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Preface 

The symposium 'Quantum Chemistry - The State of the Art' was sponsored and organized 
by the Science Research Council's Atlas Computer Laboratory as 'SRC Atlas Symposium No 4' 
and held at St. Catherine's College, Oxford, on 8-11 April 1974. The programme.consisted 
of some forty papers presented to an international audience of approximately I 00 scientists. 
The scope of the programme was deliberately kept as broad as possible, and covered the 
range of molecular scattering theory, correlated wavefunctions and Hartree-Fock theory and 
applications. It is our hope that the meeting provided a useful way of drawing together 
experts in each of these three important aspects of theoretical chemistry. 

For the success of the meeting our thanks must first go to the director of the Atlas Computer 
Laboratory, Dr. I. Howlett CBE, for allowing the meeting to be the subject of the fourth 
Atlas symposium, and for allowing the administration group of the laboratory to be used 
for organizational purposes, and to Mr. C.L. Roberts MBE, head of the administration group, 
whose sound practical advice was always most welcome. 

It is a particular pleasure to acknowledge the assistance rendered by Mrs. C. Davis, who acted 
as conference secretary, and to Miss E.S. Butler whose perfectionism has played such a vital 
part in the production of the present volume. Finally, our debt to Miss C. Brown of lmediaprint 
Limited must not be left unacknowledged. She has been responsible for the typesetting of the 
entire volume, an arduous task which has been completed with painstaking attention to detail 
from copy remarkable for its 'variable' quality. 

V.R. Saunders 
J. Brown 

Atlas Computer Laboratory 
Chilton Didcot Oxfordshire OX! I 0QY 

May 1975 
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Review Notes on Molecular 
Scattering Theory 
M.S.Child* 

Exact numerical solution of the quantum mechanical equations of motion for all but the simplest 
model molecular collision problems would be prohibitive in computation lime. Hence it may be 
helpful to give a brief review of the available approximation methods. 

At the highest level we have the close-coupling 
approximation obtained by an expansion in unper­ 
turbed internal eigenfunctions <fin(p) with energies£0• 
r and p are used throughout to denote collections of 
translational and internal coordinates respectively. 

>lt(r,p) = ~ <f,(p )1/10 (r) n 

The resulting coupled equations may be abbreviated 
in the matrix form. 

[d
2 
J + k2 - U(r)]'V(r) = 0, 

dr2 

where 

(I) 

(2) 

and Vis the matrix of the interaction potential in the 
· basis of internal states. This is an approximation only 
to the extent that it is necessary to truncate the basis 
set. An efficient programme due to Gordon [ l] is 
available through QCPE. 

First order perturbation solutions of (2) yield the 
Born and Distorted Wave approximations, according 
to which the scattering amplitude is given by 

(3) 

where the 1/l~(r) are solutions of (2), obtained in the 
Born approximation by neglecting the matrix U ; 
the diagonal elements U nn (r) are retained in the 

distorted wave method. Solutions of this form 
diverge as the Fourier component of U 00,lr) at the 
de Bro~ie difference frequency in the product 
1/l~(r)l/10, (r) increases. 

Solutions of equations (2) by the amplitude density 
method [2] may be combined to yield an exponential 
form for the S matrix, 

S = exp(iA ), ( 4 J 

where A is a hermitian matrix. Trunction of a series 
for A by the first term yields the exponential 
approximation [ 3] . according to which 

(5) 

The necessary integrals are therefore identical to 
those which arise in the Born or distorted wave 
expressions, but the unitarity of the S matrix is 
necessarily preserved. 

Other types of approximation are obtained by 
representing the collision as a time-dependent dis­ 
turbance to the internal state, and the relation 
between this formulation and the time independent 
equations ( 2 J above has recently been discussed [ 4-5] . 
An important limitation is that the translational 
motion in all channels of interest should be adequately 
described by a common trajectory r(t). This classical 
path approach yields the following perturbation 
formulae. 

1 Joo 
Snn'""' h _

00 
V nn' [r(t )] exp (iw00,t)dt (6) 

and 

(7) 

* Theoretical Chemistry Department, University of Oxford, I South Parks Road, Oxford, OX I JTG 



where 

hw , = E - E nn n n' 

Wn(r) = En+ V nn(r). 

Equations ( 6) and (7) are analagous to the Born and 
Distorted Wave approximations respectively. An 
exponential classical path approximation due to 
Magnus [ 6] is also available, namely 

S °" exp[iA] , 

If"° Ann' = -- V , [r (t)] exp(iwnn ,t )d t . h -oo nn 
(8) 

This reduces to the sudden approximation (7] if the 
wnn' are set equal to zero. Equations somewhat 
similar to (6)-(8), but with classical Fourier com­ 
ponents in place of the matrix elements Vnn,(r), have 
been derived by correspondence principle arguments 
(8]. 

The above equations all assume a quantum des­ 
cription at least of the internal state. This has been 
replaced in an important recent series of papers by 
a strictly semi-classical argument, derived either from 
the Feynmann path integral (9] approach to quantum 
mechanics [ I OJ , or from the multidimension WKB 
solution of the time independent Schrodinger equation 
[I 1,12]. The results, which have been described as 
'classical mechanics plus quantum superposition', show 
that the S matrix elements for classically allowed 
processes take the form 

151 

161 

171 
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Snn' = ~[i'~~J ½ (9) 

where p(,;:;. and ,p~j. are the classical probability and 
classical action for the event in question, and the sum 
is taken over all trajectories leading to that event. 
Furthermore the theory may be extended into the 
classically forbidden region by working with solutions 
of Hamilton's classical equations of motion in the 
complex time and coordinate planes [ I 3,14]. Prob­ 
lems arise at the classical threshold, but these may 
be handled by special integration techniques [ 15] . 
Applications to electronically non-adiabatic (surface­ 
hopping) processes have also been discussed [I 6,17]. 
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Application of the Correspondence Principle 
to Vibrational and Rotational Excitation 
D.Richards* 

The physical ideas behind Heisenberg's form of the correspondence principle are described: it is shown 
how this correspondence principle provides semi-classical approximations to the excitation of excited 
systems when perturbed by time dependent fields. 

A generalisation, the strong coupling correspondence principle (SCCP), is described. 

Applications of the SCCP to both vibrational and rotational excitation are given, and where possible 
these results are compared with quantum mechanical calculations. 

Introduction 

The correspondence principle methods described 
here have proved to be a powerful tool for the 
calculation of excitation cross sections. These 
methods are based upon Heisenberg's form of the 
correspondence principle, and the main assumption 
made is that classical perturbation theory - which is 
quite different from quanta! perturbation theory - 
provides a good description of the classical collision. 
For transitions between highly excited states this is 
not a very restrictive condition, and its use has many 
computational advantages; when classical perturbation 
theory is not valid pure classical mechanics is often 
sufficient to obtain cross section since then quantal 
effects are often small. For transitions between low 

· 1ying states semiclassical methods are not firmly 
established; new methods based upon correspondence 
identities are now being developed to deal with these 
transitions. These are briefly described later. 

For atomic systems, where the interaction poten­ 
tials are known, the correspondence principle methods 
described here together with pure classical calculations 
have been successfully used to understand the ranges 
of validity of the various theories and to obtain cross 
sections for wide ranges of relevant parameters, and 
processes, e.g. [I). For molecular systems no such 
program has yet been carried through and the validity 
and accuracy of many approximations is still uncertain. 

The Correspondence Principle 

The correspondence principle states that as the 
quantum numbers become large quantum mechanics 
goes into classical mechanics. However, the principle 
may be invoked in a variety of ways some of which 
are more useful than others. One of the more useful 

is Heisenberg's form of the correspondence principle: 
here quanta! matrix elements are approximated by 
Fourier components of the classical motion. 

Since our approximations are based upon this 
correspondence principle we shall consider the physical 
ideas behind it before considering their applications. 
Only a one dimensional system will be considered, 
but the theory is essentially the same as for a many 
dimensional separable system the time variable being 
replaced by the angle variables [2). No attempt will 
be made to prove ma thematically any of the approxi­ 
mations. 

First consider a bound particle moving in one 
dimension: its motion is periodic and of frequency 
w(E), which usually depends upon the energy E. 
Thus the motion may be expressed as a Fourier series 
in time: 

x(t) = 
00 

r X5 (£)exp -iscct s=-oo 

wf 2rr/w 
= :,- dr xirv exp tsccr , 

s n 0 

(I a) 

(lb) 

and any function of the dynamical variables may be 
expressed similarly. 

According to classical radiation theory, an accele­ 
rating charge radiates energy as electromagnetic 
radiation. If the. energy loss over one period of its 
motion is small the Fourier development of its 
motion, equation ( I a), is still a good approximation 
and it can be shown [3) that the system will radiate 
at those frequencies present in the Fourier series (I a), 

s w(E), (2a) 

* Mathematics Department, Open University, Walton Hall, Milton Keynes, Buckinghamshire, MK7 l'iAA 
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and that the intensity of each frequency is 

(2b) 

Now consider tile equivalent quanta! system with 
energy levels E

0 
and states In>. Suppose that it is in 

an excited level, n. Its behaviour is quite different 
form that of the classical system; it decays to a lower 
level, m, emitting a photon of frequency 

w(m,n) 
E -E = n m 

h 

and there is a known probability per unit time of a 
photon of each frequency being emitted. An 
ensemble of such systems will emit radiation at these 
frequencies, (3a), and with intensities, per atom: 

/(11->m) = 

w(m,n) 

, (m<n) 

)4 2 4e2w(m,11 l<m~ln>I · 
3c3 

Em - En ""' sw(E), = h 

<mlxln> ""' Xs<E) 

w f 2rr/w 
""' - dr X(T) exp iSWT 

2rr 0 

where s = n - m. 

(3a) 

(3b) 

According to the correspondence principle an 
ensemble of classical and quanta! systems would look 
the same if the quantum numbers are large. Thus we 
should expect the frequencies and intensities to be 
approximately the same: 

(4a) 

} (4b) 

This is Heisenberg's form of the correspondence 
principle, named after him because of his use of it in 
his formulation of matrix mechanics [4]. 

There is some ambiguity present in these equations 
since the orbit of the classical system has not been 
specified. In fact it can not be specified uniquely 
since one classical orbit is being used to connect two 
quanta! states of different energy. Jn practice it is 
best to use some mean of the initial and final orbit 
which is labelled by a quantum number llc; the 
relation between this quantum number and the energy 
of the orbit is determined from the Bohr-Sommerfeld 
quantisation conditions. 

It is approximation ( 4b) and its generalisation to 
arbitrary functions, 

which is the basis of our approximation to quanta! 
scattering amplitudes. 

The accuracy of the approximations ( 4b) and (5) 
depends upon the system to which it is being applied. 
For harmonic oscillators and hydrogen atoms it is a 
better approximation than should be expected from 
the assumptions made, and is good even for small 
quantum numbers: this is a consequence of the 
Correspondence Identities [ 5 .6]. 

As an elementary example consider the simple 
harmonic oscillator. Its classical motion is given by 
(unit mass) 

(

II h)½ , . 
x(t) = 2~ (e'WI +e-lWI) 

where the energy of the system is quantised using 
the Bohr-Sommerfeld quantisation rule: 

11h=_!._,(pdx = -~[dx(2E-w2x2f' = 
C 2-;J' 2rrJ 

Tilus a straight forward application of Heisenberg's 
form of the correspondence principle. equation (4b), 
gives the selection rules 

<11lxln'> = 0 n' :/:- n ± l 

and 

<nlxln ± I> = ('~c:)½ 
The quanta! results are 

<11lxl11 + I> = ( II :~h }'' 

<11ixl11 - I> = ( 11h) ½ 
2w ' 

so that the agreement improves as II increases, as 
would be expected. In fact for this potential a 
judicious choice of llc will give remarkably good 
agreement for small n and for matrix elements 
involving powers of x [7]. 

Another relevant example is the Morse potential 

l 
V(x) = D ; l - exp - a(x - X0) i 

E 

w 

(6) 

w f 2rr/w 
<mlF(x)ln> ""' - dt F(x(T))exp iscrt , 

2rr 0 

(s = n - m) 

(5) 

For this potential exact quanta! results are available 
and in the table below comparisons of these and the 
correspondence principle values are given. 

In this example the correspondence principle 
becomes worse as the quantum number increases: 

4 



this is because the Morse potential supports a finite 
number of bound states and the correspondence 
principle implicitly supposes an infinite number, an 

. approximation which gets worse as the quantum 
number increases. 

(b) First order time dependent perturbation theory. 

(c) The sudden approximation. 

For our purposes the Born approximation is ,)f little 
interest. The transition amplitude according to time 
dependent perturbation theory is 

S(11',11) 
i f 00 i(E , - E )t 

=-- dt<11'1V{x,t)l11>exp n n 
h -00 h 

wf 2rr/w i f 00 ~ - drexp isurt j-- dt V(x(t+r),t)\ 
2rr O h _00 

(s = 11 - 11') 

where the correspondence principle approximations to the energy difference and matrix elements, equations (4a,b), 
have been used in obtaining the last equation. 

The sudden approximation gives 

S(n',11) = i Joo <n·lexp - - dt V(x,t) In> 
h -00 

w f 2rr/w i Joo ~ - dtexpijswr-- dtV(x(r),t)I 
211 0 h -oo 

(.1=11 - n') 

(7a) 

(7b) 

(8a) 

(8b) 

Table 1: Values of a2s2 l<nlxln + s>l2 for the Morse 
potential of equation (6) with about 50 bound states for 
s = 1,2 and various n (taken from (7]). The value of "c is 
taken to be "c = ((n+s)!/n!]1i• following [71. 

Transition Quanta! Correspondence Percentage 
Value Principle Difference 

- --- 
I + 2 .020406 .020408 0.01 
2 + 3 .030924 .030928 0.01 
5 + 6 .063822 .063830 0.01 

10 + 11 .12358 .12360 0.02 
15 + 16 ,19043 ,19048 0,02 
I + 3 6,4440 (-4) 6,305 I (-4) 2 
2 + 4 1.3162 (-3) 1.2877 (-3) 2 
5 + 7 4,9142 (-3) 4,8023 (-3) 2 

10 + 12 1.7289 (-2) 1.6849 (-2) 3 
IS + 17 4.0169 (-2) 3,9005 (-2) 3 

Application to Scattering Theory 

The direct application of these elementary ideas to 
scattering theory is straightforward if the scattering 
amplitude may be expressed directly as a matrix 
element; this is possible in three simple cases: 

(a) Born approximation, 

Jn equations (7) and (8), V(x,t) is the potential 
perturbing the bound system which has energy levels 
En and eigenstates 111>. 

These approximations, (7b) and (8b ), are approxi­ 
mations to relatively simple quanta! seat t e r in g 
amplitudes: they are useful if the quantum numbers 
are large since in general Fourier components are 
easier to calculate than matrix elements, and they 
have been used to obtain the excitation cross section 
of hydrogen atoms by charged particles (8-10]. 

From these two scattering amplitudes. (7b) and 
(8b ), a generalisation may be obtained which has no 
closed form in quantum mechanics. 

This generalisation is obtained by noting that in 
the sudden approximation (8b) the bound particle 
does not move during the collision - the classical 
position is a function of T only and not oft; this is 
in contrast to perturbation theory (7b) and reflects 
the basic assumption of the sudden approximation. 

s 



The generalisation is simply: 

S(n', 11) 
w J 2rr/w i J 00 = - dr exp i jswT - - dt 
2rr O h -oo 

(s=11-11') 

V(x( I + T).t)} (<J) 

This, strong coupling correspondence principle 
(SCCP), can be obtained rigorously from the integral 
equation for the scattering amplitude [2) and is 
easily generalised to many dimensional separable 
systems. The one dimensional theory has been 
obtained independently [ 11), and a closely related 
quantal approximation has also been obtained [12]. 

Two major approximations are used in deriving 
equation (9). The first is the use of Heisenberg's form 
of the correspondence principle which restricts the 
use of (9) to transitions between highly excited states. 
The second is that classical perturbation theory must 
provide a good approximation to the classical col­ 
lision; this is not the same as quantal perturbation 
theory and for highly excited states is generally much 
less restrictive, in fact the approximation of equation 
(9) is valid when quanta! perturbation theory is 
totally inadequate. 

The consequences of the assumption that classical 
perturbation theory is valid are two fold. First, this 
method can only be used when the classical constants 
of the bound motion change by relatively small 
amounts, although the changes in the equivalent 
quantum numbers may be large. Second, that the 
unperturbed classical orbit may be used in the cal­ 
culation; since this can often be obtained in closed 
form the computations are considerably simplified so 
making these methods exceptionally easy to use. 
Further more, it should be added that when classical 
perturbation theory is invalid it is often unnecessary 
to use semiclassical techniques to obtain cross section 
data as quanta! effects are often small or negligible. 
Also, when the change in quantum is large and when 
classical perturbation theory is valid it can be shown 
using a stationary phase argument that the probability 
obtained from the SCCP, equation (9), reduces to 
that obtained by classical perturbation theory . 

Thus for large quantum numbers the region covered 
by classical perturbation theory is treated adequately 
using these correspondence principle methods; the 
remaining region can often be treated using exact 
classical trajectories using Monte Carlo methods. 

. These two methods are complementary and have both 
been used to calculate the cross sections for collisions 
between charged particles and hydrogen atoms. These 
and other aspects of semiclassical methods were 
discussed by I.C. Percival at St. Catherine's College in 
1970 [13]. 

For low quantum numbers, and when the classical 
action is comparable to h, there is no formal justi­ 
fication for the use of classical or semiclassical 
mechanics. In these regions the application of classical 

or semiclassical methods is always dependent on the 
particular classical and corresponding quanta! repre­ 
sentation used. However for certain problems there 
exist Correspondence Identities [ 5 ,6). These are 
identities between the predictions of classical and 
quantum mechanics. They include such cases as the 
prediction by Rutherford, using classical mechanics, 
of the correct quanta! differential cross section for 
scattering of a charged particle by a fixed charge. 

There is also a 'Feynman Identity' for systems 
having a Lagrangian, at most quadratic in the co­ 
ordinates and momenta. For such systems the 
propagator is given exactly in terms of the classical 
action in position,time representation ( or momentum, 
time). This identity does not exist in energy 
representation. 

Work is at present being carried out at Stirling by 
Clark and Percival to utilize the Feynrnan Identity in 
the field of Chemical Physics. 

The main problems of applying semiclassical 
mechanics in this field occur in the neighbourhood 
of stationary points in the potential, for example 

(a) The low states of a bound system. Here the 
quanta of energy are comparable to the energy 
of the system. 

(b) In transition states where barrier penetration 
occurs. 

(c) In collision problems involving vibrational ex­ 
citation where low quantum numbers are 
usually involved. 

Near the stationary points it is normally valid to 
approximate the Hamiltonian of the system by a 
Hamiltonian quadratic in p,q. It is thus advantageous 

. to choose the classical position,time ( or momentum, 
time) representation for such problems and incor­ 
porate the Feynman Identity. 

Although certain difficulties were encountered in 
the formulation, these have been overcome. The 
theory has, so far, only been applied to bound state 
problems and the following quantities have been 
evaluated. 

(a) Bound State Spectra. 
(b) Diagonal amplitudes due to a general time­ 

dependent perturbation. 
(c) Transition probabilities due to a general time­ 

dependent perturbation. 
The formulation depends only on closed loops 

formed from classical paths and these may be repre­ 
sented by diagrams in position,time (or momentum, 

6 



time) space. It appears that it is the nature of these 
loops that prohibits the direct evaluation of the off­ 
diagonal transition amplitudes, despite the fact that 
the probabilities can be calculated. 

Calculations have been carried out using the Simple 
Harmonic Oscillator as a model with a time-dependent 
forcing term (this is the simplest model of vibrational 
excitation). All the quantities above (a, b and c) have 
been evaluated analytically and were found to be 
identical to the exact quantum mechanical solutions 
as required by the Feynrnan Identity. 

In the near future it is expected that the formu­ 
lation will be generalised to other processes and 
systems. 

Application to Vibrational Excitation 

The simplest model of vibrational excitation is a 
simple harmonic oscillator forced by a time dependent 
potential. The strong coupling correspondence prin­ 
ciple has been applied to this problem with potentials 
of the form 

(a) x F(t) 
(b) x2 F(t) 

see [14,15]. In both cases the solution to the 
quanta! problem may be obtained in closed form. 

First, consider case (a). The quanta! transition 
probability may be expressed in terms of associated 
Laguerre polynomials and ss», the phased averaged 
classical energy transfer; the SCCP probability is 
obtained in terms of Bessel functions of t:;.EC, which 
is the appropriate asymptotic limit of the Laguerre 
polynomials. To be specific we take the time 
dependent part of the potential to be 

F(t) = a sech2 bt 

for which ilEc may be obtained in closed form [ 14). 

In figure 1 the probability for the O + I transition 
has been plotted against 710 = ss-tu; where £0 is 
the ground state energy. The exact quanta! and SCCP 
probabilities are shown together with the numerical 
solutions of Schrodinger's equation obtained by ex­ 
pressing the wavefunction as an expansion of N 
unperturbed wavefunctions, for various N. It is seen 
that the correspondence principle result breaks down 
for 710 "" 0.5, or when the mean classical energy 
transfer is equal to the initial energy. For larger 710 
the correspondence principle gets worse, in keeping 
with the assumption that classical perturbation theory 
is still valid. However, even for such low quantum 
numbers the correspondence principle is as good as 
an 8-state quantal calculation. 

For the 5 + 6 transition, shown in figure 2, it is 
seen that the strong coupling correspondence principle 
is in good agreement with the exact result for all r,0 
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Figure I: The transition probabilities for the O + I transition 
shown as functions of the phase-averaged classical energy 
transfer 710• 

Exact, is the exact quanta! probability; CP the corres­ 
pondence principle probability and curves numbered 4, 5, 
_.9 ue the 4, 5, ... 9 state computer solutions [ 14) 

shown, and that for a significant range of 710 it is 
better than a 16-state quantal calculation. 

From these comparisons we see that the SCCP 
results are good whenever classical perturbation theory 
is valid, but as expected the results get progressively 
worse as the energy transfer increases. For the 
harmonic oscillator system we also see that corres­ 
pondence principle methods are good even for low 
quantum numbers: 

For a simple harmonic oscillator perturbed by a 
quadratic potential (case bj the results are not quite 
so encouraging due to the more rapid break down of 
classical perturbation theory. Again we take F(t) to 
be of the form of equation (I 0): 

I(£) 2 F(r) = 8 8 sech (11) 

In figures 3 and 4 [ I 5) we show the probability 
for the O + 2 and 2 + 4 transition plotted against £, 
defined in equation (11 ). It is seen that in both of 
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Application to Rotational Excitation 

The SC'C'P has been applied to the rotational 
excitation of diatomic molecules in r states by 
arbitrary spherically symmetric atoms 1161. The 
general formulation of the problem is presented in 
the above reference: here w,• shall ,111lv consider the 
rotational cxcitui iou of Ni hy Ne fnr which close­ 
coupling results are available I 1 7 I. 

In this case. following [ 171, the interaction 
potential may be taken to be 

1.5 U) 

Figure 2: The tnnaition probabilities ror the 5 + 6 transition 
shown u runctions or the phased-avenged clusical enerllY 
transfer T/o, 

Exact, ill the exact quantal probability; CP the corres­ 
pondence principle probability and curves numbered 10, 13, 
... 16 are the 10, 13, ... 16 state computer 10lu lions I 14) 

these cases the SCCP is substantially in error for a 
significant range of £. The reason for this is that 
the bound orbit is significantly perturbed by the 
potential. If E is small the maximum magnitude of 
the force is small but its effect is spread over a long 
time; if E is large the force is large but strongly 
peaked in time. In either case the bound orbit is 
significantly affected. 

In figures 3 and 4 the results of a modified strong 
coupling correspondence principle [I 5] are shown. 
This theory partially accounts for the distortion of 
the bound orbit and in this instance is a better 
approximation than the SCCP of equation (9 ). 

This modified theory is not always significantly 
better; for the linearly perturbed oscillator the 
modified and unmodified theories are identical, and 
for charge particle-hydrogenic ion excitation and 
rotational excitation of diatomic molecules by atoms 
the bound orbit is not sufficiently perturbed, for most 
collisions, for such modifications to be necessary. 
However, the example of the quadratically perturbed 
harmonic oscillator shows that care must be exercised 
when applying these methods. 

where r1 is the radial distance between the incident 
atom and the centre of the molecule and @ the 
angle between the vector positions of the atom and 
the molecular axis. 

One of the difficulties in applying time dependent 
scattering theory to this problem is that, through the 
angle @. the interaction potential involves the co­ 
ordinates of the molecule; since the molecule and the 
atom are treated assymmetrically in a time dependent 
theory there is no consistent way in which the effect 
of this part of the potential on the incident atom may 

0.4 
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Figure 3: The O + 2 transition probability, as a function of 
£, equation (11), ror a humonic oscillator perturbed by a 
potential x1 Ftt), Exact is the exact quantal result, CP is the 
strong coupling correspondence principle result, equation (9), 
and MODCP ill the modified correspondence principle result 
[IS) 
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Figure 4: The 2 + 4 transition probability, u a function of 
E, equation (11), for a harmonic oscWator perturbed by a 
potential x2 FY.t). Exact is the exact quanta! reault, CP is the 
strong coupling correspondence principle result, equation (9), 
and MODCP is the modified correspondence principle reault 
(IS) 

be included. Thus it is necessary to suppose that the 
incident atom is only affected by the spherically 
symmetric part of the potential, F0(r2). Jn general 
this is the dominant part of the potential and so no 
large errors are expected from this approximation. 

Apart from this dynamical approximation the main 
approximations are the replacement of matrix elements 
by Fourier components, as in equation (5), and the 
replacement of the sum over degenerate angular 
momentum states by averages over a classical ensemble 
of molecules. By comparing various quantal approxi­ 
mations with their equivalent correspondence principle 
approximation it has been shown [16) that the 
relative error of these approximations decreases as 
(2;+ I f2, where j is the quantum number of the rotor. 

Partial Cross Sections 

It is possible to make more detailed comparisons of 
the partial cross sections by making a correspondence 
between the impact parameter, b, and the angular 
momentum of the incident atom, and between the 
total angular momentum quantum number and the 

angle between the angular momentum of the rotor 
and the z-axis, /3: 

b = (Q + 1/i)/k. 

cos /3 = 

where j is the initial rotational quantum number, and 
k the wave number of the incident atom with angular 
momentum quantum number Q. With these corres­ 
pondences it is possible to compare the partial cross 
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Figure S: A comparison of the partial cross section SJ(j + j') 
obtained from close-coupling calculations, indicated by the 
dots, and the probability obtained from the strong coupling 
comspondence principle, equation (9), indicated by the solid 
line. The total angular momentum quantum number is J = 10, 
the incident energy is E = 2.2€ and the transition is j = 6 + 8 

1· ., • •• - r --·-. 
5 6 7 8 9 10 II 12 13 14 15 16 

Figure 6: A comparison of the partial cross section S1(j + j') 
obtained from close-coupling calculations, indicated by the 
dots, and the probability obtained from the strong coupling 
correspondence principle, equation (9), indicated by the solid 
~- The total angular momentum quantum number is J = 10, 
the incident energy is E = 4.4€ and the transition is/ = 6 + 8 
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section siu + j) obtained from the close-coupling 
calculation with the probability Pb(j + j'; cos ~) ob­ 
tained from the SCCP before averaging over the 
ensemble of molecules. 

In figures 5 and 6 we show the partial cross 
sections for the 6 + 8 transition for a total angular 
momentum, J = I 0. The close coupling results are 
calculated using the j = 6 and j = 8 levels only using 
the method of Gordon (18]. These comparisons 
show that the strong coupling correspondence prin­ 
ciple can predict the details of the cross section with 
reasonable accuracy. 

At the low energy, E = 2.2e (figure 5), the 
agreement is good; this is reflected in the cross 
section given in table 2. At the higher energy, 
E = 4.4e the agreement is not so good; the reason for 
this is that the close coupling results are too large 
since at this energy more states need to be included; 
this conclusion is suggested by the results given in 
table 2. 

Total Cross Sections 

The strong coupling correspondence principle cal­ 
culations have been compared with the results of 
Burke et al. [ 17] for the 2 + 4 transition (including 
contributions from both bi-parities); for other tran­ 
sitions the quanta! close coupling equations were 
solved using the method of Gordon [ I 8], QCPE 
program 187. The results are summarised in table 2. 

Table 2: Comparison of the present calculations (ac") with 
close coupling results (Uq)_ Results a are calculated using i 
and j' levels only: results b use levels 0,2,4 and 6. £ is the 
energy of incident atom, in units of€ the well depth of F0(r2) 

Transition 2+4 i+6 

£(€) 4.03 6.24 9.76 4.03 6.24 9.76 

aQ(m,5) a 8.56 9.92 11.9 
b 7.78 8.77 9.49 0.52 0.92 1.62 

a cp(11'a5) 7.80 8.51 9.11 0.62 1.04 1.69 
--- 
Transition 4+6 6+8 

- 
£(€) 3.32 5.53 9.05 2.21 4.42 

aQ(ll'a~J a 2.70 5.27 
b 5.93 7 .14 8.82 

acP(ll'a~) 6.02 7.09 7.81 2.62 5.05 

Starting with the 2 + 4 results, the agreement of 
the correspondence principle with the larger basis 

, close coupling calculations is excellent. The success 
of the correspondence principle for such low quantum 
numbers is both surprising and encouraging. The 
results for 2·+ 6 transitions are quite satisfactory. the 
poorer agreement at lower energies almost certainly 
arising from the inadequacy of a mean orbit when the 
translational energy drops by about 40'1, in the 
collision. 

For 4 + 6 transitions the agreement is again 
excellent, except at the highest energy considered. 
Since the 2 + 4 cross section at this energy changes 
considerably on going from the 2, 4 basis to the 0, 2, 
4, 6 basis, it is quite likely that the close coupling 
results require at least the j = 8 level to be included. 
Correspondence principle calculations show the 4 + 8 
cross section increasing from 0.1711'a5 at E = 3.32e, 
through 0.5511'a5 at 5.53e to l.1511'a~ at 9.05e, 
suggesting that coupling to the j= 8 level is significant 
at the higher energies. 

Finally, for 6 + 8 transitions good agreement is also 
obtained. Again the correspondence principle results 
lie below the close coupling calculations. As the 
introduction of further levels in the close coupling 
calculation is likely to reduce the cross section this 
would probably improve the agreement. Simply 
adding the j = 4 and j = I O levels would give a 32 
state calculation, taking about eight times as long 
as that reported here. 

Subsequent calculations, which will be reported 
elsewhere. on O + 2 transitions show that the SCCP 
gives remarkably accurate cross sections even for 
these low quantum numbers. 

The 0-2-4-6 level close coupling calculations are 
about two orders of magnitude slower than the 
correspondence principle calculations, even though 
steps of 5 were taken in the total angular momentum 
quantum number. 

Conclusion 

When classical perturbation theory adequately 
describes the classical collision we have shown that by 
applying Heisenberg's form of the correspondence 
principle appropriately accurate transition proba­ 
bilities for transitions between highly excited states 
may be obtained. For such transitions the main 
inaccuracy of the theory is due to the breakdown of 
classical perturbation theory. For transitions between 
low quantum numbers the fundamental assumptions 
of this, and any semiclassical, theory are invalid even 
though these theories sometimes give remarkably 
accurate results in this region. 

For transitions between highly excited states the 
theory described here is accurate and uses relatively 
little computer time, for example a large close 
coupling calculation can take up to two orders of 
magnitude longer to obtain a cross section 5% more 
accurate. 
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Semiclassical Methods in Reactive and 
Non-reactive Collisions 
W.H.Miller* 

In the last few years it has been shown how exact classical mechanics (i.e., numerically computed 
classical trajectories) can be used as input to a general semiclassical theory of complex (i.e., inelastic 
and reactive) molecular collision processes. This semiclassical model of 'classical dynamics' plus 
quantum superposition includes all quantum effects in molecular systems at least qualitively, and the 
description is often quantative. The primary emphasis of this paper will be the description of 
classically forbidden processes, i.e., those which do not occur via ordinary classical mechanics. This 
is essentially a generalization of the concept of tunneling to dynamical systems of more than one 
degree of freedom and is one of the most important aspects of this 'classical S-matrix' theory. 
Examples of reactive and non-reactive atom-diatom collisions are used to illustrate the ideas. 

* Inorganic Material Research Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of 
California, Berkeley, California 94720, USA 
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Canonical Integrals in Semiclassical 
Collision Theory 
J.N.L.Connor* 

A basic problem in semiclassical collision theory is the derivation of uniform approximations for 
quantities such as S matrix elements and scattering amplitudes. The uniform approximations can be 
expressed in terms of certain canonical integrals and their derivatives. It is shown how the canonical 
integral is determined by the topological structure of the classical trajectories. The case of two and 
three nearly coincidental trajectories is considered in detail. 

Introduction 

The semiclassical theory of molecular collisions 
involves an asymptotic solution of Schrodinger's 
equation. It requires real and complex valued 
solutions of Hamilton's equations [1-5 ]. An important 
part of the theory applies asymptotic methods to the 
evaluation of integrals. These asymptotic approxi­ 
mations can be written in terms of canonical integrals. 
This paper discusses how the topological structure of 
the classical trajectories determines the canonical 
integrals. 

As a varies, so do the positions of the saddle points 
and for a certain value of a they may come close 
together or coalesce. This is illustrated in figures 
I and 2. 

Figure 1 shows a plot of the elastic deflection 
function against impact parameter [6,7]. The 
parameters are the collision energy and the scattering 
angle. There are three nearly coincident classical 
trajectories. 

Coalescing Trajectories 

An S matrix element in semiclassical theory is 
represented by an integral of the form [2-5] , 

S( a) = fg(x) exp[if(a;x)] dx (I) 

in the one dimensional case. Similar integrals arise 
in the evaluation of scattering amplitudes [ l] . In (I), 
a is a set of parameters such as collision energy, final 
quantum numbers of the collision and any potential 
parameters. 

When integral (I) is evaluated by asymptotic 
techniques, the main contribution comes from the 
saddle points of f. These are the real or complex 
points {xi},i = 1,2, ... ,n satisfying 

3f(a;x) - ox 
= 0 . (2) 

Physically the saddle points correspond to real or 
complex valued classical trajectories. Equation (2) 
shows the positions of the saddle points depend on a. 

a ~, b 
'' \ ' \ \ \ 

I I 
I I 

\ 

\(\J \I~ 
C d ', r-' 

' ' ' ' ' ' ' ' ' \ ' \ 

\,~ \~ 
Figure I: The elastic deflection function plotted against 
impact parameter for four values of the collision energy. 
The dashed line is a reactive deflection function. There are 
three saddle points. 

• Department of Chemistry, University of Manchester, Brunswick Street, Manchester, M/3 9PL 
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Figure 2 shows a plot of the final action against 
initial angle for a collinear collision [8). The para­ 
meters in this case are the collision energy and the 
final vibratienal quantum number. This example has 
four coalescing trajectories. 

The problem is to derive an asymptotic approxi­ 
mation that is valid regardless of whether the classical 
trajectories are close together or far apart. 

Uniform Approximation and Canonical Integrals 

The simplest asymptotic method for evaluating 
integral ( I ) is the saddle point or stationary phase 
method: 

g(xi) 
[J"(a:xi)) ½ exp [if(a:xi)J. (3) 

The sum is over all contributing trajectories. Equation 
(3) is valid when all the trajectories are well separated 
from one another. For example, fur two well 
separated real trajectories I and 2. the transition 
probability P = [S12 becomes [5,9] 

P = P, + P, + 2(P,P2f' sin(qi2 - </>,), (4) 

where p, and p2 are classical transition probabilities 
and </>1 and <f>2 classical action integrals. 

Equations (3) and (4) become invalid when the 
two trajectories approach one another (because f"-> 0). 
A uniform approximation for this case is [9) 

(5) 

a b where 

C d 

Figure 2: Final action-initial angle plots for a collinear 
collilioa at four values of the collision energy. There are 
four addle poinu. The real addle points lie where the 
h •• izontal line• intersect the action-angle points, 

and Ai(-l") is the regular Airy function: 

Ai(-n = (2rrf1J00 exp[i(-~u + {-u3))du. (6) 
-00 

Equation (5) is uniformly valid for two real trajec­ 
tories close together or far apart. The regular Airy 
function is the canonical integral for this case. 

Equation (5) becomes non-uniform however when 
three trajectories are close together. A uniform 
approximation for this case can be derived (7] in 
terms of the canonical integral 

P(x,y) = r. exp [i(xu + yu2 + u4 )) du . (7) 

Figure 3 shows a plot of [P(x,y )I and figure 4 one 
of arg P(x,y ). Since P(-x,y) = P(x,y ), it is only 
necessary to plot the upper half plane. 
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Figure 3: The modulus of P(x,y). 

X 

Figure 4: The phase of P(x,y) in degrees. 

For n coalescing real or complex valued classical trajectories, the canonical integral is [8) 

U(11 J2, ... , ln-1) = f ~
00 

exp [i(11u + 12U2 + ... + ln-tUn-t + un•t ))du. (8) 
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The integral (8) includes (6) and (7) as special cases. 
It can be seen the numher of coalescing trajectories 
determines the canonical integral. 

An important property of equations (4) and (5) 
is they only involve quantities characterizing the 
classical trajectories. This is also true for uniform 
asymptotic approximations in terms of integrals (7) 
and (8). 

The uniform approximations discussed above be­ 
come invalid if g possesses zeroes, poles or branch 
points near a saddle point or if end point contributions 
to the integral are important. They also become 
invalid if f is a slowly varying function [ I 0, 11] . The 
use of non-uniform approximations may explain 
discrepancies that have been reported between semi­ 
classical calculations and exact quantum results [ 12- 
15]. · 

When an S matrix element is represented by a 
multidimensional integral, the derivation of uniform 
approximations is more difficult. For certain cases, 
the canonical integral is again integral (8) [8,16-20). 
In general however the canonical integral is non 
separable and multidimensional [ I 9,20] . 

[131 BOWMAN, J.M. and Ku~n:RMANN, A. (1973). 
Chem. Phys. Letters, 19, 166. 

[14] ----- and ----- (1973). 
J. Chem. Phys .. 59, 6524. 

[l51 TYSON. J.J .. SAXON. R.P. and Lu.ur. J.C. 
(1973). J. 01e11L Phys .. 59 .. ~<,.~. 

[16) Doll. J.D. and MILLER. W.ll (1972). J. Chem. 
Phys., 57, 5019. 

(17] MARCUS. R.A. (197~). J. Chem. Phys .. 57, 
4903. 

(18] CONNOR, J.N.L. (1973). Mo/. Phys., 25, 181.• 
(19) ----- (1973). Discussions Faraday 

Soc., SS, 51. 
(20) (1973). MoL Phys., 26, 1371. 

Conclusions 

Semiclassical integral representations for S matrix 
elements and scattering amplitudes can be evaluated 
asymptotically in terms of a canonical integral. The 
canonical integral is determined by the number of 
coalescing real or complex valued classical trajectories. 
The uniform approximation involves only quantities 
characterizing the classical trajectories. 
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Cross Sections for the Rotationally Inelastic 
Scattering of Ne + N2 : Application of the 
Exponential Semi-Classical Distorted Wave 
Approximation (Preliminary Results) 
S.Bosanac and G.G.Balint-Kurti* 

Exact quantum-mechanical close-coupling, and approximate calculations are presented for Ne + N2 
collisions using a model potential. The calculations take account of the coupling only between the 
I= 0 and/= 2 rotational states of N2• The approximate calculations are performed using an improved 
form of the exponential semi-classical distorted wave approximation which is outlined In the paper. 
Cross sections evaluated using the approximate method compare very well with the exact ones over 
the entire range of energies of chemical Interest. Total and differential Inelastic (j = O .• I= 2) cross 
sections are presented and their variation with energy is examined. The present results disagree 
significantly with previously published results using the same potential 

Introduction and Theory 

The Ne + N2 system has been studied by Burke et al. (I] who treated the system as a structureless atom 
colliding with a rigid rotor diatomic molecule. The potential is taken to be 

v(Jtr) = & [(R;)12 - 2(:m )6] + &a,2(RRm)
12 

P2(cos0) - 2&a6(RRm)6 P2(cos 0) (I) 

where R is the distance from the atom to the centre 
of mass of the diatomic, R is the corresponding vector, 
f is a unit vector along the bond of the diatomic and 0 .. 
is the angle between R and f. These variables are 
illustrated in figure I. There are four potential energy 
parameters [2] &,Rm,a 12 and a6• The first two are 
the well depth and the equilibrium distance of the 
spherically symmetric part of the potential, which is 

. taken to be a Lennard-Jones potential. a12 and a6 are 
the so called anisotropy parameters . 

• School of Chemistry, University of Bristol, 
Cantock's Close, Bristol, BS8 ITS 
(present address of S.B.) Institute 'Ruder Bosko­ 
vii', 41001 Zagreb, Bijenicka C54, Yugoslavia Figure I: Defmilion of coordinates. 
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Arthurs and Dalgarno [3] have discussed the 
atom-rigid rotor problem using the time-dependent 
Schrodinger equation. They expand the total wave­ 
function in terms of angular functions which are 
eigenfunctions of the total angular momentum J. In 
this way they obtain a set of coupled differential 
equations for the radial functions uf)l, (R). These 
equations are of the form 

Um.1-mljJll0) etc. are Clebsch-Gordon coefficients (41. 
The quantum numbers m and m' correspond to the 
components of the rotational angular momentum of 
the diatomic along the relative direction of motion of 
the reactants and products respectively. The use of 
angular functions referred to these axes is called the 
helicity representation [ 5 ,6] . 

UJ1'n' 1'n'(R~l ,;J)~.(R) = L UJ.1,n, 1'"0"(R)u~!,~ •• (R) "'· "' 1J "' i"2'' t re "'· "' i • 
(2) 

where the UJ,11•,j"ll"(R) are essentially the matrix 
elements of the potential between the angular func­ 
tions. The j's are rotational quantum numbers for 
the diatomic and the ll's are the orbital angular 
momentum quantum numbers corresponding to the 
relative motion of the atom and diatomic molecule. 
There is a different set of such coupled equations for 
every total angular momentum quantum number J 
and each set in principle involves an infinite number 
of differential equations. In practice we truncate both 
the number of J values considered and the number of 
coupled differential equations for each value of J. 

The boundary conditions on the radial functions 
J'll u/2,(R) are 

uJill(R) - -~ ~-i(krR-Q'-rr/2) 5 .. ,6nn, (3) 
i'll' R .• 00 2i r JJ •.•. 

Thus the S matrices (whose elements are sh',ill) may 
be found from the asymptotic behaviour of the radial 
functions. The total cross section ap:;.1. may be 
expressed as a sum involving the squares o( elements 
of the S matrix. 

Tot 1r 
aj'+-j = k~(2' I). l:(21+1) l:,l61·1"6llll' -s\, ·nl2 J 1+ J QQ J .. ,JJI. 

(4) 

The differential cross section may similarly be 
expressed as 

Several numerical techniques have recently been 
developed for the efficient solution of a finite set of 
coupled differential equations such as those of 
equation C). We have used a program written by 
R.G. Gordon [7] to perform the 'exact' close-coupling 
calculations discussed in this paper. The whole 
program, including the part which evaluates the cross 
sections (written by S.B.) was tested by reproducing 
exactly the total and differential cross sections 
reported by Hayes and Kouri [8] for the He + H2 

system. 
For problems involving atoms and molecules of 

moderately large mass the number of J values needed 
and the number of coupled channels required for each 
J value often becomes so large as to make the exact 
solution of equation (2) impractical. One frequently 
used method of approximating the solutions of 
equation (2) for such cases is the Distorted Wave 
Born (DW) approximation (9] . In this method the 
coupling terms in equation (2) (i.e. the terms oh the 
right-hand side of the equation) are ignored and the 
solution of the equation 

with boundary conditions 

xf2(r) R:o o 

R
- sin( k.R - ll-rr/2 + 0-n) 
->00 J J< 

(7) 

(8) 

ai'+-/ll) = 4k2 
J 

where: 

(2i + 1) 
(5) 

(6) 

The d:,,,m(O) are simple angular functions which are the reduced representations of the rotation group and 
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is found [JO). The S matrix elements. which are needed to calculate the cross sections. may then be approximated as 
' 

~3 1.5: 
~ I 

' (9 I 

In the Distorted Wave Born (DW) approximation 
we avoid the necessity of solving the set of coupled 
differential equations, equation (2), and instead have 
to solve several uncoupled equations, equation (7), 
and then take integrals over the solutions to obtain 
the S matrix elements needed to evaluate the cross 
sections. One of the principle drawbacks of the DW 
approximation is that the S matrices calculated in 
this way are not in general unitary, as is required by 
the condition that the total number of particles 
should be conserved. An Exponential Distorted Wave 
(EDW) procedure, in which the approximate S 
matrix is unitary, has been proposed [II). In this 
procedure the S matrix is written as: 

(10) 

where A 1 is a Hermitian matrix with zero diagonal 
el,ements and whose off diagonal elements are given by 

Clearly when the exponential in equation (JO) is 
expanded in a power series the first two terms give 
the same result as the DW approximation, equation 
(9). The higher terms can be shown to correspond 
to parts of the higher order terms in the Distorted 
Wave Born series [ I 2]. 

In the present work we use an exponential semi­ 
classical distorted wave approximation (ESCDW) in 
which equations (10) and (II) are used to calculate 
the S matrix but the further approximation is made 
that the distorted waves XjQ(R) are evaluated using a 
semi-classical JWKB type approximation. A pre­ 
liminary study, using a very similar approximation 
has been published [ I 3) . The method used here 
differs from [13] in that the distorted waves are 
represented as linear combinations of Airey functions 
in the region from well inside the innermost classical 
turning point to well beyond the outermost one. In 
this region the wavefunction had the form 

and R0 is a turning point. When raising the right 
hand side of the expression for qjQ(R) to the power 
of 2/3, the quantity i.1 the square brackets should 
first be squared and then the third root taken. 

These wavefunctions are continuous in the neigh­ 
bourhood of the turning points and in regions where 
the JWKB method is valid they go over smoothly to 
the correct JWKB wave function [ 14] . They have 
been used in the present work to provide an 
approximate description of the shape resonances 
which can arise when the effective potential (i.e. 
including the centrifugal term) has three classical 
turning points and the two colliding particles can be 
temporarily trapped inside the centrifugal barrier. 
The coefficients o and (3 are determined by the 
boundary condition at small R. The precise details 
of how the distorted waves are calculated and some 
other technical aspects of the calculations will be 
reported at greater length elsewhere [ 15]. 

Results and Discussion 

The semi-classical JWKB approximation is designed 
to provide a good description of the scattering in the 
short wave length or high energy limit. 1n order to 
test the validity of the ESCDW approximation in 
one of the situations where it might be expected to 
be the least valid, we examined the scattering of 
Ne+ N 2 in the very low energy region where there 
were three classical turning points in channels with 
j= 2. Only rotational states j=O and j= 2 were included 
in the calculations (i.e. 4 coupled channels) and a 
sufficiently large number of J values were considered 
to ensure convergence of the total cross sections to 
better than 1%. (This corresponded to J values up 
to J= 20 for low relative kinetic energies E = .0016 e V 
and J= I 00 for E= 0.136 eV.) 

------------ ---- ·- - - ----· 

JSlR) = o 2ir'11 qiQ(R)¼ IPi£(R)I-½ Ai(qiQ(R))+(31rv'qH (R)¼ IPi£(R)I-½ Bi(qiQ(R)) 

(Q+½)l 
Ii2 

02) 
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Figure 2 compares the exact close coupling cal­ 
culation results and the ESCDW results for the 
j=0 + j= 2 total inelastic cross section in the energy 
range 0.00158 eV to .00174 eV. This energy range 
is just above the threshold for the j=0 + j= 2 excitation. 
The asymptotic kinetic energy of the particles in the 
lower channel (j=0) corresponds to a wavelength about 
equal to Rm (the characteristic range parameter of 
the potential), while in the higher channel (j=2) the 
asymptotic wavelength is considerably larger than Rm. 
These calculations therefore constitute an extremely 
severe test of the semi-classical aspect of the ESCDW 
approximation. We see from figure 2 that the 
agreement between the exact and ESCDW cal­ 
culations is, in fact, remarkably good [ 15) . The 
maxima in the cross section arise from the shape 
resonances in the upper channels (j=2) [ l). 

N •O 

3 

,, 
'' 

\ 
\ 
'··\:-" 

In figure 3 the variation of the total j=0 + j=2 
inelastic cross section, as calculated using the ESCDW 
approximation, is shown over a much larger energy 
range. The agreement between the exact and 
ESCDW cross sections was checked at an energy of 
0.136 e V. They were found to agree within 6.8'7r 
(19.7 A [2) for the exact as compared with 21.0 A 
[2) for the ESCDW). The cross sections shown in 
figure 3 are about an order of magnitude larger than 
those reported for the same system in [ l] . At the 
lower energies corresponding to figure 2, the cross 
sections reported here are of the same order of 
magnitude as those of [I) but differ from them 
in detail. 

Figure 4 shows a differential inelastic cross section, 
for the j=0 + j=2 transition, calculated using the 
ESCDW approximation at an energy of .001601 e V, 
which corresponds to the first shape resonance in 
figure 2. The quasi-bound state which gives rise to 
this resonance is in the channel J=7,j=2. Q=9. The 
differential cross section consists of a series of 
regularly spaced maximum. The minimum in intensity 
at around 0 = 70° is thought to arise from an inter­ 
ference effect with the neighbouring resonance in the 
channel J= 11, j=2, Q=7. In figure 5 the differential 
cross section is shown at an energy of 0.046 e V. 
The structure of the cross section is now much more 
complex than in figure 4. This arises from the fact 
that the contributions from many channels are now 
of comparable importance. 

... "' "' "' 
Energy x I03(eV) 

Figure 2: Compuioon or total inelutic cross sections for 
/=0+/=2 transition as calculated by exact close coupling 
method (- - - -) and ESCDW approximation (--) in 
small energy range just above threshold. E = .00158 e V • 
.00174 eV. 

Energy (eVJ 

Figure 3: Vuiation of the total inelastic /=0 + /=2 cross 
section with enerl)'. The calculations were performed using 
the ESCDW method. 
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Figure 4: Differential cross section for /=0+/=2 transition 
at E=0.00I601 eV 
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Figure S: Differential cross section for t=ts+i=: transition 
at E= 0.046 eV. 

Conclusion 

In this paper we have presented the first application 
of an exponential type approximation to the cal­ 
culation of actual cross sections. We show that for 
the calculation of rotationally inelastic cross sections 
for the Ne + N2 system in the present four channel 
approximation (i.e. j=0 and j=2 only), the ESCDW 
method yields results in quantitative agreement with 
exact close coupling calculations. This agreement is 
found to hold good from extremely low energies to well 
above those corresponding to room temperature. 

The results presented here should be regarded as a 
partial test of the validity of the ESGDW approxi­ 
mation. From a very preliminary investigation of 
the effect of including more coupled channels 
(i.e. rotational states j=0, 2 and 4) it is thought that 
the j= 0 + j= 2 cross sections will be significantly 
reduced in magnitude, at least in the higher energy 
range. The elastic cross sections seem to be relatively 
insensitive to the inclusion of additional channels. 
Clearly a much more extensive investigation of the 
effect of including more coupled channels is needed, 
and this is currently being undertaken. 

For the four channel calculations reported here 
the present computer programs for calculating the 
ESCDW cross sections are somewhat faster than 
those used to calculate the exact close coupling 
results. When a larger number of coupled channels 
are included (and for many systems a far greater 
number will be needed), the time needed to perform 
the exact calculations should increase as N3

, where 
N is the number of coupled channels [7) . The time 
needed to perform the ESCDW calculations is 
expected to increase only as N2, and it is therefore 
in such situations when there are a large number of 
coupled channels, that the main computational ad­ 
vantages of approximations such as the ESCDW are 
expected to be realised. 
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Proton-Molecule Collisions: Interacting 
Potentials and Inelastic Scattering* 

F.A.Gianturco t 

Gas phase protonation processes and, in general, proton encounters with molecular systems require 
both the knowledge of interacting potentials through all the regions of space and an efficient way 
of solving the coupled integro-differential equations, generated in the usual time-independent equation, 
which are necessary to obtain the relevant scattering observables of both reactive and pre-reactive 
processes. We are reporting a numerical treatment of the atom(proton)-diatom problem by considering 
it within a laboratory frame of reference and by having the target described as a rigid rotor [ 1 J. 
The necessary potential surface has been computed by considering first its static part and by producing 
it via a suitable multipolar expansion of the relevant bound-state single-particle MO's of Hartree-Fock 
quality. The polarization effects have also been included by adopting a suitable functional form which 
would give the necessary cut-off within the inner molecular region. 

Reference 

[1J BURKE, P.G., G!ANTURCO, F.A. and CHANDRA, N. (1974). Mo/. Phys., 27, 1121. 

Until very recently experimental investigations of 
translational-rotational and/or vibrational energy trans­ 

. fers in biomolecular collisions were confined to 
various relaxation techniques (1]. For a more 
complete description of the process, however, one 
likes to have information which is more microscopic 
in nature and more sensitive to local dynamical 
variables like impact parameters, internal quantum 
states, initial and final, of the involved partners and 
differential distributions of the inelastic cross sections. 

Whenever such information becomes available from 
crossed molecular beam experiments, our theoretical 
models usually require a stepping up in sophistication 
to explain the newly acquired data (2) and indeed 
the scattering of a proton by a molecule at very low 
energies clearly requires quantum mechanics for a 
complete description of the non-classical behaviour 
detected recently (3) in the angular distribution of 
the scattered protons. 

In the course of the collision the integrated 
response of each individual molecular atom, assumed 
as interacting with the incoming proton, is in general 
different. This causes excitation of moiecular degrees 
of freedom, which may also be the consequence of 
the electronic structure of the target having been 
altered by the passing third atom making the nuclei 
accelerate toward the new potential minimum (4). 
For systems like N 2 and CO, however, the changes 
of molecular internuclear distances upon protonation 
are probably only I to 2%, depending on the geometry 
(3), a result which implies that a rather small 

stretching force was applied to the molecule in the 
field of the proton. Even when the Hydrogen Fluoride 
system is concerned, recent experiments (5) and the 
following computations (6,7] indicate an overall 
bond variation of 0.066 au, i.e. also around 2%, in 
going from the HF structure to the fluoronium ion. 

The above results seem therefore to suggest a 
possible way for efficiently constructing the relevant 
potential surfaces that may then be employed within 
completely a priori scattering calculations in a three­ 
dimensional, quantum-mechanical sense. If one looks 
at the parallel problem of electron moderation in 
gases, one sees that a fair, if still far from satisfactory, 
amount of information has recently been accumulated 
due to remarkable progress in experiments and also 
to concomitant theoretical developments (8). The 
circumstances thus seem to make it worthwhile for 
us to carry out the analogy with proton collisions as 
far as is allowed by physical intuition and compu­ 
tational feasibility, 

The most direct analogy is, of course, with the 
problem of slow positron scattering; however the 
proton potential surface in the Born-Oppenheimer 
sense is given by the same equations if one disregards 
charge-transfers thus suggesting that a great deal can 
be learned from this analogy. Some notable differences 
between electron and positron scattering have already 
been recognized and investigated, particularly for 
some simple atoms (9). The disparity originates from 
the changed interaction between the target molecule 
(or atom) and the impinging projectile since the mean 

• Work supported by the Italian National Research Council (CN.R.J 
t /stituto di Chimica Fisica, Universita di Pisa, via Risorgimento 35, 56/00 Pisa, Italy 
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static molecular field seen by a positron is repulsive 
whereas it is attractive· for an electron. Moreover, 
the all-important effects of electron exchange'with 
the bound particles are absent both in positron and 
proton scattering. Finally, the long-range part of 
the interactions, which has been known to play 
an important role in slow electron scattering, can 
generally be written as: 

very differently, at different energies for different 
targets, a fact that has not yet been extensively 

· investigated from a theoretical viewpoint. 

For thermal energy scattering it is fairly straight­ 
forward to develop the quantum mechanical form of 
the dynamics involved for a proton impinging on a 

a(R)e2 µ(R) {a'(R)e2 
V(r·R) = - -- + - P1(coscl) - -- ± • 2r2 ,2 2,4 

where the Pn's are Legendre polynomials, cos cl= R.r/Rr 
and the upper and lower sign refer to an electron 
and proton, respectively. Further, µ(R) and Q(R) 
respectively represent the electrostatic dipole and 
quadrupole ·moments of a diatom with bond distance 
R-,a(R) and a'(R) the spherical and non-spherical part 
of the dipole molecular polarizability. The above 
equation exemplifies a significant contrast of the two 
types of interaction: the electrostatic part changes its 
sign, whereas the polarization part remains the same 
on going from electron to proton ( or positron). 

An immediate consequence is that there should 
be a substantial difference between computed obser­ 
vables for those processes in which the two parts of 
the interaction are operative in an explicit manner. 
A good example is provided by the rotational 
excitation (or de-excitation) of an homonuclear 
molecule for which the third term with P2 (cos cl) 
in equation (1) is mainly responsible and where the 
same or opposite signs of the static and polarizability 
parts lead to very different results. For vibrational 
excitations the same argument can be applied, the 

Q(R)e} p2 (cos cl) + ... ,3 (1) 

major modification being essentially the replacement 
of the molecular parameters a'(R0) and Q(R0) by 
their derivatives with respect to R. 

The rotational excitation of a strongly polar 
molecule appears to provide another interesting case. 
If the dipolar interaction, the second term in equation 
( 1 ), plays a predominant role in the long-range region 
of interaction, cross sections for electrons and posi­ 
trons will turn out to be the same within any first 
order theory (such as the Born approximation) and 
the proton-molecule cross sections will have a similar 
energy-dependence behaviour. 

Moreover, because of the repulsive nature of the 
static potential for proton scattering, the resonances 
usually detected for low-energy electron scattering 
(representing properties of the combined system of 
n + I 'molecular' electrons) should be less likely to 
appear; if they exist they should show themselves 

rigid rotor. According to the standard treatment the 
problem is in fact reduced to solving a set of coupled 
equations [ I I] . 

{c/2 +K
2- Qi(Qi+l)}F1(r) = :I: V1 (r)F1(r) (2) 

d,2 1 ,2 1 m 1m m 

where the channel numbers (i,k) label both the 
rotational level of the target (j) and the partial-wave 
angular momentum (Q). A good quantum number is 
given by the total angular momentum J and the 
relative energy for the system is embodied in the 
wave vector Ki. 

Whenever a multipolar form can be used for the 
potential of equation (1) one can write: 

Vi~(r;R) = 2µ<il V(r;R)lm> 
= 2µ :I: Vx (r ;R) A~ (j'Q';jQ) (3) 

X 

where the A-matrix can be written in the form: 

A{ (j'Q;jQ) = (-)i'•Q-J [(2j+ 1)(2Q+ 1 )] ½ W(iQj'Q' JX)(QXQ')0 (i'Aj')o (4) 

For homonuclear diatomic system, X only assumes 
even values; it then follows from the above Clebsh­ 
Gordon coefficients that the relevant potential de­ 
couples equation (2) into at least four different sets 
corresponding to even-even, even-odd, odd-odd and 
odd-even values of (J,Q). Further decoupling is 
obtained from the chosen values of X and the 
particular l j i set. 

Each cou pied set is solved for the open channel 
K-matrix whose eigenvalues give the channel phase 
shifts, since the standard eigenphase equation can be 
written as: 

K = U' tan li U (5) 

where U is a real orthogonal matrix and tan li a 
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diagonal matrix. The partial cross section is then 
given via the T-matrix as: 

(21 + I) 
j I:----,---:-; 

Uj->j K2,(2j +I) 
J 

J+J J+j' L L IT1(j'£'.-jQ)/2 
Q= IJ-jl k=IJ-j' I 

with 

TJ(j'Q';jQ) = ojj'oQQ' - s/,Q•+jQ 

and 

(6) 

(7) 

Kf = K~ -T{j(j+J)-j0(j0+1)} (8) 

io being the lowest rotational level included and kl /2µ 
the associated relative kinetic energy. 
The total cross section for the relevant transition now 
becomes: 

(9) 

Recognising that the electronic motion is rapid 
when compared to nuclear motion (I 2] . one can 
assume an effective field depending upon nuclear 
coordinates, and hence regard the nuclei of the 
target+projectile system as adiabatically moving on a 
many-dimensional potential energy surface. 

Instead of computing such a surface over the 
whole relevant space for scattering encounters from 
some ab initio model for the effective electronic 
Hamiltonian, one can attempt a possible partitioning 
of the various contributions in the following form: 

Here the VHF(r',R) represents the potential generated 
at r' by the electronic and nuclear charge distribution 
of the molecule as given by the Hartree-Fock bound 

r',Pµ11 an element of the bond-order m~trix, and the 
indicesµ and II range over all orbitals on all centres a. 

VcT includes the contributions due to electronic 
charge transfer over the incoming proton, i.e. is a 
measure of the charge density variation on the target 
molecule during encounters. They are usually re­ 
cognized to be small for strongly bonded systems (3) 
and will be tentatively disregarded in the present 
treatment. 

i-;,b and Vp01 contain respectively the centrifugal 
barrier due to the various partial waves contributing 
to the target expansion and the polarization contri­ 
but ions already indicated in equation ( 1 ). 

In order to represent properly the nuclear singu­ 
larities contributing to the short-range interaction 
with the static mean field, we have performed a one­ 
centre expansion of the bound Molecular Orbitals 
given by the MO-LCAO-SCF description of some 
typical diatomic systems like N2, CO and HF l 13, 14 I 
and have used them to construct the static potential 
surface of equation (JO): 

14 
VHF(r;R) = Vstatic(r;R) = L VA.(r;R) PA.(cos t?) (13) 

).,=O 

Such a description was already shown to be very 
effective in treating electron-molecule scattering at 
low energies (14,15). Moreover, it represents a 
collision-oriented version of the static potential model 
which recently has been given a great deal of 
attention (16,17). 

It is, however, well known from electron-atom 
scattering studies (12), that the polarization force 
which arises from a temporary and partial excitation 
of the molecule during the encounter has an important 
influence on the scattering of slow charged particles. 
Therefore we have included such an effect, indicated 
by the second term on the right hand side of equation 
(I 0), by 'mimicking' its behaviour in the inner region 
of the molecule and smoothing out the usual 'switching' 
technique previously used [ I 8]. 

= -t(;,:)e2 + a'(:,~)e2 P2(cos rn f [l-exp(-y)) (14) 

orbitals: 

(I 1) 

where q is a structureless point charge located at 

where -y = (- ;
0
)6. The last term on the right 

represents a cut-off factor with one free parameter 
(r0), removing singularities from Vp01(r;R) which now 
behaves as r2 near to the origin. The parameter was 
adjusted for the point charge of the electron-scattering 
problem so that the experimantal resonances of the 
elastic cross sections could be well reproduced with 
the given static potential [ 13, 19) . In other words, 
equation ( 14) takes from other theoretical models the 
necessary knowledge to describe the perturbing effects 
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· of a positive structureless charge approaching the 
target, i.e. the simplest basis for a protonation 
reaction potential. 

The homonuclear diatomics are the simplest target 
molecule for which a systematic study of static 
potential surfaces can be performed. We began with 
the N2 system for which an extensive.analysis of the 
cusp behaviour and asymptotic values of the multi­ 
polar coefficients had already been performed [ 14) . 

A critical examination (20) of SCF wavefunctlons 
of various accuracies suggests that minimal basis sets 
(MBS) and semiempirical methods manage to repro­ 
duce, albeit qualitatively, only the first few termsof 
the expansion (3) and in spatial regions very close to 
the molecule, thus failing both in giving correct cusps 
and realistic long-range terms. 

Fi •• re I: Proton potential enetl)' aurface (Kcal/mole) 
retultlni from the static chup distribution of the pound· 
state N2 molecule. 

Fi •• re 2: 
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Same as flaure I for the f'U tuget system. 

Figure 2 shows again our results for the CO 
molecule, using the rather extended basis set of STO's 
reported by Mckean and Yoshimine (22) to construct 
the VHF up to about 25 au. from the centre of mass 
of the Jr-CO system. The lone-pair region of the 
Oxygen atom presents here a much deeper minimum 
than before (49.7 Kcal/mole at 3.44 Bohr radii from 
centre-of-mass), but the attractive well is by and large 
more evident for reaction paths impinging on the 
'multiple' bond of the system: a steeper basin then 
appears, at about 65° and 2.302A, with a minimum 
of 637 .8 Kcal/mole. The different nuclei cause large 
changes of sign for the various multipolar components 
and this is also reflected in the overall behaviour of 
the static surface. 

Polarization effects are obviously very. important 
in the subreactive region we are examining, and this 
is shown by the changes on the adiabatic potential 
surface when such effects are· included. The cut-off 
parameter was adjusted to be equal to 1.592 au, thus 
reproducing the experimental 2 ng resonance of the 
e· - N2 scattering [ I 9) process. The physical 
simplifications here introduced implies negligible 
charge-transfer in going from positron to proton 
scattering, a fact already suggested by experiments 
(3,4) but which certainly needs further investigation. 

Figure I shows the present results with only the 
VHF term of equation (12). Chemical intuition is 
satisfied by the shallow basin existing along the bond 
distance and the steeply repulsive field closer to the 
nuclei: electronic attraction does not manage to offset 
the main repulsive character of the mean static field. 

The large class of simple molecules possessing 
permanent dipole moment has received considerable 
attention in recent times, since in a quantum mecha­ 
nical treatment the electric dipole field exhibits a 
critical binding property for non-neutral particles (21). 
Moreover, because of the very long-range nature of 
this interaction, there is considerable contribution 
from partial waves with large l! values so that in the 
inner region the lower partial wave modifications do 
not cause a drastic change in the total cross section. 

\ .. • 
Fi111re 3: Po!ari,zation contributions to the static potential 
aurface of the H - IV 2 system. 
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The results are reported in figure 3 where sub­ 
stantial differences appear from the case of figure I: 
the more polarizable bond region has now become 
attractive thus overpowering the repulsive, anisotropic, 
character of the electric quadrupole term. The lone­ 
pair region has been affected in an analogous manner 
thus deepening the previously shallow well. The 
minima now appear at 17 =0° and 90°, with r=3.13 au 
and 1.68 au respectively. 

The method used for solving the coupled equations 
(2) within the Arthurs and Dalgarno formalism was 
the De Vogelaere method (23), a fourth-order step­ 
by-step method based on difference formulas and 
already used for both neutral-molecule scattering 
[24] and electron-molecule collisions [ I 5) . 

,c I \ 

\ , l M'- H1 STATIC ONLY 
0 I ,. ' -, I ·oo i J ClolA,,.lff.t.$ 

,c l 

INlllGT{O W-1 

Figure 4: Energy behaviour of the putial cross section in the 
neu threshold region for J=I. The matrix elements of equa­ 
lion (3) were computed via the potential surface of figure I. 

The effect of possible resonances at low energies 
is illustrated in an exploratory way by figure 4 on 
the J = I partial cross section when j = 0 and j = 2 
rotational states are coupled: one sees that no re­ 
sonances seem to be superimposed on an oscillating 
background contribution, contrary to what was found 
for neutral projectiles [24] or for electron scattering 
(19) but as expected from the main repulsive 
character of VHF· 

The relevant results for }[t-N2 when polarization 
contributions were included are reported in figure (5), 
and the marked increase of oscillations seems to 
indicate a greater presence of superimposed resonances 
when a more realistic form of the interaction is 
employed. 

400; 

··t/ ~ ""'-"' 
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Figure S: Same as figure 4, with V Pol included when 
computing the matrix elements of equation (3). 
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A Critical Look at Conjectures in the 
Theory of Autoionizing States of Atoms 

C.S.Sharma* 

The present status of the theory of autoionizing states of atoms is reviewed with the particular aim 
of isolating and formulating precisely the outstanding weaknesses of the theory. Particular attention 
is paid to the following conjectures: 

TI1e autoionizing states are supposed to correspond to certain complex eigenvalues of the 
Hamiltonian, even though according to one of the most fundamental postulates of quantum 
theory a Hamiltonian is necessarily self-adjoint and therefore cannot have complex eigenvalues. 
One of the weaknesses of the Feshbach formalism is that there is no way of defining the projection 
operators uniquely, but it is generally believed that the calculated energy provided the level-shift 
has been properly included is independent of the choice of the projection operator used in the 
calculation. The source of the belief is traced and the underlying argument is shown to be fallacious. 
There are many derivations in the literature of the so-called golden rule for the calculation of the 
decay constant of an autoionizing state; some of these derivations are believed to be rigorous. 
It is shown that this belief is unfounded. 

Introduction 

Hylleraas [I) obtained a value for the energy of 
the ground state of helium which differed by less 
than 0.000 015 e V from the mean experimental value 
at a time when the limits of experimental errors were 

. ten times higher and this indeed was one of the finest 
triumphs of quantum theory. Calculations of much 
greater accuracy are now possible on most bound 
states of helium. However, when one comes to 
consider the doubly excited states of helium which 
give rise to the so called autoionizing states, the 
situation is not so happy. Some of the best cal­ 
culations on such states have been done for the 
2s2p1P state of helium: the difference between the 
best calculated and experimental values is 0.012 eV 
and the bounds on the experimental error (±0.015 eV) 
have the same order of magnitude. The task of 
improving the accuracy of either the experimental 
of the theoretical value is fraught with difficulties of 
the most fundamental kind because the energy of an 
autoionizing state is not well-defined. The purpose 
of this work is to describe briefly the model on 
which the more successful calculations are based and 
then to discuss the difficulties in finding rigorous 
definitions of some of the concepts used in the model. 

The Model 

The model which is relatively more successful in 
predicting the position of an autoionizing state is 

based on the Feshbach formalism (2.3 j. In this model 
the underlying Hilbert space is divided into two 
orthogonal subspaces so that the corresponding pro­ 
jection operators P and Q satisfy 

P+Q=l (I) 

and 

PQ = QP = 0 (2) 

If the operator QHQ where H is the Hamiltonian of 
the system has a point eigenvalue Is in that interval 
of the real line which constitutes the continuous 
spectrum of H, then this eigenvalue may be associated 
with an autoionizing state and if it is then the energy 
of the autoionizing state is 1/. + t.& where 

t.& = .?'<<1>0 IQHP I ntow;» (3) 
&-QHQ-PHP 

<1>0 is the eigenvector belonging to the point eigenvalue 
Is and .c;,, denotes that the Cauchy principal value is to 
be taken of the integral implicit in the expression on 
the right hand side. The projection operator Q is 
not uniquely defined, but it is generally believed that 
Is + t.& is and only if this belief is well founded, the 
energy of the autoionizing state in this model can 
be said to be well defined. With the energy of an 
autoionizing state is associated a 'width' r and this 
is related to the decay constant of the autoionization. 
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The value of r in this formalism is given by the so 
called Fermi's golden rule: 

r = 211<<1>01QHP6(& + A& - H)PHQ'r<l>0> (4) 

For a judicious choice of Q the point eigenvalue & 
corresponding to the autoionizing state is either the 
lowest or a low-lying eigenvalue (that is, it has only 
a finite number of point eigenvalues lying below it) 
and & can be calculated with great accuracy by a 
variational calculation based on either the Hylleraas 
(1] ortheHylleraas-Undheim (4] variational principle. 
Until recently there has not been any mathematically 
satisfactory method (that is, a method which does 
not use an approximation not bounded by calculable 
error terms) for the calculation of A&. Sharma and 
Bowtell (5] have recently described a method for 
this calculation which seems to be fairly satisfactory. 
In this method the integral for A& is converted 
into another one involving the solution of a non­ 
homogeneous differential equation and the singularity 
in the original integral manifests itself in the form 
of an undetermined additive term, which is the 
solution of the corresponding homogeneous problem, 
in the desired solution of the non-homogeneous 
problem. The new integral is free from singularities. 
Sharma and Bowtell [ 5] have developed a procedure 
for removing the unwanted homogeneous solution 
and their work provides a rather novel method for 
the evaluation of the Cauchy principal value of the 
integral in equation (3). The results of this method 
of calculation are justified not only by an improved 
agreement with experiment for each of the three 
cases for which all the numbers arising out of a 
single coupled set of calculations provide the values 
of A& but also by internal self-consistency (the theory 
tells us that two of the numbers calculated with the 
help of solutions of two different differential equa­ 
tions should have the same value and they do). 
Furthermore the procedure was developed with the 
help of purely mathematical arguments. In view of 
all this one could be tempted to say that this 
procedure is quite rigorous. However, it is a search 
for a genuinely rigorous justification of the method 
which has led the author to question certain aspects 
of the model. 

Before concluding this section it should be pointed 
out that the author and his collaborators have 
developed their own algorithms for the calculation 
of both & and r for autoionizing states of atoms, 
the first of these is described in [ 5] and the second 
will be described in due course elsewhere. Due to 
lack of facilities and resources it has not been possible 
to use these algorithms for the actual calculation of & 
and r but since these methods are based on sound 
mathematical principles one can confidently predict 
that in due course they would become one of the 
standard algorithms for carrying out these calculations. 

The Mathematical and Logical Foundations of 
Quantum Theory 

Since the criticism which the author wishes to 
make is of the most fundamental nature, it might be 
worthwhile to recapitulate briefly the mathematical 
and logical foundations on which the edifice of 
quantum theory is built. 

Assuming that it is known empirically that laws 
governing observations on a quantum system are 
essentially probabilistic, that not all observables can 
be simultaneously observed and that certain aspects 
of the collective behaviour of an ensemble of non­ 
interacting identical quantum systems can be 
described in terms of a single system which represents 
a kind of average system, one can, by mathematical 
and logical analysis, deduce the structure of the 
propositional calculus for the description of a system 
which behaves in accord with the above assumptions. 
The abstract mathematical structure which provides 
the basis of this description is called a a-complete 
orthocomplemented weakly modular lattice. A study 
of lattice theory more or less immediately suggests 
that the lattice structure of a separable Hilbert space 
might provide a concrete realization of the structure 
of this particular lattice and a study of abstract 
Hilbert spaces confirms that this is so. Thus a Hilbert 
space provides a possible model for the description 
of a quantum system and if this model is adopted 
then the postulates of formal quantum statics follow 
rigorously from the description of a quantum system 
in terms of its propositional calculus. These pos­ 
tulates are: 
(a) There is a bijective correspondence between the 
states of a quantum system and the positive self­ 
adjoint operators of unit trace on a Hilbert space JC 
of dimension K0 over C. Tile pure states are ill bi­ 
iective correspondence with the projection operators 
on one dimensional subspaces of JC. (Note that such 
projection operators are positive self-adjoint operators 
of unit trace and that it is this correspondence which 
enables one to represent a pure state by any unit 
vector in the range of the corresponding projection 
operator.) 
(b} There is a bijective co"espondence between the 
observables of the quantum system and self-adjoint 
operators on JC. If an observable corresponds to the 
operator A then the expectation value of the obser­ 
vable in a state which co"esponds to the operator S 
is trace ( AS). (For a pure state S is a projection 
operator on a one-dimensional subspace, in this case 
if u is any unit vector satisfying Su = u, then it can 
be shown that the expectation value of the observable 
in this state is Trace (AS)= <ulA iu>.) 

In order to get the postulate of quantum dynamics 
one assumes that the time evolutions of the probability 
distributions associated with the system are continuous 
and that the time evolution preserves convex com­ 
binations of states. After some work one arrives at 
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the postulate of quantum dynamics: The time 
evolution of a quantum system is determined by a 
one-parameter unitary group U1 of automorphisms 
of the states S such that for each sequence o:; 
in S and each real positive sequence { r;/ with sum I 

for all t;;,, 0. 

(5) 

This brief description is based on the author's (6) 
exposition of the works of Birkhoff and von Neumann 
[7], Gleason (8) and Mackey [9]. This model is 
supposed to provide a good description of quantum 
phenomena only when relativistic efforts are ignorable. 
It has not been proved that this model is the only 
possible one consistent with the basic assumptions, 
but this is the only model we have which has sound 
mathematical and logical foundations. 

When calculations are done on the bound states 
of atoms, all the concepts and formulae used in the 
calculations are completely consistent with the above 
model. The purpose of the present paper is to show 
that many of the concepts and formulae used in the 
theory of autoionizing states are such that not only 
they cannot be reconciled with the above model 
but cannot be consistent with any mathematically 
meaningful model. 

The Complex Eigenvalue 

The Feshbach model is a formalism and justifies 
itself by claiming formal equivalence with the complex 
eigenvalue theory which is supposed to have a better 
foundation. The idea of a complex eigenvalue is a very 
old one and is originally due to Garnow [I O] . Since 
then perhaps more has been written on this subject 
in both mathematics and physics journals than on 
any other single problem of quantum theory. By 
analytically continuing Green's function of the re­ 
solvent of the Hamiltonian to the second sheet one 
gets an operator which has complex eigenvalues. The 
real part of a complex eigenvalue is supposed to 
define the energy and the imaginary part the width 
of the autoionizing state. This description is obviously 
inconsistent with the model described above: since 
the operator has a complex eigenvalue it cannot be 
self-adjoin! and therefore it does not correspond to 
an observable. However, it is known by experience 
that calculations based on the complex eigenvalue 
theory (or an equivalent form of the theory) do 
provide good approximations to both the positions 
(on the energy spectrum) and the widths of these 
states. Furthermore the use of complex dynamical 
observables is quite common in both hydrodynamics 
and electrodynamics and therefore it could be possible 
to add an extra postulate to those of formal quantum 
theory to get a more powerful model. Though an 

early attempt on these lines was tentatively made 
more than thirty years ago by Kemble [ 11). this 
extra postulate does not yet find a place in the 
standard elucidations of quantum theory. One finds 
that in most texts assumptions regarding the complex 
eigenvalue are invariably introduced surreptitiously 
through the back door. 

As the author sees it the purpose of theoretical 
science is to establish bijections between physical 
reality and abstract mathematical structures and 
whenever this is done in a meaningful way one gets 
a good mathematical model for the description of 
physical reality. A concept is mathematically meaning­ 
ful if and only if it is well-defined and something is 
well defined if and only if it has a unique meaning. It 
is precisely here that one meets the most fundamental 
difficulty. The Hamiltonian H of a single system is 
a single operator which is self-adjoin! (or at least 
essentially so) and there is no way in which it can be 
made to yield a complex eigenvalue other than by 
making a change in H. The complex eigenvalues are 
not obtained by making a completely arbitrary change. 
One writes Has H = H0 + H1 where both H0 and H1 
are self-adjoin! (or essentially self-adjoint), then a real 
parameter E is introduced in the second term to yield 
a family of operators H0 + eH1 to which H belongs 
(for e = I); E is then allowed to take complex values. 
This is a somewhat simplified account of how non 
slef-adjoint operators are obtained for these problems 
The most up to date and rigorous accounts follow 
one of the following two prescriptions: 

(a) H1 is factorized into two operators thus 
H1 =AB, thenAHo+E1,-,B is analytically 

continued to complex values of E, the poles of 
this continuation are called resonances [12,13]. 

(b) A similarity transformation of H is made with 
the help of a dilatation U(J) defined on L 2(R") 
by 

(U(V)f)(r) = e30012 f(e° r) 

H(a) = U(0) H U(0f1 

(6) 

for complex values of 0 this yields a non 
self-adjoint operator 

(7) 

which may have complex eigenvalues which 
are called resonances [ 14, 15] . 

It becomes clear from the work of these authors 
that a complex eigenvalue is not an intrinsic property 
of the total Hamiltonian H, but of a pair (H,H0) 

(note that once H0 is defined H1 gets defined too: 
H1 = H-H0). Simon (15) argues that such a pair 
is well defined in two body scattering: H0 is the 
Hamiltonian when the two particles are an infinite 
distance apart. However, this concept cannot be 
easily extended when scattering involves more than 
two particles. For example in the case of He•-e 
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scattering the asymptotic Hamiltonian is (in natural 
atomic units): 

2 2 Z Ho = -½V1 - ½Vi - - r, 

and then 

Z I 
-+­ 
'2 '12 

(9) 

However, since it is impossible to distinguish between 
the first and the second electron it could be argued 
that H0 should be symmetric in r1 and r2. Should 
we now take 

2 2 z z Ho = -½Vi - ½\Ti - - - - 
r1 r2 

or should it be 

z 
2r2 

& +~& 

? 

(8) 

(10) 

(II) 

In this case the pair (H ,HO) is not at all well defined 
and in the most successful calculations HO includes 
part of ,:

2 
as well. 

Thus the complex eigenvalue of the scattering 
problem is not well defined for a system consisting 
of more than two particles. What is worse that 
not all poles (see, for example, [16)) one gets in 
this way correspond to resonances. Unless these 
difficulties are circumvented, there cannot be a 
rigorous theory of resonances. 

It is generally believed that though the Q-operator 
of the Feshbach formalism is not uniquely defined 
and both & and ~& depend on Q, & + ~& is unique. 
This belief corresponds to the hope that the complex 
eigenvalue is an intrinsic property of the total 
Hamiltonian H which according to Simon [15) is 
clearly not the case. What then is the source of this 
belief'? Let us look at the corresponding problem 
for an isolated point eigenvalue X of H As long as H0 

has a point eigenvalue X0 which can be enclosed 
together with X in a closed contour C in the complex 
plane in such a way that C neither encloses any other 
eigenvalue of either H or H0 nor passes through a 
point in the spectra of either Hor H0, a convergent 
perturbation expansion of X exists and provided the 
calculations are carried out to sufficiently high orders 
no matter what H0 is chosen one will always get the 
same value· of X on summing the perturbation series 
[17,18). An isolated point eigenvalue of H, of course, 
represents the energy of a bound state. It is analogy 
with this case which has led to the above mentioned 
belief. However, for the autoionizing case no contour 

C with the requisite properties exists; the formal 
perturbation series for different choice of H0 are 
necessarily different [I 9] and carrying out calculations 
to higher orders is not practicable. In all probability 
all higher order terms in the formal expansion diverge 
(there already is a singularity in ~& which has to be 
removed by taking the Cauchy principal value). In 
fact if it could be proved that & + ~& is unique, this 
would be formally equivalent to proving that the 
resonance poles are intrinsic properties of the total 
Hamiltonian H thus contradicting the works of 
Howland (12,13) and Simon [IS). 

The Golden Rule 

While developing an algorithm for calculating the 
width according to the golden rule the author became 
interested in finding a derivation of the rule which 
could be acceptable to mathematics students as a 
deduction. from the postulates of quantum theory. 
The author received advice from numerous kind 
experts: in each case he was directed to look up a 
perfectly rigorous proof by a named author and in 
each case he found a justification based on plausibility 
arguments. In view of the foregoing discussion the 
precise difficulties are evident: 

(a) One needs a perturbing term H1 which causes 
the transition and we have already seen that 
there is no unique way of defining H 1 • 

(b) The golden rule does not have a prescription 
for going to higher order terms. 

(c) The rule needs the value of & +~&which itself 
is not uniquely defined. 

TI1e width calculated by the golden rule thus depends 
heavily on the choice of HI and as there is no unique 
way of making this choice r calculated by this rule 
is not well defined. It is needless to say that a rule 
for an ill-defined quantity cannot possibly have a 
rigorous derivation. Furthermore, in its more usual 
form the formula contains a continuum wavefunction 
(that is, a function with a Ii-function normalization): 
such wavefunctions are outside the realm of rigorous 
quantum mechanics; Though the form used in 
equation (4) circumvents this particular difficulty, for 
an actual calculation one still has to use such a wave­ 
function. An even more meaningful expression can 
be given in terms of spectral measures [ I 5] , but this 
does not make it either more rigorous or more 
amenable to actual computation. The golden rule is 
a formula which calculates to the lowest order the 
transition rate between two states under a perturbation; 
until the perturbation is well defined by the physical 
problem it is difficult to justify the validity of 
computations based on this rule except on purely 
empirical grounds. Finally the relation between line 
width and transition rate depends on a tenuous 
interpretation of the time-energy uncertainty relation· 
and does not have a rigorous justification. 
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~ S*8te or Mixed State 
L..:. JU,. ' . 
,rAn isolated quantum system cannot have a width 

in its energy nor can it have a decay constant. Both 
these concepts are essentially statistical as are most 
of the concepts peculiar to scattering experiments. 
One is not talking about what happens when a single 
electron hits a He' ion, but a whole ensemble of 
such occurrences. The autoionizing state, therefore, 
is quite likely a mixed state in which case it cannot 
be represented by a wavefunction (note that a linear 
superposition of wavefunctions does not give a mixed 
state but a pure one!). As explained above such a 
state can be represented only by a positive self-adjoin! 
operator of unit trace, It is possible that this trace 
class operator A which represents such a state does 
not differ very much from the projection operator 
14>0><«1>0 I on the subspace spanned by the eigen­ 
function «1>0 of QHQ belonging to the eigenvalue 8. 
for the more successful choice of Q. This might 
explain why the Feshbach formalism with a particular 
choice of Q consistently gives good answers. At 
present this is just another conjecture, but the author 
is trying to construct a model based on a mixed state 

. representation of the autoionizing state. Whether or 
not such an attempt succeeds it is expected that at 
the end one will have gained a better understanding 
of the structure of a Hilbert space and a better insight 
into the phenomenon of autoionization. 

Concluding Remarks 

The theory of autoionizing states contains a number 
of unresolved difficulties of the most fundamental 
kind. Nevertheless, the model most commonly used 
(the Feshbach formalism) is able to predict for helium 
both the positions and the widths of these states with 
accuracy comparable to that of experiment. Hence 
the model is directly useful to the experimentalist in 
locating a resonance and has phenomenological and 
empirical justifications. This suggests that the model 
though not deducible rigorously form the fundamental 
postulates of quantum theory is nevertheless a good 
description of an autoionizing state. It is, therefore, 
quite likely to have a heuristic value in the discovery 
of a more satisfactory model. 

The author believes that it is a healthy attitude 
to have a somewhat sceptical attitude towards the 
theory one is using in one's calculations: this leads 
not only to a better understanding of the theory itself 
but often helps one in finding both better models and 
better algorithms for the computations. Quantum 
chemists are often criticized for carrying out lengthy 
calculations for the sake of calculations without 
looking carefully into precisely what or why they are 
calculating. It is hoped that this work will show that 
not all quantum chemists are guilty of this failing. 

Before concluding the author would like to draw 
· attention to a paper by Mayers et al. [20] which 

has laid to rest another popular misunderstanding 
about autoionization and correlation. Many experts 
have been known to assert that correlation by keeping 
electrons apart lowers the energy and hence makes a 
system more stable. Therefore in the Hartree-Fock 
approximation where correlation is completely ignored 
all autoionizing states have 'run away' solutions. 
Mayers et al. [20] have shown convincingly that the 
contrary is true: in the Hartree-Fock approximation 
autoionizing states are bound states and it is a certain 
part of the correlation which causes these states 
to decay. 
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Experimental Results on Initial Energy 
Distributions in Simple Atom-Molecule 
Reactions Producing Hydrogen Fluoride 

P.Beadle, N.Jonathan and S.Okuda* 

The aim of this brief review paper is to bring to the attention of theoretical chemists the experimental 
information which is now available for energy distributions in some simple atom-molecule reactions. 
Particular emphasis is placed on reactions which produce hydrogen fluoride. Data from infrared 
chemiluminescence experiments for the reactions of atomic fluorine with hydrogen, methane, the 
hydrogen halides and other molecules, are presented and compared where possible with the results 
from molecular beam experiments. Initial vibrational and rotational energy distributions are given. 
These are discussed along with the relative rate constants. The need for trajectory calculations 
using 'good' potential surfaces is pointed out in the light of features of the experimental results. 

Introduction 

Tne infrared chemiluminescence technique is one 
which provides complementary information to that 
obtained from molecular beam studies concerning 
initial energy distributions in simple atom-molecule 
reactions of the type 

A + BC + ABv>o + C (I) 

In certain cases it has also been possible to obtain 
some information regarding reaction mechanisms (I, 
2,3) .. Another use has been to place more accurate 
limits on bond dissociation energies. However, the 
major use is undoubtedly in providing accurate in­ 
formation on the initial vibrational and rotational 
energy distributions in reactions such as (I). In this 
respect the reactions which yield either hydrogen 
fluoride or deuterium fluoride are particularly im­ 
portant. Not only do they form the bases of efficient 
chemical laser systems, but also, because of the ease 
with which atomic fluorine abstracts either a hydrogen 
or deuterium atom from a molecule, they provide 
the most extensive series of reactions which can be 
studied. Under such circumstances it is possible to 
find a series of related reactions whereby the factors 
which may be of some importance in determining 
initial energy distributions may be varied in a sys­ 
tematic fashion. It is then possible to compare the 
information with predictions made using trajectory 
calculations and various semi-empirical potential 
energy surfaces. However, such an approach is not 
entirely satisfactory and the need for more detailed 
quantum mechanical calculations is evident. The main 
purpose of this paper is to point out various 

experimental results which have been obtained and 
where perhaps better calculations are necessary. 

Experimental 

The spectrometer used for detection of infra-red 
emission has been described on previous occasions [ 4, 
5,6]. TI1e reaction cells were designated as methods 
1 and II by other workers (7]. 

Method I has been described in earlier work (4,5 ,6) 
and was of the basic flow-tube design. It consisted 
of a stainless steel tube with a Teflon liner. Infra-red 
emission was detected at four lithium fluoride win­ 
dows placed equidistantly down the tube. Since time 
resolution of the emission was important, runs were 
only made under conditions in which the infra-red 
emission at the window which detected back diffusion, 
was less than 5%. The monochromator was mounted 
on rails running parallel to the flow-tube so that it 
could be reproducibly focused on any of the windows 
by a worm-screw assembly. The populations of the 
various vibrational energy levels were determined 
from the fundamental vibration-rotation spectra using 
the Einstein transition probabilities calculated by 
Cashion [8). Since the flow-tube pressure was in the 
range 75-100 mtorr it was found that in all reactions 
studied except the F + HI reaction, that the 
rotational energy level populations followed a Boltz­ 
mann distribution corresponding to temperature in 
the range 300-350 K. Determination of initial 
vibrational energy level distributions was complicated 
by the short radiative lifetime of vibrationally excited 
hydrogen fluoride as well as by collisional deactivation. 
The technique used was to take measurements as a 
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function of time down the flow-tube and to extra­ 
polate relative populations back to zero time. 

Method II used the 'arrested' relaxation technique. 
In this method the reactant gases were mixed at 
pressures of 10-4 - I 0-5 torr in a 24" reaction cell 
which was continuously evacuated by means of an 
oil diffusion pump and appropriate backing pump. 
The reaction cell was equipped with two pairs of 
gold-coated mirrors to increase the light gathering 
power of the system. The reaction volume was 
surrounded as far as practicable by a copper shield 
which was continuously cooled by liquid nitrogen. 
This technique helps to maintain low pressures 
because of cryogenic pumping of some gases and also 
helps to 'arrest' the relaxation process. The latter 
phenomenon occurs because energetically rich species 
are trapped for sufficient time at the walls so that 

----- ---- ····----- -- 

is interesting because it is one of the simplest a tom­ 
molecule reactions which can be studied by the 
infra-red chemiluminescence technique. Because hyd­ 
rogen fluoride can be formed in high vibrational levels. 
this reaction provides a very thorough test of any 
potential energy surface used in trajectory calculations. 
This situation is to be contrustcd with tluu Iound 
for many other reactions where only a few vibrational 
levels can b~ populated. l lence these do not provide 
very sensitive tests of theoretical models. Reaction 
(2) has been studied using both the 'arrested' relax a lion 
[9) and the flow-tube [6] methods. The agreement 
between the experimental results for vibrational 
energy distributions is excellent as can be seen from 
table I. The arrested relaxation method gave the 
fractions of available energy distributed between 
vibration, and rotation as fvib :f,ot = 0.53: 0.03 
whereas the flow-tube method gives fvib = 0.58. 

