u279Y

UNCLASSIFIED

UNITED KINGDOM ATOMIC ENERGY AUTHORITY

ATOMIC WEAPONS RESEARCH ESTABLISHMENT

Manual for the S2 Language

Edited by

Joan Knock
Mary U. Thomas

AWRE, August 1964

Aldermaston, Berks. UNCL ASSIFIED Reprinted April 1967

UNCLASSIFIED

United Kingdom Atomic Energy Authority

ATOMIC WEAPONS RESEARCH ESTABLISHMENT

Manual for the S2 Language
Edited by

Joan Knock
Mary U. Thomas

Summary

The S2 compiler operates on the IBM7030 (STRETCH) and accepts
a dialect of FORTRAN 2, which is termed S2, which is described in the
present manual.

Approved for issue by

A. H. Armstrong, Senior Superintendent

681.3
681.3(IBM7030)
-1-
UNCLASSIFIED

TABLE OF CONTENTS

INTRODUCTION

ELEMENTS OF S2

2.1
2.2
2.3
2.4

Characters
Operators

Names

What Can Be Named

2.4.1 INTEGER
2.4.2 REAL

2.4.3 Fixed Point Constants
2.4.4 Floating Point Constants
2.4.5 Function Values

2.4.6 Subscripted Variables

EXPRESSIONS AND ARITHMETIC STATEMENTS

3.1
3.2
3.3
3.4
3.5

Components of Expressions
Named Variables

Arithmetic Statements

How Expressions are Constructed
Modes of Expressions

CONTROL STATEMENTS

Unconditional GO TO
Computed GO TO
Assigned GO TO

4.1

4.2

4.3

4.4 ASSIGN

4.5 IF

4.6 SENSE LIGHT

4.7 IF (SENSE LIGHT)

4.8 DO

4.9 CONTINUE

4.10 STOP

4.11 END

FUNCTIONS

5.1 Types of Functions

5.2 Closed (or Library) Functions Available
5.3 Open Functions Available
5.4 Function Sub-Programs

-2-

PAGE

N o0 O

O O O 0 oo~

12

12
12
13
14
14

16

16
16
17
17
17
17
18
18
18
20
20

21

21
21
22
24

10.

TABLE OF CONTENTS (CONT.)

SUBROUTINES

6.1 SUBROUTINE
6.2 CALL
6.3 RETURN

INPUT/OUTPUT STATEMENTS

7.1 Types of INPUT/OUTPUT Statements
7.2 Lists of Quantities

DECIMAL INPUT/OUTPUT

8.1 READ

8.2 READ INPUT TAPE
8.3 PUNCH

8.4 PRINT

8.5 WRITE OUTPUT TAPE

BINARY INPUT/OUTPUT

9.1 READ TAPE
9.2 READ DRUM
9.3 WRITE TAPE
9.4 WRITE DRUM
9.5 END FILE

9.6 REWIND

9.7 BACKSPACE
FORMATS

10.1 Basic Field Specifications

10.2 Alphanumerical Fields

10.3 Blank Fields

10.4 Scale Factor

10.5 Repitition of Groups

10.6 Multiple Record Formats

10.7 Format and INPUT/OUTPUT
Statement Lists

10.8 Ending a Format Statement

10.9 Carriage Control

10.10 Data Input to the Object Program

PAGE

26

26
26
27

28

28
28

30

30
31
31
31
31

33

33
34
34
35
35
35
35

36

37
37
38
39
39
39

40
40
40
41

11.

12.

TABLE OF CONTENTS (CONT.)

SPECIFICATION STATEMENTS

11.1 DIMENSION

11.2 COMMON

11.3 EQUIVALENCE

11.4 The Effect of EQUIVALENCE on the
COMMON List

11.5 The Effect of Using FUNCTION or SUBROUTINE

Parameters in Specification Statements
11.6 Standard Practice with Specification
Statements

THE SUBROUTINE PRELUDE

APPENDIX A:

APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:
APPENDIX G:

APPENDIX H:

APPENDIX I:

APPENDIX J:

APPENDIX K:
APPENDIX L:
APPENDIX M:

RULES FOR XFN AND XFP
ARITHMETIC

THE MYSTERIOUS ZERO
PUNCHING CONVENTIONS

DECK MAKE-UP

OUTPUT FROM THE S2 COMPILER
S2 DIAGNOSTICS

ERROR INDICATIONS DURING
EXECUTION

CHAIN JOBS

SPECIAL INPUT/OUTPUT
SUBROUTINES FOR TAPE AND
DISK (UNBUFFERED)

SPECIAL INPUT/OUTPUT
SUBROUTINES FOR BUFFERED
TAPES

IDENTIFICATION OF BINARY DECKS
IOD AND REEL CARDS

TABLE OF SOURCE PROGRAM
CHARACTERS

PAGE"

42
42
42
43
44
45
45
47
50
51
53
54
56
57
61
64
67

71
72
73

75

UNCI.ASSIFIED

1. INTRODUCTION

The S2 compiler operates on the IBM7030 (STRETCH) and
accepts a dialect of FORTRAN 2 which will be termed S2. It is not the
purpose of this reference manual to be a text for beginners learning
FORTRAN - they are reconmended to read McCracken’s handbook;
this manual is more concerned with points of detail, so that users of
S2 may be in no doubt about what is the proper notation.

Since the FORTRAN language has never been adequately defined,
an attitude has developed which can be expressed in the phrase “if it
compiles and runs, it is legal”. This is to be deplored. Firstly, it
lessens the chance that a program written for one compiler will be fit
for compilation on another compiler, say for a different machine, and
secondly, the program may run correctly because of some accidental
property of the compiler or the machine on which programs run.

Accordingly, this reference manual will attempt to indicate
which features of FORTRAN are likely to be available in all FORTRAN
compilers; this will be termed “Standard FORTRAN”. In addition the
other features that are available in the S2 dialect will be mentioned.
It must be admitted at once that the definition of what is “Standard
FORTRAN” is rather arbitrary and expresses the opinion of the
author. This is all that can be done until such time as “Standard
FORTRAN” is properly defined.

The following persons took part in the construction of the S2
compiler: -

Miss M. U. Thomas and Messrs. B. Blythe, A. E. Glennie and
C. Hart of AWRE and Mr. F, R, A. H0pgood of AERE.

Messrs. P. Ellis, J. Nash and J. Pether of IBM (UK) Ltd.

-5-
UNCLASSIFIED

2. ELEMENTS OF S2

This section describes the elements out of which S2 statements
are constructed.

2.1 Characters
The alphabet AtoZ
The numerals Oto9
Others +-=/()., £ " space

The character ' is available in S2 where it is treated as
a letter. Its use is not recommended.

2.2 Operators

Addition +

Subtraction -

Sign change - used as a unary operator
Multiplication
Division /
Exponentiation ** A**Bis A

Equals =
2.3 Names

Variables, parameters and routines have names and much -
confusion has arisen because the syntax of names has changed gradually
with extensions to FORTRAN. The following rules apply to S2 and
probably to all other FORTRAN compilers, at least from now on:-

A name is a string of letters or digits whose first
character is a letter. “Standard FORTRAN” requires that there should

be fewer than 7 characters in a name.

There are a number of safety precautions which should be
adopted by the careful programmer:-

(a) If the name of a function ends with F, do not use the
name obtained by stripping the last F. |

(b) Do not use as a name the key works like “IF”,
“CALL", etc., which specify statement types.

-6-

(¢) If you are writing a program that may be compiled
by the IBM7090 FORTRAN 2 compiler, and uses functions,
you should consult the appropriate reference manual for
the rules of the naming of functions; these rules are too
long and complicated to reproduce here.

Such safety rules are not mandatory, but lead to compati-

bility with other dialects of FORTRAN.

The actual S2 rules for naming are:-

(a) The first character is alphabetic.

(b) Seven or fewer characters in the name.

(c) If there are 7 characters, the seventh character not
being E, then the 6-character name obtained by stripping
the seventh character is not used for a different object
from the 7-letter name. In other words, if the name has

seven characters, only the first six are used, unless the
seventh character is E.

Examples:

The first two names are the same to the compiler; the

others are all different.

2.4

of names:-

XKLIBR XKLIBRF
PRELUD PRELUDE
ALPHA OMEGA

Al S2

What Can Be Named

The following classification shows what use may be made

2.4.1 INTEGER

These are named by names whose first letter is

I, J, K, L, Mor N. In S2 it is possible to declare any other name
to be that of an INTEGER by means of the declaration

INTEGER list

where list is a list of names separated by commas if there is
more than one name in the list.

-7-

An INTEGER is represented within S2 programs
on STRETCH by a floating point number with an exponent of 38,
and the appropriate fraction to give the floating point number the
INTEGER value required.

Thus, 38 bits are used to store the significant
bits of the number, which must therefore be less than 238 in
magnitude.

Let I and J be INTEGERs and K the result of
adding 1 to J by an S2 program. Then if the sum of the values of
I and J is greater than or equal to 2%, then K should be con-
sidered undefined.

Similarly with other overflow situations arising
from other operations on INTEGERs. No warning is given of this
situation.

The user is advised to use INTEGER arithmetic
only if the numbers used are not too large, particularly if he
wishes his programs to run on other machines. For example, on
the IBM7090 INTEGERSs are less than 215,

2.4.2 REAL

These are floating point numbers in whose names
the first letter is not I, J, K, L, M or N. In S2 it is possible to
use a type declaration

REAL list

as with INTEGERs to declare as REALs any quantities whose
names begin with I, J, K, L, M or N.

In STRETCH, floating point numbers, x, have a
48 bit fraction, A (and hence 48 significant bits) together with an
exponent, B, which can be in the range

- 1023, + 1023,

wherex:iA‘ZB, A =Qor% < A< 1.

As well as this normal range there are two
other ranges called the XFP and XFN ranges. For practical
purposes all numbers in the XFP range can be considered identi-
cal; they are numbers with exponent greater than 1023. Simi-
larly all XFN numbers can be considered identical; they have
exponents less than - 1023. STRETCH has the useful feature that

-8-

the arithmetic includes the XFP and XFN numbers in such a
manner that calculation is consistent with the interpretation that
an XFP number is considered like infinity and an XFN number
like an indefinitely small number (butnot necessarily zero). Thus,
we have the following rules:-

XFP + XFN = XFP

and many others given in full in Appendix A, by which the pro-
grammer is relieved (at least on STRETCH) from considering
overflow and underflow of numbers.

The treatment of zero within STRETCH is a
complicated subject and is treated in Appendix B.

2.4.3 Fixed Point Constants

1 or more decimal digits. The value of the con-
stant must be less than 2°8 in magnitude.

Examples: 1 12345
2.4.4 Floating Point Constants

Any number of decimal digits with a decimal
point,

Examples: 1.0 1. .1 1,23456789

A decimal exponent may immediately follow a decimal number
and is written by placing E and then the signed or unsigned
exponent after the decimal number. The decimal exponent should
be less than 512 in magnitude.

Examples: 1.23 E2 (means 123.)
1.23 E+2 (also means 123.)
123. E-2 (means 1.23)

The decimal point is not always required.
Example: 123 E-2 (means 1.23)
2.4.5 Function Values
Examples: SINF(X) B(LJ)
The form of a function value is:-

-9_

Name of function followed by the argument or argument list
enclosed in parentheses. An argument may be any expression; an
argument list is a list of arguments separated by commas. The
expressions used as arguments may be as general as you please.

Whether the value of the function is REAL or
INTEGER depends on whether the name of the function obeys the
definition rules for the names of REAL or INTEGER variables.

This rule does not apply to a predetermined set
of special functions, the built in and library functions, which will
have REAL values unless their names begin with X in which case
they will have INTEGER values.

2.4.6 Subscripted Variables
Examples: C(I,J) D(3,2*K-6)
The form of a subscripted variable is:-

Name of array followed by a subscript expression or a subscript
list enclosed within parentheses.

