
ICL Introduction
to
MOP

1900 Series

ICL International
Computers
Limited

User
notice

MANUAL (NOTICE NO.) U/3/70

4194

File one copy of this
notice with each of the
manuals indicated.

AMENDMENTSTO t\~Ut~

Page 13, lir.c -9

This line should read:

An e:cp:r>€3s8ion is forme;d by cqtrlbiningnumbers, variables
and function~~ by r.~ansof operators. T~e user will

Page 2(), 1inU

This line should rce.d:

::Ea:o
II.

QFOl1'l'f'.l'.;l rCRTPrtOG I .LNAl,lE

The second C~~~a i~dicates that the Binary Program
param9te::: ~.:Jnu.LL, 'A pa~a'L\eter is said to be null if
no actual p.:lrar~-S-oris specified but the required comma
is insoa:r.tGQ; if nc.::.-....ae r the parameter nor the comma is
specified. t.~\'2p&.l:'c!:!atar is said to be omitted. In
the above ~l:;;,~:Y~lC', t.h~ Binary Program parameter is null;
if the CO:::'''':'!:;.!lL :'E1C t~cn th.e form

the Binazy P:t:o':!i:;::.:r.t (a:ld Output r,isting) parameters
would have bc'c~~en':' "i.::tcd.

This definition of nvll and omitted parameters applies
throughout the whole manual.

rase 37, line 1~

This line ahoukd :r:-c~.1.:

If the ucex lrlt'.n'b to Clelete his program, for example,
after examining it by using the PRINT command, he can
do so by giving the

. 1 of 2 _

·Issuedby Technical Publications Service,30 - 31 Friar Street, Reading, Berkshire. RG1 1JP

-
~age 37, lines 14 and 15

The facility of altering word 8 should be used with care
as, in certain circumstances, this word might contain
more information than the address of the next
instruction to be obeyed~

. I -
Page 49, line 8 of table

This line should read:

N (Record 2) . . C IOPQ I ..!.' STU t S (Record 2)

Page 53, line 2

The categories of the monitoring file are output on the line
printer and not on the log.

EDITING

Facilities exist for numbering the records to the output
file and for having them listed. . Each record sent to
the new file can be listed. The listings are sent to
the monitoring file in the LISTING category. Each record
can also be numbered. The first eight character positions
are used for the number, followed by the record itself.
These numbers are the number of the record in the new file;
they may bear little relation.to the pointer since this
refere to the old file, but if the new file is subsequently
used as the old file for the editor the numbers become the
absolute record number, that is, records are numbered from
zero.

Listing and numbering are each controlled by a switch, the
state of which can be altered by an editing instruction.
The initial state of both switches is off, so that records
are not numbered and the new file is not listed to the
monitoring file.

The L' instruction alters the state of the listing switch as
follows:

L ON Switches it on if it is off.
Leaves it unaltered if it is on.

L OFF Switches it off if it is on.
Leaves it una.ltered if it is off.

L Switches it on if it is off.
Switches it off if it is on.

The N instruction alters the state of the numbering switch
in an exactly similar .way.

Note: If the description of the new file given in the
EDIT command includes the APPEND qualifier, the listing
and numbering start from the first record to be written
by the editor once the appropriate switch has been switched
on.

GV International Computers Limited, Reading, 1970
2 of 2

-
The pol icy of International Computers Limited
is one of continuous development and improve­
ment of its products and services, and the right
is therefore reserved to alter the information
contained in this document without notice. l Ct,
makes every endeavour to ensure the accuracy
of the contents of this document but does not
accept liability for any error or omission. Any
equipment or software performance figures and
times statadheretn are those which ICL axpucts
to be achieved in normal circumstances. Where­
ever practicable, ICL is willing to verify upon
request the accuracy of any specific mattsr con­
tained in this document.

Technical Publication 4194

® International Computers Limited 1970

First Edition January 1970

Issued by Technical Publications Service
International Computers Limited
Head Office: ICL House, Putney, London SW15
Produced by ICL Printing Services
at Letchworth, Hertfordshire

-

Preface

This manual provides an introduction to MOP, the multi-access system available with the ICL GEORGE 3 operating
system; the description given applies to the Mark 3 version of the system.

GEORGE 3 is designed for use in installations having ICL 1900 Series computers from the 1903A upwards, provided
that they have a minimum of 32K words of core store and half a million words of direct access backing store.