Table 1: Relative rate constants k(v') for the reaction H + F2 + HF + F 

k(O) k(l) k(2) k(3) k(4) k(5) k(6) k(7) k(8) k(9) k(I 0) 

flowtube method 0.04 0.09 0.11 0.13 0.45 0.89 11.001 0.45 0.20 <0.04 <0.04 
(6] 

'arrested' relaxation <Jl.1 0.12 0.13 0.25 0.35 0.78 11.001 0.40 0.26 <0.16 
(9) 

------ ------------------------ 
they lose all their excess energy rather than undergo 
stepwise loss. The residence time of reactants in the 
cone of sight of the spectrometer is difficult to 
calculate because of problems of measuring pressure 
accurately and of knowing the effective volume of 
the system. The problems arise because one attempts 
to work with crude molecular beams of gases rather 
than with a diffusely mixed system. However, within 
these limitations, the residence time is thought to be 
<0.2 msec. The agreement between the product 
vibrational distributions measured for F + H2 by the 
two methods provides a useful check on the accuracy 
of the techniques. 

In general the 'arrested' relaxation method is the 
more useful in that in addition to measurement of 
initial vibrational energy level distributions, it also 
provides estimates of the initial rotational distri­ 
butions. However the flow-tube method provides a 
somewhat easier way of measuring vibrational distri­ 
butions; Boltzmannization of rotational energy making 
summation of populations in the various vibration­ 
rotation lines less difficult since in general problems 
of overlap are less in low J value levels. · 

Results and Discussion 

The reaction of atomic hydJ0gen with fluorine: The reaction 

H + F2 +HF,,,_ 1
0 
+ F t.H~98 = -98.9 kcal mole-• (2) 

1.0 

1 2 3 4 5 6 7 8 v' 

Figure 1: Experimental and calculated vibrational energy 
level populations for the H + F2 reaction 

The energy distribution has been calculated using 
trajectory calculations of a modified LEPS form (6]. 
The vibrational level energy populations for the 
H + F2 system along with the experimental findings 
are given in figure I. As can be seen, within the 
limitations of this semi-empirical approach the agree­ 
ment is reasonable. The data for rotational energy 
level distributions became available after the trajectory 
calculations had been completed. It is interesting to 
compare these in figure 2. One of the features of 
the LEPS type surface was that it predicted a too 
narrow distribution of vibrational energies. As a 
consequence it was not possible to calculate rotational 
distributions in the first three excited vibrational 
levels. Figure 2 shows that experimentally there is 
little change in rotational energy or its distribution 
as the vibrational excitation decreases. Hence there 
must be a correspondingly large increase in the 
translational energy of the products. The experimental 
results are broadly in agreement with these findings. 
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Table 3: Summary of results from arrested relaxation 

Figure 2: Experimental and calculated rotational level 
populations rm the H + F2 reaction 

We also believe that a test of a potential energy level 
surface should be the degree of accuracy with which 
it predicts the overall rate constant of the reaction, 
the A factor and activation energy. The values are 
given in table 2. 

Table 2: Experimental and calculated kinetic data for the 
reaction H + F 2 

R.a te Constant A Factor Activation 
at 300 K Energy _1 Reference 
cc.mol"! .-1 cc.mol"! ,-1 kcal mol 

1.8 X 1012 1013,3 1.5 (10) 

2.1 X 1012 1014-1 2.4 I 11 I 
2.3 X 1012 1014-7 3.2 calculated 

Within the accepted limitations of the LEPS type of 
potential energy surface, the agreement is satisfactory. 
However, there is a clear need for a less empirical 
surface which could be tested by the experimental 
data now available for this reaction. 

The reactions of atomic flucrine with hydrogen, hydrogen 
chloride and methane: These particular reactions are 
interesting in that their exothermicities are very 
similar. In each case only v'<;3 may be populated 
directly by reaction. 

The reaction of F + H2 has been studied inde­ 
pendently by other workers ( 12) using the 'arrested' 
relaxation technique. Their results for both vibrational 
and rotational energy level distributions are virtually 
identical with the ones presented here. In addition, 
the data are in very good agreement with those of 
flow-tube studies (4]. These results give us some 
confidence in the i.r. chemiluminescence methods . 
It should be added that the data are markedly different 
from those obtained by chemical laser studies [ 13). 

F+ H2 HCI CH4 

[v' 0.70 0.58 0.67 
<£·> 23.25 20.40 21.90 

kcal l:ior1 

IR 0.05 0.12 0.08 
<£R•> 1.56 4.36 2.59 

kcal mof1 

IT· 0.25 0.30 0.25 
<£T·> 8.32 10.53 8.18 

kcal mof1 

£TOTAL 33.25 35.06 32.72 
kcal mof1 

0.0 L-:0~--:-1 ---;-2--JJIV' 

Figure 3: Relative vibrational energy level populations for 
the reactions F + H2 CH4 and HCI. ---- F + H2 
-·-·-F+ en. -----F+ HCI 

A summary of the results obtained by the 'arrested' 
relaxation method is given in table 3. It can be seen 
that the fraction fv· of available energy which enters 
vibration, is very similar in each of the three cases. 
However the actual distribution between the three 
excited vibrational levels is rather different as can 
be seen from figure 3, In the F + H2 case markedly 
more of the HF is formed in the v' = 3 level than in 
the other two cases. In the case of the F + HCI 
reaction a considerably larger proportion of HF is 
formed in the v' = I level. This accounts for the 
lower fraction of available energy which enters 
vibration for this reaction. 
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Flsure 4: Experimental and calculated vibrational and 
rotational energy level populations for the F + H2 reaction 
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Ffaure 5: Experimental and calculated vibrational and 
rotational encqy level populations for the F + HCI reaction 

Fipre 6: Experimental and calculated vibrational and 
rotational energy level populations for the F + CH 4 reaction 

The differences between the reactions show up 
more markedly when one examines the experimental 
rotational energy level populations. The fraction f R. 
of available energy rotation is small in each case, 
although considerably larger in the F + HCI reaction. 
The reasons for the difference in f R' are obvious from 
figures 4, 5 and 6. There is a markedly greater 
population in the higher J levels for HCI reaction 
than the other two, although the same trend is evident 
for CH4 compared with H2. However, perhaps the 
most significant feature which arises from the rota­ 
tional analysis is the apparent double maxima in 
the methane case. 

The reasons for this are not obvious but there is 
little doubt that it is a real effect. Studies of the 
reactions of atomic fluorine with C2H6 show a similar 
double maxima and the effect is particularly obvious 
in the corresponding reaction with SiHCl3 [ I 4) . 

The results of trajectory calculations are shown in 
figures 4, 5 and 6. The calculated vibrational energy 
level distributions are in satisfactory agreement with 
the experimental results but as we mentioned earlier, 
this is not a very severe test of a potential energy 
surface since only levels v' ..; 3 can be populated. 
The rotational level populations are in much poorer 
agreement especially for the v' = I levels and for the 
F + CH4 case. The former may be due to partial 
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collisional relaxation of HFt from higher levels 
although it is difficult to see why this should affect 
the v' = I level significantly more than the others. 
There is no evidence from the calculations for the 
double maxima. Hence one cannot be sure whether 
these are due to general inadequacies in the chosen 
LEPS surface or to the treatment of the methyl group 
as a single particle. It is not clear whether all reactions 
in which the departing species C in reaction (I) is 
a multi-atom group, yield double maxima. An 
examination of the reactions of atomic fluorine with 
hydrogen bromide and hydrogen iodide might help 
to clarify this point. However, up to the present 
time the phenomenon has only been observed when 
C consists of more than one atom. Since double 
maxima are not observed in the Ha case, the mass 
of group C does not appear to be the determining 
factor and hence one suspects that the HBr and HI 
reactions will behave similarly to Ha. 

Table 4: Calculated kinetic data for the reactions of atomic 
fluorine with hydrogen, methane and hydrogen chloride 

Reaction 
Rate constant 

at 300 K 
cc.moi-•s-• 

Activation 
A fac!?r_ 1 Energy_ 

1 cc.mol s kcal mol 

F + H2 

F + HQ 

2.2 X 1012 

3.1 X 1011 

4.6x 1011 

6.8 X 1013 

2.1 X 1013 

1.1 X 1013 

2.1 

2.5 

0.8 

The calculated kinetic data for the three reactions 
are shown in table 4. Unfortunately there are not 
good experimental data available for comparison. The 
relative rate constants for the three reactions have 
been measured to an estimated accuracy of±l0% [5]. 
The calculated results for H2 and HQ fit in quite well 
but the value for CH4 is low by about a factor of 6. 
Hence once again we find the poorest agreement be­ 
tween calculations and observed data in the CH4 case. 

The examples quoted illustrate the limitations of 
the classical trajectory calculations applied to this 
sort of problem. Although the general trend of energy 
distributions can be rationalized in terms of the 
semi-empirical surfaces and the type of energy release, 
and although such surfaces can be used to predict 
the effect of excess reactant energy, they fail to give 
a detailed picture. It is hoped that the information 
now forthcoming from the infra-red chemilumi­ 
nescence studies and from molecular beam techniques 
will stimulate more work from the quantum mecha­ 
nical standpoint. 
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Procedure for Averaging Differential 
Cross Sections over the 
Experimental Angular Resolution 
S.Bosanac and G.G.Balint-Kurti* 

Differential cross sections for collisions of molecules in the thermal energy range normally oscillate 
rapidly with angle, the oscillations becoming more rapid with increasing relative kinetic energy. 
The angular resolution in crossed molecular beam experiments is generally insufficient to resolve 
these rapid oscillations. A method is proposed for averaging differential cross sections over small 
angular ranges without actually evaluating them at many angles. The method permits the calculation 
of averaged cross sections, which are much more directly comparable with the experimentally 
determined ones than those evaluated without averaging. lllustrative calculations are presented for 
three examples. One for elastic scattering (Ar + Kr) and two for rotationally inelastic scattering 
(Ar + CsF and Ne + N 2 ). When the differential cross section oscillates rapidly, as it does in the 
first two cases, it requires less computational effort to plot the relatively smoothly varying averaged 
differential cross section, than to plot the non-averaged cross section. 

Introduction Theory 

Differential cross sections for elastic and inelastic 
molecular collisions in the thermal energy range 
normally oscillate rapidly with angle [I, 2). The 
angular frequency of the oscillations increases with 
relative kinetic energy and also, in general, with the 
masses of the collision partners. The detectors used 
to measure cross sections have finite apertures and are 
often unable to resolve these oscillations. A method 
is proposed for averaging the differential cross section 
over the angular resolution of the detector, without 
actually evaluating it at the large number of angles 
which would be needed to follow its oscillations. 
The theory underlying the method is given and three 
illustrative applications of the method are presented. 
The systems treated are the elastic scattering of 
Ar+ Kr and the rotationally inelastic scattering in 
model systems which represent Ar+CsF and Ne+N2• 

The results show that although it is faster to 
calculate the non-averaged differential cross section 
than the averaged one at a single angle, in order to 
follow the oscillations of the non-averaged cross 
section it must be evaluated at very many more angles 
than the smoothly varying averaged cross section. 
The time required to plot the highly oscillatory non­ 
averaged cross section may exceed rnanyfold that 
required to plot the averaged one. 

The differential cross section, in the centre of mass 
reference frame, for the scattering of two atoms 
whose interaction potential is spherically symmetric, 
is given by [3): 

(I) 

where Q is the orbital angular momentum quantum 
number of the relative motion, k is related to the 
relative kinetic energy by k2 = 2µ£/h2 and 'I is 
related to the phase shift by 

I ~• J 2 a.,, - (0)=-
2
1~(2J+l)r, ,. d, (0)1 J m +-J m 4k. J J m .jm m m 

J 

(2) 

The phase shifts liQ may be calculated by numerical 
solution of the Schrodinger equation or by approxi­ 
mate methods such as the JWKB method [4). 

For inelastic collisions of an atom with a rigid 
rotor diatomic molecule, the differential cross section 
in the helicity representation is given by [ 5) ; 

(3) 

Each of the quantities in this equation are essentially 
generalisations of those for the elastic scattering case 
of equation (I). The angular functions d:i,'m(0) are 

* School of Chemistry, University of Bristol, Cantock's Gose, Bristol, BS8 ITS 
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reduced representations of the rotation group [ 6) . The T-matrix elements T/m',im are related to the more 
commonly encountered ones in the total angular momentum representation [7) by a matrix transformation 
involving the Clebsch-Gordan (8) coefficients: 

r., ,. =·I:,i~-£'r.,n,-nUml-mljJ£O)(i'm'J-m'lj'JQ'O) (4) 
j m vjm ££ 1~,1~ 

The largest contributions to the differential cross 
section come from those total angular momentum (J) 
values for which the term (2J+l)rf,m',)m• is close 
to its maximum value, (see equation (3)). The value 
of J for which this term is a maximum will be denoted 
by JO• It is just a bit larger than the J value 
corresponding to the maximum in a partial integral 
cross section -J plot (9). If we neglect all the terms 
in equation (3) except that arising from the maximum 
contribution to the sum, then the differential cross 
section can be written as: 

For large J0 (andJ0)>m' and m) the asymptotic form 
of<i1,g,m(8) may be used (5,10): 

1 ( 2 )y, cos[J00+0/2+1r(m'-m-½)/2) 
d 0, (8) =- - · (6) 
mm rrJ0 (sinO)½ 

When this is substituted into equation (5) we obtain: 

order as the angular period (AO), the rapid oscil­ 
lations of the differential cross section will at least 
be damped and may not be observed at all. A recent 
report on molecular beams [ 11) indicates that the 
smallest attainable angular resolution should be be­ 
tween 0.3° and 0.8°, while a recent experimental 
paper [I 2) reports an angular resolution of A0d = 1.6°. 
In the present paper we use this latter value as 
representative of a typically attainable resolution. 
The values of J0 for which AO = 0.3°, 0.8° and 1.6° 
are J0 "' 600, 225 and I I 3 respectively. Total angular 
momentum quantum numbers of this magnitude are 
often important in molecular scattering experiments. 

If the angular resolution of the experiment is 
larger than or comparable to AO, the period of the 
oscillations in the true differential cross section, then 
it will be necessary to average the calculated dif­ 
ferential cross section over the experimental angle of 
resolution before a meaningful comparison between 

Thus the differential cross section (in this approxi­ 
mation is an oscillatory function with a period of 

(8) 

Even when full acoount is taken of all the terms 
arising from the summation over J in equation (3), 
we expect the differential cross section to exhibit 
oscillations with approximately the above period. 
if the resolution of the detector (A0d) is of the same 

cos2 (J00+8/2+1r(m'-m-½)/2] 

sin0 
(7) 

experiment and calculations can be made. 
averaged differential cross section is given by: 

The 

(9) 

where And is the solid angle spanned by the aperture 
of the detector. As Oj'm'+-jm(O) is a function of 0 
only, the integration over </l is trivially performed and 
we obtain: 

---- ------------- 

I {8+ 
2 sin0

0 
sin(AOd/2) J 

0
_ 0i'm'+-jm(0)sin0d0 (10) 

where 8± = 00 ± AOd/2. 
If the expression for the differential cross section equation (3) is substituted into the right hand side of equation 

( I 0), then the average differential cross section may be expressed as: 

0i'm'+-jm(8o) = 8k2 . 8 •. (AO /2) I: (2J+l)(2/+t)r.,*' . r.: I. 11r (Oo AO) j sin 
0
sm d J,J' Im ,1m Im .jm mm ,.. d (II) 

44 



where 

(12) 

For sufficiently large J and J' the angular functions u!11,111(0) may be replaced by their asymptotic forms. equation (6). 
The integration in equation (12) may then be carried out analytically. If we denote the integral evaluated using 
these asymptotic forms by c~:m. we can write: 

...JJ' - <-~,111(110,Alid) - 

2(JJ'r½rr-1 {(J-J'f1cos[(J-J')ll0]sin[(J-J')Alid/2] + (-lr-m' (J+J'+1r1sin[(J+J'+I)00] sin[(J+J'+I)A0d/2]f (13) 

Test calculations show that if J- Im 1-1 m' I> 1 I, 
and both Im I and Im' I are less than 3, then the 
asymptotic approximation of equation ( 6) is valid to 
better than 6%, for angles between 14° and 166°. 
The approxima lion becomes rapidly better as the 
angle moves towards the middle of the range and as J 
increases. For inelastic cross sections involving larger 
values of Im I it will be necassary to use the asymptotic 
form, equation ( 6), only for larger values of J. In 
the present calculations the analytic form of equation 
(13) is used when both J and J' satisfy the inequality 
J>Il+lml+lm'I. A test calculation on thej=O+j=2 
differential cross section for Ne + N2 (see figure 3 

The notation used for the integral of equation (I 2) 
in the various different cases is: 

JJ' , , 
= A111,111(0,A0d) forJandJ<II+lml+lml 

= B~;111(0,A0d) forJ<II+lml+lm'i<J' (14) 

Jjl I I = C111,111(0,A0d) for J and J;;.J I+lml+ Im I 

The averaged differential cross section, equation (I I), 
may therefore be written as: 

+ 
IO+lml+lm'I 

2 I: 
J=O 

00 I: 
l=I l+lml+lm'I 

(IS) 

where 
below) showed that it was only negligibly affected 
by imposing the more stringent condition that 
J>20+ lml+lm'I. 

If either J or J' are smaller than 11 + Im I+ Im' I, 
alternative means must be used to evaluate the integral 
of equation (I 2). When both J and J' are small 
(i.e. J<I 1 +Im l+lm'I) the integral is denoted by A~.~, 

· and it is evaluated using a two point Gaussian 
numerical integration rule [ 13). This should give 
relatively accurate values as the limits of integration 
are much smaller than the period of oscillation of 
the integrand. For J=IO the period of oscillation of 
the integrand is approximately I 8° as compared with 
a range of integration of Alid = 1.6° which we use 
here. When one of the J values is smaller and the 
other larger than 11 +Im I+ Im' I then the integrand is 
the product of a slowly varying function ( d~,111 (0) 
for J<l I+ 1ml +I m'[) and a rapidly oscillating one, 
equation (6). In this case we use a four point Filon's 
integration formula [I 3] which is specially desip~ed 
for such a situation, and denote the integral by BiI,111• 

JJ' , ..•... ,. J' R , = (2J + 1)(2J + I) Re[1 ,, , . T ., , . ] m m J m .jm J m .jrn 

Re denotes the real parts of a complex number and 
Ii JJ' is a Kronecker delta symbol. The most time 
consuming part of the calculation is the second 
summation (involving B~;m ), even though the third 
summation includes many more terms. This is 
because the various sines and cosines involved in 
evaluating crI:m, equation (I 3), can be computed 
and stored before the main calculation. If this is done 
each of the terms in the last summation becomes very 
simple to evaluate. 

Illustrative Applications 

As a test of our averaging procedure we applied 
it first to the elastic scattering of Ar+ Kr, for which 
both experimental results and calculated averaged 
differential cross-sections have already been reported 
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( 12]. We used the same potential (Schlier-type}, 
angular resolution and energy as those used (12]. At 
this energy (0.061728 e Y) 300 partial waves were 
required in the partial wave expansion, equation (I). 
Tile largest maximum in the partial integral cross 
section occurs at around l! = 160, from which the 
angular oscillations in the differential cross section 
may be estimated to have a period ti.1J"" 1.1°. Both 
the averaged and non-averaged differential cross 
sections, calculated using a semi-classical approxl- 

mation slightly better than the standard JWKB one 
(14), are shown in figure I. The period of oscillation 
of the non-averaged cross section agrees roughly with 
our estimate. The broken line corresponds to the 
differential cross section averaged over the angular 
resolution of the detector (1.6°}. Tl1is averaged cross 
section seems to be in good agreement with that 
reported by Parson et al. (12,15]. This example 
demonstrated that an averaging procedure is necessary 
before meaningful comparison can be made between 
theory and experiment. 
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Figure l: Dlfferendal acattertna cro• aectlom for Ar + Kr at E = 0.061728 e V. The 10lld line coneaponds to the non-averaged cro• 
aection whUe the broken line ii the CIOII aection averapd over the anautu relOlution or the detector (1.6 °) [ 12) • 
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Figure 2 shows averaged and non-averaged rota­ 
tionally inelastic U=0.,. j= I) differential cross sections 
(summed over the final m' quantum numbers) for a 
model calculation [16) on Ar+CsF at an energy of 
E=0.04eV. The required T matrix elements were 
calculated using an exponential semi-classical distorted 
wave approximation [ 17) which will be discussed in . 
a future publication. The number of J values needed 
for this case was 450 and the main maximum in the 
partial total inelastic cross section occurred at J= 240 .. 
From this we would estimate that the oscillations in 
the cross section should have an angular period of 
about AD"" 0.75°, which is close to the calculated 
period (figure 2, solid line) of .6.()"" 1.0°. The broken 
line in figure 2 shows the inelastic differential cross 
section averaged over an angular resolution of 1.6°. 
The averaged differential cross section varies smoothly. 
The rapid oscillations of the true differential cross· 
section cannot be observed using a detector of this 
resolving power. The time needed to evaluate a single 
point on the averaged differential cross section curve, 
equation (IS), (excluding the time for the evaluation 
of the T/'m',jm matrix elements) is about twice that 
required to evaluate a point on the non-averaged cross 
section curve, equation (3). As the non-averaged curve 
01Cillates so rapidly, however, many more points (most 
probably at least six times as many) are needed to 

--~lot it as to plot the smoothly varying averaged curve. 

• 
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F9are 3: Rolatio~ inewtic U=0.,. ;=2) differential crou 
•tlou for Ne+ N2• The solid line ia the non-averaged crou 
•tlon whUe the broken line correoponda to the croa aection 
l¥eraged over an angular reaolution of 1.6°. See ( 18 J for 
delal1 or the model uaed in the calculation 

When the angular resolution of the detector is 
smaller than the angular period of oscillation of the 
cross section, then the general form of the differential 
cross section will not be affected by the averaging 
procedure. Some of the details of the cross section, 
however, such as the heights of the peaks in the 
oscillations may well be affected. Figure 3 shows 

the averaged and non-averaged rotationally inelastic 
U=0.,.j= I) differential cross sections (summed over 
the final m' quantum numbers) for a model calculation 
onNe+N-i [18). At the energy used in the calculation 
(£=0.046 eV) 80 total angular momentum quantum 
numbers (J) were required. The partial integral cross 
section had two maxima at about/= 30 and 67. The 
figure shows oscillations with an angular frequency 
of about AD 9! 3° at low scattering angles. This is 
consistent with the qualitative concept that the low 
angle scattering is dominated by the large J partial 
waves, even though the maximum at larger J (= 67) 
makes a much smaller contribution to the total cross 
aection. TI1e averaging process does not significantly 
affect the form of the differential cross section, the 
peaks of the oscillations are, however, considerably 
damped. 

10• ,rf 30• 

Fipie 4: Differential crou aectiou for Ar + Kr at different 
enagiea. All the crou aectiona are ,,_a,ed over an angular 
rnolution or 1.6°. The relative kinetic enerpes corresponding 
to the different lines are (- - -) E = 0.061728 eV 

(++++) E = 0.064728 eV 
(- • • • ·) E = 0.058728 e V 

Besides the size of the detector, there are several 
either factors contributing to the resolution in a 
crossed molecular beam experiment. There is the 
angular spread of the molecular beams and the fact 
that they are not mono-energetic, but have a distri­ 
bution of velocities. When comparing theory with 
experiment, both of these factors should be taken 
properly into .account. In some cases it is possible 
that the averaging over the angular resolution of the 
detector will be the dominant effect and that it will 
be permissible to largely ignore the averaging over the 
velocity distributions in the beams. In figure 4 the 
effect of a variation in the energy by about 5% either 
way on the Ar+ Kr differential cross section is shown. 
The broken ·line corresponds "to the averaged dif­ 
ferential cross section at an energy of E=0.0617:!8 e V, 
the line with the plus signs is at E=0.0647:!8 eVand 
that with the minus signs at E=0.0587:!8 eV. The 
variation in the energy by 5% is seen to have a 
relatively small effect on the overall shape of the 
curve, and for this case the process of averaging over 
the angular resolution of the detector is seen to yield 
a cross section which, in the first approximation, may 
be directly compared with experiment. 
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Conclusions 

The procedure presented in the paper provides a 
method for the direct calculation of differential cross 
sections averaged over the angular resolution of the 
detector. Because the procedure does not involve 
following the details of the rapid oscillations of the 
non-averaged differential cross section, it should 
provide a faster and more convenient method of 
calculating differential cross sections for comparison 
with experiment. It is of special relevance to collisions 
between heavy molecules and/or collisions at high 
energies, In these cases the differential cross sections 
normally have angular oscillations which are too rapid 
for the detector to resolve. 
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A Theoretical Study of Vibrational 
Self-Relaxation Rates of HF 
K.Smith*, M.J.Conneely*t and A.R.Davies+ 

Calculations of HF vibrational self relaxation times have been performed using a theoretical model 
which treats the HF molecule as a simple harmonic oscillator and approximates the HF-HF interaction 
with a Lennard-Jones potential. Results will be presented of Q01 00(£) the vibrational de-excitation 
cross section and Q01 10(£) the vibrational-vibrational cross section both as a function of energy, 
and Ty_T the vibrational self relaxation time as a function of temperature. These results are compared 
with experimental values. 

Introduction 

Experiments: The vibrational relaxation rate of 
hydrogen fluoride is of current interest because of 
the extensive development of hydrogen fluoride 
chemical lasers [I] . To understand and predict the 
performance of these lasers a knowledge is required · 
of the collisional deactivation cross sections of 
vibrationally excited hydrogen fluoride. 

Airey and Fried [2] carried out the first measure­ 
. ment of the vibrational relaxation rate of HF (v = I) 
upon collision with itself, using a laser fluorescence 
technique. They· found that this self-relaxation rate 
was extremely fast at 350°K having a pr = 10.5 µsec 
Torr. This method has also been used by Hancock 
and Green [3-5] and by Stephens and Cool [6]. The 
latter's measurement at 350°K, of {JT is quoted in 
table I as 19 µsec - atmos., while that of Hancock 
and Green [3,4] is given as 11.5 µsec - atmos. at 
295°K. Green and Hancock [S] have studied theHF 
self-relaxation rate as a function of J line excitation 
frequency and found it to be independent of rota­ 
tional level excitation over laser transitions P1 +oC2) - 
Pi+o(9). (The theoretical model discussed in this 
paper neglects rotational motion of the colliding 
diatomic molecules). The laser fluorescence technique 
has also been used by Hinchen [7] to measure 
vibrational relaxation times for HF-HF at 295°K and 
over the range 300°K-1000°K. His results coincide 
with the shock-tube data, to be discussed below, 
above I 000°K. 

Shock tube studies of HF vibrational relaxation 
have been performed by Bott and Cohen [8] over the 
temperature range 1350 to 4000°K. They obtained 
a straight line Landau-Teller plot (PT versus r·1 '3) 
with a slope of about 30°, and compared their data 

with the predictions of three theories of V-T and V-R 
energy transfer. A similar experiment has been 
carried out by Blauer et al. [9] whose results were 
qualitatively the same as those of Airey and Fried [2], 
but smaller by a factor of three. Bott [ 10] has 
extended the temperature range of these results from 
460 to 1030°K and at 295°K. A Landau-Teller plot 
of these results also exhibits a straight line, but with 
a negative slope of about 60°, with pr = 19 µsec Torr 
at 295°K. This temperature range has also been 
investigated by Fried et al. [II] who obtained a straight 
line with a negative slope of about 45°. The various 
low-temperature results are presented in table I. 

Table I : Low temperature experimental values of the 
HF(v= I) self-relaxation rate. 

Temperature pT Reference OK µsec Torr 

350 10.5 [I] 

350 19 [6] 

296 19 [10] 

294 11.5 [3,4] 

294 13.9 ± 1.6 [13) 

290 20 [12) 

In other words, it has been experimentally estab­ 
lished that the self-relaxation rate of vibrationally 
excited HF has a markedly unusual temperature 
dependence - a minimum near 1000°K, and is 
extremely rapid. It should be emphasized, however, 
that no single experiment has been performed over 
the whole temperature range, see figure I. 
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t (present address) Department of Mathematical Physics, University College, Galway, Ireland 
+ Department of Statistics and Computer Science, Royal Holloway College, University of London, Egham, Surrey, 
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Osgood et al. [I 2] have reported a direct measure­ 
ment of the V-V transfer rate out of v = 2, that is 

HF(v=2) + HF(v=O) + 2HF(v= I) (I) 

This experiment yielded a value of 1.5 usec Torr for 
the V-V decay rate, compared with a value of 
2.2 x J03cc/mole. sec obtained by Bott [10]. Bina 
and Jones [ 13] have interpreted their results on HF 
as resulting from VT de-excitation of HF (v = 2) level 
at a rate pr2 = 6.6 ± 1.7 µsec Torr and a second, and 
slower, decay from the VT collisional loss of HF(v= I) 
at a rate pr, = 13.9 ± 1.6 usec Torr. 

Theory: Two of these experimental groups, Fried 
et al. [11] and Bott [JO], compared their results 
with a modified version of a theory developed by 
Shin [14,15]. The modification consists of multi­ 
plying Shin's expression for de-excitation of an 
oscillator, P,0, by exp (,P/kt), where 4> is intended to 
simulate, in a crude way, the attractive dipole-dipole 
interaction between HF molecules. This so-called 
'modified Shin theory' reproduces the qualitative 
result of the Landau-Teller maximum as seen in 
figure I. 

The existence of this considerable amount of data 
on HF self-relaxation rates does provide a stimulus 
to molecular collision theory to investigate the possi­ 
bility of predicting these rates without recourse to the 
introduction of empirical parameters and functions 
such as exp (,P/kt). 

The theory of vibrational-vibrational energy transfer 
in diatomic-diatomic collisions through I 968 has been 
reviewed by Rapp and Kassel [16]. These authors 
emphasized the semiclassical formulation of the 
problem based on head-on collisions in which the 
intermolecular potential is assumed to be an expo­ 
nential function of the distance between the middle 
pair of atoms. This same model has been formulated 
within quantum mechanics by Riley and Kuppermann 
[ 17] who presented results for the collinear collision 
of two harmonic H2 molecules. Wilson [18] has 
developed a quantum mechanical theory for the 
collinear collision of two diatomic molecules in which 
the intermolecular potential is also just a function 
of the distance between the inner pair of atoms 
approximated as a series of constant steps outside 
an infinite potential barrier. He applied his model 
to diatomic molecules consisting of H and D atoms. 

Although this paper describes a model which 
neglects rotation of the colliding partners, other 
workers, notably Shin [14,15,19] have constructed 
models for calculating vibrational-rotation energy 
transfer probabilities. Shin's work is based on a 
classical model consisting of a rotation-averaged 
oscillator and a rigid rotator. The interaction potential 
is assumed to be the sum of Morse potentials between 
the atoms of the different molecules 

4 
U = r U(r;) 

;; I 

where '; are the inter-atom distances. and 

(I) 

U(r) = D[exp(Q-rJa) - 2 exp(Q/2-rJ2a)]. (2) 

where the parameters are determined by fitting the 
exponential to an empirical Lennard-Jones potential. 
The formula given by Shin [14] for the probability 
of vibrational de-excitation (I+O) through the V-R-T 
energy transfer mechanism did not include the effect 
of the dipole-dipole interaction. This effect leads to 
an ,-6 potential which in turn modifies Shin's formula. 
When Shin [15,20] included this effect he was able 
to reproduce the qualitative features of a maximum in 
the Landau-Teller plot for HF self-relaxation observed 
experimentally. However, at high temperatures his 
calculated results are bigger than the experiments 
of Bott and Cohen [8] by a factor of three. 

Calculations of V-V transfer probabilities in CO-CO 
collisions has been carried out by Jeffers and Kelley 
[21], who included both short-range and long-range 
forces. For the former, they assumed the collision 
to occur between collinear non-rotating CO molecules 
with a simple exponential as the intermolecular 
potential, see Rapp and Kassel [I 6], while for the 
latter they used the first Born approximation to 
calculate transition probabilities for dipole-dipole and 
dipole-quadrupole transitions as prescribed by Sharma 
and Brau [22,23]. They found that with increasing 
temperature, short-range interactions dominate. 

The Sharma-Brau formulation is based on a model 
in which the translational motion of the colliding 
molecule is determined classically by a hard-sphere 
potential. The transfer of rotational and vibrational 
energies, which is treated quantum mechanically, is 
regarded as solely due to the Coulomb interaction 
between the molecules. Tam [24] has modified this 
theory by interchanging the order of taking the 
averages over the velocity distribution and the impact 
parameter, and applied it to CO-CO collisions, see 
Tam [25]. 

Kelley [ 26] has considered the collision between 
two harmonic oscillators in which a time-dependent 
interaction potential contains terms which are linear 
and quadratic in the oscillator coordinates. Explicit 
expressions for transition probabilities were derived 
for collinear collisions involving exponential potentials, 
but they were not used to calculate experimentally 
determined cross sections. 

Berend and Thommarson [27] have programmed 
the classical equations of motion for a two-dimensional 
collision model. They have used an empirical inter­ 
action potential constructed from the six atom-atom 
functions. The interaction between the chemically 
bonded atoms was represented by Morse-functions, 
while the interaction between the non-bonded atom 
pairs was taken to be the sum of Morse and Coulombic 
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potential functions. The results of these authors 
are presented in figure I and are found to be in 
qualitative agreement with the experiments . 
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Figure 1: Comparuon of experimental and theoretical values 
of the self-relaxation rate of HF on a Landau-TeUer plot 

A 'breathing sphere' model, in which one molecule 
is treated as a spherical body which is capable of 
changing its radius, while the incident molecule is 
represented as a point mass has been used by Marriott 
[28] for CO-CO collisions. The assumption on the 
intermolecular potential follows Schwartz et al. [29] 
by writing 

V(R,r) = V0 V(r) V1(R) (3) 

where r is the intermolecular coordinate and R is the 
vibrational coordinate of. the target diatomic. While 
V(r) is taken to be a Lennard-Jones (6,12) potential, 
Vi(R) is assumed to be adequately approximated by 
an exponential function whose parameters are obtained 
by fitting the magnitude and slope to the Lennard­ 
Jones potential at the classical distance of closest 
approach. Later, Marriott [30] fitted the exponential 
function to the effective potential consisting of the 
centrifugal barrier and the Lennard-Jones potential. 
Calculations were carried out on CO-CO collisions [31] 
uaing this latter form. The model developed in this 
paper is an extension of Marriott 's model to a pair 
of colliding breathing spheres. 

In the following section we describe our theoretical 
model in detail and outline the various numerical tests 
we have carried out on the model to ensure our 
results are as correct as possible while in the next 
section we describe the HF-HF system. Following 
that we present our cross sections for both V-T and 
V-V energy transfer processes for HF-HF collisions. 
Then our calculations of the associated relaxation 
rates are presented, where we compare and contrast 
our results with previously published experimental 
and theoretical results. Finally we present a summary 
and conclusions in regard to the short-comings of 
our model. 

Theoretical Model 

It will be assumed that the overall wavefunction 
for two colliding diatomic molecules, AB and HF, 
can be expanded in terms of a basis constructed from 
the product of simple harmonic oscillator functions, 
eigenvalues Em, that is 

'¥(AB,HF,r) = r '¥ (AB) '¥n (HF) Fmn(r) (4) mn m 

When equation (4) is substituted into the non­ 
relativistic Schrodinger equation for the system, the 
resulting equation pre-multiplied by a member of the 
basis, and the angular part of the expansion coefficients 
Fmn(r) are separated off, then we obtain the close­ 
coupling radial equations for the system 

[ 
d2 ~(Q+ I) 2 ] 
- - -- + k ~ (r) d,2 ,2 mn mn 

2µ 
= - r V h2 m'n' mn,m'n'(r) F!,n,(r), 

where 

2 - 2µ 
kmn - h2 (E - Em - En)' 

(5) 

(6) 

µ is the reduced mass of the collision system, and 

= [dr 1/im(AB) 1/in(HF) V(AB,HF) 1/im,(AB) 1/in,(HF). 

(7) 

To evaluate these matrix elements we follow 
Schwartz et al. [29] and assume 

where RAB denotes the internal vector coordinate 
between the atoms of the molecule AB. To obtain 
an approximate representation for the potentials, 
Schwartz et al. [29] assumed that the intermolecular 

51 



potential can be approximated by an exponential 
function of the distance X between nearest atoms in 
a collinear collision: see also Mott and Massey (32], 
whose parameters are determined by fitting this 
exponential function to an empirically determined 
Lennard-Jones potential at the classical distance of 
closest approach (28). The result is 

where 
241) 716 

A; = ---(1-1/n.), 
a(2T)-I) I 

'7 = ½[I +(I +E/e)y,), 

ni is the number of atoms in molecule i = I (AB), 
i = 2(HF), Ec is the collision energy in e V, while e 
and a are the Lennard-Jones force constants. 

Equation (9) is substituted into equation (7) and 
the integrals over RAB and RHF can be performed, 
as in (28), to give 

where c, = (211Mv)Yi, M being the reduced mass of the 
oscillator, and v its fundamental frequency. There­ 
fore, equation (7) can be written as 

(7a) 

where V(r) is taken to have a Lennard-Jones form 
and the constant V0 is normalized to ensure that the 
full intermolecular potential is normalized to the 
Lennard-Jones form when both molecules are in their 
ground vibrational states, that is V0 = (U00r2• 

From the asymptotic solutions to equation (5 ), 
the reactance matrix and consequently · the cross 
sections can be determined in the usual way (33) , 

( I I) 

where a0 is the first Bohr radius. 

Jn this work we are particularly interested in V-T 
collisions, for example the de-excitation process 
Q(I 0+00), and V-V collisions, for example Q(l 0+01 ). 

The numerical solution of equation (5) has been 
carried out using the algorithms described in Smith 

et al. [34). The analysis for the vibrator-vibrator 
problem differs from the structureless-vibrator prob­ 
lem only in the definitions of the wave number 
squared, equation (6), and the potential, equation (7a). 
Hand checks were carried out to ensure that this part 
of the code was correct. The numerical solution of 
the coupled system of ODE's and the extraction of 
the R-ma trices and cross sections was identically the 
same as that used by Smith et al. [34) who describe 
in detail the numerical tests which had been carried 
out to ensure their correctness. 

HF-IIF System 

If the channels of equation (5) are ordered in 
increasing wave number, then it is seen that there is 
one elastic channel, associated with k00, three de­ 
generate inelastic channels associated with k11, k02, 
k20, etc. The objective of this paper is to estimate 
the relaxation time for HF(v=I) molecules to return 
to the ground vibrational state. This can occur via 
several alternative paths, for example 

HF(v=1) + HF(0) + HF(0) + HF(0) + M = 3961 cm'", 
(12) 

or 

HF(v=I) + HF(v=I) + HF(v=I) + HF(0) + M, (13) 

followed by equation (I 2), or 

HF(v= I) + HF(v= I) + HF(0) + HF(0) + 2M , (I 4) 

and, according to Hancock and Green [ 4), the 
experimentally measured rates are a summation of 
the several individual rates comprising both V+V and 
V+R,T energy transfer processes. In view of a near 
resonant match between v=I ,J=4 and v=0,J=l4 levels 
of HF, processes of the type 

HF(v= 1,J=4) + HF(0) + HF(v=0,J=I 3) + HF(0), (15) 

might be important in HF vibrational relaxation. 

Since both rotational and closed channel effects 
have been neglected in the present model, we have 
followed the consistent approach of including only 
three open channels associated with k00, k01, k10 and 
calculating relaxation times from reaction (12) as 
described in Smith et al. [34). 

The model described in the previous section 
requires the energy separation of the vibrational levels 
of HF. that is t:,.£ = 0.5133 e V, the Lennard-Jones 
force constants, a = 2.55ft. and elk = 400°K, the 
reduced mass of the oscillator, M = 0.95 mp, and the 
reduced mass of the collision system, µ = 10 mp. 
Equations (5) are then solved for a given Ec for a 
sufficient number of ~ values to determine the total 
de-excitation cross section accurately. 
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Table 2: Relationships among the cross sections for elastic 
scattering, E, vibrational-translational energy transfer, V-T, 
and its inverse, T-V, related by detailed balance, and 
vibrational-vibrational energy transfer, V-V. 

Final States m',n' 
lnitlal 
States ko2 kot 2 ku2 

m,n -------- ----------- 0,0 0,1 1,0 1,1 0,2 2,0 

0,0 Et rr-vi, (T-V)i (T-V)2 (T-V)J (T-V)J 

0,1 rv-n, E2 (V-V)i (T-V)4 (T-V)5 (T-V)6 

1,0 (V-T)i (Y-V)1 E2 (T-V)4 (T-V)6 (T-Y)s 

1,1 (V-Th (V-T)4 (V-T}4 £3 (V-V)i (V-V)i 

0,2 (V-T)J (V-T)s (V-T)6 (V-V)2 E4 (V-V)] 

2,0 (V-T)3 (V-T)6 (V-T)s (V-V)2 (V-V)] £4 

In table 2, we present the relationships among the 
various cross sections due to the identity between 
target and projectile. Cross sections (T-V) with the 
same suffix should be identical, while cross sections 
(T-V)1 are related to their inverses (V-T)1 by the 
detailed balance, that is 

These relationships provided an explicit numerical 
check on the correctness of the code. The degree to 
which they are satisfied depends on the accuracy of 
the R-matrix which is real and symmetric. In general, 
the results we quote here are from R-matrices sym­ 
metric to four decimal places. However, for collision 
energies approaching the second excitation threshold, 
1.0266 e V, and at very large 2 values, where the cross 
sections were very small, 10-8, the symmetry of R 
was lost. 

Cross Sections 

In molecular collisions, many partial waves are 
required to calculate the total cross sections. However, 
the cross section does vary smoothly with 2 and so 
there is no need to solve equation (5) for each 2 value, 
but only a sufficient number to define the shape of 
the Q versus 2 curve. In table 3 we present the 
sequence of collision energies we used, Ee, and the 
values of the (V-T)t cross section at the peaks. From 
this table we see that for Ee;;. 4.0133 eV, a second 
inner peak has appeared. We have plotted all the Q 
versus 2 curves and found them to be smooth. These 
curves are summed to give the total de-excitation 
cross section as shown in figure 2. This curve 
exhibits a shoulder at Ee = 4.0133 e V. Since we 
cannot think of any mechanism whioh would induce 
such a shoulder in the energy behaviour of the cross 
section, then we conclude that either our method 

produces too large cross sections at the lower energies 
or too small cross sections at the higher energies. We 
are in the process of trying to resolve this uncertainty. 

Table 3: Dependence of the maxima of the V-T cross 
section Qt o,oo in units of 'lrlJo 2 on 2 and E c 

2 2 2 Q10,oo Ec(eV) Qto,oo<'""o ) 

1.0633 25 0,19 X 10-7 

1.1133 28 0.38 X 10-7 

1.3133 30 0,33 X 10~ 

1.5133 35 0.16 X 10-S 

2.0133 50 0,17 X 10-4 

2.5133 70 0.61 X 10-4 

4,0133 150 0.25 X 10-3 30 0.015 X 10-3 

5.0133 200 0.4 X 103 75 0.415 X 10-3 

6.0133 225 0.52 X 10-3 110 1.025 X 10-3 

7 .0133 265 0.7 X 10-3 150 1.5 X 10-3 

As mentioned previously, the production runs of 
the present work have been carried out in the three­ 
state close coupling approximation including the 0,0; 
1,0; and 0,1 states of the collision partners. From 
table 2 we see that this enables us to calculate the 

"4F(v,1} •HFfv,O) -2HFlv •OJ 

I 
/ . 
' I . 

I 
j 

TQ; 

a,o.oo 

•o 

1 01)) 2 01)) J 01J) • 01)) 5 01)) 6 01)) 7 QI)) IQ . 

Ee. ev 

Figure 2: De..,xcitatlon crou aectlon, In units or ru0 2, 
Q10,oo, u a function of the collision energy Ee, In a three­ 
state clo1e-eoupling approximation 

53 



nine cross sections of the upper left hand corner 3 x 3 
matrix. In figure 2 we have plotted the (V-T)1 result 
and we did ensure that it equalled (T-V)1, by 
reciprocity. We now turn to discuss the (V-V)1 
cross section. 

second peak at the higher energies. For V-V cross 
sections this peak contributes about 20% to the total 
cross sections. Consequently, if we assume that such 
a peak is present at high partial waves at Ec = 2.5133, 
then our calculated point would lie precisely on the 
dashed curve . 
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Relaxation Rates 

If is is assumed that the distribution of velocities 
of the HF molecules is Maxwellian, then the reaction 
rate coefficient is given by 

( )

3/2 Joo 
'Y·r(T) = 41r2at _µ_ N Q (v) e-µv2/2kT v3dv 

1 2riT d ' 
O (18) 

where N is the particle density at one atmosphere 
pressure at r> K, 

N = 
N0P 
RT 

(19) 

0 013) 1·01]) 2 OIJJ J OlJJ • 0133 ~ Oil) 6 01)) 7 01)) 

Ee .ev 

Fial!re 3: Vibrational-vibrational cross aection, in units of 
1ra/, Q1o,oi, as a function of the colluion energy Ee, in a 
three-state close-<:oupling approximation. The dashed put 
of the curve is interpolated from the remits on either side 
ol the peak. The circled crou indicated a calculated point 
which may not have converged in Q 

We have found that the vibrational-vibrational 
energy transfer process converges in Q much more 
slowly than the corresponding V-T cross sections. 
We have also found that they do not exhibit the huge 
variation over orders of magnitude that we presented 
in figure 2 for the V-T results. In figure 3 we present 
the V-V transfer cross sections for the process 

HF(v=I) +HF(v=0) + HF(v=O) +HF(v=I). (17) 

We have drawn this curve so that it has a smooth peak, 
the dashed part of the curve, rather than draw it 
passing through the calculated point at E c = 2.5133 
e V. This has been done because we found that con­ 
vergence at high Q was very slow and the R-matrices 
were becoming non-symmetric. We found, as in V-T, 
that the partial wave cross sections exhibited a 

We have taken the following values for the constants, 
Avogadro's number N0 = 6.0228 x 1023 cm? 
I atmos. P = 1.01325 x I a6 dynes 
Gas constant R = 8.315 x l07ergs/mole/°K 
Boltzmann's constant k = 1.38033 x 10-6 erg/°K 
Bohr radius a0 = 0.5294 x 10-8 cm 
Proton mass "'P = 1836 x 9.1055 x 10-28 

The cross section, Qif• is given in units of 1ra/. 

When these constants are substituted into equation 
(I 8), and we change the integration variable to 

x = mv2/2kT, (20) 

then equation (I 8) becomes, in units of sec'", 

riT) = 0.93716 x l010 x (µT)-½f
00

Qif(xkT)e-xxdx, 
O (21) 

where µ is in proton mass units, which agrees with 
Marriott (35). 

Herzfeld and Litovitz (36] show that the internal 
energy of a simple harmonic oscillator has a single 
relaxation time related to the rate coefficients by 

T-I = "fto -101 • 
s.h.o, 

(22) 

provided the rate coefficients satisfy the ratios 

(23) 

which they do in the distorted wave approximation 
of Witteman (37], but which they do not in the 
close-coupling approximation. Consequently, we 

54 



believe that it is inappropriate for us to use equation 
(22). Herzfeld and Litovitz [36) have given a 
two-state formula for the relaxation time, namely 

12-• = 'l'to + 'Yo1 · (24) 

Our cross section calculations are based on a three 
state system. However, as yet, we have been unable 
to generalize equation (24) to calculate the relaxation 
times based on the V-T cross section of figure 2. 

In figure 4 we present our values of the V-T 
relaxation time and it is seen to be orders of 
magnitude too large compared with the experimental 
values [8). 

.-------------------,,0' 

(d) we have not checked for convergence in the 
n-state approximation. at any Ee and £; 

( e) we have probably used an invalid formula for 1; 

(f) we have neglected dimer formation. 

Berend and Thommarson [27) found that when 
they neglected the hydrogen bonding ( or dipole­ 
dipole) interaction in the intermolecular potential 
they found an increase of 16-fold in the vibrational 
relaxation time at 300°K. This leads us to believe 
that the most crucial area for improvement in this 
quantum mechanical model is in replacing the Lennard­ 
Jones (6,12) potential with realistic potentials. 
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Reaction Pathways for the Triplet Methylene 
Abstraction CH2(

3B1) + H2 _.. CH3 + H* 
C.W.Bauschlicher Jr., H.F.Schaefer II It, C.P.Baskin and 
C.F.Bender* 

A non-empirical quantum mechanical study of the reaction of triplet methylene with molecular 
hydrogen has been carried out. A contracted gaussian basis set of double zeta quality was employed. 
Following the determination of each self-consistent.field wavefunction, configuration interaction was 
performed Including all singly- and doubly-excited configurations (a total of 649). The potential 
surface was studied in three dimensions and a total of 780 points computed. From these data, several 
approximations to the minimum energy path have been computed and compared. The reaction 
exothermicity Is computed to be S.37 kcal/mole, in good agreement with experiment, 4.5 kcal/mole. 
TI1e predicted barrier height is 1S.S kcal/mole, a result consistent with the lack of any observed reaction 
between CH2<3B1) and H2 at 300°K. The predicted barrier is 4.2 kcal/mole less than that obtained by 
Carr using the bond-energy bond-order (BEBO) method. The saddle point geometry is predicted to be 

o.,ol 
H H 

Introduction 

Methylene reactions have become the topic of an 
increasing number of experimental [ 1-1 S) and theo­ 
retical (16-26] studies in recent years. And in fact 
the experimental studies have already yielded a wealth 
of valuable information about methylene reactions. 
For example, it now seems firmly established that 
triplet methylene abstracts hydrogen atoms from 
saturated hydrocarbons while the analogous reactions 
with singlet methylene yield insertion into CH bonds. 
One should note, however, that the interpretation of 
these experiments can be somewhat perilous. This 
is because in most cases the procedure used involves 
the photolysis of either ketene or diazomethane in 
the presence of the species with which a methylene 
reaction is desired. Although the elementary reactions 
of singlet and triplet methylene with the desired 
species will certainly occur to some degree, it is 
equally clear that a number of other chemical 
reactions may be taking place, e.g. the reaction of 

methylene with ketene to give ethylene and carbon 
monoxide. Ideally, one would like to be able to 
cross a beam of triplet or singlet methylenes with a 
beam of the other reactant, e.g. H2. Even though a 
methylene crossed molecular beam experiment 'may 
sound unlikely, there does appear to be a real 
possibility (27) that such an experiment will be 
carried out within the next several years. The 
potential importance of experiments of this kind 
with respect to the discernment of the dynamics of 
methylene reactions can hardly be overemphasized. 

In a similar manner, the theoretical studies of 
methylene reactions, while being something less 
than the ultimate, have significantly advanced our 
understanding of the chemistry of this short-lived 
intermediate. Foe example, the extended Hiickel 
calculations of Hoffmann (20) and, to a lesser degree, 
the MINDO work of Dewar (25) have given support 
to the contested two-step mechanism of Benson (28) 
for the singlet methylene insertion into methane. 

• -Work performed under the auspices of the US. Atomic Energy Commission 
t Lawrence Berkeley Laboratory and Department of Oiemistry, University of California, Berkeley, California 

94720, USA. 
t Lawrence Livermore Laboratory, University of California, Livermore, California 94550, USA 
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The prototype methylene reaction is CH2 + H2, 

hydrogen being the simplest partner molecule for 
which both abstraction and insertion reactions might 
occur. Among the several experimental studies (29- 
37) of this reaction, the most recent is that of Braun, 
Bass and Pilling [37). With rate constants at 298°K 
given in cm3 /(molecule·second), they summarize their 
results as follows: 

(I) 
CH2(1Ai)+ H2.,. CH4*.,. CH3 + H 7.0 ± 1.5 x 10-•2 

<5.0 X 10-14 (3) 

In fact, Braun et al. were unable to observe any 
reaction ci triplet methylene with hydrogen at 300°K, 
and the figure given is an upper limit to the true rate 
constant. Recently Carr (22) has been able to 
rationalize this 3 BI nonreactivity using Johnston and 
Parr's empirical bond-energy bond-order method (38) 
for the calculation of activation energies. Carr 
predicts the activation energy for CH2(3Bi) + H2.,. 
CH3 + H to be quite high, 19.7 kcal/mole. Other 
computed abstraction activation energies ranged from 
7.9 kcal/mole for C3H6 to 44.2 kcal/mole for HCN. 
It is worth noting the Dewar's predicted activation 
energy (25) of 3.8 kcal/mole for CH2(3Bi) + CH4.,. 
2CH3 is qualitatively different from that of Carr, 
25 .6 kcal/mole. 

Our ab initio theoretical study concerns the 
apparently slow CH2 (3 Bi)+ H2 abstraction reaction. 
The method used, which explicitly considers electron 
correlation, is analogous to that adopted in our 
previous study (39) of isolated CH2• That study 
unequivocally predicted the nonlinearity of methylene 
at a time when a linear structure had been almost 
universally accepted. The two primary goals of the 
present study were 

(a) to obtain a reliable (±5 kcal/mole) prediction 
of the activation energy and 

(b) to map out the minimum-energy-path for this 
simple reaction. 

Theoretical Approach 

A double zeta basis set of contracted gaussian 
functions [ 49) was used in the present work. For 
the carbon atom, Huzinaga's (9s 5p) primitive gaussian 
basis (41) was contracted to (4s 2p) following 
Dunning (42). In analogous fashion a (4s/2s) basis 
was chosen for each H atom. The hydrogen basis 
functions were scaled by a factor of 1.2, i.e. each 
gaussian exponent a was multiplied by 1.44. 

For C2v approaches of the hydrogen molecule to 
3B1 methylene, the self-consistent-field (SCF) wave­ 
function is of the form 

la.2 2a.2 lb/ 3a.2 4a, lb, (4) 

The SC'F wave functions were obtained using a method 
recently developed by Davidson (43]. In addition 
we have computed configuration interaction wave­ 
functions which include all (except that the la, 
orbital is always doubly occupied) singly- and doubly­ 
excited configurations with respect to this SCF 
reference state. However, we have deleted those 
doubly-excited configurations which do not retain the 
open-shell spin coupling of the reference configuration. 
The deleted configurations i have identically zero 
Hamiltonian matrix elements H1 i with the SCF con­ 
figuration (44,45). A total of 649 configurations 
were included in the calcula lions. 

Fortunately, the same SCF wavefunction (4) 
dissociates properly to SCF wavefunctions for the 
products CH3 + H. Hence, the true wavefunction 
should be reasonably well-described by a single con­ 
figuration along the entire minimum energy path. 
This being the case, our single- and double-excitation 
Cl should be nearly comparable (-95-98% of the 
correlation energy attainable from the chosen basis) 
to a full Cl within the valence shell [ 40). Three 
natural orbital iterations (46) were used in each 
calculation. Although in general such iterations tend 
to accelerate (lower total energy with fewer con­ 
figurations) convergence of the Cl expansion, the 
total energy was lowered relatively little (typically 
0.003 hartrees) in the present cases, since the Cl was 
initially nearly complete in a practical sense. 

The accuracy of the potential surface should fall 
somewhere between that of our two surfaces (47,48) 
for F + H2 .,. FH + H. Although the basis set here is 
analogous to that used in our preliminary study (4 7), 
a more thorough level of Cl was used in the present 
study. Both the F + H2 studies indicated the 
necessity of describing correlation effects in order to 
reliably predict the barrier height and exothermicity. 
Finally we note that the level of theory used in the 
present study seems (49) to predict equilibrium bond 
distances with a reliability of 0.03A. and bond angles 
to 2°. 

Geometries Considered 

Intuition suggests that the minimum-energy-path 
for CH2 + H2 should occur for a planar configuration 
in which the H-H molecule falls on the line bisecting 
the HCH methylene bond angle. However, Hoffmann 
has noted (50) that the surface may be rather flat 
with respect to a bending of the H2 out of this plane. 
Such a C2v reaction path is also the only path fully 
consistent with the MINDO results of Bodor, Dewar 
and Wasson (25] for the analogous reaction CH2(3Bi) 
+ CH4 + 2CH3• 
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Figure I: Coordinate system for CH2<3B1) + H2 + CH3 + H 

Therefore, we have restricted our study to the C2v 
coordinate system shown in figure I. In addition, 
the two methylene CH distances have been frozen at 
2.06 bohrs = 1.090 A. The remaining geometrical 
parameters are 

(a) R, the distance between the carbon atom and 
the closer of the two H atoms in H2; 

(b) r, the H-H separation in H 2 ; and 
(c) 0, the methylene bond angle. 

As we go from reactants to products, these variables 
should change as follows: 

CH2(3Bi) + H2 + CH3 + H 
R oo + - 1.080 A 
, 0.74A 
(J -134° 

.• 00 

.• 120° 

(5) 

This three-dimensional potential surface has been 
determined at 780 points. The R values considered 
were 100.0, 10.0, 6.0, 5.0, 4.0, 3.0, 2.8, 2.6, 2.5, 2.4, 
2.3, 2.2, 2.1, 2.06 and 2.0 bohrs. The H-H separation 
r took the values 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 
2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 5.0, 6.0, I 0.0 and 
I 00.0 bohrs. Bond angles (J considered were 110°, 
120°, 130° and 140°. It is apparent that not all 
points on this 15 x 19 x 4 = 1140 point grid were 
computed. Many points which were clearly far from 
the minimum energy path were omitted. However, 
near the saddle point, a number of additional R 
values were used. The 780 computed total energies, 
in hartrees and kcal/mole relative to separated CH2 + 
H2, are given in the appendix to our complete 
report [ 5 I) of this research. 

Results 

Table I summarizes our results for the reactants 
(separated CH2(3Bi) + H2) and products (separated 
CH3 + H). The former results were obtianed at 
R = I 00.0 bohrs and the latter at r = 100.0 bohrs. 

The methylene bond angle is predicted to be 
134.1 °, which is nearly identical to the 134° value 
obtained from the best available theoretical calculation 
[52). and consistent with experiment (53) 136 ± 5°. 

Table I: 
products 

Geometries and total energies of reactants and 

CH2(3B,)+H2 £ = -40.12866 hartrees 
r(CH) = I.D90A 
(J(HCH) = 134.1 ° 
r(J/H) = 0.748 A 

CH3 + H £ = -40.13722 hartrees 
r(CH) = 1.094 A 
(J(HCH) = 120.2° 

The predicted H2 equilibrium separation isfo.007 A 
longer than the exact result (54), 0.7414A. 

Although the two methylene CH distances were 
everywhere constrained to be 2.060 bohr = 1.090 A, 
the third CH bond distance of the methyl radical is a 
variable, determined to be 1.094 A. In addition, our 
calculations predict the methylene bond angle to be 
120.2°. However, this bond angle is uncertain by 
perhaps 0.2° since the calculations were carried out 
at 10° intervals. Hence, although slightly unsym­ 
metrical, our methyl radical structure is essentially 
the same as the planar experimental CD3 structure 
of Herzberg (55) with r0 (CD) = 1079 A. 

The reaction exothermicity is 0.00855 hartrees = 
5.37 kcal/mole, in very good absolute agreement with 
the experimental value given by Carr (22], 4.5 kcal/ 
mole. The latter value is obtained from D0 (H-H) = 
109.5 kcal/mole and D0 (CH2"H) = 114.0 kcal/mole. 

The saddle point or transition state (56] is the 
energetically highest point on a continuous path 
connecting CH2 + H2 with CH3 + H. If several such 
points and paths occur, the true saddle point for the 
reaction is that which is energetically lowest. The 
saddle point for our three-dimensional potential 
energy surface was located by using the stationary 
property 

a£ - 
aR - 

a£ 
30 = O (6) 

With the obvious exception of the reactants, products 
and long range attractions, the predicted saddle point 
appears to be the only point on the ab initio surface 
which satisfies equation (6). 

The predicted saddle point, seen in figure 2, occurs 
at R = 2.640 bohrs = 1.397 A, , = I. 702 bohrs = 
0.900 A, (J = 126.5°. This geometry is intermediate 
between that of the products and reactants: the H-H 
separation is 0.152 A or 20% longer than in H2, 

while the H-C separation is 0.303 A or 28% longer 
than in the isolated methyl radical. The fact that 
the transition state geometry is somewhat closer to 
the reactants than the products is consistent with 
Hammond's idea [57] that, in a highly exothermic 
reaction, the transition state should resemble the 
reactants. 
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than the Cl result, and hence that the SCF barrier 
may be much too high. The SCF saddle point 
geometry is R = 2.53 bohrs, r = 1.69 bohrs, 0 = 124.8°. 
Thus the SCF and Cl transition state geometries are 
quite similar, much more so than was the case [46, 
47,61] for F + H2 and H + F2. 

Figure 2: Transition state geometry for CH2(
3B1) + H2-> 

CH3 + H 

The ab initio total energy at the saddle point is 
--40.10400 hartrees, which lies 15.5 kcal/mole above 
CH2(3B1) + H2. This 15.5 kcal/mole barrier does 
not, of course, reflect the zero-point vibrational 
energies of the reactants and transition state. The 
barrier height defined in this way is sometimes called 
the classical activation energy (58). The Arrlienius 
activation energy for CH2(3 B1) + H2 has not been 
measured, and the only related experimental infor­ 
mation is the finding of Braun, Bass and Pilling (37) 
that no reaction was observed at 300° K. Our 15 .5 
kcal/mole barrier is sufficiently large to be consistent 
with their negative finding. As noted earlier, Carr [22) 
has used the empirical BEBO method to predict a 
harrier height of 19.7 kcal/mole. Although it is 
impossible to place error bars on our theoretical 
barrier height, based on earlier work (46,47), we 
intuitively feel that the 15.5 kcal/mole result should 
be within 5 kcal/mole of the exact result. Thus our 
study gives further [ 59) evidence of the usefulness 
of the BEBO method. The only example we are 
familiar with in which BEBO fails seriously is the 
F + HF -> FH + F reaction. There BEBO predicts a 
barrier of 6 kcal/mole [60), while the best ab initio 
calculations [ 6 I) imply a barrier ;;;. 18 kcal/mole. 

On the basis of our earlier work on the radical plus 
diatom reactions [47,48,61,62) F+H2,H+F2,and 
F + HF, we were sceptical of the ability of single 
configuration SCF wavefunctions to describe the 
CH2(3B1) + H2 potential surface. However, from a 
theoretical point of view, any information on the 
suitability of the Hartree-Fock approximation with 
respect to such reactions is extremely valuable. 
Therefore the relative energies and geometries of the 
reactants, saddle point and products were obtained 
from the SCF potential surface. The calculated 
exotherrnicity for CH2(3Bi) + H2 -> CH3 + H was 
found to be 4.84 kcal/mole, which is actually in 
somewhat better agreement with experiment (2 I], 
-4.5 kcal/mole, than the Cl result, 5.37 kcal/mole. 
However, the barrier height is computed to 25.f kcal/ 
mole, or 9.6 kcal/mole higher than the CJ result. 
Although the barrier height is not known experi­ 
mentally, our previous experience (4 7, 48, 6 I, 62) 
would suggest that it may be close to or slightly lower 

Reaction Pathways 

In both textbooks and the literature, one frequently 
finds terms such as 'reaction coordinate', 'reaction 
path', 'path of least energy', and 'minimum energy 
path' used interchangeably. We find this situation 
unfortunate, since there are at least two distinct 
procedures by which such a path might be obtained. 

The most frequently used procedure is to choose 
a 'reaction coordinate', some geometrical parameter 
that varies significantly during the course of reaction. 
For the CH2(3 B1) + H2 reaction, either R (which 
goes from 00 to 1.094A) or r (which goes from 0.748A 
to 00) would be reasonable choices. 0, which goes 
from 134° to 120°, would probably not be a very 
good choice, since it does not undergo a large change 
during the reaction. Given a value of the 'reaction 
coordinate', one finds a point on the 'reaction path' 
by minimizing the total energy with respect to all 
other geometrical parameters [63). Hereafter, our 
use of the terms 'reaction coordinate' and 'reaction 
path' will be strictly as defined above. 

Under favourable conditions, a reaction coordinate 
will vary monotonically along the reaction path, and 
the energetically highest point on the reaction path 
will occur near the true saddle point. However, there 
are many exceptions to the favourable behaviour, an 
especially interesting example being the MINDO 
treatment of the interconversion of cyclobutene and 
butadiene [64). Even if a reaction path does pass 
close by the saddle point, there are situations in which 
the reaction path will appear unrealistic. These 
situations generally occur when a small change in the 
chosen reaction coordinate is accompanied by large 
changes in other geometrical parameters. One example 
of such behaviour is noted by Dobson, Hayes and 
Hoffmann [20) in their study of CH2(

1Ai) + CH4• 

There is at least one procedure [47,56) which 
defines the reaction pathway (an intentionally vague 
term) in a far more satisfactory manner. Rather than 
starting from either reactants or products, this pro­ 
cedure begins with the saddle point. From the saddle 
point, one follows the gradient V V of the potential 
energy in the direction of most negative curvature. 
Following the gradient leads in one direction to 
reactants and in the other direction to products, and 
we refer to the resulting path between products and 
reactants as the 'minimum energy path'. Note that 
although this definition is dependent on choice of 
coordinate system, one expects such dependence to 
be in general unimportant. 
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Table 2: Reaction paths for CH2<3B1) + H2 -> CH3 + H. Bond distances are in bohr radii, bond angles in degrees and energies 
in kcal/mole. 
-- 

Minimum Energy Path R Reaction Coordinate r Reaction Coordinate 
R r 0 E R r 0 E R r 0 E 

100.0 1.414 134.1 0.00 100.0 1.414 134.1 0.00 6.0 1.4 134.1 -0.02 
6.0 1.412 134.1 -0.04 6.0 1.412 134.1 -0.04 
5.0 1.412 133.9 0.50 5.0 1.412 133.9 0.50 
4.5 1.412 133.8 1.35 4.5 1.412 133.8 1.35 
4.0 1.420 133.3 3.39 4.0 1.420 133.3 3.39 
3.8 1.428 132.9 4.66 3.8 1.428 132.9 4.66 
3.6 1.440 132.4 6.22 3.6 1.440 132.4 6.22 
3.4 1.452 131.9 8.05 3.4 1.452 131.9 8.05 
3.2 1.468 131.2 10.27 3.2 1.468 131.2 10.27 
3.0 1.524 130.0 12.72 3.0 1.504 130.0 12.63 I 6.0 1.5 134.1 0.81 
2.8 1.612 128.1 14.82 2.8 1.572 128.2 14.70 
2.7 1.660 127.2 15.35 2.7 1.640 127.2 15.35 

I 
6.0 1.6 134.1 3.40 

2.640 1.702 126.5 15.48 2.65 1.692 126.6 15.48 6.0 1.7 134.1 7.13 
2.514 1.80 125.2 14.92 2.6 1.756 126.0 15.41 6.0 1.8 134.1 11.64 
2.394 1.90 123.5 13.23 2.5 6.0 123.6 8.52 2.268 1.9 122.6 12.57 
2.301 2.0 122.4 11.28 2.4 6.0 122.6 3.64 2.175 2.0 122.0 10.87 
2.198 2.2 121.6 7.89 2.3 6.0 122.0 -0.54 2.155 2.2 121.3 7.68 
2.140 2.4 120.9 4.82 2.2 6.0 121.3 -3.66 2.125 2.4 120.9 4.87 
2.110 2.6 120.6 2.52 2.1 6.0 120.5 -5.29 2.103 2.6 120.6 2.54 
2.095 2.8 120.4 0.63 2.090 2.8 120.3 0.63 
2.085 3.0 120.3 -0.89 2.083 3.0 120.3 -0.89 
2.073 3.5 120.2 -3.37 2.073 3.5 120.2 -3.37 
2.068 4.0 120.2 -4.58 2.068 4.0 120.2 -4.58 
2.068 5.0 120.2 -5.33 2.068 5.0 120.2 -5.33 
2.068 6.0 120.2 -5.41 2.06 6.0 120.2 -5.40 2.068 6.0 120.2 -5.41 
2.068 100.0 120.2 -5.37 2.068 100.0 120.2 -5.37 

Table 2 gives the reaction path for reaction co­ 
ordinate R, the reaction path for reaction coordinate 
r, and the minimum energy path. Let us first describe 
the 'minimum energy path', since this is the mathe­ 
matical embodiment of what. the chemist visualizes 
as the reaction pathway. Along the minimum energy 
path, all three variables R, r and 0 vary smoothly. 
On the reactants side, prior to R = 3.0, R is changing 
rapidly relative to the rather small changes in rand 0. 
Around the saddle point, say between R = 3.0 and 
r = 2.0, all three geometrical parameters are changing 
significantly. Finally, from r = 2.0 tor= 100, small 
changes in R and 0 accompany large changes in r. 

Inspection of table 2 makes it quite apparent 
that the choice of R as a reaction coordinate is 
appropriate for the reactant side of the minimum 
energy path, but not for the product side. The prob­ 
lem is that the value of r lurches from I . 756 to 6.0 
as R changes from 2.6 to 2.5. As the minimum 
energy path shows, the 'correct value' of r for 
R = 2.5 is -1.81 bohrs. 

An opposite, but even more serious, breakdown 
occurs with respect to the choice of r as reaction 
coordinate. That is, on the product side (r > 2.0 
bohrs), the reaction path obtained using r as reaction 
coordinate is quite similar to the minimum energy 
path. However, this reaction path also lurches, 

between r = 1.9 and 1.8, and is inapplicable on the 
reactants side of the saddle point. Hence the saddle 
point position is not correctly predicted. In fact, 
inspection of table 2 would suggest that we have 
found a lower energy (-13 kcal barrier) route from 
CH3 + H2 to CH3 + H. The problem lies with the 
discontinuous change of R and 0 along this reaction 
path. 

Recall that a point on the above reaction path 
is obtained, for a particular value of r, by minimizing 
the total energy with respect to R and 0. Unfor­ 
tunately, when r is in the range 1.6 - 1.9 bohrs, 
there are two distinct relative minima. The first 
occurs for R "" 2.3 bohrs, 0 as 123° and the second 
for R "" 6.0 bohrs, 0 as 134°. When r is greater than 
l.84 bohrs, the first minima is the lower, but for 
r < 1.84, the second minima is lower. At r = 1.84 
the two minima both have depth 13.59 kcal/mole, 
as illustrated in figure 3. Hence the reaction path 
based on r as reaction coordinate has a discontinuity 
at r = 1.84. This gives the mistaken impression that 
the barrier height is 13.59 kcal/mole. Jn fact, as 
figure 3 shows, a continuous reaction path between 
r = 1.841 and r = 1.839 would have to pass over 
a barrier of 18.50 kcal/mole. 
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Figure 3: Illustration of the discontinuity of the reaction 
path obtained by choosing r u reaction coordinate. Each 
point on the curve corresponds to the value of R shown on 
the x-axis, r = 1.84 bohrs, and the value of IJ for which the 
potential energy ia mlnimiaed 

If one must choose a reaction coordinate, a 
reasonable choice is (r - R), which changes in a fairly 
smooth manner all along the minimum energy path. 
Although this conclusion is by no means unanticipated, 
the quantitative analysis made possible by table 2 
seems to be of considerable value. 

Finally, we must point out that there is no 
necessary relationship between the minimum energy 
path and the dynamics of a chemical reaction. That 
is, for any particular classical trajectory, the proba­ 
bility of following the minimum energy path is zero. 
Nevertheless, such a minimum energy path may be 
as close as one can come in a theoretical sense to 
the chemist's notion of a reaction mechanism. A 
reasonable alternative to this definition would be an 
'average' or 'most probable' classical trajectory for 
the conditions of interest. 
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Computation of Correlation Energies of 
Closed Shell Systems. The Dimerization 
Energies of BH3 and LiH 
R.Ahlrichs* 

Results of rigorous computations employing extended Gaussian-type basis sets are reported for BH3, 
B2H6, LiH and Li2H2 in their respective equilibrium geometries. The dirnerization energy of BH3 is 
calculated as -20.7 kcal/mole within the Hartree-Fock approximation and as -36.6 kcal/mole if 
electron correlation is included. The corresponding results for the dimerization of UH are -4 7 .3 
kcal/mole and -48.3 kcal/mole. Partitioning of the correlation energy contributions allows the 
effect of electron correlation to be attributed to the increase of next neighbour bond interactions 
on the dirnerization of BH3 and LiH. The difficulties of accurate computations of reaction energies 
are discussed in detail. 

Introduction 

B2H6 is the simplest electron deficient compound 
known from experiment, whereas Li2H2 may be 
considered as the simplest conceivable molecule of 
this class at all. Further small electron deficient 
tompounds like Be2H4 (I) and BeBH5 [2) have been 
investigated theoretically but are also not known 
I 
experimentally, like Li2H2. Detailed investigations 
of the electron distribution [3) and the mechanism 
of binding in B2H6 have been reported in the literature 
[4-8]. Of general interest for the understanding of 
the stability of electron deficient compounds is 
especially t:i.Er of the reaction (I), 

(I) 

which is still rather uncertain. Experimental values 
between -25 and -60 kcal/mole are reported in 
the literature [9). 

Hartree-Fock (HF) calculations with small Slater­ 
type basis sets [I OJ or medium size Gaussian basis 
sets [8,11) yield t:i.Ef values of about -10 kcal/mole, 
which is not in the most favourable range of experi­ 
mental values. The effect of electron correlation on 
/!£f was first investigated by Gelus, Ahlrichs, 
Staemmler and Kutzelnigg (GASK) [11] by means of 
the IEPA-PNO method [12) (IEPA = independent 
electron pair approximation, PNO = pair natural 
orbitals). Using a Gaussian basis of double zeta 
quality (5 s-, 2 p-groups on boron and 2 s-groups on 
hydrogen), GASK obtained a HF contribution of 
-8.5 kcal/mole and a correlation energy contribution 
of -16.8 kcal/mole to t:,.Er (a p-set on hydrogen was 

added for the computation of the correlation energy). 
The corresponding estimated exact values were -· 11.5 
and -25.2 kcal/mole respectively, yielding a total 
t:i.Ef of -36 kcal/mole. 

The most accurate HF computations for BH3 and 
B2H6 have been reported recently by Lipscomb and 
coworkers [3,13), who obtained a HF contribution 
of -19.0 kcal/mole to t:i.Er. It is then suggested [13). 
that GASK's estimate for the correlation contribution 
to t:i.Er might be too large, since addition of the 
calculated value (-15 .8 kcal/mole) to the HF value 
of -19.0 kcal/mole would give t:i.Er = -35 .8 kcal/mole, 
which is close to a recent kinetic value [14] for t:i.Ef. 

Kollman, Bender and Rothenberg (KBR) [ 15] 
have published the only theoretical invesitgation of 
Li2H2. They predict Li2H2 to be most stable on the 
centrosymmetric D2h structure. KBR [ 15] reported 
the following t:i.Er values for the reaction (2) 

(2) 

HF approximation: t:i.Er = -46.2 kcal/mole 
including electron correlation: t:i.Er = -45 .8 kcal/mole. 

These authors thus predict the correlation energy 
in 2 LiH to be larger than in Li2H2, in contrast to 
the result obtained by GASK [ 11] for B2H6. 

Unfortunately, KBR used a rather inappropriate basis 
set which recovered only about 50% of the total 
valence shell correlation energy. In consideration of 
this state of affairs it appeared worthwhile to repeat 
the computation of t:i.Er for the reactions (I) and (2) 
with more extended basis sets than those used pre­ 
viously (by GASK [II] and KBR[I5j)and employing 

• Institut fur Physikalische Chemie und Elektrochemie, Universitdt Karlsruhe, Kaiserstrasse 12, 75 Karlsruhe, 
West Germany 
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a more refined method for the computation of 
correlation energies. 

Method 

We used the HF approximation as starting point 
for the treatment of electron correlation. The 
difficulty in computing correlation energies by means 
of a conventional configuration interaction (Cl) 
calculation is the large number of configurations 
that can be constructed and the slow convergence 
of the Cl expansion. The present B2H6 basis of 
68 groups leads e.g. to I 84,000 doubly substituted 
determinants (from the valence shell), which cor­ 
responds to 65,000 pure singlet functions or 9,000 
spin and symmetry adapted configurations. The 
largest possible reduction of the number of doubly 
substituted configurations to be included in a CJ is 
obtained if the latter is based on the so-called PNO's, 
which may be defined for arbitrary wavefunctions llt 
in the following way. Let us denote a spin irreducible 
pair [16] of occupied MO's and <1>0 the part ofllt in 
which all the double substitutions from the pair u 
are collected (in an obvious notation) 

<I> = <I> + :E cii q,li . 
u HF .. u u 

IJ 
(3a) 

(Throughout this paper we neglect singly substituted 
configurations). The PNO's x' are then defined as u . 
the natural orbitals of <1>0• Let now <I>~ denote the 
doubly substituted configuration with the replace­ 
ment u•XtX~ if u is a singlet pair, or u•X~Xi if u is 
a triplet pair, for the details the reader is referred to 
reference [ 11] . In terms of the <I>~ one then has 

(3b) 

i.e. the nondiagonal replacements <I>~ now have 
vanishing Cl coefficients. The c~ and the energy 
contributions due to the <I>~ furthermore form a 
rapidly decreasing series and it is usually sufficient 
to include 10-30 terms in equation {3b) to exhaust 
the basis set. Our final B2H6 computation included 
124 doubles only. 

The disadvantage connected with the use of PNO's 
is their partial nonorthogonality 

(XV~\) *- 0, if u *- v 
whereas, of course, 

(4) 

(5) 

The relationship (4) fortunately leads to minor com­ 
plications only in the evaluation of matrix elements 
between arbitrary doubly substituted configurations. 

Various methods have been proposed to obtain 
accurate approximations of the correct PNO's prior 
to the knowledge of the total wavefunction [ 17]. 
In the present study we have used a new method for 
this purpose [I 8] which is more accurate and less 
computer time consuming than the one used pre­ 
viously in our program [ 12, I 9] . 

The total correlation energy 8, is obtained in three 
different degrees of approximation, which will now 
be discussed. For this purpose it is convenient to use 
a combined label a = (u,i), i.e. we simply write <1>3 
for <I>~, etc. A partial summation .g., is then under­ 
stood to run over the HF term and all a = (u,i) for 
the given u. The Cl coefficients c3 (with cHF = 1) 
and the pair correlation energies 8,0 are within the 
!EPA obtained as solutions of the following set of 
equations, where H8b = (<1>8 IH l<l>b), 

The total correlation energy is then within this 
approximation given as 

8, !EPA = :E 8,~EPA. 
u 

(7) 

Next we perform a CJ with <l>HF and all doubly 
substituted configurations, for which Meyer has 
suggested the name PNO-CI (20]: 

(8) 

The PNO-CI correlation energy 8, PNOCI can, of 
course, also be divided into pair distributions such 
that equation (9) holds (20] 

8, PNOCI = :E 8, ~NOCI . 
u 

(9) 

We finally perform a computation within the coupled 
electron pair approximation (CEPA), first proposed 
by Meyer (20] 

8, CEPA = :E ir,CEPA u u . 

As the just listed methods to obtain approximations 
to the true correlation energy have already been 
described in the literature (21], we shall not discuss 
them in detail here. A few comments, however, will 
be helpful for the discussion of the results presented 
in this paper. 

(a) The PNO-Cl is a variational calculation, whereas 
the !EPA and the CEPA are not. 

(b) The PNO-CI wavefunction and correlation energy 
has an incorrect dependence on the number of 
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e1e{\t_\?m,.(2,21,-, lhi_s,.inay e.g1 b~.timonN~ated _bt~- . 
cors,4er~Aor,,af.a. system of n n<;>n_interactmg electrori, 
pairtifke m~· at sufficiently large internuclear dis­ 
ta~.~~~:~- 'i:lie' eXlict · ~,'~vefunctlol) for {li1s' ~ystfih is' 
simplf

1
the' ~ii.tlsyinmet'rized prod~ct ~f"'t~'J 1toti,/s.'' 

ponaingh~lium·wavefunctiqns,,and it is easily verified ' 
1 ., "· , • i. 1 I ( J ~ ; f , 

that the PNO-CI wavefunction has vanishing Overlap 
witli-the' exact· wavefunction in 'thelirnit n+\.o: 1 Itcan 
fu'rll\er be shown· that 11. PNOCI increases-only like v/ii­ 
for~atge.fr.J Thesedeficiencies of the PNO-CI ate due· 
to ilie, fact-that higher than· doubly substttuted temis1• 
are neglected in this treatment. ' ·' , . .-, 

(c)· The' quadruple artd higher ·substitutions are • ac­ 
cetlrited,f6t'1ih an approximate· way-within the !EPA. 
Thi'sf'fu'e'tnod :'thtis'' yields,' 'for 'the case. under ~Ori'. 
silJe',latlori'.' the 'correct' it-dependence' 11,IEPA(Hen) .; 
n&1EPA,{He), provided the'IEPA-treiatn\hnt' starts from ' 
localized Mo's. This difference "between-the !EPA:' 
ar\d''the •PNO-CI is reflected in the corresponding 
ecjii'at'idns 1(6)' and' {81)'1\y the occurrence of 11,~EPA 
in'si~ad'16'f' tlie total correlationenergy \& PNoct, 'Th~ 
main drawback of the !EPA i; the neglectof matrlx 
elements flab for aEu, bEv, with u + v,, whi~h ai:79!,lyt 
for the'' interaction of · the correlation fu'nctions of 
different electron pairs ii and v: 
(d) Inclusion of these matrix elements in the !EPA, 
equition'~6), leads to the CEPA as g'iveii'in equation 
(10). This method thus avoids the main shortcomings 
of the !EPA-neglect of certain matrix elements - 
?nd also those of the PNO-CI, since quadrupole and 
higher substitutions are accounted fo,r ,il;q.p ,~pprll¥,· 1 
mate 'ry'.31fr. One can also say that the !EPA 

1
\{N,ts 

each electron pair in the field of the HF-MO's of the 
remaining electrons, whereas the CEPA considers .each 
pair in .the field of the correlated remaining electrons, 
ApplicaVons of the CEPA show in fact that this 

·1 I ,.. '''I I. ,, 

method yields more accurate potential curves, force· 
constants,etc. than the PNO-CI or the !EPA [20,23]. 

. n· 

Basis Set, Considerations 

As basis set we used linear combinations ,«;>f 
Gaussian Jobe functions. The construction of, d-,. 
and /·ty;pe, functions was performed as descnbed in· 
reference, [25). We started from a Huzinaga [26)- 
9s, 5p--basis for boron, contracted (5,l ,J.,1,1}, and 
(3,1,1) basis for hydrogen. A set of polarization 
functions, -i.e. a complete d-set on boron (11 = 0.51} • 

and a p-set on hydrogen (77 = 0.5), was then added. 
The orbital exponents 77 of the polarization functions 
were determined in optimizing the HF valence shell 
correlation energy of BH3• In order to save computer 
time it was then investigated whether it is possible to 
reduce· this 'basis without sacrificingvaceuracy. '' l·t' 
turns out, in fact, that leaving out the boron 
p-function with the smallest orbital exponent (71 = 
0.070) affects the total BH 3 energy by 0A kcal/mole, 
only, whereas the change of Mr, equation (I) .in , 
the HF approximation is 0.2 kcal/mole. 

In order . to get an idea of how saturated the 
pres~~\'. b'~sis I S~t rs We \h,ai<J ;t]'(e'I fb(fow1hg remarks.' 
Increasing the s-basis'ton: borori 'andIiydrogen gives 
essentially <\ ,!J.~tter description .of the nuclear cusp 

' : \ \ ' \' ·, . ' 
which sliould not effect' Mr of reactiorr (!') or (2). 
The HF energy of borouobtalned with a 9s, 5p basis 
is ~nyway only 1.5 kcal/mole higher than the HF limit. 
Additlon of further' polarizatiori functions, an /-set 
and a second d-set for boron and a d-set and a second 
p-set for the hydrogen atoms, lbwers lhe' HF e-ner~ of 
BH~' 'b'y' ( kca!/1l)dle and tli~ valence shell Correlation 
energy ··1h,· 9 k~al/iriol'i!i . The, net effect of these 

.- . • - ' ' . '' l\ • \ 

additional basisfuncilons Orf 4£;' is thus exp·ected 
to'b.e of the' order of about· 3 kc'al/mole. Addition 
of a l~~c:'ond p'.;~r a't the br1dke' hydroge~ 1a i'dms lowers 
tht A'ri' ~~erg)i oi' B2Ht:by o.t\s''kc;1·,;;,01b,'bnty. 

j ;[' )(" • • i;r• ' , '!.t I (! ," r ;1 I j,'; I 

.As ,fas as 14JJ. .and _Li2.H2 -are concerned, it .is no 
problemto choose the basis.large, enough .toguarantee 
an accuracy of about, \ k~_al/m9le for AE.r-. We started 
with a Huzmaga- 9s.•.(5;1,1!1,h).basis for. lithium and 
a 5s (3,1,,1) set for hydrogenand theruadded a set 
of. two p,-fuqctiq11s·,(77 = 0.14,,and 0.56 for Li and 
77 =, 0.22 and 0./56. ·fQ( If) op .either atom, hereafter, , 
referred to aa.basis set ~- .The, %bit.a,l .exponents 77 
of .. .the R-sets were determined in. minimizing the 
HF, plus v~_Ienc~,-~hell,,.c9Felation. energy, of LiH .. 
KB~ P $] .J:1~~9 ~ l;luz;inaga, ~P, ~~t ( contracted to one 
group) a.\ .the .hydrogen ,a),q!ll~,,which ,is nor.suited 
for molecular computations since it is an approxi­ 
~0tio11,1 q~ the ,,,s,ep/:,trQS~,OPi£,, ,hyqrog~n _2p,-orpit~!- . 
The latter has e.g, Bohr-radius of about 4 au whereas 
the optimized p-functions, see above, have radii of 
about 2 a~''and I au, ·Quite the same comments 
could be made with respect to the lithium p-se: used 
by KBR. For.'these reason's'·iBR get only 64% of 
the LiH valence shell corr~Iation' energy as obtained 
with basis set- I. In the final computations, reported 
in table 3, we added a rather spread outs-function 
on hydrogen (77 = 0.03)1"and i-d-set on Li (17'" 0\3) 
and on H c'11 = 0.45), basis set II, which has 
practically no effect on !!.Er of reaction (2), however 
{less than 0.14 kcal/mole). 

Discussion of results 
' 

B2H6: Ip the present co/ripin'a.tions we included all 
<1>8 whieh contribute more than IO-s au to & !EPA, 
the total number of which is 124 only (counting those 
that are equivalent on symmetry grounds only once). 
The energy contributions of the neglected 4>

3 
amounts 

to 2.I0-4 au in BH3 and to about 6. I0-4 au in B1H6• 

From the results collected in table I we get the 
I I } I '. ; , " •, •" , ffJi. •, I I 

following values of Mr of ·rellction {I)' 
''. L l; 1 ;· •1. '1 ,I,·, ·I ,q L,; ', It, ' t·. 1 , , ·,H. ! ; 

HF 
''\ I 

!EPA 

·Mr'"' -~20,r, kcal/mole 
' \, ·' ·, ,,, 

• 1;t, 

l:lt'r "' -44J_kcal/,i;10Ie 

, (I 2) 
'l 

(13) 
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PNO-CI Mr= EPNOCl(B2H6) - 2 EPNOCl(BH_,) 
= -27.4 kcal/mole (14) 

PNO-CI* : Mr= EPNOCl(B2Hd - EPNOC1(2Bll3) 
= --34.2 kcal/mole {15) 

CEPA Mr= -36.6 kcal/mole (16) 

Our HF result is in good agreement with the recent 
work of Lipscomb and coworkers (3,13], who ob­ 
tained -19 kcal/mole. · The present HF energies for 
BH

3 
and B2H6 are slightly poorer than those of 

Lipscombe and coworkers, see table I. This is 
certainly due to the fact that these authors used a 
Slater-type basis which gives a better description of 
the nuclear cusps than a Gaussian basis. Since our 
basis set appears to be rather saturated for BH3 as 
far as flexibility in the bond region is concerned 
(we have noted above that addition of further polari­ 
zation functions lowers EHF of BH3 by I kcal/mole 
only) we rather consider our computed Mr, see 
equation (I 2), as an upper bound to the HF limit. 
The _basis of Lipscomb et al. contained two s-type 
AO's on hydrogen which were optimized for the BH 
molecular fragment [3] . This basis set may be 
expected to describe terminal bonds better than 
bridge bonds which would result in a somewhat too 
small M,. The present basis is more flexible in this 

respect since it contains threes-type AO's on either H. 
The difference between terminal and bridge bonded 
hydrogen atoms may be seen from the coefficients 
of the hydrogen s-AO's in the localized MO's, which 
are (0.191, 0.302, 0.197) for a terminal and (0.187, 
0.348, 0.14 7) for a bridge bond. 

The IEPA gives a correlation contribution of -23.5 
kcal/mole to M,, see equation (U). Due 1,1 the 
approximation inherent in the !EPA. as explained 
above, this method is not expected to yield accurate 
reaction energies. 

In equations (I 4) and (I 5) we have given the AEr 
values as obtained from the PNO-CI computations. 
The first one, equation (14), may be called the naive 
PNO-Cl, since we have simply compared EPNOCI(B2H6) 
with 2 EPNOCl(BH3). This procedure is unsatisfactory 
since the quality of the PNO-CI depends on the 
number of electrons involved. This is clearly shown 
by a comparison of the PNO-CI correlation energies 
obtained for BH3 and BH3BH3 at large intermolecular 
distance (SO au), see table I. 

r.PNOCl(Bll3Bll3) = 0.2174 au< 0.2282 au 
= 2 c. PNOCl(Bll3) (17) 

In order to obtain the equality sign in equation (I 7), 

Table 1: Computed HF and conelation energies of BH3 and B2H6 
8 

b -£HF 

26.39697 
(26.4014) 

52.79394 

52.82699 
(53.8331) 

Valence Shell Correlation Energies 

pair C !EPA d PNO-CI CEPA 

It (3x) 0.03167 (0.02805) 0.02959 0.03085 

tt' (3x) 0.01128 (0.00796) 0.00844 0.00889 

total 0.12887 (0.10804) 0.11410 0.11921 

II (6X) 0.03167 0.02816 0.03085 

11' (6x) 0.01128 0.00807 0.00889 

total 0.25774 0.21739 0.23843 

It (4x) 0.03127 (0.02779) 0.02749 0.03034 

bb (2x) 0.03040 (0.02796) 0.02641 0.02915 

11' (2x) 0.01113 (0.00778) 0.00786 0.00871 

tb (Bx) 0.00859 (0.00608) 0.00597 0.00631 

bb' (Ix) 0.01443 (0.01154) 0.01020 0.01124 

rt" cis (2x) 0.00100 - 0.00062 0.00070 

rt" trans (2x) 0.00099 - 0.00059 0.00065 

total 0.29525 (0.24284) 0.23888 0.26377 

(a) in au 
(b) results of Lipscomb and coworkers [ 3,13) are given in parentheses 
(c) t and b denote terminal bridge bonds respectively. u' denotes a pair of adjacent bonds, 11" a pair of terminal BH bonds at dif· 

ferent boron atoms 
(d) results of GASK [ 11 J are given in parentheses 
(e) 8-H distance= 2.25 au, which is the equilibrium distance obtained within the CEPA 
(I) B-B distance was 50 au, each BH3 in its equilibrium geometry, see (e) 

(g) experimental geometry as given in [ 29 J 
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it would be necessary to include all quadruples which 
arise from simultaneous double substitutions on either 
BH3 in the BH3BH3 computation. In the modified 
PNO-Cl, see equation (15), we have compared 
EPNOCl(B2H6) with EPNOCl(BH3BH3), the PNO-CI 
energy obtained for .the system of two separated BH3 

molecules. We have thus consistently neglected the 
contributions of higher than doubly substituted con­ 
figurations for B2H6 and for 2 BH3, which certainly 
gives a more realistic t:i.Er than the naive PNO-Cl, 
see equation (14). 