The name of an array is a name of an INTEGER
or REAL (see Sections 2.4.1 or 2.4.2) about which a DIMENSION
statement has been made; and it is this that differentiates it from
the function value whose form can be the same as that of a sub-
scripted variable.

Subscripts can appear only in certain forms,
namely:-

v, where v is an INTEGER

¢, where c is a fixed point constant

v+cC

These are the “Standard FORTRAN” subscripts. However, S2
allows an additional class of subscripts similar to the above
forms in which ¢ may be parameters, which for this purpose
are:-

-10-

Subroutine parameters

Function parameters

Parameters of DO statements in whose range the
subscript appears

They must still be INTEGERs either by form or declaration.

Whereas “Standard FORTRAN” limits the number
of subscripts within a subscripted variable to 3(and hence handles
arrays of three dimensions at most), in S2 the limit depends on
the complication of the subscripted variables actually used.

Let N be the number of dimensions of the array
and P be the number of + and - in the subscripts, then 2N + P
must be less than 18 and (N + 1) 2N+ P + 2) must be less than
100.

These conditions mean that four dimensional
arrays can be used freely, but that for arrays of higher dimen-
sion some of the subscripts must be of the simpler type. Also the
number of dimensions must not exceed 6.

-11-

3. EXPRESSIONS AND ARITHMETIC STATEMENTS

By expressions we mean formulae that are to be evaluated when
the program is run on the computer.

Examples: X Y +Z ABSF(C/D) etc.,

of which the second and third examples are undoubtedly expressions,
but the first is an example of an expression in certain contexts only.

By the mode of an expression we mean to indicate the type of
value that is calculated, whether it is fixed point (INTEGER) or floating

point (REAL).
We now give rules for the formation of expressions.

3.1 Components of Expressions

These are the items whose values are used when the
expression comes to be computed, they are:-

Fixed point variables (INTEGERS)

Fixed point constants

Fixed point subscripted variables

Floating point variables (REALS)

Floating point constants

Floating point subscripted variables

Function values of either mode

3.2 Named Variables

In order to be able to change a variable, there are cer-
tain statements of the language in which variable names appear to
show which variable acquires a new value. Such appearances are called
named variables and only the following items can so appear:-

Fixed point variables

Floating point variables

Fixed point subscripted variables

Floating point subscripted variables

-12-

3.3 Arithmetic Statements

The most common way of changing the value of a variable
is by the arithmetic statement which has the form:-

Named variable ‘= expression

Examples: A=B+C meaning calculate B+C and set A to
have the value calculated.

1=J get the value of J and set I to have
that value.

These two examples illustrate the case where the mode of the named
variable on the left hand side of the equals sign is the same as the mode
of the expression. When the modes of the two sides of the arithmetic
statement differ the compiler inserts an operator on the right hand
side so that its value is converted to the mode specified by the named
variable on the left hand side. The prototypes of these forms of the
arithmetic statement are:-

A
J

I
B

which are interpreted as meaning

A
J

FLOATE(D) and
XFIXF(B), respectively.

The function FLOATF changes the representation of the
value of its argument expression of INTEGER mode to be in REAL mode.
This has no effect on the value considered as a number, but the effect
is to get the representation into the form appropriate for storage as a

REAL.

The function XFIXF takes the integral part of the value of
its REAL argument expression and alters its representation to that

appropriate for INTEGERSs.

Note that on STRETCH the function XFIXF(X) takes as its
result the nearest integer to X between zero and X.

Thus, XFIXF(- 3.4) is - 3 and not - 4. This is an acci-
dental result of the number representation within that particular
machine. It is not wise to assume that this definition will apply to
machines like ATLAS with a different type of number representation
for negative numbers,

-13-

3.4 How Expressions are Constructed

Expressions follow the normal rules for algeb’ra in most
cases. The complete rules are given below.

To describe the rules it is necessary to say what the
hierachy of the operators is. This we do by defining a hierachy number
as follows:-

Hierachy Number Operator
4 + - (when used as unary signs)
3 ** (exponentiation)
2 *
1 + -

The ordering of the calculation is primarily dominated by brackets if
they exist. Operators of high hierachy number act before operators of
low hierachy number, and operators of the same hierachy number act
from left to right. Additional rules are:-

(a) No operator may immediately follow another, without
the intervention of a term, except when ** is followed by
a (unary) + or -.

(b) Subexpressions like A**B**C, A**B** ... **X are
illegal. The effect desired should always be indicated by

using brackets.

Examples:-

(1) A+B+C+D is equivalent to ((A+B)+C)+D
(2) A*B/C*D is equivalent to ((A*B)/C)*D

If the expression (A*B)/(C*D) is meant then it is
necessary to place brackets around the denominator.

3.5 Modes of Expressions

S2 allows expressions containing a mixture of INTEGER
and REAL quantities. The mode of an expression is found by finding
the modes of the partial expressions taken in the order in which they
would be calculated.

-14-

The mode of the expression in which two sub expressions
are combined by an operator is REAL unless both components are of
INTEGER mode, in which case the result is of INTEGER mode.

Examples: I+J INTEGER mode

X*Y REAL mode
X+l REAL mode

A unary sign does not alter the mode.

The effect may be stated in another way. The mode of an
expression is REAL unless all its components are INTEGER, in which
case the expression is of INTEGER mode.

Allowance must of course be made for mode changes
specifically requested by the built in functions XFIXF, FLOATF etc.,;
Section 5.3 gives full details.

Programmers are warned of misinterpreting these rules
when using division. Consider the two examples:

(@) (1/J)*X and

(b X*D/J

(the parentheses are inserted to remind the reader of the ordering of
the calculation. They could be omitted withoutaltering the expressions.)

In example (a), the division is of INTEGERs and the
result is an INTEGER. Thus, if I =5, J =3, X = 2.0 the first ex-
pression would have the value 2.0 (=1%2.0) since the result of dividing
5 by 3is 1.1In the second example the numerator X*I is REAL and the
division is then conducted in floating and the result is 3.33...3...

-15-

4. CONTROL STATEMENTS

We have already mentioned Arithmetic Statements in Section
3.3, without saying what a statement is. A statement is a generic term
for a step of the calculation as expressed in the S2 language. Normally
the steps of the calculation proceed from statement to statement in the
order of writing, but to make choices of alternatives within the calcu-
lation we require “Control Statements” by which the stepping from one
statement to the next in order of writing may be arrested and a new
sequence of statements performed.

So that reference may be made to these sequences of statements
we require to be able to label the first statements of such sequences by
a “Statement Label”, or statement number, which is an integer com-
posed of 5 or fewer decimal digits appearingto the left of the statement
in a field preserved for this purpose. Only those statements that need
to be labelled should be labelled since the efficiency of translation is
reduced (but not its accuracy) by the presence of unnecessary labels.

4.1 Unconditional GO Td

General Form: “GO TO n”, wherenis a statement label.
Example: GO TO 5 |

This statement causes transfer of control to the statement
with statement label n.

4.2 Computed GO TO

General Form: “GO TO(n,, ng, ...,nm>, i”, wheren,, ng,

ree» M are statement labels and i is a non-subscripted

fixed point variable.

Example: GO TO (30, 42, 50, 9), K

Control is transferred to the statement with statement
label n,, ng, ng, ..., n_ depending on whether the value of i at time of

execution is 1, 2, 3,..., m, respectively. Thus, in the example, if i is 3
at the time of execution, a transfer to the 3rd statement of the list,
namely statement 50, will occur. If the value of i is not in the range
i,m the program will fail. This statement is used to obtain a computed
many-way branch,

-16-

4.3

Assigned GO TO

General Form: “GO TOK, (ny, ng, ..0» nm)”, where K is
a non-subscripted fixed point variable appearing in a

previously executed ASSIGN statement, and ny, ny, .., 0

are statement labels.

Example: GO TOK, (17, 10, 19)

This statement causes transfer of control to the statement

whose label n was last assigned by an ASSIGN statement; n,, N, ..., 0

are a list of the possible labels. The assigned GO TO is used to obtain
a pre-set many-way branch.

4.4

4.5

ASSIGN

General Form: “ASSIGNi TOn", where i is a statement
label and n is a non-subscripted fixed point variable which
appears in an assigned GO TO statement.

Example: ASSIGN 12 TOI

This statement causes a subsequent GO TO n,(ng,...,n,

sy B) tO transfer control to the statement with

the label i.

IF

General Form: “IF (a) n;, nz, ng”, where a is an ex-
pression and n,, n, ng are statement labels.

Example: IF(A(J,K)-B)10, 14, 30

Control is transferred to the statement with the statement

label n,, n, or ng if the value of ais less than, equal to, or greater
than zero, respectively.

4.6

SENSE LIGHT

General Form: “SENSE LIGHT i”, where iis O, 1, 2, 3
or 4.

Example: SENSE LIGHT 3

If i is 0, all four SENSE LIGHTs will be turned Off;

otherwise SENSE LIGHT i only will be turned On.

-17-

4.7 IF SENSE LIGHT

General Form: “IF (SENSE LIGHT i)n,, n,”, where
niy and ng are statement labels and i is 1, 2, 3 or 4.

Example: IF (SENSE LIGHT 3) 80, 40

Control is transferred to the statement with the statement
label nj or nj, according to whether SENSE LIGHT i is On or Off,
respectively. If the light is On it will be turned Off automatically.

4.8 DO

4

General Form: “DOn i:= m;, m,” or “DO n i = my,
my, mg”, where n is a statement label, i is a non-sub-
scripted fixed point variable, and m,, m,, mg are each
either an unsigned fixed point constant or non-subscripted
fixed point variable. If my is not stated, it is taken to be 1.

Examples: DO 301 = 1, 100 DO301I =1, M,3

The DO statement is a command to perform repeatedly
the statements which follow, up to and including the statement with
statement label n. The first time the statements are performed with
i = my. For each repitition i is increased by mg. After they have been
repeated with i equal to the highest value which does not exceed mg,
control passes to the statement following the last statement in the
range of the DO.

The range of a DO is that set of statements which will be
performed repeatedly; i.e., it is the sequence of consecutive statements
immediately following the DO, up to andincludingthe statement labelled
with n.

The index of a DO is the fixed point variable i, which is
available for computation, either as an ordinary fixed point variable or
as the variable of a subscript. After the last execution of the range, the
DO is said to be satisfied. Theindexi must not be altered by any state-
ment within the range.

4.9 CONTINUE

Genegal Form: “CONTINUE”.
Example: CONTINUE

CONTINUE is a dummy statement which gives rise to no
instructions in the object program. It is most frequently used as the
last statement in the range of a DO. Its use in this way is essential to
provide a transfer address for IF and GO TO statements which are
intended to begin another repetition of the DO range.

-18-

Suppose that control has reached statement 10 of the

prog ram

10 DO 121=1, 10

11 A = I*N(D
12 CONTINUE

The range of the DO is to statement 12, and the index is I. The DO sets
I to 1 and control passes into the range. The value of 1.N(1) is com-
puted, converted to floating point, and stored as A(1). Since statement
12 is the last statement in the range of the DO and the DO is unsatis-
fied, I is increased to 2 and control returns to the beginning of the
range. The value of 2.N(2) is then computed and stored as A(2). The
process continues until statement 11 has been executed with I = 10,
Since the DO is satisfied, control then passesto the statement following
the CONTINUE.

DOs within DOs. Among the statements in the range of a
DO may be other DO statements. If so, the following rule must be
observed:-

Rule: If the range of a DO includes another DO, then all
the statements in the range of the latter must
also be in the range of the former.

A set of DOs satisfying this rule is called a nest of DOs.

Transfer of Control and DOs. Transfers of control to and
from the range of a DO are subject to the following rule:-

Rule: No transfer is allowed into the range of any DO
from outside its range. Thus, in the configuration
below, 1, 2 and 3 are legal transfers, but 4, 5 and
6 are not.

