It is of special relevance to collisions
between heavy molecules and/or collisions at high
energies. In these cases the differential cross sections
normally have angular oscillations which are too rapid
for the detector to resolve.
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A Theoretical Study of Vibrational
Self-Relaxation Rates of HF

K.Smith*, M.J.Conneely*T and A.R.Davies#

Calculations of HF vibrational self relaxation times have been performed using a theoretical model
which treats the HF molecule as a simple harmonic oscillator and approximates the HF-HF interaction
with a Lennard-Jones potential. Results will be presented of Q¢ g0 £) the vibrational de-excitation
cross section and Qg ,10(£) the vibrational-vibrational cross section both as a function of energy,
and 7y _p the vibrational self relaxation time as a function of temperature. These results are compared

with experimental values.

Introduction

Experiments: The vibrational relaxation rate of
hydrogen fluoride is of current interest because of
the extensive development of hydrogen fluoride
chemical lasers [1}. To understand and predict the

performance of these lasers a knowledge is required

of the collisional deactivation cross sections of
vibrationally excited hydrogen fluoride.

Airey and Fried [2] carried out the first measure-
‘ment of the vibrational relaxation rate of HF (v=1)
upon collision with itself, using a laser fluorescence
technique. They found that this self-relaxation rate
was extremely fast at 350°K having a pr=10.5 usec
Torr. This method has also been used by Hancock
and Green [3-5] and by Stephens and Cool [6]. The
latter’s measurement at 350°K, of pr is quoted in
table 1 as 19 usec - atmos., while that of Hancock
and Green [3,4] is given as 11.5 usec - atmos. at
295°K. Green and Hancock [S} have studied the HF
self-relaxation rate as a function of J line excitation
frequency and found it to be independent of rota-
tional level excitation over laser transitions P, ,¢(2) -
P50(9). (The theoretical model discussed in this
paper neglects rotational motion of the colliding
diatomic molecules). The laser fluorescence technique
has also been used by Hinchen [7] to measure
vibrational relaxation times for HF-HF at 295°K and
over the range 300°K—1000°K. His results coincide
with the shock-tube data, to be discussed below,
above 1000°K.

Shock tube studies of HF vibrational relaxation
have been performed by Bott and Cohen [8] over the
temperature range 1350 to 4000°K. They obtained
a straight line Landau-Teller plot (Pr versus T7'’3)
with a slope of about 30°, and compared their data

with the predictions of three theories of V-T and V-R
energy transfer. A similar experiment has been
carried out by Blauer et al. [9] whose results were
qualitatively the same as those of Airey and Fried [2],
but smaller by a factor of three. Bott [10] has
extended the temperature range of these results from
460 to 1030°K and at 295°K. A Landau-Teller plot
of these results also exhibits a straight line, but with
a negative slope of about 60°, with p7 = 19 usec Torr
at 295°K. This temperature range has also been
investigated by Fried et al. [11] who obtained a straight
line with a negative slope of about 45°. The various
low-temperature results are presented in table 1.

Table 1: Low temperature experimental values of the
HF(v=1) self-relaxation rate.

Tem%elzature ;secp;orr Reference
350 10.5 (1]
350 19 (6]
296 19 [10]
294 11.5 [3.4]
294 13.9%1.6 [13]
290 20 [12]

In other words, it has been experimentally estab-
lished that the self-relaxation rate of vibrationally
excited HF has a markedly unusual temperature
dependence — a minimum near 1000°K, and is
extremely rapid. It should be emphasized, however.
that no single experiment has been performed over
the whole temperature range, see figure 1.
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Osgood et al. [12] have reported a direct measure-
ment of the V-V transfer rate out of v=2, that is

HF(v=2) + HFw=0) » 2HF(=1) 1)

This experiment yielded a value of 1.5 usec Torr for
the V-V decay rate, compared with a value of
2.2 x 10%cc/mole. sec obtained by Bott [10]. Bina
and Jones [13] have interpreted their results on HF
as resulting from VT de-excitation of HF (v=2) level
at a rate pr, =6.6 * 1.7 psec Torr and a second, and
slower, decay from the VT collisional loss of HF(v=1)
at a rate pry; = 139 * 1.6 usec Torr.

Theory: Two of these experimental groups, Fried
et al. [11] and Bott [10], compared their results
with a modified version of a theory developed by
Shin [14,15]. The modification consists of multi-
plying Shin’s expression for de-excitation of an
oscillator, Py, by exp (¢/kt), where ¢ is intended to
simulate, in a crude way, the attractive dipole-dipole
interaction between HF molecules. This so-called
‘modified Shin theory’ reproduces the qualitative
result of the Landau-Teller maximum as seen in
figure 1.

The existence of this considerable amount of data
on HF self-relaxation rates does provide a stimulus
to molecular collision theory to investigate the possi-
bility of predicting these rates without recourse to the
introduction of empirical parameters and functions
such as exp (¢/kt).

The theory of vibrational-vibrational energy transfer
in diatomic-diatomic collisions through 1968 has been
reviewed by Rapp and Kassel [16]. These authors
emphasized the semiclassical formulation of the
problem based on head-on collisions in which the
intermolecular potential is assumed to be an expo-
nential function of the distance between the middle
pair of atoms. This same model has been formulated
within quantum mechanics by Riley and Kuppermann
[17] who presented results for the collinear collision
of two harmonic H, molecules. Wilson [18] has
developed a quantum mechanical theory for the
collinear collision of two diatomic molecules in which
the intermolecular potential is also just a function
of the distance between the inner pair of atoms
approximated as a series of constant steps outside
an infinite potential barrier. He applied his model

to diatomic molecules consisting of H and D atoms.

Although this paper describes a model which
neglects rotation of the colliding partners, other
workers, notably Shin {14,15,19] have constructed
models for calculating vibrational-rotation energy
transfer probabilities. Shin’s work is based on a
classical model consisting of a rotation-averaged
oscillator and a rigid rotator. The interaction potential
is assumed to be the sum of Morse potentials between
the atoms of the different molecules
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4
U= % Ur) (1)

where r; are the inter-atom distances. and
uer,) = Dlexp(®-r,/a) - 2exp(Y2-rf20)] . (2)

where the parameters are determined by fitting the
exponential to an empirical Lennard-Jones potential.
The formula given by Shin [14] for the probability
of vibrational de-excitation (1>0) through the V-R-T
energy transfer mechanism did not include the effect
of the dipole-dipole interaction. This effect leads to
an ¥ ¢ potential which in turn modifies Shin’s formula.
When Shin [15,20] included this effect he was able
to reproduce the qualitative features of 2 maximum in
the Landau-Teller plot for HF self-relaxation observed
experimentally. Howevsr, at high temperatures his
calculated results are bigger than the experiments
of Bott and Cohen [8] by a factor of three.

Calculations of V-V transfer probabilities in CO-CO
collisions has been carried out by Jeffers and Kelley
[21], who included both short-range and long-range
forces. For the former, they assumed the collision
to occur between collinear non-rotating CO molecules
with a simple exponential as the intermolecular
potential, see Rapp and Kassel [16], while for the
latter they used the first Born approximation to
calculate transition probabilities for dipole-dipole and
dipole-quadrupole transitions as prescribed by Sharma
and Brau [22,23]. They found that with increasing
temperature, short-range interactions dominate.

The Sharma-Brau formulation is based on a model
in which the translational motion of the colliding
molecule is determined classically by a hard-sphere
potential. The transfer of rotational and vibrational
energies, which is treated quantum mechanically, is
regarded as solely due to the Coulomb interaction
between the molecules. Tam [24] has modified this
theory by interchanging the order of taking the
averages over the velocity distribution and the impact
parameter, and applied it to CO-CO collisions, see
Tam [25].

Kelley [26] has considered the collision between
two harmonic oscillators in which a time-dependent
interaction potential contains terms which are linear
and quadratic in the oscillator coordinates. Explicit
expressions for transition probabilities were derived
for collinear collisions involving exponential potentials,
but they were not used to calculate experimentally
determined cross sections.

Berend and Thommarson [27] have programmed
the classical equations of motion for a two-dimensional
collision model. They have used an empirical inter-
action potential constructed from the six atom-atom
functions. The interaction between the chemically
bonded atoms was represented by Morse-functions,
while the interaction between the non-bonded atom
pairs was taken to be the sum of Morse and Coulombic



potential functions. The results of these authors
are presented in figure 1 and are found to be in
qualitative agreement with the experiments.
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Figure 1: Comparison of experimental and theoretical values
of the seif-relaxation rate of HF on a Landau-Tetler plot

A ‘breathing sphere’ model, in which one molecule
is treated as a spherical body which is capable of
changing its radius, while the incident molecule is
represented as a point mass has been used by Marriott
[28] for CO-CO collisions. The assumption on the
intermolecular potential follows Schwartz etal [29]
by writing

VRP) = Vo V(N V,R) 3)

where 7 is the intermolecular coordinate and R is the
vibrational coordinate of the target diatomic. While
V() is taken to be a Lennard-Jones (6,12) potential,
Vi(R) is assumed to be adequately approximated by
an exponential function whose parameters are obtained
by fitting the magnitude and slope to the Lennard-
Jones potential at the classical distance of closest
approach. Later, Marriott [30] fitted the exponential
function to the effective potential consisting of the
centrifugal barrier and the Lennard-Jones potential.
Calculations were carried out on CO-CO collisions [31]
using this latter form. The model developed in this
paper is an extension of Marriott’s model to a pair
of colliding breathing spheres,

In the following section we describe our theoretical
model in detail and outline the various numerical tests
we have carried out on the model to ensure our
results are as correct as possible while in the next
section we describe the HF-HF system. Following
that we present our cross sections for both V-T and
V-V energy transfer processes for HF-HF collisions.
Then our calculations of the associated relaxation
rates are presented, where we compare and contrast
our results with previously published experimental
and theoretical results, Finally we present a summary
and conclusions in regard to the short-comings of
our model.

Theoretical Model

It will be assumed that the overall wavefunction
for two colliding diatomic molecules, 4B and HF,
can be expanded in terms of a basis constructed from
the product of simple harmonic oscillator functions,
eigenvalues £ m» that is

V(ABHFr) = T W (AB) ¥, (HF) F. (1) (4)
mn

When equation (4) is substituted into the non-
relativistic Schrédinger equation for the system, the
resulting equation pre-multiplied by a member of the
basis, and the angular part of the expansion coefficients
Fo\n(r) are separated off, then we obtain the close-
coupling radial equations for the system

2
[d Q—(!Ll) iy kxznn]pﬁm(r)

a? 7

2u
= W mr”n’ an,m’n'(r) Fx&’n’(r)’ )
where

2 _ M
Ko = 7 (E-E,-E), ©

M is the reduced mass of the collision system, and
an,m,n;(r)

= Jdr ,,(AB) Y, (HF) V(AB,HF) y,_(AB) Vo (HF).
(7

To evaluate these matrix elements we follow
Schwartz et al. [29] and assume

VMB.HF) = V, V() Vi(R,p) VaRyp), (8)

where RAB denotes the internal vector coordinate

between the atoms of the molecule 4B8. To obtain

an approximate representation for the potentials,
Schwartz et al. [29] assumed that the intermolecular
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potential can be approximated by an exponential
function of the distance X between nearest atoms in
a collinear collision: see also Mott and Massey [32],
whose parameters are determined by fitting this
exponential function to an empirically determined
Lennard-Jones potential at the classical distance of
closest approach [28]. The result is

VABHF) =~ V, V(r) e MRaB ¢ ARur (g)
where
24,’77/6
A = —(1-1/n),
; 0(217—1)( In;)

n = B+ +EJSe)*],

n; is the number of atoms in molecule i = 1(4B),
i = 2(HF), E_ is the collision energy in eV, while ¢
and o are the Lennard-Jones force constants.

Equation (9) is substituted into equation (7) and
the integrals over R,p and Ryp can be performed,
as in [28], to give

~AR
Unm' = JdRyp ¥m@Byp) ¢ 17AR ¥ (Ryg)

1"
eA|2/4a2 ( m:-m )Vz (_1)m+m'

2m+m
m t m+m'-2t
.z [2(”""‘) , ] (10)
t=0 t{m-){(m'-1)!

where a = (27Mv)", M being the reduced mass of the
oscillator, and v its fundamental frequency. There-
fore, equation (7) can be written as

V@ = Vo V) Uy Uy (7a)

m

where V(r) is taken to have a lennard-Jones form
and the constant V, is normalized to ensure that the
full intermolecular potential is normalized to the
Lennard-Jones form when both molecules are in their
ground vibrational states, that is Vo = (Uge)™>.

From the asymptotic solutions to equation (5),
the reactance matrix and consequently the cross
sections can be determined in the usual way [33],

Q(mymyp>mymy)
2
fdg oo
= ——— T (1) ITL,
2 oo mjmj,m,;m
(aokmlmz) 2=0 (MM

2, (1D

where g is the first Bohr radius.

In this work we are particularly interested in V-T
collisions, for example the de-excitation process
Q(10+00), and V-V collisions, for example Q(10+01).

The numerical solution of equation (5) has been
carried out using the algorithms described in Smith
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et al. [34]. The analysis for the vibrator-vibrator
problem differs from the structureless-vibrator prob-
lem only in the definitions of the wave number
squared, equation (6), and the potential, equation (7a).
Hand checks were carried out to ensure that this part
of the code was correct. The numerical solution of
the coupled system of ODE’s and the extraction of
the R-matrices and cross sections was identically the
same as that used by Smith er al. [34] who describe
in detail the numerical tests which had been carried
out to ensure their correctness,

HF-HF System

If the channels of equation (5) are ordered in
increasing wave number, then it is seen that there is
one elastic channel, associated with kg4, three de-
generate inelastic channels associated with &y, kg4,
ka0, etc. The objective of this paper is to estimate
the relaxation time for HF(v=1) molecules to return
to the ground vibrational state. This can occur vig
several alternative paths, for example

HF(v=1) + HF(0) > HF(0) + HF(0) + AE = 3961cm™,
(12)

or
HF(=\) + HF(v=1) » HF(v=1) + HF(0) + AE, (13)
followed by equation (12), or

HF(v=!) + HF(v=1) » HF(0) + HF(0) + 2AE, (14)

and, according to Hancock and Green [4], the
experimentally measured rates are a summation of
the several individual rates comprising both V*»V and
V>R,T energy transfer processes. In view of a near
resonant match between v=1,J=4 and v=0,J=14 levels
of HF, processes of the type

HF(v=1,J=4) + HF(0) » HF(v=0,J=13) + HF(0), (15)

might be important in HF vibrational relaxation.

Since both rotational and closed channel effects
have been neglected in the present model, we have
followed the consistent approach of including only
three open channels associated with kg, ko, k1o and
calculating relaxation times from reaction (12) as
described in Smith er al. [34].

The model described in the previous section
requires the energy separation of the vibrational levels
of HF. that is AF = 0.5133 eV, the Lennard-Jones
force constants, o = 2.55A and e/k = 400°K, the
reduced mass of the oscillator, M =0.95 My, and the
reduced mass of the collision system, u = 10 mp.
Equations (5) are then solved for a given E for a
sufficient number of £ values to determine the total
de-excitation cross section accurately,



Table 2: Relationships among the cross sections for elastic
scattering, F, vibrational-translational energy transfer, V-T,
and its inverse, T-V, related by detailed balance, and
vibrational-vibrational energy transfer, V-V.

Final States m’,n’

Initial
States ko® koy? ky
mn e . e

0,0 0,1 1,0 1,1 0,2 2,0

0,0 Ey  (T-V); (T-V)y (T-V); (T-V); (T-V);
0,1 VT, Ea (V) (T-V)q (T-V)s (T-V)g
L0 (VD (V-V)y E;  (T-V)4 (T-V)g (T-V)g
1,1 VT); (VT)s (V-Te E3 V-V (V-V}

0,2 (VD3 (VDs (V-De V-V)2 E4  (V-V)3

2,0 (VD3 (VT (V-T)s (V-V)y (V-V)3  Eq

In table 2, we present the relationships among the
various cross sections due to the identity between
target and projectile. Cross sections (T-V) with the
same suffix should be identical, while cross sections
(T-V); are related to their inverses (V-T); by the
detailed balance, that is
kmn2 an,m’n’ = km’n'2 Qm'n’,mn‘ (16)
These relationships provided an explicit numerical
check on the correctness of the code. The degree to
which they are satisfied depends on the accuracy of
the R-matrix which is real and symmetric. In general,
the results we quote here are from R-matrices sym-
metric to four decimal places. However, for collision
energies approaching the second excitation threshold,
1.0266 eV, and at very large € values, where the cross
sections were very small, 1078, the symmetry of R
was lost.

Cross Sections

In molecular collisions, many partial waves are
required to calculate the total cross sections. However,
the cross section does vary smoothly with £ and so
there is no need to solve equation (5) for each & value,
but only a sufficient number to define the shape of
the Q versus £ curve. In table 3 we present the
sequence of collision energies we used, E;, and the
values of the (V-T), cross section at the peaks. From
this table we see that for £, > 4.0133 eV, a second
inner peak has appeared. We have plotted all the Q
versus £ curves and found them to be smooth. These
curves are summed to give the total de-excitation
cross section as shown in figure 2. This curve
exhibits a shoulder at E, = 4.0133 eV. Since we
cannot think of any mechanism which would induce
such a shoulder in the energy behaviour of the cross
section, then we conclude that either our method

produces too large cross sections at the lower energies
or too small cross sections at the higher energies. We
are in the process of trying to resolve this uncertainty.

Table 3: Dependence of the maxima of the V-T cross
section Q1¢,00 in units of Tlag? on € and E,

E (eV) £ Qlo,oo(ﬂﬂoz) 4 10,00
1.0633 25 0.19x107

1.1133 28 0.38x10"

1.3133 30 033x10°

1.5133 35  0.6x10°

2.0133 0 017x10°

2.5133 70  0.61x10°

40133 150 0.25x 107 30  0015x10°
50133 200 04 x10° 75 0415x10°
60133 225 052x10° 110  1.025x10°
70133 265 07 x10° 150 15 «x10°

As mentioned previously, the production runs of
the present work have been carried out in the three-
state close coupling approximation including the 0,0;
1,0; and 0,1 states of the collision partners. From
table 2 we see that this enables us to calculate the

HE(vst) o HFlvs0) —= 2HF(va0)

p—%

/ w0

i |
/
x

/ 0

X

" i L 1 L 1
1013} 20133 10133 4 013) 50133 6 0133 70133

Eoa8V

Figure 2: De-excitation cross section, in units of mo2,
Q10,00, 38 2 function of the collision energy £, in a three-
state close-coupling approximation
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nine cross sections of the upper left hand corner 3 x 3
matrix. In figure 2 we have plotted the (V-T), result
and we did ensure that it equalled (T-V),, by
reciprocity. We now turn to discuss the (V-V),
cross section.

32p
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EOr= ) HF (1) HF(0) —= HF(Q}e HF (1)
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Figure 3: Vibrational-vibrational cross section, in units of
Tag", Q10,01, 28 8 function of the collision energy E, in 2
three-state close-coupling approximation. The dashed part
of the curve is interpolated from the results on either side
of the peak. The circled cross indicated a calculated point
which may not have converged in £

We have found that the vibrational-vibrational
energy transfer process converges in £ much more
slowly than the corresponding V-T cross sections.
We have also found that they do not exhibit the huge
variation over orders of magnitude that we presented
in figure 2 for the V-T results. In figure 3 we present
the V.V transfer cross sections for the process

HF(r=1) + HFp=0) > HF(@=0) + HF(»=1). (17)

We have drawn this curve so that it has a smooth peak,
the dashed part of the curve, rather than draw it
passing through the calculated point at £, = 2.5133
eV. This has been done because we found that con-
vergence at high £ was very slow and the R-matrices
were becoming non-symmetric. We found, asin V-T,
that the partial wave cross sections exhibited a
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second peak at the higher energies. For V-V cross
sections this peak contributes about 20% to the total
cross sections. Consequently, if we assume that such
a peak is present at high partial waves at £, = 2.5133,
then our calculated point would lie precisely on the
dashed curve.

Relaxation Rates
If is is assumed that the distribution of velocities

of the HF molecules is Maxwellian, then the reaction
rate coefficient is given by

= 2 2 H e i —uvz/sz
7if(T) = 4n°ap akT N Qif(v) € vy,
" g (8)

where N is the particle density at one atmosphere
pressure at T°K,

MNP

~ RT 2

We have taken the following values for the constants,
Avogadro’s number N, = 6.0228 x 10*% cm’

1 atmos. P =101325 x 10° dynes
Gas constant R = 8.315x 107 ergs/mole/°K
Boltzmann’s constant k = 1.38033 x 1076 erg/°K
Bohr radius ap = 05294 x 10 cm

Proton mass my, = 1836 x 9.1055 x 10728

The cross section, Qy¢, is given in units of T,

When these constants are substituted into equation
(18), and we change the integration variable to

x = mv?[2kT, (20)

then equation (18) becomes, in units of sec’!,

o0

¥,(T) = 093716 x 10'° (un-'/zj Q. (xkT)e™*xdx,

. @1)
where u is in proton mass units, which agrees with
Marriott [35].

Herzfeid and Litovitz [36] show that the internal
energy of a simple harmonic oscillator has a single
relaxation time related to the rate coefficients by

-1

Ts.h.o. = Y10 " Yo01 > (22)

provided the rate coefficients satisfy the ratios
7>\+1,7\ /7)\,)\_1 = Atl /7\, (23)
which they do in the distorted wave approximation

of Witteman [37], but which they do not in the
closecoupling approximation. Consequently, we



believe that it is inappropriate for us to use equation
(22). Herzfeld and Litovitz [36] have given a
two-state formula for the relaxation time, namely

20 = Y0+ Yor - (24)

Our cross section calculations are based on a three
state system. However, as yet, we have been unable
to generalize equation (24) to calculate the relaxation
times based on the V-T cross section of figure 2.

In figure 4 we present our values of the V-T
relaxation time and it is seen to be orders of
magnitude too large compared with the experimental
values [8].

HF SELF-RELAXATION TIME (SECS )
2
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.
<
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\
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Figure 4: Comparison of theory (crosses) with experiment
(dashed line)

Summary and Conclusions

The gross disagreement between the predictions
of the quantum mechanical three state close coupling
approximation and the experimental results will be due
in varying measures to the following approximations

(a) we have assumed a Lennard-Jones interaction
between the collision partners;

(b) we have neglected rotational effects;

(c) we have not solved the three state approxi-
mation for those values of E, when closed
channels are present;

(d) we have not checked for convergence in the
n-state approximation, at any E_, and &

(e) we have probably used an invalid formula for 7;
(f) we have neglected dimer formation.

Berend and Thommarson [27] found that when
they neglected the hydrogen bonding (or dipole-
dipole) interaction in the intermolecular potential
they found an increase of 16-fold in the vibrational
relaxation time at 300°K. This leads us to believe
that the most crucial area for improvement in this
quantum mechanical model is in replacing the Lennard-
Jones (6,12) potential with realistic potentials.
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Reaction Pathways for the Triplet Methylene
Abstraction CH,(‘'B)+H,~ CH;+H"

C.W.Bauschlicher Jr., H.F.Schaefer 1117, C.P.Baskin and

C.F.Bender*

A nonempirical quantum mechanical study of tne reaction of triplet methylenc with molecular
hydrogen has been carried out. A contracted gaussian basis set of double zeta quality was employed.
Following the determination of each self-consistent-field wavefunction, configuration interaction was
performed including all singly- and doubly-excited configurations (a total of 649). The potential
surface was studied in three dimensions and a total of 780 points computed. From these data, several
approximations to the minimum energy path have been computed and compared. The reaction
exothermicity is computed to be 5.37 kcal/mole, in good agreement with experiment, 4.5 kcal/mole.
The predicted barrier height is 15.5 kcal/mole, a result consistent with the lack of any observed reaction
between CH;(’B,) and H, at 300°K. The predicted barrier is 4.2 kcal/mole less than that obtained by
Carr using the bond-energy bond-order (BEBO) method. The saddle point geometry is predicted to be

0904

Introduction

Methylene reactions have become the topic of an

increasing number of experimental [1-15] and theo-
retical [16-26] studies in recent years. And in fact
the experimental studies have already yielded a wealth
of valuable information about methylene reactions.
For example, it now seems firmly established that
triplet methylene abstracts hydrogen atoms from
saturated hydrocarbons while the analogous reactions
with singlet methylene yield insertion into CH bonds.
One should note, however, that the interpretation of
these experiments can be somewhat perilous. This
is because in most cases the procedure used involves
the photolysis of either ketene or diazomethane in
the presence of the species with which a methylene
reaction is desired. Although the elementary reactions
of singlet and triplet methylene with the desired
species will certainly occur to some degree, it is
equally clear that a number of other chemical
reactions may be taking place, e.g. the reaction of

c
1,404 126.5°

methylene with ketene to give ethylene and carbon
monoxide. [deally, one would like to be able to
cross a beam of triplet or singlet methylenes with a
beam of the other reactant, e.g. H,. Even though a
methylene crossed molecular beam experiment ‘may
sound unlikely, there does appear to be a real
possibility [27] that such an experiment will be
carried out within the next several years. The
potential importance of experiments of this kind
with respect to the discernment of the dynamics of
methylene reactions can hardly be overemphasized.

In a similar manner, the theoretical studies of
methylene reactions, while being something less
than the ultimate, have significantly advanced our
understanding of the chemistry of this short-lived
intermediate. Foe example, the extended Hiickel
calculations of Hoffmann [20] and, to a lesser degree,
the MINDO work of Dewar {25] have given support
to the contested two-step mechanism of Benson [28]
for the singlet methylene insertion into methane.

* Work performed under the auspices of the U.S. Atomic Energy Commission
t Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, California

94720, USA

1 Lawrence Livermore Laboratory, University of California, Livermore, California 94550, USA
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The prototype methylene reaction is CH, + H,,
hydrogen being the simplest partner molecule for
which both abstraction and insertion reactions might
occur. Among the several experimental studies [29-
37} of this reaction, the most recent is that of Braun,
Bass and Pilling [37]. With rate constants at 298°K
given in cm3/(molecule-second), they summarize their
results as follows:

(1)
CH2(1A1)+H2"CH4**CH3 +H 70%15«x 10-12

CH,(*"A,)+ Hy > CH,(PBy) +H, <1.5 x 1072 (2)

CH,(°By)+H,>CH; +H <50 x 10 (3)
In fact, Braun er al. were unable to observe any
reaction of triplet methylene with hydrogen at 300°K,
and the figure given is an upper limit to the true rate
constant. Recently Carr [22] has been able to
rationalize this 3B, nonreactivity using Johnston and
Parr’s empirical bond-energy bond-order method [38]
for the calculation of activation energies. Carr
predicts the activation energy for CH,(3B,) + H, »
CH; + H to be quite high, 19.7 kcal/mole. Other
computed abstraction activation energies ranged from
7.9 kcal/mole for C3H¢ to 44.2 kcal/mole for HCN.
It is worth noting the Dewar’s predicted activation
energy [25] of 3.8 kcal/mole for CH,(3B,) + CH, *
2CH; is qualitatively different from that of Carr,
25.6 kcal/mole.

Our ab initio theoretical study concerns the
apparently slow CH,(3B,) + H, abstraction reaction.
The method used, which explicitly considers electron
correlation, is analogous to that adopted in our
previous study [39] of isolated CH,. That study
unequivocally predicted the nonlinearity of methylene
at a time when a linear structure had been almost
universally accepted. The two primary goals of the
present study were

(a) to obtain a reliable (5 kcal/mole) prediction
of the activation energy and

{b) to map out the minimum-energy-path for this
simple reaction.

Theoretical Approach

A double zeta basis set of contracted gaussian
functions [49] was used in the present work. For
the carbon atom, Huzinaga’s (9s 5p) primitive gaussian
basis [4]1] was contracted to (4s 2p) following
Dunning [42]. In analogous fashion a (4s/2s) basis
was chosen for each H atom. The hydrogen basis
functions were scaled by a factor of 1.2, i.e. each
gaussian exponent a was multiplied by 1.44.

For C,, approaches of the hydrogen molecule to
3B, methylene, the self-consistent-field (SCF) wave-
function is of the form
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The SCF wavefunctions were obtained using a method
recently developed by Davidson [43]. In addition
we have computed configuration interaction wave-
functions which include all (except that the lIa,
orbital is always doubly occupied) singly- and doubly-
excited configurations with respect to this SCF
reference state. However, we have deleted those
doubly-excited configurations which do not retain the
open-shell spin coupling of the reference configuration.
The deleted configurations / have identically zero
Hamiltonian matrix elements H,; with the SCF con-
figuration [44,45]. A total of 649 configurations
were included in the calculations.

Fortunately, the same SCF wavefunction (4)
dissociates properly to SCF wavefunctions for the
products CH; + H. Hence, the true wavefunction
should be reasonably well-described by a single con-
figuration along the entire minimum energy path.
This being the case, our single- and double-excitation
CI should be nearly comparable (~95-98% of the
correlation energy attainable from the chosen basis)
to a full CI within the valence shell [40]. Three
natural orbital iterations [46] were used in each
calculation. Although in general such iterations tend
to accelerate (lower total energy with fewer con-
figurations) convergence of the CI expansion, the
total energy was lowered relatively little (typically
0.003 hartrees) in the present cases, since the CI was
initially nearly complete in a practical sense.

