
Digital EquipmenfCorporation
Maynard,· Massachusetts

Programmers' Reference Manual

PDP-15 FORTRAN IV

PDP-15
FORTRAN IV
PROGRAMMERS'
REFERENCE MANUAL

Order No. DEC-15-KF ZB-D from Program Library, Maynard, Mass. Pri ce: $2.50

Direct comments concerning this manual to Software Information Service, Maynard.

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Prinf'ing July 1969
2nd Printing (Rev) June 1970

Your attention is invited to the last two pages of this manual. The
Reader's Comments page, when filled in and returned, is beneficia I
to both you and DEC. All comments received are considered when
documenting subsequent manuals, and when assistance is required, a
knowledgeable DEC representative will contact you. The Software
Information page offers you a means of keeping up-to-date with
DEC's software.

Copyright © 1968, 1969, 1970 by Digita I Equipment Corporation

'The material in this handbook, including but not limited
to instruction times and operating speeds, is for infor
mation purposes and is subject to change without notice.

The following are trademarks of Digita I Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTE R LAB

CONTENTS

PART 1
LANGUAGE

CHAPTER 1 INTRODUCTION

1.1

1.2

1 .2. 1

1.2.2

FORTRAN

Source Program Format

Card Format (IBM Model 029 Keypunch Codes)

Paper Tape Format

CHAPTER 2 ELEMENTS OF THE FORTRAN LANGUAGE

2. 1 Constants

2.1.1 Integer Constants

2.1.2 Real Constants {Six-decimal-digit accuracy}

2.1.3 Double-Precision Constants {nine-decimal-digit accuracy}

2.1.4 Logical Constants

2.1.5 Hollerith Constants

2.2 Variables

2.2.1 Variable Types

2.2.2 Integer Variables

2.2.3 Real Variab les

2.2.4 Double-Precision and Logical Variables

2.3 Arrays and Subscripts

2.3.1 Arrangement of Arrays in Storage

2.3.2 Subscript Expressions

2.3.3 Subscripted Variables

2.4 Expressions

2.4.1 Arithmetic Expressions

2.4.2 Relational Expressions

2.4.3 Logical Expressions

2.5 Statements

iii

Page

1-1

1-1

1-2

1-2

2-1

2-1

2-1

2-2

2-3

2-3

2-3

2-3

2-4

2-4

2-4

2-4

2-5

2-5

2-6

2-6

2-6

2-8

2-8

2-10

CONTENTS (Cont)

PClge

CHAPTER 3 ARITHMETIC STATEMENTS

CHAPTER 4 CONTROL STATEMENTS

4.1 Unconditional GO TO Statements 4-1

4.2 ASSIGN Statement 4-1

4.3 Assigned GO TO Statement 4-1

4.4 Computed GO TO Statement 4-2

4.5 Arithmetic IF Statement 4-2

4.6 Logical IF Statement 4-2

4.7 DO Statement 4-3

4.8 CONTINUE Statement 4-5

4.9 PAUSE Statement 4-5

4.10 STOP Statement 4-5

4.11 END Statement 4-6

CHAPTER 5 INPUT/OUTPUT STATEMENTS

5.1 General I/O Statements 5-2

5. 1 . 1 Input/Output Argument Lists 5-2

5.1.2 READ S ta temen t 5-3

5.1.3 WRITE Statement 5,-3

5.2 FORMA T Statements 5--4

5.2.1 Specifying FORMAT 5,-4

5.2.2 Conversion of Numeric Data 5,-6

5.2.3 P-Scale Factor - Field descriptor: nP or -nP 5,-9

5.2.4 Conversion of Alphanumeric Data 5,-9

5.2.5 Logical Fields, L Conversion - Field descriptor: Lw or nLw 5,-10

5.2.6 Blank Fields, X Conversion - Field descriptor: nX 5,-10

5.2.7 FORTRAN Statements Read in at Object Time 5,·10

5.2.8 Output of a Formatted Record 5·-11

5.3 Auxiliary I/O Statements 5·-12

5.3.1 BACKSPACE Statement 5·-12

5.3.2 REWIND Statement 5·-12

5.3.3 ENDFILE Statement 5·-12

iv

CONTENTS (Cont)

CHAPTER 6 SPECIFICATION STATEMENTS

6. 1

6.1.1

6.2

6.3

6.4

6.4.1

6.5

6.6

TY PE Statements

Typing Double-Precision Functions

DIMENSION Statement

COMMON Statement

EQUIVALENC E Statement

Equivalencing COMMON Variables

EXTERNAL Statement

DATA Statement

CHAPTER 7 SUBPROGRAMS

7. 1

7.2

7.3

7.4

7.5

7.5.1

Statement Functions

Intrinsic or Library Functions

External Functions

Su bro ut i nes

BLOCK DATA Subprogram

Example of BLOCK DATA Subprogram

PART 2
FORTRAN IV OBJECT - TIME SYSTEM

CHAPTER 8 OBJECT -TIME SYSTEM DESCRIPTIO N

8. 1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8. 10

8.11

OTS Binary Coded Input/Output (BCDIO)

OTS Binary Input/Output (BINIO)

OTS Auxiliary Input/Output (AUXIO)

OTS lOPS Communication (FlOPS)

OTS Calcu late Array Element Address (. SS)

OTS Computed GO TO (GO TO (.GO))

OTS STOP (STOP (. ST))

OTS PAUSE (PAUSE (.PA))

OTS Octal Print (SPMSG (. SP))

OTS Errors (OTSER (.ER))

Additions to the FORTRAN IV Subroutine Library

v

Page

6-1

6-1

6-2

6-3

6-3

6-4

6-5

6-5

6-6

7-1

7-1

7-2

7-4

7-6

7-7

7-8

8-1

8-2

8-4

8-6

8-7

8-9

8-10

8-11

8-11

8-12

8-12

8-13

8.11.1

8.11.2

8. 11.3

8.11.4

8. 11.5

8. 11.6

CONTENTS (Cont)

Fi Ie Commands (FILE)

Clock Handling (TIME)

Clock Handling (TIME10)

Adjustable Dimensioning (ADJ 1)

Adjustable Dimensioning (ADJ2)

Adjustable Dimensioning (ADJ3)

PART III
THE SCIENCE LIBRARY

CHAPTER 9 SCIENCE LIBRARY DESCRIPTION

9. 1

9.2

9.3

9.4

9.5

9.5.1

9.5.2

9.5.3

9.6

9.7

9.7.1

9.7.2

9.7.3

9.7.4

9.7.5

9.7.6

9.7.7

9.7.8

Intrinsic Functions

External Functions

Sub-Functions

The Arithmetic Package

Accumu lators

A-Register

Floating Accumulator

Held Accumulator

Calling Sequences

Science Library Algorithm Descriptions

Square Root (SQRT, DSQRT)

Exponential (EXP, DEXP, . EF, • DF)

Natural and Common Logarithms (ALOG, ALOG 10, DLOG, DLOG 10)

Sine and Cosine (SIN ,COS ,DSIN ,DCOS, . EB, . DB)

Arctangent (ATAN, DATAN, ATAN2, DATAN2, .ED, .DD)

Hyperbolic Tangent (TANH)

Logarithm, Base 2 (. EE, . DE)

Polynomial Evaluator (. EC, • DC)

APPENDICES

APPENDIX A FORTRAN IV, ADDITIONAL INFORMATION

vi

Page

8-13

8-15

8-16

8-17

8-18

8-18

9-1

9-1

9-1

9-1

9-2

9-2

9-2

9-2

9-3

9-3

9-9

9-9

9-9

9-10

9-10

9-11

9-12

9-13

9-13

A-l

APPENDICES (Cont)

APPENDIX B FORTRAN IV AND MACRO LINKAGE

B. 1

B.2

B.3

B.4

B.4.1

B.4.2

B.4.3

B.4.4

Linking FORTRAN IV Programs with MACRO Subprograms

Linking MACRO Programs with FORTRAN IV Subprograms

Linking MACRO Programs with FORTRAN IV Library Routines

More Illustrative Examples

A New Dimension Adjustment Routine

A Function to Read the AC Switches

A Routine to Read an Array in Octal

A FORTRAN Program Using the Foregoing Programs

APPENDIX C CHAINING FORTRAN IV PROGRAMS

APPENDIX D FORTRAN IV ERROR LIST

D.1

D.2

D.3

D.4

Techniques for Avoiding F Errors

Techniques for Avoiding TErrors

Techniques for Avoiding M Errors

Technique for Avoiding an E Error

APPENDIX E SYMBOL TABLE SIZES (F4 V5A)

ILLUSTRATIONS

1-1 FORTRAN Coding Form

TABLES

3-1 Assignment Ru I es

5-1 Physical Record Definitions

7-1 Intrinsic Functions

7-2 External Functions

8-1 OTS Error Messages

9-1 The Science Library

D-1 Compilation Errors

vii

Page

B-1

B-1

B-3

B-4

B-4

B-4

B-6

B-6

B-8

C-1

D-1

D-2

D-3

D-4

D-5

E-1

1-3

3-1

5-1

7-3

7-5

8-2

9-4

D-1

PREFACE

This manual describes the FORTRAN IV language and compiler system for either the

PDP-15 or PDP-9 Computer; it provides the user with the information needed to write,

compi Ie and execute FORTRAN programs on either of these computers.

The manual consists of three major parts:

Part 1, Basic FORTRAN IV Language

Part 1 is intended to familiarize the user with the FORTRAN IV coding

procedures in the PDP-15 and -9 environment.

Part 2, FORTRAN IV Object Time System

Part 2 describes the group of subprograms which process compiled FORTRAN

statements, particularly I/O statements, at the time of execution.

Part 3, FORTRAN Science Library

Part 3 provides detailed descriptions of the intrinsic functions, external

functions, subfunctions, and arithmetic routines contained in the system

Science Library.

FORTRAN IV (as described in this manual) is essentially the language specified by

the United States of America Standards Institute (X3. 9 - 1966) with the exceptions

noted in Appendix A of this manual {located at the end of Chapter 9).

1.1 FORTRAN

CHAPTER 1

INTRODUCTION

PART 1

LANGUAGE

FORTRAN makes it unnecessary for the scientisf' or engineer to learn the machine language for specific com

puters. With FORTRAN, the user can write programs in a simple language that adapts easily to scientific usage.

The FORTRAN language is composed of statements constructed in mathematical form in accordance with precise

ly formulated rules. A FORTRAN program consists of meaningful sequences of FORTRAN statements that direct

the computer to perform specific operations and calculations; such a program is called a source program. The

source program must be translated by the FORTRAN compiler program before execution; the translated version of

the program is referred to as an object program. The object program is in binary code that the machine can

understand.

1.2 SOURCE PROGRAM FORMAT

The FORTRAN character set consists of the 26 letters (A through Z); 10 digits (0 through 10); and 11 special

characters:

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis

Right Parenthesis

Comma

Decimal Point

Dollar Sign

+

*

/

$

1-1

1 .2. 1 Card Format (IBM Model 029 Keypunch Codes)

The FORTRAN source program is written on a s1'andard FORTRAN coding sheet (see Figure 1-1), which consists

of the following fields:

a. statement number field

b. line continuation field

c. statement field

d. identification field.

The FORTRAN statement is written in columns 7 through 72. If the statement is too long for one line, it can be

continued in the statement field of as many lines as necessary if column 6 of each continuation line contains clny

numeric character other than blank or zero. There are two exceptions to this rule:

a . the DO statement must be on one line

b. the equal sign (=) of an assignment statement must appear on the first line.

For one statement to be referenced by another, a statement number must be placed in columns 1 through 5 of the

first line of the referenced statement. This number is made up of digits only, and can contain from one 1'0 five

digits. Leading zeros and all blanks in this field are ignored. Because statement numbers are used only for

identification, they can be assigned in any order.

The FORTRAN compiler ignores the last eight columns (columns 73 through 80), which can be used for program

identification, sequencing, or arlY other purpose desired by the user. Comments can be included in the progmm

by putting the letter C in column 1 of each line containing a comment (or continuation of a comment). The

compiler ignores these comments except for printing them.

Blanks can be used to aid readability of a FORTRAN statement, except where otherwise indicated in thhi manual.

1 .2" 2 Paper Tape Format

When FORTRAN source program statements are prepared on paper tape, the sequence of characters is ex(]ctly

the same as for card input, and each line is terminated with a carriage return-line feed sequence.

A statement number (all digits) can be written as the first five characters, or the letter C can appear as f'he first

character to indicate a comment I ine or a continuation of a comment line. For statement continuation lines,

any numeric character other than blank or zero is written as the sixth character or as the first character (lfter (]

TAB. The seventh character, which begins the statement, must be alphabetic. Each I ine is terminated with CI

carriage return-line feed.

1-2

The TAB key can increase the speed of writing FORTRAN statements on paper tape. A TAB followed by an

alphabetic character begins the statement in column 7. A TAB followed by a digit causes the digit to be placed

in column 6, indicating a statement continuation line. A statement number of less than five digits, followed by

a TAB, causes the next character to be placed in column 6 if it is a digit, or in column 7 if it is a letter.

If a title is desired at the beginning of the tape for a listing, it must be entered as a comment line.

FORTRAN
CODER DATE PAGE

CODING FORM PROBLEM

rrC~-C~o-nH-~-en~IT8---,-----------

S-$ymbol ic
B - Boolean

STATEMENT
NUMBER

1 2 3 4 5

FORTRAN STATEMENT IDENTIFICATION

7 8 9 1011 1213141516171819202122 23 24 25262728293031323334353637383940414243444546474849 50 5152 535455565758596061626364 65 66676869707172 7374757677 787980

I-+---+-+-i--+-+-+----+-+-+-+-+-+-+ I I I I I I I I I I +_+_+_+__+_+--+-+-----+ I 1 1 I I I I ++-+-+-++-+-+++ +++ I 1-- +1

t-+--t-t-t-++-I--+--+-++-- I I I I I I I I I I I I I I I I I I I 1 1 I I I 1 I I I I 1 II 1 1 1 1 1 +t--+--+-

I-++-I---t---+-I--+---+-+-+---t-+-I-+-+--+-+--+--+ I I I I I I I I I +-+++--+ I I 1 I I I 1 I I I 1-+-+-1 I I I I 1 1 1 I-t-- 1 1 I 1 1 1 +-+-+-+-+-+ +-++-+-1--+ + 1-+--1-

r+---+-+-i-+--t-+----+-+-+-+-~1-+141-+1+1-+1 +I-II--+I~II-+I~II--+I-II--+I~I'-+I~I--+-I~I-+I~I~+I~I-+I~I-+I+I-+I +1-+1 +1-+1 +I-I~I--I--+-I--+-I--+-I--+-I--~-+--t-~-+-+-~-+--t-+-i-+--t-+----+--++ 1--+-+-

III I 1 I I I 1++-+-+ I I I 1 1 I I I I I I I I II I I I I I III I I I I I I I I I I I I I I I I I II I I I I I I I I + 1-+--+-

~-+---+-l-+-+--t-I'-I---+--t-I'-I---+-+-+-+-+-+---+---t-+---+- I I I I I I 1 1 I 1 I I I I 1 I I I I I I I ~ I I I I I I 1 +-+--+-+--+-+-t-+- +--+-+---+-+-+--+-+-+- +-1--+-+ j-+--t-

r+---+-+-t-+'+--t-I'-I-----+-+-i'-l---+-+-i-+-+---+-+--+--+---+-+--+--+-t-+-+---+-t-+--+-+I-It-+I -111--+-1 -11'-1--1 -11'-1--1 -+1'-1--1 -+1-+-1 +1--+-1 +1 -+-1 -+1--+-1 +1 -+-1 +1 --+-1 +1 --+-1 +1 -It-+I -111---t--1 -I1f-+1 -It-+I -11-+-+-+---1-+-+-+ t-I---+-I-

1-+-+--+-1--+-+-+----+-+ 1 1 1 1 1 I 1 \ 1 1 1 1 I I 1 I I I I I I 1 \ -+-+-+--1 1 I I I I I I I I I I I 1 I I I I I I I I 1 t-+--+- -I-+-+-+-+~-+-+- -+---+-+-+--1-+-+ -

t-+---t--+-l---++-t-lc---+----+--t-1I--+--+-+-i-+--+---+-+--+--+-+-+-+--+-t-+-+---+-t-+--+--+-t-+-+--+-tc---+--+-+-ic---+--+---+--+-+--+---+--I--+--+---+---+--+--+-+-+--+--+-t-+-+---+-+-+--+-+-It-++-+-+---+-+ -t--t-+

~-I--+-I-_+--t--t-I'-I---+--+-i-+-+--+----+-+-+-+----+--+--+-+----+-+--+-t-+-+---+-t-+-+-+-++I-+I +1 ~I-+I ~I-+I ~I-+I -ll-+I -ll-+I -ll-+I ~I-+I -ll-+I -ll-+I +1-+1 +1-+1 +1-+1 +1-+1 +1-+1 +1-+1 +I--+-~ -+-+++ 1-+-1

I-+---+-+-i-_+-+--~-+-+--+-+- 1 I 1 I I I I I I I I I I I I I 1 I I 1 I +-+-+-+--t-~-+-+-+-+--+-+-+ 1-+-+

I-+---+-+-i-+--t-+-tc---+----+-+-t--+---+-+--I--+--+-+-+--+--+-+-+--+-+-It-+---+-+-t-+-+ I -+-t---t---+---t--+--+-+-i-+- + ---t--t

r+-+-+-i-t4--t-I-Ilc---+-I-IIc---+-I-II--+--I-+I-+I+I--+-1 +1--+-1 +1--+-1 +1--+-1 +1--+-1 +1-I1t-+1-I1t-+1~1t-+1-+--1 --t--It-+---+-+-i-+-+-+--t-+-+-+--t--+--+-t-t--+--+-+-+--+--+-t-+--+-+-It-+---t--+-t-+-+---+-l'-l--~+-i-+4 +--+-4

1 I 1 I I I I --t--I-+--+-+--+-+-t-+-+-+-+-+--+-+-+-+--+-4

I--+---+-+-l--+--+--~-+-+-+----+-+-+-+----+-++-I--+-++-I--+-+~I--+-I--+-I--+-+-il-+I~I-+I~I-+I+I~I+I~I+I-+I +1-+1 +1-+1 +1-+1+1-+1 +1-+1 +1~11--+1~1-+1~1-+1~1-+1~11--+1411--+1~1~+~~+-+-+

~-+--+-I-+-I---+-ll--+-+---+-l-+---t-+-i--+---+-+--+I-+-I +1-+-1 +1-+1 +1-+-1 +1-+-1 t---++-+ I 1 1 1 1 I 1 1 I I 1 1 I 1 I 1 1 I 1 I I I I I 1 1 I I I 1 I I I +-+-+-+-+-II--+-+-+--+--t-+-+-

t-+-t-1t-+---t----1-+---t----1-f--t--l-+--t--l-+--+-+-+-+-+-+-+-+-+-+-++-+-+-t-+-+--1--1 +1 -+-11--+1 -+-11-+--+1 ~I-+I +1 -+-t--++-H--hH--+I~IH--+I-111-+-1 +1 +-H--fl ++-++++ ++t+- ++-t
I I I 1 1 I I 1 I 1 1 1 1 , , 1 ++--+-+-+++-H---+-+--lH--+-+-t--+++-f-+-I--++-+--+-+

I--+---+-+-i-+-I--~-+-+--+-i-+-+-++__+-+-+-+__+-+-+----+__+-+-I--+--+-_+_I--+-+--I , • , , 1 , I I I , I I 1 -+-+ . .
1 2 3 4 5 6 7 8 9 10 11 121314151617181920212223242526272829303132'333 .. 353637.39 .. 0 .. 14243" $46 .. 7 '50515253545556575859606162636 .. 656667686117071 12 737 .. 757&77117980

PG-3 DIGITAL EQUIPMENT CGRfDOIRA:t"to-N • ~ARO.MA8S"'CHUSETTS ~ -12-1-6l1

Figure 1-1 FORTRAN Coding Form

1-3

CHAPTER 2

ELEMENTS OF THE FORTRAN LANGUAGE

2. 1 CONSTANTS

There are five types of constants allowed in the FORTRAN source program: integer, real, double-precision,

logical, and Hollerith.

2. 1 • 1 Integer Constants

An integer constant consists of one to six decimal digits written without a decimal point. A + or - sign preced

ing the number is optional. The magnitude of the constant must be less than or equal to 131071 (2
17

_1).

Examples:

+97
o
-2176
576

If the magnitude>2
17

-1, an error message will be output. Negative numbers are represented in 2 1s complement

notation.

2. 1.2 Real Constants (Six-decimal-digit accuracy)

A real constant is an integer, fraction, or mixed format number written in the following forms:

a. A constant consisting of one to six significant decimal digits with a decimal point included within
the constant. A + or - sign can precede the cotstant; the + sign is optional.

b. A constant followed by the letter E, indicating a decimal exponent, and a one or two digit expo
nent with magnitude less than 76* indicating the appropriate power of 10. A + or - sign can precede
the exponent. The decimal point is not necessary in real constants having a decimal exponent.

Examples:

352.
+12.03
-.0054
5.E-3
+5E7

*If the adjusted magnitude exceeds 75, an error results. The constant .999999E75 is legal, but 999. 999E73 is
illegal.

