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I. Introduction 

IN THIS CHAPTER we wish to discuss a procedure for the computation 
of the integrals involving diatomic molecular wave functions composed 
of atomic orbitals. The most obvious use has been within the linear 
combination of atomic orbital-molecular orbital (LCAO-MO) scheme 
of theoretical calculations of molecular-energy levels of diatomic mole­ 
cules. In this scheme one constructs a molecular wave function from a 
linear combination of simpler functions. One then finds the integral 
of the Hamiltonian operator between determinantal functions constructed 
from these molecular orbitals. This· integral then gives an upper bound 
to the molecular energy. By variational procedures one can obtain a 
"best" molecular energy. This Hamiltonian integral in a diatomic 
molecule contains sums of integrals of the type which we wish to discuss. 
Rather than give a derivation of the LCAO-MO procedure which is 
adequately described eleswhere (Roothaan, 1951), we shall illustrate 
the type of problems to which the procedure has been applied. An 
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example of a quantum-mechanical energy calculation in a homonuclear 
diatomic molecules is the H2 molecule (Aghajanian, 1957), in a hetero­ 
nuclear diatomic molecule HF (Karo and Allen, 1958). These integrals 
also arise in more complicated molecules such as H2O (Merrifield, 
1962). The integrals have also been applied in the tight-binding method 
for energy bands in solids (Corbat6, 1959), as well as in simple theories 
of magnetism (Watson and Freeman, 1961). 
There are two fundamental techniques which can be used to compute 

two-center integrals. The first method is to express all functions in 
terms of spheroidal coordinates and perform analytic integrations to 
yield results dependent on . the implicitly defined functions. These 
results have been extensively developed but from a computational 
view are quite complicated for functions with nontrivial quantum 
numbers (Ruedenberg, 1954). The second method, which will be the 
subject of this chapter, is to expand all functions in spherical coordinates 
about one atomic center, perform all angular integrations analytically, 
and do the final, double radial quadratures numerically. This method 
has been extensively used and partially described by Coolidge (1932), 
Coulson (1937), Barnett and Coulson (1951), Lowdin (1956), and Cor­ 
bato (1956) and has the virtues of computational simplicity and generaliza­ 
tion (although in a rapidly complicating way) to multicenter integrals. 
Multicenter integrals will not be considered here but it should be noted 
that for certain simple geometries, (such as the linear chain) and the 
planar molecules (such as the water molecule), the required multicenter 
integrals are particularly straightforward. For completeness, the Barnett­ 
Coulson method, as it is often called, will be fully developed into a 
computational procedure without reference to earlier notations. The 
procedure forms the basis of programs that have been prepared by the 
authors for the IBM 704 and IBM 7090 computers and are generally 
available1• In particular, it is intended to give the reader sufficient in­ 
formation to allow him to alter, extend or reimplement the procedure 
on another computer. 

II. Formulation 

For the basic atomic orbitals, we restrict ourselves to linear combina­ 
tions of analytic Slater atomic orbitals (AO's) with the same angular 

1 The IBM 704 program called MIDIAT is available from the SHARE Distribution 
Agency, Data Processing Division, 112 East Post Road, 'White Plains, N.Y. as Share 
Distribution No. 849, The IBM 790/90 version was adapted by Dr. Emmett Moore Jr. 
and Mr. Arnold Rom, of the Boeing Scientific Research Laboratories, Seattle, Washington. 
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quantum numbers / and 111. By definition, we have for a normalized 
Slater AO (Slater, 1930): 

ef,(n, I, m I 1< I r) = [N(,1)]112 • [L(l, 111)]112 • ,212(Krt-1 er" Pr(f-L) <Pm(tp)', (1) 

where n is the radial quantum number, I and m are angular quantum 
numbers, " is the screening constant, µ. == cos 8, and 

22n 

N(n) = (2n)! ' 
(I - Im I)! 

L(J,m)=(2l+l}· (l+lml)! · 

The associated Legendre functions are normalized in the usual way 
(where S is the Kronecker delta function). 

2 J1 

Pi"'(µ) Pr(µ) dµ. = s,, . L(l, 111) • 
-1 

We also define for negative m, 

Similarly the functions, 

are normalized such that 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

From Eqs. (2-7) the normalization of Eq. (I) immediately follows so 
that 

f ef,*(n, I, m I>< I r)ef,(n, I, m IK I r) dr = l , (8) 

where the integral is over all space and dr is the volume element 

r2 dr dµ dsp , 

Next we can form linear combinations of normalized Slater AO's for 
the kth orbital 

c, 
'P1;(/1;, m1; I r) = i w1;f,f,(111;;, 11;, 1111; I K1;1 I r) • ,-1 (9) 
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The expansion of a Slater AO about another center will be developed 
as a basic tool. We formally define the expansion of a Slater AO expressed 
in the primed coordinates of center O' as a sum of functions expressed 
in the coordinates of center 0, a distance a from center 0' as shown in 
Fig. 1. 

ef,(11, I, 1n I K I r') = [L(l, m)]112 '-.z {3,(n, [, ttl \ K \ a \ r) Pr(p,) <I>m('P), (IO) 
i=lml r 

p 

(cp=cp') 

Fie. I. Two-cenrer coordinate system 

Similarly, we define 

1P(l, m I r') = [L(l, m)]112. f Pil, m I a I r) Pj"'(µ.) <Pm('P)' (11) 
i-lml r 

so that from Eq. (9) it follows that . ,., 
fiJ(lk, mk I a I r) = ~ wk, f3;(11k" lk, mk I 1<k1 I a I r) . 