This procedure is still not too satisfactory. On 
the formation of B2H6 from 2 BH3 we find significant 
changes of the pair correlation energies. The inter­ 
molecular terms (which give essentially the van der 
Waals interaction) vanish for two separated BH3 

molecules, whereas the corresponding interpair con­ 
tributions are by no means negligible for B 2H 6. 
These changes are, of course, accompanied by changes 
of the contributions of quadruples and higher terms 
to the wavefunction and the total correlation energy. 
As the number of non negligible interpair terms is 
larger in B2H6, which has 11 next neighbour bond 
interactions compared to 6 in 2 BH3, one expects a 
larger contribution of quadruples etc. in B2H6• The 
CEPA accounts for the higher substituted con­ 
figurations in a consistent although approximate way. 
(This is e.g. shown by the fact that~EPA(BH3BH3) 

= 2 ECEPA(BH3), see table I). This explains why 
the CEPA realistically predicts a larger correlation 
contribution to t:i.Er(-15.9 kcal/mole) than the modi­ 
fied PNO-CI (-13.5 kcal/mole, see equation (I 5)). 
We thus consider the CEPA result for t:i.Er, equation 
(16), to be more reliable than those given in equations 
(12)-(15). If one prefers for some reason to compare 
variational computations only, the modified PNO-CI, 
equation (15), is certainly more accurate than ( I 2) 
or (14). 

Let us briefly compare the present results with 
those of GASK [II]. In the latter treatment we 
underestimated the HF contribution to t:i.Er and also 
underestimated the corrections to the !EPA contri­ 
butions which are due to the interaction of correlation 
functions of different pairs, as was discussed above. 
The estimated !EPA limit (-25 kcal/mole as compared 

· to -23 kcal/mole obtained now) was not too bad, 
however, but the !EPA is not accurate enough to 
predict reaction energies with an accuracy of a few 
kcal/mole. The present study confirms at least 
qualitatively the conclusion of GASK that the increase 
of next neighbour bond interactions on the formation 
of B2H6 results in a considerable contribution to t:i.Er, 
whereas the changes in intrabond correlation energies 
are almost negligible (2.5 kcal/mole, see table !). 
We finally note that even the non neighbour terms, 
denoted tt" in table I, contribute about -1.7 kcal/ 
mole to t:i.E r within the CEP A. 

Li2H2: We first redetermined the geometry of Li2H2 
in the bridge bonded Djj, symmetry. From the CEPA 

results collected in table 2, we obtain the following 
equilibrium distances 

d(Li - Li) = 4.28 au 

d(H - H) = 5.06 au 

(18) 

(19) 

The latter differ slightly from those found by KBR 
[15] who obtained 4.46 au and 5.16 au. Additional 
computations for other geometries con firmed the 
result of KBR that Li2H2 has D2h equilibrium 
geometry. 

Table 2: Potential surface for Li2H2 in D2h geometry a 

Distance 
Li-Li H-H -£HF -£1EPA -£PNO-CI -£CEPA 

4.66 5.16 16.04282 16.11241 16.10958 16.11150 

4.46 5.16 16.04474 16.11420 16.11141 16.11330 

4.26 5.16 16.04607 16.11555 16.11273 16.11462 

4.06 5.16 16.04424 16.11350 16.11077 16.11260 

4.46 4.96 16.04450 16.11428 16.11141 16.11329 

4.46 5.36 16.04398 16.11320 16.11047 16.11236 

(a) all quantities in au. Basis set I was used. 

Table 3: Computed HF and correlation energies of liH 
and Li2H2 a 

-£HF 
Valence Shell Correlation Energies 
pair IEPA PNO-Cl CEPA 

liH b 7.98593c tt (Ix) 0.03523 0.03523 0.03523 
(7 .98262) (0.02204) 

2liH d 15.97185 I tt (2x) 0.03523 0.03422 0.03523 

total 0.0704 7 0.06845 0.0704 7 

li2H2 e 16.04680 bb (2x) 0.03449 0.03343 0.03432 
(16.03894) bb' (Ix) 0.00464 0.00364 0.00387 

total 0.07361 0.07049 0.0725 I 
(0.04247) 

(a) See footnotes of table I. Basis set II was used. The 
results reported by KBR [ 15] are given in parentheses. 

(b) Li-H distance = 3.038 au, which is the equilibrium 
distance obtained with basis set I. 

(c) HF limit: £HF = -7.9867 au [30] 

(d) Li-Li distance I 00 au 
(e) Geometry D2h, Li-Li= 4.28 au, H·H = 5.06 au, see text 
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From the final computations reported in table 3 
we get the following values for Mr of reaction (2), 
see also equations (I 2)-(16), 

HF Mr = -4 7 .3 kcal/mole (20) 

lEPA Mr = -49 .l kcal/mole (21) 

PNO-Cl Mr = -4 7 .0 kcal/mole (22) 

PNO-Cl* Mr = -48.3 kcal/mole (24) 

CEPA Mr = -48.3 kcal/mole (24) 

A comparison of equations (23) or (24) with (20) 
shows that electron correlation increases Mr by I 
kcal/mole in contrast to the conclusions of KBR (15). 
The effect of electron correlations is much smaller than 
in reaction (I), however. This is due to two reasons, 

(a) in the LiH dimer one has just one additional 
next neighbour bond interaction whereas one 
has 5 in B2H6; 

(b) due to the rather large H-H distance in Li2H2, 

see equation (I 9), the corresponding interpair 
correlation energy (0.00387, see table 3) is 
much smaller than the corresponding term in 
the BH3 dimer (0.01 I 24, see table 1). 

Conclusions 

The results reported in the present study demon­ 
strate the importance of electron correlation for the 
computation of reaction energies even for reactions 
in which closed shell molecules react and the number 
of electron pairs remains unchanged. We thus confirm 
at least qualitatively the conclusion of GASK (II). 
The reactions (I) and (2) may be considered as 
extreme cases since we find a considerable correlation 
contribution to Mr for (1) ( -16 kcal/mole), whereas 
it is rather small for (2) (-1 kcal/mole). This is 
mainly due to the greater increase of next neighbour 
bond interactions on the formation of B2H6 as 
compared to Li2 H1• 

The author further believes that the present 
computations are sufficiently accurate to confirm 
definitely a recent experimental value ( I 3, 14) for 
t:.Hr of reaction (I), -34.8 kcal/mole, in contrast to 
the conclusions of Edmiston and Linder who suggested 
a Af,'r of -60 kcal/mole [8). 

Programs and Computation Times 

The evaluation and further processing of two­ 
electron integrals - which altogether makes up for 
more than 90% of the total computer time - has 
been described in a recent paper (27). Details of 
the PNO-Cl and CEP A parts of the program will be 

described elsewhere [28]. The computations were 
performed in double precision arithmetic with a 65 K · 
36 bit word program version. The UNlVAC-1108 
CPU times for the B2H6 computation (68 groups) 
are as follows: integrals: 1.5 h; HF: 20' I 12 iterations. 
starting from a zero density matrix. [;HF converged 
to 10-s au), determination of PNO's: 22', matrix 
elements Hab: 3.7 h (most of which is required for 
the case that a and b corresponds to the same pair), 
solution of PNO-Cl and CEPA equations, see (8)-(1 I): 
2', total 5 .9 h. The corresponding times for the final 
Li2H2 calculation (62 groups) are: integrals: 55', 
HF: 9'; PNO's: 4'; matrix elements H8b: 30'; PNO-Cl 
and CEPA: 7", total JOO'. 
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Quantum Chemistry and Dynamics: 
Connections with Experiment 

A.C.Wahl* 

The state of the art in computing by a priori methods will be discussed. Accurate and chemically 
useful interaction potentials will be assessed through the use of contemporary calculations on a 
number of small systems, including OH, ArH, LiH2 and NO2. This assessment will be followed by 
a discussion of the effectiveness of these potential curves and surfaces in the prediction of dynamical 
behaviour which can then be compared with experiment. The results of specific recent scattering 
calculations using ab initio potentials will be used in example. 

Introduction 

The purpose of this brief summary is to outline 
the 'state of the art' in the calculation of energy 
curves, surfaces and properties for small molecules 
and to provide a catalogue of work on such systems 
performed in our laboratory. This will be followed 
by a discussion of two recent examples in which ab 
initio potential curves and surfaces have been used 
to predict dynamical behaviour, and in one case 
aid experiment in arriving at a 'correct' potential. 

Over the past five years an understanding of how 
to computationally handle the electron correlation 
problem as a function of changing supermolecular 
geometry has permitted the evaluation of potential 
energy curves and surfaces to what is now accepted 
as chemical accuracy ("v.l eV) [I ,2]. 

Several methods are now routinely yielding such 
results. These methods are straight configuration 
interaction (3], the first order method (selected 
configurations combined with the iterative natural 
orbital technique) (4], the MCSCF technique (5], 
and the separated electron pair approach [ 6] . The 
first three methods, except for the smallest systems, 
utilize some prescription of configuration selection 
which results primarily in removing the asymptotic 
difficulties of the MO model and in evaluating only 
the extra molecular correlation energy. 

optimized valence configurations (OVC)). Over the 
past several years the application of this scheme to 
diatomic molecules has been routinely yielding poten­ 
tial curves accurate to approximately . I e V. Typical 
recent results obtained by this method are given in 
table 1. One of the early questions about the 
configuration selection method (OVC) which we 
employed was whether or not it would yield accurate 
results of properties other than the energy. It does 
indeed seem to yield reliable one electron properties 
as indicated in table 2 for a number of diatomic 
molecules. 

,.oo .. 

------------- ·--1 
! 

Binding Energies and Properties for Diatomic Mole­ 
cules 

The method which we have been developing in 
our laboratory is the multiconfiguration self consistent 
field method (5] coupled with a prescription for 

, selecting important molecular configurations (named 

INTERNUCLEAR DISTANCE {ANGSTROMS) 

Figure 1: A comparison of theoretical and experimental 
curves for the potential energy of OH. The theoretical values 
were obtained from a 14 configuration OVC-MCSCF calcu­ 
lation. The experimental potential curve is from a RKR 
analysis of spectroscopic vibrational data (D. L Albritton, 
private communication). The experimental curve lies below 
the theoretical curve by about 0.1 e V at all points. The 
shapes of the two curves are the same to about ± 200 cm-•. 

• Chemistry Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA 
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Table I: Typical MCSCF results for diatomic molecules utilizing optimized valence configuration selection rules 

System Re(bohr) We(cm-1) De(e V) 

OVC Experiment OVC Experime_nt ovc Experiment 

H2 (X1~)b 1.40 1.40 4398 4400 4,bJ 4.75 

NaU (X1~)c 5.48 5.45 248.5 251 0.85 unknown 

Li2 tX'~)d 5,089 5.05 I 345.3 JS 1.4 0,99 I .OJ 

Na2 (X' ~)e 5,9313 5.818 155, 7 159.2 . 719 ,73 

CH (X2rr)f 2.086 3.43 3.65 

NH (X3L)g expt. 3.37 3.40 

OH (X2rr)h expt. 4.53 4,63 

FH cx•'I:'")i 1.7328 m 6,18 6.12 

F2 (X''I:'"; expt. 1.67 1.68 

02 (X2rr'f expt, 4.14 4,16 

co (X'~+)L 2.132 m 11.33 11.38 

(a) All these calculated values are based on a consistent simple 
model designed to evaluate only changes occurring in the 
correlation energy with molecular formation. See DAS, 
G. and WAHL, A.C. (1972). J, Chem, Phys., 56, 1769. 

(b) DAS, G. and WAHL, A.C. (1966). J, Chem. Phys., 44, 87. 
(c) BERTONCINI, P.J., DAS, G. and WAHL, A.C. (1970). 

J, Chem. Ptiys., 52, 5112. 
(d) DAS, G. and WAHL, A.C. (1966). J. Chem, Phys., 44, 87. 

DAS, G. (1967). Ibid., 46, 1568. 
(e) BERTONCINI, P.J. and WAHL, A.C., J, Chem. Phys., 

(to be submitted). 

Table 2: Diatomic dipole moments computed from SCF 
and OVC wavefunctions. All values are in debyes. 

Molecule a SCF ovc" Experiment 

c-Jt (2rr) 1.570 C 1.53 g 1.46 ± 0.06 k 

N-J/(32:"") 1.627 C 1.537 h unknown 

0-H+ (2rr) 1.780 C 1.655 q 1.660 ± 0.010 L 

F-Jt (1L) 1.942 C 1.805g 1.797 m 

C"'N (2'I:'") 2.301 d 1.481 i 1.45 ± 0.08 n 

c-o·em -0.274 e 0.156 j 0,112 ± 0.005 o 
Na•Lt (1L) 0.679 f 1.141 f 0.47 ± 0.03 P 

(a) The dipole moments are given as positive for the indicated 
polarity, 

(b) These calculations were all done at or near the experi­ 
mental equilibrium. Vibrational averaging has not been 
taken into account except where noted in the footnotes. 

(c) CADE, P.E. and HUO, W.M. (1966). J. Chem. Phys., 
45, 1063. 

(d)GREEN, S. (1972). J. Chem. Phys., 57, 4694. 
(e) HUO, W.M. (1965). J. Chem. Phys., 43,624. 

(f) NEUMANN, D, and KRAUSS, M., (in preparation). 
(g) STEVENS, W.J. (1973). J. Chem. Phys., SB, 1264, 
(h) STEVENS, W.J., DAS, G., WAHL, A.C., NEUMANN, D. 

and KRAUSS, M. (1974). J, Chem, Phys., 61, 3686. 
(i) NEUMANN, D. and KRAUSS, M. (1974). Mo/, Phys., 

27, 917. 
(j) DAS,G. and WAHL, A.C. (1973). J. Chem. Phys., 56, 3532. 
(k)KRAUSS, M., NEUMANN, D., WAHL, A,C., DAS, G .. 

and ZEMKE, W, (1973). Phys. se«. A7, 69. 
ZEMKE, W,, DAS, G. and WAHL, A.C. (1972), Chem. 
Phys. Letters, 14, 310 

(L) BILLINGSLEY, F.P. and KRAUSS, M. (1974). J, Chem. 
Phys .. 60, 4130. 

(m)Energy calculated at one point, the experimental Re, 

(f) STEVENS, W.J, and WAHL, A.C., (unpublished work). 
These results were obtained in an effort to improve 
previously published values by greatly expanding the STO 
basis set. The previous values were 0.95D and 1.24D 
for the SCF and OVC dipole moments respectively, 
See BERTONCINI, P., DAS, G. and WAHL, A.C. (1970), 
J. Chem. Phys., 5i, S 112. 

(g) NEUMANN, D. and KRAUSS, M. (1974). Mo/. Pnys., 
27, 917. 

(h) STEVENS, W.J. (1973). J. Chem, Phys., 58, 1264, 
(i) DAS, G., JANIS, T. and WAHL, A.C. (1974). J. Chem. 

Pnys., 61, 1274. 
(j) BILLINGSLEY, F.P. and KRAUSS, M. (I 974). J. Chem. 

Phys., 60, 4130. This value has been vibrationally 
averaged. 

(Jc) PHELPS, D.H. and DALEY, F.W, (1966). Phys. Rev, 
Letters, 16, 3. 

(t) POWELL, F.X. and LIDE, D.R. (1965). J. Chem. Phys., 
42, 4201. 

(m)MUENTER, J,S, and KLEMPERER, W, (1970). J. Chem. 
Phys., 52, 6033. 

(n)THOMSON, R. and DALBY, F.W, (1968). Can. J, Phys., 
46, 2815. 

(o)TOTH, R.A., HUNT, R.H. and PLYLER, E.K. (1969), 
J, Mo/, Spectroscopy, 32, 74. 

(p) DAG DIGIAN, P.J., GRAFF, J. and WHARTON, L. (1971), 
J. Chem. Phys., 55, 4980. 

(q) STEVENS, W.J., DAS, G., WAHL, A.C., NEUMANN, D. 
and KRAUSS, M. (1974). J, Chem. Pnys., 61, 3686. 
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Table 3: STO basis set for OH 
(CADE and HUO (1967). J. Chem. Phys., 47, 614). 

No. Centre Exponents 

Sigma 

Is 2 0 7.017, 12.385 

2s 2 0 1.718, 2.863 

3s 1 0 8.646 

2p 4 0 1.285, 2.135, 3.760, 8.228 

3d 2 0 1.636, 2.824 

4f I 0 2.266 

ls 3 H 1.000, 1.314, 2.439 

2s I H 2.300 

2p I H 2.805 

Pi 
2p 4 0 1.266, 2.115, 3.753, 8.411 

3d 1 0 1.913 

4f 1 0 2.199 

2p 1 H 1.770 

3d 1 H 3.325 

In order to obtain results of this quality one must 
utilize an extended basis set ( double zeta plus 
polarization) and also must include all important 

'molecular' configurations. The calculation of the OH 
potential curve. figure 1, provides a good example 
of what is required in these two regards. Table 3 
displays the basis set composition and table -l the 
classes of configurations required. Discussion of these 
points has been given in detail recently [5]. Presently 
these methods have been extended to excited states 
of the same symmetry yielding satisfactory results, 
see table 5 [7]. 

Table 4: OVC configurations for x2 n; OH 
Classification Occupancies Number of 

Couplings 

Hartree-Fock 

Correct Dissociation 

lnterpair Split Shells 

lntrapair Doubles 

1a22a23a211r3 

1a22a24a211r3 

1 a22a2(3a4aJil 1r3 

I a22a2(3a4<J)(la 227r) 

1 a22a25 a211r3 

1a22a26a211r3 

I a22a211r331r2 

la22a217r347r2 

7 

Table 5: Spectroscopic constants for the CNstates 

States Reference De Te re We WtXe Be Cl'e 
(eV) (eV) (bohrs) (cm-1) (cm-1) (cm-1) (cm-1) 

)(2I;+ This work 7.011 2.20 2079.5 13.00 1.90 .019 
Straight Cl a 6.178 2.34 1939.2 14.54 1.61 .015 
Exp. b 7.75±.2 2.22 2068.7 13.14 1.90 .017 

B2I:+ This work 6.280 3.114 2.17 2275.5 24.94 1.97 .022 
Straight Cl a 4.335 3.765 2.32 1765.2 32.53 1.65 .026 
Exp. b 3.193 2.18 2164.1 20.25 1.97 .022 

E2I:+ This work 1.747 7.647 2.45 2074.5 16.83 1.53 .007 
' Straight Cl a 1.745 7.856 2.58 1717.1 30.57 1.32 .015 

Exp. b 7.334 2.49 1681.4 3.6 1.49 .006 

A21r This work 5.998 1.013 2.34 1787.2 12.28 1.69 .018 
Straight Cl a 4.295 1.883 2.50 I 621.4 16.74 1.40 .015 

b 1.146 2.33 1814.4 12.88 1.72 .018 Exp. 

D21r This work 2.943 6.451 2.94 1109 11.99 1.07 .013 
Straight Cl a 3.008 'v7.593 3.01 1041.6 6.38 .97 .010 
Exp. b 6.755 2.83 1004.7 8.78 1.16 .013 

lf1r This work 1.427 7.9673 2.49 2364.3 50.70 1.487 .001 
Straight Cl a 1.794 7.807 2.67 1651.3 43.84 1.229 .002 
Exp. b 7.556 (=To) 2.48 (=r0) 1.52 (=Bo) 

(a)See(3] 
(b)See (3) for lists of references on the CN-experimental data 
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Table 6: Configurations used for the VDW calculations for 
ArH 

Configurations 

De scrip lion 

Hartree-Fock 

Overlap-Transfer 
Excitations 

(3s<r 4p03pir4) Ar ls<7}i 2 

(3sa2 3p03pir34plT) Ar !soi 

(3p Ar• lsH) Dispersion 
Excitations 

(3s<r 3p03d03pll4)Ar2P0H 
(3s<r 3p<r 3pir33dll) Ar2POH 
(3s<r 3p<r 3d03pir3) Ar2PIIH 
(3s<r 3p03dll3p114) Ar2PIIH 
(3s<r 3p<r 3pir3 3d0) Ar2PII H 
(3s<r 3p<r 3pir3 3dlT) Ar3d6 H 
(3s<r 3p03d03p114) Ar3d6H 

(3sAr,lsH) Dispersion 
Excitations 

(3s03pa24p03pir4) Ar2P<7}i 
(3s03pa24pll3p114) Ar2PIIH 

Table 7: Calculated and experimentally determined Van der 
Waals well depths e and positions R 

System R (bohrs) €OK Refer- 
Theory Experiment Theory Experiment ence 

HeH 6.8 6.97 5.8 4.05 [8] 

He1 5.6 5.6 10.8 10.4 to I 1.2 [9] 
UHe 11.8 2.2 [8] 

Ne2 5.82 5.86 39.2 42.0 [ 10] 

Nell 6.65 6.01 16.9 32.6 a 

ArH 6.8 6.73 48.2 55.4 [ 12] 

KrH 7.2 6.99 67.3 70.3 a 

(a) Work in progress 
(b) The disagreement between experiment and theory for 
Nell is under study 

Table 8: Comparison of experimental and theoretical well 
depths for He1 

&OK Reference 
--- 

Hartree-Fock Repulsive 

Interatomic terms 12 [9] only included 

Inter and Intra 10.8 [9] computed separately and added 

Inter and Intra • 8.9 [ I 3 I computed simultaneously 

Experiment" 10.6 - 11.2 [9,13 I 

(a) This discrepancy between theory and experiment has been 
resolved in recent work by W. Meyer, see [ 6]. 

Van der Waal Interactions 

Ideas similar to those which have proven successful 
in the quantitative evaluation of chemical bond 
strengths have been applied to the evaluation of Van 
der Waal's forces (for an example of configurations 
employed see table 6}. Recent MCSCF calculations 
including only intermolecular excitation have been 
performed on HHe (8), He1 [9], LiHe [8], Ne2 (10], 
Nell (II] and ArH (12], table 7, and Van der Waal 
well depths have been obtained in cases where experi­ 
mental values are well established to an accuracy of 
approximately I 0%. In order to achieve greater 
accuracy intra-atomic and inter-intra coupling cor­ 
relation effects must be included. This has been 
done for the He2 (6,13]. The most complete 
theoretical results (6] are now in satisfactory agree­ 
ment with experiment, table 8. In such high accuracy 
calculations very extended basis sets, table 9, must 
be employed to avoid expansion errors, dependent 
on the internuclear distance, which can be of the same 
order of magnitude as the Van der Waal interaction 
[I 2]. 

Table 9: Basis set used for accurate SCF calculations on 
the system A rH 

a-Set 11-Set 
nl Exponent Centre nl Exponent Centre 

Is 20.75 Ar 2p 16.22 Ar 
2s 14.9 Ar 2p 8.23 Ar 
3s 16.5 Ar 2p 5.0 Ar 
3s 10.5 Ar 4p 8.0 Ar 
2s 6.206 Ar 3p 2.97 Ar 
3s 3.166 Ar 4p 2.211 Ar 
3s 1.933 Ar 3p 1.37 Ar 
4s 1.933 Ar 4p 1.37 Ar 
2p 16.22 Ar 3d 2.97 Ar 
2p 8.23 Ar 4d 2.211 Ar 
2p 5.0 Ar 3d 1.37 Ar 
4p 8.0 Ar 2p 1.0 H 
3p 2.97 Ar 2p 1.75 H 

4p 2.211 Ar 
3p 1.37 Ar 
4p* 1.37 Ar 
3d· 2.97 Ar 
4d· 2.211 Ar 
3d· 1.37 Ar 
Is 1.0 H 
Is 2.0 H 
2s 1.0 H 
2s 2.5 H 
2p 1.0 H 
2p 1.75 H 
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Triatomic Molecules 

The extension of the configuration selection pro­ 
cess employed successfully on diatomic molecules 
could not be straightforwardly applied to the triatomic 
systems except for the dihydrides in which the various 
correlation types (in out, left right, angular) are easy 
to identify. The results of the application of this 
method to H20 and N02 are given in figures 2 and 3. 
The choice of configurations is discussed in several 
recent papers [14,15]. 

R, 

Fi,ure 2: MCSCF potential energy surface for 3 BI state 
of H2o at bond angle of 105°. Energy con1oun are labelled 
in atomic units. 

z.o 

0.9 

°1.5 4.o 4.5 5.o 5.5 
R(0-01,-. 

Figwe 3: Computed potential surface of 1 2 A I state of N02• 
luennoat contour is -204.10 au with each aucceedm, 
contour 0.01 au hisher in energy. 

Dynamics and Sea ttering 

With the availability of accurate ab initio inter­ 
action potentials it becomes possible to compare, at 
a quantitative level experimentally derived potentials 
with the calculated ones. For some systems the 

I 1.00 
i 
I 

9.00 I- I 
I 

7.00 I- 

\ 5.00 

> •• ' I 
~ =: 3.00 e ~ ,I 

> I • 1.00 ' lol,lb1 

I 
I 

-1.00 

··3.00 

-5.00 L...---'----=:......-L- _ _,._ __ ..,_ _ _..J 

2.50 3.00 3.50 4.00 4.50 5.00 5.50 
R(AJ 

Figwe 4: V(R) venus R. AQl and AQ2 label the two 
experimentally derived potentials of (17), B/1 and B/2 label 
the two experimentally derived potentials of (16). MCSCF 
and SCFC8 are the theoretical potentials (12). 

uncertainty in the experimentally derived potential 
is sufficient to warrant serious consideration of the 
calculated potential. This was the case for ArH in 
which the potentials derived from two different · 
experiments [16,17] were in a serious disagreement, 
figure 4. In this case the theoretically derived 
potentials agreed with only one of the experimental 
ones, figure 4. Further the scattering predicted from 
the theoretical potential also only supported one set 
of experiments, figures 5-9. Later these disagreements 
were resolved and it appears that the theoretically 
evaluated potential was important in catalyzing new 
experiments (12]. 

N .. 
2.20.-...--------,-----~-~----~ 

(ol ------ MCSCF 
!bi------ SCFCa 
f.::1--- B11 
idl --- B12 

,; 2.00 

·! 
ui 1.90 . 
5 
e I .BO 

lo) ------ MCSCF 
(b) ------ SCFCe 

le) --- Bll 
Id) --- BI2 

AOl 
A02 

le)---- 
Ill ---- 

1.70 

lel --- AOl 
(I) --- A02 

1.60 ~--~--~--~--~--~--~--~-~ 
0.20 0.30 ~, 40 0.50 0.60 0. 70 0.BO O 90 1.0C 

!og10 rve-c ct , in ~"''setl 

Figwe 5: Log of the total elutlc crou section vem,, log 
of the ArH relative velocity. The elude crou sections were 
calculated from the quantum mechanical phaae shifts pro­ 
duced by the six potential cu,vea in figure 4. 
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We have also performed classical trajectory studies 
[18] on the LiH2 surfaces computed at three levels of 
accuracy. The surfaces were Hartree-Fock, Optimized 
Valence Configuration, and Hartree-Fock interaction 
added to a correlated description of the H 2 bond 
stretching. The OVC surface for 1.4 bohrs is displayed 
in figure JO. These potential surfaces were computed 
for three H2 internuclear distances 1.0, 1.4, and 2.0 
bohrs and fitted to the form given in table JO. 
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Table 10: Analytic Potential Form 

Ru 

H 

where: 

Vtt2(Rtt2) = D j 1 - exp (-/3(Rtt2 - Re)} 
2 

4 
Vu.tt2(Ru,Rtt2,0) = > VQCRu.Rtt2)PQ(cos0) 

Q;t,2 

V~(RL;,Rtt2l = Q1QCRtt2Jexp(-0£Ru) + Q2Q(Rtt2lRu·mQ 

+ Q3Q(Rtt2)R u·"Q 

The purpose of these studies was to predict non­ 
reactive collisional behaviour for this system and to 
assess the effect in the dynamics of the differences 
in the three potentials employed. As seen in figure 5 
11-13 the dynamics obtained from these three poten­ 
tials are qualitatively indistinguishable. All of them led 
to negligible vibrational or rotational excitation at 
the energies studied. Work on the reactive portion 
of the LiH2 surface is in progress. 

Figure 11: The cross section, as a (unction or Li translational 
energy, for rotational excitation or H2• Transitions (0 .• 2), 
(0 .• 4), and (0 .• 6) are displayed for three different potential 
energy surfaces: a Hartree-Fock (HF) surface: an OVC surface; 
and a hybrid surface consisting or the HF interaction energy 
and the OVC H2 asymptotic energy. 
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Figure 12: The cross section for the (0 .• 2) and (0 .• 4) 
rotational excitation of H 2 u a function of the Li impact 
parameter for Li with an initial translational energy of 20 
kcal and for H 2 initially in the ground vibrational state. 
Results are displayed for the three potential energy surfaces 
listed in figure 11. 
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20 kcal, H2 ia initially in the ground vibrational state. 
Results are displayed for the three potential energy surfaces 
listed in figure 11. 

Summary 

The purpose of the above presentation has been 
to give you some idea of the work going on in our 
laboratory dealing with the evaluation of interaction 
potentials and their subsequant use. in dynamical 
calculations. These dynamical calculations have served 
several purposes: 

(a) to aid in developing a unique interatomic 
potential, as in the ArH case, 

(b) to assess the sensitivity of the dynamical results 
to changes in the potential, as in both the ArH 
and LiH 2 cases, and 

(c) to predict collisional behaviour from the a 
priori potential, as in both the ArH and LiH2 
cases. 

With the relatively new capacity for evaluating 
accurate interatomic and intermolecular potentials for 
non trivial systems and recent advances in dynamics 
quantum chemistry can be expected to play an 
increasingly important role in the establishment of 
accurate potential energy surfaces and the prediction 
of dynamical behaviour on them. This process is an 
iterative one in which regions of the potential surfaces 
are identified for refinement through dynamical calcu­ 
lations displaying sensitivity to such regions, followed 
by subsequent improved dynamical calculations. 
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On the Direct Configuration Interaction 
Method from Molecular Integrals 
P.Siegbahn* 

The direct configuration interaction method from molecular integrals is investigated in two main 
directions. The first concerns the use of different diagonalization procedures, and it is shown that 
a variational form of perturbation theory is most efficient in connection with this Cl-method. The 
other deals with methods of obtaining and sorting the coupling coefficients that appear in the 
formalism. One such procedure is outlined. Finally a computer program for correlating three 
valence electrons with full Cl, based on these methods, is described. Timings are given from 
preliminary studies of the H 3 and the Li2H systems. 

Introduction 

A couple of years ago a basically new method of 
doing configuration interaction (Cl) calculations was 
introduced [I). It is the object of this paper to 
present certain improvements and extensions of this 
method. One section will put the method in the 
context of other methods, and the following two 
parts will concentrate on diagonalization schemes and 
coupling coefficients respectively. Finally in the last 
section the performance of a computer program is 
demonstrated, where the presented algorithms have 
been used for the case of full Cl on three valence 
electrons. 

The decision to make a full Cl program for three 
valence electrons was made for three reasons. The 
application of the method is particularly simple for 
the case of full Cl. It is a system where it is 
practical to perform full Cl calculations even for 
large basis sets, and finally there is a big variety of 
problems of chemical interest where three electrons 
determine the electronic structure or the potential 
energy surface. The most striking example of the 
last point is maybe the classical problem of the 
exchange-reaction between a hydrogen atom and a 
hydrogen molecule. 

H + H2 -+ H2 + H 

Other examples of reactions involving three electrons 
are 

H + Li2 -+ LiH + Li 

H + LiH -+ H2 + Li 

H; + H2 -+ H/ + H etc. 

In the last section of the paper timings for cal­ 
culations on two of these reactions will be given for 
a number of different basis sets and symmetries. 

Method of Calculation 

To understand the details of the particular method 
of solving the Cl-problem used here, some relevant 
background has to be given. 

Expanding the wavefunction in terms of ortho­ 
gonal configurations 

N 

q, = I:: < <l>i 
i= 1 

leads to the secular equation 

(I) 

(H - E 1) · C = 0 (2) 

The methods of solving (2) can be divided into 
two basically different groups. The most commonly 
used procedure is the iterative scheme where (2) is 
handled as a set of linear equations and the co­ 
efficients and energy are simultaneously updated 
until convergence [2,3]. The other set of methods 
are based on perturbation theory [4,5]. 

The simplest form of the iterative method consists 
of rewriting (2) as 

Jt·C=A·C (3) 

where H' - A = H - E 1 must hold. 

• Department of Chemistry, University of California, Berkeley, California 94720, USA 
(present address) Institute of Theoretical Physics, University of Stockholm, Vanadisvdgen 9, S-113 Stockholm, 
Sweden 
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Usually the matrix A is chosen to be diagonal. with for example A;; = E - H;;- This leads to the iterative 
procedure 

aq<kl = E(k-1) _ H . [t Hii c;<k-1) - Etk-1). e,(k-ll] 
ii 1= I 1 

(4) 

where aq<k) is the increment of coefficient i in iteration k, and N is the number of configurations in the 
basis set. The energy E(k-l) is simply the variational energy calculated with the vector from iteration k-l. 

£lk-l) = 
N 
i: c<k-1>2 
i = 1 1 

N 

I: 
i=l 

c<k-1> I . 

N 

~ 
1= I 

Hii c?-1) (5) 

In the perturbation approach the usual splitting 
is made of the Hamiltonian H = H0 + V, with the 
corresponding expansion of the wavefunction >Ir = 
I:4>(k) and energy E = I:&k. Inserting this in the 
k k 
Schrodinger equation and collecting terms of order 
k leads to 

k-1 
(Eo -Ho)<flk) = V ,t><k-1) - L &k-m <f/m) (6) 

m=O 

After the expansion of ,t><k) in orthogonal 
configurations the unperturbed Hamiltonian H0 is 
usually, for practical reasons, chosen to be diagonal 
in this representation. One such choice is: 

N 
H0 = I: li><ilHli><il, where the sum is over all 

I= I 
the configurations in the basis set. With this choice 
( 6) can be rewritten in component form as 

N N I: vij c;(k-1) _ I: i.k-m c/m> <1> 
j=l m=O 

The perturbation energies obtained in iteration k are 
found to be expressed by [ 4). 

(9) can be rewritten in terms of integrals and coupling 
coefficients in a computationally attractive way. 
The contribution to an element a;(k) from the 
integral (ab/cd) is then given by 

au/kl = A · (ab/cd) · c/k-1) (JO) 

where A is the coupling coefficient. 

By this procedure the explicit construction of the 
Hamiltonian matrix is avoided. Instead the updating 
is made through a sequential reading of the integral 
list in each iteration. Extensions and modifications of 
this method will be discussed in the following sections. 

Diagonalization Schemes 

A conventional Cl-scheme consists of three steps. 
The generation of formal matrix element expressions, 
the construction of the Hamiltonian matrix and 
finally the diagonalization of this matrix. It is clear 
that the timing with this scheme is less sensitive to 

(8) 

Depending on the procedure used to solve the 
secular equation either (4), (5) or (7), {8) is calculated 
until convergence. As A or H0 are commonly chosen to 
be diagonal both of these methods in practice basically 
means calculating the vector <T with components 

a,<k) 
I 

N 
= L Hij 

j=l 

c;(k-1) (9) 

B. Roos has shown [ l] , that for the case of a cal­ 
culation in a basis of all singly and doubly substituted 
configurations out of a closed shell reference state, 

the efficiency of the iteration procedure than the 
present method, where all work has to be repeated 
in each iteration. Also with the simultaneous updating 
of all components of the vector u, according to (I 0), 
some commonly used modifications of the iterative 
scheme (2,3) cannot be used. With this in mind 
an investigation of different diagonalization schemes 
was made, and it will be shown here that a particular 
choice of perturbation approach is capable of giving 
rapid convergence in connection with this Cl-method. 

For the iterative schemes an obvious modification 
of (4) is the introduction of a damping factor A; in 
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front of the expression on the right hand side. A 
somewhat different way of introducing damping is 
obtained by choosing 

(I I) 

a, can be compared to what in Hartree-Fock schemes 
are called level-shifters [ 6]. 

With the introduction of °'i (4) becomes 

One can show that simple expressions exist for the 
matrix elements of the perturbation operator V 
between the perturbation functions e according to [4] 

<<1><P>1 V/<t><q>> 
p q 

= i.p-l<j+l + L L 
k = I Q= I 

8P+<i+l-k-Q <9<k>1<1><Q)> (14) 

t.c<kJ = l r~ H-- c.<k-1) _ E<k-1) c<k-lJ] 
I W IJ J l 

£(k-l) - H-- + a,. i·=1 
11 I 

(12) 

A special case of this procedure is the use of Hartree­ 
Fock orbital energies in the denominator instead of 
the diagonal elements of the Hamiltonian matrix. One 
convenient way of using a, is to avoid the problems 
occurring when E - H;; "' 0, which may happen in 
a case of near degeneracy. There is clearly a great 
variety of possibilities of choosing the °'i· No effort 
was here made to map out the advantages of partic.rlar 
choices of a,, because certain modifications of the 
perturbation schemes seemed to show superior con­ 
vergence patterns in connection with this Cl-method. 

The corresponding flexibility obtained by choosing 
the °'i above is obtained in perturbation theory by 
the freedom of choosing H0 according to 

N 

Ho = L li>a;<il (13) 
i= I 

where the sum is over all the configurations in the 
basis set. For the perturbation schemes by far the 
most efficient choice of a; tried, was the sum of 
Hartree-Fock orbital energies. In fact with °'i equal 
to the diagonal elements of the Hamiltonian matrix 
the straightforward perturbation method (7), (8) 
generally diverges. Having defined H0, a choice of 
different available perturbation schemes are still open. 

- ------------- -- 

where 8 are perturbation energies. 

This means that setting up and solving the secular 
equation in terms of the perturbation functions is a 
minor extra work in each iteration. Improved con­ 
vergence has been demonstrated in some cases with 
this nonlinear variational perturbation approach [5]. 
A test calculation on a ls-hole on co+ with 1500 
configurations is shown in table I. The orbitals used 
were the ground state orbitals of CO and the °'i are 
chosen to be the sum of the orbital energies for the 
ion. Also shown in table l are various other methods 
to calculate the energy, easily applied in each iteration. 
Tne linear variational perturbation approach [ 4] is 
simply the variational energy calculated with the sum 
of the perturbation functions. For the definitions 
of [N, N- I ] and [N, N) Pade approximants used to 
extrapolate the perturbation energies, see references 
[5,7). It should be added that the chosen example 
was unusually difficult to get to converge, because of 
the big reorganization effects. Commonly 6 or 7 
iterations are needed to get convergence for ground 
states to 6 decimal figures in the energy with the 
nonlinear variational method, if there is not a very 
close lying excited state. Generally even the appli­ 
cation of perturbation theory according to (7) (8) 
with H0 as the sum of orbital energies converges. 

Table I: Convergence of Cl - different procedures calculation on co+ 
Correlation energies in au a 

Linear Linear Non-Linear 
[N,N-1) [N,N) Variational Variational Iteration Perturbation 

Perturbation Perturbation Pade- Pade- Theory 
Theory Theory Approximant Approximant 

2 -0.565 -0.357 -0.662859 -0.832297 -0.560801 4 -1.77 -0.703 -0.804137 -0.80574 7 -0.806888 6 -1.28 -0.547 -0.807554 -0.808230 -0.807879 8 +15.2 +0.332 -0.807884 -0.807320 -0.807734 10 -19.2 +2.22 -0.807975 -0.807966 -0.813891 12 -359 +0.516 -0.807991 -0.807965 -0.807675 14 +1180 +3.28 -0.807993 -0.807994 -0.808027 

(a) The correlation energy also includes the reorganization energy 
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The Coupling Coefficients 

In this section a method for obtaining and sorting 
the coupling coefficients A in ( I 0) will be presented, 
and an example is given for the three electron case. 
The value of the coupling coefficient A for a 
particular integral (ab/cd) depends on three inde­ 
pendent parameters 

(a) Type of integral 

(b) Spin- (and space-) projection used in the 
coupled configurations i and j 

(c) Permutation of the orbitals in these con­ 
figurations. 

To clarify the meaning of 'type of integral' we 
consider the case of a configuration set of single and 
double substitutions from a. single configuration 
reference state. Here we can divide the orbitals into 
three distinct sets 

(a) Doubly occupied in reference state 

(b) Singly occupied in reference state 

(c) Nonoccupied in reference state. 

Within each of these sets the orbitals are given a 
sequential number. The integral is defined in terms 
of four orbitals a, b, c, and d. The 'type of integral' 
is defined by how many of these four orbitals fall 
into each of the three groups and the relationship 
between the sequence number of the orbitals of the 
same group. As an example, there are 14 different 
types of integrals which are defined in terms of 
orbitals all belonging to the same set (table 2). All 

Table 2: The fourteen different types of integrals (ab/cd) 
obtained when all orbitals are in the same set 

Type Index- Type Index- Type Index- No. relations No. relations No. relations 

I a=b=c=d 6 a=b 11 b=c 
2 a= b = C 7 C =d, b >« 12 b >« 
3 b=c=d 8 C =d. b <c 13 b <c. b>d 
4 a= b, C = d 9 a =c 14 b<c,h<d 
5 a= c. h = d 10 b=d 

together there are 53 different types of integrals for 
a closed shell reference state. With one open shell 
there are 89 types and with two open shells the 
number of types has increased to 148. The actual 
programming work required to use the algorithm (10) 
in its present form is critically dependent on the 
number of types of integrals, as each one in principle 
requires a special subroutine. Therefore, if all orbitals 
are treated equally. as in the case where all possible 
configurations generated by the basis set are used in 
the calculation, full Cl, the number of types of 
integrals is small, 14, and the required programming 
work moderate. 

To obtain the required coupling coefficients a 
program developed by C. Bender [8] was used, which 
generates formal matrix-elements between specified 
configurations. By a specially written program the 
list of matrix-elements was searched for a specific 
integral. The coupling coefficients are then ordered 
by the program according to the indices involved in 

Table 3: Full CJ for three electrons 
Coupling coefficient tables for integral (ab/cd) where b < c and b > d (Type 13 of table 2) 
(a) Interaction elements (kda(l•21llkbc(l,l)) 

k is the running index and the superindex denotes spin-coupling 

Spin- k+ coupling d b C a 
0112) +l/2 0 -1/2 -.,/612 -1 +y6/2 -1/2 0 +1/2 
0112) ..,,/3/2 -.Ji -v3/2 0 0 0 +y3/2 ..,,/2 +yJ/2 
(2111) ..,,/3/2 0 +VJ/2 +yl/2 0 +yl/2 ..,,/3/2 0 +y3/2 
(2112) -1/2 0 -1/2 0 +I 0 -1/2 0 -1/2 

(b) Interaction elements (kca(t,l)llkdb11 •21) 

Spin- k+ coupling d b C a 
0111) +l +y6/2 +l/2 0 -1/2 0 +J/2 --v6t2 +I 
0112) 0 0 +yJ/2 0 -yJ/2 ..,,/2 -V3/2 +y2/2 0 
(2111) 0 +y2/2 +y3/2 ..,,/2 +y3/2 0 _,,/312 0 0 
(2112) +l 0 -1/2 0 -1/2 0 -1/2 0 +I 
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the interaction. For a three-electron system each 
configuration is defined in terms of three orbital 
indices. Each of the two interacting configurations 
will have two indices - the fixed indices - equal to 
two of the indices appearing in the investigated integral. 
The third index - the running index - will appear 
in both of the configurations but not in the integral. 
When this last index runs over all orbitals in the basis 
set a series of configurations that interact through 
the given integral are generated. A major division 
of the interactions according to fixed indices and 
spin-coupling is then made. Within each such group 
the interactions are ordered after the running index. 
As an example the list of coupling coefficients ob­ 
tained in this way for a certain integral is given 
in table 3. The table contains all the necessary 
information needed to describe the detailed handling 
of this type of integral in the Cl-calculation. Fourteen 
such tables have to be generated in this case after 
which the actual programming is almost trivial. The 
appearance of a single running index means that each 
integral runs through a single loop over the number 
of orbitals (m) in the basis set. The full Cl for three 
electrons with this algorithm is consequently an ms 
procedure. For four electrons there will be two 
running indices which makes the full Cl in this case 
an m6 problem. For the case of only single and 
double substitutions in a many electron system each 
configuration can be defined by four indices with 
respect to the reference state. This makes the auto­ 
matic sorting of the coupling coefficients with respect 
to two running indices possible also in this case. 

The Full Cl-Program for Three Valence Electrons 

A computer program to correlate three electrons 
with full Cl has been made based on the ideas in the 
earlier sections. This program was connected to the 
Gaussian integral part of the MOLECULE-package [9], 
and the SCF and molecular orbital transformation 
parts of the ALCHEMY package [ I OJ, to form a 
complete package for three electrons. In all steps 
of this package full advantage is taken of any 
available two-fold symmetry. 

Since the completion of the program, two appli­ 
cations have been started. One on the system H + H2 
together with B. Liu, and another together with 
H. F. Schaefer on H + Li2• The timings given in tables 
4 and 5 are from preliminary studies of these two 
reactions. A fairly detailed investigation of the 
timing was made on the largest calculation on H 3 
where one iteration takes 4.3 minutes. It was found 
that only a small fraction of this time, 15 seconds, was 
spent to read, identify and send the integrals to their 
proper subroutine. Of the rest one half of the time, 
2 minutes, goes into index-handling and the other 
half goes into the actual floating point operations 
according to ( I 0). The index-handling per integral 
is almost independent of the symmetry used, whereas 
the floating point operations are directly proportional 
to the number of Hamiltonian matrix elements dif­ 
ferent from zero, and thereby critically dependent 
on the symmetry. The increase in time per iteration 
as the symmetry is reduced, as shown by table 5, 
is therefore a consequence of both the increasing 

Table 4: Timing data - different molecules and basis sets 
(calculations on IBM 360/195) 

Molecule Symmetry (used) Number of Number of Number of a Time/Iteration Orbitals Configura !ions Iterations minutes 

Li2H C2v (linear) 25 1378 8 0.08 
Li2H C2v (linear) 32 2928 8 0.25 
Li2H C2v (perpendicular) 32 2593 7 0.21 
Li2H Cs (nonlinear) 32 5175 7 0.55 
H1 D2h 48 5799 6 0.7 
H3 D2h 57 9350 6 1.4 

(a) This is the number of iterations required to reach convergence on the energy to 6 decimal places 

Table 5: Timing data - H3 different symmetries 
(calculations on IBM 360/195) 

Symmetry (used) Number of Number of 
Orbitals Integrals -- 

D2h 48 0.9 x IOS 
C2v (linear) 48 I. 7 x IOS 
Cs (nonlinear) 48 3.7 x IOS 

Number of Number of Matrix-elements Time/ltera tion 
Configurations Different from Zero minutes 

5799 2.3 X f06 0.7 
11655 9 X f06 1.5 
20724 28 X 106 4.3 
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number of integrals and the increasing number of 
Hamiltonian matrix-elements different from zero. 
The only way to reduce the time per integral, if the 
same number of orbitals are kept, is to reduce the 
number of configurations, which would reduce the 
floating point operations but not the index-handling. 
A preferable way to reduce the time per iteration 
would be to reduce the number of integrals by 
neglecting small integrals. However, in the large 
calculation of H 3, of the 370668 integrals, there are 
only 1534 integrals smaller than 10-5• This is of 
course due to the delocalized nature of the molecular 
orbitals obtained from an SCF-calculation. The use 
of other orbital-sets which would give more small 
integrals has not been thoroughly investigated. 

Two numbers that illustrate the convenience of the 
present approach as compared to conventional Cl in 
this case, are the number of integrals and the number 
of nonzero Hamiltonian matrix-elements. The con­ 
struction and use of 28 million matrix-elements would 
not only be time consuming but also impractical on 
most computer installations, whereas the 370 thousand 
integrals would give no data handling problems. 

(JO) The ALCHEMY computer programs were written 
by P. S. Bagus, B. Liu, A. D. McLean and 
M. Yoshimine of the Theoretical Chemistry 
Group of IBM Research in San Jose. California. 
Preliminary descriptions of the program are 
given by McLEAN, A. D., Proceedings of the 
Conference 011 Potential Energy Surfaces in 
Oiemistry held at the University of California, 
Santa Cruz, August 1970. 
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Electron Correlation in BH and H4: 

A Numerical Comparison of Various Methods 

G.A. van der Velde and W.C. Nieuwpoort* 

The correlation energy of the four valence electrons in BH and all four electrons of two parallel H2 
molecules has been calculated using six different methods: 

(a) complete Cl 
(b) Cl based on all singly and doubly excited configurations 
(c) coupled electron-pairs (CEPA) following Kelly 
(d) independent electron-pairs (!EPA) 
(e) independent pair-potential (IPP) following Mehler 
(0 coupled pair-potential (CPPA) 

The calculations on BH were done for several internuclear distances using canonical as well as localized 
SCF orbitals. The H4 calculations were carried out for two distances between the H2 molecules and 
only localized orbitals were employed. 

In comparison with the reference calculation (a) the results of the IPP method are excellent, those 
of the IPA method poor. The other methods yield intermediate results: (e) > (0 > (c) > (b) > (d) 

Introduction 

In most cases some form of configuration inter­ 
action (Cl) is used for the calculation of correlation 
corrections to the wavefunction and the energy. 
However, in order to make numerical calculations 
feasible one has to truncate the Cl expansion. In the 
literature a number of methods have been proposed 
to truncate the Cl expansion. The approximations in 
the wavefunction have been justified with qualitative 
arguments, but to date only a few comparisons exist 
between rigorous Cl results and the results of more 
approximate methods. In this paper we compare for 
two four-electron systems the results of a complete Cl 
calculation with the results of the following methods: 

(a) Cl calculations with only single and double 
substitutions with respect to the SCF wave­ 
function; 

(b) Independent electron pair approximation; 

(c) Coupled electron pair approximation; 

(d) Independent pair potential approximation; 

(e) Coupled pair potential approximation. 

Methods of Calculation 

Starting from the closed shell SCF wavefunction <1>0 
we distinguish the following contributions to the cor­ 
related wavefunction of the valence electrons of BH: 

(a) The orbital polarizations or one-electron 
clusters X(2a) and X(3a); 

(b) The intra-orbital two-electron cluster X(2a2) 
and X(3a2); 

(c) The inter-orbital clusters X(2a3a;S) and X(2a3a; 
T) in which the 2a and 3a orbitals are coupled 
to a singlet and a triplet, state, respectively; 

(d) The three-electron clusters X(2a23a) and 
X(2a3a2 ); 

(e) The four-electron cluster X(2a2 3a2). 

In a complete Cl calculation all clusters are included 
in the wave function. However, this kind of calculation 
is very time-consuming because of the large number 
of terms in the three- and four-electron clusters. 
Since the two-electron clusters describe the main 
correlation correction a reasonable method to cal­ 
culate correlation energies would be to include only 
the one- and two-electron clusters in the wave function. 
(This method will be denoted as Cl(! +2) in the 
following). This method accounts only for the 
correlation between two-electrons at a time [I ,2]. 
Consequently, the fraction of the correlation energy 
that is calculated with this method will become 
smaller for larger systems [ 1,2] . 

To remedy the shortcomings of the Cl(l +2) method 
one has to include the effect of unlinked products of 
one- and two-electron clusters. Since it is expected 
that the main contribution to the four-electron 
cluster consists of a sum of products of two-electron 

* Chemische Laboratoria der Rijksuniversiteit, Zemikelaan, Paddepoel, Groningen, Netherlands 
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clusters [I ,2), the interaction between the two-electron clusters and the unlinked product of two-electron 
clusters can be approximated as (3,4) 

<X(2u2 )IJ<IX(2u2 3o2 )> "' <4>0 l:JCIX(3u2 )><X(2u2 )I X(2u2 )> = &(3o2 )<X(2o2 )IX(2o2 )> 

<X(2o3o;S)IJ<IX(2o2 3o2)> "' ½&(2o3o;S)<X(2o3o;S)IX(2o3o;S)> 

<X(2u3u;1) IJ<IX(2o2 3o2 )> "' 1/~(2o3o;1)<X(2o3o;1)1 X(2o3o;1)> 

<X(3o2 )IJ< IX(2o2 3o2 )> "' 8,(2o2 )<X(3o2 )I X(3o2 )> 

(1) 

(2) 

(3) 

(4) 

where 
&(I) = <X(i)IJ<l4>0> (5) 

The interaction between one-electron clusters and three-electron clusters is similarly approximated as 

<X(2o)IJ<IX(2o23o) + X(2o3o2)> "' {½&(2o3o;S) + ½&(2o3o;1) + 8,(3o2)} x <X(2o)IX(2o)> (6) 

<X(3o)IJ<IX(2o23o) + X(2o3o2)> "' {&(2o2) + ½&(2o3o;S) + ½&(2o3o;1)} x <X(3o)IX(3o)> (7) 

In the calculation the interaction with three- and 
four-electron clusters is taken into account by using 
a different effective Hamiltonian for each one- and 
two-electron . cluster. For instance for the intra­ 
orbital cluster X(2o2) the effective Hamiltonian is 
taken to be 

(8) 

The above method has been used first by Meyer (5), 
al though he uses slightly different effective Hamil­ 
tonians. He proposed the name coupled electron pair 
approximation (CEPA) for his method. In the 
following we shall use this name also for the method 
with the above effective Hamiltonians. 

In the independent electron pair approximation 
(IEPA) (6) the correlation energy is calculated for 
each two-electron cluster separately. For instance 
the correlation energy for the 2o2 pair is calculated 
from the trial wavefunction 

4>0 + X(2o) + X(2o2) (9) 

In the IEPA method the interaction between two­ 
electron clusters is neglected, and the interaction 
between two-electron clusters and four-electron 
clusters is overestimated (4). 

In the independent pair potential approximation 
(IPPA) (7) the correlation problem is also split in 
a number of smaller problems. This method uses 
trial functions of the form 

<f>o + X(ii) + X(i)
0

+ r {xc;) + X(ij;S) + X(ij;7)} (JO) 
i(11) 

In this method all interactions are neglected between 
disjoint two-electron clusters, i.e. clusters which have 
no indices in common. The coupled pair potential 
approximation (CPPA) (4] differs from the CEPA 

method in that the interactions between disjoint 
two-electron clusters are neglected. 

Results 

BH with canonical orbitals: The calculations on BH 
were performed with a small contracted Gaussian 
basis set (4s- and 2p-functions on B and 2s- and 
Ip-function on H) for four internuclear distances. 
The results of the SCF calculation and the full Cl 
calculation for the valence shells are shown in table 1. 
In order to test the validity of the approximations 
(I )-(7) we calculated the quantities 

and 
(I 2) 

~3(i) = <X(i)IJ(IX(2o23o) + X(2o3o2)>/<X(l)IX(i)> 

Table I: Correlation energy of the valence shell of BH in 
a full Cl calculation with canonical SCF orbitals 

R(au) 1.836 2.336 2.836 4.336 

I:.' -0.0721 -0.0727 -0.0761 -0.0991 C 

8, (2u2) -0.0257 -0.0232 -0.0226 -0.0356 
8, (2o3o;S) -0.014 7 -0.0206 -0.0246 -0.0086 
8, (2o3u;T) -0.0044 -0.0042 -0.0040 -0.0033 
8, (3a2) -0.0273 -0.0248 -0.0248 -0.0517 

The results are shown in table 2. For reasons of 
comparison the results of the approximations (i)-(7) 
are shown in parenthesis. From the results given in 
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table 2 it is clear that the approximations (I )-(7) 
underestimate the interactions between two-electron 
clusters and three- and four-electron clusters. Further­ 
more it can be concluded that the approximations (6) 
and (7) overestimate the interaction between one- and 
three-electron clusters. This is probably due to the 
fact that the linked three-electron clusters are nearly 
as important as the unlinked product· of one- and 
two-electron clusters. In the IEPA, IPPA and CPPA 
methods part of the interaction between two-electron 
clusters is neglected. These interactions are listed in 
table 3 (X(2o3o) = X(2o3o;S) + X(2o3o;T)). It is 
seen that these interactions behave rather irregularly 
as a function of the internuclear distance . 

·0ue· to some hnperfections in the computer program 
we were unable to discriminate between the X(2o3o;S) 

. and X(2o3o;T) clusters in the CEP A and CPPA 
calculations. For these clusters the interactions 
with the four-electron clusters were taken to be zero 
instead of ½&(2o3o;S) and Y.&(2o3o;T) respectively. 

Table 3: Pair-pair Interactions In a full valence-shell Cl 
calculation on BH with canonical orbitals 

Table 4: Results of calculations on BH with canonical orbitals 

R(au) 1.836 2.336 2.836 4.336 

E (SCF) -25.0645 -25.1056 -2S.0871 -24.9928 
Ee (Cl) a -0.0721 -0.0727 -0.0761 -0.0991 
Ee (Cl) b -0.0688 -0.0694 -0.0724 -0.0917 
Ee (CEPA) -0.0703 -0.0706 -0.0736 -0.0973 
Ee (IEPA) -0.0743 -0.0718 -0.0706 -0.0992 
Ee (IPPA) -0.0723 -0.0728 -0.07S9 -0.1001 
Ee (CPPA) -0.0716 -0.0731 -0.0779 -0.1002 

(a) Full Cl calculation 
(b) Cl calculation with singly and doubly excited 

conflgurations 

Table 5: Correlation energy of the valence shells of BH in 
a full Cl calculation with localized orbitals 

R(au) 2.336 2.836 4.336 

Ee -0.0727 -0.0761 -0.0991 
& (2o2) -0.0284 -0.029S -0.0399 
& (2o3o,.5) -0.00S7 -0.0070 -0.0096 
&(2o3o;7) -0.0042 -0.0040 -0.0033 
& (3o2) -0.0344 -0.03S6 -0.0464 

Table 2: Mean interaction between one- and two-electron 
correlation functions and three- and four-electron correlation 

Table 6: Mean interaction between one- and two-electron functions 
correlation functions and three- and four-electron correlation R(au) 1.836 2.336 2.836 4,336 functions 

~ (2o2) -0.0341 -0.0358 -0.0386 -0.0S28 R(au) 2.336 2.836 4.336 (-0.0273) (-0.0248) (-0.0248) (-0.0S17) 
At (2a2) -0.0375 -0.0389 -0.0475 ~ (2o3oS) -0.0239 -0.0246 -0.02S6 -0.0266 

(-0.0344) (-0.0356) (-0.0464) (-0.0074) (-0.0103) (-0.0123) (-0.0043) 
At (2o3o;S) -0.0193 -0.0208 -0.0219 ~ (2o3o;7) -0.0108 -0.0099 -0.0101 -0.0128 

(-0.0029) (-0.003S) (-0.0048) (-0.001S) (-0.0014) (-0.0013) (-0.0011) 
At (2o3a,·7) -0.0098 -0.0101 -0.0128 ~ (3o2) -0.0339 -0.0338 -0.0310 -0.0295 

(-0.0014) (-0.0013) (-0.0011) (-0.02S7) (-0.0232) (-0.0226) (-0.0356) 
At (3<r) -0.0292 -0.0313 -0.0381 ~(2o2) -0.0152 -0.0201 -0.0237 -0.0117 

(-0.0284) (-0.029S) (-0.0399) ~ (2o3oS) -0.0185 -0.0133 -0,0088 -0.0187 A3 (2o2) -0.0118 -0.0134 -0.005S ~ (2o3o;7) -0.0714 -0.0782 -0.0874 -0.1169 ~ ( 2o3oS) -0.0368 -0.0311 -0.0246 ~(3o2) -0.0128 -0.0116 -0.0108 -0.0121 A3 (2o3o ;T) -0.0781 -0.0874 -0.1170 ~3 (2o) -0.1057 -0.0151 0.0ll0 -0.0018 ~ (3<r) -0.0122 -0.0102 -0.0134 (-0.0368) (-0.0372) (-0.0391) (-0.0577) 
A3 (2o) -0.0224 -0.0136 -0.0052 ~ (Jo) -0.0134 -0.01 76 -0.0203 -0.0097 

(-0.0394) (-0.0411) (-0.0529) (-0.0352) (-0.0356) (-0.0369) (-0.0415) 
~ (Jo) -0.0172 -0.0139 -0.0069 

(-0.0339) (-0.0350) (-0.0464) 

Table 7: Pair-pair interactions in a full Cl calculation on 
the valence shells of BH with localized orbitals 

R(au) 1.836 2.336 2.836 4.336 

<X(2o2 )IHIX(2o3o)> 
<X(2a2)1HIX(3cr)> 
<X(2o3o)IHIX(3o1)> 

-0.0006 -0.0017 -0.0032 -0.0011 
0.0007 0.0013 0.0022 0.0013 
0.0008 -0.0004 -0.0027 0. 

R(au) 2.336 2.836 4.336 
<X(2o2)1HI X(2o3o)> 0.0 -0.0004 0.0 
<X(2o2)1HIX(3o2)> 0.0001 0.0002 0.0006 
<X(2u3o)IHI X(3o2)> 0.0011 0.0009 -0.0032 

89 



Table 8: Results of the CEP A, !EPA, IPP A and CPPA Table 9: Complete Cl calculations on H4 
calculations with localized orbitals 

d 3.0 4.0 

R(au) 1.836 2.336 2.836 4.336 -- 
Ee -0.073769 -0.070348 

Ee (CEPA) -0.0707 -0.0714 -0.0746 -0.0971 & (bl) -0.035386 -0.034734 
E0 ((EPA) -0.0786 -0.0784 -0.0806 -0.0991 & (bb';S) -0.000952 -0.000314 

Ee (IPPA) -0.0723 -0.0730 -0.0762 -0.0996 & <bb ':n -0.002045 -0.000566 

Ee (CPPA) -0.0708 -0.0716 -0.0749 -0.0982 

The results of the Cl(J +2), IEPA, CEPA, IPPA and 
CPPA calculations are listed in table 4. As could be 
expected, the CI(l +2) calculation underestimates the 
correlation energy. The difference between the 
results of the IEPA and the full Cl calculation behaves 
irregularly as a function of the internuclear distance. 
The IEP A method can certainly not be used with 
canonical orbitals to calculate potential curves. The 
CEPA and the CPPA methods underestimate the 
correlation energy. For these methods it is probably 
better to follow Meyer's suggestion (5] to use 
effective · Hamiltonians of the form 

(13) 

x.rr = X + :l; &(/&)JI - ¼(611< + 6;2 + c5ik + c5ie) l 
k<2 l r 

The best results are obtained with the IPPA method, 
but this may be due to a fortunate cancellation of 
errors. 

BH with localized orbitals: The calculations for BH 
were repeated with localized valence orbitals. The 
results are given in tables 5-8. As could be expected 
the results of the CEPA, IPPA and CPPA calculations 
are much less sensitive to localization of the orbitals 
than the results of the IEPA calculations. In general 
the results of the CEP A and IPP A calculations differ 
less than I 0-3 au from the results obtained with 
canonical orbitals. 

H4: For the calculations on H4 the basis set con­ 
sisted of 2 s- and I p- function on each H atom. 
The four H atoms were placed at the corners of a 
rectangle. The short side was 1.4 au. The cal­ 
culations were performed for two distances d between 
the H2 molecules. The correlation calculations were 

. carried out with localized orbitals 1/11, and ef>i,. The 
results of the calculations are shown in tables 9-13. 
The most striking result of the full Cl calculation 
are the large interactions between the interorbital 
two-electron clusters and the three-electron clusters, 
which shows the importance of the inclusion of 
three-electron clusters for the calculation of Van der 
Waals interaction. 

Table 10: Mean interactions between one- and two-electron 
clusters and three- and four-electron clusters 

d 3.0 4.0 

A. (bl) -0.035375 -0.03467S 
(-0.03S386) (-0.034734) 

A. (bb';s) -0.004773 -0.001411 
(-0.000476) (-0.000157) 

A,. (bb';T) -0.011617 -0.009830 
(-0.000341) (-0.000094) 

A3 (b2) -0.003106 -0.001023 

A3 (bb';s) -0.048744 -0.051714 

A3 (bb';T) -0.078137 -0.076327 

A3 (b) -0.039994 -0.038824 
(-0.036885) (-0.035174) 

Table 11: Cl calculations on H4 with single and double 
excitations 

d 3.0 4.0 

Ee -0.072492 -0.069244 

&(b2) -0.034800 -0.034199 

&(bb';s) -0.00092S -0.000304 

&(bb';T) -0.001967 -0.000542 

Table 12: IEP A calcula tlons on H 4 

d 3.0 4.0 

Ee -0.074283 -0.070474 

&(bl) -0.035416 -0.034748 

&(bb';s) -0.001129 -0.000325 

&(bb';T) -0.002322 -0.000653 

Table 13: Results of CEPA calculations on H4 

d 4.0 

Ee -0.070287 
&(bl) -0.034722 

&(bb';s) -0.000303 

& (bb';T) -0.000539 
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Investigations of Molecular Electronic 
Structure using Spin Optimised 
Self Consistent Field W avefunctions 
N.C.Pyper and J.Gerratt* 

The spin optimised self-consistent field (SOSCF) wavefunction for an N electron system can be 
described as the best antisymmetrised Hartree product of N spatial orbitals multiplied by a linear 
combination of N-electron spin eigenfunctions. 
Some properties of the SOSCF function are discussed. It is shown that such functions are the 
most general ones yielding an independent particle interpretation, and that unlike the Hartree-Fock 
function, they can be used to describe the potential energy surface of a molecule. In addition, 
SOSCF functions can yield a good description of the density of unpaired spin at the nucleus of 
an atom, even when the unpaired electron occupies a p orbital. The relation between the SOSCF, 
HF and VB methods, and the types of correlation described by the SOSCF method are discussed, 
and it is shown that SOSCF orbitals are, in general, non-orthogonal and have no radial nodes. An 
expansion of the wavefunction having the SOSCF function as the leading term is used to discuss the 
errors in properties calculated from SOSCF functions. From this we conclude that one-electron 
properties are given to second order accuracy, that the calculated binding energies are always less than 
the observed, and that calculated equilibrium internuclear distances are always greater than the 
corresponding experimental values. 

. The computational problems raised by the orbital non-orthogonality are discussed, and useful relations 
between density matrices presented. These are then used to derive compact expressions for the energy 
and its first and second derivatives. Techniques for optimising SOSCF functions are discussed from 
which we conclude that a direct approach using first and second derivatives is efficient and reliable. 
Results of calculations on UH, Li2 and CH+ are presented and discussed. 

Introduction 

This paper presents some theoretical properties and 
model calculations with spin optimised self-consistent 
field (SOSCF) wavefunctions. For an N electron 
system an SOSCF function is of the form 

spin, S2, and of its component along an arbitrary 
axis z, with eigenvalues S and M respectively. 

SzO~Mk = MO~Mk 

S20~Mk = S(S+1)0~Mk 
(2) 

(I) 

where q>i is a purely spatial one electron orbital, 0~Mk 
an N-electron spin function, and Ji' is the idem 
potent antisymmetriser. The spatial orbitals and the 
expansion coefficients ck occurring in the spin 
dependent part of the wavefunction are optimised 
according to the least energy criterion. The SOSCF 
function is an eigenfunction of the square of the total 

The label k in this equation distinguishes different 
linearly independent functions having the same values 
of S and M [I ] . 

The SOSCF method can be regarded as a syn­ 
thesis of the valence-bond and Hartree-Fock methods 
since both these classes of wavefunction are subsets 
of (I). Thus the SOSCF function reduces to a single 
structure valence-bond function if atomic orbitals 
are employed, whilst the Hartree-Fock function 
results if the orbitals are constrained to be identical 
in pairs. In this case equation (I) becomes 

(3) 

* Department of Theoretical Chemistry, University of Bristol, Cantock's Gose, Bristol, BSB ITS 

93 



the antisymmetriser causing all other spin functions 
to vanish. The SOSCF method like the Hartree-Fock 
method can be given an independent particle inter­ 
pretation see below. However, in contrast to the 
Hartree-Fock theory, the SOSCF method for molecules 
leads to a correct description of dissociation products. 

Calculation and Optimisation of the Energy 

The evaluation of the energy is considerably more 
complicated than in the Hartree-Fock case because 
SOSCF orbitals are in general non-orthogonal. It is 
not possible to orthogonalise the orbitals by subjecting 
them to a linear transformation among themselves 
without changing the SOSCF wavefunction. It proves 
convenient to define density matrices DO>, D<2>, 
whose elements are such that D(1>(ik) is the co­ 
efficient of ~(q) </Jj(q) in 

and D<2 >(ijkQ) is the coefficient of 
1>:(q) 1>Q(q')1>i(q) 1>;(q') in 

N(N-l)f<f.>*<l>dT1 ... dTq_1dTq+I ... dTq1_1dTq'+I 

... dTNdal .. .daN . 

where dt is a spatial volume element, [do, represents 
integration over the spin co-ordinates of the i th 
electron, and q and q'*q are electronic coordinates. 

Defining the usual non-relativistic electronic Hamil­ 
tonian :k to be 

ic = 'f.h(i) + r, g .. 
I i>i IJ (5) 

one has by virtue of equations (4) 

(4a) 

(4b) 

<<l>liclcf.>> 
= 'f.D(1\ik)<klhl1> + ½ r, D<2>(ijkQ)<kQlgli1> (6) 

ik ijkQ 

A useful expression for the normalisation integral 
can be derived by noting that it is not necessary to 
antisymmetrise both the bra and the ket. Thus one has 

= 'f,D<1 >(ik)<kli> for all i. 
k (7) 

By using similar expressions to equation (7), a whole 
set of recurrence relations between different density 
matrices can be derived [2]. Thus: 

for allj 

D<2>(ijkQ) = r.D<3>(ijmk~)<J1lm> for all m (8) 
n 

etc. 

Now the problem ofoptimising the expectation value 
of the energy W = <<l>IJfl<l>>/<<1>1<1>> subject to the 
constraint that the orbitals remain normalised, can be 
replaced by an equivalent problem of minimising the 
functional 

(9) 

without constraints. The parameters Ei occurring in 
equation (9) are the usual Lagrange multipliers. 

By using the recurrence relations (8), the require­ 
ment that F be stationary with respect to small 
variations in the orbitals can be expressed as 

(i=I,2 ... N) (I 0) 

where F1 is an effective operator for the i1h orbital. 
Each orbital is thus an eigenfunction of a distinct 
effective operator. This is in contrast to the Hartree­ 
Fock method where all the orbitals are eigenfunctions 
of a single operator. However, the conceptual sim­ 
plicity of the Hartree-Fock approach is still retained 
here, since each electron can be regarded as moving 
in the average field of all the other electrons. One 
can therefore usefully discuss the changes in the 
orbital energies Ei with nuclear configuration in 
terms of correlation diagrams. 

Computation of the Wavefunction 

All the required density matrices are calculated 
using the recurrence technique (8) starting from the 
N-electron density matrix elements D(N)(l 2 3 ... N 
I 12'3' ... N'). In terms of the representation matrices 
l.J5N (P) generated by the basis for the spin functions 
O~Mk, these are given by 

( 11) 

where p is the permutation c;.~.~,::: ;J,) and the 
ck,CQ are the same coefficients as in equation (1). 
In the present work, the Young-Yamanouchi-Kotani 
basis of spin functions [I] were chosen. The advantage 
of this formulation is that the uSN matrices are purely 
group-theoretical quantities and so for a given N and S 
can be calculated once and for all. 

A general program has been written for this 
purpose. The matrices corresponding to the simple 
transpositions P12, P23, ... ,PN-IN are computed first 
as described 'by Kotani [I], and the other uSN are 
obtained by matrix multiplication. 
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MT.lie orbitals Ii> are approximated by an expansion 
l_Jfo\jte basis of Slater atomic orbitals Ix> 

(w;:,. ', = r cxi Ix> 
X 

( 12) 

The orbital equations (I O) are converted by this into 
1.a set of finite· dimensional matrix equations which 

· could tie solved iteratively as in Hartree-Fock theory. 
However this process converges very slowly since the 
whole of the operators Pi change during the mini­ 
misation. By contrast, only the two-electron part of 
the Hartree-Fockoperator is modified by iteration, the 
one-electron (core nucleus) terms remaining unaltered. 

The coefficients cxi and ck were therefore optimised 
by minimising W directly. Since the absolute values 
of <iii> arc of no ultimate significance, the uniqueness 
of the minimisation problem was ensured by fixing 
one coefficient in each orbital on an arbitrary value. 
Similarly, since only the ratios of the ck parameters 
are significant, one such parameter was held constant 
during the iterative process. The orbitals are normalised 
and the ck's scaled such that &k2 = I after the 

k 
,ogtimum values have been determined. This pro- 
, cedure is numerically stable provided that the fixed 
parameters do not make small contributions to the 
optimised wavefunction. This possibility is always 
simple to avoid. 

The direct minimisation method which was used 
requires the calculation of the vector (g) of first 
derivatives of W with respect to the parameters c xi 
and ck, and also the corresponding matrix G of second 
derivatives. From these, vectors (lie) of corrections 
to the parameters are calculated from the relation 

, (G + Al). lie = -g , (13) 

where I is the unit matrix and A a positive scalar. 
The scalar A is set to zero if G is positive definite and 
either ail the eigenvalues have changed by less than 
1/3 of their values during the previous two iterations, 
or if the smallest eigenvalue of G is greater than 15/ I 03 
where 15 is the average of the moduli of the eigenvalues . 
. Jn both these circumstances the parameters are close 
to their optimum values and the iteration reduces to 

1 •• the quadratically convergent Newton-Raphson method. 
,, However if the eigenvalues of G satisfy neither of 
these conditions, the parameters are too far from 

, their. optimum values for the Newton-Raphson itera­ 
.,, tion to be stable, and the scalar A is then set to 

, };gf/(Ecak - Eexpt). If the eigenvalues of (G + Al} 
I 

1 with A thus calculated do not satisfy the second of 
the above conditions.X is set to 15/103 and corrections 
be calculated. If these corrections are unreasonably 
large, A is set to 15/5 .0. These iterations using a non­ 
zero value of A correspond to a mixture of the 
Newton-Raphson and steepest descent methods [ 3 ]. 
This minimisation method has the advantage not only 
that few (usually 10-15) iterations are required, but 
also that this number is independent of the number 

of parameters to be optimised. (This is typically in the 
range 40-100,) Other direct minimisation techniques, 
such as that of Davidon [ 4,5 I. which require calcu­ 
lation only of Ill and the gradient vector (g). were 
tried and found to be unsatisfactory. This is because 
such methods require -311 iterations, where 11 is the 
number of variables. Thus, for example, a calculation 
on the Li atom using David on 's method with I() 

parameters required I 20 evaluations of W and of g 
before convergence was reached. 

Compact analytic expressions for the elements of 
the gradient vector and of the second derivative matrix 
are readily derived using the recurrence relations (8). 

Table I 

Re (Bohr) j 
Calculated Experi- i 

rnent 1 
HF 

De (eV) 

SOSCT Experi­ 
ment 

UH 3.095 (2.6%) 3.015 ).49 (51%) 1.92 (76~;) 2.51 
I 

BH 2.361 (1.3%) 2.329 12.76 (77%) 3.28 (91%) 3.58 
CH+ 

I 
2.157 (0.9%) 2.13713.17 176%) 3.88 (947,) 4.10 

li2 5.550 (8.9%) 5.051 0.12 (11%) 0.44 (42%) 1.05 

I 

' I 

Results 

Calculations have been carried out for the systems 
LiH, BH, or X' r•, and Li, X' ~;. Each SOSCF 
orbital was expanded in a basis set of Slater orbitals, 
the basis consisting of 14 of such functions for LiH, 
18 for CH' and 22 for Li2. The results, together with 
corresponding ones from Hartree-Fock calculations, 
are shown in table I. 

The interpretation of these results is aided by 
noting that to first order the exact wavefunction can 
be written as a linear combination of the SOSCF 
function, and terms describing electron pair corre­ 
lations. Since the SOSCF function is a good 
approximation to the exact wavefunction for ail 
internuclear distances, it can be shown from this that 
dissociation energies calculated by the SOSCF method 
are always less than the experimental values, and that 
calculated equilibrium internuclear distances are always 
greater than the observed values. Since the Hartree­ 
Fock function describes dissociation incorrectly, only 
the first of these two results applies. Neither result 
holds for a Cl wavefunction. The results in table I 
corroborate these theorems and furthermore show 
that the SOSCF method yields a highly realistic 
description of the bonding except for the case of Li2. 
It should be noted, however, that Hartree-Fock theory 
predicts only 11 % of the binding energy in this 
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molecule. One might expect to improve the Li1 
results significantly by .adding a second configuration 
in which the two a bonding orbitals are replaced by 
two rr orbitals thus introducing some angular cor­ 
relation. Terms describing this kind of correlation 
are absent in a single configuration SOSCF function. 

A dipole moment function for Lill has also been 
calculated. Its calculated value at the calculated 
equilibrium internuclear distance is 5.763D compared 
with the experimental value of 5 .828D at the experi­ 
mental internuclear distance. The calculated value 
of this quantity rises to 6.760D at R = 5.0 Bahrs 
and drops to I.I SOD at R = 8.0 Bahrs. 
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Molecular Spectroscopic Constants by the 
Coupled Electron Pair Approach 
W.Meyer* 

Highly correlated variational wavefunctions based on a single dominant SCF determinant do not lead 
to good spectroscopic constants unless they take account of the small but rapidly changing contri­ 
butions of more-than-doubly substituted configurations. This can be done approximately by the 
Coupled Electron Pair Approach. Potential energy curves have been calculated for the diatomic 
hydrides from LiH to HCI as well as for H2o, CH4 and N2• Typical deviations between CEPA 
spectroscopic constants and observed values for the diatomic hydrides are as follows: 

Re ±0.003A, We ±20cm-•, W.Xe ±3cm-•, De +0.25eV, µe +0.04D. 

The calculated force constants of H2o and CH 4 are also in very satisfying agreement with observed 
data except for the experimentaly ill-defined stretching constant in CH., 

Methods for Calculating Potential Energy Curves 

In most cases the traditional one-determinant 
Hartree-Fock wavefunction does not allow for a correct 
dissociation into atomic or molecular fractions. That 
not only makes this method inadequate for calculating 
potential curves but also renders difficult the treat­ 
ment of the electron correlation. Ideally, one has to 
correlate all configurations which are required for a 
correct dissociation, that is single and double substi­ 
tutions with respect to all of these configurations 
should be included in a variational Cl calculation. 
This represents a formidable problem. In order to 
reduce it, several well known procedures have been 
proposed: multiconfiguration SCF wavefunctions [I, 
2], full Cl with respect to a minimal basis set (3), 
first order wavefunctions coupled with natural orbital 
iteration [ 4] . These schemes have drastically im­ 
proved upon the HF method. However, since they 
give only a small fraction of the total correlation, 
the curves corresponding to different electronic states 
will in general have to be shifted relative to each other 
by fitting them to data of the fractions. Their success 
with respect to the shape of the potential curve 
depends on a critical balance between the neglected 
parts of the 'extra molecular correlation' (due to 
restriction of number and type of the configurations) 
and the parts of the 'atomic correlation' accounted 
for in the molecule. 

Since there seems to be no unambiguous way of 
separating the extra molecular correlation, one would 
like to fully treat the valence shell of that part of the 
molecule involved in the deformation process. For 
nuclear distances not too far from the equilibrium 
position the Hartree-Fock configuration is usually the 

only dominant one, the coefficients of the additional 
configurations required for correct dissociation still 
being small though rapidly increasing with distance. 
Double substitutions which correlate these con­ 
figurations are usually quadruple substitutions with 
respect to the HF configuration. We may therefore 
argue that a coupled electron pair approach as recently 
proposed (5,6), which approximately includes those 
types of configurations, should be able to adequately 
treat both the extra molecular correlation and the 
configurations of rapidly increasing importance. We 
thus expect this approach to yield reasonable spectro­ 
scopic constants characterizing the shape of the 
potential surface around the equilibrium. In com­ 
parison with the MC-SCF we may describe the CEPA 
as follows: instead of assuming large fractions of 
the correlation 

(a) to be constant during the deformation, and 
(b) to be equal for all explicitly considered con- 

figurations, 

it keeps only assumption (b) by transferring appro­ 
priate parts of the correlation energy calculated for 
the reference configuration to the other configurations 
of the Cl. 

The computational schemes used for the data to be 
presented here have been discussed in detail in ( 6] 
and shall only briefly be characterized. 
PNO-CI: for each spin-irreducible electron pair P(a,b) 
a set of approximate pseudo-natural orbitals (PNO's) 
iP is calculated perturbationally. All doubly. S\Jb­ 
stituted configurations of diagonal form, tf>;,i,'P 
contributing more than a certain energy threshold 
value are treated in a Cl along with corresponding 
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single substitutions. The particular feature of this Cl 
is the use of partially nonorthogonal orbitals in order 
to ensure optimal convergence. 

CEPA: In the eigenvalue equation for the coefficients 
cJ we simply replace the total correlation energy£"'"' 
by the pair correlation energies 

constants (7). We used Gaussian type basis sets of 
the size l ls,6p,2d,lf for the first-row atoms. 13s.8p, 
2d,I/ for the second-row atoms and 6s,2p, Id for 
hydrogen. Our Hartree-Fock results agree nicely with 
those of Cade and Huo (8). By employing an energy 
threshold of 0.0001 au the variational PNO-CI yielded 
somewhat above 80% of the valence shell correlation 
for the first row and probably only few per cent Jess 
for the second row. 

which corresponds to shifting the energy of the 
configuration 'Pp by the correlation contributions of 
all other pairs P'*P (for a slightly modified version 
differentiating between distinct and semidistinct pairs 
see [6]). 

Spectroscopic Constants for the Diatomic Hydrides 
from LiH to HCT 

These hydrides have been investigated systematically 
in order to establish the qualityofCEPAspectroscopic 

Table I: Calculated and experimental spectroscopic constants 
for diatomic hydrides • 

Mole- 
'• Be °" We W.Xe De 1-'e dµ/d,. cule 

b 1.599 7.48 0.212 1401.S 22.S 2.48 -5.90 -2.15 
liH I.S95 7.51 0.213 1405.7 23.2 2.52 -5.88 -2.14 

b 1.342 10.33 0.291 2077.2 34.S 2.14 -0.27 -1.95 
BeH 1.343 10.32 0.303 2060.8 36.3 (2.30) 

1.238 11.91 0.406 2352.1 46.6 3.49 1.31 -2.90 BH 1.236 12.02 0.412 2366.9 49.4 3.54 1.27 
1.122 14.40 0.545 2844.S 66.4 3.47 1.44 -1.65 CH 1.120 14.46 0.534 2858.S 63.0 3.65 1.40 
1.039 16.60 0.648 3269.3 78.8 3.38 1.58 -0.72 NH 1.040 16.68 0.646 3266.0 78.S 3.67 
0.971 18.85 0. 727 3742.2 85.3 4.34 1.69 0.46 OH 0.971 18.87 0.714 3739.9 86.4 4.63 1.66 0.44 
0.917 20.94 0. 783 4166.8 89.S 5.83 1.83 I.SS FH 0.917 20.95 0.795 4138.7 90.1 6.12 1.83 1.60 

. NaHb 1.891 4.88 0.132 1172.2 18.9 1.92 -6.67 -2.60 
1.887 4.90 0.135 1172.2 19.7 2.30 

J/' 1.723 5.87 0.162 1525.6 26.1 1!40 -1.50 -3.0S 
Mg 1.730 5.82 0.167 1497.0 32.4 (2.10) 

b 1.645 6.41 0.185 1691.7 29.6 3.13 -0.18 -3.76 
AIH 1.646 6.40 0.188 1682.6 29.1 (3.01) 

HC/ 1.278 10.54 0.309 2977.2 53.2 4.43 1.13 0.86 
1.275 10.59 0.307 2991.1 52.8 4.62 1.09 0.92 

(a) in units of A, cm-•, eV, D and D/A 
(b) including intershell correlation between valence shell and 

next lower core shell 
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Figure I: Comparison of De values 
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Figure 2: Equilibrium distances (Re calc. -Re expt.) 
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The spectroscopic constants obtained by the CEPA 
are compared with observed values in table I. Figures 
I to 4 illustrate some of the results including constants 
from Hartree-Fock and PNO-CI. The average devi­ 
ations as given in the abstract prove that the CEPA 
does give rather reliable constants. The systematic 
behaviour of the De seems to allow for a critical 
assessment of some experimentally ill-defined dis­ 
sociation energies. 

+300 

+200 

--CEM 
---- PNO-CI 
- ..... _ SCF 

.,. 
,,. .......•. -·· 

...•.. 
... 

. o·/ 

LIH BeH BH CH NH OH HF 

Figure 3: Vibrational constants (W. calc, -W. expL) 
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•200 

.-·· 
.,,,, .. -·· 
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,• 
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--CEPA 
---- PNO·CI 
.......• SCF 

.,o·······"'° 

·.. _,,, ... , ........•.... 
.•. ...., __ -·- - -·- --A- - _ _. 

NaH M9H AIH SiH PH SH HCI 

Figure 4: Vibntional constants (W. calc. -W. expt.) 

Near Equilibrium Energy Surface for H20, CH4 
and N2 

The results given in tables 2 and 3 [8] show that the 
surface of the polyatomic hydrides has been repro­ 
duced with about the same accuracy as was obtained 
for the diatomic hydrides. The deviations of the 
calculated harmonic frequencies from experimental 
values are around 2% with two exceptions: 

(a) The coupling constant fro. of the recent force 
field of Smith and Overend (1 O] is certainly 
in error by nearly a factor of 2. 

(b) The anharmonicity correction to the experi­ 
mental symmetric stretching constant in CH4, 

F11, is most probably over estimated. It uses 
an anharmonicity constant X, 1 = 65 cm" as 
compared to our theoretical value of 13.6 cm" 
which is in line with the CH anharmonicity 
of 63 cm" (a factor 1/4 is due to the larger 
reduced mass [ 6] ). 

Table 2: Constants of the near-equilibrium energy surface 
of H20 

Experirnen ta! Theoretical 
l9I 1101 HF CEPA 

'• 0.9572 0.9405 0.9550 

lie 104.5_2 106.41 105.07 

f, 4.228 4.218 4.842 4.321 

fa 0.349 0.371 0.376 0.360 

Irr' -0.101 -0.12 -0.061 -0.096 

fro. 0.246 0.47 0.233 0.243 

Ioao: -0.127 -0.198 -0.127 -0.112 

frrr -9.98 -9.57 -10.92 -9.81 

frrrr 16.8 15.2 15.4 15.7 

Table 3: Force constants of CH4 

Experimental [ 11] Theoretical 
Anharmonic Harmonic HF CEPA 

F11 5.158 5.842 5.881 5.472 

F22 0.469 0.486 0.537 0.491 

F33 5.014 5.383 5.382 5.322 

F34 0.200 0.206 0.202 0.202 

F44 0.430 0.458 0.512 0.469 

'• 1.094 1.085 1.083 1.091 
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Table 4: Spectroscopic constants of N 2 

Method '• Bo a;, w. WeXo 

HF 1.070 2.102 0.013 2712.2 13.2 
PNO-<:I 1.090 2.031 0.015 2540.4 14.3 
CEPA 1.098 1.997 0.016 2437.1 16.1 
Exper} 1.098 1.997 0.018 2358.0 14.2 mental 

Table 4 shows some preliminary results on N 2 
obtained with a relatively small basis set of size 
10s,5p,ld. 

We would like to conclude by pointing out that the 
correlation corrections to re and We from the varia­ 
tional PNO-CI and the CEPA have a ratio of about 
7/10 with the CEPA showing the much better over-all 
agreement with experiment. 
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Calculation of Electron Affinities of Atoms 
in the Second Long Row 

C.Moser* and R.K.Nesbett 

Results are presented in this paper for the calculation of electron affinities of the ground state 
of Al, Si, P, S, and Q. The contributions to the correlation energies have been calculated using 
orbital excitations to construci one- and two-particle Bethe-Goldstone equations built on s, p, d, f 
basis sets. The results are in very good agreement with experiment. 

Introduction 

As this is a paper which deals with the computation 
of correlation energies, it may be wise to start out 
with a definition of this quantity. For our purposes 
correlation energy will be the difference between the 
restricted Hartree-Fock energy and the observed non­ 
relativistic energy. 

For light atoms, at least, this is a well defined 
quantity. It is straightforward to calculate the 
Hartree-Fock energy as well as the relativistic energy 
and the successive ionizations are known, so the 
difference is known and can be compared with 
calculation. For heavier atoms, the successive ion­ 
izations are not known all the way to the last Is 
electron so in fact calculation is the only way to have 
an idea of the total energy. 

For molecules, the problem is more complex. 
Except for molecules made up of few light atoms 
(probably four is the limit) then the Hartree-Fock 
energy is not known even approximately, calculations 
of the relativistic energy do not yet exist, and the 
successive ionizations have not all been observed 
by any means. 

It might be worthwhile for a conrerence like this 
one which assembles a large number of experts in 
the field to decide whether the definition we gave above 
is suitable for molecules. In particular we think that 
there is a real problem in many molecular calculations. 
Using a minimum basis set which gives an SCF energy 
.far higher than the Hartree-Fock energy, then one 
proceeds to do a configuration interaction calculation 
presumably to introduce correlation energy effects! 

In atoms Hartree-Fock functions are very useful. 
For example, the ordering of the energies of states 
belonging to the same configuration is generally 
correct and the calculated energy differences are of 
the correct order of magnitude. Excitation energies 

) 

in the valence shell are also reasonably well represented 
and excitations to Rydberg orbitals should be in very 
good agreement as this is essentially a one-electron 
phenomenon. Ionization energies are also in reason­ 
able agreement particularly as one goes to a higher 
number of ionization. 

There are a number of observables which are not 
at all well represented by Hartree-Fock functions and 
among these is the computed binding energy of the 
addition of an electron to a neutral atom. As can 
be seen in table I, column (A}, the agreement between 
Hartree-Fock and observed binding energies of an 
electron to the ground state of Al, Si, P, S, and a is 
in very poor agreement with experiment. The 
relative error is very large for all atoms. The binding 
energy for an electron to P is predicted to be positive 
while in fact r is quite stable. The prediction for 
Al is so weakly binding that one would not except 
Ar to be stable while in fact it is. Nor is there any 
agreement even in the relative order of binding energies. 

Bethe-Goldstone Calculations 

In view of the success of previous work in the 
electron affinities of atoms in the first long row [I] 
we have computed correlation contributions to the 
electron affinities of these atoms using orbital ex­ 
citations (2) to construct one- and two-particle 
Bethe-Goldstone equations built on s, p, d, f basis sets. 

The use of Bethe-Goldstone equations to calculate 
correlation energy contributions has been described 
in detail elsewhere (3,4) and there would be no need 
to repeat this here. But it might be useful to recall 
the essential idea. 

Instead of calculating a many-electron correlated 
wavefunction, one calculates the individual indepen­ 
dant particle contributions to the correlation energy 
to as high an order as is necessary. 
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Experience gained up to now has indicated that 
one- and two-particle equations built on orbital 
excitations are likely to be reasonably accurate and 
take relatively small amounts of computer time. 

For the atoms Al, Si, P, S and a then the 
computed electron affinities including correlation 
contributions thus calculated are in very good agree­ 
ment with experiment, see table I, columns (B) and 
(C). The difference of a few hundredths of an 
electron-volt are not significant since the 'experi­ 
mental' results are not those of electron-attachment 
experiments but the extrapolation of the electron 
affinity of It by Edlen (5). 