Chapter 1 is a general introduction to the system and describes the basic facilities available. Chapter 2 gives general
hints on how to use the system, explaining how to become connected to the central computer and how to input
messages. Chapter 3 describes some simple uses of the conversational language JEAN thus enabling the user to become
familiar with the use of the terminal. Chapter 4 explains the method of compiling a program and Chapter 5 describes
the control of a program run from the terminal. The handling of magnetic media is introduced in Chapter 6 and basic
methods of editing files are explained in Chapter 7. Chapter 8 explains how to end a session at a terminal. A quick
reference section is provided in Appendix 1.

Full details of the GEORGE 3 system are available in the ICL 1900 Series manual Operating systems GEORGE 3
and 4 (Edition 3) TP 4169. Appendix 2 contains a list of all other relevant ICL 1900 Series manuals.

4194(1.70) iii

-

Contents

Chapter 1 Introduction
MULTI-ACCESS
MOP
On-line
Off-line
Entering the system I
Communicating with the system 2
Editing 2
Running standard software 2

Chapter 2 Starting up
THE 7071 TELETYPEWRITER 5
Function switch 5
Keyboard 5
Mains indicators 7
Typewriter log 7
Paper tape punch 7
Paper tape reader 7
SWITCHING ON 7
GENERAL HINTS 8
Inputting 8
Mistakes 8
Disconnection 8
Breakdowns 8
LOGGING IN 9
The LOGIN command 9
Passwords 9
SYSTEM MESSAGES 1I

Chapter 3 JEAN
THE JEAN PROGRAMS 13
Loading the program 13
JEAN EXPRESSIONS l_3
Functions 13
Arithmetic operators 14
Order of evaluation 14
JEAN COMMANDS 14
The TYPE command 14
The SET command 15
The FINISH command 15
JEAN CLAUSES 16

4194(1.70) v

-
The FOR clause 16
.INTERRUPTS 16
DELETING JEAN 17
ANSWERS TO EXAMPLES 17

Chapter 4 Compilation
INPUTTING SOURCE PROGRAM 21
THE Q-COMMANDS 22
Source 22
Binary 22
Output listing 23
ERROR MESSAGES 23
COMPILERS 23

Chapter 5 Running a program
LOADING 2S
Source programs 25
Binary programs 2S
BASIC PERIPHERAL CONNECTIONS 26
On-lining the MOP terminal 26
Off-lining basic peripherals 27
Releasing peripherals 31
CONTROLLING THE RUN 31
Setting a time limit 31
Altering the core allocation 31
The MONITOR command 32
ENTERING 32
MONITORING 33
Examples of system output 33
PROGRAM EVENTS 35
Action on program even ts 3S
BREAKING IN 37
OFF-LINE JOBS 37
Disconnecting a job 37
Reconnecting a job 38

Chapter 6 Further input and output
LISTING FILESTORE FILES 39
Output format 40
ERASING FILESTORE FILES 40
MAGNETIC TAPES 41
Acquiring magnetic tapes 41
Connecting magnetic tapes to the program 42
Releasing magnetic tape decks 43
Returning magnetic tapes to the pool 43
Removing magnetic tapes from control by the system 43
Loading a program from magnetic tape 43
DIRECT ACCESS 43
Direct access files 43

vi 4194(1.70)

-

Direct access devices 44
Direct access peripheral channels 44
USER TRAPS 44

Initial traps 44
Altering traps 45

Chapter 7 Editing
CALLING THE EDITOR 47
EDITING INSTRUCTIONS 47
Pointer 47
Correcting mistakes 49
Transcribing 49
Deleting 49
Inserting SO
Visible space 51
BREAKING IN 51
ENDING THE EDIT 51

Chapter 8 Logging out
ACTION ON THE MONITORING FILE 53
THE LOGOUT COMMAND 53
OTHER MESSAGES 54

Appendix 1 Reference 55

Appendix 2 Bibliography 63

4194(1.70) vii

-

Typewriter log Function switch

Mains indicator

Paper tape punch Paper tape reader

Figure1 A 7071 Teletypewriter

viii 4194(1.70)

-

Chapter 1 Introduction

MULTI-ACCESS
Amulti-accesssystem is a system in which a largenumber of users can 'converse' with the same computer via
terminals linked directly to it. Figure 1 showsa typical terminal, in this casean ICL 7071 Teletypewriter, used for
communicatingwith a computer. The user types messagesto the computer on the keyboard and these messages
are recorded on the typewriter log.The computer responds by printing out messageson the log so that the user
can read them.
The multi-accesssystem described in this manual is known asMOP,which is short for MultipleQn-linefrogramming.
MOPis part of a general system, known asGEORGE3, used to control the operation of the larger ICL 1900 Series
computers. At present the only terminals that may be used with the MOPsystem are 7071 and 7072 console
typewriters but future versions of the systemwill allow the use of other terminals. A full description of the MOP
system is givenin the manual Operating systemsGEORGE3 and 4 which the reader should consult for further details
of any facility described in this manual.