2-1

Real constants are stored in two words in the following format:

LOW ORDER EXPONENT =:=J
MANTISSA (2'S COMP.)

'------__ -----JI-------,

o 89 17

SIGN OF +
MANTISSA L.._-'--_______ _

HIGH ORDER MANTISSA ~ , ____ ---.J
o 17

NOTE

Negative mantissae are indicated with a change of sign.

2.1.3 Double-Precision Constants (nine-decimal-digit accuracy)

A double-precision constant is written as a real number with a decimal exponent I followed by the letter 0 and

the one- or two-digit exponent with magnitude not greater than 76. A + or - sign can precede the constant clnd

also the exponent. A decimal point within the constant is optional. A double-precision constant is int4~rpreted

the same as a real constant I except that the degree of accuracy is greater.

Examples:

-3.000
987.6542015
32.1230+7

Double-precision constants are stored in three words:

EXPONENT (2'S COMP,)

o

SIGN OF +
MANTISSA L_-L-_______ _

HIGH ORDER MANTISSA

o

LOW ORDER MANTISSA

o

2-2

-.J
17

NEGATIVE
MANTISSAE

~
ARE.
INDICATED
WITH A
CHANGE

17 OF
SIGN

-.J
17

2.1.4 Logical Constants

The two logical constants are the words TRUE and FALSE, each enclosed by periods, with values as indicated

below.

.TRUE.

.FALSE.

2.1.5 Hollerith Constants

777777
o

A Hollerith constant is written as an unsigned integer constant, the value of which (n) must be 2: 1 and'=:; 5,

followed by the letter H, followed by exactly n characters, which are the Hollerith data. Any FORTRAN

character, including blank, is acceptable. The Hollerith constants are used only in CALL and DATA statements

and must be associated with real variable names. (For examples, refer to Paragraph 8. 11 • 1 .) ihe Hollerith

constants are packed in 7-bit ASCII, five per 1wo words of storage with the rightmost bit always zero.

Examples:

2.2 VARIABLES

1HA
4HA$CD

A variable is a representation of a numeric quantity, the value of which can change by assignment or computa

tion during the execution of a program. The representation, or name, consists of from one to six alphanumeric

characters, the first of which must be alphabetic.

Example:

X=Y+10. Both X and Yare variables; X by computation, and Y by assignment
in some previous statement.

TEST
GAMMA
X12345

2.2. 1 Variable Types

NOTE

If three characters or less are used for each symbol,
considerable core space can be saved during com
pi lation.

Variables in FORTRAN can represent one of the followi ng types of quantities: integer, real, double-precision,

or logical.

2-3

2.2.2 Integer Variables

Variable names beginning with the letters I, J, K, L, M, or N are considered to be integer variables. If the

first letter is not one of the above letters, it 'is an integer variable only if it was named in a previous il1tegel~

type specification statement.

2.2.3 Real Variables

Variable names beginning with letters other than I, J, K, L, M, or N are considered real variables. If the

first character is one of the foregoing letters, it is a real variable only if it was named in a previous real type

specification statement.

Example:

REAL ITIN

C ITI N WILL BE TREATED AS A REAL VARIABLE SUM=ITIN+ 1

2.:2.4 Double-Precision and Logical Variab~es

A 'type specification statement is the only way to assign a variable value to one of these two types. This is

done with either a double precision statement or a logical statement.

2.:3 ARRAYS AND SUBSCRIPTS

An array is an ordered set of data identified by a symbolic name. Each individual quantity in this set of data is

referred to in terms of its position within the array. This identifier is called a subscript. For example,

A (3)

represents the third element of a 1-dimension array named A. To generalize further, in an array A witlh n

elements, A (I) represents the Ith element of the array A where I = 1, 2, ••• ,n.

FORTRAN allows for 1-, 2-, and 3-dimension arrays; thus, there can be up to three subscripts for the (Irray,

each subscript separated from the next by a comma. For example,

B (1, 3)

represents the value located in the first row and the third column of a 2-dimension array named B. A dimens;ion

statement defining the size of the array (i .e. I the maximum values each of its subscrip,ts can attain) must pre

cede the array in the source program. (A COMMON statement can also be used for dimensioning.)

2-4

FORTRAN IV does not check constant subscripts to ascertain that they are positive and nonzero. For example,

the following statements are not flagged, although they are illegal.

N(O)=l

N(-l)= 1

(These statements are illegal because the array N cannot have a 0 or -1 member.)

2.3. 1 Arrangement of Arrays in Storage

Arrays are stored in column order in ascending absolute storage locations. The array is stored with the first of

its subscripts varying most rapidly and the last varying least rapidly. For example, a 3-dimension array A, de

fined in a DIMENSION statement as A (2,2,2), is stored sequentially in this order:

A(l,l,l)
A{2,1 ,1)
A(1,2,1)
A(2,2,1)
A(l ,1,2)
A(2,1,2)
A(1,2,2)
A(2,2,2)

2.3.2 Subscript Expressions

ascending absolute
storage locations

Subscripts can be written in any of the following forms:

V
C
V + k
V-k
C*V
C * V + k
C * V - k

where C and k represent unsigned integer constants and V represents an unsigned integer variable.

Example:

I
13
IMOST + 3
ILAST - 1
5 * IFIRST
2*J+9
4 * Ml - 7

2-5

2.:3.3 Subscripted Variables

A subscripted variable is a variable followed by a pair of parentheses enclosing one to three subscripts !)eparcJted

by commas.

Example:

A (I)
B (I, J - 3)
BETA {5 * J + 9, K + 7, 6 * JOB}

2.4 EXPRESSIONS

An expression is a combination of elements {constants, subscripted or nonsubscripted variables, and fun,etiomi},

each of whi ch is related to another by operators and parentheses. An expression represents one single value that

is the result of calculations specified by the values and operators that make up the expression. The FORTRAN

language provides two kinds of expressions: arithmetic and logical.

2.4. 1 Arithmetic Expressions

An arithmetic expression consists of arithmetic elements joined by the arithmetic opera~ors +, -, *, /, and '1<'*,

which denote addition, subtraction, multiplication, division, and exponentiation, respectively. An expression

may consist of a single element {meaning a constant, a variable, or a function name}. An expression enclosled

in parentheses is considered a single element. Compound expressions use arithmetic operators to combine single

ele!ments.

Examples:

2.71828
Z{N)
TAN{THETA}
{X Y}/2
{X+Y)-{ALPHA *BETA}

(single element: a constant)
{single element: a variable}
(single element: a function name)
(single element: because it is enclosed in parentheses)
(compound expression: arithmetic operators combining single elem4~nts)

2.4. 1 • 1 Mode of an Expression - The type of quantities making up an expression determines its mode; e.g. , a

simple expression consisting of an integer constant or an integer variable is said to be in the integer mode.

Simi larly, real constants or variables produce a real mode of expression, and double-precision constant!) or

variables produce a double-precision mode. The mode of an arithmetic expression is important because it de~er

mines the accuracy of the expression.

In !~eneral, variables or constants of one mode cannot be combined with variables or constants of anothE~r mode

in the same expression. There are, however, exceptions to this rule.

2-6

a. The following examples show the modes of the valid arithmetic expressions involving the use of the
arithmetic operators (+, -, *, and /). I, R, and D indicate integer, real, and double-precision
variables or constants. A plus sign (+) is used to indicate anyone of the four operators:

I + I
R+R

R+~ D+R
D+D

Integer resu It
Real result

Double-precision result

b. When raising a value to a power, the mode of the power can be different than that of the value
being raised. The following examples show the modes of the valid arithmetic expressions using the
arithmetic operator (**). As above, I, R, and D indicate integer, real, and double-precision.

1**1
R**I
R**R

Integer result

Real resu It

Double-precision result

The subscript of a subscripted variable, which is always an integer quantity, does not affect the mode of the

express ion.

2.4.1.2 Hierarchy of Operations - The order in which the operations of an arithmetic expression are to be

computed is based on a priority rating. The operator with the highest priority takes precedence over other

operators in the expression. Parentheses can be used to determine the order of computation. If no parentheses

are used, the order is understood to be as follows:

1. Function reference
2. **(Exponentiation)
3. Unary minus evaluation
4. *(multipl ication), /(division)
5. +(addition), -(subtraction)

Within the same priority, operations are computed from left to right.

Example:

FUNC + A*B/C-D(I,J) + E**F*G-H

interpreted as,

FUNC + ((A *B)/C) - D(I, J) +(E
F

* G) - H

2.4.1.3 Construction 'of Arithmetic Expressions - The following rules apply to constructing arithmetic expres-

sions:

a. Any expression can be enclosed in parentheses.

2-7

b. Expressions can be preceded by a + or - sign.

c. Simple expressions may be connected to other simple expressions to form a compound expres!;ion,
provided that:

(1) No two operators appear together.

(2) No operator is assumed to be present.

d. Only val id mode combinations can be used in an expression (Refer to Section 2.4. 1 . 1).

e. The expression must be constructed so that the priority scheme determines the order of operation de
sired (Refer to Section 2.4. 1 .2).

Arithmetic expression examples:

3
A(I)
B + 7.3
C*D
A + (B*C) - D**2 + E/F

2.4.2 Relational Expressions

A relational expression is formed with the arithmetic expressions separated by a relational operator. The result

value is either TRUE or FALSE depending on whether the condition expressed by the relational operator is met or

not met. The arithmetic expressions can both be integer mode expressions or a combina1rion of real/doub le

precision. No other mode combinations are legal. The relational operators must be enclosed by periods. They

are:

Examples:

.LT. Less than «)
• LE. Less than or equal to (~)
• EQ. Equal to (=)
.NE. Not equal to (IJ
• GT • Greater than (»
· G E. Greater than or equa I to ~)

N .LT.5
DELTA + 7.3 .LE. B/3E7
(KAPPA + 7)/5 .NE.IOTA
1.736D-4.GT .BETA
X.GE. Y*Z**2

2.4.3 Logical Expressions

A logical expression consists of logi cal elements joined by logical operators. The value is either TRUE ()r

FALSE. The logical operator symbols must be enclosed by periods.

2-8

The logical operator symbols are:

• NOT. Logical negation. Reverses the state of the logical quantity that follows •

.AND. Logical AND generates a logical result (TRUE or FALSE) determined by two logical
elements as follows:

T .AND. T generates T
T .AND. F generates F
F .AND. T generates F
F .AND. F generates F

.OR. Logical OR generates a logical result determined by two logical elements as follows:

T .OR. T generates T
T .OR. F generates T
F .OR. T generates T
F • OR. F generates F

2.4.3.1 Construction of Logical Expression - The following rules apply to constructing logical expressions:

a. A logical expression can consist of a logical constant, a logical variable, a reference to a logical
function, a relational expression, or a complex logical expression enclosed in parentheses.

b. The logi cal operator • NOT. must be followed only by a logi cal expression, whi Ie the logical
operators .AND. and • OR. must both be preceded by and followed by a logical expression for more
complex logical expressions.

c. Any logi cal expression can be enclosed in parentheses. The logical expression following the logical
operator. NOT. must be enclosed in parentheses if it contains more than one quantity.

d. When two logical operators appear in sequence, they must be separated by a comma or parenthesis,
unless the second operator is . NOT. In addition, when two decimal points appear together I they must
be separated by a comma or parenthesis, unless one belongs to a constant and the other to a relational
operator.

2.4.3.2 Hierarchy of Operations - Parentheses can be used as in normal mathematical notation to specify the

order of operations. Within the parentheses, or where there are no parentheses, the order in which the opera

tions are performed is as follows:

a. Evaluation of functions

b. **(Exponentiation)

c. Evaluation of unary minus quantities

d. * and/ (multiplication and division)

e. + and - (addition and subtraction)

f. • LT., • L E ., • EQ ., • N E ., • G T ., . G E •

g. .NOT.

h. .AND. and .OR.

i • = Rep I acement operator

2-9

Since .AND. and .OR. are of equal priority and are evaluated from left to right, the FORTRAN user must insert

his own parentheses when necessary. The following example illustrates equivalent logical expressions according

to FORTRAN (Ll, L2, ••• are defined as LOGICAL).

Example:

L 1.AND.L2.0R •• NOT .L3.AND.L4.0R.L5

is equivalent to

«(L1.AND.L2).OR •• NOT.L3) .AND.L4) .OR.L5

To present the foregoing expression as if it were meant to be a sum of products (instead of what FORTRAN

inte!rprets it to be) requires enclosing the product terms in parentheses.

Example:

(Ll.AND.L2) .OR.(.NOT .L3.AND.L4) .OR.L5

To express the original example as if it were a product of sums requires enclosing the sum terms in parentheses;.

Example:

Ll.AND.(L2.0R •• NOT .L3) .AND. (L4.0R.L5)

2.5 STATEMENTS

Stat'ements specify the computations required to carry out the processes of the FORTRAN program. Theria are

four categories of statements provided for by the FORTRAN language:

a. Arithmetic statements define a numerical calculation.

b. Control statements determine the sequence of operation in the program.

c. Input/output statements are used to transmit information between the computer and related input/
output dev ices.

d. Specification statements define the properties of variables, functions, and arrays appearing in th.e
source program. They also enable the user to control the allocation of storage.

2-10

CHAPTER 3

ARITHMETIC STATEMENTS

An arithmetic statement is a FORTRAN mathematical equation that defines a numerical or logical calculation.

It directs the assignment of a calculated quantity to a given variable. An arithmetic statement has the form

v = E

where V is a variable (integer, real, double-precision, or logi cal, subscripted or nonsubscripted) or any array

element name; = means replacement rather than equivalence, as opposed to the conventional mathematical

notation; and E is an expression.

In some cases, the mode of the variable is different from that of the expression. In such cases, an automatic

conversion takes place. The fules for the assignment of an expression, E, to a variable, V, are given in

Table 3-1 .

V Mode

Integer

Integer

Integer

Real

Real

Real

Double-precision

Double-precision

Double-precision

Logical

Table 3-1
Assignment Rules

E Mode Assignment Rule

Integer Assign

Real Fix and assign

Doub I e-prec is i on Fix and assign

Integer Float and assign

Real Assign

Double-precision Double-precision evaluate and real assign

Integer Double-precision float and assign

Real Double-precision evaluate and assign

Double-precision Assign

Logical Assign

3-1

Mode conversions involving logical quantities are illegal unless the mode of both V and E is logical. Examples

of an assignment statement:

ITEM = ITEM + 1
A(I) = B(I) + ASSIN (C (I))
V = .FALSE.
X = A.GT .B.AND.C .LE. G
A = B

3-2

CHAPTER 4

CONTROL STATEMENTS

The statements of a FORTRAN program are normally executed as written. It is frequently desirable, however,

to alter the normal order of execution. Control statements give the FORTRAN user this capability. This section

discusses the reasons for control statements and their use.

4.1 UNCONDITIONAL GO TO STATEMENTS

The form of the unconditional GO TO statement is

GO TO n

where n is a statement number. On execution of this statement, control is transferred to the statement

identified by the statement number, n, which is the next statement to be executed.

Example:

GO TO 17

4.2 ASSIGN STATEMENT

The general form of an ASSIGN statement is

ASSIGN n TO i

where n is a statement number and i is a nonsubscripted integer variable name that appears in a subsequently

executed assigned GO TO statement. The stai"ement number, n, is the statement to which control will be

transferred after the execution of the assigned GO TO statement.

Example:

ASSIGN 27 TO ITEST

4.3 ASSIGNED GO TO STATEMENT

Assigned GO TO statements have the form

GO TO i I (n
1

, n
2

, •••• , n
m

)

4-1

where i is a nonsubscripted integer variable reference appearing in a previously executed ASSIGN statement,

and n
1

, n
2

, .••• , nm are the statement numbers which the ASSIGN statement may legally assign to i.

Examples:

ASSIGN 13 TO KAPPA
GO TO KAPPA, (1, 13, 72, 100, 35)

There is no object time checking to ensure that the assignment is a legal statement number.

4.4 COMPUTED GO TO STATEMENT

The format of a computed GO TO statement is

GO TO (n l' n2 , •... , n m)' i

wher,e n l' n
2

, , nm are statement numbers and i is an integer variable reference the value of which is

greater than or equal to 1 and less than or equal to the number of statement numbers enclosed in parentheses.

If the value of i is out of this range, the statement is effectively a CONTINUE statement, however an OTS

error statement is also generated.

Example:

GO TO (3, 17, 25,50, 66), HEM

If the value of ITEM is 2 at the time this GO TO statement is executed, the statement to which control is;

transferred is the second statement number in the series, i. e. , statement 17.

4.5 ARITHMETIC IF STATEMENT

The form of the arithmeti c IF statement is

IF (e) n1, n2 , n3

where e is an arithmetic expression and n
1

, n2 , n3 are statement numbers. The IF statement evaluates the

expression in parentheses and transfers control to one of the referenced statements. If the value of the expres

sion (e) is less than, equal to, or greater than zero, control is transferred to n
1

, n2 , or n
3

, respectively.

Example:

IF (AUB (I) - B*D) 10, 7, 23

4.6 LOGICAL IF STATEMENT

The general format of a logical IF statement is

IF (e) s

where e is a logical expression and s is any executable statement other than a DO statement or another logical

IF statement. The logi cal expression is evaluated, and different statements are executed depending on w!hethelr

the expression is TRUE or FALSE. If the logical expression e is TRUE, statement s is executed and control is thl3n

4-2

transferred to the statement following the IF statement (unless the statement is a GO TO statement or an arith

metic IF statement, in which cases control is transferred as indicated; or the statement s is a CALL statement, in

which case control is transferred to the next statement after return from the subprogram). If the logical expres

sion e is false, statement s is ignored and control is transferred to the statement following the IF statement.

Example:

IF (L 1) I = I + I
IF (L.LE.k) GO TO 17
IF (LOG.AND. (.NOT.LOG1)) IF (X) 3,5,5

4.7 DO STATEMENT

The DO statement is a command to execute repeatedly a specified series of statements. The general format of

the DO statement is

DO n i = m1, m2' m3

or

DO n i = m
1

, m
2

where n is a statement number representing the terminal statement or end of the range; i is a nonsubscripted

integer variable known as the index; and m
1

, rn
2

, and m3 are unsigned nonzero integer constants or nonsub

scripted integer variables, which represent the initial, final and increment values of the index.

NOTE

The quantities m
1

, m2, and m3 must be assigned only
positive values.

The range of a DO statement is the series of statements to be executed. It consists of all statements immediately

following the DO, up to and including statement n. Any number of statements can appear between the DO and

statement n. The terminal statement (statement n) cannot be a GO TO (of any form), an arithmetic IF, a

RETURN, a STOP, a PAUSE, or a DO statement, or a logical IF statement containing any of these forms.

The index of a DO is the integer variable i which is controlled by the DO statement in such a way that its

initial value is set to m l' and is increased by rn3 each time the range of statements is executed, unti I a further

incrementation would cause the value of m2 to be exceeded. When i is greater than m2 , control passes to the

statement following statement n. Throughout the range of the DO, the index is available for computation

either as an ordinary integer variable or as the variable of a subscript. The index cannot be changed by any

statement within the DO range.

4-3

The initial value is the value of the index when the range is executed for the first time.,

The final value is the value which the index must not exceed. When this value is reached, the DO is complE!ted

and control passes to the first executable statement following statement n.

The increment is the amount by which the index is to be increased after each execution of the range. If the

increment is omitted, as in the second form of the DO statement above, its value is assumed to be 1.

Example:

DO 72 I = 1, 1 0, 2
DO 15 K = 1, 5
DO 23 I = 1, 11, 4

Any FORTRAN statement can appear within the range of a DO statement, including another DO statemElnt.

When such is the case, the range of the second DO must be contained entirely within the range of the fi'rst;

i.e", it is not permissible for the ranges of DOs to overlap. A set of DOs satisfying this rule is called CI nest

of DOs. DOs can be nested to a depth of ten. It is possible for a terminal statement to be the terminal state

ment for more than one DO statement. The following configuration, where brackets are used to represent the

range of the DOs, indicates the permissible and illegal nesting procedures.

PERMISSIBLE DO

rr=-DO

LL- DO

ILLEGAL------- DO

.....----- DO

Transfer of control from within the range of a DO statement to outside its range is permitted at any time. ThE~

reverse is not true, however; i.e., control cannot be transferr:ed from outside the range of a DO statemEmt to

inside its range. The following examples show both valid and invalid transfers.

VALID-------~V INVALID-------3

C 3
,-----5)

4-4

4.8 CONTINUE STATEMENT

The CONTINUE statement causes no action and generates no machine coding. It is a dummy statement used for

terminating DO loops when the last statement would otherwise be an illegal terminal statement (viz., GO TO,

arithmetic IF, RETURN, STOP, PAUSE, or DO I or d logical IF containing any of these forms). The form con

sists of the single word

CONTINUE

Example:

D07K START ,END

If(X(K))22, 13,7

7 CONTINUE

4.9 PAUSE STATEMENT

A PAUSE statement is a temporary halt of the program during run time. The PAUSE statement is in one of two

forms:

PAUSE

or

PAUSE n

where n is an octal integer the value of which is less than 7777778 . The integer n is typed out on the console

teletype for the purpose of determining which of several PAUSE statements was encountered. Program execution

is resumed, by typing control P (tP), starting with the first statement following the PAUSE statement.