Status of the Cell Containing I Qutside the Range of the DO

A DO loop with index I does not affect the contents of the

storage location for I, except if exit occurs by a transfer out of the
range, when the I cell contains the current value of I. Therefore, if a
normal exit occurs from a DO, the I cell contains what it did before the

DO was encountered.

4.10

STOP

General Form: “STOP”.
Example: STOP

This statement causes immediate termination of the job,

and the initiation of the next job.

4.11

END

General Form: “END”.
Example: END

The END statement is the last written statement of any

sub-program; it signals the end of written sub-program to the com-
piler. It is not intended to be an executable statement, but if control
does reach it in programs compiled by the S2 compiler the action will be
as if the RETURN statement had been performed.

-20-

5. FUNCTIONS

The following are examples of the use of functions:-

1]

(1) X = SINF(Y)
(2 A= B@dJ)

A function is a term appearing on the right hand side of an
arithmetic statement and its form is:-

name of function, left bracket, argument(s), right bracket,

where commas are used to separate the arguments (if there is more
than one argument) which may be expressions.

The form of a function is distinguished from the form of a sub-
scripted variable only because of the absence of a DIMENSION declara-
tion about the name before the left bracket.

Note: The omission of such DIMENSION declarations is a fruit-
ful source of error, since what the programmer may have intended to
be a subscripted variable is (and is treated as) a function.

5.1 Types of Functions

There are three types of functions:-
(a) Closed (or Library) functions,
(b) Open functions, and

(¢) Sub-program functions.

To the user the first two are virtually indistinguishable
in use; their names and definitions are given in the following section.
For conventions about the names of sub-program functions see Section
5.4.

5.2 Closed (or Library) Functions Available

SQRTE(X) square root function

ATANE(X) arctangent function with result in the
first or fourth quadrant

LOGFEF(X) natural logarithm

EXPF(X) exponential function

-21-

COSF(X) cosine

SINF(X) sine

TANH(X) hyperbolic tangent
These elementary functions with single REAL argument are always
available. They give a REAL result and have the highest possible
precision and range. With the exception of SQRTF they can be safely

used with INTEGER argument, although this is not a recommended
procedure.

The trigonometrical functions are for angles in radians.

5.3 Open Functions Available

ABSE(V) absolute value of REAL argu-
ment

XABSE(V) absolute value of INTEGER
argument

INTE(V) integral part of REAL argu-
ment, e.g.,

INTF(3.14) = 3. but
INTF(- 5.3) = 5.

XINTE(V) integral part of REAL argu-
ment with INTEGER result, in
contrast to INTF which has
REAL result

XFIXF(V) synonymous with XINTF

MODF(V1,V2) defined asV1 - V2*INTF(V1/
V2). The arguments and re-
sult are REAL

XMODF(V1,V2) defined as V1 - V2 *XINFT
(V1/V2). The arguments and
result are INTEGER

MAXoF(V1,V2...) The REAL result is the alge-
braically largest of the twoor
more INTEGER arguments

XMAXoF(V1,V2...) as MAXoF but with INTEGER

result
MAXI1F(V1,V2...) as MAXoF but with REAL
arguments
-22-

XMAX1F(V1,V2...)

MINoF(V1,V2...)

XMINoF(V1,V2...)
MIN1F(V1,V2...)

XMIN1F(V1,V2...)

FLOATF(V)

SIGNF(V1,V2)

XSIGNE(V1,V2)

DIMF(V1,V2)

XDIME(V1,V2)

INTEGER result of the maxi-
mum of REAL arguments. The
definition of this function is
doubtful unless the arguments
have integral values

the REAL result is the alge-

braically smallest of the two
or more INTEGER arguments

as MINoF but with INTEGER

result

as MINoF but with REAL argu-

ments

INTEGER result of the mini-
mum of REAL arguments. The
definition of this function is
doubtful unless the arguments
have integral values

the result is the REAL form
of the INTEGER argument

the REAL result has the sign
of V2 and the magnitudeof V1.
V1 and V2 are REAL

the INTEGER result has the
sign of V2 and the magnitude
of V1, where V1 and V2 are
INTEGERs

V1 - V2 if V1 is greater than
V2, otherwise zero, Theargu-
ments and result are REAL

As DIMF but with INTEGER

result and arguments

These are the standard FORTRAN definitions of these
functions; they should be available on all FORTRAN compilers. Note
particularly the lack of definition of XMAX1F and XMINIF when the
arguments are not whole numbers. In the interest of safety it would be
better to use XFIXF(MINLF()) instead of XMIN1F(), because there is
no doubt about the interpretation of the former.

-23-

5.4 Function Sub-Programs

These are used as described in Section 5 on functions,
but unlike the specific functions mentioned there, they must be written
by the programmer as described below.

There is a convention about the mode of the result pro-
duced by a function; it is REAL (floating point) or INTEGER (fixed
point) according to the interpretation of the name of the function if it
were the name of a variable. Thus, function sub-programs whose names
begin with I, J, K, L, M or N (or whose names are declared to be
INTEGER) have INTEGER result.

The value calculated by a function is a single value, being
a function of its stated arguments only. It is assumed not to change
COMMON or any of its arguments unless the function occurs once in an
isolated statement. An isolated statement is a labelled statement,
followed by another labelled statement or by a control statement.

FUNCTION

General Form: “FUNCTION Name (a,, a, ..., an)",

where Name is the symbolic name of a single-valued
function, and the arguments a,, 8y, 0@, of which there
n

must be at least one, are non-subscripted variable names,
all different. The function name must not occur in a
DIMENSION statement in the FUNCTION sub-program, or
in a DIMENSION statement in any program which uses the
function. The arguments may be any variable names used
in the sub-program.

Examples: FUNCTION ARCSIN (RADIAN)
FUNCTION ROOT (B, A, D)
FUNCTION INTRST (RATE, YEARS)
In a FUNCTION sub-program, the name of the function

must be used at least once as the variable on the left hand side of an
arithmetic statement, or alternately in an input statement list, e.g.,

FUNCTION NAME (A, B)
NAME = B + A

RETURN
-24-

The arguments that follow the name in the “FUNCTION statement” are
the names of locations within the program compiled for the FUNCTION.
When a FUNCTION is evaluated, the actual values of the arguments
are copied from the calling program into these locations, and the
FUNCTION sub-program uses these copies. A SUBROUTINE (see
Section 6) uses this same technique toget its arguments, but in addition,
also returns the values of its arguments to the calling program on exit
to it.

For correct use of FUNCTIONs (and SUBROUTINES) it is
necessary to ensure that there is an exact correspondence between the
types of arguments in the “FUNCTION Statement” and in the FUNCTION
as used. Since in the compiled programs the name of an array defines
a location containing the base address of an array it is possible to
specify arrays that are arguments only by the non-subscripted array
name. Only the value of the base address is copied, not the elements of
the array, which the FUNCTION can now access using the base address
value, provided the values of the dimensions of the array in the calling
program and FUNCTION agree.

-25-

6. SUBROUTINES

In S2, the programmer can not only write his own functions in the
language, but also his own subroutines.

To do this a SUBROUTINE statement is required to define that a
compiled program is to be a SUBROUTINE. This declaration must
occur with the other declarations before an obeyable statement is
written. This statement defines the name of the SUBROUTINE and its

parameters, if any.

To indicate when control leaves a SUBROUTINE (or FUNCTION
sub-program), a RETURN statement must be written so that control is
returned from the sub-program to the program that called it. What the
SUBROUTINE is to calculate is written in the S2 language.

To indicate when a program requires to enter a SUBROUTINE, a
CALL statement must be written which specifies the name of the
SUBROUTINE required and the values or names of its parameters
required for that particular use of the SUBROUTINE.

6.1 SUBROUTINE

General Form: “SUBROUTINE Name (a,, a,, ... an)",

where Name is the symbolic name of a sub-program, and
the arguments a,, a,, ..., a_, if any, are non-subscripted

variable names, all different. The name of the sub-pro-
gram must not be listed in a DIMENSION statement of any
program which calls the sub-program, or ina DIMENSION
statement of the SUBROUTINE itself, The arguments may
be any variable names used in the sub-program,

Examples: SUBROUTINE MATMPY(A,N,M,B,LD)

SUBROUTINE QDRTIC(B,A,D, ROOT1,
ROOT?2)

SUBROUTINE NOARG

This statement defines the sub-program to be a SUB-
ROUTINE.

6.2 CALL -

General Form: “CALL Name (a;, a,, ..., an)”, where

Name is the name of a SUBROUTINE, and a,, LPYRTIT

are arguments.

Examples: CALL MATMPY(X, 5, 10, Y, 17, Z)
-26-

This statement is used to send control to a SUBROUTINE, and to state
a list of arguments, if any. An argument is either an expression
(special case, a single value) or a named variable (see Section 3.2).
Only the latter type of argument may be used when the argument is
changed by the SUBROUTINE.

Extravagant effects may result from disregard of this
rule; if a constant is used as an argument a;nd the SUBROUTINE
changes that argument internally, then the constant is destroyed, its
value changing according to the action of the SUBROUTINE. Such
effects should not be deliberately exploited.

The arguments are not restricted to ordinary variables
and expressions but may be array names or variable dimensions of

arrays. For example, the SUBROUTINE headed by
SUBROUTINE MATMPY (A,N,M,B,L,D)
could be called by the main program via the statement

CALL MATMPY (X, 5, 10, Y, 17, 2)

where the variables A, B, C are the names of arrays. A, B and C must
appear in a DIMENSION statement in SUBROUTINE MATMPY and X,
Y and Z must appear in a DIMENSION statement in the calling pro-
gram. The dimensions assigned mustbe the same in both sub-programs,
and can be given to the SUBROUTINE as arguments, if variable.

6.3 RETURN

General Form: “RETURN”.
Example: RETURN /

This statement ends any sub-program, whether a SUBROUTINE or a
FUNCTION, and returns control to the calling program. A RETURN
statement must be the last executed statement of the sub-program, but
need not be physically the last statement. Any number of RETURN
statements may be used.

-27-

7. INPUT/OUTPUT STATEMENTS

There are thirteen statements for the transmission of informa-
tion between storage on the one hand, and magnetic tapes, disc, card
reader, card punch and printer on the other hand.

7.1 Types of INPUT/OUTPUT Statements

(1) Five statements (READ, READ INPUT TAPE, PUNCH,
PRINT and WRITE OUTPUT TAPE) cause transmission
of a list of quantities between storage and an input/output
medium: cards, printed sheet, or magnetic tape, for which
information is expressed in Hollerith punching, alpha-
numerical print, or binary-coded-decimal tape code,
respectively.

(2) One statement (FORMAT), which is a non-executable
statement, specifies the arrangement of the informationin
the input/output medium for the five source statements of
group 1 above. (See Section 10.)

(3) Four statements (READ TAPE, READ DRUM, WRITE
TAPE and WRITE DRUM) cause information to be trans-
mitted in binary code. (Note: Variant spellings are al-

lowed DISK=DISC=DRUM.)

(4) Three statements (END FILE, BACKSPACE and
REWIND) manipulate binary magnetic tapes.

Additional methods of using tape and disc are given in

Appendices I and J.

It is important to note that the different types of tape and
disc manipulative “statements can not be used indiscriminately. The
statements of Section 9 use a system of buffering (hidden from the
programmer’s knowledge) and thereby go faster than the statements of
Section 8, for which the transmission is unbuffered. The methods of
Appendix I also do not use hidden buffering, but allow the programmer
to control his own timing.

When a tape is used with the statements that use the
method of buffering, they must never be manipulated by any statements
of the non-buffering type, and vice versa.

7.2 Lists of Quantities

Of the input/output statements, nine call for the trans-
mission of information and include a list of the quantities to be trans-
mitted. This list is ordered, and its order must be the same as the

-28-

order in which the words of information exist (for input), or will exist
(for output) in the input/output medium.

The formation and meaning of a list is best described by
an example:-

A, B(3), (C(I), D,K), I = 1, 10)

If this list is used with an output statement the information will be
written in this order:-

A, B(3), C(1), D(1,K), C(2), D(2,K), -...., C(10), D(10,K).