Table I: Electron affinities (eV) from: 
A Hartree-Fock functions 
B Hartree-Fock functions plus correlation contributions 

obtained from one- and two-particle Bethe-Goldstone 
equations 

C experiment [5) 

Processes A B C 

Al(2P)+Ar(3P) -0.03 -0.49 -0.52 
Sic3P) +Si-{4S) -0.96 -1.53 -1.46 
p(4S) +p-(3P) +0.54 -0.74 -0.77 
S(3P) +S-(2P) -0.91 -2.10 -2.15 
Clc2P) + cn1SJ -2.58 · -3.79 -3.70 

If one compares these results to those obtained 
for B, C, N, 0 and F [ l] , there is rather better 
agreement for the second as compared with the first 
row electron affinities using the same level hierarchy 
of Bethe-Goldstone equations. It also turns out that 
the calculations do not take significantly longer 
computer runs as about 95% of the correlation effect 
is in the M shell. The details will be reported elsewhere. 
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Configuration Interaction by the Method of" 
Bonded Functions: 
Some Preliminary Calculations 
G.H.F.Diercksen* and B.T.Sutcliffe t 

A resume of Boys' approach to configuration interaction calculations is presented, and a program 
suitable to perform such calculations is described in some detail. The results of a preliminary 
calculation on water, together with some timings are presented. 

Introduction 

. ff one chooses to a tt1:mpt. approxima te solutions 
of Schrodingers equation for bound states of atoms 
and molecules, with the aid of the linear variation 
theorem, then one begins with the ansatz 

(I) 

and is eventually faced with solving the secular problem 

He= E Sc (2) 

Here H and S are square matrices with elements 

Hij = f<l>;*H<l>lr 

Sij = f<I>;* <I> j dr 

(3a) 

(3b) 

where H is the Schrodinger Hamiltonian for the 
problem 

H = T.H(i) + T. H(i.i) 
i C>j 

with 

(4a) 

H(i) = -½t.i + f Z>..fr>..1 

H (ij) = 1 /rij 

(4b) 

(4c) 

The eigenvectors c consist of those coefficients in 
(I) which minimize the energy E. 

Nowadays the solution of the eigenvalue problem 
does not present any particular computational dif­ 
ficulties, but obtaining the matrix elements (3) and 

(4) still presents a formidable computational problem. 

In quantum chemical .problerns the.<l>k'.are -usually 
taken to be antisymmetrised products of one particle 
space and spin functions (spin orbitals) and it can be 
seen at once that with this choice the matrix elements 
(3) reduce to weighted sums of one- and two-electron 
(three and six dimensional) integrals. The evaluation 
of these integrals is again a matter of great com­ 
putaitonal difficulty, with consequences for the 
evaluation of the matrix elements to which we shall 
refer later. 

If one choses the <l>k as antisymmetrised spin­ 
orbital products, then a still further choice is left 
open, that of choosing the space parts of the functions 
(orbitals) as members or not, of an orthogonal set. 

If one chooses them to form an orthogonal set 
then many simplifications appear in the formulae for 
the matrix elements. However, it has not so far been 
found possible to evaluate directly the integrals 
involved over any physically meaningful or useful set 
of orthogonal orbitals. Generally orthogonal orbitals 
are constructed as linear combinations of primitive 
functions, by some means. The primitive functions 
are chosen for the ease with which integrals between 
them may be evaluated and also on grounds of 
physical meaning. Thus before one can actually 
evaluate the matrix elements in an integral basis one 
has generally to face the problem of transforming 
the integrals from the primitive basis to the orthogonal 
basis. Only recently has this problem been solved in 
a computationally efficient way, and this has been 
discussed by one c:i us (G.H.F.D.) in another paper [I]. 
In this context it is the custom to refer to the 
primitive functions as atomic orbitals (AO's) and to 
the orthogonal functions as molecular orbitals (MO's) 
because the orthogonal functions were often found 

• Max-Planck-lnstitut fur Physik und Astrophysik, Fohringer Ring 6, 8 Miinchen 40, West Germany 
t Department of Oiemistry, University of York, Heslington, York, YOJ 5DD 

103 



as solutions of Roothaan's equations. It is also quite 
customary to refer to the process of constructing 
the linear variation as configuration interaction (CI). 

If one does not require the orbitals to form an 
orthogonal set then one has no transformation 
problem but the weighting function in the integral 
sums then involves the evaluation of a rather nasty 
co-factor expression (see e.g. [2] pp 50-51) and it 
seems likely that the amount of computational effort 
involved in evaluating the matrix elements here, may 
well in fact be very similar to that involved in 
transforming and evaluating in the orthogonal basis. 
This is, however, as yet an undecided question. 

In this communication we shall confine attention 
to matrix elements in an orthogonal basis, and 
because of this we shall be able to consider a 
somewhat more general functional form for the <I>k 
than the relatively simple antisymmetrised product. 
This functional form (which we shall describe in more 
detail later) we shall, following the usage of Boys, 
call a bonded function. it may be thought as a 
linear combination of antisymmetrised products, so 
designed as to be a spin-eigenfunction and to have 
the required space symmetry properties. Such a 
functional. form has the further advantage that it is 
easy to generate from any given orbital set all those 
bonded functions having the same spin-eigenvalue 
(corresponding to the different canonical structures 
of classical valence bond theory (see e.g. [2] p 67)) 
so that one may properly consider all allowed spin­ 
coupling schemes in any problem, in an economical 
way. 

Some of the earliest considerations of the problem 
of generating bonded functions and calculating matrix 
elements between them, from the standpoint of 
computational feasibility, are found in the work of 
McWeeny [3] and of Boys and his co-workers, [4,5 ]. 
Subsequently these approaches were somewhat 
generalised and extended by Mc Weeny and Cooper [ 6] 
and by Sutcliffe [7) respectively. We shall not 
concern ourselves here with the problem of generating 
a suitable set of bonded functions but will regard 
such a set as given, and concentrate on the com­ 
putational problems raised by finding the formula 
for the matrix element between an arbitrary pair of 
bonded functions and of subsequently substituting 
the values of the integrals into this formula to 
obtain the required matrix element. We shall call 
the first part of this process (again following Boys) 
the projective reduction of a matrix element to yield 
a symbolic matrix element, and the last part that of 
forming the numerical matrix element, by resolving 
the symbolic references. 

From a more general point of view the symbolic 
matrix element ( or indeed a complete list of such 
elements) can be regarded as a special kind of program, 
according to the execution of which, the numerical 
value is computed. The program which generates the 
symbolic matrix elements can then be regarded as a 

compiler, generating from input, the symbolic matrix 
element regarded as a program, according to the 
syntax rules and so on of projective reduction. The 
formation of numerical matrix elements may then 
be regarded as interpreting the compiled symbolic 
matrix element program. 

In certain cases, as Roos [8) has shown, it is 
possible to look at this problem from a different 
viewpoint. If one restricts the structure of the bonded 
functions in certain ways, then one can so arrange 
matters that only a small number of possible types 
of symbolic matrix elements occur. In this kind of 
situation instead of resolving the references in the 
symbolic matrix element to the numerical values of 
the integrals, it is more effective to use the integral 
type as a symbolic reference and to resolve this 
reference to all the possible numerical matrix elements. 
This latter process is very like the technique used, 
for example, in the POLYATOM (9) and MUNICH [I 0] 
SCF routine for making up the J and K matrices 
and the HF-matrix, by tagging each two electron 
integral according to type and processing it as a 
potential contributer to a number of matrix elements 
according to the tag carried. While recognising the 
outstanding suitability of Roos' technique in particular 
cases (for example the classical case of configuration 
interaction involving all single and double substitutions 
in a closed shell) it is difficult to see how it could 
be made to operate in the general case of arbitrary 
bonded functions. We shall therefore not consider 
it further here since our interest is precisely in this 
latter situation. 

There have, in fact, been quite a number of earlier 
attempts to treat the problem in the same broad 
general way that we are proposing, the classical work 
being that of Boys and Reeves, see [ 11) , and work 
by others arising from that. However, the present 
state of ,the art appears to be that still it is not 
possible to regard the calculation of a general say 
5000 configuration wavefunction as a routine affair, 
because the computing times involved remain much 
too great. That this is the case, is almost certainly 
due (in part) to the fact that no really effective 
algorithm has been available for interpreting the 
compiled symbolic matrix element program. Such 
an algorithm has now been designed, making use of 
a reordering procedure for large lists of indexed 
quantities. The algorithm, which will be described 
later, has been implemented within the scope and 
framework of the MUNICH program system (10) and 
has been extensively tested and found to perform well*. 

• After completing this work the authors found that a very 
similar algorithm had been developed simultaneously by 
Yoshimine ( I 2). The relative merit of this and the 
procedure described here is still an open question. 
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Theory 

Tne bonded functions <I> which form the basis of 
our analysis are defined as follows 

(5) 
<fi= c<l"[<fi1<fi2) [<f,3<f,4) [</i2p-1</i2p) [</i2p+I ··· [ <fin 

where the spin coupled pairs are 

and the unpaired orbital is 

[ <fi; = <fi;(I) a(i) (Sb) 

The symbol .. <:1' denotes an antisymmetrizing operator 
that produces a normalized, completely antisymmetric 
wavefunction. The functions <fi; are assumed to be 
orthogonal. If <fi; = <Pj, then the orbitals must occur 
in the same spin coupled pair or the function vanishes. 

A bonded function composed of n orbitals of 
which c are unpaired and containing x identical 
orbitals spin coupled (identical pairs) may be written 
as the sum of i{n-c)/i-x determinants. A given set 
of orbitals <f, may be bracketed together in a number 
of different ways. A linear independent set of bonded 
functions (canonical sets) may be formed according 
to the following rules: 

(a) in each bonded function identical orbitals 
must be bracketed together (spin coupled); 

(b) to the remaining orbitals the remaining left 
and right brackets must be assigned. 

These have to be assigned one to each orbital in all 
possible ways consistent with there being at least one 
more left bracket to the left of any right bracket than 
there are right brackets. The brackets are associated 
by the ordinary laws of algebra and the orbitals 
assigned to each pair of brackets, spin coupled. 
The excess of left brackets (if any) represents the 
uncoupeld orbitals. 

The total number of determinant product terms 
in the product of two bonded functions <l>K and <l>K' 
containing x and x' identical pairs, respectively, is 
2<n-c)-(x+x'>. These determinant product terms must 
be enumerated, the required matrix element between 
the determinants must be found, and all the con­ 
tributing factors summed to give the final matrix 
elements between the bonded functions. The matrix 
elements of the unity and the spinless Hamiltonian 
operator between the bonded functions <l>K and <l>K' 
are determined to be of the form 

K K' HKK' = f~Q;J<f,;(l)H(l)<fi; (l)dT1 
I 

' K K' K' K' +~Qijq;;J<fi; (l)<f,; (l)H(i,2)</i; (2)</i; (2)dT1dT2 
I ,I 

+ q;; f <fif (I) <fir (1 )H(I ,2) <fi{(2) <fif°(2) dT1 dT2 (6b) 

K K' SKK' = f ~ Q; f <fi; (l)<fi; (l)dT1 
I 

(6a) 

The coefficients r, Q;, Q;j, q;; and q;; are constants 
which are independent of the form of the orbitals 
and of the operators H(I) and H(l ,2) and depend 
only on the bracket structure of the bonded functions. 
The process of reducing the many dimensional 
integrals SKK' and HKK' to a combination of weighted 
integrals over one- and two-electron coordinate inte­ 
grals has been termed projective reduction. This 
projective reduction has to be performed for each 
matrix element separately according to the following 
rules: 

Let the orbitals <tif that compose <l>K be written 
in a line and the orbitals <tif' that compose <l>K' be 
written down below them. Now let the orbitals of 
<l>K and <l>K' be rearranged so that 

(a) identical orbitals appear opposite one another 
as far as possible 

(b) spin coupled pairs are kept adjacent as far as 
possible. 

Rule (a) is applied before rule (b) above, and it 
will only be the case where the orbitals of <l>K differ 
from <l>K' that identical orbitals will not appear 
opposite one another. Rule (a) is applied by 
associating each orbital in <l>K with the same orbital 
in <l>K' until all identical orbitals have been associated. 
The nonidentical orbitals are then paired and the 
resulting diagram rearranged so as to conform with 
rule (b ). In particular cases the diagram produced 
is not unique, but all such diagrams can be shown 
to be equivalent. It should be noticed that the 
orbital subscripts in equation (6) refer to the orbital 
order after this re-ordering has been done. The 
numerical value of the subscript is, of course, of no 
consequence1 it is simply required that <tif be 
opposite <tif and so on after re-ordering. 

Patterns are formed by joining orbitals which have 
been arranged adjacent to each other according to 
the above rules by a solid line, and connecting all 
spin coupled pairs by a dotted line. Any diagram 
consists generally of two types of patterns. Those 
which begin and end 0:1 an unpaired orbital and those 
which close back on themselves. The former are 
referred to as chains, the latter as cycles. The chains 
are of two types: those which begin in one function 
<l>K and end in the other <l>K', these are called odd 
chains since they involve an odd number of vertical 
links; and those which begin in one function and end 
in the same function are called even chains. It is 
clear that there must be just as many chains in a 
diagram as there are unpaired orbitals in a bonded 
function. If there are even chains then there must 
be at least two and generally an even number of 
even chains. 
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It is necessary to have a convention about where 
chains begin. The first odd chain is taken to begin 
at the lowest numbered unpaired orbital in the top 
of the diagram. The next odd chain starts at the 
next lowest unpaired orbital and so on. The first 
even chain is defined like the first odd chain, the 
second even chain starts from the lowest numbered 
available unpaired orbital in the bottom line of the 
diagram and so on. 

Inspection shows that if any even chains are 
present then there must be one spin mismatched for 
each even chain, between the determinants. By 
convention this is taken to be at the highest numbered 
orbital in the chain. 

A parity is assigned to each vertical line within 
a pattern, the lowest numbered line being even, the 
next odd, the next even, and so on. 

Now the patterns can be used to determine the 
sign of the initial diagram and also to write down 
the matrix elements between bonded functions in 
terms of integrals over the orbitals of 4>K, and of 4>K'. 

Table I: Coefficients for two-electron integrals 
-- 

i P;j Pattern qlj 

cycle cycle -1 D -'/2 

cycle o chain +I D -'/2 

o chain cycle -1 s +I 
+I s -2 

o chain o chain -1 D 0 
+I D -1 
-1 s +I 
+I s -2 

e chain e chain -1 D -1 
+I D +I 

The results are given by formulas (6) and table I. 
The notation convention adopted is as follows: the 
parity of a given position (+I or -I) is denoted by P;, 
the product PiPi is written Pii· If i and j occur in 
different patterns this is denoted by D, if they occur 
in the same pattern this is denoted by the letter S. 
The function Q1 is zero, if there exist an r if:. i, such 
that 4>f if:. 4>f, and it is one otherwise. Similarly 
the function Q1i is defined !o be zero, if there exists 
an r=i.i. such that 4>f if:. 4>f, and to be one otherwise. 
The constant r is given by 
r = (-1 )a+a' (-½)<n-h)/l-m (-2iil 

where n is the number of electrons, h is the total num­ 
ber of (even and odd) chains, and m is the number of 
cycles; J is the number of pairs for which 4>f = 4>f 
but 4>f' if:. 4>f or vice versa; a is the signature of 
the permutation of the unpaired orbitals of the 4>f 

back to t\1e1r order m <l>K and a' is the signature 
of the 4>f back to their order 111 <l'K'· Odd chain is 
abbreviated o chain. and even chain by e chain. 

There are no one-electron terms from diagrams 
containing two even chains, and there are no terms 
at all from diagrams containing more than two 
even chains. 

When there are no even chains, q;j = 1, and if there 
are two even chains, q;i = 0. When 4>f = 4>f, and/or 
K' ' 4>; if:. <fif.% = 0. If there are two even chains and 

i and j are in the same chain, Q;j = 0. Otherwise 
Q;j is given in table I. 

Computational Realisation 

TI1e 'best', that is the most 'economic' computer 
algorithm has to minimize the following quantities: 

(a) mathematical operations 

(b) number of processor storage location 

(c) amount of data transferred to or/and from 
external storage 

(d) number of transferred blocks of data. 

An algorithm that fulfils these four conditions uses 
the minimum of central processor and elapsed time, 
and therefore is the cheapest. Normally, each al­ 
gorithm is a compromise with these four conditions, 
resulting from the characteristics of the computer 
it is (supposed) to be implemented on. 

The calculation of matrix elements between many 
electron wavefunctions of arbitrary spin states is 
especially difficult, because normally not all one­ 
and two-electron integrals between the functions ,p 
used to construct the wavefunction can be held in 
processor storage simultaneously. In this case data 
transfer to and from external storage becomes very 
critical and advanced techniques have to be applied 
to solve this problem. For the present problem an 
efficient algorithm has been designed, implemented 
and extensively tested. It will be described, its 
relation to similar algorithms will be discussed, and 
its present implementation will be outlined: for 
convenience, the number of matrix elements who's 
numerical values can be formed in processor storage 
simultaneously is called a core-load of matrix elements, 
the number of symbolic matrix elements that can be 
held (actually, who's symbolic references can be 
reordered according to one index) simultaneously on 
direct access external storage is called a 'disk -load 
of matrix elements, and the number of integrals that 
can be kept in processor storage (actually: directly 
referenced simultaneously) is called a core-load of 
integrals. 

Each symbolic matrix element contains one or 
more references to one- and/or two-electron integrals. 
Each of these references is uniquely identified by 
two numbers: the sequence number of the matrix 
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Table 2: MUNICH PROGRAM SYSTEM - Configuration Interaction Package Release O (March 1973) 
Timing Example a : Molecular Orbitals 35 

Configurations (all double + single sub. except for the K-Shell) 2063 
Total SCF energy - 76.05199 au 
Total Cl energy - 76.26620 au 

Total Data Time 
Li Time Number of Storage Storage Step (b) Step (c) Step (e) Total Reads of (K Bytes) (K Bytes) (min) (min) (min) (min) (min) (%) Integral List 

600 453 5.7062 .5947 .5523 6.8573 8 
540 393 5. 7088 .6025 .5595 6.8713 .0176 .25 9 
480 333 5.7225 .6085 .5762 6.9075 .0538 .78 11 
420 273 5.7088 .6172 .5928 6.9192 .0655 .96 13 
360 213 5.8029 .6388 .6312 7 .0733 .2196 3.2 17 
300 153 5.8167 .7287 .7378 7.2835 .4298 6.3 25 
240 93 5.8940 .8900 .9220 7.7063 .8526 12.4 43 

(a) IBM 360/91 

element it contributes to, and the sequence number 
of the referenced integral. To avoid time consuming 
searching, these references have to be ordered in such 
a way, that the quantities who's reference are to be 
resolved can be processed 'sequentially'. Normally, 
this makes one or more reorderings of the reference 
necessary. Based on this general idea an efficient 
algorithm has been developed for computing numerical 
matrix elements which essentially consists of the 
following steps*: 

(a) Compute a list of symbolic matrix elements 

(b) Order the symbolic contributions, for a disk­ 
load of matrix elements at a time, so that 
consecutive symbolic contributions refer to 
core loads of integrals in ascending sequence. 

(c) Resolve the references to the integrals. 

(d) Order the numerical contributions, so that 
consecutive elements refer to core-loads of 
matrix elements in ascending order. Actually, 
within each sequence of numerical contributions 
built from the same core-load of integrals, the 
elements are ordered according to matrix 
elements in ascending order. Therefore re­ 
ordering is not necessary, if the list can be 
accessed directly (randomly). 

(e) Resolve the references of the numerical con­ 
tributions to the matrix elements, and compute 
the matrix elements, a core-load at a time. 

It is important to notice, that in this algorithm 
the list of integrals has only to be read as many times 
as there are disk-loads of matrix elements. As 
normally the disk (direct access) space available is 
rather large, one or very few reads of the integral 
list are necessary. 

• Starting from a different analysis, M. Yoshimine essentially 
arrived at the same result [ 12) 

At present this algorithm has been implemented 
in a slightly different way: essentially step (b) of the 
above sequence is applied to each core-load of matrix 
elements separately, instead to each disk-load. This 
modification of the algorithm needs relatively little 
disk space, approximately the order of magnitude of 
processor storage available for the step, and it avoids 
step (d) completely. But the list of integrals has to 
be read as many times as there are core-loads of 
matrix elements, which essentially means more often, 
because usually core-loads are smaller than disk-loads 
of matrix elements. But it has been found ( compare 
table 2) that the increase of CPU time with increasing 
numbers of reads of the integral list is unexpectedly 
small, while the elapsed time is dependent on the 
number of reads of the integral list, as is to be 
expected. Normally, the complete list of symbolic 
matrix elements is generated in step (b ). This list 
can be used to construct the list of numerical matrix 
elements for any problems where the following 
quantities agree in number and/or type: molecular 
symmetry (if explicitly taken into account), electrons, 
molecular orbitals, and configurations. But with 
increasing number of electrons and configurations, 
this list of symbolic matrix elements will become 
exceedingly large and it might become unreasonable 
to keep it. In this case the above algorithm, steps 
(a) to (e), has to be applied to each disk-load of 
matrix elements separately. 

In the following paragraphs some of the approaches 
used in the present algorithm are discussed in 
more detail, to show the critical features of their 
performance: 

A very efficient algorithm for the projective 
reduction of matrix elements has been described 
by Reeves [ 11] , and has been implemented in the 
present program with minor (technical) modifications. 
Timing tests have revealed, that the initial 'pairing' of 
orbitals between bonded functions is very time 
consuming, and in the test case actually used up to 
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65% of the total CPU time necessary for the 
projective reduction. Therefore this procedure has 
been carefully analysed. 

The procedure consists in 'pairing' the orbitals 
between two bonded functions one-to-one so as to 
minimize the number of noncoincidences and to build 
appropriate cross-reference tables to be used in the 
actual projective reduction. This 'pairing' may be 
terminated if the third noncoincidence is found, 
because if there are three or more noncoincident 
orbitals between bonded functions the matrix element 
between these functions is identically zero. This 
process of pairing has to be done for the orbitals 
between the first members of all orbital configurations, 
and in case less than three noncoincidences have been 
found for the orbitals, between all other members 
of these orbital configurations. 

Two classes of approaches are possible for this 
'pairing', one class involving explicit searching, one 
class involving no searching. We have currently 
implemented an algorithm with searching gaining 
speed because it has been programmed in IBM 360 
Assembler Language and is largely formed by program 
sections allowing the computer IBM 360/91 to run in a 
special state (loop mode). However, we are actively 
investigating algorithms that do not involve searching 
in the hope of making further time savings (13]. 

Throughout the present program linear indexing 
and table look up has been used. In particular: all 
symbolic references are given as to core/disk load 
number and sequence number (within the load). The 
variables GAMMA and Q are identified by entry 
points to appropriate tables. 

Timing examples of the present program release 
are given in table 2 in which the Cl problem is based 
on a SCF problem solved for the water molecule (14]. 
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Self Consistent Groups in Molecular 
W avefunctions - An Effective Hamiltonian 
with Applications to Some Simple Systems 
S.Wilson and J.Gerratt* 

The self consistent group function model is examined within the framework of the spin optimised 
self consistent field method. An effective Hamiltonian is proposed which avoids the introduction 
of off-diagonal Lagrange undetermined multipliers when optimising the orbitals. Self consistent 
pair functions are considered as an example of this approach and the necessary conditions for the 
optimal orbitals are obtained and discussed. Some model calculations are presented and computational 
aspects of the problem are described. 

Introduction 

The determination of the electronic wavefunction 
for a molecular system can often be simplified if 
groups of weakly interacting electrons can be re­ 
cognised [ 1,2) . To a good approximation, the 
wavefunction may then be written 

by the variation theorem. It is convenient to consider 
a single spin function initially, however. 

The electronic energy expression obtained from 
wavefunctions of the form (I) or (2) may be written 
as a s •. m of intra-group and inter-group terms 

E r £<intra) + r E(intor) 
µ µ µ>v µv (3) 

(I) 

where ,ef is the idempotent antisymmetrising operator 
(3), 0s,M;k is the spin function (3) and <I>µ the 
spatial function for the µth group of electrons. It 
is assumed that these group functions are strongly 
orthogonal [I) . This is vital to the development of 
the group function model and is perhaps also its 
weakest point [ 4) . However, the group functions 
do have chemical significance since they may be 
associated with chemically recognisable entities [8) 
such as core and valence electrons, lone pairs, bonds, 
and a- and rr-electrons. It appears that group functions 
are also transferable, to a certain extent, between 
molecular systems [ 5] . 

Generally, a linear combination of spin functions 
will be used 

,'¥s,M;k> = tbsk 1'1's,M;k> (2) 

in order to span spin space. This may be important 
when considering the dissociation of a molecular 
system or discussing spin properties. In the Spin 
Optimised Self Consistent Field (S.0.-S.C.F.) method 
(3,6,7), the optimal coefficients, bsk, are determined 

The intra-group contribution to the energy has the 
form 

(4) 

where Hµ is the one-electron energy for the group µ 
while J µ is the intra-group Coulomb energy and Kµ 
the intra-group exchange energy. The inter-group 
energy is a sum of the inter-group Coulomb and 
exchange terms 

(5) 

If the group functions are taken to be a product 
of non-orthogonal orbitals, 

l<I>µ> = n I µi> 
iEµ 

(6) 

they may be given an additional physical interpretation. 
The wavefunction is then open to discussion within 
the independent electron model. We shall be entirely 
concerned with functions of the form (6). General 
expressions for the terms occurring in equations (4) 

* Department of Theoretical Chemistry, University of Bristol, Cantock's Gose, Bristol, BS8 ITS 
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and (5) when group functions of the form (6) are 
employed are given in Appendix A. 

The wavefunction (I) can be regarded as an 
eigenfunction of an effective Hamiltonian operator. 
This is deri'lll(i in the following section. Its application 
to the calculstioa of pair functions is then described. 
The necessary conditions for the optimal orbitals 
are given an.A discussed. Finally, model calculations 
are preseated for some simple systems. 

An Effective Hamiltonian for Group Function 
Calculations 

The electronic Hamiltonian, ~. within tl,e Born­ 
Oppenheimer approximation, may be written as a 
sum of one and tw• electron terms (3 I 

(7) 

where k and £ denote electronic coordinates. 
An effective Hamiltonian for group function 

calculations is obtained as follows. Let !7 denote 
the space of all wavefunctions, defined by equations 
(!) and (6), in which the group functions are not 
subject to any orthogonality restrictions. Let !7' 
denote the space of all such wavefunctions in 
which the group functions are required to be 
strongly orthogonal. /;"'c ,q' . Let ~ denote the 
projector onto !7' and .f*'p the projection of the 
Hamiltonian onto !7' (9). 

.;>f" P is hermitean and transforms any l'lr>EY" 
linearly into any l'lr>EY". 

If the orbitals comprising the group functions are 
of the same symmetry type, the projection operator, 
:jl;, may be derived as follows: Let bµ denote the 
projector onto the spic~&µ spanned by the set of 
non-orthogonal ket vectors IJJi>. Lliwdin [I 0) has 
shown that this may be written 

b = :E IJJi>(t.-1) <µ;I µ ~jEµ /J iJ 

where 

(9) 

(10) 

is the metric matrix. Now &µ is orthogonal to &p, 
i.e. eJpbµ = 6 (µi'P). This is a necessary and suf­ 
ficient condition. that 

Pµ = :E bv. 
#µ 

(11) 

is also a projector [ 11] . P µ projects onto the direct 
sum of the subspaces Sj, &2, .... , &a, .... &Ng (a,/=µ), 
which we shall denote by &µ. The projection 
operator onto the subspace &µx complementary to 
&µ is then 

(12) 

lµi>E&µx since IJJi> is orthogonal to all Iii> (µ,/=P). 
We now impose the condition that .:J,µ acts only on 
IJJi>, Vi. Hence the required projection operator is 

(I 3) 

[9>µ,9vl = 0, (µ,/=P), is a necessary and sufficient 
condition that .:J, be a projection operator [II). 

Assuming that the wavefunction is normalised, 
the electronic energy for strongly orthogonal group 
function is 

(14) 

This form of the energy is important when considering 
the conditions for the optimal group functions. The 
use of this effective Hamiltonian avoids the intro­ 
duction of off-diagonal Lagrange multipliers [ 12). 

The Self Consistent Pair Function Model 

The concept of electron pairs is fundamental to 
a substantial part of the theory of chemical bonding 
[ 13) . Such pairs form the simplest example of the 
application of the group function model. The pair 
function may be written 

(15) 

Hurley, Lennard-Jones and Pople (14) introduced 
the pair function as an extension of the molecular 
orbital theory to include the electrostatic correlation 
between electrons in the same orbitals. Hay, Hunt 
and Goddard [21) have considered it as a generalisation 
of the valence bond method. Effectively each electron 
pair is described by a function of the type discussed 
by Coulson and Fischer [ I 5) for the hydrogen 
molecule. It may be regarded as an extension of 
the molecular orbital method in which the orbitals 
are not forced to be doubly occupied or as an 
extension of the valence bond method in which 
distorted atomic orbitals are employed. 

The Serber basis [16) for the spin functions is 
particularly suited to pair function calculations. The 
electron spins are first coupled together in pairs and 
then the pairs coupled to give the resultant spin. In 
this basis the representation matrices for the sym­ 
metric group have the useful property 

110 



(16) 

The energy expression [ I 7) , for an arbitrary spin 
function, then has a particularly simple form. If 
for convenience we define 

the various components of the energy are 

HJk = dJk[<µ1lhlµ1>+<µ2lhlµ2> 

+ 2 U~kk (Pµ1µ2)Aµ <µilh 1µ2>] 

(I 7) 

(I 8) 

(I 9) 

+ 2U~kk (Pµ1µ2)Aµ(<µ1v1 lglµ2111>+<µ1112lglµ2112>) 

+ 2U~kk (P111112)Av(<µ1111lglµ1112>+<µ2111 lglµ2112>) 

+ 2U~kk (Pµ1112)U~kk (P111112)AµAv(<µ1111 lglµ2112>) 

(21) 

+ 2U~kk (Pµ1µ2)Aµ(<µ1v1 lglv1µ2>+<µ1112lglv2µ2>) 

+ 2ufkk (Pv1112)Av(<µ1 VI lglv2µ1>+<µ2111 lglv2µ2>) 

+ 2urkk (Pµ1µ2)U~kk (P111112)AµA11(<µ1111 lglv2µ2> 

(22) 

Necessary Conditions for Optimal Pair Functions 

Consider the determination of the optimal pair 
functions by the variation theorem [9]. The 
electronic energy is required to be stationary subject 
to the constraints that the total wavefunction and the 
orbitals remain normalised. To this end we form 
the functional 

where the Lagrange multipliers Eµ; maintain orbital 
normality and £5k is given by equation ll4). The 
variation of the bra vector <µii may always be taken 
to be independent of the variation of the ket vector 
lµi> [9]. The requirement that of/ be zero for 
small, but non-zero, <oµil, leads to the necessary 
conditions for the energy to be a minimum. 

(.9µPttk Yµ - eµ;)lµi> = o 

<µilµz> = l 
Vlµi> 

By using the effective Hamiltonian -.W"p we have 
avoided the introduction of off-diagonal Lagrange 
multipliers in these equations. For pair functions 
the projection operators @µ have a simple form 

bµ = (I -Air1(lµ1><µ1I + lµ2><µ2I 

- Aµ{lµ1><µ2I + lµ2><µ1f) 

The orbital operator is 

(24) 

(25) 

(26) 

If we define 

{ 
l if i=2 

i = j(i) = 2 if i=l (27) 

the intra-pair term is 

Pµ1k = Ii + f(µj;µj) +U~kk (Pµ1µ2) 

{ lµj><µjlh + hlµi><µjl + X(µj,µi)f (28) 

where / and .o/t are the Coulomb and exchange 
operators [22). The inter-pair Coulomb term is 

(29) 

where the effective operator g~k for the pair v is 

e,~k = f (111,111) + /(112;112) 
(30) 

Similarly, the inter-pair exchange term is 

.SI'= £Sk - ~ €µ; <µilµi> 
µ, 

(23) 
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with the effective operator for the pair v given by 

-skk• · - 
C,j, = X(v1;v1) + X(v2:v2) 

+ U~kk (Pv1 v2) 4v {.W(v1;v2) + X(v2;v1)} (32) 

Finally, 

(33) 

with 

skk _ uN (D )!Hsk Jsk Ksk T/µ - Skk c-µ1µ2 µ + µ + µ 

+ l: (J.Sk + KSkk )) #µ µv /Jll {34) 

The equations (24) are a statement of the Kuhn­ 
Tucker necessary conditions (19) for the minimum 
of a function subject to equality constraints. The 
projection of the gradient of the function tangential 
to the manifold formed by the intersection of the 
constraints must be zero and the constraints must be 

, obeyed. If the Hessian matrix is positive definite 
we have the sufficient conditions for a minimum. 
The Kuhn-Tucker conditions are discussed further 
in Appendix B. 

Solution of the Orbital Equations 

The solution of the integro-differential equations 
(24) is in practice very difficult. Numerous techniques 
for the solution of such non-linear equations exist 
(20). In this work, following Roothaan (23], the 
orbitals were expanded in a basis set of Slater 
functions and an iterative solution attempted in a 
pseudolinear fashion. The iterations take the following 
form: for a given partition of the basis set the 
projector B'µ is formed and the orbital equations 
for the pair function I~µ> solved until self consistent; 
the projector 9'v is then formed and l~v> is varied. 
This entire process is repeated for all v until self 
consistent. 

The performance of this process is described in 
the following section together with the results of 
some model calculations. 

Some Model Calculations 

Lllhium hydride; The ground state of the lithium 
hydride molecule provides a useful system for an 
initial calculation using the self consistent pair 
function model. 

In figure I , the orbitals obtained from a pair 
function calculation are compared with those obtained 
by the molecular orbital method and those obtained 

! .... --~~---- - ------------ 

Figure l(a); Pair function orbitals and valence m.o, (---) 
for lhe liH system 

I 
-1 

I _________ I LI H 

Figure l(b): Orbitals obtained by relaxing lhe strong 
orthogonality constraint for lhe LiH system 

by relaxing the resrncnon that the pair functions 
remain strongly orthogonal (30]. The orbitals of 
the core pair function were found to be virtually 
identical. The pair function valence orbitals, like 
the molecular orbital, have a node. This occurs, 
however, in a region where the core orbitals dominate 
the electron density. The strong orthogonality 
constraint has not significantly altered Ilic xhape of 
the orbitals in the chemically important valence 
region. Jn the valence pair function, one ,,I the 
orbitals is dominated by the ls Slater function on 
the hydrogen atom, while the other is dominated by 
the 2s and 2p0 functions of the lithium atom. At 
the equilibrium internuclear separation, the overlap 
between the valence orbitals was found to be 0.73810. 

The results are compared with those of other 
relevant calculations in table I, which also contains 
specifications of the basis set employed. It was 
necessary to optimise each pair function three times 
to obtain overall self consistency. 
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Table I: A comparison of M.O., V.B., C.I. and S.C.P.F. calculations for the Lithium Hydride molecule 

Description Reference Total Energy (au) Basis Set" R(LiH) au 

S.C.F. Molecular Orbital Calculation (24] -7.96992 

Configuration Interaction Calculation 
(13 configurations) (25] -7.98361 

Self Consistent Pair Function Calculation -7.98350 

Li: 
Is (2.6909) 
2s (0. 7075) 
2p (0.8449) 

H: 
Is (0.9766) 

3.015 

Valence Bond Calculation 
(including all configurations not 
involving Li ls excitation) 

(26] - 7 .98387 

Self Consistent Pair Function Calculation - 7.984 79 

Li: 

H: 

Is (2.6840) 
2s (0.6930) 
2p (0.7470) 

Is (1.0830) 

3.000 

* orbital exponents in parenthesis 

Beryllium dihydride: Although the BeH2 system has 
not been observed experimentally, it provides a 
simple polyatomic molecule for theoretical studies. 
It is a prototype of the BeF2 and Be(CH3h molecules. 

The molecule belongs to the D00h point group and 
the two valence pair functions are related by symmetry. 
Generally, symmetrically related pair (group) functions 
belong to an irreducible representation of a subgroup, 
H, of the point symmetry group, G, of the system. 
They are transformed into each other by the operations 
REG, R(#I. Unique pairs (groups) belong to a non­ 
degenerate representation of G. For the BeH2 
molecule we have H = C:.c.i, and R = oh. 

The equivalent valence molecular orbital and the 
pair function orbitals are compared in figure 2. The 
core orbital, which is sketched with a scale five times 
larger than the orbitals, was taken to be doubly 
occupied. The second valence pair function was 
determined by symmetry. Again the valence orbitals 
have a node, but again these occur in regions where 
the core orbitals dominate the electron density. 

The energies obtained from molecular orbital, 
valence bond and pair function calculations are 
compared in table 2. The pair function calculation 

H 

Figure 2: Pair function orbitals and equivalent m.o, (---) 
for the BeH2 system with R(Be-H) = 2.54 bohrs 

utilised orthogonal hybrids as an initial guess. Self 
consistency was obtained after varying each pair 
function twice. The coefficient vectors were con­ 
sistent to six decimal places. 

Table 2: S.C.F.-M.O., V.B. and S.C.P.F. energies for the BeH2 molecule 

Description Reference Total Energy (au) Basis Set" R(Be-H) au 

S.C.F. Molecular Orbital Calculation (27] -15.7162 

Self Consistent Pair Function Calculation -15. 7 363 

Valence Bond Calculation 
(excluding ls2, Be core, excitation) [271 -15.7377 

Be: Is (3.6848) 
2s (09560) 
2p, (0.9560) 

Ha: Is (1.0000) 

Hb: Is (1.0000) 

2.54 

• orbital exponents in parenthesis 
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The water molecule: Finally, the self consistent pair 
function model has been applied to the water molecule. 
The total energy of the system has been calculated 
for various (H - 0 - H) bond angles. The bond length 
(0 - H) was fixed at the experimental value, 1.8111 
Bohrs [ 32 j . The orbitals of the core pair function 
were taken to be identical, as were those associated 
with the two lone pairs. 

-75-7201 \ I 1-71,6'71 
I . i\ . 

I Table 3: Energy of the water molecule as a function of 

., .. ,! \ (J{-0-H) bond angle 
~ 
~ -71,HO H-0-H Angle - Total Energy (au) 
" l _,,,..Prnc11t~ .• 
l 90.00° 75.718955 

~ 95.00° 75.726629 n 
I> 

100.00° _,.,~,, ~! • 75.730839 i _.,. ..•. 
103.00° 75.731805 

J 104.00° 75.731900 
104.45° 75.731903 
105.00° 75.731874 

-75,7Ht \ / r,. .. o 106.00° 75.731735 
' 110.00° ' 75.730070 

"--- 115.00° 15.125626 
120.00° 75.718716 

,o •• 100 IOS 110 •• ,.., 
H 0 H ••••••••••.••• 

Figure 3: Total energy for the H20 ay1tem venu1 H-0-H 
anale. (Riaflt hand acale - Kletllnpr calculation: left hand 
acale - p_,,t calculatlo11-) 

The potential curve obtained is compared with 
that of Klessinger [29) in figure 3. Klessinger fixed 
the partition of his basis sett before optimising the 
orbitals. This gives an equilibrium bond angle O min ' 
of 98.1 °. while optimising the basis set partition, we 
obtain Omin = 104.27°. The experimental value is 
104.45° [32). This illustrates the importance of 
optimising the basis set partition (cf. the previously 
reported calculations for the ethane molecule [31) ). 
The potential curve and basis set specifica lions are 
given in table 3. 

Basil Set ( orbital exponents In parenthesis ( 28 I ) 
0: ls (7.6579), 2.r (2.2458), 2Px 2py 2pz (2.2266) 
H1, H2: II (1.2700) 

\- 
/ __ . - ·--.. ) 
' 

,1 ----- - -......... \, 
I ' ,, __..---., \ ' 

, I .,/ - \ I 
., ' ,.-' ', \ ' I 
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( I \ \ -~} ,:- V-- 
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Figure 4: Amplitude of the orbltal1 In the boncllJII pair function for the wat« molecule at the equilibrium c:onflguntlon. 

t Klessinger's basil aet wu alightly different to that used here 
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Again starting from orthogonalised hybrids, the 
optimisation of the orbital coefficients necessitated 
the variation of each pair function five times. Typical 
computation times+ for this calculation were (with 
a bond angle of 104°) 

(a) for the evaluation of the integrals over Slater 
functions:j: - 4.2 seconds; 

(b) for the iterative optimisation of the orbital 
coefficient vectors - 5.6 seconds. 

The orbitals obtained for one of the (0-H) bonding 
pair functions, at the experimental equilibrium con­ 
figuration, are illustrated in figure 4. The pair 
function consists of one orbital which is essentially 
a distorted sp3-hybrid and a second which is a 
distorted hydrogen ls-function. Electrostatic cor­ 
relation between the pair of electrons associated 
with the bond is described. It should be emphasised 
that, unlike the molecular orbitals, the pair functions 
may not be subjected to an arbitrary unitary trans­ 
formation. The chemically and physically appealing 
interpretation of molecular structure afforded by the 
pair function model is obtained directly. Localisation 
procedures are avoided. 

Concluding Remarks 

The preliminary results presented in this µaper 
suggest that, if groups of weakly interacting electrons 
can be recognised in a molecular system, the group 
function approach may provide a useful description 
of chemical phenomena. The model retains most of 
the advantages of the spin optimised S.C.F .. method 
(3), but enables calculations to be made for much 
larger systems. For example, unlike the molecular 
orbital wavefunction, the function (2) will always 
behave correctly as the molecule dissociates. The 
calculations are open to simple physical interpretation 
within both the independent electron model and the 
group function model [33]. However, the importance 
of optimising the partition of the basis set must be 
emphasised. The use of a fixed partition of the basis 
functions, albeit proposed on chemical grounds, is 
not likely to be very satisfactory. This is particularly 
true when extended basis sets are employed. 
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Appendix A 

The derivation of the electronic energy expression 
for the present group function model follows closely 
the discussion given in (3). (Much of the notation 
used in [3) will be employed here.) 

It is most convenient to use as a basis for the 
representation of the symmetric group, YN, spin 
functions in which the electron spins in each group 
are first coupled together and the resulting spin 
functions coupled to give the total spin function. 
This may be represented as follows: 

( ((S 1,S2 )S 12,S3)S123 )S (Al) 

where S1, S2, ••.... , Sµ, are the resultant spins 
of groups I, 2, µ, ; and 

S 12 = resultant spin after coupling SI and S2; 

S 123 = resultant spin after coupling S 12 and S 3; 

etc. 
In this basis the representation matrices corresponding 
to the permutation PµPv(PµE :7N µ• PµE :7N µ) are 
in fully reduced form [3). 

The energy expression is then obtained by the 
molecular coefficients of fractional parentage tech­ 
nique ([3) and references contained therein). Terms 
which are zero because of the strong orthogonality 
of the functions (6) are omitted. 

For a single spin function from this basis, the 
terms in equations (4) and (5) have the form: 

~k µ 
Nµ 

= cc,.tkk r1 I: Dµ (pq/Skk) <p/hlq>; 
P,4 

(A2) 

(p,q,r,sE<Pµ) (A3) 

t IBM 370/195 computer (cycle time= 756 nanoseconds) 
:j: Integral package of R. M. Stevens (INT150) 
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(p,q,r,sE<l>µ) (A4) 

~NV 
K~k;µv = (t.ikk t,.~kk f1 LJ L Dµv (qprsl Skk) <qpiglrs>; 

pr qs 

(AS) 

(A6) 

The normalisation integrals and density matrices arising in these expressions are very similar to those discussed 
in reference [3] . They have the form 

(A7) 

DiJ._pqiSkk) (AS) 

Dµ(pqrsl Skk) = (A9) 

where 

(Al I) 

Pµ permutes the orbitals of group µ and rt,;l;l-P is 
defined in [3]. 

1 

The generalisation of these expressions for wave­ 
functions of the form (2) is straightforward [I 8] 
and follows closely discussions elsewhere [ 3]. 

Appendix B 

The Kuhn-Tucker necessary conditions for the 
solution of optimisation problems subject to con­ 
straints have been discussed in numerous works, for 
example reference [ 19]. Only a brief outline will 
be given here for the particular case in which the 
constraints are equality constraints. 

Consider the problem 

Minimise F(x) (Bi) 

subject to the equality constraints 

i = 1,2, ... (B2) 

The Kuhn-Tucker conditions for the solution of this 

problem may be written 

Pg = 0; C=O (B3) 

where 

g =VF (B4) 

is the gradient vector. P projects vectors tangential 
to the manifold formed by the intersection of the 
constraints. 

(B5) 

where 

N=VC (B6) 

For a convex programming problem the conditions 
(B3) are both necessary and sufficient for the solution 
of the problem (BI, B2). 
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Studies in the Pair Replacement MC-SCF 
and Strongly Orthogonal Geminal Theories 
V.R.Saunders and M.F.Gues t* 

Applications of the pair replacement MC-SCF theory and the method of anti-symmetrized product 
of strongly orthogonal geminals (APSG) to the systems UH, Li2, BH and NH3 are described and 
contrasted. The inter-pair dispersion energies are computed 

(a) by standard Cl for the MC-SCF wavefunctions 
(b) by the direct interaction of geminal functions in the case of APSG theory. 

The methods employed in the minimization of the MC-SCF and APSG energy expressions are 
briefly described. 

Introduction 

In the present work, we shall be concerned with 
applications and extensions of two methods for 
obtaining compact electronic wavefunctions of beyond 
the Hartree-Fock level of accuracy; namely the 
multiconfijurational self-consistent field (MC-SCF) 
formalism in its 'pair replacement' form [I) and the 
method of the antisymmetrized product of strongly 
orthogonal geminals (APSG) (2-4). The molecular 
systems Lill, BH, Li2 and NH3 have been chosen as 
test cases for numerical work involving these theories, 
and also for testing extensions designed to give some 
account of the inter-pair dispersion energies. A 
practical procedure for obtaining guaranteed con­ 
vergence of the necessary energy minimizations is 
described. 

The Pair Replacement MC-SCF Theory 

In the 'complete' pair replacement MC-SCF theory 
[I] , we first assume that the 2N electrons of a closed 
shell system may be distributed amongst N doubly 
occupied molecular orbitals, <f>1 •••• <f>N, this set being 
referred to (5) as the first set molecular orbitals 
(FSMO). All possible di-excitations from the FSMO 
to a second set of molecular orbitals (SSMO), 
<f>N+1 •••• <f>M are considered. The determinant produced 
by di-excitation from the ith to the kth MO will be 
denoted 1/lilc The total wavefunction is then written: 

(I) 

where 1/100 is the determinant constructed from the 

N FSMO. We shall not concern ourselves greatly 
with the details of the construction of the MOs, 
except to say that the total set of M MOs is normally 
constrained to be orthonormal, and expanded in 
terms of a given set of M linearly independent basis 
functions. Variants of this 'complete' multicon­ 
figurational (CMC) pair replacement theory are: 

(a) Certain of the FSMO may not be correlated, 
so that configurations involving excitations 
from such FSMO are deleted from the expan­ 
sion, equation (!). 

(b) Certain of the SSMO may not be correlated, 
so that excitations to such SSMO are deleted 
from the expansion, equation (1). 

(c) Mulnconfigurational wavefunctions can be con­ 
structed by grouping the SSMO into disjoint 
sets, each set being associated with a given 
FSMO. Thus excitations from a given FSMO 
into its associated set of SSMO are the only 
type of pair replacements allowed. In this 
form the MC-SCF wavefunction is formally 
identical to the leading terms of an APSG 
expansion, as discussed by Robb and Csizmadia 
(6), who use the acronym DS-SEPC (doubly 
substituted separate electron pair configura­ 
tions), and Levy (7). 

Whatever particular MC expansion is chosen, the aim 
of the MC-SCF theory is to minimize the electronic 
energy with respect to variations in the linear co­ 
efficients appearing in equation (I) and also with 
respect to the form of the orbitals. It is this latter 
aspect which distinguishes the MC-SCF approach 
from straightforward configuration interaction (CI) 
calculations. 

* Atlas Computer Laboratory (Science Research Council}, Chilton, Didcot, Oxfordshire, OXJ 1 OQY 

119 



The APSG Theory 

In the APSG theory the total electronic wavefunction 
for a 2N electron system is written as an antisymmetric 
product of N pair functions (geminals): 

,N 
1/1 = A n A,(2r-l,2r) 

r=I 
(2) 

where A' is a partial antisymmetrizer interchanging 
the electron co-ordinates from different pairs only. 
The geminals are antisymmetric with respect to 
interchange of the co-ordinates of the two electrons 
(A,(1 ,2) = -A,(2,1)), and normalised, so that: 

fdVtfdV,A,(1,2)~(1,2) = I 

fdV1.t\,(l,2)~(1,2) = 0 

A,(1,2) = X,(1,2)0,(1,2) 

(r * s) 

(3) 

The APSG theory is distinguished from the more 
general antisymmetrized product of geminals (APG) 
theory by the application of the strong orthogonality 
constraint in the former: 

(4) 

and under this constraint the geminals are often 
referred to as separated electron pair functions. Such 
pair functions are usually written: 

(5) 

where the spin function, 0, is given by: 

0(1,2) = {a(I)/t'(2) - /l{l) ,l{2))/v'2 (6) 

for a singlet coupling. The spatial functions may be 
expanded in terms of their natural orbitals [8]: 

(7) 

where the 1/>k form an orthonormal set of molecular 
orbitals. The strong orthogonality condition means 
in practice that the total one-electron space spanned 
by I I/> I is factored into N disjoint subspaces, I I/>' I , 
so that each geminal is written as an expansion over 
only the one-particle functions belonging to the 
given _geminal's subspace [9]. 

The central problem of the self-consistent APSG 
theory is to optimize the energy with respect to 
variations in the linear expansion parameters and the 
form of the MOs appearing in equation (7). We note 
that the generalised valence bond (GVB) method [10) 
is a restricted form of the APSG theory where each 
separated pair function is written as a two term 
self-consistent natural orbital expansion. 

Minimization of the APSG and MC-SCF Energy 
Expressions 

We first note that given a set of molecular orbitals, 
there is no great difficulty in the optimization of 
the linear parameters of equations {I) or (7) for the 
MC-SCF or APSG theories respectively. In the latter 
case a set of coupled eigen problems result. which 
may be solved by a method suggested by Silver et 
al. (3), whilst all that is required in the MC-SCF 
case is the solution of a simple eigen problem. The 
more difficult problem is concerned with the opti­ 
mization of the form of the MOs. Consider a variation 
which mixes orbitals t/>i and 1/>i- Such a variation 
may be represented: 

(8a) 

where first order orthonormality is conserved by the 
requirement that Xii = -Xij. The standard Newton­ 
Raphson procedure may be invoked for the mini­ 
mization of the energy functional with respect to 
the matrix elements of X, and leads to the set of 
linear equations: 

{8b) 

(9) 

Solution of equation (9) for the Xii would lead in 
principle to a quadratically convergent procedure 
for the optimization .of the MOs. Unfortunately 
the Newton-Raphson equations are not directly of 
practical value (except for small cases with less than 
say thirty MOs, 435 independent parameters), largely 
because the number of second derivatives which must 
be computed and stored is proportional to the fourth 
power of the number of molecular orbitals. The 
necessity for some approximation in the Newton­ 
Raphson procedure is indicated, and we have pro­ 
ceeded by neglecting all off-diagonal second derivatives, 
giving rise to the decoupled equations: 

(10) 

Unfortunately the quadratic termination properties 
of the Newton-Raphson scheme are lost, and indeed 
the approximate procedure may not be convergent. 
In order to obtain a guarantee of convergence, we 
have modified equation {10) to the form: 
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where a and /3 are parameters whose values may be 
chosen as desired. It is now easy to show that 
convergence may be guaranteed either: 

(a) by choosing a 'sufficiently' large positive value 
for /3. 

(b) on the assumption that the second derivatives 
in equation (II) have positive values (which 
will be the case near a minimum), by choosing 
a 'sufficiently' small positive value for a. Far 
from convergence, where negative second de­ 
rivatives may be encountered, we have found 
the use of the absolute value of the second 
derivative in equation (II) to be occasionally 
useful. 

We shall omit proof of the guaranteed convergence 
of the present proposals, and content ourselves with 
the statement that the argument runs along lines 
closely related to the proof of guaranteed convergence 
of the 'level shifting' method [ I I) for converging 
Hartree-Fock wavefunctions, with a and /3 taking the 
roles of the 'damp factor' and 'level shifter' respectively. 

The present method defines improved MOs as linear 
combinations of the trial MOs, the iterated MOs being 
orthonormal to first order only. The iterated MOs 
may be rendered orthonormal to any desired order 
by an application of the s-1/, symmetric ortho­ 
normalization scheme [ 12) , and re-expressed as linear 
combinations of the basis functions by means of a 
linear transformation involving the definition of the 
trial MOs as linear combinations of the basis functions. 
We have found that our method is most effective if 
the linear coefficients of equation (I) or (7) are 
redetermined after each iteration of the 'quasi-Newton' 
orbital refinement procedure proposed here. The 
necessary formulae for the energy derivatives have 
been collected into the Appendix, and examination 
of these formulae reveals that all the required de­ 
rivatives can be evaluated in approximately the same 
computer time as would be required by methods 
based on effective Fock operators [1,5,13,14), the 
most time consuming operation being a partial four­ 
index transformation of the two electron integrals. 

It is pertinent to note that Levy (7) has proposed 
using the formula: 

(
i:lE) = x .. - 

XJ·i JI i:lX· 
JI X=O 

(12) 

where the Xii are taken to be a set of user supplied 
parameters whose magnitudes Levy assumed to be 
based on estimates of the inverse of the appropriate 
second derivatives. Such a scheme seems to us to 
be perfectly workable when small basis sets are used 
(so that comparatively few natural orbitals per electron 
are involved), but our observations of the magnitude 
of the second derivatives when large basis sets are 
used indicate that it becomes increasingly difficult 

to make good estimates of those second derivatives 
involving the more weakly occupied natural orbitals 
without direct calculation. The full quadratically 
convergent Newton-Raphson scheme has been used 
in the optimization of MC-SCF wavefuncttons [ 15] 
and other correlated wavefunctions [16] for cases of 
up to six electrons. We believe the present procedure. 
where the orbital rotations are performed simul­ 
taneously, to be considerably more economic than 
the method of 'two by two rotations' (3], since the 
latter procedure requires computer time proportional 
to the sixth power of the basis set size, whilst our 
method defines an 'M5' problem. 

Dispersion Corrections to the DS-SEPC and ASPG 
Theories 

In both the APSG and DS-SEPC theories, electron 
pairs are described using disjoint sets of natural 
orbitals. Such theories may be expected to work 
well only when each set of natural orbitals is strongly 
localised, so that the differential overlap between 
any pair of functions belonging to different sets is 
small, and we proceed on the assumption that these 
conditions are satisfied. 

In the strongly separable limit, the principle correc­ 
tion to the DS-SEPC or APSG wavefunctions arises 
from the inter-pair dispersion forces first discussed by 
Eisenschitz and London [ I 7). In the DS-SEPC case, 
such dispersion forces may be allowed for by the 
inclusion of doubly excited configurations of the type: 

A' ~<t>l<t>l] .... [<l>f<l>\d .... [<l>f<t>U .... [<t>f<t>f~ (13) 

where the configuration has been chosen to represent 
dispersion between pairs r and s, and ,pf, <l>k denote 
strongly and weakly occupied natural orbitals re­ 
spectively belonging to the ,th pair, and: 

[</>[,Pk)= v'½f[(2r-l)<f>k(2r)+<f>[(2r)<f>k(2r-1)) ·e 
(14a) 

[ <t>f <t>fl = </>[(2,- I) <t>f (2,) • e (14b) 

where 0 denotes the normalised singlet spin function 
of the co-ordinates of electrons 2r-l and 2r. Such 
dispersion configurations have been denoted [<l>f <t>U+ 
[<l>f<t>ir by Robb and Csizmadia (18] who use the 
term doubly substituted augmented separated electron 
pair configurations (DS-ASEPC) to describe the Cl 
wavefunction including the DS-SEPC configurations 
plus all the inter-pair dispersion functions of the. 
type discussed above. The dispersion configurations 
may be expected to provide the major correction to 
the DS-SEPC wavefunction at the strongly separable 
limit, since all other doubly excited configurations 
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have Hamiltonian matrix elements with the DS-SEPC 
function which involve integration over the negligible 
inter-pair differential overlap distributions, whilst the 
singly excited configurations either give rise to zero 
matrix elements because of Brillioun theorem con­ 
ditions arising out of the self-consistency of the 
DS-SEPC function (intra-pair one electron excitation), 
or involve integration over inter-pair differential 
overlap (in the case of the inter-pair one electron 
transfer configurations). 

In considering the generalization of the ASPG wave­ 
function to include dispersion effects, we are led to 
consider a wavefunction expanded as a linear com­ 
bination of the zero order APSG function plus terms 
of the form: 

(I 5) 

In order to determine the optimum form of such a 
linear combination we shall require Hamiltonian 
matrix elements between geminal product functions, 
which may be expected to be more complex than 
those arising in the more usual forms of Cl where 
Slater determinants ( or spin projected Slater de­ 
terminants) are used as the configurational basis. 
Fortunately, with the rather restricted class of geminal 
configurations considered in the present work, the 
increase in complexity of the relevant matrix elements 
is not great, and we refer to the work ofKapuy [4) 
for the necessary formulae. We shall adopt the term 
augmented separated pair (ASP) [19) to describe 
the dispersion corrected APSG theory. 

Definition of Pair Energy 

When performing calculations beyond the Hartree­ 
Fock limit, it is useful to be able to analyse the 
computed correlation energy into 'pair contributions'. 
When such an analysis is carried out, it 'appears to 
be inconvenient to use the restricted Hartree-Fock 
(RHF) energy as a reference point; rather the energy, 
E(PNO), of the single determinant constructed by 
double occupation of the principal natural orbitals 
(PNO) of the correlated wavefunction appears to be 
a more convenient choice. Such a procedure can 
be justified by the well-known result [7 ,20-22) that 
E(PNO) is usually rather close to E(RHF); we have 
found differences of 0.001 Hartree maximum in the 
present work. 

We shall first consider the MC-SCF case. Whether in 
its CMC, DS-SEPC or DS-ASEPC form, we note that 
the PNO are identical to the FSMO, and that the total 
wavefunction can be written: 

where wt' represents a configuration constructed 
by di-excitation from the FSMO i and j to the 
SSMO k and /. Because the coefficients (a0 and at1) 
appearing in equation (I 6) have been determined 
variationally, we find the relationship: 

I 
E101a1 = E(PNO) + a,, ut1Jih1 (I 7) 

where Jih1 denotes the Hamiltonian matrix element 
connecting ,i,t• with ,t,(PNO). The correlation energy 
for the pair of FSMO (i,j) is given by: 

so that the total energy may be written: 

£101a1 = E(PNO) + ~ 8.ij 
ij 

(18) 

(I 9) 

Expressions of this type have been discussed [23) 
by Nesbet and by Sutton et al. 

In the case of the APSG model, the factorization 
of the correlation energy into additive components 
is not so straightforward. The APSG function can 
be written as linear combination of ,t,(PNO), plus 
configurations produced by double, quadruple, hex­ 
tuple etc. excitation from ,j,(PNO). However, the 
configurational mixing coefficients in such an ex­ 
pansion have not been determined variationally as in 
a Cl calculation, but under the APSG constraint. 
Fortunately it may be shown [24) that the APSG 
theory gives rise to configurational mixing coef­ 
ficients which are closely similar to those which would 
be produced by a full Cl treatment. If we analyse 
the APSG function along the same lines as the 
treatment for the MC-SCF function, and ignore the 
small deviations of the configurational mixing co­ 
efficients from the Cl variational values, we find the 
intra-pair correlation energy of the rth geminal, whose 
PNO is orbital i, is given by: 

8, - I • .kk rr - - ~ a,knu 
ari k/'i 

(20) 

(16) 

where H!;k denotes the Hamiltonian matrix element 
between ,j,(PNO) and the configuration produced 
by double substitution of the ith PNO by the kth 

weakly occupied natural orbital; a,k is as defined in 
the natural orbital expansion of the pair function, 
equation (7 ), the summation over k being over the 
weakly occupied natural orbitals belonging to the 'th 

geminal. Equation (20) has been derived from 
equation (18) by expressing the configurational mixing 
coefficients as products of the expansion coefficients 
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appearing in the natural orbital representations of 
the geminals, equation (7), and by noting that quad­ 
ruple and higher order excited configurations have a 
zero valued Hamiltonian matrix element with i/i(PNO). 
Of course, we cannot expect the APSG total energy 
to rigorously equal the sum of the intra-pair energies 
plus E(PNO). In practice, such deviations from 
additivity have been found to be never greater than 
10-6 Hartree in the present work, and so can be 
safely ignored. 

Boron Hydride 

BH is a system of particular interest, because it is 
the smallest system for which previous APSG cal­ 
culations [25) gave disappointing results, only 47% 
of the total correlation energy being recovered, The 
present calculations were carried out at an internuclear 
separation of 2.329 bohr [25], slightly less than the 
experimental distance of 2.336 bohr [26]. The basis 
set comprised Slater type orbitals (STO) expressed 

as linear combinations of Gaussian type functions 
{GTF) according to the least squares criterion [ 27 ]. 
The generation of the basis set can bt' divided into 
two distinct phases. with the initial generation of a 
set designed to approach the Hartree-Fock limit, 
followed by addition of basis functions specifically 
chosen to account for electronic correlation effects. 

The near Hartree-Fock basis was generated from the 
double zeta set of Huzinaga and Arnau [ 28] , with a 
hydrogen basis of a ls and a 2s orbital whose 
exponents were chain optimized. Certain of the ls 
orbitals on B and H were finally expanded by scaling 
the variational expansion of the hydrogenic ls orbital 
in six GTF [29]. This double-zeta basis was enlarged 
by reference to the literature [ I 5 ,25] together with 
some energy optimization, to generate an (8s, 3p) 
on the boron and a ( 4s, Ip) set on the hydrogen, the 
added functions being expanded in either three or four 
GTF depending on their estimated importance in the 
Hartree-Fock wavefunction, the resulting basis being 
shown in table I. A restricted Hartree-Fock (RHF) 
calculation using this set of 24 STO gave an energy of 
-25.1260 Hartree, .0054 Hartree above the limit [20]. 

Table 1: Basis sets8 for BH, LIH, Li2 and NH3 

BH LiH 

Orbital Exponent Orbital Exponent 

Boron Lithium 
ls b (6) 4.24477 2s (6) 2.35 
ls b (6) 6.545 ls b (6) 2.45 
ls (5) 9.8 ls b (6) 3.70 
2s (6) 4.6 Is b (6) 5.40 
3s (4) 5.0 2s (4) 1.00 
2s (6) 0.878793 2s (4) 0.70 
2s (6) 1.41415 2p (4) 6.50 
2s (5) 2.3 2p (4) 4.10 
1p (6) 1.00435 2p (4) 0.75 
2P. (6) 2.21163 3d (3) 5.40 
3p (4) 1.9 

Hydrogen Hydrogen 
Is b (6) 1.7 3s (4) 1.20 
Is b (6) 1.13 2s (4) 1.15 
2s (5) 1.06 Is b (6) 1.00 
3s (4) 1.23 Is b (6) 1.50 
2p (4) 1.7 3p (4) 1.20 

2p (4) 1.05 
Lone Pair Centroid 2p (4) 1.55 

3p (4) 1.81 3d (3) 1.70 
4d (3) 2.4 

Bond Centroid 
2p (4) 1.5 
3p (4) 1.8 
3d (3) 2.0 

Boron Inner Shell Correlation 
2p (4) 6.9 
2p (4) 10.4 
3d (3) 9.4 

Li2 

Orbital Exponent 

Lithium 
2s (6) 2.35 
ls b (6) 2.45 
ls b (6) 3.70 
Is b (6) 5.40 
2s (5) 0.64 
2s (5) 1.00 
2s (4) 1.77 
2p (4) 1.05 
3p (4) 0.95 
4d (3) 1.05 

NH3 

Orbital Exponent 

Nitrogen 
Is 10.50 
Is 6.10 
2s 5.90 
2s 2.25 
2s 1.60 
2s 1.10 
2p 1.10 
2p 1.90 
2p 2.90 
2p 6.30 
3d 1.95 

Hydrogen 
Is 2.10 
Is 1.30 
2s 1.25 
2p 1.95 

Lone Pair Centroid 
3p 2.70 

(a) For BH, LiH and Li2 the number of GTF/STO is indicated in parentheses 
(b) Scaled Variational Hydrogenic orbital, (29] 
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Basis functions were then added to the 24 STO near 
Hartree-Fock basis to account for the valence shell 
correlation effects. The 24 STO of table I were 
retained, with no change in orbital exponents, in a 
sequence of calculations in which the basis is suc­ 
cessively augmented with functions sited at the dipole 
centroids of the appropriate gerninal ; 2p, 3p and 3d 
STO were placed at the centroid of the bonding 
geminal (1.7 bohr from the boron), 3p and 4d STO 
being sited at the lone pair centroid (0.9 bohr from 
the boron) to yield a 43 STO basis. 

the addition of functions to the boron atom, cul­ 
minating in a 54 STO basis set which gives Hartree-Fock 
and total APSG energies of -25.1302 and -25.2469 
Hartree respectively, the calculated correlation energy 
being 0.1167 Hartree, or 75% of the total, and the 
inner shell being described by thirteen natural orbitals 
(Sa, 3rr, lo). Our final basis set is thus 0.0010 
Hartree above the Hartree-Fock limit; nearly all this 
error is estimated to arise from inadequacy in the 
boron inner shell description. 

Table 2: Total APSG Energies (Hartree) of BH during evolution of the basis set 

£(Total) E(PNO) t:.Eb 
Geminal Pair Energies" 

Remarks 
Bond Lone Pair Inner Shell 

-25.18860 -25.12535 0.0632 0.0267 (3a, 117) 0.0365 (2a, 117) - B(8s, 3p); H(4s, Ip) 
-25.19671 -25.12776 0.0689 0.0307 (4a; 217) 0.0382 (20, 117) - 2p (~= 1.5) at bond centroid 
-25.20103 -25.12892 0.0721 0.0322 (50,317) 0.0400 (2a, J rr) - 3p (~= 1.8) at bond centroid 
-25.20810 -25.12937 0.0787 0.0320 (5 a, 317) 0.0467 (20, 217) - 3p (~=I .81) at Ione pair centroid 
-25.20916 -25.12934 0.0798 0.0322 (50,317) 0.04 77 (3a, 211', I 0) - 4d (~=2.4) at lone pair centroid 
-25.21042 -25.12944 0.0810 0.0332 rso, 3rr, 10) 0.0478 (4a, 2rr, Jo) - 3d (~=2.0) at bond centroid 
-25.22105 -25.12945 0.0916 0.0331 (50,311', 10) 0.0475 (40,217, I0) 0.01 I I (20) basis as above 
-25.24222 -25.12973 0.1125 0.0329 (Sa, 3rr, JO) 0.0472 (4a, 2rr, 10) 0.0324 (3a, 117) 2p (~=6.9) at B 
-25.24420 -25.12973 0.1145 0.0329 (50,317, 1,5) 0.0472 (40,217, 10) 0.0343 (40, 21!) 2p (~=10.4)at8 
-25.24686 -25.12975 0.1171 0.0329 (50, 3rr, 10) 0.0472 (4a, 211', Jo) 0.0370 (Sa, 3rr, Jo) 3d (~=9.4) at B 

(a) The quantities in parentheses refer to the number and type of natural orbitals assigned to the appropriate gerninal 
(b) t:.E = E(PNO) - £(Total) 

The results of this refinement of the basis set are 
indicated in table 2. A CMC-MC-SCF calculation 
using the 24 STO basis indicated that an APSG cal­ 
culation in which five natural orbitals are assigned 
to the bond geminal (3a, Irr) and four natural orbitals 
(2a, Irr) assigned to the lone pair should be performed: 
the remaining natural orbitals were found to yield 
only a minor total contribution (less than 5 x 10-4 
Hartree) to the valence shell pair energies. The results 
of such a two pair APSG calculation are given as the 
first row of table 2. The experimental total correlation 
energy of BH is estimated (25] to be 0.155 Har tree, 
and the valence shell correlation energy 0.113 Hartree 
(3 I]. Using this latter estimate, the present cal­ 
culation recovers 55% of the valence shell correlation 
energy. The process of refinement of the valence shell 
correlating basis culminates in the results of the sixth 
row, table 2. We see that the bonding geminal is 
now described by thirteen natural orbitals (Sa, 3rr, lo), 
the lone pair by ten natural orbitals (4a, 2rr, lo), and 
the Hartree-Fock energy has improved to -25 .1299 
Hartree (0.0015 Hartree above the limit). The total 
APSG energy in this 43 STO basis is -25 .2104 
Hartree, yielding a valence shell correlation energy 
of 0.0805 Hartree (7 I%). Our results indicate that 
it is the use of p functions at the geminal centroids 
which has given the most significant contribution to 
these improvements. The final stages of the basis 
set improvement are concerned with the generation 
of a correlating basis for the boron inner shell, by 

The results of a series of calculations using the larger 
basis sets are summarized in table 3. The one and 
two pair calculations were performed using the 43 
STO basis, the three pair results being derived from 
the 54 STO basis. Perhaps the most important result 
is the near invariance of the computed binding energy 
and dipole moment with the degree of inner shell 
correlation. The dissociation products of the three 
pair APSG model of BH were taken to be hydrogen 
(2S), (energy = -0.49995 Hartree in our basis), and 
a non-symmetry equivalences APSG boron atom (2P), 
with the Is and 2s shells correlated, (energy = 
-24.6039 Hartree), leading to a computed dissociation 
energy of 3.89 e V. The dissociation products of the 
two pair APSG model were taken to be hydrogen (2 S) 
and a non-symmetry equivalences APSG boron atom 
(2P) with only the 2s shell correlated (energy = 
-24.5665 Har tree) leading to a dissociation energy 
of 3.92 eV. These results should be compared with 
the experimental value (36] of 3.59 eV. Note that 
some basis set re-optimization was attempted for the 
above atomic calculations. We have avoided the 
computation of dissociation energies for the DS-SEPC 
and DS-ASEPC theories, because of uncertainty about 
the nature of dissociation products, noting the omission 
of certain quadruple excitations which become im­ 
portant at long bond length. The effects of applying 
a symmetry equivalencing constraint to the APSG 
model of boron have been discussed by Mehler et al. 
(25). We note that E(PNO) is never greater than 
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Table 3: Energy parameters (Hanree i and dipole moment of HI/ 
-----· -- - ---- -- 

Pair Energies De µe t:,J.:" Calculation £\PNO) £(Total) ei· (Debye) Lone Inner Bond--- [Reference Bond Pair Shell Lone Pair 

RHF (54STO) -25.1302 2.78 1.781 b 
RHF (43STO) -25.1299 2.78 1.778 b 
APSG (3 pair) -25.1298 -25.2469 3.89 1.524 0.1167 0.0329 0.0472 0.0370 b 
APSG (2 pair) -25.1294 -25.2104 3.92 1.517 0.0805 0.0332 0.0478 b 
APSG (I pair) -25.1299 -25.1670 1.836 0.0371 0.0371 b 
APSG (I pair) -25.1295 -25.1793 1.416 0.0494 0.0498 b 
DS-SEPC (2 pair) -25.1295 -25.2077 1.549 0.0778 0.0326 0.0456 b 
DS-ASEPC (2 pair) -25.1295 -25.2140 I.S56 0.0841 0.0321 0.0443 0.0081 b 
Experiment -25.289 3.59 0.155 (16,36 I 
RHF limit -25.1314 2.77 1.733 (30) 
Cl -2S.2621 1.470 0.1331 0.0356 0.0492 0.0374 0.0199 (37) 
GVB-(3 pair) -25.1777 3.21 0.0495 0.0144 0.0228 0.0124 [ 10) 
Gl-(3 pair) -25.1801 3.24 1.504 0.0519 (42) 
IEP-(2 pair) 0.0963 0.0328 0.0458 0.0177 (32) 
APSG (2 pair) -25.1220 -25.1790 4.11 0.0476 (25) 
APSG (3 pair) -25.1220 -25.2053 3.86 0.0739 (25 I 

(a) M = E(RHF) - £(Total) 
(b) Present work 

E(RHF) by more than 0.0009 Hartree in the present 
calculations, a result in contrast with the findings of 
Mehler et al. [25), who find surprisingly large dif­ 
ferences between E(PNO) and E(RHF), of the order 
of 0.0094 Hartrees. The difference in energy between 
the two-pair APSG and DS-SEPC results in an estimate 
of 0.0027 Hartree energy lowering due to the ad­ 
mixing of quadruple excitations in the APSG model. 

The DS-ASEPC calculation gives the largest valence 
correlation energy, 0.0837 Hartree (74%) and an 
estimate of the inter-pair dispersion energy of 0.0081 
Hartree, the latter being much smaller than the 
independent electron pair (IEP) result [32) of 0.0177 
Hartree. In calculations of the latter category, 
questions arise over the uniqueness of pair correlations 
and about their additivity [15). Calculations by 
Robb and Csizmadia [33) suggest that the JEP model 
seriously overestimates the correlation energy that 
may be obtained within the electron pair model. 
To provide further evidence we have performed APSG 
calculations where the valence pairs in BH are cor­ 
related independently. The resulting pair energies 
are 0.0371 and 0.0499 Hartree for the bond and lone 
pair respectively, compared with the values of 0.0332 
and 0.0456 Hartree (see table 3) obtained from the 
two-pair APSG calculation, suggesting than an IEP 
approach overestimates the intra pair APSG correlation 
energy in BH by 11 %, compared with a previous 
estimate of ;;.5% (32). However, it may be more 
reasonable to compare IEP pair energies with cor­ 
relation energies calculated in the APG model. 
Certainly recent two-pair APSG and APG calculations 
[34) on LiH and BH indicate that the APG pair 
energies are considerably larger than those of the 
APSG model. 

The dipole moments (defined so that a positive di­ 
pole implies B-Jr) from the present work and from 
(16) and GVB (JO) calculations are in substantial 
agreement, all being significantly lower than the RHF 
estimate (30). 

The benefit of careful exponent optimization and a 
sufficiently large basis set can be seen on comparing 
the present results with those of Mehler et al. (25], 
who obtained 42% of the valence shell correlation 
energy in a two-pair APSG treatment, 47% of the 
total correlation energy in a three-pair calculation, 
compared with the present results of 71% and 75% 
respectively. 

Lithium Hydride . 

A number of calculations using the basis set of 38 
STO expanded in GTF reported in table I, and at 
the experimental [38) bond length of 3.015 bohr 
have been carried out. The natural orbital structure 
of the geminals indicates that the molecular system 
can be regarded as LtH· in first approximation, 
with an inner shell electron pair closely similar to 
that found in u•, and a 'bonding' geminal looking 
rather like a H- system polarized towards the lithium 
atom. Jn table 4 we present a pair energy analysis 
of our APSG wavefunction, and compare the results 
with similar analyses for isolated Li+ and H- systems, 
where the natural orbitals of the molecular system 
have been placed in maximum correspondence with 
the isolated ion orbitals. It will be seen that the 
natural orbital structure of both LiH geminals is 
(6a, 371', lo). 
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Table 4: A comparison of the APSG3 pair energy components 
(Hartree) of Lill (R=3.015 bohr) with u• and ll- 

Weakly Pair Pair Energy, Lill Occupied Ene~ (Li inner shell geminal) Natural Orbital L1 

2s 0.0144 0.0136 (a) 
3s 0.0010 0.0010 (a) 
2p 0.0210 0.0068 (a), 0.0140 (ff) 
3p 0.0019 0.0006 (a), 0.0012 (ff) 
3d 0.0025 0.0005 (a), 0.0010 (ff), 0.0010 (c5) 

Total 0.0408 0.0397 

Pair Energy Pair Energy, Lill 
y- (bonding geminal) 

2s 0.0231 0.0147 (a) 
3s 0.0009 0.0001 (a) 
2p 0.0135 0.0051 (a), 0.0120 (ff) 
3p 0.0009 0.0003 (a), 0.0010 (ff) 
3d 0.0012 0.0002 (a), 0.0006 (ff), 0.0007(6) 

Total 0.0396 0.0353 

(a) Basis set for Lill and Li", see table I : 
basis set for H taken from Hinze and Sabelli [ 15] 

The energies of LiH at R = 3.015 bohr produced by 
the APSG, DS-SEPC, DS-ASEPC and ASP theories 
are quoted in table 5, and compared with other 
theoretical results and experiment. The 38 STO basis 
set gives an energy within 0.0010 Hartree of the 
Hartree-Fock limit, most of this error (0.0008 Hartree) 

being due to an incomplete valence shell description. 
Tue two pair APSG and ASP wavefunctions both 
give lower energies than the previous best variational 
result (21]. the latter being produced by an iterative 
natural orbital Cl calculation. Indeed the energy of 
the ASP wavefunction is close to the non-variational 
transcorrelated wavefunction result of Boys and Handy 
(44]. Tne two pair ASP and DS-ASEPC calculations 
both result in an estimate of 0.0006 Hartree for the 
dispersion component of the inter-pair correlation 
energy, whilst the difference in energy between the 
two-pair APSG and DS-SEPC yields an estimate of 
0.0012 Hartree energy lowering due to the admission 
of certain quadruple excitations in the APSG model. 

The results of the present calculations may be used 
to provide an estimate of the APSG energy limit for 
Lill From comparison of our isolated Li+ calculation 
with an 'exact' u•energy (47], approximately 0.0025 
Hartree of the inner shell correlation energy is un­ 
accounted for in the present basis. A further 0.0005 
Hartree is likely to be gained by increasing the 
valence shell correlating basis, which coupled with 
the known 0.001 error in our Hartree-Fock energy 
leads to the conclusion that the present APSG cal­ 
culation lies 0.004 Hartree from an APSG limit of 
-8.065 Hartree, 94% of the total correlation energy. 

A difference of 0.0002 Hartree was found between 
E(PNO) and E(RHF) in all of the present calculations, 
in agreement with Bender and Davidson (21], but 
in marked disagreement with Mehler et al. (25] who 
find a difference of 0.0026 Hartree. 

Table 5: Calculations on Lill, R = 3.015 bohr, (energy in Hartree) 

Calculation £(TOTAL) E(PNO) E(RHF) 
µ AE" Reference (De bye) 

RHF -7.9863 5.979 b 

APSG (2 pair) -8.0611 -7.9861 -7.986) 5.912 0.0748 b 

APSG (l pair) -8.0220 -7.9861 -7.9863 5.867 0.0357 b 

DS-SEPC (2 pair) -8.0599 -7 .9861 -7.9863 5.914 0.0736 b 

DS-ASEPC (2 pair) -8.0605 -7.9861 -7.9863 5.914 0.0742 b 

ASP (2 pair) -8.0617 -7.9861 -7.9863 5.912 0.0754 b 

Experiment -8.0703 5.83 [39,40) 

RHF limit -7.9873 6.002 [30,41] 

Cl -8.0606 -7.9871 -7.9873 5.965 0.0733 121 I 
GVB (2 pair) -8.0129 -7.9833 0.0296 [10) 

Gl (2 pair) -8.0137 -7.9833 0.0304 [10] 

Gl (2 pair) -8.0173 5.645 [42) 

APSG (2 pair) -8.0542 -7.9847 -7.9873 0.0669 [25) 

APSG (l pair) -8.0182 -7.9873 0.0309 [25) 

APSG (l pair) -8.0213 -7.9873 5.886 0.0340 [43] 

Tranocorrelated -8.063 [44) 

(a) M=E(RHF) - £(TOTAL) 
(b) Present work 
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Table 6: Calculated equilibrium properties of Lill 

Calculation Re De . £(Total) µ o. Reference bohr eV Hartree Debye 

RHF 3.044 1.46 -7.9863 6.013 1.66 a 
APSG (2 pair) 3.056 2.42 -8.0611 5.953 1.91 a 
APSG (I pair) 3.045 2.44 -8.0221 5.900 1.80 a 
DS-SEPC (2 pair) 3.052 -8.0599 5.958 1.74 a 
DS-ASEPC (2 pair) 3.047 -8.0605 5.953· 1.70 a 
Experiment 3.015 2.52 -8.0703 5.83 1.8±0.3 (38-40,45,46) 
GVB (2 pair)b 3.015 1.89 -8.0129 (10) 
Gl (2 pair)b 3.015 1.89 -8.0137 (10] 
GI (2 pair)b · 3.015 1.90 -8.0173 5.645 (42] 
APSG (2 pair) 3.042 2.31 -8.0542 (25] 
APSG (1 pair) b 3.015 2.35 -8.0182 (25] 
APSG (I pair) 3.049 2.41 -8.0213 5.923 1.86 (43] 
RHF llmitb 3.015 1.49 -7.9873 6.002 [30] 

(a) Present work 
(b) Result obtained at an auilmed Re=3.015 

Table 7: Pair energy analysis of the one pair APSG L/2 
wavefunction, R = 5.051 bohr 

Weakly Occupied Pair Energy 
Natural Orbital (Hartree) 

20u 0.0058 
l11u 0.0182 
30g 0.0065 
111, 0.0002 
4o1 0.0001 
11;, 0.0003 
30u 0.0002 

Total pair energy 0.0313 
E(PNO) -14.8709 
£(Total) -14.9022 
E(RHF) -14.8711 

hydrogen ( energy = -0.49995 Hartree in the present 
basis), whilst the two pair APSG function dissociates 
to an APSG lithium atom (energy > -7.4722 after 
some reoptimization of the basis) and a Hartree-Fock 
hydrogen atom. 

The Lithium Molecule 

A series of calculations was performed at bond 
lengths of 3.015, 3.05 and 3.08 bohr, and the results 
interpolated, to yield the predicted equilibrium pro­ 
perties (see table 6). The degree of correlation 
allowed for the inner shell ( compare the one and two 
pair APSG calculations) has little effect on the 
computed equilibrium properties, as for BH. Par­ 
ticularly gratifying is the close agreement of the 
computed with experimental dissociation energies, 
dipole moments and dipole derivative factor, o.: 

00 " V'-e/R.) / (ilµ/aR)Re (21) 

the latter being measured from the relative line 
intensities in the infrared spectrum [46]. Note that 
the one pair APSG wavefunction dissociates to 
Hartree-Fock lithium (energy = - 7 .4326 Hartree after 
reoptimization of the present valence s basis) and 

In view of the small influence on the computed 
properties of Lill and BH of the amount of inner 
shell correlation allowed, we have performed cal­ 
culations on the Li2 molecule where the lithium 
inner shells are not correlated, so that only the 
bonding pair is described by more than one natural 
orbital. The calculations were performed in a basis 
of 36 STO expanded in GTF, see table I, and at 
the experimental internuclear separation of 5.051 
bohr (38],yielding a Hartree-Fockenergy of-14.8711 
Hartree, 0.0004 Hartree above the limit [ 48]. 

The dominant configuration is I 01
2 I ou2 2012, and 

the one pair APSG function was constructed by double 
substitution of the 2o1 orbital with the orbitals listed 
in table 7. The bonding gerninal thus consists of 
11 natural orbitals, and is closely similar to that found 
by Das (49], except that we have added a 51 natural 
orbital. From the pair energy analysis, table 7, it is 
clear that the most significant features of the cor­ 
relation effect are encapsulated in the 3o1, 2ou, and 
I 11 u weakly occupied natural orbitals. 

The self consistent APSG function has an energy of 
-14.9022 Hartree, and will dissociate into a pair of 
Hartree-Fock lithium atoms, whose combined energy 
is -14.8652 Hartree (after reoptirnization of the 
present valence s basis), leading to a computed dis­ 
sociation energy of I.OJ e V, in close agreement with 
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the experimental result of I.OS eV (50), and a 
previous theoretical result of 1.01 eV (49]. In 
marked contrast, the l lartree-Fock energy of li2 
gives a dissociation energy of 0.lh cV, only 15'Y., of 
the experimental result. 

Ammonia 

Calculations were performed at the experimental 
equilibrium geometry, as quoted by Rauk et al. (51 ], 
using a basis set of 44 STO, as shown in table I , 
the 3p 'lone pair correlating' functions being sited 
0.7 bohr from the nitrogen atom, on the C3 axis, 
at approximately the dipole centroid of the nitrogen 
lone pair geminal. Molecular integral evaluation was 
accomplished using a modified version of a program 
due to Stephens (QCPE 161). The present basis gives a 
Hartree-Fock energy of -56.2222 Hartree, to be com­ 
pared with the previous best of -56.2219 Hartree (51 ], 
and an estimated Hartree-Fock limit of -56.2275 
Hartree (52]. The total correlation energy of 
ammonia has been estimated at 0.329 Hartree (53]. 
of which perhaps 0.285 Hartree can be attributed 
to the valence electrons. 

the local symmetry of the bond or lone pair with 
which they are most directly concerned. If this is 
done, we find an N-11 bonding natural orbital structure 
of 1111' f111111 1111, 211, .lo, n, x', .Joi. where lo is the 
l'NO. whilst 211 is the .-om·spondini,: N-11 11 unti­ 
bonding orbital. ;111d ,r is principally a hydrogen },/J 
function. tangential to the circle whose locus en­ 
compasses the three hydrogen atoms, 7r' being a 
hydrogen 2p function whose principal axis is ortho­ 
gonal to the NH bond and to the 71' orbital, thus 
pointing radially from the hydrogen atom to the C3 

axis. The Jo natural orbital is composed mainly of 
a hydrogen 2p orbital pointing down the NH bond, 
whilst the 4o orbital, which is very weakly occupied, 
is complex in form, and difficult to describe qualita­ 
tively. The structure of the lone pair geminal 
is I lo, 2o, Jo, 11'x, 71'y, 4ol, where Jo is the 
lone pair PNO, a hybrid of nitrogen s and p 
orbitals, whilst the 2o looks rather like the lo 
except that the former has a node bisecting its 
principal lobe. The largest components of the Jo 
and 71' natural orbitals are the 'lone pair correlating' 
3p basis functions, whilst 4o is endowed with a 
complex structure, difficult to describe in qualitative 

Table 8: Oilculatlons on NH3, including valence shell correlation energy only: energy in Hartree 

Oilculatlon E(Total) E(PNO) E(RHF) µ 
Debye 

APSG -56.3176 -56.2212 -56.2222 1.717 
DS-SEPC -56.3151 -56.2213 -56.2222 1.716 
DS-ASEPC -56.3578 -56.2213 -56.2222 1.718 
CMC-MC-SCF -56.3168 -56.2214 -56.2222 1.712 
RHF -56.2222 1.720 
RHF -56.2219 1.66 
Estimated RHF limit -56.2275 
Estlma ted valence shell /lE 
Cl -56.4155 -56.2122 
CMC-MC-SCF -56.2614 -56.1989 
CMC-MC-SCF -56.2789 -56.1989 
- 

(a) /lE = E(RHF) - E(Total) 

Reference 

0.0954 
0.0929 
0.1356 
0.0946 

0.285 
0.2033 
0.0625 
0.0800 

b 
b 
b 
b 
b 

[51 I 
(52] 
b 

(57] 
C 

d 

(b) Present work 
(c) This CMC·MC-SCF calculation included one localised SSMO per valence FSMO (22] 
(d) This CMC-MC-SCF calculation included four localised SSMO and five symmetry adapted SSMO, and appears not to have 

converged (22] 

Calculations within the APSG, DS-SEi>c;· cMC-MC­ 
SCF and DS-ASEPC frameworks were performed, 
and the results displayed in table 8. In all of these 
calculations the nitrogen inner shell was not correlated. 
The self consistent orbitals, irrespective of the 
method used, turned out to be localised within the 
bonds or lone pair, a result which is not surprising 
In view of the results of Levy (7) and Chu [ 54]. 
In view of the localization of the natural orbitals, 
it seems convenient to classify them according to 

terms. In table 9 we present a pair energy analysis 
of the self consistent APSG orbitals, where the pair 
energy of the lone pair is seen to be less than the 
bond, in agreement with Robb and Csizmadia (55], 
who obtained APSG pair energies of 0.016 and 
0.0132 Hartree for the bond and lone pair respectively, 
considerably less than that obtained in the present 
work. Such differences can probably be attributed 
to the larger basis set used in the present work, and 
also to the fact that the APSG function of Robb and 
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Csizmadia (55) was not energy optimized, although 
this latter factor was probably rather small in effect. 

Table 9: Pair energies (Hartree) of the NH3 APSG wavefunction 

Bond Lone Pair 
Natural Orbital Pair Energy Natural Orbital Pair Energy 

2a 0.0169 2a 0.0124 

3a 0.0040 3a 0.0027 

1T 0.0022 1TX 0.0019 
rr 0.0020 71)' 0.0019 
4a 0.0007 4a 0.0002 

Total 0.0258 Total 0.0191 

We shall now consider the results displayed in table 
8 in greater detail. The computed dipole moment 
remains essentially at its RHF value of 1.72D, ir­ 
respective of the amount of correlation allowed, and 
in reasonable agreement with a previous RHF estimate 
of 1.66D [51) and the experimental 1.48D [56). 
The CMC-MC-SCF calculation, using the same number 
of natural orbitals as in the APSG and DS-SEPC 
calculations, produced an energy only 0.0017 Hartree 
below the DS-SEPC result, indicating the minor 
importance of the 'two electron transfer configurations' 
included in the CMC-MC-SCF wavefunction. The 
DS-ASEPC model leads to the lowest energy in the 
present calculations, with a valence correlation energy 
of 0.1356 Hartree (47.6%), and inter-pair dispersion 
energies of 0.0093 Hartree (lone pair-bond}, 0.0075 
Hartree (bond-bond}, and to intra-pair energies of 
0.0 I 67 Hartree (lone pair) and 0.0231 (bond). We 
again note the small difference between E(PNO) and 
E(RHF}, of the order of 0.001 Hartree. 

Conclusions 

Consider the series LiH, BH and NH3, for which 
our best valence only calculations recover approxi­ 
mately 89%, 74% and 48% of the valence shell 
correlation energy respectively. We note that as we 
cross the series, the number of valence shell geminals 
linked to a common atom increases, and the percentage 
of the correlation energy recovered decreases. No 
doubt part of these energy variations can be attributed 
to variation in the quality of our basis sets, but we 
do not believe that this is the major factor. For 

example, a recent large scale CJ calculation (57) 
yielded a valence correlation energy of 0.2033 Hartree 
(73%) for NH 3, using a basis set which is almost 
certainly inferior to that used in the present work. 
It is therefore necessary to consider the imperfections 
of the models we have used, and which are all rooted 
to some degree in the separated electron pair theory. 
Reflection on our results has led us to conclude that 
it is in fact the strong orthogonality constraint which 
constitutes the principal source of error, and that 
this constraint becomes ever more untenable as the 
number of geminals linked to a common atom 
increases. Ti1Us, for example, a close scrutiny of 
the more weakly occupied natural orbitals of NH3 
reveals that they possess nodal planes which seem to 
have little to do with the physics of the situation, 
and everything to do with the application of the 
strong orthogonality constraint. It seems worthwhile 
to consider moving away from models based on the 
APSG theory, and towards an APG approach. Indeed 
recent direct numerical work [34) has indicated the 
considerable improvements which are possible within 
the APG model, whilst the work of Goddard and co­ 
workers (10,16,35) using the Gl theory (which may 
be characterised as an APG model in which the pair 
functions are expanded in two natural orbitals) and 
GVB theory (characterised as the APSG counterpart 
to GI) has indicated the potential superiority of the 
APG approach. Unfortunately APG theory, if directly 
applied, leads to equations whose solution will be 
very difficult for all but the smallest systems. A 
more realistic line of attack has already been a tternptcd 
by Robb and Csizmadia (18,5 5) , with some success, 
where the elements of an APG model are generated 
by successive corrections to the APSG model. 