4.10 STOP STATEMENT

The STOP statement is of one of two forms:

STOP

or

STOP n

where n is an octal integer whose value is less than 777777
8

• The STOP statement is placed at the logical end

of a program and causes the computer to type the integer n on the console teletype, and then to exit back to the

Monitor. There must be at least one STOP statement per main program, but none are allowed in subprograms.

4-5

4.11 END STATEMENT

The END statement is placed at the physical end of a program or subprogram. The form consists of the single

word

END

The END statement is used by the compiler and generates no code. It signals the compiler that the processing

of the source program is complete. The compiler assumes the presence of an END statement if it fails to find cine.

A control transfer type statement, a STOP statement, or a RETURN statement must immediately precede END.

This will be checked by the compiler.

4-6

CHAPTER 5

I NPUT/OUTPUT STATEMENTS

The input/output (I/O) statements direct the transfer of data between the computer and I/O devices. The

information thus transmitted is defined as a logical record, which can be formatted or unformatted. A logi cal

record, or records, can be written on a devi ce as one or more physical records. This is a function of the size of

the logical record and the physical device used.

The definition of the data which comprise a physical record varies with each I/O device (Refer to Table 5-1) .

Unit/Devi ce

Typewriter
(i nput and output)

Line printer

Cards
(i nput and output)

Paper tape
(i nput and output)

Magnetic tape

Disc/drum/Dectape

Table 5-1
Physical Record Definitions

Formatted P hys i ca I
Record Definition

One line of type is terminated by a carriage
return. Maximum of 72 printing characters
per line

One line of printing. Maximum of 120
characters per line

One card. Maximum of 80 characters

One line image of 72 printing characters

One line image of 630 characters

One line image of 630 characters

Unformatted
(Binary) Physical
Record Definition

Undefined

Undefined

50 words

50 words

252 words :2.5'~

252 words ~5l

Each I/O device is identified by an integer constant which is associated with a device assignment table in the

Monitor. This table may be modified at system generation time, or just before run time. For example, the

statement

READ (u,f) list

requests one logical record from the device associated with slot u in the device assignment table.

5-1

The statement descriptions in this section use u to identify a specific I/O unit, f as ,the statement number of the

FORMAT statement describing the type of data conversion, and list as a list of argumen1's to be input or output.

5. 1 GENERAL I/O STATEMENTS

These statements cause the transfer of data between the computer and I/O devices.

5. 1 • 1 Input/Output Argument Lists

An I/O statement which calls for the transmission of information includes a list of the quantities to be trans

mitted. In an input statement, this list consists of the variables to which the incoming data is to be assi<gned; in

an output statement, the I ist consists of the variables the values of which are to be transmitted to the given I/O

deviice. The order of the I ist must be that in which the data words exist (input) or are to exist (output) on the

I/O device. Any number of items can appear in a single list. The same statement can transmit integer .::md mal

quantities. If the data to be transmitted exce€ids the items in the list, only the number of quantiti es equal to the

number of items in the I ist are transmitted. The remaining data is ignored. Conversely, if the items in 'the list

exceed the data to be transmitted, succeeding superfluous records are transmitted until all items specified in t'he

I ist have been transmitted.

5. 1 • 1 • 1 Simple Lists - The list uses the form

C 1,C2
, ,C

n

where each C. is a variable, a subscripted variable, or an array identifier. Constants Clre not allowed as list
I

items. The list reads from left to right. When an array identifier appears in the list, the entire array is to be·

transmitted before the next item in the list.

Examples:

Y,Y,Z
A, B (3), C, D (I + 1, 4)

5. 1. 1.2 DO-Implied Lists - Indexing similar to that of the DO statement can be used to control the number of

timE~s a group of simple lists is to be repeated. The list elements, thus controlled, as well as the index contro·1

itsellf, are enclosed in parentheses, and the entire enclosure is regarded as a single item of the I/O list.

Example:

W, X (3), (Y (I), Z (I,K), I == 1, 10)

5-2

5. 1 .2 READ Statement

The READ statement is used to transfer data from any input device to the computer. The general READ statement

can be used to read either BCD or binary information. The form of the statement determines what kind of input

is performed.

5. 1 .2. 1 Formatted READ - T he formatted READ statement has the genera I form

READ (u,f) list

or

READ (u,f)

Execution of this statement causes input from device u to be converted as specified by format statement f, and

the resulting values to be assigned to the items specified by list, if any.

Examples:

READ (3, 13) A,B,C
READ (2, 10) A, (B (I), I = 1,5)
READ (1,3)

5. 1 .2.2 Unformatted READ - An unformatted READ statement has the general form

READ (u) list

or

READ (u)

Execution of this statement causes input from device u, in binary format, to be assigned to the items specified by

list. If no I ist is given, one record is read, but ignored. If the record contains more information words than the

list requires, that part of the record is lost. If more elements are in the list than are in one record, additional

records are read until the list is satisfied.

Examples:

READ (5) I,J,K
READ (8)

5. 1 .3 WRITE Statement

The WRITE statement is used to transmit information from the computer to any I/O device. The WRITE statement

closely parallels the READ statement in both format and operation.

5-3

5. 1 .3.1 Formatted WRITE - The formatted WRITE statement has the general form

WRITE (u,f) list

or

WRITE (u ,f)

Execution of this statement causes the I ist elements, if any, to be converted according to format statement f,

and output onto device u.

5.1.3.2 Unformatted WRITE - The unformatted WRITE statement has the general form

WRITE (u) list

Execution of this statement causes output onto device u, in binary format, of all words specified by the liist. If

the list elements do not fill the record, the remaining part of the record is filled with blanks. If the list elemEmts

more than fill one record, successive records are written until all elements of the list are satisfied, and the last

record is padded, with blanks if necessary.

Examples:

WRITE (1, 10) A, (B (I), (C (I,J), J=2, 10,2), 1=1,5)
WRITE (2,7) A,B,C
WRITE (5) W,X(3), Y(I + 1,4),Z

5.2 FORMAT STATEMENTS

These statements are used in conjunction with the general I/O statements. They specify the type of conversior.1

which is to be performed between the internal machine language and the external notation. FORMAT statements

are not executed; their function is to supply information to the object program.

5.2." Specifying FORMAT

The general form of the FORMAT statement is

FORMAT (Sl' S2' .••. , Sn)

where Sl •..• Sn are data field descriptors. Breaking this format down further, the basic data field descriptor i~;

written in the form

nkw.d

where n is a posit'ive unsigned integer indicating the number of successive fields for which the data conversion

is to Ibe performed according to the same specification. This is also known as the repeat count. If n is eClual M

1, it can be omitted. The control character, k, indicates which type of conversion is to be performed. This

character can be I,E,F,G,D,P,L,A,H, or X. The nonzero integer constant, w, specifies the width of the

field. The integer constant, d, indicates the number of digits to the right of the decimal point.

5-4

Six of the nine control characters listed above provide for data conversion between internal machine language

and external notation.

Internal

Integer variable

Real variable

Real variable

Real variable

Double-precision
variable

Logical variable

Alphanumeric

E

F

G

D

L

A

External

Dec i ma I integer

Floating-point, scaled

Floating-point, mixed

Floating-point, mixed/scaled

Floating-point, scaled

Letter T or F

Alphanumeric (BCD) characters

The other three control types are special purpose control characters:

P Used to set a scale factor for use with E, F, and D conversions.

X Provides for skipping characters in input or specifying blank characters
in output.

H Designates Hollerith fields.

Although FORMAT statements generate code, they are not executed and therefore can be placed anywhere in

the source program following all specification statements. Because FORMAT statements are referenced by READ

or WRITE statements, each FORMAT statement must be given a statement number.

The comma (,) and slash (/) are used as field separators. The comma is used to separate field descriptors;

however, it need not follow a field specified by an H or X control character. The slash is used to specify the

termination of formatted records. A series of slashes is also a field separator. Multiple slashes are the equiva

lent of blank records between output records, or records skipped for input records. If a seri es of n slashes occurs

at the beginning or end of the FORMAT specifications, the number of input records skipped or blank lines in

serted in output is n. If the series of n slashes occurs in the middle of the FORMAT specifications, this number

is n-l. A comma cannot precede/follow a slash. An integer value cannot precede a slash.

For all field descriptors (with the exception of H and X), the field width must be specified. For those descriptors

of the w.d type (paragraph 5.2.2.2), the d must be specified even if it is zero. The field width must be large

enough to provide for all characters (including decimal point and sign) necessary to constitute the data value as

well as blank characters needed to separate it from other data values. The data value within a field is right

justified; thus, the most significant characters of the value are lost if the field specified is too small.

5-5

Successive items in the I/O list are transmitted according to successive descriptors in the FORMAT statement,

untill the entire I/O list is satisfied. If the list contains more items than there are descriptors in the FORMAT

state!ment, a new record must be begun. Control is transferred to the preceding left parenthesis, where the same

specifications are used again until the list is complete.

Field descriptors (except H and X) are repeated by preceding the descriptor with an unsigned, nonzero integer

constant (the repeat count). A group repeat count is used to enable the repetition of a group of field de!icriptlors

or field separators enclosed in parentheses. The group count is placed to the left of the parenthesis. Two levlels

of parentheses (not including those enclosing the FORMAT specification) are permitted.

The field descriptors in the FORMAT must be the same type as the corresponding items in the I/O list; i .'9.,

integer quantities require integer (I) conversion; real quantities require real (E or F) conversion, etc.

Examples:

READ (I, 100) I, A

FORMAT (I7,F10.3)
FORMAT (13, I7/E10.4,E10.4)
FORMAT (214, 3(I5,D10.3))

5.2.2 Conversion of Numeric Data

5.2.2.1 I-Type Conversion (Field descriptor: Iw or nlw) - The number of characters specified by w is c:on

verted to a decimal integer.

On input, the number specified by w in the input field is converted to a binary integer. A minus sign indicat'9s

a negative number. A plus sign, indicating a positive number, is optional. The decimal point is illegal. If

there are blanks, they must precede the sign or first digit. All imbedded blanks are interpreted as zero digits"

On output, the converted number is right justified. If the number is smaller than the field w allows, the left-,

most spaces are fi lied with blanks. If an integer is too large the most significant digits are truncated and lost..

Negative numbers have a minus sign immediately preceding their most significant digit if sufficient SpaCE!S have

been reserved. No sign indicates a positive number.

5-6

Examples (b indicates blank):

Format Descriptor

15
13
18

bbbbb
-b5
bbb12345

Internal

+00000
-05
+12345

bbbbO
b-5
bbb12345

5.2.2.2 E-Type Conversion (Field descriptor: Ew.d or nEw .d) - The number of characters specified by w is

converted to a floating-point number with d spaces reserved for the digits to the right of the decimal point. The

w inc ludes field d, spaces for a sign, the decimal point, plus four spaces for the exponent (written E ± XX) in

addition to space for optional sign and one digit preceding the decimal point.

The input format of an E-type number consists of an optional sign, followed by a string of digits containing an

optional decimal point, followed by an exponent. Input data can be any number of digits in length, although

it must fall within the range of 0 to ± 10 ± 39.

E output consists of a minus sign if negative (blank if positive), the digit 0, a decimal point, a string of digits

rounded to d significant digits, followed by an exponent of the form E ± XX.

Examples:

Format Descriptor Input Internal Output

E10.4 00.2134E03 213.4 0.2134E+03
E9.4 0.2134E02 21.34 .2134E+02
E10.3 bb-23.0321 -23.0321 -0.230E+02

5.2.2.3 F-Type Conversion (Field descriptor: Fw.d or nFw.d) - The number of characters specified by w is

converted to a floating-point mixed number with d spaces reserved for the digits to the right of the decimal point.

Input for F-type conversion is basically the same as that for E-type conversion, described in paragraph 5.2.2.2.

The output consists of a minus sign if the number is negative (blank if positive), the integer portion of the num

ber, a decimal point, and the fractional part of the number rounded to d signifi cant digits.

5-7

Examples:

Format Descriptor !nput Internal Output

F6.3 b13457 13.457 13.457
F6.3 313457 313.457 13.457
F9.2 -21367. -21367. -21367.00
F7.2 -21367. -21367. 1367.00

5.2.2.4 G-Type Conversion (Field descriptor: Gw.d or nGw.d) - The external field occupies w positions

with d significant digits. The value of the list item appears, or is to appear, internally as a real number.

Input for G-type conversion is basically the same as that for E-type conversion, described in paragraph 5.2.2.2.

The form of the G-type output depends on the magnitude of the internal floating-poi nt number. Comparison is

made between the exponent (e) of the internal value and the number of significant digits (d) specified by the

format descriptor. If e is greater than d, the E-type conversion is used. If e is less than or equal to d ,~he

F-type conversion is used, but modified by the following formula:

F (w-d). (d-e) ,4X

The 4X represents four blank spaces that are always appended to the val ue. If the value to be represented is

less than. 1 , the E-type conversion is always used.

Examples:

Format Descriptor

G14.6
G14.6
G14.6
G14.6

Internal

-1
· 12345678 x 10

0
· 12345678 x 10

4
• 12345678 x 10

8
· 12345678 x 10

O. 12345678E -01
bbO. 123456bbbb
bbb1234.56bbbb
bbO.123456E+08

5.2.2.5 D-Type Conversion (Field descriptor: Dw.d or nDw.d) - The number of characters specified by w is

converted to a double-precision floating-point number with the number of digits specified by d to the right of

the decimal point.

The input and output are the same as those for E-type conversion except that a D is used in place of the E in

the exponent.

5-8

Examples:

Format Descriptor

D12.6
D12.6
D12.6

bb+21345D 03
b+3456789012
-12345.6D-02

5.2.3 P-Scale Factor - Field descriptor: nP or -nP

Internal

21.345
3456.789012
-123.456

o .213450D+02
o .345678D+04
O. 123456D+03

This scale factor n is an integer constant. The scale factor has effect only on E-,F-, G-, and D-type conver

sions. Initially, a scale factor of zero is impl ied. When a P field descriptor has been processed, the scale

factor established by n remains in effect for all subsequent E,F, and D descriptors within the same FORMAT

statement unti I another scale factor is encountered .

. For E, F, G, and D input conversions {when no exponent exists in the external field}, the scale factor is defined

as external quantity = internal quantity x 10
n

.

The scale factor has no effect if there is an exponent in the external field.

The definition of scale factor for F output conversion is the same as it is for F input. For E and D output, the

fractional part is multiplied by 10
n

and the exponent is reduced by n.

Examples:

Format Descriptor Input Scale Factor Internal Output

-3PF6.3 123456 -3 +123456. 23.456
-3PE12.4 123456 -3 +12345.6 bbO.0001E+08
1PD10.4 12.3456 +1 + 1 .23456 1.2345D+00

5.2.4 Conversion of Alphanumeric Data

5.2.4.1 A-Type Conversion {7-Bit ASCII, Handled As Real Variables} {Field descriptor: Aw or nAw} - The

number of alphanumeric characters specified by w is transmitted according to list specifications.

If the field width specified for A input is greater than or equal to five {the number of characters representable in

two machine words}, the rightmost five characters are stored internally. If w is less than five, 5 - w trailing

blanks are added.

For A output, if w is greater than five, w - 5 leading blanks are output followed by five alphanumeri c charac

ters. If w is less than or equal to five, the leftmost w characters are output.

5-9

5.2.4.2 H-Field Descriptor (7-Bit ASCII) (Field descriptor: nHa 1 0
2

0
3

•.. a
n

) - The number of charl:lcters

specified by n immediately following the H descriptor are transmitted to, or from, the external device. Blanks

can be included in the alphanumeric string. The value of n must be greater than O.

On Hollerith input, n characters read from the external device replace the n characters following the letter H.

In output mode, the n characters following the letter H, inc luding blanks, are output.

Examples:

3HABC
17H THIS IS AN ERROR
16H JANUARY 1, 1966

(Refer to Paragraph 5.2.8 for an exception to this rule when printing a formatted record.)

5 .. 2.5 Logical Fields, L Conversion - Field descriptor: Lw or nLw

The external format of a logical quantity is T or F. The internal format of a logical quantity is T or F" The

internal format is 7777778 for T or 0 for F.

On L input, the first nonblank character must be T or F. Leading blanks are ignored. Any other nonblank

character is illegal.

For L output, if the internal value is 0, F is output. Otherwise, T is output. The F or T is preceded by w .• 1

leading blanks.

5.,2.6 Blank Fields, X Conversion - Field descriptor: nX

The value of n is on integer number greater than O. On X input, n characters are read but ignored. On X

output, n spaces are output.

5 .. 2.7 FORTRAN Statements Read in at Object Time

FORTRAN provides the facility of including the formatting data along with the input data. This is done by

using on array name in place of the reference to a FORMAT statement label in any of the formatted I/O state

ments. For on array to be referenced in such a manner, the nome of the variable FORMAT specificafi.:>n must

appear in a DIMENSION statement, even if the size of the array is 1. The statements have the genenJI form:

READ (u, name)
READ (u, name) list

WRITE (u, name)
WRITE (u, name) list

5-10

The form of the FORMAT specification which is to be inserted into the array is the same as that of the source

program FORMAT statement, except that the word FORMAT is omitted and the nH field descriptor cannot be

used. The FORMAT specification can be inserted into the array by using a data initialization statement, or by

using a READ statement together with an A format.

For example, this facility can be used to specify the format of a deck of cards to be read at object time. The

first card of the deck contains the format statement,

1 10
((17 ,FlO .3)

Subsequent cards contain data in the general form,

7 17
(xx xxxx

DIMENSION AA (10)
13 FORMAT (10A5)

READ (3, 13) (AA(I) , 1=1 ,10

READ (3,M) JJ, BOB

Wi th the card reader assigned to .DAT slot (logical device number) 3, the first READ placed the format state

ment from the first card into the array AA, and the second READ statement causes data from the subsequent cards

to be ~ead into JJ and BOB with format specifications 17 and F10.3, respectively.

5.2.8 Output of a Formatted Record

When formatted records are prepared for output, the first character of the record is replaced by a vertical form

control character to effect the following vertical spacing on hard copy devices:

Character

Blank
o
1
+
All others

Vertical Spacing Before Printing

One line
Two lines
Skip to first I ine of next page
No advance
One line

This replacement takes place on all outputs. When the resulting record is input from a device, a different

FORMA T statement must be used to compensate for the vertical form control character which will be ignored.

Examples:

Output

Input

FORMAT (lX,F10.3)

FORMAT (F10.3)

5-11

5.3 AUXILIARY I/O STATEMENTS

These statements manipulate the I/O fi Ie oriented devices. The u is an unsigned integer constant or i ntege!r

variable specifying the device.

5.3.1 BACKSPACE Statement

The BACKSPACE statement has the general form

BACKSPACE u

Execution of this statement causes the I/O device identified by u, to be positioned so that the record which

had been the preceding record becomes the next record. If the unit u is positioned at its initial point', ex€!cu

t'lion of this statement has no effect.

5.3.2 REWIND Statement

The REWIND statement has the general form

REWIND u

Execution of this statement causes the I/O device identified by u to be positioned at its initial point.

5.3.3 ENDFILE Statement

The ENDFILE statement has the general form

ENDFILE u

Execution of this statement causes an endfile record to be written on the I/O device identified by u.

5.3.3.1 Segmented Files - A modification of AUXIO allows the user to write segmented files by using thE~

end-of-file indicator to separate the segments. The procedure for writing segmented files is exemplif1ied on

the following page.

5-12

tITE (3) (list»)

WRITE (3) (I ist)
ENDFILE 3

~RITE (3 ,71) (iist»)

WRITE (3,76) (I ist)
ENDFILE 3
WRITE (3) (I ist)

set of output
operations creating
segmented fi I e on
logical 3

set of output
operations creating
segmented fi I e on
logical 3

Note that segmented files cannot be input by means of a READ statement in a FORTRAN program because the

end of fi Ie wi II be detected as a data error. For an input operation such as this, an assembly language subrou

tine must be used.

5-13

CHAPTER 6

SPECIFICATION STATEMENTS

Specification statements provide the compiler with information about the nature of the constants and variables

used in the program and supply information required to allocate locations in storage for certain variables/arrays.

Specification statements are nonexecutable beacuse they do not generate instructions in the object program.

All specification statements in a FORTRAN source program must appear:

a. before any executable, code-generating statement and

b. before any FORMAT statements, which are nonexecutable but do generate code.

The order in which statements must appear in a source program is as follows:

1. BLOCK DATA; FUNCTION; SUBROUTINE.

2. INTEGER; REAL; LOGICAL; DOUBLE PRECISION.

3. DIMENSION.

4. COMMON.

5. EQUIVALENC E; EXTERNAL.

6. DATA.

7. Statement functions.

8. Other executable program statements and FORMAT statements.

When a statement with a legal order number is reached, any subsequent statement with a lower order number

causes an I error message. (Refer to Appendix D for an explanation of FORTRAN error codes.)

6.1 TYPE STATEMENTS

The general forms of TYPE statements are

INTEGER a,b,c
REAL a,b,c
DOUBLE PRECISION a,b,c
LOGICAL a ,b ,c

6-1

where a, b, and c are variable names which can be dimension or function names. A TYPE statement informs the

compiler that the identifiers I isted are variables or functions of a specified type, i.e., INTEGER, REAL, etc.