The accuracy of the potential surface should fall
somewhere between that of our two surfaces [47,48]
for F + H, > FH + H. Although the basis set here is
analogous to that used in our preliminary study [47],
a more thorough level of CI was used in the present
study. Both the F + H, studies indicated the
necessity of describing correlation effects in order to
reliably predict the barrier height and exothermicity.
Finally we note that the level of theory used in the
present study seems [49] to predict equilibrium bond
distances with a reliability of 0.03A and bond angles
1 27

Geometries Considered

Intuition suggests that the minimum-energy-path
for CH, + H, should occur for a planar configuration
in which the A-H molecule falls on the line bisecting
the HCH methylene bond angle. However, Hoffmann
has noted [50] that the surface may be rather flat
with respect to a bending of the H, out of this plane.
Such a C,y reaction path is also the only path fully
consistent with the MINDO results of Bodor, Dewar
and Wasson [25] for the analogous reaction CH,(*B,)
+ CH, > 2CH,.



Figure 1: Coordinate system for CHy(>By) + Hy > CH3 + H

Therefore, we have restricted our study to the C,,
coordinate system shown in figure 1. In addition,
the two methylene CH distances have been frozen at
2.06 bohrs = 1.090 A. The remaining geometrical
parameters are

(a) R, the distance between the carbon atom and
the closer of the two H atoms in H,;

(b) r, the H-H separation in H,; and
(c) 8, the methylene bond angle.

As we go from reactants to products, these variables
should change as follows:

CH,(®B,) +H, > CH;, + H
R > ~1.080 A
r 0.74A > oo
8 ~134° > 120°

(%)

This three-dimensional potential surface has been
determined at 780 points. The R values considered
were 100.0, 10.0, 6.0, 5.0,4.0, 3.0, 2.8, 2.6,2.5,24,
2.3, 2.2,2.1,2.06 and 2.0 bohrs, The H-H separation
r took the values 1.2, 1.4, 1.6, 1.8,2.0,2.2,24,2.6,
2.8, 3.0, 3.2, 34, 3.6, 3.8, 4.0, 5.0, 6.0, 10.0 and
100.0 bohrs. Bond angles 6 considered were 110°,
120°, 130° and 140°. It is apparent that not all
points on this 15 x 19 x 4 = 1140 point grid were
computed. Many points which were clearly far from
the minimum energy path were omitted. However,
near the saddle point, a number of additional R
values were used. The 780 computed total energies,
in hartrees and kcal/mole relative to separated CH, +
H,, are given in the appendix to our complete
report [51] of this research.

Results

Table 1 summarizes our results for the reactants
(separated CH,(3B,) + H,) and products (separated
CH; + H). The former results were obtianed at
R = 100.0 bohrs and the latter at r = 100.0 bohrs.

The methylene bond angle is predicted to be
134.1°, which is nearly identical to the 134° value
obtained from the best available theoretical calculation
[52], and consistent with experiment [53] 136 + 5°.

Table 1: Geometries and total energies of reactants and
products

CH,B\)+ H, E -40.12866 hartrees

HCHY = 1.090 A
GHCHY = 134.1°
rHH) = 0.748 A
CHy + H ‘ B = =40.13722 hartrees
rCH) = 1.094 A
OHCH) = 120.2°

The predicted H, equilibrium separation is40.007 &
longer than the exact result [54], 0.7414 A.

Although the two methylene CH distances were
everywhere constrained to be 2.060 bohr = 1.090 &,
the third CH bond distance of the methyl radical is a
variable, determined to be 1.094 A. In addition, our
calculations predict the methylene bond angle to be
120.2°. However, this bond angle is uncertain by
perhaps 0.2° since the calculations were carried out
at 10° intervals. Hence, although slightly unsym-
metrical, our methyl radical structure is essentially
the same as the planar experimental CD; structure
of Herzberg [55] with ro (CD) = 1079 A.

The reaction exothermicity is 0.00855 hartrees =
5.37 kcal/mole, in very good absolute agreement with
the experimental value given by Carr [22], 4.5 kcal/
mole. The latter value is obtained from D, (H-H) =
109.5 kcal/mole and D, (CH,-H) = 114.0 kcal/mole.

The saddle point or transition state [56] is the
energetically highest point on a continuous path
connecting CH, + H, with CH; + H. If several such
points and paths occur, the true saddle point for the
reaction is that which is energetically lowest. The
saddle point for our three-dimensional potential
energy surface was located by using the stationary

property

3E _ dE _ JE

R~ » w0 ©)
With the obvious exception of the reactants, products
and long range attractions, the predicted saddle point
appears to be the only point on the ab initio surface
which satisfies equation (6).

The predicted saddle point, seen in figure 2, occurs
at R = 2.640 bohrs = 1.397 A, r = 1.702 bohrs =
0.900 A, 6 = 126.5°. This geometry is intermediate
between that of the products and reactants: the H-H
separation is 0.152 A or 20% longer than in H,,
while the H-C separation is 0.303 A or 28% longer
than in the isolated methyl radical. The fact that
the transition state geometry is somewhat closer to
the reactants than the products is consistent with
Hammond’s idea {57] that, in a highly exothermic
reaction, the transition state should resemble the
reactants,
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Figure 2: Transition state geometry for CH2(3B,) + Hy »
CHy + H

The ab initio total energy at the saddle point is
~40.10400 hartrees, which lies 15.5 kcal/mole above
CH,(*B,) + H,. This 15.5 kcal/mole barrier does
not, of course, reflect the zero-point vibrational
energies of the reactants and transition state. The
barrier height defined in this way is sometimes called
the classical activation energy [58). The Arrkenius
activation energy for CH,(*B,) + H, has not been
measured, and the only related experimental infor-
mation is the finding of Braun, Bass and Pilling [37]
that no reaction was observed at 300°K. Our 15.5
kcal/mole barrier is sufficiently large to be consistent
with their negative finding. As noted earlier, Carr [22]
has used the empirical BEBO method to predict a
barrier height of 19.7 kcal/mole. Although it is
impossible to place error bars on our theoretical
barrier height, based on earlier work [46,47], we
intuitively feel that the 15.5 kcal/mole result should
be within 5 kcal/mole of the exact result. Thus our
study gives further [59] evidence of the usefulness
of the BEBO method. The only example we are
familiar with in which BEBO fails seriously is the
F + HF » FH + F reaction. There BEBO predicts a
barrier of 6 kcal/mole [60], while the best ab initio
calculations [61] imply a barrier = 18 kcal/mole.

On the basis of our earlier work on the radical plus
diatom reactions [47,48,61,62] F + Hy,H+F,,and
F + HF, we were sceptical of the ability of single
configuration SCF wavefunctions to describe the
CH,(®B,) + H, potential surface. However, from a
theoretical point of view, any information on the
suitability of the Hartree-Fock approximation with
respect to such reactions is extremely valuable,
Therefore the relative energies and geometries of the
reactants, saddle point and products were obtained
from the SCF potential surface. The calculated
exothermicity for CH,(B,) + Hy » CH; + H was
found to be 4.84 kcal/mole, which is actually in
somewhat better agreement with experiment [21],
~4.5 kcal/mole, than the CI result, 5.37 kcal/mole.
However, the barrier height is computed to 25.1 kcal/
mole, or 9.6 kcal/mole higher than the CI resuit.
Although the barrier height is not known experi-
mentally, our previous experience [47,48,61,62]
would suggest that it may be close to or slightly lower
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than the CI result, and hence that the SCF barrier
may be much too high. The SCF saddle point
geometry is R = 2.53 bohrs, r = 1.69 bohrs, § = 124.8°.
Thus the SCF and CI transition state geometries are
quite similar, much more so than was the case [46
47,61] for F + H, and H + F,.

)

Reaction Pathways

In both textbooks and the literature, one frequently
finds terms such as ‘reaction coordinate’, ‘reaction
path’, ‘path of least energy’, and ‘minimum energy
path’ used interchangeably, We find this situation
unfortunate, since there are at least two distinct
procedures by which such a path might be obtained.

The most frequently used procedure is to choose
a ‘reaction coordinate’, some geometrical parameter
that varies significantly during the course of reaction.
For the CH,(>B,) + H, reaction, either R (which
goes from oo to 1.094A) or r (which goes from 0.748A&
to %) would be reasonable choices. 0, which goes
from 134° to 120°, would probably not be a very
good choice, since it does not undergo a large change
during the reaction. Given a value of the ‘reaction
coordinate’, one finds a point on the ‘reaction path’
by minimizing the total energy with respect to all
other geometrical parameters [63]. Hereafter, our
use of the terms ‘reaction coordinate’ and ‘reaction
path’ will be strictly as defined above.

Under favourable conditions, a reaction coordinate
will vary monotonically along the reaction path, and
the energetically highest point on the reaction path
will occur near the true saddle point. However, there
are many exceptions to the favourable behaviour, an
especially interesting example being the MINDO
treatment of the interconversion of cyclobutene and
butadiene [64]. Even if a reaction path does pass
close by the saddle point, there are situations in which
the reaction path will appear unrealistic. These
situations generally occur when a small change in the
chosen reaction coordinate is accompanied by large
changes in other geometrical parameters. One example
of such behaviour is noted by Dobson, Hayes and
Hoffmann [20] in their study of CH,('4,) + CH,.

There is at least one procedure [47,56] which
defines the reaction pathway (an intentionally vague
term) in a far more satisfactory manner. Rather than
starting from either reactants or products, this pro-
cedure begins with the saddle point. From the saddle
point, one follows the gradient V V of the potential
energy in the direction of most negative curvature.
Following the gradient leads in one direction to
reactants and in the other direction to products, and
we refer to the resulting path between products and
reactants as the ‘minimum energy path’. Note that
although this definition is dependent on choice of
coordinate system, one expects such dependence to
be in general unimportant.



Table 2: Reaction paths for CHz(aBl) + Hy > CH3 + H. Bond distances are in bohr radii, bond angles in degrees and energies

in kcal/mole.

Minimum Energy Path R Reaction Coordinate r Reaction Coordinate

R r ] E R r 0 E R r 0 E
100.0 1.414 134.1 0.00 100.0 1.414 134.1 0.00 6.0 1.4 134.1 -0.02

6.0 1.412 134.1 -0.04 6.0 1.412 1341 -0.04

5.0 1.412 1339 0.50 5.0 1.412 1339 0.50

4.5 1.412 133.8 1.35 4.5 1.412 133.8 1.35

4.0 1.420 133.3 3.39 4.0 1.420 1333 3.39

3.8 1.428 1329 4.66 3.8 1.428 1329 4.66

3.6 1.440 1324 6.22 3.6 1.440 1324 6.22

34 1.452 1319 8.05 34 1.452 1319 8.05

3.2 1.468 131.2  10.27 3.2 1.468 131.2 10.27

3.0 1.524 130.0 12.72 3.0 1.504 130.0 12.63 6.0 S 134.1 0.81

2.8 1.612 128.1 14.82 2.8 1.572 128.2 14.70

2.7 1.660 127.2 15.35 2 1.640 127.2  15.35 6.0 1.6 134.1 3.40

2.640 1.702 1265 1548 2.65 1.692 126.6 15.48 6.0 1.7 134.1 7.13

2514 1.80 1252 1492 2.6 1.756 126.0 1541 6.0 1.8 134.1 11.64

2.394 1.90 123.5 13.23 2.5 6.0 123.6 8.52 2.268 1.9 122.6 12.57

2.301 2.0 1224 11.28 24 6.0 122.6 3.64 2175 2.0 122.0 10.87

2.198 22 121.6 7.89 2.3 6.0 122.0 -0.54 2.155 22 121.3 7.68

2.140 24 120.9 4.82 2.2 6.0 121.3 -3.66 2.125 24 120.9 4.87

2.110 2.6 120.6 2.52 2.1 6.0 1205 -5.29 2.103 2.6 120.6 2.54

2.095 2.8 120.4 0.63 2.090 2.8 120.3 0.63

2.085 3.0 1203 -0.89 2,083 3.0 120.3 -0.89

2.073 3.5 120.2 -3.37 2.073 3.5 1202 -3.37

2.068 4.0 120.2 -4.58 2.068 4.0 120.2 -4.58

2.068 5.0 120.2 -5.33 2.068 5.0 120.2 -5.33

2.068 6.0 120.2 -5.41 2.06 6.0 1202 -5.40 2.068 6.0 120.2 -541

2,068 100.0 120.2 -5.37 2.068 100.0 120.2 -5.37

Table 2 gives the reaction path for reaction co-
ordinate R, the reaction path for reaction coordinate
r, and the minimum energy path, Let us first describe
the ‘minimum energy path’, since this is the mathe-
matical embodiment of what the chemist visualizes
as the reaction pathway. Along the minimum energy
path, all three variables R, r and 6 vary smoothly.
On the reactants side, prior to R = 3.0, R is changing
rapidly relative to the rather small changesin r and 6.
Around the saddle point, say between R = 3.0 and
r = 2.0, all three geometrical parameters are changing
significantly, Finally, from r = 2.0 to r = 100, small
changes in R and 6 accompany large changes in r.

Inspection of table 2 makes it quite apparent
that the choice of R as a reaction coordinate is
appropriate for the reactant side of the minimum
energy path, but not for the product side. The prob-
lem is that the value of r lurches from 1.756 to 6.0
as R changes from 2.6 to 2.5. As the minimum
energy path shows, the ‘correct value’ of r for
R = 2.5 is ~1.81 bohrs,

An opposite, but even more serious, breakdown
occurs with respect to the choice of r as reaction
coordinate. That is, on the product side (r > 2.0
bohrs), the reaction path obtained using r as reaction
coordinate is quite similar to the minimum energy
path. However, this reaction path also lurches,

between r = 1.9 and 1.8, and is inapplicable on the
reactants side of the saddle point. Hence the saddle
point position is not correctly predicted. In fact,
inspection of table 2 would suggest that we have
found a lower energy (~13 kcal barrier) route from
CH;3 + H, to CH; + H. The problem lies with the
discontinuous change of R and 6 along this reaction
path.

Recall that a point on the above reaction path
is obtained, for a particular value of r, by minimizing
the total energy with respect to R and 8. Unfor-
tunately, when r is in the range 1.6 — 1.9 bohrs,
there are two distinct relative minima. The first
occurs for R =~ 2.3 bohrs, 0 ~ 123° and the second
for R =~ 6.0 bohrs, 0 =~ 134°. When r is greater than
1.84 bohrs, the first minima is the lower, but for
r < 1.84, the second minima is lower. At r = 1.84
the two minima both have depth 13.59 kcal/mole,
as illustrated in figure 3. Hence the reaction path
based on r as reaction coordinate has a discontinuity
at r = 1.84. This gives the mistaken impression that
the: barrier height is 13.59 kcal/mole. In fact, as
figure 3 shows, a continuous reaction path between
r = 1.84] and r = 1.839 would have to pass over
a barrier of 18.50 kcal/mole.
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Figure 3: Illustration of the discontinuity of the reaction
path obtained by choosing r as reaction coordinate. Each
point on the curve corresponds to the value of R shown on
the x-axis, 7 = 1,84 bohrs, and the value of § for which the
potential energy is minimised

If one must choose a reaction coordinate, a
reasonable choice is (r — R), which changes in a fairly
smooth manner all along the minimum energy path.
Although this conclusion is by no means unanticipated,
the quantitative analysis made possible by table 2
seems to be of considerable value.

Finally, we must point out that there is no
necessary relationship between the minimum energy
path and the dynamics of a chemical reaction. That
is, for any particular classical trajectory, the proba-
bility of following the minimum energy path is zero.
Nevertheless, such a minimum energy path may be
as close as one can come in a theoretical sense to
the chemist’s notion of a reaction mechanism. A
reasonable alternative to this definition would be an
‘average’ or ‘most probable’ classical trajectory for
the conditions of interest.
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Computation of Correlation Energies of

Closed Shell Systems. The Dimerization
Energies of BH, and L:H

R.Ahlrichs*

Results of rigorous computations employing extended Gaussian-type basis sets are reported for BH 3,
BaHe, Lil and LiyH; in their respective equilibrium geometries. The dimerization energy of BH is
calculated as —20.7 kcal/mole within the Hartree-Fock approximation and as —36.6 kcal/mole if
electron correlation is included. The corresponding results for the dimerization of LiH are —47.3

kcal/mole and —-48.3 kcal/mole.

Partitioning of the correlation energy contributions allows the

effect of electron correlation to be attributed to the increase of next neighbour bond interactions
on the dimerization of BH3 and LiH. The difficulties of accurate computations of reaction energies

are discussed in detail.

Introduction

By Hg is the simplest electron deficient compound
known from experiment, whereas Li,H, may be
considered as the simplest conceivable molecule of
this class at all. Further small electron deficient
compounds like Be,H, (1] and BeBH; [2] have been
investigated theoretically but are also not known
experimentally, like Li,H,. Detailed investigations
of the electron distribution [3] and the mechanism
of binding in B, Hg have been reported in the literature
[4-8]. Of general interest for the understanding of
the stability of electron deficient compounds is
especially AE; of the reaction (1),

2BH; (g) » B2Hg (), (1)

which is still rather uncertain. Experimental values
between —25 and —60 kcal/mole are reported in
the literature [9].

Hartree-Fock (HF) calculations with small Slater-
type basis sets [10] or medium size Gaussian basis
sets [8,11] yield AE; values of about —10 kcal/mole,
which is not in the most favourable range of experi-
mental values. The effect of electron correlation on
AEf was first investigated by Gélus, Ahlrichs,
Staemmler and Kutzelnigg (GASK) [11] by means of
the IEPA-PNO method [12] (IEPA = independent
electron pair approximation, PNO = pair natural
orbitals). Using a Gaussian basis of double zeta
quality (5 s-, 2 p-groups on boron and 2 s-groups on
hydrogen), GASK obtained a HF contribution of
-8.5 kcal/mole and a correlation energy contribution
of —16.8 kcal/mole to AE; (a p-set on hydrogen was

added for the computation of the correlation energy).
The corresponding estimated exact values were —11.5
and —25.2 kcal/mole respectively, yielding a total
AE¢ of —36 kcal/mole.

The most accurate HF computations for B84 and
ByH¢ have been reported recently by Lipscomb and
coworkers [3,13], who obtained a HF contribution
of —19.0 kcal/mole to AE;. It is then suggested [13],
that GASK’s estimate for the correlation contribution
to AE¢ might be too large, since addition of the
calculated value (~15.8 kcal/mole) to the HF value
of —19.0 kcal/mole would give AEy= —35.8 kcal/mole,
which is close to a recent kinetic value [14] for AEY.

Kollman, Bender and Rothenberg (KBR) [15]
have published the only theoretical invesitgation of
Li;H,. They predict Li,H, to be most stable on the
centrosymmetric D,y structure. KBR [15] reported
the following AE; values for the reaction (2)

2 LiH (g) > LiyH, (g) )

HF approximation: AE; = —-46.2 kcal/mole
including electron correlation: AE; = —45.8 kcal/mole.

These authors thus predict the correlation energy
in 2 LiH to be larger than in LiyH,, in contrast to
the result obtained by GASK [11] for B,Hq.
Unfortunately, KBR used a rather inappropriate basis
set which recovered only about 50% of the total
valence shell correlation energy. In consideration of
this state of affairs it appeared worthwhile to repeat
the computation of AE, for the reactions (1) and (2)
with more extended basis sets than those used pre-
viously (by GASK [11] and KBR [15])and employing

* Institut fiir Physikalische Chemie und Elektrochemie, Universitdt Karlsruhe, Kaiserstrasse 12, 75 Karlsruhe,

West Germany
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a more refined method for the computation of
correlation energies.

Method

We used the HF approximation as starting point
for the treatment of electron correlation. The
difficulty in computing correlation energies by means
of a conventional configuration interaction (CI)
calculation is the large number of configurations
that can be constructed and the slow convergence
of the CI expansion. The present B,H, basis of
68 groups leads e.g. to 184,000 doubly substituted
determinants (from the valence shell), which cor-
responds to 65,000 pure singlet functions or 9,000
spin and symmetry adapted configurations. The
largest possible reduction of the number of doubly
substituted configurations to be included in a CI is
obtained if the latter is based on the so<called PNO’s,
which may be defined for arbitrary wavefunctions ¥
in the following way. Let us denote a spin irreducible
pair [16] of occupied MO’s and @, the part of ¥ in
which all the double substitutions from the pair u
are collected (in an obvious notation)

P, = Dyp + }l'.;c'l: Pl (3a)
(Throughout this paper we neglect singly substituted
configurations). The PNO’s X' are then defined as
the natural orbitals of ®. Let now <l>' denote the
doubly substituted conﬁguratron with the replace
ment w»XiX ! if u is a singlet pair, or u*X‘X‘ if u is
a triplet pair, for the details the reader is referred to
reference [11]. In terms of the ®i one then has

®, = byp + el B, (3b)
1
i.e. the nondiagonal replacements <l>" now have
vanishing Cl coefficients. The ¢, and the energy
contributions due to the <I>‘ furthermore form a
rapidly decreasing series and it is usually sufficient
to include 10-30 terms in equation (3b) to exhaust
the basis set. Our final B,H, computation included
124 doubles only.

The disadvantage connected with the use of PNO’s
is their partial nonorthogonality

KX) # 0, if u # v (4)
whereas, of course,

) = & ()

The relationship (4) fortunately leads to minor com-
plications only in the evaluation of matrix elements

between arbitrary doubly substituted configurations.
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Various methods have been proposed to obtain
accurate approximations of the correct PNO’s prior
to the knowledge of the total wavefunction [17].
In the present study we have used a new method for
this purpose [18] which is more accurate and less
computer time consuming than the one used pre-
viously in our program {12,19].

The total correlation energy & is obtained in three
different degrees of approximation, which will now
be discussed. For this purpose it is convenient to use
a combined label a = (u,0), i.e. we simply write &,
for , etc. A partial summation agu is then under-
stood to run over the HF term and all a = (i) for
the given u. The CI coefficients ¢, (with cyp = 1)
and the pair correlation energies & are within the

IEPA obtained as solutions of the following set of

equations, where H,, = (®,|H|®y),
o2, Hw co = Eyp + &Py ¢, , acu, (6)

The total correlation energy is then within this
approximation given as

8IEPA - EglEPA. (7)

Next we perform a CI with &y and all doubly
substituted configurations, for which Meyer has
suggested the name PNO-CI [20]:

2 Hypcy = (Enp * &M% c,. ©)

The PNO-CI correlation energy &FNOC! can, of

course, also be divided into pair distributions such
that equation (9) holds [20]

. PNOCI  _ PNOCI
& = %‘, &, ; 9)
We finally perform a computation within the coupled

electron pair approximation (CEPA), first proposed
by Meyer [20]

T Hyc, = Epp* &CEPAy ¢, | a€u, (10)

CEPA - CEPA
& = 3 BCERA,

As the just listed methods to obtain approximations
to the true correlation energy have already been
described in the literature [21], we shall not discuss
them in detail here. A few comments, however, will
be helpful for the discussion of the results presented
in this paper.

(a) The PNO-CI is a variational calculation, whereas

the [EPA and the CEPA are not.

(b) The PNO-CI wavefunction and correlation energy
has an incorrect dependence on the number of



electrons [22]. This may e.g, be demonstrated by a
consideration of a system of n noninteracting electron
pairs, like He_ at sufficiently large internuclear dis-
tances.  The exact wavefunction for this system is
simply the antisymmetrized product of the corres-
ponding helium wavefunctions, and it is easily verified
that the PNO-CI wavefunction has vahishjng overlap
with the exact wavefunction in the limit n+%/ It can
further be shown that & PNOC! increases only like v/t
fordarge n. These deficiencies of the PNO-CI are due
to the fact that higher than doubly substituted terms
are neglected in this treatment.

(c) The 'quadruple and higher substitutions are ac-
counted for'in an approximate way!within the IEPA.
This“method ‘thus” yields, 'for 'the case urder con-
sideration, the correct h- -dependence: &'EPA(He )=
n&‘EM(He) provided the IEPA-treatrnent starts from
localized MO’s. This difference between the IEPA
and''the PNO-CI is reflected in the corresponding
equations (6) and (8) by the occurrence of &!EPA
instead of the total correlation energy &PNOCI, The
main drawback of the IEPA is the neglect of matrix
elements H,, fora€u, bEv, with u # v, which account
for the interaction of the correlation functions of
different electron pairs u and v.

(d) Inclusion of these matrix elements in the IEPA,
equation (6), leads to the CEPA as given in equation
(10). This method thus avoids the main shortcomings
of the IEPA-neglect of certain matrix elements —
and also those of the PNO-CI, since quadrupole and
higher substitutions are accounted for in an approxi-
mate way, One can also say that the IEPA treats
each electron pair in the field of the HF-MO’s of the
remaining electrons, whereas the CEPA considers each
pair in the field of the correlated remaining electrons.
Applications of the CEPA show in fact that this
method yields more accurate potential curves, force
constants etc. than the PNO-CI or the IEPA [20,23].

Basis Set Considerations

As basis set we used linear combinations of
Gaussian lobe functions. The construction of d-
and f-type functions was performed as described im
reference. [25]. We started from a Huzinaga [26]
9, Sp basis for boron, contracted (5,1,1,1,1) and
(3,1,1) basis for hydrogen. A set of polarization
functions, i.e. a complete d-set on boron (n = 0.5)
and a p-set on hydrogen (n = 0.5), was then added.
The orbital exponents n of the polarization functions
were determined in optimizing the HF valence shell
correlation energy of BH5. In order to save computer
time it was then investigated whether it is possible to
reduce this basis without sacrificing aceuracy. < It
turns out, in fact, that leaving out the boron
pfunction with the smallest orbital exponent (n =
0.070) affects the total BH; energy by 0.4 kcal/mole
only, whereas the change of AE,, equation (1) in
the HF approximation is 0.2 kcal/mole.

In order to get an idea of how saturated the
present basis set is we ‘make the following remarks.
Increasing the s-basis on'boron and hydrogen gives
essentially g better description of the nuclear cusp
which should not effect AE; of reactiori (1) or (2).
The HF energy of boron obtained with a 9s, 5p basis
is anyway only 1.5 kcal/mole higher than the HF limit.
Addition of further polarization functions, an fset
and a second d-set for boron and a d-set and a second
p-set for the hydrogen atoms, lowers the HF energy of
BH, by | Kkcal/mole and the valence shelt correlation
energy by 9 kcal/mole. The net effect of these
additional basis functions on AF; is thus expected
to be of the order of about 3 kcal/mole. Addition
of a second p-set at the bridge hydrogen atoms lowers
the HF energy of B,Hg by 0.05 kcal/mole’ only.

As fas as LiH and Li,H, are congerned, it is no
problem to choose the basis large enough to guarantee
an accuracy of about | keal/mole for AF;. We started
with a Huzinaga 9s:(5,1,1,1,1) basis for lithium and
a 55 (3,1,1) set for hydrogen and then added a set
of two p-functions (n = 0.14 and 0.56 for Li and
n = 0.22 and 0.66 for H) on either atom, hereafter
referred to as basis set 1. The orbital exponents n
of the p-sets were determined in minimizing the
HF. plus valence shell correlation energy of LiH.
KBR [15] .used a Huzinaga 2p set (contracted to one
group) at the hydrogen atom, which is not suited
for molecular computations since it is an approxi-
mation , of the sepctroscopic hydrogen 2p-orbital.
The latter has e.g. Bohr-radius of about 4 au whereas
the optimized p-functions, see above, have radii of
about 2 au‘and 1 au. Quite the same comments
could be made with respect to the lithium p-set used
by KBR. For these reasons KBR get only 64% of
the LiH valence shell correlation energy as obtained
with basis set-1. In the final computations, reported
in table 3, we added a rather spread out s-function
on hydrogen (n = 0.03)‘and 4 d-set on Li (n-= 0:3)
and on H (n = 0.45), basis set II, which has
practically no effect on AE; of reaction (2), however
(less than 0.14 kcal/mole).

Discussion of results

ByHg: In the present computations we included all
®, which contribute more than 10 au to &[EPA,
the total number of which is 124 only (counting those
that are equivalent on symmetry grounds only once).
The energy contributions of the neglected ®, amounts
t0 2.107* au in BH and to about 6.107* au in B,H,.