jp} 
(12) 

For completeness, we can also write the required unexpanded functions 
of cf,, cf,/r, and ½ \}2cp as single term sums of the form of Eq. (10) where 
the corresponding radial factors, /3, €, 3 are of the form 

{31(n, l, m I K I O I r) . (13) 

Even though the two functions </J/r and 92</J could be formally expand­ 
ed, it is not desirable to do this since the functions are sometimes singular 
and, in any case, vary rapidly with r. Thus the expansions would require 
more significant terms and there would be increased numerical difficul­ 
ties. 
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It is easy to confirm that 
f31(n, I, ,n I KIO I r) = [N(n))l/2 · Kl/2(Kr)n e-~r 
E1(11, I, m I K I O I r) = K {J1(11 - 1, l, m I K I O I r) 

81(11, /, m I KIO I r) = K2 [/31(11, I, 111 I KIO I r) - Zn {31(11 - l, I, 111 I KIO I r) 
+ (11 + l) (11 - l - 1) {31(11 - 2, I, m I K I O I r)]. (14c) 

(14a) 
(14b) 

In general, the radial functions of the unexpanded orbitals, have the 
same form as Eq. (12). 
In the case of Coulomb integrals and other integrals involving charge 

distributions, it is desirable to have expanded products of Slater AO's. 
We have (dropping parameters for brevity) 

'P1 *(r')ef,2(r') = (L{/i, 1111) • L(/2, 1112))112• 

• ~ Y;(n1, /1, 11l1 I K1 ! 112, 12, 1112 I K2 I a I r) pm( ) cf> *( ) <P ( ) £.I r2 i µ. m1 <p m2 <p , 
i•lml 

(15) 

where 111 = [ 1111 - m2 I . 
In a fashion analogous to the~ functions for the orbital lfl the ji expansion 
function can by Eq. (9) be written as a sum over the expansion functions 
for .the components 

c, c, 
ji;(/1, 1111 112, 1112 I a I r) = r r Wik to2, 

k~l {nl 
(16) 

y(n1k, li, m1 I K17, 1112;, /2, 1112 I K21 I a lr) ' 
where the expansion of 'P1 * lfl2 is of the same form as Eq. (15). 

V·le next introduce the expansion of a product of Legendre functions 
(1111, 1112 > 0), 

11+1~ 

P1/"1(µ.) P12m•(µ.) = L DU, /1, m1, /2, 1112) P,m(µ.), (17) 
,-111-l:1 

where 111 = j 1111 - 1112 I . 

The D coefficients are essentially Gaunt coefficients (Gaunt, 1929). 
The numerical generation techniques are developed at length in a 
later section. The important properties of the D coefficents are 

1. They vanish unless the indices 11, 12, j obey the triangle rule; 
2. They are zero for all j with opposite parity to 11 + l2; 
3. They vanish if j < I 111 I, 11 < I 1111 I, or 12 < I 1112 I- 
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The above Eqs, (15) and (17) also allow us to write the unexpanded 
radial density function as 

'91(11, m1 ll2, m2 I O I r) = D(j, 11, m1, l2, m2) 

· P,1(111 m1 10 I r) P12(l2, tn2 IOI r) , (18) 

where it is noted that the j dependence is only in the coefficient 
D. A straightforward derivation for the r functions used in Eq. (16) 
leads one to the expression, 

yJ(n1, l1, 1111 I K1 I n2, 12, m2 I K2 I a I r) 
= [ N(n1) N(n2) ]112 • Kt1+112 K2"•+112 

N(111 + n2 - 1) (Ki + K2)n1+n.-112 
l1+ls · k D(p, 11, m1, 12, m2) f1,(n1 + n2 - 1, p, m I K1 + K2 I a I r), (19) 

P•ll1-l2I 

where m = I m1 - m2 I . 
The preceding forms allow us to proceed with the development of 

the necessary one- and two-electron integrals. We first illustrate the 
technique with the overlap integral, 

"" · <Prn/(q:,) · kfiil2, m2 I a I r) P,m2(µ.) <Pm.('l'), 
i-lm:I 

(20) 

performing the <p integration introduces a Sm ,m ; performing the /L 
l 2 

integration gives a factor of 811 •1 and normalization. Hence, if we introduce 
the notation 

where the prime indicates expansion of a function on the primed center, 
we have 

(22) 

This closed expression result is characteristic of the method for all but 
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the two-center exchange integral. Similar relations hold for the kinetic 
energy, split nuclear attraction, and nuclear attraction integrals. 

where 

(23) 

(24) 

(25) 

(26) 

We note that the above forms are sufficient since interchanging the 
roles of the centers (that is, expanding the orbitals on the opposite 
center) allow us to compute all possible one-electron integrals. 
In order to treat the two-electron cases, we note the expansion of 

712 = I r1 - r2 I given by Condon and Shortley (1952). 