Similarly, if this list were used with an input statement, the successive
words, would be placed into the sequence of storage locations given.

The order of the above list can thus be considered the
equivalent of the “program” below in which the repetition induced by
the indexing component within the parentheses is seen to follow the
conventions of DO statements:-

H A

(@& B®

(3) DOS5I 1, 10

@ CO

(5) DLK)
When reading a list of the form K, (A(K)) or K, (A(I), I = 1,K), where
an index or indexing parameter itself appears earlier in the list of an

input statement, the indexing will be carried out with the newly read-in
value.

-29.

8. DECIMAL INPUT/OUTPUT

Decimal INPUT/OUTPUT routines are called by the “FORTRAN
Statements”: -

(a) PRINT, PUNCH, READ, and
(b) WRITE OUTPUT TAPE, READ INPUT TAPE.

The routines of group (a) use the system tapes; those of group
(b) use programmer’s tapes, unless the tape number specified is zero,
in which case WRITE OUTPUT TAPE 0 acts like PRINT and READ
INPUT TAPE 0 acts like READ.

Tape records written or read by routines of group (b) have up to
132 characters in A6 code (a subset of the 1401 code) and tapes pre-
pared by WRITE OUTPUT TAPE can be read by READ INPUT TAPE.
Users are advised to use statements of group (a) whenever possible
since the error correction and detection is more satisfactory.

During execution of these INPUT/OUTPUT programs error con-
ditions may occur, causing the job to be rejected and a diagnostic
message to be printed. The conditions are:-

(1) Data field errors in input records.
(2) Errors in the format,
(3) A tape mark is read.

(4) An end of tape is sensed when writing (except if the tape is
a system tape).

(5) “Permanent” reading or writing errors withaprogrammer’s
tape. An additional message will be typed to warn the operator.

8.1 READ

General Form: “READ n, List”, where n is the state-
ment label of a FORMAT statement, and List is as pre-
viously described.

Example: READ I, (ARRAY (LJ), I = 1, 13), J = 1, 15)

The READ statement causes the reading of cards from
the card reader using the system input tape. Card after card is read
until the complete list has been brought in, converted, and stored in the
locations specified by the list of the READ statement. The FORMAT
statement describes the arrangement of data on the cards and the type
of conversion to be made.

-30-

8.2

READ INPUT TAPE

General Form: “READ INPUT TAPE i, n, List”, where
i is an unsigned fixed point constant or a fixed point
variable, n is the statement label of a FORMAT statement,
and List is as previously described.

Examples: READ INPUT TAPE 4, 30, AK, A(J)
READ INPUT TAPE N, 30, IK, A(J)

The READ INPUT TAPE statement causes reading of

BCD information from tape unit i (1 < i < 8). Record after record is
brought in, in accordance with the FORMAT statement, until the com-

plete list has

8.3

been read.

PUNCH

General Form: “PUNCH n, List”, where n is the state-
ment label of a FORMAT statement, and List is as pre-
viously described.

Example: PUNCH 30, (A(J), J = 1, 20)

The PUNCH statement causes the program to punch

Hollerith cards via the system output tape. Cards are punched in
accordance with the FORMAT statement until the complete list has
been punched.

8.4

PRINT

General Form: “PRINT n, List”, where n is the state-
ment label of a FORMAT statement and List is as pre-
viously described.

Example: PRINT 2, (A(J), J = 1, 20)

The PRINT statement causes the program to print output

data via the system output tape. Successive lines are printed in
accordance with the FORMAT statement, until the complete list has

been printed.

8.5

WRITE OUTPUT TAPE

General Form: “WRITE OUTPUT TAPE i, n, List”,
where i is an unsigned fixed point constant or a fixed
point variable, n is the statement label of a FORMAT
statement, and List is as previously described.

-31-

Examples:

WRITE OUTPUT TAPE 2, 30, (AQJ)),
J =1, 10)

WRITE OUTPUT TAPE L, 30, (AQD),
J =1, 20)

The WRITE OUTPUT TAPE statement causes the pro-
gram to write BCD information on symbolic tape uniti (1 < i < 8).
Successive records are written in accordance with the FORMAT state-
ment until the complete list has been transmitted.

-32-

9. BINARY INPUT/OUTPUT

Binary Tape INPUT/OUTPUT Routines

These routines are called by the “FORTRAN Statements” READ
TAPE, WRITE TAPE, END FILE, BACKSPACE and REWIND and they
may use programmer's tapes only.

During execution of these routines the following errors are de-
tected causing the job to be rejected: -

(1) End of tape sensed while writing on a tape.
2 “Permanent” read or writing error.

(3) An uncorrectable error signalled by MCP such as UK or EE
interrupt occurring without EOP, or an EPGK interrupt.

In cases (2) and (3) operator messages are typed in addition to
diagnostic information on the programmer’s printed output.

Binary Disk INPUT/OUTPUT Routines

These are called by the “FORTRAN Statements” READ DISK and
WRITE DISK (allowing variant spellings DISK = DISC = DRUM).

Errors detected causing diagnostic messages to the programmer
and to the operator are:-

(1) “Permanent” locate, read or write errors.

(2) Uncorrectable errors signalled by MCP.

i

These cause job rejection. In this as in all other cases of job
rejection, any possible machine error is signalled to the operator. The
operator will not be informed of programmer’s errors.

9.1 READ TAPE

General Form: “READ TAPE i, List”, where i is an un-
signed fixed point constant or a fixed point variable and
List is as previously described.

Examples: READ TAPE 4, (A(J), J = 1, 20)
READ TAPE K, (A(J), J = 1, 20)
The READ TAPE statement causes the program to read

binary information from symbolic tape unit i (1 < i ¢ 8) into locations
-33-

specified in the list. A record is read completely only if the list speci-
fies as many words as the tape record contains; no more than one
record will be read. The tape, however, always moves to the beginning
of the next record.

The program checks tape reading. In the event thata
record cannot be read properly, the job is terminated.

9.2 READ DRUM

General Form: “READ DRUM i, j, List”, where i and j
are each either an unsigned fixed point constant or a fixed
point variable, with the value of i between 9 and 12 and
List is as previously described.

Examples: READ DRUM 9, 100, A, B, C, D (3)
READ DRUM K, J, A, B, C, D (3)

The READ DRUM statement causes the program to read
words of binary information from the disc from consecutive locations
on file i, beginning with the wordin arc number j.. Reading continues
until all words specified by the list have been read. Instead of DRUM
one may also write DISC or DISK.

Every logical record must start at a fresh arc. There are
512 words per arc. About 1% million words are available and these may
be divided into several distinct logical files, eachof a specified number
of tracks. One track holds 4096 words.

9.3 WRITE TAPE

General Form: “WRITE TAPE i, List”, where i is an
unsigned fixed point constant or a fixed pointvariable, and
List is as previously described.

Examples: WRITE TAPE 4, (A(J), J = 1, 10)
WRITE TAPE K, (A(J), J = 1, 10)
The WRITE TAPE statement causes the program to write

binary information on the tape unit with tapenumber i (1 < i < 8). One
record 1is written consisting of all the words specified in the list.

The object program checks tape writing. In the event that
a record cannot be written properly, the job is terminated.

-34.-

9.4

WRITE DRUM

General Form: “WRITE DRUM i, j, List”, where i and j
are each either an unsigned fixed point constant or a fixed
point variable, with the value of i between 9 and 12 and
List is as previously described.

Examples: WRITE DRUM 9, 10, A, B, C, D (6)
WRITE DRUMK, J, A, B; C, D (6)

The WRITE DRUM statement causes the program to write

words of binary information on the disc on to consecutive locations on

i, beginning

specified by

with arc number j. Writing continues until all the words
the list have been written. Instead of DRUM one may also

write DISC or DISK.

9.5

END FILE

General Form: “END FILE i”, where i is an unsigned
fixed point constant, or a fixed point variable.

Examples: END FILE 2
END FILE K

The END FILE statement causes the program to write

an end-of-file mark on tape uniti (1 < i £ 8).

9.6

tape unit i (1

9.7

REWIND

General Form: “REWIND i”, where i is an unsigned
fixed point constant, or a fixed point variable.
P P

Examples: REWIND 3
REWIND K

The REWIND statement causes the program to rewind
<1i< 8.

BACKSPACE

General Form: “BACKSPACE i”, where i is an unsigned
fixed point constant, or a fixed point variable.

Examples: BACKSPACE 1
BACKSPACE K

The BACKSPACE statement causes the program to back-

space tape uniti (1 < i < 8) by one record.

-35-

10. FORMATS

General Form: “FORMAT (Specification)”, where Specification
is as described below.

Example: FORMAT (12/(E12.4,F10.6))

The five INPUT/OUTPUT statements of Section 8 contain, in
addition to the list of quantities to be transmitted, the statement label
of a FORMAT statement describing the information format used. It
also specifies the conversion to be performed between the internal
machine-language and external notation. FORMAT statements are not
executed, they merely supply information to the object program.

For illustration, the details of writing a FORMAT specification
are given below for use with PRINT statements. However, the descrip-
tion is valid for any case by generalizing the concept of “printed line”
to that of record in the input/output medium. A record may be for this
description: -

(1) A printed line with a maximum of 132 characters.
(2) A punched card with a maximum of 80 characters.
(3) A BCD tape record with a maximum of 132 characters.

Three types of decimal-to-binary or binary-to-decimal conversion are
possible, and are shown as follows:-

INTERNAL Type EXTERNAL
Floating point variable E Floating point, decimal
Floating point variable F Fixed point, decimal
Fixed point variable I Decimal integer

The FORMAT sepcification describes the line to be printed by
giving, for each field in the line (from left to right, beginning with the
first printing position): -

(1) The type of conversion (E, F, or I) required.
(2) The width (w) of the field.

(3) For E- and F-type conversion, the number of places (d) after
the decimal point that are to be printed.

10.1 Basic Field Specifications

These basic field specifications are
Iw, Ew.d and Fw.d,

with the successive specifications separated by commas. Thus the
statement FORMAT (12, E12.4, F10.4) might give tk_xe line

29 -0.9321E 02 -0.0076

As in this example, the field widths may be made greater than necessary
so as to provide spacing blanks between numbers. In this case, there is
1 blank following the 29, 1 blank after the E (automatically supplied
except in cases of (a) a negative 2 digit exponent when a minus sign
will appear, and (b) a 3 digit exponent, the E being changed to N if
negative), and 3 blanks after the 02. Within each field the printed out-
put will always appear in the right-most positions.

It may be desired to print n successive fields within one
record with the same specification. This may be specified by giving n
before E, F or I. Thus, the statement FORMAT (12, 3E12.4) might give

29 _0.9321E 02 -0.7580E-02 0.5536E 00
10.2 Alphanumerical Fields

S2 provides two ways by which alphanumerical data may
be read or written; the specifications for this are Aw and wH. Both
result in storing the alphanumerical information in BCD form. The
difference is that information handled with the A specification is given
a variable or array name and hence can be referred to by means of
this name for processing. Information handled with the H specification
is not given a name and may not be manipulated in storage in any way.

The specification Aw causes w characters to be read
into, or written from, a variable or array name.

On input nAw will store the next n successive fields of w
characters as BCD information. If w is greater than 8, only the 8 right-
most characters will be significant. If w is less than 8, the characters
will be right adjusted and the word filled out with blanks.

On output nAw will transmit n successive fields of w
characters from storage as BCD characters without conversion. Ifw
exceeds 8 then only 8 characters will be transmitted preceded by w-8
blanks. If w is less than 8 then the w right-most characters will be
transmitted.

_37-

The specification wH is followed in the FORMAT state-

ment by w alphanumerical characters. For example
28H THIS IS ALPHANUMERICAL DATA

Note that blanks are alphanumerical characters and must be included
in the count w.

The effect of wH depends on whether it is used with input
or output.