From the results collected in table 1 we get the
following values of AE; of reaction (1)

HF v AEp=+2007 keal{mole (12)
IEPA i AEg = —44.3 kcal/mole (13)
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PNO-Cl : AE, = EPNOCB,H,) - 2 EPNOCl(BH)

= _27.4 kcal/mole (14)
PNO-CI* : AE, = EPNOCY(B,Hy) — EMNOC12BH)
= -34.2 kcal/mole (15)

CEPA : AE;= —36.6 kcal/mole (16)

Our HF result is in good agreement with the recent
work of Lipscomb and coworkers [3,13], who ob-
tained —19 kcal/mole. The present HF energies for
BH, and B,H¢ are slightly poorer than those of
Lipscombe and coworkers, see table 1. This is
certainly due to the fact that these authors used a
Slater-type basis which gives a better description of
the nuclear cusps than a Gaussian basis. Since our
basis set appears to be rather saturated for BH, as
far as flexibility in the bond region is concerned
(we have noted above that addition of further polari-
zation functions lowers Eyp of BH3 by 1 kcal/mole
only) we rather consider our computed AEg, see
equation (12), as an upper bound to the HF limit,
The basis of Lipscomb et al. contained two s-type
AO’s on hydrogen which were optimized for the BH
molecular fragment [3]. This basis set may be
expected to describe terminal bonds better than
bridge bonds which would result in a somewhat too
small AE;. The present basis is more flexible in this

respect since it contains three s-type AO’s on either H.
The difference between terminal and bridge bonded
hydrogen atoms may be seen from the coefficients
of the hydrogen s-AO's in the localized MQ’s, which
are (0.191, 0.302, 0.197) for a terminal and (0.187,
0.348, 0.147) for a bridge bond.

The 1EPA gives a correlation contribution of -23.5
kcal/mole to AFE,, see equation (13). Due to the
approximation inherent in the IEPA. as explained
above, this method is not expected to yield accurate
reaction energies.

In equations (14) and (15) we have given the AE,
values as obtained from the PNO-CI computations.
The first one, equation (14), may be called the naive
PNO-CI, since we have simply compared E RNOCYR )
with 2 EPNOCY(BH.). This procedure is unsatisfactory
since the quality of the PNO-CI depends on the
number of electrons involved. This is clearly shown
by a comparison of the PNO-CI correlation energies
obtained for BH, and BH3BH at large intermolecular
distance (50 au), see table 1.

0.2174 au < 0.2282 au
2 &PNOCl(BH ) a7

&PNOCY(BH,BH ;)

In order to obtain the equality sign in equation an,

Table 1: Computed HF and correlation energies of BH3 and ByH g

Valence Shell Correlation Energies

T pair © 1epA 9 PNO-CI CEPA
BH3 © 26.39697 tr (3x) 0.03167 (0.02805) 0.02959 0.03085
(26.4014) tf (3x) 0.01128 (0.00796) 0.00844 0.00889
total 0.12887 (0.10804) 0.11410 0.11921
BH3BH3 5 52.79394 tt (6x) 0.03167 0.02816 0.03085
' (6x) 0.01128 0.00807 0.00889
total 0.25774 0.21739 0.23843
1t (4x) 0.03127 (0.02779) 0.02749 0.03034
bb (2x) 0.03040 (0.02796) 0.02641 0.02915
ByHg ® 5282699 1t (2x) 0.01113 (0.00778) 0.00786 0.00871
(53.8331) th (8x) 0.00859 (0.00608) 0.00597 0.00631
bb' (1%) 0.01443 (0.01154) 0.01020 0.01124
" cis (2%) 0.00100 = 0.00062 0.00070
tr” trans (2x) 0.00099 = 0.00059 0.00065
total 0.29525 (0.24284) 0.23888 0.26377
(a) in au

(b) results of Lipscomb and coworkers [3,13] are given in parentheses

(c) t and b denote terminal bridge bonds respectively. ¢’ denotes a pair ©

ferent boron atoms

(d) results of GASK [11] are given in parentheses

(e) B-H distance = 2.25 au, which is the equilibrium distance obtained within the CEPA

(f) B-B distance was 50 au, each BHj in its equilibrium geometry, see (e)

(g) experimental geometry as given in {29]
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it would be necessary to include all quadruples which
arise from simultaneous double substitutions on either
BH; in the BH3BH; computation. In the modified
PNO-CI, see equation (15), we have compared
EPNOCYB. H ) with EPNOCY(BH,BH ), the PNO-CI
energy obtained for the system of two separated BH,
molecules. We have thus consistently neglected the
contributions of higher than doubly substituted con-
figurations for B,H¢ and for 2 BH;, which certainly
gives a more realistic AE¢ than the naive PNO-CI,
see equation (14).

This procedure is still not too satisfactory. On
the formation of B,H, from 2 BH, we find significant
changes of the pair correlation energies. The inter-
molecular terms (which give essentially the van der
Waals interaction) vanish for two separated BH;
molecules, whereas the corresponding interpair con-
tributions are by no means negligible for B,H,.
These changes are, of course, accompanied by changes
of the contributions of quadruples and higher terms
to the wavefunction and the total correlation energy.
As the number of non negligible interpair terms is
larger in ByHg, which has 11 next neighbour bond
interactions compared to 6 in 2 B3, one expects a
larger contribution of quadruples etc. in B, Hy. The
CEPA accounts for the higher substituted con-
figurations in a consistent although approximate way.
(This is e.g. shown by the fact that ECEPA(BH,BHS)
= 2 ECEPA(BH,), see table 1). This explains why
the CEPA realistically predicts a larger correlation
contribution to AE¢(—15.9 kcal/mole) than the modi-
fied PNO-CI (—13.5 kcal/mole, see equation (15)).
We thus consider the CEPA result for AE}, equation
(16), to be more reliable than those given in equations
(12)(15). If one prefers for some reason to compare
variational computations only, the modified PNO-CI,
equation (15), is certainly more accurate than (12)
or (14).

Let us briefly compare the present results with
those of GASK [11]. In the latter treatment we
underestimated the HF contribution to AE and also
underestimated the corrections to the IEPA contri-
butions which are due to the interaction of correlation
functions of different pairs, as was discussed above.
The estimated IEPA limit (—25 kcal/mole as compared

“to —23 kcal/mole obtained now) was not too bad,
however, but the IEPA is not accurate enough to
predict reaction energies with an accuracy of a few
kcal/mole. The present study confirms at least
qualitatively the conclusion of GASK that the increase
of next neighbour bond interactions on the formation
of B, H, results in a considerable contribution to AEY,
whereas the changes in intrabond correlation energies
are almost negligible (2.5 kcal/mole, see table 1).
We finally note that even the non neighbour terms,
denoted f¢” in table 1, contribute about —1.7 kcal/
mole to AE, within the CEPA.

LipH,: We first redetermined the geometry of Li, H,
in the bridge bonded D,y symmetry. From the CEPA

results collected in table 2, we obtain the following
equilibrium distances

d(Li - Liy = 428 au (18)

dH - H)

5.06 au (19)

The latter differ slightly from those found by KBR
[15] who obtained 4.46 au and 5.16 au. Additional
computations for other geometries confirmed the
result of KBR that Li;H, has D,n equilibrium
geometry.

Table 2: Potential surface for LiyH, in Dyh geometry d

Distance

tiLi HH  ~Eype —Ejgpa ~Epno.ci ~Ecepa

466 S5.16 16.04282 16.11241 16.10958 16.11150
446 S5.16 16.04474 16.11420 16.11141 16.11330
426 5.16 16.04607 16.11555 16.11273 16.11462
406 5.16 16.04424 16.11350 16.11077 16.11260
446 496 16.04450 16.11428 16.11141 16.11329
446 5.36 16.04398 16.11320 16.11047 16.11236

(a) all quantities in au. Basis set | was used.

Table 3: Computed HF and correlation energies of LiF
and LiyH, 2

Valence Shell Correlation Energies

-EyF :
pair  IEPA PNO<CI CEPA

Lin® 7.98593°| 1+ (1x) 0.03523 0.03523 0.03523

(7.98262) (0.02204)

wind 1597185 | o (2x) 0.03523 0.03422 0.03523
total 0.07047 0.06845 0.07047

Lizﬂze 16.04680 {bb (2x) 0.03449 0.03343 0.03432
(16.03894) [bb" (1x) 0.00464 0.00364 0.00387

total 0.07361 0.07049 0.07251
(0.04247)

(a) See footnotes of table 1. Basis set Il was used. The
results reported by KBR [15] are given in parentheses.

(b) Li-H distance = 3.038 au, which is the equilibrium
distance obtained with basis set I.

(c) HF limit: Eyp = —7.9867 au [30]
(d) Li-Li distance 100 au
(e) Geometry D,p, Li-Li =4.28 au, H-H = 5.06 au, see text
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From the final computations reported in table 3
we get the following values for AE; of reaction (2),
see also equations (12)-(16),

HF . AE, = —47.3 keal/mole (20)
IEPA : AE; = —49.1 kcal/mole 21
PNO-CI : AE, = —47.0 kcal/mole (22)
PNO-CI* : AE, = —48.3 kcal/mole (24)
CEPA  : AE, = —48.3 kcal/mole (24)

A comparison of equations (23) or (24) with (20)
shows that electron correlation increases AE¢ by 1
kcal/mole in contrast to the conclusions of KBR [15].
The effect of electron correlations is much smaller than
in reaction (1), however. This is due to two reasons,

(a) in the LiH dimer one has just one additional
next neighbour bond interaction whereas one
has 5 in B, Hg;

(b) due to the rather large H-H distance in LiyH,
see equation (19), the corresponding interpair
correlation energy (0.00387, see table 3) is
much smaller than the corresponding term in
the BH, dimer (0.01124, see table 1).

Conclusions

The results reported in the present study demon-
strate the importance of electron correlation for the
computation of reaction energies even for reactions
in which closed shell molecules react and the number
of electron pairs remains unchanged. We thus confirm
at least qualitatively the conclusion of GASK [11].
The reactions (1) and (2) may be considered as
extreme cases since we find a considerable correlation
contribution to AE; for (1) (—16 kcal/mole), whereas
it is rather small for (2) (-1 kcal/mole). This is
mainly due to the greater increase of next neighbour
bond interactions on the formation of B,f¢ as
compared to Li, H;.

The author further believes that the present
computations are sufficiently accurate to confirm
definitely a recent experimental value [13,14] for
Al¢ of reaction (1), —34.8 kcal/inole, in contrast to
the conclusions of Edmiston and Linder who suggested
a AE, of —60 kcal/mole [8].

Programs and Computation Times

The evaluation and further processing of two-
electron integrals — which altogether makes up for
more than 90% of the total computer time — has
been described in a recent paper [27]. Details of
the PNO-CI and CEPA parts of the program will be

70

described elsewhere [28]. The computations were
performed in double precision arithmetic with a 65K -
36 bit word program version, The UNIVAC-1108
CPU times for the B,H¢ computation (68 groups)
are as follows: integrals: 1.5 h: HF: 20’ (12 iterations,
starting from a zero density matrix. £y converged
to 1078 au), determination of PNO's: 22, matrix
elements H,,: 3.7 h (most of which is required for
the case that @ and b corresponds to the same pair),
solution of PNO-CI and CEPA equations, see (8)-(11):
2'. total 5.9 h. The corresponding times for the final
Li,H, calculation (62 groups) are: integrals: i
HF: 9'; PNO's: 4'; matrix elements H,, : 30"; PNO-CI
and CEPA: 7", total 100"
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Quantum Chemistry and Dynamics:
Connections with Experiment

A.C.Wahl*

The state of the art in computing by a priori methods will be discussed. Accurate and chemically
useful interaction potentials will be assessed through the use of contemporary calculations on a
number of small systems, including OH, ArH, LiH, and NO,. This assessment will be followed by
a discussion of the effectiveness of these potential curves and surfaces in the prediction of dynamical
behaviour which can then be compared with experiment. The results of specific recent scattering
calculations using agb initio potentials will be used in example.

Introduction

The purpose of this brief summary is to outline
the ‘state of the art’ in the calculation of energy
curves, surfaces and properties for small molecules
and to provide a catalogue of work on such systems
performed in our laboratory. This will be followed
by a discussion of two recent examples in which ab
initio potential curves and surfaces have been used
to predict dynamical behaviour, and in one case
aid experiment in arriving at a ‘correct’ potential.

Over the past five years an understanding of how
to computationally handle the electron correlation
problem as a function of changing supermolecular
geometry has permitted the evaluation of potential
energy curves and surfaces to what is now accepted
as chemical accuracy (~v.1 eV) [1,2].

Several methods are now routinely yielding such
results. These methods are straight configuration
interaction [3], the first order method (selected
configurations combined with the iterative natural
orbital technique) [4], the MCSCF technique [S],
and the separated electron pair approach [6]. The
first three methods, except for the smallest systems,
utilize spme prescription of configuration selection
which results primarily in removing the asymptotic
difficuities of the MO model and in evaluating only
the extra molecular correlation energy.

Binding Energies and Properties for Diatomic Mole-
cules

The method which we have been developing in
our laboratory is the multiconfiguration self consistent
field method [S] coupled with a prescription for
selecting important molecular configurations (named

optimized valence configurations (OVC)). Over the
past several years the application of this scheme to
diatomic molecules has been routinely yielding poten-
tial curves accurate to approximately .1 eV. Typical
recent results obtained by this method are given in
table 1. One of the early questions about the
configuration selection method (OVC) which we
employed was whether or not it would yield accurate
results of properties other than the energy. It does
indeed seem to yield reliable one electron properties
as indicated in table 2 for a number of diatomic
molecules.
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i i
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Figure 1: A comparison of theoretical and experimental
curves for the potential energy of OH. The theoretical values
were obtained from a 14 configuration OVC-MCSCF calcu-
lation. The experimental potential curve is from a RKR
analysis of spectroscopic vibrational data (D.L. Albritton,
private communication). The experimental curve lies below
the theoretical curve by about 0.1 eV at all points. The
shapes of the two curves are the same to about *200 em .

* Chemistry Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, lllinois 60439, USA
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‘Table 1: Typical MCSCI results for diatomic molecules utilizing optimized valence configuration selection rules

Sydtem Re(bohr) Welem ) De(eV)

ovCe Experiment ovCe Experiment ovC Experiment
7 (G 1.40 1.40 4398 4400 4.63 475
NalLi (Xl 2)c 5.48 5.45 248.8 2SU (.88 unknown
Liy (X5 5.089 5.051 345.3 351.4 0.99 103
Nay (X'Z)¢ 5.9313 5.818 155.7 159.2 719 73
cH  (m)f 2,086 343 Hes
NH (X3D)8 expt. 337 3.40
oH (Xmh expt. 4.53 4.63
FH (X'ZH 1.7328™ 6.18 6.12
By R expt. 1.67 1.68
0, (Xzﬂ)k expt. 4.14 4.16
co X'zh! 2.132™ 11.33 11.38

(a) All these calculated values are based on a consistent simple
model designed to evaluate only changes occurring in the
correlation energy with molecular formation. See DAS,
G. and WAHL, A.C. (1972). J. Chem. Phys., 56, 1769.

(b) DAS, G. and WAHL, A.C. (1966). J. Chem. Phys., 44,87,

(c) BERTONCINI, P.J,, DAS, G. and WAHL, A.C. (1970).
J. Chem. Phys., 52, 5112,

(d) DAS, G.and WAHL, A.C. (1966). J. Chem. Phys., 44, 87.
DAS, G. (1967). Ibid., 46, 1568.

(e) BERTONCINI, P.J. and WAHL, A.C, J. Chem. Phys.,
(to be submitted).

Table 2: Diatomic dipole moments computed from SCF
and OVC wavefunctions. All values are in debyes.

Molecule ? SCF ove b Experiment
cH () 1570¢ 1538 146 +006*
NHCT)y 1e® ismh unknown

OH (*m) 1.780 ¢ 16559  1.660 * 0.010 "
FH (') 1.942°€ 1.80s8 1.797™

cv ) 23009 1astt 145 to08"
&0t (%) <=0278° 0.1567  0.112 £ 0.005°
NeLO (T oer9f  11af 047 o3P

(a) The dipole moments are given as positive for the indicated
polarity.

(b) These calculations were all done at or near the experi-
mental equilibrium. Vibrational averaging has not been
taken into account except where noted in the footnotes.

(c) CADE, P.E. and HUO, W.M. (1966). J. Chem. Phys.,
45, 1063.

(d) GREEN, S. (1972). J. Chem. Phys., 57, 4694.

(e) HUO, W.M. (1965). J. Chem. Phys., 43, 624.
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(f) NEUMANN, D. and KRAUSS, M., (in preparation).

(g) STEVENS, W.J. (1973). J. Chem. Phys., 58, 1264.

(h) STEVENS, W.J., DAS, G., WAHL, A.C., NEUMANN, D.
and KRAUSS, M. (1974). J. Chem. Phys., 61, 3686.

(i) NEUMANN, D. and KRAUSS, M. (1974). Mol. Phys.,
27, 917.

(5) DAS,G. and WAHL, A.C.(1973). J. Clhem. Phys., 56,3532.

(k) KRAUSS, M., NEUMANN, D., WAHL, A.C., DaS, G.
and ZEMKE, W. (1973). Phys. Rev., A7, 69.
ZEMKE, W., DAS, G. and WAHL, A.C. (1972). Chem.
Phys. Letters, 14, 310

() BILLINGSLEY, F.P. and KRAUSS, M. (1974). J. Chem,
Phys., 60, 4130.

(m)Energy calculated at one point, the experimental R,.

(f) STEVENS, W.J. and WAHL, A.C., (unpublished work).
These results were obtained in an effort to improve
previously published values by greatly expanding the STO
basis set. The previous values were 0.95D and 1.24D
for the SCF and OVC dipole moments respectively.
See BERTONCINI, P., DAS, G. and WAHL, A.C. (1970).
J. Chem. Phys., 52, 5112,

(g) NEUMANN, D. and KRAUSS, M. (1974). Mol. Phys.,
27, 917.

(h) STEVENS, W.J. (1973). J. Chem. Phys., §8, 1264.

(i) DAS, G., JANIS, T. and WAHL, A.C. (1974). J. Chem.
Phys., 61, 1274.

(j) BILLINGSLEY, F.P. and KRAUSS, M. (1974). J. Chem.
Phys., 60, 4130. This value has been vibrationally
averaged.

(&)PHELPS, D.H. and DALEY, F.W. (1966). Phys. Rev.
Letters, 16, 3.

(t) POWELL, F.X. and LIDE, D.R. (1965). J. Chem. Phys.,
42, 4201.

(m)MUENTER, J.S. and KLEMPERER, W. (1970). J. Chem.
Phys., §2, 6033.

(n) THOMSON, R. and DALBY, F.W. (1968). Can. J. Phys.,
46, 2815.

(0) TOTH, R.A., HUNT, R.H. and PLYLER, E.K. (1969).
J. Mol. Spectroscopy, 32, 74.

(p) DAGDIGIAN, P.J., GRAFF, J. and WHARTON, L. (1971).
L Chem. Phys., 55, 4980.

(qQ) STEVENS, W.J., DAS, G., WAHL, A.C., NEUMANN, D.
and KRAUSS, M. (1974). J. Chem. Phys., 61, 3686.



Table 3:

(CADE and HUO (1967).

STO basis set for OH

J. Chem. Phys., 47, 614).

‘molecular’ configurations. The calculation of the OH
potential curve, figure 1, provides a good example
of what is required in these two regards. Table 3

Hoy  acnfig EX(ONeH:S displays the basis set composition and table 4 the
Sigma classes of configurations required. Discussion of these
oints | i i i :
fc 3 0 7.017, 12.388 points has been given in detail recently (5] .Presently
these methods have been extended to excited states
I 2 2 1.718, 2.863 of the same symmetry yielding satisfactory results,
3s 1 0 8.646 see table 5 [7].
i) 4 (0] 1.285, 2.135,3.760, 8.228
3d 2 0o 1.636, 2.824
4f 1 o 2.266
1s 3 H 1.000, 1.314, 2.439
2s 1 H 2.300
» i H 2.805
P Table 4: OVC configurations for Xzﬂi OH
2p 4 (0] 1.266, 2.115, 3.753, 8411 :

Classification Occupancies YR el
3d 1 0 1.913 Couplings
af i o 2.199 Hartree-Fock 10%20%30%1713 1
2 1 H 1.770 Correct Dissociation 10%20%0%173 1

T AC) 3
3d 1 H 3.325 LoF20™ oy L 1
Interpair Split Shells 10%20%(3040) (10 22m) 7
Intrapair Doubles 10%20%50%17° 1
10220%0%1m3 1
) ' . 2,2
In order to obtain results of this quality one must 10%20%17°3n 1
utilize an extended basis set (double zeta plus 102202113472 1
polarization) and also must include all important
Table 5: Spectroscopic constants for the CN-states
P D Iy r w WeX, B
Stat Refi ¢ ¢ e & Cant el %
* N en N (bohrs) @) em’)  @emh (em™)
Xzt This work 7.011 2.20 2079.5 13.00 1.90 .019
Straight Cl - 6.178 2.34 1939.2 14.54 1.61 .015
Exp. b 7.75%.2 2272 2068.7 13.14 1.90 .017
B*z* This work 6.280 3.114 2.17 2275:5 24.94 1.97 .022
Straight CI a 4.335 3.765 2.32 1765.2 3253 1.65 .026
Exp. ° 3.193 2.18 2164.1 20.25 197 022
Bzt This work 1.747 7.647 2.45 2074.5 16.83 1.53 .007
Straight CI 4 1.745 7.856 2.58 1717.1 30.57 1.32 .015
Exp. ° 7.334 2.49 1681.4 8 1.49 006
A This work 5.998 1.013 2.34 1787.2 12.28 1.69 .018
Straight CI 3 4.295 1.883 2.50 16214 16.74 1.40 .015
Exp. ° 1.146 233 1814.4 12.88 L2 018
D’r This work 2.943 6.451 2.94 1109 11.99 1.07 .013
Straight CI e 3.008 71,593 3.01 1041.6 6.38 97 .010
Exp. ° 6.755 2.83 1004.7 8.78 1.16 013
Hr This work 1.427 7.9673 249 2364.3 50.70 1.487 .001
Straight CI 2 1.794 7.807 2.67 1651.3 43.84 11.229 .002
Exp. ° 7.556 (=Tg) 2.48 (=15) 1.52 (=Bg)
(@) See (3]

(b) See [3] for lists of references on the CN-experimental data
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Table 6: Configurations used for the VDW calculations for
ArH

Configurations
Description [13°N2250N22P0N22P“Ar41x
Hartree-Fock (3s0® 3p02 3p114) Arlsoy
Overlap-Transfer (3s0%4p3pn®) 5, 15044
Excitations (3307 3pa3pmapm) Ar lsoH2
(350% 3p03d03pn*) A, 200
(350%3p0? 3pm 3dM) o 2P0y
(3507 3p0° 3d03pT ) AL 2PTH
(3par.1sy) Dispersion  (356?3pa3dm3pn®) o, 2pTH
Excitations (39;02 3po2 3p1r3 3d8)ar2pTH
(3507 3p0? 3pm3dm) 5,346
(3s073p03d63pm*) 5 3d6y
(35 A5 15) Dispersion (3803p024p03p1r4)m290u
Excitations (3503p024p1|3p1r4) Ar2PTH

Table 7: Calculated and experimentally determined Van der
Waals well depths € and positions R

System R (bohrs) €°K Refer-
Theory Experiment Theory Experiment  ©nce
HeH 6.8 6.97 5.8 4.05 (8}
He, 5.6 5.6 10.8 10.4to11.2 (9]
LiHe 11.8 2.2 [8]
Ney 5.82 5.86 39.2 42.0 [10]
NeH 6.65 6.01 16.9 32.6 a
ArH 6.8 6.73 48.2 554 {12}
KrH 7.2 6.99 67.3 70.3 a

(a) Work in progress
(b) The disagreement between experiment and theory for
NeH is under study

Table 8: Comparison of experimental and theoretical well
depths for He,

&°K Reference
Hartree-Fock Repulsive
S i i
e e, 108 2
gﬁ:;a?:t‘gdl;;zltaneously s &9 pel

Experiment? 10.6 - 11.2 [9,13]

(a) This discrepancy between theory and experiment has been
resolved in recent work by W. Meyer, see [6].
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Van der Waal Interactions

Ideas similar to those which have proven successful
in the quantitative evaluation of chemical bond
strengths have been applied to the evaluation of Van
der Waal’s forces (for an example of configurations
employed see table 6). Recent MCSCF caiculations
including only intermolecular excitation have been
performed on HHe (8], He, [9], LiHe [8], Ne, [10],
NeH [11] and ArH [12], table 7, and Van der Waal
well depths have been obtained in cases where experi-
mental values are well established to an accuracy of
approximately 10%. In order to achieve greater
accuracy intra-atomic and inter-intra coupling cor-
relation effects must be included. This has been
done for the He, [6,13}]. The most complete
theoretical results [6] are now in satisfactory agree-
ment with experiment, table 8. In such high accuracy
calculations very extended basis sets, table 9, must
be employed to avoid expansion errors, dependent
on the internuclear distance, which can be of the same
order of magnitude as the Van der Waal interaction
[12].

Table 9: Basis set used for accurate SCF calculations on
the system ArH

o-Set m-Set

ni Exponent  Centre nl Exponent Centre
is 20.75 Ar 2p 16.22 Ar
2s 14.9 Ar 2p 8.23 Ar
3s 16.5 Ar 2p 5.0 Ar
3s 10.5 Ar 4p 8.0 Ar
2s 6.206 Ar 3p 2.97 Ar
3s 3.166 Ar 4p 2,211 Ar
3s 1.933 Ar 3p 1.37 Ar
4s 1.933 Ar 4p 1.37 Ar
2p 16.22 Ar 3d 297 Ar
2p 8.23 Ar 4d 2.211 Ar
2p 5.0 Ar 3d 1e:377) Ar
4p 8.0 Ar 2p 1.0 H
3p 2.97 Ar 2p 1.75 H
4p 2.211 Ar

3p 1.37 Ar

4p* 1.37 Ar

3d* 297 Ar

4d* 2.211 Ar

3d* 1.37 Ar

1s 1.0 H

1s 2.0 H

2s 1.0 H

2 2.5 H

2p 1.0 H

2p 1.75 H




Triatomic Molecules

The extension of the configuration selection pro-
cess employed successfully on diatomic molecules
could not be straightforwardly applied to the triatomic
systems except for the dihydrides in which the various
correlation types (in out, left right, angular) are easy
to identify. The results of the application of this
method to H,0 and NO, are given in figures 2 and 3.
The choice of configurations is discussed in several
recent papers [14,15].

0.68

1

«—0.7i -
—0.72

—0.73 4

] 1 | ] el
16 1.8 20 22 24 26
R
Figare 2: MCSCF potential energy surface for 331 state
of H,0 at bond angle of 105°. Energy contours are labelled

in atomic units.

20 —

Qs

|
og.S 4.0 4.5 5.0 5.5

R(0-0), bohrs
Figure 3: Computed potential surface of le, state of NO,.
Innermost contour is —204.10 au with each succeeding
contour 0.01 au higher in energy.

Dynamics and Scattering

With the availability of accurate ab initio inter-
action potentials it becomes possible to compare, at
a quantitative level experimentally derived potentials
with the calculated ones. For some systems the

{g) ————-—— MCSCF
9.00 - {b) —————~ SCFCa -
(c) BIl
[ (d) ——— BI2
7.00 |- ,
(e) AQ1
(f) AQ2
5.00 |- £ N
z i
2 i
! '
Z 300} )
€ [
-+ ]
B '
Lo (a),(b)“» e \n
i \ _—
-1.00}
~3.00 |-
-5.00 - : - '
250 300 350 400 450 500 550

R(A)
Figure 4: V(R) versus R. AQ1 and 4Q2 label the two
experimentally derived potentials of [17]. B/l and BJ2 label
the two experimentally derived potentials of [16]. MCSCF
and SCFCg are the theoretical potentials [12].

uncertainty in the experimentally derived potential
is sufficient to warrant serious consideration of the
calculated potential. This was the case for ArH in
which the potentials derived from two different
experiments [16,17] were in a serious disagreement,
figure 4. In this case the theoretically derived
potentials agreed with only one of the experimental
ones, figure 4. Further the scattering predicted from
the theoretical potential also only supported one set
of experiments, figures 5-9. Later these disagreements
were resolved and it appears that the theoretically
evaluated potential was important in catalyzing new
experiments [12].

220 T T T
(a) ====mm MCSCF
L (b)) ==———— SCFCq

240820 (<) 811 ]
- SN td) 812
~ ARY
= W (€} someermee AQL
€ 200~ AR U1])) emmseeesest AQ2 §
§ AN
- \\\\
v AR
& 190 (b).(o)\\\\\ ]
“w RS
9 ~ (c) i1
S Xy (0 T
o 180 SR ey
g T
- **§.~..

170 b e

——]
1 60 L > i

" s ) !
0.20 0.30 a0 0.50 060 0.70 080 0930 1.0C
109;g {Ve'sity in «m/sec)

Figure §: Log of the total elastic cross section versus log
of the ArH relative velocity. The elastic cross sections were
calculated from the quantum mechanical phase shifts pro-
duced by the six potential curves in figure 4.
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Figure 6: Log of the total elastic cross section versus log
of the ArH relative velocity. The elastic cross sections were
calculated from the quantum mechanical phase shift pro-
duced by the six potential curves in figure 4.
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Figure 7: Log of the differential cross section do(0) versus
the angle of scatter 0. The ArH relative velocity is 3.0 km/sec.
The differential cross sections were calculated from the
quantum mechanical phase shifts produced by four of the
six potential curves in figure 4.
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Figure 8: Log of the differential cross section do(0) versus
the angle of scatter 0. The ArH relative velocity is 1.0 km/sec.
The differential cross sections were calculated from the
quantum mechanical phase shifts produced by four of the
six potential curves in figure 4.
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Figure 9: Log of the differential cross section do(J) versus -
the angle of scatter §. The ArH relative velocity is 0.4 km/sec.