MOP

On-line

Whilea user is in direct communication with the computer, he is said to be on-line and the MOPsystemwill keep
him informed of the state of his job. For example, if his program goes illegal,a messagewill be printed out on the
log saying that this has happened and why. The user can also communicate with the computer requesting, for
example, a program to be loaded into the core store of the computer.This he does by typing messageson the
keyboard.
WhenusinghisMOPterminal, a user can communicate not only with the system but alsowith any program that
he is running from the terminal by usinghis typewriter to type in data or receiveoutput from it. This makes such
jobs as program testing much quicker and easier since a user is informed of the state of his program and so can see
how the program handles test data.

Off-line

Normally a user willwant to run his job ·on-line,but he may disconnect it from control by the MOPterminal, that
is, make it off-line. The job will then run under the control of GEORGE3 subject to messagesdecided by the user
and storedin a file. These messagessay, for example, the action the system is to take should a program go illegal.
Meanwhilethe user can carryon with a normal MOPsessionat his terminal doing any work he likes until he wants
to find out how the disconnected job is progressing.This he does by givingthe system an appropriate signalto
reconnect the job to his terminal.

Entering the system

Before anyone can use the system, he must be known to it. The system recognizesany user by his user name and
password,which he has to giveevery time he wants to start a MOPsession.Each user name is unique to the
installation involvedand the system keeps a file, called a directory, associatedwith each username, in which it
records details of the filesbelonging to that user, Directories can be created only by a user who already has a
directory. When this user creates a new directory he specifiesthe user name that is to be associatedwith it and at
the same time will probably also allocate budgets 'of, for example, processor time and magnetic tapes to the new user.
Not every user may create another user but in any installation the installation managerwill keep it record of who
may create users and will adviseany would-be user on how to acquire the requisite budgets, directory and user name.

A new directory is regarded as one of the files belonging to the user who created it. Since every user may also be the
owner of terminal files, that is, files containing information or programs fed in by the user himself, this method of
creation leads to a hierarchical structure of files as shown in Figure 2. User-createdfiles are part of the system's

4194(1.70)

-

Note: Directories are indicated by circles and terminal files are Indicated by squares.

Figure 2 Filestore structure

files tore, which is held on drum, disc or magnetic tape and which also contains system files created by GEORGE3.
Each file is referred to by name not location sinceGEORGE3 organizes the filestore in such a way that the user
has no way of knowingwhere a file is stored or whether GEORGE is about to move it.

Communicating with the system

Whena user wants to tell the systemwhat to do, he has to use standard messagesthat the system can understand
and interpret. The messagesthat he types must be in the GEORGE 3 command language, the languageused to
communicate with GEORGE3. This manual does not provide a full specification of this languagebut will give
sufficient information for a user to be able to run jobs from hisMOPterminal.

The GEORGE command languageis made up of a seriesof commands. Each command tells the system to carry
out a particular function, for example, to load a program or to allocate a certain amount of core store to it.

Editing

The MOPuser may wish to alter the contents of filesheld in the filestore; to do this he can use the editing
facilities.Chapter 7 of this manual givesan introduction to the editor and showsby exampleshow it may be used.

Running standard software

In the course of running his job the user may wish to use an item of standard ICL software. To do this he merely
has to givean appropriate command and the systemwill take the requisite action. Almost any item of ICL software

2 4194(1.70)

can be made available for use in this way. In particular, it is possible for the MOPuser to take advantageof the
JEAN conversational languagefacility, which enableshim to perform arithmetical calculations on-line.An
introduction to the use of JEAN is givenin Chapter 3.

4194(1.70)

-

3

-

Chapter 2 Starting up

This chapter describesthe operations that everyuser must carry out before he can start to run his job from his
MOPterminal. The description givenassumesthat the terminal used is a 7071 Teletypewriter as shown in Figure
1, pageviii.Messagestyped on the teletype aremodulated for transmission over the telephone or telegraph line.
At the other end they are demodulated and passed to a terminal that converts them to a form suitable for transfer
to a multiplexer; the multiplexer scans all its channels (up to 63) and transmits the messagesfrom each channel to
the central computer. Whenmessageare output by the system, they are transmitted to the multiplexer which sends
them to the correct channel. The terminal then converts them to a form suitable for transfer and they are modulated
for transmission.At the remote end they are demodulated and sent to the teletype where they are output.