(27) 

where r < and 7> are the lesser and greater of 71 and r2, respectively. 
As the first case, let us consider the two-center exchange integral, 

· P,,(/3, m3 I O I rz) P,,m•(t-t2) <Pm, *{rp2) 

· L.,fiq(l~, m~ I a I r~) P,,m•(/-½) <Pm,('P2), 
q 

(28) 
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Performing the m1 and cp2 integrations introduces 8m -m , m -m so that 
T 1 2 4 3 

if m = I m1 - m2 I, we have, after expanding the products of Legendre 
functions, 

Finally performing the µ,1 and µ2 integrations, we have 

I1m = 4 6m1-m2,m.-ms [L(/1, m1)L(l2, m2)L(l3, m3)L(l4, m4))
112 

· <P1,, P,,' I j I P,., Pa'> , 
where 

<Pi,, #1>
1 IJ IP,., Po'> = f00 dr1 f'° dr2P1i<f1, ttl1 I O I r1) Pil2, 1112 I a I r1) 

0 0 

(29) 

(30) 

(31) 

The satellite sums over p and q are finite as a result of the D coefficients 
with at most (2 /1 + 1) (2 /3 + 1) terms. 
The sum over j is from m to 00, but by virtue of the convergence of the 
expansions, a moderate number of terms, ]mnx, is usually sufficient. 
To obtain the hybrid integrals we merely note that changing the 

second orbital of Eq. (28) to the unexpanded center causes the PP to 
vanish except when p is /2, thus eliminating the sum over p. By continuing 
this line of argument the one-center case is obtained where q takes on 
only the value /4• In both the hybrid and one-center case the sum over 
j is finite as a result of the D coefficients. 
The Coulomb case can be quickly derived from the hybrid result 

if Pq is replaced by Ya and~,. is replaced by a unit function with effective 
/3 = 0, tn3 = 0. 



TADLI! I 

Two-ELECTRON INTEGRAL Sur.tMATION LIMITS 

I ntcnral type jmin jmnx pmin pmax qmin 

Onc-ccntcr rnnx (I /1 - l, I, I {3 - l, I, m) min (/1 + l:, L, + 11) ,. l: I, 
Hybrid max (J /1 - I: I, m) I, + l: l: l: Ii - l, I 
Coulomb max (I /1 - l, I, m) l, + l: l: l: j 
Exchange m ]mBx I j-1, I j + 11 I j - I, I 

..• z .; 
m 
G') 
::0 
> r 
U) ..,, 
0 
::0 
t:l 
> ci 

qmax :a: 
0 

I, E: 
j + I, 0 

j 
~ n 

j + I, ~ 
~ 
n > r n c:: r > .; ... 
0 
~ 

•... 
0\ c.,., 
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Since 
(32) 

it follows that the Coulomb integral is of the same form as the exchange 
except that the sum over p and q are of only one term and the radial 
integral is 

co co j 

<iJ,1, #12 Ii I y/) = J dr1 J dr2iJ1,U1, 1111 IOI r1) P,.(12, m2 IOI r1) r :+1 
o o r> 

(33) 

The above results are summarized in Table I. 
The above Eqs. (22-25) and (30) for one- and two-electron integrals 

are the desired formulas which must be evaluated. Thus the integral 
problem has been reduced to one of generating the ~ and y functions, 
generating the D coefficients, performing the indicated numerical 
quadratures, and the bookkeeping procedures for the cycling over all 
nonredundant orbital combinations. We will take up each of these 
processes in turn. 

Before taking up the detailed, numerical techniques, we shall discuss 
the over-all philosophy and organization of the computer program 
designed to calculate all the required integrals between sets of orbitals 
located on the two atomic centers. 

III. Organization 

In designing the computer program that was written using the fore­ 
going techniques for the computation of a collection of two-center 
integrals, certain properties were felt to be highly desirable. On one 
hand, the complete set of required integrals should be automatically 
calculated as soon as the physical orbitals and integral types were 
specified. On the other hand, whenever there was uncertainty in the 
method, such as in the accuracy of the numerical quadratures or in the 
number of terms in the infinite. exchange series, an improved-rneshand a 
last term descrepancy greater than a threshold value were offered as an 
attention signal for user inspection. No attempt was made to provide 
elaborate (but not rigorous) procedures for getting integrals automatically 
to a given accuracy; rather the user's judgment was retained. Similarly, 
in anticipation of future improvements and general ease of programming 
the program was kept carefully compartmentalized in separately trans­ 
lated subprograms with simplicity being the keynote throughout. 
The bulk of the subprograms were written in the Fortran II language 



INTEGRALS FOR DIATOMIC MOLECULAR CALCULATIONS 165 

of the IBM 704, 709, and 7090 computers with only a few of the sub­ 
programs and the library input-output subprograms being in machine 
language (SAP or FAP). To avoid excessively long, calling sequences 
between subprograms, all of the physical input values as well as several 
table areas were organized in the COMMON storage area known im­ 
plicitly to all subprograms . 

Because of the desire for simplicity, the calculation was organized 
into two major sections each of which contained several stages (a special 
loader for this purpose was written for the 704; CHAIN links were 
used in the 709/7090 version). The first section consisted of (1) reading 
in all input parameters and checking for absurdities, (2) generating and 
storing on magnetic tape all required P functions for the finest mesh 
required, (3) similarly generating all the y functions required, (4) re­ 
plicating the function tape several times to form a set of identical function 
tapes (for the purposes of time-efficient function retrieval and precaution 
against tape malfunctions as explained below) and (5) generating in core 
memory thefrequently required tables of powers of r. (For time-efficiency 
when restarting a partially completed calculation, the user could if 
desired, supply a previously generated function tape and skip steps 