It overrides any impl icit typing; i.e., identifiers which begin with the letters I, J, K, L, M, or N are impl icitly

of t'he INTEGER mode; those beginning with any other letter are implicitly of the REAL mode. The TYPE

statement can be used to supply dimension information. Each variable or function name in a TYPE statement is

defined to be of that specific type throughout the program; the type cannot change.

Examples:

[NTEGER ABC,IJK,XYZ
REAL A {2,4}, I,J,K
DOUBLE PRECISION ITEM, GROUP
LOGICAL TRUE, FALSE

All function references {statement functions, intrinsic functions, or external functions} that are not impilicitl)'

REAL or INTEGER must appear in the appropriate type statement.

Example:

DOUBLE PRECISION B,X,DABS,DATAN

B = OAT AN {DABS {X} }

In this example, if DABS and DATAN had not been declared DOUBLE PRECISION, improper code would have

been generated by the compiler, and no error diagnostic would have occurred.

6.1,.1 Typing Double-Precision Functions

The compi ler does not recognize and implicitly mode-type double-precision functions in the FORTRAN science

librclry. Therefore, all double-precision functi'ons must be explicitly mode-typed as double precision.

The following program is not correct.

DOUBLE PRECISION A

A=DLOG{A)

6-2

The foregoing program should be written as follows.

DOUBLE PRECISION A, DLOG

A=DLOG(A)

6.2 DIMENSION STATEMENT

The DIMENSION statement is used to declare arrays and to provide the necessary information to allocate storage

for them in the object program.

The general form of the DIMENSION statement is

where each V is the name of an array and each i is composed of one, two, or three unsigned integer constants

separated by commas. The number of constants represents the number of dimensions the array contains; the value

of each constant represents the maximum size of each dimension. The dimension information for the variable

can be given in a TYPE statement, a COMMON statement, or a DIMENSION statement; however, dimension

ing information should be given only once.

Example:

DIMENSION ITEM (150), ARRAY (50,50)

When arrays are passed to subprograms, they must be redeclared in the subprogram. The mode and number of

dimensions must be the same as that declared by the calling program, but the size of each dimension is ignored

because the array descriptor block is the call ing program used.

6.3 COMMON STATEMENT

The COMMON statement provides a means for a program and its subprograms to share memory storage. The gen

eral form of the COMMON statement is:

where each x is a variable that is a COMMON block name, or it can be blank. If Xl is blank, the first two

slashes are optional. Each quantity, designated by the letter a, represents a I ist of variables and arrays sepa

rated by commas. The I ist of elements pertaining to a block name ends with a new block name, a blank

COMMON blOCK designation (two slashes), or the end of the statement.

6-3

The elements of a COMMON block, which are listed following the COMMON block name (or the blank name,),

are located sequentially in order of their appearance in the COMMON statement. An entire array is assigned

in sequence. Block names can be used more than once in a COMMON statement, or can be used in more than

one COMMON statement within the program. The entries so assigned are strung together in the given COMMON

block in order of their appearance. Labeled COMMON blocks with the same name appearing in several pro

grams or subprograms executed together must contain the same number of total words. The elements within the

blocks, however, need not agree in name, mode, or order. A blank COMMON can be any length.

Examples:

COMMON A,B,C/XX/X,Y,Z
COMMON/A/X(3,3), Y(2,5)//Z(5, 10, 15)

The COMMON statement is a means of transferring data between programs. If one program contains the

statements

COMMON/N/AA, BB,CC
AA=3
BB=4
CC=5

and another program whi ch is called later contai ns the statement

COMMON/N/XX,YY,ZZ

the latter program finds the values 3, 4, and 5 in its variables XX, YY, and ZZ, respectively, because variables

in the same relative positions in COMMON statements share the same locations in memory.

6.4 EQUIVALENCE STATEMENT

The EQUIVALENCE statement permits two or more entities to share the same storage locai·ion. The geneml

format of the EQUIVALENCE statement is

where! each k represents a I ist of two or more var'iables or subscripted variables separated by commas. Each

element in the list is assigned the same memory storage location.

An EQUIVALENCE statement can lengthen the size of a COMMON block. The size can only be increasEld by

extending the COMMON block beyond the last assignment for that block made directly by a COMMON

statement. A variable cannot be made equivalent to an element of an array if it causes the array to extend

past the beginning of the COMMON block.

6-4

6.4.1 Equivalencing COMMON Variables

The following rules apply to equivalencing COMMON variables:

a. Because COMMON variables occupy unique storage, two of them cannot be equivalenced together.

b. A COMMON variable that appears in an EQUIVALENCE statement cannot be the only member of
its COMMON block.

c. A COMMON variable cannot be equivalenced to a variable that already appears in a preceding
equivalence group.

d. All variables equivalenced to COMMON variables become COMMON variables themselves as far
as the succeeding equivalence groups are concerned.

The following programs fail:

a. COMMON X(10)
EQUIVALENCE (Y,X(5))

b. COMMON X(10),I
EQUIVALENCE (Y ,Z),(X(5),Y)

The foregoing programs should be rewritten as follows:

a. COMMON X(10),I
EQUIVALENCE (y ,X(5))

b. COMMON X(10),I
EQUIVALENCE (X(5),Y,Z)

6.5 EXTERNAL STATEMENT

An EXTERNAL statement is used to pass a subprogram name on to another subprogram. The general form of an

EXTERNAL statement is:

EXTERNAL y ,z, •••

6-5

Example:

EXTERNAL ISUM,ISUB

CALL DEBUG (ISUM,A,B)

CALL DEBUG (ISUB ,A,B)

END
SUBROUTINE DEBUG (X, Y ,Z)

Y=X (Z)

RETURN
END

6.6 DATA STATEMENT

The DATA statement is used to set variables or array elements to initial values at the time the object program is

loaded. The general form of the DATA initialization statement is:

where each k is a list of variables or array elements (with constant subscripts) separated by commas, and each d

is a corresponding list of constants with optioncJI signs. The k I ist cannot contain dummy arguments. Thl9re mllJst

be a one-to-one correspondence between the name list and the data list, except where ·the data list con!iists of a

sequence of identical constants. In such a case, the constant need be written only once, preceded by an

integer constant indicating the number of repecJts and by an asterisk. A Hollerith constant can appear in the

datal list. A double precision constant must be written explicitly in lid II format (e.g., 1 .OD+01 or 1D+01, no'i'

1 .D+01) ..

Variable or array elements appearing in a DATA statement cannot be in blank COMMON. They can be in a

labeled COMMON block and initially defined only in a BLOCK DATA subprogram.

Examples:

DATA A,B,C/3*2.0/
DATA X(l), X(2), X(3), X(4)/O.O, 0.1, 0.2, 0.3/,Y(1), Y(2),
2Y(3), Y(4)/1 .OE2, 1.0E-2, 1 .. 0E4, 1.0E-4/

6-6

CHAPTER 7

SUBPROGRAMS

A subprogram is a series of instructions which another program uses to perform complex or frequently used

operations. Subprograms are stored only once in the computer, regardless of the number of times they are re

ferred to by another program.

There are five categories of subprograms:

a. Statement Functions

b. Intrinsic or Library Functions

c. External Functions

d . Externa I Subrout i nes

e. Block Data Subprograms

Functions and subroutines differ in the following two respects. Functions normally return a single value to the

calling program; subroutines sometimes return more than one value. Functions are called by writing the name

of the function and an argument list in a standard arithmetic expression; subroutines are called by using a CALL

statement. The last category is a special purpose subprogram used for data initial ization purposes.

7.1 STATEMENT FUNCTIONS

A statement function is defined by a single statement simi lar in form to that of an arithmetic assignment statement.

It is defined internally to the program unit by wh ich it is referenced. Statement functions must fo II ow a II speci

fication statements and precede any executable statements of the program un it of which they are a part. The

general format ofa statement function is:

where f is a function name; the quantities designated by the letter a are nonsubscripted variables, known as

dummy arguments, which are used to evaluate the function; and e is an expression.

The value of a function is a real quantity unless the name of the function begins with I, J, K, L, M, or N; in

which case, it is an integer quantity, or the function type can be defined by using the appropriate specification

statement.

7-1

Since the arguments are dummy variables, their use is restricted to the right side of the statement functi,;::m, and

any use of the same name outside this region of the FORTRAN IV program except in a mode statement will ref

erence a different variable with the same name and mode. The number of dummy variables in any statement

function must never exceed 10.

The expression of a statement function, in addition to containing nonsubscripted dummy arguments, can only

contain:

(] . Non-Ho Iler ith constants

b. Variable references

c. Intr'insic function references

d. References to previously defined sf'atement functions

e. External function references

A statement function is called any time the name of the function appears in any FORTRAN arithmetic expression.

The actua I arguments must agree in order, number, and type wi th the correspond ing dummy arguments.

Execution of the statement function reference results in the computations indicated by the function defin ition.

The resulting quantity is used in the expression which contains the function reference.

Examples:

A(X) = 3.2+SQRT (5.7* X**2)
SUM (A,B,C) = A+B+C
FUNC (A,B) = 2. *A/B**2.+Z

7.2 INTRINSIC OR LIBRARY FUNCTIONS

Intrinsic or library functions are predefined subprograms that are a part of the FORTRAN system library. The

type of each intrinsic function and its argument's are predefined and cannot be changed.

An intrinsic function is referenced by using its function name with the appropriate arguments in an arithmetic

statement. The arguments can be arithmetic expressions, subscripted or simple variab les, constants, or other

intrinsic functions (refer to Table 7-1).

Examples:

x = ABS (A)
I =INT (X)
J = IFIX (R)

7-2

Intrinsic Functions

Absolute value

Truncation

Remaindering*

Choosing largest
value

Choosing smallest
value

Float

Fix

Transfer of sign

Positive difference

Obtain most sign i-
ficant part of double
precision argument

Express sing Ie pre-
cision argument in
double precision
form

Definition

I a I

Table 7-1
Intrinsic Functions

No. of
Arguments

1

Sign of a times largest 1
integer ~ I a I

a 1 (mod a
2

) 2

Max (a l,a
2

, ...) 2

Min (a
1
,a

2
, .•.) 2

Conversion from 1
integer to rea I

Convers ion from rea I 1
to integer

Sign of a
2

times 2

I a 1 I
a 1 - Min (a l,a

2
) 2

1

1

Symbolic Type of Type of
Name Argument Function

ABS Real Real
lABS Integer Integer
DABS Double Double

AINT Real Real
INT Real Integer
IDINT Double Integer

AMOD Real Real
MOD Integer Integer

AMAXO Integer Real
AMAX1 Real Real
MAXO Integer Integer
MAX1 Real Integer
DMAX1 Double Double

AMINO Integer Real
AMIN1 Real Real
MINO Integer Integer
MINl Real Integer
DMIN1 Double Double

FLOAT Integer Real

IFIX Real Integer

SIGN Real Real
ISIGN Integer Integer
DSIGN Double Double

DIM Real Real
IDIM Integer Integer

SNGL Double Real

DBLE Real Double

*The function MOD or AMOD (a
1

,a2) is defined as a - [a1/a2] a2, where [x] is the integer the magnitude
of which does not exceed the magnitude of x and the sign of which is the same as x.

7-3

7.3 EXTERNAL FUNCTIO NS

An external function is an independently written program which is executed when its name appears in another

program. The basic external functions are given in Table 7-2. The general form of an external function is

FUNCTION NAME (a 1 ,a2
,·· . ,an)

(FORTRA N statements)

NAME = final calculation
RETURN
END

where t is either INTEGER, REAL, DOUBLE PRECISION, LOGICAL, or blank; NAME is the symbolic name of

the function to be defined; and the a
1
,a

2
, etc., are dummy arguments which are nonsubscripted variable names,

array names, or other external function names.

The first letter of the function name implicitly determines the type of function. If that letter is I, J, K, L, M,

or N, the value of the function is INTEGER. If it is any other letter, the value is REAl. This determination

can be overridden by plac ing the specific type name before the word FUNCTION.

The symbolic name of a function is one to six alphanumeric characters, the first of which must be the alpho!betic

name clnd must not appear in any nonexecutable statement of the function subprogram except in the FUNCTION

statement where it is named. The function name must also appear at least once as a variable name within t'he

subpro~lram. During every execution of the subprogram, the variable must be defined before leaving the function

subproHram. After the variable is defined, it may be referenced or redefined. The value of this variable elt the

time any RETURN statement in the subprogram is encountered is called the value of function.

There must be at least one argument in the FUNCTION statement. These must be nonsubscripted variable names.

If a dummy argument is an array name, an appropriate DIMENSION statement is necessary. The dummy ar!;Ju

ment names cannot appear in an EQUIVALENCE, COMMON, or DATA statement in the function subprogrcJm.

The tot'al number of dummy arguments must not exceed 10.

The function subprogram can contain any FORTRAN statem,ents with the exception of a BLOCK DATA,

SUBROUTINE, or another FUNCTION statement. It, of course, cannot contain any statement which refenences

itself, either directly or indirectly.

A function subroutine must contain at least one RETURN statement. The genera I form is

RETURN

7-4

This signifies the logical end of the subprogram and returns control and the computed value to the calling

program. At least one RETURN statement must appear between the last executable statement and the END

statement.

An END statement, described in Section 4. 11, signals the compi ler that the physical end of the subprogram

has been reached.

An external function is called by using its function name, followed by an actual argument list enclosed in pa

rentheses, in an arithmetic or logical expression. The actual arguments must correspond in number, order, and

type to the dummy arguments. An actual argument can be one of the following:

a. A variable name

b. An array element name

c. An array name

d. Any other expression

e. The name of an external function or subroutine

Example:

Basic

DIME NSIO N A(100), B(100)

RSl T = SUM (A ,B)**2

END

FUNCTION SUM (X,Y)
DIMENSION X (100, Y (100)
SUM = X(1) + Y(1)
DOlO K = 2, 100
10 SUM = SUM + X(K) + Y(K)
RETURN
END

External Function
Definition

Exponential ea

Natural logarithm log (a)
e

Main Program

Function Subprogram

Table 7-2
External Functions

No. of
Arguments

1
1

1
1

7-5

Symbolic
Name

EXP
DEXP

AlOG
DlOG

Type of Type of
Argument Function

Real Real
Double Double

Real Real
Double Double

r-"

Basic
External Function

Common logarithm

r---
Trigonometric sine

Trigonometric cosine

Hyperbol ic tangent

Square root

Arctangent

Remaindering*

Definition

log 10 (a)

sin (a)

cos (a)

tanh (a)

(a) 1/2

arctan (a)

arctan (a 1/a2)

a 1 (mod a
2

)

Table 7-2 (Cont)
External Functions

No. of
Arguments

1
1

1
1

1
1

1

1
1

1
1
2
2

2

Symbol ic Type of
Name Argument

ALOGlO Real
DLOGlO Double

SIN Real
DSIN Double

COS Real
DCOS Double

TANH Real

SQRT Real
DSQRT Double

ATAN Real
DATAN Double
ATAN2 Real
DATAN2 Double

DMOD Double

Typ
Fun.

e of
:::tion

Real
Dou ble

Real
Dou ble

Real
Dou ble

Real

Real
Dou: ble

Real
Dou: ble
Real
DoUJ

DoUJ

ble

ble

*The function DMOD (a1,a2) is defined as a1 - [a1/a2] a2, where [x] is the integer whose magnitude does
not exceed the magnitude of x and whose sign is the same as the sign of x.

7.4 SUBROUTINES

A subroutine is defined externally to the program unit which references it. It is similar to an external function

in that both contain the same sort of dummy arguments, and both require at least one RETURN statement and an

END statement. A subroutine, however, can have multiple outputs. The general form of a subroutine i~;:

SUBROUTINE NAME (a 1 ,a2
, ..• ,an)

or

SUBROUTI NE NAME

where NAME is the symbol ic name of the subroutine subprogram to be defined; and the a l' a
2

, etc., art~

dummy arguments (there need not be any) which are nonsubscripted variable names, array names, or the dummy

name of another subroutine or external function.

The name of a subroutine consists of one to six alphanumeric characters, the first of which is alphabetic" The

symbolic names of the subroutines cannot appear in any statement of the subroutine except the SUBROUTINE

statement itself.

7-6

The dummy variables represent input and output variables. Any arguments used as output variables must appear

on the left side of an arithmetic statement or an input list within the subprogram. If an argument is the name

of an array, it must appear in a DIMENSION statement within the subroutine. The dummy argument names can

not appear in an EQUIVALENCE, COMMON, or DATA statement in the subprogram. The total number of

dummy arguments must not exceed 10.

The subroutine subprogram can contain any FORTRA N subprograms with the exception of FUNCTIO N, BLOCK

DATA, or another SUBROUTINE statement.

The logical termination of a subroutine is a RETURN statement. The physical end of the subroutine is an END

statement.

A subroutine is referenced by a CALL statement, which is in the general form

CALL NAME (a 1 ,a
2

, ••• ,an)

or

CALL NAME

where NAME is the symbol ic name of the subroutine subprogram being referenced, and the a l' a
2

, etc. , are the

actual arguments that are being supplied to the subroutine. The actual arguments in the CALL statement must

agree in number, order, and type with the corresponding arguments in the SUBROUTI NE subprogram. The array

sizes must be the same. An actual argument in the CALL statement can be one of the following:

a. A Holerith constant

b. A variable name

c . An array element name

d. An array

e. Any other expression

f. The name of an external function or subroutine

7.5 BLOCK DATA SUBPROGRAM

The BLOCK DATA subprogram is a special subprogram used to enter data into a COMMON block during com

pi lation. A BLOCK DATA statement takes the form

BLOCK DATA

This special subprogram contains only DATA, COMMON, EQUIVALENCE, DIMENSION, and TYPE statements.

It cannot contain any executable statements. It can be used to initialize data only in a labeled COMMON

block area, not in a blank COMMON block area.

7-7

All elements of CI given COMMON block must be listed in the COMMON statement, even if they do not all

appear in a DATA statement. Data cannot be entered in more than one COMMON block in a single

BLOCK DATA subprogram.

An END statement signifies the termination of a BLOCK DATA subprogram.

FORTRAN IV does not initialize more than one named COMMON block in any BLOCK DATA subprogram. If

more than one block is stated, only the last one can be initialized with DATA statements. The following pro'

gram wi" not work properly.

BLOCK DATA
COMMON /Nl/I/N2/J
DATA I,J/l,2/
END

However, if the subprogram is divided into two BLOCK DATA programs, the problem is eliminated.

C SUBPROGRAM 1
BLOCK DATA
COMMON /Nl/I
DATA 1/1/
END

C SUBPROGRAM 2
BLOCK DATA
COMMON /N2/J
DATA J/2/
END

7.5. 1 Example of BLOCK DATA Subprogram

BLOCK DATA
DIMENSION X(4), Y(4)
COMMON/NAME/A,B ,C ,I ,J ,X,Y
DATA A,B,C/3*2 .0/

DATA X(l, X(2), X(3), X(4)/O.O, 0.1,0.2, 0.3/Y(l), Y(2),
2Y(3), Y(4)/1.0E2, 1.0E-2, 1.0E4, 1.0E-4/
END

7-8

PART 2

FORTRAN IV OBJECT - TIME SYSTEM

CHAPTER 8

OBJECT--TIME SYSTEM DESCRIPTION

Th is chapter describes the subprograms inc luded in the FORTRAN IV Object-Time System (OTS). The Object

Time System is a group of subprograms that process compiled FORTRAN IV statements, particularly I/O state

ments, at execution time. The compi ler outputs ca lIs in the form of globals to various subprograms, depending

upon the content of the FORTRAN program. When the compi led program is loaded via the Linking Loader, the

Loader attempts to satisfy these globals by searching the FORTRAN library. As it finds the required object-time

subprograms, it brings them into core and sets up the necessary linkages.

Included in the package are programs for processing formatted and unformatted READ and WRITE statements;

BACKSPACE, REWIND and ENDFILE statements; the index of computed GO TO statements; STOP and PAUSE

statements; and File commands. The eight error messages output by the object-time system are described in

Table 8-1.

The following information is given for each subprogram of OTS:

a. Class

b. Purpose

c. Ca" i ng sequence

d. External calls

e. Size

f. Error conditions

8-1

Error Number

00-04

05

06

07

10

11

12

13

14

15

Table 8-1
o TS Error Messages

Error Description

Not used

Negative REAL Square Root Argument

Negative DOUBLE PRECISIO N Square
Root Argument

Illegal Index in Computed GO TO

Illegal I/O Device Number

Bad input data - 10 PS Mode Incorrect

Bad FORMAT

Negative or Zero REAL Logarithmic
Argument

Negative or Zero DOUBLE PRECISION
Logari thmic Argument

Raise zero to a ~ zero power (error is
recoverable and zero result is passed)

library Routines*
Tha t May Cause Error

SQRT

DSQRT

.GO

.FR, .FW, .FS, .FX,

.FR, .FA, .FE, .FF, .FS

.FA, .FE, .FF

.BC, .BE,ALOG

. BD, . BF, . BG, . BH ,
DLOG ,DLOG10

.BB, .BC, .BD, .BE, .BF,

.BG, .BH

*Only those routines whose calls are generated by the compiler are listed.