The differential cross sections were calculated from the

quantum mechanical phase shifts produced by four of the

six potential curves in figure 4.

We have also performed classical trajectory studies
[18] on the LiH, surfaces computed at three levels of
accuracy. The surfaces were Hartree-Fock, Optimized
Valence Configuration, and Hartree-Fock interaction
added to a correlated description of the H, bond
stretching. The OVC surface for 1.4 bohrs is displayed
in figure 10. These potential surfaces were computed
for three H, internuclear distances 1.0, 1.4, and 2.0
bohrs and fitted to the form given in table 10.



SCALE

o i 2345
R (H-H) =i.4 BOHRS

Figure 10: OVC small basis set potential energy surface of
Li + H, for the H, distance frozen at 1.4a,.

Table 10: Analytic Potential Form

RLi
/0/
H * H

VRLiRH,0) = VhyRHy) * V0L, (RLiRH, D)

where:
2
ViyRuy) = D {1 - exp (-BRy, -~ Ro) |
4

ViiyRLiRHL0) = 2;2 VQR LiRH,) PR(cos )

VRRLi.RH,) = Q1R H,)exp(-OGR L) + Q20RH R L™
+ Q30(Ry,)IR L™

Q0ig(Ru,) = ajg + bigRH, *+ CigRu,”

The purpose of these studies was to predict non-
reactive collisional behaviour for this system and to
assess the effect in thé dynamics of the differences
in the three potentials employed. As seen in figure 5
11-13 the dynamics obtained from these three poten-
tials are qualitatively indistinguishable. All of them led
to negligible vibrational or rotational excitation at
the energies studied. Work on the reactive portion
of the LiH, surface is in progress.
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TRANSLATIONAL ENERGY (KCAL)

Figure 11: The cross section, as a function of L{ translational
energy, for rotational excitation of H,. Transitions (0~>2),
(0>4), and (0>6) are displayed for three different potential
energy surfaces: a Hartree-Fock (HF) surface: an OVC surface;
and a hybrid surface consisting of the HF interaction energy
and the OVC H, asymptotic energy.
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Figure 12: The cross section for the (0>2) and (0>4)
rotational excitation of 4, as a function of the Li impact
parameter for Li with an initial translational energy of 20
kcal and for H, initially in the ground vibrational state.
Results are displayed for the three potential energy surfaces
listed in figure 11.
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Figure 13: The percentage change in the translational energy
of Li, as a function of the scattering angle, due to internal
excitation of H,. Li has an initial translational energy of
20 kcal. H, is initially in the ground vibrational state.
Results are displayed for the three potentnl energy surfaces
listed in ﬁgure 11.

Summary

The purpose of the above presentation has been
to give you some idea of the work going on in our
laboratory dealing with the evaluation of interaction
potentials and their subsequant use.in dynamical
calculations. These dynamical calculations have served
several purposes:

(a) to aid in developing a unique interatomic
potential, as in the ArH case,

(b) to assess the sensitivity of the dynamical resuits
to changes in the potential, as in both the ArH4
and LiH, cases, and

{(c) to predict collisional behaviour from the a
priori potential, as in both the ArH and LiH,
cases.

With the relatively new capacity for evaluating
accurate interatomic and intermolecular potentials for
non trivial systems and recent advances in dynamics
quantum chemistry can be expected to play an
increasingly important role in the establishment of
accurate potential energy surfaces and the prediction
of dynamical behaviour on them. This process is an
iterative one in which regions of the potential surfaces
are identified for refinement through dynamical calcu-
lations displaying sensitivity to such regions, followed
by subsequent improved dynamical calculations.
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On the Direct Configuration Interaction
Method from Molecular Integrals

P.Siegbahn*

The direct configuration interaction method from molecular integrals is investigated in two main
directions. The first concerns the use of different diagonalization procedures, and it is shown that
a variational form of perturbation theory is most efficient in connection with this Cl-method. The
other deals with methods of obtaining and sorting the coupling coefficients that appear in the
formalism. One such procedure is outlined. Finally a computer program for correlating three
valence electrons with full CI, based on these methods, is described. Timings are given from
preliminary studies of the /3 and the LiyH systems.

Introduction

A couple of years ago a basically new method of
doing configuration interaction (CI) calculations was
introduced [1]. It is the object of this paper to
present certain improvements and extensions of this
method. One section will put the method in the
context of other methods, and the following two
parts will concentrate on diagonalization schemes and
coupling coefficients respectively. Finally in the last
section the performance of a computer program is
demonstrated, where the presented algorithms have
been used for the case of full CI on three valence
electrons.

The decision to make a full CI program for three
valence electrons was made for three reasons. The
application of the method is particularly simple for
the case of full CI. It is a system where it is
practical to perform full CI calculations even for
large basis sets, and finally there is a big variety of
problems of chemical interest where three electrons
determine the electronic structure or the potential
energy surface. The most striking example of the
last point is maybe the classical problem of the
exchange-reaction between a hydrogen atom and a
hydrogen molecule.

H+H2—’H2+H

Other examples of reactions involving three electrons
are

H + Li, » LH + Li
H + LH - H, + Li

Hy + H, - Hy + H etc.

In the last section of the paper timings for cal-
culations on two of these reactions will be given for
a number of different basis sets and symmetries.

Method of Calculation

To understand the details of the particular method
of solving the Cl-problem used here, some relevant
background has to be given.

Expanding the wavefunction in terms of ortho-
gonal configurations

N
=Y 08 1)
i=1

leads to the secular equation
H-EI)-C+0 (2)

The methods of solving (2) can be divided into
two basically different groups. The most commonly
used procedure is the iterative scheme where (2) is
handled as a set of linear equations and the co-
efficients and energy are simultaneously updated
until convergence [2,3]. The other set of methods
are based on perturbation theory [4,5].

The simplest form of the iterative method consists
of rewriting (2) as

H-C=4-C 3)

where H' — A = H — E I must hold.

* Department of Chemistry, University of California, Berkeley, California 94720, USA
(present address) Institute of Theoretical Physics, University of Stockholm, Vanadisvagen 9, S-113 Stockholm,

Sweden
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Usually the matrix 4 is chosen to be diagonal, with for example 4;; = E — H;;. This leads to the iterative
procedure

N
e =L . . Hy ¢k=D _ ple-D) . ck-1) @)
(k-1) : U
E — Hii j=1
where ACi(k) is the increment of coefficient 7 in iteration k, and N is the number of configurations in the
basis set. The energy Ek-D g simply the variational energy calculated with the vector from iteration k—1.

L U T
N f

k-1)2 =1
_E Ci( ) i

i=1

In the perturbation approach the usual splitting
is made of the Hamiltonian H = H, + V, with the
corresponding expansion of the wavefunction ¥ =
}l:(¢(k) and energy E = T&. Inserting this in the
Schrodinger equation and collecting terms of order
k leads to

k-1
Eo—Ho)p® = Vok-D 5~ g, o™ (6)

m=0

After the expansion of ¢(X) in orthogonal
configurations the unperturbed Hamiltonian H, is
usually, for practical reasons, chosen to be diagonal
in this representation. One such choice is:
Hy = El [i><i|H|i><i|, where the sum is over all
the configurations in the basis set. With this choice
(6) can be rewritten in component form as

N N

1 |

G¥ = ¥ B& = 20 e 7 @)
Eo~Hy jo m=0

The perturbation energies obtained in iteration k are
found to be expressed by [4],

oy = ¢ DIMptD> —

B <¢(k)IV|¢(k_l)> .

Depending on the procedure used to solve the
secular equation either (4), (5) or (7), (8) is calculated
until convergence. As A or Hy are commonly chosen to
be diagonal both of these methods in practice basically
means calculating the vector o with components

N
Oi(k) = E Hij C}(k—l) )
i=1

B. Roos has shown [1], that for the case of a cal-
culation in a basis of all singly and doubly substituted
configurations out of a closed shell reference state,
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3

=

3

N N
k-1 k-1
8 3, G iy e (5)

=1

(9) can be rewritten in terms of integrals and coupling
coefficients in a computationally attractive way.
The contribution to an element 0,(X) from the
integral (ab/cd) is then given by

8™ = 4- (abjea)- ¢,V (10)

where A is the coupling coefficient.

By this procedure the explicit construction of the
Hamiltonian matrix is avoided. Instead the updating
is made through a sequential reading of the integral
list in each iteration. Extensions and modifications of
this method will be discussed in the following sections.

Diagonalization Schemes

A conventional Cl-scheme consists of three steps.
The generation of formal matrix element expressions,
the construction of the Hamiltonian matrix and
finally the diagonalization of this matrix. It is clear
that the timing with this scheme is less sensitive to

k-1
&Zk-—l-—m—n<¢(m)|¢(ﬂ)>
=1

(®)

k-1
Z 8‘2k-m a <¢(m)|¢(n)>
n=1

the efficiency of the iteration procedure than the
present method, where all work has to be repeated
in each iteration. Also with the simultaneous updating
of all components of the vector g, according to (10),
some commonly used modifications of the iterative
scheme [2,3] cannot be used. With this in mind
an investigation of different diagonalization schemes
was made, and it will be shown here that a particular
choice of perturbation approach is capable of giving
rapid convergence in connection with this Cl-method.

For the iterative schemes an obvious modification
of (4) is the introduction of a damping factor A; in



front of the expression on the right hand side. A
somewhat different way of introducing damping is
obtained by choosing

A

n

E-H, +a (n
1 1

o; can be compared to what in Hartree-Fock schemes
are called level-shifters [6].

With the introduction of a; (4) becomes

1
E=D=gl 40

ac®
=1

A special case of this procedure is the use of Hartree-
Fock orbital energies in the denominator instead of
the diagonal elements of the Hamiltonian matrix. One
convenient way of using @; is to avoid the problems
occurring when £ — Hj; =~ 0, which may happen in
a case of near degeneracy. There is clearly a great
variety of possibilities of choosing the @;. No effort
was here made to map out the advantages of particalar
choices of @;, because certain modifications of the
perturbation schemes seemed to show superior con-
vergence patterns in connection with this Cl-method.

The corresponding flexibility obtained by choosing
the a; above is obtained in perturbation theory by
the freedom of choosing Hy according to

N
Hy = 3 [i>ai<il (13)
i=1

where the sum is over all the configurations in the
basis set. For the perturbation schemes by far the
most efficient choice of & tried, was the sum of
Hartree-Fock orbital energies. In fact with a]f equal
to the diagonal elements of the Hamiltonian matrix
the straightforward perturbation method (7), (8)
generally diverges. Having defined H,, a choice of
different available perturbation schemes are still open.

Table 1: Convergence of CI — different
Correlation energies in au

N
Z H; Cj(k—l)_ E(k=D ¢ k-1

One can show that simple expressions exist for the
matrix elements of the perturbation operator V
between the perturbation functions ¢ according to [4]

<¢(P)'y|¢(Q)>
p

= Epiqu *
K

q
2 Gprqeikg<t®e®> (14
1 ¢=1

(12)

where & are perturbation energies,

This means that setting up and solving the secular
équation in terms of the perturbation functions is a
minor extra work in each iteration. Improved con-
vergence has been demonstrated in some cases with
this nonlinear variational perturbation approach [5].
A test calculation on a Is-hole on CO™ with 1500
configurations is shown in table 1. The orbitals used
were the ground state orbitals of CO and the o] are
chosen to be the sum of the orbital energies for the
ion. Also shown in table ] are various other methods
to calculate the energy, easily applied in each iteration.
The linear variational perturbation approach [4] is
simply the variational energy calculated with the sum
of the perturbation functions, For the definitions
of [V, N=1] and [N, N] Padé approximants used to
extrapolate the perturbation energies, see references
[5,7]. 1t should be added that the chosen example
Wwas unusually difficult to get to converge, because of
the big reorganization effects, Commonly 6 or 7
iterations are needed to get convergence for ground
states to 6 decimal figures in the energy with the
nonlinear variational method, if there is not a very
close lying excited state, Generally even the appli-
cation of perturbation theory according to ) (8
with Hy, as the sum of orbital energies converges.

procedures calculation on CO*

q Linear Non-Linear
Iteration Per {‘ul?l:: trion P\e/:tixi?lt):)tri‘g}x P\el:{lﬁg:ggln [A;sa/c\il; ! [Igld{av]

Theory Theory Theory Approximant Approximant
2 -0.565 -0.357 -0.662859 -0.832297 -0.560801
4 -1.77 -0.703 -0.804137 -0.805747 —-0.806888
6 -1.28 —-0.547 -0.807554 -0.808230 ~0.807879
8 +15.2 +0.332 ~0.807884 —-0.807320 ~0.807734
10 -19.2 +2.22 -0.807975 ~-0.807966 -0.813891
12 -359 +0.516 ~0.807991 ~0.807965 -0.807675
14 +1180 +3.28 -0.807993 -0.807994 -0.808027

(a) The correlation energy also includes the reorganization energy
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The Coupling Coefficients

In this section a method for obtaining and sorting
the coupling coefficients 4 in (10) will be presented,
and an example is given for the three electron case.
The value of the coupling coefficient 4 for a
particular integral (ab/cd) depends on three inde-
pendent parameters

(a) Type of integral

(b) Spin- (and space-) projection used in the
coupled configurations i and j

(c) Permutation of the orbitals in these con-
figurations.

To clarify the meaning of ‘type of integral’ we
consider the case of a configuration set of single and
double substitutions from a single configuration
reference state. Here we can divide the orbitals into
three distinct sets

(a) Doubly occupied in reference state
(b) Singly occupied in reference state

{c) Nonoccupied in reference state.

Within each of these sets the orbitals are given a
sequential number. The integral is defined in terms
of four orbitals a4, b, ¢, and d. The ‘type of integral’
is defined by how many of these four orbitals fall
into each of the three groups and the relationship
between the sequence number of the orbitals of the
same group. As an example, there are 14 different
types of integrals which are defined in terms of
orbitals all belonging to the same set (table 2). All

Table 3: Full CI for three electrons

Table 2: The fourteen different types of integrals (ab/cd)
obtained when all orbitals are in the same set

Type Index- Type Index- Type Index-
No. relations No. relations No. relations
1 a=b=c=d 6 a=b 11 b=c¢
2 a=b=¢ 7 ¢=d,b>c 12 b>c
3 b=c=d 8 c¢=d b<c 13 b<c,b>d
4 a=bc=d 9 a=c 14 b<c, b<d
S a=c, b=d 10 b=d

together there are 53 different types of integrals for
a closed shell reference state. With one open shell
there are 89 types and with two open shells the
number of types has increased to 148. The actual
programming work required to use the algorithm (10)
in its present form is critically dependent on the
number of types of integrals, as each one in principle
requires a special subroutine. Therefore, if all orbitals
are treated equally. as in the case where all possible
configurations generated by the basis set are used in
the calculation, full CI, the number of types of
integrals is small, 14, and the required programming
work moderate,

To obtain the required coupling coefficients a
program developed by C. Bender {8] was used, which
generates formal matrix-elements between specified
configurations. By a specially written program the
list of matrix-elements was searched for a specific
integral. The coupling coefficients are then ordered
by the program according to the indices involved in

Coupling coefficient tables for integral (ab/cd) where b < ¢ and b >d (Type 13 of table 2)

(a) Interaction elements (kda'!*?)||kbc't+2)

k is the running index and the superindex denotes spin-coupling

Spin- k>

coupling d b c a
ajj» +1/2 0 42 -/6/2 = w6/2 72 0 +1/2
aly A2 -2 -V3/2 0 0 0 /302 -2 312
@l -AfB2 0 HA/2 +2/2 0 N17) /312 0 +/3/2
ll2) =1 0 -1/2 0 +1 0 =1/2 0 i)

(b) Interaction elements (kca“'z)llkaﬂb(l 2}y

Spin- k>

coupling d b c a
aln +1 +6/2 +1/2 0 12 0 +1/2 -\/6/2 +1
2 0 0 +3/2 0 /32 ~2 312 +2/2 0
eliy 0 +/2/2 +\/3/2 Y +/f3/2 0 /312 0 0
el +1 0 -1/2 0 =12 0 ~1/2 0 +1
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the interaction. For a three-electron system each
configuration is defined in terms of three orbital
indices. Each of the two interacting configurations
will have two indices — the fixed indices — equal to
two of the indices appearing in the investigated integral.
The third index — the running index — will appear
in both of the configurations but not in the integral.
When this last index runs over all orbitals in the basis
set a series of configurations that interact through
the given integral are generated. A major division
of the interactions according to fixed indices and
spin-coupling is then made. Within each such group
the interactions are ordered after the running index.
As an example the list of coupling coefficients ob-
tained in this way for a certain integral is given
in table 3. The table contains all the necessary
information needed to describe the detailed handling
of this type of integral in the Cl<alculation. Fourteen
such tables have to be generated in this case after
which the actual programming is almost trivial. The
appearance of a single running index means that each
integral runs through a single loop over the number
of orbitals (m) in the basis set. The full CI for three
electrons with this algorithm is consequently an mS
procedure. For four electrons there will be two
running indices which makes the full CI in this case
an m® problem. For the case of only single and
double substitutions in a many electron system each
configuration can be defined by four indices with
respect to the reference state. This makes the auto-
matic sorting of the coupling coefficients with respect
to two running indices possible also in this case.

Table 4: Timing data ~ different molecules and basis sets
(calculations on IBM 360/195)

The Full Cl-Program for Three Valence Electrons

A computer program to correlate three electrons
with full Cl has been made based on the ideas in the
earlier sections. This program was connected to the
Gaussian integral part of the MOLECULE -package [9],
and the SCF and molecular orbital transformation
parts of the ALCHEMY package [10], to form a
complete package for three electrons. In all steps
of this package full advantage is taken of any
available two-fold symmetry.

Since the completion of the program, two appli-
cations have been started. One on the system H + H,
together with B. Liu, and another together with
H.F. Schaefer on H + Li,. The timings given in tables
4 and S are from preliminary studies of these two
reactions. A fairly detailed investigation of the
timing was made on the largest calculation on Hy
where one iteration takes 4.3 minutes. It was found
that only a small fraction of this time, 15 seconds, was
spent to read, identify and send the integrals to their
proper subroutine. Of the rest one half of the time,
2 minutes, goes into index-handling and the other
half goes into the actual floating point operations
according to (10). The index-handling per integral
is almost independent of the symmetry used, whereas
the floating point operations are directly proportional
to the number of Hamiltonian matrix elements dif-
ferent from zero, and thereby critically dependent
on the symmetry. The increase in time per iteration
as the symmetry is reduced, as shown by table S,
is therefore a consequence of both the increasing

Molecule  Symmewry (ued)  NymbSLo  Number of iy el
LisH Cyy (linear) 25 1378 8 0.08
LisH Cyv (linear) 32 2928 8 0.25
LiyH Cyv (perpendicular) 32 2593 7 0.21
LisH Cs (nonlinear) 32 5175 7 0.55
Hj Dap 48 5799 6 0.7
H, Dyp 57 9350 6 14

(@) This is the number of iterations required to reach convergence on the energy to 6 decimal places

Table 5: Timing data — Hj different symmetries
(calculations on IBM 360/195)

Number of Number of Number of Number of Matrix-elements Time/Iteration
Symmetry (used) Orbitals Integrals Configurations Different from Zero minutes
Dan 48 0.9 x 10° 5799 2.3 x10° 0.7
Cyy (linear) 48 1.7 x 10° 11655 9 x 108 1iS
Cs (nonlinear) 48 8 xiloP 20724 28 x 10° 4.3
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number of integrals and the increasing number of
Hamiltonian matrix-elements different from zero.
The only way to reduce the time per integral, if the
same number of orbitals are kept, is to reduce the
number of configurations, which would reduce the
floating point operations but not the index-handling.
A preferable way to reduce the time per iteration
would be to reduce the number of integrals by
neglecting small integrals. However, in the large
calculation of Hj, of the 370668 integrals, there are
only 1534 integrals smaller than 1075, This is of
course due to the delocalized nature of the molecular
orbitals obtained from an SCF-calculation. The use
of other orbital-sets which would give more small
integrals has not been thoroughly investigated.

Two numbers that illustrate the convenience of the
present approach as compared to conventional Cl in
this case, are the number of integrals and the number
of nonzero Hamiltonian matrix-elements. The con-
struction and use of 28 million matrix-elements would
not only be time consuming but also impractical on
most computer installations, whereas the 370 thousand
integrals would give no data handling problems.
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Electron Correlation in BH and H;:
A Numerical Comparison of Various Methods

G.A. van der Velde and W.C. Nieuwpoort*

'

The correlation energy of the four valence electrons in BH and all four electrons of two parallel Hy
molecules has been calculated using six different methods:

(a) complete CI

(b) CI based on all singly and doubly excited configurations
(c) coupled electron-pairs (CEPA) following Kelly

(d) independent electron-pairs (IEPA)

(e) independent pair-potential (IPP) following Mehler

(f) coupled pair-potential (CPPA)

The calculations on BH were done for several internuclear distances using canonical as well as localized
SCF orbitals. The H,4 calculations were carried out for two distances between the A, molecules and

only localized orbitals were employed.

In comparison with the reference calculation (a) the results of the IPP method are excellent, those
of the IPA method poor. The other methods yield intermediate results: (e) > (f) > (c) > (b) > (d)

Introduction

In most cases some form of configuration inter-
action (CI) is used for the calculation of correlation
corrections to the wavefunction and the energy.
However, in order to make numerical calculations
feasible one has to truncate the CI expansion. In the
literature a number of methods have been proposed
to truncate the CI expansion. The approximations in
the wavefunction have been justified with qualitative
arguments, but to date only a few comparisons exist
between rigorous CI results and the results of more
approximate methods. In this paper we compare for
two four-electron systems the results of a complete CI
calculation with the results of the following methods:

(a) CI calculations with only single and double
substitutions with respect to the SCF wave-
function;

(b) Independent electron pair approximation;
(c) Coupled electron pair approximation;
(d) Independent pair potential approximation;

(e) Coupled pair potential approximation.

Methods of Calculation

Starting from the closed shell SCF wavefunction ¢,
we distinguish the following contributions to the cor-
related wavefunction of the valence electrons of BH:

(a) The orbital polarizations or one-electron
clusters X(20) and X(30);

(b) The intra-orbital two-electron cluster X(20?)
and X(30%);

(c) The inter-orbital clusters X(2030:S) and X(2030;
7) in which the 20 and 30 orbitals are coupled
to a singlet and a triplet, state, respectively;

(d) The three-electron clusters X(20230) and
X(2030%);

(e) The four-electron cluster X(20?30?).

Ina complete CI calculation all clusters are included
in the wavefunction. However, this kind of calculation
is very time-consuming because of the large number
of terms in the three- and four-electron clusters.
Since the two-electron clusters describe the main
correlation correction a reasonable method to cal-
culate correlation energies would be to include only
the one- and two-electron clusters in the wavefunction.
(This method will be denoted as CI(1+2) in the
following). This method accounts only for the
correlation between two-electrons at a time [1,2].
Consequently, the fraction of the correlation energy
that is calculated with this method will become
smaller for larger systems [1,2].

To remedy the shortcomings of the CI(1+2) method
one has to include the effect of unlinked products of
one- and two-electron clusters. Since it is expected
that the main contribution to the four-electron
cluster consists of a sum of products of two-electron

* Chemische Laboratoria der Rijksuniversiteit, Zernikelaan, Paddepoel, Groningen, Netherlands
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clusters [1,2], the interaction between the two-electron clusters and the unlinked product of two-electron

clusters can be approximated as (3,4]

<X(202)IHIX(20%30%)> =~ <&, IHIX(30?)><X(207)IX(20%)> = &(302)<X(20%)(X(20%)> (1)
<X(2030;5)IH1X(20% 30%)> =~ %E&(2030;5)<X{(2030;5)IX(2030;5)> )
<X(2030;)IHIX(20%30%)> =~ Y%&(2030;T)<X(2030;T)|X(2030:,T)> (3)
<X(30Y)HX(20%30%)> =~ &(20%)<X(30*)IX(30%)> @)

where
&> = XK P>

(5)

The interaction between one-electron clusters and three-electron clusters is similarly approximated as

<X(20)1¥1X(20%30) + X(2030%)> =~ {%&(2030;5) + %&(2030;7) + a(3oz)} x <X(20)IX(20)>  (6)

<X(30)IKIX(20%30) + X(2030*)> =~ {&(202) + %8(2030;S) + ‘/28(2030;7’)} x <X(30)IX(30)>  (7)

In the calculation the interaction with three- and
four-electron clusters is taken into account by using
a different effective Hamiltonian for each one- and
two-electron . cluster. For instance for the intra-
orbital cluster X(20?) the effective Hamiltonian is
taken to be

Hop = H + &(30%) (8)

The above method has been used first by Meyer [5],
although he uses slightly different effective Hamil-
tonians. He proposed the name coupled electron pair
approximation (CEPA) for his method. In the
following we shall use this name also for the method
with the above effective Hamiltonians.

In the independent electron pair approximation
(IEPA) [6] the correlation energy is calculated for
each two-electron cluster separately. For instance
the correlation energy for the 207 pair is calculated
from the trial wavefunction

®o + X(20) + X(20%) €))

In the IEPA method the interaction between two-
electron clusters is neglected, and the interaction
between two-electron clusters and four-electron
clusters is overestimated [4].

In the independent pair potential approximation
(IPPA) [7] the correlation problem is also split in
a number of smaller problems. This method uses
trial functions of the form

o+ X(i) +X@) + T {X() +X@S) +XG N} (10)
i(#)

In this method all interactions are neglected between

disjoint two-electron clusters, i.e. clusters which have

no indices in common. The coupled pair potential
approximation (CPPA) [4] differs from the CEPA
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method in that the interactions between disjoint
two-electron clusters are neglected.

Results

BH with canonical orbitals: The calculations on BH
were performed with a small contracted Gaussian
basis set (4s- and 2p-functions on B and 2s- and
1p-function on H) for four internuclear distances.
The results of the SCF calculation and the full CI
calculation for the valence shells are shown in table 1.
In order to test the validity of the approximations
(1)-(7) we calculated the quantities

Aa() = <X@IHIX(20% 307 )>/<X;IX ;> an
and

(12)
As()) = <X@OIHIX(20730) + X(2030%)>/<X@EIX@E>

Table 1: Correlation energy of the valence shell of BH in
a full CI calculation with canonical SCF orbitals

R(au) 1.836 2336 2.836 4.336
E¢ -0.0721 -0.0727 -0.0761 -0.0991
& (202) -0.0257 -0.0232 -0.0226 —-0.0356

& (2030;S) -0.0147  -0.0206 -0.0246  -0.0086
& (2030,T) -0.0044  -0.0042 -0.0040  -0.0033
&(30%)  -0.0273 -0.0248 -0.0248  -0.0517

The results are shown in table 2. For reasons of
comparison the results of the approximations (1)-(7)
are shown in parenthesis. From the results given in



table 2 it is clear that the approximations (1)-(7)
underestimate the interactions between two-electron
clusters and three- and four-electron clusters. Further-
more it can be concluded that the approximations (6)
and (7) overestimate the interaction between one- and
three-electron clusters. This is probably due to the
fact that the linked three-electron clusters are nearly
as important as the unlinked product' of one- and
two-electron clusters. In the IEPA, IPPA and CPPA
methods part of the interaction between two-electron
clusters is neglected. These interactions are listed in
table 3 (X(2030) = X(2030,5) + X(2030;T)). It is
seen that these interactions behave rather irregularly
as a function of the internuclear distance.

Due to some imperfections in the computer program
we were unable to discriminate between the X(2030;S)
and X(2030,T) clusters in the CEPA and CPPA
calculations.  For these clusters the interactions
with the four-electron clusters were taken to be zero
‘instead of %8&(2030,5) and %&(2030,T) respectively.

Table 2: Mean interaction between one- and two-electron
correlation functions and three- and four-electron correlation
functions

R(au) 1.836 2.336 2.836 4.336

A4(202) -0.0341 -0.0358 -0.0386 -0.0528
(-0.0273) (-0.0248) (-0.0248) (-0.0517)

A (2030,S) -0.0239 -0.0246 -0.0256 -—0.0266
(—0.0074) (-0.0103) (-0.0123) (—0.0043)

A4(2030.'7) -0.0108 -0.0099 -0.0101 -0.0128
(-0.0015) (-0.0014) (-0.0013) (-0.0011)

A4(302) —0.0339  —-0.0338 -0.0310 -0.0295
(~0.0257) (-0.0232) (-0.0226) (-0.0356)

4,(20%)  -00152 -0.0201 -0.0237 -0.0117
4y (2030,S) -0.0185 -0.0133 —-0.0088 -0.0187
43 (2030;T) -0.0714 -0.0782 -0.0874 —0.1169
A,(3¢*)  -0.0128 -0.0116 —0.0108 —0.0121

44 (20) -0.1057 -0.0151 0.0110 -0.0018
(—0.0368) (-0.0372) (-0.0391) (-0.0577)
4; (30) ~-0.0134 -0.0176 -0.0203 —0.0097

(-0.0352) (~0.0356) (-0.0369) (—0.0415)

Table 3: Pairpair interactions in a full valence-shell CI
calculation on BH with canonical orbitals

R(au) 1.836 2.336 2.836 4.336

<X(20*)HIX(2030)> —0.0006 —0.0017 —0.0032 —0.0011
<20 HIX(30?Y>  0.0007 0.0013 0.0022 0.0013
<X(2030)HIX(36*)Y> 0.0008 —0.0004 —0.0027 0.