. (2) and (3).) 
The second section of the program proceeded to calculate selectively 

according to user specification the various types of integrals: overlap, 
nuclear attraction, split-nuclear attraction, kinetic energy, Coulomb, 
hybrid, and exchange. A principle feature of this section was the de­ 
liberate decoupling of computation from function retrieval. This was 
done for two reasons: (1) to minimize the amount of reprogramming 
required if the form of secondary storage changed ( e.g. disk units for 
tape units) and (2) to allow the programming simplicity of an apparently 
random-access secondary memory. 
The function retrieval subprogram GETFUN, upon being called 

for a function, looked up in the function directory (kept in core memory 
at all times) the location of the nearest copy on one of the multiple 
function tapes. By consulting its function-tape position-table, the sub­ 
program selected the tape requiring the least time to position and read 
in the function. A very useful byproduct of this procedure was the 
ability to carry on the calculation in spite of faulty function tapes or 
tape drives since upon repeated reading trouble with a tape, the only 
step required is to make an entry in the tape-position-table indicating 
the tape to be grossly out-of-position for reading. However, because 
~omputational speed could be seriously affected, the user was kept of 
informed of these function-tape drop-outs. 
The other major feature of the second section is the pattern for the 



166 FERNANDO J. CORBAT6 AND ALFRED C. SWITENDICK 

selection of the integrals to be calculated. Redundant calculation would 
be performed if no effort were made to use symmetry properly. This 
topic is taken up in a subsequent section. 
To illustrate the program organization we give the list of important 

subroutines and their function, and the approximate sequence and 
hierarchy of operation. 
DIATOM- Primary control sequence for integral program 

READ- read in calculation parameters and orbital specifications 

PR~ scan input for errors 

PRER- generate radial mesh 

GENBEU- generate and write on tape required unexpanded, P functions 
GENBEX- generate and write on tape required expanded p functions 
BETAFN- calculate f3 function 
GENIN- calculate iN(x) 

GENKN- calculate kN(x) 

FNORM- calculate [N(11)]112 

FACTOR- calculate L(l, m) 

GENGMX- generate and write on tape the required y functions 
DCOE- calculate D(j, /1, m1, /2, 1112) 

MID- duplicate function tape including function directories 

RGEN- calculate ri and dr/dt 

CALCIE- calculate the desired one-electron integrals 

CALC2E- calculate the desired two-electron integrals 

GETFUN- retrieve desired function from tape 

DOUBLE- form double integrand 

SINGLE- form single integrand 

INDEFI- perform indefinite integration 

DEFINT- perform definite integration 

PRINT- indentify and print integral 
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IV. Generation of 13 Functions 

The basic attack on this aspect of the problem is to use an expansion 
given by Watson (Watson, 1952) in terms of the spherical Bessel functions 

-1<r' co 
~ = ~ (2j + l) i1 k1 PJ(µ.) , 
KT ;~o 

(34) 

where i1 = i;(a), k1 = kJ(p) and a and p are the lesser and greater, 
respectively, of Ka and KT. 

By differentiating with respect to K, a second expression can be de­ 
veloped which we cast in the numerically accurate form 

00 

c"'0 = ~ (2j + I) [p i1 kH - er i;+1 k1] P;(µ.). 
jaO 

(35) 

From these expressions, the definition of Slater AO's and the /3(n, l, m) 
functions (where the arguments K, a, and r have been dropped for brevity) 
it follows that 

{3;(0, 0, 0) = ,c112(2j + l) (,cr) tj k1, (36) 

{3;(1, 0, 0) = V2 ,c112(2j + I) (,cr) [p i1 k1_1 - (f i;+1 k1] • (37) 

To build up /3 functions of higher quantum numbers, it is useful to 
develop a recursive procedure. We note the following geometric relation­ 
ships from Fig. 1 

(r')2 = a2 + r2 - 2ar cos 8 
r' cos 8' = a - r cos 8 
r' sin 8' = r sin 8 • 

(38) 
(39) 
(40) 

On defining the operators U; and L1 as 

UJ/31(11, 1, m) = /31+1(11, I, m), (41) 

L1f3;{11, 1, m) = /31-1(11, I, 111), (42) 

and the operators X1, Z1, and R/ as 
KT 

X1 = ,-.: , "[L1 - V1] (43) 

Z1 = «a - ,., /~ " [(j - I m l) L1 + (j + I m I + I} V1] ( 44) 

R/ = (,caf + (,cr)2 - ~t~)~,c:~ [(j - Im l)L1 + (j + j 111 I + I) U1], (45) 
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then, by virtue of Eqs (38-40) and the properties of the P1m(µ.), 

f1J(n + 2, /, m) = R;2 {l;(n, [, m), 

{1;(11 + 1, /+I,/ + I) = (2/ + I) X1f3J(n, l, !), 

[ 21+1 ] /31(11+1,l+l,m)= l-lml+I Z;/3J(n,l,m) 

[ l+lml ] 2 - l-lml+I R1'f3,(n-I,l-1,m). 