Before attempting to start up, the user should have obtained a user name and budgets as described under Entering
the system, page 1.

•

THE 7071 TELETYPEWRITER

The chief physical features of the 7071 Teletypewriter are indicated in Figure 1, pageviii.The paper tape reader
and punch are optional and may not be present on the actual terminal used by the reader. A full description of
the teletypewriter is givenin 7071 Teletypewriter Operating.

The teletypewriter may be used in two ways:

ON-LINE.The terminal is connected to the computer. Messagescan be received from the system and
transmitted to it by typing on the keyboard or running paper tape through the paper tape reader. There is also
a variant of this where the messagestransmitted are not printed.

2 LOCAL.The terminal is not connected to the computer. No messagescan be receivedfrom the system and any
messagestyped on the keyboard or read on the paper tape reader will be printed locally on the typewriter log
but not transmitted.

LOCAL

•
NORMAL

•

Figure3 Function switch.

Function switch

The function switch is at the right-hand end of the front nameplate cover.There are three possible positions of this
.switch(see Figure 3):

4194(1.70) 5

0\

~
~
~
>:
~c:r-
2a
~a!::...•
~a
~
0;:s
~
3
(1:>...•
(1:>
~
~
(1:>~
s
(1:>
;0;-

~..
3
~
I:l..
SO;
~...•
':;>
<:5
3
s-a..
(1:>..~a
~'-

~
co
~-~
~

(

(DO' ri-.CD(0:\.·(.;:\.00CDr-. 00- Q~
2 'V 4 \.V\...V 7 8 9 \V. - V"f

Red keytop or red disc in grey keytop

~~~nnnnOF\~~
V\!V~'-V\!:_)\.:__)\V\.::_)I\V\:_)~

'Single Shot' included
if paper tape reader
and punch attachment
is specified

Q ~n~n~noCDtEETS\O~~~o ~~\..V\!__)\.V\.V J K ~ ; ~VV

8Qe!)QQG)CDCDc)c)CD 8
( SPACE BAR. )

( ( (



-

BOTH-WAY

The usual on-line position. The teletypewriter will transmit and receive and print
the characters transmitted and received.

The localposition. The teletypewriter will print the characters locally but will not
transmit or receive.

An on-line position. The teletypewriter will transmit without printing and will print
the characters received.

NORMAL

LOCAL

Keyboard

The four-row keyboard is shown in Figure 4. The keys are in the main like those on an ordinary typewriter and
are used similarly. There are several keys not present on the ordinary typewriter keyboard and the use of these is
described where necessary in this manual.

Mains indicators

The green mains indicator/switch is at the right-hand side of the keyboard. The lower section, which does not
have a caption, is illuminated green when the mains supply is connected to the machine. The upper section, captioned
START, is illuminated green while the motor is running.

Typewriter log

The typewriter log is located above the keyboard. Every message input by the user and every message output by
the system may be recorded on this log. Thus it provides a useful means of reference for the MOP user.

Paper tape punch

If present, the paper tape punch is located to the left of the keyboard. It punches in standard 8-track 1900 paper
tape code. The punch may be used either off-line (characters typed on the keyboard are punched into paper tape)
or on-line (all characters transmitted and received are punched into paper tape).

Paper tape reader

If present, the paper tape reader is located to the left of the keyboard in front of the paper tape punch. It reads
and interprets on the typewriter log standard 8-track 1900 paper tape code. The reader may be used either off­
line (the characters are interpreted on the log) or on-line (the characters are transmitted and interpreted on the
log).

Switching on

The user should make sure that the transmission plug is securely in its socket. The terminal should be connected
to the mains supply and the mains current switched on. Both sections of the mains indicator at the right-hand side
of the keyboard will then be illuminated green. During the course of a MOP session the upper half of the indicator
light may go out. This indicates that the motor has stopped running; it may be restarted by pressing the upper
half of the switch (labelled START). This is necessary only if the user wishes to transmit a message. If he is
waiting for a message from the system, there is no need for him to restart the motor; the system itself will send
a signal to do this before it sends its message to the terminal.

The user should find out from the installation manager if his terminal is directly linked to the computer or if a
private switchboard system is being used. If there is a private system in operation, then he must fulfil its requirements
(for example, he may have to press the BREAK key to contact the SWitchboard) before going on to the general
switching on procedure described below. .

In order to get into communication with the system, the user should:

