
Digital Equipment Corporation
Maynard, Massachusetts

Advanced Monitor
Software System
for PDP-1S/20/30/40

PDP-15
ADVANCED MONITOR SOFTWARE
SYSTEM FOR PDP-15/20/30/40
PROGRAMMER'S REFERENCE MANUAL

'. To obtain additional copies of this manual, order number DEC-15-MR2B -D from the Program library,

Digital Equipment Corporation, Maynard, Massac~usetts 01754 Price $5.00

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Printing January

Revised December

Copyright ~ 1970, by Digital Equipment Corporation

The material in this manual is for informa

tion purposes and is subject to change with

out Qotice.

The following are trademarks of
Digital Equipment Corporation,
Maynard, Massachusetts:

DEC

DIGITAL

PDP

FOCAL

1970

1970

ADVANCED MONITOR SOFTWARE SYSTEM

The ADVANCED Monitor software system described in this manual may be

obtained in either of two versions: I} a standard PAGE mode system

or 2} an optional BANK mode system.

Page Mode System

The ADVANCED Monitor Page mode system loads and relocates user programs

in 4K pages and permits address modification via the index register.

The Page mode system is supplied as standard software with the

PDP-lS/20/30 and /40 systems.

NOTE

With the exception of Appendix G, or where
otherwise referenced, the information
presented in this manual concerns only the
Page mode ADVANCED Monitor software system.

Bank Mode System

The optional Bank mode system permits direct addressing within 8K

banks, but does not permit the use of the index register for address

modification. This system is useful to the PDP-IS user who prefers

direct addressing up to 8K, or who wishes to take advantage of the

extensive library of PDP-9 programs now available from the Digital

Equipment Computer Users S~ciety (DECUS).

The Bank mode system is also available to PDP-9 users who have equip

ment configurations comparable to those of the basic PDP-IS/20. This

enables the PDP-9 user to avail him?elf of the ma~y improvements

introduced into the PDP-IS ADVANCED Monitor software system.

The differences between the Page and Bank mode systems and procedures

for the installation of the Bank mode system are given in Appendix G.

OPTIONAL KEYBOARD MONITOR

The ADVANCED Monitor software system contains a sophisticated inter

active keyboard/program monitor which is available in either a standard

or a "special" version. The special version (designated KMSIS) permits

overprinting on the console teleprinter, the standard version does not.

iii

Overprinting, a feature useful to FORTRAN programming, requires a

slightly larger monitor (+24
10

words). If the user desires the KMS15

version, it must be installed into the standard system. Appendix G

contains a brief description of the KMSIS monitor and instructions for

its installation.

HOW ADVANCED SOFTWARE SYSTEMS ARE SUPPLIED

The ADVANCED Monitor software is supplied to the user (Page or Bank

mode) in the form of two DECtapes:

1) a standard system DECtape (Page or Bank mode) which contains

all programs considered as standard to the system. The

separate Page and Bank mode system DECtapes are identified

as follows:

a) Page Mode

b) Bank Mode

DEC-IS-SRZB-UC

DEC-IS-SWZA-UC

2) a peripheral DECtape common to both Page and Bank mode

systems which contains device handlers and routines for

Digital-offered optional peripherals and special programs

(e.g., KMS 15). The peripheral DECtape is identified as

DEC-IS-SZZB-UC.

OVERALL PDP-IS DOCUMENTATION STRUCTURE

A tree-type block diagram of the overall "PDP-15 Family of Manuals"

is illustrated on the following page. A brief description of the

contents and the order number of each manual shown in the diagram are

also presented.

ORGANIZATION OF PDP-IS SOFTWARE MANUALS

There are two basic categories of PDP-15 software manuals:

a. Unique, single-system manuals which contain information
concerning only one of the four available PDP-IS systems.
This category consists of detailed software system
descriptive manuals, each with an associated operational
command summary. An example of this class of manual
would be the IIpDP-IS/20 Software System" manual and its
associated "PDP-lS/20 User's Guide".

b. Common, mUlti-system manuals that describe utility,
language, application and other PDP-IS programs which
may be employed in one or ~ore of the four available
PDP-IS systems. Some examples of this type of manual
are the PDP-IS "utility", "MACRO-15 Assembler", and
"STATPAC" manuals.

iv

-<

INSTALLATIO N
MANUAL

MODULE
MANUAL

HARDWARE

ACCEPTANCE
TE ST

PROCEDURES

INTERFACE
MANUAL

PDP-15 FAMILY OF MANUALS

OPERATORS
GUIDE

SOFTWARE

8/F,15/30/40

f!DP -15/20

PDP-15 110
SYSTEM USER'S ~I '-~f----1

GUIDE

MACRO -15

FOCAL-15

UTILITY
PROGRAMS

MANUAL

FORTRAN TIL

8/15
TRANSLATOR

STATPAC-15

SCOLDS

15-0040

SYSTEM REFERENCE MANUAL - Over
view of PDP-IS hardware and
software systems and options;
instruction repertoire, expansion
features and descriptions of sys
tem peEipherals. (DEC-15-GRAZ-D)

USER'S GUIDE VOLUME 1, PROCESSOR -
principal guide to 'system hardware
includes system and subsystem
features, functional descriptions,
machine-language programming con
siderations, instruction r~per
toire and system expansion data.
(DEC-15-H2DA-D)

VOLUME 2, PERIPHERALS - Features
functional descriptions and pro
gramming considerations for peri
pheral devices. (DEC-15-H2DA-D)

OPERATOR'S GUIDE - Procedural
data, including operator main
tenance, for using the operator's
console and the peripheral de
vices associated with PDP-IS
Systems. (DEC-lS-H2CA-D)

PDP-lS/lO SYSTEM USER'S GUIDE -
COMPACT and BASIC I/O Monitor
operating procedures.
(DEC-15-GGIA-D)

PDP-15/20 SYSTEM USER'S GUIDE -
ADVANCED Monitor system operat
ing procedures. (DEC-15-MG2B-D)

PDP-15/20/30/40 ADVANCED MONITOR
SOFTWARE SYSTEM - ADVANCED Moni
tor System descriptions; programs
include system monitor and
language, utility, and applica
tion types; bperation, core
organization, and input/output
operations within the monitor
environment are discussed.
(DEC-15-MR2B-D)

PDP-15/30 and 15/40 BACKGROUND/
FOREGROUND MONITOR SOFTWARE
SYSTEM - Background/Foreground
Monitor description, including
the associated language, utility,
and application programs.
(DEC-15-MR3A-D)

vi

MAINTENANCE MANUAL VOLUME 1,
PROCESSOR - Block diagram and
functional theory of operation
of the processor logic. Preven
tive and corrective maintenance
data . (DEC-15-HB2A-D)

VOLUME 2, PROCESSOR OPTIONS -
Block diagr~m and functional theory
of operation of the processor op
tions. Preventive and corrective
maintenance data. (OEC-15-HB2A-D)

VOLUME 3, PERIPHERALS (Set of
Manuals - Block diagram and func
tional theory of operation of the
peripheral devices. Preventive
and corrective maintenance data.
(DEC-15-HB2A-D)

INSTAL4ATION MANUAL - Power
specifications, environmental con
siderations, cabling, and other
information pertinent to installing
PDP-IS Systems. (DEC-15-H2AA-D)

ACCEPTANCE TEST PROCEDURES -,Step
by-step procedures designed to
ensure optimum POP-15 Systems'
operation.

MODULE MANUAL - Characteristics,
specifications, timing, and
functional descriptions of modules
used in PDP-IS Systems.
(OEC-15-H2EA-D)

INTERFACE MANUAL - Information for
interfacing devices to a PDP-15
System. (OEC-15-HOAA-O)

UTILITY PROGRAMS MANUAL - Utility
programs common to POP-15 Monitor
Systems. (OEC-15-YWZA-D)

MACRO-15 - MACRO assembly language
for the PDP-IS.
(OEC-15-AMZA-O)

FORTRAN IV - PDP-IS version of the
FORTRAN IV compiler language.
(DEC-15-KFZB-O)

FOCAL-IS - An algebraic interactive
compiler-level language developed
by Digital Equipment Corporation.
(DEC-15-KJZB-D)

1.1

1.2

1.3

1.3.1

1.4

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.S.12

1.5.13

1.S.14

1.S.15

2.1

2.1.1

2.1.2

2.2

2.3

2.3.1

2.3.1.1

2.3.1.2

2.3.2

2.3.3

2.4

2.4.1

2.4.2

2.5

2.6

CONTENTS

CHAPTER 1

ADVANCED SOFTWARE SYSTEM

INTRODUCTION

HARDWARE REQUIREMENTS

MONITOR REQUIREMENTS

ADVANCED Monitor

INPUT/OUTPUT PROGRAMMING SYSTEM (lOPS)

SYSTEM PROGRAMS

FOCAL Programs

FORTRAN IV Compiler

MACRO Assembler

Dynamic Debugging Technique (DDT) Program

Text Editor Programs, EDIT and EDITVP

Peripheral Interchange Program (PIP)

Linking Loader

8 to 15 Translator (8TRAN)

System Generator

Dump Program

Library Update Program

System Patch Program

CHAIN and EXECUTE ~rograms

Source Compare Program (SRCCOM)

DECtape Copy (DTCOPY)

CHAPTER 2

THE ADVANCED MONITOR ENVIRONMENT

MONITOR FUNCTIONS

General I/O Communications

Command, Control and Data Flow

LINE BUFFERS

DATA MODES

lOPS Modes

lOPS ASCII

lOPS BINARY

Image Modes

Dump Mode

SYSTEM TABLES

Device Assignment Table (.DAT)

System Communication Table (.SCOM)

SPECIFYING DEVICES USED TO LINKING LOADER

RESERVED WORD LOCATIONS

vii

1-1

1-:-1

1-1

1-3

1-4

1-4

1-5

1-5

1-6

1-6

1-7

1-7
1-7

1-9
1-8

1-8

1-8

1-8

1-8

1-8

1-8

2-1

2-1

2-2

2-S

2-7

2-9

2-9

2-10

2-10

2-12

2-13

2-13

2-13

2-13

2-15

3.1 INTRODUCTION

CHAPTER 3

SYSTEM MACROS

3.1.1 Summary of ADVANCED Monitor System MACROS

3.1.2 .INIT (Initialize)

3.1.3 .DLETE

3. 1 • 4 . RENAM

3.1.5 .FSTAT

3.1.6 .SEEK

3.1.7 .ENTER

3.1.8 . CLEAR

3 . 1. 9 . CLOSE

3.1.10 .MTAPE

3 . 1 . 11 . READ

3.1.12 .WRITE

3.1.13 .WAIT

3.1.14 .WAITR

3.1.15 .TRAN

3.1.16 .TIMER

3.1.17 .EXIT

CHAPTER 4

4.1

4.2

4.3
4.2.1

4.3.2

ADVANCED MONITOR

ADVANCED MONITOR FUNCTIONS

PROGRAMMING EXAMPLE

KEYBOARD COMMANDS

4.3.2.1

4.3.2.2

4.3.2.3

4.3.2.4

4.3.2.5

4.3.2.6

4.3.2.7

4.3.2.8

4.3.2.9

4.3.2.10

4.3.2.11

4.3.2.12

System Program Load Commands

Special Function Commands

LOG (or L)

SCOM (or S)

API ON/OFF

QDUMP (or tQ)

HALT (or H)

INSTRUCT (or I)

REQUEST (or R)

ASSIGN (or A)

DIRECT (or D)

NEWDIR

GET (or G)

CHANNEL (or C)

4.3.3 Control Character Commands

4.4 OPERATING THE ADVANcED MONITOR

4.4.1 Loading the ADVANCED Monitor

viii

3-1

3-2

3-3

3-3

3-4

3-4

3-5

3-6

3-7

3-7

3-8

3-8

3-9

3-10

3-10

3-11

3-11

3-12

4-1

4-1

4-9

4-9

4-10

4-10

4-11

4-12

4-12

4-12

4-12

4-13

4-14

4-15

4-16

4-16

4-17

4'-17

4-17

4-17

4.4.2

4.4.2.1

4.4.3

4.4.4

4.4.5

4.5

4.6

4.6.1

4.6.2

4.7

4.7.1

4.7.2

4.7.3

4.8

4.8.1

4.8.1.1

4.8.1.2

4.8.1.3

4.8.2

4.8.2.1

4.8.2.2

4.8.2.3

4.8.3

4.8.4

4.8.5

5.1

5.1.1

5.1.1.1

5.1.2

5.1.2.1

5.1.2.2

5.1.3

5.2

5.2.1

5.2.2

5.2.3

System Generation

DECtape or DECdisk Systems

Assigning Devices

Loading Programs in the ADVANCED Monitor
Environment

Error Detection and Handling

BATCH PROCESSING

DECTAPE FILE ORGANIZATION

Non-File-Oriented DECtape

File-Oriented DECtape

RF15 DECDISK

General Description

File Structure

Disk File Protection

MAGNETIC TAPE

File Organization

Non-File Structured Data Recording

File-Structured Data Recording

Block Format

File Identification and Location

Magnetic Tape File Directory

User-File Labels

File-Names in Labels

Continuous Operation

Storage Retrieval on File-Structured Magnetic

Magnetic Tape Dump (MTDUMP) utility Program

CHAPTER 5

I/O DEVICE HANDLERS

DESCRIPTION OF I/O HARDWARE AND API SOFTWARE
LEVEL HANDLERS

I/O Device Handlers

Setting Up the Skip Chain and API (Hardware)
Channel Registers

API Sqftware Level Handlers

Tape

Setting Up API Software Level Channel Registers

Queueing

Standard API Channel/Priority Assignments

WRITING SPECIAL I/O DEVICE HANDLERS

Discussion of Example A by Parts

Example A, Skeleton I/O Device Handler

Example B, Special Device Handler for AFOIB
A/D Converter

ix

4-19

4-20

4-22

4-22

4-28

4-28

4-32

4-32

4-32

4-35

4-35

4-35

4-35

4-36

4-36

4-37

4-37

4-37

4-38

4-38

4-39

4-41

4-41

4-43

4-43

5-1

5-1

5-5

5-7

5-7

5-8

5-9

5-10

5-12

5-12

5-15

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

5.3.8

5.3.9

5.3.10

5.3.11

5.3.12

5.3.13

5.3.14

5.3.15

5.4

5.4.1

5.4.1.1

5.4.1.2

5.4.1.3

5.4.1.4

5.4.1.5

5.4.1.6

5.4.1.7

5.4.2

5.4.2.1

5.4.2.2

5.4.2.3

5.4.2.4

5.4.2.5

5.4.2.6

5.4.2.7

5.4.2.8

5.4.3

5.4.3.1

5.4.3.2

5.4.3.3

5.4.3.4

5.4.4

5.4.4.1

5.4.4.2

5.4.4.3

DEVICE HANDLERS ACCEPTABLE TO SYSTEM PROGRAMS,

FORTRAN IV (F 4)

MACRO-15

FOCAL

EDIT and ECITVP

Linking Loader and DDT

PIP (Peripheral Interchange Program)

SGEN (System Generator)

PATCH

UPDATE

DUMP

CHAIN

EXECUTE

SRCCOM (Source Compare)

DTCOPY (DECtape Copy)

8TRAN (PDP-8 to PDP-IS Translator)

SUMMARY OF STANDARD I/O HANDLER FEATURES

TTA (Teletypewriter)

General Description

Functions

Legal Data Modes

Function Characters

Program Control Characters

Unrecoverable Errors

Restriction

PP (Paper Tape Punch)

General Description

Functions

Legal Data Modes

Vertical Control Characters (lOPS ASCII only)

Horizontal Control Characters

Recoverable Errors

Unrecoverable Errors

Restriction

PR (Paper Tape Reader)

General Description

Functions

Legal Data Modes

Unrecoverable Errors

DT (DECtape)

General Description

Functions

Legal Data Modes

x

5-21

5-21

5-21

5-22

5-23

5-24

5-24

5-25

5-25

5-25

5-26

5-26

5-26

5-27

5-27

5-27

5-28

5-29

5-28

5-28

5-28

5-28

5-28

5-29

5-29

5-29

5-29

5~29

5-31

5-31

5-31

5-31

5-32

5-32

5-32

5-32

5-32

S-33

5-34

5-34

5-34

5-35

5-38

5.4.4.4

5.4.4.5

5.4.5

5.4.5.1

5.4.5.2

5.4.5.3

5.4.5.4

5.4.5.5

5.4.6

5.4.6.1

5.4.6.2

5.4.6.3

5.4.6.4

5.4.6.5

5.4.7

5.4.7.1

5.4.7.2

5.4.7.3

5.4.7.4

5.4.7.5

5.4.7.6

5.4.8

5.4.8.1

5.4.8.2

5.4.8.3

5.4.8.4

5.4.8.5

5.4.9

5.4.9.1

5.4.9.2

5.4.9.3

5.4.9.4

5.4.9.5

5.4.9.6

5.4.9.7

Recoverable Errors

Unrecoverable Errors

RF (RF15 DECdisk)

General Descript~on

Functions

Legal Data Modes

Recoverable Errors

Unrecoverable Errors

MT (Magnetic Tape)

General Description

Functions

Legal Data Modes

Recoverable Errors

Unrecoverable Errors

LPA. (Line Printers LPl5C and LPl5F)

General Description

Functions

Legal Data Modes

Carriage Control Characters

Recoverable Errors

Unrecoverable Errors

CDB. (CR03B Card Reader)

General Description

Functions

Legal Data Modes

Recoverable Errors

Unrecoverable Errors

VPA. (VP15A Storage Tube Display)

General Description

Functions

Legal Data Modes

Data Mode Functions

Special Characters

Printing Rules

Unrecoverable Errors

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

Appendix E

Appendix F

APPENDIX G

INDEX

PDP-IS lOPS ASCII Character Set

PDP-IS ASCII/Hollerith Correspondence

ADVANCED Monitor Error Printouts

Linking Loader and System Loader Errors

lOPS Errors

Summary of Keyboard Commands

Optional ADVANCED Software

PDP-IS ADVANCED Monitor Reference Card (Tear-out)

xl

5-38

5-38

5-39

5-39

5-40

5-43

S-43

~S-43

5-44

5-44

5-45

5-50

5-53

5-53

5-55

5-55

5-55

5-57

5-57

5-58

5-58

5-58

5-58

5-58

5-50

5-60

5-60

5-60

5-60

5-61

5-61

5-61

5-63

5-64

5-64

A-I

B-1

C-l

D-l

E-l

F-l

G-l

1-1

1-2

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

4-1

4-2

4-3

4-4

4-5a

4-5b

4-6a

4-6b

5-1

5-2

5-3

5-4

2-1

2-2

2-3

2-4

4-1

4-2

FIGURES

ADVANCED Monitor

PDP-15/20 System Equipment Configuration (Basic)

General I/O Communication in Monitor Environment

Command, Control and Data Flow in Monitor Environment

ADVANCED Monitor Commands and Function Codes

Line Buffer Structure

Format of Header Word Pair

lOPS Mode Data on Paper Tape

5/7 ASCII Packing Scheme

Image Mode Data on Paper Tape

lOPS ASCII and Image Alphanumeric Data in Line
Buffers and on Mass Storage Devices

ADVANCED Monitor System Memory Maps

DECtape Directory

DECtape File Bit Map Blocks

Block Format, File-Structured Mode

Format of the File Directory Data Block

Format of File-structured Tape

User-File Header Label Format

User-File Trailer Label Format

CAL Handler Functions

CAL Entry to Device Handler

PI and API Entries to I/O .
Structure of API Software Level Handler

TABLES

Maximum Line Buffer Sizes

Input/Output Data Mode Terminators

System Communication Table (.SCOM) Entries

Reserved Address Locations

Control Character Commands

Function of .DAT Slots in the ADVANCED MOnitor System

xii

Page

1-2

1-3

2-1

2-3

2-4

2-5

2-7

2-9

2-10

2-11

2-11

4-24
to

4-27

4-33

4-34

4-38

4-40

4-40

4-42

4-42

5-2

5-3

5-4

5-9

2-8

2-12

2-14

~-15

4-18

4-23

CHAPTER 1

ADVANCED SOFTWARE SYSTEM

1.1 INTRODUCTION

The ADVANCED Software System is a complete integrated system of programs

for the preparation, compilation, assembly, debugging, and operation of

user programs. A diagram illustrating the structure of the ADVANCED

software system is shown in Figure 1-1. As shown, this software system

includes:

a. Compiler and assembly language programs

b. A large group of progran1ffiing and operational aid (utility)
programs

c. A versatile and flexible Input/Output Programming System (lOPS)

d. A sophisticated interactive keyboard/program monitor which
permits device-independent programming and automatic
creation, calling, and loading of programs.

Upwards-compatibility exists between all PDP-IS Monitor Systems

(e.g., programs prepared for the Basic I/O Monitor may be run in the

ADVANCED system environment) .

1. 2 HARD~vARE REQUIREMENTS

The minimum equipment configuration for the employment of the ADVANCED

Software System is that of the Basic 15/20 system a~ illustrated in

Figure 1-2.

1.3 MONITOR SYSTEMS

Monitor systems simplify the handling of input/output functions and

facilitate the creation, debugging, and use of USER programs. They

all~w overlapped input/output and computation, simultaneous operation

of a number of asynchronous peripheral devices, and (in the case of the

ADVANCED Monitor) device-independent programming, while freeing the

user from the need to create device-handling subroutines. The Monitor,

operating in conjunction with the Input/Output Programming System (lOPS)

provides a complete interface between the user's programs and the

peripheral hardware.

1-1

Advanced Monitor
• System loader

• Error detector

• Command decoder

• Real-time clock handler

I/O Processor
and

Interrupt Handler

Figure 1-1 ADVANCED Iv\onitor

1-2

System
Control
Teletype

15-0096

inputAlutput proce ssor

DECtape
transport" 1

DECtope
transport # 2

Figure 1-2

1.3.1 'ADVANCED Monitor

Mem()ry banks
*
4K

Paper-tope
reader/punch

KSR-35

Extended
Arithmetic
Element

Central processor unit

PDP-15/20 System Equipment
Configuration (Basic)

15-0097

The ADVANCED Monitor Software System includes all of the facilities of

the BASIC I/O Monitor (Paper Tape) plus routines to accept and act

upon teleprinter keyboard commands, the ability to dynamically modify

I/O device assignments for a program, and the facilities for automatically

storing, calling, loading, and executing system and user programs.

with the ability to alter I/O assignments, this Monitor brings true

device independence to the user. Programs may be modified simply and

quickly to operate on any configuration, and additions to (or deletions

from) existing hardware need not result in program reassembly or recom

pilation.

The Monitor also frees the user from the problems of tape or card

handling. Programs can be created, stored, retrieved, loaded, debugged,

and operated at the keyboard console. Both system and user programs

can be called from the mass storage device with a few simple keyboard

1-3

commands. The Monitor also has a batch processing capability that allows

user commands to originate from the paper tape reader or card reader in

stead of from the teleprinter, thus permitting many programs to be run

without operator intervention.

1.4 INPUT/OUTPUT PROGRAMMING SYSTEM (lOPS)

The Input/Output Programming System (lOPS) consists of an I/O control

routine (CAL handler) and individual hardware device handling routines

(device handlers) that process file and data level commands to the device.

These handlers exist for all standard peripherals (see Section 5.4).

The CAL handler accepts user program commands and transfers control to

the appropriate device handlers. These device handl~rs are responsible

for transferring data between the program and I/O devices, for initiating

the reading or writing of files, for opening and closing files, and for

performing all other functions peculiar to a given hardware device.

They are also responsible for ignoring functions which they are incapable

of handling; for example, trying to rewind a card reader. All device

handlers operate either with or without the Automatic Priority Interrupt

(API) option.

1.5 SYSTEM PROGRAMS

In addition to lOPS and the ADVANCED Monitor, the ADVANCED Software System

contains the following language and utility programs:

FOCAL - Algebraic Language Interpreter (DEC-lS-KJZB-D)

FORTRAN IV - Compiler, Object Time System, and Science
Library (DEC-lS-KFZB-D)

MACRO-IS - PDP-IS Assembler (DEC-lS-AMZB-D)

DDT - Dynamic Debugging Technique

EDIT - Text Editor

EDITVP - Text Editor for VPlSA Storage Tube Display

PIP - Peripheral Interchange Program

Linking Loader - Loads Relocatable Programs

CHAIN - Program to Construct System of Core Overlays (DEC-IS-YWZA-D)

EXECUT - Program to Supervise Execution of CHAIN
Built Overlay System

SGEN - System Generator

DUMP - Dump Program

PATCH - System Patch Program

SRCCOM - Sou'rce Compare Program

DTCOPY - High-Speed 8K DECtape Copy Program

8TRAN - PDP8 to PDP-IS Translator (uEC-lS-ENZA-D)

1-4

The following special purpose utility programs are also available:

RFSAVE - DECdisk/DECtape Save

MTSAVE - DECdisk/Magtape Save

MTDUMP - Magnetic Tape Dump

1.5.1 FOCAL Programs

} (DEC-lS-YWZA-D)

FOCAL (Formulating On-line Calculations in Algebraic Language) operates

in on-line conversational mode, using natural language and arithmetic

terms to establish a simplified environment for the computer-aided

solution of business and scientific 'arithmetic problems. Included in

FOCAL are such features as:

1. Device independence;

2. Linkage to assembly language (MACRO) routines to establish
a user library of commonly used functions;

3. Use of COMMON to facilitate chaining in the same manner
as FORTRAN IV.

1.5.2 FORTRAN IV Compiler

The PDP-IS FORTRAN IV compiler is a two-pass system that accepts state

ments written in the FORTRAN IV language and produces a relocatable

object program capable of being loaded by the Linking Loader. It is

completely compatible with USA FORTRAN IV, as defined in USA Standard

X3.9-1966, with the exception of the following features, which were

modified to allow the compiler to operate in 8192 words of core storage:

a. Complex arithmetic is not legal.

b. Adjustable array dimensions are not allowed at source
level, but may be implemented by calling dimension
adjustment subroutines provided in the Science Library.

c. Blank Cornmon is treated as named Common except when the
object program is used in chaining.

d. The implied DO feature is not included for the DATA
statement.

e. Specification statements must be strictly positioned
and ordered~

The FORTRAN IV compiler operates with the program interrupt or API

facilities enabled. It generates programs that operate with the

Program Interrupt (PI) or Automatic Priority Interrupt (API) enabled,

and can work in conjunction with assembly language programs that

recognize and service real-time devices. Subroutines written in either

FORTRAN IV or MACRO-IS assembly language can be loaded with and called

by FORTRAN IV main programs. Comprehensive source language diagnostics

are produced during compilation, and a symbol table is generated for

use in on-line debugging with DDT.

1-5

There are three versions of the FORT~ IV compiler: (1) F4, the basic

compiler; (2) F4I, a compiler which permits DECtape I/O in an 8K system;

and (3) F4S, a more powerful version of F4 which has fewer restrictions

and an expanded diagnostic capability.

1.5.3 MACRO Assembler

The MACRO Assembler provides users with highly sophisticated macro

generating and calling facilities within the context of a symbolic

assembler.

Some of the prominent features of MACRO include:

a. The ability to:

(1) define macros

(2) define macros within macros (nesting)

(3) redefine macros (in or out of macro definitions)

(4) call macros within macro definitions

(5) have macros call themselves {recursion)

(6) combine three input files for one assembly

b. Conditional assembly based on the computational results
of symbols or expressions

c. Repeat functions

d. Boolean manipulation

e. Optional octal, symbolic, and cross-reference listings

f. Two forms of radix control (octal, decimal) and two
text modes (ASCII and 6-bittrimmed ASc:II)

g. Global symbols for easy linking of separately assembled
programs

h. Choice of output format: relocatable, absolute binary
(check summed), or full binary capable of being loaded
via the hardware READIN switch

i. Ability to call input/output system macros that expand
into lOPS calling sequences

A shorter version of the assembler (MACROI) is available for users

with 8K systems which permits DECtape input and output.

1.5.4 Dynamic Debugging Technique (DDT) Program

DDT provides on-line debugging facilities within the ADVANCED Software

System, enabling the user to load and op~rate his program in a real

time environment while maintaining strict control over the running of

each section. DDT allows the operator to insert and delete breakpoints,

examine and change registers, patch programs, and search for specific

constants or word formats.

1-6

The DDT breakpoint feature allows the insertion and simultaneous use of

up to four breakpoints, any or all of which may be removed,with a
I

single keyboard command. The search facility allows the operator to

specify a search through any part ~r all of an object program with a

printout of the locations of all r~gisters that are equal (or unequal)

to a specified constant. This search feature also works for portions

of words as modified by a mask. with DDT, registers may be examined and

modified in either instruction format or octal code, and addresses may

be specified in symbolic relative, octal relative, or ~ctal absolute.

Patches may be inserted in either source language or octal.

1.5.5 Text Editor Programs, EDIT and EDITVP

The Text Editor of the ADVANCED Software System provides the ability

to read alphanumeric text from any input device (paper tape reader,

card reader, disk, DECtape, magnetic tape, etc.), to examine and correct

it, and to write it on any output device. It can also be used to

create new symbolic programs.

The Editor operates on lines of symbolic text delimited by carriage

return (CR) or ALT MODE characters. These lines can be read into a

buffer, selectively examined, deleted or modified, and written out.

New text may be substituted, inserted, or appended.

The program EDITVP is similar to EDIT except that it permits the text

to be displayed on the VPlSA storage tube.

1.5.6 Peripheral Interchange Program (PIP)

The primary function of PIP is to facilitate the manipulation and

transfer of data files from any input device to any output device. It

can be used to refresh mass storage file directories; list file

directory contents; delete, insert, segment, or combine files; perform

code conversions; transfer files; or copy the entire contents of mass

storage units.

1.5.7 Linking Loader

The Linking Loader loads any FORTRAN IV or MACRO object program which

exists in relocatable format (or absolute format, if pseudo-ops .ABS

and .FULL are not used). Its tasks include loading and relocation

of programs, loading of called subroutines, retrieval and loading of

implied subroutines, and building and relocation of the necessary

symbol tables.

1-7

1.5.8 8 to 15 Translator (8TRAN)
i

This program is used as an aid in tra~slating programs written for the

Digital PDP-8 computer into MACRO-IS form. The translator does not

necessarily produce an executable program, but translates a major portion

of the PDP-~ code into equivalent MACRO-IS code and indicates those areas

of the 8 program which must be reviewed and processed by t~e programmer.

1.5.9 System Generator

The System Generator (SGEN) is a standard system program used to create

new system tapes. With it, the user can tailor his system to his

installation's needs and specify standard input and output devices,

memory size, and special I/O and central processor options present.

1.5.10 Dump Program

This system program gives the user the ability to output on any listing

device specified core locations that have been preserved on a bulk

storage file via the CTRL Q Keyboard Monitor dump command. It also

provides the ability to dump areas of mass storage (e.g., a DECtape

block) onto any listing device.

1.5.11 Library Update Program

This system program gives the user the capability to examine and update

the binary library files on mass storage devices.

1.5.12 System Patch Program

The System Patch Program is used to make corrections to the binary

version of non-relocatable system programs on the system device, to

examine and change any word in any DECtape or DECdisk block, or to

convert relocatable binary programs into system programs (SYS files).

1.5.13 CHAIN and EXECUTE Programs

The programs CHAIN and EXECUTE provide the user with the ability to

construct and run a system of core overlays in the ADVANCED Monitor

environment.

1.5.14 Source Compare Program (SRCCOM)

The SRCCOM program compares any two symbolic programs (IOPS ASCII) and

indicates their differences. This program is useful for program

identification and/or verification, proofing an edited program, com

parison of old and new versions of the same program, etc.

1.5.15 DECtape Copy (DTCOPY)

This program, designed for 8K system users, permits high speed copying

of DECtape onto DECdisk units.

1-8

CHAPTER 2

THE ADVANCED MONITOR ENVIRONMENT

2.1 MONITOR FUNCTIONS

The ADVANCED Monitor simplifies the task of programming I/O functions

by providing an interface between system or user programs and the

external world of I/O devices. The Monitor, by means of lOPS and

Program Interrupt (PI) or optional Automatic Program Interrupt (API),

permits simultaneous operation of multiple I/O devices along with over

lapping computations.

2.1.1 General I/O Communication

The general conununication required to accomplish an I/O task is the same

for all three Monitor systems (see Figure 2-1). A system or user

program initiates an I/O function by means of a Monitor conunand (system

macro), which is interpreted by a CAL handler l within the Monitor as a

legitimate I/O call. The I/O call includes a logical I/O device

number as one of its arguments. The Moni tor, establishes the logical/

physical I/O device association by means of its Device Assignment Table

(.DAT). When this has been accomplished, the Monitor passes control to

the appropriate device handler subroutine to initiate the I/O function

DATA

~ ~
VIA CAL VIA PI

VIA CAL HANDLER I/O DEVICE HANDLER OR A PI SYSTEM OR
MONITOR

INITIATION !INTERRUPT

I/O DEVICE USER PROGRAM

i CONTROL RETURN ~

Figure 2-1

~ I

General I/O Communication
in Monitor Environment

lRefer to the PDP-15 Users' Handbook Vol. 1, (DEC-15-H2DA-D) for a
description of the CAL handler.

2-1

0'·0229

and return control to the system or user program. The system or user

program retains control until an interrupt (PI or API) occurs, at which

time it relinquishes control to the device handler to perform and/or

complete the specified I/O function. Computation or other processing

can be performed by the system or user program while waiting for an

interrupt. This feature allows the programmer to make optimum use of

available time.

2.1.2 Command, Control, and Data Flow

Figure 2-2 illustrates the data flow and general organization of the

ADVANCED Monitor. As shown, the user can initiate a command via the

teleprinter.

In the ADVANCED Monitor environment, an expanded set of keyboard com

mands can be interpreted by a Keyboard Listener (.KLIST) and act~d upon

by a Monitor Command Decoder (.MCD). This feature greatly extends the

capabilities of the Monitor and provides the user with a large

repertoire of keyboard commands. The .KLIST and .MCD programs are

nonresident in the sense that they are overlaid by user and system

programs.

Each system or user program must internally set up line buffers (except

when using Dump mode, discussed later) to be used in transmitting data

to or from the external environment. Each line buffer of n words con

sists of a two-word header (referred to as a header word pair) and n-2

words of data. The system or user program can exercise control on out

put by mOdifying the header word pair, or it can verify on input by

examining the header word pair. The use of line buffers is discussed

in more detail later in this chapter.

ADVANCED Monitor I/O commands (system macros 1
) are written as part of

the system or user program. In FORTRAN IV source programs, these com

mands are in the form of READ and WRITE statements (refer to the

FORTRAN IV Manual, DEC-15-KFZA-D). These statements are translated by

the compiler into the proper calling sequences for the FORTRAN Object

Time System which provides the required monitor calls at execrition time.

In MACRO source programs, Monitor I/O commands are written as system

macros within the system or user program. These system macros are

expanded at assembly time, and include a CAL initiated monitor call

that contains the logical device number as one of the arguments.

lSystem Macros are predefined system commands which are equivalent to
a specific sequence of machine instructions. Refer to Chapter 3 for a
description of the ADVANCED system macros.

EXTERNAL ENVI RONMENT

USER

t
I
I
I
I
I
I

N
I DATA

I I
W

I
I
I
I
I
I
I
I
I

L - - -.j DEl:~CE ~

MONITOR ENVIRONMENT

KEYBOARD COMMANDS

ERROR MESSAGES AND COMMAND ACKNOWLEDGEMENTS

I -;EYBOARD ~DBiA l
I MONITOR SYSTEMS ONLY

I I I

ERROR MESSAGES COMMAND I
ACKNOWLEDGEMENTS

I
COMMANDS

I
ACKNOWLEDGEMENTS

COMMAND
PROCESSOR

SYSTEM

OR USER

PROGRAM MONITOR I -
OUTPUT CONTROL

HEADER

WORD PAIR

LINE
BUFFER

INPUT t
VERIFICATION J

DATA

MONITOR
COMMANDS

(SYSTEM MACROS) -
CONTROL

KEYBOARD LISTNER I
(.KLIST) AND I

MONITOR COMMAND

MONITOR ERRORI ERRORS
DIAGNOSTIC(.MED) ----

PROGRAM

1~
I DECODER(MCD) I

CAL
HANDLER

I

L _____ -.J

NON I/O I FUNCTIONS MONITOR
CONTROL
ROUTINE

DEVICE ASSIGNMENT
TABLE LDAT)

I/O FUNCTIONS
1--------1'

DATA AND CONTROL

ERRORS

MONI TOR

1.------ -~----~----

lOPS

1

~

I
-.J

I INITIALIZATION

INTERRUPT INITIATION

I
4 ..

ERRORS

I
I I/O DEVICE HANDLER

I/O CONTROL
ROUTINE

& ,.

I
I
I
I
I
I
I
I
I
I

L ___________ _ INPUT/OUTPUT PROGRAMMING SYSTEM (lOPS) J

15-0095

Figure 2-2 Command, Control, and Data Flow in Monitor Environment

At execution time, monitor calls are processed by the CAL Handler within

the Monitor. Non-I/O functions are then further processed by the Monitor

Control Routine, and I/O functions are processed by the I/O Control

Routine (see Figures 2-2 and 2-3). A complete description of each of

these commands is given in Chapter 3. If the original conulland involved

is an I/O function, the I/O Control Routine checks the Device Assign

ment Table to associate the logical I/O device (specified by the system

macro) to a physical I/O device.

In the ADVANCED Monitor environment, device associations can be per

manently modified at System Generation time, or dynamically modified

by means of the ASSIGN keyboard command just prior to loading a system

or user program. This capability adds true device independence to the

Monitor systems.

Function
Code

1

2

3

Functions 4
processed 5 by I/O
Control 6
Routine

7

10

11

12

13

Functions 14
processed 15 by Monitor
Control 16
Routine

Figure 2-3

Command

.INIT

.DLETE, .RENAM, and

.SEEK

.ENTER

. CLEAR

. CLOSE

.MTAPE

. READ

.WRITE

.WAIT and .WAITR

.TRAN

.TIMER

.EXIT

. SETUP

ADVANCED Monitor Commands
and Function Codes

. FSTAT

When the logical/physical I/O device association has been established,

the Monitor passes control to the appropriate I/O device handler, which

initializes itself, initiates I/O, and returns control to the system or

user program. As mentioned previously, the system or user program re

tains control until the specified device causes an interrupt (PI or API) .

At this point, it relinquishes control to t~e device handler to continue

or complete the specified I/O operation. In either case, control is

2-4

returned to the system or user program at the point where it was inter

rupted. The system or user program, by means of a .WAIT (or .WAITR)

system macro (described in Chapter 3), can determine whether an input

or output operation has been completed. If the transfer of data from

or to the system or user program line buffer has been completed, program

execution continues; if the transfer has not been completed, control is

returned to the .WAIT macro or to the address specified in the .WAITR.

Additional buffering is provided by the individual device handlers as

required. All device handlers are non-resident in the sense that only

those handlers required by the system or user program are loaded into

core.

2.2 LINE BUFFERS

As mentioned in the preceding general description of the Monitor

environment, each system or user program must internally set up line

buffers to be used in transmitting data to or from the external environ

ment. An exception to this rule is when data is transmitted in the

Dump mode (described in paragraph 2.3.3) or when the .TRAN command is

used (see paragraph 3.1.15). Each line buffer of n words (always even)

should be set up to consist of a two-word header (termed a header word

pair) followed· by n-2 words of data, as shown in Figure 2-4.

Word 0 First Word of Line Buffer Header

Word 1 Second Word of Line Buffer Header

Word 2 First Word of Data Area

~ ~
Word n-l Last Word of Data Area

Figure 2-4 Line Buffer Structure

A system or user program should contain at least one line buffer for

each device that is to be used simultaneously. This buffer is used to

set up output lines before transmittal to an output device, or to

receive input lines from the associated input device. The Monitor

accepts commands (system macros) from system or user programs to initiate

input to the line buffers and to write out the contents of line buffers.