8.1 OTS BINARY CODED INPUT/OUTPUT (BCDIO)

Class: Object - Time System

Purpose: The BCD input/output object-time package is designed to process the formatted READ and WRlITE

statements in FO RTRAN N programs and subprograms. The FORTRAN IV compiler gener,ates elll

necessary object-time subroutine calls to perform input and output operations on a charac:ter-to

character basis under the control of a FORMAT statement. To permit FORMAT statemenl'S to be

al tered or read at execution time, the FORMAT statements are interpreted by BCDIO at execLltion

time rather than at compile-time. This method has two advantages:

a. It provides a greater flexibility to the FORTRAN programmer.

b. It provides the ability to utilize fully the capabilities of BCDIO in machine-language
programs.

To demonstrate this capability, a MACRO language program is given be~ow. The program reads

eight floating point numbers into memory with F-conversion and writes them on an outpu1f device

using the E-conversion.

8-2

Example:

Program Comment

.TITLE EXMPLl

.GL.OBL .FP, .FJ-~, .FE, .FF, .FW
• IODEV 3,Lj

ENTRY JMS* .FP /Initialize I/O device status table.
,JMS* .FR /Initial ize device 3 for input
• DSA (3) /under control of FORMAT statement .
.DSA FRMTl /FRMTl and read first record into line

/buffer.
LAW -10 /Set loop counter to 8.
DAC COUNT
LAC (ARRAY) /Set element address to first word
DAC ARGI lin the array.

L.OOPl JMS* .FE
ARGl 0 /Convert next line buffer field from

/BCD to floating point binary and
/store in ARRAY.

IS Z ARGI /Increment ARRAY address by two.
ISZ ARGI
ISZ COUNT /Check the counter and
JMP LOOPl /if not done, repeat loop.
JMS* .FF /Otherwise, terminates reading.

JMS* .FW /Initialize device 4 for output
.DSA (LI) /under control of FORMAT
• DSA FRMT2 /statement FRMT2 .
LAW -10 /Set loop counter to 8.
DAC COUNT
LAC (ARRAY) /Set element address to first
DAC ARG2 /word in the array.

LOOP2 JMPS* .FE /Convert floating-point binary word
ARG2 0 /pair to BCD and store in line-buffer.

ISZ ARG2 /Increment ARRAY address by 2.
ISZ ARG2 /
IS Z COUNT /Check count.
J~1P LOOP2 /If not done, go to LOOP 2.
JMPS* .FF /If done, output last line-buffer

land terminates writing.
HLT

ARRAY • BLOC K 20
FRMTI • ASC I I '(8FI0.S)'

FRMT2 .ASC I I ' (8E 1 2 • 5) ,

COUNT 0
.END

8-3

Calling Sequences:

a. To initialize a device for BCD input (output):

JMS*
. DSA
. DSA

. FR (. FW)
address of slot number .
address of first word of FORMAT statement or array .

b. To input (output) a data element:

JMS*
.DSA

.FE
address of element (first word)

c. To input (output) an entire FORTRAN array:

JMS*
. DSA

.FA
address of last word in the Array Descriptor Block .

d. To terminate the current logical record:

JMS* .FF

All BCDIO routines utilize the FlOPS object-time package to perform all I/O data transfers
between devices and the FlOPS line buffer. Device level communication is never employed.

e. External Calls:

f. Size:

H. Error Conditions:

FlOPS, OTSER, REAL ARITHMETIC

2773 octo I locations

OTS ERROR 10 - Illegal I/O Device Number
OTS ERROR 11 - Bad Input Data (lOPS Mode Incorrect)
OTS ERROR 12 - Illegal FORMAT

8.2 OTS BINARY INPUT/OUTPUT (BINIO)

Class;:

Purpose:

Object - Time System

The Binary Input/Output Object-Time package is designed to process the unformatted READ 'Jnd

WRITE statements in FORTRAN IV programs and subprograms. A FORMAT statement is not required,

and data transfer is on a word-to-word basis instead of a character-to-character basis, regardless 'of

data type.

,.. The size of the physical data record is always the standard line buffer size provided by lOPS.

Logical data records comprise one or more physical records, the number of which is determined by

the length of the I/O list associated with the WRITE statements that generate the logical records.

8-4

Each WRITE statement generates one log ica I record.

Each READ statement reads one logical record, regardless of the length of its I/O list. For this

reason, it is the responsibility of the FORTRAN programmer to ensure that I/O lists for WRITE and

READ statements are compatible.

Call ing Sequences:

a. To initialize a device for binary input (output):

JMS*
.DSA

· FS (. FX)
DEVICE

b. To input (or output) an integer data element:

JMS*
.DSA

· FI
address of the element

c. To input (or output) a real data element:

JMS*
.DSA

.FJ
address of the element (first word)

d. To input (or output) a double-precision data element:

JMS*
.DSA

.FK
address of the element (first word)

e. To input (or output) a logical data element:

JMS*
.DSA

· FL
address of the element

f. To input (or output) an entire FORTRAN array:

JMS*
. DSA

.FB
address of the last word in the Array Descriptor Block •

g. To terminate the current logical record:

JMS* .FG

The third word of each physical record contains a record of ID numbers starting with ZERO for
the first record. ID is incremented by one as each physical record is generated, until the last
record in the logical record has bit 0 set. •

A typical WRITE statement can generate the following record for ID:

LOGICAL
RECORD # 1

000000
000001
000002
000003
000004

8-5

PHYSICAL REC ORD
FOR ID (OCTAL)

LOGICAL
RECORD #2

000001
000001
000002
000003
000004

External Calls:

FlOPS, OTSER

Size: 244 octal locations

Error Conditions:

OTS ERROR 10 - Illegal I/O Device Number
OTS ERROR 11 - Illegal Input Data (lOPS Mode Incorrect)

8.3 OTS AUXILIARY INPUT/OUTPUT (AUXIO)

Class:

Purpose:

Object - Time System

Auxi I iary Input/Output consists of the processors for the three auxi I iary I/O statements in

FORTRAN IV: BACKSPACE, REWIND, and ENDFILE. These statements are normally used to con

trol Magnetic Tape Transports which are being used by unformatted READ and WRITE statements

(BINIO).

a. BACKSPACE .FT:

Repositions the tape at a point just prior to the first physical record associated with the current
logical record.

Example:

WRITE (7) A,B,C
BACKSPACE 7
READ (7) D , E, F

The three instructions in the above order cause the data of A, B, and C to be transferred to
D, E, and F.

b. REWIND .FU

Causes the specified device to be positioned at its initial (load) point.

c. ENDFILE. FV

Issues an lOPS command to close the current file on the specified device. In the caS4~ of
Magnetic Tape, this writes a file mark.

8-6

Calling Sequences:

a. To backspace one logical record:

JMS*
.DSA

.FT
DEVICE

b. To position a device at its initial point:

JMS*
.DSA

.FU
DEVICE

c. To end (close) a file:

JMS*
.DSA

.FV
DEVICE

External Calls:

FlOPS

Size: 76 octal locations

Error Conditions:

OTS ERROR 10 - Illegal I/O Device Number

8.4 OTS lOPS COMMUNICATION (FlOPS)

Class:

Purpose:

Object - Time System

FlOPS provides the necessary calls to lOPS required by all FORTRAN input and output statements.

Slot numbers are initialized by the .FC routine (Initialize I/O Device). Initialization of all slots

is maintained in the device status table. The first time that .FC is called for any device, the ap

propriate . INIT call is made to lOPS. The buffer size and input/output flag are stored in the status

word table. All subsequent calls to .Fe for the same device number suppress another .INIT unless

the input/output flag has changed, or this device number has been closed with a file command.

One I ine buffer is used by all FO RTRAN programs. Data transfers between the I ine buffer and I/O

devices are performed by the .FQ routine, which performs a .READ if the input/output (.FH) is

ZERO or a .WRITE if .FH is ONE. A .WAIT is always performed.

The. FP routine is called at the beginning of all FORTRAN main programs. This routine sets all words

in the device status table to zero, indicating that all devices are uninitialized.

8-7

Call ing Sequences':

a. To ilitialize the I/O device status table:

b.

c.

d.

JMS* .FP

To specify input:

DZM* .FH

To spec i fy output:

LAC
DAC*

To select device:

LAC
JMS*

(1)
.FH

DEVICE (address of slot number)
.FC

e. To input or output the I ine buffer:

External Calls:

OTSER

LAC
JMS*

address of . DAT slot number (bi ts 9-17) and 10 PS mode (bits 6-8)
.FQ

NOTES

1. DEVICE is a cell containing the slot number.

2. The I ine buffer is in location . FN to . FN+3778 .

3. The standard I ine buffer size (for the device currently
selected) is in location . FM.

4. On output, lOPS header words (.FN and .FN + 1)
must be prepared by the user.

Size: 540 octal locations

Error Conditions:

OTS ERROR 10 - Illegal I/O Device Number

8-8

8.5 OTS CALCULATE ARRAY ELEMENT ADDRESS (.55)

Class:

Purpose:

Object-Time System

To calculate the address of the first word of an array element.

Consider the array defined by DIME NSION ARRAY (K 1" .. ,K
i
); where i = 1, 2, or 3 is the number

of dimensions in the array. The array descriptor block for th is array is constructed of the fo Ilowing

four computer words.

wd 1 1000 M SIZE

0-2 3-4 5 17
~
u.
>..

..0

-0
(I)

wd 2 I N*K 1 (0 if i = 1)

....
0 s....
(I)
C
(I)

0

wd 3 I N*K 1 *K
2

(0 if i = 1 or 2)

ARRAY wd 4 (address of first word of first element of array)

where SIZE = N*K 1 ... *K
i

and M (the mode number) and N (the number of words per element) are

specified as follows:

ARRAY TYPE M b!

INTEGER 00
2

1

REAL 01
2

2

DOUBLE PRECISIO N 10
2

3

LOGICAL 112

Consider the address A of the first word of the array element ARRAY (k
1

, ... ,k
i
), where

1 ~ kj~ k
j

for j = 1 to i. This address is given by the following formula.

where WD2, WD3, and WD4 stand for the contents of words 2, 3, and 4 of the array descri ptor

b lock for ARRAY as shown above.

8-9

Calling Sequence:

External Calls:

.GLOBL
JMS*
.DSA
LAC. (k 1

LAC (k 1
DAC ALOC

.SS

.SS
ARRAY /ADDRESS OF WD4

/SUBSCRIPT i

/SUBSCRIPT i
/RETURN WITH A IN AC

I NTEGER and REAL ARITHMETIC

Size: 57 octal locations

Error Conditions:

None.

8.6 OTS COMPUTED GO TO (GO TO (.GO))

Class: Object-Time System

To compute the index of a computed GO TO.

Colling Sequence:

External Ca lis:

LAC
JMS*
-N

V
.GO

STMT ADDR (1)
STMT ADDR (2)

STMT ADDR (N)

OTSER

Size: 26 octal locations

Error Conditions:

/Index value in A-register

/Number of statement addresses

01S ERROR 7 if the index is illegal (equal to or less than zero) .

8-10

8.7 OTS STOP (STOP (. ST)

Class: Object-Time System

Purpose: To process the STOP statement and return control to the monitor.

Ca II i ng Sequence:

LAC (Octal number to be printed)
JMS* • ST

External Calls:

SPMSG (. SP)

Size: 13 octal locations

Error Cond itions:

None.

8.8 OTS PAUSE (PAUSE (.PA»

Class: Object-Time System

Purpose: To process the PAUSE statement. After receiving a t P (Control P) from the keyboard, control is

returned to the program.

Calling Sequence:

LAC (Octal number to be printed)
JMS* .PA

Externa I Ca II s:

SPMSG (. SP)

Size: 14 octal locations

Error Conditions:

None.

8-11

8.9 OTS OCTAL PRINT (SPMSG (. SP))

C lass: Object-Time System

Purpose: To print the octal number coded with STOP and PAUSE. If no number is given, zero (0) is assumed.

Ca III i ng Sequence:

External Calls:

LAC
JMS*
.DSA
LAC
LAC
LAC
LAC
LAC
LAC

(Octal integer to be printed)
.SP
(Control return) jpause on Iy
1 st Character
2nd Character
3rd Character
4th Character
5th Character
6th Character

None.

Siz·e: 74 octal locations

Error Conditions:

None.

8. 10 OTS ERRORS (OTSER (. ER))

C lass: Object-Time System

Purpose:

a. To announce an error on the teletype:

JMS*
.DSA

. ER
Error number

b. If bit 0 of the error number is a 1, the error is recoverable and pn::>gram control is returned
to the calling program at the first location following the error number.

c. If bit 0 of the error number is a 0, the error is unrecoverable and program control is trans
ferred to the monitor by means of the. EXIT function.

d. In the case of recoverab,le errors, the AC and link are restored to their original contents
prior to returning control to the caller.

8-12

e. If the error is a bad format statement (unrecoverable), the current 5/7 ASCII word pair
of the erroneous format statement is printed in addition to the error number.

Ca II i ng Sequence:

ERROR #12
only

JMS*
.DSA
LAC
LAC

. ER
Error number, octal
Note word 1
Note word 2

Words 1 and 2 are the current 5 characters (in 5/7 ASCII
of the bad format statement (ERROR # 12)).

External Calls:

None.

Size: 117 octal locations

Error Conditions:

None.

8.11 ADDITIONS TO THE FORTRAN IV SUBROUTINE LIBRARY

8.11.1 File Commands (FILE)

Class: External Subroutine

Purpose: To provide the device-independent .IOPS commands SEEK, ENTER, CLOSE, FSTAT, RENAM, and

DLETE. These commands are used to allow the FORTRAN IV Object-Time System to communicate

with .IOPS file-oriented devices.

a. SEEK finds and opens a named input fi Ie.

b. ENTER initiates and opens a named output fi Ie.

c. CLOSE terminates an input or an output fi Ie and must be used if SEEK or ENTER has been
used.

d. FSTAT checks for the presence of a named fi Ie.

e. RENAM checks for the presence of a fi Ie and renames it if found.

f. DLETE checks for the presence of a file and deletes it if found.

8-13

NOTE

BACKSPACE, REWIND, and ENDFILE commands should
never be used with a device that is operati ng in the fi le
or i ented mode us i ng the above su brout i nes 0

Calling Sequence:

a 0 To seek a named file:

CALL SEEK (N,A)

where N = devi ce number
A = array name containing the 9-character 5/7 ASCII fi Ie name and extension 0

The fi Ie array has the followi ng format for the named fi Ie FILNAM EXT:

DIMENSION FILEN (2)
DATA FILEN(l), FILEN(2)/5HFILNA,4HMEXT/

To use this named file for input on oDAT slot 1:

CALL SEEK (l,FILEN)

bo To enter a named file:

CALL ENTER (N IA)

where N and A are the same as for SEEK 0

Co To close a named fi Ie:

CALL CLOSE (N)

where N is the same as for SEEK 0

do To check for the presence of a named file:

CA L L F ST AT (N I A I I)

where N and A are the same as for SEEK and I = 0

(0 FALSE 0) if Hie not found and I = -1 (0 TRUE 0) if file found and action complete 0

eo To rename a file A and call it B:

CALL RENAM (N I A, B I I)

where N I A(B is the same as A), and I are the same as for F ST AT 0

f. To delete a named fi Ie:

CALL DLETE (N I A, I)

where N, A, and I are the same as for FSTAT 0

8-14

NOTE

In Hollerith constants when the filename or extension does
not contain the maximum number of characters, the filler
character is a space.

External Calls:

FlOPS, .DA, .SS, .SEEK, .ENTER, .CLOSE, .FSTAT, .RENAM, .DLETE

Size: 333 octal locations

Error Condi tions:

.OTS Error 10 if I/O device number is illegal

.10 PS Error 13 if fi Ie not found on SEEK

. lOPS Error 14 if directory full on ENTER

8.11.2 Clock Handling (TIME)

Class: External Subroutine

Purpose: To provide the abi lity to record elapsed time in minutes and seconds on a 60-cycle machine.

Call ing Sequence:

CALL TIME (lMIN, ISEC, JOfF)

This call causes the clock to be started and the elapsed time to be recorded as minutes and seconds

in IMIN and ISEC. To stop the clock, set 10FF to non-zero.

Only one call to TIME or TIME 10 can be active at any point in the user program.

Example:

CALL TIME (1M, IS, 10F)

A

IOF = 1
WRITE (4, 100) 1M, IS

Th is sequence causes the ti me taken to execute the code at A to be output.

External Calls:

.DA, . TIMER

8-15

Size: 53 octal locations

Error Condi tions:

None.

8. 11.3 Clock Handling (TIME10)

Class: External Subroutine

Purpose: To provide the ability to record elapsed time in minutes, seconds, and tenths of seconds on a

60-cycle machine.

Calling Sequence:

CALL TIME10 (IMIN, ISEC, ISEC10, IOFF)

This call causes the clock to be started and the elapsed time to be recorded as minutes, seconds,

and tenths of seconds in IMIN, ISEC, and ISEC1 0, respectively. To stop the clock, set JOFF to

non-zero. Only one call at TIME10 or TIME can be active at any point in the user program.

Exampl e: See TIME.

Ex terna I Ca II s:

.DA, . TIMER

Size: 66 octal locations

Error Conditions:

None.

8-16

8. 11.4 Adjustable Dimensioning (ADJ 1)

Class: External Subroutine

Purpose: To provide dimension adjustment on a 1-dimension array.

Calling Sequence:

DIMENSION B(1)

CALL ADJ1 (B,A)

where B is the array with storage beginning at A. A must be an array element (such as C(200» with

sufficient storage beyond A to allow for all the entries of array B. The di mensions or type of array A

do not have to agree wi th array B .

B cannot be a dummy argument in a subroutine, but A can be a dummy argument.

Example:

DIMENSION A (300) , B(1), C(1)

CALL ADJ1 (B,A(101»
CALL ADJ1 (C,A(201»

After the calls to ADJ1 , the arrays Band C can be referenced as if they had been dimensioned as

(100) each. It is not necessary to make further calls to ADJ 1 .

External Calls:

.DA

Size: 17 octal locations

Error Conditions:

None.

8-17

8. 11.5 Adjustable Dimensioning (ADJ2)

Class: Externa I Subrouti ne

Purpose: To provide dimension adjustment for a 2-dimension array.

Calling Sequence:

DIMENSION B(l, 1)

CALL ADJ2 (B,A, NR)

where N R is the number of rows to appear in array B.

Refer to ADJ 1 for comments on B and A.

Example:

DIMENSION A(300), B(1, 1), C(l, 1)

CALL ADJ2 (B ,A (1), 10)
CALL ADJ2 (C,A (101), 20)

After the calls to ADJ2, the arrays Band C can be referenced as if th,ey had been dim'~nsioned

(10,10) and (20, 10), respectively. It is not necessary to make further calls to ADJ2.

External Calls:

DA, .AD

Size: 36 octal locations

Error Conditions:

None.

8. 11.6 Adjustable Dimensioning (ADJ3)

Class: External Subroutine

Purpose: To provide dimension adjustment for the 3-dimension array.

Ca II i ng Sequence:

DIMENSION B (1, 1,1)

CALL ADJ3 (B,A, NR, NC)

. where NR and NC are the number of rows and columns, respectively, to appear in army B.
Refer to AD J 1 for comments on B and A.

8-18

Example:

See ADJ 1 and ADJ2

External Calls:

. DA, .AD

Size: 41 octal locations

Error Conditions:

None.

8-19

CHAPTER 9

SCIENCE LIBRARY DESCRIPTION

PART III

THE SCIENCE LIBRARY

This chapter describes mathematical routines in the Science Library. Most of the descriptive material is listed

in Table 9-1; in cases where detailed calculaf'ions or algorithms are involved, a reference (b) is made in

column 1 to detai led descriptions fo IIowing the table. Information given in Tab Ie 9-1 for each routine inc ludes

the routine name; mnemonic; calling sequence; function; mode; errors; accuracy and timing (where available);

storage requirements; and external calls. Routines are categorized as Intrinsic Functions, External Fun'8tions,

Sub-Functions, or part of the Arithmetic Package and are listed in the table accordingly.

9.1 INTRINSIC FUNCTIONS

Intrinsic Functions are predefined subprograms that are part of the FORTRAN library. The type of each Intrinsic

Function and its arguments are predefined and cannot be changed. Intrinsic Functions are referenced in a

FORTRAN program by writing the function name and the desired arguments in an appropriate FORTRAN statement.

Example:

x = ABS (A)

9.2 EXTERNAL FUNCTIONS

External Functions are independently written programs that are executed each time their name appears in a

FORTRAN program. Each External Function accepts one or more numerical arguments and computes a single

result. SIN, COS, and ALOG are examples of external functions. All basic External Functions supplied with

the FORTRAN system are described in Table 9-1.

9.3 SUB-FUNCTIONS

Sub-Functions are called by Intrinsic and External Functions, but are not directly accessible to the user via

FORTRAN. For example, the Sub-Function. EB is called by the External Function SIN, and performs the actual

computation of the sine.

9-1

9.4 THE ARITHMETIC PACKAGE

The Arithmetic Package contains all arithmetic routines required for integer, real, and double-precision

arithmetic. Both EAE and non-EAE versions are available, depending on the hardware.

9.5 ACCUMULATORS

There are three accumulators referred to in the CALLING SEQUENCE column of the table. These include the

A-register, the floating accumulator, and the held accumulator.