1 Turn the function switch (see Figure 3, page 5) to the NORMAL position.

2 Press the key marked CTRL (short for CONTROL) and hold it down while pressing the A key (see Figure 4,
page 6).

3 Press the key marked ACCEPT.

He should then wait for the system to output an introductory message, in the form:

THIS IS GEORGE 3 MARK 1.3 ON 17 JUL 69
17.06.30~

4194(1.70) 7



-
GENERAL HINTS
This section contains somegeneral information about using a MOPterminal. It describeshow to input a message,
how to deal with mistakes, what to do if the terminal becomes disconnected from the system and what to do in
the event of a breakdown.

Inputting

The symbol +- is the invitation to type. If the user does not type anything within approximately 60 seconds of
receivingthis invitation, the terminal will become disconnected from the system (seeDisconnection, below). On
receivingthe invitation to type, the user sends a messageto the systemby typing on the keyboard. If he wishes
to type a messagethat is longer than one line on the log, he must type a hyphen, known in this context as a
continuation character,followed by the ACCEPTkey, or a newline character; he can then continue his messageon
the next line. Whenthe messageis complete, he must press the ACCEPTkey to send it to the system. TheACCEPT
key must be pressedafter every line the user wants to send.

Mistakes

If the user makes a mistake in typing in a messagehe can cancel the whole messageby pressingthe CTRL key and
the CNCL(short for CANCEL)key (see Figure 4, page 6). The systemwill respond by outputting the word
CANCELon a new line followed by a left-facingarrow. This might appear on the log as:

~TUESDAY
CANCEL~

The left-facingarrow is again an invitation to input a messageand the user should now type the correct message.

It may be, however, that the user makes a slip only in one or two characters. In this case, he can correct the
character(s) that are wrongwithout cancellingthe entire message.If he has typed one wrong character he should
type one left-facingarrow (SHIFT and letter 0, see Figure 4, page 6) and this will cancel the wrong character.
Similarly, two left-facingarrowswill cancel two wrong characters and so on. Suppose a user types ABCDFGinstead
of ABCDEFGand wants to correct his mistake. He does this by typing two left-facingarrows and then EFG. This
would appear on the log as:

~ABCDFG ~~EFG

Disconnection

TheMOPterminal will time out, that is, become disconnected from the systemwhenever the user does not respond
to an invitation to type within approximately 60 seconds.To reconnect the terminal to the system, he should press
the CTRL and A keys followed by the ACCEPTkey. A suitable message,for example:

RESTARTED AT 17.09.50
is then output and another invitation to type is issued.

Breakdowns

SYSTEM

If the systembreaks down during aMOPsession,the message:

THE SYSTEM HAS TEMPORARILY CLOSED DOWN
is sent to the terminal. The user must then wait for the system to become operable againand output another
introductory messagebefore loggingin to continue his job.

TERMINAL

The operator is informed whenevera MOPterminal breaks down. In addition, the job being run from the terminal
is abandoned and the monitoring me, which givesdetails of what the job has been doing and what has happened
to it (seeMonitoring, page 33), is listed on a line printer at the installation. Should the line become operable again,
the operator will inform the user who should get into communication with the systemas describedunder Switching
on, above.

TRANSMISSION

If a transmissionerror occurs while the MOPuser is typing, the message:

TRANSMISSION ERROR - PLEASE REPEAT

8 4194(1.70)



-

is output. The user is then givenan invitation to type and should re-type the last line of his input.

LOGGING IN

The LOGIN command

The first step in loggingin is to issue a LOGINcommand (one of the commands in the GEORGE3 command
language).The user must givehis user name so that the system will recognizehim and also identify his job by a
job name. For example, he might givethe command:

LOGIN MOPJOBN01, :ACCOUNTS
whereMOPJOBNOI is the job name and: ACCOUNTSis his user name (all user names start with a colon). Note
that there is a spacebetween LOGINand the job name and that there is a comma between the job name and the
user name. Whenstarting hisMOPsession, the user can choose his own job name. Ajob name must consist of up
to twelve alphanumeric, or hyphen (-) characters, with the first character alphabetic. The user should choose a job
name that will mean something to him when he is referring to the log afterwards, for exampleMAY»ACCTSor
PROGRAMTEST.

Once the systemhas accepted the LOGINcommand, the message:

TYPE PASSWORD~
will be output. The user must then type his password.

Passwords