Complete descriptions of these commands are given in Chapter 3. Line

buffers are internal to, and must be defined by, each system or user

program. The header word pair within a line buffer is detailed in

Figure 2-5 and should be studied carefully. The .BLOCK pseudo operation

may be used to reserve space for a line buffer. A tag is required to

2-5

allow referencing by individual .READ and .WRITE macros. For example:

LINEIN

LINOUT

.DEC

.BLOCK 52

.BLOCK 52

/creates 52-word line
/buffer named LINEIN.
/creates 52-word line
/buffer named LINOUT.

Before output, the user must set the appropriate word pair count in

bits I through 8 of word zero in the line buffer if it has not already

been set by a device handler on input. This count overrides the word

count passed to lOPS by the .WRITE macro. (The word count must still

be specified in the .WRITE macro for each data mode; however, it only

has meaning in Dump mode in which there is no header word pair.) In

lOPS binary mode (discussed in Paragraph 2.3.1.2), bits 9 through 11

should be set to 101 if the output will ultimately be on cards. The

checksum word, the second word in the header, need not be set by the

user since checksums are computed by lOPS.

Before input, the user should not be concerned with the header word

pair since they will be set by lOPS to enable the user to determine

what has happened after input has termina~ed.

On input, the word count specified in the .READ macro is used by lOPS

to determine the maximum number of locations to be occupied by the data

being read. If the word count is exceeded before input is terminated,

or if there is a parity or checksum error, lOPS sets the appropriate

validity bits in header word 0 to indicate the error.

After input, the user should check the validity bits in word 0 of the

line buffer header to determine if the data was read without error.

If multiple errors are detected, priority is given to a parity error

over a checksum error. lOPS ignores checksum errors on binary input if

bit 0 of word 0 of the line buffer header is set to 1. lOPS sets the

I/O mode bits (bits 14 through 17 of word 0 of the line buffer header)

to: 6 (0110 2) if it senses a physical end-of-medium (such as end-of

tape in the paper-tape reader), or 5 (0101 2) if it senses a logical end

of-files.

When choosing a word count (that is, the maximum line buffer size) to

specify in system macros, both the set of; possible devices and the mode

of data transmission must be considered. The maximum line buffer sizes

(including 2-word header) for standard peripheral devices, along with

applicable data modes, are listed in Table 2-1.

2-6

o ------------ 8 9---11 12,13 14----17

HEADER,
WORD 0 COUNT

I

1 ,. IGNORE CHECKSUM ~ r
ON BINARY INPUT

WORD PAIR COUNT. INCLUDING ______ ----J

HEADER WORD PAIR

VALIDITY BITS:

00 = DATA CORRECT
01 = PARITY ERROR

UNUSED---------------~

10 = CHECKSUM ERROR }
" = BUFFER OVERFLOW ----------------'

1/0 MODE
I

110 MODE:

0000 = lOPS BINARY
000' = IMAGE BINARY
00' 0., lOPS ASCI I
001 I • IMAGE ALPHANUMERIC

0100 = DUMP
0' 0 I = EOF (LOGICAL)
0" 0" EOM (PHYSICAL)
0' I , = TAPE LABEL

}--

HEADER,
WORD'

0--17

~~----------------___________ ~yr----------------------------~J

CHECKSUM"

TWO'S COMPLEMENT OF HEADER WORD 0 PLUS DATA
WORDS (0 = CHECKSUM NOT COMPUTED)

09-0290

Figure 2-5 Format of Header Word Pair

2. 3 DATA MODES

The Input/Output Programming System (rOPS) allows data transmission to

or from a system or user program in six different modes.

Mode Code 1

rops Binary 0

rmage Binary 1

rops ASCII 2

rmage Alphanumeric 3

Dump 4

9-Channe1 Dump 5 (Magtape only; see sections
5.3.10, 5.4.6, and 5.4.6.3 (f).)

1 Bi ts 14' through 17 of Header Word 0, specified by system macro and
set by rops.

2-7

Table 2-1

Maximum Lihe Buffer Sizes

Device

PR (paper tape reader)

PP (paper tape punch)

TT (teleprinter)

CD (card reader)

LP (line printer)

VP (Display)

DT (DECtape)

MT (magnetic tape)

DK (DECdisk)

lSee Paragraph 2.3 above.

Maximum
Line

Buffer
Size

Datal
Modes

All

All

2,3 only

3610 2 only
!

52 10
2 only

3410 2,3 only

I

1
I

255 10
I All 1

255 10
All

255 10
All

2-8

I
I
I
I

Modes

34l0sufficient if mode 2 only.

Headers accepted for mode 0:
headers generated for modes
1, 2, 3.

34
10

sufficient if mode 2

only. Headers output for
mode 0 only.

Allows for 8010 characters.

Headers generated on input.
Headers not generated on
output.

Headers generated for
mode 2.

Allows for 12510 characters.

No headers output.

Allows for 8°10 characters.

Mode 3 requires 8010 word

buffer. No Header output.

rops and image modes allow
for several line buffers
(logical records) per
physical block.

2.3.1 lOPS Modes

The two rops data modes consist of rops ASCII and lOPS binary, as shown

in Figure 2-6 on paper tape and described in the following paragraphs.

DIRECTION)
OF TAPE

MOVEMENT

DIRECTION)
OF TAPE

MOVEMENT

TAPE CHANNEL

8165432 I
FEED

00000 000 0

o 000 0 000 0

00000 000 0

o 0 0 0 0 000 0

r---------""f.----------'J l '----- 1-BIT ASCII CODE

'--------- PARITY BIT (EVEN PARITY)

lOPS ASCI I

TAPE CHANNEL

8165432 I
FEED

• 0 0 0 0 0 0 0 0 1st 6- B IT BYTE

• 0 0 0 0 0 0 0 0 2 nd 6-BIT BYTE

• 0 0 0 0 0 0 0 0 3 rd 6-91T BYTE

.0000 000 0

r t) 6-BITS OF BINARY WORO

PAR I TY BIT (000 PAR ITY)

'--------- MUST ALWAYS BE PUNCHED

rops 91 NARY

09- 0229

Figure 2-6 lOPS Mode Data on Paper Tape

2.3.1.1 lOPS ASCII - Seven-bit ASCII is used by lOPS to accommodate the

entire 128-character revised ASCII set (Appendix A). All alphanumeric

data, whatever its original form on input (ASCII, Hollerith, etc.) or

final form on output, is converted internally and stored as 5/7 ASCII.

"5/7 ASCII" refers to the internal packing and storage scheme. Five

7-bit ASCII characters are packed in two contiguous locations, as

shown in Figure 2-7, and can be stored as binary data on any bulk

storage device. Input requests involving lOPS ASCII should be made

with an even word count to accommodate the paired input.

ASCII data is ordinarily input to or output from lOPS via the tele

printer or paper tape, although it may exist in 5/7 ASCII form on any

mass storage device. lOPS ASCII is defined as a 7-bit ASCII character

with even parity in the eighth (high order) bit, in keeping with USA

standards. lOPS performs a parity check on input of lOPS ASCII data

prior to the 5/7 packing. On output, lOPS generates the correct parity.

2-9

WORD 0

04

1ST CHARACTER

~ 6 7 ... 41---------.~ 13 14 ... 41-----t.~ 17

2ND CHARACTER 3RD CHARACTER
1-4

0+--+ 2 3 ... 4t---------.~ 9 10 ... 41----------t~~ 16 17

WORD I 3RD CHARACTER
5-7

4TH CHARACTER 5TH CHaRACTER ~ UNUSED

10-0351

Figure 2-7 5/7 ASCII packing Scheme

Non-parity lOPS ASCII occurs in data originating at a Model 33, 35,

or 37 Teletype l
, without the parity option. This data always appears

with the eighth (high order) bit set to 1. Apart from parity checking,

the lOPS routines handle lOPS ASCII and non-parity lOPS ASCII data

identically.

An alphanumeric line consists of an optional initial form control

character (line feed, vertical tab, or form feed), the body of the

line, and a carriage return (CR) or ALT MODE. CR (or ALT MODE) is a

required line terminator in lOPS ASCII mode. Control character scanning

is performed by some device handlers for editing or control purposes.

(See Section 5.4 for effects of control characters on specific devices.)

2.3.1.2 lOPS Binary - lOPS Binary data is blocked in an even number of

words, with each block preceded by a two-word header. On paper tape

(see Figure 2-6), lOPS binary uses six bits per frame, with the eighth

channel always set to 1, and the seventh channel containing the parity

bit (odd parity) for channels 1 through 6 and channel 8. The parity

feature supplements the checksumming as a data validity provision in

paper tape lOPS binary.

2.3.2 Image Modes

Image Mode data is read, written, and stored in the binary or alpha

numeric form of the source or terminal device, one character per word,

as shown in Figures 2-8 and 2-9. No conversion, checking, or packing

is permitted.

ITeletype is a registered trademark of the Teletype Corporation.

2-10

DIRECT ION)
OF TAPE

MOVEMENT

TAPE ,CHANNEL

8765432 1
FEED

o 0 0 0 0

00000000

00000000

o 0 0 0 0

'~----~yr------~

L ALL EIGHT CHANNELS USED

01 RECTI ON)
OF TAPE

MOVEMENT

I MAGE ALPHANUMER IC

TAPE CHANNEL

87654 321
FEED -• 0 0 000 o 0 0

• o 0 0 o 0 o 0 0

.00 0 0 o 0 0 0

.00 000 o 0 0

I~
~
IMAGE BINARY

6-BIT BINARY CODE
(3 FRAMES/WORD)

IGNORED

MUST ALWAYS BE PUNCHED

09-0221

Figure 2-8, Image Mode Data On Paper Tape

PAIR COUNT

17

...... __ C...,H,.....E_C_K S_U_M--._--t f ~ ~ ~ ~ E ~A I R

C ABC;'
C IN 5/7 ASCII

lOPS ASCII

r. WORD PAIR COUN T

0 17

I 3 I
CHECK SUM

A

B

C

;

I MAGE ALPHANUMERI C

HEADER
WORD PAIR

ABC;
FOUR 8-BIT
CHARACTERS
(RIGHT
JUSTIFIED)

09-0221

Figure 2-9, lOPS ASCII And Image Alphanumeric Data In

Line Buffers And On Mass Storage Devices.

2-11

2.3.3 Dump Mode

Dump mode data is always binary. Dump mode is used to output from or

load directly into any core memory area, bypassing the use of line

buffers. Each dump mode statement has arguments defining the core

memory area to be dumped. Dump mode is normally used with bulk storage

devices, although it is also possible to use it with paper tape output

and input.

Table 2-2

Input/Output Data Mode Terminators

DATA MODE INPUT OUTPUT

Carriage RETURN Carriage RETURN

ALT MODE ALT MODE

lOPS ASCII Word Pair Count 1 Word Pair Count 3

EOM

Word Count 2

EOF l

Word Pair Count

EOM Word Pair Count
lOPS Binary Word Count 2

EOF l

Word Count
Image Alpha- EOM Word Pair Count
numeric
Image Binary EOF l

Word Count

Dump 4 EOM Word Count

EOF 1

IBu1k storage only.

2If word count is exceeded before a terminator is en
countered, lOPS sets bits 12 and 13 of Header Word 0 to
3 (Buffer Overflow) .

3 I f the Word Pair Count is 1 or less, the line is ignored;
if greater than 1, ignore the count and accept Carriage
RETURN or ALT MODE (non-file-oriented devices only). Bulk
storage devices require a Word Pair Count greater than 1
and less than 177

8
, otherwise an lOPS 27 error will occur.

4g-Channel Dump data mode is available for magnetic tape;
refer to section 5.4.6.3(f) for a description of this data
mode.

2.4 SYSTEM TABLES

System tables used by each of the Monitor systems include the Device

Assignment Table (.DAT) 1 and the System Communication Table (.SCOM).

These tables are discussed in the following paragraphs.

2.4.1 Device Assignment Table (.DAT)

Both FORTRAN IV and MACRO coded user programs, as well as the system

programs, specify I/O operations with commands to logical I/O devices.

One oi the Monitor's functions is to relate these logical units to

physical devices. T~ do this, the Monitor contains a Device

Assignment Table (.DAT) which has "slot" numbers that correspond directly

to logical I/O device numbers. Each .OAT slot contains the physical

device unit number (if applicable) along with a pointer to the appro

priate device handler.

All I/O communication in the Monitor environment is accomplished by

the logical/physical device associations provided by the Oevice Assign

ment Table.

2.4.2 System Communication Table (.SCOM)

The System Communication Table (.SCOM) provides a list of registers that

can be referenced by the Monitor, lOPS, and system programs. A complete

list of .SCOM entries, and the purpose of each, is given in Table 2-3.

The System Communication Table begins at location lOOse

2.5 SPECIFYING DEVICES USED TO LINKING LOADER.

When writing a MACRO program that uses Monitor commands (system macros) ,

it is necessary to use the .IODEV pseudo-operation somewhere in the

program to specify to the Linking Loader which logical device numbers

or .DAT slots are to be used. The JODEV pseudo-op causes a code to be

generated that is recognized by the Linking Loader and used to load

device handlers associated with specified .OAT slots. The .IODEV

pseudo-op has the following form:

.IODEV 3, 5, 6

where the MACRO program containing this statement can use .DAT slots

3, 5, and 6. An error message is generated if a slot called for by

a program is unassigned~

FORTRAN IV programs cause the compiler to generate the appropriate

Linking Loader code based on the units specified in READ and WRITE

statements. Note that use of a constant to specify an I/O unit in a

FORTRAN program will cause only the handler assigned to the correspond

ing .DAT slot to be loaded; whereas if a variable is used, handlers

will be loaded for all positive .OAT slots that have handlers a~signed.

2-13

Word

.SCOM

.SCOM+l

.SCOM+2

.SCOM+3

.SCOM+4

.SCOM+5

.SCOM+6

.SCOM+7-ll 8 .

.SCOM+12-15
8

. SCOM+16

. SCOM+17

.SCOM+20

.SCOM+21

.SCOM+22

.SCOM+23

Table 2-3

System Communication Table (.SCOM) Entries

Purpose

First free register below resident portion of System
Bootstrap.

First free register above resident monitor (constant)

Lowest free register available to user or system program

Highest free register available to user or system program

Hardware
Bit a
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit 10
Bit 11
Bits 12

and 13

options available:
1 = API
1 = EAE
1 = TTY = 35/37 (0 = KSR33)
1 = Non-resident monitor in core
Reserved
Reserved
1 = 9-channel, a = 7-channel Magnetic Tape
1 = Page Mode Operation, a = Bank Mode Operation
1 = No tQ Area
Reserved
Reserved
1 = Bank Mode Operation
Line Printer Column Size

00
01
10
11

=
=
=
=

Unknown
80
120
132

Bit 14 1 = Background/Foreground System
Bit 15-17 Reserved

System program starting location

User starting location (bits 3 through 17), and
Bit a 1 = DDT Load
Bit 1 1 = G Load
Bit 2 1 = No-symbol-table Load

Device numbers of Linking Loader's devices. These are used
to avoid loading user handlers already in core for the
Loader itself. Also used for file name with EXECUTE.

Transfer vectors associated with API software level channel
registers 40 through 43 8 .

Contains PC on keyboard interrupts .

Contains AC on keyboard interrupts .

Extra 4K System Information
Bit a 1 = Extra 4K on System
Bit 3-17 First free register in extra 4K

Magtape Status Register

(Reserved for Magtape Handler)

Address of Device Assignment Table (.DAT)

2-14

2.6 RESERVED WORD LOCATIONS

Word locations ~ through 77 are dedicated systems locations and cannot

be employed by the user. The contents of these locations are described

in Table 2-4.

ADDRESS

1

2

3

4

5

6

7

10 - 17

20

21

22 - 37

40 - 77

Table 2-4

Reserved Address Locations

USE
Page Mode Bank Mode

Stores the contents of the extended PC, link, extend
mode status, and memory protect status during a program
interrupt.

JMP to Skip Chain

Stores system tape
(Bank or page) indicator
during Teletype inter
rupts .

EEM (Enter Extend Mode)
instruction for compatibil
ity with PDP-9 systems.

JMP to Skip Chain

. MED, entry to Monitor Error Diagnostic routine

JMP to error handler

(Not used in Page
Mode.) I

(Same)

Stores system type (Bank
or Page) indicator during
Teletype interrupts.

Used for API ON/OFF indicator in both systems.

Stores real time clock
count.

Autoindex registers

(Sarne)

(Same)

Stores the contents of the extended PC, link, extend
mode status, and memory protect status during a
program interrupt.

JMP to CAL handler (Same)

Seven pairs of word counter-current address registers for
use with 3-cycle I/O device data channels.

Store unique entry instructions for each of 32 10 automatic
priority interrupt channels.

2-15

CHAPTER 3

SYSTEM MACROS

3.1 INTRODUCTION

The MACRO-IS assembler permits the development of instructions called

"macros" which, when used as a source statement, can cause a specific

sequence of instructions to be generated in the object program. For

example, consider the following sequence:

-ILAC -IA

-ITAO -IB

-IDAC -IC

.
-ILAC -1 0

-I TAD -IE

-IOAC -IF

following basic instruction sequence to be

program by a single macro instruction. To

employ macros, it is first necessary to define the desired coding

sequence with dummy arguments as a macro instruction; the defined

instruction may then be referenced by name, together with the real

arguments, as a single statement each time the equivalent coding

sequence is needed in the program. Refer to the PDP-IS MACRO-IS

Assembler manual (OEC-IS-AMZB-D) for a complete description of macros.

The assembler enables the

represented in the source

-iLAC -Ix

-I TAD -IY NOTE: x, y, and z are dummy arguments.

-I DAC -I z

The ADVANCED Monitor provides the user with access to a set of pre

defined macros (referred to as system macros) as a programming con

venience. These system macros are referenced (called) in user

programs by writing a statement comprising an assigned macro name

3-1

followed, if needed, by a list of real arguments separated by commas

Macro statements are terminated by ei ther a space (L..,I)' a tab (~), or

a carriage return ())~ For example:

. SEEK -f 7, NAME 1)

3.1.1 Summary of ADVANCED Monitor System MACROs.

The following is a sununary of the System MACROs which are recognized by

the PDP-IS ADVANCED Monitor. Individual detailed descriptions are

provided in paragraphs 3.1.2 through 3.1.17.

Name

. INIT

. DLETE

. RENAM

. FSTAT

.SEEK

. ENTER

. CLEAR

. CLOSE

.MTAPE

. READ

.WRITE

. WAIT

.WAITR

.TRAN

. TlMER

. EXIT

Initializes the device and device handler •

Deletes file from file-oriented device .

Renames file on file-oriented device •

Checks presence of file on file-oriented device .

Locates file on file-oriented device and
begins data input.

Primes file-oriented device for output •

Initializes file structure on file-oriented
device.

Terminates use Of a file .

Provides special conunands for industry
compatible magnetic tape.

Transfers data from the device to the user's
line buffer.

Transfers data from the user's line buffer
to the device.

Checks the availability of the user's line
buffer and waits if busy.

Checks availability of the user's line buffer
and provides transfer address for busy return.

Reads or records user specified block on bulk
storage devices, providing the user with the
capability to determine the structure of the
files on the device.

Calls and uses Real Time Clock option .

Returns control to the Monitor •

The first seven MACROS listed above (excluding .INIT) apply to file

oriented devices (i.e., DECtape, DECdisk, and MAGtape); they are either

ignored or treated as illegal (depending upon the function) by non

file-oriented functions of magnetic tape (REWIND, BACKSPACE, etc.).

If these non-file-oriented conunands are issued to file-oriented devices,

they are either ignored or flagged as errors. Two .MTAPE conunands

(REWIND TO LOAD POINT and BACKSPACE RECORD), however, may be used with

DECtape and DECdisk with the appropriate handler version. When so used,

3-2

these commands preclude the use of .SEEK or .ENTER. Refer to paragraph

5.4 for specific device handler characteristics.

3.1.2 .INIT (Initialize)

FORM: INIT a, F, R

VARIABLES: a = Device Assignment Table (.DAT) slot number (in octal
radix)

F File Type: 0 = Input File
1 = Output File

R User Restart Address 1 (should be in every .INIT state
ment)

EXPANSION: LaC CAL + F 7- 8 + a 9 - 17

LaC + 1 1

LaC + 2 R

LaC + 3 n

/The CAL handler will place the unit
/number (if applicable) associated
/with .DAT slot a into bits 0
/through 2 of thIS word2 •

/Maximum size of line buffer
/associated with .DAT slot a, for
/example, 255

10
for DECtape~3

DESCRIPTION: The macro .INIT causes the device and device handler

associated with .DAT slot a to be initialized. .INIT must be given

prior to any I/O commands referencing .OAT slot ~; a separate .INIT

command must be given for each .DAT slot referenced by the program.

Each initialized .DAT slot constitutes an open file to the device

handler and must be .CLOSEd. Since a .OAT slot may refer to only one

type of file (input or output), only one file type specification (0 or 1)

may be made in an .INIT statement. If a .OAT slot first references

an input file, then an output file (or vice versa), a second .INIT

command must be executed to change the transfer direction prior to the

actual data transfer command.

3.1.3 .DLETE

FORM: .DLETE a,D

VARIABLES: a = .DAT slot number (octal radix)

D = Starting address of three-word block of storage in
user area containing the file name and extension of

IHas meaning only for .INIT commands referencing slots used by the TTY
(the last .INIT command encountered for any slot referencing the key
board or teleprinter takes precedence). When the user types tp,
control is transferred to R. For example, the Linking Loader takes
advantage of this feature to restart the system when a new medium has
been placed in the input device (e.g., another paper tape in the
reader.

2 Has no direct effect upon the user's program, but should be noted so
that no attempt will be made to use LaC + 1 as a constant.

3 S ize is returned by the handler so that the program, in a device
independent environment, can use it to properly set up line buffers.

3-3

the file to be deleted from the device associated with
.DAT slot a.

EXPANSION: LaC CAL + 1000 + a 9 - l7

LOC + 1 2

LOC + 2 D

/The CAL handler will place the unit
/nurnber associated with .DAT slot a
into bits 0 through 2 of LOC + 1.

DESCRIPTION: .DLETE deletes the file specified by the file entry block

at D from the device associated with .DAT slot a and retrieves the storage

blocks released by that file. The contents of the AC will be a on return

if the specified file cannot be found.

3.1.4 .RENAM

FORM: .RENAM a, D

VARIABLES: a = .DAT slot number (octal radix)

D Starting address of two 3-word blocks of storage
in user area containing the file names and extensions
of the file to be renamed and the new name,
respectively.

EXPANSION: LaC CAL + 2000 + a 9 - 17

LaC + 1 2

LaC + 2 D

/The CAL handler will place the unit
/nurnber associated with .DAT slot a
/into bits 0 through 2 of LaC +1.

DESCRIPTION: .RENAM renames the file specified by the file entry

block at D with the name in the file entry block at D + 3 on the

device associated with .DAT slot a. The contents of the AC will be

zero on return if the file specified at D cannot be found.

3.1.5 . FSTAT

FORM:

VARIABLES:

. FSTAT a,D

a = .DAT slot number (octal radix)

D Starting address of three-word block of storage in
user area containing the file name and extension of
the file whose presence on the device associated
with .DAT slot ~ is to be examined.

3-4

EXPANSION: LaC CAL + 3000

LaC + I 2

LaC + 2 0 1

+ a 9- l7

/The CAL handler will place the unit
/nurnber associated with .OAT slot a
/into bits 0 through 2 of LaC + 1.-

DESCRIPTION: .FSTAT checks the status of the file specified by the file

entry block at D on the device asso~iated with .OAT slot~. On return l

the AC will contain the first block number of the file if found. The

contents of the AC will be zero on return if the specified file is not

on the device. It is reoommended that .FSTAT be used prior to .SEEK,

if the user prefers to retain program control when a file is not found

in the directory. Otherwise, control is returned to the Monitor error

routine to output an lOPS 13 error code on the teleprinter.

3.1.6 .SEEK

FORM: .SEEK a,D

VARIABLES: a = .DAT slot number (octal radix)

o = Address of user directory entry block

EXPANSION: LOC

LaC + 1

CAL + a 9- l7

3 /The CAL handler will place unit
/number (if applicable) into bits
/0 through 2.

LaC + 2 D

DESCRIPTION: .SEEK is used to search the directory of file-oriented

device a tor a desired file and to begin input for subsequent .READ

commands. 0 is a pointer to (that is, the address of) a three-word

entry in the user's program containing the file name and extension

information. The device's file directory block is searched for a

matching entry; if one is found, input of the file into the handler's

internal buffer begins. If no matching entry is found, control is

transferred to an error-handling routine in the Monitor, an error

message is printed on the teleprinter, and the Monitor resumes control.

Execution of the .FSTAT command allows the user to check the directory

for a named file and to retain control if not found.

The entry format in the user's file directory entry block (in core)

lBits 0 through 2 of LaC + 2 must be set to zero prior to the execution
of the CAL at LaC. On return, bits 0 through 2 of LaC + 2 will contain
a code indicating the type of device associated with .DAT slot a.

o Non-file-oriented devices
1 = DECtape (file structuring)
4 = Magnetic tape

If the contents of the AC are 0 on return from .FSTAT (indicating that
the file was not found), bits 0 through 2 of LaC + 2 should be checked,
because if they are still 0, the device was non-file-oriented.

3-5

is as follows:

0 S 6

D N A

D+l E 0

D+2 E X

11 12

M

0

T

17
File Name: up to six 6-bit
trimmed ASCII characters,
padded, if necessary, with
nulls (0).

File Name Extension: Up to
three 6-bit trimmed ASCII
characters, padded with
nulls. (The symbol @ produces
a zero when using SIXBT.)

The file name is essentially nine characters (six of file name and

three of file name extension); the file-searching of the .SEEK command

takes into account all nine characters.

System programs, unless otherwise specified, use predetermined file

name extensions in their operation. For example, if MACRO-IS wishes

to .SEEK program ABCDEF as source input and the user has not specified

an extension, it searches for ABCDEF SRC (ABCDEF, Source). The

binary output produced would be named ABCDEF BIN (ABCDEF, Relocatable

Binary), while the listings produced would be named ABCDEF LST (ABCDEF,

Listing). The Linking Loader, if told to load ABCDEF, would .SEEK

ABCDEF BIN. FORTRAN IV is an exception to the above conventions in

that it assumes the input file name extension is always SRC.

3.l.i7 .ENTER

FORM: .ENTER a, D

VARIABLES: a = .DAT slot number (octal radix)

EXPANSION:

DESCRIPTION:

D Address of user directory entry block

LOC CAL +

LOC + 1 4

LOC + 2 D

a 9- 17

/The CAL handler will place the unit
/number (if applicable) associated
/with .DAT slot a into bits 0
/through 2.

.ENTER is used to examine the directory of the device

referenced by .DAT slot a to find a free four-word directory entry

block in which to place the three-word block at D and one word of

retrieval information when .CLOSE is later issued. Deletion of any

earlier file with the same name and extension is performed by the

.CLOSE macro. Control is transferred to the error handling routine in

the Monitor to output an appropriate error message if there is no

available space in the file directory at the time when .ENTER is

executed.

3-6

3.1.8 • CLEAR

FORM: . CLEAR a

VARIABLES: a = .DAT slot number (octal radix)

EXPANSION: LOC

LOC + 1

CAL + a9- l7

5 /The CAL handler will place the unit
/number (if applicable) associated
/with .DAT slot a into bits 0
/through 2.

DESCRIPTION: .CLEAR is used to initiate the lOPS file structuring of

the device referenced by .DAT slot ~ by initializing its existing

directory. The directory area and file bit map blocks on the file

structured device are set to 0 (except for those bits in the directory

bit map referring to the directory itself and the file bit maps) .

In order to avoid clearing a directory when its files are still in use,

the directory is checked for open files. If there are no open files,

the directory is cleared; otherwise, control is transferred to the

Monitor error handling routine to output an lOPS 10 error code (file

still active).

3.1.9 • CLOSE

FORM: .CLOSE a

VARIABLES: a = .DAT slot number (octal radix)

EXPANSION: LOC CAL + a 9 - 17

LOC + I 6 /The CAL handler will place the unit
/if applicable) associated with
/.DAT slot ~ into bits 0 through 2.

DESCRIPTION: When action has been initiated (.INIT or .SEEK or .ENTER)

on a file (whether the device is file-oriented or not) this action

must be terminated by a .CLOSE command.

On input, it is assumed that the user is finished with the file when

the .CLOSE macro is u~ed, so the file is closed. On output, all

associated output is allowed to finish and then an EOF (end-of-file) line

line is output before the file is finally closed. If a refers to a

file-oriented device, any earlier file of the same name and extension,

as currently referenced, is deleted from its directory after the new

file is written.

3-7

3 . 1 . 10 • r-1T APE

FORM: .MTAPE a, XX

VARIABLES: a = .DAT slot number (octal radix)

XX = Number of magnetic tape function or configuration:

00 Rewind to load point
02 Backspace record
03 Backspace file
04 Write end-of-file
as Skip record
06 Skip file
07 Skip to logical end-of-tape
10 7-channel, even parity, 200 bpi
11 7-channel, even parity, S56 bpi
12 7-channel, even parity, 800 bpi
13 9-channel, even parity, 800 bpi
14 7-channel, odd parity, 200 bpi
IS 7 channel, odd parity, 556 bpi
16 7-channel, odd parity, 800 bpi
17 9-channel, odd parity, 800 bpi

EXPANSION: LOC CAL + XXS_ 8 + a 9- l7

LOC + 1 7 /The CAL handler will place the unit
/number (if applicable) associated
/with .DAT slot ~ into bits a
/through 2.

DESCRIPTION: .MTAPE is used to perform functions unique to non-file

oriented bulk storage devices. In general, these functions are intended

for magnetic tape; however, two of the functions, REWIND TO LOAD POINT

and BACKSPACE RECORD, may be used with any bulk storage device handler

that is capable o~ being employed in a non-file-oriented manner. For

example, the DECtape handler is directed to work in a file-oriented

mode foroa particular .DAT slot if it encounters a .SEEK or .ENTER

as the next command after the .INIT command for that .DAT slot. If it

encounters .MTAPE REWIND or BACKSPACE as the first command after .INIT,

it sets up to work in non-file-oriented modes and interprets subsequent

.READ and .WRITE commands appropriately. After the mode is established,

commands in the other mode must not be executed.

3 . 1 . 11 • READ

FORM: .READ a, M, L, W

VARIABLES: a = .DAT slot number (octal radix)

0
1

M Data mode 2
3
4
S

=

lOPS Binary
Image Binary
lOPS ASCII
Image Alphanumeric
Dump Mode
9-channel Dump Mode (MAGtape only)

L Line Buffer address

W Line buffer word count (decimal radix), including
the two-word header

3-8

EXPANSION: LaC CAL + M6- 8 + a 9- l7

LaC + 1 10 ICAL handler will place unit number
I(if applicable) into bits 0 through 2}

LOC + 2 L

.DEC IDecimal radix

LOC + 3 -W _

DESCRIPTION: The . READ command is used to transfer the next line of data

from the device assigned to .DAT slot a to the line buffer in the user's

program. In the operation, M defines the mode of the data to be trans

ferredi L is the address of the line bufferi and W is the number of words

in the line buffer (including the two-word header) .

Since 1/0 operations and internal data transfers may proceed asynchron

ously with computation, a .WAIT command must be used after a .READ

command before the user attempts to use the data in the line buffer or

to read another line into it.

When a .READ (non-Dump Mode) has been completed, the program should

interrogate bits 12 and 13 of the first word of the line buffer header

to ascertain that the line was read without error. Bits 14 through 17

should be checked for end-of-medium and end-of-file conditions.

3.1.12 .WRITE

FORM: .WRITE a, M, L, W

VARIABLES: a = .DAT slot number (octal radix)

EXPANSION:

DESCRIPTION:

M Data mode

o
1
2
3
4
5

L Line buffer address

lOPS Binary
Image Binary
lOPS ASCII
Image Alphanumeric
Dump Mode
9-channel Dump Mode (MAGtape only)

W Line buffer word count (decimal radix), includi~g the
two-word header

LaC CAL + M6- 8 to a 9- 17

LaC + 1 11 ICAL handler will place the unit
/number (if applicable) associated
/with .DAT slot a into bits 0
/through 2.

LaC + 2 L

.DEC /Decimal radix

LaC + 3 -W

.WRITE is used to transfer a line of data from the

user's line buffer to the device associated with a .DAT slot a .

. WAIT must be used after a .WRITE command, before the line buffer is

3-9

is used again, to ensure that the transfer to the device has been

completed.

On non-bulk storage devices, headers are output along with the data in

lOPS binary mode only (bit 9 and 11 of header word a should be set to 1).

On bulk storage devices, headers are output along with the data in all

modes except dump mode. In image modes, the header space cannot be used

for data, even though the headers are not written out. The word pair

count in the header takes precedence over maximum size (or word count)

in all modes and must be inserted by the user.

For both .READ and .WRITE macros, dump mode causes the transfer of the

specified core area to or from one record on magnetic or paper tape.

One or more blocks on DECtape or disk may be occupied by a single dump

command. A subsequent .WRITE in dump mode will utilize the unfilled

portion of the last block.

3.1.13 . WAIT

FORM: .WAIT a

VARIABLES: a = .DAT slot number (octal radix)

EXPANSION: LOC

LOC + 1

CAL +

12

a 9 - 17

/The CAL handler will place the
/unit number (if applicable)
/associated with .DAT slot a into
/bits a through 2.

DESCRIPTION: .WAIT is used to detect the availability of the user's

line buffer (being filled by .READ or emptied by .WRITE). If the

line buffer is available, control is returned to the user immediately

after the .WAIT macro expansion (LOC + 2). If the transfer of data

has not been completed, control is returned to the .WAIT macro.

must also be used after the .TRAN command.

.WAIT

3.1.14 .WAITR

FORM: .WAITR ~, ADDR

VARIABLES: a = .DAT slot number (octal radix)

ADDR = Address to which control is passed if line buffer
is not available for use.

EXPANSION: LOC

LOC + 1

LOC + 2

CAL + 1000 8 + a 9- 17

12 /The CAL handler will place the
/unit number (if applicable)
/associated with .DAT slot a into
/bits a through 2.

ADDR

3-10

DESCRIPTION: .WAITR is also used to detect the availability of the user's

line buffer. If the buffer is available, control is returned to the user

immediately after the .WAITR macro expansion (LOC + 3). If the transfer

of the data has not been completed, however, control is given to the

instruction at ADDR. It is the user's responsibility to return to the

.WAITR to again check the availability of the buffer.

3.1.15 .TRAN

FORM: .TRAN a, D, B, L, W, P

VARIABLES: a = .DAT slot number (octal radix)

o Transfer direction

a Input Forward
1 Output Forward
2 Input Reverse 1

3 Output Reverse 1

B2= Device address; for example, block number (octal
radix) for DECtape

L Core starting address

W Word count (decimal radix)

p 3 = High order 3 bits of device address (e.g., RSIS
DECdisk platter number, 0-7).

EXPANSION: LaC

LaC + 1 13

LaC + 2 B

LaC + 3 L

/The CAL handler will place the unit
/number (if applicable) associated
/with .DAT slot a into bits 0
/through 2.

.DEC /Decimal radix

LaC + 4 -W

DESCRIPTION: .TRAN is employed when the user desires total freedom in

data structuring of bulk storage devices. It provides the facility to

read or record user-specified areas on the device. .TRAN should be

followed by a .WAIT macro to ensure that the transfer has been

completed.

3.1.16 .TIMER

FORM: .TlMER n, C

VARIABLES: n = Number of clock increments (decimal radix)

C Address of subroutine to handle interrupt at end of
interval

!DECtape only.

2Ignored for magnetic tape.

3 The argument P is omitted for devices other than the DECdisk. If the
argument P is present, the argument D must be either 0 or 1; values of
2 or 3 for D will produce erroneous results.

3-11

EXPANSION: LaC CAL

LaC + 1 14

LaC + 2 C

.DEC /Decimal radix

LaC + 3 -n

DESCRIPTION: .TlMER is used to set the real-time

and to start it. Each clock increment represents
th 60-Hz systems and 1/50 second for 50-Hz systems.

clock to n increments
th 1/60 second for

C + 1 is the location to which control is given when the Monitor

services the clock interrupt. The coding at C should be in subroutine

form; for example,

C

XIT

o C + 1 is reached via JMS
DAC SAVEAC

Must not contain any
Monitor CALs in I/O
or Keyboard Systems

LAC C /Restore Link
RAL
LAC SAVEAC /Restore AC
JMP*C

so that control will return to the originally interrupted sequence when

the interval-handling routine has been completed. The Monitor auto

matically reenables the interrupt system before transferring control

to C + 1. If the user wishes to initiate another interval at the com

pletion of the previous interval in the subroutine specified to .TlMER,

he may do so as follows:

LAC
DAC*
LAC C
RAL

(desired interval in 2's complement)
(7

/Restore Link

LAC SAVEAC
CLaN

/Restore AC
/Turn on clock

JMP*C

3.1.17 .EXIT

FORM: .EXIT

EXPANSION: LOC CAL
LOC + 1 15

DESCRIPTION: .EXIT provides the standard method for returning to the

Monitor after completion of a system or user program. In the BASIC

I/O Monitor environment, it causes a program halt; in the ADVANCED

Monitor environment, it causes the non-resident Monitor to be reloaded.

When the reloading process has been completed, the Monitor types

KM 15 Vnn
$

on the teleprinter, indicating that it is ready to accept the next

command.

3-12

CHAPTER 4

ADVANCED MONITOR

4.1 ADVANCED MONITOR FUNCTIONS

The ADVANCED Monitor is designed to operate with a system that has some

form of bulk storage (see Hardware Requirements, Section 1.2). It

includes all elements of the BASIC I/O Monitor in addition to routines

that accept and interpret Teletype keyboard commands, change device

assignments, and automatically load and initiate system and user programs.

4.2 PROGRAMMING EXAMPLE

The following example illustrates the use of system macros with

MACRO-IS programs in the ADVANCED Monitor Environment. The example

inputs a line of data from the teleprinter keyboard, writes it on

DECtape, reads it back from DECtape, and outputs it on the teleprinter.

Before subsequent keyboard inputs, the program prints the messages:

FILE ALREADY PRESENT!!
DO YOU WISH TO KEEP IT? (y OR N) AND CR.

By typing y on the keyboard, the file is saved and a new file is

created for the next line of input from the keyboard. By typing N on

the keyboard, the next line of data input from the keyboard is

written on DECtape with the same file name given to the previous line.

The name of the file is initially ECHO TST. The file name for each

new file (providing that the previous file was not deleted, is obtained

by incrementing location NAME+l. This produces a series of files,

ECHO TST, ECHOA TST, ECHOB TST, ECHOC TST, ... , etc., (since the

alphabet in .SIXBIT begins 01 8 , 02
8

, 03 8 , etc.).

The arguments used by the system macros are given symbolic names by

means of MACRO direct assignment statements at the beginning of the

program to facilitate recall for the programmer, and to change the

arguments readily. The partial assembly listing that follows the

example shows how the first several system macros are expanded at

assembly time. (The reader may wish to compare these expansions with

the system macro descriptions in Chapter 3.)