It is not our belief that MC-SCF, APSG and kindred 
theories will provide adequate compensation at the 
level of systems the size of NH3, if all that is desired 
is the most accurate wavefunction in the shortest 
possible computer time, since the methods of large 
scale Cl (57) have become available. If larger systems 
are to be considered, then APSG/MC-SCF theories 
will have a significant role to play, and it seems 
possible that a marriage of the technologies of MC-SCF 
and large scale Cl will produce a workable, accurate 
and chemically appealing theory, and it is in such 
directions that we plan future work. 

No chemist needs reminding that the computation 
of total molecular energies is by itself, of little direct 
value. Instead, the quantities of real interest are 
always differences in total energies, as reflected, for 
example, in dissociation energies. The present work 
has resulted in estimates of 3.89, 2.42 and 1.01 eV 
for the dissocia lion energy of BH, LiH and Li2 
respectively, to be compared with the experimental 
results 3.59, 2.52 and 1.05 eV, indicating that the 
APSG theory can produce significant improvements 
over the Hartree-Fock theory estimates (2.78, 1.46 
and 0.16 e V respectively). 
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Appendix 

We are concerned with a parameter space in which 
a rotation between molecular orbitals p and r, which 
conserves orthonormality to second order in a way 
which is consistent with the s-½ orthonormalization 
procedure referred to in the main body of the text, 
may be written: 

The symbols J~ and K~1 will be used to denote the 
matrix elements connecting molecular orbitals k and I 
over the Coulomb and exchange operators respectively 
of molecular orbital i. The symbol F kl will be used 
to denote a matrix element of the one electron 
operator, whilst G~ = Ub - Ki,i. 

The APSG energy expreuion: The electronic energy of 
the APSG ansatz for a closed shell system may be 
written: 

where 71 and T are used to denote particular geminals, 
p, q denote natural orbitals belonging to geminal 71, 
and r denotes a natural orbital belonging to geminal T, 
whilst the a719 are defined by equation (7) of the 
main body of the text. 
We define: 

Z = 2u K71 2G71 tp a71pntt + 071p tt - 071p tt 

where p and q belong to the same geminal, 71, and: 

= 4 (Zq,+~1-~p-Ztt 

+ (a;P +a~1)(Jft + Kt) + a;Pa~i(2.lft- 6Kh~ 

where p and t are in different geminals, 71 and T 

respectively. 

MC-SCF energy expression: We first define the quantities: 

FSMO 
Aki = ~ aiklljJ (where k and/ are SSMO) 

where the aik were defined by equation (I) of the 
main body of the text. 

The MC-SCF electronic energy may be written: 

E = 

SSMO 
r aikajk 
k 

(where i and j are FSMO) 

FSMO SSMO 
r CF· +(I -2A--)R-)+2 r AkkHkk i n n a k 

FSMO SSMO . . 
+ 2 l: l: (a00ail<Kkk - a&G\ac) 

k 

SSMO SSMO k FSMO FSMO . 
+ r r A·-,,,n + r r A--K!. 

k I kl" i j tJ JJ 

where: 
FSMO . 

Hk1 = Fkl + l: ~ 

We define: 
where the orbital p belongs to geminal 71, and: 

Y1p 

We then find: 

where p is an FSMO, and: 
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SSMO FSMO 
Yu = ArrH,1 + ~ A1crK~ + ~ (a00airK~ -a~G~) k 

where r is an SSMO. Then: 

a£ 

and: 

= 4 (zqp + Zj,q -Zj,p -Zqq 

+ (App+ Aqq - 2Apq X 1gq + K~q ~ 

where p and q are both FSMO, or both SSMO, and: 

- a~,(2J~P - 6K~p) 

- 2a00ap,(J~P + K~p) + 3Kf, -If,.~ 

if r is an SSMO, and p an FSMO. 
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Numerical Solution of First-Order 
Correlation Equations for Atoms 
C.S.Sharma* and G.Bowtellt 

A method has recently been developed in which the first-order Schrodinger wavefunction of a many 
electron atom can be written as a sum of solutions of a certain set of differential equations. The 
first member of this set is the first-order Har tree-Fock equation and the remaining members are the 
first-order correlation equations. Each first-order correlation function brings in the exact contribution 
to the second-order energy from infinitely many hydrogenic configurations. A method for the 
analytic solution of a correlation equation, provided it does not represent the contribution of the 
doubly ionized continuum, has been developed. This paper reports a numerical method for the 
solution of these correlation equations. Estimates of contributions to the second-order energy 
obtained by the numerical method are compared with the exact values obtained by the analytic 
method. The agreement is found to be excellent. 

Introduction 

Sharma and Bowtell [l-3) have recently developed 
an algorithm for calculating the non-relativistic energy 
of an atom including the correlation energy. The 
correlated wavefunction is expanded in powers of the 
inverse of the nuclear charge, the sum of the inter­ 
electronic interactions is treated as the perturbation 
and the first-order correction to the wavefunction is 
written as a sum of Hartree-Fock and correlation 
terms. In terms of the basis provided by the hydro­ 
genie states, the Hartree-Fock part represents the 
exact lowest order contribution from interactions 
between the state under consideration and all states 
which are singly excited relative to the initial state 
(for a definition of relative excitation, see (2)). 
The correlation part thus consists of the contribution 
from interactions with the doubly excited states; 
triply and other multiply excited states do not 
contribute anything to the first-order correction to 
the wavefunctions because the interelectronic inter­ 
actions ( the perturbing potential) are made up of two 
particle interactions only. Incidentally the first-order 
correction to the wavefunction determines the energy 
exactly up to the third-order. In our scheme the 
doubly excited states are divided into subsets cor­ 
responding to a fixed excitation of one of the 
electrons and an arbitrary excitation of a second 
electron giving rise to a state of required symmetry. 
Each set of first-order correlation equations calculates 
exactly the first-order correction to the wavefunction 
arising from one such subset. In our earlier work [I ,2) 
we have described how exact analytic solutions of 
these equations can be found by expanding the 

solutions in terms of a suitable Hilbert basis and how 
the corresponding contributions to the second-order 
energy can be calculated exactly. The advantages 
of our algorithm are described in ( 3) , the chief of 
which is that the solutions for a complex atom can 
be built up from solutions of the helium problem. 
Thus the solution of each set of correlation equations 
finds application not only for calculating the energy 
of a particular state of the helium isoelectronic 
sequence but of all atoms and ions having the con­ 
figuration of the helium state under consideration 
as a subconfiguration. 

We have now developed a numerical procedure for 
the solution of the first-order correlation equations. 
The availability of both analytic and numerical 
methods enables one to put infallible checks on the 
accuracy of these calculations. We first describe the 
procedure for the solution of a particular set of cor­ 
relation equations and then consider the general case. 

A Particular Set of First-Order Correlation Equations 

We consider the contributions to the first-order 
correction functions for the ls2p 1 • 3 P states of 
helium arising from the lowest order interaction 
with the 2snp 1 •3 P states where n takes all discrete 
and continuum values in the hydrogen spectrum. 
From our earlier work (2) and some elementary 
calculations with known hydrogenic ls, 2s and 2p 
eigenfunctions, it follows that this contribution is 
exactly given in terms of the solutions of the 
following set of differential equations: 

* Department of Mathematics, Birkbeck College, University of London, Malet Street, London, WCJE 7HX 
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(I) 

(2) 

where 

I d2 I d I I L, = - - - - - - - - + - 
2dr2 rdr r r2 

F1 = I I 08y'3 «: r(3r + 4) 

(3) 

It is known [ 5) that the homogeneous equation has 
two solutions one of which has a pole at the origin 
and the other is zero at the origin but diverges 
exponentially at infinity. The desired solutions go 
to zero at infinity as negative exponentials, It follows 
that the numerical solutions $; and <I> of equations 
(I), (2) and (9) obtained by setting, for i = 1,2 

;p;(O) = 4>(0) = 0 (10) 

(4) and 

-r ( 4 3 F2 = _e_ r +r 2 8 3 r2v'3 16 2+3r +12r+24)- f e-r12 (S) 
If we denote by J(' the Hilbert space of normed func­ 
tions on CO, 00C with the inner-product defined by 

<Js> = s:f(r)g(r)r2dr (6) 

then it is known that L1 is an essentially self-adjoin! 
operator on Jf[4] and its spectrum A(L1) is given by: 

A(L1) = {x=-X = -1-
2
, nEZ+ or o,;;;x,;;;00} (7) 

2(n+l) 

It is evident that F1 E J(' and it is not difficult to prove 
that F2 also belongs to JC, then since -½~A(Li) it 
follows that solutions 4>1, 4>2 belonging to JC exist. 
We have already proved that such solutions are unique 
[2]. We now wish to find a numerical procedure for 
obtaining square integrable, in the sense of equation 
(6), solutions of equations (I) and (2). Since the 
required solutions are superpositions of p-states we 
want solutions which satisfy 

(8) 

The general solutions, that is solutions not necessarily 
belonging to J(' are undetermined by arbitrary multiples 
of the solution of the corresponding homogeneous 
equation: 

are related to the square integrable solutions <I>; by 

where 

With these initial values we solved the homogeneous 
and the two inhomogeneous equations numerically 
by using the Runge-Kutta routine on a computer 
and the numerical integrations were continued till 
;p.(r) 
-' - had acquired constant values. Formulae (12) 
<l>(r) 
and (13) were then used to determine 4>1 and 4>2. 
In order to calculate the corresponding contributions 
to the second-order correlation energies of the 
1s2p 1 

• 3 P states of helium we needed the values of 
the following integrals: 

(II) 

(12) 

(13) 

(i= 1,2) (14) 

(L1 + ½)4> = 0 (9) 

The four integrals were evaluated by numerical in­ 
tegrations. From the self-adjointness of LI it follows 
that two of these integrals should have the same 
value. All the values are presented in table I in 
comparison with those obtained from exact analytic 
calculations. The agreement is satisfying! 

Table I: Value of integrals 

Analytic 

Numerical 

- 0.000 592 23 

- 0.000 592 23 

-0.000•736 21 

- 0.000 736 21 

0.000 598 02 

0.000 598 02 

0.000 598 02 

0.000 598 02 
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The General Case 

In the general case the first-order correlation 
equations are of the type 

(LQ + X)<I> = F (16) 

where 

1 d2 

2 dr2 
l d 
r dr 

I Q(Q+I) -+-- r 2r2 

<l>(r) = rQ_, 'V(r) 

equation (16) takes the form 

(I 7) 

FE Jf and X is a real number such that -X ff; A(LQ) 
and we require a solution <I> E Jf. As in the particular 
case of the previous section it is easy to prove that 
such a solution exists and is unique. Since <I> behaves 
as ~ near the origin, for Q * I the initial values of 
the previous sections cannot be used. However, if 
we make the substitution 

(18) 

(
- _I_ d

2 
_ _I_~ _ _I_+~+ x)>v = r'-QF (19) 

2 dr2 r dr r r 

method is in fact substantially easier than the analytic 
one. Due to lack of facilities and resources, however, 
we have been unable to carry the work to the actual 
computation of correlation energies of atoms and had 
to content ourselves with the development of the 
algorithm. As already pointed out each set of 
equations yields numbers which are useful for cal­ 
culating energy levels of many complex a toms and 
ions and the values obtained are exact contributions 
from a particular set of interactions. We should like 
to persuade colleagues looking for computational 
problems that here we have an almost inexhaustible 
supply of good and meaningful problems which they 
might find worth their while to solve. 
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The Hartree-Fock Case 

A first-order Hartree-Fock equation is also of type 
(16) but in this case -X belongs to the point spectrum 
of LQ. In this case the desired solution belongs to 
the orthogonal complement of the eigenspace of -X 
and the solu lion of the homogeneous problem is an 
eigenfunction of LQ belonging to the eigenvalue -X 
and is exactly known. <I> is obtained from the 
numerical solution <I> with the initial values given 
above by orthogonalizing it to the homogeneous 
solution by the Gramm-Scmidt process. The analytic 
solution of such equations is described in [6]. 

Concluding Remarks 

We have developed a very simple yet very accurate 
method for finding square integrable solutions of 
differential equations of type (16). The numerical 
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The Calculation of Three- and Four- Body 
Correlation Energies 
M.A.Robb* 

The calculation of three- and four-body correlation energies in Many-Body Perturbation Theory is 
discussed. It is shown that the four-body diagrams where only the spin label is changed by the inter­ 
mediate interaction can be accounted for by the use of 'spin-irreducible' pairs and that the remainder 
of the three- and four-body terms may be evaluated directly from the 'pair-pair' repulsions. Some 
numerical results are presented for the water molecule in a basis of canonical and localised orbitals. 

Introduction 

The method of 'independent spin-orbital cor­ 
relations' as formulated by Sinanoglu [I) or Nesbet 
[2] is equivalent [3,4] to an infinite summation of 
a certain class of diagrams arising in many-body 
perturbation theory. These diagrams are the so 
called [3) diagonal hole-line 'ladders' and are shown 
in figure I. Each diagram is formed by making 
'ladder' type insertions into the basic diagram, subject 
to the constraint that the hole-line label is unchanged 
by an intermediate interaction. 

,., '" 

+ :a-~~-:s~: + -------- 
••• 

+ :oi-:-~fo~ + -- ------- 
'" 

+ ~Q~~:~D~ + --------- 
"' 

+ 
-----~-- ki\oc. ~ l 

-~--" _ ,, 
Figure I 

+ - ... 

This 'sum of pairs' method usually overestimates 
the correlation energy by I O to 15 percent in small 

molecules. This error is due to three- and four-body 
correlation effects and may be separated into two 
terms: 

(a) rearrangements [5] effects 

(b) exclusion [I] effects 

In Nesbet's [2) method of 'higher order Bethe­ 
Goldstone increments' these two effects are treated 
equally; however, in many-body perturbation cal- 

,., 

Figure 2 (b) 

culations [ 6] certain rearrangement effects (figure 2a) 
are included in first order using shifted energy de­ 
nominators. One hopes, that by including the 
rearrangement effects at first order by solving the 
resulting coupled pair equations [7), one can eliminate 

* Department of Chemistry, Queen Elizabeth College, University of London, Campden Hill, Kensington, 
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the need to solve 'higher order Bethe-Goldstone 
equations' by correcting for 'exclusion' effects by 
evaluating the pair-pair interactions directly from 
the repulsions of the independent pairs. 

Theory 

There are three types of three- and four-body 
diagrams which give rise to exclusion effects and 
these are shown in figure 3. Diagram Ja is a 'ring' 
diagram and there are seven others corresponding to 
various exchanges. Diagram 3b involves an off. 
diagonal matrix element of the Hartree-Fock operator 
and vanishes for canonical molecular orbitals (CMO). 
Diagram Jc is a hole-line 'ladder'. All these diagrams 
have no more than two electrons excited at a time 
and thus we refer to them as three- and four-orbital 
two-body diagrams. The most important correction 
results from figure Jc where only the spin labels of 
the hole states are changed by the intermediate 
interaction. This term is included if one uses 'spin­ 
irreducible' pairs where the particle and hole pairs 
are coupled to 'give two-particle singlets or triplets. 
All of our calculations are carried out in this basis. 

Ca> 

r 

------ 

------ 

(b) 

p 

Once one has determined the independent pairs 
(including the rearrangement effects). the correlation 
energy may be corrected to first order in exclusion 
effects, figure 3. by computing the pair-pair repulsions 
between all pairs Ua13/U-y15 from 

where 

vd!LQ = 

(I) 

L {1ua13><Ua13I( _:r la-y(µ) - Ka1(µ) a{3,-y/3 µ-1,2 

&a-y +<[a/3)12 r""i12[-Y/3J.2>) IU1p><U113I} 

+ r {1ua13><ua13i/ _r Jf$1(µ)-K131(µ) a{3,a-y \µ-1,2 

&13-y + <[a/3)12 r~12[ar]12>) IUa.,><Ua-yl} 

+ r {1ua13><Ua131(<[af3J.2 ,-,•2 [rl5J.2>) a{3 ,-y/5 

and &a-y is an off-diagonal matrix element of the 
Hartree-Fock operator. 

Results and Discussion 

The results of this analysis for the H2 O molecule, 
in a contracted Gaussian basis (8) of double zeta 
quality, are shown in table I along with the variational 
result of Shavitt [9). For both CMO and localized 
molecular orbitals (LMO) almost all of the correction 
for exclusion effects is due to diagrams of the type 

Table I: Pair correlation energies of H2o in DZ basis 

Cc> 
Figure 3 

CMO LMO 

Sum of spin irreducible pairs -0.1472 -0.1397 
Diagonal rearrangement effects 

-0.1459 -0.1376 figure 2a 
Pair-pair repulsions 

-0.1407 -0.1287 (first order correction) 
3-orbital 2-body effects +0.0032 +0.0078 

figure 4a +0.0101 +0.0097 
figure 4c -0.0064 -0.0004 
figure 3b - -0.0015 

4-orbital 2-body effects +0.0021 +0.0011 
figure 4b +0.0022 +0.0008 

Variational result -0.132 
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shown in figure 4. It is remarkable that they involve 
at most two different spacial orbitals i and j. 

For the CMO, the contribution of diagrams 4a 
and 4c are of opposite sign and it is likely that 
convergence has not been obtained. In contrast, 
for LMO, the contribution of diagram 4c is very 
small and the contribution of diagram 4a dominates. 
Further, the small contribution of diagram 4b is 
almost cancelled by diagram 3b. 
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j 

(b) 

r 
j 

(c) 

Fipre 4 

It would be premature to draw extensive con­ 
clusions from this simple calculation. However, the 
transformation to LMO certainly appears to remove 
most of the coupling between semi-disjoint pairs of 
the types U;/U;j· It is only pairs such as Uj/U;j that 
are strongly coupled and no orbital transformation 
can remove this. Further, the fact that the contribution 
of diagram 3b is not large implies that coupled first 
order equations for LMO pairs [ 1 OJ may not be 
necessary. 
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Valence-Bond Calculations on HF and LiH 
R.N.Yardley and G.G.Balint-Kurti* 

Ab initio multi-structure valence-bond calculations are presented for the molecules HF and UH. 
The atomic basis sets used in these calculations were contracted Gaussian minimum orbital basis 
sets of double zeta quality, augmented by a few extra s and p type orbitals. The extra orbitals 
permit a reasonably accurate description of F- and H- relative to their neutral atoms and also provide 
extra flexibility to the molecular wavefunction. The calculated potential energy curves behave 
correctly at large internuclear separations and yield dissociation energies which are within 11 % of 
the experimental values. These calculations are intended only as preliminary studies for larger 
triatomic calculations, but they nevertheless demonstrate the capabilities of valence-bond calculations 
using limited orbital basis sets. 

Introduction and Description of Method 

The distinctive feature of the valence-bond method 
is that, in contrast to the molecular orbital method, 
it regards a molecule as being built up from its 
constituent atoms. Suppose that we wish to describe 
a diatomic molecule AB. We first define approximate 
atomic eigenfunctions such as <I>t and <t>f which refer 
respectively to the ith state of atom A and the /h state 
of atom B. These functions are antisymmetric with 
respect to interchange of any two electron coordinates 
and are eigenfunctions of S2, s, and L 2 for the atoms. 

The basis set, in terms of which the molecular 
wavefunction is to be expanded, is now constructed 
by multiplying together approximate atomic eigen­ 
functions for atoms A and B and antisymmetrising 
the product: 

(I) 

where A' is a partial antisymmetriser and anti­ 
symmetrises the product with respect to the inter­ 
change of electrons originally assigned to different 
atoms. These antisymmetrised products of atomic 
eigenfunctions were first introduced by Moffitt [I) 
and are called composite functions (CF's). They are 
not, in general, eigenfunctions of the total spin 
angular momentum (S2) for the molecule, but it is 
simple to form linear combinations of them which 
are. The molecular wavefunction ('I';) is expanded 
in terms of the CF's (or linear combinations of them): 

(2) 

Use of the variational theorem to find the Cia's 
leads to a set of secular equations 

<P;(r) 

(3) 

which may be solved in the standard manner. 

A composite function may be expressed as a linear 
combination of Slater determinants built up from 
nonorthogonal orbitals 

(4) 

where 

and '1->a1 (fi) etc. are atomic orbitals. The main 
difficulty which has been encountered in the past 
in performing ab initio valence-bond calculations 
has been the nonorthogonality problem. Several 
methods of handling this problem have been pro­ 
posed. We use a method which was introduced 
by Hurley (2,3) and is outlined below: 

(a) The nonorthogonal orbitals (<P;(r)) are first trans­ 
formed to a set of orthogonal orbitals ( ,J, i( r )). 

(6) 

(b) The Slater determinants over the nonorthogonal 
orbitals, <l>A of equation (5), are expanded in 
terms of Slater determinants over orthogonal 
orbitals. 

(7) 

(N!)-'1' detl,J,k
1 
(f1) ,J,k, (t 2) .... ,J,ki;N)I 
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The relationship between the two sets of Slater 
determinants is given by: 

<l>A : :E TAK 'VK K 

where 

TAK : I 'Yk1 a1 'Ykt a2 

'Yk2a, 'Yk2a2 

'YkNat 

(8) 

(9) 

The number of orthogonal Slater determinants 
appearing in the sum over K can be minimised by 
using the Schmidt orthogonalisation technique 
and a judicious ordering of the nonorthogonal 
orbitals. 

(c) The Hamiltonian matrix between the orthogonal 
Slater determinants is calculated 

(10) 

(d) The Hamiltonian matrix is transformed into 
the CF basis using equations ( 4) and (8). 

The equations for the overlap matrix are con­ 
siderably simpler than those for the Hamiltonian 
matrix: 

Potential Energy Curve for Ground State of HF 

The atomic orbitals were represented as linear 
combinations of Gaussian type orbitals (GTO's). 
For fluorine the ls, 2s and 2p orbitals were taken 
from Ditchfield, Hehre and Pople [ 4] and were each 
made up from five GTO's. These orbitals gave an 
energy for the ground state of fluorine which was 
just a little worse than the double zeta SCF energy. 
A more diffuse 2s and a set of 2p orbitals were added 
to provide an adequate description of the F- ion. 
For hydrogen the ls orbital was a linear combination 
of five GTO's (as given by Huzinaga) [ 5) , a more 
diffuse s orbital was added to provide a better 

description of It(' S) and a more contracted one to 
allow for distortion in the molecule. A set of p 
orbitals was also added to allow for polarisation. 
Finally a ls orbital, which was an uncontracted GTO, 
was placed in the centre of the bond to provide 
extra flexibility for the molecular wavefunction. 

Table 18 

Number of Functions of 
Atomic Correct Symmetry used Calculated 
State to represent Atomic or Energy 

Ionic State 

Experirnental'' 
Energy 

F(2Po) 2 
F(2 S) 2 
F-(1S) 3 

F\3P) 
F+(t D) 

F'(1S) 
F•<3 p") 
F+(I Po) I 

H(2S) 3 
H-(1S) 3 
Li(2S) 
Lic2P0) 
li+(t S) I 

Ln1s> 2 

-99.3698 -99.8060 
-98.4845 -99.0386 
-99.4738 -99.9333c 
-98.6891 -99.1654 
-98.5976 -99.071 l 
-98.6433 -98.9615 
-97.8855 -98.4146 
-97.5264 -98.0744 
- 0.4998 - 0.50 
- 0.5226d - 0.5278e 
- 7.4248 - 7.4779 
- 7.3560 - 7.4100 
- 7.2306 - 7.2798 
- 7.4168 - 7.4999f 

(a) All energies are in atomic units: I au = 4.359828 x 1018 

Joules 
(b) Experimental energies are from MOORE, C. (1949), Natl. 

Bur. Standards, Circular No. 467 
(c) See [61 
(d) This was the calculated energy of H- using p orbital 

exponents optimised for this ion. If the exponents which 
were found to be optimal for describing HF and LiH are 
used, then the calculated energy is -.52175 and -.52221 
respectively. 

(e) STEWART, A.L. and TEMKIN, A. (1966),Bu//. Am. Phys. 
Soc., 11,722 

(f) WEISS, A.W. (l 968), Phys. se«. 166(1), 70 

These atomic orbitals were used to construct 
approximate atomic eigenfunctions for the atoms and 
ions involved in the calculation. In many cases several 
functions of the same symmetry were constructed. 
These were then subjected to an atomic configuration 
interaction calculation and the lowest and excited 
approximate atomic eigenfunctions which resulted 
were then used as building blocks in the construction 
of the CF basis set. In table 1 the calculated and 
experimental energies of the atomic and ionic states 
which were used to construct the CF's are listed. 
Only the lowest state of a given symmetry is listed. 
Several states of It and Li", which lie above the 
energy of the neutral atom plus an electron and 
which were used to construct CF's are not included 
in the table (i.e. 1t(3P), Jr(3P0), Jr(3S), H-(1P0), 
Jr(1D), u-(3P0), L1(1P0), L;-(1 D) and L1(3P) ). 
Of special interest is the calculated electron affinity 
of F which is 0.1040 au as compared with an 
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experimental value of 0.1273 au (6). This is 
much better than the Hartree-Fock estimate of this 
quantity which is (7) 0.05 au. 

For HF 113 CF's were constructed from the 
approximate atomic eigenfunctions and these com­ 
posite functions were combined into 57 functions of 
11:' symmetry. Calculations were then performed 
at the experimental equilibrium separation of HF (8) 
(R. = 1.7328 au) and the exponents of the central 
s orbital and then of the p type orbitals on the 
hydrogen atom were scaled in order to approximately 
minimise the calculated energy. These scaled ex­ 
ponents were then used in the calculations at other 
internuclear separations. 

0,0 

:,-·oe 
0 

~ 
~ ! -·12 
"' .J :r 
!; 
! •i6 

··20 

2 3 
INTERNUCLEAR DISTANCE 0 u 

Figure I: Calculated potential energy curve for HF(VB). 
Aho shown are the SCF curve of Cade and Huo [9] and the 
experimental curve [ I OJ • The zero of energy is taken to be 
the calculated or experimental energy of F(2r') + H(2S) u 
appropriate. The VB curve is drawn 011 the basis of cal­ 
culations at 16 different internuclear sepantions. 

•• 

The calculated potential energy curve is shown in 
figure I. Also shown are the best SCF calculations 
for HF (9) and the experimental curve [ I OJ. The 
calculated dissociation energy is 90% of the experi­ 
mental value (i.e. 0.2021 au calculated as compared 
to 0.2249 au experimental). The calculated equi­ 
librium distance of 1.74 au is also very close to the 

experimental one of I. 7 3J au. This is. however. al 
least partly due to the way in which the exponents 
were optimised. The present results are of comparable 
accuracy to those of Bender and Davidson [ 11] 
whose calculated potential energy curves were the 
best previously available. The results they give do 
not permit the estimation of a dissociation energy, 
so we cannot unfortunately make a numerical com­ 
parison on that basis. On the basis of total energies 
our calculated total energy at the lowest point on 
the potential energy curve is -I 00.0718 au (as 
compared with their value of -I 00.0438 au. It 
should also be noted that the present calculations 
use only s and p type orbitals while Bender and 
Davidson's basis set included d orbitals. In order to 
check that the calculated potential energy curve 
dissociates smoothly to the calculated atomic energies, 
a calculation was performed at 20 au. The calculated 
energy at this separation agreed to within one digit 
in the sixth decimal place with the sum of the 
calculated energies of F(2P0) + H(2S). 

Table 2: Effect of Omitting One Type of Orbital at a Time 
on the Calculated Energy of HF at R = 1.6 au 

Orbital(s) Omitted Amount by which Molecular 
Energy was Raised (au) 

Contracted s orbital on hydrogen 
Diffuse s orbital on hydrogen 
p orbitals on hydrogen 
Diffuse 2s orbital on fluorine 
Diffuse 2p orbitals on fluorine 
s orbital in centre of bond 

0.0333 
0.0004 
0.0325 
0.0019 
0.0041 
0.0165 

A preliminary analysis of the wavefunction has 
been carried out by performing a number of cal­ 
culations in which certain of the orbitals were 
completely omitted from the basis set. The effect 
on the calculated molecular energy at R = 1.6 au 
of omitting one orbital at a time is shown in Table 2. 
It is clear from the table that omitting either t!,e 
diffuses orbital on the hydrogen (chosen to describe 
Jr('S)) or the additional diffuse 2s orbital on F 
(chosen to improve the description of F) has little 
effect on the calculated energy. Omitting either the 
s orbital in the centre of the bond or the p orbitals 
on hydrogen, both of whose exponents were scaled 
to minimise the molecular energy has a much larger 
effect. Omitting the contracted s orbital on hydrogen 
also has a large effect. 

The Low Lying 1
~· States of LiH 

The orbital basis set for lithium consisted of a ls, 
2s and a set of 2p orbitals. The ls orbital was a 
linear combination of five GTO's and was taken from 
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an exponent optimised SCF calculation on u• per­ 
formed by Whitman, Leyshon and Hornback [ 12]. 
The 2s orbital was a linear combination of four GTO's 
and was taken from a similar calculation for Li(2S) 
and was then scaled so as to give the best possible 
energy for Li(2S) when combined with the ls orbital 
just described. The 2p orbital was made up of two 
GTO's and chosen to give as good an energy as possible 
for Li(2P0). The hydrogen orbitals were the same 
as those described in the previous section. As with 
HF a ls type GTO was placed in the centre of the 
bond. Its exponent and those of the p orbitals on 
the hydrogen were scaled to give the lowest possible 
energy for the ground state of Lill at the experimental 
equilibrium separation. 

These atomic orbitals were used to construct 
approximate atomic eigenfunctions for Li, u: LC 
H and Jr. The calculated and experimental energies 
corresponding to most of these atomic states are 
given in table 1. The more highly excited states of 
LC and ft are not included in the table (see above). 
The approximate atomic eigenfunctions were then 
used to construct the CF basis set for the molecular 
calculation. This basis set consisted of 37 CF's which 
were combined to give 21 functions of I r• symmetry. 

-20~---------------------, 

The lowest three calculated UH potential energy 
curves of •r• symmetry are shown in figure 2. For 
the ground state the calculated dissociation energy 
and equilibrium distance are D, = 0.0822 au. R, = 
3.116 au as compared with the experimental [U] 
values of D, = 0.0924 au and Re = J.015 au. For 
the first excited 1r• state the calculated and experi­ 
mental dissociation energies and equilibrium 
separations are; Calculated [14]: De ,., 0.03698 au, 
Re ,., 5.095 au; Experimental: De = 0.03956 au, 
Re = 4.906 au. 

--04 

--OS 

·-06 
:, 
0 

·15 

:, ·10 
D 

~-os 

-·10 '-------'-----'-----~-----:;! 
2 4 • • 

INTERNUCLEAR DISTANCE Ou 

Figure 2: Lowest three 1~ curves for liH •• calculated by 
valence-bond method. The zero of energy is taken to be the 
calculated energy of Li(2S) + H<2Sl. The curves ue drawn 
on the basis of calculations at 30 different internuclear 
sepuations. 

10 

--09 

2 3 4 
INTlflllN\.ICl.ENII DIITN«:E au 

5 

Figure 3: Potential energy curves for liH 1
~ ground state. 

The VB curve is shown together with the MC-SCF curve of 
Docken and Hinze [IS] and the experimental curve [16]. 
The zero of energy is taken to be the calculated or experi­ 
mental energy of lic2S) + Hc2Sl as appropriate. 

The present calculations for Lill yield 89% of the 
experimental dissociation energy for the ground state. 
This is not as good as the best available calculated 
potential energy curve which was calculated by 
Docken and Hinze [15] using the MC-SCF method. 
Their calculation gave 96% of the experimental ground 
state dissociation energy. To achieve this result they 
used a much larger basis set and performed a more 
extensive exponent optimisation at the experimental 
equilibrium separation. Their results for the ground 
state potential energy curve are compared with the 
present VB calculations and with the experimental 
[ I 6] curve in figure 3. 
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Discussion 

The valence-bond calculations presented here have 
been performed using relatively small orbital basis sets. 
Despite this limitation the calculations have yielded 
potential energy curves of comparable accuracy to the 
best ones calculated by other methods. It should be 
possible to extend the valence-bond method to treat 
small triatomic systems with wavefunctions of similar 
accuracy to those used in the present calculations. 

[ 16} This was taken to be a Morse curve wrrh r:·,e 
parameters R, = 3.01-17 au. D, = ll.ll'l2-lc, au. 
w, = .006-IOh au. See j 1.1 I and 
WHARTON, L.. GOLi). L.P. and KLF.MPERER, W, 
(1962). J. ae« Phys., 37, 2149. 
BENDER. C.F. and DAVIOSON, E.R. (I 968). 
Ibid., 49, 4222. 
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Studies of Correlation Effects on Hydrogen 
Bonding and Ion Hydration 
G.H.F.Diercksen, W.P.Kraemer* and 8.0.Roost 

Introduction 

MO-SCF-CI calculations have been performed for 
the systems: H20, H'(H201 Li.(H20), r(H20) and 
(H 2 Oh. The main purpose of the work has been to 
investigate the effect of electron correlation in hydro­ 
gen bonded systems and hydrated ions. It is generally 
believed that the Hartree-Fock approximation gives an 
adequate description of this type of interaction and 
that electron correlation is only of minor importance. 
This has, however, not yet been tested by actual 
Cl-calculations on hydrogen bonded systems. 

The calculations have been performed using the 
MUNICH program systems for the SCF part and for 
the transformation of the two-electron integrals to a 
molecular orbital basis [I). The MOLECULE-Cl 
program, developed in Stockholm, was used for the 
actual Cl-calculations [2). 

The molecular orbitals are expanded in a set of 
contracted Gaussian atomic orbitals. The basis set 
consists of (11, 7, I) contracted to [5, 4, I) for 
oxygen and fluorine, (II, 2) contracted to [5, 2) for 
lithium and (6, I) contracted to (3, I) for hydrogen. 

The Cl expansion of the wavefunction includes 
all singly and doubly excited configurations with 
respect to a closed shell HF reference state, with the 

Table 1: Number of orbitals and configurations for the 
Cl-calculations 

H20 4 29 1917 
H+(H20) 4 35 10010 
Li'(H20) 5 39 10101 
P-(H20) 8 46 36204 
(H20)2 8 58 56000 

(a) Number of non-frozen occupied orbitals 
(b) Number of virtual orbitals 
(c) Number of spin- and space-symmetrized configurations 

exception of excitations out of the Is orbitals for 
oxygen and fluorine. For the larger systems this gives 
rise to a large number of spin-symmetrised con­ 
figurations - 56000 for the water dimer. The special 
technique employed in the MOLECULE program 
makes it, however, possible to solve the corresponding 
secular equation with a reasonable use of computer 
time also for such large matrices ( one full Cl cal­ 
culation on the water dimer takes around three hours 
CPU time on an IBM 360/91 computer). The number 
of molecular orbitals and configurations for the 
different systems are listed in table I. 

Results and Discussions 

A number of calculations were first performed on 
the water molecule in order to test the reliability 
of data computed with the present method, and also 
to have theoretical data available for comparison with 
the results for the ion hydrates and the water dimer. 
Calculations were made for a number of different OH 
distances and HOH angles, keeping the C2v symmetry. 
The results are presented in table 2. Calculated values 
for the bond distance, the bond angle and the 
symmetric force constants are all in good agreement 

Table 2: Predicted geometries and force constants for H20. 
The parameters have been obtained with the expansion: 

V = Ve + f,(flr)2 + (2/re) frrr(flr)3 + ½fa r; f.a2 

SCF Cl Experiment 
I 3 I 

Bond distance (A) 0.944 0.960 0.957 
Bond angle, a (degrees) 105~3 103~8 104~5 
Stretching force constant, 

9.50 8.44 8.35 /,(md/A) 
Anharrnonicity, 

-10.00 -9.84 -9.55 f,,,(md/A) 
Bending force constant, 

0.816 0.152 0.76 fa(md/A) 

* Max-Planck-Institut fur Physik und Astrophysik, Fahringer Ring 6, 8 Miinchen 40, West Germany 
t Institute of Theoretical Physics, University of Stockholm, Vanadisviigen 9, S-113 46 Stockholm, Sweden 
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with experiment. The potential surface around the 
equilibrium geometry therefore seems to be well 
described with the present Cl-scheme and basis set. 

The calculations on H3O+ were restricted to 
geometries having C3v symmetry. The HOH angle 
and the OH distance were varied independently. 
The minimum energy was found for a pyramidal 
structure with d(OH) = 0.979 (0.963) A and J\(HOH) 
= 111~6 (113~5). Values within parentheses were 
obtained at the SCF-level. The inversion barrier was 
calculated to be 2.1 (1 .3) kcal/mole. Thus correlation 
favours the pyramidal structure and increases the 
inversion barrier by 0.8 kcal/mole. The correlation 
energy is smaller in magnitude for H3O+ than for 
H2 0 (cf. table 3). The difference is 1.5 kcal/mole 
at the equilibrium geometries. The calculated total 
energy difference was 172.8 (I 74.3) kcal/mole. The 
zero-point energy difference should be added to this 
value in order to estimate the proton affinity of water. 
The computed energy surface at the Cl-level for H3O+ 
was used in a variational calculation of the vibrational 
energy corresponding to the symmetrical stretching 
and bending modes. The contribution to the zero­ 
point energy from 'the two degenerate modes were 
obtained using the valence force method [4]. For 
water this method gave a zero-point energy in com­ 
plete agreement with the experimental values. The 
contribution to the binding energy from the variational 
energy obtained in this way was -5.3 kcal/mole. 
This gives a proton affinity of 167 .5 kcal/mole in 
excellent agreement with recent experimental values 
[5]. 

Table 3: SCF, correlation and Cl energies for the systems 
X(H20) (in atomic units)" 

X EscF Fi:orrelation Ec1 

b -76.051998 -0.214473 -76.266471 
n+ -76.329776 -0.212027 - 76.541803 
u• -83.345706 -0.240108 -83.585814 
F - -175.541213 -0.414810 -l 7S.9S6023 
H20 -152.112148 -0.409S3S -1S2.S21683 

(a) At the calculated equilibrium geometry 
(b)The isolated water molecule 
(c) Valence electron correlation energies 

The monohydrate of the lithium positive ion was 
studied both in a planar geometry with Li+ on the 
symmetry axis of the water molecule and in some 
non-planar geometries keeping one plane of symmetry. 
The lowest energy was obtained for a planar complex 
with an LiO distance of 1.842 (1.831) A. The 
calculated binding energy at the SCF-level was 36.1 
kcal/mole in good agreement with other recent HF 
studies [ 6, 7] , which also report the same equilibrium 
geometries. At the Cl-level we find a binding energy 

of 34.1 kcal/mole in excellent agreement with the 
experimental value [8]. The calculated binding energy 
includes a vibrational contribution of -2.0 kcal/mole. 
The zero-point energy was estimated by using the 
valence force approximation. The force constant for 
the stretching of the OH bonds and the variation of 
the HOH angle were taken from the Cl calculations 
on the free water molecule. The force constants 
for the LiO stretching and the out of plane motion 
of the lithium ion has been deduced from the 
present Cl calculations. The same procedure has 
been used to estimate the vibrational corrections 
to the binding energy for the systems r(H20) and 
(H20)2 (cf. table 4). 

Qualitatively the effect of correlation is the same 
in u•(H20) and F(H20). Delocalisation of electronic 
charge onto the positive ion diminishes the effective 
nuclear charge seen by the electrons. This leads to 
a decrease in the magnitude of the correlation energy. 
The situation is similar to what has been observed 
for the isoelectronic series of first row hydrides 
(CH4 .... HF), where the correlation energy increases 
in magnitude along the series. 

The situation is different for the complexes F(H20) 
and (H202). The two interacting systems have in 
this case a filled shell structure with no empty valence 
orbitals. The intermolecular correlation energy is 
therefore mainly describing a Van der Waals type 
interaction. 

The calculations on F(H20) assumed a planar 
structure with an almost linear fluorine-oxygen hyd­ 
rogen bond. The FO distance and the FHO angle 
were varied. The most stable structure was found 
to have an FO distance of 2.471 (2,509) A and an 
FHO angle of 176".4 (17~7). The SCF values are close 
to the geometry reported in a recent HF calculation 
with a larger basis set [9]. A binding energy of 
24.2 kcal/mole was obtained at the SCF-level. 
Correlation increases the binding energy by almost 
2 kcal/mole and also decreases the FO equilibrium 
bond distance by 0.04 A. 

Calculations on the water dimer were made only 
for the most stable linear hydrogen bond: 

Figure I: Most stable geometry for the water dimer 

The 00 distance and the angle 0 were varied. 
The calculated values for these parameters were 
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found to be 2.92 (3.00) A and 42~4 (41~5). Thus 
the effect of correlation on the bond distance is 
comparatively large in this weakly bonded system. 
Actually correlation energy was found to account for 
almost 20% of the binding energy, or 1.0 kcal/mole 
(cf. table 4). The final calculated binding energy, 
including an estimate of the vibrational correction 
of 0.2 kcal/mole, was 5.9 kcal/mole. This is very 
close to the energy per H-bond found in ice (5.7 
kcal/mole) but somewhat larger than the gas phase 
value of 5.0 kcal/mole reported by Rowlinson in 
1949 [ I OJ. 

Table 4: Binding energies for some ion hydrates and the 
water dimer (kcal/mole) 

Ar Ar (Ar Ar ) A r8 b Exper­ '-U:SCF =c1 =c1-=scF =zp B.E. iment 

H+(H20) 174.3 172.8 -1.5 5.3 167.5 166±2c 
u•<H20> 36.1 34.9 -1.2 2.0 32.9 34.0d 
F-(H20l 24.2 26.2 1.9 3.2 23.0 23.3° 
(H20)z 5.1 6.1 1.0 'vl.0 5.1 5.0f 

(a) Estirna ted increase in zero-point energy for the complex 
(b) Binding energy (E(X) + E(H20) - E(X · H20) calculated 

at the Cl level and including the zero-point energy 
(c) COTTER, R.J. and KOSKI, W.S. (1973), J. Chem. Phys., 

59, 784 
(d) DZIDIC, I. and KE BAR LE, P. (1970), J. Phys. Chem .. 

74, 1466 
(e) ARSHADI, M., YAMADAGNI, R. and KEBARLE, P. 

(1971), J. Phys. Chem., 74, 3308 
(f) ROWLINSON, J.S. (1949), Trans. Faraday Soc .. 45, 974: 

the H-bond energy in ice is 5. 7 kcal/mole 

Dispersion effects have thus been found to account 
for 1.9 and 1.0 kcal/mole of the binding energy for 
the two systems r(H20) and (H20)2, respectively. 
These effects have a considerable influence on the 
geometry of the systems, especially the bond distance 
which is shortened by as much as 0.08 A in the 
water dimer. It is interesting to notice that if the 
London formula 

1:,.£ = -K/R6 

is used, a dispersion energy of I .I kcal/mole is 
obtained for R = 2.92 A [II, 12]. A somewhat 
smaller value was obtained by Hankins et al. using 
the same formula but estimating K from the experi­ 
mental value for the neon dispersion attraction, 
corrected for the water-neon polarizability ratio, 
(0.9 kcal/mole at R = 2.76 A) [I 3). 

The present calculations account for approximately 
70% of the valence electron correlation energy. For 
the water molecule this means that the error is around 
0.1 au ( 60 kcal/mole). The HF error is around 0.015 
au (-10 kcal/mole). Errors in relative quantities 
(binding energies, bond distances, etc.) should be 

some orders of magnitude smaller. This is also found 
to be the case when experimental data is available 
for comparison. We therefore believe that the binding 
energies reported in the present paper have an accuracy 
of around ± I kcal/mole and that calculated bond 
distances are less than ±0.01 A in error. 

A more detailed account of the work presented 
here is under preparation and will be published in 
the near future. This will also include a discussion 
of two possible sources of error in the present work. 
One is the so called superposition error. This is due 
to the fact that with an incomplete basis set the 
monomer energies themselves might be affected when 
they approach each other. This will occur both at 
the SCF- and the Cl-level if a too small basis set is 
used, and lead to errors in the binding energy. An 
investigation of the size of the superposition error in 
the present calculations is under way and will be 
discussed in the forthcoming publication. 

Table 5: Bond distances X-0 for the systems X(H20) (A) 

X SCF Cl difference 

F 0.963 0.979 0.016 
u• 1.831 1.842 0.011 
r 2.509 2.471 -0.038 
H20 3.003 2.919 -0.084 
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Cusped-Gaussian Molecular W avefunctions 

E.Steiner and B.C.Walsh* 

A cusped-Gaussian basis is made up of the conventional Gaussian functions supplemented by a small 
number of cusp functions of the form 

if r «:o 

if r> p 

which are included to improve the quality of the Gaussian basis at and near a nucleus. In this paper 
we present the results of some simple molecular SCF calculations, and a brief description of the 
molecular integrals and of the general technique used for their evaluation. 

Introduction The Cusped-Gaussian Basis 

The calculation of molecular wavefunctions in 
terms of a basis of Gaussian functions has in recent 
years become a very well established technique, 
particularly for polyatomic molecules. The main 
advantage of Gaussians over the more traditional 
Slater functions is the ease of computation of the 
multicentre integrals in a molecular calculation. The 
main disadvantage is that Gaussians are not suitable 
functions for an accurate description' of a wavefunction 
near a nucleus. A Slater function like exp(-tr) has 
a non-zero derivative at r = 0, and this 'cusp' is a 
characteristic property of a molecular wavefunction 
at a nucleus. The corresponding Gaussian exp(-rr2) 
has zero derivative at r = 0, and this behaviour can be 
corrected only by a substantial increase in the number 
of functions included in the basis. The problem of 
evaluating a relatively small number of difficult 
integrals over Slater functions is therefore replaced 
by that of evaluating a much larger number of simple 
integrals over Gaussian functions, and by the con­ 
sequent computational problems of storing and 
manipulating this large number of integrals. 

In this paper, we present some results of ~n 
investigation into the possibility of finding an alter­ 
native set of simple functions for the construction of 
molecular wavefunctions which is to satisfy two 
requirements: 
(a) that the number of basis functions required to 

produce a given accuracy be comparable to the 
number of Slater functions required to give the 
same accuracy; 

(b) that the molecular integrals be considerably 
easier to evaluate than those over Slater 
functions. 

It is proposed that a basis of Gaussian functions 

(I) 

supplemented by a small number of cusp functions 

ifr<p 

r >» (2) 

Table I 

Atom N p/B E/H 

H 2 5.56 -0.499801 
3 4.84 -0.4999984 
4 4.78 -0.4999997 

Exact -0.5 

He 3 2.33 -2.861421 
4 2.12 -2.861674 
5 2.09 -2.861679 
Slater double-zeta -2.86167 
Hartree-Fock -2.86168 

Be 4 1.39 -14.56348 
5 I.IS -14.57264 
6 1.14 -14.57286 
Slater double-zeta -14.57237 
10-Gaussian -14.57258 
Hartree-Fock -14.57302 

• Department of Chemistry, University of Exeter, Stocker Road, Exeter, EX4 4QD 
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where p and t are parameters, may go some way 
towards satisfying tile requirements of accuracy and 
relative simplicity of tile integrals. The cusp functions, 
particularly for s-orbitals, are designed to improve 
tile quality of a Gaussian basis in the region near a 
nucleus. Integrals involving Gaussians are simple to 
evaluate only if the number n in equation (I) is an 
even integer or zero. In the same way, molecular 
integrals involving at least two cusp functions centred 
on different nuclei are tractable only if the cusp 
functions on different nuclei do not overlap. For 
most systems, this implies cusp sizes p of the order 
I B or less t. Some results for tile ground states of 
the atoms H, He and Be are shown in table 1. 
These nave been obtained with a normalised basis of 
(N - I) Is Gaussians supplemented by a single Is 
cusp function with value of the parameter t = 6 [I]. 
The energies demonstrate that the addition of the 
cusp function leads to a considerable enhancement of 
the quality of a Gaussian basis, at least for s-orbitals. 
For example, the 5-function cusped-Gaussian basis 
for He gives. an SCF energy which is almost identical 
to that obtained from four or five Slater functions. 
Of greatest significance are the results for Be. A basis 

_ of four Gaussians plus the cusp function gives better 
than double-zeta (two Slater functions per atomic 
orbital) accuracy, and at the same time satisfies the 
condition p "" I B. Similar results are obtained for 
the s-orbitals of the atoms beyond Be [2] . At least 
double-zeta accuracy is obtained with a basis no larger 
than two ls Gaussians per s-orbital plus the Is cusp 
function, with optimum cusp size p "" I B when 
t "" Z + 1, where Z is tile atomic number. The 
accuracy requirement is therefore satisfied for the 
s-orbitals of atoms other than H (and possibly Li). 
The ls orbital of H has its maximum radial density 
at 1 B so that the cusp function cannot make a 
significant contribution to this orbital if p is res­ 
tricted to a small value. This is typical of valence 
orbitals with no corresponding inner shells. Thus, 
a 2p cusp function does not make a significant 
contribution to the 2p orbitals of the atoms B to Mg. 
For subsequent atoms, double-zeta accuracy is ob­ 
tained with a basis no larger than three 2p Gaussians 
per p-orbital plus the 2p cusp function. 

The Molecular Integrals 

We consider a basis of ls Gaussians and cusp 
functions, with not more than one cusp function 
centred on any one nucleus in a molecule. Such a 
basis is suitable for the construction of molecular 
wavefunctions if: 
(a) the molecular orbitals are expressed in terms 

of 'nuclear-centred' functions, but the p, d, 
... Gaussians are represented by suitable 

combinations of Is Gaussians (Gaussian lobe 
functions [3] ); or 

(b) the molecular orbitals are constructed by the 
floating spherical Gaussian orbital method 
( FSGO) introduced by Frost [ 4] and modified 
by Christoffersen (for example [ 5 ]), with the 
addition of a cusp function on each atom other 
than hydrogen. 

A full discussion of the evaluation of the molecular 
integrals will be published elsewhere. We restrict 
ourselves here to a presentation of the formulae for 
just a few of the integrals containing both cusp and 
Gaussian functions, and to a brief discussion of the 
general methods proposed for their evaluation and 
use. These integrals involve the modified spherical 
Bessel function of the first kind 

which satisfy the recurrence relation 

_ (22+1) i2(?c) 
- X 

with 

Except for some special simpler cases, all the integrals 
can be expressed in one of the forms 

It is proposed that such integrals are most con­ 
veniently evaluated numerically using the Gauss-Jacobi 
quadrature formula [6] 

N 
i: Ai f(x;) 
i=I 

(5) 

The overlap integral: Let CA be a normalised Is cusp 
function centred on A, with cusp size p = I B for 
simplicity, and let G8 be a normalised ls Gaussian 
on centre B: 

t Distances and energies are expressed in terms of the 'atomic units' B and H respectively, where B = e0h2/rrme2 is the 
Bohr radius and H = me4/4h2e02 is the Hartree energy. 
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= 0 

if TA< I ( 

if TA> I~ 

Ge= 

where 

NA= ((2t+l)(t+l)(2t+3)J½ 

are normalisation factors. Then 

(6) 

This integral can be evaluated using the Gauss­ 
Jacobi formula (5) with m = t and n = 2. The number 
of integration points N required for a given accuracy 
is strongly dependent on the values of the parameters 
t, b, and RAe, and on the required accuracy. In 
figure I are shown the number of points required for 
an accuracy to at least 12 decimal places for t = I 0 
and t = 30 and a range of values of b and RAB· 
Integrals whose values are less than 10-•2 have been 
set equal to zero (/II= 0). 

" 
b 

Figure I 

...~-~~--------, 

(b) Inner-shell functions, for which b a: l. Such a 
function is centred on a nucleus ( or very close 
to a nucleus in the case of a lobe function). 
and the distance RAe between cusp and Gaussian 
is therefore either zero or equal to an inter­ 
nuclear separation {a: 2 B). Only for the 
one-centre integrals does the number of points 
become large. 

These observations are generally valid for all the 
integrals which involve both cusp and Gaussian 
functions. In particular, and in direct contrast to 
the Slater-function case, the atomic integrals may 
often be considerably more difficult to evaluate 
(difficulty being measured by the amount of com­ 
putational labour) than the molecular integrals. This 
need not however be a serious obstacle to the use of 
the cusped-Gaussian basis. In the first place, the 
number of difficult atomic integrals is expected to be 
relatively small. In the second place, their evaluation 
in a molecular calculation may be avoided altogether 
if, as is the most widely-used approach, fixed basis 
sets of atomic orbitals are used to construct molecular 
orbitals. The corresponding atomic integrals need be 
evaluated only one for each atom, and stored for 
future use. 

The most difficult integrals for a Slater-function 
basis are the two-electron integrals 

" 
b 

9 

Two types of Gaussian functions may be distinguished: 

(a) Valence-shell (and bond) functions, for which 
b :51. The corresponding overlap integrals very 
seldom require more than six integration points. 
The computational labour per point is approxi­ 
mately the same as that for two (double­ 
precision) exponentials. 

when the atomic orbitals are centred on three or 'four 
non-colinear nuclei: All but two of the various 
different types of two-electron integrals for the 
cusped-Gaussian basis can be reduced to the simple 
form (3). 

We have 

where Go is a normalised ls Gaussian with exponent 
d= (b +c)/2 and positionR0 = (bR8 +cRc)/(b +c), and 

X (l-r)lt+l T dr (8) 
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where 

erf'(x) = (4/rr/' s: e-12 dt (I 0) 

and 

The integral can be evaluated using the Gauss­ 
Jacobi formula (5) with m = 2t + 2 and n = I. 
Of significance here is that the factor <G81Gc> in 
(7) means that a given accuracy of the three-centre 
integral can often be obtained with a lower accuracy 
of the corresponding two-centre integral (8). Jn 
figure 2 are shown the number of points, for _t = I 0 
and a range of va:Jues of d and RAD, required for 
accuracies to 12 and 8 decimal places of the two­ 
centre integral (8). It is seen that the computational 
Jabour is significantly reduced on going from double­ 
to single-precision accuracy. The molecular integrals 
seldom require more than four integration points 
for single-precision accuracy. 

]~11\ I 
~ 

(a) 
19 

" 
d V I I I d 

•f 
9 I l 0 I .r. I I 0 

(b) 

0 R,.., R..,0 

Figure 2: (a) error Hf12 (b) error 10-s 

The three- and four-centre integrals <cAII/rslGc>. 
(CAGclCeCs), (CAGclCsGo): The three-centre nuclear 
attraction integral is: 

where Ii =@, and RAB is greater than the cusp size. 
This may be evaluated in the same way as (and 
simultaneously with) the overlap integral <CA1Gc>­ 
When RAc = 0, <CAIJ/r81Gc> = <CAIGc>IRAB· 
For RA8~2 or c::51, the maximum value of Q required 
for an accuracy to twelve decimal places is seldom 
greater than I 0, and the sum creates no difficulties. 

The integrals (CAGclCeCs) and (CAGclCsGo) 
are the only non-zero integrals which involve cusp 
functions on different nuclei. We have 

where, in terms of the angles shown in figure 3, 

and, for example 

,. 
Figure 3 

The quantities if can be obtained as a by-product 
in the evaluation of the nuclear attraction integral (9): 

If RAc = 0, 

The four-centre integral (CAG81GoGE): This is one of the 
two types (the other is(CAG81CAGc))which may 
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require a double numerical integration. We have 

where c = (d + e)/:.. Re = (d RD + e RE )/(d + e), and 

where 

R = [b2 RAi + 4c2 x• RAt + 4bcx2 RAB. RAcl 1/, 

When RAC= 0, 

{

l 2 -br I 

x 
O 
e io(2bRA8r)erf((2c)½r){l-r)trdr (15) 

The form (I 3) is appropriate when cRAE is small, 
the form (14) when cRAE is large (and RAc greater 
than the cusp size). 

First Row Atom Hydrides 

A model, which may be called the cusped-FSGO 
model, has been used for a molecular-orbital des­ 
cription of the ground states of the first row atom 
hydrides Lill, BeH2, BH3, CH4, NH3, H2O and HF. 
The model is identical to the FSGO model proposed 
by Frost [4,7] being made up of Is Gaussians whose 
centres are determined variationally, plus a Is cusp 
function on the heavy atom. The simplest description 
of Lill then consists of the cusp function on Li and 
a Gaussian centred on the bond axis. The simplest 
description of CH4 consists of the cusp function on 
C and four equivalent Gaussians on the bond axes. 
Additional Gaussians are added to improve the 
description. 

The variation of the total energy of Lill with 
increasing number of basis functions is compared in 

-1-1 

-7-f 

0 a., G.,._..., 
4 •. , ,1 ••• , t•t>cl'-> 

0 C11,,,, Go11HI• 

6 I tO 12 14 16 II 10 

Figure 4 

figure 4 with an (s,p) basis of Gaussians [8] and an 
(s,p) basis of Slater functions] 9,10]. The basis sets 
of two to nine functions, and the corresponding 
energies, internuclear distances, and values of the 
cusp parameter I are shown in table 2. The basis 
sets are made up of 

(a) the minimal basis of the cusp function on Li 
(cusp size fixed at I B) and a Gaussian which is 
allowed to O oat on the bond axis; 

(b) additional Gaussians fixed on Li and H; and 

(c) for the bases of seven and nine functions, a 
'polarisation' Gaussian on Li which is allowed 
to float off the nucleus. 

Table 2: C denotes the cusp function, G a nuclear-centred 
Gaussian, G' a floating Gaussian 

Number of Li I Bond I H E/H R/8 Functions I 
I I 

2 I G' I 
C -5.2577 2.952 2 

3 I G' I 
C+G -7.8016 3.162 3 

4 I G' IG C+G -7.8932 3.172 3 
5 I G' 12G C+G -7.9011 3.160 4 
5 I G' IG C+2G -7.9528 3.152 4 
6 I G' 12G C+2G -7.9690 3.164 4 
7 I G' 12G C+2G+G' - 7 .9742 3.095 5 
9 I G' 1

3G C+3G+G'
1 

-7,9830 3.024 5 
I 

Hartree-Fock [ 11] - 7 .9873 3.034 

It is clear from figure 4 that the cusped-Gaussian 
basis quickly becomes almost as efficient as the Slater­ 
function basis. The Li inner-shell is accurately 
described by the cusp and two Gaussians of the 
6-function basis, the error being due wholly to the 
very poor description of the bonding orbital. The 
9-function basis is very much more accurate, and the 
addition of up to three more Gaussians is expected 
to give results close to the Cade and Huo [ 11] values. 
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Timing: The time (on the ICL 4-50 at Exeter) 
required to evaluate the integrals for the cusped­ 
Gaussian basis is compared in figure 5 with that 
required to give the same energy ..yith an all-Gaussian 
basis. The all-Gaussian curve has been estimated 

Thu (1" MCCIMt OIi ICL 4-50) 

t 
I 

200~ 
I 

'" 

160 

120 

10 

40 

(6) STROUD. A.H. and SECREST, D. (1966). Gauss­ 
ian Quadrature Formulas, Eaglewood Cliffs, 
New Jersey: Prentice-Hall. 

[7) FROST. A.A. (1967). J. Otem. Phys., 47, 3707. 
(8) CSIZMADIA, LG. (1966). J. Chern. Phys., 44, 

1849. 
(9) KAH.HAS. S.L. and NESBET. R.K. ( 1963). 

J. 01e111. Phys., 39, 529. 
(10) RANSIL. B.J. (1960). Revs. Modem Phys., 32, 

250. 
[11) CADE. P.E. and Huo. W.M. (1967). J. Chern. 

Phys., 47, 614. 
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Figure S 

from the average time per two-electron integral (0.018 
seconds on the ICL4-50), with each integral evaluated 
separately as in the cusped-Gaussian case. Figure 5 
suggests that the cusped-Gaussian basis may be 
superior to the all-Gaussian basis with respect not 
only to the size of basis required to produce a given 
accuracy of the energy and wavefunction of a molecu­ 
lar system, but also to the computational time required. 

For the series of hydrides Lill to HF, the simplest 
basis, made up of the cusp function plus one Gaussian 
for each pair of electrons in the valence shell, gives 
energies which vary from 66% of the Hartree-Fock 
value for Lill to 98% for HF, with a more or less 
constant error of about 2.2 H (except for Lill). 
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The Simulated Ab Initio Molecular Orbital 
(SAMO) Method 

BJ.Duke* and B.O'Learyt 

The simulated ab initio molecular orbital (SAMO) method will be reviewed and recent developments 
reported. This method relies on the transferability of matrix elements over the Fock operator from 
ab initio calculations on small molecules to the matrix for a larger molecule. 
Particular attention will be given to the use of different basis sets and the application to organic 
molecules containing OH, NH2 and CHO groups. The relationship with other approaches will be 
briefly mentioned. 

Introduction 

The molecular orbital method, with its use of 
delocalised orbitals, loses the chemists intuitive insight 
that organic molecules in particular are, to a first 
approximation, the sum of their constituent functional 
groups. This insight must be hidden within the 
molecular orbital approach. It can be uncovered by 
a transformation to localised orbitals which describe 
the various bonds, lone pairs and core orbitals. Many 
workers [1-7) have suggested or shown that such 
localised orbitals are approximately transferable be­ 
tween molecules. It should however be possible to 
use the chemists insight to approximate molecular 
wavefunctions for large molecules by utilising infor­ 
mation from more accurate calculations on smaller 
molecules. Von Niessen [8) with the 'molecules in 
molecules' method has developed one such approach, 
localised orbitals are transferred from smaller molecules 
and only a few orbitals are recalculated. By the use of 
some approximations his wavefunction can be partially 
optimised and the total electronic energy evaluated 
without the need to evaluate all the electron repulsion 
integrals over the basis set. The resulting saving in 
effort, although significant, is not as substantial as 
one would hope. 

Other workers have concentrated on transferring 
features of small molecule wavefunctions other than 
localised orbitals. Particular attention has been given 
to the matrix elements over the Fock operator. 
Fitts and Orloff [9) used transferability of matrix 
elements in n electron theory, an approach that was 
extended to all valence calculations by Lipscomb and 
coworkers [JO] in the non-empirical molecular orbital 
(NEMO) scheme. In the NEMO method diagonal 
Fock matrix elements are transferred from ab initio 

calculations on small molecules and off-diagonal 
elements are obtained partially by a semi-empirical 
scheme. In a combined approach Dugand, Leroy 
and Peeters [7) utilise transferability of both localised 
orbitals and Fock matrix elements. They expand 
their molecular orbitals as a linear combination of 
localised orbitals and then transfer both diagonal and 
off diagonal Fock matrix elements over the localised 
orbital basis. 

The simulated ab initio molecular orbital (SAMO) 
technique, which was originated by Eilers and Whitman 
[ 11) and extended in collaboration with the present 
authors, is similar in that it utilises transferability of 
both diagonal and off-diagonal Fock matrix elements. 
The basis set employed is one of hybrid orbitals plus 
ls orbitals on hydrogen and first row atoms. The 
method has been successfully applied to chain hydro­ 
carbons (11), aromatic rings [12), simple polymers 
[ I 3) , certain organic radicals using a spin unrestricted 
open shell formalism [ I 4] , cyclohexane [ I 5) , one 
large system of biological interest [ 16) and molecules 
containing a polar functional group [ 17). A suite 
of four computer programs for closed shell calculations, 
open shell calculations, polymer calculations and the 
automatic transfer of matrix elements from libraries 
of ab initio results will shortly be available from the 
Quantum Chemistry Program Exchange [I 8). The 
SAMO method has a wider applicability than the 
work of Dugand, Leroy and Peeters (7) since it can 
be used in cases such as benzene where it would not 
be possible to transfer localised orbitals from smaller 
molecules. 

* Department of Oiemistry, University of Lancaster, Bailrigg, Lancaster, LAI 4YA 
t Theoretical Oiemistry Department, University of Oxford, 1 South Parks Road, Oxford, OXJ 3TG 
(present address) Department of Chemistry, University of Alabama in Birmingham, Alabama 35294, USA 
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The SAMO Method 

As an example of the SAMO method we briefly 
discuss the as yet unpublished results for molecules 
containing a polar group [ 17). This example is of 
particular importance since, as previous work has been 
restricted to hydrocarbon molecules, the method has 
been open to the criticism that it would be inapplicable 
to polar molecules. We shall conclude by discussing 
some unpublished work dealing with variation of the 
basis set. We first summarise the method for closed 
shell molecules. 

The SAMO method for closed-shell molecules 
generates the molecular orbitals and orbital energies 
for large molecules by a single solution of the 
eigenvalue problem 

FC = SCl 

where S is the matrix of overlap integrals (all of 
which are evaluated explicitly), '). is the diagonal 
matrix of eigenvalues or orbital energies, C is the 
matrix whose columns are the eigenvectors (LCAO 
expansion coefficients) and F is the matrix over the 
Hartree-Fock operator. The SAMO method obtains 
the elements of F by transferring values, truncated 
to four decimal places, from ab initio calculations on 
similar small molecules known as 'pattern' molecules. 
In those cases where interactions between distant 
orbitals are unavailable from the 'pattern' molecules, 
the Fack matrix elements are usually small and can 
consequently be set to zero when constructing the 
Fock matrix for the large molecules. The total 
energy is given by 

where the &?> are the expectation values of the 
one-electron operator, the Ai are the eigenvalues of 
the Hartree-Fock operator, VNN is the nuclear re­ 
pulsion energy and the summation is over occupied 
molecular orbitals. 

Polar Molecules 

In order to test the applicability of the SAMO 
technique to polar molecules a detailed study of 
molecules of type R-X has been carried out. We 
report here results obtained in the simplest SAMO 
approach where X = OH, NH2 and CHO and R is the 
butyl hydrocarbon group. Our ultimate aim is to 
produce wavefunctions of near ab initio accuracy for 
molecules where the group R is very large and 
consequently an ab initio calculation on R-X would 
be prohibitively expensive. We expect 

(a) to be able to use 'pattern' molecules of the 
form s'.x', where although R' is small it is 

nevertheless large enough to include all relevant 
Fack matrix elements involving orbitals on or 
close to the functional group; 

(b) to obtain other Fack matrix elements involving 
orbitals located on the hydrocarbon chain from 
a pattern molecule R": (Again, although R" is 
much smaller than R, it is chosen to be of 
sufficient size to include all relevant Fack 
matrix elements involving orbitals on that part 
of the hydrocarbon chain.) 

(c) to be able to neglect Fack matrix elements 
involving orbitals on a functional group and 
orbitals further out along the chain and thus 
not included in R '-X. 

Our selection of molecules for this test was 
motivated by the following: 
(a) all molecules studied should be of such size as 

to lend themselves to economical ab initio 
calculations; 

(b) all pattern molecules chosen should be of 
optimum size for simulation, i.e. they should 
contain all those Fack matrix elements necessary 
to the adequate simulation of the target molecule 
(molecule of interest - R-X). 

Requirements (a) and (b) result in the target and 
pattern molecules used in this study being of com­ 
parable size. In no way does this limit our investigation; 
there are matrix elements present in the target 
molecule, and absent in the pattern molecules, which 
can be neglected. Increasing the size of the target 
molecule would simply add an increased number of 
even smaller Fack elements, whose magnitude is 
smaller than those neglected in this study. 

As in previous work the geometries are idealised 
and all ab initio calculations are performed using the 
ATMOL2 system [19) and a 5s3p Whitman-Hornback 
basis set [20). This basis is, prior to the SCF stage, 
transformed to a basis of ls,sp2 and sp3 hybrids on 
carbon, oxygen and nitrogen. 

B D I '\. I '\. 
A. C X 

;f \ 
e· o· I "\ I 

,.,. c· 

R-X 

~ ~ 

'\./'\. 
c· i 

R'-X 

Figure I: A, B, C, D and X represent the set of basis orbitals 
centred on CH3, CH2 and the appropriate functional group 
centre respectively 
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In figure I we illustrate the simulation of the 
target molecule R-X from the pattern molecules 
R'-X and R". 

In the present study transferability has been 
investigated as follows: 

(a) The Fock matrix elements over the following 
centres of the target molecule - 

XX, XD, XC, XB, DD, DC, DB, CC, CB 

are obtained from 

x'X: xo; x'c'. x's, D'D'. D'C'. D'B', c'c'. c's' 
respectively, in R'-X. The nomenclature AB 
implies set IFii : iEA, jEBI where A and B 
are the sets of orbitals on groups A and B 
respectively (figure I) 

(b) The Fock matrix elements over the centres 

AA, AB, AC, AD, BB 

are obtained from 

A"A", A"B", A"c'', A"D", B"B" 

respectively, in R" 
(c) Fock matrix elements over the terminal centres 

AX are, set to zero. The one exception to this 
occurs . for elements involving the functional 
group and the sp3 hybrid orbital situated on 
the terminal methyl group A and directed 
towards the methylene group B. These Fock 
matrix elements are set equal to those arising 
for elements over the terminal X group and the 
hydrogen orbital lying in the plane of R'-X 
and attached to the terminal B' group. This 
approach has been successfully employed in 
other work (14]. 

Table I 

AO Basis OAO Basis 

Butanol 0.0011 0.0014 
Butyl amine 0.0010 0.0013 
Pentanol 0.0010 0.0013 

In the first column of table I, we present the 
results of our transferability study by giving the root 
mean square of the errors in the simulated Fock 
matrix elements when compared with the corres­ 
ponding elements obtained from ab initio calculations. 
In the second column of table 2, we give, in addition 
to total energies and dipole moments, the errors for 
occupied orbital energies and gross orbital populations 
for butenol, butyl amine and pentanal. From the 
results presented in table 2, one can conclude that 
total energies, orbital energies and orbital populations 
are reproduced by the SAMO method in as satisfactory 

Table 2: Summary of results for polar molecules 

Ab Initio SAMO-AO SAMO-OAO 

Butanol E -231-107 -231.117 -231.113 
µ 1.726 1.773 1.798 

root mean square error - 0.0016 0.0021 occupied orbital energies 

root mean square error - - 0.0032 0.0025 orbital populations 

Butyl amine E -211.336 -211.351 -211.348 
µ 1.555 1.599 1.515 

root mean square error - 
0.0017 0.0022 occupied orbital energies 

root mean square error - 
0.0026 0.0021 orbital populations 

Pentanol E -268.799 -268.805 -268.800 
µ 2.225 2.287 2.293 

root mean square error - 
0.0018 0.0024 occupied orbital energies 

root mean square error - 
0.0035 0.0025 orbital populations 

and accurate a manner as those obtained for the 
previously studied hydrocarbons. Dipole moment 
results using the SAMO technique are presented here 
for the first time. The simulated results are in 
satisfactory agreement with the ab initio results. 

A slight improvement in the results can be obtained 
if some of the elements in the set CB are transferred 
from butane rather than the pattern molecule R'-X. 
Full details of this method (which we designate 
SAMO(J3) ), along with 

(a) results for butanoic acid 

(b} results where X in R-X is an ionic group 

will be reported elsewhere [l 7]. For (b} the simple 
SAMO technique is inapplicable and a new, slightly 
less accurate, extension of the method has been 
developed. For comparison we present in table 3 
a summary in the total energy and the occupied 
orbital energies for the best SAMO result for all 
molecules where ab initio results, using the same basis 
set, are available. Not only do these figures demon­ 
strate that SAMO calculations on molecules containing 
polar functional groups are at least as accurate as 
the calculations reported in our previous studies, they 
clearly show that, with respect to orbital energies, 
the present work is significantly better. These results 
allow us to confidently predict that, provided suitable 
pattern molecules are chosen, the SAMO technique 
can successfully be applied to other molecules of 
general form R-X. 

The perhaps surprising conclusion is that the 
SAMO method has a wider applicability than could 
have been predicted. The SAMO technique has many 
applications for organic molecules giving results close 
to ab initio accuracy at considerably less cost. 
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Table 3: Comparison of errors in total energy and orbital 
energies 

Total Energy 
itl.£/£1x 104 

Occupied Orbital 
Energy 

root mean square 
X 103 

Butane [III 0.80 3.1 
Benzene8 8.20 16.8 
Cyclohexane [IS] 

- chair - method Ill (PA)b 0.91 3.4 
- boat - 1.29 3.7 

Butyl radical [14] - method (ii) 0.45 2. 7(">..°) 2.8(X; 
Pentyl radical - method a(i) 0.67 5.4(X°) 5.7(">..; 
Butanol - method (/J) 0.26 1.6 
Butyl amine - method (/J) 0.55 1.6 
Pentanal - method (/J) 0.03 1.8 
Bu tanoic acid • method (/J) 1.78 4.5 
Butyl cation - method (/J) 2.64 5.8 
Hu tyl anion - method (/J) 4.45 12.8 

(a) Benzene comparison is with unpublished ab initio result 
using the same basis set as the SAMO results [ 12 ]. 

(b) Method labels are as in original references. 

Variation of the Basis Set 

All the SAMO calculations reported so far use the 
same Whitman-Hornback (20] basis set of contracted 
Gaussian-type orbitals. This raises the question 
whether Fock matrix elements are transferable be­ 
tween two calculations is different basis sets are used. 
This has been tested using calculations on butane 
and propane with a Slater-type orbital (STO) basis. 
The following or~ital exponents were used: 

Cls 5.6727 C2s 1.6083 C2p 1.5679 His 1.2 

These STO's were, firstly, transformed into an ortho­ 
gonal basis on each atom by Schmidt orthogonalising 
the C2s orbital to the Cls orbital, and, secondly, 
transformed into a basis of Cls, Csp3 hybrids and 
His orbitals. The errors in simulating the Fock 
matrix elements for butane using propane as pattern 
molecule are shown in table 4. 

Table 4: Transferability root mean square errors for Fock 
matrix elements 

Butane • Whitman-Hornback GTO basis 
Butane - STO basis 

0.0010 
0.0012 

The slightly higher value for the root mean square 
error using the STO basis is due to the fact that the 
STOs used are more diffuse than the Whitman­ 
Hornback contracted GTOs. The terminal CH3 to 
terminal CH3 matrix elements in butane, which can 
not be obtained from propane, are accordingly larger. 
The matrix elements in the STO basis are, however, 

quite different from the equivalent elements in the 
GTO basis. Different basis sets have different overlap 
matrices and hence different Fock matrices. We must 
therefore conclude that the same basis set must be 
used both for all pattern molecules and for the final 
SAMO calculation. Earlier Eilers (21] had suggested 
that this conclusion might not be necessary. 

With this point in mind and with the need to find 
a basis set where long range Fock matrix elements 
are small, we have commenced a study of Lowdin (22] 
symmetric orthogonalised orbitals (23]. The Fock 
matrix in such a basis might be expected to have 
smaller off-diagonal matrix elements than the similar 
matrix in the non-orthogonalised basis. The Li:iwdin 
orthogonalised orbitals X' (OAO basis) are formed 
from the non-orthogonalised orbitals X (AO basis) by 

X' = XT 

where 

T = s:» 

and S is the overlap matrix 

The Fock matrix F' in the new basis is related to the 
one in the old basis F by 

F' = rt FT 
Using the same atomic basis as was used for the 
polar molecules discussed above, we have studied the 
transferability of elements of F' for these molecules. 
The errors of transferability have already been shown 
in table I, compared with those using the AO basis. 
Transferability of the elements of F' has been in­ 
dependently observed by Leroy and co-workers (24 ]. 

The OAO basis is slightly less transferable than 
the AO basis. The reason is that although many 
off-diagonal elements are smaller in the OAO basis 
than in the AO basis, the long range elements which 
have no counterpart in the pattern molecules are 
surprisingly larger. This appears to be due to the 
fact that the terms in F';;, for these orbitals, arising 
from the negative outer part of the OAOs (and hence 
incorporating terms Fpq where Xp and Xq are AOs 
between AOs X; and X;) are more important than 
the long-range terms Fii in F'ii even though X; and 
X; are the dominant terms in the expansions of X; 
and X; respectively. We have thus to neglect terms 
which are larger in the OAO basis than in the AO basis. 

A SAMO technique in the OAO basis can be 
developed as follows - 

(a) Transfer elements of F' for the target molecule 
from elements of F' for the pattern molecules 
in a manner exactly analogous to the SAMO 
method in the AO basis. 
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(b) Solve 

F' C' =-C'l. 

to give orbital energies and eigenvectors in the 
OAO basis. 

(c) For convenience transform the eigenvectors to 
the AO basis by 

C = TC' 

(d) Use C to give population density terms, dipole 
moments and energies as in the SAMO technique 
using AOs. 

Such calculations have been carried out for butanol, 
butyl amine and pentanal. Results are summarised 
earlier in table 2, along with the results obtained by 
using the AO basis directly. 

Although the increase in the error of transferability 
leads to an increase in the error in the occupied 
orbital energies, the OAO basis set gives a better 
density matrix. This results in a better total energy 
and better orbital populations. The errors in the 
orbital populations using the OAO basis set are more 
evenly spread than those arising from the use of an 
AO basis. In an AO basis there are particularly large 
errors in the orbitals corresponding to the terminal 
C-C bond in the pattern molecule R'-X and very small 
errors elsewhere. In general, however, the use of the 
OAO basis set is disappointing. We are currently 
investigating whether the elements of F' are less 
sensitive to the original choice of AO basis (e.g. STO's 
or contracted GTO's) than elements of F. 

We acknowledge the collaboration with J. E. Eilers 
and M. Pickering on the polar molecules work, and 
the Science Research Council for the provision of 
computer time at the Atlas Computer Laboratory 
and a Fellowship.to one of us (B.O'L.). The assistance 
of the staff of the Atlas Computer Laboratory and 
the Lancaster and Oxford University Computing 
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Approximate Ah /nitio Calculations and the 
Method of Molecular Fragments 
o:·F.Brailsford* 

A two stage approach to performing ab initio calculations on medium and large sized molecules is 
described. The first step is to perform SCF calculations on small molecules or molecular fragments 
using the OPIT program. This employs a small basis set of spherical and p-type Gaussian functions. 
The Gaussian functions can be identified very closely with atomic cores, bond pairs, lone pairs, etc. 
The position and exponent of any of the Gaussian functions can be varied by OPIT to produce a 
small but fully optimised basis set. 

The second stage is the molecular fragments method. As an example of this, Gaussian exponents 
.and distances are taken from an OPIT calculation on ethylene and used unchanged in a single SCF 
calculation on benzene. Approximate ab initio calculations of this type give much useful information 
and are often preferable to semi-empirical approaches, since the nature of the approximations involved 
is much better defined. 

Introduction 

All-electron atomic and molecular ab initio cal­ 
culations have been possible for about fifteen years 
now, and have underlined the importance of electronic 
computers in sustaining the momentum of quantum 
chemistry research. Such calculations offer a way of 
avoiding the many uncertainties and pitfalls that 
bedevil semi-empirical calculations, For this reason 
most ab initio calculations have tried to obtain high 
accuracy for molecular energies and properties by 
solving the SCF equations using a large basis set of 
suitably chosen functions. Little effort is usually 
expended in optimising such non-linear parameters as 
basis function exponents, because the basis is usually 
so large that energies better than 99% of the SCF 
limit can be obtained simply from the automatic 
determina lion of linear parameters (molecular orbital 
coefficients) that takes place in the SCF procedure. 
Calculations of this sort can be further refined by 
configuration interaction methods if required. 

However, we now have a situation where there is 
a great difference between the accuracy and reliability 
of semi-empirical calculations and accurate ab initio 
work. In an attempt to bridge this gap I should like 
to review the work that we have been doing at 
Nottingham over the past five years in what might 
be called approximate ab initio calculations. By 
'approximate', in this context, I mean that we are 

· satisfied with energies that are about 95% of the SCF 
limit. The reason for this approach can best be 
summed up in a remark once made by the late 
Professor Coulson. He said that he was often asked 
by chemists to give them a clear description of 

familiar chemical concepts such as lone pairs and 
bond pairs. in the language of modern quantum 
mechanics. His reply was always to the effect that a 
90% correct description is very easy to give in this 
way, but that describing the extra l 0% is much more 
difficult to do and the wavefunction tends to become 
almost unrecognisable in chemical terms. For this 
reason we at Nottingham have long been interested 
in seeing whether a viable model for closed shell 
atoms and molecules can be set up using a small basis 
set of very simple functions. 

The Frost Model 

This consists of modelling a closed shell molecule 
using a single floating spherical gaussian function for 
each pair of electrons in a molecule. Thus for a 2n 
electron system there are n spherical gaussians of 
the form:- 

where 

N; is the normalisation factor 
a; is the exponent (size factor) of the gaussian 
R; is the position of the centroid of the i1h gaussian 

relative to some centre of co-ordinates. 

It is usual in the Frost [ 1,2) method to optimise 
the exponents a; and positions R; of all the gaussian 
functions involved. In most cases one of the gaussians 
will come to rest on each heavy nucleus in the mole­ 
cule and can be kept fixed there. Figure I shows 

* Department of Mathematics, University of Nottingham, University Park, Nottingham, NG7 2RD 
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Frost model basis sets for methane and ethylene. 
In the case of methane the CH bond functions are 
equivalent by symmetry and so the number of 
independent non-linear parameters is only three i.e. the 
core and bond gaussian exponents, and the distance 
of the bond gaussian along the CH bond ( denoted ac, 
Octt and dcH respectively). In ethylene we have five 
independent parameters, ac, acH, den. a,., and d,,,,. 
The last two parameters denote the exponents, and 
distance from the internuclear axis, of the two 
spherical gaussian functions that model the 11' electron 
system. 

H 

H 

(a) 

to 
(b) 

Figure 1: Frost models (or (a) methane and (b) ethylene: 
arrows show the direction of movement or the ftoating 
gausaians 

For each setting of the non-linear parameters 
indicated by the optimisation routine an energy is 
calculated. This is extremely easy in the Frost model, 
for the number of basis functions is equal to the 
number of electron pairs, and there is no need for an 
iterative scheme to find the energy. In fact, the 
density matrix in the Frost model turns out to be 
just the inverse of the overlap matrix [I]. Also, the 
choice of spherical gaussians makes all integrals easy 
to evaluate (3). When non-linear parameters are 
optimised the Frost model gives, typically, 85% of 
the SCF energy limit. This low accuracy, however, 
is not so much of a drawback as the inherent instability 
of the model under certain circumstances. The main 
contribution to the molecular energy arises from the 
'heavy' carbon atoms in the molecule. It follows, 

therefore, that it the optimisation routine can improve 
the description of the heavy atoms then a lower energy 
will probably be obtained. This is achieved by 
moving the bond pairs in methane (say) closer in to 
the carbon nucleus. If they coalesce, with equal 
exponents, then the overlap matrix becomes singular 
with off-diagonal elements of unity. This extreme 
form of behaviour does not usually occur in saturated 
systems, but is almost certain to occur in unsaturated 
molecules. For example, the gaussian functions 
simulating the 11' orbital system in ethylene will 
coalesce if their positions are allowed to optimise fully. 

OPIT 

The first version of this program was written in 
1969 for a KDF9 computer. As its name implies it 
is both optimising and iterative. It has recently been 
completely rewritten and implemented on ICL I 900 
series computers and the CDC 7600 machine [4,5). 
The program is a general SCF-MO floating gaussian 
program capable of giving single determinant closed 
shell wa vefunctions to any required degree of accuracy 
provided a large enough basis set is specified. However, 
its main use so far has been to extend the scope of 
the Frost model by using two independently optimised 
spherical gaussians at each 'heavy' nucleus. Under 
these conditions the cusp condition at the nucleus 
is much better approximated, and the energy obtained 
is now 95% of the SCF limit. The extra core gaussian 
greatly reduces the tendency of lone pair or bond 
pair gaussians to coalesce on the nucleus during the 

H 

H 

(a) 

to 

ot JO H 

(b) 

Figure 2: OPIT models for (a) methane and (b) ethylene 
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optimisation. But, since the basis set is now larger 
than the Frost minimal set, a SCF calculation is needed 
to calculate the energy for every setting of the non­ 
linear parameters. Possible OPIT models for methane 
and ethylene are shown in figure 2 and calculations 
of this type are reported in the paper by Ford, Hall 
and Packer [6). A coherent description of saturated 
organic molecules can be obtained from models of 
this sort. Bond lengths and molecular angles are 
predicted semi-quantitatively. The energy ordering of 
conformers e.g. the staggered and eclipsed forms of 
ethane, is given correctly but the predicted barrier 
heights are rather high. However, when one studies 
OPIT values for barrier heights, geometrical features 
and other first order properties [7) a pleasing pattern 
emerges that the predicted values are a constant 
fraction of the true values. 

Despite the many advantages of OPIT over a simple 
Frost treatment, the problem of modelling ff electron 
systems still remains. For, even with an extra core 
gaussian, any attempt to model a molecule such as 
ethylene, in the manner depicted in figure 2b, would 
still fail due to the tendency of the spherical gaussians 
representing the ff system to coalesce, with identical 
exponents, on to the carbon nuclei. In fact, figure 3 
shows the effect of fixing all ethylene parameters at 
the values shown, except for the distance, d, of the 
'ff' spherical gaussians from the carbon atoms. This 
distance is then allowed to optimise and the best 
result is clearly obtained as d + O! Study of the 
molecular orbital eigenfunctions and the behaviour 
of the overlap matrix for small d [8), shows a clear 
tendency for the two pairs of gaussians to combine 
antisymmetrically to give functions of p type symmetry. 

Figure 3: Plot of eftelJY venu, diltance (d) of Che 'rr' 
apherlcal puan from Che C atom, In Che OPIT ethylene 
model. The remllnlna puameter valuea •e fixed at: 
<re (Inner) = 40.0, <re (outer) = 10.0. OcH = 0.45, 
0cc = O.S, a,., = 1.0, dcH = 1.336 

The symmetric combination of the functions, however. 
also contributes more strongly to the a system around 
the C-C bond, as d becomes small. This helps to lower 
the total energy of the system and, thus, configurations 
with small d values are favoured by the optimisation 
routine. 

For this reason an attempt was made to add into 
the Fock matrix only the antisymmetric contributions 
from these functions. This, unfortunately, only had 
the effect of slowing down the coalescence of the 
functions, and gives a worse energy for the system 
because of the extra constraint. Now it has always 
been part of the OPIT philosophy that there should 
be no constraint in optimising any non-linear para­ 
meter, if it is desired to do so. Faced with this 
situation we had to capitulate and include 'genuine' 
p-type gaussians as defined by Boys (9) into the 
program. The integrals over these functions were 
performed using the relationships given by Huzinaga 
et al. [JO) but in the form of the specific formulae 
given by Clementi and Davis [ 11]. Note that, in 
the interests of keeping the basis set small, we include 
only those Pz type orbitals that are essential for 
describing the ff orbital system. 

G ,ej, 
H 

Figure 4: OPIT model for ethylene using p-type puaians 

Table I: Ethylene molecular orbital energies." 

Species OPIT Moskowitz et al. [ I 2 I 

••• -11.064 -11.240 
lb1u -11.052 -11.238 
2a1 -1.019 -1.040 
2b1u -0.759 -0.780 
lb2u -0.495 -0.655 
3a1 -0.405 -0.581 
lb3g -0.392 -0.514 
lb3u (.) -0.207 -0.374 
lb21 (.) +0.354 

Total Energy -74.6083 -78.0062 

• All energies in hartree 
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The model for our ethylene calculation is now 
shown in figure 4. In accordance with the philosophy 
of full optimisation, the p functions were even left 
free to drift off the carbon nuclei. However, the 
amount of drift was found to be negligible, and so 
in this, and all subsequent calculations using p func­ 
tions, they are anchored to the heavy nuclei. The 
results for this ethylene calculation are shown in 
table I, the ordering of the orbital energies agrees 
with that obtained in a much more accurate calculation 
performed by Moskowitz et al. (I 2] . 

Similar calculations, with full optimisation, were 
performed on cis and trans butadiene with basis sets 

Table 2: Total energies" for cis and trans butadiene 

OPIT Buenker and Whitten [ 131 

cis -148.2463 -154.7023 
trans -148.2609 -154.7103 

A.E 0.0146 0.0080 
(9.1 kcal mole-•) (5 kcal mole-1) 

• Energies are in hartree except where stated. Geometry 
is as described in [ 13 I 

Table 3: Total energies for benzene 

OPIT Buenker et al. [ 14) 

-221.027 hartree -230.375 hartree 

0) 

Figure 5: OPIT models for (a) tram and (b) ds butadiene 

as shown in figure 5, and also for benzene. The 
energies obtained are shown in tables 2 and 3. Note 
how the energies obtained are about 95% of those 
obtained in the accurate ab initio calculations that 
are included for comparison. In agreement with our 
general experience of OPIT, we predict the energy 
difference between the cis and trans conformers of 
bu tadiene to be too high by a factor of two. 

The most interesting aspect of these calculations 
on simple rr orbital systems, lies in the values of the 
optimised non-linear parameters. These results are 
collected in table 4. To a good approximation the 
core and bond exponents do not vary from molecule 
to molecule, with the exception of the p orbital 
exponents. We see a clear effect, for the p functions, 
in the case of butadiene, to become less diffuse on 
the central carbon atoms than they would have been 
in ethylene, while those on the terminal carbon atoms 
become more diffuse. The difference between the 
central atom and terminal atom p orbital exponents 
is greater in trans than in cis butadiene reflecting, 
perhaps, the different steric factors in the two mole­ 
cules. As might be expected, the greater delocalisation 
of the rr electron system in benzene leads to the p 
orbital being rather more diffuse than in ethylene 
and its exponent value differs from ethylene by 10%. 

Table 4: OPIT optimal parameter values for ethylene, 
butadiene and benzene 

Ethylene Butadiene Benzene 

cis trans 

°'(: (inner) 45.90 45.945 45.958 45.93 
45.915 45.918 

°'(: (outer) 6.63 6.639 6.642 6.64 6.635 6.635 

a. 0.33 0.333 0.290 0.36 0.458 0.493 

0.40 0.433 0.436 0.41 °'C:e 0.386 0.386 
0.377 0.378 

°'C:H 0.377 0.379 0.378 0.377 
0.378 0.377 

1.254 1.239 
dett 1.255 1.255 1.244 1.276 

1.279 1.280 

dee 1.251 1.249 

Q Values are optimal gaussian exponents 
d Values are optimal distances (in bohrs) measured from 

the heavy atom along the bond direction 
The multiple parameter values for butadiene reflect the 
number of symmetrically distinct parameters of each type in 
the molecule; parameters for the terminal atoms and bonds 
are given first in each set followed by the values for central 
atoms or bonds 
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These calculations confirm my earlier remark that 
95% accurate calculations can fit in with chemical 
notions in a very simple and straightforward way. 
Table 4 shows us the importance of rr orbitals, the 
amount of their delocalisa lion and lends weight to 
the hypothesis of o-t: separability, since the a systems 
remain essentially constant while the rr systems alter 
appreciably. It is particularly pleasing that these 
results arise from an all electron ab initio calculation. 

The high degree of parameter transferability that 
is evident so far, prompts the use of OPIT as a tool 
for optimising non-linear parameters in small mole­ 
cules, with a view to their later use in the method 
of molecular fragments described by Christoffersen 
et al. [ 15,16). The idea here is that, as molecules 
become bigger, it is neither necessary nor desirable 
to optimise fully all the non-linear parameters. Instead, 
one fixes the parameters at values obtained from 
smaller species and then a 'one-off SCF calculation 
is performed without any attempt at reoptimising 
the non-linear parameters. As the larger molecules 
have little or no symmetry, a special program (SCOFF - 
Self Consistent Calculation Using Optimised Fixed 
Fragments) has been developed. In essence it re­ 
sembles the very first function evaluation of OPIT 
but with special techniques to cope with low symmetry, 
and the large number of near-zero integral values that 
occur simply because of large inter-atomic distances. 
The essential features of OPIT modelling (i.e. single 
spherical gaussians for lone pairs and bond pairs; two 
spherical gaussians on each heavy nucleus with p type 
gaussians for tt systems) are retained in SCOFF. 