9.5. 1 A-Register

The A-register is the standard hardware accumulator and is used in some of the computcltions that involve intc~ger

values.

9.5.2 Floating Accumulator

The floating accumulator is a software accumulator that is included in the REAL ARITHMETIC package. It is a

3-word accumulator, .AA being the label of I-he first word, .AB the second, and .AC the third. Numbers are

stored in this accumulator in the following format:

.AA EXPONENT (2 1s COMP.)

o 17

.AB

ffSIGN OF MANTISSA

'I HIGH ORDER MANTISSA

o 1 17

.AC LOW ORDER MANTISSA

o 17

NOTE

Negative mantissCle are indicated with a change of sign.

Used by both the single and double-precision routines, this format is also that of double-precision numbers.

Single-precision numbers have a different format and must be converted before and after use in the floating CIC

cumulator. The format of single-precision numbers is show in the following illustration.

9-2

SIGN OF
MANTISSA

9.5.3 Held Accumulator

o

o

LOW ORDER
MANTISSA

89

EXPONENT
(2's COMP.)

HIGH ORDER MANTISSA

17

17

The held accumulator has the same format as the floating accumulator and is used as temporary storage by some

routines. The labels of the three words are CEO 1, C E02, and C E03.

9.6 CALLING SEQUENCES

The MACRO calling sequences {given in the third column of Table 9-1) assume , in some cases where there are

two arguments, that the appropriate accumulator has been loaded with the first argument. If the first argument

is''-pn integer value, it can be loaded into the A-register with a LAC instruction. If the first argument is a real or

double-precision value, the routines .AG and. AO, respectively, are used to load the floating accumulator.

The DAC instruction can be used to store the result of routines that return with an integer value in the A-register.

The routines .AH and .AP are used to store the result of routines that return with real or double-precision values

in the floating accumulator.

In calling sequences that use the .DSA pseudo operation to define the symbolic address of arguments, 400000

must be added to the address field if indirect addressing is involved.

FORTRAN library routines that are used in MACRO programs must be declared with a .GLOBL pseudo operation

in the MACRO program. The number and type of arguments in the calling program and the FORTRAN library

routine must agree.

The following example shows a section of a MACRO main program that uses the FORTRAN External Function SIN .

. TITLE

.GLOBL SIN, .AH

JMS* SIN
JMP .+2 /JUMP AROUND ARGUMENT
.DSA A /+400000 IF INDIRECT
JMS* .AH /STORE IN REAL FORMAT AT X
.DSA X

X .DSA 0
.DSA 0

9-3

-0
I
~

€ lJed

Table 9-1
Tne Science library

Accur. Storage
Routine Name Mnemonic Calling Sequence Function WIode Errors Bits (Octal) External Calls

INTRINSIC FUNCTIO NS

Exponentiation: { LAC ARG1 (base)}
Integer Base, Integer Exponent .BB JMS* .BB I**K 1=1**1 None N.A. 45 INTEGER

LAC ARG2 (exp)
Real Base, Integer Exponent .BC A**K R=R**I #13, if base.s;O 26 44 .EE, .EF ,REAL

DPBase,lntegerExponent .BD A**K D=D**I #14,ifbase'::;032 46 .DE,.DF,DOUBLE

Real Base, Real Exponent .BE A**B R=R**R #13 1 ifbase.s;O 26 20 .EE,.EF,REAL

Real Base, DPExponent .BF JMS*SUBR A**B D=R**D #13,ifbase'::;0 26 21 .EE,.DF,DOUBLE
.DSA ADDRofARG2 (exp)

DPBase, Real Exponent .BG A**B D=D**R #14,ifbase.s;0 32 22 .DE,.DF,DOUBLE

DPBase,DPExponent .BH A**B D=D**D #14,ifbase'::;0 32 21 .DE,.DF/DOUBLE

I Absolute Value: I r 1 I I
Real Absolute Value ASS iAi R=ABS(R) None N.A. 16 .DA,REAL

Integer Absolute Value lABS I I I I=IABS(I) None N .A. 14 .DA

DP Absolute Value DABS JMS* SUBR IA I D=DABS(D) None N .A. 16 .DA,DOUBLE
JMP .+2
.DSA ADDRofARG

Truncation:

Real to Real Truncation AINT {Sign of A times} R=AINT(R) None N.A. 15 .DA,REAL
Real to Integer Truncation INT largest integer I=INT(R) None N .A. 13 .DA,REAL
DP to Integer Truncation IDINT .::;A I=IDINT(D) None N.A. 13 .DA,REAL,DOUBLE

Remaindering:

Real Remaindering AMOD Note 1 R=AMOD(R,R) None N .A. 27 .DA,REAL

Integer Remaindering MOD Note 1 I=MOD(I,I) None N.A. 24 .DA,INTEGER

DP Remaindering DMOD Note 1 D=DMOD(D,D) None N.A. 30 .DA,DOUBLE

Transfer of Sign: JMS* SUBR

Real Transfer of Sign SIGN ~~:A A~DRofARG1 {SignOfA1} R=SIGN(R,R) None N.A. 26 .DA,REAL

I T f fS ' ISIGN DSA ADDR fARG2 I I=SIGN(I,I) None N.A. 20 .DA
nteger rans er 0 Ign . 0 ,D=SIGN(D ,D) None N .A. 26 .DA,DOUBLE

I DP Transfer of Sign DSIGN Sign of A2

Pes: tive Difference:

I
Real Positive Difference DIM l A1-MIN(A1,A2) R=DIM(R,R) None N .A. 22 .DA,REAL

Integer Positive Difference IDIM Il-MIN(Il,12) I=IDIM(I,I) None N.A. 15 .DA,INTEGER

I Conversion: j 1 I Integer to Real Conversion FLOAT' , A-I I R=FLOAT(I) None I N.A. 11 . DA, REAL I

Real to Integer Conversion IFIX JMS* SUBR I-A I=IFIX(R) None N.A. 13 .DA,REAL
. JMP .+2

"

DP to Real Conversion SNGL L .DSA ADDR of ARG J A-B " R=SNGL(D) None N .A. 27 .DA.DOUBLE
Real to DP Conversion DBLE A-B D=DBLE(R) None N .A. 11 .DA,REAL

.... __ r-,.. •• a ... _ r"'.I "'#Io I r /"''''........ • • •••. 1.1 a.1 1',. .. 1 ... ", •• .. ••• 1
i'lV II:;': I. Kemamaering is aerinea as Ai - LAi/ALJAL, wnere LAi/ALJ is me inTeger wnose magmruae aoes nor exceea me magmruae or A 1/1'1.£ ana wnose sign 15 me same as AIII-'vL·

Routine Name Mnemonic

INTRINSIC FUNCTIONS (Cont)

Maximum/Minimum Value:

Integer Maximum/Minimum IMNMX

Integer to Integer Max. MAXO

Integer to Interger Min. MINO

Integer to Rea I Max. AMAXO

Integer to Real Min. AMINO

Real Maximum/Minimum RMNMX

Rea! to Rea! Max. AMAXI

Real to Real Min. AMINI

Real to Integer Max. MAXI

Real to Integer Min. MINI
-.0

~
DP Maximum/Minimum DMNMX

DP Maximum DMAXI

DP Minimum DMINI

EXTERNAL FUNCTIONS

Square Root:

Real Square Root & SQRT

OP Square Root & DSQRT

Exponential:

Real Exponential & EXP

DP ExponeAtia I & DEXP

Natural Logarithm:

Real Natural Logarithm"&' ALOG

DP Natural Logarithm .&. DLOG

Common Logarithm:

Real Common Logarithm ..&. ALOG10

DP Common Logarithm .&. OLOG1O

Sine:
& Real Sine SIN

DP Sine & DSIN

Cosine:

Real Cosine &. COS

OP Cosine & DCOS

Table 9-1 (Cont)
The Science Library

Calling Sequence Function Mode

JMS* MAXO,MINO,
AMAXO, or AMINO

JMP .+n+l
· DSA ADDR of ARG 1 Max. Value I=MAXO(Il, ••• , In)
• DSA ADDR of ARG2

Min. Value I=MINO(I1, ••• ,In)

· DSA ADDR of ARGn Max. Value R=AMAXO(I1, .•• ,In)

Min. Value R=AMINO(I1, ••• ,In)

r JMS' AMAXI,AMINI,

1
MAXI, or MIN2

JMP .+n+l 1. DSA ADD' of A'G I Max. Value R=AMAX1(RI, ••• ,Rn)
• DSA AOOR of ARG2

) Min. Value R=AMINI (Rl, ••• ,Rn)

• DSA ADDR of ARGn Max. Value I=MAX1(Rl, ••• ,Rn)

Min. Value I=MIN1(Rl, ••• ,Rn)

{JMS' DMAXI 0' DMINI } JMP .+n+l
• DSA ADDR of ARG 1 Max. Value D=DMAX1(Dl, ••. ,Dn)

Min. Value D=OMIN1(Dl, ••• ,Dn)
• DSA AD OR of ARGn

Xl/2 R=SQRT(R)
Xl/2 D=OSQRT(D)

X R=EXP(R) e

JMS* SUBR
X D=DEXP(D) e

JMP .+2

• DSA ADDR of ARG Loge X R=ALOG(R)

Loge X D=DLOG(D)

Log
10

X R=ALOG IO(R)

Log 1O X D=DLOG 1O(D)

Sin (X) R=SIN(R)

Sin (X) D=SIN(D)

Cos (X) R=COS(R)

Cos (X) D=COS(O)

Accur. Storage
Errors Bits (Octal) Externa I Ca lis

107 INTEGER, REAL

None N.A.

None N.A.

None N.A.

None N.A.

120 INTEGER, REAL

None N.A.

None N.A.

None N.A.

None N.A.

106 DOUBLE

None N.A.

None N.A.

#5,ARG < 0 26 66 .DA, .ER,REAL

#6,ARG < 0 34 70 • DA, .ER,DOUBLE

#13,ARG S. 0 26 13 • DA, .EF,. ER, REAL

#14,ARG S. 0 34 13 .OA,.DF, .ER,DOUBLE

#13,ARG < 0 26 20 • OA, .EE,. ER, REAL

#]'4,ARG < 0 32 21 • DA, .DE,. ER,DOUBLE

#13,ARG < 0 26 20 .OA, .EE,.ER,REAL

#14,ARG < 0 32 21 .OA, .DE, .ER,OOUBLE

None 26 13 .OA,.EB,REAL

None 34 13 · DA,. DB, DOUBLE

None 26 20 .DA,.EB,REAL

None 34 21 • OA, .DB,OOUBLE

--0
I

0-.

£Ued

Routi ne Name

EXTERNAL FUNCTIONS (Cont)

Arctangent:

Real Arctangent &
DP Arctangent &
Real Arctangent (x/y)£

DP Arctangent (x/y) .&

Hyperbol ic Tangent &

SUB-FUNCTIONS

Sine Computation:

Reai Sine &
DP Sine &

ArctangentComputation :

Real Arctangent .&
DP Arctangent .&

Logarithm (Base 2) Computation:

Real log In.
DP Log

Exponentia I Computation:

Real Exponential ~
DP Exponential ~

Polynomial Evaluation:

Real Polynomial Evaluation~

DP Polynomial Evaluation &.

Mnemonic

I
IATAN

DATAN

ATAN2

DATAN2

TANH

.EB

.DB

.ED

.00

.EE

.DE

.EF

.OF

.EC

.DC

Table 9-1 (Cont)
The Science Library

Ca lling Sequence Function Mode

eMS* ATAN '" DATAN } tan -1 (a) R=ATAN{2}
JMP .+2

tan -1 (a) .DSA ADDR or ARG D=DATAN{D)

fMS* ATAN2 '" DATAN2 f tan -1 (x/y) R=ATAN2(R,R)
JMP .+3

tan -1 {x/y} .DSA ADDR of ARG 1 D=DATAN2{D,D)
.DSA ADDR of ARG2

rMS*TANH } tanh (0) R=TANH(R}
JMP .+2
.DSA ADDR of ARG

r 1 Sin (0) R=.EB(R)

Sin (a) D=.DB(D)

tan -1 (a) R=.ED{R)

JMS* SUBR tan -1 {a} D=.DD{D)

NOTE

Enter with argument in 1092 a R=. EE(R)
floating accumulator. 1092 a D=.DE{D)
Returns with resu It in
floating accumulator.

X R=. EF(R) e
X D=.DF{D) e

r JMS* • EC '" • DC n
CAL PUST x= r R=.EC(~,R1 '

i=O

C 7 2i+1
... R

n
)

2i+1-
PLIST -N /-No. of n D=.DC{D

2
,D

1
,

terms +1 x= r ... D
n
)

C /Iast t,rm i=O
n

C Z2i+l C
n

_
1

/next to last
2i+1

C, /2nd term

Il C~ /lst term J I

Accur. Storage
Errors Bits (Octal) External Calls

None 26 13 .DA,.ED,REAL

None 34 13 .DA,.DD,DOUBLE

None 26 44 .DA,.ED,REAL

None 34 46 .DA,.DD,DOUBLE

None 26 47 . DA,.EF ,REAL

None 19 102 .EC,REAl

None 28 120 .DC,DOUBLE

None 26 67 .EC,REAL

None 34 146 .DC,DOUBLE

#13,ARG < 0 26 71 .ER,REAL
H14,ARG S 0 32 101 .ER,DOUBLE

None 26 116 REAL

None 34 137 DOUBL~

None N.A. 44 REAL

None N.A. 47 DOUBLE

-0
I

""-J

Table 9-1 (Cont)
The Science Library

Routine Name Mnemonic Calling Sequence Function

SUB-FUNCTIONS (Cont)
Routine that calls

General Get Argument .DA Calling Routine Calling Routine

JMS* SUBR SUBR CAL 0
JMP . -In +1 JMS* .DA
.DSA ARG1 JMP .-In+1
.DSA ARG2 (address of ARG 1)

(address of ARG2)

DSA ARGn
(address of ARGn)

ARITHMETIC PACKAGE

Integer Arithmetic: INTEGE ARG1

1 A-Register ARG2

Mul tipl ication .AD Multiplicand MulHpl;er I
Division .AE Dividend Divisor
Reverse Division .AF Divisor Dividend JMS* SUBR
Subtraction .AY Minuend Subtrahend LAC ARG2
Reverse Subtraction .AZ Subtrahend Minuend

Double Precision Arithmetic: DOUBLE ARG1
FL.ACC. ARG2

Load .AO Address
Store .AP Value Address
Add . AQ Augend Addend
Subtract .AR Minuend Subtrahend JMS* SUBR

.DSA ARG2
Reverse Subtract .AU Subtrahend Minuend
Multiply .AS Multiplicand Multiplier
Divide .AT Dividend Divisor
Reverse Divide .AV Divisor Dividend

ARG1
Real Arithmetic (Includes REAL FL.ACC. ARG2

Floating):

Load .AG Address
Store .AH Value Address
Add .AI Augend Addend
Subtract .AJ Minuend Subtrahend JMS* SUBR

.DSA ARG2
Reverse Subtract .AM Subtrahend Minuend
Multiply .AK Multiplicand Multiplier
Divide .AL Dividend Divisor
Reverse Divide .AN Divisor Dividend

NOTES: 2. 114g for EAE, 1608 for non EAE (PDP-15); 1178 for EAE, 2028 for non EAE (PDP-9).
3. 10228 for EAE, 7478 for non EAE (PDP-l5); 10348 for EAE, 7578 for non EAE (PDP-9).

N.A.

I*J
I/J
J/I
I-J
J-I

N.A.
N.A.
A+B
A-B

B-A
A*B
A/B
B/A

N.A.
N.A.
A+B
A-B

B-A
A*B
A/B
B/A

Accur. Storage I I

Mode Errors Bits (Octal) External Calls

N.A. None N.A. 47 None

Note 2

1=1*1 None
1=1/1 None
1=1/1 None
1=1-1 None
1=1-1 None

203 REAL

D=.AO(D) None N.A.
D=.AP(D) None N.A .
D=D-D None
D=D-D None

D=D-D None
D=D*D None
D=D/D None
D=D/D None

Note 3

R=.AG(R) None N.A.
R=.AH(R) None N.A.
R=R+R None
R=R-R None

R=R-R None
R=R*R None
R=R/R None
R=R/R None

-.0
I

ex>

Ali'VliSll 33N313S
£Ued

Routine Name

ARITHMETIC PACKAGE (Cont)

Floating Arithmetic

Float
Fix
Negate

Multiply
Divide
Add
Normalize
Hold
Round & Sign
Sign Control

Short Get Argument

Short Get Argument

Mnemonic

.AW

.AX

.BA

.CA

.CI

.CC

. CD

. CF

.CH

.CG

.CB

.CB

Table 9-1 (Cont)
The Science Library

Calling Sequence Function

A-Register Fl.ACC. }

Integer F.P. No. A+-I
F.P. No. JMS* SUBR I+-A

A+--A

FL.ACC. HELD ACC.

Multiplicand Multiplier A*B
Divisor Dividend AlB
Augend Addend JMS* SUBR A+B
Value N.A .
Value N.A.
Value N.A.
Value Value Note 4

r~o }
N.A.

JMS* .CB
CAL 0
.DSA 0

Accur.
Mode Errors Bits

R=.AW(I) None N.A.
I=.AX(R) None N.A.
R=.BA(R) None N.A.

R=R*R None
R=R/R None
R=R+R None
R=.CD(R) None N.A.
R=.CF(R) None N.A .
R=.CH(R) None N.A.
R=.CG(R) None N.A.

R=.CB(R) None N.A.

NOTES: 4. The sign of the result (The exclusive OR of the sign bits of .AB and (CE02) is stored in .CE). The sign of .AB is saved in CE05.

Storage
(Octal) External Calls

I

When the above MACRO program is loaded, the Linking Loader attempts to satisfy the globals by searching the

Science Library. The External Function SIN and the REAL ARITHMETIC package are loaded. The references

to these routines in the MACRO program mus1' be i~direct (as indicated in the example) because only the trans

fer vectors are given in the main program.

9.7 SCIENCE LIBRARY ALGORITHM DESCRIPTIO NS

9.7. it SQUARE ROOT (SQRT, DSQRT)

A first-guess approximation of the square roo1' of the argument is obtained as follows.

If the exponent (EXP) of the argumen1' is odd:

Po = .5

(EXP-1)
2

If the exponent (EX P) of the argument' is even:

(EXP -1)

+ .ARG 2

Newton's iterative approximation is then applied three t.imes.

1
Pi+1 = 2' (P. + ARG)

I P.
I

9.7.~ EXPONENTIAL (EXP, DEXP, .EF, .DF)

The function eX is ca Icu lated as 2 x lo92
e

, where x lo92e wi" have an integra I portion (I) and a fractional

portion (F). Then

eX = (21) (2F)

l=(f Y where C
i

F'
i=O

The va lues of Care:

Co = 1.0

C 1 = O. 34657359

and n = 6 for EXP and . EF ,
or n = 8 for D EX P and. D F •

9-9

C 2 = O. 06005663

C
3

= 0.00693801

C 4 = O. 00060113

C 5 = O. 00004167

C 6 = 0.00000241

C
7

= 0.00000119

C
8

= 0.000000518

9.7.& NATURAL AND COMMON LOGARITHMS (ALOG, ALOG10, DLOG, DLOGlO)

The exponent of the argument is saved as one greater than the integra I portion of the resu It. The fractiomll

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows.

Then, log X = -+ L 1 (n
2 2 i==O

C Z2i + 1)
2i + 1

where n = 2 for ALOG, and n = 3 for DLOG. The values of C are as follows:

A LOG and ALOG 10

C 1 = 2. 8853913

C
3

= 0.96147063

C 5 = 0.59897865

Fina IIy ,

DLOG and DLOG 10

C
1

= 2.8853900

C
3

= 0.96180076

C
5

= 0.57658434

C
7

= 0.43425975

log X = (log
2

X) (log 2), for ALOG and DLOG,
e e

and

10910 X = (log2 X) (logl02), for ALOG10 and DLOG 10.

9.7. £ SINE AND COSINE (SIN,COS, DSIN, DCOS, .EB, .DB)

The argument is converted to quarter circles by multiplying by 2/1T. The low two bits of the integral portion

determine the quadrant of the argument and produce a modified value of the fractional portion (Z) as follows.

9-10

Low 2 Bits Quadrant Modified Value (Z)

00 I F
01 II 1-F
10 III -F
11 IV -(l-F)

Z is then applied to the following polynomial expression.

sin X = (£
i=O

C Z2i + 1)
2i + 1

where n=4 for REAL routines, and n=6 for DP routines. The values of C are as follows.

REAL ROUTINES

C
1

= 1.570796318

C
3

= -0.645963711

C 5 = 0.079689677928

C
7

= -0.00467376557

C
9

= 0.00015148419

DP ROUTINES

C
1

= 1.5707932680

C
3

= -0.6459640975

C
5

= 0.06969262601

C
7

= -0.004681752998

C
9

= 0.00016043839964

C 11= -0.000003595184353

C
13

=0.000000054465285

The argument for COS and DCOS routines is adjusted by adding TT/2. The sin subfunction is then used to com

pute the cosine according to the following relationship:

cos x = sin (; + x)

9.7.& ARCTANGENT (ATAN, DATAN, ATAN2, DATAN2, .ED, .DD)

For X less than or equal to 1, Z = X, and:

arctangent X = (£
i=O

C Z2i+1)
2i+1

where n = 7 for REAL routin"es and n = 3 for DP routines. For X greater than 1, Z = l/X, and

" 9-11

(

n
1T -

arctangent X = '2 .r
1=0

2i+1) C2i+ 1 Z

where n = 8 for REAL routines and n = 3 for DP routines. The values of C are as follows.