(1) Input

w characters are extracted from the input record and
replace the w characters of the specification.

(2) Output

The w characters following the specification, or the
characters which replaced them, are written as part of
the output record.

Example: The statement FORMAT (1Hb, 3HXY=, F8.3,
A8) might produce the following lines:-

XY b-93.210bbbbbbbb
XY 9999.999bbOVFLOW
XY bb28.768bbbbbbbb

(b is used to indicate blank characters: the first H specification is used
for carriage control, see Section 10.9).

This example assumes that there are steps in the source
program which read the data “OVFLOW?”, store this data in the word to
be printed in the format A8 when overflow occurs, and stores six
blanks in the word when overflow does not occur.

10.3 Blank Fields

Blank characters may be provided in an output record and
characters of an input record may be skipped by means of the specifi-
cation wX, where 0 < w <€ 132 (w is the number of blanks provided
or characters skipped). When the specification is used with an input
record, W characters are considered to be blank regardless of what
they actually are, and are skipped over.

-38-

10.4 Scale Factor

To permit more general use of F-type conversion, a scale
factor followed by the letter P may precede the specification. The scale
is such that

) scale factor
Printer number = Internal number x 10 .

Thus, the statement FORMAT (I3, 1P3F11.3) used with the data of
Section 10.1, would give

29 -932.096 -0.076 5.536

whereas FORMAT (I3, - 1P3F11.3) would give
29 -9.321 -0.001 0.055

(Note that the leading zero of the 3 digit number has been suppressed.)
A positive scale factor may also be used with E-type conversion to
increase the number and decrease the exponent. Thus, FORMAT (I3,
1P3E12.4) would produce with the same data

29 -9.3210E 01 -7.5804E-03 5.5361E-01

The scale factor is assumed to be zeroif no other value has been given.
However, once a value has been given, itwill hold for all E- and F-type
conversions following the scale factor within the same FORMAT state-
ment. This applies to both single-record and multiple-record formats.
Once a scale factor has been given, a scale factor of zero in the same
FORMAT statement must be specified by OP. Scale factors have no
effect on I-conversion.

10.5 Repetition of Groups

A limited parenthetical expression is permitted in order
to enable repetition of data fields according to certain format specifi-
cations within a longer FORMAT statement specification. Thus,
FORMAT (2(F10.4, E10.2), 14) is equivalent to FORMAT (F10.4, E10.2,
F10.4, E10.2, 14).

10.6 Multiple-Record FORMATSs

To deal with more than one line of print, a FORMAT
specification may have several different one-line formats, separated
by a slash (/) to indicate the beginning of a new line. Thus, FORMAT
(3F9.2, 2F10.4/8E14.6) would specify a multi-line print in which lines
1, 3, 5,.... have FORMAT (3F9.2, 2F10.4), and lines 2, 4, 6, have
FORMAT (8E14.6).

-39.-

If a multiple-line format is required such that the first
two lines will be printed according to a special format and all re-
maining lines according to another format, the last line-specification
should be enclosed in a second pair of parentheses; e.g., FORMAT (12,
3E12.4/2F10.6, 3F9.4/(10F12.4)). If data items remain to be trans-
mitted after the FORMAT specification has been completely “used”,
the FORMAT repeats from the last open parenthesis.

These examples show that both the slash and the closing
parenthesis of the FORMAT statement indicate a termination of a
record.

Blank lines may be introduced into a multi-line FORMAT
statement by listing consecutive slashes. N + 1 consecutive slashes
produce N blank lines.

10.7 FORMAT and INPUT/OUTPUT Statement Lists

The FORMAT statement indicates, among other things, the
maximum size of each record. It mustbe remembered that the FORMAT
statement is used with the list of some particular input/output state-
ment, except when a FORMAT statement consists entirely of alpha-
numerical fields. In all other cases, control in the object program
switches back and forth between the list (which specifies whether data
remains to be transmitted) and the FORMAT statement (which gives the
specifications for transmission of that data).

10.8 Ending a FORMAT Statement

During input/output of data, the object program scans the
FORMAT statement to which the INPUT/OUTPUT statement refers.
When a specification for a numerical field is found and items remain
to be transmitted, input/output takes place according to the specifi-
cation and scanning of the FORMAT statement resumes. If no items
remain, transmission ceases and execution of the INPUT,/OUTPUT
statement is terminated.

10.9 Carriage Control

WRITE OUTPUT TAPE and PRINT statements prepare a
decimal tape which can later be used for off-line printed output. The
first character of each BCD record controls the spacing of the off-line
printer and that character is not printed. The control characters and
their effects are

-40-

Blank Single space before printing.

0 Double space before printing.

1 New page before printing.

Any other character willalso cause a single space before printing. Thus,
a FORMAT specification for WRITE OUTPUT TAPE or PRINT will
usually begin 1H followed by the appropriate control character, unless
as in the examples of Section 10.4 etc., a blank is provided by zero-
suppression.

10.10 Data Input to the Object Program

Decimal input data to be read by means of a READ or
READ INPUT TAPE when the program is executed, must be in essen-
tially the same format as given in the previous examples. Thus, a
card to be read according to FORMAT (I3, E12.4, F10.4) might be

punched
29 -0.9321E 02 -0.0076

Within each field, all information must appear at the extreme right.
Plus signs may be omitted or indicated by a blank or +. Minus signs
are punched with an 11-punch. Blanks should not appear between the
digits of the number being read.

To permit economy in punching, certain relaxations in
input data format are permitted.

(1) Numbers of E-type conversion need not have 4
columns devoted to the exponent field. The start of the
exponent field must be marked by an E. Thus, E2, E02,
E 02 and E+02 are all permissible exponent fields.

(2) Numbers for E- or F-type conversion need not have
their decimal point punched. If it is not punched, the
FORMAT specification will supply it; for example, the
number -09321E2 with the specification E12.4 will be
treated as though the decimal point had been punched
between the 0 and the 9. If the decimal point is punched in
the card, its position over-rides the position indicated in
the FORMAT specification.

-41-

11. SPECIFICATION STATEMENTS

These are the DIMENSION, COMMON and EQUIVALENCE state-
ments which control the allocation of storage used by the compiled
program.

In contrast to “Standard FORTRAN", S2 allows the allocation of
storage to be determined when the compiled program is loaded, so that
allocation of storage may be varied from one run to the next. This
permits economy in the use of storage because the number of storage
cells for each array can be chosenforthe requirements of an individual
run and not for any possible run. The allocation of storage for arrays
whose size varies from one run to another requires that DIMENSION
statements be written with variable dimensions; such variables are
called array parameters and are set by a special routine, whose name
is PRELUDE, at loading time. PRELUDE is written in S2 language and
can be used to set up other parameters as well as array parameters.
It is important to note however, that array parameters should not be
altered in the course of a program.

11.1 DIMENSION
DIMENSION V, V, V, ...V is the general form and
DIMENSION A(10), B(J), C(5, K, 6) is an example.

The V are in the form A(d,, d,, dg), where A is the name
of an array and d,, d,, d; are the dimensions, which are either

(1) INTEGER constants, n,
(2) INTEGER variables which are COMMON, or

(3) INTEGER variables which are parameters (explicitly
stated) of the SUBROUTINE or FUNCTION.

The dimensions are the maximum values that the corresponding sub-
scripts should attain. There is no fixed limit on the number of dimen-
sions that an array may have. Up to three-dimensional arrays are
always acceptable; the limit is on the number of symbols in a sub-
scripted element referring to the array, and is given in Section 2.4.6.

11.2 COMMON
The COMMON statement, where general form is

COMMON V, V, ...V and examgle is

COMMON A, B, C
-42-

L

has two functions. Firstly to declare that the variables concerned (V)
are used not only by the routine being compiled but by others as well.

Secondly, it establishes an ordering of the COMMON list.

Neglecting for the moment the effect of EQUIVALENCE
statements, the COMMON statements cause single storage cells to be
allocated from location 145 octal (or 101 decimal) to each variable
declared COMMON, in order of writing. Duplication of the COMMON
declaration about a variable causes the declaration after the first to be
ignored, e.g.,

COMMON A, B, C, D
COMMON D, A, F

causes the following allocation:-

address (octal) 145 146 147 150 151

variable A B C D F
Since communication between two routines is established by the COM-
MON list rather than by the names used, care must be taken to ensure
that if the same name is used for the same variable in two different

routines within the same program, then they are allocated the same
address in the COMMON list.

11.3 EQUIVALENCE

The EQUIVALENCE statement in S2 has two functions

which intermingle:-
(1) To provide a synonym.
(2) To overlay arrays.
The general form is

EQUIVALENCE (L, , R1)’ (Lz, Rz),(L, R) and an ex-
ample is

EQUIVALENCE (A, B), (G, D(K))
We enumerate the various combinations of L and R:-

(2) EQUIVALENCE (A, B), X, D, (J, W), where all are
variable names means that A uses the storage allocated
to B, but retains its own mode; X uses the storage for I
and remains REAL: J uses the storage for W and remains
INTEGER.

-43-

(b) EQUIVALENCE (A, B(D), (I, C(15)), where B(I), C(15)
are subscripted variables and A, I are ordinary variables.
The left variable uses the same storage asthe right array

element.

(¢) EQUIVALENCE (A, B(I)), where A, Barearray names
and the right variable is subscripted by one INTEGER
constant or array parameter. The effect is to make the
first element of the array A coincide with the (I+1)th
element of the array B.

(d) EQUIVALENCE (A, B), where A, Barearrays, makes

the array A start at the same point as the array B.

If an EQUIVALENCE (A, B) is made between an array
name and a variable name (either way) then a diagnostic message
appears. This indicates that the program may produce unexpected
results if run.

In S2 EQUIVALENCES, the left variable is defined in
terms of the right variable, and in each EQUIVALENCE only a pair of
terms appears. This is different from FORTRAN. :

EQUIVALENCES of type (a) and (d) may be chained. Thus
the EQUIVALENCES (A, B), (B, C), (C, D) will cause A, B, C to use the
storage allocated to D. There is an exceptional case, for which see the
effect of EQUIVALENCES on the COMMON list. The compiler will
recognise redundant EQUIVALENCE statements and print a diagnostic
message. The cases are:-

(a) (A, B), (B, C), (C, A), such a circular definition is
treated by ignoring the last EQUIVALENCE (C, A) which
leads to the circularity.

() (A, B), (B, C), (A, C). The last EQUIVALENCE is

redundant and is ignored after diagnosis.
11.4 The Effect of EQUIVALENCES on the COMMON List
In EQUIVALENCE (L, R) we have the following cases:-

(1) L, R COMMON; L does not get a separate entry in the
COMMON list but uses the entry for R. The COMMON list
is constructed as if L had not been declared COMMON.

(2) Only R COMMON; L uses the space allocated to R.
Thus this case does not affect the formation of the COM-

MON list.
-44_

(3 Only L COMMON; L takes its place in the formation
of the COMMON list, but the routine is compiled using the
storage of R for L.

When cases (1), (3) occur a diagnostic mark is made in
the listing of the COMMON list at the position that the L variable
occupies (case 3) or would have occupied but for the EQUIVALENCE

(case 1).

The preceding description is for unchained EQUIVA-
LENCES. For chained EQUIVALENCES the same rules apply if R is the
“ultimate EQUIVALENT”, the symbol at the end of the chain. In the
example EQUIVALENCE (A, B), (B,) this would be C and the rules
would apply as if EQUIVALENCE (A, O), (B, C) had been written.

11.5 The Effect of Using FUNCTION or SUBROUTINE Para-
meters in Specification Statements

The COMMON list is formed as if there were no variables
which were SUBROUTINE parameters. The SUBROUTINE parameters,
however, do not use any storage within the COMMON list but use
private storage within the routine being compiled. This situation is
diagnosed.