4-1

Example:

Source Listing

• TI TLE DTECHO
DECTAPE: 1
TT1:6
TTO=5
IN:e
OUT: 1
IOPS:2

START

READKB

WRITE

READDT

RESTRT

UPDATE

YES

NEtl/FIL

MSGI

MSG2

.IODEV
• IN IT
.INIT
.INIT
.fSTAT
SZA

5,,6,7
DECTAPE,OUT,RESTRT
TTI,IN,RESTRT
TTO, OUT, RESTRT
DECTAP,NAME

JM P UPDATE
.READ TTI,IOPS,BUFFER,34
• WAIT TTl
LAC UDSW
SZA
JMP
• ENTER
.1..mITE
• tllAI T
• CLOSE
• IN IT
.SEEK
• READ
• WAIT
.WRITE
.WAIT
• CLOSE
.CLOSE
.CLOSE
JMP
• WRI TE
• WAIT
.WRITE
• WAIT
.READ
• WAIT
LAC
AND
SAD
JMP
DZM
JMP
CLC

NEWF'IL
DECTA?, N.'~ME
DECTAP, IOPS,BUFFER,34
DECTA?
DECTAP
DECTAP,IN,RESTRT
DECTAP, NAME
DECTAP,IOPS,BUFfER,34
DECTAP
TTO,IOPS,BUFFER,34
TTO
TTO
TT I
DECTAP
START
TTO,IOPS,MSGl,34
TTO
T TO, lOP S, MS G2 ,34
TTO
TTI,IOPS,COM,8
TTl
COM+2
(774000
(544000
YES
UDSW
READKB

DAC UDSW
Jt1P READKB
ISZ NAME+l
Jf1P WRITE
MSG2- MSGI 12*1000
o
.4SCII "FILE ALREADY"
.ASCII "PRESENT! !"<15>
COM- MSG2/2*1000
o

IINITIALIZE DECTAPE OUTPUT,
ITELETYPE INPUT,
lAND TELETYPE OUTPUT
lIS FILE PRESENT?
INO, INPUT KEYBOARD
IYES, OUTPUT MSGI AND MSG2

IINPUT lOPS ASCII FROM KEYBOARD
IWAIT UNTIL INPUT COMPLETE
ITEST UPDATE SWITCH
10 REPLACE INPUT FILE
I-I =SAVE INPUT; CREATE NEW OUTPT
ILOCATE FREE DEC TAPE FILE
IOUTPUT DATA ON DECTAPE
IWAIT UNTIL OUTPUT COMPLETED
ICLOSE FILE
IINITIALIZE DECTAPE INPUT
ILOCATE FILE "NAME"
IREAD INTO BUFF'ER
l\lfAIT UNTIL READ COMPLETE
/OUTPUT TO TELETYPE
IWAIT UNTIL OUTPUT COMPLETE
ITERMINATE TELETYPE OUTPUT,
ITELETYPE INPUT,
lAND DECTAPE INPUTIOUTPUT
ILOOP FOR UPDATE OPTION
IOUTPUT MSGI
lAND MSG2
ION
ITELETYPE
IRE.l\D RESPONSE
IlvA IT UNTIL RE.4D COMPLETE
IGET FIRST WORD
ISAVE FIRST SEVEN BITS
lIS CHAR A Y?
IYES
INO, SET TO REPLACE INPUT FILE
ILOOP TO READ KEYBOARD
ISET UPDATE SW. TO SAVE
IINPUT, CREATE NEW OUTPUT
ILOO? TO READ KEYBOARD

ICHAN GF: rILE NAME
ITO CREATE NEW OUTPUT
It,!1PC fOR HEADER \I/ORD 0

IWPC FOR HEADER WORD 0

• ASCI I
.ASCII

"DO YOU WISH TO KE~P IT 7"
"CY OR N) AND CR."<15>

COt1
BUffER
NAME
UDSt"

• BLOCK
• BLOCK
• SIXBT
o
• END

10
42
"ECHO@@TS Tn

START

4-2

Example (continued)

Assembly Listing

PAG£ 1 DTECHO'SRC DTECHO

1 .TITLE DrECHO
2 000007 A DECTAPE=7
3 000006 A TTI=6
4 000005 A TTO=5
5 000000 A IN=0
6 000001 A OUT=l
7 000002 A IOPS=2
8 , lODE V 5,6,7
9 0121000 R START , I NIT OECTAPE,OUT,RESTRT IINITIALI~E OECTAPE OUTPUT,

00000 R 001001 A *G CAL·Ouro1~00 DECTAPE&777
00001 R 000001 A 0G 1
00002 R 000070 R oG RESTRT"''''
00003 R 000000 A oG 0

j0 .Ii~lT TiI,IN,RESTRT ITEL.ETYPE INPUT,
00004 R 000006 A 0G CAL+IN~1000 TT1&771
00005 R 00~001 A 0G 1

01:::00 00006 R 000070 R *G RESTRT"''' I
w 00007 R 000000 A *G 0

11 • I NIT TTO,OUT,RESTRT lAND TELETYPE OUTPUT
00010 R 001005 A 0G CAL+OUr o1000 TTO&?77
00011 R 000001 A *G 1
00012 R 000070 R *G RESTRT.'"
00013 R 000000 A oG 0

12 .~STAT DECTAP,NAME lIS PIL.E PRESENT'
00014 R 003007 A *G CAL+3000 OECTAP&777
00015 R 000002 A *G 2
00016 R 000246 R *G NAMt.

13 00017 R 740200 A Sl!A INO, INPUT KEYBOARD
14 00020 R 600077 R JMP uPDATE IYES, OUTPUT MSG1 ANO MSG2
15 00021 R READKB ,READ ril,IOPS,sUFtER,34 IINPUT lOPS ASCII tROM KEYBOARD

00021 R 002006 A *G CAL+IOFS*1000 TTI&777
00022 R 000010 A *G 10
00023 R 000204 R *G BUF~·ER

or; ,DEC
00024 R 777736 A *G !"!34

16 .WAIT Til IWAIT UNTI~ INPUT COMPLETE
00025 R 000006 A *G CAL TTI&777
00026 R 000~12 A *G 12

17 .EJE:.:CT

PAGE 2 OTECrlO SRC DTECHO

18 00?27 R 2002~1 R lAC UDSW ITE5T UPDATE SWITCH
19 [:2/30 R 740200 A S2A I~ REPLACE INPUT rILE
20 7:J~~31 R 600132 R JMP NEwFIL l-l=SAVE INPUT, CREATE NEw OUTPT
21 r{~~32 R WRITE • E~'dER DECTAP,NAME ILOCATE FREE OECTAPE FILE

0~~32 R 000007 A ~G CAL DECTAP&777
00~33 R 0~0004 A *G 4
00234 R 000246 R *G !~AME

22 ,wRITE OECTAP,IOPS,BUFFER,34 IOUTPUT DATA ON DEC TAPE
00735 R 002007 A *G CAL+IOPS.1000 OECTAP&777
20036 R,000011 A *G 11
02037 R 000204 R *G f3LJF~[R

*G ,DEC
00040 R 777736 A *G -34

23 • ~ Al T nECTAP IWAIT UNTIL OUTPuT COMPLETED
08041 R 000007 A *G CAL CECTAP&777
80042 R 000012 A *c 12

.t>. 24 .CLOSE OECTAP ICLOSE FILE
I r.~243 R 000007 A *G CAL DECTAP&777

.t>.
00044 R 000~06 A *G 6

25 fZ2Vj45 R REA DDT • [N IT DECTAP,IN,RESTRT IINITI4L12E DECTAPE INPUT
e0045 R 000007 A *G CAL+IN*1000 OECTAP&777
e0046 R 0000~1 A ~G 1
l~~~7 R 000070 R *c R[STRT+0
~00~0 R 000000 A *C ~,

26 .SElK DECTAP d\JAME ILOCATE F'IL.E "NAME"
00~51 R 000007 A *G CAL DECTAP&777
e00~2 R 0~0003 A ~G :s
r0053 R 000246 R *G ~J AMI:.

27 • ~H .. ~D QECTAP,IOPS,BUFPER,34 IREAD INTO BUFFER
20054 R 002007 A *G CAL+IOPS*1000 DECTAP&777
00055 R 000~10 A aG lJ
00056 R 000204 R *G BUFf- t.R

*G .DEC
00057 R 777736 A *G ~34

28 .,~Alj DECTAP IWAIT UNTIL READ COMPLETE
00060 R 000007 A *G CAL CECTAP&777
00061 R 000012 A *G 12

29 .EJlCT

PAGE 3 DTECHO SRC DTECHO

30 ,WRITE TTO,lOPS,BUFFER,34 IOUTPUT TO TE~ETYPE
00062 R 002005 A *G CAL+IOPS*1000 TTO&777
00e63 R 01210011 A *G 11
00064 R 000204 R *G BUffER

*G ,DEC
00~65 R 777736 A *G .. 34

31 ,WAIT lTD IWAIT UNTIL OUTPUT COMPLETE
00066 R 000005 A *G CAL. TTO&777
00~67 R 1211210012 A *G 12

32 0007(\ R RESTRT ,CLOSE TTO ITERMINATE TELETYPE OUTPUT,
~007V R 01210005 A *G CAL TTO&777
00071 R 000006 A *G 6

~ 33 .CLOSE TTl ITELETYPE INPUT,
I 00072 R 01210006 A *G CAL TTI&777 LT1

0C~7~ R 121121121006 A ~G 6
34 ,CL.OSE OECTAP lAND OECTAPE INPUT/OUTPUT

00074 R 12101210~7 A *G CAL DECTAP&777
00075 R 121121121006 A *G 6

35 00076 R 600210121 R JMP START ILOOP fOR UPDATE OPTION
36 00077 R UPDATE .WRITE TTO,IOPS,MSG1,34 IOUTPUT MSG1

121121077 R 12112121211215 A ~G CAL+IOPS.1000 TTO&777
121121108 R 12112112112111 A *G 11
121121101 R 121121121134 R *G ~1SGl

°G .DEC
1210102 R 777736 A *G ... 34

37 tWA I T TTO lAND MSG2
00103 R 12112112112105 A ~G CAL. TTO&771
~e104 R 000012 A *G 12

38 .EJECT

PAGE 4 CTECf-IO SRC DTECHO

39 ,WRITE TTO,IOPS,MSG2,34 ION
~0105 R 002005 A *G CAL+IOPS*1000 TTO&777
00106 R 000011 A *G 11
00107 R 000150 R *G MSG~

*G .DEC
0e110 R 777736 A ~G .. 34

40 .WAIT TTO ITELETYPE:
eel11 R 000005 A *G C.AL TTO&777
0e112 R 00~012 A *G 12

41 ,READ TTI,IOPS,COM,S IREAD RESPONSE
0011J R 002006 A *G CAL+IOPS*1000 TTI&777
00114 R 000010 A *G 10
00115 R 000174 R *G COM

*G ~DEC
vH!116 R,777770 A *G -8

42 .\~AIT TTl IWAIT UNTI~ READ COMPLETt
0e117 R 000006 A *G CAL TT1&777
o 2 1 2 .~ R 00 0. 01 2 A ... G 12

43 00121 R 200176 R LAC COM+2 IGET F'IRST WORO
~ 44 0;]122 R 500252 R AND (774000 ISAVE rIRST SEVEN BITS I
0"\ 45 0012:5 R 540253 R SAO (5440121121 lIS C~AR A Yl

46 00124 R 600127 R JMP yES
47 02125 R 140251 R OtM uDSW INO, SET TO REPLACE INPUT rILE
48 0C126 R 600021 R JMP READKB ILOOP TO READ KEYBOARD
49 00127 r~ 750001 A yES CLC ISET UPDATE SW. TO SAV~
50 0013G~ R 1240251 R DAC lJDSw IINPUT, CR£ATE NEW OUTPUT
51 0~H31 R 600021 R ..)MP READKB ILOOP TO ReAD KE~BOARO
52 00132 q 44121247 R NEWFIL IS2 ~AME"l ICHANGE PILE NAM~
53 02133 R 600032 R JMP wRITE ITO CREATE N£W OUTPUT
54 CHH34 ·R 006k100 A MSG1 MSG2l"'MSGl/2*1000 IWPC rOR HEAOER WORD 0
55 00135 R 000000 A e
56 00136 R 432231 A .ASCII "FILE ALREAOY "

00137 R 442500 A
00140 R 406312 A
021141 R 242602 A
00142 R 422624 A
00143 R 000000 A

57 00144 R 502450 A .ASCII "PRESENTI!"<15)
00145 R 551612 A
00146 R 472504 A
00147 R 120432 A

58 .EJE.CT

PAGE 5 OTECHO SRC OTECHO

59 0015[/; R 012000 A MSG2 COM-MSG2/2itl~00 IWPC FOR HEAOER WORD ~
60 07;151 R 000~00 A (0

61 00152 R 422364 A tAS~II "00 YOU WISH TO KEEP IT 1"
e:[1153 R 054636 A
00154 R 525012 A
00155 R 744646 A
00156 R 441012 A
02;15'7 R 447500 A
00160 R 456130 A
0e161 R 550HH?l A
120162 R 446504 A
07163 R 037400 A

62 00164 R 242624 A .AS~II "(Y OR N) AND CR,"<15>
00165 R 047644 A
00166 R 202345 A
e'iZ'167 R 12~2ij2 A
0(7-170 R 472104 A
~cI017:L R 041644 A

~
I 08172 R 270320 A

"-J ~H~:t73 R 000000 A
63 00174 R A COM ,BLOCK 10
64 V'9204 R A BUFFER .BLOCK 42
65 ("l',2 4 6 R 050310 A NAME .SIXBT nECH06'@TST"

00247 R 17eJ~00 A
0025u F~ 242324 A

66 (7'0251 R 01210000 A UDSW 0
67 000000 R .END START

00252 R 774000 A oL
002~3 R 544000 A 0L

S12E=00254 NO ERROR LINt:..S

PAGE 6 OTEc~O SRC OTECHe

BUFFER 00204 R COM 00174 R OECTAP 0000107 A IN 000000 A
lOPS 0210002 A MSG1 00134 P MSG2 00150 R NAME 0121246 R
NEWFIL 00132 R OUT 12l0~:HH'1 A REA DDT 00045 R READKB 0121021 R
RESTRT 00077 R START 00000 R TTl 000006 A TTO ~1ZJ0005 ~
UOSW 00251 R UPDATE 00077 R WRITE ~12l032 R yES 1210127 R

PAGE 7 DTECr10 SRC DTECHO

IN 00000v i A START 12J0eJflI0 R OUT 000001 A lOPS e012!002 A
TTD 000005 A TTl I2Jv.HiH3fl16 A OECTAP 0012J0el7 A REAOKB 002121 R
WRITE 00032 F~ REAODT 00045 R RESTRT 0012170 R UPDATE 00077 R
YES 00127 R NEWFIL 1210132 R MSC.l 00134 R MSG2 00150 R
COM 00174 R BUFFER 1210204 R NAME 00246 R UDSW 00251 R

PAGE 8 OTECHO CROSS REFERENCE

BUFFER 00204 15 22 21 3121 64*
COM 00174 41 43 59 63*
DECTAP 00012107 2* 9 12 21 22 23 24 25 26

27 28 34
IN 000000 5* 10 25
lOPS 0iiH!1002 711} 15 22 27 30 36 39 41

~ MSG1 00134 ,-~6 54* 54 I
00 MSG2 00150 39 54 59. 59

NAME ~'0246 12 21 26 52 65*
NEWFIL 00132 20 52*
OUT v:H1l0001 6* 9 11
READOT '~H~045 25*
READKB 0012121 1511} 48 51
RESTRT 00070 9 10 11 25 32.·
START ~000e 9* 35 67
TTl 000006 3* 10 15 16 33 41 42
TTO 000005 4* 11 30 31 32 36 37 39 40
UDSW 00251 18 47 50 66*
UPDATE 00077 14 36*
WRITE 00032 210 53
YES 00127 46 49i1'

4.3 KEYBOARD COMMANDS

The ADVANCED Monitor provides:

a. The ability to request system information and
directions for system operation.

b. I/O device independence, through the ability
to dynamically change I/O device assignments
before loading a program.

c. The ability to call, load, and execute system
and user programs via simple keyboard commands.

When the ADVANCED Monitor initially gets control it outputs:

KM15 Vnn
$

to the teleprinter to indicate readiness to accept a keyboard command.

Subsequently, it outputs only the dollar sign ($) to indicate readi

ness. In both cases, the keyboard command should be typed on the

same line as the dollar sign ($).

ADVANCED Monitor commands fall into three categories:

a. Commands that load system programs (terminated with
a carriage return ()') or ALT MODE).

b. Commands to perform special functions.

c. Control character commands, formed by holding
down the CTRL key while striking a letter key.
These commands are used during the running of
system or user programs. (System programs echo
control character commands by typing an up
arrow (t) followed by the associated character.)

4.3.1 System Program Load Commands

Loading commands instruct the ADVANCED Monitor to bring in the System

Loader, which is used to load all system programs from the system

device. The commands which follow are available to the user for

loading systems programs via the Monitor.

4-9

Command

F4

F41

MACRO

MACRO I

PIP

EDIT

EDITVP

LOAD

GLOAD

DDT

DDTNS

UPDATE

DUMP

PATCH

CHAIN

EXECUTE

SGEN

SRCCOM

DTCOPY

(E)

System Program Loaded

FORTRAN IV Compiler

8K FORTRAN IV Compiler (DECtape I/O only)

MACRO-IS Assembler

8K MACRO-lS Assembler (DECtape only)

Peripheral Interchange Program

Symbolic Text Editor

Symbolic Text Editor (VP15A Display)

Linking Loader

Linking Loader (set to load and go)

Dynamic Debugging Technique program

DDT program with no user symbol table

Library File Update program

Program to dump saved area (see CTRL Q
and QDUMP commands)

System tape Patch program

Program to create a system of core overlays

Control program to supervise core residency
during execution of CHAIN built overlay system

System Generator program

Text Line Comparison program.

8K high speed DECtape copy program

All commands should be terminated by a Carriage RETURN() or ALT MODE.

When the requested program has been loaded and is waiting for keyboard

input, an indication is given on the teleprinter with an appropriate

message, such as

or

LOADER Vnn
>

F4
>

Vnn

or EDITOR Vnn
>

etc. where: Vnn current version of the

program

4.3.2 Special Function Commands

The special function keyboard commands available in the ADVANCED

Monitor environment are described in the following paragraphs.

4.3.2.1 LOG (or L) - The LOG command is used to make hard copy records

of user comments on the teleprinter. When the LOG command is encountered,

the Monitor ignores all typing up to and including the next ALT MODE.

Example:
$LOG THIS IS AN EXAMPLE. (ALT MODE)

4-10

4.3.2.2 SCOM (or S) - The SCOM command causes typeout of system con

figuration information, including available device handlers, the. skip

chain order, and manual restart and dump procedures.

Example:

KM15 VSA

$SCOM

SYSTEM INFO - V5A - 7/1/70

17646 - BOOTSTRAP RESTART ADDR
11636 - 1ST FREE CELL BELOW BOOTSTRAP
1145 - 1ST FREE CELL ABOVE RESIDENT MONITOR
141 - ADDR OF .DAT
565 - tQADDRESS FOR MANUAL DUMP
101 - START BLOCK FOR tQ DUMP AREA
255 - KM15 START WITH RESTART ADDRESS IN CELL 0
SYSTEM HAS EAE
7 CHANNEL MAGTAPE ASSUMED BY HANDLERS
1/0 HANDLERS AVAILABLE:
TTA TELETYPE: 1/0, ASCII MODES, ALL FUNCTIONS
PRA TAPE READER: INPUT, ALL MODES, ALL FUNCTIONS
PRB TAPE READER: INPUT, lOPS ASCII MODE, ALL FUNCTIONS
PPA PUNCH: OUTPUT, ALL MODES, ALL FUNCTIONS
PPB PUNCH: OUTPUT, ALL MODES LESS lOPS ASCII, ALL FUNCTIONS
PPC PUNCH: OUTPUT, lOPS BINARY MODE, ALL FUNCTIONS
OTA DECTAPE: 3 FILES, 1/0, ALL MODES, ALL FUNCTIONS
DTB DECTAPE: 2 FILES, 110, lOPS MODES, LIM FUNCTIONS
DTC DECTAPE: 1 FILE, INPUT, lOPS MODES, LIMITED FUNCTIONS
DTD DECTAPE: 1 FILE, 110, ALL MODES, ALL FUNCTIONS
DTE DECTAPE: 1 FILE, 110, ALL MODES, ALL FUNCTIONS EXCEPT .MTAPE
DTF DECTAPE: NON-FILE ORIENTED FOR F4 .OTS
DKA DECDISK: 3 FILES, 1/0, ALL MODES, ALL FUNCTIONS
DKB DECDISK: 2 FILES, 1/0, lOPS MODES, LIM FUNCTIONS
DKC DECDISK: 1 FILE, INPUT, lOPS MODES, LIM FUNCTIONS
DKD DECDISK: I FILE, 1/0, ALL MODES, ALL FUNCTIONS
DKE DECDISK: I FILE, 1/0, ALL MODES, ALL FUNCTIONS EXCEPT .MTAPE
DKF DECDISK: NON-FILE ORIENTED FOR F4 .OTS
MTA MAGTAPE: 3 FILES, 110, ALL MODES, ALL FUNCTIONS
MTC MAGTAPE: 1 FILE, INPUT, lOPS MODES, ALL FUNCTIONS
MTF MAGTAPE: NON-FILE ORIENTED FOR F4 .OTS
LPA LINE PRINTER: OUTPUT, lOPS ASCII MODE, ALL FUNCTIONS
COB CARD READER: INPUT, lOPS ASCII MODE, ALL FUNCTIONS
VPA VP DISPLAY: OUTPUT, ASCII AND DUMP MODES, ALL FUNCTIONS
SKIP CHAIN ORDER

SPF'AL
OTDF
DSSF
MTSF'
SDDF
RCSF
RCSD
LSDF
CLSF'
RSF
PSF
KSF
TSF
DTEF
MPSNE
MPSK
SPE

4-11

4.3.2.3 API ON/OFF - This command controls the status of the Automatic

Priority Interrupt if available in the system. API ON enables the API;

API OFF disables the API.

Example:

$API OFF

4.3.2.4 QDUMP (or tQ)l - In the event of an unrecoverable error, this

command conditions the Monitor to dump memory on the "save, or CTRL Q,

area" of one of the units of the system device.

QDUMP forces automatic execution of the CTRL Q command (described in

Paragraph 4.3.3) on all non-recoverable error calls to the Monitor Error

Diagnostic (MED) program. It must be issued prior to the LOAD, GLOAD,

DDT, or DDTNS command used to load the user program. (QDUMP issued

prior to a GET has no effect after the GET, since the Monitor at CTRL Q

time overlays the Monitor primed by QDUMP.) Note that the WRITE ENABLE

switches on the system device should be enabled in case of error;

otherwise, an lOPS 4 (not ready) error will follow the initial error.

4.3.2.5 HALT (or H) 1 - This command conditions the Monitor to print

an error message and halt, in the event of an unrecoverable lOPS error.

Depressing the CONTINUE button reloads the Monitor. HALT must be issued

prior to the LOAD, GLOAD, DDT, or DDTNS command. (HALT issued prior to

a GET has no effect after the GET, since the Monitor at CTRL Q time over

lays the Monitor primed by the HALT command.)

4.3.2.6 INSTRUCT (or I) - The INSTRUCT command can be used in two ways:

INSTRUCT alone causes a summary of Monitor commands to be printed on

the teleprinter; INSTRUCT ERRORS causes a summary of system error

messages to be printed.

Example:

$I

KM15 COMMANDS:
LOG(L): USER COMMENTS TERMINAT~D BY ALTMODE
SCOMeS): SYSTEM INFO
INSTRUCTe!): LIST OF MONITOR COMMANDS
INSTRUCTeI) ERRORS: DESCRIPTION OF ERROR CODES
REQUESTeR), REQUESTeR) PRGNAM: .DAT SLOT USAGE
REQUESTeR) USER: POSITIVE .DAT SLOT USAGE
ASSIGNeA) DEVN A,B, ••• /ETC.: .DAT SLOT MODS
DIRECTeD), DIRECTeD) M: DIRECTORY OF UNIT 0 OR M OF SYSTEM DEVICE
NEWDIReN) M: CLEAR DIRECTORY OF UNIT M OF SYSTEM DEVICE
QDUMP(Q): SET TO SAVE CORE (tQ) ON .IOPS ERROR

IThe QDUMP and HAL~ commands are mutually exclusive and have no effect
if a DDT load.

4-12

INSTRUCT (continued)

HALTCffi: SET TO HALT ON .!OPS ERROR
tQN: SAVE CORE ON UNIT N
GETCG} N: RESTORE CORE FROM UNIT N AND RESTART
GET(G) N X: RESTORE CORE fROM UNIT N AND START AT X
GET(G) N HALTCH):RESTORE CORE fROM UNIT N AND HALT
API ON/OFF: CHANGE STATE OF API
CHANNEL 7/9: SETUP DEFAULT ASSUMPTION FOR MAGTAPE
te: RESTORE KM15
tP: USER RESTART

KM15 PROG LOADING COMMANDS AND PROGNAM FOR REQUEST COMMAND
LOAD: LINK LOAD AND WAIT FOR tS
GLOAD: LINK lOAD AND GO
DDT: LINK LOAD WITH SYMBOLS AND GO TO DDT
DOTNS: LINK LOAD W/O SYMBOLS AND GO TO DDT
MACRO: SYMBOLIC MACRO ASSEMBLER
MACROI: 8K DECTAPE I/O MACRO ASSEMBLER
F4: FORTRAN IV COMPILER
F4I: 8K DECTAPE I/O FORTRAN IV COMPILER
EDIT: TEXT EDITOR
PIP: PERIPHERAL INTERCHANGE PROG
SGEN: SYSTEM GENERATOR
DUMP: BULK STOR DEV DUMP
UPDATE: LIBR FILE UPDATE
SRCCOM: SOURCE COMPARE
EDITVP: SCOPE EDITOR
PATCH: SYSTEM TAPE PATCH ROUTINE
EXECUTE(E) FILE: LOAD AND RUN FILE XCT
CHAIN: XCT CHAIN BUILDER

KM15: BATCH
BATCH(B) DV: ENTER BATCH MODE WITH DV AS BATCH DEV

DV: PR = PAPER TAPE READER
CD = CARD READER

$JOB: CONTROL COMMAND WHICH SEPARATES JOBS
$DATA: BEGINNING OF DATA
$END: END OF DATA
$EXIT: LEAVE BATCH MODE
tTl SKIP TO NEXT JOB
tC: LEAVE BATCH MODE

4.3.2.7 REQUEST (or R) - The REQUEST command allows examination of the

.DAT slots associated with various programs 1
• The command takes the

following form:

REQUEST xxx xxx

where XXXXXX is the system program name (that is, the system program

load command), or USER for all positive .DAT slots, or blank for an

entire .DAT table printout.

ISee Paragraph 5.3 for .DAT slots used by system programs, their uses,
and acceptable I/O handlers.

4-13

Examples:

$REQUEST

.DAT DEVICE USE

-15 DTA2 OUTPUT
-14 DTAI INPUT
-13 PPC0 OUTPUT FOR MACRO, F4
-12 TTA0 LISTING
-11 PRB0 INPUT FOR MACRO, F4
-10 TTA0 INPUT
-7 DTC0 SYS DEV FOR .SYSLD
-6 DTB2 OUTPUT FOR CHAIN
-5 NONE USER LIBR FOR .LOAD
-4 DTC2 SYS INPUT
-3 TTA0 TTY OUT
-2 TTA0 TTY IN
-1 OTC0 SYS OEV FOR .LOAD

1 DTA~ USER
2 DTAI USER
3 DTA2 USER
4 TTA0 USER
5 PRAi2I USER
6 ??A0 USER
7 DTAI USER
10 DTA2 USER

$REQUEST MACRO

.DAT DEVICE USE

-14 DTAI INPUT
-13 PPC0 OUTPUT
-12 TTA0 LISTING
-11 PRB0 INPUT
-10 TTA0 SECOr~DARY I N?UT
-3 TTA0 CONTROL AND ERROR MES
-2 TTA0 COMMAND STRING

4.3.2.8 ASSIGN (or A) - The ASSIGN command allows temporary reassign

ment of .DAT slots to devices other than those set at system generation

(SGEN program). The change of assignment is only effective for the

current job, since the permanent assignments are restored when control

is returned to the Monitor. The command takes the following form:

ASSIGN DEVn a, b , etc./DEV. x, y, etc.

where DEV is the device handler name (the list of legal handlers for

a particular system may be requested via the SCaM command 1). If the

ISee Paragraph 5.3 for .DAT slots used by system programs, their uses,
and acceptable I/O handlers. Many of the devices, DECtape for example,
have more than one I/O handler associated with them. It is imperative
that only one version of a device handler be present during a particular
run since confusion occurs because of the lack of communication between
the two interrupt handlers.

4-14

third letter of a handler name is omitted, the letter A is assumed.

n, m are unit numbers (if non specified, 0 is assumed)

a, h, X, y, etc., are .DAT slot numbers

Examples:

$ASSIGN DTAO -10, -6/PRA -5

(An equivalent command would be $ASSIGN DT -10, -6/PR -5)

$ASSIGN PPB -6/DTB2 3/DTB3 5

$ASSIGN DTAI 6, 7, 10

DEVn can be replaced by NON to clear .DAT slots.

$ASSIGN NON 4, 5, 10

.DAT slots -2 and -3 are permanent and can not be modified .

. DAT slot -7 is automatically modified only at system
generation time to the smallest system device handler.

4.3.2.9 DIRECT (or D) - The DIRECT command allows printout of the

directory associated with any unit of the system device (that is,

o through 7, on DECtape or DECdisk).

The command takes the following form:

DIRECT N

where N is the unit number (unit 0 is the default assumption) .

Example:

KM15 V5A

$DIRECT

DIRECTORY LISTING
.LOAD BIN 36
DDT BIN 37
EXECUT BI N 40
I N TE AE BIN 4 1
INTNON BIN 47
RELE AE BIN 54
RELNON BIN 104
.LIAR BIN 105
FOCAL Bl N 122
8TRAN BIN 244

4-15

FNEW SRC 300
TIME BIN 333
TIMEl~ BIN 340
FOCAL XCT 345
FOCAL XCU 352
KM 15 SYS eJ
SKPBLK SYS 42
IOBLK SYS 46
S aN BL K SY S 52
SYSHAN SYS 56
SYSBLK SYS 61
.SYSLD SYS 62
BITMAP SYS 71
DIRECT SYS 10~
F4I SYS 141
MACROI SYS 201
EDIT SYS 627
EDITVP SYS 641
PIP SYS 656
MACRO SYS 676
CHAIN SYS 734
F4 SYS 754
DUMP SYS 1007
DTCO?Y SYS 1013
PATCH SYS 1016
UPDATE SYS 1025
SRCCOM SYS 1035
SGEN SYS 1047
114 FREE BLOCKS

4.3.2.10 NEWDIR (or N)n - This command refreshes the directory on the

specified unit (n) of the system device control (unit 0 illegal).

4.3.2.11 GET (or G) - This command has three forms as follows: GET n,

GET n xxxxx, or GET n HALT. The letter n is the number (0 through 7)

of a unit of the system device which contains the CTRL Q area to be

retrieved, and XXXXX is a program starting address.

GET retrieves the core image (including the Monitor) stored on unit n

of the system device by CTRL Q commands and restores it to memory.

Control is transferred to address xxxxx, if specified. If HALT was

specified, the computer halts to permit the starting address to be

placed in the ADDRESS switches. Execution is initiated by pressing

the START button (PIC and API are enabled). If neither xxxxx nor

HALT is specified, the core image is restored in memory and the

Resident Monitor waits in a teleprinter loop with API and/or PIon for

one of the following commands to be typed:

4-16

CTRL P

or CTRL T

or CTRL S

(restart any system program and user programs
which have issued an .INIT to the teleprinter
with a restart address.)

(restarts DDT)

(starts a relocatable user program - used only
if CTRL Q had been executed at the completion
of a link load when the loader was waiting for
CTRL S to be typed.)

4.3.2.12 CHANNEL (or C) 7/9 - This command causes the default operation

bit (.SCOM + 4, bit 6) to be cleared or set. If this bit is 0, then

7 channel operation is assumed by the MAGtape handler. If it is 1, then

9 channel is assumed. This default condition can also be set at system

generation time by answering yes or no to the question

"7 CHANNEL MAGTAPE?"

4.3.3 Control Character Commands

All of the ADVANCED Monitor control character commands (except

RUBOUT) are formed by holding down the CTRL key while striking

the appropriate letter key. The commands, the character{s) echoed

on the teleprinter, and the resulting actions are summarized in

Table 4-1.

4.4 OPERATING THE ADVANCED MONITOR SYSTEM

Detailed operating procedures for utilizing the system programs in the

ADVANCED Monitor environment are given in the PDP-15/20 Users Guide

(DEC-15-MG2B-D). The following paragraphs present general descriptions

of the operations involved in loading the ADVANCED Monitor, system

generating, assigning devices, loading programs, and error detecting

and handling.

The ADVANCED Software System is supplied to all users in the form of

a DECtape reel. Special DECtape-to-Disk and Magnetic Tape-to-Disk

utility routines are provided to users who purchase optional disk

storage units and use disk as the system device.

4.4.1 Loading the ADVANCED Monitor

Each installation employing the DECtape or DECdisk version of the

ADVANCED Monitor must reserve unit 0 as the system device. The

ADVANCED Monitor, the Input/Output Programming System, and all system

and library programs needed by the user will reside on this unit.

A System Bootstrap is supplied on paper tape in hardware READIN format.

By setting the starting load address of the bootstrap (17637 of the

highest memory bank available) on the console address switches,

4-17

Command Echo

CTRL S tS

CTRL C tc

CTRL T tT

CTRL R tR

CTRL P

CTRL Q n tQ

CTRL U

RUBOUT

Table 4-1

Control Character Commands

Action

Starts user program after Linking Loader has brought
it into core via a LOAD command.

Forces control back to Monitor, wbich types

KMl5 Vnn
$

to indicate that it is awaiting a keyboard command.
All conditions revert to the standard.

CTRL T is applicable only when using DDT or when
operating in the BATCH mode. If DDT is being used,
CTRL T forces control back to DDT which types

DDT
>

to indicate its readiness for another DDT command.
All previous DDT conditions remain intact (for
example, breakpoints, register modifications, etc.).
When operating in BATCH mode, CTRL T causes a skip
to the next job.

Allows the user to continue when an lOPS 4 (device
not ready) error occurs. The user must first ready
the device, and then type CTRL R.

Forces control to address specified in the last
.INIT command referencing teleprinter. Used
by system programs to reinitialize or restart.

Dumps the current job, in core image, onto
prespecified blocks of unit n on the system device
control (the WRITE ENABLE switch on this unit must
be enabled). For example, when the system device
is DECtape unit 0, CTRL Q requests can be made to
DECtape only. The core image may be retrieved and
reloaded by the GET command or examined by using
the DUMP command to load the system Dump program.
CTRL Q is honored whenever typed.

Cancels current line on teleprinter (input or
output) .

Cancels last character input from teleprinter (not
applicable with DDT).

4-18

depressing STOP and RESET, and then the READIN switch, the bootstrap is

loaded into upper core. It clears all flags, disables the Program

Interrupt (and the Automatic Priority Interrupt, if available), loads the

Monitor from the system device into lower core, and transfers control to

it. The Monitor types

KM15 Vnn
$

when it is ready to accept commands from the user.

The System Bootstrap may be restarted (without reloading the paper

tape) if it has not been destroyed, by setting the ADDRESS switches

to 17646 of the highest memory bank, depressing STOP and RESET, and

then START.

4.4.2 System Generation

The System Generator (SGEN) is a standard system program used to

create new system software configurations, either on DECtape or DECdisk.

Upon receiving a PDP-15/20 system, the user should immediately create

a standard system for his installation. This is done by loading the

System Bootstrap, which loads the Monitor into core from the DECtape

supplied with the system, and then calling the System Generator via

the teleprinter. SGEN will create a new system on the device

associated with .DAT slot -15. The ASSIGN command must be used prior

to calling SGEN to assign a bulk storage device to .DAT slot -15 and

the old system device to .DAT slot -15 as follows:

$ASSIGN DTAO -14DTA2 -IS (or DKD2 l -l5))
$SGEN)

Once loaded, SGEN communicates with the user in a conversational mode

via the teleprinter to obtain information needed to create a system

tape. Among the items of information it needs to know are:

a. The device on which the system tape will operate, so that:

1. The system device slots in the device assignment
table (.DAT) can be set.

2. The PIC skip chain and API channels can be set up
for the system device.

lIt is imperative that the "D" version disk handler be used when gen
erating from DECtape to Disk to avoid core overflow. Conversely,
generating from Disk to DECtape requires:

$ASSIGN DKAO -15/DTD2 -15)

4-19

b. All device skips present in the PIC skip chain and their
order. Non-basic devices can be added to the skip chain
at this time by supplying the device mnemonic and the
skip IOT(s).

c. Total core capacity (8, 12, 16, 20, 24, 28, or 32K)
of the installation.

d. Special options present at the installation (API, EAE, etc.)

e. The structure of .DAT. All system slots (-1 through -15)
and slots 1 through 10 should be assigned.

When .SGEN has received all of the information necessary, it creates

a new system tape, then returns control to the Monitor. New system tapes

can be created whenever a significant change in the installation con

figuration occurs. A good example of a complete system generation session

is given in the PDP-IS utility Programs Manual.

The following paragraphs are intended to assist Monitor users in their

initial efforts at "tailor-making" a system for their installation.

The first and foremost rule before system generation is attempted in

volves obtaining a .SCOM printout ($S) to the Monitor) and a .OAT

slot printout ($R) to the Moni tor) in order to assist in determining

two basic elements in the system: (1) skip chain content and order,

and (2) .DAT slot assignments.

4.4.2.1 DECtape or DECdisk Systems - All users having either

DECtape or DECdisk receive the ADVANCED Monitor system as an 8K, EAE,

non-API, KSR-3S DEctape system. Each user having a core configuration

greater than 8K, the API option, DECdisk, or a KSR-33 teleprinter,

should perform a system generation in order to tailor his software

system for maximum efficient use. Also users who, upon examining the

.SCOM printout, discover devices or options listed that are not present

in their system may wish to eliminate the irrelevant skips from the skip

chain. Those with non-standard devices (AID converter, for example)

must expand the skip chain. The standard 8K DECtape skip chain is as

follows:

SPFAL
DTDF
DSSF
MTSF
SDDF
RCSF
RCSD
LPSF
CLSF
RSF
PSF
KSF
TSF
DTEF
MPSNE
MPSK
SPE

Power Fail
DECtape Done
DECdisk Done
Magnetic Tape Done or Error
VP15A Display Done
Card Column Ready
Card Done
Line Printer Done or Error
Clock Done
Reader Done
Punch Done
Keyboard Done
Teleprinter Done
DEctape Error
Non-Existent Memory Reference
Memory Protect Violation
Memory Parity Error

4-20

It is important that the above order remain intact even if deletions

or additions are to be made. For example, given a system without the

Power Fail, Parity VP-15A Displays, or Memory Protect options, and

without card reader, line printer, or magnetic tape, the skip chain

should be generated as follows:

DTDF
DSSF
CLSF
RSF
PSF
KSF
TSF
DTEF

The position of a skip to be added to the chain varies with the nature

of the device. For example, high data rate devices might best be placed

at the top of the chain.

Listed below are the .DAT slot assignments as they appear in the standard

8K DECtape system:

.DAT DEVICE

-15 DTA2
-14 DTAI
-13 PPCO
-12 TTAO
-11 PRBO
-10 TTAO
-7 DTCO
-6 DTB2
-5 NONE
-4 DTC2
-3 TTAO
-2 TTAO
-1 DTCQ

1 DTAO
2 DTAI
3 DTA2
4 TTAO
5 PRAO
6 PPAO
7 DTAI

10 DTA2

USE

OUTPUT
INPUT
OUTPUT
LISTING
INPUT
INPUT
SYSTEM DEVICE FOR .SYSLD
O.UTPUT
EXTERNAL LIBRARY FOR .LOAD
SYSTEM INPUT
TELEPRINTER OUTPUT
KEYBOARD INPUT
SYSTEM DEVICE FOR .LOAD
USER
USER
USER
USER
USER
USER
USER
USER

The following examples are variations on .DAT slot assignments l as a

function of either core size or different peripherals.

a. Given an 8K system with line printer and card reader:
LPA should be assigned to .DAT slot-2 and one of the
positive slots, for example, 3, 7, or 10. CDB should
be assigned to one of the positive slots.

lAll installations with 16K or more core should assign the "A" versions
of handlers to all .DAT slots.