REAL ROUTINES

C 1 = 0 . 9992150

C
3

= -0.3211819

C
5

= 0.1462766

C
7

= -0.0389929

DP ROUTINES

C 1 = 0.9999993329

C
3

= -0.3332985605

C 5 = O. 1994653599

C
7

= -0. 1390853351

C
9

= 0.0964200441

C 11 = -0.0559098861

C 13 = 0.0218612288

C 15 = -0. 0040540580

9.7.~ HYPERBOLIC TANGENT (TANH)

X I
e ,ca Iculated as 2

x
o92

e
, where x lo92e wi II have an integra I portion (I) and a fractiona I portion (F), th'9n

where

The values of C are as follows.

C
1

=1.0

C 2 = 0.34657359

C
3

= 0.06005663

C 4 = 0.00693801

and n = 6

C
5

= 0.00060113

C 6 = 0.00004167

C
7

= 0.00000241

9-12

9.7.6 LOGARITHM, BASE 2 (.EE,.DE)

The exponent of the argument is saved as one greater than the integer portion of the resu It. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows.

Then,

X-./"2
Z = -X-+-J-r-2

1 (n log X = -+ L
2 2 i=O

C z2i+1)
2i+1

where n = 2 for. EE and n = 3 for .DE. The values of C are as follows:

.EE

C 1 = 2. 8853913

C
3

= 0.96147063

C 5 = 0.59897865

C
1

= 2.8853900

C
3

= 0.96180076

C
5

= 0.57658434

C
7

= 0.43425975

9.7.& POLYNOMIAL EVALUATOR (.EC, .DC)

The polynomial is evaluated as follows:

9-13

APPENDIX A

FORTRAN IV, ADDITIONAL INFORMATION

The FORTRAN language used in this manual is essentially the language of USASI Standard FORTRAN (X3.9-1966).

The followi ng features are mod ified to a lIow the compi ler to operate in 8192 words of core storage:

a. All references to complex arithmetic are illegal.

b. The size of arrays in subprograms is not adjustable to the size specified by the calling program.

c. Blank COMMON is treated as name COMMON.

d. The implied DO feature is not legal in a DATA statement.

There are two versions of the FORTRAN IV compi ler: F4 and F4A. F4 is the basic compi leri F4A is an abbre

viated version of the compi ler that allows DECtape input and output in an 8K system. F4A operates under con

trol of the Keyboard Monitor only, and is called by typing F4A rather than F4 on the teletype. The F4A version

does not provide for EQUIVALENCE, EXTERNAL, ASSIGN, and Assigned GO TO statements, or the following

options available in the F4 version:

o Object code listing
S Symbol table printout·

In paper tape systems, the FORTRAN compiler, along with necessary I/O device handlers and an appropriate

version of the I/O Mon itor, are punched on a tape in abso lute format, referred to as a system tape. At the

beginning of the system tape is a Bootstrap Loader. The system tape can be loaded by setting the starting ad

dress of the Loader (17720 for 8K systems, 37720 for 16K) on the console address switches, pressing I/O RESET,

and then pressing the READIN switch.

In larger systems with a bulk storage device such as DECtape, the Monitor accepts direct keyboard commands

to load the compi ler in a device-independent environment. This feature enables use of READ (I,f) or READ (I)

statements where the value of I is undefined at compile and load times. If such statements are used, it is im

portant to clear unused positive .DAT slots before loading to avoid loading device handlers that are not required.

Either the DDT or Linking Loader uti lity program must be used to load user object programs for execution. Refer

to the appropriate System User's Gu ide for operating procedures.

A-1

APPENDIX B

FORTRAN IV AND MACRO LI NKAGE

B.1 LINKING FORTRAN IV PROGRAMS WITH MACRO SUBPROGRAMS

There are two essential elements in a MACRO subprogram that is linked to FORTRAN IV. One is the declaration

of the name of the subprogram (as used in the F4 program) in a . GLOBL statement within the subprogram. The

second is leaving open registers in the subprogram for the transfer vectors of the arguments used in the FORTRAN

calling sequence. The number of open registers must agree with the number of arguments given in the calling

sequence.

For example, consider a FORTRAN program and a MACRO subprogram in which one positive, single-precision,

floating-point number is read by the FORTRAN program, negated in the MACRO subprogram, and written out

from the FORTRAN program.

FORTRAN IV PROGRAM:

C
C
1
100
C

C

MACRO-9 SUBPROGRAM:

MIN

TEST MACRO SUBPROGRAM
READ A NUMBER (A)
READ (1 . ..100) A
FORMAT (EI2.4)
NEGATE THE NUMBER AND PUT IT IN B
CALL MIN (A,B)
WRITE OUT THE NUMBER (B)
WRITE (2,100) B
STOP
END

.TITLE MIN

.GLOBL MIN,.DA
o
JMS* .DA

JMP • +2 + 1

IENTRY/EXIT
IUSE THE F4 GENERAL GET ARGUMENT
ISUBPROGRAM TO LOAD THE ARGUMENTS
IJUMP AROUND REGISTERS LEFT FOR
IARGUMENT ADDRESS ESTt '

t . DA uses the address .+N+ 1 to calculate the number of argument addresses to be passed.

B-1

MINI .DSA 0 IARG 1

MIN2 .DSA 0 IARG:2

LAC* MINI IPICK UP FIRST WORD OF A

DAC* MIN2 ISTORE IN FIRST WORD OF B

ISZ MINI IBUMP THE POINTER TO SECOND WORD

ISZ MIN2 IOF A AND B
LAC* MINI IP ICK UP SECOND WORD OF A
TAD (400000 ISIGN BIT = 1

DAC* MIN2 ISTORE IN SECOND WORD OF B
JMP* MIN IEXIT
.END

Since A is a single-precision, floating-point number, two machine words are required and must be accounted

for in the subprogram. Thus, MIN1 and MIN2 (which contain the addresses of A and B) must be incremented to

get to the second word of each number. FORTRAN expands the CALL statement as follows:

CALL MIN (A,B)
00013 JMS*
00014 JMP
00015 • DSA
00016 .DSA
$00014=00017

MIN
$00014
A
B

ICEXIT TO MACRO SUBPROGRAM)
ICENTRY FROM MACRO SUBPROGRAM)

When the program is loaded, the address (plus relocation factor) of A is stored in location 00015 (plus reloccltion

factor) and the address of B is stored in 00016 (plus relocation factor). When. DA is called from the MACRO

subprogram, it stores the addresses in MIN1 and MIN2 (plus relocation factor). Thus, MIN1 must be rc~ferenced

indirectly to get the value of A (a direct reference gets the address of A).

The subroutine .DA allows one level of indirection. All FORTRAN arguments are referred to by the Ei-bit (]d

dress of their first word. This leaves bits 0 through 2 free for flags. By convention, FORTRAN uses bit 0 to

indicate to .DA that the word specifying the argument contains the 15-bit address of a word which contains the

15-bit address of the first word of the argument. The resulting argument word in the called MACRO subroufine

always contains a direct reference to an argument (the 15-bit address of the first word of the argument).

In the case of unsubscripted array names used as arguments in a FORTRAN CALL statement or function reference,

the argument is represented by the 15-bit address of the fourth word of the array descriptor block. (ReFer to

Paragraph 8.5 OTS for an explanation of the contents of an array descriptor block, as well as the calling

sequence of • SS and the algorithm for determ'jning the array element address.)

In the foregoing example a MACRO subroutine was used instead of a FORTRAN SUBROUTINE subprogmm. There

is no difference in the calling procedures used by FORTRAN to call SUBROUTINE and FUNCTION subprogmms.

However, for FUNCTION subprograms FORTRAN expects a value to be returned in the A-register (LOGICAL or

INTEGER functions) or in the floating accumulator (REAL or DOUBLE-PRECISION functions).

B-2

B.2 LINKING MACRO PROGRAMS WITH FORTRAN IV SUBPROGRAMS

There are two forms of FORTRAN IV subprograms: subroutines and external functions. The main difference

between the two is the method of returning arguments to the calling program: subroutines return the argument

directly to the ca IIing program, wh i Ie functions return arguments through accumulators.

The MACRO program setup for a FORTRAN IV subroutine is basically that describeq for FORTRAN IV Science

Library routines in Part III of this manual. The name of the subroutine to be called must be declared as a global;

there must be a jump around the argument addresses, and the number and type (integer, real, double precision)

of arguments in the calling program, and the subroutine must agree.

An example of a calling routine:

TITLE

.GLOBL
JMS*
JMP
.DSA
.DSA

.DSA

SUBROT
SUBROT
.+N+l
ARGI
ARG2

ARGN

IJMP AROUND ARGUMENTS IGNORED BY .DA
IFIRST ARG ADDRt
12ND ARG ADDRt

INTH ARG ADDRt

When the FORTRAN IV subroutine is compiled, the compiler generates code for .DA, the General Get Argument

Routine, which transfers the arguments from the MACRO calling program to the FORTRAN IV subroutine •. DA

expects to find the calling sequence just described for the calling program. The following is an example of an

expansion of the beginning of a FORTRAN IV subroutine.

000000
000001
0000"02
000003
00004

C

$000002 =00000 5

TITLE SUBROT
SUBROUTINE SUBROT (A,B)

CAL 0
JMS*
JMP
.DSA
.DSA

.DA
$000002
A
B

The simplest method of passing arguments between the main program and the subroutine is to use one of the call

ing arguments as output. For example, if the value of D is to be calculated in the subroutine, use D as one of

the calling arguments. IID=II generates DAC* D, which stores the value calculated for D by the subroutine in lo

cation D in the calling program.

t Bit 0 of each address can be set to 1 to indicate indirect references.

B-3

The MACRO program setup for a FORTRAN IV External Function is identical to that for linkage with subroutinHs,

except that some provision must be made for storage of the values calculated and stored in the accumulator. In

the case of integers, the value is returned in the A-register. The value is returned in thf3 floating accumulator

for rE~al and double-precision numbers. The simplest method of storing the values is to use the FORTRAN IV

routines furnished in the library for this purpose. . AH stores real values, and . AP stores double-precision values.

Since the A-register is the standard hardware accumulator, a DAC instruction stores integer values.

B.3 LINKING MACRO PROGRAMS WITH FORTRAN IV LIBRARY ROUTINES

Refer to Part III of this manual, The Science Library, for a complete description of the linkage to library rou

tines and the conventions for representing floating-point variables in FORTRAN. (INTEGER variables are in 2 1s

complement notation, logi cal truth is 777777 and logical falsity is 000000 in unsigned octal representation.)

B.4 MORE ILLUSTRATIVE EXAMPLES

B.4.1 A New Dimension Adjustment Routine

The present versions of the OTS routines ADJ 1, ADJ2, and ADJ3 do not alter the size of the array being ad

justed (Refer to Paragraph 8.11.4 through 8.11.6). If only the array name of an adjusted array is given in a

READ or WRITE argument list, FORTRAN uses this size information; therefore, undesired [results can occur. A

new routine (ADJ) can be loaded with a user program which completely handles all cases of dimension ad'fustment,

although it occupies 72 octal locations. (ADJ3 occupies 41 octal locations.) Consider the following programs:

C PROGRAM 1
DIMENSION A(4,3,2)

C MAKE ARRAY A ACT LIKE IT
C WAS DIMENSIONED A (2,3,4)

CALL ADJ(A,AC 1,1, 1),~~,3,4)

C PROGRAM ;2
DIMENSION AC3,2)

C ADJUST ARRAY A TO BE A (2,3)
CALL ADJ (A,ACl,1),2 ... 3,0)

C THE LAST ARGUMENT MUST BE 0

B-4

I

C PROGRAM 3
D I ME NS ION A (2)

C ADJUST ARRAY A TO BE A(l)
CALL ADJ(A"A(l),,1,,0,,0)

C THE LAST 2 ARGUMENTS MUST BE ZERO
C THE NO. OF SUBSCRIPTS IS NOT ADJUSTABLE

.TITLE ADJ

ISUBROUTINE TO PERFORM DIMENSION ADJUSTMENT
I
IMACRO-9 CALLING SEQUENCE
I .GLOBL ADJ
I JMS* ADJ
I
I
I
I
I
I
I

JMP • + 6
.DSA ARRAY
.DSA B
• DSA K 1
• DSA K2
• DSA K3

IADDRESS OF WD4
INEW WD4
IADDRESS OF NEW MAXIMUM 1ST SUBSCRIPT
IADDRESS OF NEW MAXIMUM 2ND SUBSCRIPT
IADDRESS OF NEW MAXIMUM 3RD SUBSCRIPT

.GLOBL ADJ".DA".AD
ADJ °
ARRAY
B
K1
K2
K3

JMS* .DA IGET ARGUMENTS
JMP .+5+1 1# OF ARGUMENTS 5

° ° ° ° ° LAC (LAC* B
DAC C

IINITIALIZE SUBSCRIPT POINTER

LAC B ISET NEW STARTING ADDRESS
DAC* ARRAY
LAW -3
DAC CTR# IMAXIMUM OF 3 SUBSCRIPTS
TAD ARRAY
DAC ARRAY IPOINT TO
DAC ARRAYP#
LAC* ARRAY
AND (60000
DAC* ARRAY
RTL
RTL
RTL

FIRST WORD
10F ARRAY DESCRIPTOR BLOCK
IARRAY TYPE IN BITS 3-4
IZERO OUT ARRAY SIZE
ISAVE CLEAN ARRAY TYPE

TAD (1 IADD 1 FOR # OF WORDS
AND (3 lAND TREAT LOGICAL
SNA lAS 1 WORD PER ARRAY ELEMENT
LAC (1

LOOP ISZ C IPOINT TO NEXT SUBSCRIPT
JMS* .AD IMULTIPLY INTEGERS

C LA C * K 1 I PRO G RAM MOD I FIE D
SNA lIS SUBSCRIPT PRESENT
JMP D IRAN OUT OF SUBSCRIPTS
DAC SIZE# IUPDATE SIZE
ISZ CTR IARE WE FINISHED?
SKP
JMP E IYES

B-5

D

ISZ ARRAYP
DAC* ARRAYP
JMP LOOP IOFFSET
DZM* ARRAYP

ISTORE INTO ARRAY
IDESCRIPTOR BLOCK

WORDS (2,3)
IZERO THE REST

ISZ ARRAYP IOF THE OFFSET WORDS

ISZ CTR IARE WE FINISHED
JMP LOOP INO

E LAC SIZE IFINISHED
AND (17777 IPACk SIZE
XOR* ARRAY IARRAY DESCRIPTOR BLOCK
DAC* ARRAY
JMP* ADJ IRETURN
.END

B. 4. 2 A Function to Read the AC Switches

It is very often desirable to use the AC switches to alter the sequence of instructions executed in a FORTRAN

program. The following program can be used as a function in an arithmeti c IF statement to conditiona IIy branch .

• TITLE ITOG
I
ISUBROUTINE TO READ AC SWITCHES
I
IMACRO-9 CALLING SEQUENCE
I .GLOBL ITOG
I JMS* ITOG

JMP .+2 IJUMP OVER ARGUMENT I
I
I

.DSA (MASK IADDRESS OF MASK
IRETURN WITH MASKED ACS IN AC

.GLOBL ITOG,.DA
ITOG 0 IINTEGER FUNCTION

JMS* .DA IGET ARGUMENTS
JMP • + 1 + 1 II ARGUMENT

MASK 0 IMASK ADDRESS
LAS ILOAD AC FROM SWITCHES
AND* MASK IMASK AC
JMP* ITOG IRETURN WITH MASKED AC SWITCHES
• END

B.4.3 A Routine to Read an Array in Octal

The present version of the Object-Time System does not read octal FORMATTED information. A MACRO sub

routine which reads octal information (REDAR) is as follows:

B-6

.TITLE REDAR
I
ISUBROUTINE TO READ ARRAY IN OCTAL
I
IMACRO-9 CALLING SEQUENCE
I .GLOBL REDAR
I JMS* REDAR
I
I
I
I
I
I
I

REDAR

SLOT
FORMAT
DIGITS

JMP • +5
.DSA SLOT IADDRESS OF SLOT #
.DSA FORMAT IADDRESS OF FORMAT STATEMENT ADDRESS
.DSA DIGITS IADDRESS # OF DIGITS
.DSA ARRAY IADDRESS OF ARRAY DESCRIPTOR

IBLOC K WORD 4

.GLOBL REDAR,.DA,.FR,.FE,.FF
o
JMS* .DA IGET ARGUMENTS
JMP .+4+1 I#ARGUMENTS = 4
o
o
o

ARRAY 0

A
B

LAC SLOT
DAC A
LAC * FORMAT
DAC B
JMS* .FR
XX

IFORMATED WRITE
IADDRESS OAT SLOT #

XX lAD DRESS OF FORMAT STATEMENT
LAW -3
TAD ARRAY
DAC SLOT IADDRESS OF ARRAY DESCRIPTOR BLOCK WORD 1
LAC* SLOT IPICK UP PACKED SIZE OF ARRAY
AND (17777 ICLEAN OFF MODE #
SNA
JMP E INO ELEMENTS IN ARRAY
CMA
DAC SLOT
ISZ SLOT ICOUNTER FOR # WORDS IN ARRAY
LAC* DIGITS I#DIGITS IN EACH WORD
AND (7 ICLEAN ARGUMENT
SZA
SAD (7
JMP E
CMA

10 OR 7 DIGITS ILLEGAL

TAD (1
DAC C IINITIALIZE LAW INSTRUCTION
LAG* ARRAY
DAC ARRAY IPOINTER TO FIRST WORD OF ARRAY
XX ILAW -DIGITS
DAC DIGITS
CLA IINITIALIZE DIGIT PACK
DAC TEMP# ISTORE DIGIT PACK
JMS* .FE IREAD DIGIT
.DSA FORMAT IDIGIT READ INTO FORMAT
LAC TEMP ILOAD DIGIT PACK

B-7

eLL
RTL IMULT IPLY BY 8
RAL
TAD FORMAT IADD DIGIT
ISZ DIGITS ICOUNT DIGITS
JMP 0 IGO BACK FOR MORE
DAC* ARRAY ISTORE VALUE IN ARRAY ELEMENT
ISZ ARRAY IPOINT TO NEXT ARRAY WORD
ISZ SLOT ICOUNT ARRAY WORDS
JMP C IREAD ANOTHER WORD

E JMS* .FF lEND OF READ
JMP* REDAR IEXIT
.END

B. 4. 4 A FORTRAN Program Using the Foregoing Programs

This FORTRAN program uses the preceding three MACRO programs to read in an array from the teletype· in octal

and type it in decimal. The teletype should be assigned to . OAT slot 4. Note how the arguments are specified.

Because the array J is never referenced with subscripts at object time, it can be altered at object time to have

more than one subscript, although th is fact is academic. Notice that EQUIVALENCE performs the array element

ca Icu lation at compi Ie time.

C FORTRAN PROGRAM TO READ AN ARBITRARY INTEGER ARRAY IN OCTAL
C AND WRITE IT IN DECIMAL

DIMENSION J(2000)
C USE EQUIVALENCE TO GET J(I) WITHOUT USING .SS

EQUIVALENCE (J(I),K)
C r CONTAINS ADDRESS OF FORMAT
C STATEMENT + 1 TO MOVE OVER JMP INSTRUCTION

ASSIGN 1 TO I
1=1+1
FOR MA T (6 I 1 , 1 X, 6 I 1 , 1 X, 6 I 1 , 1 X, 6 I 1 , 1 X, 6 I 1 , 1 X, 6 I 1 , 1 X, 6 I 1 , 1 X,
1 6 I 1)

C TO SIMULATE FORMAT(06,lX,06,IX,06,lX,06,lX,06,lX,06,lX,
C 06,lX,06)
C WRITE SOMETHING TO SHOW INFORMATION NEEDED
2 WRITE(4,3)
3 FORMAT(/19H READ Kl K2 K3(314»
C READ IN DIMENSION INFORMATION

READ(4,4) Kl,K2,K3
4 FORMAT(314)
C ADJUST ARRAY J TO THE PROPER SIZE

CALL ADJ(J,K,Kl,K2,K3)
C READ IN ARRAY IN OCTAL
5 CALL REDAR(4,I,6,J)
C WRITE OUT ARRAY

WRITE(4,6) J
6 FORMAT(817)
C hlAIT FOR fP

PAUSE
C IF A0S17-0 READ IN IDENTICAL ARRAY TYPE

IF (ITOG(I» 2,5,2
END

B-8

APPENDIX C

CHAINING FORTRAN IV PROGRAMS

Chaining is a method of program segmentation that allows for multiple core overlap of executable code and

certain types of data areas. FORTRAN programs can thus be divided into segments and executed separately I

with intersegment communication of data accomplished through common storage. Common areas of core are re

served by means of the blank COMMON statement.