Similarly if a SUBROUTINE parameter appears on the
left of an EQUIVALENCE, it has no effect on the other variables in-
volved, but again it uses private storage. Thus if S is a SUBROUTINE
parameter appearing in the EQUIVALENCE (A, S), (S, B) the effect is
as if only (A, B) had been written but a diagnostic message appears.

Only if S is an ultimate EQUIVALENT will any other
variables share its storage. For example in the EQUIVALENCES
(A, S), (B, C), (C, S), S is the ultimate EQUIVALENT of A, B and C
which share a private storage cell with S.

11.6 Standard Practice with Specification Statements

Since this is a reference manual much of the information
it contains explains the more out-of-the way properties of the S2
language and the S2 compiler. That certain effects are stated to occur
is not an invitation to exploit them. Many of the effects of the compiler
are there as aids to the programmer who may make a trivial error
which the compiler might be able to correct. Most of the effects of
mixtures of declarations in the preceding sections describe what the
compiler does to retrieve a programmer’s slip; they are not put in to
make the language more slipshod.

The following rule is a guide to the writing of COMMON,

EQUIVALENCE, SUBROUTINE and FUNCTION statements:-
-45-

Avoid making the following types of declaration about the
same variable:-

(a) COMMON, COMMON.

(b) COMMON, EQUIVALENCE with variable on the left
(Left-EQUIVALENT).

(c) COMMON, SUBROUTINE parameter.
(d) COMMON, FUNCTION parameter.
() SUBROUTINE parameter, Left-EQUIVALENT.

(f) FUNCTION parameter, Left-EQUIVALENT.

-46-

12. THE SUBROUTINE PRELUDE

Whenever a COMMON declaration is made, one store is allocated
to each item (in order) in the COMMON list, which is a fixed part of
storage (location 101(10> upwards) as explained in Section 11.2.

If the item is a variable this store is intended to contain its
value.

If the item is an array name, this store is intended to contain the
base address of the array, and the programmer has to define this base
address. (The base address of an array, A, in this context is the
address of the location immediately before that which contains the first
element A(1) of the array.) This definition must be done in

SUBROUTINE PRELUDE

which must be provided for every program, even if no COMMON vari-
ables are used.

This routine is written as any other SUBROUTINE and compiled
in the same way.

The differences between it and other SUBROUTINES are (apart
from its function of defining the storage of variables): -

(2) During an execution job it must be the first routine of the
program to be loaded and it will be obeyed immediately. (The
main program and the other SUBROUTINES are loaded afterwards
and overwrite PRELUDE.)

(b) It can call and use any of the routines in the S2 library but
cannot refer to any program routines,

(c) The statement RETURN will transfer control to the first
executable statement of the main program.

Storage in STRETCH is allocated by S2 as follows:-

The COMMON list starts at location 101 (10) (upwards). Above

the COMMON list will be loaded all routines (except PRELUDE with
their private variables. The COMMON statements in PRELUDE must
therefore contain at least as many items as any of the other routines.

The library routines and other important material are loaded in
a region above 80000 (10) The region suitable for storing the COMMON

-47-

arrays is therefore from 79999 downwards. One has considerable
freedom in the allocation as long as storage does not overlap sections
of program, M.C.P. etc. Arrays do not need to be stored in the same
order as their names appear in COMMON declarations.

Base addresses of all arrays in COMMON should be loaded into
the store in the COMMON list which corresponds to the array name.
This is done by such statements as

A
B

79000
A - 500

where A and B are array names in COMMON. This causes stores from
79001 upwards to be allocated to the array A, those from 78501 up-
wards to B. Dimensions, which define storage allocations, and which
have been left as parametric in other routines must be defined in
PRELUDE, usually by reading them as data during execution. This does
not apply when such dimensions and arrays are arguments of SUB-
ROUTINES, since the calling routine defines the actual storage space.

Example: Let a routine SUBR1 contain the following DIMENSION
and COMMON statements: -
DIMENSION A(l, J), B(100), C(I, N)
COMMON P, A, B, C, 1, J, N, X, U, DUMMY, Z

The following PRELUDE would fit

SUBROUTINE PRELUDE
COMMON Q, A, B, F, I, J, N, X, Y, W, Z, V, M e (1)
L = 79999
READ 100, I, J, N, M
100 FORMAT (416)

A=L_-IJ
B = A - 100
F=B-IN (2
W= F-M .. (3)
PRINT 101, A, B, F, W

101 FORMAT (1H1, 416) e (8
RETURN
END

-48-

(1) The scalars V and M are mentioned in PRELUDE, but are
not used in SUBRI. This is allowed, but it should never be the

other way round.

(2) Variables in COMMON do not need to be called by the same
name in different routines. They will occupy the same stores if
their names correspond to the same position in the COMMON

list.

(3) The array W of the PRELUDE is not referred to in SUBRI.
In such a case the dimension statement is optional, but the
corresponding item (DUMMY) in the COMMON list of SUBRI

cannot be omitted, as Z would become displaced.

(4) This format will cause the base addresses of the arrays to
be printed as INTEGERS.

In general one does not wish to have discrepancies between the
COMMON and DIMENSION statements of different routines, but in some
cases the features mentioned can be useful.

Warning: The loader economises on the coding by computing,
at load time, as many of the addresses of variables as possible

throughout the program.

Example: If N is in the COMMON List, and had been defined
during PRELUDE, the address of A(N) will be computed before
execution starts, wherever it happens to occur. A(N) will then
refer to the same store throughout the job. One should therefore
not borrow quantities from the COMMON list for use as working -
variables, such as DO loop indices.

Similarly dimensions of variables must be defined at
load time and should not be changed during execution.

Up to 2000 stores are reserved by the computer for ecalar
variables and base addresses of arrays, and it loads these stores with
a large number (0.5 X 21024 This corresponds to the machine’s
definition of infinity and calculations on these numbers usually yield
meaningless results. One should never assume that stores contain O,
or any other definable quantity, when execution starts.

-49.-

APPENDIX A
RULES FOR XFN AND XFP ARITHMETIC

Let XFN, XFP stand for numbers whose exponents are less than
- 1023, greater than + 1023 respectively and let N stand for a number
whose exponent is less than 1024 in magnitude. Then the following
cquations show the effects of using these numbers in arithmetic:-

Al. ADDITION (SUBTRACTION)

N* A result N* may go out of range if the result is
N* too large or too small.
XFP

N+N
N+XFEN
N+XFP

on

XFP
XFP

XFP+XFP
XFP+XFEN

fn

XFN+XFN = XFN

A2. MULTIPLICATION

N*
XFN
XFP

N*N
N*XFN
N*XFP

XFP
XFP

XFP*XFP
XFP*XFN

XFN*XFN = XFN

A3. DIVISION

N#
XFP
XFEN

N/N
N/XFEN
N/XFP

0o

XFP
- XFP

XFP/XFP
XFP/XFN

1ol

XFEN/XFEN

XFP

For ease of memory, note that the form of these equations is like the
similar equations for operations on infinity (XFP), zero (XFN) and
finitc (N) numbers, with the rider that any indeterminate result is taken
to be infinity. This does not say thatan XFN number is zero; in general
it is not.

-50-

APPENDIX B

THE MYSTERIOUS ZERO

There are more than 4000 different patterns of bits within

STRETCH that can be called zero, namely all those floating point
numbers with zero fraction but with different exponents. The various
types generated within S2 programs are:-

(a) Fixed point zero, the exponent is 38. This number is genera-
ted by any INTEGER arithmetic, by writing O as an INTEGER
constant in the program, by reading, as data, a zero INTEGER
in I mode or by operation XFIXF(X), provided X has an exponent
of 38 or less, and is zero.

(b) Floating point zero, where the exponent is - 1023. This is
generated by writing a floating point zero constant in the source
program, or by reading a floating point zero in E or F mode.

(c) Order of magnitude zeros. These are zeros arising by
operations on REALS or during mixed arithmetic. They may have
almost any exponent ac¢ording to how they arise. The following
are important cases:-

FLOATEF(O) the exponent is - 2047. This number is
therefore an XFN number

X-X the exponent of this zero is the same as
that of X, provided X is not in the XFN
or XFP ranges, in which case the opera-
tion X-X produces X, not zero, unless X
itself happens to be zero

X*Y this will produce a zero provided one of
X or Y (or both) is zero. If the factors
are both REAL and in the normal range,
then the exponent of the zero result will
be the sum of the exponents of X and Y
minus 38. If only one of the factors is
REAL the result will be FLOATF(O)

The use of a zero in an IF statement will always give the expected
result provided the result tested has a zero fraction. The only im-
portant case where the expected zero result is not always realized is
when the difference is taken between two numbers that would be the
same in ideal calculation but are outside the normal range.

-51-

The order of magnitude zero does not always behave as an ideal
zero when added or subtracted. For example if m is the exponent of an
order of magnitude zero, and n the exponent of X is less than m, then
the effect of the addition is to replace the m-n least significant bits of
X by zero bits. In extreme cases of m-n greater than 47, all significant
bits of X are lost.

One way of viewing order of magnitude zeros which may be help-
ful is to think of them as arising by cancellation during subtraction of
two ideal numbers not necessarily identical whose most significant 48
bits coincide. The resulting zero lacks precision to exactly the same
degree as the original numbers.

Thus, a good working rule with REALs is to assume that the
calculation is always approximate unless the numbers inthe calculation
can all be expressed as

+ N*2™,

where N is an INTEGER less than 248 and m is an INTEGER chosen
once for all.

-52-

APPENDIX C

PUNCHING CONVENTIONS

C1. PUNCHING A SOURCE PROGRAM

Each statement of an S2 FORTRAN source program is punched
into a separate card. However, if a statement is too long to fit on one
card, it can be continued on as many as nine “continuation cards”. The
order of the source statements is governed solely by the order of the

statement cards.

Cards which contain a “C” in column 1 are not processed by the
S2 compiler. Such cards may be used to carry comments which will
appear when the source program deck is listed.

Numbers may be punched in columns 1 - 5 of the initial card of
a statement. When such a number appears inthese columns, it becomes
the statement label of the statement. These statement labels permit
cross references within a source program.

Column 6 of the initial card of a statement must be left blank.
Continuation cards (other than for comments), on the other hand, must
have column 6 punched with some character other than zero, and
should be punched with numbers from 1 through 9. Continuation cards
for comments need not be punched in column 6; only the “C” in column
1 is necessary.

The statements themselves are punched in columns 7 - 72, both
on initial and continuation cards. Thus, a statement may consist of not
more than 660 characters (i.e., 10 cards). A table of the admissible
characters for FORTRAN is given in Appendix M. Blank characters,
except in column 6 and in certain alphanumerical fields in FORMAT
statements are simply ignored by FORTRAN, and may be used freely
to improve the readability of the source program listing.

Columns 73 - 80 are not processed by the compiler and may,
therefore be punched with any desired identifying information.

C2. ARRANGEMENT OF DECLARATIONS
The declaratory statements should be placed (in any order) at the

beginning of the deck. These are the FUNCTION, SUBROUTINE,
DIMENSION, COMMON, EQUIVALENCE, INTEGER, REAL, statements.

-53-

APPENDIX D

DECK MAKE-UP

D1. TYPE, GO

For jobs of this type, control cards are:-

B JOB, JOB Card with JOB number.
B TYPE, GO Type Card

B LIM, Limit Card

B 10D,)

B REEL,) As required.

Set E dump 1 to 6)

FETCH 1, 2 and 3

Prelude binary deck
Prelude data if any

Binary decks produced by S2
END 1

END 2

Data, if any -

D2. TYPE, COMPILE, S2, OPTION

Option is PRINT if a mnemonic dump of the object program is
required. A'null field suppresses the dump. For jobs of this type, each
S2-coded deck must be preceded by a card having (S2) starting in or
before cc.10. STRAP decks must be preceded by (STRAP) cards.
Binary decks should not be present. A (QUIT) card should normally be
put at the end of the job. If there is no (QUIT) card, a diagnostic will be
printed, but the processor will assume that one was intended and no
error will result,

B JOB,
B TYPE, COMPILE, S2
(52)

S2.coded routine, terminated
by END statement

in any order

(STRAP)
STRAP-coded routine, terminated
by END statement

A A WA A WA WA A A AW AN A A

(Qi)lT) (may be omitted)
-54.