(46) 

(47) 

(48) 

In the last relation fl(n - 1, l - 1, l) is taken to be zero. 
The recursion scheme is as follows. The set /3;(0, 0, 0) or {3j( 1, 0, 0) is 

formed from tables of i; and k; depending on whether (n - l) is even or 
odd, respectively, for the ]max required values plus [(n + Z)/2] extra values 
where brackets designate "the integral part of." We apply the operator, 
R/, [(n - /)/2] times until {3,(n - l, 0, 0) is reached. We then apply the 
operator, (2l + 1) X;, \ m I times until flin - l + Im I, \m I, I m I) is 
reached. Finally we apply the last relation (l - I m I) times until the 
desired {3j(n, l, m) is reached. This scheme appears successful with the 
loss of about one binary digit per recursion. As a check on the recursion 
relations one can calculate normalization integrals the "hard-way," 
i.e., by expanding both orbitals. This procedure has been done for all 
orbitals up through n = 4, / = 3, m = ± 3. In an eight-significant­ 
figure machine, five-figure accuracy was obtained after numerical inte­ 
gration and summing 25 terms. 
The two basic /3j(O, 0, 0) and /3il, 0, 0) functions are constructed 

from products of spherical Bessel functions of imaginary argument, 
iJ(o) and kj(p), where u and p are the lesser and greater of Ka and «r. 
We therefore need ij(x), 0 ~ x ~ Ka and kix), Ka ~ x ~ ex, for j up 
to some ]mnx determined from Table I. The spherical Bessel func­ 
tions of imaginary argument (Corbat6 and Uretsky, 1959) can be defined 
by the recurrence relations as 

in+1(x) = in-1(x) - ( 211
; I ) in(x) 

( 2n + 1 ) kn+1(x) = kn_1(x) + x kn(x) , 

and have the values for order O and l, 
. ( ) sinh (x) . ( ) cosh x sinh x 
lo X = X ' 11 X = -x-, - - ~ 

e-'" e-'" [ I] k0(x) = -, k1(x) = - I + - . 
X X X 

(49) 

(50) 

(51) 

(52) 
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For generation of functions of the second kind, kn, it is clear from the 
recurrence relation that upward recursion will result in no major loss of 
accuracy. Since for our purposes the argument of'kn(x) is p the greater of «r 
or the internuclear separation Ka, for x > 87.4, in the IBM 7090 computer, 
the usual single-precision floating-point exponential subprogram under­ 
flows and yields a zero value for the function. In order to maintain greater 
accuracy the function kn = e1! kn is calculated using the above recurrence 
relations and the starting values of k0(x) = x-1 and lci(x) = (1 + x-1]. 
For the functions inr upward recursion will also suffice in the region 

of x > 4n + 2 since (2n + 1 )x-1in < ½ in-l and at most there will be a 
loss of one binary figure in each recurrence cycle, a result comparable 
to the truncation and round-off error. For x < 4n + 2 upward recursion 
will result in significant loss of accuracy and some other method must 
be used. An obvious approach would be to evaluate iN and iN-t for some 
large N and use downward recursion with no loss of numerical accuracy. 
Examination of the power series for iN shows that for x ::::::: 4N + 2, 
for large N, convergence is very poor and this technique is unsatisfactory. 
An alternative procedure for generation of spherical Bessel functions 
is described by Miller ( 1952). This technique avoids the loss of significant 
figures with the function of the first kind, iu, in the region x < 4N + 2. 
The method consists of assuming the unnormalized approximate values 
i, = 0, i,_1 = I for v sufficiently greater than N such that downward 
recursion of the ratios, r11 = infin-I yields the correct ratios of the 
i11/i11_1 for 11 ~ N. From the Wronskian it can be shown that 

io(:t:) = e1"1/(l + I :r: I + .-rro) • (53) 

With this normalization and the correct ratios the correct values of the 
i11 may be obtained. One expression for v is 

v = N' + ,\(A + Bu') 
where 

.,\ = binary significant figures desired for ,i ~ N 
11' = 2x/(2N' + I) 
N' = greater of Nor [ABx]112 

and A= 0.10, B = 0.35. 
Again the actual functions calculated in a computer are 

in(x) = e-" in(.\:) , 

(54) 

(55) 

so that the f3 functions can be calculated without underflow or overflow. 
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Following this procedure the required in(o-) and k11(p) are generated 
for the required arguments. These are then used to form the initial {3 
functions #;(000, or {3;(100). Then following the recursion scheme out­ 
lined above, the desired f3in, l, nz) are formed and from these the 
P;(I, m) representing the expansion of an orbital are written on the master 
function tape. 

Similarly using the Eq. (19) the expansion function -yJCl1,nz1 \ /2, m2) 

representing the expansion of a product of two orbitals, a charge density, 
are formed and stored on tape. 

V. Generation of D Coefficients 

Repeating the definition of the D coefficients, we have 

P,m(µ.) P/(µ.) = k D(k, i, m.], n) p;:11-n I(µ). 
k 

(56) 

The nonvanishing D are given as 

D(k i m . n) = (-})o+l+m' (2k + 1). (k - I 1111 - 1tl2 l}l 
, ' ,J, (k + J 1111 - 1112 I)! 

gl (2g -Jl')I (/' j- m')! (l_+m)! 
(g - /)! (g - l')I (g - /")! (2g + 1)! (/ - m}! 

(l" + m" + t)l (/ + l' - m" - t)I 
. ~ (-1)1 (II/ •M" _ ,\I 111 ••• , ,\111 ,, , _,, 1_ ,\I ,I , (57) 

t 

where i, j>O; g= 1/2(i + j + k) and an integer, and fi- jl ~k ~i+ j. 
m", m', m are such that m" is the largest member of the triplet, J m I, 
I n·J, and Im - n I and /", /', l are the corresponding members of the 
triplet i, j, k; the sum over t is to be taken over all terms involving 
nonnegative factorials. 