4-21

b. Given a 16K (or greater) Oisk/DECtape system, a suggested list

of assignments might be as follows:

-15 DKA2 -3 TTA
-14 DKAI -2 TTA
-13 DKA3 -1 DKAO
-12 TTA 1 DKAI
-11 DKAI 2 DKA2
-10 PRA 3 DKA3
-7 DKCO 4 TTA
-6 DKA3 5 PRA
-5 NONE 6 PPA
-4 DKA3 7 DTAI

10 DTA2

c. Given a 16K (or greater) DECtape system with magnetic tape, a

suggested list of assignments might be as follows:

-15 DTA2 -3 TTA
-14 DTAI -2 TTA
-13 DTA2 -1 DTAO
-12 TTA 1 DTAO
-11 DTAI 2 DTAI
-10 PRA 3 DTA2
-7 DTCO 3 TTA
-6 DTA2 5 PRA
-5 NONE 6 PPA
-4 DTA2 7 MTFI

10 MTF2

4.4.3 Assigning Devices

Before calling a system or user program, the user should make all device

assignments necessary to the program(s) to be run.

The ASSIGN command (see Paragraph 4.3.2.8) is used to attach hardware

devices to the slots of the device assignment table. Table 4-2 shows

the normal setup of .DAT. Only system slots -2, -3, and -7 cannot be

modified by the ASSIGN command, since these must be used by the Monitor.

System programs use the negative .DAT slots, while user programs should

use the positive .DAT slots. PIP, FOCAL and EDITVP are exceptions to

this rule in that they use both the positive and negative .OAT slots.

4.4.4 Loading Programs in the ADVANCED Monitor Environment

In the ADVANCED Monitor environment, most system programs are called

by unique keyboard commands (see paragraph 4.3.1). User programs and

some system programs (e.g., FOCAL and 8TRAN) are called by loading the

Linking Loader or DDT (via LOAD, GLOAD, DDTNS, or DDT commands) and

requesting it to load the desired program. In loading user programs,

the main program is loaded first, followed by all required subprograms.

4-22

Table 4-2

Function of .DAT Slots in the ADVANCED Monitor System

.DAT
Slot Device Handler

-15

-14

-13

-12

-11

-10

-7

-6

-5

-4

-3

-2

-1

I

2

3

4

5

6

7

10

12K or
BK greater

DTA2

DTAI

PPC l

TTA

PRBO l

PRA

DTCO

DTB2

NONE

DTC2 2

TTA

TTA

DTC0 2

DTAO

DTAI

DTA2 3

DTA2

DTAI

DTA2

TTA

DTAl

PRA

DTCO

DTA2

NONE

DTA2

TTA

TTA

DTAO

DTAO

DTAI

DTA2 3

PPA PPA

DTA1 3 DTA1 3

DTA2 3,4'DTA2 3,4

Output

Input

Scratch

Input

Secondary
Input

Input/Output

Output

Output

Listing Output

Input

Secondary
Input

Input

Output

External
Library

Input

Output

Input

Input (System
Library)

Input/Output

Input/Output

Input/Output

Input

Input/Output

Input

Output

Output

Input/Output

Input

Input/Output

Output

Use

-UPDATE, SGE~, DTCOP

-BTRAN, SRCCOM (old file)

-EDIT, EDITVP

-EDIT, EDITVP, UPDATE, SGEN, DTCOP,
SRCCOM (new file), DUMP

-MACRO (macro definitions file)

-PATCH

-8TRAN

-MACRO, FORTRAN IV

-MACRO, FORTRAN IV, UPDATE, DUMP,
SRCCOM

-MACRO, FORTRAN IV

-EDITOR, EDITVP, UPDATE, PATCH,
MACRO (parameter file)

-System device for the System Loader

-CHAIN (XCT overlay system)

-Linking Loader, CHAIN, DDT (these
programs expect the name .LIBRS BIN
if a device is assigned)

-Linking Loader, DDT, CHAIN, EXECUTE

-All system programs

-All system programs

-FORTRAN IV, Linking Loader, CHAIN,
DDT

-PIP, User

-PIP, User

-PIP, User

-FOCAL library

-User

-PIP, User

-FOCAL library

-PIP, User

-PIP, User

-FOCAL (data files)

-PIP, User

-EDITVP (display), FOCAL (data files)

lUse MACROI or F41 for 8K DECtape I/O

2DTC is sufficient for the Linking Loader; however, since the Linking
Loader shares the handler with the program it loads, this handler should
be chosen as a function of the requirements of the program to be loaded.
The same version of the handler should be used for DECtape assignments
when a handler is required for more than one .DAT slot.

3Reassign these .DAT slots to appropriate devices when using FOCAL. Use
DTE if DECtape I/O is desired in 8K.

4Reassign this .DAT slot to VPA if EDITVP is to be used.

4-23

BK or 16K or
24K or 32K

o

MEMORY MAP A

RESIDENT
SYSTEM

BOOTSTRAP

.SCOM

The System Bootstrap is loaded via
the paper tape reader in HRM mode.

Figure 4-1

8K or 16K or
24K or 32K

MEMORY MAP B

RESIDENT
SYSTEM

BOOTSTRAP

.sCOM AND .SCOM+3

NON- RESIDENT
MONITOR

INITIALIZATION AND
KEYBOARD COMMAND

DECODER

.SCOM + I AND .SCOM + 2

RESIDENT
MONITOR

(INCLUDING
TELETYPE

996 10
HANDLER)

o

The System Bootstrap loads the
ADVANCED Monitor (resident and
nonresident) from the system device.

ADVANCED Monitor System Memory Maps

10- 0352

By loading subprograms in the order of size (largest first, smallest

last), the user has a better chance of satisfying cor~ requirements for

his programs in systems with extended core memory. See Figure 4-1 for

memory maps of programs loaded in the ADVANCED Monitor System.

When a keyboard command requests a new system program, the ADVANCED

Monitor loads the System Loader and the system device handler into core.

The System Loader is basically the Linking Loader in absolute form and

always requires the same device handler to acquire input from the system

device. The Linking Loader, on the other hand, is relocatable and

device independent.

4-24

SK or 16K or
24K or 32K

o

MEMORY MAP C

RESIDENT
SYSTEM

BOOTSTRAP

SYSTEM
LOADER

~-------
SVSTE M
DEVICE

HANDLER

1

t
RESIDENT
MONITOR
(INCLUDI NG
TELETYPE
HANDLE R)

.sCOM

.SCOM+3

.SCOM+l S .sCOM+2

99610

The Monitor loads the System Loader and the system
device handler from the system device via the Bootstrap.

The System Loader, during loading of a system program
from the system device, builds the loader (GLOBAL)
symbol table down from .SCOM+3 and the programs up
from .SCOM+2.

The System Loader learns which I/O handlers are required
by the requested system program from its table of .I0DEV
info for system programs, loads the handlers relocatably
just above the resident Monitor*, and then modifies the
System Bootstrap to bring in the system program in just
below the Bootstrap.

-SK or 16K or
24K or 32K

o

MEMORY MAP D (SYSTEM PROGRAM IS NOT LINKING LOADER)

RESIDENT
SYSTEM

BOOTSTRAP

SYSTEM
PROGRAM

SYSTEM
PROGRAM

TABLE SPACE
ie: MACRO-9

AND FORTRAN IV
SYMBOL TABLES

SYSTEM PROGRAM
DEVICE HANDLER

SYSTEM PROGRAM
DEVICE HANDLER

RESIDENT
MONITOR

(INCLUDING
TELETYPE
HANDLER)

.sCOM

.SCOM+3

.SCOM+2

.SCOM+l

99610

10·0351

.EXIT from the system program takes the process
back to Memory Map B where the system bootstrap
reinitializes the ADVANCED Monitor.

Refer to Section 5.4 for the sizes of the device
handlers that may be associated with the .DAT slots
used by the system program.

*For 12K, 20K, or 28K systems, handlers are loaded
up into the extra 4K, then up from .SCOM+2 if neces
sary .. SCOM +20 is set to the first address above the
I/O handlers in the extra 4K with the sign bit = I.

Figure 4-1 ADVANCED Monitor System Memory Maps (Cont.)

4-25

MEMORY MAP E (SYSTEM PROGRAM IS LINKING LOADER)
LOAD
GLOAD

8K or 16K or DOT
24K or 32K OOTNS

o

RESIDENT
SYSTEM

BOOTSTRAP

i
LINKING LOADER

LINKING LOADER

.SCOM & .SCOM+3

.SCOM+Z

DEVICE {
HANDLER REFER TO SECTION

t---------1 5.4 FOR DEVICE
LINKING LOADER HANDLER SIZES.

DEVICE
HANDLER

RESIDENT
MONITOR

(INCLUDING
TELETYPE
HANDLER)

.sCOM+l

10-0350

The System Loader learns which I/O handlers are required by the
Linking Loader, loads them relocatably, and then loads the Linking
Loader relocatably.

If a DDT load, the Linking Loader just prior to giving control to
DDT moves the DDT symbol table down in core so that it overlays
all of the Linking Loader except for the small routine that makes
the block transfer.

The Linking Loader, during loading of user programs down from
.sCOM+3*, builds the loader (GLOBAL) and DDT (if DDT) symbol
tables up from .SCOM+2. DDT symbol table will not be built if a
LOAD, GLOAD, or DDTNS load.

MEMORY MAP F (NOT DDT OR DDTNS)

*SK or 16K or
24K or 32K

o

RESIDENT
SYSTEM

BOOTSTRAP

USER
PROGRAM{S)

USER DEVICE
HANDLER

USER DEVICE
HANDLER

USER DEVICE
HANDLER

LINKING LOADER
DEVICE HANDLER

LINKING LOADER
DEVICE HANDLER

RESIDENT
MONITOR

(INCWDING
TELETYPE
HANDLER)

.SCOM

.seOM +3

(b.l

(Q.)

09-0220

.EXIT from user program takes the process back to Memory Map B
where the system bootstrap reinitializes the ADVANCED Monitor.

Refer to Section 5.4 for sizes of device handlers.

.SCOM+ 1 and .SCOM+2 both point to one of two places and non
BLOCK DATA COMMON (FORTRAN IV or MACRO) output make
use of core as low as they point.

a. If the user program did not have any device handlers in
common with the Linking Loader.

b. If the user program did have at least one device handler in
. common with the Linking Loader .

*In 12K, 20K, or 28K systems DDT, user programs and user I/O handlers are first loaded down from the top of the extra 4K .. SCOM+2 and .SCOM+3
bracket free core .. SCOM+20 points to the first free cell below the routines in the extra 4K with SCOM+20. bit 0 = 1.

Figure 4-1 ADVANCED Monitor System Memory Maps (Cont.)

4-26

*8K or 16K or
24K or 32K

o

MEMORY MAP G (DDT OR DDTNS)

RESIDENT
SYSTEM

BOOTSTRAP

DDT

USER
PROGRAM(S)

USER/DDT
DEVICE HANDLER

USER/DDT
DEVICE HANDLER

i DDT CREATED
SYMBOLS AND
PATCH SPACE

DDT(USER)
SYMBOL
TABLE

1fU1//////////J
LINKING LOADER
DEVICE HANDLER

LINKING LOADER
DEVICE HANDLER

RESIDENT
MONITOR
(INCLUDING
TELETYPE
HANDLER)

.sCOM

.sCOM+ 3

"SCaM + 2

.SCOM +1

L LINKING LOADER
BLOCK TRANSFER
ROUTINE

996 10

• EXI T fromthe user program takes the process back to Memory
Map B where the system bootstrap reinitializes the Monitor.

Refer to Section 5.4 for sizes of device hand I ers.

Non-BLOCK DATA COMMON (FORTRAN IV or MACRO
output) may make use of core as low as the DDT symbol table.
(There is no DDT symbol table if a DDTNS load.) However,
trouble will occur if the user requests DDT to create symbols
or make patches that cause overlaying of the COMMON area.

The Linking Loader device handlers would have been used to
satisfy user device requests.

If non e 0 f th ese hand I ers is used by user progra m, the se
hand lers are overlaid also by the DDT symbol table.

*In 12K, 20K, or 28K systems DDT, user programs and user
I/O handlers are first loaded down from the top of the extra
4K, then down from .SCOM+3 if necessary. When the load
ing process is complete, • SCOM+2 and • SCO M+3 bracket
free core. .SCOM+20 points to the first free cell below the
routines in the extra 4K with. SCOM+20, bit 0=1

*8Korl6Kor
24K or 32K

o

MEMORY MAP H (EXECUTE)

RESIDENT
SYSTEM

BOOTSTRAP

OVERL",Y
SYSTEM

BLANK
COMMON

FREE CORE

OVERLAY
SYSTEM
DEVICE
HANDLERS

EXECUTE

EXCUTE'S
DEVICE
HANDLER

RESIDENT

MONITOR
(INCLUDING

TELETYPE

HANDLER)

.sCOM

.sCaM +3

oSCOM+2

The System Loader (.SYSLD) opens the XCT file to
determine the handlers required by the Overlay
System. I t then loads the hand ler required for
EXEOJTE and then EX ECUT E itself, followed by
the Overlay System's device handlers. Control
is then passed to EXECUT E which loads the Link
Table, the Resident Code, and the main program,
to which control then passes. .EXIT from the
Overlay System initiates a return to the Monitor
via Memory Map B"

**If an extra 4K of core is to be used by the
Overlay System (e"g., 12K, 20K, etc.),
EXEOJTE will attempt to load as much of the
Overlay System as possib Ie from the top of the
extra 4K down and the remainder from. SCaM
down.

Figure 4-1 ADVANCED Monitor System Memory Maps (Cant.)

4-27

The System Loader is used to bring in most system programs, including

the Linking Loader, and their associated device handlers. Once loaded,

the Linking Loader is used to bring in user programs, their subroutines,

and device handlers.

The System Loader can print the same error messages as the Linking

Loader (see Appendix D), except that it precedes the error code with

the symbol .SYSLD. It returns control to the System Bootstrap to

re-initialize the ADVANCED Monitor if an error occurs.

Once a system program is loaded by the System Loader, the loaded

program assumes control. At this stage, it is ready to accept an input

command string from the keyboard telling it how to proceed. Detailed

operating procedures for each system program are given in the PDP-15/20

Users Guide.

4.4.5 Error Detection and Handling

Comprehensive error checking is provided by the ADVANCED Monitor, the

loaders, and the Input/Output programming System. Detailed lists of

errors that may occur are given in Appendices C, D, and E, respectively.

After error messages are output, the user may optionally restart the

system (CTRL P) or user program, dump core (CTRL Q), or return control

to the System Bootstrap for re-initialization of the Monitor (see

Section 4.3.2.11). If QDUMP has been issued prior to execution of

this program, an automatic CTRL Q (dump the current job, in core image,

onto prespecified blocks of the system device) takes place before con

trol is returned to the System Bootstrap. The number of the unit to be

used as the dump device must be typed by the user after the error

typeout. This dumped file can be selectively listed by the system

Dump program. If HALT has been typed prior to program execution, the

program stops after error message typeout, allowing manual memory cell

examination, manual restart, or core dump.

4.5 BATCH PROCESSING

The Batch Processor portion of the Monitor allows user commands to

come from the paper tape reader or card reader instead of the Teletype,

allowing many programs to be run without operator intervention. All

Monitor commands read on the batch device are echoed on the teleprinter.

Monitor commands that are peculiar to the Batch Processor include the

following:

4-28

BATCH (B) dv Enter Batch mode with dv as batch device;
dv can be typed as

$JOB

$ DATA

$END

$EXIT

PR for paper tape reader, or

CD, for card reader

NOTE

When using the card reader, the following
special characters are punched as shown:

Back Arrow (+) = 0-5-8 (029) or 8-2 (026)

ALT MODE = 12-1-8 (029 or 026)

Used to separate jobs (the loading of any
system or user program constitutes a
single job).

Beginning of data - all inputs up to $END
are not echoed on the teleprinter.

End of data.

Leave Batch mode.

NOTE

The following commands are illegal when
operating in Batch mode: QDUMP, HALT,
GET (all forms), BATCH, LOAD, DDT, and
DDTNS.

Special Batch Processor control characters include the following:

CTRL T (echoes tT)

CTRL C (echoes tC)

Skip to next job.

Leave Batch mode.

To use the Batch Processor, proceed as follows:

a. Load the batch tape or deck into the batch device.

b. Type BATCH (or B) dv on the keyboard, where dv is PR or CD.

When operating in Batch mode, the ADVANCED Monitor has the following

operational changes:

a.

b.

c.

Any ASSIGN command that references the batch device (any
handler) will be assigned to the batch device handler.

Any REQUEST command will print the batch device handler
PR* or CD* (whichever applies).

When the non-resident Monitor is reloaded, it interprets
batch communication bits in the top register of core
(177777, 377777, 577777, or 777777) :

4-29

Bit 0 1 Batch mode
0 Non-batch mode

Bit 1 1 $JOB corrunand in
0 Search for $JOB

Bit 2 1 CD is batch device
0 PR is batch device

When an error occurs in a job, the non-resident Monitor is reloaded and

the Batch Processor skips to the next $JOB corrunand on the batch device.

The following example was produced under control of the Batch

processor. Underlined commands are on paper tape. ALT MODE termina

tion is indicated wi th an 0.

KM 15 \fj A

$X4 K ON

$8ATCH PH

1{[115 \l5A

$$JOB TEST BATCH

$f.lP

PI P V13A

> N DT1

>T DTI TEST SRC ~ pn
$DATA
$END

>$JOB

KM 15 V5A

$,R F4

.DAT DEVICE USE

-13 PPC0 OU TPUT
-12 TTA0 LISTING
- 11 PR*0 INPUT
-3 TTA0 CONTROL
-2 PR*0 COM!1Ar~D

$ AS SIGN DT 1 -II/Dr 2 -13

F' 4 VI 0 A
>S,L,B~TEST 0

AND

This command causes all subsequent
commands to corne from the paper
tape reader.

The entire program to be compiled
below appears on the paper tape
between $DATA and $END.

ERROR MF.S
STRING

4-30

END PASSI

c
c
C

1
100

TEST OF BATCH PROCESSOR

DO 1 1= 1, 10
WRITE (4,100) I
FORMAT (6X, I3)
STOP 12345
END

• 1
I

* .FW
.1~0

* . FE
* .F'r
* .ST
* .F'P

KM15 V5A

$$JOB

$ GLOAD

00012
00043
00036
00021
00037
00040
00041
00042

LOADf.R V9A
> e.-TEST @
P T1<:ST 21134
P BCDID 24516
P STOP 24663
P SPMSG 24570
P F'IOPS 2412130
P OTSER 23134
P RELEAE 22672
P .CB 22652

1
2
3
4
5
6
7
8
9

10

STOP 012345

KM 15 V5A

$~

$$EXIT -
KM15 V5A

$

FORTRAN program to list numbers
from 1 through 10.

Program execution begins here.

control is returned to Teletype at
this point

4-31

4.6 DECTAPE FILE ORGANIZATION

DECtape can be treated either as a non-file-oriented medium or as a

file-oriented medium, as described in the following paragraphs.

4.6.1 Non-File-Oriented DECtape

A DECtape is said to be non-file-oriented when it is treated as magnetic

tape by issuing the MTAPE commands: REWIND, BACKSPACE, followed by

.READ or .WRITE. No directory of identifying information of any kind

is recorded on the tape. A block of data (255 10 word maximum), exactly

as presented by the user program, is transferred into the handler buffer

and recorded at each .WRITE command. A .CLOSE terminates recording with

a simulated end-of-file consisting of two words: 001005, 776773. Note

that the simulated end-of-file is identical whether executing a .CLOSE

in a file-oriented or a non-file-oriented environment.

Because braking on DECtape allows for tape roll, staggered recording of

blocks is employed in the ADVANCED Software System to avoid constant

turnaround or time-consuming back and forth motion of sequential block

recording. When recorded as a non-file-oriented DECtape, block 0 is the

first block recorded in the forward direction. Thereafter, every fifth

block is recorded until the end of the tape is reached, at which time

recording, also staggered, begins in the reverse direction. Five passes

over the tape are required to record 576 10 blocks (0-1077 S)'

4.6.2 File-Oriented DECtape

Just as a REWIND command declares a DECtape to be non-file-oriented, a

.SEEK or .ENTER implies that a DECtape is to be considered file-oriented.

The term file-oriented means simply that a directory containing file

information exists on the DECtape. A directory listing of any DECtape

so recorded is available via the (L)ist command in PIP or the (D)irect

command in the ADVANCED Monitor. A fresh directory may be recorded

via the (N)ewdir command in the ADVANCED Monitor or PIP or by the N or

S switch in PIP.

The directory of all DECtapes except system tapes occupies all 400 S
words of block lOOse It is divided into two sections: (1) a 40Sword

Directory Bit Map and (2) a 340 8 word Directory Entry Section.

The Directory Bit Map defines block availability. One bit is allocated

for each DECtape block (576
10

bits = 32
10

words). When set to 1, the

bit indicates that the DECtape block is occupied and may not be used

to record new information.

The Directory Entry Section provides for a maximum of 56 10 files on a

4-32

DECtape (2410 on a system tape). A four-word entry exists for each file

on DECtape, where each entry includes the 6-bit trimmed ASCII file name

(6 characters maximum), and file name extension (3 characters maximum) I

a pointer to the first DECtape block of the file, and a file active or

present bit.

On a system tape only the first 2008 words are used as a 24 file directory.

Words 0-37 8 constitute the System Tape Directory Bit Map and words

40-177 8 contain 24 file directory Entry Section. The second 2008 words

of DECtape block 100
8

contain basic system directory information (blocks

occupied by system programs), used by the Monitor, PIP, and SGEN.

o

~
37
40

377

Wd. 0

2

3

Block 0 Block 1077 ..-- Directory I Bit Map
~--------__________________ -L~

- - - -
_ Entry ~ _ _ _ __ ... ~ _____ Directory

Entry 55

10

A DIRECTORY ENTRY

o 5 6 11 12 17

File

Name

File Name Extension

1 I Data Link (First File Block)

Sign Bit: 1 = File Active

Entry
Section

Note: Nulls (0) fill in
short fi Ie names. A fi Ie
name extens i on is not
absolutely necessary.

Figure 4-2 DECtape Directory

Additional file information is stored in blocks 71 through 77 of every

file-oriented DECtape (blocks 71 through 73 of a system tape). These

are the File Bit Map Blocks. For each file in the directory, a 408

word File Bit Map is reserved in block 71 through 77 as a function of

file name position in the Directory Entry Section of block 100. Each

block is divided into eight File Bit Map Blocks. A File Bit Map

specifies the blocks occupied by that particular file and provides a

rapid, convenient method to perform DECtape storage retrieval for

deleted or replaced files. Note that a file is never deleted until the

new one of the same name is completely recorded on the .CLOSE of the

new file.

4-33

When a fresh directory is written on DECtape, Blocks 71 through 100 are

always indicated as occupied in the Directory Bit Map.

Staggered recording (at least every fifth block) is used on file

oriented DECtapes, where the first block to be recorded is determined

by examination of the Directory Bit Map for a free block. The first

block is always recorded in the forward direction; thereafter, free

blocks are chosen which are at least five beyond the last one recorded.

The last word of each data block recorded contains a data link or

pointer to the next block in the file. When turnaround is necessary,

recording proceeds in the same manner in the opposite direction. When

reading, turnaround is determined by examining the data link. If

reading has been in the forward direction, and the data link is

smaller than the last block read, turnaround is required. If reverse,

a block number greater than the last block read implies turnaround.

Block 71 Fi Ie Bit Map for Fi Ie 0

File 7

Block 72 File 8
10

File 15
10

Block 77 File 48
10

File 55
10

Figure 4-3 DECtape File Bit Map Blocks

A simulated end-of-file terminates every file and consists of a two

word header (1005, 776773) as the last line recorded. The data link

of this final block is 777777.

Section 2.3.1 of this manual discusses lOPS data modes. Data organiza

tion for each I/O medium is a function of these data modes. On file

oriented DECtape there are two forms in which data is recorded:

4-34

(1) packed lines - lOPS ASCII, lOPS binary, Image Alphanumeric, and

Image binary and (2) dump mode data - Dump Mode.

In lOPS or Image Modes, each line (including header) is packed into the

DECtape buffer. A 2's complement checksum is computed and stored for

each line of information. When a line is encountered which will

exceed the remaining buffer capacity, the buffer is output, after which

the new line is placed in the empty buffer. ~_ line_~~_~3ce~ 254 10
words, including header, because of the data ~ir;.~ .. ~Ed ~.Y~.I1>_,X:'Q~d_E_~9,.~_~,£~

ment of the header word pair count. An end-of-file is recorded on a

.CLOSE. It is packed in the same manner as any other line; that is, if

the buffer will not contain it, the line goes into the next available

free block.

In Dump Mode, the word count is always taken from the I/O macro. If

a word count is specified which is greater than 255 10 (note that space

for the data link must be allowed for again), the DECtape handler will

transfer 255
10

word increments into the DECtape buffer and from there

to DECtape. If some number of words less than 255 10 remain as the final

element of the Dump Mode .WRITE, they will be stored in the DECtape

buffer, which will then be filled on the next .WRITE, or with an EOF

if the next command is . CLOSE. DECtape storag.e use is thus optimized

in Dump Mode since data is stored back to back without headers.

4.7 RF15 DECDISK

4.7.1 General Description

The PDP-15/20 DECdisk System accommodates up to four RS15 DECdisk

Platters which communicate with the device handlers via the RF15 con

troller. Each platter is treated as two logical units, each of which

contains 512 10 blocks. Each block contains 256 10 words.

4.7.2 File Structure

The file structure of the RF15 DECdisk is the same as that used for

DEctape (see 4.6 above) with the following exceptions:

a. Each DECdisk unit is 64 10 blocks shorter than a DECtape.
Since the handlers are similar in structure to DECtape,
they will always indicate that blocks 512 10 through
576 10 are occupied; where, in fact, they do not exist.

b. Reading and writing is performed in one direction only.

4.7.3 Disk File Protection

Selected areas of a disk platter may be write-protected by use of the

switches provided on each RS15 Platter control panel. Each switch

protects 40,0008 words.

4-35

4.8 MAGNETIC TAPE

The ADVANCED Software provides for industry-compatible magnetic tape

as either a file-structured or non-file-structured medium. The magnetic

tape handlers communicate with a single TC-59 Tape Control Unit (TCU).

Up to eight magnetic tape transports may be associated with one TeO;

these may include any combination of transports TU-20 and TU-20A.

There are a number of major differences between magnetic tape and other

mass-storage devices (for example, DECtape or Disk) i these differences

affect the operation of the device handlers. Magnetic tape is well

suited for handling data records of variable length; such records, how

ever, must be treated in serial fashion. The physical position of any

record may be defined only in relation to the preceding record. Block

addressable devices are most economically used in transferring records

having fixed lengths that are hardware-constrained. Using such devices,

the absolute physical location of any record is program-specifiable.

Because of the serial character of data blocks as they are recorded on

magnetic tape and because of the presence of blocks of unknown, length,

three techniques available in I/O operations to block-addressable de

vices are' not honored by the magnetic tape handlers:

a. The user cannot specify physical block numbers for transfer.
In processing I/O requests that have block numbers in their
argument lists (i.e., .TRAN) the handler ignores the block
number specification.

b. The only area open for output transfers in the file
structured environment is that following the current logical
end of tape. The exception to this rule is in the record
ing of the File Directory as explained below.

c. Only a single file may be open for transfers (either input
or output) at any time on a single physical unit.

4.8.1 File Organization

The device handlers for magnetic tape allow the use of either a file

structured or a non-file structured mode. Handler MTA. enables both

reading and writing in the file structured mode; handler MTC. (a subset

of MTA.) permits reading in the file structured mode only. Handler

MTF. enables reading and writing in the non-file structured mode.

The legal functions and data modes for each of the magnetic tape handlers

are described in paragraph 5.4.6.

4-36

4.8.1.1 Non-File-Structured Data Recording (MTF.) - The treatment of

data to be recorded or read in non-file-structured fashion has two

primary objectives. It is intended to satisfy the requirements of the

FORTRAN programmer while still providing the assembly language pro

grammer maximum freedom in the design of his tape format. Magnetic tape

data, written in the non-file-oriented environment, differs in two im

portant respects from data recorded by means of file-oriented I/O re

quests. In the first place, no handler-supplied supplementary informa

tion is written on the tape. No reference is made, for example, to a

file directory, and block-control data (see below) is never written.

Secondly, no blocking (or packing) of lines is performed by the handler.

Each .WRITE (or . READ) request causes direct data transfer between the

user's line buffer and the TCU. No buffering or editing of any kind is

done. Each .WRITE (or . READ) issued results, in general, in the trans

fer of exactly one physical record to (or from) tape.

4.8.1.2 File-Structured Data Recording (MTA., MTC.) - The programmer

can make the fullest possible use of those features peculiar to magnetic

tape by employing non-file-oriented transfer techniques. On the other

hand, he has little recourse to the powerful file-manipulation facilities

available in the system. File-structured I/O brings to bear the whole

body of file-system software, gives true device independence to the

magnetic tape user, and allows extensive use of the storage medium

with a minimum of effort.

4.8.1.3 Block Format - Every block recorded by MTA. (with the exception

of end-of-file markers, which are hardware-recorded) in file-structured

mode includes a two-word Block Control Pair and not more than 255 10
words of data.

The Block Control Pair serves three functions: it specifies the

character of the block (label, data, etc.), provides a word count for

the block, and gives an 18-bit block checksum. The Block Control Pair

has the following format:

Word 1:

Bits 0 through 5: Block Identifier (BI). This 6-bit
byte specifies the block type. Values of BI may range
from 0 to 77

8
, Current legal values of BI, for all

user files, are as follows:

4-37

Word 2:

BI Value

00

10

20

Block Type Specified

user-File Header Label

User-File Trailer Label

User-File Data Block

Bits 6 through 17: Block Word Count (BWC). This l2-bit
byte holds the 2's complement of the total number of
words in the block (including the Block Control Pair) .
Legal values of BWC range from -3 to -401

8
•

Bits 0 through 17: Block Checksum. The Block Checksum
is the full-word, unsigned, 2's complement sum of all the
data words in the block and word 1 of the Block Control
Pair.

BCP WORD 1

BCP WORD 2

N- 2 DATA
WORDS

o 5 6 17

N TOTAL WORDS
IN BLOCK

09-0230

Figure 4-4 Block Format, File-Structured Mode

4.8.2 File Identification and Location

One of ' the main file-manipulation functions of MTA. and MTC. is that of

identifying and locating referenced files. This is carried out by two

means: first, names of files recorded are stored in a file directory at

the beginning of the tape; and second, labels integral to the file are

recorded with the file itself.

4.8.2.1 Magnetic Tape File Directory - The directory, a single-block

file (and the only unlabeled file on any file-structured tape), con

sists of the first recorded data block on the tape. It is a fixed

length block with a constant size of 25710 words and the following

characteristics:

a. Block Control Pair (words 1 and 2)

Word 1:

Block Identifier

Block Word Count

748 = File Directory Data Block

-401 8 = 7377 8 .

4-38

Word 2:

Block Checksum: As described

b. Active File Count (Word 3, Bits 9 through 17) 9-bit one's
complement count of the active file names present in "the
File Name Entry Section (described below) .

c. Total File Count (Word 3, Bits 0 through 8) 9-bit one's
complement count of all files recorded on the tape, in
cluding both active and inactive files, but exclusive of
the file directory block.

d. File Accessibility Map (Words 4 through 17): The File
Accessibility Map is an array of 252

10
contiguous bits

beginning at bi,t 0 of word 4 and end~ng as bit 17 of
word 17. Each of the bits in the Accessibility Map refers
to a single file recorded on tape. The bits are assigned
relative to the zeroth file recorded; that is, bit 0 of
word 4 refers to Lhe first file recorded; bit 1, word 4,
to the second f~le recorded; bit 0, word 6, to the 37

10 file recorded; and so on, for a possible total of
252 10 files physically present.

A file is only accessible for reading if its bit in the
Accessibility Map is set to one. A file is made
inaccessible for reading (corresponding bit = 0) by a
.DLETE of the file, by a .CLOSE (output) of another file
of the same name, or by a . CLEAR. A file is made
accessible for reading (corresponding bit = 1) by a .CLOSE
(output) of that file. Operations other than those
specified above have no effect on the File Accessibility
Map.

e. File Name Entry Section (Words 18 through 257): The File
Name Entry Section, beginning at word 18 of the directory
block, includes successive 3-word file name entries for a
possible maximum of 80 entries. Each accessible file on
the tape has an entry in this section. Entries consist
of the current name of the referenced file in standard DEB
format: file name proper in the first two words, extension
in the third word; 6-bit trimmed ASCII characters, left
adjusted and, if necessary, zero-filled.

The position of a file name entry relative to the beginning
of the section reflects the position of its accessibility
bit in the map. That bit, in turn, defines the position
of the referenced file on tape with respect to other (active
or inactive) files physically present. Only active file
names appear in the entry section, and accessihility bits
for all inactive files on the tape are always set to zero;
accessibility bits for all active files are set to one.

To locate a file on the tape having a name that occupies
the second entry group in the File Name Entry Section, the
handler must (a) scan the Accessibility Map for the second
appearance of a I-bit, then (b) determine that bit's loca
tion relative to the start of the map. That location
specifies the position of the referenced file relative to
the beginning of the tape. The interaction of the File
Name Entry Section and the Accessibility Map is shown in
figure 4-5.

4.8.2.2 User-File Labels - Associated with each file on tape are two

identifying labels. The first is a header label and precedes the first

data block of the file; the second, a trailer label, follows the final

4-39

{

WORD

BCP

WORD

FILE COUNTS

T
FILE

ACCESSIBILITY
MAP

F I L E
NAME

ENTRY
SECTION

WORD 3

WORD 4

WORD 16

WORD 17

WORD 18

WORD 21

WORD 24

WORD 257

BIT POSITION

o

7

BLOCK CHECKSUM

Figure 4-5a. Format of the File
Directory Data Block, showing
relationship of active and inactive
files to file name entries and to
Accessibility Map;

4-40

15 17

7 BE GIN N I N G
OF TAPE

FILE
D I RECTORY

FILE # I
(INACTIVE)

FILE #2
(ACTIVE)

FILE #3
(INACTIVE)

FILE #4
(ACTiVE)

FILE #5
(ACTivE)

END OF TAPE

09-0232

Figure 4-5b. Format of
file-structured tape,
showing directory block
and data files.

recorded data block of the file. Each label is 27
10

words in length.

Label format is shown in Figure 4-6.

Note that the trailer label differs from the header label only in the

contents of the BI field and in that the former includes an indication

(Word 4) of the total blocks recorded in the file. The total includes

the two labels themselves.

4.8.2.3 File-Names in Labels - The handler will supply the contents

of the file-name fields (Word 3) in labels. These are used only for

control purposes during the execution of .SEEKs. The name consists

simply of the two's complement of the position of the recorded file's

bit in the Accessibility Map; the "name" of the first file on tape is

777777, that of the third file is 777775, and so on. A unique name is

thus provided for each file physically present on the tape. Since

there may be a maximum of 252 10 files present, legal file-name values

lie in the range 777777 to 777404.

4.8.3 continuous Operation

under certain circumstances, it is possible to perform successive I/O

transfers without incurring the shut-down delay that normally takes

place between blocks. The handler stacks transfer requests, and thus

ensures continued tape motion, under the following conditions:

a. The I/O request must be received by the CAL handler before
a previously-initiated I/O transfer has been completed.

b. The unit number must be identical to that of the previously
initiated I/O transfer.

c. The I/O request must be one which requires an implicit .WAIT
to ensure successful completion. The handler in processing
requests in continuous mode depends on receiving control at
the CAL level in order to respond to I/O errors. In addition,
an explicit .WAIT command should not be issued (see examples
1 and 2 given below). The functions for which continuous
operation is attempted include only the following:

1 .. MTAPE
2. . READ

3.
4.

.WRITE

.TRAN

d. The previously-requested transfer must be completed without
error. In general, successive error-free READs (WRITES) to
the same transport will achieve non-stop operation. The
following examples illustrate this principle.

Example 1: Successful Continued Operation

SLOT = 1
INPUT = 0
BLOKNO = 0
READI
READ2
RETURN

.TRAN SLOT, INPUT, BLOCKNO, BUFFI, 257

.TRAN SLOT, INPUT, BLOCKNO, BUFF2, 257
JMP READI

4-41

° 5 6 17 a 5 6 17

WORD 1 00 I
WORD 2

7745

CHECKSUM

i--__ O_l __L-____ 7_7_4_5 ___ ---i } Be P

CHECKSUM

WORD 3 777 XXX FILE NAME 777 XXX FILE NAME

WORD 4 000000 +NBLOCKS

WORD 5

- - - ---. - -
WQRD 26

10
.... F-----------------I

WORD 27,0 t=
RESERVED RESERVED

Figure 4-6a. User-File Header
Label Format

09-0230

Figure 4-6b. User-File Trailer
Label Format

The program segment in Example 1 will most probably keep the referenced

transport (.DAT slot 1) up to speed. The probability decreases as more

time elapses between READI and READ2, and between READ2 and RETURN.

Each .TRAN request causes an implicit .WAIT until its operation is

completed.

Example 2:

SLOT = 1
INPUT = 0
BLOKNO = 0
READ
STO~
RETURN

Unsuccessful Continued Operation

.TRAN SLOT, INPUT, BLOKNO, BUFF, 257

.WAIT SLOT
JMP READ

The program segment in Example 2 will not keep the tape moving because

the explicit .WAIT at location STOP prevents control from returning to

location READ until the transfer first initiated at READ has been com

pleted.

Example 3:

SLOTI 1
SLOT2 = 2
INPUT = 0
BLOKNO = 0
READI
READ2
RETURN

Unsuccessful Continued Operation.

.TRAN SLOTl, INPUT, BLOKNO, BUFFl, 257

.TRAN SLOT2, INPUT, BLOKNO, BUFF2, 257
JMP READI

This program segment will not provide non-stop operation because of the
differing unit specification at READI and READ2.

4-42

0!r0230

4.8.4 Storage Retrieval on File-Structured Magnetic Tape

The use of a file accessibility map as well as block identifiers in

MAGtape file directories makes it almost impossible to retrieve the

area of a deleted file from a magnetic tape. The execution of the

deletion command (i.e., .DLETE) removes the name of the object file

from the file directory; however, the file accessibility map will con

tinue to reflect the presence of the file on the tape.

The only circumstance under which a file area may be retrieved is when

the deleted file is also the last file, physically, on the tape. Under

these conditions, the handler can effect retrieval of the area occupied

by the deleted file when the next .ENTER- .WRITE- .CLOSE sequence is

executed.

4.8.5 Magnetic Tape Dump (MTDUMP) Utility Program

The MTDUMP program provides the user who employs magnetic tape as a

storage medium with the ability to view and manipulate any named

portion (i.e., file) of a tape. Some of the features provided by

MTDUMP are:

a. Files may be output (dumped) onto any systenl device in
any of four possible formats.

b. comments may be inserted into any output file.

c. Files may be copied onto another tape.

A complete description of the features and operation of the MTDUMP

program is given in the PDP-IS utility Manual.