Work Performed with SCOFF 

As a check on the viability of the SCOFF method 
we have recalculated many systems that had previously 
been done. with OPIT. As an example of this, table 5 
shows the results of recalculating cis and trans buta­ 
diene and benzene using ethylene paramaters and 

Table 5: Comparison of energies" for butadiene and benzene 
obtained from a full parameter optimisation (OPIT) and a 
molecular fragments approach using ethylene parameters 
(SCOFF) 

OPIT SCOFF 

butadiene 
E cis -148.2463 -148.2317 

J:: trans -148.2609 -148.2440 

ill" 0.0146 0.0123 
(9 .1 kcal mole- 1 ) (7 .7 kcal mole-•) 

benzene 
I: -221.0268 -221 .0145 

• Energies are in hartree except where stated. Effects due 
to bond length differences between butadiene, benzene 
and the ethylene fragment have been ignored 

ignoring the effects such as differing C-C bond lengths 
in the species involved. We see that the energies 
obtained by the two methods are in remarkably good 
agreement although, of course, the better values are 
given by OPIT. The stabilities of the butadiene 
conformers are still predicted in the correct order 
and the energy difference is close to that obtained 
by OPIT. 

-~ /~ ... 
______ •et11cn• rtn1 
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Figure 6: Energies for two toluene conformers obtained 
from SCOFF 

Finally, as examples of the possibilities opened up 
by a molecular fragments program like SCOFF, I shall 
quote two recently obtained results. The first is 
summarised in figure 6 and shows the energies of two 
toluene conformers. The form in which the CH3 

group is fully staggered with respect to the benzene 
ring is predicted to be fractionally more stable than 
the one in which a hydrogen atom is eclipsed. 
Secondly, we have looked at the drug amphetamine 
in its protonated form. The important torsional 
angles r1 r2 and r3 are shown in figure 7. We have 
calculated energies for this molecule for T 1 = 90° 
and various r2. The relative stabilities of the various 
rotated forms are shown in figure 8 together with 
interpolated results for the same species calculated 
by Pullman et al. [ 17) using semi-empirical methods. 
The overall shape of the plot is the same, but SCOFF 
appears to differentiate between the three equivalent 
minima predicted by the PCILO method and indicates 
that the rotamer with the NH / group folded back 
over the benzene ring, but the CH3 group extended 
away from the ring, will be fractionally more stable. 

Figure 7: The amphetamine ion 
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the PCILO calculation is reported In [ 17] 

Conclusions 

Although we have used· OPIT in many contexts 
to obtain a simple and readily understandable wave­ 
function, the emphasis in this paper has been on its 
use for obtaining molecular fragment parameters for 
later use in the SCOFF program. Approximate ab 
initio calculations of this type give about 95% of the 
Hartree-Fock SCF limiting energy. Most of the 
remaining energy deficit can be ascribed to the poor 
description of atomic nuclei in this model. In general, 
valence electron and bond properties are well pre­ 
dicted, but even when such properties are given 
incorrectly, the results obtained are usually a constant 
fraction of the true values. The wavefunction obtained, 
being of ab initio type is much more amenable to 
error analysis than semi-empirical results. 

The place of semi-empirical and accurate ab initio 
calculations is already well established in quantum 
chemistry. We believe that approximate ab initio 
molecular fragment techniques are well suited to 
bridge the gap between these extreme approaches in 
areas such as the study of medium sized molecules 
of biological interest. 
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The Electronic Structure of Cadmium 
Dichloride by the Multiple Scattering Xa 
Method 
N.V.Richardson, A.F.Orchard* and M.A.Whiteheadt 

The results of an MS-Xa treatment of CdC12 are presented and the ionisation potentials calculated 
using Slater's transition state concept are compared with the available experimental data. 

Introduction 

Cadmium dichloride has been studied as a member 
of the group IIB dihalides, which form a relatively 
simple but chemically interesting series of compounds 
because of the interplay between spin orbit coupling 
effects and other bonding effects. A current point 
of interest here for the inorganic chemist is the 
degree of involvement in bonding of the 'inner' d 
electrons. Experimental photo-ionisation data on 
these compounds has only recently become available 
(1,2) with the development of high temperature 
photoelectron spectroscopy. 

The multiple scattering {MS) Xa model has been 
invoked for the calculation of molecular ionisation 
energies because of the ease with which molecules 
containing heavy atoms can be investigated, for a 
relatively small expenditure of computer time. 

Details of the Calculation 

All the calculations detailed here were performed 
on the University computer, an !CL 1906A, using 
the basic MS-Xa programme of Johnson and Slater (3). 

Calculations were carried out on cadmium chloride 
at the experimental geometry (4), with the atomic 
sphere radii chosen as covalent radii suitable scaled 
such that the cadmium and chlorine spheres were 
touching. An outer sphere enclosing the entire 
molecule was also incorporated, as shown in figure I. 
Table l shows these radii and the values of the 
exchange parameter a (5-7) within the various regions 
of the molecule. Inside the cadmium and chlorine 
spheres, a was given the values tabulated by Schwarz 
(8), for the outer sphere region the a value for 
chlorine was used and in the intersphere region an 

arithmetic mean of a cadmium and two chlorine 
a values was used. 

Figure I: Diagrammatic representation of the CdC/2 molecule 

Table I: Bond length, sphere radii and exchange parameters 
for the MS-Xa calculation on CdCl 2 

Bond length 

ea-a au 4.23 am a 0.72277 
Sphere radius 
Cd au 2.54 °<:d 0.70084 
Sphere radius 
Cl au 1.69 Oct 0.72277 
Outer sphere 
radius au 5.92 °'II b 0.71546 

(a) am denotes the exchange parameter in the outer-sphere 
region 

(b)au denotes the exchange parameter in the inter-sphere 
region 

* Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OXJ ]QR 
t Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, Oxford, OXJ 3TG 

169 



The MS-Xa method consists of superposing atomic 
charge densities using the chosen geometry and hence 
deriving a molecular potential field. A secular deter­ 
minant is then constructed within the 'muffin tin' 
and exchange approximations. The symmetry of the 
molecule can be exploited to factorise this determinant, 
which is subjected to an energy search in the valence 
region, in order to find the molecular energy levels. 
In utilising the symmetry (Doo11) of the cadmium 
dichloride system, spherical harmonics of L = 0, I, 2 
and 3 for cadmium and L = 0, I and 2 for chlorine 
were used. Using these non-SCF eigenvalues in the 
valence region and the atomic eigenvalues in the core 
region as starting energies, an SCF calculation was 
then performed. Fifteen iterations, each taking about 
three minutes, were needed to produce a degree of 
self-consistency of 1.7 x 10"5 Ry, in the potential 
and 1.5 x 10-5 Ry. in the orbital energies. 

Slater has introduced in connection with the 
MS-Xa model the concept of a transition state [9,10). 
in which half an electron is removed from a particular 
orbital. The energy of this orbital, on re-attaining 
self-consistency, is then taken as the negative of the 
ionisation potential of the dWJbly occupied orbital. 
This concept allows one tO lake some account of 
relaxation processes during ionisation. Further SCF 
calculations were carried out on transition states 
derived from each of the valence orbitals. In these 
cases only five iterations were necessary, using the 
potential from the ground state SCF calculation as 
the starting potential. 

The total time for the calculations indicated here 
was ninety minutes. 

The Photoelectron Spectrum 

The He I (21.21 e V) photoelectron spectrum 
shows four bands in the region of 11-14 eV [I ,2), 
which are expected to arise from orbitals of 11' 1, 11' u, a1 
and au symmetry (no ordering implied). The photo­ 
electron spectrum of the chlorine molecule shows 
three bands in this region [ 11) , assigned such that 
the ordering of orbital energy levels is 11' 1 > 11' u > a1. 
The inclusion of a cadmium atom is not expected to 
change this order but it is not clear where the au 
orbital will appear in this order. It is unlikely that 
the au orbital, of CT-CT antibonding and Cd 5p 
character will lie below the a1 orbital which has CT-CT 
bonding and Cd 5s character. Cocksey et al. [I) 
prefer the ordering 11'1>11'u>au>a1, on intensity 
grounds and by comparison with the spectra of other 
group 11B dihalides which show the splitting of 11' 
bands due to spin orbit coupling effects. 

Ionisations which could be assigned to cadmium 
4d electrons have not been observed, though they 
might be expected to occur in the 18-20 e V region 
(bands at 17.5 eV and 18.2 eV in cadmium metal and 
at 18.9 e_Vin cadmium di-iodide) (12). This may be 

due to instrumental factors which make the observa­ 
tion of bands in the region 19-21 eV rather difficult. 

Discussion of the Results 

The pattern of ionisation potentials for cadmium 
chloride is well reproduced by this calculation, with 
the levels of predominantly chlorine 3p character well 
separated from those of cadmium 4d character. The 
atomic, non-SCF and SCF electronic energy levels 
are shown in table 2. The order of levels in the low 
I.P. region, as shown by the non-SCF calculation is 
211' 1 > 2au > 111' u > 3a8 but during the SCF procedure 
the transfer of charge from cadmium to chlorine 
causes the 2au and lll'u levels to invert, such that 
the SCF ordering of levels is in agreement with 
experiment. On application of the transition state 
concept, the predicted ionisation energies are found 
to be in close agreement with the experimental values 
(table 3). The predicted 1.P.'s in the region below 
14 eV are uniformly about 0.8 eV too low. In 
contrast, the cadmium 4d electrons are predicted to 
ionise at 22.6 e V, which is rather higher than expected. 

Table 2: Atomic, non-SCF and SCF Xa electronic energy 
levels of CdCI 2 

- 
Atomic Orbital Non-SCF Orbital SCF Orbital 
Energy (Ry.) Energy (Ry .) Energy (Ry.) 

Cd (Is) 1884.2 1884.6 
Cd (2s) 273.95 274.25 
ea (2p) 255.58 255.89 
ea (3s) 50.80 51.09 
ea (3p) 43.31 43.60 
ea (3d) 29.40 29.69 
Cd (4s) 7 .141 - 7.444 
Cd (4p) 4.738 5.043 
Cl (Is) 201.35 201.14 
Cl (2s) 18.45 18.44 
Cl (2p) 14.16 - 14.13 
la1 - 1.306 1.575 
lau - l.283 1.551 
ia, 0.905 1.181 
l 11'g 0.913 1.187 
1,5s - 0.909 1.185 
Ja, - 0.488 0.670 
2au 0.398 0.623 
l11'u 0.426 0.604 
211', - 0.384 0.583 
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Table 3: Comparison of the calculated and experimental 
photoionisation data for the valence region of CdC/2 

SCF Orbital Transition State 
Energy (eV) Energy (e V) 

Experimental I.P. (e V) 
[ 1] [2] 

References 

[ 1 I 

(2] 

20g 16.05 22.64 

l 1Tg 16.16 22.61 

ilig 16.10 22.60 

30g 9.31 12.09 13.12 13.31 

20u 8.67 11.42 12.53 12.48 

11T u 8.41 11.09 11.93 11.92 

21Tg 7.92 10.83 11.44 11.48 

(3] 

(4] 

(5] 
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FERNER, R.E., WATSON. P.R. and RICHARDSON. 
N.V., (to be published). 
JoHNSON, K.H. (1973). Adv. Quantum Chem., 
7, 142, (and references therein). 
SUTTON. L.E. (1965). Oiem. Soc. special 
publication 11 and supplement 18. 
SLATER, J.C., WILSON, T.M. and WOOD, J.H. 
(1969). Phys. Rev., 179, 28. 

(6] SLATER, J.C., MANN, J.B., WILSON, T.M. and 
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A.R. Williams), 447, New York: Plenum Press. 
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x DENOTES A COMPLETELY FILLED OAl!ITAL 

Figure 2: Diagrammatic representation of the electronic 
structure of CdC/2 

The splitting of the cadmium 4d levels by the 
linear field of the chlorine atoms is predicted to be 
very small l0.04 e V) and considerably less than the 
spin orbit coupling effect which splits the 4d levels 
of the cadmium atom by 0.7 eV. 

Conclusion 

The multiple scattering XO! model gives an electronic 
structure for cadmium dichloride which is in close 
agreement with data available from UV photoelectron 
spectroscopy. 
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Recent Developments in Hartree-Fock Theory 
J.P.Dahl* 

A review is given of some recent theoretical developments in open-shell Hartree-Fock theory. 
Particular emphasis is given to the role played by the off-diagonal (Lagrange) multipliers, and some 
existing theories are rectified and extended so as to include all necessary conditions on the Hartree­ 
Fock orbitals. In conclusion, a simple computational scheme is developed and applied to the 
stability problem in the ally! radical. 

Introduction 

The corner-stone in open-shell Hartree-Fock theory 
is the classical paper by Roothaan [I]. dating back 
to 1960. This paper has during the past years been 
followed up be several others, in which the original 
treatment is extended and elaborated on, and sophis­ 
ticated computer programs have, in turn, led to the 
determination of many accurate wavefunctions for 
open-shell systems, atoms and molecules alike. 

Nevertheless, each additional system that is taken 
up tends to present itself as a new case, with its own 
mischievous characteristics. These include, in particu­ 
lar, convergence problems and ambiguities as regards 
the selection of open shell orbitals from one iterative 
step to the next. It is not very likely that such 
difficulties can be eliminated in a completely mecha­ 
nical way, but an understanding of their origin may 
help to circumvent them in an intelligible manner. 

In the present paper we shall consider the role 
which the off-diagonal (Lagrange) multipliers play 
in Hartree-Fock theories, since many of the difficulties 
mentioned are associated with these quantities. We 
shall review some of the latest theoretical developments 
and deduce an alternative computational scheme, 
distinguished by its conceptual simplicity, 

Necessary Conditions on Hartree-Fock Orbitals 

Jn Hartree-Fock theory one writes the wavefunction 
'¥ for a given state of an N-electron system as a fixed 
linear combination of a small number of Slater 
determinants, built over c, and /3 spin functions and 
an orthonormal set of spatial orbitals ey, </>2, •.• , </>0. 
The coefficients of the linear combination are deter­ 
mined by the equivalence and symmetry restrictions 
on the system. The expectation value of the energy 

with H being the N-electron Hamiltonian, is thus a 
functional of the orbitals </>1 , </>2, ... , <l>n, and the 
Hartree-Fock problem consists in determining </>, , </>2, 
•.• , <l>n in such a way that 

oE = 0. 

(i,j= I, 2, ... ,n) 

(2) 

The orthonormality of the orbitals must be retained 
during the variation, and this imposes the ortho­ 
normality constraints 

(3) 

The conditions (2) and (3) lead to the Hartree-Fock 
equations. 

In an open-shell system it takes two or more 
degenerate wavefunctions to describe an electronic 
state, and one must then replace the energy value 
in (!) with the average of the expectation values of 
the degenerate components. The variation of the 
energy may then be written in the form 

n 
5E = r '<o<t>;IF;I</>;> +<</>;IF;lo</>;>I , (4) 

i= I 

where F; is the Hartree-Fock one-electron operator 
for orbital </>;. 

The constraints (3) become 

(5) 

E = <"11Hl"1>, (I) 

and we shall now sketch how the Hartree-Fock 
equations may be obtained from equations (4) and (5) 
along the lines described elsewhere [2, 3) . 

For this purpose we introduce a complete ortho­ 
normal set of functions by augmenting the set defined 
by the Hartree-Fock orbitals. Let 

* Department of Chemical Physics, Technical University of Denmark, DTH 301, DK-2800 Lyngby, Denmark 
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I t/>1 , t/>2, ···• t/>n, t/>n+J, ···• <Pµ, ··· l (I 3) 

be such a set, and let the occupied orbitals be 
denoted by Roman subscripts, the unoccupied orbitals 
by Greek subscripts. All functions of the type 

n 
¥'1 = l; Cj </Ji 

i=I 
(6) 

may be said to constitute a function space U1 (4]. 
All functions of the type 

plus a similar equation with k and Q interchanged. 
Equation (I 3) is a second necessary condition on the 
Hartree-Fock orbitals. It states that the elements 
defined as 

(14) 

must form a Hermitian matrix, that is 

00 

I/In = 1: cµ4>µ 
µ=n+l 

(IS) 
(7) 

will then constitute the complementary function 
space n11• Any function in n1 is, of course, ortho­ 
gonal to all functions in n11, and vice versa. 

Equation (2) must be satisfied for all possible 
variations lot/>1, 61/>2, ... , Ot/>0 I which are consistent 
with (5). Let us consider two variations of an 
especially simple form. 

As the first choice we take a variation of the type 

(8) 

with c being an infinitesimal but otherwise arbitrary 
complex number. The conditions (5) are obviously 
satisfied for this type of variation, and we obtain 
from equation (4): 

(9) 

When c is replaced by ic, and the resulting equation 
compared with (9), we obtain 

as a first necessary condition on the Hartree-Fock 
orbitals. 

The second type of variation to be considered is 
chosen to be 

a variation which is again in accord with (5). 
Equation ( 4) becomes in this case 

c*l<ef>QIFklef>k>- <ef>QIFQlef>k>I 

+ cl<t/>klFklt/>11>- <ef>klFelef>Q>I = o. (12) 

By comparison with the equation obtained by re­ 
placing c by ic we get 

The most general allowed variation may apparently 
be built by combining variations of the form (8) 
and (I I). Hence, (10) and (13) constitute the complete 
set of necessary conditions for the energy to be 
stationary under variations satisfying the constraints 
(3). 

Let us now expand Fkq,k on the complete ortho­ 
normal set of functions I </)1, t/>2, ... , t/>n, t/>n+I, ... , <Pµ, ... l 

n oo 

Fkt/>k = 1: aik t/>i + 1: aµk <Pµ ' 
j= I µ=n+I 

(16) 

and take the inner product with tf>Q and </l)._, to obtain 

A comparison with (JO) and (14) then shows that 

n 
Fkt/>k = 1: Olk <Pi • 

j= I 
k = I, 2, ... , n. 

(I 7) 

(18) 

(19) 

These are the Hartree-Fock equations which the 
orbitals q,1, q,2, ... , t/>n have to satisfy. The coefficients 
Oik are the Lagrange multipliers in the ordinary 
nomenclature, and our second necessary condition, 
as expressed through ( I 5), requires that these be the 
elements of a Hermitian matrix. 

We have thus reached the object of the present 
section, to derive the Hartree-Fock equations from 
equations (4) and (5). In the following sections we 
shall comment on the actual problem of solving 
these equations. 

The Coupling Operator Method 

This commonly applied method was introduced 
in Roothaan's original paper [I] , and further develop­ 
ments are, in particular, due to Huzinaga (5,6,81 
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and Birss and Fraga [7). The present status of the 
method has recently been discussed by Huzinaga [8) 
and by Hirao and Nakatsuji [9). We shall introduce 
the elements involved in four steps, and begin by 
rewriting the Hartree-Fock equations (I 9) in a ket 
notation 

n 
Fk I ef>k > = k 0;k lef>; > . 

j= I 

Equation (20) may be transferred into a pseudo­ 
eigenvalue equation by inserting the expression for 
0ik from (14) 

n 
Fklef>k> = klef>;><ef>;IFklef>k>, 

j= I 

and including the non-diagonal terms in the left 
hand side 

iFk - kief>;><ef>;IFk)llef>k> = 0kklef>k>. 
i4k . 

The quantity 

(20) 

(2 I) 

(22) 

(23) 

is called a coupling operator. As it stands, it is non­ 
Hermitian, and we shall therefore replace it by the 
Hermitian opera tor 

C~ = k I lef>;><ef>;IFk) + Fklef>;><ef>;I I, (24) 
jfk 

whereby we obtain the pseudo-eigenvalue equation 

M 
ef>k = k c,k xk , 

s= I 

(25) 

When solving the n coupled equations represented 
by (25) one usually follows Roothaan [I) by limiting 
the considerations to a finite function space, with 
basis functions X1, X2, ••• , XM, say. The Hartree-Fock 
orbitals are then expanded on these basis functions 

(26) 

whereby the equations (25) are converted into 
equations for the expansion coefficients. These 
equations are of the fifth order in the coefficients. 

The construction of the pseudo-eigenvalue equation 
(25) defines the first step in our presentation. The 
second step takes account of the condition (I 5) on 
the Lagrange multipliers. This is done by noting that 

the equation 

n 
Fkl~> = k lef>;><ef>;IF;lef>k> 

j= I 

is equivalent with (20), whenever equation (I 5) is 
fulfilled. We may therefore replace equation (20) 
with the equation 

n 
Fklef>k> = k lef>;><ef>;IG;klef>k> 

j=l 

(27) 

(28) 

where the operator G;k has the form 

(29) 

The A;k's are arbitrary numbers, and in general 

(30) 

We see, by taking the inner product of (28) with ef>Q, 
that the solutions of the n equations represented by 
(28) will automatically satisfy the conditions (I 5) 
for any choice of the constants X;k excepting AJk= 0. 

The operator (29) was introduced by Huzinaga [8), 
and it is again possible to include the non-diagonal 
terms in (28) in the left hand side of that equation 
and obtain a pseudo-eigenvalue equation similar to (25) 

(3 I) 

The steps are straightforward and obtained in Huzi­ 
naga's paper. The n equations represented by (31) 
are again of the fifth order when the expansion 
method is adopted. 

The two steps so far described are the essential 
and necessary steps in the operator coupling method. 
Two further steps may, however, be introduced. 
The first of these, i.e. step three of our outline, was 
introduced by Birss and Fraga [7) so far as equation 
(25) is concerned, and described in the general case 
of equation (31) by Hirao and Nakatsuji [9]. 

These authors argue that an equation like (22) 
only has meaning as long as the operators to the left 
act on I if>k> . When the expansion method is used 
they suggest, therefore, that this operator be replaced 
by the operator 

The introduction of the projection operator I if>k><ef>kl 
is, of course, a consistent step, and it adds a certain 
flavour to the theory. On the other hand, it increases 
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the order of the equations to be solved from five to 
seven, and it is, as has been stressed by Huzinaga 
(8], not really necessary. The full implication of 
using projection operators in connection with equation 
(31) is, however, worked out in reference [9). 

The fourth step that may be introduced in the 
analysis consists in summing the left hand sides of 
the n equations represented by (25), so as to obtain 
a unified operator for all orbitals. The possibility of 
this step was already pointed out by Roothaan [ 1], 
and it was incorporated in the expansion mathod by 
Birss and Fraga [7). Hirao and Nakatsuji [9) have 
described it for the general case of equation (31). 
Again, this step is not necessary, and it does not seem 
to have any real advantages from a computational 
point of view either. 

Having introduced the various elements of the 
coupling operator method we shall proceed by adding 
some comments concerning the solution of the 
equations involved, i.e. the equations represented 
by (3 I) - or their counterparts obtained by adding 
step three and/or step four. 

These n coupled equations are usually solved by 
the expansion method in connection with an iterative 
SCF technique, and symmetry restrictions are, of 
course, utilized to the extent they are present. It is 
the rule rather than the exception, however, that one 
encounters convergence difficulties in this process, 
and it is not really hard to see from where such 
difficulties stem. The source is undoubtedly to be 
found in the fact that one is trying to satisfy ½n(n+ I) 
conditions by solving only n equations. The ½n(n+ I) 
conditions are, of course, then conditions represented 
by equation (19) and the ½n(n-1) conditions of 
equation (I 5). 

Whether or not a chosen iterative scheme con­ 
verges for a given set of input orbitals is apparently 
tied up with the choice of the AJk's in equation (29), 
One might argue that only half of these, i.e, ½n(n-1) 
quantities, should be considered as independent. 
A fortunate guess of these might then allow a proper 
solution of the n equations, and this would then 
reflect that a total of ½n(n+ I) conditions has in some 
way been taken care of. This point of view is 
consistent with a suggestion by Hirao and Nakatsuji 
[9), according to which one takes 

(32) 

for all k,j-pairs. 
It should be clear by now that any set of functions 

q,1, q,2, .•. , <f,0 satisfying the n equations represented 
by equation (3 I) will meet all the necessary conditions 
associated with the Hartree-Fock problem. They are 
therefore Hartree-Fock orbitals. The solutions associ­ 
ated with (25) do not automatically have this property, 
however, and one must assume that many false 

solutions of the Hartree-Fock problem may be 
generated from (25). This is in accordance with 
a recent study of Al bat and Gruen [I O], who analysed 
the 1S(lsX2s) state of He and obtained a variety of 
false solutions by using (25) and starting the iteration 
procedure with different orbitals. In particular, they 
pointed out that the orbitals obtained for the same 
state by Birss and Fraga [II) represent a false 
solution of the Hartree-Fock problem, in agreement 
with the fact that the theory by these authors [7) 
is based upon (25) alone. 

In this context it is worth-while noting, as it is 
also done in [8] and [IOI, that the coupling operators 
occurring in Roothaan 's paper [I) actually do have 
the form (29) for the specific example treated there. 

The content of the present section reflects the 
fact that the coupling operator method must be used 
with great care and a sense of the problem under 
study, if the convergence difficulties are to be avoided. 
Additional difficulties are associated with the problem 
of identifying the filled orbitals from one step of the 
iteration to the next. This type of problem is usually 
dealt with by introducing some maximum overlap 
criterion. 

In the next section we shall consider an alternative 
way of treating the ½n(n+I) equations (13) and (19). 

The Direct Method 

In this section we shall describe a new method 
for solving the open-shell Hartree-Fock problem, 
which we propose to call the direct method, because 
the necessary conditions (10) and (1 I) are attacked 
as they stand without any recourse to coupling 
operators. The method may be seen as an extension 
and a rectification of a method introduced by Hunt 
et al. [12) and by Peters [13), and called by them 
the Orthogonality Constrained Basis Set Expansion 
(OCBSE) Method and the Superiteration Method 
respectively. Thus, the direct method represents a 
completely consistent procedure, whereas the method 
by Peters and Hunt et al. generally leads to false 
solutions of the Hartree-Fock problem because the 
second of the necessary conditions, equation (IS), 
is neglected. Examples of such false solutions for 
the 2S(ls)2(2s) state of Li have, in fact, been 
presented by Albat and Gruen [10). 

Let us rewrite the conditions (JO) and (13) in 
the following form 

i = 1, 2, ... , n 
}>. =n+I, ... ,M (33) 

i,j=l,2, ... ,n (34) 

and recall that we use Roman subscripts for the 
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occupied orbitals, Greek subscripts for the unoccupied 
orbitals, We assume, in harmony with most other 
calculational schemes, that the Hartree-Fock orbitals 
are to be sought within a finite function space, n, 
of dimension M, and q,1, q,2, ••• , lf>M are thus all 
represented as in (26). The analysis concerning the 
necessary conditions for Hartree-Fock orbitals is 
unaffected by the restriction to a finite dimension, 
with the obvious proviso that all variations must be 
limited to n also. 

Rather than describe the direct method for the 
general case we shall illustrate it by a specific example 
which, in fact, contains the characteristics of the 
general case in it. Let us assume that occupied 
orbitals fall in two sets, such that 

t/>1, t/)2, ••• , 1/>m all correspond to the Hartree-Fock 
operator F8, 
1/>m+I, ..• , 1/>n all correspond to the Hartree-Fock 
operator Fb. 

The conditions (33) become in this case 

i = 1, 2, , m; 

X=n+l, ,M 

j=m+I, ,n; 

X=n+l, ,M 

and the conditions (34) may be written as 

i= 1,2, ,m; 

j = m+l, , n 

(35a) 

(35b) 

(36) 

Let us proceed from here in two steps. 

In step one we direct our attention to equations 
(35a) and (35b) alone, and begin by constructing an 
orthonormal set of functions 

The symbols nI0>, n~0> and n1\
0> are introduced for 

the function spaces spanned by the sets 

lf>i1>, ... , q,~1> and a function space n.l11; the 
remainingM-n eigenvalues define the unoccupied 
b, l ,,_ ( I a) ,,_ ( I a) d 1 1- · or ita s "'n+I , ... , .,,M an t 1e unction space 

n1p•l. The orbitals obtained in this way 
satisfy the conditions (35a). 

(b) Solve the SCF problem 

(38) 

within the subspace nJ0> EB nJ1•>, keeping the 
orbitals q,p>, ... , q,~1) fixed. The n-m lowest 
eigenvalues of Fb define the occupied orbitals 
,+, (I) ,+, (I) d h f · n (I) . 'f'm+l • ... , "'n an t e unction space "'b , 
the remaining M-n eigenvalues define the un- 

. d b' al "'(I) ,+, (I) d h f . occupie or 1t s 'f'n+l• ... , 'f'M an t e unction 
space n1\

1>. The orbitals obtained in this way 
satisfy the conditions (35b ). 

(c) Redefine q,/1>, ... , q,M<1> as tf>?l, ... , lf>M(Ol and 
go back to (a) until the solutions converge. 
The orbitals obtained in this way are self­ 
consistent solutions of (35a) and (35b ), and 
step one is thus completed. 

The iterative procedure described as step one 
constitutes the method introduced by Hunt et al. 
and by Peters, but the formulation is somewhat 
simpler. Reference [I 2] describes in detail how the 
matrices of the operators F8 and Fb may be con­ 
structed in an economical way. Tue result of step one 
is, however, dependant on the choice of starting or­ 
bitals, a point which was overlooked in [ 12) and [ 13]. 

We must therefore continue our endeavours and 
introduce a step two which goes as follows: 

Solve the SCF problem 

(39) 

respectively. We then consider tf>i0>, ... , q,J0> as zero 
order approximations to q,1, ••• , lf>n and go through 
the following iterative scheme: 

(a) Solve the SCF problem 

(37) 

within the subspace np> EB n1\
0>, keeping the 

orbitals q,~)1, •.• , t1>J0> fixed. The m lowest 
eigenvalues of F8 define the occupied orbitals 

within the subspace npi $ nJ1l, as defined by 
the self-consistent output from step one. The 
orbitals obtained by solving equation (39) are 
denoted q,1, ••• , q,0. They satisfy the conditions (36). 
Finally we take these output orbitals together 

with the orbitals 1/>J!{, ... , q,~1) from (c) as new input 
orbitals for step one, and cycle t'irough step one and 
two until convergence is reached. The resulting set 
of orbitals will then satisfy (35) as well as (36) in a 
self-consistent manner, and they are therefore the 
Hartree-Fock orbitals. 

This direct method of obtaining the Hartree-Fock 
orbitals is of an appealing simplicity. All SCF 
equations involved are of the third order in the 
expansion coefficients, and there are no ambiguities 
as to the identification of the occupied orbitals. 
Tne method is easy to program; all that is required 
is, in fact, a few additions to any already existing 
closed-shell Hartree-Fock program. It remains, how­ 
ever, to be examined whether or not the method is 
computationally cheaper than the usual coupling 
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operator method in the cases where both methods 
work, but there is no a priori reason to believe that 
it should be inferior in this respect. In the following 
section we shall demonstrate how the direct method 
may be applied with confidence in cases where the 
coupling operator method is a very insecure procedure 
to use. 

The extension to cases with more than two 
different Hartree-Fock operators is straightforward. 
The problem does arise, however, of choosing the 
order in which the various operators should be 
diagonalized. This order will presumably be a deter­ 
mining factor for the total number of iterations that 
it is necessary to perform in order to reach self­ 
consistency. 

Doublet Instability in the Allyl Radical 

To illustrate the potential of the direct method 
we shall analyse the ground state of the ally! radical 
within the Pariser-Parr-Pople approximation. The 
function space n is three-dimensional, with the 2pz 
atomic orbitals '171, '172 and '173 on the three carbon 
atoms as basis functions. 

The ground state is a doublet, represented by the 
two wavefunctions 

(40) 
+-+ +-- 

>ll(Ms=½) = l(()1q,1<1>t,I, "1(M8=-½) = 1(()1((),<l>t,I. 

The corresponding energy expression is easily written 
down, and its variation evaluated to be 

(41) 

where the Hartree-Fock operators F1 and Fb have 
the form 

F, = Ft +F+ (42) 

(43) 

with 

F+ = h + 210 + Jb - Ka. 

(44) 

(45) 

h is the one-electron core operator, and the J's and 
K's the usual Coulomb and exchange operators. 

The step one conditions (35) become in this case 

(46b) 

with ef>c being the unoccupied orbital. 
The condition (36) is 

<ef>alFJ.l<l>t,> = 0. (47) 

The ally I radical has C2v symmetry, and we may 
therefore look for symmetry adapted solutions of ( 46) 
and ( 4 7) of the form 

et = 0, (l = -2.38 eV 
r11=r22=r33= ll.08eV 
'Y12 = 'Y23 = 5.36 eV 
'Y13 = 3.88eV 

ct>! = 0.5334'171 + 0.6565'172 + 0.5334'173 

c/>~ = 0.7071'171 - 0.7071'173 

(48) 

(49) 

with X1 , X2 and X3 being the symmetry adapted basis 
functions 

Ft and FJ. are totally symmetric operators in this 
case, and the conditions (46b) and (47) are therefore 
automatically satisfied. All that remains is to solve 
equation (46a) within the subspace spanned by X1 
and X2, and this is a fairly simple matter. 

With the following values for the usual Pariser­ 
Parr-Pople parameters 

(51) 

we obtain 

(52) 

(53) 

and a corresponding energy 

£5 = 11.5258 eV (54) 

(46a) 

The superscript s has been added to indicate that 
the solution is symmetry adapted. 

Paldus and Cizek [ 14) have shown, from general 
considerations, that this solution is doublet unstable. 
This implies that there exists another Hartree-Fock 
solution, having a lower energy, which is a pure 
doublet state, i.e. of the form (40). The orbitals 
c/)8 and ef>b are no longer symmetry adapted, however. 

The direct method is very suitable for investigating 
this new solution. We have determined it in the 
following way. 
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To begin with, step one was carried through for 
several choices of the input orbitals ~.<0> and ~J0>. 
These choices were taken as a function of a single 
parameter w, viz. 

(55) 

(56) 

' with ~! and ~t as determined above. The following 
table shows how the resulting energies E and Lagrange 
multipliers 

vary with w. 

Table I 

w E(eV) Bi,.(e JI) 08b(el') llt,.-8. b ( e JI) 

0 11.5258 0 0 0 
0.04 11.5253 -0.2674 -0.2797 0.0123 
0.08 11.5241 -0.5361 -0.5499 0.0138 
0.12 11.5236 -0.8060 -0.8025 -0.0035 
0.16 11.5252 -1.0750 -1.0312 -0.0438 
0.30 11.5707 -1.9514 -1.6035 -0.3479 
0.50 11.7874 -2.8334 -1.8566 -0.9768 

From table I it is apparent that an unsymmetrical 
solution does exist. The full set of iterations within 
the direct method were therefore carried out with 
input· orbilals corresponding to w = 0.12. The new 
Hartree-Fock orbitals were thus found to be 

~. = 0.4465711 + 0.6568711 + 0.6076713 (58) 

~b = 0.8059711 - 0.00004711 - 0.5921713 (59) 

with the corresponding energy 

E = 11.5235 e V. (60) 

The new Hartree-Fock orbitals are seen to be 
rather different from the symmetry adapted ones, but 
the energies of the two solutions differ very little, 
about 20cm-•. This is a result of considerable 
interest, especially when it is realized that we have to 

do with a two-fold degenerate solution, for the 
orbitals obtained from (58) and (59), by interchanging 
the indices I and 3, are also Hartree-Fock orbitals 
due to the symmetry of the problem. The implication 
must be that a single Slater determinant provides a 
poor representation of the true ground state wave­ 
function. 

The direct method is clearly superior to the 
coupling operator method when a problem of the 
present kind is to be investigated. (Jve assume that 
nothing is known about the actual doublet instability 
from the outset.) A near degeneracy is involved, 
and one may imagine that this could lead to oscillatory 
behaviour during the iteration process of the coupling 
operator method. And because there would be no 
simple way of setting up a table like the one above, 
it would be difficult to decide whether the oscillations 
should be taken as an indication of the presence of 
more than one solution, or whether they should be 
considered as reflections of certain awkward 'con­ 
vergence difficulties' associated with a single solution. 

Conclusions 

The direct method has been introduced as an 
alternative to the coupling operator method in 
Hartree-Fock theory. The method may be used alone 
or in conjunction with the coupling operator method; 
and it must be considered as a very useful tool, for 
instance in connection with studies of the Hartree­ 
Fock stability problem. 
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On Constrained Variational Calculations 
on Molecules 
M.A.Whitehead* and G.D.Zeisst 

The accurate calculation of the expectation values of one-electron molecular properties Is considered, 
and suggested methods reviewed. Alternatives to the energy as a measure of the accuracy of a 
wavefunction are proposed and the constrained variational method is described. 
A systematic investigation of the accuracy of this method for diatomic molecules within the minimum 
basis aet Roothaan-Hartree-Foclc method (RHF) is reviewed. 
Several basis aets, involving weighted and unweighted least squares expansions of Slater type functions 
in terms of Gaussian type functions are compared and their behaviour within the CVM analysed. 
The CVM Is applied to the NDDO method, the maximum overlap method and to RHF with con­ 
figuration interaction and the calculated one-electron expectation values are compared to the 
constrained and unconstrained RHF results, and experimental values. 
The constrained variational method Is very sensitive to the basis set, and unreliable as a method to 
gm accurate one-electron molecular properties, except via the MOM. 

Introduction 

A constrained variational method determines a 
wavefunction for a molecule that satisfies an energy 
variational extremum condition and a finite number 
of imposed conditions [1-8) . If there is a true 
energy extremum, the constraints reduce the varia­ 
tional degrees of freedom of the wavefunction and 
raise the energy, and the success of a constrained 
true energy extremum method in improving the 
overall quality of the wavefunction measures how 
unreliable the energy is as a measure of the overall 
quality of a wavefunction to give good one-electron 
expectation values. 

Only diagonal constraints are considered, where 
for a trial wavefunction it 

with 

<"11'1'> = 1 

and constraint conditions 

<'l'IMjlit> = llt i = 1, ... , s 

with M1 the set of molecular electronic operators, 
and llt a set of externally determined (theoretical or 
experimental) expectation values. Introducing the 

Lagrange multipliers Xq and replacing the real Hamil­ 
tonian by a fictitious Hamiltonian (1,2,7) 

gives constrained-RHF equations, 

m , , - 
I:FljCJµ - 
j 

where 

• llq = F;J + I: Aq <X;IMq - -IXJ> 
q 2n 

and the Lagrange Multipliers are determined from 

nm µq , , 
2 I: I: <X;IMq - -IXJ > Ctv c;v = 0. 

II IJ 2n 

The Mq are assumed Hermitean and 8.µv is required to 
be diagonal so the constrained-RHF equations become 

ffl I I - I: F;J CJµ - 
j 

m ' ' I:< X;I XJ> CJµ 8.µ 
J 

(I) 

and the unconstrained basis set l X1 I is transformed 

• Tbeoretical Oumistry Department, Univemty of Oxford, 1 South Parks Road, Oxford, OXJ JTG 
t Department of O,emistry, McGill University, Montreal 110, Quebec, Canada (also present address for M.A. W.) 
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to an orthnormal basis set I II; I , so that 

gives the pseudo-eigenvalue problem to be solved 
Iteratively. The solution is complicated by the 
><q constraints. 

The parameterization technique [8] is used. An 
initial set of ><q are chosen, and the totally determined 
equations 

solved, where 

The equations are solved iteratively using the quantity 

for each constraint operator to determine the new ><q. 
Each constraint is solved for an optimum ><q, and 
then ¾+I calculated with >-q constant (9]. 

Very few constrained-RHF wavefunctions have 
been reported, and no conclusion about the effective­ 
ness of the method could be arrived at [I ,5,10,11 ]. 
Therefore a systematic investigation was undertaken 
to study the effect of a number of one-electron 
constraints on minimum basis, single configuration 
wavefunctions of several small molecules, HF, LJH, 
N2 and CO, in the hope of arriving at definite 
conclusions about the usefulness of the method in 
producing good one-electron expectation values. 

The Constraints 

(a) Kinetic energy <T>, with experimental refer­ 
ence values from [ 12] 

<T> = -E 

where E is the total energy; 
(b) Dipole moment µ where <xn > = 

and x01 Is the x- co-ordinate of electron i from 
the centre of nuclear charge, and the µ are 
experimental (13-15]; 

(c) Nuclear diamagnetic shielding constant oad(a) 
2n 

where <ra1 > = < l; TIQ-I > and Tta is the 
I 

distance between the a nucleus and the ;th 
electron; the oad(a) are either theoretical or 
experimental (16,17]; 

(d) Nuclear electronic attraction energy Vne where 

2n 
<Vne> = -:E Za < :E ,la-I>' 

a I 

and the values are calculated using ( c ); 
(e) Total single electron energy 

2n 
<T+Vne> = <:E (-½V2 - :E Za '1a-')>; 

I a 

(f) Electric field at a nucleus 

where a nucleus is the origin, R13a the inter­ 
nuclear distance, and Xia is x1 - Xa, the 
difference between the electron and nuclear 
co-ordinates; constraint condition, <Ea> = 0. 

(g) Hellman-Feynman forces (18,19], F, where 
<F> = - Za <Ea> - Z(j <E[j>- The ap­ 
proximate wavefunctions, unlike Hartree-Fock 
wavefunctions, do not satisfy <F> = 0 hence 
it is a constraint; 

(h) Electric field gradient at a nucleus [6] qa, with 

3x2 r2 n 2Z(j 2n la - ia> = q~ + qa - - - <:E 5 qa - ~ 1 '1a 

and the expectation values are experimental [ 6] 
for Li, H, 0 and N but theoretical [ 6] for F 
and C; 

(i) Molecular quadrupole moments II. For a 
diatomic molecule 

II - 11° + /In - 'Y 'Y. 

and by choosing the origin at the centre of 
nuclear charge, the molecular quadrupole mo­ 
ment becomes II~ + II~ (20]. The values are 
experimental (6]; 

G) Diamagnetic susceptibility, x; is chosen so that 

where r-yi is the distance from co-ordinate origin 
to electron i. With the origin at centre of 
nuclear charge x; becomes 
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~ =-<r~> 

The expectation values are experimental [ 6) 
and theoretical. 

Basis Sets 

Most previous calculations used Slater type func­ 
tions (STO) or Gaussian type fllactions (GTO), or 

STO expanded in GTO (21,22), in which case the 
problem of weighting occurs. Herein several ex­ 
pectation values were calculated for HF using RHF 
wavefunctions with minimum basis set STO expanded 
in GTO:- 
(a) PL-4G weighted expansions from Page and 

Ludwig (24) ; 
{b) HSP-4G and HSP-2G unweighted expansions 

of four- and two-GTO from Hehre et al. [23); 

Table I: Comparison of constrained Roothaan-Hartree-Fock wavefunctions of HF in a BLMO basis 

Constraint Ranke with respect to Numberd of 
Operator Criterion Properties c' c' -E(au) C B 

c' c' E Improved 
C B 

8 13 0 - 6.429 2.312 104.469 

-½V2 a 24 24 23 2/9 8.667 3.558 104.329 
b 21 16 22 3/9 7.548 2.565 104.401 

-I a 20 18 20 3/9 7.491 2.587 104.414 
'F b 15 0 11 5/9 6.695 1.933 104.453 

-I a 11 3 8 6/9 6.631 2.002 104.462 
'H b 17 8 13 5/9 6.847 2.069 104.452 

a 10 6 6 6/9 6.584 2.040 104.465 
Xn b 12 5 7 6/9 6.663 2.020 104.462 

~ a 23 23 23 3/9 7.906 3.105 104.388 
b 19 15 IS 4/9 7.226 2.444 104.426 

r 2 a 25 25 24 1/9 9.880 6.830 104.329 
n b 26 26 26 1/9 10.824 7.718 104.277 
XF a 0 17 18 1/9 5.583 2.570 104.420 
~ b I 19 19 1/9 5.594 2.591 104.417 
F 
l l 3xF-rF a 6 14 4 2/9 6.417 2.434 104.470 

r 5 b 9 9 3 7/9 6.450 2.222 104.469 
F 

XH a 14 4 12 6/9 6.694 2.006 104.453 

~ b 18 10 14 5/9 6.986 2.223 104.438 

3xH2-rl a 4 7 5 7/9 6.385 2.043 104.467 

,tt5 b 5 11 I 7/9 6.416 2.266 104.469 

vne 
a 22 22 21 4/10 7.572 2.662 104.408 
b 16 I 9 6/10 6.701 1.967 104.454 

T+Vne a 13 2 10 6/10 6.689 1.995 104.453 
b 7 12 2 7/10 6.424 2.275 104.469 

F a 2 20 16 2/10 5.612 2.643 104.425 
b 3 21 17 2/10 5.619 2.658 104.422 

Note: This is an example of the type of table used in the analysis discussed in the text. Notes (a) and (b) give an idea of the overall 
sensitivity of the various criteria of wavefunction quality to various reference values of the constralning operators. 
(a) Values of the criteria calculated with theoretical reference values from the best available recently determined wavefunctions. 
(b) Values of the criteria calculated with experimental reference values from the best available experimental results with the 

~ = [ r l ~~~c~ l 2] ½ 

which excludes the constrained j term which constrains ,i,<£). Similarly for c~'- For unconstrained wavefunctions C = c'. 
(c) Number of improved properties: fraction of the total number of independent unconstrained properties which are improved. 
(d) The numerical rank indicates the number of wavefunctions with lower values of Cc, C11 or E. 
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(c) OTH-4G, unweighted expansions of four-GTO 
from O-0hata et al. (25]. 

The results [6] show that a weighting (26,27] of 
w = f1 improves <ri1 > and <rH1 >; w = r-2 improves 
3x2 - r2 

< F 5 F > ; but best value of qH is from the 
ry 

unweighted HSP-4G, as are the <xn>, <0cM > and 
<r~M > best values; weightings of w = r and w = r2 
are poor for all molecular expectation values. 

The Slater orbital exponents also effect the 
significance of the weightings. A series of calculations 
on HF using a GTO expansion of STO's with 
Burns (27), Slater (28] and BLMO (29) (table I) 
exponents with weighted and unweighted expansions 
showed that 
(a) the most accurate <-½V2>, <ry-• > and 

<rH-• > are given by Slater's 1, the worst by 
Burns' t and poor by BLMO t; 

{b) for <xn>, <O~> and <r~> the best are with 
Burns 1, the worst are with Slater t; 

X 3x2-r2 
(c) for <-f>, < F 5 F > and the equivalent 

ry ry 
H expectation values, BLMO I are the best; 
the worst results are for Slater t; 

{d) there is only a rough correlation between w 
and expectation values in the same region of 
wavefunction; 

(e) Two-GTO wavefunctions are always very poor; 
(f) The best overall RHF wavefunction is a BLMO 

t basis and unweighted or f1 weighted GTO. 
In CTJ however quite different trends were dis­ 

covered! They were different again in Lill! Analysing 
all the results suggested 

{g) for <-½V2>, <r-1>, <-Vne> and <T+ Vne> 
use Slater t, 

3x2 _ r2 
{h) for <x3/r3>, < 5 > use BLMO t, 

r 
(i) for <xn>, <O~> and <r~> no exponent is 

successful, because the wavefunction with a 
basis set suiting these expectation values is 
distorted by the RHF calculation which depends 
explicitly on 

and 

<xH/rH3> and <3xJ-rH2/r/> give large variations 
in the unconstrained expectation values: while errors 
in <xy/r/>, <0~>and <F> give only small changes. 

Variations in the reference value of the constraint 
also effect the resulting one-electron expectation 
values; all properties are insensitive to changes in 
<xy/r/> and <F> and vice versa. but these con­ 
straintsare interdependent; <T+ Vne> and <xH/rH3> 
exert a strong effect on all property values due to the 
inflexible nature of the wavefunction at the H nucleus. 

The effect of imposing a constraint on a minimum 
basis set wavefunction is to cause changes of the same 
order of relative magnitude in the unconstrained 
expectation values as in the expectation value of the 
constraining operator; constraints do not lead to 
significant improvement in the overall quality of 
the RHF wavefunctions. 

Constrained RHF Wavefunctions for LiH, FH, CO 
and N2 (6) 

If the average percentage error and energy were 
not good criteria for the overall quality of a wave­ 
function, what could be used? A similarity function 
can be defined by (6,30) 

in which m; Q is the value of the ith pro~erty from 
the Qth wavefunction, m/ = <'l'(Q)IM11 q,( >>, and ll; 
is the reference value. The o;-• are arbitrary and here 
using (aP>2 as the second moment about µ; or ar 
as the standard deviation in the distribution of the ml 

hf C - f B ·· w ere or o; , 17 = m; or or o; , 17 = µ;, giving two a; 
and hence two CQ and 

Sensitivity of a Constrained Wavefunction to the 
Accuracy of the Expectation Value of the Constraint 
Operator 

If the error in the experimental value of <-½V2> 
is ±1 %, the error in the <r~> is 9% on Slater t or 
BLMO t, but the distribution among the various 
expectation values is non-uniform. Small variations 
in <-½v2>, <ry-1>, <rH-1>, <Vne>, <T+Vne>, 

and N;' is the number of wave functions not constrained 
with respect to the ith property. The summations 
are over all wavefunctions. The properties used in 
calculating the C' are -½V2, (,-• ), Xn, On, rn 2, x/r3 
and (3x2 -r2 )/r5 ; i.e. ten properties for Lill, FH and 
CO, and six for N2; Vne, (T+Vne) and Fare not 
included as they contain directly the values of two 
or more of the other properties. A statistical analysis 
(31] was also performed, but distribution analyses [I OJ 
were not attempted since they require an accurate 
reference distribution. 
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Armed with C and the a, we can statistically 
analyse the numerical results (6,33): 

(
3XH2 - rH2) 

(a) in LiH, (xH/rH3) and ----- are in- 
rHs 

capable of giving good expectation values with 
a Slater basis, as is (rH-1) in HF due to the 
Slater I of the ls orbital; and (rc-1) and (r0-1) 
in CO with Burns rs which differ widely from 
the energy optimised exponents. 

(b) O;B is 3 times larger than ar due to the poor 
behaviour of RHF wavefunctions at large r, 
and often becomes even bigger with a Burns 1 
due to the poor behaviour of a Burns basis 
at small r. 

( c) Correlation between ranking according to energy 
and according to the C is most alike when an 
energy optimized basis is used. 

(d) As a criterion of overall quality a wavefunction 
for one-electron operators with minimum basis 
set, energy is inferior to the C. A very good 
energy in a poor basis often gives a wavefunction 
poor for calculating one-electron properties. 

(e) Constrained RHF wavefunctions do not exhibit 
significant improvement in overall quality over 
the unconstrained RHF wavefunctions, except 
where the basis selected is very poor. When 
there is improvement the cost in energy is 
insignificant for energetically good bases, and 
substantial when the basis is energetically poor, 
when it is best to ignore the energy and to 
determine the wavefunction directly from the 
constraint conditions (32). 

(f) <-½V2> correlates poorly with any criteria 
of overall quality of the wavefunction, and 
correlates with C,-1) in 9 out of 12 constrained 
wavefunctions; <r-1> and <0~> correlate; 

3x2 - r2 
<r-1 > correlates with < _ > at the 

r 
nucleus opposite to the <r-1 > constraint; x0 
improves >SO% of the unconstrained properties; 
0~ improves <-½V2> and <xlr">; <r0 2> 
correlates badly with criteria of overall quality 
of the wavefunction; etc. Multiple constraints 
are no more effective than single constraints, 
and cause a large increase in the energy and 
in computer time (9) . 

Constrained Neglect of Diatomic Differential Overlap 
(NDDO-RHF) Method (6,33) 

The expectation values are sensitive to the weighting 
function used to determine the GTO expansions 
of STO, as well as the STO exponents, r, Calculations 
were performed on HF for different STO exponents 
and GTO weightings: 
(a) for <-½V2> and <,F-1 >, expectation values 

are best with STO and Slater 1 (as for RHF 
wavefunctions); but for <r1-11 > the expectation 
values is best with BLMO wavefunctions); 

(b) <0~> and <r/> are best with Burns wave­ 
functions; 

(c) <xF/r/>, <(3x/ - r/)!r/> and the 
hydrogen equivalents are best with STO, whereas 
STO is the worst for RHF expectation values 
of these operators; 

(d) there is a rough correlation between the weight­ 
ing functions for the GTO expansion and 
expectation values of properties weighted in 
the same region of the wavefunction; 

(e) 2-GTO are much worse than 4-GTO expansions; 
(f) The best overall NDDO-RHF wavefunction has 

an STO basis, with either unweighted, or r-1 

or r-2 weighted GTO expansions; 
(g) The deviation of predicted expectation values 

from experiment is much greater with NDDO­ 
RHF than with RHF wavefunctions, except 
for the dipole moment,µ, which is excellently 
predicted by constrained NDDO-RHF wave­ 
functions. 

Similar results are obtained with CO and LiH, 
and overall the best basis for constrained NDDO-RHF 
is one of STO's with Slater r, In contrast the RHF 
wavefunction best basis was one with BLMO exponents. 

Constrained NDDO-RHF with RHF expectation values as 
constraint reference values [6]: The le expectation values 
calculated with lowest energy Slater determinant 
wavefunction for a given basis are used as reference 
values; these are the unconstrained RHF values. 

Constrained NDDO-RHF calculations on LiH used 
Slater and BLMO bases, on CO used Slater (table 2) 
and Clementi bases and on N2 a Slater basis. The 
number of variational degrees of freedom in each 
case is 4, 6 and 2, always less than the number of 
properties contributing to the statistical survey. With 
the RHF expectation values as constraints, the energy 
variation is a good criterion of the overall quality 
of the wavefunction, and a constraint improves the 
expectation values of over 50% of the constraint 
operators. Multiple constraints give more improvement 
in contrast to the behaviour of constrained RHF 
wavefunctions: 
(a) (½V2, r02), (r0-1, 0~) and (r0-1, r0

2) lead to 
constrained NDDO-RHF wavefunctions that 
give the RHF expectation values and energy; 

(b) In no case did a constrained NDDO-RHF 
wavefunction converge to the exact RHF wave­ 
function or energy; 

(c) (-½V2, 0~, r02) on LiH with Slater basis gives 
99.99% of the RHF energy, while (xLi/ru3

) is 
96%, and ru-1, rH-1 and x0 are 99.8% of the 
RHF value; 
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Table 2: Constrained NDDO-RHF wavefunctions for CO. Basis: Slater 

Constraint RankdC Rankd C Rankd 
C B 

E 
Percentage 
Properties 
Improved" 1 

Property Rank• 

2 3 4 S 6 7 8 9 10 

Kinetic energy 

diamagnetic shielding 

dipole moment 
molecular quadrupole moment 
diamagnetic susceptibility 
field (at C) 

field gradient (at C) 
field (at 0) 
field gradient (at 0) 
nuclear attraction 
total electronic 
F 

0 0 0 
0 0 

2 0 0 
3 0 0 
4 0 0 
S O 0 
6 0 0 

7 0 0 

8 0 0 
9 0 0 

10 0 0 
11 0 0 
12 0 0 
13 0 0 

C 2 3 0 
1 2 3 
I 11 0 
I 4 0 
I 6 0 

C 4 11 Q 
11 5 0 
11 6 0 

c I 6 5 
6 S 0 
4 S 0 
4 13 0 
4 10 8 

C IQ 8 0 
7 9 0 
4 7 9 
I 13 0 
I 10 0 
4 10 0 

69 S.7S 70 3.01 47 --134.2322 
67 5.57 50 
30 4.42 0 
43 4.80 14 
36 4.63 12 
18 3.87 55 

64 5.39 61 
24 4.20 36 
5S 5.1S 24 
83 6.76 87 
48 4.98 44 
so 5.01 25 
38 4.63 3 
74 6.27 78 
47 4.96 22 
60 5.25 37 
62 5.33 43 
54 5.12 42 
80 6.54 68 
41 4.74 18 
20 3.94 54 
81 6.58 67 
95 7.64 95 
84 6.81 92 
IS 3.82 52 
42 4.75 17 
49 4.98 20 
61 5.32 35 
51 5.04 72 
27 4.30 63 
82 6.63 60 
6S 5.50 48 
34 4.57 8 

2.33 75 -134.0243 
1.89 28 -134.3501 
2.03 40 -134.2730 
2.02 29 -134.3253 
2.41 21 -134.3801 
2.66 41 -134.2723 
2.19 52 -134.2063 
2.10 42 -134.2632 
4.09 65 -134.0963 
2.24 30 -134.3193 
2.10 49 -134.2242 
1.96 27 -134.3555 
3.46 50 -134.2206 
2.08 44 -134.2364 
2.19 61 -134.1120 
2.22 64 -134.1067 
2.21 56 -134.1757 
2.98 88 -133.7227 
2.06 34 -134.2968 
2.40 24 -134.3591 
2.95 87 -133.8138 
5.13 96 -132.8535 
4.94 77 -133.9970 
2.36 18 -134.3857 
2.06 31 -134.3174 
2.07 45 -134.2338 
2.17 48 -134.2251 
3.09 68 -134.0674 
2.70 58 -134.1243 
2.65 84 -133.8904 
2.29 70 -134.0533 
1.99 32 -134.3074 

0 56 78 72 72 60 I 76 51 48 55 
66 
77 
77 

77 

77 
88 

66 
66 

0 
77 

80 
80 
10 
75 
71 
66 
75 
62 
77 
66 
55 
0 

25 
75 
77 
57 
50 
62 
57 
55 
62 
75 

b 38 36 44 54 19 84 I 7 88 12 
44 b 50 46 45 21 34 28 5 7 5 
1013 b 9 3846 57 107116 
203410 b 345655 56226 
28 46 44 16 b 80 2 3 88 45 3 7 
5372716656 b 71484941 
69 59 60 53 28 9 b 50 50 30 
27 27464176 17 73 b 6118 
85 92 93 81 61 16 83 67 b 72 
49 56 64 55 49 4 65 35 55 b 
5 7 7 10 41 45 66 7 75 15 

37 19 48 43 39 23 58 25 53 I 
68 88 75 78 67 10 89 55 41 68 
8 b b 13 42 43 62 11 72 11 
b b b 18 47 36 70 9 84 2 
b 5 5 21 46 35 78 13 81 0 
b 28 32 b 36 53 64 I 77 22 
b 73 61 60 7 3 b 92 38 90 51 
13 32 18 b 35 58 56 3 67 23 
15 10 11 3 b 93 21 84 51 19 
0 6 3 56 5 8 91 b 94 26 85 69 
b 94 78 84 b b 87 96 94 95 
62 97 85 92 b b 50 97 40 90 
21 18 25 b b 91 15 85 46 20 
55 21 42 b 32 61 80 0 32 25 
11 36 15 b 69 4 7 60 b 6 3 b 
30 42 51 50 82 15 79 b 59 b 
94 4 7 81 64 24 0 b 6 3 b 4 7 
86 81 6 7 b 20 71 b 21 b 2 7 
b 17 2 23 64 32 97 6 54 29 
b 26 27 38 52 24 82 14 87 b 
I 8 40 14 b 31 60 5 3 15 5 8 b 
K 
E 

-I 
'o IJ 

-1 'c 
Note: This isan example of the type of table used to develop the analysis in the text: i.e. constrained NDDO-RHF wavefunctions for CO. 

(a) The rankings are relative to all unconstrained and constrained RHF, NDDO-RHF and MOM wavefunctions with the same ha sis set. 
A property rank close to unity means that constraining property A will give a good expectation value for property B. 

(b) Signifies the constraint. 
(c) Signifies incomplete convergence, with a divergence in the 5th significant figure compared to the reference value. 
(d)The rank is the number of wavefunctions with lower values of c8, Cc or£, expressed as a percentage of the total number of 

wavefunctlons in the set. 
(e) The percentage of properties improved over their values when unconstrained is expressed as the total number of independent 

unconstrained expectation values, for each constrained wavefunction, which are improved. 

(d) (-½V2, IJ~. rn2) on CO with Slater basis gives 
99.93% of the RHF energy, while 'c-1 and ,0-

1 

are 99.9%, and (xcfrc 3) and ((3xc 2 - r c 2) /r c 5) 
are 98% <i'the RHF value. All other expectation 
values are quite inaccurate. 

Constrained NDDO-RHF calculations with empirical or 
theoretical expectation values for the constraints [6,34 I: 
While the unconstrained NDDO-RHF wavefunction 
gives a high energy for Lill, HF, CO and N2, the 
constrained NDDO-RHF gives comparable results to 
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the RHF theory, and 75% of all < le>, with single 
and multiple constraints, are improved. There is a 
significant improvement in the energy prediction. 

In Lill and CO for BLMO or Clementi basis, (xn) 
gives a constrained NDDO-RHF wavefunction superior 
to RHF, while CO (Burns) gives lowest energy singly 
constrained wavefunction and a good quality wave­ 
function. However (8~) is a good constraint in N2 

and CO, but very bad in Lill and Fll; (-½V2
) is 

always a poor constraint, as is x/r3; rH-,, r c-• and 
r 0-• are good constraints in Lill and CO and 
((3x2 - r2)/r5 lowers the energy; the Hellman­ 
Feynman operator (F) is ineffective. 

Multiple constraints do not significantly improve 
the effect of the constraints individually in contrast 
to the results for multiple constraints from RHF 
wavefunctions, above. This behaviour is caused by the 
incompatibility of the constraint conditions when 
applied to severely limited basis sets. Therefore a 
method could be developed to optimize a function 
dependent on several constraints to give the exact 
values of the constraints. The wavefunction would 
then be as accurate as an extended basis set. 

Constrained Maximum Overlap Method (6, 35) 

While (37) 

has been suggested, the maximum overlap method 
(MOM) (38] is not an energy extremum method. 
The method is poor for atomic orbitals of different 
energies (39), and for heteratomic diatomics using 
p11'-orbitals. The use of constraints is to overcome 
these failures: a complete minimum basis set was 
used for each molecule; inclusion of ls orbitals 
permits direct comparison of constrained MOM results 
with those from RHF and NDDO-RHF. 

Method: 
The constrained MOM finds the Slater determinant 

it's which optimize the total overlap [ 40) 

or= o 

with 

and 

q = I, ... ,s 

where Mq are a set of operators dependent on the 

co-ordinates of the electrons, and µq are the ex­ 
pectation values. 

By analogy with the RHF and NDDO-RHF 
equations, the operator 

where rk represents (xk, Yk, zk), the kth electron 
co-ordinates; hence 

r = <'111Gl'11> 

giving canonical maximum overlap equations 

m 
r < J<il Xj> Cjµ dµ 
j 

which is identical with equation (1 ). 
Defining a fictitious total overlap operator G' 

s 
G' = G + r Aq (Mq - µq) 

q 

requiring 

dr = Ii <'111G'l'11> = 0 

with 

q = I, ... ,s 

gives 

Since maximum overlap equations are true eigen­ 
value equations, no iterative self-consistent step is 
required and hence the time consuming parts of the 
RHF and NDDO-RHF methods are avoided. 

The unconstrained problem is solved giving canoni­ 
cally orthonormal functions 8 0, and all operators 
expressed as a matrix in the basis IXil are transformed 
to the basis I 80 I. The matrix 

is evaluated for A, and diagonalized to give the 
eigenvectors ~µ as linear combinations of 18 0 t. 
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The constraint expression Results (6, 36) 

n m µ 
2 l: 1:' c~µ c~µ <BulM- - IBr> 

µ U,T 2n 

is solved to give a new X, and the process repeated 
until the constraint condition is satisfied. 

Constnined MOM calculations: RHF expectation values u 
reference values for the constraints (table 3): While the un­ 
constrained MOM wavefunction gives a much poorer 
energy and expectation values than the unconstrained 
NDDO-RHF method. all constraints improve the 
MOM wavefunction, and multiple constraints give 
better wavefunctions than single constraints. 

Table 3: Constrained (RHF reference values) maximum overlap wavefunctions for CO. Basis: Slater 
RHF expectation values as constraint 

Constraint E 
Percentage 

rmo:r~:!~se I 

Property Rank8 

2 J 4 5 6 7 8 9 10 

Kinetic Energy 

diamagnetic lhleldlna 

dipole moment 
molecular quadrupole moment 
diagmagnetic suaceptibility 
field (at C) 
field gradient (at C) 
field (at 0) 
field gradient (at 0) 
nuclear attraction 
total electronic 
F 

0 0 0 
1 0 0 
2 0 0 
3 0 0 
4 0 0 

5 0 0 

6 0 0 
7 0 0 

8 0 0 
9 0 0 

10 0 0 
11 0 0 
12 0 0 

0 
0 
3 
0 
0 
0 
3 
0 
0 
0 
6 
0 
0 

10 
0 
0 
6 

13 0 
2 3 

C 1 2 
1 11 
1 4 
1 6 

C 4 2 
4 11 
II S 
11 6 
1 5 
6 S 
4 S 
4 9 
8 10 
7 9 

e 11 5 

98 8.00 98 
89 7.49 89 
91 7.50 93 
71 4.85 66 
35 3.62 33 
81 6.05 84 
15 1.89 15 
94 7.72 94 
96 7.93 96 
93 7.51 91 
72 5.24 76 
74 5.43 71 
28 3.25 23 
88 7.24 88 
69 4.81 62 
45 3.93 32 
30 3.28 25 
33 3.58 27 
11 1.87 5 
50 4.00 45 
42 3.89 42 
47 3.94 SS 
8 1.85 8 

10 l.87 6 
13 1.87 13 
18 2.40 18 
5 1.43 10 

64 4.50 72 
86 7.21 86 
6 1.82 11 

5.31 93 -134.0155 
4.79 98 -133.8908 
4.85 96 -133.9046 
2.81 83 -134.1318 
2.16 38 -134.3543 
4.37 74 -134.2081 
1.18 15 -134.4308 
5.04 94 -133.9855 
5.24 91 -134.0208 
4.81 86 -134.0764 
3.60 61 -134.2946 
3.36 84 -134.0796 
1.87 18 -134.4207 
4.54 88 -134.0643 
2.78 81 -134.1550 
2.14 45 -134.3461 
1.88 20 -134.4170 
1.98 44 -134.3473 
1.10 11 -134.4335 
2.40 64 -134.2896 
2.25 57 -134.3022 
2.59 79 -134.1909 
1.11 8 -134.4345 
1.10 10 -134.4335 
1.18 13 -134.4310 
1.48 28 -134.3986 
1.12 0 -134.4812 
3.48 59 -134.2955 
4.51 89 -134.0447 
1.12 6 -134.4367 

0 

66 
66 
77 

88 
77 
88 
66 
66 
88 
88 
70 
90 
90 
75 
71 
89 
75 
87 
57 
77 
66 

100 
85 
87 
87 
85 

100 
87 

100 

93 96 98 97 91 97 60 16 38 96 
b 98 76 83 83 82 98 3 94 83 
97 b 90 85 95 85 78 l 29 88 
14 62 b 20 81 57 45 56 92 66 
72 50 54 b 33 27 38 62 3 39 
87 90 84 75 b 63 49 94 41 84 
48 35 25 27 4 b 34 30 0 54 
95 74 94 91 85 91 b 24 36 98 
91 94 96 93 97 95 63 b 40 86 
82 92 92 95 93 93 56 15 b 92 
80 76 80 68 70 72 58 71 12 b 
68 47 29 47 68 59 87 49 98 69 
12 56 35 25 22 12 0 66 18 32 
85 80 86 89 89 89 23 20 S 90 
59 b 14 16 72 SS 43 52 96 62 
b b b 8 62 44 27 54 63 56 
b 54 41 22 25 14 3 64 30 33 
b 23 7 b 27 25 7 60 60 43 
b 27 11 31 0 b 9 28 21 52 
42 b b b 20 31 72 50 80 45 
25 17 5 b 29 23 40 58 76 4 7 
63 49 37 16 b 17 74 47 90 77 
2 33 19 43 6 b 10 5 25 41 
•• 29 13 39 b b 12 26 20 50 
46 37 21 41 b b 36 18 I 49 
70 9 58 b b 8 5 39 7 64 
57 1 52 b 8 0 61 b 9 b 
76 88 82 81 12 70 25 b 10 b 
89 70 88 87 87 87 b 22 b 94 
6 41 28 50 b b 20 0 16 37 
K 
E 

Note: Another example of the type of table used in the development of the analysis in the text; this time, constrained MOM 
wavefunctions for CO. 
(a) The rankings are relative to all unconstrained and constrained RHF, NDDO·RHF and MOM wavefunctions with the same basis set. 

A property rank cloae to unity means that constraining property A will give a good expectation value for property B. 
(b) Signifies the eons•aint. 
(c) Slgnifies incomplete convergence, with a divergence in the 5th significant figure compared to the reference value. 
(d)The rank is the number of wavefunctions with lower values of c8, Cc or E, expressed as a percentage of the total number of 

wavefunctlons In the set. 
(e) The percentage of pro,erties improved over their values when unconstrained is expressed as the total number of independent 

unconstralned expectation values, for each constrained wavefunction, which are improved. 
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The double constraint (r n 1., 8~) gives 1/1 identical 
with that from <O~>; but (rN-t, 8~) gives the RHF 
energy and expectation value; the 1/1 is completely 
determined. In several cases multiple constraints 
give the RHF energy and expectation values: (-½V2

, 

8~, r n 2) on LiH with STO gives 99 .98% of RHF 

energy. While expectation values are comparable to 
those from NDOO-RHF, the energy is always better; 
and compared to their effectiveness in NDDO-RHF, 
the operators (-½V2), (r-1), (V0.) and (T+V0.) are 
very effective in MOM for STO, Bl.MO or Burns 
basis in all molecules yielding 99.9% of the RHF 

Table 4: Constrained maximum overlap wavefunctions for CO. 
Best available experimental or theoretical values as constraint 

Basis: Sia ter 

Constraint E 
Percentage 
Properties 
Improved" 

1 

Property Rank" 

2 3 4 S 6 7 8 9 10 

Kinetic Energy 

diamagnetic shielding 

dipole moment 
molecular quadrupole moment 
diamagnetic susceptibility 
field (at C) 
field gradient (at C) 
field (at 0) 
field gradient (at 0) 
nuclear attraction 
total electronic 
F 

0 0 0 
1 0 0 
2 0 0 
3 0 0 
4 0 0 
5 0 0 
6 0 0 
7 0 0 

8 0 0 
9 0 0 

10 0 0 
11 0 0 
12 0 0 
13 0 0 
2 3 0 

C 1 2 3 
1 11 0 

C 1 4 0 
1 6 0 

C 4 2 3 
4 11 0 

11 5 0 
6 0 
6 5 
5 0 
5 0 

13 0 
10 8 
8 0 
9 0 
7 9 

1 13 0 
9 10 0 
4 10 0 

C 11 
C 1 
C 6 

4 
4 
4 

10 
7 
4 

89 7.03 90 
90 7.11 80 
72 6.26 84 
35 4.60 38 
16 3.85 15 
52 5.12 81 
45 4.90 64 
78 6.44 85 
77 6.34 76 
92 7 .43 91 
68 5.72 75 
63 5.33 47 
25 4.22 
85 6.81 88 
56 5.19 40 
58 5.24 45 
57 5.20 41 
75 6.31 77 
76 6.33 69 
44 4.81 27 
29 4.39 10 
31 4.45 62 
88 6.97 74 
96 7.69 94 
91 7.16 96 
14 3.69 56 
22 4.00 23 
28 4.31 34 
70 5.84 71 
87 6.86 89 
32 4.51 65 
97 8.13 83 
71 6.12 82 
17 3.86 11 

4.45 76 -134.0155 
3.56 92 -133.4439 
3.82 81 -133.9193 
2.19 60 -134.1168 
2.03 25 -134.3562 
3.61 51 -134.2132 
2.75 36 -134.2940 
4.02 85 -133.8224 
3.44 74 -134.0275 
4.75 82 -133.9105 
3.27 43 -134.2392 
2.25 69 -134.0586 
1.92 16 -134.4036 
4.24 71 -134.0529 
2.20 67 -134.0693 
2.25 80 -133.9349 
2.20 63 -134.1094 
3.46 95 -133.2742 
2.99 90 -133.6869 
2.12 54 -134.2030 
2.00 35 -134.2960 
2.69 55 -134.1859 
3.13 91 -133.5846 
5.12 97 -132.7965 
5.18 83 -133.9010 
2.46 23 -134.3605 
2.10 38 -134.2883 
2.16 37 -134.2932 
3.07 57 -134.1658 
4.36 89 -133.7065 
2.82 72 -134.0363 
3.80 94 -133.3636 
3.65 62 -134.1107 
2.01 22 -134.3642 

0 

77 

66 
88 
77 
66 

88 
55 
77 
22 
88 
80 
90 
80 
75 
71 
77 
50 
75 
57 
77 
66 
66 
28 
37 
62 
77 
85 
62 
50 
71 
66 
75 
75 

88~949589524372 281 
b 82 68 73 78 6 93 4 7 96 76 
92 b 86 86 90 34 0 61 9 79 
31 75 b 33 68 28 I 31 74 40 
65 68 38 b 27 65 2 23 33 6 
73 85 76 61 b 38 39 90 3 86 
76 51 73 67 43 b 24 52 16 66 
97 30 88 89 80 41 b 77 5 84 
84 69 84 75 97 I 3 51 b I 54 
95 90 98 96 84 54 47 71 b 83 
78 77 82 76 72 8 42 42 14 b 
2 6 6 35 58 27 74 34 80 38 

60 11 55 4 7 50 20 28 40 42 31 
82 86 90 93 86 50 38 78 16 80 
I b b 32 57 30 61 32 79 36 
b b b 36 65 26 48 27 89 44 
b 2 3 30 53 31 69 36 76 33 
b 48 21 b 13 98 46 81 98 56 
b 71 63 63 63 b 88 46 93 70 
7 b b b 19 57 75 43 70 13 

14 50 30 b 26 69 33 30 66 9 
4 44 22 12 b 83 35 89 64 73 

17 60 4 7 56 95 b 96 2 83 77 
b 93 77 83 b b 91 93 92 97 
81 96 96 87 b b 67 94 0 93 
57 15 52 b b 87 8 86 18 58 
75 55 59 b 21 68 17 19 7 4 
71 76 40 b 75 40 5 b 31 b 
79 6 7 80 69 94 2 5 2 b 10 b 
98 22 97 90 79 42 b 75 b 87 
91 84 69 b 23 64 b 21 b 8 
b 64 65 70 83 5 98 44 68 88 
89 80 89 80 71 12 44 39 b b 
63 65 39 b 30 63 3 18 35 b 

K 
E 

Note: Another example of the type of table used in the analysis discussed in the text. Compare carefully with table 3 which used 
RHF expectation values as the constraint, while table 4 uses the best available experimental or theoretical values for the constraint. 
(a) The rankings are relative to all unconstrained and constrained RHF, NDDO-RHF and MOM wavefunctions with the same basis set. 

A property rank close to unity means that constraining property A will give a good expectation value for property B. 

(b) Signifies the constraint. 
(c) Signifies incomplete convergence, with a divergence in the 5th significant figure compared to the reference value. 
(d) The rank Is the number of wavefunctlons with lower values of Ce, Cc or £, expressed as a percentage of the total number of 

wavefunctions in the set. 
(e) The percentage of properties improved over their values when unconstrained is expressed as the total number of independent 

unconstrained expectation values, for each constrained wavefunction, which are improved. 
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(i) :: ·(~:f ·;,r:: ;:~~':" ::,:::: 
as are multiple constraints based on them. 

In general, the MOM augmented by suitable choice 
of constraint operators gives wavefunctions of as 
good quality as the constrained NDDO-RHF wave­ 
functions. 

Conatnined MOM cllculatlona: empirical and theoretical 
reference values (table 4): Except for Lill and a BLMO 
basis, there is one or more singly constrained MOM 
wavefunction with a lower energy than the un· 
constrained NDDO-RHF wavefunction. For all 
molecules and all bases, every constraint results in 
an improved wavefunction, and lower energy. 
(a) the operators (-½V2), ,-1, Vne and (T+ Vne) 

are very effective constraints, more effective 
than in NDDO-RHF or RHF calculations: 

(b) rLi"1 in Lill for Slater t, ,H-t in FH for Slater t 
,F-t in FH for BLMO I and ro-1 in CO for 
Slater I greatly improved wavefunctions; 

(c) Vne is one of the best constraints in Lill, FH 
and CO for all bases; 

(d) (T+ Vne) gives the lowest energy in N2, Lill, 
FH and CO for most bases; 

(e) Xn, Bt rn1 give slight improvements in all bases; 

(f) x/r3 is a poor constraint, worse than (3x
2

; 

72

) 

while Fis totally ineffective; 
(g) in multiple constraints, (x0Jr<:/, xf)rl) is poor; 

<ra.-1, ,~-1) is good in Lill for BLMO I and 

(
3x&- ra.2 3x-'- ri) ---

5
-, µ 

5 
., is good in FH only; 

Tr:,. T~ 
in general multiple constraints are not better 
than single constraints; this was true of NDDO­ 
RHF and RHF constrained calculations also 
when theoretical or empirical reference values 
were used. 

In all cases, (T+ Vne) constrained MOM calculations 
are superior to (T+ Vne) constrained NDDO-RHF 
calculations; this is also true of r / constrained 
calculations. 

Thus MOM with a proper choice of constraint 
operators generates a wavefunction superior to a 
similarly constrained NDDO-RHF wavefunction. This 
is surprising when one remembers how much more 
approximate MOM is generally believed to be than 
the NDDO-RHF method. 

Constrained Configuration Interaction Method on CO 
[6, 36] 

The constrained Cl method requires finding l/lc1 
with a fictitious Hamiltonian .[!t defined in terms 
of the Lagrange multipliers 

s 

,fYr = H + 1: >-1 (M1 - µ1) 
i 

with 

6 <l/lc1I .)YI l/lc1 > = O 

and the X; defined from 

with i = 1 through s. 
Only single constraints were used; <T+ Vne> was 

required to equal the estimated theoretical expectation 
value and <xn>, <B~> and <rn 2> to equal the 
experimental expectation values. Three types of 
constrained Cl calculations were performed. 
(a) First Excitation Cl: all symmetry allowed single 

excitation configurations were included; 15 
Slater determinants and 8 contributing con­ 
figurations. 

(b) Iterative Natural Orbital [41] first excitation Cl: 
after constraining by (a) the first order spinless 
density matrix is diagonalized to give spinless 
natural orbitals [42], and the natural orbitals 
of highest occupation number are used to give 
a new dominant configuration. The remaining 
natural orbitals are used to construct single 
excitation configurations. The constraint is 
applied and the method iterated until a change 
of less than 1x10-4 in the spinless density 
matrix is reached, usually 5 iterations. This is 
an alternate method for obtaining a constrained 
RHF wavefunction. 

(c) First and Second Excitation Cl: all symmetry 
allowed singly and doubly excited configurations 
are included: 108 Slater Determinants and 4 7 
contributing configurations (S2 eigenfunctions). 

Results: 
There is a decrease in energy due to Cl but the 

unconstrained singly and doubly excited Cl wave­ 
function yields poorer expectation values than the 
unconstrained RHF wavefunction for 6 out of I 0 
properties. 

When constraints are introduced:- 
(a) Cl does not improve the prediction of < le> 

by the constrained RHF wavefunctions: Cl 
cannot compensate for a poor basis set. 

(b) The close agreement between the expectation 
values from constrained first excitation Cl 
wavefunction and the constrained RHF wave­ 
function permits either to be used for most 
rapid convergence. 
The same results are obtained using Cl with 
NDDO and maximum overlap wavefunctions. 
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(c) With the constraint operators (T+ Vne ), Xn and 
0~, the iterative natural orbital first excitation 
Cl procedure converges to the RHF wave­ 
function. In r n 2 the iterative natural orbital 
wavefunction gives a much lower energy than 
the constrained RHF wavefunction, and this is 
because of the large difference between the 
expectation value of the constraint operator 
calculated with the unconstrained wavefunction 
and the reference value of the constraint 
operator. When this occurs great care should 
be used in determining wavefunctions with the 
constrained RHF method. 

theory and configuration interaction theory, suggests 
that the behaviour of the constrained vnriational 
method of RHF is so erratic as to make it valueless. 
It only appears to have reasonable behaviour for a 
selected basis in a selected molecule for selected 
constraints, see table 5 and figure 1. The real interest 
lies in the MOM; perhaps here we can fully describe a 
true MO wavefunction and then minimize the energy, 
avoiding all problems of basis sets, exponents and 
types of atomic orbitals. 

Conclusion 

This analysis of four molecules, with three basis 
sets for each, thirteen one-electron operators and 
seven multiple one-electron operators, several orbital 
exponents and weighting factors, within the RHF 
theory, the NDDO-RHF theory, the maximum overlap 

Table 5: Expectation values of some properties of CO calculated with constrained wavefunctions with a Slater basis. 
Constraint operator: T + Vne 

RHF8 First First and Second Reference Excitation Cl Excitation Cl 

Kinetic Energy 111.675 I 11.706 111.894 113.379 
1.704 1.673 1.485 

diamagnetic shielding I 8.4465 18.4517 18.4521 18.372 
-0.0745 -0.0797 -0.0801 

diamagnetic shielding 24.7292 24.7291 24.7524 24.998 
0.2688 0.2689 0.2456 

dipole moment -0.83059 -0.84900 -0.83545 -0.04407 
0.78652 0.80493 0.79138 

0 molecular quadrupole moment 18.1671 18.1354 18.1073 17.071 
-1.0961 -1.0644 -1.0363 

X magnetic susceptibility 38.9527 38.9401 38.9145 39.887 
0.9343 0.9469 0.9725 

field (at C) 1.46847 1.46690 1.46660 1.76001 
0.29154 0.29312 0.29341 

field gradient (at C) 1.87829 1.86993 1.79786 2.5500 
0.67171 0.68007 0.75214 

field (at 0) -0.96767 -0.97088 -0.96909 -1.32001 
-0.35233 -0.34912 -0.35091 

field gradient (at 0) 1.75176 1.72605 1.81532 2.023 
0.27124 0.29695 0.20768 

nuclear attraction 308.5 I 3 308.543 308.731 310.216 
1.703 1.673 1.435 

total energy -196.837 -196.837 -196.837 -196.837 
0.000 0.000 0.000 

Hellman-Feynman 1.06940 1.03430 1.04686 0 
-1.06940 -1.03430 -1.04686 

Energy -134.5221 -134.5309 -134.6545 

(a) RHF wave/unction determined using an iterative natural orbital first excitation Cl procedure 
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SC F WAVEAJNCTIONS CONST1U,INED TO 
EXPERIMENTAL EXPECTATION VALUES 
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Figure 1: A typical plot of the behaviour of the various expectation values for Nz, CO, Fff and Liff with particular basis sets: 
N2 - 4 gaulllian with Slater orbitals; 
CO - 4 gaussian with (i) Slater 

(ii) Clementi 
and (iii) Burns exponents; 

Fff - 4 gauasian with (i) Slater 
and (ii) BLMO exponents; 

and Liff - 4 gaussian with (I) Slater 
and (ii) BLMO exponents. 

The horizontal dashed line represents the expectation value of the kinetic energy. Two different symbols are used for each 
basis in each molecule for the expectation value: 

(a) the expectation values of wavefunctions constrained with constraints other than the kinetic energy; and 
(b) the constnlned expectation values of wavefunctions constrained to give the kinetic energy. 

Thus t:. o or X represents the expectation values from the wavefunction constrained by constraint other that kinetic energy; 
and <>, * or o represents the expectation values when the kinetic energy is the constraint. 
A good constraint would put t:., o or X along the line, or closer to the line than the unconstrained value, constraint 0. 
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Direct Minimisation Schemes - 
Some Difficulties and Possible Resolutions 

B.T.Sutcliffe and D.Garton* 

If one wishes to minimise the electronic energy of a molecule, considered as a function of the linear 
coefficients (basis function coefficients), then some of the more modern direct minimisation methods, 
are obviously extremely attractive, particularly in the context of energies found from complicated 
wavefunctions like LCAO-MO-SCF functions. 
Some results will be presented which indicate that the methods are not so attractive as might at first 
be thought, and an analysis of the reasons for their relative failure will be presented together with 
some methods of remedying their defects. 

Introduction 

Recently interest has been revived in 'direct' 
methods of minimising the energy with respect to 
such parameters as nuclear position, orbital exponents 
and orbital (linear) coefficients, following the pio­ 
neering work of McWeeny [ 1 ,2) using the steepest 
descent methods. In particular Fletcher [3) showed 
how it was possible to use one of the more modern 
conjugate-direction techniques in such direct mini­ 
misation, and an approach similar to that of Fletcher 
was later exploited by Kari and Sutcliffe [4) and by 
Claxton and Smith [ 5) . Claxton and Smith concen­ 
trated on optimising the linear coefficients in an 
unrestricted Hartree-Fock (UHF} approach for systems 
which had proved convergent only with difficulty 
using more conventional techniques. Though Claxton 
and Smith were able to obtain convergence using a 
direct method (in fact the Fletcher-Reeves method 
[6) ), they commented that the method proceeded 
only very slowly and could not compete with con­ 
ventional methods when these methods worked. The 
object of this paper is to try to explain why it is that 
direct methods have so far proved so disappointing 
for linear coefficients in closed and in unrestricted 
LCAO-MO-SCF calculations, to see how far we may 
anticipate similar difficulties in LCAO-MO-MC-SCF 
calculations, and to suggest possible methods for 
their resolution. 

Direct Methods of Minimisation 

Most modern direct minimisation techniques are 
based on choosing a sequence of directions in the 
co-ordinate space in which the function f(x) is to be 
minimised, and finding a sequence of points by 
minimising, or at least decreasing, the function value 

along the chosen direction until a minimum point is 
found. The most effective of the modern methods 
are based on the supposition that sufficiently close 
to the minimum the objective function f(x) can be 
expanded in a Taylor series to second order. 

(!) 

where x is a column vector of co-ordinates and the 
matrix H (the Hessian matrix at the minimum) is 
assumed to be a real symmetric, positive-definite, 
non-singular matrix. If this is possible the gradient 
of the function g(x) may be written 

g(x) = b + Hx (2) 

with g/x) = of/ox;, and hence the minimum point 
a0 may be found from any arbitrary point a as 

(a0 - a) = -It' g(a) (3) 

provided that H is non-singular. 

It can be shown that this problem can be solved 
in just II steps without having to invert Hor indeed 
without explicit knowledge even of H, by constructing 
a sequence of conjugate-directions, that is a seq uence 
of directions P; such that 

0 (4) 

(5) 

and rrumrrusmg the function along these directions. 
That is, if at any point x = a, one knows the direction 
p = p(a ), then one constructs the function 

* Department of Chemistry, University of York, Heslington, York, YOI 5DD 
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FU,) = f(a + ">..p) (6) The LCAO-MO Closed Shell Problem 

and finds the value of A, a say, that minimises F(A) 
and then the next point in the descent sequence, 
a, is chosen according to 

a = a +a », (7) 

It is easy to see that at the point ii 

gtp = 0 (8) 

where 

g = g(li) (9) 

and that therefore 

(10) 

and that 

(11) 

Many methods are available for choosing such 
conjugate direction, examples are the method of 
Powell [7) which dees not use the gradient matrix, 
the method of Fletcher and Reeves [6) which uses 
the gradient matrix and Fletcher and Powell's modifi­ 
cation of Davidon's method [8), which uses the 
gradient matrix and also yields an estimate of the 
inverse Hessian at the minimum. A general discussion 
of such methods in the case of quadratic functions 
may be found in Huang [9) see also Dixon [I O]. 

It is clear however from the above discussion that 
considerable difficulties may arise in utilising one of 
these methods if the Hessian matrix is not positive 
definite. Thus in this case it is possible that the 
denominators in (I~ 111a (I I) become zero so that 
the location of a minimum in the direction p is just 
not possible. Even if the methods do not fail overtly 
because of this, it is the case that proof of quadratic 
termination for the methods depends on the positive 
definiteness of H so that one might well expect poor 
convergence even wil.111 the method does not fail 
outright. 

Using the notation of McWeeny and Sutcliffe [I I) 
the energy function in the closed shell problem may 
be written as 

E = 2tr hR + tr G(R)R (12) 

where h is the matrix of one electron integrals and 
G(R) the usual electron interaction matrix, both in 
the atomic orbital basis. The matrix R is defined as 

R = rr' (I 3) 

where T is the m by n matrix that relates the n 
doubly-occupied molecular orbitals to the chosen 
atomic orbital basis (TJ). 

This function as it stands is not a suitable object 
for use in a direct minimisation procedure since the 
varaibles of the problem, the linear coefficients, Tir, 
are constrained by the orthonormality requirements 
among the molecular orbitals, namely 

rt s r = 1 (14) 

where S is the overlap matrix in the atomic orbital 
basis and I is the n dimensional unit matrix. 

These constraints can be incorporated, as was 
first shown by Fletcher [3) , by writing 

T = YU (15) 

where Y is an m by n matrix of unconstrained 
variables and the n by n matrix U is chosen to supply 
the constraints. In terms of (I 4) it is seen that U 
must satisfy the equation 

u u' = cyt sYr' (I 6) 

and for the sake of brevity we denote (Yt SY) by A. 
It follows therefore that we may write 

(17) 

We shall now show that the Hessian at the minimum 
in the closed shell SCF problem is indeed singular 
and we suggest that 1la-is may be the origin of the 
difficulties experienced by Claxton and Smith and 
others. The demonstration we use may be generalised 
immediately to the UHF method, and a similar 
approach used in the general LCAO-MO-MC-SCF 
problem. 

and since the energy depends only on R, we see that it 
is unnecessary to specify U more closely than by (16). 

Following Fletcher [3) (see also Kari and Sutcliffe 
[12)) we may determine the gradient of E with 
respect to the variables Yir by noting that under the 
change Y .• Y + 8 Y such that E .• E + 8£, then 

R-> R + YA-1 ,syt (/ - SR)+ (I - RS) M-1 yi" (18) 

(19) 
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where 

oA = o yt SY + yt S sr 

and that 

G(R) -> G(R) + G(oR). 

W' = 4 l - S o R f YA-, 

(20) + (/ - SR) (foY A-, -f Y £' o.4 .4-1) 

+ (I - SR) G (o R) Y £1 (:!6) 

(2 I) 

After a little manipulation it may be shown that 
for real Y, that 

-S(YA-, oY(J-SR) 

+ (I -R S) oY A-, Y) fYA-1 

se = 4tr(I-SR)fY£' ,syt 

where 

f = h + G(R), 

and hence, 

(22) 

(23) 

(24) 

so that the gradient can in this case be represented 
by an m by n matrix 

W = 4 (/ - S R)f Y .4-1 (25) 

with the row indices labelling the atomic, and the 
column indices the molecular orbitals. 

It would thus seem that choice of the elements 
of Y as the variables of minimisation according to ( I 5) 
is an extremely good choice since one is able to 
express the gradient of the energy in a compact 
manner in terms of them. Furthermore, they are 
peculiarly suitable for a direct minimisation procedure 
precisely because they are unconstrained variables 
and so do not need to be modified to satisfy an 
ancillary condition at each iteration. As was pointed 
out by Fletcher [3) if one chooses a variable set 
subject to an ancillary condition which one needs to 
restore at the end of an iteration (for example if 
one chose T) and restored orthonormality one cannot 
use a direct minimisation process because the infor­ 
mation from the previous iteration is 'spoiled' by the 
restoration of constraints and so the advantages of 
direct minimisation are lost. However the advantages 
of many direct minimisation procedures may well be 
lost if the Hessian at the minimum turns out to be 
singular, and as we shall now show, unfortunately 
in the basis provided by the elements of Y the 
Hessian at the minimum is indeed singular. 

To determine the Hessian of the problem we must 
find the second variation in E, and it is easy to 
see that under a variation Y -> Y + o Y we get 
W .• W + w' where: 

m n 
+ r r xir oY· ,, 

j=l r=l 
(27) 

where 

xi' = 
IS 

where Bpt,qk is the electron-repulsion supermatrix 
with elements. 

Bpt;:ik = 2<qplglkl>-<qplgllk> 

(28) 

(29) 

where the integral notation is that of McWeeny and 
Sutcliffe [ 1 l). 