D3. TYPE, COMPILGO, S2, OPTION

Option is as described in Section D2. Jobs of this type have the
same control cards as TYPE, COMPILE, S2, but binary decks may be
included for which no control cards are necessary. The (QUIT) card
should normally follow the program deck. It is mandatory if data
foilows.

B JOB,

B TYPE, COMPILGO, S2 (NB: NO LIM-card)
B 10D)

B REEL) As required

Set E dump 1 to 6)
FETCH 1, 2 and 3

PRELUDE binary or)
symbolic deck) Symbolic decks must
Binary or symbolic) be preceded by the
decks for other) appropriate control-card-
routines, in any) (S2), or (STRAP)
order
END 1
END 2

(QUIT) (may be omitted if no data follows)
PRELUDE data, if any
Data, if any

-55-

APPENDIX E
OUTPUT FROM THE S2 COMPILER

Printed output for S2 compilations consists of a listing of the
source program, and a map of the COMMON list. Diagnostic messages
generally follow immediately after the statement to which they refer.
(All detectable error conditions cause a diagnostic in S2, though some
types of error cause compilation to be terminated). Timing and identi-
fication messages are printed at the end of each compilation, together
with an optional mnemonic dump of the object program.

Punched output comprises the programmer’s JOB card, followed
by the binary decks resulting from compilations or assemblies. These
binary decks are separated by T-cards, and a T-card also precedes
the first binary deck and follows the last binary deck; the deck as a
whole is therefore intact and ready for use after removing the JOB
card and any trailing blanks/logger cards. (Inthe output from a STRAP-
coded routine, a TYPE card and LIM card are provided by STRAP.)

In order to check that the deck of binary cards is correct or to
sort them when they have become shuffled, one can make use of the
following properties:-

The time clock reading at the beginning of the compilation is
punched in column 2 of all binary cards of the routine. This
column is therefore identical on all cards of the same routine

and different for cards from different routines.

The cards of each routine are numbered in binary from 1 on-
wards. This number is punched in column 3.

All cards have column 1 punched in one of the following ways:-
(a) Rows 7, 8,9 (origin cards, the first card and others).
(b) Rows 7, 9 (flow cards).

(c) Rows 6, 7, 9 (branch card, the last card only).

-56-

APPENDIX F

S2 DIAGNOSTICS

The following diagnostic messages are produced by the S2 com-
piler. Those marked * stop the punching of binary cards:-

Programmer’s Errors

Parameter has changed
*Variable implied constant not in COMMON
*Invalid subscript
A SUBROUTINE parameter is COMMON
A parameter is left-equivalent
*Duplicated parameter
*Variable DIMENSION is private
Redundant EQUIVALENCE
Duplicated COMMON entry
Incorrectly nested DO
DO closure up the creek
*DO nesting incomplete at end
Branch into DO range to this label
*FUNCTION name unused
Label used but not set
Label set but not used
Illegal branch into DO range
*Array argument is floating point
*Illegal DIMENSION in 1 - D array
DIMENSION variable used as array name
Array name used as DIMENSION variable
*EQUIVALENCE expression invalid
Unused parameter
EQUIVALENCE between array and scalar
DO variable is SUBROUTINE parameter
*Subscripted variable too long
*20 or more terms in expansion of variable,
SENSE LIGHT No. out of range
*No path to next instruction
*FUNCTION has too many arguments
*No path to this instruction
*Illegal DIMENSION in N - D array
Array declared more than once
Duplicated label
*Illegal instruction at end of DO
*DO argument is an expression
*Declaration not at front of routine
*FUNCTION on left of equals
*A constant appcars before equals
-57-

*Error in FORMAT label
*Error in FORMAT statement
*An INTEGER is followed by a letter

Illegal FORMAT , has been inserted
*A fraction is followed by a letter
*Wrong exponent in constant
*A letter follows
*(follows a constant
*A ‘.’ follows a name
*A ‘.’ follows a constant
*A ‘. follows a ‘.’
* ‘.’ appears initially
*A (appears initially
*A statement ends incorrectly
** follows another operator
*/ follows another operator
*_ follows another operator
*+ follows another operator

*, follows another operator

*) follows another operator
*= follows another operator
*More) than (somewhere
*More (than) somewhere
*A statement begins incorrectly
*Illegal statement

More than 7 characters used in a name
*A blank statement was found
*A § appears illegally
*Error in DO statement
*Error in GO TO statement
*Error in READ statement
*Error in computed GO TO statement
*Error in assigned GO TO statement
*Error in COMMON statement
*Error in DIMENSION statement
*Error in PRINT statement
*Error in PUNCH statement
*Error in EQUIVALENCE statement
*Error in READ INPUT TAPE statement
*Error in WRITE OUTPUT TAPE statement
*Error in READ DISK statement
*Error in WRITE DISK statement
*Error in READ TAPE statement
*Error in WRITE TAPE statement
*Error in CONTINUE statement
*Error in RETURN statement
*Error in IF statement
*Error in ASSIGN statement

-58-

*Error in IF (SENSE LIGHT) statement
*Error in SENSE LIGHT starement
*Error in STOP statement
*Error in ARITHMETIC expression
*Error in BACKSPACE statement
*Error in REWIND statement
*Error in END FILE statement
*Dictionary full
*Dictionary look up error
Duplicated declaration
Nested ranges with same index
lllegal DO statement
*DO variable is RELOCATOR constant
*The DO index is not a variable
No RETURN statement
*FUNCTION without parameters
*Dictionary nearly full
*No executable instruction in routine

The following diagnostic messages are the result of a machine or
compiler error and prohibit the punching of binary cards:-

Illegal operator was found in DECODING
Machine or compiler error in GE
Machine or compiler error in GBH
Machine or compiler error in GD
Machine or compiler error in GR
Machine or compiler error in GA
Machine or compiler error in GA1l
Machine or compiler error in GA9
Machine or compiler error in GAl1l
Illegal operator in Macro level

Macro Mode incompatibility

Machine or compiler error at INSTG3
Continual UK’s on Disk - Compilations Terminated
EPGK on Disk - Compilations Terminated
UK without EOP on Disk - Compilations Terminated
Error in stacking algorithm

Index switch failure

Compiler error - invalid level

Compiler error - negative level

Unable to fix S2 to carry on

Error return from GET

Undefined switching position

Compiler error. Bushy index expression
Continual UK’'s on Disk in S2

-59-

The following diagnostic messages are the result of overflow of
tables within the compiler and stop the punching of binary cards.

Object program overflows loading region
Too many work space cells required
Data cells required exceed space available
Private Prelude overflows data region
Too many DIMENSIONED variables

More than 100 EQUIVALENCES

More than 100 SUBROUTINE parameters
Dictionary nearly full

Underflow in expanding EQUIVALENCES
Index tree is full

Tree dictionary is full

I - string underflow

Too many nested DO ranges

Loading region full

Principal node list is full

-60-

APPENDIX G

ERROR INDICATIONS DURING EXECUTION

Diagnostic messages produced by the Library Package. (All

preceded by “JOB REJECTED".)

Gl1.

G2.

THE LOADER

(a) COMMON LIST TOO LONG
2000 words are presently allowed.

(b) PROGRAM OVERLAPS LOADING REGION
Too much program in store,

(c) A ROUTINE COMMON LIST IS TOO LONG

This means that COMMON list of a routine is longer than
that of the PRELUDE.

(d) ROUTINE X HAS NOT BEEN LOADED

A program contains a reference to a SUBROUTINE, x, which
has not been supplied.

(e) NO MAIN ROUTINE HAS BEEN LOADED
(f) TOO MANY LINKS
More than 20.

(g9 TOO MANY ROUTINES HAVE BEEN LOADED OR CALLED
FOR

You can have up to about 200 of your routines per link.
(h) NO PROGRAM PRELUDE LOADED
(i) NEXT LINK CONTAINS NO ROUTINES
CHAIN, SUBROUTINE CALLING DURING EXECUTION
(a) LINK NO i DOES NOT EXIST
(b) ROUTINE CALLED AT LOC i IS UNKNOWN
This occurs when a routine is known to have been loaded but

cannot be found. Probably caused by failure of LINK calling.
-61-

(c) DUMP TAPE ERROR

DISK ERROR

Caused by irrecoverable errors in forming links on DISK
or TAPE.

G3. OTHERS

() END OF TAPE i REACHED $15 = e
Writing tape.

(b) TAPE i ERROR $15 = e
Writing tape.

(c) TAPE MARK ON TAPE i REACHED $15 = e
Reading tape.

(d) DATA ERROR $15 = e

(¢) FORMAT ERROR $15 = e

(f) NO MORE DATA $15 = e

(22 170 UNIT i ERROR $15 = e

In RELIBR, WRLIBR etc.: (a) shows irrecoverable error,
or (b) use of 10D number greater than 32,

(i) AN ARC CANNOT BE LOCATED
() TAPE i, WRITE, EPGK error
READ UK
EE
ECP
These are illegal conditions.
(k) DISK ERROR

(1) POWER ROUTINE ERROR $15 = e

-62-

(m) AT LOCATION e THE SQRT OF “X" WAS ASKED FOR

(n) SIN/COS ERROR $15 = e ARGUMENT GREATER THAN
2%*42

(o) LOG ROUTINE ERROR $15 = e ARGUMENT = “X”

NOTES:

(1) e is the location where the SUBROUTINE was called from the
problem program.

(2) i stands for a tape or disc 10D number.

(3) “X” stands for the actual value of an argument.

-63-

APPENDIX H

CHAIN JOBS
The relocation system for S2 programs can be used to form
chain jobs, i.e.,, a program of several sections, called links, where
cach section is brought to core storage from disk as required. This
allows programs which are too big to be held in core store in one piece

to be segmenred.

Hi. THE FORMATION OF A CHAIN

A chain is formed on disk file number 19 by loading the following
type of deck:-

(a) PRELUDE (for whole chain).

(b) Link No. 1 program.

(¢) Link Control Cards (a standard set of cards).

(d) Link No. 2 program.

(e) Link Control Cards.

... Other links and control cards.

(p) Initiating Program (OptiOnal).

(99 Program Start Cards.

The links are loaded and are numbered in the order of loading.
The number of links must be 20 or less. When loading is complete,
control goes to the initiating program or to link 1 if the initiating pro-
gram is omitted.

Links are entered from one another by the statement

CALL CHAIN (NEXT)

where the INTEGER value NEXT specifies which link is to be entered
next. NEXT is a constant or INTEGER variable. Each link is written
as a main program and when called will begin operating at the first
statement of the main program,
H2. DUMPING A CHAIN

To allow the formation of tapes containing a program chain the

following statement can be used:-
.64 .

CALL CDUMP (A, B)

This causes the chain of programs on disc 19 to be transmitted to tape
20 together with the region of core storage from the address A to the
address B inclusive, and the index registers. A tape mark is then
written on tape 20.

The job is then ended without control returning to the program.
H3. REVIVING A CHAIN -
If tape 20 contains a dumped chain, then
CALL RELOAD

will revive the job by transferring the chain to disc 19, refreshing the
core store and index registers as required by the CDUMP statement
that formed the dumped chain. Control then goes to the next statement
after the CDUMP statement that caused the chain to be dumped.

Note that RELOAD can restart a link, not an initiating program
(which is not considered part of the chain). Thus, CDUMP cannot be
used in the initiating program.

The revival of a chain may be done in a variety of ways of which
the following may the most useful: -

A* Revival of a chain which had not run. Here it is envisaged
that the CDUMP mechanism has been used to form a
program tape. The RELOAD statement can then be the
last statement of a PRELUDE which revives the chain.
This revival PRELUDE must recreate the storage struc-
ture as constructed by the original PRELUDE of the chain,
but may alter parameters not concerned with storage
allocation. If no parameters alter, see D.