Whena user issuesa LOGINcommand, he giveshis user name so that the system can recognizehim. The system
then askshim to type a password so that it can check that he really is who he claimsto be. GEORGEkeeps a
record of all the user names and the correspondingpasswords.Initially the password corresponding to a user
name is set to twelve spaces so that the new user should givethis as his password in response to the TYPEPASSWORD+­
message.

Note: There is no need to type the twelve spaces;the system will automatically add spacesto the end of what is
typed so that the password contains twelve characters in all. Thus it is sufficient just to pressthe ACCEPTkey.
This will then be interpreted as a password of twelve spaces.

If the user has made a mistake in givingeither his user name or password, the systemwill print out the message:

ERROR IN LOGIN: USER NAME/PASSWORD INVALID
17.08.30~

The second line is an invitation to type and the user should log in again, taking care to get the user name and
passwordcorrect.

Whenthe LOGINcommand and the passwordhave both been input correctly, the systemwill output a message
to indicate that the user is now properly loggedin and that his MOPsessionhas started, for example:

STARTED :ACCOUNTS,MOPJOBN01,17JUL69 17.08.45
17.08.55~

GETTING A NEWPASSWORD

At this stage, the new user can changehis password from the initial one of twelve spacesto any twelve characters
he pleases.However,he would be well advisedto choose a password that he can remember easily sincehe will
have to giveit accurately the next time he wants to start a MOPsession.To changehis passwordhe should respond
to the invitation to type output after the STARTED .... messageby typing a NEWPASSWORDcommand, for
example:

NEWPASSWORD ABRA-CADABRA
where ABRA-CADABRAis the password the user has chosen. Note that there must be a spacebetween
NEWPASSWORDand the password given.He should then press the ACCEPTkey to transmit his command. The
systemwill in future expect ABRA-CADABRAas the password associatedwith this user's name. The user may have
more than one spacebetween NEwPASSWORDand the password; the system will take the first non-spacecharacter
as the first character of the password. If the user wishes, he may specify a passwordwith less than twelvecharacters.

4194(1.70) 9



-0
~
~
V.
t'-<c
!!S.
~
5·
"l::l r-..~ •<"':>~
~
~ •
•
•
•

~

--
THIS IS GEORGE 3 MARK 1.4 ON 4AUG69
14.25.20 LOGIN MOPJOBN011:ACCOUNTS
TYPE PASSWORD~ OLDPASSWORD
ERROR IN LOGIN:USER NAME/PASSWORD INVALID
14.26.30~ LOGIN MOPJOBN011:ACCOUNTS
TYPE PASSWOR~ NEWPASSWORD
STARTED :ACCOUNTSIMOPJOBN011
14.28.25~
TIMED OUT 14.29.30
RESTARTED AT 14.32.45
~ NEWPASSWORD ABRS~A-CADABRA

4AUG69 14.28.20
)
I

}
Introductory message
User logs in
User types password

. Message indicating mistake in user name or password
User logs in
User types password
Logging message
Invitation to type
Terminal times out because user does not reply to invitation to type
Reconnection message
User changes password (mistyping of S corrected)

(

)

(



-

A user can change his passwordat any time during a MOPsessionby givinga NEWPASSWORDcommand in
response to an invitation to type. The systemwill change the expected password as commanded and output another
invitation to type.
The section of log shown in Figure 5 illustrates the loggingin procedure.

SYSTEM MESSAGES

Whilea MOPsessionis in progress, the systemwill output messageson the typewriter log, for example, the message:

ERROR IN LOGIN ,USER NAME/PASSWORD INVALID
mentioned earlier. Aswell as being printed on the log, these messagesare sent to a file, called the monitoring file,
set up by GEORGE for eachjob that is started. This file holds the information as a number of categories and the
user can decide which categorieshe wants to be sent to his terminal. For example, the user willwant to know if
he has made a mistake in typing a command but will probably not be interested in receivinga copy of all the commands
he issues.The system is preset to send to the terminal all the information except copies of the commands issued.
The new user will probably not want to alter this selection. Details of the contents of the various categoriesof the
monitoring file are givenin Chapter 5 underMonitoring. page 33. That section also explains the use of the REPORT.
command to alter the selection of information output, if this is desired.

The next chapter provides an introduction to the conversational language,JEAN, which has been designedto solve
problems that can be expressed in terms of mathematics or of formal logic.The new user may find it helpful in
gainingexperience in using the terminal if he reads the description givenand attempts to solvea few simple
problems using JEAN. If the user is interested only in compilingand running programs from his terminal, he should