Although recursion formulas exist, it is of great advantage in the 
organization of a computer program to be able to obtain coefficients in 
any arbitrary sequence. For that reason it is desirable to evaluate directly 
the above formula for the D coefficients. 

Computation involving factorials in a digital computer has various 
hazards. Foremost of the hazards is the rapid build up with argument 
n, for example, 10! "'"' 106, 201 ,-.., 108• Clearly a fixed-point representa­ 
tion will not suffice to avoid overflow except for trivial values of n; a 
floating-point representation will offer a short-lived reprieve from range 
overflow but will contain a limited number of significant figures. 
For most purposes computing indirectly with a "compression function" 
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such as the logarithm will eliminate range-overflow problems; however 
the accuracy at best will be limited since the error produced by then - 2 
additions required to form log (n ! ) will be the sum of the errors in the 
individual logarithms of the integers plus round-off error and will be 
transmitted through the exponential function to the result. These accur­ 
acy limitations are usually not a problem when the terms involving 
factorials all have like signs and no cancellations occur. Since the D 
coefficients contain terms involving rational fractions of factorials of 
like magnitude and alternating sign, unless full accuracy is preserved 
highly inaccurate answers may be obtained. · 

One may take recourse to multiple precision arithmetic with its 
consequent slowness but we will describe a technique which is well 
suited for the evaluation of the D coefficients (Corbat6, 1961). 
Specifically the technique consists of using a special representation 

for terms computed as rational fractions of factorials. Each term of 
value V is associated with an exponent table T of integer entries: e(i), 
i = l, 2, ... , N where the location of the first entry e(l ), is the address 
T, and the value of the term is 

N 
V = II i•<O. 

l•l 
(58) 

Multiplication (or division) of a term by an integer j in this representa­ 
tion is therefore just the addition ( or subtraction) of a one from the entry 
c(j). Because the modern digital computer has fast logic and fixed-point 
addition, multiplication or division by factorials in this representation 
is a relatively efficient process. To sum several terms, for example 

J 
S = ~ ( -1 )1 v, , 

1-1 
(59) 

the procedure is to make a preliminary exponent table Tj of each term 
to determine the highest common factor (HCF) of the J terms. Next 
each term divided by the HCF is computed directly as an exponent 
table with value Vi. Finally the necessary summation is made of the 
signed V1, and the result multiplied and divided by the numerator and 
denominator, of the HCF, respectively. 
The preceding computational process can be efficiently accomplished 

with six subprograms with names, program parameters, and specifica­ 
tions as follows: The symbol " .- " means "replaces" and "N" when 
used as a program parameter designates "the address of the word con­ 
taining N", etc. (Strictly speaking these two uses of N should be <listing- 
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uished, but no ambiguity should arise from this convenient dual FOR­ 
TRAN-like use of symbols.) 

I. SET (N, T, s). Set Table Tso that s-+ e(j) for j = 1, 2, ... N. 
2. MULT (N, T, a, b). Multiply value of Table T by (a!)/(b!) such 

that if a= b, Table T is unchanged; if a > b, e(j) + l-+ e(j),j = b + l, 
b + 2, ... , a; if a< b, e(j) - l-+ e(j), j = a+ I, a+ 2, ... , b. Give 
error procedure if max (a, b) > N, if a or b less than zero, or if an ex­ 
ponent exceeds integer capacity of a table entry. 

3. HCF(N, T1, T2). Compare entries of table T1 with corresponding 
entries of table T2, setting the algebraically smaller entry in T2, zero in 
T1• Hence, min (e1(j), e2(j))-+ eb), 0-+ e1(j), j = I, 2, ... N. 
4. PRIME(N,T). Reduce nonprime entries of T to zero by successive 

factorization. Thus if j is prime, e(j) -+ e(j) or if j has factors i, k such 
that j = ik then e(i) + e(j) _. e(i), e(k) + e(j)-+ e(k), 0-+ e(j), for the 
sequencej = N, N - I, ... 1. Use one (or two) auxiliary tables (which 
if two may be packed into one table in some computers) with entries 
i and/or k or a zero entry if j is prime for j = I, 2, ... M. Give error 
procedure if N > M or if any table entry capacities are exceeded. 

5. COPYN(N, T1, T2). Copy negative of entries of table T2 into table 
T1_ such .that -e2(j) -+ ei(j), j = 1, 2, ... , N. 

6. VALUE(N, T, V, r). Evaluate numerator or denominator, V, 
of table T according to the sign of r. Thus 

N 
V = II ii({)' 

J•l 

where/(i) = max (e(i), 0) if r > 0; or f(i) = min (e(i), 0) if r < 0. (60) 

Give error procedure if Vis too large to be represented exactly. 
Finally one more subprogram can be written which allows results 

to be given as rational fractions of prime factors. This somewhat inefficient 
subprogram is 
7. FACTR(N, T, V). Multiply table T by prime factors of V by the 

following procedure. Let V-+- W; then e(j) + k-+ e(j) where k is the 
largest integer giving a zero remainder for W/(j)k; make the replacement 
W/(j)k-+ W for successive values j = 1, 2, ... , N or as long as W > I. 
For space efficiency use the same auxiliary table(s) as in the subprogram 
PRIME to determine primes, giving error procedure if N > M. Give 
error procedure if in factoring, any table entry capacities are exceeded. 
If the step for j = N is completed and W > I, an error procedure 
should also be given. 
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To illustrate the use of the above subprograrns, the following set of 
.eps evaluate the formula 

s(a b c d) = IOdl ~ (-1)0+b+c+t (a - t)! (b - t)I 
' ' ' "';' (c + t)! ' 

(61) 

vhere a, b, c, d are positive integers and the sum is over all integral 
·alues of t yielding nonnegative factorials. 