4-43

CHAPTER 5

I/O DEVICE HANDLERS

This chapter contains information essential to a good understanding of

the operation and use of the ADVANCED Monitor I/O device handlers. A

general description of I/O hardware and API software level handlers, a

complete section on writing special I/O device handlers, a summary of

I/O handlers acceptable to system programs, and a summary of standard

I/O handler features are included in this chapter.

5.1 DESCRIPTION OF I/O HARDWARE AND API SOFTWARE LEVEL HANDLERS

5.1.1 I/O Device Handlers

All communications between user programs and I/O device handlers are

made via CAL instructions (see Chapter 3) followed by an argument list.

The CAL Handler in the Monitor (see Figure 5-1) performs preliminary

setups, checks on the CAL calling sequence, and transfers control via

a JMP* instruction to the entry point of the device handler. When the

control transfer occurs (see Figures 5-2 and 5-3), the AC contains the

address of the CAL in bits 3 through 17 and bits 0, 1, and 2 indicate

the status of the Link, Bank/Page mode, and Memory Protect, respectively,

at the time of the CAL. Note that the content of the AC at the time of

the CAL is not preserved when control is returned to the user.

On machines that have an API, the execution of a CAL instruction auto

matically raises the priority to the highest software level (level 4).

Control passes to the handler while it is still at level 4, allowing

the handler to complete its non-reentrant procedures before debreaking

(DBK) from level 4. This permits the handler to receive reentrant

calls from software levels higher than the priority of the program that

contained this call. Device handlers which do not contain reentrant

procedures (including all lOPS handlers) I may avoid system failure

caused by inadvertent reentries by remaining at level 4 until control

is returned to the user.

If the non-reentrant method is used, the debreak and restore (DBR)

instruction should be executed just prior to the JMP* which returns

5-1

.------- --
I MONITOR
; OPERATION

CAL
USER ~

LOC
L~C+l

LOC+N

lOPS fJ

CAL ARG.
FUNCTION CODE
AUX.ARGS. (N-2)

NEXT INSTR.

I ';.-----1.

I
I
I
I ,
1-

Y:LS

NO lOPS 2

ERROR

CAL ADDRESS~AC

UNIT (IF USED)
AND

FUNCTION--LOC+l

----T

SYSTEM OR
USER DEVICE

HANDLER

I

INTERVAL~LOC 7
CLOCK ON

L--

RETURN
TO USER
AT LOC+N

INITIALIZE
PI AND/OR

API

Figure 5-1, CAL Handler Functions.

5-2

.EXIT

NO

ERROR
lOPS 5

CLOCK OFF
PI OFF

API CLEAR
CLEAR ALL FLAGS

_____ J

BOOTSTRAP

USER PROGRAM

CAL ARG.
CODE Jt~~+l

~--------~--------~iLLOC+N
CAL

AUX. ARGS (N-2)
NEXT INST

MONITOR

DEVICE HANDLER

CAL HANDLER

SAVE CAL POINTER
(CALP)

FETCH FUNCTION CODE

NO

ERROR

VIA
MONITOR
lOPS 6

.INIT OTHER

INITIALIZE
HANDLER

AND
RETURN
BUFFER

SIZE

NO

. SETUP (MONITOR)
USED FOR EACH

PI SKIP AND API
ENTRY VECTOR

IGNORED
FUNCTION

JMP* ARGP

RETURN
TO USER
AT LOC+N

YES

JIvlP* CALP
LOOP ON CAL OR
RETURN TO USER
ADDRESS IF
.WAITR

NO

ERROR

VIA
MONITOR
lOPS 7

Figure 5-2, CAL Entry To Device Handler.

5-3

PI
ENTRY- VIA

JMS ~
SKIP CHAIN
JMP* (INT

SAVE AC
SAVE LaC fJ
(P.C. ,LINK,

MEM. PROT,.)
SET UP ION

FOR EXIT

API
ENTRY - VIA

JMS* API DEVICE
ADDRESS

I • E ., JMS IN T

SAVE AC
SAVE INT LOC

(P.C. ,LINK,
MEM. PROT.)

CHECK PI STATUS
SET UP ION OR
IOF ACCORDING
TO PI STATUS

FOR EXIT

~E-TRY IF NO~
~ATAL ERROR .-J

">--..;;;;~ .. PROCES

CONTINUE

RESTORE
PI STATE

(ION OR IOF) I

DBR

JMP* OUT

RETURN
TO USER AT INSTRUCTION PC

BEFORE INTERRUPT

ERROR

RESET
E.G., EXIT TO MONITOR

CLEAR I/O BUSY IF FATAL ERROR

Figure 5-3, PI and API Entries to Device Handlers

5-4

control to the user, allowing debreak from level 4 and restoring the

conditions of the Link, Bank/Page mode, and Memory Protect. Any lOT's

issued at the CAL level (level 4 if API present, mainstream if no API)

should be executed immediately before the

OOR
JMP*

exit sequence to ensure that the exit takes place before the interrupt

from the issued lOT occurs.

The CAL instruction must not be used at any hardware priority level

(API or PIC), since interrupts to these levels are not closed out by

the execution of a CAL and recovery is not possible from such sequence

of events as

a. An I/O flag coming up during a CAL at level 7,

b. Control going to the I/O device handler at level 3,

c. The handler at level 3 CALing and thus destroying the
content of location 00020 for the previous CAL.

The highest API software level (level 4) is also used for processing

CALs and care must be taken when executing CALS at this level. For

example, a routine that is CALd from level 4 must know that if a

debreak (DBR or DBK) is issued, control will return to the calling

program (which had been at level 4) at a level lower than level 4.

5.1.1.1 Setting Up the Skip Chain and API (Hardware) Channel

Registers - When the Monitor is loaded, the program Interrupt (PI)

skip chain and the Automatic Priority Interrupt (API) channels are set

up to handle the TTY keyboard and printer and clock interrupts

only. The skip chain contains the other skip lOT instructions, but

indirect jumps to an error routine result if a skip occurs, as follows:

SKPDTA
SKP
JMP* INTI
SKP LPT
SKP
JMP* INT2
SKPTTI
SKP
JMP TELINT

/Skip if DECtape flag.

/INTI contains error address.
/Skip if line printer flag.

/INT2 contains error address.
/Skip if teleprinter flag.

/To teleprinter interrupt handler.

All unused API channels also contain JMP's to the error address.

5-5

When a device handler is called for the first time via an .INIT user

program command, it must call a Monitor routine (.SETUP) to set up its

ship chain entry or entries and API channel, prior to performing any

I/O functions. The calling sequence is as follows:

CAL N

16

/N = API channel register 40 through 77 (see
/section 5.1.3 for standard channel assign
/ments), 0 if device not connected to API.
/.SETUP function code.
/Skip lOT for this device.
/Address of interrupt handler.

SKP lOT
DEVINT
(normal return)

DEVINT exists in the device handler in the following format to allow

for either API or PI interrupts. Users with PI-only systems may exclude

code from DEVINT-l through DVSTON-l, in which case DEVINT=DEVPIC is

required. Users who always expect to use API may exclude code from

DEVPIC through DEVINT-l, in which case DEVINT 0 should be substituted.

DEVPIC

DEVINT

DVSTON

DEVION

DAC
LAC*
DAC
LAC
JMP
JMP
DAC
LAC
DAC
IORS
SMA!CLA
LAW
TAD
DAC
DEVCF
ION

. IOF
DEVIOT

/DISMISS ROUTINE

LAC
DVSWCH XX

DBR

JMP*

DEVAC
(0
DEVOUT
DEVION
DVSTON
DEVPIC
DEVAC
DEVINT
DEVOUT

17740
DEVION
DVSWCH

DEVAC

DEVOUT

/SAVE AC.

/SAVE PC, LINK.EX.MODE, MEM.PROT.
/FORCE ION AT DISMISSAL

/PIC ENTRY.
/API ENTRY, SAVE AC.

/SAVE PC,LINK,EX.MODE,MEM.PROT.
/CHECK STATUS OF PIC
/FOR RESTORATION AT DISMISSAL.
/PIC OFF, BUILD IOF lOT.
/PIC ON, BUILD ION lOT.

/CLEAR DEVICE DONE FLAG
/ENABLE PIC SO THAT OTHER DEVICES
/AREN'T SHUT OUT.

/DISABLE PIC TO INSURE
/DISMISSAL BEFORE INTERRUPT
/FROM THIS lOT OCCURS

/RESTORE AC
/ION OR IOF
/DEBREAK AND RESTORE CONDITIONS

/OF LINK, EX.MODE AND MEM.PROT.

5-6

Since the Index, Autoincrement, and EAE registers are not used by the

standard I/O device handlers, it is not necessary to save and restore

them.

The Monitor routine (.SETUP) checks the ski~ chain for the instruction

which matches SKP lOT; if there is a match, it places the address,

DEVINT, in the appropriate transfer vector (INTn) and places JMS*INTn in

the corresponding API channel register. If a match cannot be found,

lOPS outputs the following error message,

.IOPS 05 xxx xxx

indicating that the skip lOT in the CAL calling sequence at location

xxxxxx was not in the skip.

Refer to Paragraph 5.2 for the method of incorporating new handlers

and associated skip chain entries into the Monitor.

5.1.2 API Software Level Handlers

The information presented in the following paragraphs assumes that the

reader is familiar with the system input/output considerations described

in the PDP-1S User's Handbook Vol 1.

5.1.2.1 Setting Up API Software Level Channel Registers - When the

Monitor is loaded, the API software-level channel registers (40

through 43) are initialized to

JMS*
JMS*
JMS*
JMS*

.SCOM+12

.SCOM+13

.SCOM+14

.SCOM+1S

/LEVEL 4
/LEVEL 5
/LEVEL 6
/LEVEL 7

where .SCOM is equal to absolute location 000100 and .SCOM+12 through

.SCOM+1S (000112 through 000115) each contains the address of an

error routine.

Therefore, prior to requesting any interrupts at these software

priority levels, the user must modify the contents of the .SCOM

registers so that they point to the entry point of the user's software

level handlers.

Example:

.SCOM=lOO
LAC
DAC*

(LV5INT
(.SCOM+13

5-7

LV5INT exists in the user's area in the following format:

LV5INT 0 /PC,LINK,BANK/PAGE MODE,MEM.PROT.
DAC SAV5AC /SAVE AC
/SAVE INDEX, AUTOINCREMENT AND EAE REGISTERS
/IF LEVEL 5 ROUTINES
IUSE THEM AND LOWER LEVEL
/ROUTINES ALSO USE THEM
/SAVE MQ AND STEP COUNTER
/IF SYSTEM HAS EAE AND IT
/IS USED AT DIFFERENT LEVELS.

/RESTORE SAVED REGISTERS.
DBR /DEBREAK FROM LEVEL 5
JMP* LV5INT /AND RESTORE L, BANK/PAGE MODE,MEM.PROT.

5.1.2.2 Queueing - High priority/high data rate/short access routines

cannot perform complex calculations based on unusual conditions without

holding off further data input. To perform the calculations, the high

priority program segment must initiate a lower priority (interruptable)

segment to perform the calculations. Since many data handling routines

would generally be requesting calculations, there will exist a queue of

calculation jobs waiting to be performed at the software level. Each

data handling routine must add its job request to the appropriate queue

(taking care to raise the API priority level as high as the highest

level that manipulates the queue before adding the request) and issue

an interrupt request (ISA) at the corresponding software priority level.

The general flow chart, Figure 5-4, depicts the structure of a software

handler involved with queued requests.

Care must be taken about which routines are called when a software

level request is honored; that is, if a called routine is "open"

(started but not completed) at a lower level, it must be reentrant or

errors will result.

NOTE

The standard hardware I/O device handlers do not con
tain reentrant procedures and must not be reentered
from higher software levels.

Resident handlers for Power Fail, Memory Parity,
nonexistent memory violation, and Memory Protect
violation have been incorporated into the system
and effect an lOPS error message if the condition
is detected (see Appendix E for lOPS errors). The
user can, via a .SETUP, tie his own handler to
these skip lOT or API channel registers (see 5.1.1.1).

5-8

LV5)NT

SAVE PC, LINK, AC,
AUTO-INDEX REGS,
MQ,STEP COUNTER
AND CONDITIONS
OF EXTENDED MODE
AND MEMORY PROTECT

15-0094

Figure 5-4 Structure of API Software Level Handler

5.1.3 Standard API Channel/Priority Assignments

Channel

o
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
32

33

34

35

Device

Software priority
Software Priority
Software Priority
Software Priority
DECtape
MAGtape
RESERVED
RESERVED
Paper Tape Reader
Clock Overflow
Power Fail
Parity
Display (LP flag)
Card Reader
Line Printer
A/D
Interprocessor Buffer
RESERVED
Data Phone
DECdisk
DISK Pack
Plotter
Multi-Station
TTY Control
Multi-Station
TTY Control
DECtape (DCH
Channel 36)
Dataphone

Option
Number

TC02D
TC59D

PC15
KW15
KF15
MP15
VP15A
CR03B
LP15F/LP15C
AFOl/ADCl/9
DB99/DB98

DP09A
RF15
RP15
XY15
LT19A (Tele
printer)
LT19A (Key
board)
TC02 1

DP09A1

Priority

4
5
6
7
1
1

2
3
o
o
2
2
2
o
3

2
1
1
2
2

2

1

2

Channel
Register

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
74

75

76

77
lChannel allocated for systems with more than one of the above options.

5-9

5.2 WRITING SPECIAL I/O DEVICE HANDLERS

This section contains information prepared specifically to aid those

users who plan to write their own special I/O device handlers for the

ADVANCED Monitor System.

The ADVANCED Monitor System is designed to enable users to incorporate

their own device handlers; however, prec~utions should be taken when

writing the handler to ensure compatibility with the Monitor.

It is assumed that the user is familiar with Section 5.1.1 of this

chapter. To summarize, the handler is entered via a JMP* from the

Monitor as a result of a CAL instruction. The contents of the AC con

tain the address of the CAL in bits 3 through 17. Bit 0 contains the

Link, bit 1 contains the Bank/Page Mode status, and bit 2 contains

the Memory Protect status. The previous contents of the AC and Link

are lost.

To show the steps required in writing an I/O device handler, a complete

handler (Example B) was developed with the aid of a skeleton handler

(Example A). This handler is a non-reentrant type (discussed briefly at

the beginning of this chapter) and uses the Debreak and Restore Instruc

tion (DBR) to leave the handler at software priority level 4 or at a

hardware level for interrupt servicing (if API), and restore the status

of the Link, Bank/Page Mode, and Memory Protect. Example A is referenced

by part numbers to illustrate the development of Example B, a finished

Analog-to-Digital Converter (ADC) I/O Handler. The ADC handler shown in

Example B was written for the Type AFOIB Analog to Digital Converter.

This handler is used to read data from the ADC and store it in the user's

line buffer.

The reader, while looking at the skeleton of a specialized handler as

shown in Example A, should make the following decisions about his own

handler. (The decisions made in this case are in reference to develop

ing the ADC handler) :

a.

b.

c.

Services that are required of the handler (flags, receiv
ing or sending of data, etc.) - By looking at the ADC lOT's
shown in the Reference Manual, it can be seen that there
are three lOT instructions to be implemented. These
instructions are: Skip if Converter Flag Set, Select
and Convert, and Read Converter Buffer.

The only service the ADC handler performs is that of
receiving data and storing it in user specified areas.
This handler will have a standard 256-word buffer.

Data Modes used (for example, lOPS ASCII, etc.) - Since
there is only one format of input from the Type AFOIB
ADC, mode specification is unnecessary in Example C.

Which I/O macros are needed for the handler's specific
use; that is, .INIT, . CLOSE, . READ, etc. - These are

5-10

fully described in Chapter 3 of this manual. For an ADC,
the user would be concerned with four of the macros.

(1) .INIT would be used to set up the associated API
channel register and the interrupt skip lOT sequence
in the Program Interrupt (PIC) ship chain. This is
done by a CAL (N) as shown in Part III of Example A,
where (N) is the channel address. The standard
device/API channel associations can be found in
Section 5.1.3.

(2) .READ is used to transfer data from the ADC. When
the .READ macro is issued, the ADC handler will
initiate reading of the specified number of data
words and then return control to the user. The
analog input data received is in its raw form. It
is up to the programmer to convert the data to a
usable format.

(3) .WAIT detects the availability of the user's buffer
area and ensures that the I/O transfer is completed.
It would be used to ensure a complete transfer be
fore processing the requested data.

(4) .WAITR detects the availability of the user's buffer
area as in (3) above. If the buffer is not avail
able, control is returned to a user specified address,
which allows other processing to continue.

d. Implementation of the API or PIC interrupt service routine -
Example A shows an API or PIC interrupt service routine
that handles interrupts, processes the data and initiates
new data requests to fully satisfy the .READ macro request.
Note that the routines in Example A will operate with or
without API. Example B uses the routines exactly as they
are shown in Example A.

During the actual writing of Example B, consideration was
given to the implementation of the I/O macros in the new
handler in one of the following ways:

(1) Execute the function in a manner appropriate to the
given device as discussed in (c). .INIT, . READ,
.WAIT, and .WAITR were implemented into the ADC
handler (Example B) under the subroutine names
ADINIT, ADREAD, ADWAIT (.WAIT and .WAITR).

Wait for completion of previous I/O. (Example B
shows the setting of the ADUND switch in the
ADREAD subroutine to indicate I/O underway.)

(2) Ignore the function if meaningless to the device.
See Example B (.FSTAT results in JMP ADIGN2) in
the dispatch table DSPCH. For ignored macros,
the return address must be incremented in some
cases, depending upon the number of arguments
following the CAL (See Chapter 3).

(3) Issue an error message in the case where it is
not possible to perform the I/O function - (An
example would be trying to execute an .ENTER on
the paper tape reader.) In Example B, the handler
jumps to DVERR6 which returns to the Monitor with
a standard error code in the AC.

After the handler has been written and assembled, the Monitor must then

be modified to recognize the new handler. This is accomplished by the

use of the System Generator Program (SGEN) described in the utility

Programs Manual.

5-11

Once the system has been generated, the system program UPDATE (refer

to the Utility Programs Manual (DEC-IS-YWZA-D) must be used to add the

new handler to the library. At this time, the user is ready to use

his specialized device handler in the PDP-IS system.

5.2.1 Discussion of Example A by Parts

Part 1

Part 2

Part 3

Part 4

Part S

Part 6

Part 7

Stores CAL pointer and argument pointer; also picks
up function code from argument string.

By getting proper function code in Part 1 and add
ing a JMP DSPCH, the CAL function is dispatched to
th~ proper routine.

This is the .SETUP CAL used to set up the PI skip
chain and/or the API channel register. Paragraph
5.1.3 of this manual shows the standard device/API
associations.

Shows the API and PI handlers. It is suggested
these be used as shown.

This area reserved for processing interrupt and
performing any additional I/O.

Interrupt dismiss routine.

Increments argument pointer in bypassing arguments
of ignored macro CAL's.

5.2.2 Example A, Skeleton I/O Device Handler

N

ISKELETO~ 1/0 DEVICE HANDLER
I
ICAL ENTRY ROUTINE

• G..OBL DEV.
• MED=3
DEV. DAC

DAC
ISZ
LAC*
AND
ISZ
TAD
DAC

DSPCH XX
JMP
JMP
JMP
JMP
JMP
JMP
Jf1P
JMP
JMP
JMP
JMP

DVCALP
DVARGP
DVARGP
DVARGP
(77777
DVARGP
(JMP DSPCH
DSPCH

DVINIT
DVFSAT
DVSEEK
DVENTR
DVCLER
DVCLOS
DVMTAP
DVREAD
DVWRTE
DVWAIT
DVTRAN

IMUST BE OF FORM AAA •
I.MED (MONITOR ERROR DIAGNOSTIC)
ISAVE CAL POINTER
lAND ARGUMENT POINTER
IPOINTS TO FUNCTION CODE
IGET CODE
IREMOVE UNIT NO IF APPLICABLE
IPOINTS TO CAL+2

IDISPATCH WI TH
IMODIFIED JUMP
II = .IN!T
12 = .FSTAT, .nLETE, .RENAM
13 : .SEEK
14 : .ENTER
15 : • CLEAR
16 = .CLOSE
17 = .MTAPE
110 = • READ
III : .WRITE
112 = .WAIT
113 = • TRAN

IILLEGAL FUNCTIONS IN ABOVE TABLE COnED AS:
JMP DEVERRG

IFUNCTION CODE ERROR
DVERRG LAW 6

JMP* (.MED+l

5-12

IERROR CODE G
ITO MONITOR

rc1
OJ
::1
s::::

.r-!
+J
s::::
0
u

N

E-i
P::
~
0..

M

~
~
0..

lf)

IDATA MODE ERRon
DVERR7 LA~1 7

JMP* (. MED+I

IDEVICE NOT READY
DVERR4 LAC (RETURN

DAC* (. MED
LAC (4
JMP* (. MED+ 1

1110 UNDERWAY LOOP
DVBUSY DBR

JMP* DVCALP

INORMAL RETURN FROM CAL
DVCK DBR

JMP* DVARGP

ITHE DVINIT ROUTINE MUST INCLUDE
/A .SETUP CALLING SEQUENCE FOR
lEACH FLAG CONNECTED TO API
lAND/OR PI ACAT SGEN TIME).
ITHE SETUP CALLING SEQUENCE IS:

DVINIT CAL N

16
SKPIOT
DBVINT

/THIS SPACE MAY BE USEO FOR I/O

IINTERRUPT HANDLER FOR
DVPIC DAC DEVAC

LAC* (0
DAC DVOUT
LAC DF.VION
JMP DVSTON

DVINT JMP DEVPIC
DAC DEV.l\C
LAC DEVINT
DAC DEVOUT
I ems
SMA! CLA
LAW
TAD

DVSTON DAC
DEVCF

DEVION ION

17740
DEVION
DEVSWCH

API OR PI

IERROR CODE 7
ITO MONITOR

IRETURN (ADDRESS IN HA NDLER)

IERROR CODE 4
ITO MONITOR

IBREAK FROM LEVEL 4
IlOOP ON CAL

IBREAK FROM LEVLE 4
IRETURN AFTER CAL AND
I ARGUME NT S TR IN G

IN = API CHANNEL REGISTER
1(40 -77). N = eJ IF NOT COtJNECTED
ITO API

/IOPS FUNCTION CODE
ISKIP lOT TO TEST THE FLAG
/ADDRESS OF INTERRUPT
IHANDLER (PI OR API)

SUBROUTINES

ISAVE AC
ISAVE:PC, LINK, BANK/PAGE MODE
lAND MEMORY PROTECT
IFORCE ION AT DISMISSAL

IPI ENTRY
IAPI ENTRY; SAVE AC
ISAVE: PC, LINK, BANKIPAGE MODE
IMEMORY PROTEC T
ICHECK STATUS OF' PI
IFOR RESTORATION AT
IDISMISSAL

IIOT TO CLEAR FLAG
fENABlE PI

/THIS IS THE AREA DEVOTED TO PROCESSING INTERRUPT AND
/PERFORMING ANY ADDITIONAL 1/0 DESIRED.

IOF
DEVIOT

5-13

/DISABlE PI TO INSURE
IDIMISSAL BEFORE INTERRUPT
IFROM THIS lOT OCCURS

IINTERRUPT HANDL~R DISMISS
DVDISM LAC DEVAC
DVSWCH XX

DBR
JMP* DEVOUT

E-t

ROUTE
IRESTORE AC
lION OR IOF
IDEBREAK AND RESTORE
ILINK, BANK/PAGE MODE,
IPROTECT

~ IIF THE HANDLER USES THE AUTOINCREMENT , INDEX
~ lOR EAE REGISTERS, THEIR CONTENTS

ISHOULD BE SAVED AND RESTORED. FUNCTIONS
IPOSSIBLY IGNORED SHOULD CONTAIN
IPROPER INDEXING TO BYPASS
ICAl ARGUMENT STRING
I
ICODE TO BYPASS IGNORED FUNCTIONS
I

DVIGN2 ISZ
JMP

DVARGP
n\1t"t(

5-14

IBYPASS FILE POINTER

MEMORY

5.2.3 Example B, Special Device Handler for AFOlB AID Converter.

PAGE 1 AOC. SRC

1 IADC HANDL.E.H
2 I
3 701301 A ADS r = 7 rt13 1211 ISKIP IF CONVERSION f~AG IS SET
4 7121131214 A ADSC=701304 ISELECT AND CONVERT (ADC f~AG IS CLEARED
5 lAND A CONVERSION IS INITIALISED)
6 71211312 A AOR9=701312 IREAD CONVERTER SUrfER INTO AC AND CLE4R PLAG
7 I
8 ,GLOSL ADe.
9 44eJ000 A IOX=IS~

1el el0~J'0,f213 A .MED=3 IMED (MONITOR ERROR DIAGNOSTIC)
11 I
12 00 (?HH:1 R 0412l,15.1 R ADC. DAC ADCALP ISAVE CAL POINTER

U1 13 ~HH'l01 R 12140152 R DAC ADARGP lAND ARGUMENT POINTER
I 14 f2ll2leJ02 R 440152' R lDX ADARGP IPOINTS TO fUNCTION CODE I--'

U1 15 0121211213 R 220152 R LAC· ADARGP IGET CODE
16 000 121 4 R 4 4 121 1.5 2 R lOX ADARGP IpOINTS TO CAL. 2
17 01211211215 R 340155 R TAO eJMP DSPCH
18 12112112106 R 04f2l0r2J7R DAC DSPCH IDISPATCH WITH
19 f2l00 f2l7 R 7 4 0 0 4.121 A DSPCI-! xx IMODIFIED JUMP
20 012112110 R 60121027 R JMP ADINIT 11=.INIT
21 0012111 R 6121012174 R ,JMP ADIGN2 12=.rSTAT,.DLETE.,RENAM
22 121121012 R' 600074 R JMP ADIGN2 13=,SEEK
23 .121121013 R 612112112123 R JMP ADERR6 14=.ENTER
24 012112114 R 6121012123 R JMP ADERR6 15=,CLEAR
25 0121015 R 6121012175 R JMP ADIGN1 16=,CLOSE
26 f2lr21016 R 61210'12175 R JMP AOIGNl 11=,MTAPE:
27 121 0 01 7 R 6121 0'121 51 R JMP AOREAD 110=,READ
28 00020 R 612112112123 R JMP ADERR6 111=.WRITE
29 0121021 R 6012112144 R JMP ADWAIT 112=.WAIT
3121 1210022 R 6121121023 R JMP ADERR6 113=.TRAN
31 I
32 Il~LEGAL ~UNCTIONS IN ABOvE TABLE CODED AS
33 I JMP ADERR6
34 .EJECT

PAGE 2 ADC. SRC

35 I
36 If UNCTION CODE ERROR
37 I
38 00023 R 760006 A AOERR6 LAW 6 IERROR CODE 6
39 00024 R 620156 R JMP* C,MEO+1 ITO MONITOR
40 IOATA MOOE ERROR
41 00025 R 760007 A ADERR7 LAW 7 IERROR CODE 7
42 00026 R 620156 R JMP* (.MEO.1 ITO MONITOR
43 ITHE ADINT ROUTINE MUST INCLUDE A .SETUP
44 IrOR EACH F~AG ASSOCIATED WITH THE DEVICE
45 I
46 00027 R 440152 R AOINIT lOX ADARGP IIOX TO RETURN BUFf Slit
47 ,DEC
48 00030 R 20~157 R LAC (256 ISTANDARO BUfFER SI~E (OECIMA~)
49 .OCT
50 0£1031 R 060152 R OAC* AOARGP IRETURN IT TO USER
51 00032 R 440152 R lOX AOARGP
52 00033 R 000057 A ADCMQD CAL. 57 157=API cHANNEL,

U1 53 00034 R 000016 A ADCKSM 16 I,SETUP lOPS FUNCTION CODE
I 54 00035 R 701301 A ADCBP AOSr;" IADC SKIP lOT
~
0"1 55 00036 ~ 000104 R AOL,8HP ADCINT IADDR .. OF INTERRUPT

56 00037 R 200041 R ADUND LAC ,.2 ISET~UP ONCE ONLY
57 0012140 R 040033 R AOWC OAC AOCMOD ISKIP SET~UP CODE lr MORE
58 00041 R 600042 R ADWPCT JMP AOSTOP I,INITS ARE DONE
59 I
60 ISTOP ADC ROUTINE CLEARS 1/0 UNDERWAY SWITCH
61 I
62 00042 R 1402131 R ADSTO'P DtM AOUND
63 00043 R 600075 R JMP AOIGN1 IREiURN
64 I
65 ITHE PREVIOUS TAGS IN THE CAL AREA ARE USEO rOR
66 ISTORAGE DURING THE ACTUAL .READ rUNCTION
67 I
68 IAOCKSM IS FOR STORING THE CHECKSUM
69 IADCBP IS THE CURRENT BUrfER POINTER
70 IADLBHP IS THE LINE BUFrER HEADER POINTER
71 IADUND IS FOR DEVICE UNDERWAY SWITCH
72 /AOWC IS USED AS THE COUNTER
73 IAOWPCT IS USED TO STORE cURRENT WORD COUNT
74 /
75 .EJECT

PAGE 3 ADC. SRC

76 Cl0044 R 200037 R ADWAIT LA.C ADUND
77 Q'l0045 R 741200 A S~JA
78 0(~)~)46 R 600075 R JMP ADIGN1
79 1110 UNDERWAY ~oOP
80 00047 R 703344 A ADBUSY DBR
81 00v~50 R 620151 R JMP* ADCALP
82 I
83 I
84 00051 R 200037 R ADREAD L.AC ADUND ICHECK TO SEE Ir 1/0 IS UNOERWAV
85 Z~052 R 740201 A S~A:CMA lIt NOT SET IT WITM -1
86 00053 R 600047 R JMP ADBUSY lIT WAS SET,GO BACK ;0 CAL
87 00054 R 040037 R DAC ACUND ISE TIT
88 00055 R 220151 R L.AC* ADCALP ILOOK AT MODE
89 l~Z'056 R 500160 R AND C7kHH'J IsITS 6~8 ONLY
9~ W~~57 R 740200 A StA IIOPS BINARY?
91 r006~:J R 600~25 R J'1P ADERR7 INa, ERROR
92 V0e,61 R 220152 R LAC'" ADARGP IGET L1NE BUFFER HEADER PO!NTER

In
93 00062 R 040035 R OAC ADCBP ISTORE IT

I 94 0,2H!.63 R 040036 R DAC ADLBHP IA~SO SToRE IT rOR LATER MEADER
I-' 95 00~'64 R 440152 R lOX ADARGP IINCREMENT ARC. POINTER -...J

96 00065 R 220152 R LAC* ADARGP IGET ~L.8tWtC(2'S COMP)
97 ee066 R 04~040 R DAC ADWC ISiORE IT IN WORD COUNTER
98 00e67 R 140041 R 02M ADWPCT I~ERO WORD COUNT REG.
9'1 00~70 R 140034 R OtM ADCKSM ItERO CHECKSUM REG.

100 e"Z071 R 440035 R lOX ADCBP IGET PAST ~EAOER PAIR
101 ei 0v:72 R 440035 R lOX ADC8P INOW POINTING AT BEGINNING or
1212 IBUFFER
103 ~0073 R 7eJ1304 A .AQSC 1ST ART UP DEVICE:
104 0~rJ74 R 440152 R ADIGN2 lOX ADARGP IINCR, FOR ExIT
105 00(17'5 R 703344 A ADIGN1 DBR IBREAK FROM LEVEL 4
H~6 00070 R 62~152 R jMP* ADARGP IRE TURN AfTER CAL
107 /INTERRUPT HANDLER fOR API OR PIC
108 I
109 0CZ077 R 040154 R ADCPIC OAC AOCAC ISAVE AC
110 V'01~0 F(220161 R LAC'" (0) ISAVE Pc,~tNK,EX, MODE
111 00101 R 040153 R DAC AOCOUT IMEM.PROT.
112 0'0102 R 200120 R LAC ADCION IFORCE IoN Ai DISMISSAL
113 00123 R 600116 R jMP ADSION
114 .EjECT

PAGE 4 ADe, SRC

115 00104 R 600077 R ADCINT JMP ADCPIC IPIC ENTRY
116 00105 R 040154 R DAC AOCAC IAPI ENTRY.SAVE AC
117 00106 R 200H14 R LAC AOCINT ISAV~ PC,~INK,Ex.MODE
118 00107 R 040153 R DAC ADCOUT IMEM.PROT
119 o 0 11;~ R 2 0 0 16 2 R LAC (JMP ADCPIC IRES TORE PIC ENiRY BECAUSE API
120 ~0111 R 040104 R DAC ADCINT IENTRY IS A JMS, NOT A JUMP
121 0k"112 R 700314 A IORS ICHECK FOR PIC
122 00113 R 750100 A SMAlCL.A IFOR RESTORATION AT
123 00114 R 777740 A LAW 1774'='1 IDISMISSA~ (IOF-ION)
124 00115 R 340120 R rAD AOCION I+ION
125 00116 R 040146 R ADSION OAC AOSWCH
126 00117 R 701312 A AOR~ IREAD CONVERTER BUrFER
127 0012,,; R 700042 A AOCION ION IENABLE pIC FOR OTHER DEVICES
128 e0121 R 060035 R OAC" ADCBP ISTORE DATA IN USER BurFER
129 00122 R 440035 R lOX ADCBP IINC, BUFfER POINTER
130 00,123 R 440041 R lOX ADWPCT IINC, WORD PAIR COUNTER

V1 131 00124 R 340034 R TAD ADCKSM IADD CHECKSUM I
I-' 132 00125 R 040034 R DAC AOCKSM 1ST ORE IT
ex>

133 00126 R 440040 R 1St AOWC lIS 1/0 COMPLETE
134 0.0127 R 600143 R JMP ADOONT INO KEEp GOING
135 0013(3 R 200041 R LAC ADWPCT lyES,OOMPUTE WORD COUNT ~AIR
136 ~0131 R 740030 A lAC IMAY BE ODD
137 0e'132 R 742030 A SWHA ITO TOP HALF'
138 00133 R 740020 A RAR I M It K E W 0 '. P R S •
139 00134 R 500163 R AND (377000 18 BITS ONLY
140 QH~135 R 060036 R DAe" ADL,BHP 1ST ORE IN ~EAOER #1
141 0e136 R 440036 R IDX ADLBHP IINC. TO STORE CKSUM
142 00137 R 340034 R TAO ADCKSM IADD WORD PAIR COUNT
143 0014(~ R 060036 R DAC" ADLBHP ISTORE IN HEADER #2
144 001 41 R 14 rlJ 0,37 R Di!M ADUNO IC~EAR DEVICE UNDERWAY
145 tZl0142 R 600145 R JMP ADDISM IEXIT
146 00143 R 700002 A ADCONT IOF ID!SAB~E PIC TO ENSURE DISMISSAL
1 4 7 00144 R 701304 A ADSC IBEFORE INTERRUPT FROM THIS tOT OCCURS
14 8 IINTERRUPT HANDLER DISMISS RTE
149 I
1 50 120145 R 200154 R AODISM LAC ADCAC IRES TORE AC
151 .EJECT

PAGE 5 AOC. SRC

152 eJ014~ R 70121042 A AOSWCI-I ION lION OR 10F'
153 00147 R 703344 A OBR 10EBREAK AND RESTORE
154 00150 R 620153 R JMPo AOCOUT ILINK,EX.MODE,MEM.PROT
155 1210151 R 12100000 A ADCALP ~ IADD CAL POINTER
156 0121152 R 00~HJ00 A ADARGP 0 IAOO ARGUMENT POINTER
157 00153 R 000000 A ADCOUT 0 IPC,L,F'M.MP
158 00154 R 000000 A ADCAC it' lAC SAVED HERE
159 /
160 00kHH"~ A .ENU

00155 R 600007 R *L
00156 R 12100004 A ttL
00157 R 000400 A ttL
00160 R 001000 A ttL
0121161 R 000000 A AL
00162 R 600077 R 0L
00163 R 377000 A AL

U1
SI~E=00164 NO ERROR LINES

I
I--'
1.0

PAGE 6 ADC. SRC

ADARGP 00152 R A08USY 0012147 R ADCAC 1210154 R ADCALP 00151 R
ADC8P 0121035 R .AOCINT 00104 R ADeION 00120 R ADCKSM 00034 R
ADCMOO 0012133 R ADCONT 00143 R ADCour ~0153 R ADCPIC "0071 R
ADC, 00000 R ADDISM 00145 R AOERR6 ~0023 R ADERR7 00025 R
ADIGN1 00075 R ADIGN2 00074 R ADINI' 00027 R ADLBHP 00036 R
ADRB 701312 A ADREAD 0012151 R ADSC 7f2l1304 A ADSF' 701301 A
ADSION 00116 R ADSTOP 00042 R ADSWCH 0121146 R ADUND 121121037 R
AOWAIT 12'121044 R ADWC 00~t40 R ADwPCT 012112141 R DSPCH 12100~1 R
IDX 4412112100 A .MED 0000~3 A

PAGE 7 ADC, SRC

ADC, 0012100 R .MED 0012)003 A DSPCH ~0007 R ADERR6 fiH'023 R
ADERR7 12'121025 P ADINIT 0121027 R AOCMOO 0121033 R ADCKSM 12109.134 R
ADCBP 12121035 R ADLBHP 121121036 R AOUND 1210037 R AD we 012104121 R
ADWPCT 00041 R ADSTQP 012112142 R ADWAIT 00044 R AOBUSY 0012147 R
ADREAD 12112112151 p ADIGN2 00.014 R ADIGN1 121121.075 R ADCPIC 121121071 R
AOCINT 0.01.04 R AOSION 0121116 R ADCION 0.0120 R ADCONT 0121143 R
ADDISM 0.0145 R ADSWCH 121121146 R ADC,ALP 0121151 R ADARGP 21121152 R
ADCQUT ""1J153 R ADCAC 1210154 R lOX 440000 A ADSF' 71211301 A
ADSC 71211304 A ADRB 701312 A

PAGE 8 ADC. CROSS REF"ERENCE

ADARGP 021152 13 14 15 16 46 50 51 92 95
96 104 106 156~

ADBUSY 00047 80~ 86
ADCAC 021154 109 116 15e 158*
ADCALP 00151 12 81 88 155 ..
ADCBP 00035 54 .. 93 100 101 128 129
AOCINT 0011214 55 115 .. 117 120
ADCION 00120 112 124 127 ..
ADCKSM 00034 53- 99 131 132 142
ADCMOO 021033 5~'" 57
ADCONT 00143 134 146~

ADCOUT 00153 111 118 154 157-
AOCPIC 021077 lVJ9a 115 119
Aoe. C'l0eJ0r, 8 12 ..
ADDISM 012!145 145 150~
ADERR6 00023 23 24 28 30 38*
AOERR7 00025 41- 91

Ul AOIGNl 00075 25 26 63 78 105 ...
I AOIGN2 021074 21 22 104*

I'J AOINIT 00027 212 46 .. 0

ADL.8HP 021036 55- 94 140 141 143
ADR8 701312 6* 126
AOREAO 00051 27 84*
AOSC 71211304 4- 103 147
AOSF" 701301 .3- 54
ADSION 00116 113 125*
AOSTOP 0212142 58 62 ..
ADSWCH 021146 125 152 ..
AOUND 021037 56 .. 62 76 84 87 144
AOWAIT 0{'l044 29 76 ..
AOWC 00040 57- 97 133
AOWPCT 12121041 58* 98 1321 135
OSPCH 021007 17 18 19 ..
lOX 440000 9* 14 16 46 51 95. 100 101 10 4

129 130 141
.MED ~00003 10- 39 42

5.3 Device Handlers Acceptable to System Programs

The following paragraphs provide listings of .DAT Slot assignments for

the various system programs and the I/O device handlers which may be

assigned to each. Standard assignments for 8K systems are indicated by

an asterisk (*).