Since we are interested only in the Hessian at the 
minimum, we can use the fact that at the minimum 
W = 0, to simplify (27) somewhat, and it is easily 
seen that at the minimum the second and third 
terms in (27) vanish to give 

m n 
+ _r r xir o >'J, } 

,==I r::;1 
(30) 

that is 

= 4j((I - SR)f);j A~ - ((I - SR)S);j 

so that the Hessian at the minimum has elements 
given by (31) where it is understood that all quantities 
dependent on Y in (31) are given in terms of the 
minimising Y, though this is not explicitly indicated 
in the equation. 

From (25) it is easy to see that at the minimum 

fRS - SRfRS = 0 (32) 

and that 
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SRf-SRfRS = 0 (33) 

so that the matrix (/ - S R)f is symmetric at the 
minimum and hence the Hessian itself is symmetric, 
as required. We can therefore write the Hessian as 
a partitioned matrix of dimension n by n in blocks 
of dimension m by m, the MO's labelling the blocks 
and the AO's labelling the rows and columns within 
a block. The r,s block clearly has the structure 

II'"= 4A~(l-SRf-4A~(l-SR)S+4Z'" (34) 

where 

A = A(yt{Yf1 A (35) 

and 

(36) 

Now let us suppose that we have found a matrix T, 
that minimises E by satisfying the usual equations 

fT = ST& 

rt ST= I 

(37) 

(38) 

Then we know that we can write the minimising R 
as T rt and the minimum f as the one obtained 
from (37). Consider now the mn by I column 
matrix t whose first m rows are T1 whose second m 
rows are T2, and so on, where T, is the ,th column 
of T. We can then construct 

i = Ht (39) 

where ; is a column matrix whose first m rows are 

n ;1 = I: Hu T, 
•=I (40) 

and so on. If we write out the expression for t' 
explicitly we get 

n 
t' = 4 I: A~(l-SRYJ'-A;!(I-SR}YT+Z'"T, (41) 

1=1 

But 

(I - S R)f T, = f T, - S T rt f T' 
= fT, - &,ST. 

= 0 (42) 

(I - S R)S T, = ST, - ST T ST, 

=ST,-ST, 

= 0 

and 

where 

X,.,;p 

(Z'" T,); 

m 
= I: Z'J T 

i=l JI IS 

m 
= . I: Xrs,jp (/-SR)ip T. 

1p;I 

= 

(43) 

(44) 

m 
E (I - S R);q (BplAk + Bpl,kp) k),q ;J 

(45) 

so that 

= 

= 

m 
I: 

i,p=l 

m m n 
I: Xnjp (T ps - E I: Tpu 7iu Su 7;, 
p=I iFI u=t 

= 
m n 
I: Xrsjp (T ps - I: lius Tpu) 
p;I u;I 

= 0 (46) 

We therefore conclude that i' = 0, so that we can write: 

Ht = Ot (47) 

and hence we conclude that t is an eigenvector of H 
with zero eigenvalue so that H is singular and not 
positive definite. 

Jn fact the above demonstration may easily be 
extended to show that the Hessian at the minimum 
has precisely n2 zero roots, by the following means. 
We can regard the Hessian as being defined in an mn 
dimensional vector space and we can define a basis 
in this space by choosing n2 vectors tp, p= 1,2, ... ,mn, 
according to the following specification, Select one 
column Tq from then possible columns of T. Let Ip 
be the vector that has Tq as its first m rows and 
is null elsewhere, let fp+I have Tq as the second m 
rows and be null elsewhere and so on. It is easy to 
see that the n2 vectors so chosen are linearly in­ 
dependent since they are orthonormal in a metric 
specified by the matrix partitioned as is H but with 
S forming the diagonal blocks and with null blocks 
elsewhere. It follows at once from (40) to (45) 
that these n2 vectors are eigenvectors of H with 
null eigenvalues. The vector t that we chose in 
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equation (39) is of course just the linear combination 
of degenerate eigenvectors 

t = t1 + tn+2 + f2n+3 + ---tn2 (48) 

The Origin of the Zero Roots in the Hessian 

Let us suppose for the moment that we had 
formulated our energy expression originally in terms 
of a set of non-orthonormal orbitals related to the 
atomic basis 1/ by the matrix Y. Then it is easy 
to see, using the formulae for matrix elements between 
determinants of non-orthonormal orbitals (see e.g. [ 11] 
pages 49-51) that the energy expression obtained is 
just (I 2) but now with R defined directly by (I 7). 
Thus had we worked without any constraints at all, 
we would have obtained precisely the same equations 
as we have already for the gradient and for the 
Hessian and would, in consequence, have encountered 
precisely the same difficulties. In the light of this 
it is perhaps misleading to regard U in equation (I 5) 
as a constraint supplying matrix, but rather as a 
constraint removing matrix. One can therefore regard 
the minimisation problem we have so far formulated 
as the one of determining the non-orthonormal 
molecular orbital at any stage and then, using the 
freedom that one has in the one-determinant approxi­ 
mation, performing a linear transformation among 
them to produce an orthonormal set. It would seem 
likely therefore that it is precisely because we have, 
even at the minimum, this freedom to perform an 
arbitrary n by n linear transformation among the 
solution vectors that we have a Hessian with n2 

degenerate zero roots. It further seems likely that 
if instead of removing the constraints we had used 
the constraints to remove variables from the problem 
and hence effectively to remove the freedom to 
perform an arbitrary linear transformation among 
the solution vectors, then we should not have a 
singular Hessian for the problem. 

In this context it is clearly interesting now to 
investigate the full LCAO-MO-MC-SCF problem for 
which the energy expression is (in the notation of [ I I]) 

E = ~ ~ T;; hij 1]s Pisr 
r,s ij 

In this notation the gradient matrix was shown 
by Kari and Sutcliffe [I 2) to take the form 

W = 2 (X cfi - SY VB vt yt) (50) 

assuming a symmetric orthogonalisation procedure, 
and one of the present authors (D.G.) was able to show 
that W took precisely the same form as (50) (though 

it was not equivalent to it) if a Schmidt ortho­ 
gonalisation procedure was used. Here X is the 
MC-SCF equivalent of the Fock Matrix 

X = h TP1 + Z (5 I) 

with Z the equivalent of the G matrix 

and V is the orthogonal matrix that diagonalises S. 
B is a rather complicated matrix involving the 
eigenvalues of S and details of it can be found in 
the paper of Kari and Sutcliffe [ I 2). 

It is an extremely difficult (if not impossible) 
matter to determine from (49) a general expression 
for the Hessian, particularly in the case of symmetric 
orthogonalisation. However it is possible (see [13]) 
though even then, extremely tedious, to determine 
the form that the Hessian will take at a point in 
configuration space where the orbitals are in fact 
orthogonal, that is where 

U = In, yt SY = Im (53) 

It is possible further to specialise this result by 
transforming it (much in the spirit of Hillier and 
Saunders' work [14)) to a 'temporary solution' 
basis, that is a basis in which we have conditions (53) 
obeyed but in which we also have 

S = I (54) 

and in which we can write 

y = (~) (55) 

implying that we are expressing the Hessian at the 
given point in terms of the orbitals found at that 
point (which are not of course the solution orbitals) 
and in this basis it is convenient to write 

w = (~)" 
A m-n 

(56) 

where A + 0, ~ + ~ t, as a solution is achieved. 

In this basis it is possible to show that the Hessian 
can again be regarded as blocked, with elements in 
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each block: explicitly of the Hessian or an estimate of it. In this 
method the descent direction are chosen according to 

H~q = -1/s(>. + >.t),.. lipq -1/s (). + >.t)pq Ii,. 

+ 3/s(). + ).t hp Oqs +3/s (). + ). t)sq Opr 

-½ >.tp liqs (57a) 

+ ¼(~ + Kr:1 - ~ - Kl:D for p, q ~ n 

forp.;;;n, i>n (57b) 

(57c) 

HJ[ = -½(>.t + >.),. lio + Kff 

and where this expression 

for i, j > n (57d) 

(58) 

And it is very easy to see from these expressions 
that at the solution point (~ = 0, ). = ).t) that: 

H!r=m:=o i = 1, 2, ---m (59) 

Thus there are in general precisely n rows and columns 
in the Hessian at the solution point which consist 
only of zeros, so that the Hessian has even for the most 
general case n zero roots, so that it is only positive 
semi-definite and we may assert that the 'reason' 
for the occurrence of these n zero roots is precisely 
the arbitrary nature of the orbital normalisation 
conditions. There is of course in general in this case 
no energy invariance under linear transformations 
among these n orbitals. It is clear also from this 
discussion that in any particular LCAO-MO-MC-SCF 
if there are sub-groups of orbitals which, when 
subjected to linear transformations, leave the energy 
invariant, then even more than n zero roots may 
occur in the Hessian. It is also clear however that 
'natural' orthogonality due to symmetry will not in 
itself increase the number of zero roots. 

Minimising in the Presence of Zero Roots in the 
Hessian 

The work described in this section was begun 
before the authors were aware explicitly of the 
presence of zero roots in the Hessian. The method 
used was the Fletcher-Reeves method (F-R method) 
[6) which commends itself to anyone interested in 
large minimisations because it does not make use 

(60) 

and it is easy to show of equation (I I) that in the 
quadratic case ~i may be written as 

(61) 

Thus in the F;R method it is only necessary to retain 
the gradient matrix from the previous iteration in 
order to construct the next descent direction. 

The F-R method derives from a conjugate gradient 
method first proposed by Hestenes and Stiefel [15) 
for the solution of linear equations, and in the 
original paper Hestenes and Stiefel consider the 
positive semi-definite case explicitly and show that 
in that case the method converges, if minima are 
found along each search direction, and the method 
converges to at least squares minimum of the problem. 
Straightforward extensions of their argument show 
this to be true for the F-R method also. Thus the 
presence of zero roots in the Hessian is not fatal to 
the F-R method unless one happens to have a 
genuinely quadratic function and alight by accident 
on a direction which is an eigenvector of the Hessian 
with zero eigenvalue, in which case as can be seen 
from (11) a increases without limit, that is a minimum 
cannot be found in the direction of search. However 
the proof of quadratic convergence for the F-R 
method depends on the fact that the conjugacy 
condition ( 4) implies that the set of directions Po 
through Pn-l are linearly independent. However 
this is clearly not necessarily so unless H is positive 
definite. Thus quadratic convergence cannot be 
guaranteed even in a nominally quadratic function 
in this case. 

The initial trials of the F-R method were under­ 
taken using the UHF approach in the INDO 
approximation on some large organic free radicals, 
which had failed to respond to the conventional 
Roothaan treatment. The behaviour of these first 
trials was so favourable to the F-R method that 
nothing would be gained from detailing the results 
here beyond saying that the F-R method always 
worked but was always slightly slower than the 
conventional method (when both worked), but it 
always approached an accurate minimum of the 
problem very slowly indeed, that is if one wanted to 
refine the results past the acceptable conventional 
limit, the process was very slow. Furthermore the 
energy surface appeared to be very quadratic almost 
from the start of the problem (which was always 
the equivalent set of Hiickel vectors) in the sense 
that if the energy was plotted as function of distance 
along the search line the plot was a parabola in good 
approximation. The fact that the surface was so 
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quadratic meant that the rmrumurn along the line 
could· always be found accurately and quickly by 
cubic interpolation, in the results obtained by cal­ 
culating the energy along the line in steps of length 

(62) 

where Em is an estimate of the minimum energy of 
the problem and E; the energy at the current iteration. 
If Em were the true minimum along the line and 
the section along the line a true parabola then k would 
be et, the optimum step length. If Em was fed in 
as a reasonable lower bound to the final energy, k 
was nearly always an over-estimate of et, but a single 
interpolation between the point reached using k and 
the original part always gave a very good estimate 
of the minimum. 

This work was followed up by some non-empirical 
work also using the UHF method, even in 'closed' 
shells to allow for the possibility of splitting if it 
was energetically favourable to do so. In tables I 
and 2 a summary of results on the HF molecule is 
presented. The calculation here was performed in 
4s 6p basis on F and 2s on H, the orbitals being 
contracted from Huzinaga 's (9s, 5p) basis for F and 
4s for H. In table 3 a summary of the results on 
the F atom is shown, the calculation being a repeat 
of Huzinaga's 9s 5p uncontracted calculation. In the 
HF problem there are 56 non-zero elements in the 
Y matrix and there are 16 constraints not supplied 
by symmetry. In the F problem there are 61 non-zero 
elements in the Y matrix and 9 constraints not 
supplied by symmetry. Thus one might hope that 
at worst the HF molecule would converge in 40 to 60 
iterations and the F problem in 50 to 60 iterations 
if the surfaces were truly quadratic. 

Table 1: HF molecule 

Cycle ER £FR <g'g) et 

-100.561227 -100.617807 50.57 0.003 
2 -102.783456 -104.127781 529.199 0.167 
3 -104.439168 -104.563877 S 1.61 0.001 
4 -104.908306 -104.697114 45.93 0.005 
s -105.113306 -104.792196 44.81 0.004 

Table 2: HF molecule 

Cycle E <fg) et 

30 -105.173754 2.659 0.022 
40 -105.191753 0.135 0.002 
so -105.199341 0.029 0.002 
60 -105.202825 0.090 0.023 

Table 3: F atom 

Cycle ER £FR (g~) et 

1 -85.913583 -88.613314 IS 240.2 3 0.004 75 
2 -94.460655 -88.918065 1728.04 0.00004 
3 -98.353704 -89.200206 341.09 0.00033 
4 -99.197832 -89.285109 4169.67 0.000498 
s -99.364629 -91.477661 1216.27 0.00106 

If HF is considered first, it is clear that on a simple 
iteration for iteration basis the Roothaan method is 
superior to the F-R method, but this is in fact not a 
fair comparison because the average time for an F-R 
iteration in this system is about twice that for an 
iteration of the Roothaan method, chiefly because 
it proves extremely difficult to locate the linear 
minima in this calculation. This difficulty arises not 
because the surface is not quadratic, for it seems to 
be on the basis of tests such as those described above, 
but rather because the formula (62) now seems to 
fail to estimate a step length adequately. This 
problem persists right through to the end of the 
calculation and the termination behaviour is clearly 
reminiscent of the termination behaviour of a 
steepest-descents procedure. 

The results of the F atom calculation are clearly 
pathological in the extreme, and yet tests again 
indicate that the surface is highly quadratic at all 
stages. It should also be mentioned that even after 
40 iterations of the F-R procedure here the results 
are still appreciably far from the minimum. 

The authors believe that these two calculations 
are fairly representative of the behaviour of the F-R 
method in non-empirical UHF-SCF calculations, in 
the sense that we have found few calculations to 
proceed better than the HF one and none worse 
than the F calculation. 

The source of the difficulty clearly cannot lie 
in actually having chosen a direction in which et 
increases without limit, for the et values are not in 
any case excessively large, nor has a minimum ever 
failed to be located along the line of search. However, 
the fact that the termination of the process is very 
like a steepest descents termination perhaps provides 
a clue to the difficulty. In the steepest descents case 
it is known that as the iterations proceed one becomes 
trapped in a subspace of the full n-dimensional space 
and there is reason to believe that this is a two 
dimensional subspace. Now if in the F-R procedure 
at some early stage in the process, a direction linearly 
dependent on the preceeding directions has been 
chosen, one would move back into a subspace of the 
full search space. Furthermore one would be in a 
subspace that has already been at least partially 
searched so that only a very small further lowering 
in energy could be expected. Of course if one moved 
into such a subspace by accident one might also move 
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out of it by accident, but as the sequence of iterations 
continue one might expect the linear dependence 
problem, if incipient, to become more acute simply 
from accumulated rounding error. Thus one would 
expect to end up trapped and to experience slow 
final convergence at very least. 

Now it is easy to see a simple circumstance in 
which linear dependence, at least to machine accuracy, 
could well arise; that is the case in which g; is very 
small compared with li+l so that /3; is very big, 
and if Pi is of the order of li+l then 

(63) 

and clearly something like this can arise at iteration 
2 in the HF problem and at iteration 4 in the F 
problem. However linear and near-linear dependence 
can be much more sophisticated than this and it is 
quite tricky to test for in detail. However, the 
behaviour observed is consistent with the presence 
of linearly dependent directions, and while recognising 
that this may not be the source of all the trouble 
encountered in using the F-R method, it is clearly 
worthwhile investigating the possibilities of modifi­ 
cation of the method to try specifically to avoid such 
a possibility. In passing it should be said that the 
authors are not yet clear as to why the F-R method 
did so well in the semi-empirical calculations, but 
this may be because of a relatively better starting 
point in these calculations. 

Choosing Linearly Independent Descent Directions 

As far as the theoretical properties of the F-R 
algorithm are concerned ( or indeed any related 
algorithm) to avoid linear dependencies it would 
seem likely that it is sufficient to use the orbital 
constraints (see equation (14)) to eliminate redundant 
variables from the basis and if the minimisation 
procedure is cast in terms of the non-redundant 
variables then the Hessian of that reduced problem 
should be non-singular and hence the F-R method 
should work. It appears to be quite difficult to show 
in detail however that such a step is sufficient to 
achieve a positive definite Hessian (though one of 
us [16] has attempted a more detailed discussion in 
the closed shell case). It is also not at all clear that 
it is necessary to take this step. 

In a discussion of the use of the Powell [7] 
method of minimisation, Raffinetti and Ruedenberg 
[17] develop a procedure for eliminating the redun­ 
dant variables. However it is extremely difficult to 
get closed expressions for the gradient in terms of 
the non-redundant variables in this approach so that 
its use appears to be confined to methods like Powell's 
method which do not utilise the gradient explicitly. 

Fletcher and Bradbury [ l 8] also consider the 
possibility of elimination in the case of solving the 
ordinary secular problem for a single root by the 
F-R method. They advocate the arbitrary fixing of 
one component of the eigenvector. This device 
effectively confines the possible solutions of the 
problem to these lying on the faces of hypercube 
and the face of the hypercube along which mini­ 
misation is to occur is determined by the choice of 
element fixed. However it is not known in advance 
whether a minimum exists on this face. If a minimum 
does not exist on the chosen face then this should 
be shown up by an element other than that chosen 
becoming greater than the chosen element, in which 
case the vector must be renormalised so that the 
emerging element is now fixed, and the minimisation 
process must be started afresh along the newly 
chosen face. 

In the general case the equivalent tactic would 
be to fix ½n (n + 1) values of Y and then to attempt 
to minimise the energy. Presumably the equivalent 
behaviour in the event of no minimum existing 
would be for the matrix A (cf equation (16)) to 
become singular. If this occurred then one would 
simply have to choose a new set of fixed values that 
avoided this. Alternatively, of course, there is the 
possibility that fixing elements of Y makes the closest 
stationary point of the function, one other than the 
lowest minimum sought (an 'excited state'). In this 
case also one would have simply to restart the 
process from with a new choice of fixed elements. 

It is clearly not possible to specify any general 
strategy in respect of choosing the elements of Y to 
be fixed, beyond saying that of course no more than 
n elements and no less than one element should be 
fixed in any one column. It seems a case where 
numerical trials alone can decide whether a general 
strategy is possible for the problem. It should also 
be remembered that such a strategy may not even 
be necessary, thus in the MC-SCF case it seems quite 
likely that it may well be sufficient just to fix one 
element in each column of Y. 

However this may be, the analysis so far does 
suggest another method of tackling the problem 
which we illustrate below simply in the closed shell 
case. 

Suppose that at any stage of a minimisation 
process we have a matrix 

(64) 

and from the matrix f evaluated at T1 we construct 
a matrix f such that 

(65) 

and find a matrix Q1 which diagonalises f such that 

202 



(66) 

and define a matrix Z 1 = T1 Q1. Let us also invent 
an m by m-n matrix Z2. and define a new basis 

such that in this basis 

where &2 is diagonal and 

(69) 

In this basis clearly 

Ti • f = (t-) 

(67) 

(68) 

(70) 

It then follows immediately from (25), (68), (69) 
and (70) that the gradient matrix with respect to 
the elements of 'f is just 

(71) 

We can find the Hessian at the point 'f (that is, 
not at the minimum) by noting from (26) that in 
general we must add to (31) a term for the (jr, is) 
element 

(72) 
- (SY A-1);, Wis +(SY A-1)js W;, + (W yt S);j (X1\s 

where W is given by (25). 
After some manipulation it can be shown that 

the Hessian with respect to the elements of T at 'f 
is blocked (cf. equation (34)) with blocks of the form 

11'5 = 4.s ( .. ~ ... .=.~W) + 4 (·q_ ... ~W) 
rs B<2> : H B(2) H. rr-r rs rs 

where H, is diagonal with elements. 

(73) 

(H, ); = (&n+t - &, ) + 3 <(n + i )rlg\r(n + i )> 

- <(n + i)r\gl(n + i)r> (74) 

The matrix B~) is null but for its 'th row which 
is the sth row of [12 and Bi;> is similarly null except 
for its sth column which is the 'th column of [21. 

Now we have seen in equation (10) that it is 
always possible to decrease the value of locally 
quadratic function if we choose a direction p such 
that gt p * 0 and pt H p ;;. 0, even if H is not 
positive definite. Now if we choose our direction 
vector in this problem so that its 'th group of m 
rows is given by 

(0 : 0)- Pr = -¼ : W 
0 .n: r . r 

(75) 

where W, is the 'th column of W, then it follows 
at once that, if we can neglect terms in Hrs, 

m m 
gtp=ptllp""-4'i:- 'i:- [j,(ft,1)j[j, (76) 

ra::t j=n+l 

and since H, is certain to be positive definite we have 
achieved the desired result, in the following sense. 
We have ensured that the p, are directions of descent 
at least for locally quadratic functions and we have 
also ensured that near the end of the procedure 
when H, is effectively constant then we can show that 
the directions chosen are conjugate with respect to 
H, and hence linearly independent. That the directions 
so chosen are effective minimisation directions de­ 
pends of course on the legitimacy of neglecting terms 
in H,5 and on the assumption of quadraticity near 
the minimum. Furthermore the point reached along 
p will not satisfy the orthonormality conditions, so 
that the discussion of direction conjugacy is somewhat 
problematic. 

We can rewrite (7 5) in terms of a rectangular m 
by n matrix P with elements 

P;, = 0, i.;; n 

if21)i-n/((&, -&;)- 3<irlg\ri> + <irlglir>), 

t >n (77) 

and then the next point in the descent is found by 
constructing 

t = T +XP 

and minimising the energy with respect to X. Using 
(63) we can write the change in terms of the Z; as 

(78) 

where .I\, is just the non-zero part of P written as 
and (H,sfti contains similar off-diagonal terms. an (m-n) by n matrix. 
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The matrix t1 does not of course satisfy the 
orthonorrnality constraints, so it should be regarded 
as a next estimate of Y and treated accordingly to 
determine X. It violates the constraints only by 
terms of order (P1, )

2 which vanish as the minimum 
is reached. 

The up-dating equation (78) is seen at once to 
be of precisely the same form as that proposed by 
Hillier and Saunders [ 14) and indeed our up-dating 
matrix Pb differs from the up-dating matrix B pro­ 
posed by these authors only in the presence in Pb of 
electron interaction terms in the denominator. Since 
these terms are probably in most instances small 
compared with the orbital energy differences, it is 
perhaps legitimate to neglect them and we can regard 
this method as being essentially equivalent to that 
of Hillier and Saunders, a method which is known 
to work extremely well in practice. 

It seems worthwhile therefore to look for a 
method analogous to the Hillier and Saunders method 
for use in the MC-SCF case, and work is at present 
in progress here. However in the MC-SCF case it 
is by no means as clear as here what one may neglect 
in order to avoid storing too much of the Hessian. 
We are also currently investigating the fixing of 
elements in the Y matrix in a simplified MC-SCF 
scheme. 

It would appear therefore that it might well be 
possible to construct schemes which are appropriate 
and effective in particular problems in Quantum 
Chemistry, using the general considerations applied 
in direct minimisation. 
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The Theoretical Interpretation of the Low 
Energy Photoelectron Spectra of Transition 
Metal Complexes 

M.F.Guest* and I.H.Hilliert 

The He(I) photoelectron spectra of a number of transition metal complexes containing different 
ligands are interpreted by means of ab initio SCF-MO calculations. It is found that ionization 
potentials calculated assuming Koopmans' theorem are seriously in error due to the considerably 
greater orbital relaxation accompanying ionization from metal than from ligand orbitals. When such 
allowance is made for orbital relaxation by performing RHF calculations on the ionic states the 
experimental spectra can be satisfactorily interpreted. 

Introduction 

Low energy (He(I), He(II)) photelectron (p.e.) 
spectroscopy is potentially a very powerful method 
of studying the electronic structure of transition metal 
complexes. It is often possible, especially in the case 
of molecules of high symmetry, to assign the p.e. 
spectra using chemical arguments and comparisons 
with spectra of related molecules. Such assignments 
are usually made in terms of molecular orbitals (m.o.s) 
arising from either mainly metal or ligand atomic 
orbitals. If Koopmans' theorem is not greatly in error 
then the one-to-one correlation between the order 
and relative energy of the valence ionic states and 
filled m.o.s allows inferences to be made concerning 
the bonding in the metal complex. For most mole­ 
cules composed of first and second row atoms 
Koopmans' theorem applied to ab initio wavefunctions 
of approximately double zeta quality is successful 
in calculating the observed ionization potentials (i.p.s). 
There are of course situations such as N 1 where there 
are closely spaced m.o.s in the molecular ground state 
so that more accurate calculations including both 
relaxation and correlation effects are necessary to 
predict the ordering of the ionic states. We have 
previously found that even for core ionizations where 
the orbital relaxation energy is large, Koopmans' 
theorem is accurate in predicting the variation of 
core i.p. with chemical environment (ESCA chemical 
shifts), the relaxation energy being independent of 
chemical environment [I] . 

In our study of the p.e. spectra and electronic 
structure of transition metal complexes containing a 
variety of ligands we have found that assignment 
of the p.e. spectra and the associated deductions 

concerning the bonding in the complexes are compli­ 
cated by serious deviations from Koopmans' theorem 
and that quite detailed calculations are necessary to 
obtain a correct interpretation of the experimental 
data. In this paper we review our findings for a 
number of molecules in order to establish trends of 
behaviour rather than to discuss in detail the bonding 
in individual molecules. 

Computational Details 

All electron ab initio self-consistent field m.o. 
calculations were performed in bases of contracted 
gaussian type functions (g.t.f.s). The core, metal 4s 
and ligand 2s orbitals were Slater type orbitals (s.t.o.s) 
with best atom exponents fitted by 3 g.t.f.s/s.t.o. 
Ligand 2p orbitals were Hartree-Fock orbitals fitted 
by 4 g.t.f.s and hydrogen Is and metal 4p orbitals 
were s.t.o.s having exponents of 1.2 and near I re­ 
spectively each fitted by 3 g.t.f.s/s.t.o. [2,3). For 
dibenzene chromium and chromium tricarbonyl ben­ 
zene an expansion of the metal 3d orbitals in 5 g.t.f.s 
was used [ 4] , whilst in the other molecules a double 
zeta basis of metal 3d s.t.o.s expanded in 3 g.t.f.s/s.t.o. 
was used. 

The valence i.p.s were calculated in two approxi­ 
mations. Firstly from the ground state wavefunction 
using Koopmans' theorem, and secondly by performing 
a restricted Hartree-Fock (RHF) calculation on each 
valence ionic state and obtaining the i.p.s directly 
as the energy difference between the doublet ionic 
state and singlet ground state (ti.SCF method). This 
latter procedure thus allows for orbital relaxation 
to occur, accompanying the ionization process. We 

* Atlas Computer Laboratory (Science Research Council}, Chilton, Didcot, Oxfordshire, OXIJ OQY 
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now discuss the bonding and p.e. spectra of a number 
of transition metal complexes. 

Nickel Tetracarbonyl, Cobalt Tricarbonyl Nitrosyl, 
Iron Dicarbonyl Dinitrosyl [5] 

The isoelectronic series Ni(CO)4, Co(COhNO, 
Fe( COh (NO)2 were studied in order to see if a 
comparison of the ligand properties of CO and NO 
could be made from an investigation of the p.e. 
spectra of these molecules. In figure 1 we show the 
low energy regions of the He(I) spectra of these 
molecules. It can be seen that there is a close 
resemblance between all three spectra. The inter­ 
pretation of the spectrum of Ni(CO)4 is straightforward 
in terms of the i.p.s calculated from Koopmans' 
theorem (table 1), the two peaks with approximate 
intensity ratio 3 : 2 arising from the highest filled t2 
and e m.o.s of mainly nickel 3d character. The 
similarity of the spectra of Co(COhNO and Fe(COh - 
(NOh to that of Ni(CO)4 implies an approximate 
metal d10 configuration for these two complexes, 
the increase in the number of peaks for Fe(CO'>,(NO)2 
being due to the reduced molecular symmetry. Such 
metal configurations with their associated negative 

Table 1: Ionization potentials (e V) of Fe(COh (NOh, 
Co(CO)3'{O, Nl(CO)4 

Experi- Calculated Symmetry and Character 
mental of Ground State m.o. (%) 

KT 6sCF 

Ni(CO)4 2 8.90 11.7 7.0 St2; 65 (3d) T2 
2E 9.77 13.S 7.8 :U; 90 (3d) 

Co(CO)3'{O 
2E I 8.7 6.7 Se; 57 (3d) 
2A

1 
8.90 12.9 6.7 Sa,; 78 (3d) 

2E 9.82 14.1 7.8 7e; 86 (3d) 

8.7 7.9 6b1; IS (3d), 74 (NO) 
9.1 8.1 1n.1; 19 (3d), 70 (NO) 

12.6 7.S 6b2; 64 (3d) 
15.1 9.4 9a1; 83 (3d) 
16.0 9.6 3a2; 77 (3d) 

Co and Fe charges are in disagreement with the 
calculated ground state charge distribution (table 2) 
which give substantial positive charges in both mole­ 
cules. In addition these low energy i.p.s cannot be 
correlated with the values given by Koopmans' 
theorem (table 1). In both Co(COhNO and 
Fe(COh(NO)2 the two highest filled m.o.s (Be, and 
6b1 and 10a1 respectively) have large ligand con­ 
tributions (Be, 43%; 6b 1 , l0a1 'v 70%) and are 

Table 2: Charge distribution in Ni(CO)4, Co(CO)3'1O, 
Fe(CO),(NO)2 

Ni(C0)4 CotCO)3NO Fe(COl2f.NO)2 

Metal 3d population 9.2 7.9 6.6 
Atomic Charge 
Metal +0.S +0.6 +1.0 
Carbon +0.2 +0.2 +0.2 
Oxygen (CO) -0.4 -0,3 -0.3 
Nitrogen 0.0 -0.2 
Oxygen (NO) -0,2 -0.2 

followed by three mainly metal rn.o.s (8a1 and 7e 
for Co(CO)JNO; 6b2, 9a1 and 3a2 for Fe(CO),(NO)2 ). 
The energy spread of the five m.o.s is calculated to 
be 'v5 e V and 7 e V in the Co and Fe complex 
respectively, so that no assignment of the p.e. spectra 
can be made using these values. When the RHF 
calculations on the ions are performed it is found 
that there is a striking variation of relaxation energy 
with the atomic orbital character of the m.o. from 
which ionization occurs. Thus, for ionization from 
the highest filled m.o. of Co(CO):iNO (Be) having 
substantial ligand character the relaxation energy is 
2 eV whilst for the mainly metal 8a1 and 7e m.o.s 
it is 6.2 e V. This result places the 2 £ and 2 A I states 
derived from the Be and Ba1 m.o.s at the same 
energy, followed by the 2 £ state arising from the 7e 
m.o, at I.I e V higher energy. The two peaks in the p.e. 
spectrum of Co(CO)JNO with intensity ratios near 
3 : 2 are thus explained as arising from the first 2 £ 
and 2 A I states and the second 2 E state respectively. 

-----··- ---- 
NI \CO}, 

J~ 
• 10 12 

Figure I: He(I) p.e, spectra of Ni(CO)4, Co(CO)3NO and 
Fe(COh (NO)2 

A similar situation is found for Fe(CO), (NO),. 
The relaxation energy associated with the 6b1 and 
10a1 m.o.s having considerable NO character ('vl 
e V) is considerably less than the values for the 
6b2 and 3a2 m.o.s (5-6 e V) having mainly metal 3d 
character. Such variations in the relaxation energies 
reduces the spread of the first five i.p.s from 'v 7 e V 
given by Koopmans' theorem to 'v2 e V and allows 
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an assignment of the p.e. spectrum of Fe(CO)z(NOh, 
Thus, the first i.p. arises from ionization of the third 
highest-lying 6b2 orbital (mainly metal), the second 
from ionization of the 6b1 and I 0a1 m.o.s having 
a large ligand character and the third from ionization 
of the other two metal orbitals, 9o1 and 3o2• 

Dibenzene Chromium and Chromium Tricarbonyl 
Benzene [4] 

The He(I) p .e. spectrum of dibenzene chromium 
( CrBz 2) has been reported by Evans, Green and 
Jackson [6], and shows two low energy bands at 5.4 
and 6.4 eV with intensity ratio 1 : (3.5-4). If a 
chromium d6 configuration is assumed for the 
complex then these two peaks may be assigned to 
the mainly metal o1g and e2g m.o.s. As in the iso­ 
electronic series previously described there are further 
bands in the p.e. spectrum which may be assigned to 
mainly ligand m.o.s. The corresponding p.e. spectrum 
for chromium tricarbonyl benzene BzCr(COh [4] 
shows but a single peak in the region where metal 3d 
ionizations are expected at 7 .5 e V, implying that 
there is no splitting between the metal e and o1 m.o.s. 
The experimental i.p.s for these two molecules are 
compared with the calculated values in table 3. 
On the basis of Koopmans' theorem the lowest 2E2g 
state is calculated to be below the lowest 2 A lg state 
of dibenzene chromium, in contradiction to a simple 
interpretation of the p.e. spectrum. However, in­ 
spection of the atomic orbital composition of the 
8a11 and 4e2g m.o.s shows that whereas the former 
is essentially localized on the chromium atom, the 
4e,g has nearly equal contributions from the metal-3d 
and benzene 7f orbitals. Indeed, the 4e21 orbital 
provides the largest contribution to the chromium-3d 
benzene-Zprr bond, this interaction arising from 7f 

back-donation into the le2u7f· m.o. of benzene. 
The ASCF calculations reveal substantially more 
relaxation energy associated with the 801g m.o. (6.2 
eV), and reduce the calculated separation of the 
2A11 and 2E2g states from the 3.8 eV given by 
Koopmans' theorem to 0.2 e V. However, the 

Table 3: Ionization potentials (eV) of Cr(Bzh and BzCr(CO)) 

Experi- Calculated Symmetry and Character 
mental of Ground State m.o. (%) 

KT i)SCF 
oo», 

l Atg 5.4 11.3 5.1 8a1g; 92{3d) 
l 6.4 7.5 4.9 4e,g; 53 (3d) E2g 

BzCr(CO)) 
lE 7.5 8.4 6.1 l 7e; 51 (3d) 
2A, 7.5 11.1 6.1 l 7a1; 79 (3d) 

experimental ordering of these two levels is still 
incorrectly given, although the calculated splitting is 
in error by only 1.2 e V. It is anticipated that a 
better basis, particularly a more flexible 3d one, 
would remove this inaccuracy. 

In the case of BzCr(C0)3, Koopmans' theorem 
predicts a splitting of 2.7 e V between the lowest 2 E 
and 2 A I states although none is observed experi­ 
mentally. As in CrBz2, thee m.o. is calculated to 
have 'v50% ligand contribution, whereas the a1 m.o. 
is mainly metal 3d (79%). The ASCF calculations 
give greater orbital relaxation associated with the o1 

(5 eV) than with the e m.o. (2.3 eV), so that the 
2£ and 2A1 states are calculated to have the same 
energies in agreement with the single line observed 
in the p.e. spectrum of this molecule. 

Iron Tricarbonyl Butadiene [ 3] 

The mode of bonding of butadiene in transition 
metal complexes has been the subject of much 
discussion. As a result of our ab initio calculation 
of this complex we predict there is greater metal .• 
ligand 7f donation into the first virtual 2b I m.o. of 
butadiene than 7f back-bonding from the highest filled 
la2 m.o. of the ligand, so that the charge distribution 
in complexed butadiene bears some resemblance to 
that of the butadiene anion. The low energy p.e. 
spectrum of this complex (figure 2) is considerably 

Figure 2: He(I) p.e. spectrum of Fe(CO))C4H6 

more complicated than those of the other molecules 
discussed here, and without the aid of a suitable 
calculation any assignment would appear rather 
difficult. However, a comparison of the intensities 
of the various bands in a p.e. spectrum using both 
He(I) and He(ll) radiation can often provide some 
empirical information of the atomic character of the 
orbitals giving rise to the bands. With the aid of 
a He(II) spectrum of iron tricarbonyl butadiene, 
together with information obtained from He(I) and 
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He(II) spectra of simpler carbonyls where the assign­ 
ment is rather more certain, the following tentative 
conclusions emerge concerning the origin of the 
first four bands of figure 2. 

(a) Band I contains three essentially metal levels, 
together with one possessing significant buta­ 
diene character; 

(b) Band 2 arises from an orbital also possessing 
significant metal character; 

(c) Bands 3 and 4 arise from orbitals largely 
localized on the butadiene entity. 

Table 4: Ionization potentials (eV) of Fe(C0)3C,.J{6 

Metal 3d Koopmans' L'l.5CF Band E . 
Orbital Character Assign· xpen- 

(%) Theorem Method ment mental 

31a' 33 8.1 6.5 1 8.8 
18a" 10 10.8 9.9 2 ? 9.9 
3<kl' 51 12.6 7.7 1 8.8 
11a" 66 13.8 10.8 1 8.8 
29a' 34 14.1 13.4 3 ? 11.5 
28a' 65 14.7 9.0 1 8.8 
16a" 13 15.4 4 12.9 

We first review this interpretation of the low energy 
p.e. spectra in the light of the ground state m.o.s of 
table 4. Amongst the first seven filled m.o.s there 
are indeed three with large metal character (30a', l 7a" 
and 28a'), two with quite significant metal character 
(3 la', 29a') and two with rather small metal character 
(I Sa", l 6a") which are mainly butadiene in origin. 
Although an assignment of the p.e. spectrum based 
upon orbital character can thus be made which is 
consistent with the deductions based upon intensity 
arguments, the calculated ordering of the m.o.s is not 
in line with such an assignment. In particular. those 
m.o.s of mainly metal character lie below the top 
two m.o.s of mainly butadiene character. From our 
previous discussion of other metal complexes we 
would thus expect a reordering of the ionic states 
obtained - from Koopmans' theorem due to the 
different relaxation energies associated with the m.o.s 
of different atomic orbital character. This is in fact 
found, and the i.p.s calculated by the .O.SCF method 
are shown in table 4, which now allow a fairly 
satisfactory assignment of the p.e. spectrum. Thus 
band I is associated with the mainly metal 30a', J 7a" 
and 28a' m.o.s and with the 31a' m.o. having 
substantial butadiene character. We correlate bands 
2 and 3 with the l 8a" and 29a' m.o.s respectively 
o'i mamry 'ou'!aaiene cnaracter and band 4 with the 
16a" butadiene m.o. The order of the ionic states 

calculated by the .O.SCF method is in line with this 
assignment except for the relative positions of the 
two 2 A" states arising from the I 8a" and 17a" 111.0.s. 
Furthermore, it should be noted that using arguments 
based upon correlations between orbital character 
and band intensities the assignment of bands 2 and 
3 would probably be interchanged from that given 
in table 4. These discrepancies are however to be 
expected for a molecule of this size in view of the 
limited basis used and the neglect of correlation effects. 

Iron Tricarbonyl Cyclobutadiene (7] 

The low energy p.e. spectrum of iron tricarbonyl 
cyclobutadiene (figure 3) is considerably simpler than 
that of the butadiene complex although its inter­ 
pretation is no more obvious. Only two peaks are 
resolved below 12. e V, (at 8.4 and 9 .2 e V), although 

i - 
I 

i 

------ ---- - - --- ------- 

" " " "' 

a number of metal orbitals and those m.o.s giving 
rise to the metal-cyclobutadiene bonds are expected 
to occur in this region of the spectrum. The two 
highest filled m.o.s of the complex are seen to be 
nearly degenerate (table 5) and involve the metal 3d 
orbitals ("'20%) and the partially filled e8 n m.o.s 

Table 5: Ionization potentials (e V) of Fe(C0)3C4H4 

Metal Koopmans' .0.SCF Experi- Orbital Character Theorem Method mental (%) 

l1a" 21 9.2 8.1 
} 9.2 31a' 22 9.3 8.2 

3<kl' 50 13.8 8.4 \u 16a" 65 13.9 IU 
29a' 44 13.9 
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of cyclobutadiene. The next three m.o.s are also 
nearly degenerate and have larger ("-'50%) metal 3d 
components. The remaining m.o.s are largely ligand 
in character. From this data it is plausible that the 
two bands in the p.e. spectrum arise from these 
two groups of m.o.s. A comparison of the band 
intensities using both He(l) and He(ll) radiation 
suggests that band 2 has mainly ligand character, 
and band I mainly metal character, and from the 
shapes it seeme likely that band I has more contri­ 
buting ionizations than band 2. Thus Koopmans' 
theorem fails to provide a satisfactory explanation 
for the low i.p. region, since the calculations of 
table 5 would predict that band I arises from the 
l 7a" and 31a' m.o.s of mainly cyclobutadiene 
character, and that band 2 arises from the closely 
spaced metal orbitals (30a', I 6a" and 29a'). The 
results of the t.SCF calculations show that there 
is much more orbital relaxation acocmpanying ioni­ 
zation from the mainly metal orbitals than from 
the ligand m.o.s. As with dibenzene chromium, 
the calculated differential relaxation is not quite 
sufficient to invert the order of these two groups 
as required by the experimental data, but we consider 
band 2 is best assigned to the two ligand rr ionizations 
and band I to the three mainly metal ionizations. 
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Conclusions 

It is clear that an assignment of the low energy p.e. 
spectrum of many transition metal complexes cannot 
be made on the basis of Koopmans' theorem since 
we have found that orbital relaxation accompanying 
ionization from the mainly metal 3d m.o.s is much 
larger than that from m.o.s having a large ligand 
component. A similar situation has also been found 
for ferrocene (8] and bis-(rr-allyl) nickel [9]. When 
this difference is taken into account the experimental 
spectra are much better reproduced. We note that 
greater orbital relaxation is associated with the 
localized metal orbitals than with the relatively 
delocalized ligand m.o.s. In an attempt to obtain a 
semiquantitative relationship between the spacial 
extent of a m.o. and the relaxation energy we have 
computed expectation values of the second moment 
operator r2, for the occupied m.o.s of the molecular 
ground state and we find that variations in <r2> 
and the reciprocal of the relaxation energies follow a 
similar trend. A similar result has been found in 
the study of core hole states when there is greater 
relaxation energy associated with localized core holes 
than with delocalized ones [ I ,I O]. 
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Ah Initio Calculations of Transition Metal 
Complexes and Organometallics 
A.Veillard* 

Some features of ab initio calculations which are specific to systems involving transition metals will 
be discussed briefly: use of large basis sets involving many d-functions, possibility of recognizing 
negligible integrals, how to take advantage of the usually high symmetry. A short description of 
the possible organization of the programs will be given. Some problems connected with the calculation 
of ionized and excited states will be mentioned. Physical or chemical results which may be obtained 
will be surveyed in the light of recent calculations carried out in Strasbourg; 
- calculation of ionization and excitation energies; 
- calculation of binding energies and linkage isomerism; 
- possible mechanisms of stereochemical nonrigidity; 

binding of molecular oxygen by metal complexes. 

Ab initio calculations of transition metal complexes 
raise the following questions: 

what type of complexest are presently amenable 
to ab initio calculations and what are the technical 
requirements on this type of calculations? 
why ab initio calculations for complexes? In 
other words, what benefit in the field of physical 
chemistry or chemistry can we expect from ab 
initio calculations? 
Transition metals start with the filling of the 3d 

orbitals. This implies that 3d functions in the LCAO 
basis set are now essential to the description of the 
bonding instead of accounting solely for the polari­ 
zation effects. A fair description of the polarization 
effects for the first and second row atoms can be 
achieved usually with only one d function. Experience 
has shown that in order to describe satisfactorily the 
3d valence shell, one needs at least four or five d 
gaussian functions for each d orbital. Since we work 
with a set of six d functions XX, XY, XZ, YY, YZ, 
ZZ, this implies for each metal atom a total of 
between 24 and 30 d gaussian functions. The basis 
set for relatively simple complexes being usually in 
the range of 250 to 300 basis functions, d functions 
represent of the order of I 0% of the basis set. 
Then about 35% of the two-electron integrals will 
involve at least one d function. The calculation of 
these integrals involving d-functions being one order 
of magnitude slower than for integrals involving 
only s and p functions, we see that most of the two­ 
electron integral calculation time is spent over inte­ 
grals involving the d functions. 

There are two major possibilities to cut down the 
time for integral calculation. The first one is based 
on the grouping of integrals which have certain 
terms in common. This has been found an efficient 
procedure for integrals involving only s and p 
functions [ 1,2] . However, this represents a much 
more complicated task for integrals involving d­ 
functions. The other way is to take advantage of 
the relatively high symmetry of many complexes, 
as proposed first in POLY ATOM [3]. We have 
reported in table I some systems investigated recently 
in Strasbourg together with their molecular point 
group. Most of them have relatively high symmetry 
and this results in a large number of integrals being 
zero be symmetry or being equal to within a sign. 
We use an algorithm similar to the one of the POLY­ 
ATOM program (3] in order to generate a list of 
unique non-zero integrals. From table I one may 
see that this results in an appreciable time saving. 

Many transition metal complexes have an open­ 
shell configuration in their ground state or in the 
excited states. We deal with open-shell systems 
through the restricted Hartree-Fock procedure of 
Roothaan with two hamiltonians [4]. However, this 
is a relatively expensive procedure for large basis sets. 
Either the one hamiltonian procedure ofRoothaan [4] 
or the orthogonality constrained basis set expansion 
method for treating off-diagonal Lagrange multipliers 
[ 5] might lead to more economical large SCF cal­ 
culations. Each excited state is obtained through an 
independant SCF calculation, since one major con­ 
clusion reached was that electronic relaxation is a 

* Centre National de la Recherche Scientifique, Universite Louis Pasteur, BP 296R8, 67 Strasbourg, France 
t Jn what follows, the word complex will be taken in a very broad sense, including an assembly of ions like NiF';; or some molecular 

species like NiN 2. 
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Table l: Some representative calculations of transition metal complexes 

System 
Molecular 
Point 
Group 

Point group used Number of 
in Integral Evaluation Gaussian 
Highest Highest b Functions 

Symmetry• Symmetry 

Number of 
Contracted 
Functions 

Number of 
Two-electron 

Integrals 
(x 106) 

Number of 
Unique Non-zero 

Integrals 
(x 106) 

Integral 
Computation 

Timec 

Mn04 Td 
NIN2 End-on C..., 
NIN2 Side-on C2v 
Cu(H20)i+ C2v 
Cu(H20)~+ C2v 
euc1t D3h 

C4v 
Fe(CO)s D3h 
Co(pcacen)d C2v 
Co(acacen)02 C5 

[Co(acacen)02CN]- C5 

C2v 
C4v 
C2v 
C2v 
C4v 
C4v 
C4v 
C2v 
C2v 
C2v 

C2v,C4v 

142 
102 
102 
174 
202 
202 
202 
212 
236 
268 
300 

61 
43 
43 
77 
90 
90 
90 

115 
83 
93 

103 

1.788 
0.44 7 
0.447 
4.510 
8.386 
8.386 
8.386 

17.703 
6.077 
9.555 

14.346 

0.463 
0.073 
0.120 
1.145 
1.258 
1.938 
1.040 
5.520 
1.715 
3.716 
5.871 

3h 44' 
35' 

lh 5' 
5h 11' 

6h 20' 

'\.,J lh 
'vl3h 
'vJ3h 
"-'22h 

(a) For a subset of the system 
(b) For the whole system 

(c) On the Univac 1108 
(d)acacen stands for (HNCHCHCHO-h 

prime factor in determining the sequence of excited 
states [6,7]. However, when one has to deal with 
many excited states, it may become more economical 
to perform a configuration interaction calculation 
limited to the monoexcited configurations and based 
on the virtual orbitals from the ground-state SCF 
calculation [8]. 

Among the questions which one may try to 
answer is the electronic configuration of the ground 
state for some complexes. The degeneracy of the 
3d orbitals is lifted in the complex but the energy 
splitting between the 3d orbitals may remain small. 
This results in several electronic configurations with 
close energy values when the number of d electrons 
is different from zero or ten. The species CoN2 [9] 
has a 3d9 configuration which may result in the 
electronic configurations 2 I:, 2 n or 2 LI. for the end-on 
conformationt (C.v point group) and 2A1, 

201, lA2 

N 

M---N---- M-- 

N 

0 

M---O~ 

0 

M--- 

0 

Fisure 1: End-on (left) and lide-on (right) bonding or the 
N 2 and 02 ligands 

or 2B2 for the side-on conformation (C2• point group) 
(figure I and figure 2). Calculation at the SCF level 
predict a lI: ground-state [I OJ. Settling the electronic 
configuration of the ground state represents for 
CoN2 a prerequisite to a discussion of the possible 
linkage isomerism (cf below). 

A similar situation occurs for FeCO or FeN2 
(FeN2 has been reported recently in matrix isolation 
experiments [II] and Fe(COf has been identified 
in ion cyclotron resonance experiments [ 12] ). With 
a 3d8 configuration, the most probable electronic 
configurations for a linear molecule are 1 I: or 3 E 
(figure 3). SCF calculations give the b3I: (al 1r4 ,52 
configuration) as the ground state, followed by the 
other triplet state a3 I: (al 54 1r2 configuration). 
Similar results should hold for the isoelectronic 
system FeN2, recently observed, for which the ground 
state is then expected to be a triplet. 

Co-- - N---N 

co- - -i 
N 

+- * +- * +- 
* * * * * * * * * * '• 'n ' • 

-t- 

* * 
2 2 2 2 2 
o.t.1, •r "2· 12,b"-1 

* * FiJure 2: Pollllible electronic configurations for CoN2 ( end-on or side-on) 

t In order to avoid any confusion with the electronic configuration, we use here the word conformation to denote the geometric 
configuration. 
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TT +- +- 6 +- +- 
-t+ -t+ * * -t+ -t+ 6 -t+ -t+ TT -t+ * I .32 •'2 2 

Figure 3: Possal>le electronic configurations for linear FeCO 
or FeN2 

Transition metal complexes usually display a rich 
electronic absorption spectrum in the visible and 
near UV, since there are several possibilities of 
electronic excitations, either d+d (ligand-field) ex­ 
citations or charge-transfer excitations from ligand 
to metal but also from metal to ligand. One of 
the major difficulties which the experimentalists face 
is the assignment of the observed transitions. In 
this respect the calculation of excitation energies 
will be helpful to the experimentalists if SCF 
calculations of excitation energies may be shown 
to lead to the right sequence of excitation energies 
(even if the computed excitation energies are in error 
by several thousands crn"), 

Table 2: Computed excitation energies (in cm-•) for the 
D4h configuration of the Cul1i'° ion8 

Excited State Excitation Nature of Type of the 
and Transition Energy the Transition Transition 

2 8 100 dxy +dx2-y2 B2g (2b2g+ 6b1g) 
2 Eg (2eg + 6b1gl 9 900 d +d }d+d 
2 

xz,yz x2-y2 
A lg (8a1g + 6b1gl 10 500 dz2 +dx2-y2 

2 32 200 71'L +dx2-y2 A2g (2a2g + 6b1gl 
2£~ (9eu + 6b1gl 37 700 11' +d 2 2 { 
2 B:iu (2b2u + 6b lg) 40 400 

L x -y charge 
11' +d 

2 L x2-y2 f transfer 
Au (4a2u• 6b1g) 48 100 71'L +dx2-y2 

2£~ (Seu + 6b1gl 50 900 aL +dx2-y2 

• Excited states corresponding to allowed transitions 
(a) Experimental (in cm-•, with previous assignment): 

10 900 (dz2 + dx2-y2), 13 100 (dxy + dxLy2), 

14 300 (dxz,yz + dx2-y2), 24 000 (11' + dx2-y2), 

33 300 (71' + dx2-y2), 38 · 500 (71' + dx2-y2), 

49 000 (a + dxLyl) [14] 

In table 2 we have reported the computed ex­ 
citation energies (7) together with the experimental 
transitions and previous assignments (based on crystal 
field calculations) [ I 3 ,14] for the square planar 
eual- ion (D4h point group). For the d-d excitations 
our calculation leads to a different assignment from 

the previous one, namely 

2
B2g (d,y + d,2-y2) <2

Eg(d'7.)'Z + d,i_y2) 

<'A1g(d,1 .• d,i-yi )_ 

This is supported by the experimental evidence from 
the polarized spectra and magnetic circular dichroism 
(MCD) spectra, leading to a similar assignment, for 
Pdaf and nc; (15,16]: 

1A 1d .• d ) <1£ (d + d ) 2g ~ xy x2-y2 g xz,yz x2-y2 

<1818 (d22 + d,2-y2). 

Our computed excitation energies for the two 
allowed charge -transfer transitions to the states 
2Eu (11' 9eu + 6b18) and 

2B2u (2b2u + 6b,8) are very 
close with a difference of about 2500 cm? and fall 
at longer wavelengths than the excitation to the state 
2Eu (a Seu + 6b18). This is supported by the 
following sequence for PdCli- inferred from the 
polarized and MCD spectra [ 16]: 

The electronic spectrum of the anion Ni(CN)t 
has been the subject of many experimental investi­ 
gations. The sequence of excited states assumed on 
the basis of the experimental work ( electronic ab­ 
sorption spectrum and MCD spectrum) was the 
following in 1972 (17] 

I I • < £8 (d + d 2 2) < B1u (d + 11' ) xz,yz x -y xy 

while the sequence based on the computed excitation 
energies was found [ 6] 

1 3 • I <A2u<Eu(dxz,yz•11' )<Eu 

with the 3 •1 B1u states at much higher energies. Gray 
and Ballhausen have recently proposed a new assign­ 
ment of the experimentally observed transition (18], 
which is quite different from the previous one and 
much closer to the theoretical sequence 

1B1g <1£<aA2u CA2u·3Eu) < c3Eu·3B1u·3A2u·'Eu) 

<bA2u (3Eu.1A2u) <1Eu 

(the bracket notations refer to spin-orbit mixed states). 
One will notice particularly that the transition to 
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the 1B1u state, which was considered previously to 
be the lowest charge-transfer transition, has now 
been discarded. 

Table 3: Computed binding energy (in kcal/mole) for the 
aquo ions Cu<Jl20)';; 

Molecular Binding n Point Group• Energy 

4 Td 338 
D4h 348 

5 D3h 381 
C4v 381 

6 D4h 409 

(a) For the skeleton of Cu and O atoms 

The chemistry of metal ions in solution is deter­ 
mined by the properties of their aquo ions, namley 
the complexes M(H2 0);:'+. Calculation of the binding 
energy associated with these ions should give some 
insight into their structure. In table 3 we have 
reported the binding energies computed for the ions 
Ot(H20)~+ (n = 4,5,6) (10). The largest binding 
energy of 409 kcal/mole is associated with a co­ 
ordination number of six, the species O.4(H2 0)t+ 
assuming the configuration of a distorted octahedron 
due to the Jahn-Teller effect. Since the experimental 
hydration energy of the eu2+ ion amounts to 502 
kcal/mole [19), this means that the salvation energy 
corresponding to the outer-shell molecules of water 
represents of the order of 20% of the hydration 
energy. It is generally believed that exchange of 
water molecule from the first coordination sphere 
of the metal ion occurs through an SN! mechanism 
with an intermediate M(H2 0)r+ assuming a square 
pyramid structure (20) . The computed binding 
energies of table 3 indicate that the square pyramid 
and the trigonal bi pyramid structures have comparable 
stabilities and that a lower limit to the activation 
energy for the exchange reaction would be 28 kcal/ 
mole, the difference between the binding energies 
for n = 6 and n = 5. 

Linkage isomerism corresponds to the ability of 
certain ligands to bind to the metal atom in more 
than one way. Both the dinitrogen ligand N2 and 
the dioxygen ligand 02 may display two different 
bonding types, either end-on or side-on (figure I) [ 11]. 
The dinitrogen ligand in most transition metal­ 
dinitrogen complexes studied to date (like Ni(l\/2)4) 
is bonded end-on with a linear or near-linear M .. N ... N 
skeleton. However two cases have been reported 
recently with the dinitrogen molecule bonded in a 

sideways fashion (9,21). An extremely intriguing 
finding (based on the pattern of NN stretching modes 
in the matrix infrared spectrum) was the conclusion 
of Ozin and colleagues that, for the monodinitrogen 
complexes M(N2), both NiN2 and FeN2 correspond 
to end-on bonding while the bonding in CoN2 would 
be in a sideways fashion [ 11] . They emphasized 
that 'these three compounds were synthesized under 
virtually identical matrix conditions and that the 
observed structural variations from end-on to side-on 
bonded N2 must reflect properties characteristic of 
the metal atom' (id est electronic factors). 

We have reported in table 4 the total energy 
computed for the ground state of NiN2 and CoN2 
both end-on and side-on bonded. Given the lack of 
any structural data, a full geometry optimization, 
with respect to both the Ni-N and N-N distances, 
was carried for NiN2• For CoN2 we optimized only 
the Co-N distance. Our results support the hypothesis 
of Ozin that the difference of bonding between NiN2 
and CoN2 arise from electronic factors and not from 
matrix effects. For NiN 2 we find the end-on structure 
to be more stable than the side-on by 7 kcal/mole t. 
For CoN2 this value is reduced to 0.7 kcal/mole, 
still in favour of the end-on structure. However such 
a small energy difference is probably beyond the 
accuracy of this calculation. A significant result is 
the increase in the relative stability of the side-on 
complex when going from Ni to Co. 

Table 4: Energy results for the species CoN2 and NiN2 
(with geometry optimization) 

Species Ground Computed 
State Energy 

NiN2 -End-on I l;+ -1612.3704a 
Side-on 'A, -1612.35858 

Difference 7.4b 

CoN2 End-on 2l:+ -1487.08918 

Side-on 2A, -1487.08808 
Difference 0.7b 

(a) In au (b) In kcal/mole 

There is a strong experimental interest in oxygen 
carriers complexes, id est complexes which can bind 
molecular oxygen in a reversible way. Some synthetic 
oxygen carrier cobalt complexes have been recently 
characterized, and they are sometimes considered as 
models for the haemoglobin and myoglobin molecules 
which carry reversible oxygenation in life processes. 
Co(acacen) is such a synthetic carrier, with the 
oxygen adduct written usually Co(acacen )L02 , with 

t This relatively small energy difference makes understandable that complexes have been reported with dinitrogen bonded to the 
Ni atom in a sideways fashion (21], possibly because of the electronic effect of the other ligands or because of packing effects 
in the crystal. 

214 



L the second axial ligand (L may be a solvent 
molecule) (figure 4) (22). In these complexes, the 
02 molecule binds in an end-on fashion, the Co0102 

angle being of the order of 126°. Binding of dioxygen 
has been previously discussed either in a qualitative 
way (23) or through extended Hiickel calculations 
[24) but only in the case of linear ( CoO 1 02 = 180°) 
or perpendicular (sideways) bonding. The degenerate 
rr and 7f orbitals of the dioxygen molecule are split 
in these complexes (while similar Fell complexes 
are diamagnetic, these Coll complexes are experi­ 
mentally known to have one unpaired electron) and 
there are four possible electronic configurations for 
the ground state of the dioxygen adduct (figure 5) 
(assuming that the unpaired electron for the Co­ 
(acacen ')L complex is in the 3d 2 orbital), of which z 
three denoted S1, S2 and S3 belong to the symmetric 
representation and one denoted A belongs to the 
antisymmetric one (the symmetry plane of the 
complex is the plane xOz and includes the dioxygen 
ligand (figure 4)). These four electronic configurations 
of figure 5 correspond to the different possibilities 
regarding 

the relative order of the n; and rr~ orbitals of the 
dioxygen ligand in the complex (rr: and rr~ are 
related to the n g and 1fg orbitals of 02, we 
denote rr~ the one made from the 2py orbitals 
of the oxygen atoms, which is antisymmetrical 
with respect to the symmetry plane xOz ); 
the relative location of the 3d z2 orbital with 
respect to rr: and rr~; 
the relative magnitudes of ti.1, the splitting be­ 
tween rr; and rr~, and t,.2, the energy gap between 
the 3dz2 and rr: orbitals after interaction. 

One will notice that the formal oxidation number of 
Co remains II in S1 and S2, while A and S 3 correspond 

tz 
I 
I 
I ' 

~

I O / 
I 

' /C-"1,;N-C"" 
----c------------- ,,c'I.. ·-----------c-------~ 

""-c--o/) I "a--c/ 
,' 
' ' ••• 

N'--.. 

(\ l C-N I 
I 

CL.JIM,J. C.O(D)03 -:--···-- 

0 ,.:r--,,\. 
", ----<. /r--+- •1' 
• ''-TI,-,: • ' -+I- .. · -tt- 

Figure 5: Possible electronic configurations for a dioxygen 
adduct Co(acacen)L02 

to a charge transfer configuration Co(III)02 (although 
population analysis will probably lead to a different 
order of magnitude for the change in the atomic 
populations). 

We have reported in table 5 the energy values 
obtained for these four configurations, with L = none, 
H20, C!v or imidazole (Im) [28), using a basis set 
(10,6,4/7,3/3) contracted to a minimal set (except 
for the 3d functions which are split). A first 
conclusion is that none of these configurations should 
be discarded a priori, since they have comparable 
values. However, in each case, we find the A con­ 
figuration to be the most stable one t. This seems 
to be in agreement with the general conclusion from 
RPE experiments for oxygen adducts of Co II com­ 
plexes (acacen, salen, porphyrin or vitamin B12,) that 
the unpaired electron is largely delocalized on the 
oxygen atoms and that these adducts should rather 
be formulated as Co(III)02 complexes+ [25). The 
relative stabilities of A with respect to S 1 and of 
S3 with respect to S2 increase along the series L = 
none, H20, Im, Clv, hence with the a donor ability 
of the fifth ligand. This is easily rationalized on the 
basis of the change induced in the orbital energy of 
the 3d z2 orbital as a function of the fifth ligand L 
in Cotacacenil, (table 5). We have also reported in 
table 5 the computed enthalpies for the oxygenation 
reaction. These are also found to vary as both the 
a-donor ability of the fifth ligand L and the energy 
of the 3d 2 orbital. This is in agreement with the 

z 
suggestion of Ibers that 'ligands which stabilize 
cobalt(III) relative to cobalt(II) would give systems 
with the highest affinity for oxygen' (26) , as 
confirmed recently by Basolo et al. [27). 

Figure 4: The Co(acacen)02Im molecule 

t Since there are three S configurations which are close in energy, one may expect that configuration interaction will stabilize 
comparatively more the lowest S configuration than the A configuration. 

:j: This conclusion should not be affected by the effect of configuration interaction, since the lowest S configuration (except for 
L = none) is found to be the s3 configuration which corresponds to a charge-transfer configuration Co(lll)O:j. 
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Table 5: Energy values (in au) for the four possible configurations of Co(acacen)L02 and computed enthalpies (in kcal/mole) 
for the oxygenation reaction" 

L S1 S2 S3 A €(3dz2)b 

none -2013.630 -2013.619 -2013.611 -2013.635 -0.574 
(+12.) (+19.) (+24.) (+9.) 

H20 -2089.382 -2089.373 -2089.388 -2089.406 -0.533 
(+12.) (+18.) (+8.) (-3.) 

Im -2237.589 -2237 .583 -2237.615 -2237.634 -0.507 
(+16.) (+19.) (-1.) (-12.) 

C!V -2105.626 - -2105.720 -2105.735 -0.299 
(+16.) (-43.) (-53.) 

(a) Computed with respect to 02 
11:!,. (the computed stabilization for 02 

3:E with respect to 02 
1/j. is 37 kcal/mole) 

(b) Energy (in au) of the 3dz2 otbital in Co(acacen)l 
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Accurate Hartree-Fock Calculations 
on the Structure and Stability 
of Hydrated Diatomic Ions 

W.P. Kraemer* 

The equilibrium geometrical structures and stabilities of the monohydrated nitrosyl cation, so> H2o, 
and cyanide anion, CN- • H20, are studied within the single determinant Hartree-Fock method using 
an extended gaussian basis set to approximate the molecular wavefunctions. The interaction energies 
between the molecular ions and the water molecule are calculated for a number of different structures 
of the monohydrates in which the water is attached to the ions through their a or n electron systems. 
The difference between the interaction energies of the different structures are found to be very small. 
In the equilibrium geometry of CN- • H2o the water is bound to the nitrogen centre via a linear 
hydrogen bond involving the a electrons while in NO+· H2o the interaction of the water with the n 
electrons leads to the most stable structures. The corresponding binding energies are found to be: 
B(CN- • H2O) = 14.5 kcal/mole, B(NO+ • H2O) = 19.8 kcal/mole. The binding energy value of the 
NO':monohydrate is used together with the preliminary results for the dihydrated system to discuss 
the energetics of some charge transfer reactions leading possibly to the production of hydronium 
hydrates which have been observed in the earth's upper ionosphere. 

Introduction 

Accurate Hartree-Fock SCF studies on the pheno­ 
menon of ion solvation published in the past few 
years have mostly been concerned with the hydration 
of atomic ions [I ,2). In these studies it has been 
shown that the interaction between the ions and the 
solvent molecules takes place via a linear or almost 
linear hydrogen bond if negative ions are solvated in 
polar solvents like water or ammonia, and that there 
exists a corresponding weak interaction between a 
positive ion and the lone pair electrons of the solvent 
molecules. The numerical results of these studies are 
in general agreement with some early qualitative 
investigations by Buckingham on the structure of 
ion-solvent complexes on an entirely classical electro­ 
static model (3). A comparison of the theoretically 
determined equilibrium geometrical parameters and 
of the solvation energies (which have been calculated 
within the single determinant SCF approximation as 
the difference between the energy of the composed 
system and the sum of the energy values of the non­ 
interacting subsystems) show a surprisingly good 
agreement with the corresponding experimental data 
obtained by Kebarle and coworkers from mass 
spectroscopic measurements in the gas phase (4 ]. 
The accuracy of the SCF results has been found to 
be within ±0.03A for the intersystem bond distances 
and about 2-5% for the solvation energies. 

Recently in an extensive study of the correlation 
energy effects on hydrogen bonding and ion hydration 

(5) it has been shown that in the case of H-bond 
interactions between closed shell systems two different 
effects, i.e. the correlation energy contribution to 
the bond energy and the change in the zero-point 
vibrational energy during bond formation, which 
are both of the same order of magnitude, compensate 
each other to some extent. In the case of the weak 
interactions between a positive ion and water, on 
the other hand, it has been demonstrated that by 
far the most dominating contribution to the bond 
formation is due to a pure electrostatic interaction. 
Any other effects, e.g. delocalization and correlation, 
have only very small influences. With these findings 
it has been possible to explain the success of pure 
SCF studies on the structures and stabilities of weak 
interacting closed shell systems. 

With this background it seemed to be of some 
interest to extend the present series of accurate 
Hartree-Fock SCF calculations on ion hydration to 
a particular class of molecular ions in which two 
types of electrons, the a as well as the rr electrons, 
are both well suited to interact with the solvent 
molecule. For this purpose two simple diatomic 
ionic species have been selected, the nitrosyl cation 
so: and the cyanide anion CN-. These ions have 
also been expected to occur in the earth's ionosphere. 
Recent rocket-borne mass spectroscopic observations 
for positive ions in the ionosphere [ 6) have established 
that the water clustered NO•-ion plays among others 
a decisive role in the D-region chemistry (7). In this 
context some preliminary calculations and estimates 

• Max-Planck-Institut fur Physik und Astrophysik, Fahringer Ring 6, 8 Miinchen 40, West Germany 
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have been performed on the structure and the 
hydration energies of some higher hydrates of the 
nitrosyl cation as well. 

The SCF wavefunctions and energies have been 
calculated within the single determinant Hartree-Fock 
approximation using the Roothaan SCF LCAO MO 
formalism. The actual calculations have been carried 
out with the program system MUNICH [8) on an 
IBM 360/91 computer taking a rather extended and 
flexible gaussian basis set into account. The basis 
set consists of (I ls, 7p, Id) functions centred at the 
heavier nuclei (C, N, O) (contracted to a [5s, 4p, ld]­ 
set to reduce the number of linear parameters in the 
SCF iteration process) and of (6s, 3p) functions at 
the hydrogen atoms (contracted to a [3s, lp)-set) [9). 
The basis functions have essentially been taken from 
the literature [JO). Only the exponents of the 
polarization functions (the d-functions at the heavier 
centres and the p-functions at the hydrogens) have 
been optimized in calculations on the relevant sub­ 
systems CN-, so; and H2 0. No symmetry reduction 
has been used. The timings for each calculation are 
as follows in IBM 360/91 central processor time: 

production of gaussian integral list 73.1 min. 
time per SCF iteration step 0.8 min. 

Employing the appropriate starting vectors for the 
iteration process SCF convergence has normally been 
achieved within 10-15 iteration steps. 

Results 

Monohydnted cyanide anion. CN- • H2o: From previous 
studies on the hydration of atomic ions it can be 
concluded that the interaction between the cyanide 
anion and a water molecule takes place via a hydrogen 
bond. Thus the following five geometrical structures 
have been studied: 

(I) linear structure ( CN ... HOHr in which the 
water molecule has been attached to the 
nitrogen atom with the centres CN ... HO on 
a straight line : 

(2) bent structure (CN ... HOHf with the water 
again at the nitrogen and where the CN 
bond axis and the N. .. HO hydrogen bond 
axis are perpendicular to each other; 

(3) linear structure (HOH ... cNr with the water 
attached to the carbon atom and the collinear 
centres OH. .. CN; 

(4) bent structure (HOH. .. CN)- corresponding to 
(2) with the water molecule at the carbon atom; 

(5) the water molecule being attached through 
the 1r electron system in a position midway 
between (2) and (4). 

Structures with a non-linear hydrogen bond ( except 
the structure (5)) or with the water molecule rotated 
around the H-bond axis have not been considered 

in the present study. In all the structures described 
above the goemetrical parameters of the two sub­ 
systems, cN· and H2 0, have been kept fixed at their 
previously determined equilibrium values: d(CN) = 
1.16 A, d(OH) = 0.96 A, angle (HOH) = I 04.52°. 
Thus the geometry of the monohydrate has only 
been optimized with respect to the intersystem 
separation in the five configurations (I)-( 5) rep­ 
resenting different steps on the path of the water 
molecule around the CN--ion from the nitrogen to 
the carbon side. 

The intermolecular hydrogen bond can formally 
be described as an interaction between a region of 
high electron density in one molecule and an electron 
deficient hydrogen in the other one. Assuming that 
in the C/v-ion the nitrogen atom is more electro­ 
negative than carbon, the structures (!) and (2) 
would be expected to be the most stable ones. The 
numerical results determining the relative stabilities 
of the five different geometrical structures are 
summarized as follows: 
structure(!): R = 2.88 A; B1 = -14.5 kcal/mole 
structure (2): R = 3.15 A; B1 = -10.9 kcal/mole 
structure (3): R = 3.04 A; B1 = -13.1 kcal/mole 
structure (4): R = 3.29 A; B1 = - 9.7 kcal/mole 
structure (5): R = 3.33 A; B1 = -10.3 kcal/mole 
where R represents the optimized intersystem distance 
and B1 the SCF stabilization energy of the mono­ 
hydrate: B1 = ESCF(C!v· H20) - ESCF(CN-) 
- £SCF(H20). These data show, indeed, that the 
structure (I) with the water attached to the nitrogen 
atom is the most stable configuration. But the five 
stabilization energy values are found to be quite 
similar. The difference between structures(!) and (3) 
with the water molecule bond through the a electron 
system to the nitrogen and carbon centres, respectively, 
is only about I kcal/mole. The three structures in 
which the water interacts with CN"-ion through the 
ionic 1r electrons are found to be less stable. Apparently 
the 1r electrons are already too diffuse in the cyanide 
anion. 

· The partial enthalpy for the first hydration step 
of the C/v-ion has been determined in a recent 
experimental study by Kebarle and co-workers [11 ]. 
They have deduced a value of AH1,0 = -13.8 kcal/mole 
from their mass spectroscopic measurements. The 
discrepancy between the theoretically calculated and 
the experimental binding energy is thus less than 5%. 
Recently Clementi and co-workers have performed 
Hartree-Fock SCF calculations to compare the struc­ 
tures and stabilities of the ionic compounds LiNC 
and LiCN [ 12] . According to the small energy 
difference between these two compounds (about 
6 kcal/mole) and because they have not found any 
energy barrier for the path of the lithium cation 
around the CN"-ion, they have referred to this bond 
as a 'polytopic bond' to stress its equality in energy 
far substantially different geometrical configurations. 
These findings fit with the present results for the 

218 



monohydrated cyanide anion where the energy dif­ 
ferences have been found to be even smaller according 
to the fact that the interaction is much weaker. 
On the other hand, Clernenti's data seem to indicate 
that the equilibrium structure of LiNC would be 
slightly non-linear (angle (LiNC) approximately 160°). 

The monohydrated nitrosyl cation, NO+• H2o: The geo­ 
metrical structures studied for this complex are 
defined in analogy to the structures (J)-(5) described 
above, replacing the carbon and nitrogen centres in 
elf by nitrogen and oxygen, respectively. However, 
as the nitrosyl ion is a positive ion, a stable hydrate 
can only be found if the attached water molecule 
points with the oxygen centre against the No•-ion 
in the positions (I )-{5). Again the geometrical 
parameters of the subsystems, NO+ and H2 0, have 
been kept fixed at the previously determined equi­ 
librium values: d(NO) = 1.04 A, and only the 
intersystem distance R has been optimized in the 
five different structures. 

The numerical SCF results determining the relative 
stabilities may be summarized as follows: 
structure (!): R = 2.69 A; B1 = -14.5 kcal/mole 
structure (2): R = 2.48 A; B1 = -19.8 kcal/mole 
structure (3): R = 2.59 A; B1 = -13.8 kcal/mole 
structure (4): R = 2.59 A; B, = -18.2 kcal/mole 
structure (5): R = 2.61 A; B1 = -19.2 kcal/mole 

There are no experimental data available for a 
comparison. 

The SCF hydration energy values listed above 
show that in the nitrosyl monohydrate the binding 
between the water molecule and the 1T electron 
system in NO+ is definitely preferred. The stability 
of the hydrated system increases slightly moving 
the water from the oxygen to the nitrogen centre. 
The shorter bond length in position (2) indicates 
that in the region around the nitrogen atom the 11 

electrons are less diffuse, particularly compared to 
the Cir anion. 

The dihydrated nitrosyl cation, NO+• 2H2O: There has 
been recently some speculation in the literature 
about the structure of the higher hydrates of the 
nitrosyl cation, No"> nH20 (n = 2,3,4) [13). In 
order to explain charge transfer reactions leading 
from these hydrates to a production of hydroniurn­ 
water clusters it has been postulated that instead of 
forming a classical spherical water cluster the nitrosyl 
hydrates prefer a so-called 'chain structure' where 
so: is attached to a chain of hydrogen bonded water 
molecules. From this structure the reactions can 
simply be visualized as a proton transfer process in 
the hydrogen bond next to the NO•-ion. 

To have a rough estimate on the associated 
reaction heats some preliminary SCF calculations 
on the NO.-dihydrate have been performed. For 
this purpose three different geometrical structures 

have been considered which are briefly described 
as follows: 

(I) structure(ON· 20H2)', in which the two water 
molecules have been attached to the nitrogen 
atom through the 1T electron system of the 
No•-ion: 

(2) structure (H2 0 • ON • OH2 f. in which the 
two water molecules have been attached to 
the oxygen and to the nitrogen centres, 
respectively, in the positions that have been 
determined in the monohydrate to be the 
most stable ones; 

(3) structure (ON • (Jfz0)2f where the No" 
has been attached to the water dimer through 
the 11 electron system of the »ou;« This 
structure represents the smallest possible 'chain 
structure'. 

Because the SCF calculations on the dihydrated 
system are quite time consuming a complete 
optimization of these geometrical structures has not 
been possible. The total SCF binding energies 
By (By = ESCF(NO+ • 2H20) - ESCF(NO+) - 
2ESCF (H2 0)) characterizing the relative stabilities 
have been found to be: 

structure (I): 
structure (2): 
structure (3): 

-37 
-35.5 
-33 

kcal/mole 
kcal/mole 
kcal/mole 

These numerical results show that the pure chain 
structure has not been found to be the most stable 
one at least in the case of the dihydrate. But as the 
differences in the above binding energies are quite 
small it might well be possible that for the tri- and 
tetrahydrates the energy gain from the additional 
hydrogen bond formations offsets the lowering of 
the energy from the direct ion-water interactions. 

Subtraction of the first hydration energy from 
the By-value gives the hypothetical second hydration 
energy B2• In the present case B2 is found to be 
about -17 kcal/mole. The decrease from BI to B2 
is surprisingly small for the 'so: hydrates compared 
to the corresponding values found for atomic ions 
[14 I. 

Reaction heats of some charge transfer reactions: With these 
theoretically determined binding energy values avail­ 
able a quantitative estimate can be made of the 
reaction heats of some chemical reactions which are 
expected to be of considerable importance in the 
D-region aeronomy. In this region of the earth's 
ionosphere the NO+ and 02 • ions are the major 
positive ions produced. In mass spectroscopic 
measurements, however, hydrated hydronium ions, 
H30+ • nH20, have been observed to be by far the 
most abundant ionic species, while the nitrosyl 
hydrates as well as the 02 • -hydrates are of small 
abundance [6). The direct production of H30• 
and its hydrates, on the other hand, from H2O•-ions 
has to be excluded under atmospheric conditions 
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because of a very fast reaction of H2o• with 02• 

To solve this dilemma Fehsenfeld and Ferguson have 
proposed a reaction scheme (7) in which the nitrosyl 
cation is hydrated stepwise to the trihydrated level. 
The trihydrate finally reacts with a further water 
molecule according to (n = 3): 

This reaction has been predicted to be fast and 
exothermic for n = 3, and to be endothermic for 
n = 2. A similar reaction scheme has been discussed 
for the 0/-ion (13]. 

The reaction heat of the charge· transfer reaction 
with n = 2 can easily be estimated because the SCF 
energies of all the molecular systems involved have 
been· calculated. For HN02 in its experimental 
geometry a SCF energy of £5CF = -204.69594 au 
has been obtained. Within the SCF level of accuracy 
the reaction turns out to be endothermic by about 
26 kcal. Although this result is in agreement with 
qualitative predictions, it can only be accepted as an 
estimate of the energy balance in the above equation 
of reaction. If the assumption is correct that the 
whole reaction can be described just as a proton 
transfer process, the above energy value would have 
t J be corrected only by the energy barrier of the 
proton potential. On the other hand, correlation 
and vibration effects might change this SCF result 

. considerably. 

An analogous direct estimate of the energy balance 
in the charge transfer reaction with n = 3 can only 
be performed using an extrapolated value for the 
SCF energy of the NO+.trihydrate because the system 
NO+· 3H20 is already too big for SCF calculations 
of the accuracy to be claimed in the present study. 
With a reasonable extrapolated energy value a slightly 
exothermic energy balance of approximately I O kcal 
is obtained. 

A very similar reaction has been studied recently 
by Fehsenfeld and Ferguson with the flowing after­ 
glow technique [ 15) : 

The direct estimate of the energy balance for n = l 
based on the corresponding SCF energy values gives 
a very small exothermicity of about 2-5 kcal. In 
analogy to the previously discussed reactions it can 
be expected, however, that the reactions involving 
the higher No•-hydrates (n > 1) become more 
exothermic because of the strong hydrogen bonds 
that are formed in the NH/-water clusters. 

As has already been pointed out the estimated 
energy balances have to be considered very carefully, 
particularly if the charge transfer reaction consists 
of a number of different concerted basic reactions 
and if it cannot be described as a single proton 
transfer process. 
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Can Hartree-Fock Limit Wavefunctions be 
calculated with Gaussian Basis Functions? 
FH again 
W.von Niessen*, G.H.F.Diercksen and W.P.Kr~emert 

Wavefunctions which give the Hartree-Fock limit of the total energy have been calculated so far 
only with Slater-type functions for atoms and for linear molecules. Whether Gaussian-type basis 
functions are capable of giving the same accuracy has been investigated in the case of the FH molecule. 
It has been demonstrated that the Hartree-Fock limit of the energy can be reached, but that the 
required size of the basis set exceeds any which has been used until now. The potential curve 
for FH computed with Gaussian basis functions is compared to the results of Cade and Huo. 

Introduction 

The well-known division of the total energy of 
an atomic or molecular system within the Born­ 
Oppenheimer approximation into the Hartree-Fock 
(HF) energy, correlation energy, and relativistic 
corrections according to 

Etot = EttF + Ecor + Eret 

is based on a computational scheme; only the total 
energy is an experimentally observable quantity. The 
exact solution of the Schrbdinger equation would 
give as energy eigenvalue the first two terms in the 
above equation. The exact solution of the corres­ 
ponding HF equation, i.e. the best one-particle 
approximation, would give the first term, EttF, only. 
The HF wavefunction is in itself of particular im­ 
portance because a number of useful theorems hold 
for it. E.g. the Hellmann-Feynman forces [ I ) are 
equal to the forces calculated as derivatives of the 
total energy with respect to some nuclear displacement 
coordinate [2). Expectation values of single-particle 
operators for closed shell systems calculated with a 
HF wavefunction are correct to second order of 
perturbation theory [3). This is a consequence 
of Brillouin's theorem. The virial theorem holds [ 4) 
as well. The HF limit is of importance still from 
another point of view. To calculate the effect of 
electronic correlation one subtracts the computed 
(or estimated) relativistic corrections from the experi­ 
mental total energy, but one still has to know the 
HF limit of the energy. Hollister and Sinanoglu 
have made semi-empirical estimates of the HF energies 

for a series of molecules [5), these have in general 
been regarded as somewhat too low. The exact 
solution of the HF equation would involve a numerical 
integration, which until now has proven to be 
possible only for atomic systems where the equations 
can be decoupled [6,7). The numerical accuracy 
of the total energy values calculated in this way 
can be doubted at least for the atoms beyond Ne [8). 
This finds its expression in the slightly different 
energy values given by Froese-Fischer (6) and by 
Mann [7). For molecular systems one has to take 
recourse to the Roothaan LCAO approximation (9). 
But since this involves an additional approximation 
beyond the one-particle approximation in any actual 
calculation using a finite basis set, one has to prove 
that a wavefunction has reached the HF limit. For 
two- and four-electron atoms a very systematic 
investigation has been performed by Weiss [10). 
On the whole the analytic atomic wavefunctions 
of Bagus and Gilbert [ 11) and Clementi [ 12) , which 
are based on Slater-type functions are regarded to 
be of the same accuracy as the numerically calculated 
ones [6,7). For molecular systems the procedure 
of Weiss does not appear to be applicable or useful 
as has been discussed by Cade and Huo [ 13). In their 
investigations of molecular wavefunctions close to the 
HF limit they used convergence arguments which 
are inductive and appeared to be the best practical 
approach (13-15). No methodical advances have 
been made since then. The leveUing-off of the 
energy values as the basis set size is increased, 
however, remains a major concern despite all opti­ 
mizations of the nonlinear parameters. The wave­ 
functions of Cade and Huo remain still a standard 
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of accuracy. The re-examination of the wavefunctions 
for FH and QH by McLean and Yoshimine (16] 
proved that the corresponding energy values are well 
within the claimed limits of 0.001 au and 0.005 au, 
respectively. These authors claim that their FH 
wavefunction, which uses an augmented basis set 
compared to the work of Cade and Huo, is within 
0.0002 au of the HF limit for this molecule. Wave­ 
functions which meet these standards of accuracy 
become available for larger classes of linear molecules 
due to advances in computational methods in particular 
for the evaluation of integrals over Slater-type 
functions [I 7,18]. 

Recently, however, wavefunctions have been pub­ 
lished for nonlinear molecules which claim to be 
near Hartree-Fock wavefunctions [ 19-22] . In general 
they are based on Gaussian basis functions. The 
question naturally arises, whether this claim is justified. 
Slater-type functions (STF) are superior to Gaussian­ 
type functions (GTF) and many more GTF's are 
needed to obtain the same accuracy as a given set 
of STF's. E.g. for the He atom two s-type STF's 
are superior to 10 GTF's [23], although this represents 
one of the worst cases known. For molecules GTF's 
have been shown to give in general the same accuracy 
as STF's if about three times as many basis functions 
are employed. But the question whether Gaussian 
functions can lead to HF limit wavefunctions has not 
been answered as yet. In view of the fact that most 
studies on molecules will be based on GTF's and 
because more calculations are made which aim at 
incorporating a large fraction of the correlation 
energy it would be invaluable to know which size 
of a basis set of GTF's can claim to give the HF 
limit of the energy. 

To answer these two questions detailed investi­ 
gations have been performed on the FH molecule, 
where a comparison with the highly accurate cal­ 
culations of Cade and Huo [13] and McLean and 
Yoshimine [16] can be made. In addition the 
potential curve has been calculated at the same 
points as done by Cade and Huo to compare the 
relative flexibility of STF's and GTF's as a function 
of internuclear distance. These investigations are 
described in the subsequent sections, in the second 
section the atomic calculations, in the third section 
the molecular ones. 

Atomic Calculations 

A basis set which for a molecule is to give the 
HF limit of the energy must do this also for the 
constituting atoms, also in the case the basis consists 
of Gaussian functions. Any significant error in the 
atomic calculation will persist in the molecular cal­ 
culation. The wavefunctions of greatest accuracy 
calculated for the F atom in its ground 2P state are 
the analytical ones of Clementi £HF = -99.409284 

au [12] and of Bagus and Gilbert £HF= -99.409334 
au [ I I] and the numerical ones of Froese-Fischer 
£HF = -99.40959 au [6] and of Mann £HF = 
-99.40935 au [7]. Several basis sets of GTF's 
were obtained starting with a basis set of 13 s-type 
and 8 p-type GTF's as the smallest one leading to 
the basis set of 15 s-type and I 2 p-type functions 
as the final set. The calculations have been performed 
with the SCF program of Roos et al [24]. The 
final basis set was generously optimized, the other 
ones were only superficially optimized. The energy 
values calculated with the different basis sets are 
listed in table I. Table 2 contains the final set of 
GTF's. The contraction coefficients are given in 
brackets, they are taken from the atomic calculations, 
but it was only determined for the s-type functions 
from the atomic calculation which functions were 
grouped together, for the p-type functions this 
was determined from a molecular calculation on 
FH involving no polarization functions. It was 
demanded that contraction of the functions affected 
the energy to less than 10-6 au. The contracted 
basis set consists of 11 s - type and 8 p - type 
functions. The total SCF energy values, virial 
ratio, and Hartree-Fock eigenvalues for F(2P) and 
F-(1 S) are given in table 3 both for the un­ 
contracted and contracted basis sets. The results of 
Bagus and Gilbert [I I] and of Froese-Fischer [ 6] 
are given for comparison as well. The total HF energy 
calculated with this basis, £HF = -99.409290 au, 
is between the energy values of Clementi and of 
Bagus and Gilbert, which will be used as a standard. 
The error with respect to the slightly lower value 
of Bagus and Gilbert is 4.0 · I o-s au. The electron 
affinity of Fis calculated to be A = 1.357 eV, the 
the experimental quantity is A = 3.448 ± 0.005 eV 
[25 ]. It has frequently been noted that in the process 
of optimizing a basis set the problem of multiple 
minima is likely to arise [23]. In the present 
investigation involving a large number of parameters 
the trapping of the energy in a minimum above the 
true minimum obtainable with a given number of 
functions can easily occur, but because of the 
agreement of the results with those of other authors 
it is unlikely that a significant improvement in the 

Table 1: SCF energies and virial ratios for F<2P) calculated 
with different Gaussian basis sets 

Basis ESCF (au) Virial Ratio 

13s8p -99.408836 -2.0000169 
13s9p -99.409079 -2.0000062 
13s10p -99.409115 -2.0000051 
14s10p -99.409235 -2.0000022 
14sllp -99.409241 -2.0000022 
15sllp -99.409265 -2.0000022 
15s12p -99.409290 -2.0000017 
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energy expectation value could be achieved. Other 
basis sets of the same size and composition, but 
involving different exponential parameters could give 
inferior, but only very slightly superior results. 

Table 2: Gaussian basis set for F(2P); contraction co­ 
efficients, if different from unity, are given in brackets 

Number 

2 

3 

4 

5 

6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

CX(s) CX(p) 

230,000.0 912.666 
(0.232592 · 10-4) (0.958295 · 10-4) 

34,691.4 241.152 
(0.177908 · 10-3) (0.656870 · 10-3) 

8,000.97 88.9807 
(0.920639 · 10-3) (0.286130 · 10-2) 

2,254.64 37.4194 
(0.398335 · 10-2) (0.104154 · 10-1) 

712.481 16.4422 
(0.151150 · 10-1) (0.328709 · 10-1) 

247 .4398 7.55273 

94.0899 3.66352 

38.90768 1.81879 

17 .30389 0.888741 

8.197460 0.422592 

4.08440 0.197102 

1.73599 0.089545 

0.769575 

0.339900 

0.147270 

A further point observed in the optimization 
process should be mentioned. Cade and Huo stressed 
the 'ineffectiveness of exponent optimization com­ 
pared to simply having a large and versatile basis set 
composition' [I 3]. A reasonably chosen set of 
n STF's led to a lower energy value than a completely 
optimized set of n-1 functions. This is not the case 
in the optimization of GTF's, simply because it is 

much more difficult to give a reasonable guess for 
fifteen parameters than for five and because any 
additional function has a much smaller weight. With 
GTF's an optimized set of n-1 or n-2 functions 
is superior to an unoptimized but reasonably chosen 
set of n functions (i.e. chosen on the basis of the 
optimized smaller sets). 

Table 4: Gaussian basis set for Hc2S); contraction co­ 
efficients, if different from unity, are given in brackets 

Number ex (s) 

1170.498 (0.00007) 
2 173.5822 (0.00058) 
3 38.65163 (0.00318) 
4 10.60720 (0.01380) 
5 3.379649 
6 1.202518 
7 0.463925 
8 0.190537 
9 0.0812406 

10 0.0285649 

No basis sets were optimized for the H atom. 
Instead the basis sets determined by Huzinaga were 
employed in the calculations [23]. The smallest 
set consists of 8 functions of s-type contracted to 
6 functions, the larger one of I O functions of s-type 
contracted to 7 functions. For completeness the 
larger basis set, which was used in the final calculations, 
is given in table 4. It leads to a total HF energy of 
£HF = -0.4999986 au, potential energy of Epot = 
-0.9999939 au, kinetic energy of Ekin = -0.4999953 
au, and virial ratio of -2.0000066, whereas the 
smaller set leads to a HF energy of EH F = -0.4999913 
au, potential energy of Epot = -0.9999698 au, 
kinetic energy of Ekin = 0.4999657 au, and virial 
ratio of -2.0000511. 