I. 0-+ s. 
2. -c - tm1n, min (a, b)-+ tmax• 
3. max (a - tmin, b - tmin, c + lmnx, d, 10)-+ N. 
4. If tmin ~ tmnx, tm1n-+ t; if not, go to step 25. 
5. Use subprogram SET(N, T2, q) where q is the largest positive 

integer which can be stored as a table entry. Use subprogram 
SET(N, Ti, 0). 

6. Use subprogram MUL T(N, Ti, a - t, c + t). 
7. Use subprogram MULT(N, T1, b - t, 1). 
8. Use subprogram PRIME (N, T1} to reduce table T1 to prime 

entries. 
9. Use subprogram HCF(N, T1, T 2) to place current HCF in table T2 

and to clear table Ti, 
10. t + l--.. t; go to step 6 if t ~ tmax; go to step 11 if t > tmax, 
11. 0 - S, tmin --.. t. 
12. Use subprogram COPYN (N, T1, T2) to place reciprocal of HCF 

in table T1• 

13. Use subprogram MULT(N, T1, a - t, c + t). 
14. Use subprogram MULT(N, T1, b - t, 1). 
15. Use subprogram PRIME(N, T1). 
16. Use subprogram VALUE(N, T1, V, + l) to obtain V 
11. v-s-s. 
18. t + 1-+ t; go to step 12 if t ~ tmax; go to step 19, if t > tmax, 
19. Use subprogram MULT(N, T2, 10, l). 
20. Use subprogram MUL T(N, T2, d, l ). 
21. Use subprogram PRIME (N, T2). 

22. Use subprogram VALUE(N, T2, A, + I) to obtain A as numerator 
of JO di (HCF). 

23. Use subprogram VALUE(N, T2, B, -1) to obtain denominator. 
24. [(A) (S)/B] (-1)11-+ S where '1 = a + b + c + tmax- 
25. Return to main program. 

1f it were also desired to express the magnitude of the result S as a 
rational fraction of prime factors, in table T,. it would be necessary to 
insert after step 24 the following steps: • 
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24a. Use subprogram COPYN(N, T1, T2). 

24b. Use subprogram SET(Nmnx, T2, 0) where Nrnnx is the maximum 
index of T2• 

24c. Use subprogram COPYN(N, T2, T1). 

24d. Use subprogram FACTR(Nmax, T2, S). 

It should be noted that the N set in step 3 could easily have been 
inadequate for factorization if used instead of Nmnx in step 24d. Addi­ 
tional remarks are that steps 6 through 8 and steps 13 through 15 could 
be more efficiently done with a single subroutine and that the exponent 
table convention can be generalized so that the contents of a special 
entry (e.g., T(O)) denotes the sign or a table value of zero (e.g., by 
+1, -1, or 0) . 
The D coefficients are also useful in problems of compling angular 

momentum. We give two useful formulas for relating the D coefficients 
to the Condon and Shortley (1952) coefficients Ci(li_, m1, /2, 1112) and the 
Wigner 3j symbols (Edmonds, 1957) 

. [ (211 + 1)(2/2 + l)(j + \ 1111 - 1112 I)! (/1 - \ 1111 I)! (12 - \ 1112 I)! )1'2 
. (2j + 1)2 u - I 1111 - 1112 I)! (/1 + I 1111 I)! (/2 +I 11121)1 
· D(j, /1, m1, /2, m2), 

and 

. [ U + I m1 - 1112 I)! U1 - I m1 I)! (/2 - I m21)1 ]1'2 
U - I m1 - 11121)I (/1 + I mi 1)1 (/2 + I 1112 I)! (2/ + 1)2 

· D(j, 11, 1111, 12, m2) • 

VI. Numerical Quadrature 

From Eqs. (31) and (33) we see that once the unexpanded functions 
and expanded functions have been generated one is left with double 
integrals of the form 

(64) 

where r <• r > are the lesser or greater of, respectively, r1 and r2• This 
integral is to be done numerically. There are two places where the 



INTEGRALS FOR DIATOMIC MOLECULAR CALCULATIONS 175 

derivative of the integrand is not continuous. The first point is at the 
internuclear separation a and arises from the functional definition in­ 
volving iia) k;(P) which defines the behavior to be different for r less 
than a from that for r greater than a. Similarly there is a slope discon­ 
tinuity as a result of definition of r < and 7' >. Since integrating numeric­ 
ally over these points can introduce inaccuracies in the result, one 
should have all integration rules end on the points r = a and r1 = r2• 
This divides our integral over the first quadrant into two integrals each 
over an octant. The first O ~ r1 ~ r2, the second r2 < r1 ~ oe , This 
gives a resulting sum of two integrals which we write in the symmetric 
form. 

We now require the indefinite integral 

f
r, 
0 
h(r2) dr2• 

(65) 

(66) 

Since we wish to minimize the number of function entries we chose to 
generate the functions at equally spaced points and use a repeated 
Newton-Cotes form of integration rule. This allows us to use the same 
points for both the definite and indefinite integrations. It also allows 
us to conveniently end our integration rules at the point r = a. We can 
examine the error introduced by the numerical integration by doubling 
the mesh spacing and redoing the integral using every other value. If 
we do this by using every other value constructed for the original inte­ 
grand, we can get a measure of the quadrature error with little additional 
effort. 