It is imperative to note that only one I/O handler for a device may be

in core at the same time (i.e., PRA and PRB should not be brought in

together since there is no communication between their interrupt

handling routines).

5.3.1 FORTRAN IV (F4)

.DAT Slot Use

-11 Input

-12 Listing

-13 Output

5.3.2 MACRO-IS

.DAT Slot Use

-11 Input

Handler

TTA
PRA

*PRB
CDB
DTA,
DTB,
DTC,
DTD,
DTE,
DTF,

*TTA
LPA
VPA
PPA
DTA,
DTB,
DTD,
DTE,
DTF,

PPA
PPB

*PPC
DTA,
DTB,
DTD,
DTE,
DTF,

DKA, MTA (for 3 open files)
DKB (for 2 open files)
DKC, MTC (1 input file only)

g~~) (1 file only)

DKF, MTF (non-file-oriented)

DKA, MTA (for 3 open files)
DKB (for 2 open files)

~~~) (1 file only) 

DKF, MTF (non-file-oriented) 

DKA, MTA (for 3 open files) 
DKB (for 2 open files) 

g~~) (1 file only) 

DKF, MTF (non-file-oriented) 

Handler 

TTA 
PRA 

*PRB 
CDB 
DTA, DKA, MTA (for 3 open files) 

DTD, DKD } (1 file only) 
DTE, DKE 

5-21 



5 . 3 . 2 ( Con t . ) 

.DAT Slot Use Handler 

-10 Parameter TTA 
File *PRA 
Input PRB (recommended) 

CDB 
DTA, DKA, MTA (for 3 open files) 
DTD, DKD ) (1 file only) DTE, DKE 

-14 Macro Oef- TTA 
initions PRA 
File PRB 

COB 
*DTA, DKA, MTA (for 3 open files) 

OTD, OKD ) (1 file only) DTE, DKE 

..... >, 

-12 Listing *TTA 
Output LPA 

VPA 
PPA 
DTA, OKA, MTA (for 3 open files) 
DTD, DKO ) (1 file only) DTE, OKE 

-13 Output PPA 
PPB 

*PPB 

5.3.3 FOCAL 

.DAT Slot Use Handler -

3 Library TTA 
Input PRA 

PRB 
CDB 

*DTA, DKA, MTA (for 3 open files) 
DTC, DKC, MTC (1 input file only) 
OTD, DKD (1 file only) 
DTE, OKE (recommended - 1 file only) 

5 Library TTA 
Output PPA 

DTA, OKA, MTA (for 3 open files) 
DTD, DKD (1 file only) 
OTE, DKE (recommended - 1 file only) 
LPA 
VPA 

5-22 



5.3.3 (Cont. ) 

.DAT Slot Use Handler 

7 Data TTA 
File PRA 
Input PRB 

CDB 
*DTA, DKA, MTA (for 3 open files) 

DTC, DKC, MTC (1 input file only) 
DTD, DKD (1 file only) 
DTE, DKE (recommended - 1 file only) 

10 Data TTA 
File PPA 
Output *DTA, DKA, MTA (for 3 open files) 

DTD, DKD (1 file only) 
DTE, DKE (recommended - 1 file) 
LPA 
VPA 

5.3.4 EDIT and EDITVP 

.DAT Slot Use Handler 

-15 Scratch/ TTA 
Output VPA 

LPA 
PPA 

*DTA, DKA, MTA (required for input 
and output 

DTD, DKD ) (1 file only) 
DTE, DKE 

-14 Input TTA 
PRA 
PRB 
CDB 

*DTA, DKA, MTA (required for input 
and output) 

DTD, DKD ) (1 file only) DTE, DKE 

-10 Second- TTA 
ary *PRA 
Input PRB (recommended) 

CDB 

10 Display VPA 
Output 
(EDITVP 
only) 

5-23 



5.3.5 Linking Loader and DDT 

. DAT Sl·)t Use Handler 

-1 System PRA 
Library DTA, DKA (for 3 open user files) 
Input DTB, DKB (for 2 open user files) 

*DTC, DKC (1 input file only -
recommended if no user 

DTD, DKD 
DTE, DKE 

-4 User 
Program 
Input 

Same as specified above for 
. DAT Slot -1 . 

-5 External 
User 
Library 
Input 

NOTE 

since Linking Loader handlers can be used by 
the program being loaded, choice of bulk 
storage handlers should be made in terms of 
user requirements. 

5.3.6 PIP (Peripheral Interchange Program) 

I/O) 

PIP uses all the positive .DAT Slots (1 through 10) plus -2 and -3 for 

TTY J:/O. Prior to use, any non-standard device assignments should be 

made via the ASSIGN command to the Monitor. :f several functions are 

to be used with a variety of peripherals, assignment of these devices 

all at the same time avoids the necessity for returning to the Monitor 

to reassign devices and for repeatedly reloading PIP after each 

operation that requires a new device. Conversely, it may be necessary 

to clear certain unused .DAT Slots (i.e., ASSIGN NONE n, n, ... ,etc.) 

to prevent loading of standardly assigned handlers. This is particu

larly useful when operating in 8K with non-standard handlers the size 

of which, in combination with other standard handlers, could cause core 

overflow during loading of PIP (.SYSLD 1 error). 

NOTE 

The device handlers used with PIP should normally be 
those having the greatest capability (i.e., PRA, PPA, 
DTA, DKA, etc.). If both input and output are to occur 
on the same device (e.g., DECtape), separate .DAT 
Slots must be assigned. Both .DAT Slots must be 
assigned to the same handler; otherwise erroneous 
results will occur since there is no communication 
between the interrupt service routines of different 
handlers (e.g. DTA assigned to one. DAT Slot and 
DTB assigned to another). 

5-24 



PIP standard (SK) assignments are as follows: 

.DAT Slot Use Handler 

1 I/O *DTA 

2 I/O *DTA 

3 I/O *DTA 

4 I/O *TTA 

5 Input *PRA 

6 Output *PPA 

7 I/O *DTA 

10 I/O *DTA 

5.3.7 SGEN (System Generator) 

.DAT Slot Use Handler 

-15 Output *DTA, DKA 

-14 Input *DTA, DKA 

5.3.S PATCH 

.DAT Slot Use Handler 

-10 Second- *PRA 
ary DTA, DKA 
Input 

-14 I/O *DTA, DKA 
DTD, DKD 
OTE, OKE 

5.3.9 UPDATE 

. OAT Slot Use Handler 

-14 Input PRA 
*DTA, DKA, MTA 

-15 Output PPA 
PPB 
PPC 

*DTA, OKA, MTA 

-10 Second- *PRA 
ary DTA, DKA, HTA 
Input 

-12 Listing LPA 
*TTA 

VPA 
PPA 
DTA, DKA, MTA 

5-25 



5.3.10 DUMP 

5.3.11 CHAIN 

.DAT Slot 

-14 

-12 

.DAT Slot 

-4 

-1 

-5 

Use 

Input 

Listing 

Use 

Input 

System 
Library 

User 
Library 

Handler 

*DTA, DKA, MTA 
DTD, DKD 
DTE, DKE 

*TTA 
LPA 
VPA 
PPA 
DTA, DKA, MTA 
DTD, DKD 
DTE, DKE 

Handler 

PRA 
DTA, DKA, MTA 
DTB, DKB (recommended) 

*DTC, DKC, MTC} (Use only if no 
DTD, DKD other DT, DK, or 
DTE, DKE MT is assigned) 

Same as for .DAT -4 

NOTE 

Use the smallest handlers possible since they 
are not recoverable as user handlers (i.e., in 
the overlay system). 

5.3.12 EXECUTE 

.DAT Slot Use Handler 

-4 CHAIN-Built PRA 
Overlay Sys- DTA, DKA, MTA 
tem Input DTB, DKB 
(XCT, XCU *DTC, DKC, MTC (use only if not shared 
Files) with overlay system) 

DTD, DKD 
DTE, DKE 

5-26 



5.3.13 SRCCOM (Source Compare) 

.DAT Slot Use Handler 

-15 Old File TTA (if not assigned to -14) 
Input PRA ( if not assigned to -14) 

CDB (if not assigned to -14) 
*DTA, DKA, MTA 

DTD, DKD 
DTE, DKE 

-14 New File TTA (if not assigned to -IS) 
Input PRA (if not assigned to -IS) 

CDB (if not assigned to -IS) 
*DTA, DKA, MTA 

DTD, DKD 
DTE, DKE 

-12 Listing *TTA 
PPA 
LPA 
VPA 
DTA, DKA, MTA 
DTD, DKD 
DTE, DKE 

5.3.14 DTCOPY (DECtape Copy) 

.DAT Slot Use Handler 

-14 Input *DTA, DKA 
DTD, DKD 
DTE, DKE 

-15 Output *DTA, DKA 
DTD, DKD 
DTE, DKE 

5.3.15 8TRAN (PDP-8 to PDP-IS Translator) 

.DAT Slot Use Handler 

-15 Input PRA 
CDB 
TTA 

*DTA, DKA, MTA 
DTD, DKD 
DTE, DKE 

-14 Output PPA 
LPA 
TTA 
VPA 

*DTA, DKA, MTA 
DTD, DKD 
DTE, DKE 

5-27 



5.4 SUMMARY OF STANDARD I/O Hfu~DLER FEATURES 

5.4.1 TTA. (Teletypewriter) 

5.4.1.1 General Description - TTA. (469 10 registers) is embedded in 

the Resident Monitor and provides all necessary functions for teletype

writer I/O. All functions (described below), except .READ and .WRITE, 

refer to action taken when either the teleprinter or the keyboard is 

addressed. 

5.4.1.2 Functions 

Mnemonic Code 

.INIT 1 

.DLETE } .RENAM 2 

.FSTAT 

.SEEK 3 

.ENTER 4 

. CLEAR 5 

.CLOSE 6 

.MTAPE 7 

. READ 10 

. WRITE 11 

.WAIT, .WAITR 12 

.TRAN 13 

Action 

a. Return standard buffer size (34 10 ) 

b. Assign return address for certain 
control characters (CTRL C, CTRL T, 
CTRL p) from contents of CAL 
ADDRESS+2. Bits 0 and 1 in 
CAL+2 are set to designate caller: 

Bit 0-1 Caller 

01 
10 
00 

Moni tor (tC) 
DDT (tT) 
All others (tP) 

c. Set I/O UNDERWAY indicator 

d. Print Carriage RETURN/LINE FEED 
(CR/LF) 

Ignored 

a. Set I/O UNDERWAY indicator 

b. Print CR/LF 

c. Wait for completion of I/O. 

Ignored 

a. Set I/O UNDERWAY indicator 

b. Set up to accept characters 
from keyboard 

a. Set I/O UNDERWAY indicator 

b. Print 

Test for I/O UNDERWAY 

( 1) If busy, return to CAL(.WAIT) 
or to address in CAL+2 (. WAITR) 

(2) If non-busy, return to CAL+2 
( . WAIT) or to CAL+3 ( . WAITR) 

Illegal function IOPS 6 

5-28 



5.4.1.3 Legal Data Modes 

lOPS ASCII (Mode 2) 

Image Alphanumeric (Mode 3) 

5.4.1.4 Function Characters - The following function characters may 

have special significance when input or output in lOPS ASCII Mode. In 

Image Alphanumeric Mode, these characters are treated as ordinary ASCII. 

Character 

Carriage RETURN (015 S) 

FORM Feed (014 S) 
or 

VT (Vertical Tab) (013 S) 

Horizontal TAB (OIlS) 

LINE FEED (012 8) 

Transfer 
Direction Action 

Input Insert in the user's buffer 

Output Output Carriage RETURN/LINE FEED 
operation (015/012) 

Input Accept 33,175 or 176 and map into 
user's buffer as 175 

Output Output Carriage RETURN/LINE FEED 

Input Insert in user's buffer, as applicable 

Output Output FORM Feed function 

Input Insert in user's buffer 

Output Model 35 - Output (OIlS) TAB function 

Input 

Model 33 - Output sufficient number 
of spaces (040 8) to posi
tion the printer at column 
9,17,25, ... ,70. 

Delete previous character typed and 
echo a reverse slash (,,). 

Output Ignore 

Input Insert in user's buffer 

Output Ignore all leading LINE FEEDs and 
output all others. 

Input Delete all characters typed since 
last carriage RETURN, and echo a 
commercial at (@) sign. If output 
is underway, terminate printing and 
output a Carriage RETURN/LINE FEED 
operation. 

Output Ignore 

Input/Output Ignore 

5.4.1.5 Program Control Characters - The following Program Control 

Characters, regardless of mode of operation or of transfer direction, 

are recognized when typed on the keyboard. The current I/O function is 

stoppec and the character is decoded as described below 1
: 

lCharacter will be ignored (no echo) for CTRL C, P and T if respective 
.INIT has not been performed. 

5-29 



Character 

CTRL C (echoes tC) 

CTRL P (echoes tp) 

CTRL T (echoes tT) 

CTRL S (echoes tS) 

CTRL Q (echoes tQ) 

Action 

Transfer control to the address specified 
as return in the .INIT (to the TTY) per
formed by the Monitor. 

Transfer control to the address specified 
as return in the .INIT (to the TTY) per~ 
formed by the user (other than Monitor 
or DDT). 

Transfer control to the address specified 
as return in the .INIT (to the TTY) 
performed by DDT. 

Transfer control to the address specified 
in .SCOM+6 (location 106 8 in the Monitor) . 

Transfer control to Monitor Save routine 
(KM9SAV) . 

5.4.1.6 Unrecoverable Errors (No Program Initiated Recovery) 

a. Illegal Data Mode - rops 7 

b. Illegal Function - lOPS 6 

5.4.1.7 Restriction - TTY I/O can only be requested from mainstream 

in API systems, since the teleprinter is not connected to the API. 

5.4.2 PP (paper Tape Punch) 

5.4.2.1 General Description - Three handlers are provided for use with 

the Paper Tape Punch. PPA (37710 registers) is the most general and 

operates in all data modes. PPB (270 10 registers) accepts data in all 

modes except lOPS ASCII. PPC (210
10 

registers) accepts raps Binary 

only. 

5.4.2.2 Functions 

Mnemonic 

.INIT 

.DLETE } .RENAM 

. FSTAT 

.SEEK 

.ENTER 

. CLEAR 

. CLOSE 

Code 

1 

2 

3 

4 

5 

6 

Action 

a. Return standard buffer size (52 10 ). 

b. .SETUP - no API. 

c. Punch two fanfolds of leader. 

Ignore 

Illegal function (lOPS 6) 

Ignore 

Ignore 

a. Allow previous output to terminate. 

b. Punch EOF if lOPS Binary. 

c. Punch two fanfolds of trailer. 

d. Allow trailer punching to terminate. 

5-30 



Paper Tape Punch - Functions (Cant.) 

Mnemonic 

.MTAPE 

. READ 

. WRITE 

Code 

7 

10 

11 

. WAIT, . WAITR 12 

.TRAN 13 

5.4.2.3 Legal Data Modes 

a. lOPS Binary (Mode 0) 

b. IMAGE Binafy (Mode 

c. lOPS ASCII (Mode 2) 

Action 

Ignore 

Illegal function (lOPS 6) 

a. Allow previous output to terminate . 

p. Output buffer. 

Check I/O underway 

(1) Busy; Return to CAL (.WAIT) or to 
address in CAL+2 (.WAITR) 

(2) Non-busy~ Return to CAL+2 (.WAIT) 
or to CAL+3 (.WAITR). 

Illegal function (lOPS 6) 

PPA. , PPB. , PPC. 

I) PPA. , PPB. 

PPA. 

d. IMAGE Alphanumeric (Mode 3) PPA. , PPB. 

e. Dump (Mode 4) PPA. , PPB. 

5.4.2.4 Vertical Control Characters (lOPS ASCII only) - May appear as 

only first character of line and will be ignored if elsewhere in line; 

if no vertical control charactei at beginning of line, a line feed 

(012
8

) will be used. 

a. LINE FEED (012 8 ) - Output 

b. VT (Vertical Tab 013
8

) - Output, followed by four RUBOUTs (177 8) 

c. FORM Feed (014 8) - Output, followed by 40 S Nulls (OOOS) 

5.4.2.5 Horizontal Control Characters (lOPS ASCII only) 

TAB (011
8

) - Output followed by one RUBOUT (177 8 ) 

5.4.2.6 Recoverable Errors 

No tape in punch Monitor error lOPS 4 

a. Put tape in punch 

b. Type CTRL R 

5-31 



a. Illegal function Monitor error rops 6 

a. . SEEK 

b. . READ 

c. . TRAN 

b. Illegal data mode Monitor error lOPS 7 

5.4.2.8 Restriction - In API systems, the Paper Tape Punch can be 

called only from mainstream, since the punch is not connected to the 

API. 

5.4.3 PR (Paper Tape Reader) 

5.4.3.1 General Description - Two handlers are provided for use with 

the Paper Tape Reader. PRA. (444 10 registers) operates in all data 

modes, while PRB. (294
10 

registers) accepts rops ASCII only. 

5.4.3.2 Functions 

Mnemonic Code 

.INIT 1 

.DLETE 

. RENAM 2 

.FSTAT 

.SEEK 3 

.ENTER 4 

. CLEAR 5 

. CLOSE 6 

.MTAPE 7 

. READ 10 

. WRITE 11 

.WAIT, .WAITR 12 

.TRAN 13 

Action 

a. Return standard line buffer size 
(52

10
) 

b. .SETUP API channel register 50 8 

c. Clear I/O UNDERWAY indicator 

Ignore 

Ignore 

Illegal function (lOPS 6) 

Illegal function (lOPS 6) 

Allow previous input to finish and then 
clear I/O UNDERWAY indicator. 

Ignore 

a. Allow previous input to be completed. 

b. Input line or block of data (see 
modes below). 

Illegal function (lOPS 6) . 

Check I/O underway 

(1) Busy: Return to CAL (.WAIT) or to 
address in CAL+2 (.WAITR) 

(2) Non-busy: Return to CAL+2 (.WAIT) 
or to CAL+3 (.WAITR) 

Illegal function (lOPS 6) 

5-32 



5.4.3.3 Legal Data Modes 

a. lOPS ASCII (Mode 2) 

PRA., PRB. 

b. lOPS Binary (Mode 0) 

PAA. 

c. Image Alphanumeric 

(Mode 3) PAA. 

d. Image Binary (Mode 1) 

PAA. 

e. Dump (Mode 4) PRA. 

(1) Constructs line buffer header, computing: 

(a) Word pair count 
(b) Data mode 
(c) Data validity bits 

(2) Packs characters into the line buffer 
in 5/7 ASCII, checking parity (eighth 
bit, even), on each character. 

(3) Allows vertical form control characters. 
(FF, LF, VT) only in character position 
1 of the line buffer. Otherwise, 
ignored. 

(4) Terminates reading on CR or line buffer 
overflow. In the latter case, tape is 
moved past the next CR to be encountered. 

(1) Reads binary data in alphanumeric mode, 
checking parity (seventh h61e, odd) on 
each frame. 

(2) Accepts line buffer header at head of 
input data, modifying data validity 
bits if parity or checksum error (or 
short line) have occurred. 

(3) Terminates reading on overflow of word 
pair count in line buffer header or 
word count in .READ macro, whichever is 
smaller, moving tape to end of line or 
block if necessary. 

(1) Constructs line buffer header, computing: 

(a) Word pair count 
(b) Data mode 

(2) Stores characters, without editing, or 
parity checking in the line buffer, one 
per register. 

(3) Terminates reading as a function of 
.READ macro word count. 

Same as Image Alphanumeric; however a binary 
read is issued to the PTR. 

Same as Image Alphanumeric except a binary 
read is issued to the PTR. No header is 
constructed; loading begins at the core 
address specified in the .READ macro. 

NOTE 

An end-of-tape condition causes the PTR 
interrupt service routine to terminate 
the input line, turning off the I/O 
UNDERWAY program indicator and marking 
the header (data mode bits) as an EOM 
(end-of-medium) for all modes except 
Dump. 

5-33 



5.4.3.4 Unrecoverable Errors 

a. Illegal function Monitor error lOPS 6 

(1) .ENTER 

(2) . CLEAR 

(3) .WRITE 

(4) .TRAN 

b. Illegal Data Mode Monitor error lOPS 7 

5.4.4 DT (DECtape) 

5.4.4.1 General Description - Six handlers are available for DECtape 

operations. 

DTA. (2296 10 registers) is the most general DECtape handler issued with 

the ADVANCED Software System. DTA. has a simultaneous 3-file capacity, 

either input or output. Files may be referenced on the same or differ

ent DECtape units, except that two or more output files may not be on 

the same unit. All data modes are handled as well as all lOPS func

tions except .MTAPE. Three 256 10-word data buffers, three 32 10 -word 

Directory Bit Maps, and three 32 l0 -word File Bit Maps are included in 

the body of the handler. 

DTB. (1554 10 registers) has a simultaneous 2-file capacity, one input 

and one output. Both files may be on the same or different units. 

DTB. transfers data only in lOPS ASCII or lOPS Binary Data modes. In

cluded in the handler is space for two 256 10-word buffers, one 3210 -

word Directory Bit Map, and one 32
l0

-word File Bit Map. Functions 

included are: .INIT, .ENTER, . READ, .WAIT, .WAITR, .SEEK, .CLOSE, and 

.WRITE. 

DTC. (689 10 registers) is the most limited (and conservative in terms 

of core allocation) DECtape handler in the ADVANCED Software System. 

DTC. is a READ ONLY handler with a I-file capacity requiring no space 

for bit maps and only one 256 10-word DECtape buffer to handle either 

lOPS ASCII or lOPS Binary input (and no other). Functions included are: 

. INIT , . SEEK, . CLOSE, . READ, . WAIT, . WAITR. 

DTD. (159310 registers) has full lOPS function capabilities including 

.MTAPE commands (REWIND, BACKSPACE). It allows for only one file refer

ence, either input or output, at any given time. Sequential file refer

ences are permitted. All data modes are acceptable to DTD .. One 256 10-

word data buffer, one 32 10-word Directory Bit Map, and one 32 10-word 

File Bit Map are included. 

DTE. (146810 registers) has the same capabilities as DTD. except the 

.MTAPE function is not allowed. 

DTF. (617 10 registers) is a non-file-oriented, multi-unit handler which 

will accommodate (serially) up to eight DECtape units, both input and 

output. When the last block on a tape has been accessed, raps 4 will 

5-34 



be typed. The user may continue onto another tape simply by dismounting 

the current tape, replacing it with another, and typing CTRL R. If the 

tape is not replaced at this time, and CTRL R is typed, the contents 

of this tape will be lost if a .WRITE operation is being performed. 

The handler accepts lOPS ASCII and Binary with no internal buffering. 

Legal functions are as follows: .CLOSE, . READ, .WRITE, .MTAPE, .INIT, 

.WAIT, .WAITR. 

5.4.4.2 Functions 

Mnemonic Code Action 

. INIT 

.. DLETE 

. RENAM 

. FSTAT 

1 a. Return standard line buffer size (255
10

) 

b. .SETUP - API channel register 448 

c. Set direction switch (input or output) 

NOTE 

In order to change transfer direction when operating 
in a file oriented environment, a new .INIT must 
first be executed. 

} 2 

a. .DLETE 

(1) Examines specified Directory for 
presence of desired file name . 
If not found, AC=O upon return 
to user. 

(2) Deletes file name (clears to 0) 
from the Directory of the 
specified unit. 

(3) Clears file bit map corresponding 
to deleted entry. 

(4) Clears corresponding occupancy 
bits in Directory bit map. 

(5) Records modified Directory and 
file bit map block on specified 
unit. 

b. .RENAM 

(1) Examines specified Directory for 
presence of desired file name. 
If not found, AC = 0 upon return 
to user. 

(2) Changes file name in Directory 
to new one specified by user 
program (no change is made to 
first block pointers) . 

(3) Records modified Directory on 
specified unit. 

c. .FSTAT examines specified Directory for 
presence of desired file name. If not 
found, AC = a upon return to user. If 
found, AC = first block number of file. 
Also, bits a - 2 of CAL ADDRESS + 2 = 
1 = DECtape Directory type. 

5-35 



DECtape Functions (Cont.) 

Mnemonic Code 

.SEEK 3 

.ENTER 4 

. CLEAR 5 

. CLOSE 6 

Action 

a. Loads into core the Directory of the 
unit specified if the Directory is 
not already in core. 

b. Checks for presence of named file. 
(Error return to Monitor if not 
found.) 

c. Begins transfer of first block of 
file into handler buffer area, over
laying Directory Entry Section but 
not Directory Bit Map. 

d. Declares unit to be file oriented. 

a. Loads into core the Directory of the 
unit specified if the Directory is 
not already in core. 

b. Checks for presence of named file. 
If present, pointer to that entry 
is saved for update at .CLOSE time. 
If not present, empty slot is found 
for file name insertion at .CLOSE 
time. 

c. Examines Directory Bit Map for free 
block and saves that block number 
for first transfer out and for 
insertion in Directory Entry Section 
at .CLOSE time. 

d. Declares unit to be file oriented. 

a. Zeroes out File Bit Map blocks 71 
through 77 on specified DECtape unit. 

b. Initializes DECtape Directory block 
100 to indicate that eight blocks 
(71 through 100) are occupied. 

a. File-oriented Operation 

(1) On input, clears Internal program 
switches.' On output, writes 
2-cell EOF line as last line 
in output buffer (lOPS ASCII 
and Binary only) and outputs last 
data buffer with the data link = 
777777. 

(2) Loads into core the File Bit Map 
corresponding to the Directory 
Entry in order to clear the 
Directory Bit Map of bits for 
blocks formerly occupied by this 
file. 

(3) Records newly constructed File Bit 
Map. 

(4) Loads Directory into memory, 
enters new entry and records 
Directory again with new entry 
and updated Directory Bit Map. 

(5) Clears internal program switches. 

5-36 



DECtape Functions (Cant.) 

Mnemonic 

.MTAPE 

. READ 

.WRITE 

.WAIT, 

.WAITR 

.TRAN 

Code 

7 

10 

11 

12 

13 

Action 

b. Non-file-oriented Operation (DTD. and 
DTF. only) 

During output, a three word EOF 
block is written as the last DECtape 
block of the logical record, as 
follows: 

001005 
776773 
000000 

The remaining words of the EOF DECtape 
block are zero. 

a. Rewind 

(1) Sets internal switches such that 
data transfer will begin at block 
a in the forward direction. 

(2) Declares the unit to be non-file
oriented (i.e., data will be 
recorded, beginning at block 0, 
and continuing every fifth block 
thereafter). When EaT is reached, 
recording continues in the reverse 
direction. Five passes are required 
to record the entire tape (1100 8 blocks) . 

b. Backspace - Decrements the internal 
block pointer to the next block to 
be transferred. 

c. Space Forward One Record - The block 
pointer is incremented by 5 (no 
physical action). -

d. Other .MTAPE functions ignored. 

a. Inputs line from DECtape handler buffer 
or block of data to user area. (See 
5.4.4.3 for data modes.) 

b. Initiates input of next DECt?pe block 
when preceding block has been emptied. 

a. Transfers line or block of data from 
user area to DECtape handler buffer. 

b. Outputs buffer when full, examining 
Directory Bit Map for free block 
number to store as Data Line (word 
377

8
) of current block output. 

Checks I/O underway 

(1) Busy: Return to CAL (.WAIT) or to 
address in CAL + 2 (.WAITR) 

(2) Non-busy: Return to CAL + 2 (.WAIT) 
or to CAL + 3 (.WAITR) 

Transfers (in or out) the number of words 
specified by the user's word count to/from 
the core area indicated in the .TRAN macro 
to/from the specific block(s) desired by 
the user. Data will be transferred to/from 
contiguous DECtape blocks in the forward 
or reverse direction (also declared by the 

5-37 



DECtape Functions (Cont.) 

Mnemonic 

5.4.4.3 Legal Data Modes 

Code Action 

user). On input, transfer stops on word 
count overflow; however, if the word count 
is not equivalent to an integral number of 
DECtape blocks, the remainder of the last 
block will be filled with zeros. 

lOPS ASCII (Mode 2) DTA., DTB., DTC., DTD., DTE., DTF. 

lOPS Binary (Mode 0) DTA., DTB .. , DTC., DTD., DTE., DTF. 

Image Alphanumeric (Mode 3) DTA., DTD., DTE. 

Image Binary (Mode 1) DTA., DTD., DTE. 

Dump (Mode 4) DTA., DTD., DTE. 

5.4.4.4 Recoverable Errors 

Select Error l 

5.4.4.5 Unrecoverable Errors 

a. Illegal Function 

b. Illegal Data Mode 

c. File Still Active 

d. .SEEK, .ENTER 
Not Executed 

e. DECtape Error 

f. File Not Found 

g. DECtape Directory 
Full 

Monitor Error lOPS 4 

a. Ready the desired DECtape unit 

b. Type CTRL R on the TTY. 

Monitor Error lOPS 6 
See 5.4.4.1 for legal functions for 
each DT handler. 

Monitor Error lOPS 7 
(1) .SEEK with .lNlT for output. 
(2) .ENTER with .lNlT for input. 
(3) See 5.4.4.1 for .READ, .WRITE legal 

data modes. 

Monitor Error lOPS 10 
.SEEK, .ENTER, .CLEAR or .OPER when last 
file has not been closed. 

Monitor Error lOPS 11 
.READ or .WRITE executed prior to .SEEK 
or .ENTER (or .MTAPE-REWlND) 

Monitor Error lOPS 12 
(1) Mark Track Error 
(2) EaT during read or write 

Monitor Error lOPS 13 
File name not found in Directory on a 
.SEEK 

Monitor Error lOPS 14 
Directory Entry Section found full on 
an .ENTER 

lA "Select" error is equivalent to a hardware not ready condition. 

5-38 



Unrecoverable Errors (Cont.) 

h. DECtape Full 

i. Output Buffer 
Overflow 

j. Excessive Number of 
Files Referenced 

k. Two output files 
on same unit 

1. Illegal Word Pair 
Count (WPC 

5.4.5 RF (RF15 DECdisk) 

Monitor Error lOPS 15 
All DECtape blocks occupied on a 
.WRITE or .ENTER 

Monitor Error lOPS 16 
(1) Output line (lOPS ASCII or Binary) 

greater than 255 10 cells (including 
header) . 

(2) Output block (Image Binary or Image 
Alphanumeric) greater than 255 10 cells (excluding header) . 

Monitor Error lOPS 17 
See 5.4.4.1 for file reference limitations. 

Monitor Error lOPS 22 
Two output files open simultaneously 
on the same unit 

Monitor Error lOPS 23 
WPC = 0, or greater than 177 

The following naming convention is observed with the handlers described 

below. Although the RF15 handlers are named RFA., RFB., etc., the , 
system software expects handler names such as: DKA., DKB., etc. There-

fore, the .GLOBL name given in these handlers is DKn. All user refer

ences must be to DK rather than RF. 

5.4.5.1 General Description - The following six handlers are provided 

for DECdisk operation. 

RFA. (2269 10 registers) is the most general Disk handler for the RF/RS 

Disk issued with the ADVANCED Software System. RFA. has a simultaneous 

3-file capacity, either input or output. Files may be referenced on 

the same or different Disk units, except that two or more output files 

may not be on the same unit. All Data Modes are handled as well as 

all lOPS functions except .MTAPE. Three 256 l0 -word data buffers, three 

3210-word Directory Bit Maps, and three 32
l0

-word File Bit Maps are 

included in the body of the handler. 

RFB. (1536 10 registers) has a simultaneous 2-file capacity, one input 

and one output. Both files may be on the same or different units. RFB. 

transfers data only in lOPS ASCII or lOPS Binary Data Modes. Included 

in the handler is space for two 256
10

-word data buffers, one 32 l0 -word 

Directory Bit Map, and one 32 10-word File Bit Map. Functions included 

are: 

.INIT 

.SEEK 
.ENTER 
. CLOSE 

. READ 

.WRITE 

5-39 

.WAIT, .WAITR 



RFC. (655
10 

registers) is the most limited (and conservative in terms 

of core allocation) Disk handler in the ADVANCED Software System. RFC. 

is a read-only handler with a I-file capacity requiring no space for 

Bit Maps and only one 256
l0

-word data buffer to handle either lOPS ASCII 

or lOPS Binary input (and no other). Functions included are: 

.INIT 

.SEEK 

. CLOSE 

. READ 

.WAIT, .WAITR 

RFD. (1517
10 

registers) has full lOPS function capabilities including 

.MTAPE commands (REWIND, BACKSPACE). It allows for only one file 

reference, either input or output, at any given time. Sequential 

file references are permitted. All data modes are acceptable to RFD .. 

One 256 10 -word data buffer, one 32
10

-word Directory Bit Map, and one 

32 910 )-word File Bit Map are included. 

RFE. (1436 10 registers) is the same as RFD. except that it will not 

handle .MTAPE commands. 

RFF. (55J IO registers) is a non-file-oriented, multi-unit handler which 

will accommodate (serially) up to four RF15 DECdisk platters (eight 

logical units), both input and output. When either the last block 

(forward direction) or first block (backspacing) of a unit has been 

accessed, an lOPS 4 message will be typed. The user may continue onto 

the next sequential (higher or lower) disk unit by typing CTRL R. The 

handler accepts both lOPS ASCII and Binary with no internal buffering. 

Legal functions are as follows: 

. READ .WRITE .MTAPE .INIT .WAIT .WAITR . CLOSE 

5.4.5.2 Functions 

Mnemonic Code Action 

.INIT 1 a. Return standard line buffer size (255 10 ) 

b. .SETUP API channel register 63 8 
c. Set direction switch (input or output) 

NOTE 

In order to change direction when operating in a 
file-oriented environment, a new .INIT must first 
be executed. 

.DLETE 

. FSTAT 

.RENM 
} a. 

2 

.DLETE 

(1) Examines specified Directory 
for presence of desired file 
name. If not found, AC = 0 
upon return to user. 

5-40 



DECdisk Functions (Cont.) 

Mnemonic Code 

.SEEK 3 

.ENTER 4 

Action 

(2) Deletes file name (clears to 0) 
from the Directory of the 
specified unit. 

(3) Clears File Bit Map corresponding 
to deleted entry. 

(4) Clears corresponding occupancy 
bits in Directory Bit Map. 

(5) Records modified Directory and 
File Bit Map block on specified 
unit. 

b. .~N~ 

(1) Examines specified Directory 
for presence of desired file 
name. If not found, AC = 0 
upon return to user. 

(2) Changes file name in Directory 
to new one specified. by user 
program (no change is made to 
first block pointers) . 

(3) Records modified Directory on 
specified unit. 

c. . FSTAT 

Examines specified Directory for 
presence of desired file name. If 
not found, AC = 0 upon return to 
user. If found, AC = first block 
number of file. Also, bits ~-2 of 
CAL address +2 = 5 to designate the 
DECdisk .. 

a. Loads into core the Directory of the 
unit specified if the Directory is 
not already in core. 

b. Checks for presence of named file. 
(Error return to Monitor if not 
found.) 

c. Begins transfer of first block of 
file into handler buffer area, over
laying Directory Entry section but 
not Directory Bit Map. 

d. Declares unit to be file-oriented. 

a. Loads into core the Directory of the 
unit specified if the Directory is 
not already in core. 

b. Checks for presence of named file. 
If present, pointer to that entry is 
saved for update at .CLOSE time. If 
not present, empty slot is found for 
file name insertion at .CLOSE time. 

c. Examines Directory Bit Map for free 
block and saves that block number for 
first transfer out and for insertion 
in Directory Entry Section at .CLOSE 
time. 

d. Declares unit to be file-oriented. 

5-41 



DECdisk Functions (Cont.) 

Mnemonic Code 

. CLEAR 5 

. CLOSE 6 

.MTAPE 7 

. READ 10 

.WRITE 11 

Action 

a. Zeroes out File Bit Map blocks 71S 
through 778 on specified disk 
unit. 

b. Initializes Disk Directory block 
100 to indicate that 71 10 blocks 
(71 8 through 100 8 and 1000S 
through 1077

8
) are occupied. 

a. On input, clears internal program 
switches. On output, writes 2-cell 
EOF line as last line in output 
buffer (lOPS ASCII and Binary only) 
and outputs last data buffer with 
the data link = 777777. 

b. Loads into core the File Bit Map 
corresponding to the Directory 
Entry in order to clear the Directory 
Bit Map of bits for blocks formerly 
occupied by this file. 

c. Records newly constructed File Bit Map. 

d. Loads Directory into Memory, enters 
new Entry and Records Directory 
with new entry and updated Directory 
Bit Map. 

e. Clears internal program switches. 

a. Rewind 
(1) Initializes internal switches 

to permit data transfer beginning 
at block O. 

(2) Declares the unit to be non-file
oriented (i.e. data will be 
recorded starting at block 0 and 
sequentially thereafter. 

b. Backspace - Decrements the internal 
block pointer to point to the next 
previous sequential record. 

c. Space Forward One Record - The block 
pointer is incremented by one to point 
to the next sequential record. 

d. Other .MTAPE functions ignored. 

a. Input line or block of data from 
handler's buffer to user's buffer. 

b. When handler's buffer is empty, input 
next block from the disk. 

a. Output line or block of data from 
user's buffer to the handler's 
buffer. 

b. When handler's buffer is full, output 
a block of data to the disk examining 
the Directory Bit Map for the next 
free block number to store as the 
data link (word 377 S) of the current 
block output. 

5-42 



DECdisk Functions (Cant.) 

.WAIT 

.WAITR 

.TRAN 

12 

13 

5.4.5.3 Legal Data Modes 

Check I/O UNDERWAY: 

(1) If busy, return to CAL (.WAIT) 
or to the address in CAL + 2 
(. WAITR) . 

(2) If not busy, return to CAL + 2 
(. WAIT) or to CAL + 3 (. WAITR) . 

Transfer the number of words specified 
(.TRAN arg) to (or from) the core area 
specified (.TRAN arg) from (or to) the 
disk block specified (.TRAN arg). Data 
is transferred from (or to) contiguous 
disk blocks in the forward direction 
(.TRAN arg). Transfer terminates when 
the word count (.TRAN arg) overflows. 
During output, however, if the word count 
is not equal to an integral number of 
disk blocks, the remaining words in the 
last block are zero-filled. 

a. lOPS ASCII (Mode 2) RFA., RFB., RFC., RFD., RFE., RFF. 

b. IOPS Binary (Mode 0) RFA., RFB., RFC., RFD., RFE., RFF. 

c. Image Alphanumeric (Mode 3) RFA., RFD., RFE. 

d. Image Binary (Mode 1) RFA., RFD., RFE. 

e. Dump (Mode 4) RFA., RFD., RFE. 

5.4.5.4 Recoverable Errors 

Device Not Ready 

5.4.5.5 Unrecoverable Errors 

a. Illegal Function 

b. Illegal Data Mode 

c. File Still Active 

Monitor Error IOPS 4 

a. WRITE ENABLE the appropriate disk unit. 

b. Type CTRL R on the TTY. 

Monitor Error IOPS 6 
See 5.4.5.1 for legal handler functions 

Monitor Error IOPS 7 
(1) .SEEK executed with disk .INITed 

for output. 
(2) .ENTER executed with disk .INITed 

for input. 

(3) See 5.4.5.1 for legal data modes 
for .READ and .WRITE. 

Monitor Error lOPS 10 
.SEEK, .ENTER, . CLEAR, .DLETE, .FSTAT 
or .RENAM executed before a previously 
opened file has been .CLOSEd. 

5-43 



d. .SEEK/.ENTER 
Not Executed 

e. Disk Error 

f. File Not Found 

g. Disk Directory Full 

h. Disk Full 

Monitor Error lOPS 11 
A .READ or .WRITE has been executed 
prior to a .SEEK, .ENTER, or .MTAPE (Re
wind) . 

Monitor Error lOPS 12 
EaT encountered during a .READ or .WRITE 
operation. 

Monitor Error rops 13 
File named in a .SEEK not found in disk 
directory. 

Monitor Error lOPS 14 
Execution of .ENTER finds directory full. 

Monitor Error lOPS 15 
No free block can be found during attempt 
to execute .WRITE or .ENTER. 

NOTE 

If block 0 is selected as the first block of a file 
(.WRITE or .ENTER) the disk unit will be declared 
full (lOPS 15). Otherwise, execution of .FSTAT 