Transfer of control from one chain segment to another can be specified in a FORTRAN source program with the

statement

CALL CHAIN (N)

where N is the segment number to be called. The chain number (N) is established at chain-build time (refer to

the CHAIN section of the applicable System User's Guide). N can be greater than or less than (but not equal to)

the current chain number. Only variables and arrays named in blank COMMON statements are retained from

one chain segment to another. Blank common size should be the same for a" chain segments.

C
C
C

NOTE

Use of a CA LL CHAI N (N) statement rather than a STO P
statement immediately preceding the END statement
causes an I error during compilation (i "ega I statement pre
ceding the END statement). The I error should be ignored;
it is a warning only. The CHAI N subroutine never returns
control to the statement following the CALL CHAIN (N)
statement (control is transferred to the beginning of the
chain which is called).

TEST CHAIN PROGRAM

CHAIN JOB SEGMENT 1
COMMON A,B,C
DIMENSION ARRAY (10,10)
READ (4,5) ARRAY

CALL CHAIN (2)
END

C-1

C

C

C

CHAIN JOB SEGMENT 2
COMMON A,B,C
DIMENSION TABLE (30)

CALL C HA I N (3)

END

CHAIN JOB SEGMENT 3
COMMON A,B,C
DIMENSION A LIST (5,5)

WRITE (4,6) A LIST
FOR MA T (E 1 0 .3)
STOP
END

C-2

APPENDIX D

FORTRAN IV ERROR LIST

The errors shown in Table D-1 apply to all versions of F4 and F4A (refer to Table 8-1 of this manual for a list of

object-time errors).

Error Code

X

V

N

S

F

D

T

Table D-1
Compi lation Errors t

Meaning

Syntax error

Variable/constant mode error

Statement number error

Argument/subscript error

FORMAT statement error

Character/statement/term
error

DO loop error

Table overflow

Explanation

Statement cannot be recogn ized as a properly
constructed FORTRAN IV statement.

Illegal mode mixing. Missing constant, variable
or exponent, or illegal matching of constants or
variables in a DATA statement. (See Note.)

Phase error, number more than five digits, no
statement number where one is required, state
ment should not be labeled, or doubly defined
statement numbers.

Missing argument or subscript, illegal use of
subscripts, illegal construction of subscripted
variable, more than three subscripts or stated
number of subscripts does not agree with de
clared number.

Illegal FORMAT specification or illegal con
struct ion of FO RMAT statement. (Refer to
Paragraph D. 1 .)

Illegal character, unrecognizable statement,
illegal statement for program type, statement
out of order or improper statement preceding
END statement.

Illegal DO construction or illegal statement
terminating DO LOOP.

Symbol/constant/arg (I)/OP(I) table limits ex
ceeded. (Refer to Paragraph D. 2.)

L Nesting error Illegal nesting or DO nesting too deep.

t Occasionally FORTRAN IV prints out the line after the error line.

D-1

Error Code Meaning

Table D-1 (Cont)
Compi lation Errorst

Explanation

M Magn itude error Program exceeds 8192 words, maximum nun 1ber
sses
eci-

of dummy arguments or EQUIVALENCE cia
exceeded, or constant/variable exceeds sp
fied I im its. (Refer to Paragraph D. 3.)

C COMMON/EQUIVALENCE/ Illegal construction of statement, illegal
DIMENSION/DATA statement EQUIVALENCE relationships, illegal CO/\
error MON declaration or non-common storage (

clared in BLOCK DATA subprogram.

E FUNCTION/SUBROUTI NE/ Illegal use of FUNCTION/SUBROUTINE n
EXTERNAL/CALL statement out of order, or illegal variable for EXTERI
error declaration. (Refer to Paragraph D .4.)

H Hollerith error Hollerith data illegal in this statement or i
use of Hollerith constant.

tOccasionaily FORTRAN IV prints out the line after the error line.

NOTE

Hollerith constants and alphanumeric information read in
under A format are stored as REAL variables. Only nA 1,
nA2, ..• , nA5 is allowed in reading alphanumeric infor
mation into REAL variables and arrays. If an integer vari
able is used to store Hollerith constants in a DATA state
ment, a V error occurs in com pi lation.

0.1 TECHNIQUES FOR AVOIDING F ERRORS

a. The following ASCII characters are ignored:

(041)

II (042)

& (046)

(047)

(072)

(073)

< (074)

> (076)

? (077)

@ (100)

[(133)

\ (134)

(135)

(136)

~-
1e-

arne,
NAL

Ilegal

If these characters are counted in the number preceding H, an F error occurs. The following statemenlrs
fai I because the FORMAT statement causes an F error.

WRITE (4, 1)
1 FORMAT (5H WHO?)

D-2

The following sequence allows the user to type out the question mark:

C READ IN A QUESTIONMARK
READ (4,2) QSTMK

2 FOR MA T (A 1)

WRITE (4,1) QSTMK
FORMAT (4H WHO,A1)

b. An F error occurs if "/, II or II ,/" occurs in a FORMAT statement. Omitting the comma in such in
stances prevents the F error from occurri ng.

0.2 TECHNIQUES FOR AVOIDING TERRORS

a. A maximum of 14 arguments is allowed in the argument-operator table. An implied DO configura
tion as a parenthesized element in a READ or WRITE statement is completely stored in the argument
operator table before any code is generated. An array element is stored as 2+n arguments, where n= 1,
2, or 3 is the number of subscripts for ,the array. A simple variable is stored as one argument. The DO
information for each loop is stored as three or four arguments, depending on whether the DO increment
is implied (1) or given explicitly. The following statement compi les:

WRITE(4,10) (10(1, K), (IO(J, K) ,J=l ,10), K=l , 10)
14= 4 + 4 + 3 + 3

The following statement gives a Terror:

WRITE(4,10) (K,IO(l ,K),(IO(J,K),J=l,lO),K=l, 10)
15= 1+4 + 4 +3 +3

This statement can be rewritten as an explicit DO loop.

DO 1 K=l, 10

1 WRITE (4,10) K, lO(l,K), (IO(J,K) ,J=l,lO)
7= 4 + 3

Each execI:Jtion of the WRITE statement starts at the beginning of the FORMAT statement.

b. A maximum of 14 addresses is allowed in computed GO TO statements. The following statement
gives a Terror:

1 GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), I

This statement can be rewritten as follows:

1 J=I-14

IF (J.GT.O) GO TO (15,16),J

GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14), I

c. A maximum of 14 items is allowed in a DATA statement list.

0-3

The following statement gives a Terror:

DATA I, I, I, I, I, I ,I, I ,I, I, I ,I, I ,1,1/15* 1/

The foregoing statement can be rewritten as follows:

DATA 1,1,1,1,1,1,1,1,1,1,1,1,1,1/14*1/,1/1/

D.3 TECHNIQUES FOR AVOIDING M ERRORS

a. No program unit may exceed one core bank (only 8192 computer words are addressable). All non
COMMON storage in a FORTRAN program is included in the program size. To avoid M errors, break
long programs up into subroutines, and put large arrays in COMMON.

b. The size of arrays is limited to 8192 computer words (one core bank). The size of an array in com
puter words can be determined by the DIMENSION statement in which it occurs and by its mode type.
For example, consider the following array:

DIMENSION ARRAY (5,10,15)
(SIZE=n*5* 10* 15)

where n is 1 for LOGICAL and INTEGER arrays, 2 for REAL arrays, and 3 for DOUBLE-PRECISION armys.

c. FORTRAN IV does not compi Ie dummy variables in excess of 10 for any function, statement functio1n,
or subroutine. Every violation of this constraint causes an M error. In the case of statement functions,
there is no way of avoiding this without writing smaller statement functions and combining them. For
external functions and subroutines, the use of named COMMON is suggested as an alternative. For ex
ample, compare the following alternative programs.

Standard Program

a. Main Program

CALL FOR (A, B,C)

b. Subroutine

SUBROUTINE FOR (A, B ,C)

Modified Program

a. Main Program

COMMON /DARG/D,E,F

D=A

E := B

F := C

CALL FOR

D-4

b. Subroutine

SUBROUTINE FOR

COMMON /DARG/A,B,C

COMMON is initialized to the proper values before calling the subroutine.

D.4 TECHNIQUE FOR AVOIDING AN E ERROR

a. A dummy function reference in a CALL statement causes an E error. The following program fai Is to
compile:

SUBROUTINE O(F)

CALL F

The foregoing situation can be avoided by the following technique:

SUBROUTINE O(F)

DUMMY=F(DUMMY)

The contents of DUMMY should be ignored at all times. This essentially calls the SUBROUTINE when
ever the statement is reached.

D-5

APPENDIX E

SYMBOL TABLE SIZES (F4 V5A)

The following symbol table sizes are for 8K systems with the full complement of skip lOTs in the skip chain.

F4

a.

b.

F4A

a.

b.

c.

NOTE

Handlers listed are for OAT slots -11, -12, and -13, re
spectively.

PRB, TTA, PPC - 171 symbols (decimal)

DTC, TTA, PPC - 21 symbols (decimal)

PRB, TTA, PPC - 368 symbols (decimal}

DTC, TTA, PPC - 239 symbols (decimal)

DTB, TTA, DTB - 18 symbols (decimal)

E-1

A

Accumulators 9-2

Algorithm descriptions, Science Library 9-8

See Science Library Algorithm Description

Alphanumeric data, conversion of 5-9

Arctangent, 9-10

A-Reg ister 9-2

Argument lists, Input/Output 5-2

Arithmetic, expressions 2-6, 7-2

Arithmetic operators 1-9, 1-10, 2-6,2-7

Rules 2-7

Arithmeti c IF statements 4-2

Arithmetic statements 2-10, 3-1, 7-2

E Mode 3-1

V Mode 3-1

Arrays, 2-4, 2-5, 8-17, 8-18, 8-19

Arrangement of array in storage 2-5

DIMENSION statement 2-5

Subscripts expressions 2-6

Subscripted variables 2-6

Subscripts 2-5, 2-6

ASSIG N statement 4-1

Assigned GO TO statement 4-1

A-Type conversion 5-9

Auxiliary I/O statements 5-12

B

BACKSPACE statement 5-12, 8-6, 8-14

Blank Fields, X conversion 5-10

BLOCK DATA subprogram 7-7

COMMON block 7-7

C

CALL CHAIN statement C-1

Ca" ing sequences 9-3

REAL ARITHMETIC package 9-2

INDEX

Card format 1-2

Statement numbers 1-2, 5-4

Chaining FORTRAN IV programs C-l

CALL CHAIN C-l

Character set, FORTRAN 1-1

Clock handling 8-15, 8-16

Record elapsed time 8-16

CLOSE command 8-13

Code, error D-l

COMMON block 7-7

COMMON statements 6-3, 7-4,7-5

COMMON variables 6-5

Compi lation errors D-l

Computed GO TO statement 4-2

Constants 2-1, 7-2

Double-precision 2-2

Hollerith 2-3

Integer 2-1

Logical 2-3

Real 1-5, 2-1

CONTINUE statement 4-5

Terminal statement 4-3, 4-5

Control statements 2-5

Arithmetic IF statement 4-2

ASSIGN statement 4-1

Assigned GO TO statement 4-1

Computed GO TO statement 4-2

CONTINUE statement 4-5

DO statement 4-3

END statement 4-6

Logi cal IF statement 4-2

PAUSE statement 4-5

STOP statement 4-5

INDEX (Cont)

C (Cont)

Unconditional GO TO statements 4-1

Conversion of alphanumeric data 5-9

Conversion of numeric data 5-6

D

DA T A statements 6-6, 7-4, 7-7

DIMENSION statement 6-3, 7-4

DLETE command 8-13

DO-Implied lists 5-2

List elements 5-2

DO statement 4-3

Index of a DO 4-3

Nest of DO's 4-4

Range of a DO statement 4-3

Double-precision constant 2-2

Double-precision functions 6-·1

Double-precision and logical variables 2-4

D-Type conversion 5-8

E

E Mode 3-1

END state me nt 4-6, 7-4, 7-8

ENDFILE statement 5-12, 8-6, 8-13

ENTER command 8-13

Error code D - 1

Avoiding an E error D-5

Avoiding F errors D-2

Avoiding Terrors D-3

Avoiding M errors D-4

EQUIVALENCE statement 6-4, 7-4

E-Type conversion 5-6

Exponential 9-8

Expressions 2-6

Arithmetic 2-6

Hierarchy of operations 2-7, 2-9

Logical 2-8

Mode of an expression 2-6

Relational 2-8

Ru les for arithmetic expressions 2-7

Ru les for logical expressions 2-9

Subscript expressions 2-5

External functions 7-4, 9-1

RETURN statement 7-4

EXTERNAL statement 6-5

F

File commands 8-13

Files, segmented 5-12

Floating accumulator 9-2

Formats 1-2

Card format 1-2

FORTRA N character set 1-1

Paper tape format 1-2

Source program 1- 1

Format statements 5-4

Formatted READ 5-3

Formatted record, printing of 5-1 'I

Formatted WRIT E 5-4

FORTRAN IV and MACRO linkage B-1

FORTRA N IV II ibrary routines B-3

FORTRAN IV subprograms B-'I

MACRO programs B-1, B-3

MACRO subprograms B-1

FORTRAN IV compiler A-l

FORTRAN IV error list

Error code D-1

Error message D-1

Programming techniques D-1

FORTRAN IV library routines B-4

FORTRAN IV object-time system B-2

INDEX (Cont) H

F (Cont)

Adjustable dimensioning 8-17, 8-18

Auxi I iary Input/Output 8-6, 8-7

Binary coded Input/Output 8-2, 8-3, 8-4

Calculate array element address 8-9

Clock handling 8-15,8-16

Computed GO TO 8-1, 8-10

Errors 8-2, 8-12

File commands 8-13

lOPS communication 8-7, 8-8

Octal point 8-12

PAUSE statement 8-11

STOP statement 8-11

FORTRAN IV subprograms B-1

FORTRAN language elements 2-1

Arrays and subscripts 2-4

Constants 2- 1

Expressions 2-6

Statements 2-10

Variables 2-3

FORTRAN library 9-1

FORTRAN statements read in at object time 5-10

DIME NSION statement 5-10

Format specification 5-10

FSTAT command 8-13

F-Type conversion 5-7

Functions

Double-precision 6-1

Externa I 7 -4

Intrinsic 7-2

G

Genera I I/O statements 5-2

G-Type conversion 5-8

Held accumulator 9-3

H-Field descriptor 5-10

Hierarchy of operations 2-6, 2-9

Hollerith constants 2-3

CALL statements 2-3

DATA statements 2-3

Hyperbol ic tangent (TANH) 9-11

Input and output 2-6, 5-1

Argument lists 5-2

A-Type conversion 5-9

Blank fields, X conversion 5-10

Conversion of alphanumeric data 5-9

Conversion of numeric data 5-6

DIME NSIO N statement 5-11

D-Type conversion 5-8

DO-Implied lists 5-2

E-Type conversion 5-7

Format specification 5-10

Control characters 5-4

DATA conversion 5-4

Field separators 5-4

Statement number 5-4

F-Type conversion 5-7

G-Type conversion 5-7

H-Type descriptor 5-10

I-Type conversion 5-6

Logical fields, L conversion 5-10

Logi cal record 5-1

Phys i ca I record 5- 1

Scale factor 5-9

Segmented fi I es 5-12

Simple lists 5-2

INDEX (Cont) o
I (Cont)

Statements

BACKSPACE 5-12

ENDFILE 5-12

READ 5-3

REWIND 5-12

WRITE 5-4

Integer constant 2-1

Integer variables 2-4

Intrinsic functions 7-2, 7-3

FORTRAN library 9-1

I-Type conversion 5-6

Format descriptor 5-6, 5-7, 5-8

L

Library, FORTRAN 9-1

Library functions 7-2, 7-3

Library routines B-3

Lists, simple 5-2

Logarithm, Base 2 9-13

Logical constant 2-3

L conversion 5-10

Logical expressions

Logical operators 2-8

Rules 2-9

Logical fields 5-10

Logical IF statement 4-2

M

MACRO and FORTRAN IV I inkage B-1

See FORTRAN IV and MACRO-9 linkage

Message, error D-1

Mode of an expression 2-6

N

Natural and common logarithms 9-9

Numeric DATA, conversion of 5-6

Object program 1-1

Object-time system 8-2

See FORTRAN IV object-time system

Operations, hierarchy of 2-7, 2-9

P

Paper tape format 1-2

Continuation line 1-2

TAB key 1-2

PAUSE statement 4-5, 8-1 , 8-12

Polynomial evaluator 9-12

Printing of formatted record 5-11

P-Scale factor 5-9

R

READ statement, 5-3, 8-1

REAL constant 2-1

REAL variables 2-4

Record elapsed time 8-16, 8-17

Relational expressions

Formation 2-8

Relational operators 2-8

RENAM command 8-13

R EWIN 0 statement, 5-12, 8-6, 8-, 14

S

Science library 9,-1

Accumulators 9-2

A-Register 9,-2

Arithmetic package 9-2

Calling sequences 9-3

Floating accumulator 9-2

Held accumulator 9-3

Sub functions 9-1

Science I ibrary algorithm descriptions 9-8

Arctangent 9-10

Exponential 9-8

INDEX (Cont)

S (Cont)

Hyperbolic tangent 9-11

Logarithm, Base 2 9-12

Natural and common logarithms 9-9

Polynomial evaluator 9-12

Sine and cosine 9-9

Square root 9-8

SEEK command 8-15

Segmented files 5-12

Simple lists 5-2

Sine and cosine 9-9

Source program

Format 1-1

FORTRA N character set 1-1

Specification statements 2-5, 6-2

COMMON 6-3

DATA 6-6

DIMENSION 6-3

EQUIVALENCE 6-4

EXTERNAL 6-5

Type 6-1

Specifying format 5-4

Control characters 5-5

DATA conversion 5-4

Field descriptors 1-30, 1-31, 5-6, 5-7,

5-8, 5-9

Field separators 5-5

Statement number 5-5

Square root 9-9

Statement functions 7-1

Value of a function 7-1

Statements, kinds of 2-10

Arithmetic 2-10, 3-1

Control 2-10

Input/Output 2-10

Specification 2-10

STOP statement, 4-5, 8-1, 8-11, 8-12

Sub-functions 9-1

Subprograms

BLOCK DATA subprogram 7-7

External functions 7-4

Intrinsic or library functions 7-2

Statement functions 7-1

Subroutines 7-6

Subroutines 7-6

Subscript expressions 2-5

Subscripts 2-5

Subscripted variables 2-6

Subscr i pts and arrays 2-4

DIME NSION statement 2-5

Subscript 2-4

Symbol table sizes E-1

T

TYPE statement 6-1

U

Unconditional GO TO statements 4-1

Unformatted READ 5-3

Unformatted WRITE 5-4

USASI standard FORTRAN A-1

V

Value of a function 7-1

V Mode 3-1

Variable types 2-3

Variables 2-3

Double-precision and logical 2-4

Equivalencing COMMON variables 6-6

Integer 2-4

REAL 2-4

v (Cont)

Variable types 2-3

W

WRITE formatted 5-4

WRITE statement 5-4

Formatted 5-4

Unformatted 5-4

X

X conversion, blank fields 5-10

INDEX (Cont)

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software problems, and
documentation corrections are published monthly by Software Information Service in the "Digital Soft
ware News for 18-Bit. Computers".

These newsletters contain information applicable to software available from Digital's Program Library
(see title page for address). Software products and documents are- usually shipped only after the Program
Library receives a specific request from a user.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a catalog of
programs as well as the DECUSCOPE magazine for its members and non-members who request it.

Please complete the card below to receive information on DECUS membership or to place your name on
the newsletter mailing list.

Please send
o DECUS membership information,

or add my name to the
o DECUSCOPE non-membership list.

And, send me
o "Digital Software News for I8-Bit Computers"

Name __ _
Company __ __

Address
City _________ _ State _____ __ Zip _____ _

.. Fnld i-lefe ... ,

.. Do Not olear - Fold Here and Staple .. .

FlRSTCL:-J
PERMIT NO. 33

MAYNARD.~i.

BUSINESS REPLY MAIL ------NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES ------.. _-
Postage will be paid by: mamaama

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Mass. 01754

--

READER'S COMMENTS

PDP-IS FORTRAN IV
PROGRAMMERS' REFERENCE MANUAL
DEC-lS-KFZB-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual? ---------------------------

How can this manual be improved?

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the fol
lowing periodically distributed publications are available upon request. Please check the appropriate boxes
for a current issue of the publication(s) desired.

o Software Manual Update, a quarterly collection of revisions to current software manuals.

o User's Bookshelf, a bibliography of current software manuals.

o Program Library Price List, a list of currently available software programs and manuals.

Please describe your position. ____________________________ _

Name ___________ _ Organization _________________ _

Street _____________ _ Department

City _________ _ State ______________ Zip or Country _____ _

... Fold Here

.................... " ... Do Not Tear - Fold Here and Staple .. "

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS .

.... _ ... 1 __ 1_.. 1_
Postage will be paid by: mamaoma

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

......... 1_......... 1_......... 1_......... 1_......... 1_......... 1_......... 1_......... 1_......... 1_-_____ 1_-_ _-

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	A-1
	A-2
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	C-1
	C-2
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	E-1
	E-2
	idx-1
	idx-2
	idx-3
	idx-4
	idx-5
	idx-6
	replyA
	replyB
	replyC
	replyD