Since the final value of the upper limit of our integrals is infinity and 
for various combinations of screening parameters K the value of r at 
which the function goes effectively to zero may vary between 1 and 160, 
a mapping of the integration range from O to oo into some finite range 
of S is desirable. Since the slope is discontinous at a, it is desirable that 
this point should form an end point of the basic integration rules. A 
natural selection for a mapping would be 0-+ 0, a-+ S/2, oo-+ S. 
One finds that for functions which have molecular significance, maxim­ 
ums of the integrand occur between the two centers and the integrand 
is nonzero for a short distance beyond the other center. A division of the 
interval 0 to S into three parts was chosen with the center 0', } of the 
?istancc along this line. A simple form of such a mapping and one used 
IS 

(0.5) at 
r=-- 

3 - t ' S = 3. (67) 
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This mapping requires the inclusion of the factor 

dr (1.5) a 
dt = (3 - t)2 (68) 

in all integrals. 
Two integration 

integral 
routines are then needed, one for the indefinite 

r h(t) dt , 
0 

(69) 

and the other for the definite integral 

r g(t) a,. 
0 

(70) 

In the program which was written Simpson's rule was used in the 
indefinite integration and a repeated 9-point Newton-Cotes rule was 
used in the definite integration The reason for the simplicity of the 
indefinite integration formula is the need for obtaining easily all the 
integrand points of the subsequent definite integration. 
In any case since all functions were generated on a point-by-point basis 

one could easily change the integration mesh and even the integration 
rules, without changing the function routines. 

VII. Exclusion of Redundant Integrals 

One of the goals of a general two-center integral program is to produce 
all integrals between sets of orbitals located on the two centers. Since 
the total number of integrals goes like the total number of orbitals to 
the fourth power, one does not wish to calculate the same or equivalent 
integrals more than once. A great deal of difficulty arises from the fact 
that if one has an orbital with angular momentum component m, then 
the physical situation usually requires the inclusion of the orbital with 
-m. One could include this orbital explicitly as one of the basic set of 
orbitals, but if one considers the Eqs. (5) and (10) one sees that the 
expansion functions for -m are trivially related to the expansion func­ 
tions for m. For this reason the orbital with -m is not included in the 
input set, but is implicitly included in the calculation of the integrals. 
We shall illustrate the procedure for eliminating vanishing and redun­ 
dant integrals. This vanishing arises from the axial symmetry of the 
system and the redundancy from the specific form of the integrals. A 
further redundancy arises if there is a special symmetry in the problem, 
i.e., the same orbitals on both Centers or a one-center problem. 
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If we symbolize an orbital with m value m1 by Kl and its associated 
orbital with mvalue -m1 by -Kl then we can denote the integral (28) by 

(Kl, K21 K3, K4) 

where Kl, K2, K3, and K4 denote a specific selection of four orbitals 
of the total set. Kl and K2 have the coordinates of electron one and 
K3 and K4 have the coordinates of electron two. Them value associated 
with the pair Kl, K2 is 11112 = 1112 - 1111 because of our convention of 
taking the complex conjugate of the first and third orbitals. The m value 
associated with the second pair K3, K4 is M34 = m4 - m3• All of the 
two-electron integral vanish unless M34 = -M12 or m1 - m2 + 1113 
-1114 = O. This then allows the first reduction in the number of integrals. 
Of the integrals symbolized by 

{Kl, K21 K3, K4) 

(Kl, K21 K3, -K4) 

(Kl, K21 -K3, K4) 

(Kl, K2 I -K3, -K4) 

(Kl, -K21 K3, K4) 

(Kl, -K2 I K3, -K4) 

(Kl, -K21 -K3, K4) 

(Kl, -K21 -K3, -K4) (71) 

associated with the various m values, all having the same radial integra­ 
tion, only those fulfilling the condition M34 = -M12 are to be calculated. 
(The integrals with -Kl are just the complex conjugate of those in the 
above list and are also not calculated since all integrals have real values.) 
Similarly when an orbital has mi = 0, integrals of the list (71) involving 
-Kl should be excluded since they are obviously redundant. 
For example the integrals to be calculated from four 1r(/ = l, m = l) 
orbitals are 

(77,77177, 77) 

(77, 77 I -77, -77) 

(r., -1r I -77, r.) . 

As an example of further redundant integrals, consider the exchange 
integral of orbitals on centers A and B, 

(Kl(A), K2(B) I K3(A), K4(B)) . 
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In including all orbitals on center A and center B each pair need be 
included only oncej] for by the form of Eq. (28)1 

(Kl(A), K2(B) I K3(A), K4(B)) = (K3(A), K4(B) I Kl(A), K2(B)) 

= (K2(B), Kl(A) I K4(B), K3(A)) = (K4(B), K3(A) 1 K2(B) Kl(A)) 

We consider any pair of oribtals K,(A), K,(B) to be represented by the 
number Nii = i N0 + j where N0 is larger than the number of orbitals 
on either center. Then the redundancy of the exchange integrals is 
removed if we impose the condition that N12 ~ N34• 

Similar constraints can be developed for the Coulomb and hybrid 
integrals as well as for the hornonuclear cases. For further details the 
reader is referred to the specific implementation done for the 704 
computer. 
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