would produce ambiguous results, since .FSTAT returns 
either O's in the AC, if a file is not found, or the 
first block number of the file, if it is found. 

i. Output Buffer 
Overflow 

j. Excessive Number 
of Files 

~. Illegal Disk 
Address 

1. Two Output Files 
on the Same unit 

m. Illegal Word Pair 
Count 

5.4.6 MT (Magnetic Tape 

Monitor Error lOPS 16 
(1) The output line (lOPS Modes) is 

greater than 25510 words (includ
ing header) . 

(2) The output block (Image Modes) is 
greater than 255

10 
(excluding 

header) • 

Monitor Error lOPS 17 
Refer to 5.4.5 1 for file reference 
limitations. 

Monitor Error lOPS 21 
(1) Reference made to a nonexistent 

disk. Bits 15-17 of the CAL 
address output with the error 
message indicate the number of the 
disk platter referenced. 

(2) An illegal disk address was cal
culated from a legal initial start
ing address. The offending logical 
block number is output with the 
error message. 

Monitor Error lOPS 22 
Two output files are simultaneously open 
in the same unit. 

Monitor Error lOPS 23 
Word pair count is 0 or greater than 177 8 . 

5.4.6.1 General Description - Three handlers are provided for use with 

TU20 and TU20A Magnetic Tape Drives. 

5-44 



MTA. (2432 10 registers) is designed for file-oriented operations only. 

Up to three files may be concurrently referenced, all on different 

transports, either input or output. All data modes are allowed and all 

functions are legal except .MTAPE. 

MTC. (683
10 

registers) is a read-only handler having a single file 

capacity. Legal data modes are lOPS ASCII and Binary. Sequential file 

references are allowed. Legal functions are: 

.SEEK .INIT . CLOSE . READ .WAIT .WAITR 

MTF. (624
10 

registers) is a non-file-oriented, multi-unit handler which 

will accommodate (serially) up to eight concurrently open magnetic tape 

transports, both input and output. Only non-file-oriented operations 

are permitted. No internal buffering is performed. Legal data modes 

are IOPS ASCII and Binary. Legal functions are: 

.INIT . READ 

5.4.6.2 Functions 

Mnemonic 

.INIT 

.DLETE 

. RENAM 

. FSTAT 
} 

. WRITE 

Code 

I 

2 

.WAIT .WAITR .MTAPE (Rewind and 
Backspace) 

Action 

a. Return standard buffer size (25510 ) 

b. .SETUP - API channel register 45 8 
c. Set transfer direction (input or 

output) 

d. If first .INIT to this unit, assign 
default parity density and track-count 
settings (i.e., parity is odd, 
density is 800 BPI and track-count is 
as specified by .SCOM+4, bit 6: 

o = 7 channel 
1 = 9 channel) 

e. Indicate that the referenced drive' 
is open for I/O transfers. 

a. .DLETE 

(1) Examine the directory on the 
referenced unit for a file of 
the name specified. 

(2) If file is found, remove the 
name from the directory, zero 
the applicable accessibility bit, 
decrement the active file count, 
and re-record the directory. 

(3) Return with the AC ~ O. 

5-45 



Magnetic Tape Functions (Cont.) 

Mnemonic Code 

.SEEK 3 

.ENTER 4 

Action 

b. .RENAM 

(1) Search the directory on the 
referenced unit for an active 
file of the name given. If no 
file is found, return to the 
user with AC = O. 

(2) If file is found, replace the 
directory file name entry with 
the new file name and re-record 
the directory. 

(3) Return with the AC ~ o. 

c. . FSTAT 

(1) Set bits 0 through 2 of CAL +2=4. 

(2) Search directory for a file of 
the name given. If no file is 
found, return with the AC = O. 

(3) If a file is found, return with 
the AC = relative position of 
the file on tape (1 through 
374 8). Also, bits 0 through 2 
of CAL address +2 = 4 to 
designate Magtape. 

a. Check that no file is open on the 
referenced unit. Take error return 
(IOPS 10) if so. 

b. Check that the referenced unit has 
been .INIT'ed for input. Take error 
return (IOPS 7) if not. 

c. Search directory for a file of the 
name given. If no file is found, 
error return (IOPS 13) to Monitor. 

d. Physically position the tape to read 
the first data block on the file. The 
handler-calculated file name must 
match the file name in the header 
label (IOPS 40 if not) . 

e. Indicate a file open for reading on 
the referenced unit. 

a. Check that no file is open on the 
referenced unit. Take error return 
(IOPS 10) if so. 

b. Check that the referenced unit has 
been declared an output unit. Error 
return Crops 7) if not. 

5-46 



Magnetic Tape Functions (Cant.) 

Mnemonic Code Action 

.ENTER (Cant.) c. Check that space is available in the 

. CLEAR 5 

. CLOSE 6 

File Name Entry Section of the 
Directory for this file name. Take 
error return (lOPS 14) if not. 

d. Check that space is available in 
the Accessibility Map for this file. 
Take error return (lOPS 42) if not. 

e. Indicate that a file is open for 
writinq on the unit referenced. 

a. Rewind and write an empty File 
Directo:y at the front of the tape, 
along wlth a logical End-Of-Tape 
indicator. 

a. Input: Indicate that the referenced 
unit is no longer available for I/O 
transfers; return to caller. 

b. Output: 

(1) Non-File Structured Tape: Write 
two end-of-file markers, then 
backspace one to position the 
recording head between the two 
EOF markers written. Indicate 
that unit is no longer open for 
I/O transfers, and return to 
caller. 

(2) File-Structured Tape 

5-47 

(a) Write the partial data buffer, 
if one is present. 

(b) Write trailer label and logi
cal end-of-tape indicator. 

(c) Search the File Directory 
for a name identical to that 
of the file being closed. If 
one is found, remove it from 
the Directory and set its 
accessibility to zero. 

(d) Add the new file name at the 
bottom of the Directory. 

(e) Update total and active file 
counts . 

(f) Re-record the Directory. 
(g) Indicate that unit is no 

longer open for I/O transfers, 
and return to caller. 



Magnetic Tape Functions (Cont.) 

Mnemonic Code 

.MTAPE 7 

. READ 10 

Action 

a. Honor subfunction specification as 
follows: 

00 

01 
02 

03 

04 
05 

06 

07 

10 
thru 
17 

Rewind: Issue rewind to drive 
specified. 
Undefined: Error Return (roPS 6). 
Backspace Record: Issue a single 
backspace to the drive specified. 
Backspace File: Backspace until 
two EOF markers have been passed 
in reverse, then space forward 
one record. 
Write EOF: Write one EOF marker. 
Space Forward Record: Issue a 
single space forward to the drive 
specified. 
Space Forward File: Space for
ward until a single EOF marker is 
passed. 
Space to logical EaT: Space 
forward until two consecutive 
EOF markers are passed, then 
backspace one record. 

Describe Tape Configuration: 
Update the tape format descriptor 
bits for the drive specified. 
Subsequent I/O transfers (includ
ing space) will be performed in 
the density, parity, and channel
count given in .MTAPE 10 - 17, 
thus: 

Sub
function 

Channel 
Count Parity Density 

10 

11 

12 

13 

14 

15 

16 

17 

7 

7 

7 

9 

7 

7 

7 

9 

Even 

Even 

Even 

Even 

Odd 

Odd 

Odd 

Odd 

200 BPI 

556 BPI 

800 BPI 

800 BPI 

200 BPI 

556 BPI 

800 BPI 

800 BPI 

a. Check that referenced unit is input. 
lOPS 7 if not. 

b. Check that a file is open for read
ing: 
raps 11 1f not. 

c. Initiate data transfer 

d. Read Errors 

(1) Parity/Checksum Errors 

5-48 



Magnetic Tape Functions (Cont.) 

Mnemonic Code Action 

.READ (cant.) (2) EOF Encountered. 

. WRITE 11 

(a) File-Structured Environment. 
Modes a - 4: An EOF pseudo
line is constructed and stored 
in the user's line buffer area. 
The format of the 2-word line 
is as follows: 
Header word 0: 001005 
Header word 1: 776773 

(b) Non-File-Structured Environ
ment. 
Modes a - 3: An EOF pseudo
line is constructed and stored 
in the user's line buffer area. 
The format of the line is as 
follows: 
Header word 0: 001005 
Header word 1: 776773 
Data word 0: 000000 
Data word 1: Unchanged 

Mode 4: No indication 
of End-Of-File is currently 
provided. 

(3) EOT Encountered 
(a) File-Structured Environment. 

Modes a - 4: An EOM pseudo
line is constructed and stored 
in user's line buffer area. 
The format of the 2-word line 
is as follows: 
Header word 0: 001006 
Header word 1: 776772 

(b) Non-File-Structured Environ
ment. 
Modes a - 3: Exactly as 
described for file-structured 
environment (3a above) . 

Mode 4: 
(lOPS 43). 

Error return 

a. Check that referenced unit is output. 
lOPS 7 if not. 

b. Check that a file is open for writ
ing: 
lOPS 11 if not. 

c. Initiate data transfer. 

d. EaT: When physical End-Of-Tape is 
encountered during writing, an 
error return (lOPS 15) is made to 
the Monitor. Before control is given 
to the Monitor, the file being written 
is added to the Directory with the 
final two characters of the extension 
as "XX". 

5-49 



Magnetic Tape Functions (Cont.) 

Mnemonic Code Action 

.WRITE (cont.) e. Write Errors: Continued attempts are 
made to rewrite the record in error. 
The process terminates when EOT is 
encountered. 

. WA~T, .WAITR 12 a. Check I/O underway • 

(1) Busy: Return to CAL (.WAIT) or 
to address in CAL + 2 (.WAITR). 

(2) Non-Busy: Return to CAL + 2 
(.WAIT) or to CAL + 3 (.WAITR). 

NOTE 

On a non-busy return, the accumulator contains the 
contents of the magnetic tape status register as it 
appeared on completion of the latest operation. 
This is the only facility the user has for checking 
I/O errors in the .TRANS and dump-mode transfers. 

.TRAN 13 Honor subfunction indicator as follows: 

Subfunction Action 

o Input Forward - Transfer next 
physical block on tape 
to user's buffer area. 

1 Output Forward - Transfer 
from user's buffer 
directly to the next 
physical block on tape. 

2 Illegal Function - Monitor 
Error lOPS 6 

3 Illegal Function - Monitor 
Error lOPS 6 

5.4.6.3 Legal Data Modes 

a. lOPS Binary (Mode 0) 

(l) Acceptable handlers: MTA., MTC., MTF. 

(2) Output 

(a) File-structured Tape (MTA.) 
An attempt is made to pack the binary line into a 
25710-word buffer internal to MTA. If the line will 
not fit, the current contents of the buffer are 
written and the line transmitted begins a new buffer. 
The line checksum is computed and stored in the 
second word of the line as it appears in MTA.'s 
buffer; the user's line-buffer checksum word is 
undisturbed. The buffer checksum (BCP word 2) is 
updated. Bits 12-13 in the user's line (in MTA.'s 
buffer) are set to 00. 

The maximum length of the line buffer, including the 
header pair, is 25410 words. The first word of the 
header is checked to ensure that the word-pair count 
is less than or equal to 1778 and greater than O. A 

5-50 



word-pair count equal to zero or greater than 1778 
results in an error return (rOps 23) to the Monitor. 

(b) Non-File-Structured Tape (MTF.) 

A check is made to ensure that the word-pair count 
is greater than zero. A 0 count results in an 
immediate error return (rOPS 23) to the Monitor. No 
check is made on the upper limit of the word-pair 
count; anything from 1-377 is legal. The checksum 
is computed and stored in ~he second word of the line 
in the user's line buffer area. ~its 12 - 13 of this 
first header word-are set to zero. The count of 
words to write is taken from the word-pair count in 
the header and transfer from the user's area is 
initiated. 

(3) Input 

(a) File-Structured Tape (MTA., MTC.) 

The line called for is unpacked from a 25710-word 
buffer internal to MTA. If the buffer was emptied 
by a previous . READ, or if this .READ is the first 
one, the buffer is refilled from the next physical 
block on tape. The line is stored in the user's 
line buffer area. Transmission from MTA. 's buffer 
stops when (a) the word-pair count in the input line 
or (b) the word count in the CAL sequence is satis
fied, whichever occurs first. In either case, the 
next-line pointer indicates the true subsequent line. 
In case of buffer overflow, bits 12 and 13 of the 
first header word are raised. (rf buffer overflow 
does occur, the untransmitted portion of the line is 
no longer available to the caller.) 

Whether buffer overflow occurs or not, the validity 
bits (12-13) of the first header word are modified as 
follows and in the order indicated. First, the 
checksum for the line is calculated; if it is differ
ent from the transmitted checksum, bits 12 - 13 are 
set to 10. Next, a check is made for successful 
transfer of the entire block. In this context, 
"Successful Transfer" means (a) the block was read 
without hardware-detected error and (b) the block 
checksum (BCP Word 2) is correct. If transfer was 
unsucceisful, bits 12 - 13 are set to 01. 

(b) Non-File-Structured Tape (MTF.) 

The count of words to transfer is taken from CAL 
sequence, and input is initiated from the next 
physical block on tape directly to the user's line
buffer area. When the read is complete, the line 
validity bits are modified under the following condi
tions and in the order indicated. First, bits 12 - 13 
of header word a are set if buffer overflow occurred. 
Next, a checksum is calculated (if buffer overflow 
did not occur) and compared with the checksum read. 
If the two checksums differ, bits 12 - 13 are set to 
10. Finally, a check is made to ensure that the line 
was transferred without hardware-detected error. If 
an error occurred, bits 12 - 13 are set to 01. If 
no errors of the types described are encountered, 
bits 12 - 13 are unchanged. 

5-51 



b. Image Binary (Mode 1) 

(1) Acceptable Handlers: MTA. 

(2) Handler operation is exactly as described for lOPS Binary 
(above). Headers and data are transferred in file
structured mode. Modifications are limited to the check
sum word and the validity field as stated above. 

c. lOPS ASCII (Mode 2) 

(1) Acceptable Handlers: MTA .. , MTC., MTF. 

(2) Operation is the same as described for lOPS Binary Mode 
(above) . 

d. Image Alphanumeric (Mode 3) 

(1) Acceptable Handlers: MTA. 

(2) File-Structured Tape 

Handler activity is exactly as described for lOPS Binary, 
above. In the file-structured environment, headers and 
data are transferred and modifications, when applicable, 
are carried out only on the checksum word and validity 
field. 

e. Dump (Mode 4) 

(1) Acceptable Handlers: MTA. 

(2) Dump Mode is used to read into or write from specified areas 
of core, under count control, without the need for line 
buffers. The action taken by MTA. in honoring Dump Mode 
.READs and .WRITEs is identical in both file-structured and 
non-file-structured environments. 

(a) Output 

Data is taken from the core area specified in the CAL 
sequence and stored starting in the next available 
place in MTA.'s buffer. When the buffer is filled, 
it is written out and transmission to the new 
buffer continues until the count in the CAL sequence 
is fulfilled. The partly-filled buffer, if one 
remains, is not written at the completion of the 
operation. Data is transferred in 25510-word incre
ments. The dump mode buffer as written includes 
the BCP for a total block length on tape of 257 10 words. 

(b) Input 

Data is taken from the handler buffer and stored 
sequentially starting at the core location given in 
the CAL argument list. Transmission continues until 
the word count in the CAL sequence is satisfied. If 
the handler buffer is emptied in the process, it is 
refilled from the next physical block on tape. 

(c) Read/Write Errors 

There is presently no facility for indicating I/O 
errors to the caller while dump mode is being used. 

5-52 



5.4.6.4 Recoverable Errors 

lOPS 4 (Device Not Ready) 

a. Cause: 
(1) Transport OFF LINE 

(2) unit number incorrect 

(3) Attempt to .WRITE with WRITE LOCK set to ON 

(4) 9-Channel I/O request to a 7-channel transport 
(and vice-versa) 

b. Recovery: 
(1) Correct fault 

(2) Type CTRL R 

5.4.6.5 Unrecoverable Errors 

a. Illegal Function - Monitor Error lOPS 6 

(1) Attempt to execute file-structured to non-file
structured transport (and vice-versa) 

(2) An input request made to an output unit (and 
vice-versa) 

(3) A .TRAN was attempted in the reverse direction. 

b. Illegal Data Mode - Monitor Error lOPS 7 

Illegal data mode for particular handler version 
(see 5. 4.6. 4) . 

c. File Still Active - Monitor Error lOPS 10 

A .SEEK, .ENTER, . CLEAR, .RENAME, .DLETE, or 
.FSTAT requested while a file is still open on 
the specified unit. 

d. SEEK/ENTER Not Executed - Monitor Error lOPS 11 

A .READ or .WRITE has been requested to a file
structured transport without performing either 
a .SEEK or a .E rER. 

e. EOT Encountered on Read - Monitor Error raps 12 

Physical End-Of-Tape encountered during an input 
operation. 

f. File Not Found - Monitor Error raps 13 

During the processing of a .SEEK, the requested 
file name is absent from the File Name Entry 
Section of the specified Directory. 

5-53 



g. Directory Overflow - Monitor Error rops 14 

During the processing of .ENTER, the File Name 
Entry Section of the Directory is discovered to 
be full. 

i. Output Buffer Overflow - Monitor Error rops 16 

rops ASCII or lOPS Binary line exceeds 255
10 

words 
(including header pair) . 

j. Word Pair Count Error - Monitor Error lOPS 23 

During an lOPS Mode transfer, the Word Pair Count 
is found to be less than 1 or greater than 177

8
. 

k. Too Many Files - Monitor Error lOPS 17 

An excessive number of files are currently referenced. 

1. Header Label Error - Monitor Error lOPS 40 

During the processing of a .SEEK, the handler 
calculated file name is discovered to be different 
from the name present in the file header label. 

m. Directory Format Error - Monitor Error lOPS 41 

Illegal or meaningless data was found in the File 
Directory. 

n. Accessibility Map Overflow - Monitor Error lOPS 42 

During the processing of a .ENTER, the Accessibility 
Map is found to be full. 

o. Directory Recording Error - Monitor Error lOPS 43 

A write error is encountered during the recording of 
a Directory. 

p. Logical EaT Found - Monitor Error rops 44 

Logical End-Of-Tape encountered during the processing 
of a .SEEK or a .ENTER. 

q. Long Input Record - Monitor Error lOPS 45 

Input-record read tape is too long to fit in the 
handler's buffer. 

5-54 



5.4.7 LPA. (LIne Printers LP15C and LP15F) 

5.4.7.1 General Description - LPA. (311
10 

registers) is designed to 

operate Line Printers LP15 (132 columns) and LP15F (80 columns). Legal 

data modes are lOPS ASCII and Image Alphanumeric. Functions are as 

follows: 

.INIT 

5.4.7.2 Functions 

Mnemonic 

.INIT 

.DLETE 

. RENAM 

. FSTAT 

.SEEK 

.ENTER 

. CLEAR 

. CLOSE 

.MTAPE 

. READ 

.WRITE 

} 

.WRITE 

Code 

1 

2 

3 

4 

5 

6 

7 

10 

11 

.WAIT .WAITR . CLOSE 

Action 

a. Return standard buffer size: 

(1) 54
10 

(LP15C) 

(2) 36 10 (LP15F) 

NOTE 
.SCOM+4, bit 12 determines printer 
column size. 

o 80 column 
1 132 column 

b. .SE~UP - API channel register 56 8 

c. Output FORM Feed and determine if 
subsequent FORM Feeds should be 
issued every 57 lines. Bit 6 of the 
.INIT CAL is tested as follows: 

o = FORM Feed every 57 lines 
1 = No FORM Feed 

Bit 6 is set by using a 5 rather 
than a 1 as the "FII argument of 
the .INIT (see 3.1.2). 

Ignore 

Illegal Function - Monitor Error lOPS 6 

Ignore 

Ignore 

a. Allow previous output to terminate. 

b. Output FORM Feed (if not inhibited 
in the .INIT) and allow it to 
terminate. 

Ignore 

Illegal Function - Monitor Error lOPS 6 

a. Allow previous output to terminate. 

b. Examine word 0 of the user's header 
word pair as follows: 

5-55 



LPA. Functions (Cont.) 

Mnemonic Code Action 

.WRITE (cont.) Bit Signifies 

o 0 = Enter Single Line Mode 
1 = Enter Multiple Line Mode 

1-8 Line count for Multiple Line 
Mode. 

17 o 
1 

lOPS ASCII Mode 
Image Alphanumeric Mode 

NOTE 
The user must explicitly set the 
data mode (Bit 17) in his line 
buffer as the handler does not 
examine the .WRITE macro for this 
information. 

If in Multiple Line Mode, step IIC
Il 

(below) is not performed. 

c. Check the first character of the user's 
buffer for the following vertical 
form control characters, all of 
which are output by the FORTRAN IV 
Object Time System: 

014 Form Feed 
020 Overprint 
021 Print every second line 
012 Line Feed 

To effect the Overprint function for 
FORTRAN users, it is necessary to 
simulate certain vertical form con
trol characters. If the first char
acter of a line is 012, 014, or 021, 
the handler automatically enters 
Multiple Line Mode (by setting bit 0 
of the first word in the user's buffer 
to 1) and prints two lines, the 
fi~st line being the vertical control 
character, and the second line being 
the actual data If the first char
acter is 020 (Overprint), it is re
placed in the user's buffer by 015 
(Carriage Return) which does not 
affect the page position and both 
lines are printed. All other charac
ters cause a Line Feed to be output 
from the handler's internal buffer 
followed by the line from the user's 
buffer. After output, any data in 
the user's buffer which was changed 
(i.e., header word 0 or the first 
data word) is restored. 

If the user intends to output to 
another device from the same line 
buffer (e.g., two sequential .WRITEs), 
a .WAIT should be used after the 
.WRITE referencing the Line Printer 
to permit the restoration of any data 
which may have been replaced in the 
user's buffer by LPA. 

5-56 



LPA. Functions (Cont.) 

Mnemonic Code Action 

.WRITE (cont.) d. Output in either Single Line Mode or 

.WAIT 

.WAITR 

.TRAN 

12 

13 

5.4.7.3 Legal Data Modes 

a. lOPS ASCII (Mode 2) 

Multiple Line Mode as applicable. 

e. Restore modified portions of the 
user's buffer (if changed). 

Check I/O UNDERWAY 

(1) Busy - Return to CAL (.WAIT) or 
to address in CAL + 2 (.WAITR). 

(2) Non-busy - Return to CAL + 2 
( . WAIT) or to CAL + 3 (. WAITR) . 

Illegal Function - Monitor Error lOPS 6. 

b. Image Alphanumeric (Mode 3) 

5.4.7.4 Carriage Control Characters - The following vertical control 

characters, except horizontal TAB, cause line termination except for 

special cases described under .WRITE (above). 

Character 

Line Feed (012
S

) 

VT (Vertical Tab, 013
S

) 

Form Feed (014
S

) 

Carriage Return (015
S

) 

DLE (040
8

) 

DCl (04l
S

) 

DC2 (022
S

) 

DC3 (023 S) 

DC4 (024
S

) 

ALT MODE (175
S

) 

Horizontal TAB (OIlS) 
(The horizon tal 
control character 
Horizontal Tab does 
not terminate the line 
and may occur anywhere 
in the line. 

Action 

Space one line 

Space 20 lines 

Move to top of form 

Reset column count to zero (no implicit 
LINE FEED function) 

Space 30 lines 

Space 2 lines 

Space 3 lines Refer to Appendix A 
for equivalent 

Space 1 line teleprinter characters 

Space 10 lines 

Reset column count to zero (no implicit 
LINE FEED function) 

Output sufficient number of spaces to 
position printer at column 9, 17, 25, 
... etc. 

5-57 



5.4.7.5 Recoverable Errors 

Printer Not Ready - Monitor Error lOPS 4 

a. Cause 

(1) Off Line 

(2) Out of Paper 

(3) Yoke Open 

(4) Alarm Status 

b. Recovery - Ready the line printer and type CTRL R. 

5.4.7.6 Unrecoverable Errors 

a. Illegal Function - Monitor Error lOPS 6 
Attempt to execute .SEEK, .READ, or .TRAN 

b. Illegal Data Mode - Monitor Error lOPS 7 
Attempt to output in Data Modes other 
than lOPS ASCII or Image Alphanumeric. 

c. Line Over - Monitor Error lOPS 37 
The 8lst or l33rd character (depending upon 
printer type) has been reached without 
encountering a vertical control character 
(Multiple Line Operation only) . 

d. Illegal Horizontal TAB - Monitor Error lOPS 47 
An attempt has been made to execute a 
Horizontal TAB (Multiple Line Mode only) 
causing the column count to exceed that 
required for the last tab stop (72 or 124 
depending upon the printer type). 

5.4.8 CDB. (CR03B Card Reader) 

5.4.8.1 G.eneral Description - CDB. (415
10 

registers) is an lOPS ASCII 

handler which operates the CR03B Card Reader. The handler is supplied 

to the user in source form and, when assembled, operates with cards 

punched in 029 Hollerith Code. By defining the assembly parameter 

"DEC026+l ll
, the handler can be assembled to accept cards punched in 

026 Hollerith Code. 

5.4.8.2 Functions 

Mnemonic Code Action 

.INIT 1 a. Return standard buffer size (52 10 ). 

b. .SETUP API channel register 55 8 . 

5-58 



CDB. Functions (Cant.) 

Mnemonic Code Action 

. DLETE 

} .RENAM 

. FSTAT 

2 Ignore 

.SEEK 3 Ignore 

.ENTER 4 Illegal Function - Monitor Error lOPS 

• CLEAR 5 Illegal Function - Monitor Error lOPS 

. CLOSE 6 Allow previously requested input to 
terminate. 

.MTAPE 7 Ignore 

. READ 10 a. Allow previously requested input 
to terminate. 

b. Check that device is ready. 

c. Input next card. 

6 

6 

.WRITE 11 Illegal Function - Monitor Error lOPS 6 

.WAIT 

.WAITR 

.TRAN 

12 

13 

5.4.8.3 Legal Data Modes 

lOPS ASCII (Mode 2) 

Check I/O UNDERWAY 

(I) Busy - Return to CAL (.WAIT) or 
to address in CAL + 2 (.WAITR). 

(2) Non-busy - Return to CAL + 2 
(. WAIT) or to CAL + 3 (. WAITR) . 

Illegal Function - Monitor Error lOPS 6 

Eighty card columns are read and interpreted as 029 (or 026) 
Hollerith data, mapped into the corresponding 64-graphic subset 
of ASCII, and stored in the user's line buffer in 5/7 format 
(36 10 locations are required to store an SO column card). Com
pres~ion of internal blanks to tabs and truncation of trailing 
blanks is not performed (all SO characters appearing on the card 
are delivered to the user's buffer). In addition, a Carriage 
RETURN (015 S) character is appended to the input line; thus, a 
total of 81 characters are returned to the user. 

All illegal punch configurations (i.e., those not appearing in 
the 029 or 026 character set, as applicable) are interpreted as 
validity errors and will cause an lOPS 4 error condition. The 
card containing the error must be repunched. 

In addition to the Hollerith character set, the handler recognizes 
the ALT MODE terminator (necessary for system programs). ALT MODE, 
recognized as a 12-1-S code (multiple-punched AS), is mapped in 
to the standard ALT MODE character (175 8 ) in the user's buffer. 

Each file must be terminated with an EOF card (all punch positions 
in card column 1 perforated), which may be created by multip1e
punching characters: +-01234567S9. 

5-59 



When a card has been processed, word 0 of the header word pair 
is constructed and stored in the user's line buffer. Word 1 of 
the header (checksum word) is not changed. 

Refer to Appendix B for a listing of legal Hollerith codes and 
corresponding ASCII graphics. 

5.4.8.4 Recoverable Errors 

Reader Not Ready - lOPS 4 

a. Causes 

(1) Hopper Empty 

(2) Stacker Full 

(3) Feed Check (may be hardware failure) 

(4) Read Check (may be hardware failure) 

(5) STOP button depressed 

(6) START button not depressed 

(7) End of card deck. Add more cards or EOF card. 

(8) Validity Error (VALIDITY switch ON) - unrecognizable 
punch configuration. 

(9) pick Fail - Card selected, but not passed from 
hopper to read station. 

b. Recovery 

Remedy error condition and type CTRL R. 

5.4.8.5 Unrecoverable Errors 

a. Illegal Function - Monitor Error lOPS 6 
An attempt was made to execute a .ENTER, 
. CLEAR, .WRITE, or a .TRAN. 

b. Illegal Data Mode - Monitor Error lOPS 7 
A request for transfer was made in a 
data mode other than lOPS ASCII. 

5.4.9 VPA. (VP15A Storage Tube Display) 

5.4.9.1 General Description - VPA. (612 10 registers) operates the VP15A 

Storage Tube Display. Legal data modes are lOPS ASCII, Image Alpha

numeric, and Dump. Handler functions are as follows: 

.INIT, .WRITE, .WAIT, .WAITR, .FSTAT, . CLOSE 

5-60 



5.4.9.2 Functions 

Mnemonic 

.INIT 

.RENAM 

.DLETE 

. FSTAT 

.SEEK 

. ENTER 

. CLEAR 

. CLOSE 

.MTAPE 

. READ 

. WRITE 

.~"lAIT 

.WAITR 

Code 

1 

} 
2 

3 

4 

5 

6 

7 

10 

11 

12 

5.4.9.3 Legal Data Modes 

Action 

a. Return standard line buffer size (34 10 ) 

b. .SETUP API channel register (54
8

) 

c. Set X and Y coordinates to position 
the beam at the top left corner of 
the screen (one line above the 
first visible line). 

d. Set I/O UNDERWAY indicator. 

e. Erase the screen 

Ignore 

Chack to see if file-oriented . 

Illegal Function - Monitor Error lOPS 6 

Ignore 

Ignore 

Allow previous output to terminate . 

Ignore 

Illegal Function - Monitor Error lOPS 6 

a. Set I/O UNDERWAY indicator 

b. Allow previous output to terminate 

c. Display data 

Check I/O UNDERWAY: 

(1) Busy - Return to CAL (.WAIT) or 
to address in CAL + 2 (.WAITR). 

(2) Non-busy - Return to CAL + 2 
(. WAIT) or to CAL + 3 (. WAITR) . 

lOPS ASCII (Mode 2) Scale 2 

lOPS ASCII (Mode 12) Scale 4 

Image Alphanumeric (Mode 3) 

Dump (Mode 4) Store Mode 

Dump (Mode 14) Non-store Mode 

5.4.9.4 Data Mode Functions 

a. lOPS ASCII (Modes 2 and 12) - These data modes allow 5/7 
ASCII to be displayed from the addressed line buffer. 
Header word pair and word pair count must be supplied. 
Data Mode 2 displays characters using a scale of 2. Data 
Mode 12 displays characters using a scale of 4. 

5-61 



b. Image Alphanumeric (Data Mode 3) - This data mode allows 7 or 8 
bit ASCII stored one character per word in the addressed line 
buffer to be displayed. Header word pair and ~tlord pair count 
must be supplied. Characters may be displayed at any legal 
scale (1 - 3110 ). Each data word may be used to specify a 
different scale factor, as shown below. If bit 0 is set 
to 1, the handler determines a new scale factor from bits 
1 - 5. If bit 0 is set to 0, bits 1 - 5 are ignored and the 
previous scale factor is used. 

Scale Factor 
Value 

1 = enable scale change 

o no scale change 

Not Used 8-bit ASCII 

VPA Image ASCII Word Structure 

c. Dump (Data Modes 4 and 14) - These data modes allow one 
point for each data word in the addressed line buffer to be 
displayed (no header word pair required). Each data word 
in the buffer is treated as two 9-bit coordinates which 
describe the location of a point. Bits 0 through 8 represent 
the X coordinate value while bits 9 through 17 represent the 
Y coordinate value. Data Mode 4 selects Store Mode and Data 
Mode 14 selects Non-store Mode which, during assembly, causes 
Bit 5 of the first word of the .WRITE macro expansion to be 
set either to 0 (Store Mode) or 1 (Non-store Mode). Points 
plotted in Store Mode will remain visible for periods up to 
15 minutes. Points plotted in Non-store Mode, however, must 
be refreshed at least 30 times per second to remain visible. 
This feature is particularly useful for repeatedly displaying 
a small movable figure such as a cursor. Also, a single 
Non-store point may be utilized for setting a starting point 
for ASCII text or Store Mode plots. 

5.4.9.5 Special Characters 

a. A Carriage RETURN terminates an output character string and 
automatically initiates a Carriage RETURN/LINE FEED sequence 
(lOPS only). 

b. An ALT MODE terminates an output character string but does 
not alter the beam position (lOPS only). 

c. LINE FEED moves the beam down one line (horizontal position 
not affected) . 

d. Horizontal TAB causes a sufficient number of spaces to be 
output to place the beam in character positions 9, 17, 25, 
••. 70. 

e. FORM Feed erases the screen and repositions the beam to the 
first character position of the first line. It is not a legal 
terminator and may appear at the beginning of a line. 

5-62 



5.4.9.6 Printing Rules 

a. When using a Scale Factor of 2 (default assumption in lOPS 
ASCII), the Vp15A displays 72 characters per line and 56 
lines per "page". 

b. If the screen has been filled with 56 lines, a subsequent 
lOPS ASCII .WRITE command will cause the display to be 
erased and the new line to be displayed at the top of the 
screen. 

c. If the beam has been positioned at the bottom line of the 
screen by a Dump Mode (non-store) .WRITE and two subsequent 
ASCII .WRITEs are issued, and the second ASCII .WRITE will 
cause the display to be erased as in "b" above. 

d. When using Image ASCII Mode, the user must set the starting 
point for the first line to be output after device initializa
tion (.INIT). This may be accomplished either by issuing a 
Dump Mode .WRITE referencing the desired starting point, or 
by including a LINE FEED as the first character in the line 
buffer (first word after the header word pair) . 

5.4.9.7 Unrecoverable Errors 

a. Illegal Function - Monitor Error lOPS 6 

An attempt to execute a .SEEK or .READ 
has been detected. 

b. Illegal Data Mode - Monitor Error lOPS 7 
See 5.4.9.3. 

5-63 



APPENDIX A 

PDP-15 lOPS ASCII CHARACTER SET 

Listed below are the ASCII characters interpreted by the ADVANCED Monitor and system programs as meaningful 

data input or as control characters. 

00-37 40-77 100-137 140-177 

ASCII ASCII ASCII ASCII 
CHAR. CHAR. CHAR. CHAR. 

0 NUL SP @ 0 
1 SOH (CTRL A) ! A 1 
2 II B 2 
3 ETX (CTRL C) # C 3 
4 EOT (CTRL D) $ D 4 
5 % E 5 
6 & F 6 
7 I G 7 

10 ( H 10 
11 HT ) I 11 
12 LF * J 12 
13 VT + K 13 
14 FF , L 14 
15 • CR - M 15 
16 N 16 
17 / 0 17 
20 DLE (CTRL P) 0 P 20 
21 DC 1 (CTRL Q) 1 Q 21 
22 DC2 (CTRL R) 2 R 22 
23 DC3 (CTRL S) 3 s 23 
24 DC4 (CTRL T) 4 T 24 
25 NAC K (CTRL U) 5 U 25 
26 6 V 26 
27 7 W 27 
30 CNCL (CTRL X) 8 X 30 
31 9 Y 31 
32 SS (CTRL Z) : Z 32 
33 ESC (AL TMODE) ; 33 
34 < 34 
35 = ESC (ALTMODE) 35 
36 > 1\ or t ESC (AL TMODE) 36 
37 ? ~or _ delete (RO) 37 

(underscore) 

*Codes 33, 176, 175 are interpreted as ESC (ALT Mode) and are converted on input to code 175 by lOPS handlers. 

A-1 



ASCII HOLLERITH 

CHAR. 7-BIT 
CODE 

DEC 029 DEC 026 

SP 40 None None 
! 41 11-2-8 12-8-7 
" 42 7-8 0-8-5 

# 43 3-8 0-8-6 
$ 44 11-3-8 11-8-3 

% 45 0-4-8 0-8-7 

& 46 12 11-8-7 

47 5-8 8-6 

( 50 12-5-8 0-8-4 
) 51 11-5-8 12-8-4 

* 52 11-4-8 11-8-4 
+ 53 12-6-8 12 

54 0-3-8 0-8-3 
~ 55 11 11 

56 12-3-8 12-8-3 

I 57 0-1 0-1 
0 60 0 0 
1 61 I I 
2 62 2 2 
3 63 3 3 
4 64 4 4 
5 65 S 5 
6 66 6 6 
7 67 7 7 
8 70 8 8 
9 71 9 9 

72 2-8 11-8-2 

73 11-6-8 0-8-2 

< 74 12-4-8 12-8-6 

= 7S 6-8 8-3 

> 76 0-6-8 11-8-6 
? 77 0-7-8 12-8-2 

APPENDIX 8 

PDP-15 ASCII/HOLLERITH CORRESPONDENCE 

ASCII HOLLERITH 

CHAR. 7-BIT 
CODE 

DEC 029 DEC 026 

@ 100 4-8 8-4 

A 101 12-1 12-1 

B 102 12-2 12-2 

C 103 12-3 12-3 

0 104 12-4 12-4 

E 105 12-5 12-5 

F 106 12-6 12-6 

G 107 12-7 12-7 

H 110 12-8 12-8 

I III 12-9 12-9 

J 112 1 I-I 11-1 

K 113 11-2 11-2 

L 114 11-3 11-3 

M 115 11-4 11-4 

N 116 11-5 11-5 

a 117 11-6 11-6 

P 120 11-7 11-7 

Q 121 11-8 11-8 

R 122 11-9 11-9 

S 123 0-2 0-2 

T 124 0-3 0-3 

U 125 0-4 0-4 

V 126 0-5 0-5 

W 127 0-6 0-6 

X 130 0-7 0-7 

Y 131 0-8 0-8 

Z 132 0-9 0-9 

[ 133 12-2-8 11-8-S 
- 134 11-7-8 8-7 
] 135 0-2-8 12-8-S 

t or A 136 12-7-8 8-5 
+-or _ 137 0-5-8 8-2 

( underscon.~ ) 

NOTES: 1. ASCII code 0-37 and 140-177 have no corresponding codes in the Hollerith set and therefore are 
not shown. 

2. ALT Mode is simulated by 12-1-8 punch. 

3. The card reader interface actually supplies a direct binary equivalent of the column punch. The 
octal codes given above are those generated by the handler from the column punches. 