Table 3: HF energy, virial ratio, and Hartree-Fock eigenvalues for Fc2P) and F-(1 S) 

Fc2P) F-(IS) 

Bagus-Gilbert Froese-Fischer (I 5sl 2p) (15sl2p)/[lls8p] (15sl2p) (15sl2p)/[l ls8p] 

EHF -99.409334 -99.40959 -99.409290 -99.409290 -99.459171 99.459171 
!:pot -198.818407 -198.818409 -198.920798 -198.920783 
Ekin 99.4091 I 7 99.409119 99.461627 99.461612 
V.T. -1.999996 -2.0000017 -2.0000017 -1.9999753 -1.9999755 
€15 -26.38265 -26.38281 -26.38274 -26.38274 -25.82785 -25.82785 
€2s -1.57245 -1.572535 -1.57253 -1.57253 -1.07321 -1.07321 
€2p -0.72994 -0.730015 -0.73002 -0.73002 -0.17983 -0.17983 
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Molecular Calculations 

The atomic basis sets for the atoms F and H were 
employed without change in the molecular calculations 
except that for the p-type functions on F and the 
s-type functions on Hit was determined in a calculation 
on FH which basis functions were contracted. Tne 
basis sets determined in this way were also left 
isotropic, although it may be anticipated that an 
anisotropic basis set would lead to a better description 
for FH. Cade and Huo [13) and McLean and 
Yoshimine [16] used anisotropic basis sets optimized 
in the molecule. With the large number of nonlinear 
parameters it was regarded as computationally too 
expensive to vary the exponents in the molecule 
and even more so to vary the a- and the n-type 
basis functions independently to obtain an anisotropic 
set, but the atomic set was considered to be flexible 
enough to describe molecules with an equal accuracy 
as the constituting atoms. For this reason too the 
basis was left nearly uncontracted. To verify these 
assumptions some of the basis functions on the F 
atom with small exponential parameters were varied 
on FH in the absence of polarization functions. 
The improvement was less than 10-6 au and was 
regarded as immaterial. A variation towards an 
anisotropic basis set was not undertaken. 

Table 5: SCF energies of FH at intermediate stages of the 
basis set determination 

Basis E~,<iF (au) 

(15sl 2p l8s) /[ lls8pl 6sl -100.043570 
(15s12p l8s3p)/[l h8p l6s3p] -100.062266 
(15sl 2p 3d I 8s)/[ lls8p 3dl 6s] -100.063411 
(15sl 2p 3d I 8s 3p)/[ l ls8p 3d I 6s3p] -100.068907 
(15s12p 3dlf I 8s3pld)/(1 ls8p3dlf I 6s3pld] -100.070004 
(15sl 2p 3dlf l10,3p ld)/[ lls8p3dl/l 7s3pld] -100.070023 
(15s12p l10s4p)/[l h8pl 7s4p] -100.062333 
(15s12p4d I 10s)/[ lls8p4dl 7s] -100.063812 
(15s12p4dl 10s4p)/[lls8p4dl 7s4p] -100.069279 
(15s12p4dlfl 10s4p)/(lls8p4dl/l 7s4p] -100.070302 
(15s12p4dlfl 10s4pld)/[lls8p4dl/l7s4pld] -100.070459 

The basis set [I 1s8pl6s) gives at the experimental 
distance R = I. 7328 au a total SCF energy of 
EscF = -100.043570 au. The polarization functions 
were determined in the way described below. A set 
of d-type functions on F was optimized without 
any polarization functions on the H atom. Then a 
set of p-type functions was determined for the H 
atom without any d-type functions on the F atom. 
These sets of functions were then combined and 
not varied further. One function of ftype on F and 
one function of d-type on H were added with 

exponential parameter estimated on the basis of the 
results of Cade and Huo and were not optimized. 
The energy values calculated with these intermediate 
basis sets are listed in table 5. First a set of 3 d-type 
functions on F and 3 p-type functions on H was 
optimized. The exponential parameters are given 
in table 6. Adding a /-type function on F and a 
d-type function on H to the basis set [I 1s8p3dl6s3p) 
leads to a SCF energy of EscF = -100.070004 au 
higher than the result of Cade and Huo by 0.0003 au. 
This was regarded as insufficient. The basis of s-type 
functions on the H atom was consequently enlarged 
to I 0 s-type functions contracted to 7 functions. The 
basis set (I 5s 12p 3dlfl IOs 3p Id)/ [ I ls Bp 3dlfl 7s 3p Id] 
gives a total SCF energy of EscF = -100.070023 au 
a small but insufficient improvement. It was con­ 
cluded that the set of d-type functions on F and 
p-type functions on H was incomplete. Consequently 
a set of 4 polarization functions of each type was 
optimized. The intermediate results are given in 
table 5. This enlargement proves to be the essential 
one. Upon adding one ftype function on F and one 
d-type function on H a HF energy of E HF = 
-100.070459 au is obtained which surpasses the 
value obtained by Cade and Huo and is higher than 
the value of McLean and Yoshimine by only 3 • 10-s 
au, their value being £HF = -100.07049 au. The 
basis set of polarization functions is given in table 6 
as well. It can thus be stated that GTF's are capable 
of giving molecular energies to the HF limit and 
that the present wavefunction for FH as the one 
of McLean and Yoshimine can be claimed to be 
within 0.0002 au of the HF limit. The remaining 
difference of 3 • 10-5 au is nearly the same as the 
defect in the atomic basis set as compared to the 
result of Bagus and Gilbert [I I] (4 • 10-5 au). 
It may be that it is this small defect in the atomic 
calculation which persists in the molecular calculation, 
but it may also be the incomplete optimization of 
exponents (in particular the /-type function on F 
and the d-type function on H) or the isotropy of 
the basis set which may give rise to this small energy 
difference. Since this difference is regarded as 
immaterial this point was not examined further. 

Table 6: Exponential parameters for polarization functions 
inFH 

Type a 

p (H) 1.261 
d (F) 1.554 
d (H) 1.25 
f (F) 1.25 

p (H) 3.5 
d (F) 4.5 
d (H) 1.25 
f (F) 1.25 

0.70 
0.65 

0.27 
0.217 

1.15 
1.1 

0.75 
0.5 

0.26 
0.22 
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Table 7: Energy quantities for FH as a function of internuclear separation. The results of Cade and Huo are given in brackets 

R (au) £HF (au) c,.• €10 €20 €30 €171 

1.325 -99.986829 -0.000379 -26.284268 -1.707307 -0.856174 -0.674895 

(-99.98645) (-26.28459) (-1.70772) (-0.85620) (-0.67492) 

l.65 -100.070108 -0.000148 -26.293549 -1.617748 -0.785912 -0.654901 

(-100.06996) (-26.29331) (-1.61745) (-0.78583) (-0.65471) 

l.696 -100.070925 -0.000155 -26.294216 -1.608225 -0.776120 -0.652334 

(-100.07077) (-26.29391) (-1.60795) (-0.77590) (-0.6521 l) 

I. 7328 -100.070459 -0.000159 -26.294593 -1.601053 -0.768341 -0.650310 

(-100.07030) (-26.29428) (-1.60074) (-0.76810) (-0.65008) 

2.606 -99.954875 -0.000965 -26.287436 -1.506173 -0.614373 -0.613147 

(-99.95391) (-26.28480) (-1.50411) (-0.61268) (-0.61150) 

-- 
(a) A= £HF - EHF(Cade-Huo) 

The final basis set used in the calculations is so 
large that problems of linear dependence may arise. 
The lowest eigenvalue of the overlap matrix, which 
measures the degree of linear dependence [26), was 
found to be 0.5 • 10-6• Since all calculations were 
performed in double precision arithmetic on an IBM 
360/91 computer no particular precautions were 
regarded as necessary. 

The binding energy of the FH molecule with 
respect to the atoms in their respective ground 
states (F(2 P), H(2 S)) calculated with the same basis 
sets as used for the molecule is B = 4.4 e V. Cade 
and Huo [ I 3) and McLean and Y oshimine [16) 
obtained the same value. The experimental result 
is B = 6.12 eV [13). (For a discussion of the 
related problems see [13) .) 

The basis set determined for the H atom was 
used in a calculation for H2 · at the experimental 
distance of R = 1.4 au as well. The computed HF 
energy is EHF = -1.133602 au which is again 
within 3 • I o-s au of the HF energy of Kolos and 
Roothaan: E HF = -1.13363 au [27), although the 
polarization functions have been determined for the 
very polar molecule FH. This result demonstrates 
again that the Gaussian basis used in these studies 
is of HF limit accuracy. The basis set used by 
Schulman and Kaufman [28) in their study of the 
spin-spin coupling in HD is larger - it consists of 
10 s-type, 5 p-type, and I d-type function, left 
completely uncontracted - but it gives a higher 
energy of EHF = -1.133554 au. 

With the basis sets for the F and H atoms a few 
points were calculated on the potential curve, those 
points which among others have been computed 
by Cade and Huo [I 3) . Table 7 contains some 
energy quantities computed with the basis set of 
Cade and Huo, the present results, and the corres­ 
ponding energy difference. At the experimental 
distance of R = I. 7328 au, for which both basis sets 
were determined this difference is EHF (this work) 
- EHF (Cade-Huo) = A = -0.000159 au. For the 

distances R = 1.696 au for which the minimum of 
the potential curve is reached, and R = 1.65 au, 
i.e. close to the experimental distance, this energy 
difference retains approximately the same value, but 
for the smaller and larger internuclear separations 
this energy difference significantly increases in mag­ 
nitude to A = -0.000379 au for R = 1.325 au and 
A = -0.000965 au for R = 2.606 au. It is thus 
concluded that basis sets of GTF's become relatively 
better than the corresponding sets of STF's for 
smaller and especially for larger internuclear distances 
probably because the larger number of basis functions 
provides an additional flexibility. All molecular 
calculations have been performed with the program 
system MUNICH [29). 

Conclusions 

It has been demonstrated in the present work that 
basis sets of GTF's can be determine'd which are as 
accurate as the best sets of STF's both for atoms 
and for molecules, in other words basis sets of GTF's 
are capable of giving the energy to the HF limit. 
But the size of the basis sets required to achieve 
this goal is larger than any set employed in the 
literature until now. The wavefunction calculated 
for the atoms F and H and the molecules FH and H2 

lead to a HF energy which is always within 4 • I o-s 
au of the best analytical results and are thus expected 
to be within 0.0002 au of the HF limit for the 
respective systems. It may be argued that the 
presently determined sets of functions are not optimal 
and that smaller sets are capable of giving the same 
accuracy. But, although this cannot be excluded, 
the experience gained in the investigations renders 
it highly improbable. 

In this context a comment on some recent articles 
on near-HF wavefunctions and estimation of some 
HF limit energies is appropriate. Ermler and Kern 
[22) employed a Gaussian basis set - (9s5pldl4slp)/ 

225 



(4s2pldl2slp) - to calculate properties of the 
benzene molecule near the HF limit. It is the 
opinion of the authors that this basis set is the 
smallest one which can be regarded to lead to 
accurate wavefunctions, but it is too small, too 
contracted, and too deficient in polarization functions 
to be capable of approaching the HF limit close 
enough to deserve the title 'near-HF limit', Dunning, 
Pitzer and Aung published a number of wavefunctions 
for the water molecule, some based on STF's, others 
on GTF's (20). Their best wavefunction calculated 
with a (5s4pldl3slp) Slater basis, which incorporates 
the atomic basis set of Bagus and Gilbert [ 11] , leads 
to a SCF energy of EscF = - 76.06309 au. On this 
basis they estimated the HF energy of water to be 
EHF = -76.066 ± 0.002 au. However, compared to 
the work of Cade and Huo (13) and McLean and 
Yoshimine (16) their basis set is deficient in polari­ 
zation functions. In fact Clementi and Popkie using 
a large basis of Gaussian functions - (13s8p3dlfl 
6s2pld)/[8s5p3dlfl4s2pld) already reached this 
value of the energy for the water molecule, their 
best result being EHF = -76.06587 au (21). The 
HF limit thus has to be lowered once more. According 
to the experience gained in the present investigations 
the basis set of Clementi and Popkie is somewhat too 
contracted and somewhat deficient in functions of 
p- and d-type on the O atom and of s- and p-type 
on the H atom so that it does not give results as 
accurate as the ones of Cade and Huo (13), although 
their results have to be regarded as highly accurate. 
The claim that their results are within 0.002 au of 
the HF limit for water, however, appears not to be 
unreasonable. Cade and Huo claimed an accuracy 
of 0.001 au which is probably exceeded. The semi­ 
empirical estimates of the HF limit energies by 
Hollister and Sinanoglu [ 5) are generally believed 
to be somewhat too low (19-22) - for FH e.g. their 
estimate is E HF = -100.0751 au. This is probably 
the case, but it must be admitted that the levelling-off 
of the energy as the basis set size is increased has 
not been resolved in an entirely satisfactory manner 
until now. Somewhat more care in assigning the HF 
limit of the energy based on more or less complete 
calculations appears thus to be appropriate. 

Acknowledgement 

One of the authors (V{. vN.) would like to 
acknowledge support from the Deutsche Forschungs­ 
gemeinschaft. 

References 

[I) HELLMAN, J. (1937). Einfiihrung in die 
Quantenchemie, Leipzig: Deuticke. 
FEYNMAN, R.P. (1939). Phys. Rev., S6, 340. 

[2) HURLEY, A.C. (1954). Proc. Roy. Soc. (Lon­ 
don), A226, 170, 179. 
HALL, G.G. (1961). Phil. Mag., 6, 249. 
STANTON, R.E. (1962). J. Chem Phys., 36, 
1298. 
For a review, see DEB, B.M. (1973). Revs. 
Modern Phys., 4S, 22. 

(3) MOLLER, c. and PLESSET, M.S. (1934). Phys. 
Rev., 46, 618. 
GOODISMAN, J. and KLEMPERER, w. (I 963). 
J. o.e« Phys., 38, 721. 
EPSTEIN, S.T. (1971). University ofWinconsin 
Report No. WIS-TGI-437. 

(4) FOCK, V. (I 930). Z. Physik; 63, 855. 
WWDIN, P.O. (1959). J. Mol. Spectroscopy, 
3, 46. 

(5) HOLLISTER, c. and SINANOGLU, 0. (1966). 
J. Am. Oiem. Soc., 88, 13. 

(6) FROESE-FISCHER, C. (1968). Some Hartree­ 
Fock Results for the Atoms Helium to Radon, 
special report from the Department of Mathema­ 
tics, University of British Columbia, Vancouver. 

(1972). Atomic Data, 4, 
301. 

(7) MANN, J.B. (I 967). Atomic Structure Cal­ 
culations: Hartree-Fock Energy Results for the 
Elements Hydrogen to Lawrencium, Los Alamos 
Scientific Laboratory Report LA-3690. 

(1973). Atomic Data, 12, I. 
(8) TREFFTZ, E., (private communication). 

(9j ROOTHAAN, C.C.J. (1951). Revs. Modern 
Phys., 23, 69. 

(I 960). Ibid., 32, 179. 
(10) WEISS, A.W. (1961). Phys. Rev., 122, 1826. 

ROOTHAAN, C.C.J., SACHS, L.M. and WEISS, 
A.W. (1960). Revs. Modern Phys., 32, 186. 

[II) BAG US, P.S. and GILBERT, T.L., (unpublished 
work), cited partially in McLEAN, A.O. and 
YOSHIMINE, M. (1968). Tables of Linear Mole­ 
cule wavefunctions, Supplement to IBM J. 
Research Develop., 12, 206. 
BAGUS, P.S., GILBERT, T.L. and ROOTHAAN, 
C.C.J. (1972). J. Chem. Phys., 56, 5195. 

(12) CLEMENTI, E. (1965). Supplement to IBM 
J. Research Develop., 9, 2. 
CLEMENTI, E., ROOTHAAN, C.C.J. and YoSHI­ 
MINE, M. (1962). Phys. Rev., 127, 1618. 

(13) CADE, P.E. and Huo, W.M. (1967). J. Chem. 
Phys., 47, 614. 

(14) --- and --- (1967). J. Chem: 
Phys., 47, 649. 

[15) ---and --- (1966). J. Oiem. 
Phys., 4S, I 063. 

(16) McLEAN, A.D. and YoSHIMINE, M. (1967). 
J. Oiem. Phys., 47, 3256. 

[I 7) A system of programs developed by B. Liu, 
M. Yoshimine, P.S. Bagus and A.D. McLean. 
For a description, see: 
McLEAN, A.O. (1971), in Proceedings of the 
Conference on Potential Energy Surfaces in 

226 



Oiemistry. RAl8, 87, IBM Research Laboratory, 
San Jose, California; and 
BAGUS, P.S. (1972), in Selected Topics in 
Molecular Physics, 187, Weinheim: Verlag 
Chemie. 

[ I 8 I WAHL, A.C., BERTONCINI, P., KAISER, K. and 
LAND, R. (1970). Int. J. Quantum Chem., S3, 
499. 

and 
(1968). USAEC Report ANL 7271. 

[19] MEYER, W. (1971). Int. J. Quantum Chem., 
SS, 341. 

[20) DUNNING, T.H., PITZER, R.M. and AUNG, s. 
(1972). J. Chem. Phys., S7, 5044. 

[21] CLEMENTI, E. and POPKIE, H. (1972). J. Chem. 
Phys., S7, 1078. 

[22] ERMLER, W. c. and KERN, c. w. (1973). 
J. Chem. Phys., S8, 3458. 

[23] HUZINAGA, s. (1965). J. Chem. Phys., 42, 
1293. 

(24] Roos, B., SALEZ, c., VEILLARD, A. and 
CLEMENTI, E. (1968). A General Program for 
Calculation of Atomic SCF Orbitals by the 
Expansion Method, IBM Technical Report 
RJ518. 

[25] BERRY, R.S. and REIMANN, c.w. (I 963). 
J. Chem. Phys., 38, 1540. 

[26] LowDIN, P.O. (1967). Int. J. Quantum Chem., 
SI, 811. 

(27) Ko LOS, w. and RoOTHAAN, C.C.J. (I 960). 
Revs. Modern Phys., 32, 219. 

(28] SCHULMAN, J. and KAUFMAN, N.D. (1970). 
J. Chem. Phys., S3, 477. 

[29] DIERCKSEN, G.H.F. and KRAEMER, W.P. (1973). 
Munich Molecular Program System Reference 
Manual, Special Technical Report, Miinchen: 
Max-Planck-lnstitut fiir Physik und Astrophysik. 

227 



Ground State W avefunctions for Aromatic 
and Heteroaromatic Molecules 

M.H.Palmer, A.J.Gaskell, R.H. Findlay, S.M.F.Kennedy, 
W.Moyes and J.Nisbet* 

Near to Hartree-Fock wavefunctions have been obtained for a wide variety of benzenoid hydrocarbons 
and benzene derivatives, as well as 5- and 6-membered ring heterocycles containing varying numbers 
of first and second row elements. Trends in the computed properties derived from the wavefunctions 
are described with particular reference to the correlation with magnetic susceptibility and photoelectron 
spectroscopy. The effect of basis set upon molecular properties and energies within this range of 
molecules is discussed. 

We have been interested in the ground state 
electronic structures of aromatics and heterocycles, 
and in their reactivity for some years [I]. Thus it 
is appropriate that we should have studied a range 
of these molecules by non-empirical means. In the 
early days we had very limited computing facilities, 
but with large amounts of time available on an IBM 
360/50, we endeavoured to arrive at a compromise 
between size of molecule that could be studied and 
basis set that it would be practicable to use. The 
obvious starting point was the work of Clementi et 
al. (2) on pyridine and pyrrole etc., and subsequently 
that of Berthier et al. (3) on benzene and related 
species. We took the view that a wide number of 
studies comparatively close to the Hartree-Fock limit 
would be more valuable than just a few molecules 
very near the limit. Furthermore there appeared 
to be no case for just trying to marginally leapfrog 
the work cited above by minor extensions of the 
basis. In fact most one-electron properties for these 
molecules are virtually unaffected by change in basis 
set beyond our present level. We used in our studies 
[ 4) on the 5- and 6-membered ring heterocycles a 
best a tom basis consisting of 7 s-type and 3 p-type 
for first row elements [ 5) , with three s-type for 
hydrogen. Subsequent studies [ 6) showed that the 
addition of polarisation functions (7) lowered the 
energy slightly, but scaling of best atom sets to 
better represent molecular environments became wide­ 
spread and we contributed to this with our work 
on small model molecules where the molecular energy 
was optimised [ 6] . Certainly if one's only desire 
is to lower the molecular energy obtained, then 
scaling is more cost effective than the addition of 
extra basis functions; it also lowers the valency shell 
binding energy and leads to better numerical agree­ 
ment with photoelectron spectra when Koopmans' 

Theorem is used. Scaling does not have any effect 
upon the orbital ordering, but in some cases it can 
effect the one-electron properties. For example 
using our best atom bases and evaluating the dipole 
moments leads to generally very good agreement 
with experiment, see table 1 (8). When scaled 
bases are used the dipole moments often show a 
significant change, and since our work usually leads 
to random scatter near the experimental value this 
can lead to poorer results. Examples are furan 
(experimental 0.6D) where we obtain I .OD for the 
scaled basis but 0.6D for the unscaled one, similarly 
1,2,5-oxadiazole is worse on scaling. In contrast 
pyrrole is improved both by scaling and by the 
addition of polarisation functions (6). Many other 
I-electron properties are less sensitive than dipole 
moments to scaling. 

In none of the cases that we have studied with 
both best atom and scaled bases have the orbital 
orderings been significantly changed. Furthermore, 
in carbocyclic and heterocyclic aromatic compounds 
it is true to say that virtually all orbital orderings 
become stable once one passes the threshold of 
reasonable size in minimal basis sets. By this we 
mean that extended bases offer little additional 
change. For example, in the azines with over 70 
correlations, the ordering is unchanged between 
minimal and double zeta bases [9) in all except two 
cases; in these cases near degeneracy is observed in 
any event. The computational cost of extended 
bases can be rarely justified at this point in time. 
Amongst others, Lipscomb et al. (10) found that 
minimal Slater based calculations were as reliable 
as extended sets for many operators on boranes. 
Thus we decided to work with a firmly based single 
basis set for a very wide range of molecules - the 
scaled best atom basis. We now do upgrading to 

* Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ 
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Table 1: Dipole moments (µ./D) and vector components in five-membered ringsa,b 

Experimental LCGO 
Name ·vatue Totalµ µl µII µa µrr 

Pyrrole 1.80 2.01 +2.01 0.0 -0.53 +2.54 
Pyrazole 2.21 2.85 +2.23 +1.77 +1.65 +3.07 

(-30.1 °) (+83.0°) 
lmidazole 3.8 I 4.41 +4.31 +0.96 +1.46 +3.15 

(+52.4°) (+95.3°) 
IH-1,2,4-Triazole 3.20 I 3.56 +3.50 +0.65 1.14 2.91 

(+54.0°) (+86.6°) 
lH-1,2,3-Triazole I 4.50 +3.26 +3.10 2.79 2.87 

(+81.70) (+83.0°) 
2H-l ,2,3-Triazole I -3.24 -3.26 0.0 
lH-1,2,3,4-Tetrazole 5.15 5.17 +4.72 +2.11 2.53 2.92 

(+47.0°) (+82.5°) 
2H·l ,2,3,4-Tetrazole (2.30) I 2.54 +2.24 +1.22 1.57 2.71 

(-25.8°) (+94.1°) 
Furan 0.67 -0.64 -0.64 0.0 -2.77 2.13 
Thiophen (sp basis) 0.53 -1.25 -1.25 0.0 -3.22. l.97 

(sp + 3s' + 3d basis) -0.44 -0.44 0.0 -2.49 2.05 
1,2,5-0xadiazole 3.38 -2.96 -2.96 0.0 -4.46 I.SO 
1,3,4-0xadiazole 3.04 2.75 +2.75 0.0 0.26 2.49 
1,2,4-0xadiozole 1.2 1.18 -0.16 +l.17 -2.45 2.21 

(-70.6°) (+80.0°) 
l, 2,3-0xadiazole I 3.70 -0.22 +3.69 -3.96 -2.16 

(-35.8°) (+77.2°) 
1,3,4-Thiadiazole (q, basis) 3.28 3.38 3.38 0.0 

(sp + d basis) 3.28 4.23 4.23 0.0 
1,2,5-Thiadiazole (q, basis) 1.57 -2.53 -2.55 0.0 

(sp + d basis) 1.57 -1.75 -1.75 0.0 
Phosphole (planar) 1.40 1.40 o.o -0.70 2.23 
Phosphole (PH out-of-plane) 1.14 -0.54 1.00(µ,) 
l,6,6a-Trithiapentalene (,p basis) 3.01 -3.87 -3.87 0.0 

(sp + d basis) 3.01 -2.17 
1,6a,6-Dithiaoxapentalene (sp basis) 3.78 -4.32 -3.78 -2.09 

(sp + d basis) 3.78 -3.70 
6a,l,6-Thiadioxapentalene (,p basis) -3.22 -3.22 0.0 

(sp + d basis) -2.75 
l ,6a,6-Dithia-ezapentalene (,p basis) -4.23 -1.59 -3.92 

(sp + d basis) -3.02 
-- 

(a) see (8) 
. (b) Angles with respect to positive direction of µII and measured anticlockwise; the sign of the dipole moment is taken with the 

negative end in the positive cartesian direction as positive 

split valency shell or double zeta basis on a selective 
procedure in order to confirm that our hypothesis 
is reasonable, or to deal with particularly polar 
molecules. As a matter of practice all of our work 
with second row elements we include d-orbitals to 
see· whether they are significantly populated in the 
ground state. This is uniformly not the case in all 
examples that we have studied where the element 
S or P is in a planar state, such as in the dithiolium 
salts (I) and trithiapentalenes (2) {thiathiophthens) 
[ 11 ] . The 3d orbitals are or course extensively 
utilised in the tetrahedral sulphur compounds, such 
as the thiophene mono- and di-oxides {3) [I 2 ]. 

~@l 
(I) 

0 
o""s'o (3J 

Our interest in wavefunctions in the first instance 
has been to obtain: 

{a) an interpretation of photoelectron spectra; 
{b) to evaluate the moments and compare with 

experimental data; 
(c) to evaluate the diamagnetic susceptibility and 

compare with experimental microwave data; 
(d) to try to investigate that controversial subject 

in organic chemistry - aroma tic character and 
resonance energy. 

If it was possible to calculate the molecular g-value 
non-empirically then we would be able to calculate 
the total magnetic susceptibility. As we will see we 
have made progress on all of (a) to (d). We would 
also like to study the electronic spectra of the 
aromatic and heteroaromatic systems; we have done 
a little work on the first excited states, but again 
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within the single configuration procedure. One or 
two results of this are of particular significance, but in 
general the subject is not well described by this 
type of investigation so we will not cover this further. 

Our work covers various systems. There is in 
fact surprisingly little work on conjugated olefins, 
particularly if floating spherical gaussian calculations 
are ignored. The justification for the latter view 
is not just based upon the fact that for molecules, 
such as hexatriene the FSGO energy is 33 au above 
our LCGO one, or that for naphthalene the difference 
is 54 au (13] but also that properties evaluated and 
(some) described below are unsatisfactory. We are 
working on both cyclic polyolefins including the 
annulenes, and acyclic systems. In the aromatic 
series we have an extensive study of molecules of 
type C6H4XY where X and/or Y are all the common 
substituents; H, OH, F, NH2, NO2, CN, CHO etc. 
As you will see this is an extensive triple triangular 
array since there are three isomers in each case. 
Although much of this work is complete, and we 

l 
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Figure l 

have assigned the photoelectron spectra - rather 
well as it turns out - we would not gain much from 
looking at extensive tables of data. From the 
fragmentary data, the correlation with experiment 
is not improved by larger basis sets, and the rather 
smaller bases by Pople and others (I 4) which lead 
to energies several au higher in energy are sure to 
be considerably poorer. Indeed we have repeated 
several of their computations and note that it is 
common to find eigenvalues in the 5-7 eV region. 
The other areas where we have made major studies 
are in the 6-membered ring heterocycles containing 
various numbers of nitrogen a toms with or without 
one atom of sulphur of pttosphorus. Again the 
photoelectron data is very good. These studies are 
practicable with quite large systems as seen for 
indole, benzofuran, benzothiophene and naphthalene, 
see figure I . 

We have already referred to the dipole moment 
studies on heterocycles when discussing the subject 
of basis sets. In the substituted benzenes the con­ 
formations of unsymmetrical substituents (X or Y) 
in the system C6H4XY bring about additional prob­ 
lems. We are active in this and have endeavoured 
to determine the most favoured geometry on the 
basis of energy, and then compare the dipole moment 
with the experimental one. Thus we find that in 
the case 1,2-C6H4(NO2 h the best geometry is 
probably one in-plane and another perpendicular. 
These results are not complete and we don't want 
to commit ourselves to the final answer. For many 
simple aromatics we calculate a dipole moment 
relatively close to the experimental one. We repro­ 
duce trends within the isomers and the effects do 
show vector addition for substituents as has long 
been known experimentally. The results are not 
perfect and this can be attributed to several factors: 
(a) the geometry of the ring; if not known from 

a gas phase determination this was taken as 
that of benzene; 

(b) that the energy optimised scaling on oxygen 
and fluorine compounds generally leads to 
poorer dipole moments than best atom bases 
for these systems; 

(c) that some of the dipole moments are anyway 
very high and this really calls for additional 
model compounds for the scaling. 

One of the very controversial subjects of organic 
chemistry has been resonance and resonance energy. 
We feel that we may have made a contribution here. 
It is clear that one of the virtues of keeping to a 
standard basis is that small trends become apparent 
unexpectedly. Thus in trying to evaluate resonance 
energy one is in difficulty with a definition and a 
classical analogue on which to measure heats of 
hydrogenation etc. Strain energy is very important 
and so on. We felt that the results of Hartree-Fock 
studies are unlikely to lead to good heats of formation. 
We need to return to the classical definition of 
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resonance energy if we are to study the subject at all. 
It was apparent to us that if we take a series of 
small molecules, the total energies are additive in 
bonds, table 2; so we propose to use the therrno­ 
chemists approach, but not to equate the atom 
energies to zero. Thus the energy of the C-H bond 
Ec.H is EcH4/4, that of the Ec=c is obtained from 
Ec-H and the energy of ethylene. In this way, with 
a series of classical molecules we arrive at a set of 
bond energies, which are of course on a very 
different energy scale to those of the thermochemist. 
Firstly we observed that they work for a number of 
non-aromatic systems, and then we apply them, 
table 3, to conjugated molecules. 

pyrrole is also reasonable, and the fusion of the 
rings with benzene even more so; thus while benzo­ 
furan ( or indole) are only about the same in 
aromaticity as benzene, the iso series are markedly 
less. The result with hexa fluorobenzene is a direct 
result of trying to obtain the C-F bond energy from 
vinyl fluoride. We are unable to stop the n-systems 
mixing, and hence some interaction energy is being 
lost in C6F6• However, even using the C-F bond 
energy from CH3F fails to alter the low resonance 
energy. Thus we must either accept the value, or 
question whether the C-F length (we used that 
from C6H5F) was optimal in C6F6• All of the 
systems so far are nearly strain free; if we operate 

Table 2: Analysis of molecular total energy in aromatics 

Model Molecules (-Energy au) 

CH4 40.10180 NH3 S6.0199 H20 7S.79999 
(Clf) (Nlf) (Off) 

C2H4 77.83143 CH3CH=CH2 116.774S3 CH2=CH-CH=CH2 1S4.S0920 
(C=C) (C-C) Perpendicular (C-C) 

CH2=CH-NH2 132.70390 CH2=CH-OH 1S2.46202 CH2CH-F 176.40S69 
Perpendicular ( C-Nl Perpendicular (C-0) (C-F) 

CH3CN 131.5S927 CH2=0 113.S1009 
(C-N) (C=O) 

Table 3: 'Resonance energies' (kcal/mole) 

Cuffe 
8S.4 

PhF 
S0.7 

PhCHO 
S3.7 

PhOH 
43.9 

PhNH2 
48.6 

Furan 
21.2 

Pyrrole 
21 

Benzofuran 
SS.6 

lsobenzofuran 
3S.2 

lndole 
S6.7 

lsoindole 
43.3 77.7 

trans Butadiene 
s.s 

cis, di Hexatriene 
7.8 

Cycloocta tetraene 
(experimental geometry) 

6.1 

Barrelene 
-114 

As is seen from the table we here quote just a 
few examples. The figures for the hydrocarbons, 
ethylene 0.0, butadiene 5.5, hexatrene 7.8, cyclo­ 
pentadiene 16.3, benzene 50.8 kcal/mole follow a 
logical pattern. Naphthalene is less than twice 
henzene in agreement with thermochemical data. 
The substituted benzenes (with the exception of 
hexafluoro benzene to be described elsewhere) are 
normally in the 55-40 kcal region. In most cases 
adding rr-electrons increases the resonance energy 
above that of benzene. The data for furan and 

with strained systems then we must expect to 
obtain strange results. We have been studying other 
members of the CnHn series for various charged 
states; for cyclobutadiene the best square triplet 
(Hiickel) state is preferred over the best square or 
rectangular singlet and neither has any resonance 
energy {i.e. resonance energy positive). Thus they 
are antiaromatic even before strain energy is included. 
Planar alternating cyclooctatetraene would have a 
resonance energy of -8 kcal/mole, so it is anti­ 
aromatic anyway, but the strain energy has not been 
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Table 4: Bond population moments 

a System 
Azines (X ,. - Y '· ) 
X-Y H-C C-N N-N C-C 

0.241 0.121 0.004 0.007 
Number of Points 29 30 7 11 
Maximum deviation 0.023 0.015 0.003 0.003 
Azoles x•· - y' 
X-Y Ca-0 Na-0 Ca-N(H) Na-N(H) Ca-N{l C(l-Nc, N{l-Nc, 

0.317 0.200 0.244 0.133 0.070 0.159 0.034 
Number of points 7 4 8 6 6 6 4 
Maximum deviation 0.010 0.070 0.015 0.016 0.018 0.026 0.019 

X-Y H-N C(l-N{l N{l-N{l 
0.386 0.115 0.007 

Number of points 7 6 2 
Maximum deviation 0.050 0.004 0.007 
1T System Azines 
X-Y C-N C-C N-N 

0.004 0.008 0.012 
Number of points 30 11 7 
Maximum deviation 0.03 0.010 0.010 
Azoles (X'" - Y' ) 
X-Y 0-Cc, (H)N-Cc, (H)N-Nc, 0-Nc, cs-c« Na-C{l 

0.142 0.195 0.219 0.148 0.103 0.087 
Number of points 6 8 6 3 8 6 
Maximum deviation 0.014 0.023 0.030 0.030 0.026 0.020 

X-Y Ca-NiJ Na-N{l C(l-C{l Ni3-C{l N{l-N{l 
0.107 0.089 0.0 0.006 0.0 

Number of points 6 4 1 6 
Maximum deviation 0.029 0.030 0.0 0.008 

included. In the nearly strain-free experimental 
geometry (which has a dihedral angle of about 50°) 
there is still 6.1 kcal/mole of resonance energy 
showing that there is still an interaction between 
the olefinic systems, as is clear from photoelectron 
spectra of this type of system. 

The Mulliken population analysis of heterocycles 
might be expected to lead to net atomic populations 
which vary markedly 
(a) from molecule to molecule, and 
(b) with basis set. 
From a comparison of our minimal data with 

larger basis set calculations we find that this is far 
from the case; it is just the relative populations in 
the constituent atomic functions which differ. For 
example if our thiopene data is compared with 
Gelius et al. [ I 5] the direct transference of our 
3da to their 3s leads to very similar results. We 
then noted that the populations at the atomic centres 
could be separated into bond population moments, 
see table 4, and that these are almost constant, 
with the sole exceptions of CH and NH which act 
as electron sinks for the whole system [8) . 

A further idea consistent with basic organic 
chemical notions is of the aromatic sextet behaving 
as a sextet i.e. having the same average position. 

If the average positions of the electrons vary markedly 
then the n-systern is not behaving as a unit, and 
this should lower the aromatic character. Studies 
of this both in mono and bicyclic systems are 
very revealing [8,12,13). Of course there are 
difficulties in applying this approach to molecules 
with a centre of symmetry. 

500 

(xic) CALC 

Figure 2: Diamagnetic susceptibility 
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Lastly we want to mention that we are able to 
compute the diamagnetic susceptibility, figure 2, 
for carbocyclic and heterocyclic aromatics within 
the experimental accuracy in almost all cases [ 16 ). 
Whether the total magnetic susceptibility anisotropy 
can be regarded as a characteristic of aromaticity 
remains unproven. Certainly Flygare's own data, 
figures 3 and 4, shows that the out of plane term 
is related to the average in plane irrespective of 
whether the system is aromatic or not. Our work 
on the diamagnetic term in annulenes should provide 
some interesting results here. Preliminary results 
for some Hiickel annulenes suggest that they are 
showing strong diamagnetic susceptibility anisotropy, 
but that the paramagnetic term less the g-factor 
portion already makes the sign of the sub-total 
opposite to that required by Flygare's proposal. 
There appears to be a linear correlation between 
the computed binding energy and the diamagnetic 
susceptibility anisotropy in isoelectronic series, see 
figure 5. 

zoo 
(x IP) AV 

Figure 3: Magnetic suaceptJ'bility of acyclic systems (Flygare) 
Xp offset 

IOO lOO 

zoo 

Figure 4: Magnetic suaceptJ'bility of cyclic systems (Flygare) 
Xp offset 

240 

BE 
Figure 5: Diamagnetic suaceptibility anisotropy and binding 
energy 
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Non Empirical LCAO SCF MO Investigations 
of Electronic Reorganizations accompanying 
Core Ionizations 
D.T.Clark, I.Scanlan, J.Muller and D.B.Adams* 

Calculations have been carried out on an extensive series of molecules for both the neutral species 
and core ionized states. Substituent effects on C 15, N 15, 015 and F ls levels have been investigated 
and where available comparison has been drawn with experiment. Comparison with Koopmans' 
Theorem has allowed a relatively detailed study of change in relaxation energies as a function of 
substituent effect on a given core level. For C1s levels the computed shifts in core binding energies 
are approximately linearly related to difference in relaxation energies. The empirical correction of 
Koopmans' Theorem for difference in relaxation energies at different sites has been investigated for 
large molecules. The results compared well with direct hole state calculations. 

Introduction 

Theoretical interpretations of molecular core 
binding energies, measured by ESCA, within the 
Hartree-Fock formalism have centred around five 
models namely: core hole state calculations [I], 
Koopmans' Theorem [2), equivalent core model (3), 
potential at an atom model and the charge potential 
model [ 4). The extensive discussions of experimental 
data utilizing these models have assumed that nuclear 
relaxation is slow compared with the typical life­ 
times of core hole states. On the other hand the im­ 
portance of electronic reorganizations accompanying 
photoionization of core electrons has clearly been 
established. However, theoretical studies in which 
electronic reorganization has been specifically in­ 
corporated have been confined to relatively simple 
molecules and few systematic studies are available 
in which the importance of differences in electronic 
relaxation energies for different core holes has been 
investigated. The data currently available does suggest 
however, that for atoms of similar bonding environ­ 
ment, relaxation energies are closely similar. 

Our objectives in this paper are four-fold: 

(a) to investigate the importance of nuclear re­ 
laxation accompanying core ionization on both 
absolute and relative binding energies; 

(b) to investigate, with a common basis set, sub­ 
stituent effects on shifts in core binding energies 
for a large range of compounds and bonding 
types; 

(c) to investigate systematically the relative im­ 
portance of relaxation energy contributions 
to shifts in core binding energies; 

(d) consequent on (b) and (c), to investigate the 
possibility of making systematic corrections 
to Koopmans' Theorem, thus enabling shifts 
for relatively large systems to be obtained 
from ground state calculations. 

Computational Details 

The calculations discussed in this work were 
performed with STO 4-31 G basis sets [ 5] , Clernenti's 
best atom exponents ( 6] were used for C, N, 0 and 
H. The deficiencies of an STO basis set for fluorine 
dictated the use of a comparable gaussian expansion 
of Hartree-Fock orbitals (HF4,31G) (7). For the 
more detailed studies in (a) an STO 6-1,l ,l ,I G basis 
gave added flexibility to the valence basis. The 
calculations were performed using the ATMOL system 
of programs (8) implemented on an IBM 370/195. 
Experimental geometries have been used where these 
were known, in other cases geometries were estimated 
from standard tables. 

Results and Discussion 

(a) An investigation or nuclear relaxation in the core hole 
state or methane: Jn the Hartree-Fock formalism the 
binding energy corresponding to photoionization of 
a core electron is given by: 

BE = (M)1:1r + (M)re1 + (M)co!T 

where 

• Department of Otemtstry, University of Durham, South Road, Durham, DHJ ]LE 
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M = £(ion) - £(1!10Und state) 

Recent theoretical and experimental studies have 
indicated that at least for first and second row 
atoms the absolute magnitudes of the relativistic 
and correlation energy differences are very small [9). 
Our previous studies have indicated the relative 
importance of basis set dependence of computed 
binding energies (as a difference between the neutral 
molecule and the ion) and this is of some importance 
since most calculations have by necessity employed 
basis sets a long way from the HF limit. Good 
agreement in general is obtained between calculated 
and observed binding energies on the assumption 
that nuclear relaxation is unimportant. The success 
of the equivalent cores model (employing either 
experimental or theoretically generated thermody­ 
namic data) also suggests that nuclear relaxation 
during photoionization is unimportant. Experimental 
evidence to date suggests that the lifetimes of core 
hole states are typically in the range 10-13 -10-17 sees. 
Of particular interest as far as this work is concerned, 
is the observation that some Auger transitions involving 
carbon have a half width of the order of .I e V. 
This suggests therefore that under appropriate con­ 
ditions, the natural linewidth of a carbon Is core 
level might be of the same order of magnitude. 
If this is so then from the uncertainty principal 
one might expect the lifetime for a carbon ls hole 
state to be of the same order of magnitude as a 
vibrational frequency (i.e. -10-13 sec.). Indeed it 
has been demonstrated recently by Siegbahn and 
coworkers (JO) (employing a high resolution spectro­ 
meter based on a fine focus X-ray monochromatization 
scheme), that the carbon ls spectra for CH4 (in the 
gas phase), exhibits a marked degree of asymmetry. 
This has been attributed to a Frank Condon envelope 
and clearly provides the first evidence for a change 
in geometry in going to the hole state. 

It is of some interest therefore to investigate the 
energy minimised geometries for CH4 and for its 
C15 hole state and for comparison (since it is of 
some importance with respect to the equivalent 
cores approximation) the equivalent cores species 
NH;. For such small systems, extended basis set 
calculations become feasible. Geometry minimizations 
have therefore been carried out for the three species 
using an STO 6,1,1,l ,IG basis set, with exponents 
optimized for a molecular environment, being taken 
from the extensive studies of Pople and coworkers. 
The resultant potential energy curves are shown in 
figure 1. For the optimum ground state geometry 
the binding energy is calculated to be 290.8 e V in 
excellent agreement with the experimental (290.8 eV). 

There are several interesting features which emerge 
from this. Firstly, it can be seen qualitatively (and 
demonstrated quantitatively by fitting to a quadratic), 
that the three curves are very similar, with the hole 
state and equivalent cores species being displaced by 

'o<, 'o,•" ••••• . . 
·5047 

-- 
·""'1 ••••• 

-- - _,.., 

...... 
··.t. 

,:· 
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Figure I: Variation or total energy with bond length for 
methane and its core hole and equivalent core states 

-.06A to shorter bond length. The minimised 
geometries are in excellent agreement with experi­ 
ment [ 11), C-H 1.09 (I .09A) for CH4 and N-H 1.03 
(1.031A) for NH;, the experimental values being 
given in parenthesis. Taking a typical vibrational 
frequency (-3000 cm") the observed band envelope 
for the C15 level of methane may readily be accounted 
for. The calculated binding energy corresponding 
to the minima for neutral molecule and hole state 
differs by only -.3 e V from that computed from 
the geometry appropriate to the neutral molecule. 
It is clear therefore that the assumption of an 
unchanged nuclear framework on core ionization 
is a good approximation. This possibility has also 
been discussed recently in a different context by 
Meyer [ 12). In the remainder of this work therefore, 
nuclear relaxation has been ignored. 

(b) Substituent effects: As we have previously indicated 
there have been numerous theoretical and experi­ 
mental studies of substituent effects on core binding 
energies. There has been no previous systematic 
theoretical study however of a large range of sub­ 
stituent effects on different core levels studied with 
a comparable basis set. In an attempt to rectify 
this deficiency we have investigated susbtituent effects 
on C15, N15, 01, and F15 core levels in a range of 
both saturated and unsaturated systems. Calculations 
have been carried out within the RHF formalism 
with a 4.31 G basis set. Since a variety of experimental 
and theoretical studies have shown that on the 
ESCA timescale core holes are localised [ 13) , the 
calculations reported refer only to the localised 
core hole states. Experimental geometries were 
employed where available but preliminary studies 
indicated that the binding energies were virtually 
unchanged for subtle variations in the geometry. 
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The emphasis in these particular calculations has 
been on shifts in binding energies rather than 
absolute values and therefore the limitations of such 
a basis set are to some extent relatively minor as 
has been previously shown in calculations on the 
fluoromethanes [I 4) . As a preliminary check the 
absolute binding energy for the C1, levels CH4 is 
calculated to be 294.3 e V. In the next sub-section 
a detailed discussion of relaxation energies will be 
given but at this stage it should be emphasized that 
by comparison with the results from Koopmans' 
Theorem the basis underestimates the magnitude 
of the relaxation energy. Considerable evidence is 
available that this relaxation energy is associated 
almost solely with the valence electrons and the 
underestimation of this quantity with the 4-3JG 
basis is readily understandable since the exponents 
are optimised with respect to the neutral species. 
That this is the case may be readily demonstrated 
by re-computing the total energy for the hole state 
with exponents appropriate for the valence atomic 
orbitals of the equivalent core (viz. N for CH4). 

The excellent agreement (table I) for the absolute 
binding energies for the molecules studied by this 
approach is most encouraging and indicates a com­ 
putationally Jess expensive means of calculating 
absolute binding energies, as compared to a large 
basis set computation. 

Table l: Effect of optimised core valence atomic orbital 
exponents on core binding energies 

X Unoptimised Optimised8 Experimental 

c*H4 294.18 290.71 290.8 

H2o* 545.49 539.12 539.4 

co* 548.47 541.89 542.3 

c*o 300.78 296.71 296.2 

(a) In this context optimised is taken to mean that the 
valence atomic orbital exponents correspond to the 
equivalent core species for the hole state. 

(b)THOMAS, T.D. (1970). J. Chem. Phys., 53, 1744. 

It is convenient in discussing these results to 
consider the effect of substituents on a given core 
level in different bonding environments and then 
proceed to a comparison as outlined in (b ). Where 
results are available comparison has been made with 
experimental data. 

(i) Binding energies in saturated systems: The range of 
substituents which have been studied is indicated 
in tables 2 and 3 with the primary substituent effect 
with respect to the methyl substituent taken as 
standard. This is more reasonable than employing 

hydrogen substituent as reference since it is not 
clear in cases where strong hydrogen bonding is 
possible that the experimental results refer to the 
free molecule. Where direct experimental data is 
available or where it may be inferred the agreement 
between theory and experiment is good. The shifts 
in the binding energies are in accord with chemists 
intuitive ideas concerning the nature of substituent 
effects viz. at the two extremes replacing H by Me or 
F results in a shift to lower and higher binding 

Table 2: Substituent effects on carbon core binding energies 

X Calculated Experimental" 

c*HrX CH3 (0) (0) 
H 0.23 0.2 
CH2F 0.61 
CHF2 1.26 
CF3 1.96 2.2b 
CHO 0.57 0.8 
NH2 0.89 0.9c 
OH 1.55 1.8 
F 3.46 3.0 

c*H2=X CH2 0.22 0.3 
CHF 0.80 
CF2 1.54 
NH 1.97 
0 3.87 3.4 

HC=C*-X H 1.18 0.6 
F 4.46 

xc'uo CH3 3.40 3.4 
H 3.87 3.4 
NH2 4.30 
OH 5.32 5.2 
F 7.28 

CH3C*H2F 2.96 

CH3C*HF2 6.04 

CH3C*F3 9.13 

F2C*o 10.73 

HC*CF 2.03 

FCC*F 5.29 

CH2C* HF 3.17 

CH2C*F2 6.29 

(a) SCHWARTZ, and SWITALSKI, (1972). J. Am. Chem. 
Soc., 94, 6298. Collection of experimental data from 
references as follows: 

DAVIS, D.W., SHIRLEY, D.A. and THOMAS, T.D. 
(1970). J. O,em. Phys., 92, 4184. 
THOMAS, T.D. (1970). J. Am. Chem. Soc., 92, 4184. 
DAVIS, D.W., HOLLANDER, J.M., SHIRLEY, D.A. 
and THOMAS, T.D. (1970). J. Chem. Phys .. 52, 3295. 
SIEGBAHN, K. et al. (1969). ESCA Applied to 
Free Molecules, Amsterdam: North Holland. 

(b) Estimated from thin film measurements on benzotri­ 
f!uoride and benzene: cf. CLARK, D.T., KILCAST, D. 
and MUSGRAVE, W.K.R. (1971). J. Chem. Soc. D, 516. 

(c) Estimated from thin film measurements on pyrrole: 
cf. CLARK, D.T. and LILLEY, D.M.J. (1971). Chem. 
Phys. Letters, 9, 234. 
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Table 3: Substituent effects on nitrogen, oxygen and 
fluorine core binding energies 

X Calculated Experimental'' 

Nitrogen: 
N*H2-X 

Oxygen: 
HO*-X 

CH20* 

CFzO* 

CH3CHO* 

NH2CHO* 

OHCHO* 

o*HCHO 

Feno• 

Fluorine: 
F*-x 

F*zCO 

CH2CHF* 

CH2CF*, 

HCCF* 

FCCF0 

CH3 
H 
CHO 
NH2 
OH 
F 

CH3 
H 
CHO 
NH2 
OH 
F 

CH3 
H 
CH2CH3 
CHFCH2 
CF3CH3 
CHO 
NH2 
OH 
F 

(0) 
0.78 
1.17 
0.88 
1.44 
3.75 
0.40 

(0) 
1.0 
1.11 
0.49 
1.30 
4.52 
0.60 
3.12 
-0.30 
-1.37 
-0.17 

1.78 
1.84 

(0) 
2.24 
-0.28 
0.77 
1.84 
1.41 
0.58 
0.89 
4.0 
3.16 
0.40 
1.78 

2.84 
3.29 

(0) 
0.5 
1.0 

(0) 
0.8 
1.5 

-1.3 

-1.3 

-0.1 
1.5 

(a) See footnote (a) of Table 2 
(b) SHAW, R.W. and THOMAS, T.D. (1973). Chem. Phys. 
letters. 22, 127. 

(c) Extrapolated from experimental data on fluoromethanes 
(see text) 

binding energies and these results are shown in the 
case of fluorine substitution in table 4. The marked 
consistency of primary and secondary shifts at 
carbon of -3.0 e V and 0.7 e V respectively are in 
excellent agreement with available experimental data 
obtained from studies of simple homopolymers (15). 
It is clear that for fluorine, the primary and secondary 
substituent effects, in not only saturated but also 
unsaturated systems are essentially constant in accord 
with the observed shifts in the fluorobenzenes (16). 
By employing appropriate primary and secondary 
shift data it is possible to estimate shifts in core 
binding energies for other systems. In difluoro­ 
acetylene for example, a shift of 4.15 e Vis anticipated 
with respect to acetylene in accord with a calculated 
value of 4.12 e V. The experimentally observed 
gas phase shifts in the fluorornethane by comparison 
with the fluoroethanes are also well reproduced 
by this data. 

Table 4: Effect of fluorine substitution on c, and /3 core 
binding energies 

Primary (Cl) Secondary (/3) 

CH3·CH3 (0) (0) 
CH2F-CH3 2.96 (2.96) 0.61 (0.61) 
CHF2-CH3 6.04 (3.08) 1.26 (0.65) 
CFJ"CH3 9.13 (3.09) 1.96 (0.70) 

CH2=CH2 (0) (0) 
CHF=CH2 2.95 (2.95) 0.58 (0.58) 
CF2=CH2 6.07 (3.12) 1.32 (0.74) 

H-C=-C-H (0) (0) 
F-C=.C-H 3.20 0.86 

HzC=O (0) (0) 
HFC=O 3.41 (3.41) 1.24 (1.24) 
F2C=O 6.86 (3.45) 2.40 (1.16) 

H-C=.N (0) (0) 
F-C=N 3.3 1.09 

energies respectively for all core levels. Of some 
interest is the fact that substituent effects are such 
that in progressing across the series from Cu to F15 
core levels there is generally relatively little variation 
due to Me, NH2, OH and F substituents. The net 
effect is that the difference in shifts arising from 
these substituents remains relatively constant for 
the different core levels. 

There is sufficient data available to consider both 
primary and secondary su bstituent effects on core 

For the F1s levels the computed primary and 
secondary shifts for a methyl substituent are 2.2 e V 
and 0.3 eV respectively. It is interesting to note 
that by contrast, the primary effect of methyl for 
C1s levels is only 0.4 e V and this large difference in 
substituent effects at different core levels is also 
reproduced by the experimental data. The two 
sets of results for the effect of fluorine on C15 
levels and of methyl on fluorine ls levels emphasizes 
once again the short range nature of substituent 
effects in saturated systems. 

(ii) Binding energies in unsaturated atoms: A similar ana­ 
lysis has been undertaken for some unsaturated 
species. Reasonable agreement is again evident 
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between the calculated and experimental results 
where available. Introduction of a double or triple 
bond to the core ionised centre is seen to have 
little effect on the primary and secondary shifts 
with the notable exception of the 015 shifts in the 
carbonyl compounds. The primary shifts at the 
carbonyl carbon correlate quite well with those 
observed at a saturated carbon, the shifts (with 
respect to CH3) being slightly larger. 

(c) Relaxation energies: The computational expense etc. 
of performing calculations on core hole states for 
each core level has meant that considerable emphasis 
in the literature has been placed on the interpretation 
of shifts using Koopmans' Theorem. As we have 
already indicated the energy lowering due to the 
relaxation of the valence electrons in going from 
the neutral molecule to the core ionised species is 
quite appreciable in absolute terms ( of the order 
of 10-20 eV for first row atoms). Previous investi­ 
gation in which comparisons have been made between 
Koopmans' Theorem and hole state calculations 
have shown that the relaxation energies are closely 
similar for a given core level in a closely related 
series of molecules [14]. Experimental data is 
available however which suggests that for different 
bonding environments there may be significant con­ 
tributions to shifts in core binding energies arising 
from differences in relaxation energies. A particular 
example is the shift in carbon ls levels for the 
methyl and carbonyl carbons in acetaldehyde. Ex­ 
perimental measurements both in the gas and solid 
phase give a shift of between 2.7 and 2.9 e V [17]. 
The shift however computed from Koopmans' Theo­ 
rem is always smaller by approximately .4 e V, 
independent of the basis set, provided a suitably 
balanced basis is employed. By contrast the hole 
state calculations reported here are in excellent 
agreement with the measured shift in Cts levels 
for acetaldehyde thus suggesting a small but significant 
difference in relaxation energy at the two carbon 
atoms. In studying an extensive series of molecules 
covering a number of core levels and a variety of 
bonding situations we may investigate the importance 
of differences in relaxation energy in contributing 
to these shifts. 

Figure 2 shows a plot of calculated shifts in 
binding energies versus differences in relaxation 
energies covering C15 levels in both saturated and 
unsaturated systems. It is interesting to note that 
the relaxation energies span a range of -J.S e V 
whilst the corresponding range for the shift is -7 e V, 
there is a clear trend established between shift and 
relaxation energy and this has also been noted 
recently for a very limited series of molecules by 
Hillier and coworkers [18]. Good linear correlations 
are observed for the four individual series of molecules 
studied. The relaxation energies are obviously lowest 
for those core levels corresponding to the largest 
shift in binding energy. This is not unreasonable 

since the valence electron clouds will already be 
somewhat contracted in the neutral molecule. The 
good overall correlation between shift and relaxation 
energy goes some way to rationalizing why in 
general the charge potential model works so well. 
Indeed this is not so unexpected in the light of a 
recent analysis [19] of the contributions to relaxation 
energies of local and neighbouring atom contributions 
with both the former and latter containing charge 
dependent terms. 

• • CH,- X 
O d\- CF-H1-- 

• H C-o 
X 
•CH,- X 

-c-a 

O·• 

~ lH 
II/ -0-1 
C 
! -0·6 

i -0·7 

~ ~ .()~ a 

-<>• 

J' 
0 • •••• 

·10 

+a • F 

0 '° 20 J.() "" "" . ...n ..... r..(n) 

Figure 2: Plot of computed differences in relaxation energy 
versus shifts in binding energy {both with respect to ethane 
as standard) for some C 18 levels 

In a previous investigation we have discussed 
in detail the constancy of the relaxation energy in 
the case of the fluoromethanes [14]. In this case 
the constancy was attributed to the cancellation of 
charge dependent terms arising from local and nearest 
neighbour charge distributions. 

For the particular case of the simple fluoro­ 
substituted ethanes we have pursued a similar analysis. 
The data are collected in table 5. Considering 
firstly the effect of substituents on the C*H3 core 
levels in proceeding from CH 3 to CF 3 as substituent 
the binding energy increases by 1.96 e V and the 
relaxation energy decreases by 0.19 e V. From 
Mulliken population analyses the changes in valence 
electron population in going from neutral molecule 
to the hole state have been computed for both the 
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Table 5 

Core tl/JE" llREb ~'\,op>° ~t.nl 
c*HrCH3 (0) (0) (0) (0) 
c*Hl"CFH2 0.6 -0.07 .026 0.004 
c*H3·CF2H 1.26 -0.13 .048 -0.005 
c•nl"cF3 1.96 -0.19 .060 -0.021 

c*FH2-CH3 2.96 -0.14 -.033 0.029 
C*F2H-CH3 6.04 -0.21 -.088 0.089 
c*F3-CH3 9.13 -0.19 -.169 0.183 

(a) tl/JE shift in binding energies 
(b) flRE difference in relaxation energy 
(c) '\,op= electronic population c• - electronic population C 
(d) &i = sum over bonded atoms (populations x• - popu- 

lation X) 

atom on which the core hole is located and the 
nearest neighbour atoms. Whilst the change in 
nearest neighbour populations are effectively constant 
in this series there is considerably less electron flow 
in the case of CF3 as substituent than for CH3 
and the relaxation energy therefore decreases. By 
contrast the effect of a methyl substituent in the 
series C*F0H3_0-CH3 is such that the change in 
population at the atom concerned and on the 
nearest neighbours are similar in magnitude and 
opposite in sign. 

(d) Estimation of shifts in binding energies from Koopmans' 
Theorem and relaxation energy cosrectio111: We have 
stressed above the importance of electronic relaxation 
concomitant upon core ionisation and that between 
certain core holes there is an appreciable calculated 
error in their shift if this is not taken into con­ 
sideration. There appears however in these small 
molecules to be fairly systematic variations in the 
reorganisation energies of a particular atom in similar 
environments which may be quite general for the 
nearest neighbour environment. The possibility then 
arises of making systematic corrections to core level 
ionisation energies as calculated from Koopmans' 
Theorem to estimate the core binding energies. This 
is of considerable importance for comparison with 
ESCA studies of larger molecules since computations 
with a basis set of comparable size would require 
considerable central processor unit expenditure if 
the individual core hole states were to be studied. 
As a suitably complex test case we have studied the 
biologically important 5-azauracil. Experimental 
studies (20] of the core binding energies for an 
extensive range of pyrimidine bases has allowed by 
direct correlation an assignment of core binding 
energies in the order: 

The charge potential model (CND0/2 charget} and 
Koopmans' Theorem correctly predict the ordering 
of N 1, levels, however the shift between C4 and C6 
is calculated to be small and in both cases in the 
opposite sense to that inferred from the experimental 
correlations. It should be emphasized of course that 
the measurements refer to the solid phase and that 
extensive hydrogen bonding may modify the pattern 
of binding energies that might be expected from the 
free molecule. This will be discussed in detail 
elsewhere [ 20] . 

In studying relaxation energies as a function of 
structural type however, it is clear that significant 
differences in relaxation energies might be expected 
at different sites within the molecule. Direct hole 
state calculations have therefore been carried out 
and, from the series of small molecules exhibiting 
the appropriate structural features, estimates have 
been made of differences in relaxation energies, 
which may be used as corrections to Koopmans' 
Theorem. The results are presented in table 6. The 
corrected Koopmans' Theorem results are in excellent 
agreement with the direct hole state calculations 
and in complete agreement with the experimentally 
determined ordering of C11 and N1, levels. 

Table 6: Shifts in core binding energies (e V) in 5-<lzauracil 
8 
0 
II 

H, .,,...c...._ 
~l • 5~ 

0,,c~, J,C 
7 7 

H 

Core Koopmans' Hole Estimated Estimated 
Theorem State RE BE8 

NI 2.08 2.52 -0.43b 2.51 
N3 1.15 1.82 -0.43b 1.58 
N5 (0) (0) (0)° (0) 

C2 0.83 1.70 -0.60d 1.43 
C4 -0.19 0.54 -0.60d 0.41 
C6 (0) (0) (0) (0) 

01 0.54 0.92 
08 (0) (0) 

(a) BE = Koopmans' Theorem - RE 
(b) Estimated from N*H2CHO (14.29) 
(c) Estimated from N*H=CH2 (14.72) 
(d) Estimated from NH2c*no (10.56) 
(e) Estimated from HN=c*H2 (11.16) 

C2 > C4 > C6 

NI >N3>NS 

The agreement between the estimated and cal­ 
culated binding energies is most encouraging and 
we are currently engaged in further investigations 
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of a more extensive series encompassing C15, N,s, 
O,s and F15 core hole states in comparable chemical 
environments. 
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Localised versus Delocalised Descriptions of 
the n-n• Excitations in p-Benzoquinone 
H.T.Jonkman, G.A.van der Velde and W.C.Nieuwpoort* 

Results of restricted SCF calculations on the closed shell ground-state and open shell n-ff• excited 
states of p-benzoquinone will be presented and discussed. The basis set for C and O consisted of 
6/3 sets of primitive gaussian orbitals contracted to 4/2 sets. For H 2 ,Gaussians contracted from 
3 primitive ones were employed. 
In the ground state the oxygen 'n' orbitals can be described in two equivalent ways: delocalized m.o.'s 
of odd and even symmetry or m.o.'s localized essentially on each oxygen. In the excited state these 
two descriptions are no longer equivalent. The SCF excitation energies calculated for the two 
situations differ drastically, the localized results being some 2.5 eV less than the delocalized ones 
and in much better agreement with experiment. 

Introduction 

In recent work [ I ,2,3] on the spectroscopy of 
p-benzoquinone it is established that the observed 
lowest triplet and singlet states are all of the n-11* 

type. A typical feature of the spectrum is the small 
splitting between the states corresponding respectively 
to the excitations 4b1g(n~) + 2b2g(11) and Sb2u(nn + 
2b2g(11): 

3Au-3B3g-0.04 eV, 1Au-1B3g-0.03 eV. 
The splitting between corresponding singlet and 

Table 1: Exponents and contraction coefficients 

Atom Function Exponent Coefficient 

C s 490.404 1 0.03~30498 
73.7839 0.23233429 
16.4654 0.81681938 
4.36231 I. 
0.565720 I. 
0.178954 I. 

p 4.19582 0.21144665 
0.856630 0.87965386 
0.200293 I. 

0 s 898.8000 0.03289584 
135.5780 0.23002992 
30.4306 0.81844867 
8.14235 I. 
1.15450 I. 
0.350681 I. 

p 8.17771 0.22416168 
1.69320 0.87017089 
0.376417 I. 

H s 4.46834 0.15699764 
0.678538 0.90407691 
0.151055 I. 

triplet states of -0.2 e V is also relatively small. 
(The x and y axis are chosen in the plane of the 
molecule, the x axis coinciding with the carbonyl 
bonds, x=b3u,y=b2u,z=b1u)- As the existing theore­ 
tical treatments [4,5] leave room for improvement 
we have undertaken a series of ab initio SCF-MO 
calculations on the groundstate as well as on a variety 
of excited and ionised states of p-benzoquinone. 
The calculations were carried out with the program 
SYMOL written by one of the authors (G.A. vd V.). 
This program solves the conventional restricted closed 
and open shell SCF equations in terms of cartesian 
basis functions and is especially constructed to deal 
efficiently with molecular symmetry. The contracted 
basis set employed is listed in table I. The molecular 
geometry was taken from [ 6] . In the following we 
briefly report and discuss the results obtained for a 
number of excited states from two sets of calculations. 
In the first one D2h symmetry was imposed on the 
molecular orbitals, in the second one the symmetry 
was lowered to C2v with the long axis of the molecule 
as the C2 axis. 

Results and Discussion 

In table 2 calculated and measured excitation 
energies are listed. The most striking feature is 
the large discrepancy between the calculated and 
experimental positions of the ny-11* excited states 
when the molecular orbitals are constrained to 
transform according to the irreducible representations 
of D2h. In particular the lowest triplet state is 
calculated as 11-11* and although the lowest singlet 
states correspond to n-11* their calculated excitation 
energies as well as those of the n-11* triplet states 

* Oiemische Laboratoria der Rijksuniversiteit, Zemikelaan, Paddepoel, Groningen, Netherlands 
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are 2 e V larger than the measured values. The 
calculated splittings between the n-ir• states are 
about three times larger than observed: 3Au-3B3g= 
0.13 e V, 1Au-1B3g = 0.082 e V, the singlet-triplet 
splittings are about 0.35 e V. 

Table 2: Computed and experimental excitation energies 
of p-benzoquinone (in e V) 

Transitions States ~CF
8 Experi~ 

D2h C2v mental 

2b1u-2b2g (mr*) 3B3u 2.49 2.49 
4b18-2b2g (n_,..•) 3 4.21 1.85 2.279 B3g 
lb3g-2b2g (lfff*) 3 4.25 4.25 Big 
5b2u-2b2g (n,.1r*) 3Au 4.34 (1.85) 2.318 
lb3g-lau (,.,..•) 3B3u 6.75 6.75 
2biu-lau (,.,..•) 3 7.39 7.39 B1g 

4b18-2b2g (n_,.•) •B3g 4.59 2.08 2.458 
5b2u-2b2g (n,.,..•) !Au 4.67 (2.08) 2.516 
lb3g-2b2g (,r,..•) I 5.42 5.24 4.069 Big 
2b1u-2b2g (,.,..•) IB3u 7.13 (5.24) 5.127 

(a) Eground = -378.392087 au 
(b)See (1,2) 

There is no doubt that this situation can be 
improved substantially by carrying out extensive 
configuration interaction calculations. However, such 
an approach at this stage might obscure an important 
physical origin of the discrepancies observed. The 
completely filled pair of ng and nu orbitals obtained 
in the groundstate calculation (i.e. 4b1g and 5b2u) 
consist mainly of 2py orbitals centred on the oxygen 
a toms and they can in fact be transformed to a 
set of equivalent orbitals n1 and n2 that are well 
localised on the oxygen atoms 01 and 02 respectively. 
In the groundstate there is of course no physical 
difference between the delocalised and localised 
representation. They are, however, quite different 
when states are considered where one n-electron is 
excited as in the n-ir• transitions considered. At 
first sight this difference may not seem very meaningful 
because the localised hole states which may be 
indicated by <1>1-1 .... n1 n2 ii2 .•.• I and <1>2- 
I .... n I n1 n2 •••• I do not have the required g or u 
symmetry. This property can be recovered by 
forming <l>g,u- <1>1 ± <1>2 which can be seen to 
be equivalent to the delocalised descriptions 
<1>8-1. .•• ng nu nu .... I : <l>u-1 ...• ng ng nu .... I 
as long as the localised orbitals n I and n2 are 
equivalent i.e. they transform in to each other under 
inversion as is the case for the localised groundstate 
orbitals. The equivalence of localised and delocalised 
descriptions is, however, lost when the localised 
orbitals in each determinant are no longer related 
by symmetry: <1>.'-1 •.• n; n2 n2 ... 1, <1>;-1 .•• n1 n1 n; ... 1, 
Jn 1 = n2 'f n; = In i'. For this to occur the orbital 

relaxation or polarisation effects that take place on 
excitation should be significantly different for the 
two descriptions of the excited states. Exactly this 
is expected to happen when the equivalent orbitals 
in the groundstate are found to be well localised 
because the polarising influence of a localised hole 
will be larger than that of a distributed one. Since 
in that case also the matrix element between <l>i' 
and <1>; will be small an open shell SCF calculation 
based on either one of the equivalent determinants 
<1>1', <1>; should be indicative. In other words if 
our reasoning is basically correct a calculation in 
which the symmetry is lowered to C2v should yield 
inequivalent localised n-orbitals instead of delocalised 
g and u symmetry orbitals and it should lower the 
n-ir• excitation energies by an amount which is 
much larger than half the splitting of the n-ir• states 
found in the D2h calculations (s:,0.J e V). At the 
same time no significant changes are expected 
for the n-n" excitations because the ir orbitals 
cannot be very well localised. 

The data in table 2 show that these expectations 
are born out quite well, the calculated n-ir• excitation 
energies are lowered by -2.5 eV with respect to 
the delocalised results. The singlet-triplet separation 
is reduced to 0.23 e V again in closer agreement 
with experiment. The 'n-hole' is strongly localised 
on one of the oxygen atoms, the ir• orbital stays 
delocalised. In table 3 the Mulliken gross charges 
on the atoms are displayed. These numbers indicate 

Table 3: Mulliken gross atomic charges in ground and 
n-ff* excited states 

groundstate -0.47 0.39 -0.21 0.28 0.28 -0.21 0.39 -0.47 
n-,..•<D2h)8 -0.44 0.36 -0.21 0.28 0.28 -0.21 0.36 -0.44 
n-,r*(C2v) 8 -0.52 0.37 -0.21 0.27 0.26 -0.21 0.28 -0.27 

(a) averaged over all states of excited configuration 

Table 4: Some computed and experimental ionisation 
energies of p-benzoquinone (in e V) 

Orbitals ~CF Experi-b 
<D2h)8 D2h C2v mental 

2b1u(") 10.91 10.42 10.06 10.12 
lb3g (,r) 11.37 10.53 (10.06) 10.42 
4b 18 (n!) 11.75 11.04 8.60 11.04 
5blu (n,.Y) 12.35 11.23 (8.60) 11.51 
lb2g (If) 14.91 14.20 14.20 13.44 
8a g (n,.•) 16.02 15.45 13.40 14.69 
7b3u (n.•) 16.84 16.08 (I 3.40) 16.10 

(a) orbital energies 
(b) [SL assignments not conclusive 
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that the polarisation is of short range and essentially 
confined to the oxygen atom where the n-hole 
is created and its neighbouring carbon atom. We 
note that in a geometry optimization the nuclear 
configuration of lowest energy may in fact correspond 
to C

2
v symmetry on the basis of our results which 

would give rise to static or dynamic (pseudo) Jahn­ 
Teller phenomena in the 11-11* states. In this 
connection it is of interest that recent Stark measure­ 
ments on p-benzoquinone have been interpreted by 
assuming a double minimum potential for the 

3 
B 38 

and 1B38 states. 
The same effects are expected and in fact found 

in calculations on ionised states (table 4). This has 
been noted earlier by Bagus and Schaeffer [7] in. 
their calculation on the Is core excitations of the 
0

2 
molecule. These authors invoke C.v symmetry 

instead on D-h for o; in order to obtain restricted 
HF results that agree with the ESCA data. 

We have also carried out calculations on a variety 
of excited and ionised states of pyrazine where 
similar results are obtained. The energy shifts are 
somewhat smaller here as is expected from the fact 
that the n-orbi tals are found to be less localised 
in this molecule. 
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The Shapes of AX2 Molecules 

J.C.Dobson* 

The theoretical prediction of the shapes of molecules of type AX2 is reviewed. LCAO-SCF-MO 
calculations on Na2S, Li2S and Li2O show that these molecules are linear; while H2S is bent, 
as predicted by the Walsh rules. The SCF results for these four molecules are related to a 
simple 'ionic' model, and the changing character of their bonding discussed. 

The classic work on the shapes of molecules is 
that of Mulliken [I] and Walsh [2]. They rationalise 
the shape of various classes of molecule by considering 
the sum of certain 'molecular orbital energies', identi­ 
fied by Walsh with binding energies or ionisation 
potentials. But as Coulson and Neilson [3] point 
out, this is not valid for Hartree-Fock m.o. theory, 
since the total electronic energy is not equal to the 
sum of the ionisation potentials, and since the 
nuclear potential energy must also be considered. 

Buenker and Peyerimhoff [ 4] have recently dis­ 
cussed the theoretical basis of the Mulliken-Walsh 
rules. They show that the total Hartree-Fock energy 
may be written 

E1ot = Eom + (Vnn - v •• ) (I) 

where £0,b is the sum of orbital energies, V00 the 
nuclear repulsion and Vee the electron-electron re­ 
pulsion. For AX2 molecules, the variation of £0,b 

with apex angle 0 determines the geometry as long as 
the variation of ( V00 - v •• ) is of the same sign, or 
smaller in magnitude, at all 0. This condition is 
approximately satisfied for many molecules; but it 
fails for Li2 0, which from their SCF-LCAO calcula­ 
tions Buenker and Peyerimhoff predict to be linear in 
contradiction to the Mulliken-Walsh rules. They 
ascribe this to its 'ionic' character. 

How would we expect an 'ionic' molecule to 
behave, within the framework of Hartree-Fock theory? 
Consider a simplified model of the molecule M2L, 
where M is an element in Group I and L in Group VI. 
Let us suppose that the molecular orbitals of M2L 
consist either of pure atomic orbitals for L l- or for 
M\ that these orbitals do not change in form as 
the apex angle 0 changes; and that electron exchange 
is unimportant. With these deliberately extreme 
assumptions, we can estimate the change of the 
total energy with 0. The only changing terms are 
those describing M-M interactions, i.e.: 

Vee(M-M) 

V00(M-M) 

(2) 

(3) 

(4) 

Here V
00 

is the potential energy of the electrons on 
one M' ion in the field of the other M nucleus, r is 
the distance between the M nuclei, and ZM the 
atomic number of M; Vee and Vnn have the same 
significance as above. 

Now the total Hartree-Fock energy can be parti­ 
tioned as follows:- 

(5) 

where £
0
(t) is the total one-electron energy, i.e. the 

sum of electron kinetic energy and electron-nucleus 
potential energy. We can therefore test the pre­ 
dictions of the ionic model, equations (2)-(4), against 
the corresponding SCF quantities. This is shown in 
table I for calculations on Li20 and Li2S. 

For Li20, the ionic model is remarkably successful 
in predicting the components of the energy: only 
for the total energy, which is the difference of 
larger quantities, is there an appreciable error. For 
Li

2
S the relative error in the components of the 

energy is still fairly small, but the total energy is 
badly in error, over-estimating the SCF values for 
a£

101
;a0 by a factor of 5-10. The deviations are 

such as to favour a bent configuration, i.e, they 
tend towards the behaviour predicted by the Walsh 
rules. Indeed, my calculations suggest that if the 
Li-S bond length is increased by about O .6 au above 
its equilibrium value Li2S should go over to a bent 
configuration with an apex angle of about I 30°. 

I have extended this treatment to a number of 
other molecules: a very brief summary is shown in 

* Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester, 
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Table I: The change with apex angle of the total energy 
of LilX, as estimated from equations (2)-(4); SCf values 
in brackets 

/(0) /llS0)-/(180) /ll 20)-/(150) /(90)-/ll 20) 

Lilo• 
E (I) -0.072 (.074) -0.245 (.253) -0.532 (.546) e 

Vee +0.024 (.023) +0.081 (.083) +0.177 (.183) 
Vnn +0.054 +0.183 +0.399 
Etot +0.006 (.003) +0.020 (.014) +0.044 (.036) 

LilS 
Ee(I) -0.053 (.064) -0.180 (.207) -0.392 (.423) 
Vee +0.018 (.025) +0.060 (.074) +0.131 (.136) 
Vnn +0.040 +0.135 +0.294 
Etot +0.0045 (.0006) +0.015 (.002) +0.033 (.088) 

(a) SCF values for LilO from ( 4] ; all values in atomic units 

References 

[I) MULLIKEN, R.S. (1942). Revs. Modem Phys., 
14, 204. 

(2) WALSH, A.D. (1953}. J. Chem. Soc., 2260. 
(3) COULSON, C.A. and NEILSON, A.H. (1963). 

Discussions Faraday Soc., 35, 71. 
(4) BUENKER, R.J. and PEYERIMHOFF, S.D. (1966). 

J. Chem. Phys., 45, 3682. 

table 2, which compares the calculated curvature 
(al £10t/a0l) at 0 = 180° for the 'ionic model' and 
the SCF computations. In the upper part, we see 
that a restricted sp-basis set for LilS gives a calculation 
in better agreement with the ionic model than the 
original calculation with polarisation functions on S. 
In the lower part of the table, we see that the ionic 
model fails completely for HlS (as might be expected}; 
for NalS it appears to be about as successful as for 
LilS, although the details suggest that the comparison 
chosen is an even more stringent test of the ionic 
model in this case. 

Table 2: A comparison of the curvature (al Etotf<l0l) at 
0 = 180°, estimated from the 'ionic model' and from the 
SCF calcula lions 

Molecule Basis @2 Etot/a02)uo x 10-6 au deg-2 
Set SCF ionic SCF/ionic 

Li2O8 sp 5.8 12.2 0.48 
Li2S sp 3.2 9.6 0.33 
LilS spdf 1.4 9.6 0.15 

H2S spdf -129. +15.2 -8.5 
Na2S sp 2.9 8.3 0.3S 

(a) SCF value from ( 4] 

I do not intend to develop this method as yet 
another scale of 'ionic' versus 'covalent' behaviour. 
But it does seem to be a rather sensitive device for 
detecting deviations from 'perfect ionic behaviour' 
in compounds which, according to chemical intuition, 
we would expect to be rather well described by an 
ionic model. It also helps to rationalise the shape 
of those molecules for which the Mulliken-Walsh 
rules break down. 
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A Study of the Structure and Properties of 
Clusters of Lithium Atoms 

A.D.Tait* 

An optimised Floating Gaussian Orbital model has been used in the study of (lihn and (li)1~-l 
for I :':: n :':: 3. The nuclear geometry of the smaller systems has been optimised. Multipole moments, 
potential, electric field, and electric field gradients have been evaluated at an Li- nucleus in each 
system studied. Trends in the behaviour of these properties and in the optimised orbital parameters 
have been observed. 

Introduction 

The process of condensation in expanding vapour 
beams has been known for some time (I] . Several 
observations of this process occurring in molecular 
beams of alkali metal vapours have been made in 
recent years (2,3). Clusters of from two to twelve 
atoms, produced during condensation have been 
detected in sodium vapour (3] and the ionisation 
potentials have been measured for these and some 
other clusters. The structure of such clusters and 
the number of atoms required to produce a metallic 
cluster is still in doubt. 

The lightest of the alkali metals is lithium and 
it is the most difficult to examine experimentally 
(3]. However lithium is very amenable to theoretical 
study. A wide range of calculations on Li1 (4-11] 
and one or two on larger systems have been reported 
(12-14]. This paper contains the results of pre­ 
liminary studies on a number of the smaller lithium 
clusters. The neutral molecules Li1, Li4, Li8, and 
the ions u: u;, Li; have been studied using a 
Floating Spherical Gaussian (FSGO) model (15]. 
The equilibrium geometries of Li1 and u; have 
been determined. Optimum internuclear distances 
for highly symmetric arrangements of the nuclei of 
the other systems are also presented. Multipole 
moments, potentials, electric fields, and electric field 
gradients evaluated at a nucleus are also given. 

This work is continuing with the aim of estab­ 
lishing the equilibrium nuclear geometry of each 
species. An examination of larger clusters is being 
undertaken with a view to determining when the 
metallic structure becomes apparent. 

Theory 

The basis of the FSGO model [ 15-18] is the 
expansion of a set of orthonormal molecular orbitals 
in terms of a set of spherical gaussian orbitals, each 
of the form 

wµ (o.µ.Rµ) = (2o.µ/rr)'/4 exp(---o.µ(r-Rµ)1) (l) 

In equation (I) Rµ is the position vector of orbital 
wµ with exponent o.µ, r is the electronic position 
vector. The total molecular energy corresponding 
to a single determinant wavefunction composed of 
the orthonormal molecular orbitals is then minimised 
with respect to some or all of the orbital position 
vectors and exponents within the usual Hartree-Fock­ 
LCAO-SCF method (19). 

In the simplest application of the FSGO model 
[l 5) each pair of electrons in a closed shell molecule 
is associated with a single gaussian orbital wµ, As 
the associated density matrix is the inverse of the 
overlap matrix between the basis orbitals no iteration 
is required to minimise the molecular energy with 
respect to the coefficients of these orbitals in the 
molecular orbitals (l 5]. In this form a single 
spherical gaussian function is associated with each 
heavy nucleus (i.e. not with protons) and the 
remaining orbitals are distributed amongst the bonds 
(and lone pairs if present). 

An extension of the method (l 6-18) is the use 
of two spherical gaussians situated on each heavy 
nucleus. This improves the description of the electron 
density at the nuclei and causes a substantial lowering 
of the molecular energy [ 18) . However the density 
matrix is no longer the inverse of the overlap matrix 
and an iterative solution of the SCF equations is 
necessary to determine the orbital coefficients and 
electronic energy. 

* Department of Mathematics, University of Nottingham, Nottingham, NG7 2RD 
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The operators required in the calculation of multi­ 
pole moments, the potential and its derivatives are 
defined in a paper of Neumann and Moskowitz (20). 
Atomic units are used throughout the present work. 
All the calculations were performed using the Ol'IT 
system developed al the University of Nottingham 
121-23 I . 

Calculations 

u: The wavefunction for this ion was constructed 
from two spherical gaussian orbitals situated at the 
nucleus. The optimised exponents, corresponding 
energy and non-zero one-electron properties are 
given in table I . 

Table 1: Optimised exponents, energy and non-zero one­ 
electron properties for the Li+ ion 

Electronic energy 

Orbital exponents 
C:¥1 
e:¥2 

One-electron properties 
Qyy 
<,2) 

<+> 
potential 

-6.980429 

10.1246 
1.3902 

-0.2694 
0.8081 
5.2050 
-5.2050 

Li2 : A basis of five FSGOs was used for this 
molecule. Initially the orbitals· were distributed 
with two at each nucleus and one at the mid-point 
of the internuclear axis. The optimisation was 
constrained so that the orbitals lay on the inter­ 
nuclear axis. The optimised exponents, orbital 
positions, energy and non-zero one-electron properties 

Table 2: Optimised exponents and orbital positions, energies 
and non-zero one-electron properties for the Li2 molecule 
at its equilibrium bond length 

Total energy 

Equilibrium bond length 

Optimised orbital parameters 
(a1,Z1) 
(°'2,Z2) 
(a3,Z3) 

-14.354331 
5.24 

10.2335, 
1.4056, 
0.0426, 

±2.6200 
±2.6239 
0.0000 

One-electron properties evaluated at (0,0,2·62) 
Qxx,Qyy -12.6971 
Qzz 1.4644 
(,2) 106.303 
Ryyz.fl.xxz 33.2664 
Rzzz -11.5105 
<+> 6.1381 
potential -5.5656 
QXXllYY 1.46 x 10-3 
qzz -2.92 x 10-3 

at the equilibrium bond length of 5 .24 bohr are 
shown in table 2. 

u;: The equilibrium geometry nf this molecular 
ion was found t,1 he an equilateral triangle with " 
side of 5.84 bohr. The basis of seven FSGOs was 
arranged with two functions at each nucleus and one 
at the centroid of the triangle. Only the orbital 
exponents were optimised. The results of this 
calculation are summarised in table 3. 

Table 3: Energy, optimised exponents, and non-zero one-­ 
electron properties for lij at its equilibrium geometry. 
The spherical polar co-ordinates of the nuclei are (0,0,0), 
(5·84,30,0), and (5·84,30,180) 

Total energy 

Optimised orbital exponents 
0<1 (at nuclei) 
0<1 (at nuclei) 
0<1 (at centroid) 

One-electron properties evaluated at (0,0,0) 
µz 
Qxx 
Qyy 
Qzz 
(rl) 
Ryyz 
Rzzz 
Rxxz 
<t> 
potential 
Ez 
Qxx 
qyy 
qzz 

-21.400171 

10.2042 
1.4014 
0.05274 

3.3717 
6.8313 

-10.6692 
I 8.1998 

190.272 
-35.9735 
77.9819 
52.4831 
6.4142 
-5.3869 
0.03077 
-8.05 X 10-J 
-2.8 X J0-4 
8.33 X 10-3 

Table 4: Energy, optimised exponents, and non-zero one-­ 
electron properties for Li4. The nuclei are situated at 
(2·85,0,2-85), (2·85,0,-2·85), (-2·85,0,-2·85), and (-2·85, 
0,2·85) 

Total energy 

Optimised orbital exponents 
a1 (at nuclei) 
0<1 (at nuclei) 
C:¥3 (at mid-point of side) 
°'4 (at centroid) 

-28.577996 

10.3726 
1.4269 
0.04986 
0.03632 

One-electron properties evaluated at (2·85,0,2·85) 
Qxx,Qzz -17.7682 
Qyy -21.9947 
(rl) 447.411 
Rxxx.fl.zzz 151.918 
Rxyy .fl.yyz 62.6849 
Rxxz.fl.xzz 50.6392 
<+> 6.9516 
potential -5.5268 
Ex.Ez 0.1250 
Qxxllzz 30.0743 
qyy 29.9281 
«xz -8.59 x 10-s 
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/,i
4
: Previous calculations IJ3,14j on this molecule 

indicate that the equilibrium geometry is a square. 
In the present work the energy of a square arrange­ 
ment of the nuclei is a minimum when the square 
has a side of length S .70 bohrs. A basis of thirteen 
FSGOs permitted each Li2 fragment of Li4 in a 
square geometry to be represented by five FSGOs. 
The arrangement being two per nucleus, one at the 
mid-point of each side and one at the centroid. And 
again only the orbital exponents were optimised 
and these together with the other results for Li4 
are presented in table 4. 

ut, The square planar geometry chosen for this 
ion is one of several possible nuclear geometries. 
Four nuclei are situated at the corners of a square 
and the fifth at the centroid. The basis of fourteen 
spherical gaussians was arranged as for Li4, and an 
additional orbital was placed on the nucleus at the 
centroid. Only the orbital exponents were optimised. 
A square of side 7 .40 bohrs produced the lowest 
energy, and the results are given in table S. 

Table 5: Energy, optimised exponents, and non-zero one­ 
electron properties for Lis, The nuclei are situated at 
(0,0,0), (R,0,R), (R,0,-R), (-R,0,-R), and (-R,0,R), with 
R = 3·1 

Total energy 

Optimised orbital exponents 
o1 (at centroid) °'2 (at centroid) 
03 (at remaining nuclei) 
°'4 (at remaining nuclei) 
Os (at mid-point of sides) 

One-electron properties evaluated at (R,0,R) 
µx,µv 
Qxx,Qzz 
Qyy 
Qxz 
(r2) 
Rxxx,Rzzz 
Rxvv.Rvvz 
Rxxz.Rxzz 
<+> 
potential 
Ex,Ez 
qxxllzz 
qyy 
qxz 

-35.563010 

10.2883 
1.4148 

10.2460 
1.4077 
0.05946 

-3.7000 
16.2808 
-18.5813 

13.6900 
725.280 
-79.4105 
68.7509 
-60.2388 

7.0602 
-5.3893 
0.1516 
0.2473 
0.1703 
-0.03533 

Li
6
: The hexagonal arrangement of the nuclei 

chosen for Li6 exhibited a minimum energy at a 
'nearest neighbour' distance of S .SS bohr. A basis 
of eighteen spherical gaussians was arranged with 
two at each nucleus and one at the mid-point of 
each side of the hexagon. Optimised exponents, 
energies and properties are given in table 6. 

Table 6: Energy, optimised exponents, and non-zero one­ 
electron properties for Li 6. The spherical polar co-ordinates 
of the nuclei are (R,0,0), (R,60,0), (R,120,0), (R.180.0), 
(R,120,180), and (R,60,180) with R = 5.55 bohr, i.e. a 
hexagon of side 5 .5 5 bohr 

Total energy 

Optimised orbital exponents 
01 (at nuclei) 
°'2 (at nuclei) 
o3 (at mid-point of side) 

One-electron properties evaluated at (R,0,0) 
Qxx,Qzz 
Qyy 
(r2) 
Ryyz 
Rzzz 
Rxxz 
<+> 
potential 
Ez 
qxx 
qyy 
«u. 

-43.070259 

10.3193 
1.4182 
0.04363 

-12.5003 
-37.3195 
1171.2 
207 .123 
208.130 
69.3765 
7 .5445 
-5.5690 
0.1780 

30.1983 
30. 1375 
30.2342 

Discussion 

Both u• and Li2 have singlet ground states and 
these can be properly described by a single deter­ 
minant wavefunction [19). The energies obtained 
for these systems using an FSGO wavefunction are 
96% of the values obtained using much more accurate 
implementation of the one-particle approximation 
[4,25]. The experimentally observed value of the 
Li2 equilibrium bond length is 5.05 bohr [24). 
The present value of 5.24 bohr represents an increase 
of about 4% in accordance with previous calculations 
using FSGOs [ l 5). 

Of the other systems examined, only u; and Li6 
are stable with respect to dissociation to Li2 + u• 
and 3Li2 respectively. Earlier calculations on Li4 
[13,14] predict the equilibrium geometry to be a 
square of side S .47 bohr which is barely stable 
(-0.02 hartrees) relative to dissociation to 2Li2• 
The present calculations indicate that Li4 has a 
square conformation with a side of 5.70 bohr giving 
a minimum energy. However this is not stable 
relative to 2Li2. The cause of this result is probably 
due to the non-optimisation of the orbital positions. 
The same argument applies to u; which is predicted 
to be unstable relative to 2Li2 + u•. 

The optimised exponents given in tables 1-6 
exhibit very small variations from one system to 
another. This variation could well be reduced by 
the optimisation of the orbital positions. 
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Of the properties presented it is seen that the 
value of <t> is tending slowly towards a limit. The 
values of <t>, the potential, and electric field gradients 
divide the systems into two groups. Smooth curves 
can be drawn through either the ionic values or the 
molecular values of <f>, the potential is reasonably 
constant at about 5 .5 au for the molecules and is 
less than 5.4 au for the ions. For the ions the 
electric field gradients are small, and large for the 
molecules with the expection of Li2• It is interesting 
to note that Ez, the z. component of the force on 
the nucleus increases from O for Li+ and Li2 to 
0.178 au for Li 6• The value of the electric field 
at a nucleus should be zero at the equilibrium 
geometry. The calculated values indicate that al­ 
though the energy minimum has been reached some 
further optimisation of the basis is required to reduce 
the electric field to zero. The values of the potential 
and its derivatives are susceptible to the electron 
density at the nucleus, and it is poorly described 
by the FSGO model. However there is evidence [26) 
to support the suggestion that the given values are 
about 60% of the result of more accurate calculations. 

It is important to acknowledge the possible 
existence of molecules and ions with different geo­ 
metries to those studied and that these may have 
lower energies [14) . It is also true that non-singlet 
states may have lower energies. 

Conclusion 

The FSGO model with two orbitals on the heavy 
nuclei predicts stable configurations of u; Li4, ut, 
and Li6• However only Li; and Li6 are stable with 
respect to combinations of Li2 and Li", It is felt 
that the instability of Li4 and Li; is due to the 
non-optimisation of the orbital positions. The 
optimisation of the orbital positions will produce 
a lower energy for all of the systems examined. 
These calculations are currently in progress. In 
addition a search for different stable configurations 
continues. The size of clusters examined is being 
increased with the intention of determining when 
the three dimensional geometry becomes desirable 
and when an energy band structure in the orbital 
eigenvalues becomes apparent. Relatively crude 
calculations [27) indicate that a cluster of at least 
forty atoms is required before a metallic structure 
will be observed. 
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