omit Chapter 3 and go straight to Chapter 4.

4194(1.70) 11



-

Chapter 3 JEAN

This chapter provides a brief introduction to the conversational languageJEAN. Enough information is givento
enable the user to carry out fairly simplemathematical operations from his MOPterminal. The full JEAN language
allowscalculations and operations much more complex than those described in this manual. Readers requiring a
full specification of JEAN should consult the JEANmanual.

THE JEAN PROGRAMS

JEAN is a conversational language;it has been designedwith a smallbasicvocabulary and is easy to learn so that
people can have accessto the calculatingand programmingpowers of a computer without having to learn a conventional
programminglanguage.Problemsmay be presented in terms of arithmetic, algebraor logic using standard mathematical
or Boolean notation.

There are two methods of calculation availableto the JEAN user: programmed calculation using indirect commands
and instant calculation using direct commands obeyed immediately they are received by the system.

In programmed calculation, the user numbers each command as he givesit. The commands thus numbered are not
implemented directly but are stored in the computer. When the user has built up a program or a subroutine in this
way, he then givesa direct command to execute it. This method of calculation allowsa user, for example, to test a
subroutine before including it in a program; thus logic errors can be reduced and program testing time saved.

In instant calculation, each command is executed as soon as it is receivedby the system and the answer is printed
out on the log. Only instant calculation is described in this chapter.

The JEAN system is also availablein French and German versionsand the user can specify the French or German
programwhen beginninga run. These programsare identical in their operation and input languageto the English
versionbut all the systemmessagesare output in either French or German, depending on the versionbeing used.

Loading the program

To load the JEAN program, the user should type JEAN when he gets an invitation to type, for example:

17.12.30+- JEAN
This command will load the Englishversion of JEAN. Ifhe wishes to use the French or Gentian versions,he should :
type JEAN F or JEAN G as appropriate. This chapter describesonly the Englishversion.

Whenthe systemhas loaded the required JEAN program, the message:

JEAN IS READY

is output. The user can now go ahead and givea command in the JEAN language.

JEAN EXPRESSIONS

An expression is formed by combiningnumbers, variablesand function, by means of operators. The user will
probably want to employ arithmetic and algebraicexpressions(the most commonly used types of expression)when
specifyinga problem. To take a very simpleexample, if he wants to add 1 and 2, he will specify this as 1+2.This
is an example of an arithmetic expression and the plus sign,+, is an example of an arithmetic operator. When
defininga JEAN expression, the user can use arithmetic operators and certain standard mathematical functions.

Functions

The user may employ the standard mathematical functions availablein JEAN, for example:

SIN (X) (where X is in radians)
COS(X) (where X is in radians)

4194(1.70) 13



-

LOG (X)
EXP(X)
SQRT (X)

Arithmetic operators

The user can employ any of the arithmetic operators availablein JEAN. These are:

+ addition

subtraction

* multiplication

division

** or t exponentiation

Order of evaluation

In JEAN expressions, functions are alwaysevaluated first. The operators are then applied in the order:

I Exponentiation

2 Multiplication and division

3 Addition and subraction

Operators are alwaysapplied from left to right. Parenthesesmay be used to make the meaningunambiguous.A
part of an expression that is in parentheses is evaluatedbefore the rest of the expression.

For example, the expression:

A*(B+C)/Dt2*SIN(E)

will be evaluated as:

a (bic) X sin(e)
d

JEAN COMMANDS

All the messagesinput to JEAN take the form of JEAN commands. Each command tells the system to carry out
somefunction and, in instant calculation, the systemobeys the command and responds by typing an answer.As
with the MOPsystem, the symbol -E- is the invitation to type and the ACCEPTkey must be pressed to transmit
each command to the system.

The TYPE command

This command causesthe system to evaluate an expression and print out the answer. For example, if, in response
to an invitation to type, the user types:

-E-TYPE2+2
the systemwill reply immediately:

2.+2 = 4
More than one expression can be evaluated by the sameTYPE command. The required expressionsare listed after
TYPE and separated from eac.i other by commas. For example, if the user types:

the systemwill reply:
2+2 = 4

17.0+6.3 = 23.3