B-1 



APPENDIX C 

ADVANCED MONITOR ERROR PRINTOUTS 

Errors 

BAD DEV - ERR 

BAD .DAT SLOT -
IGNORED FROM ERR 

BAD PROGNAM 

PERM .DAT SLOT 

BAD UNIT -
IGNORED FROM ERR 

BAD START LOC 

SYS DEV ERR - TRY AGAIN 

BAD COMMAND IN BATCH 
MODE 

BAD BATCH DEF 

Explanation 

Illegal device reference, for example: 

A PRA 5,6/PPW7/DTA-5 

where the command is processed and 
effective up to the PPW and the remainder 
of the command is ignored. 

Illegal .DAT slot reference, for 
example: 

A PRA 5,6/PPA G 

where the command is processed and 
effective through A PRA 5,6 but ignored 
from there on. 

Non-existent program name. Command 
ignored. 

Command attempted to assign a device 
handler to one of the permanent .DAT 
slots (-2, -3, or -7). 

Illegal unit reference (e.g., DTAX) 

Illegal address given in "GET n address" 
command. 

Last command types caused error condi
tion on system device control. 

Illegal Batch Processor commands: 
QDUMP, HALT, GET (all forms), BATCH, 
LOAD, DDT, or DDTNS. 

Batch device was not designated properly. 
Should be: 

CD - for card reader 
PR - for paper tape reader 

C-I 



APPENDIX D 

LINKING LOADER AND SYSTEM LOADER ERRORS 

The following error codes are output by the Linking Loader and by the 

System Loader. When output by the Linking Loader, the errors are 

identified as shown below. When.output by the System Loader, the errors 

are identified as ".SYSLD nil instead of ".LOAD nil. 

Error 

.LOAD 1 

.LOAD 2 

.LOAD 3 

.LOAD 4 

Meaning 

Memory overflow - the Loader's symbol table and 
the user's program have overlapped. At this 
point the Loader memory map will show the 
addresses of all programs loaded successfully 
before the overflow. Increased use of COMMON 
storage may allow the program to be loaded as 
COMMON can overlay the Loader and its symbol table, 
since it is not loaded into until run time. 

Input data error - parity error, checksum error, 
illegal data code, or buffer overflow (input line 
bigger than Loader's buffer). 

Unresolved Globals - any programs or subroutines 
required but not found, whether called explicitly 
or implicitly, are indicated in the memory map 
with an address of 00000. If any of the entries 
in the memory map have a 00000 address, loading 
was not successful; the cause of trouble should 
be remedied and the procedure repeated. 

Illegal .DAT slot request - the .DAT slot 
requested was: 

a. Out of range of legal .DAT slot numbers, 
b. Zero, 
c. Unassigned; that is, was not set up at 

System Generation Time or was not set up 
by an ASSIGN command. 

D-l 



Error Code 

o 

1 

2 

3 

4 

5 

6 

7 

10 

11 

APPENDIX E 

lOPS ERRORS 

Error Error Data 

Illegal Function CAL address 
CAL 

CAL* illegal CAL address 

.DAT slot error 

Illegal 
interrupt 

Device not ready 
(type control R 
when ready) 

Illegal .SETUP 
CAL 

Illegal handler 
function 

Illegal data 
mode 

File still 
active 

SEEK/ENTER not 
executed 

CAL address 

I/O status 

CAL address 

CAL address 

CAL address 

CAL address 

CAL address 

E-l 

Comments 

The address points to a CAL which 
did not have a legal function code 
(1 to 16) in bits 3 to 17 of the 
word after the CAL. 

The instruction CAL* (Indirect) 
is an illegal Monitor CAL. 

1. The .DAT slot number in Bits 
9 to 17 of the CAL was 0, 
greater than 10, or less than 
-15. 

2. The .DAT slot did not contain 
a handler address (no .IODEV 
was given for this .DAT slot.) 

An interrupt occurred which did 
not have an active device handler 
associated with it. The contents 
of the IORS word at the time of 
the interrupt is printed out. 

This error can occur whenever 
any not ready condition occurs. 
1. DECtape or MAGtape - unit not 

selected or not write ena~led. 
2. Punch - out of paper tape. 
3. Line printer - off line. 
4. Card reader - off line, out 

of cards, stacks full, or 
card jam. 

Use of .SETUP when appropriate 
skip not placed in skip chain at 
system generation time. 

A function (. READ, . WRITE, etc.) 
was issued to a handler which is 
incapable of performing that 
function (.READ to paper tape 
punch, .WRITE to C version of 
handler (Read only)). 

1. Illegal data mode for this 
version of the handler used. 

2. Use of input commands after 
device has been .INITed for 
output. 

Failure to close a file before 
another SEEK or ENTER on the 
same .DAT slot. 

A read or write was issued with
out a prior SEEK, ENTER, or 
MTAPE command. 



Error Code Error Error Data 

12 Unrecoverable DECtape status 
DECtape error register Band 
(MARK TRACK) unit Number 

13 File not found CAL address 

14 Directory full CAL address 

15 DECtape full CAL address 

16 Output buffer Cflli address 
overflow 

17 Too many files CAL address 
for handler 

20 Reserved 

21 Reserved 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

Two output files CAL address 
on one unit 

Illegal Word Sector 
Pair Count address 

Reserved 

Reserved 

Reserved 

Reserved 

API software API status 
level error 

Non-existent 
memory 
reference 

Memory protect 
violation 

Memory parity 
error 

register 

Program 
counter 

Program 
counter 

Program 
counter 

E-2 

Comments 

DECtape error with status register 
B in bits 0 to 11 and the unit 
number in bits 15 to 17. 
Reformat tape. 

The file name specified by the 
directory entry section (pointer 
to entry is in CAL address plus 
2) was not found. 

The directory entry section of 
the current device in use is 
full. 

All blocks available for file 
storage are currentiy full. 

The word pair count on the current 
.WRITE is greater than 177

8
• 

-
Too many files are currently open 
on the handler referenced by this 
CAL (e. g., 4 files on DTA will 
cause error while 2 files 6n DTD 
would cause same error). 

Two concurrent output files have 
been opened on one unit. 

The word pair count on the 
current input or output line 
equals zero or greater than 
177

8
. . 

An API break occurred to a soft
ware level which did not have 
the appropriate transfer vector 
set up in . SCaM + 12 to . SCaM + 15. ' 

Non-existent memory reference 
with protect mode on without a 
user defined violation routine. 

Reference to a location below 
the memory protect boundary 
without a user defined violation 
routine. 

Memory parity error without a 
user defined parity error routine. 



Error Code Error Error Data Comments 

34 Power fail with 
no skip setup 

Program 
counter 

Power low flag came up but a 
user defined routine to save 
appropriate registers not in 
core. 

35 Reserved 

40 

41 

42 

Header label 
errors 

Directory 
format error 

Accessibility 
Map overflow 

CAL address 

CAL address 

CAL address 

The internal header label for 
the currently opened file is 
incorrect. 

Bad data in file directory. 

Too many files recorded in the 
current MAGtape. Use MTDUMP 
to retrieve storage occupied by 
{inwanted files. 

43 Reserved 

44 

45 

46 

47 

61 

Logical EaT 

Long Input 
Record 

Attempt to 
delete System 
File 

Illegal Hori
zontal Tab 

Parity Error 
while reading 
Directory or 
File Bit Map 
Blocks 

CAL address 

CAL address 

CAL address 

CAL address 

CAL address 

NOTE 

Recovery procedures: 

An unexpected logical end-of
tape was encountered during 
the processing of .SEEK or 
.ENTER. 

The record read from tape is 
too-1arge to be accommodated 
by the handler's buffer. 

The user has requested deletion 
of a file whose extension is 
in "S.YS". 

The line printer received a 
Horizontal Tab after the 72nd 
or l28th character (depending 
on the model). The remainder 
of the line is lost. 

Defective data. DECtape or 
DECdisk drive (see NOTE below). 

1. Repeat op~ration which caused error. 

2. Remount DECtape on another drive and repeat step 1. 

3. If you are very familiar with DECtape file structure 
and have a reasonably current directory, proceed as 
follows: 

a. Use PIP to Block Copy each file on the defective 
tape to a fresh tape (directory provides starting 
block number of each file). 

b. Use PATCH to reconstruct a new directory on the 
new tape (do not write on this tape - it has no 
file bit maps) . 

c. Use PIP to transfer each reconstructed file to 
another tape (to reconstruct the file bit maps) . 

E-3 



APPENDIX F 

SUMMARY OF KEYBOARD COMMANDS 

FOR THE ADVANCED MONITOR ENVIRONMENT 

SYSTEM PROGRAM LOAD COMMANDS 

Command 

F4 

F41 

MACRO 

MACRO I 

PIP 

EDIT 

EDITVP 

LOAD 

GLOAD 

DDT 

DDTNS 

UPDATE 

DUMP 

PATCH 

CHAIN 

EXECUTE (E) 

SGEN 

SRCCOM 

DTCOPY 

System Program 'Loaded 

FORTRAN IV Compiler 

8K FORTRAN IV Compiler (DECtape I/O only) 

MACRO-15 Assembler 

8K MACRO Assembler (DECtape I/O only) 

Peripheral Interchange Program 

Symbolic Text Editor 

Symbolic Text Editor using VP15A Display 

Linking Loader 

Linking Loader (set to load and go) 

Dynamic Debugging Technique program 

DDT program with no user symbol table 

Library File Update program 

Program to dump saved area (see CTRL Q and 
QDUMP commands). 

System tape Patch program 

Program which permits the creation of a 
system of core overlays. 

Control program to load and supervise 
core residency during the execution of 
a CHAIN-built overlay system. 

System Generation program 

Source Compare program 

8K High-speed DECtape Copy program. 

F-l 



CONTROL CHARACTER COMMANDS 

Command Echoes 

CTRL S t S 

CTRL C t C 

CTRL T t T 

CTRL R t R 

CTRL P t P 

CTRL Q n t Q 

CTRL U @ 

RUBOUT 

Action 

Starts user program after loading by 
Linking Loader. 

Returns to Monitor; may be used at 
any time -- resets all .DAT slot assign
ments. 

a. Returns control to DDT if DDT is 
being used. 

b. Skips to next job when in Batch mode. 

Allows program to continue after lOPS 4 
message. 

a. Reinitializes or restarts system 
program. 

b. Returns to location specified in 
user program's last .lNIT referenc
ing the Teletype. 

Saves core image on save area on DECtape 
(or other system device medium, if 
available) mounted on unit n (may be 
system device) and returns to Monitor. 

Cancels current line on Teletype 
(input or output) . 

Cancels last character input from 
Teletype (not applicable with DDT). 

BATCH PROCESSOR COMMANDS 

Command Function 

BATCH (B) dv Enter Batch mode with dv as batch device; dv 
can be typed as 

$JOB 

$ DATA 

$END 

$EXIT 

PR, for paper tape reader, or 
CD, for card reader. 

Used to separate jobs. 

Beginning of data -- all inputs up to $END are 
not echoed on the Teletype. 

End of data. 

Leave Batch mode. 

NOTE 

The following commands are illegal when operating in Batch 
mode: QDUMP, HALT, GET (all forms), BATCH, LOAD, DDT, and 
DDTNS. 

Special Batch Processor control characters include the following: 

CTRL T (echoes tT) Skip to next job. 

CTRL C (echoes tC) Leave Batch mode. 

F-2 



SPECIAL FUNCTION COMMANDS 

Command 

API OFF 

API ON 

ASSIGN (or A) 

CHANNEL (or C) 
7/9 

DIRECT (or D)n 

GET (or G)n 

GET (or G)n 
address 

GET (or G)n 
HALT (or H) 

HALT (or H) 

INSTRUCT (or 

INSTRUCT (or 
ERRORS 

LOG (or L) 

I) 

I) 

NEWDIR (or N)n 

QDUMP (or Q) 

REQUEST (or R) 

SCOM (or S) 

X4K ON 

X4K OFF 

33TTY ON 

33TTY OFF 

Action 

Disables API. 

Enables API. 

Allows reassignment of .DAT slots to devices 
other than those set at system generation time. 
Example: A PRA -10,3/PPA -6,4 

This command establishes whether the default 
condition for magnetic tape operation is to be 
7-channel or 9-channel. 

Lists the directory of the System Device unit 
n: (0-6). 

Restores core image from the system device 
medium, if available, on unit n (0-7). 

Restores core image from the system device 
medium, if available, on unit n and restarts 
at specified address. 

Restores core image from the system device 
medium, if available, on unit n and halts. 

Conditions the Monitor to halt in the event 
of an unrecoverable IOPS error. 

Types list of Monitor commands. 

Types system error messages. 

Can be followed by any comment and terminated 
by ALT MODE. 

Writes empty directory onto the system device, 
unit n (units 1-7 only). 

Conditions Monitor to dump memory on the "save 
area" of the system tape (or other system 
device medium, if available) in the event of 
an unrecoverable lOPS error. 

Types .DAT slot assignments and use: 
a. For system program when followed by system 

program name. Example: R DDT 
b. For all positive .DAT slots when followed 

by USER. Example: R USER 
c. For all .DAT slots when followed by 

carriage return. Example: R) 

Causes typeout of system configuration informa
tion, including available device handlers. 

Permits the Monitor and programs run under the 
Monitor to use an extra 4K of core (i.e., 12K, 
20K, 28K). 

Terminates use of extra 4K page of core. 

Permits the Monitor to properly interface to a 
Model 33 Teletype unit (convert tabs to spaces) . 

Permits the Monitor to interface to a Model 35 
or 37 Teletype unit. 

F-3 



APPENDIX G 

OPTIONAL ADVANCED SOFTWARE 

PAGE/BANK MODE SYSTEM PROGRAMS 

The differences between the Page and Bank mode System Programs, as they 

exist in the VSA version of the ADVANCED Monitor Software System, are 

described in the following paragraphs. If no description of a System 

Program is given in the following, then the program is the same in both 

the Page and Bank mode systems. 

Keyboard Monitor 

The ADVANCED Keyboard Monitor for the Bank mode system (identified as 

KM9-1S VSA) operates exclusively in the Bank mode. This monitor has 

an EEM instruction in location 1 of the program and the needed JMP to 

the skip chain in location 2. The Keyboard monitor for the Page mode 

has the JMP instruction in location 2 since, in this mode, the PDP-1S 

is always in the extended mode. 

System Loader - Bank Mode 

In a Bank mode system, the System Loader (.SYSLD) loads all programs 

(both handlers and System programs) in Bank mode. Specifically, the 

.SYSLD, DDT and EXECUTE programs operate in Bank mode as do the user 

programs which they load. 

CHAIN (VSA) and EXECUTE (V4A) 

The CHAIN System program assumes, unless otherwise instructed, that 

the program to be built will run in Bank mode (page mode option is 

not used). The program EXECUTE, loads and runs overlay systems in 

Bank mode only. EXECUTE itself runs in Bank mode. Program units 8K 

or smaller may be handled. 

89TRAN 

The Bank mode system contains a relocatable binary for the translation 

of PDP-8 assembly language to PDP-9 assembly language. Users of PDP-IS 

systems should delete this program since the 8 to 15 translator program 

(8TRAN) is also on the tape. 

G-l 



BANK MODE RB09 DISK SYSTEM 

In order to generate a Bank mode system which will utilize the RB09 

disk as the system device, it is necessary to make patches (PATCH) to 

the standard system and to insert (UPDATE) the RB disk handlers into 

the system library. The following procedure must be performed: 

A. Use Patch to change the 4 locations as follows: 

$A DTA.0' -14) 
$PATCH) 

PATCH V7A 
>B 42) 
>L 3) 
.0'.0'~.0'3/7.0'7.0'.0'l>7.0'7121<ALTMODE> 

>B 52) 
>L 3) 
.0'.0'.0'.0'3/3.0'l12.0'>3.0'132.0'<ALTMODE> 
>L 127) 
.0'.0'127/7.0'7.0'.0'1>7.0'7121<ALTMODE> 

>KM9-15) 
>L 1~4) 
~.0'l.0'4/3.0'l12.0'>3.0'132.0'<ALTMODE> 
>EXIT) . 

/IOT IN THE SKIP CHAIN. 

/MAKE BIT 1,0=1 
/IN .SCOM+4 IN 
/SGNBLK . 
/CHANGE DISK SKIP 
/IOT IN SGNBLK. 

/CHANGE BIT 1.0' TO 1 
/IN .SCOM+4 IN MONITOR 

B. Use the followinq UPDATE procedure to put the RB Disk handlers 
into the System Library. 

NOTE 

The peripheral tape should be on DECtape 
unit 1 and a clean scratch tape on unit 2. 

$A DTA.0' -14/DTAl -l.0'/DTA2 - 1'5) 
$UPDATE~ 
UPDATE V8A 
> US+- <ALTMODE> 
>R RFC., DKC.) 
>R RFA., DKA.) 
>R RFB., DKB.) 
>R RFD. ,DKD.) 
>0 ruB.) 
>D RFF.) 
>C) 

/INSERT THE RB DISK 
/HANDLERS AND 
/DELETE THE RF DISK 
/HANDLERS. 

On completion of the above,use PIP to replace the Library on the 
system tape with the one just generated. 

$PIP) 
PIP V13A 
>0 DT,0 .LIBR BIN) 
>T DT~+DT2 .LIBR BIN) 
>V DT,0 .LIBR BIN<ALTMODE> 

G-2 



C. It is now possible to do a system generation from the modified 
DECtape system to the Disk. Use SGEN. with DTA~ assigned to 
-14 and DKD~ to -15, to create a system that will reside on 
disk unit ~. 

NOTE 

If the special Keyboard Monitor (KMS9l5 is to be 
used, it should be placed on the DECtape system 
tape first (step A only of the procedure) and 
then the above procedure followed if a RB Disk 
system is desired. 

KMS15: SPECIAL ADVANCED MONITOR 

The special ADVANCED monitor, located on the V5A Peripheral tape, 

contains a Teletype handler with overprint capability for use with 

FORTRAN IV programs. Although aimed at users with 12K or greater 

systems~ KMS can be used in 8Ki it is 241~ words longer than the 

standard monitor. 

Updating KMS15 Into the Standard VSA System 

The standard monitor is first replaced with KMS15 (or KMS915 for 

the Bank mode version) using PATCH. Once the monitor is on the 

tape, it is necessary to do a system generation to restore .DAT 

slot information and to tie the device handlers to monitor text strings 

in the SCaM command. 

The ~ollowing example illustrates the entire process for updating KMS: 

A. KMIS V5A 
$A DT~ -14/DTI -l~) 
$PATCH) 

PATCH V7A 
>KMlS) 
> READ KMS 15) 
>EXIT) 

(SYSTEM ON UNIT ~, PERIPHERAL 
TAPE ON UNIT 1) 

(KMS91S ON THE BANK-MODE TAPE) 
(KMS915 ON THE BANK-MODE TAPE) 

B. KMS15 V5A 
$A DT~ -14,-15) 
$SGEN) 

SGEN V4A 
NEW SYSTEM? N 
MODIFY SYSTEM ON DT~ 
API? (N) N 
33 TTY? (N) N 
A. ALTER I/O DEVICES OR HANDLERS ? N 
B. DISPLAY SKIP CHAIN? N 

CHANGE SKIP CHAIN ORDER? N 
7 CHANNEL MAGTAPE? (Y) Y 
LINE PRINTER LINE SIZE (8~,12~,132) [8~J 

C. DISPLAY .DAT SLOTS? N 
ALTER .DAT SLOTS > (AS DESIRED BY THE USER) 
SGEN COMPLETE 

G-3 



INDEX 

A command, see ASSIGN command 
.ABS conditional pseudo-op, 1-7 
ADVANCED Monitor, 1-3 

Functions, 4-1 
ADVANCED Monitor system 

Assigning devices, 4-22 
Error detection and 

handling, 4-28 
Loading Monitor, 4-17 
Loading programs, 4-22 
Operation, 4-17 
System generation, 4-19 
System memory maps, 4-24 thru 

4-27 
ADVANCED Software System 

Description, 1-1 
Hardware requirements, 1-1, 1-3 

Alphanumeric 
Data, 2-9 
Line, 2-10 
Text, 1-7 

ALT MODE line terminator, 2-10 
API (Automatic Priority 

Interrupt) channels, 5-2 
API device handler, 1-4, 1-5, 2-1 
API ON/OFF command, 4-12 
API software level handlers, 5-1, 

5-7 
queueing, 5- 8 
setup, 5-5, 5-7 
structure, 5-9 

ASGII character set, A-I 
data mode, 2-9 
text mode, 1-7 

ASCII-Hollerith correspondence 
table, B-1 

Assembler, MACRO, 1-6, 3-1 
ASSIGN (A) command, 4-14, 4-15, 

4-22, 5-26 
ASSIGN keyboard command, 2-14 
Assigning devices, 4-22 
@, see CTRL U 
Auto-index registers, 2-6, 5-7 
Automatic Priority Interrupt, 

see API 

B (BATCH) command, 4-28 thru 4-31 
BACKSPACE command, 3-2, 3-8 
BACKSPACE RECORD function, 3-2, 

3-8 
BATCH mode (tT), 4-18 
Batch processing, 4-28 
BI (Block Identifier), 4-37 
Block 

checksum, 4-38, 4-40 
control pair, 4-38 
format, magnetic tape, 4-38 
recording, 4-32 

.BLOCK pseudo op, 2-5 
Block Word Count (BWC), 4-38 
Boolean manipulation, 1-6 

Bootstrap, see System bootstrap 
Braking on DECtape, 4-32 
Breakpoints, DDT, 1-6, 1-7 
Bulk storage devices, 4-1, 4-36 
BWC, see Block Word Count 

tc, see CTRL C 
C 7/9 command, see CHANNEL 7/9 

command 
CAL 

functions, 4-36 
handler, 2-1, 2-2, 2-4, 4-41, 5-1 
instruction, 5-1, 5-5, 5-10, 5-12 

CD (card reader), 4-28, 4-29, 5-58 
CD (Card Reader CR03B) summary, 5-58 
Chain and Execute programs, 1-8 
CHAIN, 5-26 
CHAIN (EXECUTE) , 5-26 
Changing registers, DDT, 1-7 
CHANNEL (C) 7/9 command, 4-17 
Checksum, 4-38, 4-40 

errors, 2-6, 2-7 
.CLEAR command, 3-7 
Clock interrupts, 5-5 
.CLOSE command, 3-7 
Command and function code table, 2-4 
Commands 

file organization, 3-2 
keyboard, 4-9 
System Loader, 4-9, 4-10 
summary of keyboard, F-l 

Common, 1-5 
blank, 1 .... 5 
named, 1-5 

Constant, 2-13 
Continuous operation, 4-41 
Control character 

commands, 4-17 
scanning, 2-10 
table, 4-18 

Core 
image retrieval, 4-16 
memory map, 4-24, 4-27 
overflow, 4-19 
overlay, 1-8 

Correcting non-relocatable system 
programs, 1-8 

CR (Carriage Return) line termin-
ator, 2-10 

CTRL C (tC), 
CTRL P (tp), 
CTRL Q (tQ), 
CTRL R (tR), 
CTRL S (tS), 
CTRL T (tT), 
CTRL U (@), 

I-I 

4-18 
4-18 
4-18 
4-18 
4-18 
4-18 

4-18 



D command, see DIRECT command 
.DAT, see Device Assignment Table 
Data flow of ADVANCED 

Monitor, 2-2, 2-3 
Data 

modes, 2-7, 2-8 
recording modes, 4-34. 4-35 
recording, non-file-

structured, 4-37 
$DATA command, 4-29 
DATA statement, 1-5 
DBR instruction, see debreak and 

restore instruction 
DDT (Dynamic Debugging 

Technique), 1-6, 4-12, 4-18 
DDTNS command, 4-12 
DDT (Dynamic Debugging 

Technique Program 1-6 
breakpoints, 1-7 
program patching, 1-7 
register examination, 1-7 
search facilities, 1-7 

Debreak and restore (DBR) 
instruction, 5-1, 5-5 

Decimal radix, 1-6 
DECtape or DECtape/Disk 

Systems, 4-20 
DECtape directory, 4-33 
DECtape 

file-oriented, 4-32 
non-file-oriented, 4-32 
storage retrieval, 4-43 
summary, 5-34 

.DEFIN conditional pseudo-op, 1-6 
Default operation bit, 4-17 
DELETE command, magnetic 

tape, 4-43 
Deletion of file, 3-6 
Device assignment, 4-22 
Device Assignment Table (.DAT), 

2-1, 2-11 
listing for standard 8K DECtape 

system, 4-21 
printout, 4-13, 4-14 
slot functions for system 

programs, 4-23 
slot reassignment, 4-14 
slots, 2-13 
variations listing for system 

of 16K or greater, 4-22 
Device handlers, 1-4, 2-13, 

5-1, 5-21 
DIRECT (D) command, 4-15 
Directory 

bit map (DECtape) 4-33 
printout, 4-15 
refreshing, 4-16 

.DLETE command, 3-3 
DO feature, 1-5 
Dollar sign ($), 4-9 
DT (DECtape) summary, 5-34 
Dummy argument, 3-1 
DUMP command, 4-10 

1-2 

Dump 
mode, 2-12 
mode data storage, 4-12 

Dump Program, 1-8, 5-26 
Dump Utility Program on Magnetic 

Tape (MTDUMP), 4-43 
Dynamic Debugging Technique (DDT) 

Program, see DDT Program 

EAE registers, 5-7 
EDIT program, 5-23 
EDlTVP, 5-23 
$END command, 4-29 
End-of-file 

logical, 2-6 
simulated, 4-34 

End-of-tape, 2-6 
.ENTER command, 3-6 
EOF (end-of-file) , 3-7 
EQUIVALENCE statement, 1-6 
Errors, 2-6, 2-13 

detection and handling, 4-28 
lOPS, E-l 
Linking Loader and System 

Loader, D-l 
messages, 4-28, C-l, 0-1, E-l 
printouts, C-l 

Example of use of system 
macros, 4-1 to 4-8 

EXECUTE, 5-26 
.EXIT command, 3-12 
$EXIT command, 4-28 
EXTERNAL statement, 1-6 

F4 (FORTRAN IV) basic compiler, 1-6 
F4I (Imbedded), 1-6 
F4S (expanded), 1-6 
File bit map blocks, 4-34 
File 

directory, magnetic tape, 4-33 
name, 3-6 
name extension, 3-6 
names in labels, magnetic 

tape, 4-38 
organization, magnetic tape, 4-36 
-oriented DECtape, 4-32 

5/7 ASCII, 2-9 
packing scheme, 2-10 

FOCAL (Formulating On-line Cal
CUlations in Algebraic 
Language) program, 1-5 

Format 
absolute, 1-7 
magnetic tape block, 4-37 
relocatable, 1-7 

FORTRAN IV (F4), 5-21 
compiler, 1-5 

FORTRAN Object Time System, 2-2 
.FSTAT command, 3-4 
.FULL conditional pseudo-op, 1-7 
Function code - command table, 2-4 
Functions (ADVANCED Monitor), 4-1 



GET (G) command, 4-16 
GLOAD command, 4-12 

HALT command, 4-12 
Handlers acceptable to system 

program I/O, see I/O handlers 
acceptable to system programs 

Handler features, summary of 
Standard I/O, see I/O handler 
features, summary of Standard 

Hard copy records, 4-10 
Hardware requirements, ADVANCED 

Software System, 1-1, 1-3 
Header label, magnetic tape, 4-39 

thru 4-41 
Header word pair, 2-2, 2-5, 2-7, 

4-34 

I command, see INSTRUCT command 
Image mode, 2-10, 4-16 
.INIT (Initialize) command, 3-2, 

3-3, 4-17, 5-6 
Input, 2-6 
Input/Output Programming System 

lOPS), 1-4, 2-9. Also see lOPS 
Input/Output data mode termina

tors, 2-9 
table, 2-12 

INSTRUCT ERRORS, 4-7 
INSTRUCT (I) command, 4-7 
Interrupt, 2-1 
Interrupts to hardware priority 

level, 5-5 
clock, 5-5 
teleprinter, 5-5 
Teletype keyboard, 5-5 

I/O (Input/Output) 
call, 2-1 
communication, 2-1 
device handler entry, 5-1 
device handler, non-resident, 

2-5 
device handlers, 5-21 
hardware level handlers, 5-1 

I/O handler features, summary of 
standard, 5-28 
CDB (Card Reader CR03B), 5-58 
DT (DECtape), 5-34 
LPA (Line Printer), 5-55 
PP (Paper Tape Punch), 5-29 
PR (Paper Tape Reader, 5-32 
TTA (Teletype), 5-28 
VPA (display), 5-60 

I/O handlers acceptable to system 
programs, 5-21 
CHAIN, 5-26 
CHAIN (EXECUTE), 5-26 
DTCOPY, 5- 27 
DUMP, 5-26 
EDIT, 5-23 
EDITVP, 5-23 

8TRAN, 5-27 
FOCAL, 5-22 
FORTRAN IV, 5-21 
Library Update, 5-25 
Linking Loader and DDT, 5-24 
MACRO-15, 5-21 
PIP, 5-24 
SRCCOM, 5-27 
System Generator, 5-25 
System Patch, 5-25 

.IODEV pseudo-op, 2-13 
lOPS (Input/Output Programming 

System), 1-4, 2-9 
ASCII mode, 2-9 
binary data, 2-10 
binary mode, 2-10 
error, 4-28 
errors listing, E-1 
mode data on paper tape, 2-10 

$JOB command, 4-29, 4-30 

Keyboard commands, special func-
tion, 4-10 

Keyboard commands summary, F-1 
Keyboard Listener (.KLIST), 2-2 
KSR35 DECtape system, 4-20 

L command, see LOG command 
Library Update Program, 1-8, 5-25 
Line buffers, 2-5 
Line terminator, 2-10 
Linking Loader, 1-7, 2-3, 4-22 

and DDT, 5-24 
and System Loader errors, D-1 

Listings 
octal, 1-6 
cross-referenced, 1-6 
symbolic, 1-6 

LOAD command, 4-10 
.LOAD n error, D-1 
Loading ADVANCED Monitor, 4-17 
Loading commands, System Program 

ALT MODE (ESC), 4-10 
CHAIN, 4-10 
CR, 4-10 
DDT, 4-10 
DUMP, 4-10 
EDIT, 4-10 
EXECUTE (E), 4-10 
F4, 4-10 
F4I, 4-10 
GLOAD, 4-10 
LOAD, 4-10 
MACRO, 4-10 
MACRO I , 4-10 
PATCH, 4-10 
PIP, 4-10 
SGEN, 4-10 
UPDATE, 4-10 

1-3 



Loading Programs in ADVANCED Mon
itor environment, 4-22 

Locating a file on magnetic 
tape, 4-38 

LOG (L) command, 4-10 
Logical 

device numbers, 2-12 
end-of-file, 2-6 
I/O devices, 2-13 
-physical I/O device number, 

2-1, 2-4 
LPA (Line Printer summary), 5-55 

Macros, 3-1 
Macros, ADVANCED Monitor, 3-2 
Macro statement terminators, 3-2 
MACRO Assembler, 1-6, 3-1 
MACRO-IS system program, 5-21 
Magnetic tape (MT) , 4-26, 4-29, 

5-44 
block format, 4-37 
file directory, 4-38 
file names in labels, 4-39 
file organization, 4-36 
file-structured data reading, 4-37 
function, 5-45 
header label, 4-41 
non-file-oriented, 4-37 
summary, 5-44 
transports, 4-29 
trailer label, 4-41 

Manual restart and dump procedures, 
4-43 

Maximum line buffer size, 2-5 
table, 2-8 

.MCD, see Monitor Decoder 

.MED, see Monitor Error Diagnostic 
program 

Monitor commands, 2-1, 2-2, 3-2 
Batch processor list, 4-29 

Monitor Command Decoder (.MCD), 2-2 
Monitor 

environment, 2-2 
Error Diagnostic (.MED) 

program, 4-28 
functions, 2-1 
systems, 1-1 

MT summary, see Magnetic Tape 
summary 

MTA. handler for magnetic tape, 
4-36, 4-37, 5-44 

MTC. handler for magnetic tape, 
4-36 

.MTAPE command, 3-8 

.MTAPE REWIND command, 3-8 
MTDUMP, Magnetic Tape Dump utility 

Program, 4-43 

NEWDIR (N) command, 4-16 
Negative .DAT slot assignments, 4-22 
Nesting of macros, 1-6 

Non-file-oriented 
DECtape, 4- 32 
magnetic tape, 4-37 
storage devices, 3-8 

Non-file-structured data recording, 
4-37 

Non-parity lOPS ASCII data, 2-9 
Non-resident device handler, 2-4 

Object Time System, 1-6, 2-2 
Octal 

listings, 1-6 
radix, 1-6 

Operating procedures ADVANCED 
Monitor System, 4-17 

Output, 2-6 

t P, see CTRL P 
Paper Tape Punch (pp) summary, 5-29 
Paper Tape Reader (PR) , 4-28 

summary, 5- 3 2 
Parity 

bit, 2-9, 2-10 
check, 2-9 
error, 2-6 

Patch program, 5-25 
PDP-IS lOPS ASCII Character set, A-I 
Peripheral Interchange Program, 

1-7, 4-22, 5-24 
Physical I/O devices, 2-8 
PI, see Program Interrupt 
PIC skip chain, see Program 

Interrupt Control skip chain 
PIP, see Peripheral Interchange 

Program 
PP, see Paper Tape Punch 
PR, see Paper Tape Reader 
Predefined macros, 3-1 
Program halt, 3-12 
Program Interrupt (PI), 2-1 
Program Interrupt Control (PIC) 

skip chain, 5-15 
Program interrupt facility, 1-5 
Program loading order in ADVANCED 

Monitor environment, 4-22, 4-24, 
4-28 

Program patching (DDT), 1-6 
Program translation (PDP-8 to 

MACRO-IS), 1-8 

tQ, see CTRL Q 
Queueing, 5-8 
QDUMP (tQ) command, 4-12 

tR, see CTRL R 
R command, see REQUEST command 
Radix control, 1-6 
.READ command, 3-8 
Real argument, 3-2 

1-4 



Real time devices, 1-5 
Recursion, 1-6 
Redefinition of macros, 1-6 
Re-entrant calls, 5-1 
Reentry, 5- 8 
Referencing system macros, 3-2 
.RENAM command, 3-4 
.REPT, conditional pseudo-op, 1-6 
REQUEST (R) command, 4-13 
Retr~eval, DECtape storage, 4-43 
Retrleval of subroutines, 1-7 
REWIND TO LOAD POINT, 3-8 
Rubout (~), 4-10 

tS, see CTRL S 
S command, see SCOM command 
Save area, 4-12 
SCOM (S) command, 4-11 
.SCOM printout, 4-11 
.SCOM, see System Communication 

Table 
Search facility (DDT), 1-7 
.SEEK command, 3-5 
Sequ~ntial block recording, 4-37 
Settlng up the skip chain and 

API (hardware) channel registers 
5-5 ' 

Setting up API software level 
channel registers, 5-7 

7-bit ASCII, 2-9 
SGEN, see System Generator 
Simulated end-of-file, 4-34 
6-bit trimmed ASCII, 1-6 
Skeleton I/O Device Handler 

Example A, 5-12 
Example B, 5-15 

Skip chain listing for standard 
8K DECtape system, 4-20 

Skip chain order, 4-21 
Source Compare Program (SRCCOM), 

1-8, 5-27 
Source program, 3-1 
Special function keyboard com-

mands, 4-10 
Specification statements, 1-5 
SRCCOM (Source Compare), 1-8, 5-27 
Staggered recording of blocks, 4-37 
Stand~rd API channel/priority 

asslgnments table, 5-9 
Standard I/O handler features, see 

I/O handler features 
Storage retrieval on file

structured magnetic tape, 4-43 

1-5 

Symbolic 
listings, 1-6 
text editing, 1-7 

.SYSLD n, D-l 
System bootstrap, 4-17, 4-19 
System Communication Table (.SCOM) , 

2-13 
System configuration information, 

4-10 
~ystem error message summary, C-l 
System Generator (SGEN), 1-8, 5-25 
System Loader, 4-9, 4-22 

Commands, 4-9 
System macros, 3-2 also see 

Monitor commands 
System memory maps, 4-24, thru 4-27 
System Patch Program, 1-8, 5-25 
System programs available, 1-4 
System Program handlers, see I/O 

handlers acceptable to system 
programs 

Summary of keyboard commands, F-l 

tT, see CTRL T 
Tag, 2-5 
TC-59 Tape Control unit (TCU), 4-34 
Teletype keyboard interrupts, 5-5 
Text Editor program, 1-7, 5-23 
.TIMER command, 3-11 
Trailer label, maqnetic tape, 4-39 
.TRAN command, 2-4, 3-11 
Translation of programs, 1-8 
TTA (Teletype) summary, 5-28 
Turnaround 

reading, 4-34 
recording, 4-34 

Two-pass system (FORTRAN IV), 1-5 
Two's complement checksum, 4-38 

USA FORTRAN IV, 1-5 
User-file labels, 4-39 

format, 4-40 

Validity bits, 2-6, 2-7 
Variables, 2-13 

.WAIT command, 2-5, 3-2, 3-4, 3-10 

.WAITR command, 2-5, 3-10 
Word count, 2-5, 2-6, 4-35 
.WRITE command, 2-6, 3-2, 3-9 
Writing special I/O device 

handlers, 5-10 



HOW TO OBTAIN SOFTWARE INFORMATION 

Announcements for new and revised software, as well as programming 
notes, software problems, and documentation corrections are published 
by Software Information Service in the following newsletters. 

Digital Software News for the PDP-8 & PDP-12 

Digital Software News for the PDP-11 

Digital Software News for the PDP-9/15 Family 

These newsletters contain information applicable to software available 
from Digitalis Program Library. Articles in Digital Software News up
date the cumulative Software Performance Summary which is contained 
in each basic kit of system software for new computers. To assure that 
the monthly Digital Software News is sent to the appropriate software 
contact at your installation, please check with the Software Special
ist or Sales Engineer at your nearest Digital office. 

Questions or problems concerning DEC software should be reported to 
the Software Specialist. In cases where no Software Specialist is avail
able, please send a Software Performance Report form with details of 
the problem to: 

Software Information Service 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

These forms which are available without charge from the Program 
Lib r a r y, s h.o u I d b e f u I I y fill e d 0 uta n d a c com pan i e d b y Tel e t y P e 0 u t put 
as well as listings or tapes of the user program to facilitate a complete 
investigation. An answer will be sent to the individual and appropriate 
topics of general interest will be printed in the newsletter. 

New and revised software and manuals, Software Performance Report 
forms, and software price lists are available from the Program Library. 
When ordering, include the document number and a brief description of 
the program or manual requested. Revisions of programs and documents 
will be announced in the newsletters. Direct all inquiries and requests 
to: 

Program Library 
Digital Equipment Corporation 
146 Main Street, Bldg. 1-2 
Maynard, Massachusetts 01754 

Digital Equipment Computer Users Society (DECUS) maintains a user 
library and publishes a catalog of programs as well as the DECUSCOPE 
magazine for its members and non-members who request it. For further 
information please write to: 

DECUS 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 



READER'S COMMENTS 

PDP-lS/20/30/40 
ADV ANfED MONITOR SOFTWARE SYSTEM 
D EC-15-MR2B-D 

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its 
publications.- To do this effectively we need user feedback -- your critical evaluation of this manual. 

Please comment on this manual's completeness, accuracy, organization, usability, and readability. 

Did you find errors in this manual? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ 

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following period
ically distributed publications are available upon request. Please check the appropriate boxes for a current issue of the 
publication(s) desired. 

o Software Manual Update, a quarterly collection of revisions to current software manuals. 

o User's Bookshelf, a bibliography of current software manuals. 

o Program Library Price List, a list of currently available software programs and manuals. 

Please describe your position. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ 

Name ~~~~~_~~~~~~~~_ Organization 

Street ~ _______ ~~~~~ __ Department 

City ___________ State _______________ Zip or Country ~ ___ _ 



......................................................................................... Fold Here ....................................................................................... . 

............................................................................ Do Not Tear - Fold Here and Staple ................................................................ . 

, 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postaae wiu be paid by: mamaama 
Digital Equipment Corporation 
Software Information Services 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

FIRST CLASS 
PERMIT NO. 33 

MAYNARD. MASS. 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	a-1
	b-1
	c-1
	d-1
	e-1
	e-2
	e-3
	f-1
	f-2
	f-3
	g-1
	g-2
	g-3
	i-1
	i-2
	i-3
	i-4
	i-5
	i-6
	replyA
	replyB