Table 4: Results of calculations on BH with canonical orbitals

R@u) 1.836 2.336 2.836 4336
E (SCF)  -25.0645 -25.1056 -25.0871 -24.9928
Ec €D®  -0.0721 -0.0727 -0.0761 -0.0991
EcCD®  _0.0688 —0.0694 -0.0724 —0.0917

Ec (CEPA)  -0.0703  -0.0706 -0.0736 —0.0973
Ec (IEPA) -0.0743  -0.0718 -0.0706 —0.0992
E. (IPPA) -0.0723  -0.0728 -0.0759 -0.1001
Ec (CPPA)  -0.0716 -0.0731 -0.0779  -0.1002

(a) Full CI calculation
(b) CI calculation with singly and doubly excited
configurations

Table 5: Correlation energy of the valence shells of BH in
a full CI calculation with localized orbitals

R(au) 2.336 2.836 4.336

E, -0.0727 -0.0761 -0.0991
& (20%) -0.0284 -0.0295 -0.0399
& (2030,9) -0.0057 -0.0070 —-0.0096
& (2030,7) -0.0042 -0.0040 -0.0033
& (3% -0.0344 -0.0356 -0.0464

Table 6: Mean interaction between one- and two-electron
correlation functions and three- and four-electron correlation
functions

R(au) 2.336 2.836 4.336
Ay (20%) -0.0375 -0.0389 -0.0475
(-0.0344) (-0.0356) (-0.0464)
Ay (2030S) -0.0193 ~0.0208 -0.0219
(-0.0029) (~0.0035) (~0.0048)
Ay (2030T)  -0.0098 -0.0101 -0.0128
(-0.0014) (—0.0013) (-0.0011)
Ay 30?) -0.0292 -0.0313 -0.0381
(-0.0284) (-0.0295) (-0.0399)
43 (26%) -0.0118 -0.0134 ~0.0055
4, (2030S)  -0.0368 -0.0311 -0.0246
483 2030,T)  -0.0781 -0.0874 -0.1170
Ay 3% -0.0122 -0.0102 -0.0134
A; (20) -0.0224 -0.0136 -0.0052
(-0.0394) (-0.0411) (-0.0529)
A3 (30) -0.0172 -0.0139 -0.0069
(-0.0339) (-0.0350) (-0.0464)

Table 7: Pair-pair interactions in a full CI calculation on
the valence shells of BH with localized orbitals

R(au) 2.336 2.836 4.336

<X(26*)IHIX(2030> 0.0 ~0.0004 0.0
<X(Q20*)HIX(30*>  0.0001 0.0002 0.0006
<X(2030)HIX(3*Y> 0.0011 0.0009  -0.0032
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Table 8: Results of the CEPA, IEPA, IPPA and CPPA
calculations with localized orbitals

R(au) 1.836 2.336 2.836 4.336

E. (CEPA) -0.0707  -0.0714 -0.0746  -0.0971
E, (IEPA) -0.0786  —0.0784 -0.0806 —0.0991
E. (IPPA) -0.0723  -0.0730 -0.0762  -0.0996
E, (CPPA) -—0.0708 -0.0716 -0.0749  -0.0982

The results of the CI(1+2), IEPA, CEPA, IPPA and
CPPA calculations are listed in table 4. As could be
expected, the CI(1+2) calculation underestimates the
correlation energy. The difference between the
results of the IEPA and the full CI calculation behaves
irregularly as a function of the internuclear distance.
The IEPA method can certainly not be used with
canonical orbitals to calculate potential curves. The
CEPA and the CPPA methods underestimate the
correlation energy. For these methods it is probably
better to follow Meyer’s suggestion [5] to use
effective Hamiltonians of the form

(13)
Ho =30+ 2 86D {1 - %Gy + big+ 85+ 59}

The best results are obtained with the IPPA method,
but this may be due to a fortunate cancellation of
errors.

 BH with localized orbitals: The calculations for BH
were repeated with localized valence orbitals. The
results are given in tables 5-8. As could be expected
the results of the CEPA, IPPA and CPPA calculations
are much less sensitive to localization of the orbitals
than the results of the IEPA calculations. In general
the results of the CEPA and IPPA calculations differ
less than 1073 au from the results obtained with
canonical orbitals.

H,: For the calculations on H, the basis set con-
sisted of 2 s- and 1 p- function on each H atom.
The four H atoms were placed at the corners of a
rectangle. The short side was 1.4 au. The cal-
culations were performed for two distances d between
the H, molecules, The correlation calculations were
_carried out with localized orbitals ¢y, and ¢y,. The

results of the calculations are shown in tables 9-13.

The most striking result of the full CI calculation
are the large interactions between the interorbital
two-electron clusters and the three-electron clusters,
which shows the importance of the inclusion of
three-electron clusters for the calculation of Van der
Waals interaction.
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Table 9: Complete CI calculations on Hg4

d 3.0 4.0

By -0.073769 -0.070348
& () ~0.035386 -0.034734
& (bb"5) —0.000952 ~0.000314
&®b'D -0.002045 —0.000566

Table 10: Mean interactions between one- and two-electron
clusters and three- and four-electron clusters

d 3.0 40
Ay (03 -0.035375 -0.034675
(~0.035386) (-0.034734)
Ay (b0:5) -0.004773 —0.001411
(-0.000476) (-0.000157)
() -0.011617 ~0.009830
(~0.000341) (~0.000094)
A; (%) —0.003106 -0.001023
A, (bb":S) -0.048744 -0.051714
Ay (06'T) ~0.078137 -0.076327
A; (b) —0.039994 -0.038824
(~0.036885) (-0.035174)

Table 11: CI calculations on H4 with single and double
excitations

d 3.0 4.0

E, -0.072492 -0.069244
e —0.034800 —0.034199
&(b"S) -0.000925 ~0.000304
XA -0.001967 ~0.000542

Table 12: 1EPA calculations on H4

d 3.0 4.0

E, ~0.074283 ~0.070474
& -0.035416 -0.034748
& (bb':5) ~0.001129 -0.000325
& (bd":T) ~0.002322 -0.000653

Table 13: Results of CEPA calculations on Hy

d 4.0
E, -0.070287
& -0.034722
&®b':S) -0.000303
&(b"1) —0.000539
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Investigations of Molecular Electronic.
Structure using Spin Optimised
Selt Consistent Field Wavefunctions

N.C.Pyper and J.Gerratt*

The spin optimised self-consistent field (SOSCF) wavefunction for an N electron system can be
described as the best antisymmetrised Hartree product of N spatial orbitals multiplied by a linear
combination of N-electron spin eigenfunctions.

Some properties of the SOSCF function are discussed. It is shown that such functions are the
most general ones yielding an independent particle interpretation, and that unlike the Hartree-Fock
function, they can be used to describe the potential energy surface of a molecule. In addition,
SOSCF functions can yield a good description of the density of unpaired spin at the nucleus of
an atom, even when the unpaired electron occupies a p orbital. The relation between the SOSCF,
HF and VB methods, and the types of correlation described by the SOSCF method are discussed,
and it is shown that SOSCF orbitals are, in general, non-orthogonal and have no radial nodes. An
expansion of the wavefunction having the SOSCF function as the leading term is used to discuss the
errors in properties calculated from SOSCF functions. From this we conclude that one-electron
properties are given to second order accuracy, that the calculated binding energies are always less than
the observed, and that calculated equilibrium internuclear distances are always greater than the
corresponding experimental values.

~ The computational problems raised by the orbital non-orthogonality are discussed, and useful relations
between density matrices presented. These are tlien used to derive compact expressions for the energy
and its first and second derivatives. Techniques for optimising SOSCF functions are discussed from
which we conclude that a direct approach using first and second derivatives is efficient and reliable.
Results of calculations on LiH, Li, and CH" are presented and discussed.

Introduction

This paper presents some theoretical properties and
model calculations with spin optimised self-consistent
field (SOSCF) wavefunctions, For an N electron
system an SOSCF function is of the form

N
$ = \/mv(iglm(x)i ek efs‘Mk>, (1)

where ¢; is a purely spatial one electron orbital, OSMk

an N-electron spin function, and &/ is the idem
potent antisymmetriser. The spatial orbitals and the
expansion coefficients ¢, occurring in the spin
dependent part of the wavefunction are optimised
according to the least energy criterion. The SOSCF
function is an eigenfunction of the square of the total

N/2

spin, 82, and of its component along an arbitrary
axis z, with eigenvalues S and M respectively.

N - N
Szesm - MBSMk

2N N 2
S O = S0

The label k& in this equation distinguishes different
linearly independent functions having the same values
of S and M [1].

The SOSCF method can be regarded as a syn-
thesis of the valence-bond and Hartree-Fock methods
since both these classes of wavefunction are subsets
of (1). Thus the SOSCF function reduces to a single
structure valence-bond function if atomic orbitals
are employed, whilst the Hartree-Fock function
results if the orbitals are constrained to be identical
in pairs. In this case equation (1) becomes

Pyp = \ﬁV’!w/( 0,21 = 1) ¢,(20) V% (aff~B0) /% (ep~Bo) ) )

* Department of Theoretical Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 ITS
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the antisymmetriser causing all other spin functions
to vanish. The SOSCF method like the Hartree-Fock
method can be given an independent particle inter-
pretation see below. However, in contrast to the
Hartree-Fock theory, the SOSCF method for molecules
leads to a correct description of dissociation products.

Calculation and Optimisation of the Energy

The evaluation of the energy is considerably more
complicated than in the Hartree-Fock case because
SOSCF orbitals are in general non-orthogonal. It is
not possible to orthogonalise the orbitals by subjecting
them to a linear transformation among themselves
without changing the SOSCF wavefunction. It proves
convenient to define density matrices D“), D(“,
whose elements are such that D(V(k) is the co-
efficient of ¢,f(q) #(q) in

N{®*®dr, .dr _ dr | .drdo, .dog . (4a)

and D®)(jk®) is the coefficient of
(@) 90@")6,@) #;(q") in

*
NN-1)fd Pdr, "'qu—lquﬂ -~~qu'_1qu'+|

.‘.dTNdal ..do

» (4b)

where dr is a spatial volume element, fdo, represents
integration over the spin co-ordinates of the ;th
electron, and ¢ and g'#q are electronic coordinates,

Defining the usual non-relativistic electronic Hamil-
tonian ¥ to be

H = Zh() + :
Zh(@) igjg., (5)

one has by virtue of equations (4)
<®l31d>

= ED(”(ik)<klﬁlt> + %.'EQD(z)(t'}'kQ)QQIéIiD (6)
i ij

A useful expression for the normalisation integral
can be derived by noting that it is not necessary to
antisymmetrise both the bra and the ket. Thus one has

SPIP> = <¢16; ... oNOgulV! o (4,95 ... oy 0gy,)>
= sz('>(ik)<k|i> for all i, (7)

By using similar expressions to equation (7), a whole
set of recurrence relations between different density
matrices can be derived [2]. Thus:
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DMKy = =DD(jk)<eli> for all
2

D ijkQ) = TD)(Gjmktn)<nlm> for all m (8)
n

etc.

Now the problem of optimising the expectation value
of the energy W = <<I>IJ"(|<I>>/<¢I>I¢> subject to the
constraint that the orbitals remain normalised, can be
replaced by an equivalent problem of minimising the
functional

F=W-% e<ili> ©)
1

without constraints. The parameters €, occurring in
equation (9) are the usual Lagrange multipliers.

By using the recurrence relations (8), the require-
ment that F be stationary with respect to small
variations in the orbitals can be expressed as

Fli> = eli>

: @(=1,2 .N) (10)
where Fi is an effective operator for the ;' orbital.
Each orbital is thus an eigenfunction of a distinct
effective operator. This is in contrast to the Hartree-
Fock method where all the orbitals are eigenfunctions
of a single operator. However, the conceptual sim-
plicity of the Hartree-Fock approach is still retained
here, since each electron can be regarded as moving
in the average field of all the other electrons. One
can therefore usefully discuss the changes in the
orbital energies € with nuclear configuration in
terms of correlation diagrams,

Computation of the Wavefunction

All the required density matrices are calculated
using the recurrence technique (8) starting from the
N-electron density matrix elements D(N)(] 24 Bl Vi
1'2'3'._N"). In terms of the representation matrices
USN(P) generated by the basis for the spin functions
Gng, these are given by

DM(123. N 1'23 . N') = Egc" cUidP) (1)

where P is the permutation (:,g,g,::: 1’\‘,’,) and the
Ck,CQ are the same coefficients as in equation ().
In the present work, the Young-Yamanouchi-Kotani
basis of spin functions [1] were chosen. The advantage
of this formulation is that the USN matrices are purely
group-theoretical quantities and so for a given NV and §
can be calculated once and for all.

A general program has been written for this
purpose. The matrices corresponding to the simple
transpositions P, ,, P,4, ..., Py _ N are computed first
as described by Kotani [1], and the other U/SN are
obtained by matrix multiplication.



Tlie orbitals |i> are approximated by an expansion
' A ifinite basis of Slater atomic orbitals |x>

7
{i>h= Zegh> (12)

The orbital equations (10) are converted by this into
a set of finite dimensional matrix equations which
could be solved iteratively as in Hartree-Fock theory.
However this process converges very slowly since the
whole of the operator: .’1 change during the mini-
misation. By contrast, only the two-electron part of
the Hartree-Fock operator is modified by iteration, the
one-electron (core nucleus) terms remaining unaltered.

The coefficients c,; and ¢, were therefore optimised
by minimising W directly. Since the absolute values
of <jli> are of no ultimate significance, the uniqueness
of the minimisation problem was ensured by fixing
one coefficient in each orbital on an arbitrary value,
Similarly, since only the ratios of the ¢, parameters
are significant, one such parameter was held constant
during the iterative process. The orbitals are normalised
and the c¢,’s scaled such that Zc¢,? = 1 after the
optimum values have been detel;mined. This pro-
‘cedure is numerically stable provided that the fixed
parameters do not make small contributions to the
optimised wavefunction. This possibility is always
simple to avoid.

The direct minimisation method which was used
requires the calculation of the vector (g) of first
derivatives of W with respect to the parameters c
and ¢, and also the corresponding matrix G of second
derivatives, From these, vectors (6¢) of corrections
to the parameters are calculated from the relation

G+M\).é6¢c = —g, ‘ (13)

where I is the unit matrix and A a positive scalar.
The scalar A is set to zero if G is positive definite and
either all the eigenvalues have changed by less than
1/3 of their values during the previous two iterations,
or if the smallest eigenvalue of G is greater than D/103
where D is the average of the moduli of the eigenvalues.
In both these circumstances the parameters are close
to their optimum values and the iteration reduces to
the quadratically convergent Newton-Raphson method.
However if the eigenvalues of G satisfy neither of
these conditions, the parameters are too far from
their optimum values for the Newton-Raphson itera-
tion to be stable, and the scalar X is then set to
?g.i’/(Ecalc — E,,pp). If the eigenvalues of (G + )
with A thus calculated do not satisfy the second of
the above conditions, A is set to D/10% and corrections
8¢ calculated. If these corrections are unreasonably
large, X is set to D/5.0. These iterations using a non-
zero value of A correspond to a mixture of the
Newton-Raphson and steepest descent methods [3].
This minimisation method has the advantage not only
that few (usually 10-15) iterations are required, but
also that this number is independent of the number

of parameters to be optimised. (This is typically in the
range 40-100.) Other direct minimisation techniques,
such as that of Davidon [4,5], which require calcu-
lation only of W and the gradient vector (g). were
tried and found to be unsatisfactory. This is because
such methods require ~3n iterations, where 1 is the
number of variables. Thus, for example. a calculation
on the Li atom using Davidon’s method with 19
parameters required 120 evaluations of W and of g
before convergence was reached.

Compact analytic expressions for the elements of
the gradient vector and of the second derivative matrix
are readily derived using the recurrence relations (8.

Table 1
R, (Bohr) l D, (V)
Experi- - Experi-
Calculated et HF SOSCt ent

LiH  3.095 (2.6%) 3.015 1.49 (51%) 1.92 (76%) 251
BH 2361 (1.3%) 2.329 ;2.76 (77%) 3.28 91%) 3.58
CH® 2157 (0.9%) 2.137 !3.17 (76%) 3.88 (94%) 4.10
Li;  5.550 (8.9%) 5.051 |0.12 (11%) 0.44 (42%) 1.05

Results

Calculations have been carried out for the systems
LiH, BH, CH* X'Z*, and Li; X'X;. Each SOSCF
orbital was expanded in a basis set of Slater orbitals,
the basis consisting of 14 of such functions for LiH,
18 for CH*and 22 for Li,. The results, together with
corresponding ones from Hartree-Fock calculations,
are shown in table 1.

The interpretation of these results is aided by
noting that to first order the exact wavefunction can
be written as a linear combination of the SOSCF
function, and terms describing electron pair corre-
lations.  Since the SOSCF functicn is a good
approximation to the exact wavefunction for all
internuclear distances, it can be shown from this that
dissociation energies calculated by the SOSCF method
are always less than the experimental values, and that
calculated equilibrium internuclear distancesare always
greater than the observed values. Since the Hartree-
Fock function describes dissociation incorrectly, only
the first of these two results applies. Neither result
holds for a CI wavefunction. The results in table |
corroborate these theorems and furthermore show
that the SOSCF method yields a highly realistic
description of the bonding except for the case of Li,.
It should be noted, however, that Hartree-Fock theory
predicts only 11% of the binding energy in this
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molecule. One might expect to improve the Li,
results significantly by adding a second configuration
in which the two o bonding orbitals are replaced by
two 7 orbitals thus introducing some angular cor-
relation. Terms describing this kind of correlation
are absent in a single configuration SOSCF function.

A dipole moment function for LiH has also been
calculated. Its calculated value at the calculated
equilibrium internuclear distance is 5.763D compared
with the experimental value of 5.828D at the experi-
mental internuclear distance. The calculated value
of this quantity rises to 6.760D at R = 5.0 Bohrs
and drops to 1.150D at R = 8.0 Bohrs.
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Molecular Spectroscopic Constants by the
Coupled Electron Pair Approach

W.Meyer*

Highly correlated variational wavefunctions based on a single dominant SCF determinant do not lead
to good spectroscopic constants unless they take account of the small but rapidly changing contri-
butions of more-than-doubly substituted configurations. This can be done approximately by the
Coupled Electron Pair Approach. Potential energy curves have been calculated for the diatomic
hydrides from LiH to HCl as well as for H,0, CH4 and N,. Typical deviations between CEPA
spectroscopic constants and observed values for the diatomic hydrides are as follows:

Re +0.003A, W, +20cm ', Wexe t3cm |, Dg +0.25¢eV, We +0.04D.

The calculated force constants of H,0 and CH, are also in very satisfying agreement with observed
data except for the experimentaly ill-defined stretching constant in CH,

Methods for Calculating Potential Energy Curves

In most cases the traditional one-determinant
Hartree-Fock wavefunction does not allow for a correct
dissociation into atomic or molecular fractions. That
not only makes this method inadequate for calculating
potential curves but also renders difficult the treat-
ment of the electron correlation. Ideally, one has to
correlate all configurations which are required for a
correct dissociation, that is single and double substi-
tutions with respect to all of these configurations
should be included in a variational CI calculation.
This represents a formidable problem. In order to
reduce it, several well known procedures have been
proposed: multiconfiguration SCF wavefunctions [,
2], full CI with respect to a minimal basis set [3],
first order wavefunctions coupled with natural orbital
iteration [4]. These schemes have drastically im-
proved upon the HF method. However, since they
give only a small fraction of the total correlation,
the curves corresponding to different electronic states
will in general have to be shifted relative to each other
by fitting them to data of the fractions. Their success
with respect to the shape of the potential curve
depends on a critical balance between the neglected
parts of the ‘extra molecular correlation’ (due to
restriction of number and type of the configurations)
and the parts of the ‘atomic correlation’ accounted
for in the molecule.

Since there seems to be no unambiguous way of
separating the extra molecular correlation, one would
like to fully treat the valence shell of that part of the
molecule involved in the deformation process. For
nuclear distances not too far from the equilibrium
position the Hartree-Fock configuration is usually the

only dominant one, the coefficients of the additional
configurations required for correct dissociation still
being small though rapidly increasing with distance.
Double substitutions which correlate these con-
figurations are usually quadruple substitutions with
respect to the HF configuration. We may therefore
argue that a coupled electron pair approach as recently
proposed [5,6], which approximately includes those
types of configurations, should be able to adequately
treat both the extra molecular correlation and the
configurations of rapidly increasing importance. We
thus expect this approach to yield reasonable spectro-
scopic constants characterizing the shape of the
potential surface around the equilibrium. In com-
parison with the MC-SCF we may describe the CEPA
as follows: instead of assuming large fractions of
the correlation

(a) to be constant during the deformation, and

(b) to be equal for all explicitly considered con-
figurations,

it keeps only assumption (b) by transferring appro-
priate parts of the correlation energy calculated for
the reference configuration to the other configurations
of the CI.

The computational schemes used for the data to be
presented here have been discussed in detail in [6]
and shall only briefly be characterized.

PNO-CI: for each spin-irreducible electron pair P(a,b)
a set of approximate pseudo-natural orbitals (PNO’s)
i, is calculated perturbationally. All doublyis?b-
stituted configurations of diagonal form, ¢P" P
contributing more than a certain energy threshold
value are treated in a CI along with corresponding

* Institut fiir Physikalische Chemie, Universitit Mainz, 65 Mainz, POB 3980, West Germany
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single substitutions. The particular feature of this CI
is the use of partially nonorthogonal orbitals in order
to ensure optimal convergence.

CEPA: In the eigenvalue equation for the coefficients
Cp we simply replace the total correlation energy E %
by the pair correlation energies

E{™ = D(pyplHIgP'®) Ci

which corresponds to shifting the energy of the
configuration ¢y by the correlation contributions of
all other pairs P£P (for a slightly modified version
differentiating between distinct and semidistinct pairs
see [6]).

Spectroscopic Constants for the Diatomic Hydrides
from LiH to HCI

These hydrides have been investigated systematically
in order to establish the quality of CEPA spectroscopic

Table 1: Calculated and experimental spectroscopic constants
for diatomic hydrides 2

l-
MOE re Be G @y exe De e dudr,

b 1.599 7.48 0.212 1401.5 22.5 2.48 —5.90 —2.15
LiH™ 1595 751 0.213 1405.7 23.2 2.52 -5.88 —2 14

b 1.342 10.33 0.291 2077.2 34.5 2.14 -0.27 —1.95
BeH™ 13431032 0.303 2060.8 36.3 (2.30)

1.238 11.91 0.406 2352.1 46.6 3.49 1.31 —2.90

R’ 1.236 12.02 0.412 2366.9 49.4 3.54 1.27
1.122 14.40 0.545 28445 66.4 347 1.44 —-1.65
2 1.120 14.46 0.534 2858.5 63.0 3.65 1.40
NH 1.039 16.60 0.648 3269.3 78.8 3.38 1.58 —0.72
1.040 16.68 0.646 3266.0 78.5 3.67
0 0.971 18.85 0.727 3742.2 85.3 4.34 1.69 0.46
H 0.971 18.87 0.714 3739.9 86.4 4.63 1.66 0.44
H 0.917 20.94 0.783 4166.8 89.5 5.83 1.83 1.55
i 0.917 20.95 0.795 4138.7 90.1 6.12 1.83 1.60
* Nai® 1.891 4.88 0.132 1172.2 18.9 1.92 —-6.67 —2.60

1.887 4.90 0.135 1172.2 19.7 2.30

MHbl.723 5.87 0.162 1525.6 26.1 1/40 -1.50 -3.05
8771730 5.82 0.167 1497.0 32.4 (2.10)

b 1.645 6.41 0.185 1691.7 29.6 3.13 —0.18 -3.76
1.646 6.40 0.188 1682.6 29.1 (3.01)

1.526 7.44 0.216 2034.7 36.0 3.09 0.11 -2.48

AlH

SiH 1520 7.50 0.219 2041.8 35.5 3.32

1.426 8.49 0.251 2365.9 44.8 3.04 048 —1.39
PH 1422 8.54(0.27)(2380. ) 3.34
gy 1344 955 0285 26764 50.0 3.55 0.81-0.22

1.340 9.61 (0.30 ) (2702. ) (60.0) 3.70

1.278 10.54 0.309 2977.2 53.2 443 1.13 0.86
$e 1.275 10.59 0.307 2991.1 52.8 4.62 1.09 0.92

(a) in units of A, cm ), ¥, D and D/A
(b) including intershell correlation between valence shell and
next lower core shell
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constants [7]. We used Gaussian type basis sets of
the size 115,6p,2d,1f for the first-row atoms. 135 8p.
2d,1f for the second-row atoms and 6s,2p,1d for
hydrogen. Qur Hartree-Fock results agree nicely with
those of Cade and Huo [8]. By employing an energy
threshold of 0.0001 au the variational PNO-CI yielded
somewhat above 80% of the valence shell correlation
for the first row and probably only few per cent less
for the second row.
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The spectroscopic constants obtained by the CEPA
are compared with observed values in table 1. Figures
1 to 4illustrate some of the results including constants
from Hartree-Fock and PNO-CI. The average devi-
ations as given in the abstract prove that the CEPA
does give rather reliable constants. The systematic
behaviour of the D, seems to allow for a critical
assessment of some experimentally ill-defined dis-
sociation energies.
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Near Equilibrium Energy Surface for H,0, CH,
and N,

The results given in tables 2 and 3 [8] show that the
surface of the polyatomic hydrides has been repro-
duced with about the same accuracy as was obtained
for the diatomic hydrides. The deviations of the
calculated harmonic frequencies from experimental
values are around 2% with two exceptions:

(a) The coupling constant f;4 of the recent force
field of Smith and Overend [10] is certainly
in error by nearly a factor of 2.

(b) The anharmonicity correction to the experi-
mental symmetric stretching constant in CH,,
F\,, is most probably over estimated. It uses
an anharmonicity constant X,; = 65 cm! as
compared to our theoretical value of 13.6 cm!
which is in line with the CH anharmonicity
of 63 cm™! (a factor 1/4 is due to the larger
reduced mass [6]).

Table 2: Constants of the near-equilibrium energy surface
of H,0

Experimental Theoretical
(9] {10] HF CEPA
re 0.9572 0.9405 0.9550
O 104.52 106.41 105.07
i 4.228 4.218 4.842 4.321
fa 0.349 0.371 0.376 0.360
frr' -0.101 -0.12 -0.061 -0.096
fra 0.246 0.47 0.233 0.243
faoo -0.127 -0.198 -0.127 -0.112
[ -9.98 -9.57 -10.92 -9.81
frere 16.8 15.2 15.4 15.7
Table 3: Force constants of CH,
Experimental [11] Theoretical

Anharmonic _ Harmonic HF CEPA
Fq 5.158 5.842 5.881 5.472
F s 0.469 0.486 0.537 0.491
F33 5.014 5.383 5.382 5.322
F a4 0.200 0.206 0.202 0.202
Faa 0.430 0.458 0.512 0.469
re 1.094 1.085 1.083 1.091
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Table 4: Spectroscopic constants of N,

Method Te B, Ce - We WeXe
HF 1.070 2.102 0.013 2712.2 132
PNO<CI 1.090 2.031 0.015 25404 143
CEPA 1.098 1.997 0.016 2437.1 16.1

Experi- 1.098 1997 0.018 2358.0 142
mental

Table 4 shows some preliminary results on N,
obtained with a relatively small basis set of size
10s,5p,1d.

We would like to conclude by pointing out that the
correlation corrections to re and we from the varia-
tional PNO-CI and the CEPA have a ratio of about
7/10 with the CEPA showing the much better over-all
agreement with experiment.
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Calculation of Electron Affinities of Atoms
in the Second Long Row

C.Moser*and R.K.Nesbett

Results are presented in this paper for the calculation of electron affinities of the ground state
of Al, Si, P, S, and CI. The contributions to the correlation energies have been calculated using
orbital excitations to construct one- and two-particle Bethe-Goldstone equations built on s, p, d, f
basis sets. The results are in very good agreement with experiment.

Introduction

As this is a paper which deals with the computation
of correlation energies, it may be wise to start out
with a definition of this quantity. For our purposes
correlation energy will be the difference between the
restricted Hartree-Fock energy and the observed non-
relativistic energy.

For light atoms, at least, this is a well defined
quantity. It is straightforward to calculate the
Hartree-Fock energy as well as the relativistic energy
and the successive ionizations are known, so the
difference is known and can be compared with
calculation. For heavier atoms, the successive ion-
izations are not known all the way to the last Is
electron so in fact calculation is the only way to have
an idea of the total energy.