B Revival of a chain in process may be made by obeying the
statement CALL RELOAD (which canbe writtenasa single
statement PRELUDE), provided that the CDUMP state-
ment forming the chain tape has specified the dumping of
a segment of core storage containing the COMMON list
and any other data that is to be refreshed.

C As A but reviving the COMMON list as originally dumped.

*If a chain is revived from a PRELUDE, Program-start-cards will be
unnecessary (in the restart program).

-65.

D A PRELUDE followed by the program start cards will
also call RELOAD - this saves time writing another
PRELUDE with CALL RELOAD in it.

H4. The program must give IOD cards for his use of disk 19 and
tape 20 and in particular must specify how much disk space is re-
quired.

Each link requires a number of disk arcs to hold the link pro-
gram plus one more arc to hold the link SUBROUTINE symbol table.
The extent of a link can be discovered from the storage map printed
by the relocator.

-66-

APPLENDIX 1

SPECIAL INPUT/OUTPUT SUBROUTINES FOR
TAPE AND DISK (UNBUFFERED)

The INPUT/OUTPUT routines used by the FORTRAN INPUT/
OUTPUT statements do not allow execution of succeeding steps of the
calculation until transmission is complete, thus removing from the
programmer any worry about timing but at the cost of a delay. The
binary INPUT/OUTPUT routines use buffering which may reduce the
delays if the data transmission rate is low.

For the programmer who is prepared to look after timing prob-
lems a set of SUBROUTINES is provided, which initiate data trans-
mission. Another FUNCTION sub-program is provided by which the
progress of transmission may be sensed.

I1. TRANSMISSION
Transmission is initiated by the calls:-
(1) CALL WRLIBRF (iod, location, length), and
(2) CALL RELIBREF (iod, location, length),

for transmission from and to core storage, respectively, where
iod = tape or disk number (variable or constant),
location = name of the first word to be transmitted,
length = number of words to be transmitted.
Note that the transmission of an array requires the specification

of the first element location which is not the same as the name of the
array as a whole. Thus if A is an array to be transmitted then write

CALL RE LIBRF (I(J), A1), 10)
not CALL RELIBR (I(J), A, 10)
12, LOCATION OF DISK ARCS
CALL LOLIBR (iod, arc number)
This is used to locate the disk heads so that transmission may
start at the required “arc number” on logical disk “iod”. In trans-
mission involving consecutive arcs on the disk, it is necessary to

locate only the first arc in the sequence.

-67-

I3. SAMPLING

To allow the progress of a transmission to be sensed a function
CWLIBREF (iod, location) is provided, where

iod

location = address in core storage

tape or disk number

CWLIBRF (iod, location) is positive if a higher address than “location”
has been used in transmission; otherwice it is negative. This function
should be used rarely, and only whenalong transmission is in progress
since the time taken to sample is quite long.

During the sampling time at least 25 words will have been trans-
mitted to or from the disk or 3 words to or from high density tape.
Note: The sampling process of this section and the check process of
the next section must not be employed together on the same unit. Use
one method or the other, but not both for the same transmission.

Example: A transmission of 5000 words of an array starting

at A(I +5) to tape 4 is started and further computa-

tion must be delayed until the words A(I1+5) to
A(I + 1000) have been transmitted.

CALL WRLIBRF (4, A(I + 5), 5000)
1 IF (CWLIBRF (4, A(I + 1000)) 1, 1, 2
2 now computation can proceed.
14. END OF TRANSMISSION
More usually, the programmer wishes to delay at a certain point
in his program until transmission is complete and checked. The
FUNCTION XKLIBRF (iod) allows this to be done, by holding control
until transmission is complete and then returning the following values:-
-1 if the transmission is successfully completed (EOP).
0 if EE and EOP interrupts occurred.
1 if UK and EOP interrupts occurred.
2 if UK and EOP and EE interrupts occurred.

3 any other type of interrupt - correction is impossible.

-68-

The first case indicates success

0 = means that a tape mark has been read or
that the end of tape has been reached
during writing.

XKLIBRF (iod)

=1 a data error has occurred.

= 2 a data error has occurred, together with
the conditions of case O,

The last two conditions would require backspacing and retransmission
for tape transmissions, or location and retransmission for disk trans-

missions.,

If XKLIBREF is not used and a further transmission initiated, then
a delay will occur until the first trnsmission is completed. If the first
transmission was not completed successfully then the job will be re-
jected.

I5. MISCELLANEOUS ROUTINES
These are called by CALL subroutine (iod),

where iod = tape number
subroutine = xy LIBRF, and

xy = BF backspace file
BR backspace record
EG the erase long gap trigger is set
FR signal the operator that this tape is not used
again
KN turn on the check light
RN turn on the reserve light
RF turn off the reserve light
TN turn on the tape indicator light
TF turn off the tape indicator light
SF space forward one file
SR space forward one record
EF write end of file
UL tell operator to load next reel for this unit

RW rewind

The successful completion of these actions should be checked by
XKLIBRF which will notice special cases that arise, namely

XKLIBRF (iod) = 0 when

-69-

(a) The end of tape reflective strip is crossed by EFLIBRF

(b) A tape mark (i.e., end of file mark) is crossed by BFLIBREF,
BRLIBRF, SFLIBR, SRLIBR. This is the normal case for
BFLIBRF and SFLIBRF. BRLIBRF and SRLIBRF will space over
a tape mark and give XKLIBRF (iod) = 0

Note: Backspacing at the beginning of the tape will give
XKLIBRF (iod) = 3
I6. TAPE AND DISC NUMBERING
The FORTRAN INPUT/OUTPUT routines use tape numbers inthe
range 1 to 8 and disk numbers 9 - 12. These conventional numberings

allow control cards for MCP to be standardised.

For the non-buffered INPUT/OUTPUT routines, the user may
have more freedom in numbering tape and disc sections.

-70-

APPENDIX J

SPECIAL INPUT/OUTPUT SUBROUTINES FOR
BUFFERED TAPES

As mentioned in Section 7, the use of tapes falls into two distinct
classes. To extend the “FORTRAN Statements” of Section 9 (buffered
binary INPUT/OUTPUT) four special SUBROUTINES are provided to:-

(a) Backspace a file (BFFORT).

(b) Forward space file (SFFORT).

(¢) Forward space a record (SRFORT).

(d) Unload a tape and reload the next reel (ULFORT).

These are all activated by means of the CALL statement, using the
above names with the tape number as the argument.

Example: CALL BFFORT (I)

causes tape I to backspace the file until the previous file mark is
passed.

-71-

APPENDIX K
IDENTIFICATION OF BINARY DECKS

A declaration is available in S2 which enables programmers to
identify binary decks by including in their S2 deck a card having the
word IDENTITY punched on it, starting in column 7, followed by a
comma, followed by the identification. The S2 compiler transfers the
contents of the 8 columns immediately following the comma, to
columns 73 - 80 of the binary cards produced by the compilation.

Any character may be used in making up the identification, in-

cluding blanks, e.g.,
IDENTITY, ABCD/12A
IDENTITY, +*-A.,A2

If this statement is not included in a compilation, the identifica-
tion MAIN will appear for a MAIN program and the SUBROUTINE
name will appear for a SUBROUTINE.

-72-

APPENDIX L
10D AND REEL CARDS

L1. TAPE IOD CARDS

For each logical tape used, the programmer must provide an
JOD card. There are two types of prepunched cards available - normal
IOD’s and “lazy IOD’s”.

In normal IOD’s, the programmer must punch his s ecification
prog P P

of
CHANNEL, UNIT, MODE, DENSITY, DISPOSITION

according to the MCP rules. The uniqueness of tape is determined by
the UNIT symbol and different CHANNEL symbols indicate a preference
for having the tapes on different channels. MCP will put these tapes on
different channels if it can, but if not will place them on the same
channel. The following mnemonics should be used in normal tape 10D
cards for the mode, density and disposition.

Mode field ODD odd parity, no ECC
EVEN even parity
ECC odd parity, ECC

Density field HD high density
LD low density
(For binary tapes the use of ECC, HDis recommended for the additional

security of information given by The Error Checking and Correction
Modes.)

Disposition NSAVE the tape is not to be saved

field
CSAVE - the tape is to be saved only if
the job completes
ISAVE - the tape is to be saved only if the
job does not complete
SAVE - the tape is to be saved in any

case
If there is no punching NSAVE is assumed.

For most uses, however, “lazy IOD’s” will be more convenient.

In them CHANNEL, UNIT, MODE, DENSITY are prepunched in such a

manner that to each logical tape a separate physical unit is allocated,
-73-

and separate channels are used if possible. The mode will be ODD
parity no ECC and the recording will be HD (high density). The pro-
grammer must then punch the DISPOSITION symbol as described for
normal I0OD’s.

L2. REEL CARDS

If any of the tapes to be mounted are not “COMMON?” tapes, then
the programmer must nominate the reel by using a REEL card which
should be placed immediately following the IOD for the tape concerned.
A REEL card has

B in column 1
REEL, in columns 10 - 14
Symbol 1 in columns 15 . 22
, Symbol 2 in columns 23 - 31
» Symbol 3 etc.,

where Symbol 1, Symbol 2 etc., are 8 character symbols of the form
xxxyyyyy, where xxx describes the status of the reel and is one of the
following:-

PLB protected and labelled
PUL protected and not labelled

NLB not protected but labelled
NUL not protected and not labelled

and yyyyy is the tape label.
An example of a REEL card is
B REEL, PLBA1234, NLBA4321

which specifies that reel A1234 is to be mounted first on the unit,
followed by reel A4321. The reel A1234 is protected from being
written upon, whereas A4321 can be written.

L3. DISC IOD CARDS

Partly punched disc IOD cards are available by which logical
files on the disc can be allocated. A channel symbol (any symbol not
used as a tape channel symbol will do) followed by a comma and the
number of tracks required should be punched starting at column 24 of
the card. One track has 4096 words. If no number is specified the whole
available disc will be given to the file; in this case only one file can be
used.

-74-

and o ™ < Tg) Nej r~ o — | o~ ™ <
o~ o~ N N N N ™ ™| -~ ™ ™
™
advo onN|Om | O | ONI] OV \
®

0

Y3 LOVHVHD

40

zf{

3

5

(

5

11
11

8 -3

8 - 4

11

HIIOVHVHO

_

60

|

-75-

*®

APPENDIX M

12

12
8 - 3|73|8$

Y3 LOVHVHD

+

0
0

2

1

TABLE OF SOURCE PROGRAM_CHARACTERS

|

3

1

8 - 3

HILOVHVHO

blank | blank

12
! 8 - 4(14]) 8 - 4| 74

	cover 0001.tif
	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif
	p 0024.tif
	p 0025.tif
	p 0026.tif
	p 0027.tif
	p 0028.tif
	p 0029.tif
	p 0030.tif
	p 0031.tif
	p 0032.tif
	p 0033.tif
	p 0034.tif
	p 0035.tif
	p 0036.tif
	p 0037.tif
	p 0038.tif
	p 0039.tif
	p 0040.tif
	p 0041.tif
	p 0042.tif
	p 0043.tif
	p 0044.tif
	p 0045.tif
	p 0046.tif
	p 0047.tif
	p 0048.tif
	p 0049.tif
	p 0050.tif
	p 0051.tif
	p 0052.tif
	p 0053.tif
	p 0054.tif
	p 0055.tif
	p 0056.tif
	p 0057.tif
	p 0058.tif
	p 0059.tif
	p 0060.tif
	p 0061.tif
	p 0062.tif
	p 0063.tif
	p 0064.tif
	p 0065.tif
	p 0066.tif
	p 0067.tif
	p 0068.tif
	p 0069.tif
	p 0070.tif
	p 0071.tif
	p 0072.tif
	p 0073.tif
	p 0074.tif
	p 0075.tif
	p 0076.tif