For molecules, the problem is more complex.
Except for molecules made up of few light atoms
(probably four is the limit) then the Hartree-Fock
energy is not known even approximately, calculations
of the relativistic energy do not yet exist, and the
successive ionizations have not all been observed
by any means.

It might be worthwhile for a conrerence like this
one which assembles a large number of experts in
the field to decide whether the definition we gave above
is suitable for molecules. In particular we think that
there is a real problem in many molecular calculations.
Using a minimum basis set which gives an SCF energy
far higher than the Hartree-Fock energy, then one
proceeds to do a configuration interaction calculation
presumably to introduce correlation energy effects!

In atoms Hartree-Fock functions are very useful.
For example, the ordering of the energies of states
belonging to the same configuration is generally
correct and the calculated energy differences are of
the correct order of magnitude. Excitation energies

in the valence shell are also reasonably well represented
and excitations to Rydberg orbitals should be in very
good agreement as this is essentially a one-electron
phenomenon. lonization energies are also in reason-
able agreement particularly as one goes to a higher
number of ionization.

There are a number of observables which are not
at all well represented by Hartree-Fock functions and
among these is the computed binding energy of the
addition of an electron to a neutral atom. As can
be seen in table 1, column (A), the agreement between
Hartree-Fock and observed binding energies of an
electron to the ground state of 4/, Si, P, S, and (1 is
in very poor agreement with experiment. The
relative error is very large for all atoms. The binding
energy for an electron to P is predicted to be positive
while in fact P~ is quite stable. The prediction for
Al is so weakly binding that one would not except
Al” to be stable while in fact it is. Nor is there any
agreement evenin the relative order of binding energies.

Bethe-Goldstone Calculations

In view of the success of previous work in the
electron affinities of atoms in the first long row [1]
we have computed correlation contributions to the
electron affinities of these atoms using orbital ex-
citations [2] to construct one- and two-particle
Bethe-Goldstone equations builton s, p, d, f basis sets.

The use of Bethe-Goldstone equations to calculate
correlation energy contributions has been described
in detail elsewhere [3,4] and there would be no need
to repeat this here. But it might be useful to recall
the essential idea.

Instead of calculating a many-electron correlated
wavefunction, one calculates the individual indepen-
dant particle contributions to the correlation energy
to as high an order as is necessary.

* Centre Européen de Calcul Atomique et Moléculaire, Bdtiment 506, Université de Paris XI, 91405 Orsay, France
t IBM Research Laboratory, San José, California 91493, USA
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Experience gained up to now has indicated that
one- and two-particle equations built on orbital
excitations are likely to be reasonably accurate and
take relatively small amounts of computer time.

For the atoms Al, Si, P, § and (! then the
computed electron affinities including correlation
contributions thus calculated are in very good agree-
ment with experiment, see table 1, columns (B) and
(C). The difference of a few hundredths of an
electron-volt are not significant since the ‘experi-
mental’ results are not those of electron-attachment
experiments but the extrapolation of the electron
affinity of H~ by Edlen [5].

Table 1: Electron affinities (eV) from:
A Hartree-Fock functions
B Hartree-Fock functions plus correlation contributions

obtained from one- and two~gaxticle Bethe-Goldstone
equations

C experiment [5]

Processes A B’ C

AICP) > A" (PP -0.03 -0.49 -0.52
SiCp) > si”(*s) -0.96 -1.53 -1.46
Pés)y »PCp) +0.54 -0.74 -0.77
5GP *sCp -0.91 -2.10 -2.15
acpe > ars) ~2.58 -3.79 -3.70

If one compares these results to those obtained
for B, C, N, O and F [1], there is rather better
agreement for the second as compared with the first
row electron affinities using the same level hierarchy
of Bethe-Goldstone equations. It also turns out that
the calculations do not take significantly longer
computer runs as about 95% of the correlation effect
isin the M shell. The details will be reported elsewhere,
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Configuration Interaction by the Method of

Bonded Functions:

Some Preliminary Calculations

G.H.F.Diercksen* and B.T.Sutcliffe’

A resumé of Boys’ approach to configuration interaction calculations is presented, and a program
suitable to perform such calculations is described in some detail. The results of a preliminary
calculation on water, together with some timings are presented.

Introduction
If one chooses to attempt approximate solutions
of Schrodingers equation for bound states of atoms

and molecules, with the aid of the linear variation
theorem, then one begins with the ansatz

m
V= I )

and is eventually faced with solving the secular problem
He =ESc @
Here H and § are square matrices with elements
1'{ij = fd>i"H<I>jd1' (3a)
Sij = fd)i*d>jd1- 3b)

where H is the Schrddinger Hamiltonian for the
problem

H = ZTHG) + THG) (4a)
with

HO) = %8+ 22, /ry (4b)
HG) = 1 (4c)

The eigenvectors ¢ consist of those coefficients in
(1) which minimize the energy E.

Nowadays the solution of the eigenvalue problem
does not present any particular computational dif-
ficulties, but obtaining the matrix elements (3) and

(4) still presents a formidable computational problem.

In quantum chemical problems the @, +are usually
taken to be antisymmetrised products of one particle
space and spin functions (spin orbitals) and it can be
seen at once that with this choice the matrix elements
(3) reduce to weighted sums of one- and two-electron
(three and six dimensional) integrals. The evaluation
of these integrals is again a matter of great com-
putaitonal difficulty, with consequences for the
evaluation of the matrix elements to which we shall
refer later.

If one choses the ®, as antisymmetrised spin-
orbital products, then a still further choice is left
open, that of choosing the space parts of the functions
(orbitals) as members or not, of an orthogonal set.

If one chooses them to form an orthogonal set
then many simplifications appear in the formulae for
the matrix elements. However, it has not so far been
found possible to evaluate directly the integrals
involved over any physically meaningful or useful set
of orthogonal orbitals. Generally orthogonal orbitals
are constructed as linear combinations of primitive
functions, by some means. The primitive functions
are chosen for the ease with which integrals between
them may be evaluated and also on grounds of
physical meaning. Thus before one can actually
evaluate the matrix elements in an integral basis one
has generally to face the problem of transforming
the integrals from the primitive basis to the orthogonal
basis. Only recently has this problem been solved in
a compytationally efficient way, and this has been
discussed by one of us (G.H.F.D.) in another paper [1].

In this context it is the custom to refer to the
primitive functions as atomic orbitals (AO’s) and to
the orthogonal functions as molecular orbitals (MO’s)
because the orthogonal functions were often found

* Max-Planck-Institut fiir Physik und Astrophysik, Féhringer Ring 6, 8 Miinchen 40, West Germany
t Department of Chemistry, University of York, Heslington, York, YOl SDD
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as solutions of Roothaan’s equations. It is also quite
customary to refer to the process of constructing
the linear variation as configuration interaction (CI).

If one does not require the orbitals to form an
orthogonal set then one has no transformation
problem but the weighting function in the integral
sums then involves the evaluation of a rather nasty
co-factor expression (see e.g. [2] pp 50-51) and it
seems likely that the amount of computational effort
involved in evaluating the matrix elements here, may
well in fact be very similar to that involved in
transforming and evaluating in the orthogonal basis.
This is, however, as yet an undecided question.

In this communication we shall confine attention
to matrix elements in an orthogonal basis, and
because of this we shall be able to consider a
somewhat more general functional form for the &,
than the relatively simple antisymmetrised product.
This functional form (which we shall describe in more
detail later) we shall, following the usage of Boys,
call a bonded function. It may be thought as a
linear combination of antisymmetrised products, so
designed as to be a spin-eigenfunction and to have
the required space symmetry properties. Such a
functional form has the further advantage that it is
easy to generate from any given orbital set all those
bonded functions having the same spin-eigenvalue
(corresponding to the different canonical structures
of classical valence bond theory (see e.g. [2] p 67))
so that one may properly consider all allowed spin-
coupling schemes in any problem, in an economical
way.

Some of the earliest considerations of the problem
of generating bonded functions and calculating matrix
elements between them, from the standpoint of
computational feasibility, are found in the work of
McWeeny [3] and of Boys and his co-workers, [4,5].
Subsequently these approaches were somewhat
generalised and extended by McWeeny and Cooper [6]
and by Sutcliffe [7] respectively. We shall not
concern ourselves here with the problem of generating
a suitable set of bonded functions but will regard
such a set as given, and concentrate on the com-
putational problems raised by finding the formula
for the matrix element between an arbitrary pair of
bonded functions and of subsequently substituting
the values of the integrals into this formula to
obtain the required matrix element. We shall call
the first part of this process (again following Boys)
the projective reduction of a matrix element to yield
a symbolic matrix element, and the last part that of
forming the numerical matrix element, by resolving
the symbolic references.

From a more general point of view the symbolic
matrix element (or indeed a complete list of such
elements) can be regarded as a special kind of program,
according to the execution of which, the numerical
value is computed. The program which generates the
symbolic matrix elements can then be regarded as a
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compiler, generating from input, the symbolic matrix
element regarded as a program, according to the
syntax rules and so on of projective reduction. The
formation of numerical matrix elements may then
be regarded as interpreting the compiled symbolic
matrix element program.

In certain cases, as Roos [8] has shown, it is
possible to look at this problem from a different
viewpoint. If one restricts the structure of the bonded
functions in certain ways, then one can so arrange
matters that only a small number of possible types
of symbolic matrix elements occur. In this kind of
situation instead of resolving the references in the
symbolic matrix element to the numerical values of
the integrals, it is more effective to use the integral
type as a symbolic reference and to resolve this
reference to all the possible numerical matrix elements.
This latter process is very like the technique used,
for example, in the POLYATOM [9] and MUNICH [10]
SCF routine for making up the J and K matrices
and the HF-matrix, by tagging each two electron
integral according to type and processing it as a
potential contributer to a number of matrix elements
according to the tag carried. While recognising the
outstanding suitability of Roos’ technique in particular
cases (for example the classical case of configuration
interaction involving all single and double substitutions
in a closed shell) it is difficult to see how it could
be made to operate in the general case of arbitrary
bonded functions. We shall therefore not consider
it further here since our interest is precisely in this
latter situation.

There have, in fact, been quite a number of earlier
attempts to treat the problem in the same broad
general way that we are proposing, the classical work
being that of Boys and Reeves, see [11], and work
by others arising from that. However, the present
state of ,the art appears to be that still it is not
possible to regard the caiculation of a general say
5000 configuration wavefunction as a routine affair,
because the computing times involved remain much
too great. That this is the case, is almost certainly
due (in part) to the fact that no really effective
algorithm has been available for interpreting the
compiled symbolic matrix element program. Such
an algorithm has now been designed, making use of
a reordering procedure for large lists of indexed
quantities. The algorithm, which will be described
later, has been implemented within the scope and
framework of the MUNICH program system {10] and
has been extensively tested and found to perform well*,

* After completing this work the authors found that a very
similar algorithm had been developed simultaneously by
Yoshimine [12]. The relative merit of this and the
procedure described here is stil an open question.



Theory

Tne bonded functions & which form the basis of
our analysis are defined as follows

)
o= A[016:][#30a]......[02p-102p] [P2p+1 .. [ &0

where the spin coupled pairs are

[163] = 6:)oi() {aGIB() - BN} oi%4; (52)

= 0B (NAUDB() ¢i=¢; (52"
and the unpaired orbital is
(¢ = (1) a(d) (5b)

The symbol .o/ denotes an antisymmetrizing operator
that produces a normalized, completely antisymmetric
wavefunction. The functions ¢; are assumed to be
orthogonal. If ¢; = ¢;, then the orbitals must occur

in the same spin coupled pair or the function vanishes.

A bonded function composed of n orbitals of
which ¢ are unpaired and containing x identical
orbitals spin coupled (identical pairs) may be written
as the sum of 2("~°Y/2-X geterminants. A given set
of orbitals ¢ may be bracketed together in a number
of different ways. A linear independent set of bonded
functions (canonical sets) may be formed according
to the following rules:

(a) in each bonded function identical orbitals
must be bracketed together (spin coupled);

(b) to the remaining orbitals the remaining left
and right brackets must be assigned.

These have to be assigned one to each orbital in all
possible ways consistent with there being at least one
more left bracket to the left of any right bracket than
there are right brackets. The brackets are associated
by the ordinary laws of algebra and the orbitals
assigned to each pair of brackets, spin coupled.
The excess of left brackets (if any) represents the
uncoupeld orbitals.

The total number of determinant product terms
in the product of two bonded functions &y and &y
containing x and x' identical pairs, respectively, is
2(=)=(x*x) These determinant product terms must
be enumerated, the required matrix element between
the determinants must be found, and all the con-
tributing factors summed to give the final matrix
elements between the bonded functions, The matrix
elements of the unity and the spinless Hamiltonian
operator between the bonded functions &y and &y’
are determined to be of the form

Sk’ = T2 0 f ek () K (1)ar, (62)

Hyx' = T2 Qi f ol (DH (1) 6K (1)ar,
+2.0i4i; S o (DK 1V H(1,2)¢K (200K (2)drar,
+ai5 oK ()oK () H(1,2) 6K (2) 9K (2)drydr, (6b)

The coefficients T, Q;, Oy, gij and gqj; are constants
which are independent of the form of the orbitals
and of the operators H(1) and H(1,2) and depend
only on the bracket structure of the bonded functions.
The process of reducing the many dimensional
integrals Sk’ and Hy’ to a combination of weighted
integrals over one- and two-electron coordinate inte-
grals has been termed projective reduction. This
projective reduction has to be performed for each
matrix element separately according to the following
rules:

Let the orbitals ¢ that compose Py be written
in a line and the orbitals ¢iK' that compose ®¢+ be
written down below them. Now let the orbitals of
$k and Py’ be rearranged so that

(a) identical orbitals appear opposite one another
as far as possible

(b) spin coupled pairs are kept adjacent as far as
possible.

Rule (a) is applied before rule (b) above, and it
will only be the case where the orbitals of ®y differ
from &y that identical orbitals will not appear
opposite one another. Rule (a) is applied by
associating each orbital in &y with the same orbital
in @ until alf identical orbitals have been associated.
The nonidentical orbitals are then paired and the
resulting diagram rearranged so as to conform with
rule (b). In particular cases the diagram produced
is not unique, but all such diagrams can be shown
to be equivalent. It should be noticed that the
orbital subscripts in equation (6) refer to the orbital
order after this re-ordering has been done. The
numerical value of the subscript is, of course, of no
consequence, it is simply required that oK be
opposite ¢X and so on after re-ordering.

Patterns are formed by joining orbitals which have
been arranged adjacent to each other according to
the above rules by a solid line, and connecting all
spin coupled pairs by a dotted line. Any diagram
consists generally of two types of patterns. Those
which begin and end on an unpaired orbital and those
which close back on themselves. The former are
referred to as chains, the latter as cycles. The chains
are of two types: those which begin in one function
®x and end in the other g, these are called odd
chains since they involve an odd number of vertical
links; and those which begin in one function and end
in the same function are called even chains. It is
clear that there must be just as many chains in a
diagram as there are unpaired orbitals in a bonded
function. If there are even chains then there must
be at least two and generally an even number of
even chains.
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It is necessary to have a convention about where
chains begin. The first odd chain is taken to begin
at the lowest numbered unpaired orbital in the top
of the diagram. The next odd chain starts at the
next lowest unpaired orbital and so on. The first
even chain is defined like the first odd chain, the
second even chain starts from the lowest numbered
available unpaired orbital in the bottom line of the
diagram and so on.

Inspection shows that if any even chains are
present then there must be one spin mismatched for
each even chain, between the determinants. By
convention this is taken to be at the highest numbered
orbital in the chain.

A parity is assigned to each vertical line within
a pattern, the lowest numbered line being even, the
next odd, the next even, and so on.

Now the patterns can be used to determine the
sign of the initial diagram and also to write down
the matrix elements between bonded functions in
terms of integrals over the orbitals of ¢X and of ¢K'.

Table 1: Coefficients for two-electron integrals

i i pij Pattern ]
cycle cycle -1 D —
cycle o chain +1 D -
o chain cycle -1 S +1

+1 hy -2
o chain o chain -1 D 0
+1 D -1
-1 S +1
+1 S -2
e chain e chain -1 D -1
+1 D +1

The results are given by formulas (6) and table 1.
The notation convention adopted is as follows: the
parity of a given position (+1 or —1) is denoted by p;,
the product p;p; is written p;;. If i and j occur in
different patterns this is denoted by D, if they occur
in the same pattern this is denoted by the letter S.
The function Q is zero, if there exist an r # i, such
that ¢ #* ¢ ', and it is one otherwise. Similarly
the function Qj; is defined to be zero, if there exists
an r#ij, such that oK =/=¢, , and to be one otherwise.
The constant T is given by

r= (_l)0+0' (_%)(n-h)/2—m (_2)1/2

where n is the number of electrons, & is the total num-
ber of (even and odd) chains, and m is the number of
cycles J is the number of pairs for which ok = ¢K
but ¢, * ¢ or vice versa; ¢ is the signature of
the permutation of the unpaired orbitals of the ok
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back to thelr order in &y and o' is the signature
of the ¢K back to their order in @y Odd chain is
abbreviated o chain, and even chain by ¢ chain.

There are no one-electron terms from diagrams
containing two even chains, and there are no terms
at all from diagrams containing more than two
even chains.

When there are no even chains, q” =1, and if there
are two even chains, qlJ 0. When ¢, = ¢j , and/or
¢,K * ¢, q,J = Q. If there are two even chains and
i and j are in the same chain, g;; = 0. Otherwise
q;j is given in table 1.

Computational Realisation

The ‘best’, that is the most ‘economic’ computer
algorithm has to minimize the following quantities:

(a) mathematical operations
(b) number of processor storage location

(c) amount of data transferred to or/fand from
external storage

(d) number of transferred blocks of data.

An algorithm that fulfils these four conditions uses
the minimum of central processor and elapsed time,
and therefore is the cheapest. Normally, each al-
gorithm is a compromise with these four conditions,
resulting from the characteristics of the computer
it is (supposed) to be implemented on.

The calculation of matrix elements between many
electron wavefunctions of arbitrary spin states is
especially difficult, because normally not all one-
and two-electron integrals between the functions ¢
used to construct the wavefunction can be held in
processor storage simultaneously. In this case data
transfer to and from external storage becomes very
critical and advanced techniques have to be applied
to solve this problem. For the present problem an
efficient algorithm has been designed, implemented
and extensively tested, It will be described, its
relation to similar algorithms will be discussed, and
its present implementation will be outlined: for
convenience, the number of matrix elements who’s
numerical values can be formed in processor storage
simultaneously is called a core-load of matrix elements,
the number of symbolic matrix elements that can be
held (actually, who’s symbolic references can be
reordered according to one index) simultaneously on
direct access external storage is called a ‘disk‘load
of matrix elements, and the number of integrals that
can be kept in processor storage (actually: directly
referenced simultaneously) is called a core-load of
integrals.

Each symbolic matrix element contains one or
more references to one- and/or two-electron integrals.
Each of these references is uniquely identified by
two numbers: the sequence number of the matrix



Table 2: MUNICH PROGRAM SYSTEM - Coﬁfiguration Interaction Package Release 0 (March 1973)

Timing Example  :  Molecular Orbitals o o e s - - 35
Configurations (all double + single sub. except for the K-Shell) 2063
Total SCF energy -76.05199 au
Total CI energy ~76.26620 au
Total Data Time A Time Number of
Storage Storage Step (b) Step (¢) Step (e) Total Reads of
(K Bytes) (K Bytes) (min) (min) (min) (min) (min) (7%) Integral List
600 453 5.7062 .5947 .5523 6.8573 8
540 393 5.7088 .6025 5595 6.8713 .0176 25 9
480 333 5.7225 .6085 5762 6.9075 .0538 .78 11
420 273 5.7088 6172 .5928 6.9192 0655 96 13
360 213 5.8029 .6388 6312 7.0733 2196 3.2 17
300 153 5.8167 7287 .7378 7.2835 4298 6.3 25
240 93 5.8940 .8900 9220 7.7063 .8526 12.4 43

(a) IBM 360/91

element it contributes to, and the sequence number
of the referenced integral. To avoid time consuming
searching, these references have to be ordered in such
a way, that the quantities who’s reference are to be
resolved can be processed ‘sequentially’. Normally,
this makes one or more reorderings of the reference
necessary. Based on this general idea an efficient
algorithm has been developed for computing numerical
matrix elements which essentially consists of the
following steps*:

(a) Compute a list of symbolic matrix elements

(b) Order the symbolic contributions, for a disk-
load of matrix elements at a time, so that
consecutive symbolic contributions refer to
core loads of integrals in ascending sequence.

(c) Resolve the references to the integrals.

(d) Order the numerical contributions, so that
consecutive elements refer to core-loads of
matrix elements in ascending order. Actually,
within each sequence of numerical contributions
built from the same core-load of integrals, the
elements are ordered according to matrix
elements in ascending order. Therefore re-
ordering is not necessary, if the list can be
accessed directly (randomly).

(e) Resolve the references of the numerical con-
tributions to the matrix elements, and compute
the matrix elements, a core-load at a time.

It is important to notice, that in this algorithm
the list of integrals has only to be read as many times
as there are disk-loads of matrix elements. As
normally the disk (direct access) space available is
rather large, one or very few reads of the integral
list are necessary.

* Starting from a different analysis, M. Yoshimine essentially
arrived at the same result [12]

At present this algorithm has been implemented
in a slightly different way: essentially step (b) of the
above sequence is applied to each core-load of matrix
elements separately, instead to each disk-load. This
modification of the algorithm needs relatively little
disk space, approximately the order of magnitude of
processor storage available for the step, and it avoids
step (d) completely. But the list of integrals has to
be read as many times as there are core-loads of
matrix elements, which essentially means more often,
because usually core-loads are smaller than disk-loads
of matrix elements. But it has been found (compare
table 2) that the increase of CPU time with increasing
numbers of reads of the integral list is unexpectedly
small, while the elapsed time is dependent on the
number of reads of the integral list, as is to be
expected. Normally, the complete list of symbolic
matrix elements is generated in step (b). This list
can be used to construct the list of numerical matrix
elements for any problems where the following
quantities agree in number and/or type: molecular
symmetry (if explicitly taken into account), electrons,
molecular orbitals, and configurations. But with
increasing number of electrons and configurations,
this list of symbolic matrix elements will become
exceedingly large and it might become unreasonable
to keep it. In this case the above algorithm, steps
(a) to (e), has to be applied to each disk-load of
matrix elements separately.

In the following paragraphs some of the approaches
used in the present algorithm are discussed in
more detail, to show the critical features of their
performance:

A very efficient algorithm for the projective
reduction of matrix elements has been described
by Reeves [11], and has been implemented in the
present program with minor (technical) modifications.
Timing tests have revealed, that the initial ‘pairing’ of
orbitals between bonded functions is very time
consuming, and in the test case actually used up to
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65% of the total CPU time nécessary for the
projective reduction. Therefore this procedure has
been carefully analysed.

The procedure consists in ‘pairing’ the orbitals
between two bonded functions one-to-one so as to
minimize the number of noncoincidences and to build
appropriate cross-reference tables to be used in the
actual projective reduction. This ‘pairing’ may be
terminated if the third noncoincidence is found,
because if there are three or more noncoincident
orbitals between bonded functions the matrix element
between these functions is identically zero. This
process of pairing has to be done for the orbitals
between the first members of all orbital configurations,
and in case less than three noncoincidences have been
found for the orbitals, between all other members
of these orbital configurations.

Two classes of approaches are possible for this
‘pairing’, one class involving explicit searching, one
class involving no searching. We have currently
implemented an algorithm with searching gaining
speed because it has been programmed in IBM 360
Assembler Language and is largely formed by program
sections allowing the computer IBM 360/91 to run in a
special state (loop mode). However, we are actively
investigating algorithms that do not involve searching
in the hope of making further time savings [13].

Throughout the present program linear indexing
and table look up has been used. In particular: all
symbolic references are given as to core/disk load
number and sequence number (within the load). The
variables GAMMA and Q are identified by entry
points to appropriate tables.

Timing examples of the present program release
are given in table 2 in which the CI problem is based
on a SCF problem solved for the water molecule [14].
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Self Consistent Groups in Molecular
Wavefunctions - An Effective Hamiltonian
with Applications to Some Simple Systems

S.Wilson and J.Gerratt*

The self consistent group function model is examined within the framework of the spin optimised
self consistent field method. An effective Hamiltonian is proposed which avoids the introduction
of off-diagonal Lagrange undetermined multipliers when optimising the orbitals. Self consistent
pair functions are considered as an example of this approach and the necessary conditions for the
optimal orbitals are obtained and discussed. Some model calculations are presented and computational

aspects of the problem are described.

Introduction

The determination of the electronic wavefunction
for a molecular system can often be simplified if
groups of weakly interacting electrons can be re-
cognised [1,2]. To a good approximation, the
wavefunction may then be written

Ng
N’S,M;k> = VN!‘p{(H(bIJ @S,M;k) (1)

where .o/ is the idempotent antisymmetrising operator
(3], ©s,mx is the spin function [3] and &, the
spatial function for the uth group of electrons. It
is assumed that these group functions are strongly
orthogonal {1]. This is vital to the development of
the group function model and is perhaps also its
weakest point [4]. However, the group functions
do have chemical significance since they may be
associated with chemically recognisable entities [8]
such as core and valence electrons, lone pairs, bonds,
and ¢- and n-electrons. It appears that group functions
are also transferable, to a certain extent, between
molecular systems [S].

Generally, a linear combination of spin functions
will be used

\]"S,M;k> =S EbSk N’S,M;k> (2)

in order to span spin space. This may be important
when considering the dissociation of a molecular
system or discussing spin properties. In the Spin
Optimised Self Consistent Field (S.0.-S.C.F.) method
[3,6,7], the optimal coefficients, bgy, are determined

by the variation theorem. It is convenient to consider
a single spin function initially, however,

The electronic energy expression obtained from
wavefunctions of the form (1) or (2) may be written
as a sum of intra-group and inter-group terms

E = ZE(intra) + X E(inter) 3
i Sv &2

The intra-group contribution to the energy has the
form

Ef"™ = Hy +Jy + Ky (4)

where H), is the one-electron energy for the group u
while Jy is the intra-group Coulomb energy and K,
the intra-group exchange energy. The inter-group
energy is a sum of the inter-group Coulomb and
exchange terms

EG = Ju + Ky )

If the group functions are taken to be a product
of non-orthogonal orbitals,

P> = I |w> (6)
ieu

they may be given an additional physical interpretation.
The wavefunction is then open to discussion within
the independent electron model. We shall be entirely
concerned with functions of the form (6). General
expressions for the terms occurring in equations (4)

* Department of Theoretical Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 ITS
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and (5) when group functions of the form (6) are
employed are given in Appendix A.

The wavefunction (1) can be regarded as an
eigenfunction of an effective Hamiltonian operator.
This is derived in the following section. Its application
to the calculation of pair functions is then described.
The necessary conditions for the optimal orbitals
are given and discussed. Finally, model calculations
are presented for some simple systems,

An Effective Hamiltonian for Group Function
Calculations

The electronic Hamiltonian, ?{”, within tl.e Born-
Oppenheimer approximation, may be written as a
sum of one and twe electron terms [3]

H=3Zh + T § 7
¥ e k k>ngQ Q)

where k and £ denote electronic coordinates.

An effective Hamiltonian for group function
calculations is obtained as follows. Let & denote
the space of all wavefunctions, defined by equations
(1) and (6), in which the group functions are not
subject to any orthogonality restrictions. Let & g
denote the space of all such wavefunctions in
which the group functions are required to be
strongly orthogonal. &'C.% . Let P denote the
projector onto &' and ¥, the projection of the
Hamiltonian onto &’ [9]

H, = PP

Jp is hermitean and transforms any |¥>€%”
linearly into any [W>€S.

If the orbitals comprising the group functions are
of the same symmetry type, the projection operator,
P, may be derived as follows: Let &, denote the
projector onto the space:&; spanned by the set of
non-orthogonal ket vectors |w> Lowdin [10] has
shown that this may be written

Ou = | W)yl ©)
where
{8ubiy = <wiiw> (10)

is the metric matrix. Now & is orthogonal to &y,
ie. OO, = 0 (u#v). This is a necessary and suf-
ficient condition that

P, = wzﬁy@,, an
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is also a projector [11]. 2, projects onto the direct
sum of the subspaces &,, &, ...., &q» ....8Ng (a#u),
which we shall denote by &H. The projection
operator onto the subspace &M* complementary to
& is then

P, =1_B (12)

(i >€EH* since [wi> is orthogonal to all 7> (u#v).
We now impose the condition that 32“ acts only on
|wi>, Vi, Hence the required projection operator is

D=0 P 13
% (13)

[.@u,@v] = 0, (u#v), is a necessary and sufficient
condition that .2 be a projection operator [11].

Assuming that the wavefunction is normalised,
the electronic energy for strongly orthogonal group
function is

ES* = <Wg | I vu> (14)

This form of the energy is important when considering
the conditions for the optimal group functions. The
use of this effective Hamiltonian avoids the intro-
duction of off-diagonal Lagrange multipliers [12].

The Self Consistent Pair Function Model

The concept of electron pairs is fundamental to
a substantial part of the theory of chemical bonding
[13]. Such pairs form the simplest example of the
application of the group function model. The pair
function may be written

[By> = lur>lp2> (15)

Hurley, Lennard-Jones and Pople [14] introduced
the pair function as an extension of the molecular
orbital theory to include the electrostatic correlation
between electrons in the same orbitals. Hay, Hunt
and Goddard [21] have considered it as a generalisation
of the valence bond method. Effectively each electron
pair is described by a function of the type discussed
by Coulson and Fischer [15] for the hydrogen
molecule. It may be regarded as an extension of
the molecular orbital method in which the orbitals
are not forced to be doubly occupied or as an
extension of the valence bond method in which
distorted atomic orbitals are employed.

The Serber basis [16] for the spin functions is
particularly suited to pair function calculations. The
electron spins are first coupled together in pairs and
then the pairs coupled to give the resultant spin. In
this basis the representation matrices for the sym-
metric group have the useful property



Ug,k,Q(Pplyz) = $6yy. (lo)

The energy expression [17], for an arbitrary spin
function, then has a particularly simple form. If
for convenience we define

Sk 3
dX = (1+ Ules Pyyp2) B3 (17)
the various components of the energy are

HE* = dF* [<umlhlp>+ <palhlp2>

+ 2 UBkk (Pyy o) &y <mrlh lu2>] - (18)
J,f‘“ = d‘fk<u1u2|glu1u2> 19)
K3 = df* USa Buypp) <wimzlginzur> (20)

Jﬁ,‘,‘ = dlfk dfk (<urwtfgluivi> + <urvzlgluive>
+ <uavilgluevi> + <uzv2lgluzv2>

+ 2U§kk (P#l m)Au(<uw1 lgluzv1>+<pvzlgluava>)
+ 208« By p))A(<uivilglurve>+<uzvi|glu2v2>)
+2U5k«k (Puwz)ngk (Pyy07) By dp(<urvilgluzvz>)

+ <uiv2lglu2vi>)] 2n

KiEX = 4% &P Ui Puawy) [<urvilglviun>
+<uivzlglvaur > + <pevilglviuz> + <u2vzlglvapa>
F 2ngk Furp2)Ap(Sun lglvipe>+<uivz|glvau2>)

+ 208 By, 1) A1t iglvzun >+ <u2vi [glvapz>)

N (9 #z)ugkk (Pyyp2) Bydy(<pvilglvzue>

+<uiv2lglvipz>)] 22)

Necessary Conditions for Optimal Pair Functions

Consider the determination of the optimal pair
functions by the variation theorem [9]. The
electronic energy is required to be stationary subject
to the constraints that the total wavefunction and the
orbitals remain normalised. To this end we form
the functional

& = ES* — T € <uilpi> (23)
i

where the Lagrange multipliers €y maintain orbital
normality and ESX is given by equation (14). The
variation of the bra vector <uil may always be taken
to be independent of the variation of the ket vector
|wi> [9]. The requirement that 8& be zero for
small, but non-zero, <8ui|, leads to the necessary
conditions for the energy to be a minimum,

(ZF™ Py — eglui> = 0
Viw>  (24)

<ui|w> =1

By using the effective Hamiltonian 9‘?’}, we have
avoided the introduction of off-diagonal Lagrange
multipliers in these equations. For pair functions
the projection operators @# have a simple form

Oy = (1 = A" (lu><| + |u2><ual

~ Oy flur><pz| + u2><u}) (25)

The orbital operator is
FRS = di @i+ 00 +off* —ad%) (@6

If we define

e 70D { i =2 o
= l =
. 2 e

the intra-pair term is
Ppsik = h+ ;(ﬂf-'ﬂf)*'U'quk (Pplyz)
{lw><uilh + hlw><wl + A@iw)}  (©28)

where Z and 2 are the Coulomb and exchange
operators [22]. The inter-pair Coulomb term is

0Sk = 3z gSk(A5k

i gy v
+ Uk By u) | I><ufl O3 + OFFu><uil})  (29)
where the effective operator @Ek for the pair v is

@Ek = i) + )

+ 22Uk By pp) By F(v1:02) (30)

Similarly, the inter-pair exchange term is

ASkk* _ Sk Skk
Qui i Vﬁu dv ngk (Puzuz) (01; (31)

+ U By > <wfl G5 + O3 1wi><uith)
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with the effective operator for the pair v given by

7B K1) + H(wave)

+USk By ,) A, {Fwiwa) + A )} (32)

Finally,

e = 0> <yl (33)
with

W = Ul By U HE +JSE 4 kS

"3 OB RS )) 69

The equations (24) are a statement of the Kuhn-
Tucker necessary conditions (19] for the minimum
of a function subject to equality constraints, The
projection of the gradient of the function tangential
to the manifold formed by the intersection of the
constraints must be zero and the constraints must be
-obeyed. If the Hessian matrix is positive definite
we have the sufficient conditions for a minimum.
The Kuhn-Tucker conditions are discussed further
in Appendix B.

Solution of the Orbital Equations

The solution of the integro-differential equations
(24) is in practice very difficult. Numerous techniques
for the solution of such non-linear equations exist
[20]. In this work, following Roothaan [23], the
orbitals were expanded in a basis set of Slater
functions and an iterative solution attempted in a
pseudolinear fashion. The iterations take the following
form: for a given partition of the basis set the
projector .@“ is formed and the orbital equations
for the pair function Id>#> solved until self consistent;
the projector %, is then formed and [®,> is varied.
This entire process is repeated for all v until self
consistent,

The performance of this process is described in
the following section together with the results of
some model calculations,

Some Model Calculations

Lithium hydride: The ground state of the lithium
hydride molecule provides a useful system for an
initial calculation using the self consistent pair
function model.

In figure 1, the orbitals obtained from a pair
function calculation are compared with those obtained
by the molecular orbital method and those obtained
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Figure 1(a): Pair function orbitals and valence m.o. (—-=)
for the LiH system

—

H

|
|

Figure 1(b): Orbitals obtained by relaxing the strong
orthogonality constraint for the LiH system

by relaxing the restriction that the pair functions
remain strongly orthogonal [30]. The orbitals of
the core pair function were found to be virtually
identical. The pair function valence orbitals, like
the molecular orbital, have a node. This occurs,
however, in a region where the core orbitals dominate
the electron density.  The strong orthogonality
constraint has not significantly altered the shape of
the orbitals in the chemically important valence
region. In the valence pair function, one of the
orbitals is dominated by the ls Slater function on
the hydrogen atom, while the other is dominated by
the 25 and 2p, functions of the lithium atom. At
the equilibrium internuclear separation, the overlap
between the valence orbitals was found to be 0.73810.

The results are compared with those of other
relevant calculations in table 1, which also contains
specifications of the basis set employed. It was
necessary to optimise each pair function three times
to obtain overall self consistency.



Table 1: A comparison of M.O., V.B., C.I. and S.C.P.F. calculations for the Lithium Hydride molecule

Description Reference Total Energy (au) Basis Set* R(LiH) au
S.C.F. Molecular Orbital Calculation [24] -7.96992 Li
i
1s (2.6909)
Configuration Interaction Calculation 2s (0.7075)
(L3 conflgurations) (5] a bl 2p (0.8449) B0
H:
Self Consistent Pair Function Calculation -7.98350 1s (0.9766)
; L
Valence Bond Calculation . Is (2.6840)
(including all configurations not (26] -7.98387 25 (0.6930)
involving Li 1s excitation) w (0:7470) 3.000
H:
Self Consistent Pair Function Calculation -7.98479 Is (1.0830)

* orbital exponents in parenthesis

Beryllium dihydride:  Although the BeH, system has
not been observed experimentally, it provides a
simple polyatomic molecule for theoretical studies.
It is a prototype of the BeF, and Be(CH,), molecules.

The molecule belongs to the Dy, point group and
the two valence pair functions are related by symmetry.
Generally, symmetrically related pair (group) functions
belong to an irreducible representation of a subgroup,
H, of the point symmetry group, G, of the system.
They are transformed into each other by the operations
REG, R¢H. Unique pairs (groups) belong to a non-
degenerate representation of G. For the BeH,
molecule we have H = G, and R = oy,

The equivalent valence molecular orbital and the
pair function orbitals are compared in figure 2. The
core orbital, which is sketched with a scale five times
larger than the orbitals, was taken to be doubly
occupied. The second valence pair function was
determined by symmetry. Again the valence orbitals
have a node, but again these occur in regions where

the core orbitals dominate the electron density.

The energies obtained from molecular orbital,
valence bond and pair function calculations are
compared in table 2. The pair function calculation

Figure 2: Pair function orbitals and equivalent m.o. (——-)
for the BeH, system with R(Be-H) = 2.54 bohrts

utilised orthogonal hybrids as an initial guess. Self
consistency was obtained after varying each pair
function twice. The coefficient vectors were con-
sistent to six decimal places.

Table 2: S.C.F.-M.O., V.B. and S.C.P.F. energies for the BeH, molecule

Description Reference Total Energy (au) Basis Set* R(Be-H) au
S.C.F. Molecular Orbital Calculation [27] -15.7162 Be: 1s (3.6848)
2s  (09560)
Self Consistent Pair Function Calculation -15.7363 2p, (0.9560) 5 54

Valence Bond Calculation

(excluding 1s°, Be core, excitation) (27]

Hy: s (1.0000)

-15.7377 Hy: 1s (1.0000)

* orbital exponents in parenthesis
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The water molecule:  Finally, the self consistent pair
{unction model has been applied to the water molecule.
The total energy of the system has been calculated
for various (H - O - H) bond angles. The bond length
(O - H) was fixed at the experimental value, 1.8111
Bohrs {32). The orbitals of the core pair function
were taken to be identical, as were those associated
with the two lone pairs.

-7%.720 \ J; -75.675
E
o
£\ ,
9
g -
-75-728 ﬁ & |-75-680
3 . Presant calcdation 3
P
“w
o
g \ /
\ //
-75.730 § \ A ’ -75-088
i W ]
: i
H =
/T=Kiessinger colcuiation
-75.738 1 \ -75.690
\
\\
Wi
90 95 100 108 no ns 120

H O H angle in degrees

Figure 3: Total energy for the H,0 system versus H-O-H
angle. (Right hand scale - Klessinger calcuiation: left hand
scale - present calculation.)

The poientia! curve obtained is compared with
that of Klessinger [29] in figure 3. Klessinger fixed
the partition of his basis sett before optimising the
orbitals. This gives an equilibrium bond angle 6, .
of 98.1°, while optimising the basis set partition, we
obtain 0, = 104.27°. The experimental value is
104.45° [32]. This illustrates the importance of
optimising the basis set partition (cf. the previously
reported calculations for the ethane molecule [31]).
The potential curve and basis set specifications are
given in table 3.

Table 3: Energy of the water molecule as a function of
(H-O-H) bond angle

H-O-H Angle — Total Energy (au)
90.00° 75.718955
95.00° 75.726629

100.00° 75.730839
103.00° 75.731805
104.00° 75.731900
104.45° 75.731903
105.00° 75.731874
106.00° 75.731735
110.00° 75.730070
115.00° ' 75.725626
120.00° 75.718716

Basis Set (orbital exponents in parenthesis [28])
O: 1s (7.6579), 25 (2.2458), 2py 2py 2p, (2.2266)
Hy, Hy: 15 (1.2700)

Figure 4: Amplitude of the orbitals in the bonding pair function for the wates molecule at the equilibrium configuration.

1 Klessinger's basis set was slightly different to that used here
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Again starting from orthogonalised hybrids, the
optimisation of the orbital coefficients necessitated
the variation of each pair function five times. Typical
computation timest for this calculation were (with
a bond angle of 104°)

(a) for the evaluation of the integrals over Slater
functions} - 4.2 seconds;

(b) for the iterative optimisation of the orbital
coefficient vectors - 5.6 seconds.

The orbitals obtained for one of the (O-H) bonding
pair functions, at the experimental equilibrium con-
figuration, are illustrated in figure 4. The pair
function consists of one orbital which is essentially
a distorted sp3-hybrid and a second which is a
distorted hydrogen 1s-function. Electrostatic cor-
relation between the pair of electrons associated
with the bond is described. It should be emphasised
that, unlike the molecular orbitals, the pair functions
may not be subjected to an arbitrary unitary trans-
formation. The chemically and physically appealing
interpretation of molecular structure afforded by the
pair function model is obtained directly. Localisation
procedures are avoided.

Concluding Remarks

The preliminary results presented in this paper
suggest that, if groups of weakly interacting electrons
can be recognised in a molecular system, the group
function approach may provide a useful description
of chemical phenomena. The model retains most of
the advantages of the spin optimised S.C.F. method
[3], but enables calculations to be made for much
larger systems. For example, unlike the molecular
orbital wavefunction, the function (2) will always
behave correctly as the molecule dissociates. The
calculations are open to simple physical interpretation
within both the independent electron model and the
group function model [33)]. However, the importance
of optimising the partition of the basis set must be
emphasised. The use of a fixed partition of the basis
functions, albeit proposed on chemical grounds, is
not likely to be very satisfactory. This is particularly
true when extended basis sets are employed.

5

Ny
Thoy = (A )" p>;>s Dy, (pars|Skk ) <pqlglrs>;

T IBM 370/195 computer (cycle time = 756 nanoseconds)
1 Integral package of R. M. Stevens (INT150)

Nu
u = @ 3 Dy (palSkk ) <plhlg>;
'l
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Appendix A

The derivation of the electronic energy expression
for the present group function model follows closely
the discussion given in [3]. (Much of the notation
used in [3] will be employed here.)

It is most convenient to use as a basis for the
representation of the symmetric group, E/N, spin
functions in which the electron spins in each group
are first coupled together and the resulting spin
functions coupled to give the total spin function.
This may be represented as follows:

( ...... ((Sl.Sz)Su,S3)S123 ...... )S (Al)
where S, S,, ... , SIJ’ ...... are the resultant spins
of groups 1, 2, ...... TR ; and

Sy = resultant spin after coupling S, and S,;

S123 = resultant spin after coupling S,, and S;;
etc.

In this basis the representation matrices corresponding
to the permutation PuPV(PMEF/N#, P)ES\y) are
in fully reduced form [3].

The energy expression is then obtained by the
molecular coefficients of fractional parentage tech-
nique ([3] and references contained therein). Terms
which are zero because of the strong orthogonality
of the functions (6) are omitted.

For a single spin function from this basis, the
terms in equations (4) and (5) have the form:

(P.a€D,) (A2)

(p: q,r,sEqD“) (A3)
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K,s‘k;“ _.(A‘slkk y! . r>sD“ (qprs| Skk ) <qplglrs>; P.q.rs€®y) (A4)
Nu Nv

Jﬁk;yy - (Azkk Askk ¥ pﬁ g by (priSkk) D, (qs| Skk) <pqlglrs>; (p,r€®,, q.5€9,) (AS)
Nu Nv

Ko = (A" a3 ) ﬁ‘q@% (qprs\ Skk ) <gplglrs>; (p.rE®,, 4.5€D,) (A6)

The normalisation integrals and density matrices arising in these expressions are very similar to those discussed

in reference [3]. They have the form

o = 2 U @) <P a9, (A7)
P‘JEVN“
= N = N#"l N”‘i
Dy(pq| Skk) pue;ny-l{us“" Poreyy P P, <P, ot 1o, >} (A8)
= N or aNyu—=215Nu—-2
Dy (pars| Skk) = Pue';wz{um Poriu Pavn PaPoniymt Poney) <B* g 008 >} (A9)

= =r +Ny=1 2 Ny=1 51 N 5 Nyt
Dy(qprsi Skk) = ;{ngk By Py P Py Paey Bong, ) <P B 0L > <Py 1y >}(A10)

where

P=Rp, P“ey,‘,“_l BES N1 (All)

P permutes the orbitals of group u and dﬁé"p is
defined in [3].

The generalisation of these expressions for wave-
functions of the form (2) is straightforward [18]
and follows closely discussions elsewhere [3].

Appendix B

The Kuhn-Tucker necessary conditions for the
solution of optimisation problems subject to con-
straints have been discussed in numerous works, for
example reference [19]. Only a brief outline will

be given here for the particular case in which the
constraints are equality constraints.

Consider the problem
Minimise F(x) (B1)
subject to the equality constraints
Cx)=0 i=12,. (B2)

The Kuhn-Tucker conditions for the solution of this
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problem may be written
Pg=0; Cc=0 (B3)
where

g=VF (B4)

is the gradient vector. P projects vectors tangential
to the manifold formed by the intersection of the
constraints.

P=1-NNTNY NT (BS)
where

N=VC (B6)
For a convex programming problem the conditions

(B3) are both necessary and sufficient for the solution
of the problem (B1, B2).
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Studies in the Pair Replacement MC-SCF
and Strongly Orthogonal Geminal Theories

V.R.Saunders and M.F.Guest*

Applications of the pair replacement MC-SCF theory and the method of anti-symmetrized product
of strongly orthogonal geminals (APSG) to the systems LiH, Li;, BH and NHj are described and
contrasted. The inter-pair dispersion energies are computed

(a) by standard CI for the MC-SCF wavefunctions
(b) by the direct interaction of geminal functions in the case of APSG theory.
The methods employed in the minimization of the MC-SCF and APSG energy expressions are

briefly described.

Introduction

In the present work, we shall be concerned with
applications and extensions of two methods for
obtaining compact electronic wavefunctions of beyond
the Hartree-Fock level of accuracy; namely the
multiconfizurational self-consistent field (MC-SCF)
formalism in its ‘pair replacement’ form [1] and the
method of the antisymmetrized product of strongly
orthogonal geminals (APSG) [2-4]. The molecular
systems LiH, BH, Li, and NH; have been chosen as
test cases for numerical work involving these theories,
and also for testing extensions designed to give some
account of the inter-pair dispersion energies. A
practical procedure for obtaining guaranteed con-
vergence of the necessary energy minimizations is
described.

The Pair Replacement MC-SCF Theory

In the ‘complete’ pair replacement MC-SCF theory
[1], we first assume that the 2V electrons of a closed
shell system may be distributed amongst N doubly
occupied molecular orbitals, ¢,....¢N, this set being
referred to [5] as the first set molecular orbitals
(FSMO). All possible di-excitations from the FSMO
to a second set of molecular orbitals (SSMO),
DN +; Py are considered. The determinant produced
by di-excitation from the i to the k" MO will be
denoted y, . The total wavefunction is then written:

e aoo‘poo * i?(aik ‘plk (l)

where ¢ is the determinant constructed from the

N FSMO. We shall not concern ourselves greatly
with the details of the construction of the MOs,
except to say that the total set of M MOs is normally
constrained to be orthonormal, and expanded in
terms of a given set of M linearly independent basis
functions.  Variants of this ‘complete’ multicon-
figurational (CMC) pair replacement theory are:

(a) Certain of the FSMO may not be correlated,
so that configurations involving excitations
from such FSMO are deleted from the expan-
sion, equation (1).

(b) Certain of the SSMO may not be correlated,
so that excitations to such SSMO are deleted
from the expansion, equation (1).

(c) Multiconfizurational wavefunctions can be con-
structed by grouping the SSMO into disjoint
sets, each set being associated with a given
FSMO. Thus excitations from a given FSMO
into its associated set of SSMO are the only
type of pair replacements allowed. In this
form the MC-SCF wavefunction is formally
identical to the leading terms of an APSG
expansion, as discussed by Robb and Csizmadia
[6], who use the acronym DS-SEPC (doubly
substituted separate electron pair configura-
tions), and Levy [7].

Whatever particular MC expansion is chosen, the aim
of the MC-SCF theory is to minimize the electronic
energy with respect to variations in the linear co-
efficients appearing in equation (1) and also with
respect to the form of the orbitals. It is this latter
aspect which distinguishes the MC-SCF approach
from straightforward configuration interaction (CI)
calculations.
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The APSG Theory

In the APSG theory the total electronic wavefunction
for a 2V electron system is written as an antisymmetric
product of NV pair functions (geminals):

v=A H A @2r-1,2r )

r=1

where A’ is a partial antisymmetrizer interchanging
the electron co-ordinates from different pairs only.
The geminals are antisymmetric with respect to
interchange of the co-ordinates of the two electrons
(A(1,2) = —A,(2,1)), and normalised, so that:

Jdvijdv,A(1,2)As(1,2) = 1 3)

The APSG theory is distinguished from the more
general antisymmetrized product of geminals (APG)
theory by the application of the strong orthogonality
constraint in the former:

JAV,AL(12)A5(1,2) =0 (#3) 4)

and under this constraint the geminals are often
referred to as separated electron pair functions. Such
pair functions are usually written:

A(1,2) = A(1,2)6,(1,2) 6))

where the spin function, 8, is given by:

6(1,2) = (@(1)B*(2) - B(1)a"2)PN2Z 6

for a singlet coupling. The spatial functions may be
expanded in terms of their natural orbitals [8]:

Ar(12) = Zandh(1)6k(2) (7)

where the ¢§ form an orthonormal set of molecular
orbitals. The strong orthogonality condition means
in practice that the total one-electron space spanned
by ¢} is factored into N disjoint subspaces, {¢°{,
so that each geminal is written as an expansion over
only the one-particle functions belonging to the
given geminal’s subspace [9].

The central problem of the self-consistent APSG
theory is to optimize the energy with respect to
variations in the linear expansion parameters and the
form of the MOs appearing in equation (7). We note
that the generalised valence bond (GVB) method [10]
is a restricted form of the APSG theory where each
separated pair function is written as a two term
self-consistent natural orbital expansion.
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Minimization of the APSG and MC-SCF Energy
Expressions

We first note that given a set of molecular orbitals,
there is no great difficulty in the optimization of
the linear parameters of equations (1) or (7) for the
MC-SCF or APSG theories respectively. In the latter
case a set of coupled eigen problems result, which
may be solved by a method suggested by Silver et
al. [3], whilst all that is required in the MC-SCF
case is the solution of a simple eigen problem. The
more difficult problem is concerned with the opti-
mization of the form of the MOs. Consider a variation
which mixes orbitals ¢; and @;. Such a variation
may be represented:

i > & + X (8a)
&> ¢ + Xy (8b)

where first order orthonormality is conserved by the
requirement that Xj; = —Xj;. The standard Newton-
Raphson procedure may be invoked for the mini-
mization of the energy functional with respect to
the matrix elements of X, and leads to the set of
linear equations:

)] d’E
o) +zxm(ZE) -0 ©
(ax"i)x=o el (aX"i aX“‘>x=o

Solution of equation (9) for the X;; would lead in
principle to a quadratically convergent procedure
for the optimization of the MOs. Unfortunately
the Newton-Raphson equations are not directly of
practical value (except for small cases with less than
say thirty MOs, 435 independent parameters), largely
because the number of second derivatives which must
be computed and stored is proportional to the fourth
power of the number of molecular orbitals. The
necessity for some approximation in the Newton-
Raphson procedure is indicated, and we have pro-
ceeded by neglecting all off-diagonal second derivatives,
giving rise to the decoupled equations:

oF ’E
% - (57) (5?) =
n X=0 i Rx:o

Unfortunately the quadratic termination properties
of the Newton-Raphson scheme are lost, and indeed
the approximate procedure may not be convergent,
In order to obtain a guarantee of convergence, we
have modified equation (10) to the form:

.i = _.a [ —
’ L] /. oxi X=0



where a and § are parameters whose values may be
chosen as desired. It is now easy to show that
convergence may be guaranteed either:

(a) by choosing a ‘sufficiently’ large positive value
for B.

(b) on the assumption that the second derivatives
in equation (11) have positive values (which
will be the case near a minimum), by choosing
a ‘sufficiently’ small positive value for a. Far
from convergence, where negative second de-
rivatives may be encountered, we have found
the use of the absolute value of the second
derivative in equation (11) to be occasionally
useful.

We shall omit proof of the guaranteed convergence
of the present proposals, and content ourselves with
the statement that the argument runs along lines
closely related to the proof of guaranteed convergence
of the ‘level shifting’ method [11] for converging
Hartree-Fock wavefunctions, with « and g8 taking the
roles of the ‘damp factor’ and “level shifter’ respectively.

The present method defines improved MOs as linear
combinations of the trial MOs, the iterated MOs being
orthonormal to first order only. The iterated MOs
may be rendered orthonormal to any desired order
by an application of the $~% symmetric ortho-
normalization scheme [12], and re-expressed as linear
combinations of the basis functions by means of a
linear transformation involving the definition of the
trial MOs as linear combinations of the basis functions.
We have found that our method is most effective if
the linear coefficients of equation (1) or (7) are
redetermined after each iteration of the ‘quasi-Newton’
orbital refinement procedure proposed here. The
necessary formulae for the energy derivatives have
been collected into the Appendix, and examination
of these formulae reveals that all the required de-
rivatives can be evaluated in approximately the same
computer time as would be required by methods
based on effective Fock operators [1,5,13,14], the
most time consuming operation being a partial four-
index transformation of the two electron integrals.

It is pertinent to note that Levy [7] has proposed
using the formula:

Xi = Nil— (12)

where the A; are taken to be a set of user supplied
parameters whose magnitudes Levy assumed to be
based on estimates of the inverse of the appropriate
second derivatives. Such a scheme seems to us to
be perfectly workable when small basis sets are used
(so that comparatively few natural orbitals per electron
are involved), but our observations of the magnitude
of the second derivatives when large basis sets are
used indicate that it becomes increasingly difficult

to make good estimates of those second derivatives
involving the more weakly occupied natural orbitals
without direct calculation, The full quadratically
convergent Newton-Raphson scheme has been used
in the optimization of MC-SCF wavefunctions |15]
and other correlated wavefunctions [16] for cases of
up to six electrons. We believe the present procedure,
where the orbital rotations are performed simul-
taneously, to be considerably more economic than
the method of ‘two by two rotations’ [3], since the
latter procedure requires computer time proportional
to the sixth power of the basis set size, whilst our
method defines an ‘M*’ problem.

Dispersion Corrections to the DS-SEPC and ASPG
Theories

In both the APSG and DS-SEPC theories, electron
pairs are described using disjoint sets of natural
orbitals. Such theories may be expected to work
well only when each set of natural orbitals is strongly
localised, so that the differential overlap between
any pair of functions belonging to different sets is
small, and we proceed on the assumption that these
conditions are satisfied.

In the strongly separable limit, the principle correc-
tion to the DS-SEPC or APSG wavefunctions arises
from the inter-pair dispersion forces first discussed by
Eisenschitz and London [17]. In the DS-SEPC case,
such dispersion forces may be allowed for by the
inclusion of doubly excited configurations of the type:

A'<[¢i‘¢i‘1 o [B1KT .. [B50K] ... [¢>iN¢>i”1) (13)

where the configuration has been chosen to represent
dispersion between pairs » and s, and ¢, ¢} denote
strongly and weakly occupied natural orbitals re-
spectively belonging to the r™ pair, and:

[#iok] = \/’72615?(%—1)&0{((27) +¢i'(2’)¢?<(2r—1)) -0
(14a)
[di0f] = gi(2r—1)6f(2r) - 6 (14b)

where § denotes the normalised singlet spin function
of the co-ordinates of electrons 2r—1 and 2r. Such
dispersion configurations have been denoted (of k]
[¢iok]" by Robb and Csizmadia [18] who use the
term doubly substituted augmented separated electron
pair configurations (DS-ASEPC) to describe the CI
wavefunction including the DS-SEPC configurations
plus all the inter-pair dispersion functions of the.
type discussed above. The dispersion configurations
may be expected to provide the major correction to
the DS-SEPC wavefunction at the strongly separable
limit, since all other doubly excited configurations
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have Hamiltonian matrix elements with the DS-SEPC
function which involve integration over the negligible
inter-pair differential overlap distributions, whilst the
singly excited configurations either give rise to zero
matrix elements because of Brillioun theorem con-
ditions arising out of the self-consistency of the
DS-SEPC function (intra-pair one electron excitation),
or involve integration over inter-pair differential
overlap (in the case of the inter-pair one electron
transfer configurations).

In considering the generalization of the ASPG wave-
function to include dispersion effects, we are led to
consider a wavefunction expanded as a linear com-
bination of the zero order APSG function plus terms
of the form:

A ([¢§ ok] [oeld 1 /\p) (15)

pFr,s

In order to determine the optimum form of such a
linear combination we shall require Hamiltonian
matrix elements between geminal product functions,
which may be expected to be more complex than
those arising in the more usual forms of CI where
Slater determinants (or spin projected Slater de-
terminants) are used as the configurational basis.
Fortunately, with the rather restricted class of geminal
configurations considered in the present work, the
increase in complexity of the relevant matrix elements
is not great, and we refer to the work of Kapuy [4]
for the necessary formulae. We shall adopt the term
augmented separated pair (ASP) [19] to describe
the dispersion corrected APSG theory.

Definition of Pair Energy

When performing calculations beyond the Hartree-
Fock limit, it is useful to be able to analyse the
computed correlation energy into ‘pair contributions’.
When such an analysis is carried out, it appears to
be inconvenient to use the restricted Hartree-Fock
(RHF) energy as a reference point; rather the energy,
E(PNO), of the single determinant constructed by
double occupation of the principal natural orbitals
(PNO) of the correlated wavefunction appears to be
a more convenient choice. Such a procedure can
be justified by the well-known result [7,20-22] that
E(PNO) is usually rather close to E(RHF); we have
found differences of 0.001 Hartree maximum in the
present work.

We shall first consider the MC-SCF case. Whether in
its CMC, DS-SEPC or DS-ASEPC form, we note that
the PNO are identical to the FSMO, and that the total
wavefunction can be written:

¥ = a,¥(PNO) + Zaftyl! (16)
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where \1/{,5' represents a configuration constructed
by diexcitation from the FSMO i and j to the
SSMO k and I Because the coefficients (2, and a{,")
appearing in equation (16) have been determined
variationally, we find the relationship:

|
Eqora = E(PNO) *,,jz"%'”’u" (17)

where H-',}' denotes the Hamiltonian matrix element
connecting d;{}' with Y(PNO). The correlation energy
for the pair of FSMO (i,f) is given by:

1
& = — Z af'HK! (18)
ay k!

so that the total energy may be written:

Erom = E(PNO) + Z & (19)
y

Expressions of this type have been discussed [23]
by Nesbet and by Sutton et al.

In the case of the APSG model, the factorization
of the correlation energy into additive components
is not so straightforward. The APSG function can
be written as linear combination of (PNO), plus
configurations produced by double, quadruple, hex-
tuple etc. excitation from Y(PNO). However, the
configurational mixing coefficients in such an ex-
pansion have not been determined variationally as in
a CI calculation, but under the APSG constraint.
Fortunately it may be shown [24] that the APSG
theory gives rise to configurational mixing coef-
ficients which are closely similar to those which would
be produced by a full CI treatment. If we analyse
the APSG function along the same lines as the
treatment for the MC-SCF function, and ignore the
small deviations of the configurational mixing co-
efficients from the CI variational values, we find the
intra-pair correlation energy of the r'" geminal, whose
PNO is orbital i, is given by:

1
&n' = = a,kHz,-‘k (20)
Ar ki

where HEX denotes the Hamiltonian matrix element
between Y(PNO) and the configuration produced
by double substitution of the i PNO by the k'
weakly occupied natural orbital; ag is as defined in
the natural orbital expansion of the pair function,
equation (7), the summation over k being over the
weakly occupied natural orbitals belonging to the r
geminal. Equation (20) has been derived from
equation (18) by expressing the configurational mixing
coefficients as products of the expansion coefficients



appearing in the natural orbital representations of
the geminals, equation (7), and by noting that quad-
ruple and higher order excited configurations have a
zero valued Hamiltonian matrix element with Y (PNO).
Of course, we cannot expect the APSG total energy
to rigorously equal the sum of the intra-pair energies
plus E(PNO). In practice, such deviations from
additivity have been found to be never greater than
107% Hartree in the present work, and so can be
safely ignored.

Boron Hydride

BH is a system of particular interest, because it is
the smallest system for which previous APSG cal-
culations [25] gave disappointing results, only 47%
of the total correlation energy being recovered. The
present calculations were carried out at an internuclear
separation of 2.329 bohr [25], slightly less than the
experimental distance of 2.336 bohr [26]. The basis
set comprised Slater type orbitals (STO) expressed

Table 1: Basis sets® for BH, LiH, Li, and NH;

as linear combinations of Gaussian type functions
(GTF) according to the least squares criterion [27].
The generation of the basis set can be divided into
two distinct phases, with the initial generation of a
set designed to approach the Hartree-Fock limit,
followed by addition of basis functions specifically
chosen to account for electronic correlation effects.

The near Hartree-Fock basis was generated from the
double zeta set of Huzinaga and Arnau [28], with a
hydrogen basis of a Is and a 2s orbital whose
exponents were chain optimized. Certain of the ls
orbitals on B and H were finally expanded by scaling
the variational expansion of the hydrogenic 1s orbital
in six GTF [29]. This double-zeta basis was enlarged
by reference to the literature [15,25] together with
some energy optimization, to generate an (8s, 3p)
on the boron and a (4s, 1p) set on the hydrogen, the
added functions being expanded in either three or four
GTF depending on their estimated importance in the
Hartree-Fock wavefunction, the resulting basis being
shown in table 1. A restricted Hartree-Fock (RHF)
calculation using this set of 24 STO gave an energy of
—25.1260 Hartree, .0054 Hartree above the limit [20].

BH LiH B NH3
Orbital Exponent Orbital Exponent Orbital Exponent Orbital Expouent
Boron Lithium Lithium Nitrogen

lsb (6) 4.24477 25  (6) 2.35 25 (6) 2.35 1s 10.50
1s° 6)  6.545 1s° 6) 245 1s° ) 245 1s 6.10
Is (5) 9.8 1526  3.70 1s° @ 370 2s 5.90
% (6) 46 1s° 6 540 1s° 6 540 2s 2.25
I @) 5.0 2s 4 1.00 25 (5) 0.64 2s 1.60
2 (6) 0.878793 2 4) 0.70 25 (5) 1.00 2s 1.10
2 (6) 141415 2r 4) 6.50 s 4 1.77 2p 1.10
2 (5 23 2r 4 4.10 2p 4) 1.05 - 2p 1.90
2p 6) 1.00435 2r @) 0.75 I @) 0.95 2p 2.90
2n (6) 2.21163 3d (3) 5.40 44 (3) 1.05 2p 6.30
Ip @) 1.9 3d 1.95
Hydrogen Hydrogen Hydrogen
156 17 3s (4  1.20 1s 2.10
15° (6) 198 2 @) 115 1s 1.30
2s (5) 1.06 lsb 6) 1.00 2s 1.2§
I 4 123 1s° 6 150 2 1.95
» @ L7 I @) 120 . '
2p @) 1.05 Lone Pair Centroid
Lone Pair Centroid 20 (4) 1.55 3p 2.70
3p 4) 1.81 3d (3) 1.70
4d (3) 2.4
Bond Centroid
2 (4) 1.5
3 4 1.8
3d (3) 2.0
Boron Inner Shell Correlation
2 @ 6.9
2p 4) 104
d (3) 9.4

(a) For BH, LiH and Li, the number of GTF/STO is indicated in parentheses

(b) Scaled Variational Hydrogenic orbital, {29]
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Basis functions were then added to the 24 STQO near
Hartree-Fock basis to account for the valence shell
correlation effects. The 24 STO of table 1 were
retained, with no change in orbital exponents, in a
sequence of calculations in which the basis is suc-
cessively augmented with functions sited at the dipole
centroids of the appropriate geminal; 2p, 3p and 3d
STO were placed at the centroid of the bonding
geminal (1.7 bohr from the boron), 3p and 4d STO
being sited at the lone pair centroid (0.9 bohr from
the boron) to yield a 43 STO basis.

the addition of functions to the boron atom, cul-
minating in a 54 STO basis set which gives Hartree-Fock
and total APSG energies of —25.1302 and —25.2469
Hartree respectively, the calculated correlation energy
being 0.1167 Hartree, or 75% of the total, and the
inner shell being described by thirteen natural orbitals
(50, 3m, 18). Our final basis set is thus 0.0010
Hartree above the Hartree-Fock limit; nearly all this
error is estimated to arise from inadequacy in the
boron inner shell description.

Table 2: Total APSG Energies (Hartree) of BH during evolution of the basis set

Geminal Pair Energies®

E(Total)  E(PNO)  AEP
Bond

Lone Pair Inner Shell

Remarks

—25.18860 -25.12535 0.0632 | 0.0267 (30, 1m) 0.0365 (20, 1m) -
0.0382 (20, 1m) -
-25.20103 -25.12892 0.0721 | 0.0322 (50, 3m) 0.0400 (20, 1m) -
—-25.20810 -25.12937 0.0787 | 0.0320 (50, 3m) 0.0467 (20, 2m) -
—25.20916 -25.12934 0.0798 | 0.0322 (50, 3m) 0.0477 (30, 27, 16) -
-25.21042 -25.12944 0.0810 | 0.0332 (50,37, 1) 0.0478 (40, 27, 18) -
—25.22105 -25.12945 0.0916 | 0.0331 (50, 37, 18) 0.0475 (40, 27, 18) 0.0111 (20)
~25.24222 -25.12973 0.1125 | 0.0329 (50,37, 18) 0.0472 (40, 2m, 16) 0.0324 (30, 1m)
—25.24420 -25.12973 0.1145 | 0.0329 (50, 3m, 1) 0.0472 (40, 27, 18) 0.0343 (40, 27)

-25.19671 -25.12776 0.0689 | 0.0307 (40, 2m)

B(8s, 3p); H(4s, 1p)

2p (£=1.5) at bond centroid

3p (§=1.8) at bond centroid

3p (£=1.81) at lone pair centroid
4d (£=2.4) at lone pair centroid
3d (§=2.0) at bond centroid
basis as above

2p (£=6.9)at B

2p (E=10.4)at B

2524686 —25.12975 0.1171 | 0.0329 (50, 37, 18) 0.0472 (44, 2m, 18) 0.0370 (50, 37, 18) | 3d (§=9.4) at B

(a) The quantities in parentheses refer to the number and type of natural orbitals assigned to the appropriate geminal

(b) AE = E(PNO) — E(Total)

The results of this refinement of the basis set are
indicated in table 2. A CMC-MC-SCF calculation
using the 24 STO basis indicated that an APSG cal-
culation in which five natural orbitals are assigned
to the bond geminal (30, 17) and four natural orbitals
(20, 1m) assigned to the lone pair should be performed:
the remaining natural orbitals were found to yield
only a minor total contribution (less than 5 x 107
Hartree) to the valence shell pair energies. The results
of such a two pair APSG calculation are given as the
first row of table 2. The experimental total correlation
energy of BH is estimated [25] to be 0.155 Hartree,
and the valence shell correlation energy 0.113 Hartree
{31]. Using this latter estimate, the present cal-
culation recovers 55% of the valence shell correlation
energy. The process of refinement of the valence shell
correlating basis culminates in the results of the sixth
row, table 2. We see that the bonding geminal is
now described by thirteen natural orbitals (50, 37, 16),
the lone pair by ten natural orbitals (40, 27, 18), and
the Hartree-Fock energy has improved to —25.1299
Hartree (0.0015 Hartree above the limit). The total
APSG energy in this 43 STO basis is —25.2104
Hartree, yielding a valence shell correlation energy
of 0.0805 Hartree (71%). Our results indicate that
it is the use of p functions at the geminal centroids
which has given the most significant contribution to
these improvements. The final stages of the basis
set improvement are concerned with the generation
of a correlating basis for the boron inner shell, by
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. The resultsof a series of calculations using the larger
basis sets are summarized in table 3. The one and
two pair calculations were performed using the 43
STO basis, the three pair results being derived from
the 54 STO basis. Perhaps the most important result
is the near invariance of the computed binding energy
and dipole moment with the degree of inner shell
correlation. The dissociation products of the three
pair APSG model of BH were taken to be hydrogen
(%S), (energy = —0.49995 Hartree in our basis), and
a non-symmetry equivalences APSG boron atom (*P),
with the Is and 2s shells correlated, (energy =
—24.6039 Hartree), leading to a computed dissociation
energy of 3.89 eV. The dissociation products of the
two pair APSG model were taken to be hydrogen (%5)
and a non-symmetry equivalences APSG boron atom
(®*P) with only the 2s shell correlated (energy =
—24.5665 Hartree) leading to a dissociation energy
of 392el These results should be compared with
the experimental value [36] of 3.59 eV. Note that
some basis set re-optimization was attempted for the
above atomic calculations. We have avoided the
computation of dissociation energies for the DS-SEPC
and DS-ASEPC theories, because of uncertainty about
the nature of dissociation products, noting the omission
of certain quadruple excitations which become im-
portant at long bond length. The effects of applying
a symmetry equivalencing constraint to the APSG
model of boron have been discussed by Mehler et al.
{25]. We note that EF(PNO) is never greater than



Table 3: Energy parameters (Hartree) and dipole moment of B//

Calculation  E(PNO)  E(Total)  °¢ He &“ o Trlnegd Ref
0 A i eterence
& {Debye) Bond Ll:‘ari‘.re lthrEl{ Lan(::nga ir

RHF (54STO) ~25.1302 278 1.781 b
RHF (43STO) ~25.1299 278  1.778 b
APSG (3 pair) ~25.1298 -25.2469 3.89  1.524  0.1167 0.0329 0.0472 0.0370 b
APSG (2 pair) -25.1294 —252104 392 1517  0.0805 0.0332  0.0478 b
APSG (1 pair) ~25.1299 -25.1670 1.836  0.0371 0.0371 b
APSG (1 pair) -25.1295 -25.1793 1416  0.0494 0.0498 b
DS-SEPC (2 pair) -25.1295  —25.2077 1.549  0.0778 0.0326 0.0456 b
DS-ASEPC (2pair) -25.1295  —25.2140 1.556  0.0841 0.0321 0.0443 0.0081 b
Experiment -25.289 3.59 0.155 [16,36]
RHF limit -25.1314 277 1.733 [30]
al ~25.2621 1470 0.1331 0.0356 0.0492 00374 0.0199 (37]
GVB-(3 pair) ~25.1777  3.21 0.0495 0.0144 0.0228 00124 [10]
GI-(3 pair) ~25.1801 324 1504  0.0519 (42)
IEP-(2 pair) 0.0963 0.0328  0.0458 0.0177 (32]
APSG (2pair)  —-25.1220 -25.1790  4.11 0.0476 (25]
APSG (3 pair) ~25.1220 -25.2053  3.86 0.0739 (25]

(@) AE = E(RHF) — E(Total)
(b) Present work d

E(RHF) by more than 0.0009 Hartree in the present
calculations, a result in contrast with the findings of
Mehler et al. [25], who find surprisingly large dif-
ferences between E(PNO) and E(RHF), of the order
of 0.0094 Hartrees. The difference in energy between
the two-pair APSG and DS-SEPC results in an estimate
of 0.0027 Hartree energy lowering due to the ad-
mixing of quadruple excitations in the APSG model.

The DS-ASEPC calculation gives the largest valence
correlation energy, 0.0837 Hartree (74%) and an
estimate of the inter-pair dispersion energy of 0.0081
Hartree, the latter being much smaller than the
independent electron pair (IEP) result {32] of 0.0177
Hartree.  In calculations of the latter category,
questions arise over the uniqueness of pair correlations
and about their additivity [15]. Calculations by
Robb and Csizmadia [33] suggest that the IEP model
seriously overestimates the correlation energy that
may be obtained within the electron pair model.
To provide further evidence we have performed APSG
calculations where the valence pairs in BH are cor-
related independently. The resulting pair energies
are 0.0371 and 0.0499 Hartree for the bond and lone
pair respectively, compared with the values of 0.0332
and 0.0456 Hartree (see table 3) obtained from the
two-pair APSG calculation, suggesting than an IEP
approach overestimates the intrapair APSG correlation
energy in BH by 11%, compared with a previous
estimate of >5% [32]. However, it may be more
reasonable to compare IEP pair energies with cor-
relation energies calculated in the APG model.
Certainly recent two-pair APSG and APG calculations
[34] on LiH and BH indicate that the APG pair
energies are considerably larger than those of the
APSG model.

The dipole moments (defined so that a positive di-
pole implies B"H") from the present work and from
[16] and GVB [10] calculations are in substantial
agreement, all being significantly lower than the RHF
estimate [30].

The benefit of careful exponent optimization and a
sufficiently large basis set can be seen on comparing
the present results with those of Mehler er al. [25],
who obtained 42% of the valence shell correlation
energy in a two-pair APSG treatment, 47% of the
total correlation energy in a three-pair calculation,
compared with the present results of 71% and 75%
respectively,

Lithium Hydride .

A number of calculations using the basis set of 38
STO expanded in GTF reported in table 1, and at
the experimental [38] bond length of 3.015 bohr
have been carried out. The natural orbital structure
of the geminals indicates that the molecular system
can be regarded as Li'H™ in first approximation,
with an inner shell electron pair closely similar to
that found in Li* and a ‘bonding’ geminal looking
rather like a H™ system polarized towards the lithium
atom. In table 4 we present a pair energy analysis
of our APSG wavefunction, and compare the results
with similar analyses for isolated Li*and H~ systems,
where the natural orbitals of the molecular system
have been placed in maximum correspondence with
the isolated ion orbitals. It will be seen that the
natural orbital structure of both LiH geminals is
(60, 3m, 15).
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Table 4: A comparison of the APSG? pair energy components
(Hartree) of LiH (R=3.015 bohr) with Li and H~

Weakly Pair A -
; Pair Energy, LiH
R EheT (Li inner sheli geminal)
2 0.0144 0.0136 (0)
3s 0.0010 0.0010 (0)
2p 0.0210 0.0068 (0), 0.0140 (m)
3p 0.0019  0.0006 (0), 0.0012 (™)
3d 0.0025  0.000S (0), 0.0010 (),00010 6)
Total 0.0408 0.0397
Pair Energy Pair Energy, LiH
H (bonding geminal)
2 0.0231 0.0147 (0)
3s 0.0009 0.0007 (0)
2p 0.0135 0.0051 (0),0.0120 (M)
3p 0.0009 0.0003 (0), 0.0010 ()
3d 0.0012  0.0002 (0),0.0006 (m),00007()
Total 0.0396 0.0353

(a) Basis set for LiH and Li", see table 1:
basis set for H taken from Hinze and Sabelli [15]

The energies of LiH at R=3.015 bohr produced by
the APSG, DS-SEPC, DS-ASEPC and ASP theories
are quoted in table S, and compared with other
theoretical results and experiment. The 38 STO basis
set gives an energy within 0.0010 Hartree of the
Hartree-Fock limit, most of this error (0.0008 Hartree)

Table §: Calculations on LiH, R =3.015 bohr, (energy in Hartree)

being due to an incomplete valence shell description.
Tne two pair APSG and ASP wavefunctions both
give lower energies than the previous best variational
result [21], the latter being produced by an iterative
natural orbital CI calculation. Indeed the energy of
the ASP wavefunction is close to the non-variational
transcorrelated wavefunction result of Boys and Handy
[44]. Tne two pair ASP and DS-ASEPC calculations
both result in an estimate of 0.0006 Hartree for the
dispersion component of the inter-pair correlation
energy, whilst the difference in energy between the
two-pair APSG and DS-SEPC yields an estimate of
0.0012 Hartree energy lowering due to the admission
of certain quadruple excitations in the APSG model.

The results of the present calculations may be used
to provide an estimate of the APSG energy limit for
LiH From comparison of our isolated Li*calculation
with an ‘exact’ Li*energy [47], approximately 0.0025
Hartree of the inner shell correlation energy is un-
accounted for in the present basis. A further 0.0005
Hartree is likely to be gained by increasing the
valence shell correlating basis, which coupled with
the known 0.001 error in our Hartree-Fock energy
leads to the conclusion that the present APSG cal-
culation lies 0.004 Hartree from an APSG limit of
—8.065 Hartree, 94% of the total correlation energy.

A difference of 0.0002 Hartree was found between
E(PNO) and E(RHF) in all of the present calculations,
in agreement with Bender and Davidson [21], but
in marked disagreement with Mehler ez al. [25] who
find a difference of 0.0026 Hartree.

E(RHF) s AE®

Calculation E(TOTAL) E(PNO) (Debye) Reference
RHF -7.9863 5979 b
APSG (2 pair) -8.0611 -7.9861 -7.9863 5912 0.0748 b
APSG (1 pair) -8.0220 -7.9861 -7.9863 5.867 0.0357 b
DS-SEPC (2 pair) -8.0599 -7.9861 -7.9863 5.914 0.0736 b
DS-ASEPC (2 pair) —-8.0605 -7.9861 -7.9863 5914 0.0742 b
ASP (2 pair) -8.0617 -7.9861 -7.9863 5912 0.0754 b
Experiment -8.0703 5.83 [39,40}
RHF limit -7.9873 6.002 [30,41]
Cl —-8.0606 -7.9871 ~7.9873 5.965 0.0733 (21)
GVB (2 pair) -8.0129 -7.9833 0.0296 [10]}
Gl (2 pair) -8.0137 -7.9833 0.0304 [10]
Gl] (2 pair) -8.0173 5.645 (42]
APSG (2 pair) —8.0542 ~7.9847 -7.9873 0.0669 [25]
APSG (1 pair) -8.0182 -7.9873 0.0309 [25])
APSG (1 pair) -8.0213 -7.9873 5.886 0.0340 [43]
Transcorrelated —-8.063 {44)

(a) AE=E(RHF) — E(TOTAL)

(b) Present work
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Table 6: Calculated equilibrium properties_ of LiH

Calculation blcf!:: ?f, ' El:l(:r(t)rt:l) De‘;ye Oe Reference
RHF 3.044 1.46 ~7.9863 6.013 1.66 a
APSG (2 pair) 3.056 2.42 -8.0611 5.953 1.91 a
APSG (1 pair) 3.045 244 -8.0221 5.900 1.80 a
DS-SEPC (2 pair) 3.052 ~8.0599 5.958 1.74 a
DS-ASEPC (2 pair) 3.047 ~8.0605 5.953 1.70 a
Experiment 3.015 2.52 -8.0703 5.83 1.8%0.3 (384045 46]
GVB (2 pair)® 3.015 1.89 -8.0129 [10]
Gl (2 pair)® 3.015 1.89 ~8.0137 (10]
Gl (2 pain® "3.015 1.90 -8.0173 5.645 [42]
APSG (2 pair) 3.042 2.31 ~8.0542 (25]
APSG (1 pair) ° 3.015 2.35 -8.0182 (251
APSG (1 pair) 3.049 2.41 -8.0213 5.923 1.86 [43)
RHF Limit® 3.015 1.49 ~7.9873 6.002 (30]

(a) Present work
(b) Result obtained at an assumed Ro=3.015

Table 7: Pair energy analysis of the one pait APSG Li,
wavefunction, R =5.051 bohr

Weakly Occupied Pair Energy

Natural Orbital (Hartree)
20, 0.0058

1m, 0.0182

30, 0.0065

1m, 0.0002

40, 0.0001

15g 0.0003

30, 0.0002

Total pair energy 0.0313
E(PNO) -14.8709
E(Total) -14.9022
ERHF) —14.8711

A series of calculations was performed at bond
lengths of 3.015, 3.05 and 3.08 bohr, and the results
interpolated, to yield the predicted equilibrium pro-
perties (see table 6). The degree of correlation
allowed for the inner shell (compare the one and two
pair APSG calculations) has little effect on the
computed equilibrium properties, as for BH. Par-
ticularly gratifying is the close agreement of the
computed with experimental dissociation energies,
dipole moments and dipole derivative factor, 9,:

Oe = (ue/Re)/ (Bu/2R)R, @1

the latter being measured from the relative line
intensities in the infrared spectrum [46]. Note that
the one pair APSG wavefunction dissociates to
Hartree-Fock lithium (energy = —7.4326 Hartree after
reoptimization of the present valence s basis) and

hydrogen (energy = —0.49995 Hartree in the present
basis), whilst the two pair APSG function dissociates
to an APSG lithium atom (energy = —7.4722 after
some reoptimization of the basis) and a Hartree-Fock
hydrogen atom.

The Lithium Molecule

In view of the small influence on the computed
properties of LiH and BH of the amount of inner
shell correlation allowed, we have performed cal-
culations on the Li; molecule where the lithium
inner shells are not correlated, so that only the
bonding pair is described by more than one natural
orbital. The calculations were performed in a basis
of 36 STO expanded in GTF, see table 1, and at
the experimental internuclear separation of 5.051
bohr [38],yielding a Hartree-Fock energy of —14.8711
Hartree, 0.0004 Hartree above the limit [48].

The dominant configuration is 16,2 10,2 20,2, and
the one pair APSG function was constructed by double
substitution of the 20, orbital with the orbitals listed
in table 7. The bonding geminal thus consists of
11 natural orbitals, and is closely similar to that found
by Das [49], except that we have added a 8, natural
orbital. From the pair energy analysis, table 7, it is
clear that the most significant features of the cor-
relation effect are encapsulated in the 30, 20,, and
1w, weakly occupied natural orbitals.

The self consistent APSG function has an energy of
—14.9022 Hartree, and will dissociate into a pair of
Hartree-Fock lithium atoms, whose combined energy
is —14.8652 Hartree (after reoptimization of the
present valence s basis), leading to a computed dis-
sociation energy of 1.01 eV, in close agreement with

127



the experimental result of 1.05 eV [50], and a
previous theoretical result of 1.01 eV [49]. In
marked contrast, the Hartree-Fock energy of Liy
gives a dissociation energy of 0.16 ¢V, only 15% of
the experimental result,

Ammonia

Calculations were performed at the experimental
equilibrium geometry, as quoted by Rauk etal. [51],
using a basis set of 44 STO, as shown in table 1,
the 3p ‘lone pair correlating’ functions being sited
0.7 bohr from the nitrogen atom, on the Cy axis,
at approximately the dipole centroid of the nitrogen
lone pair geminal. Molecular integral evaluation was
accomplished using a modified version of a program
due to Stephens (QCPE 161). The present basis givesa
Hartree-Fock energy of —56.2222 Hartree, to be com-
pared with the previous best of —56.2219 Hartree [51],
and an estimated Hartree-Fock limit of —56.2275
Hartree [52]. The total correlation energy of
ammonia has been estimated at 0.329 Hartree [53],
of which perhaps 0.285 Hartree can be attributed
to the valence electrons.

the local symmetry of the bond or lone pair with
which they are most directly concerned. If this is
done, we tind an A-H bonding natural orbital structure
of the fotm Ho, 20, 3a, m. 7', dot, where Lo is the
PNO, whilst 20 is the conesponding N-H o anli-
bonding orbital, and # is principally a hydrogen 2p
function, tangential to the circle whose locus en-
compasses the three hydrogen atoms, 7' being a
hydrogen 2p function whose principal axis is ortho-
gonal to the NH bond and to the m orbital, thus
pointing radially from the hydrogen atom to the C;
axis. The 30 natural orbital is composed mainly of
a hydrogen 2p orbital pointing down the NH bond,
whilst the 40 orbital, which is very weakly occupied,
is complex in form, and difficult to describe qualita-
tively. The structure of the lone pair geminal
is ile, 20, 30, my, my, 40}, where lo is the
lone pair PNO, a hybrid of nitrogen s and p
orbitals, whilst the 20 looks rather like the lo
except that the former has a node bisecting its
principal lobe. The largest components of the 3¢
and r natural orbitals are the ‘lone pair correlating’
3p basis functions, whilst 40 is endowed with a
complex structure, difficult to describe in qualitative

Table 8: Calculations on NH 3, including valence sheil correlation energy only: energy in Hartree

Calculation E(Total) E(PNO) E(RHF) De‘;ye AE* Reference
APSG -56.3176 -56.2212 -56.2222 1.7117 0.0954 b
DS-SEPC -56.3151 —-56.2213 -56.2222 1.716 0.0929 b
DS-ASEPC -56.3578 -56.2213 -56.2222 1.718 0.1356 b
CMC-MC-SCF -56.3168 -56.2214 -56.2222 1.712 0.0946 b
RHF -56.2222 1.720 b
RHF -56.2219 - 1.66 [51]
Estimated RHF limit -56.2275 [52]
Estimated valence shell AE 0.285 b
c1 -56.4155 -56.2122 0.2033 [57}
CMC-MC-SCF -56.2614 —56.1989 0.0625 ¢
CMC-MC-SCF -56.2789 —56.1989 0.0800 d

(a) AE =E(RHF) — E(Total)
(b) Present work

(c) This CMC-MC-SCF calculation included one localised SSMO per vaience FSMO {22]
(d) This CMC-MC-SCF calculation included four localised SSMO and five symmetry adapted SSMO, and appears not to have

converged [22]

Calculations within the APSG, DS-SEPC, CMC-MC-
SCF and DS-ASEPC frameworks were performed,
and the results displayed in table 8. In all of these
calculations the nitrogen inner shell was not correlated.
The self consistent orbitals, irrespective of the
method used, turned out to be localised within the
bonds or lone pair, a result which is not surprising
in view of the results of Levy [7] and Chu [54].
In view of the localization of the natural orbitals,
it seems convenient to classify them according to
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terms. In table 9 we present a pair energy analysis
of the self consistent APSG orbitals, where the pair
energy of the lone pair is seen to be less than the
bond, in agreement with Robb and Csizmadia [55],
who obtained APSG pair energies of 0.016 and
0.0132 Hartree for the bond and lone pair respectively,
considerably less than that obtained in the present
work. Such differences can probably be attributed
to the larger basis set used in the present work, and
also to the fact that the APSG function of Robb and



Csizmadia [55] was not energy optimized, although
this latter factor was probably rather small in effect.

Table 9: Pair energies (Hartree) of the Nf{3 APSG wavefunction

Bond Lone Pair
Natural Orbital Pair Energy Natural Orbital Pair Energy
20 0.0169 20 0.0124
30 0.0040 30 0.0027
m 0.0022 ™ 0.0019
n 0.0020 my 0.0019
40 0.0007 40 0.0002
Total 0.0258 Total 0.01