6*3 = 18

5/ (2+3) = 1
SQRT(4) = 2 -_

14 4194(1.70)



-

Note that numbers can be expressedboth as integers and asmixed decimal numbers. A full stop is interpreted as
a decimalpoint.

Examples

UseJEAN to find the valuesof the following arithmetic expressions:

1 17 X 18

2 16+ (t)2

3 15*- 2*
4 (1.62345 X 3.472681)

(6.483)*
-1

5 (921)25

6 In (cos 0.42) + In (sin 0.42).

The answers to these exampleswill be found at the end of this chapter, on page 18.

The SET command

This command is used to assigna value to a variable. For example, the command:

SETX=3.5

will assignthe value 3.5 to the variableX and every time X is givenin an expression, the systemwill substitute the
value 3.5 before evaluating it. For example, if the user now types:

+-TYPE X+2
the systemwill reply:

X+2 = 5.5
Everyvariableused in a TYPE commandmust previously have been assigneda value by a SET command. Similarly,
it is permissibleto include variables in an expressionon the right-hand side of the equals sign in a SET command
but only if they have previouslybeen assignedvalues. For example, the command:

SET Y = LOG(Xt2)

ispermissibleonly if a SET command assigninga value to X has already been given.

The followingexamples illustrate how the SET and TYPE commands together can be used to evaluate expressions
containingvariables. .

+-SET X=19.47
+-TYPE Xt2+7*X....3

Xt2+7*X~3= 512.3709

2 .+-SET Y=LOG (1.375)
+-TYPE SQRT (Y)

SQRT'(Y) = .5643170484

Examples

7 Use JEAN to evaluate the followingexpressions for

*x=2,y= 17.645,z=eY

(a) 1n(x+y)

(b) x2 + 3xy +y2
(c) eY +z

8 Do Example 7 without using the SET command.

4194(1.70) 15



-

The answersto these exampleswill be found at the end of this chapter, on page 18.

JEAN CLAUSES
A JEAN clausedetermines the conditions under which a command is obeyed. The only clause described in this
manual is the FOR clause,which modifies the action of a command.

The FOR clause

The FOR clausespecifiesthe value or values for which the command is to be obeyed and the whole command is
re-obeyed for each of these values.For example, if the user types:

the systemwill reply:

Xt 2+7*X-3 =
xt 2+7*X~3 =
Xt 2+7*X-3 =

205.2725
20.1525
81.1824

Values in FOR clausesmay be stepped. Stepped valuesare typed in the form:

S(l)T

where S is the starting value,

I is the increment and

T is the terminating value.
. For example, if the user types:

+- TYPE Xt2 FOR X:;1(1):5
•

The systemwill evaluateX t 2 for X = 1,2,3,4 and 5 and print out the reply:

xi-2 = 1
Xt 2 = 4
Xt 2 = 9
Xt 2 = 16
xt 2 = 25

The two ways of expressingvaluesmay be mixed in one FOR clause. For example, the command:

+-TYPE Xt2 FOR X=i,2 (1)4,5
is equivalent to the previousTYPE command described.

Examples

9 UseJEAN to evaluate the followingexpressions for the values stated.

(a)

(b)

(c)

In(cosx) for x= 0.2 and 0.5
~x for x = 5,10,15 and 20

eXfor X = 0.5,3,6,9,12 and 20

10 Do Example 9 without using any FOR clauses.

INTERRUPTS

An interrupt occurs when the computation or output of the JEAN system is halted; JEAN types an appropriate
messageon the log.The user is then invited to input a command to remedy the situation.

16 4194(1.70)



If an error is detected in the form of a command, for example, if the user types SETX = 2 instead of SETvX = 2,
the systemwill respond with EH? and an invitation to type. The command should then be givenin its proper form.

If an error is detected while a formula is being evaluated, an appropriate error messageis given.For example, if the
user givesthe command:

~ TYPE X+2
without havingdefined X, he will receivethe message:

INTERRUPTED:X =???

DelETING JEAN

The user can delete the JEAN programwhen he has finished using it by givingthe JEAN command FINISH. The
MOPsystem then outputs a messagesayingthat the program has been deleted and telling the user how much mill
time has been used. He is then givenan invitation to type a GEORGE command and can go on with his MOP
session.

ANSWER TO EXAMPLES

The answersto the examples are givenon the log shown overleaf.

4194(1.70) 17



-

THIS IS GEORGE 3 MARK 1.4 ON 5AUG69 ~·

16.32. 25<-LOG1N JEANJOB" ACCOUNTS_- - - - - - - - - - - - - - - - - - - - - - - - "-.- - - - - - - -­
TYPE PASSWORD+-ABRA-CADABRA_- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
STARTED ;ACCOUNTS,JEANJOB, 5AUG69 16.34.25 ---- -----------------
16.34.30 <-JEAN_ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ - - - - - - - - - -16.37.51 0.04 CORE GIVEN 7680 .- ·

0i0

16.38.52 0.06 CORE GIVEN 7168 -' __ ----- -

JEAN 1S READY (/4) .- '
<-TYPE 17*18,16+(/<-2/3) t2,15.75-2.5,1.62345*3,472681/SQRT (6.483),921t.04 .:.....17*18 = 306 i- "

16+ (2/3) t 2 = 16.44444444 ,
15.75-2.5 = 13.25 . _

1.62345*3.472681/SQRT (6.483) = 2.214194653 . _,
. 921 t .04= 1.313924423 ~ •.

<-TYPE LOG(COS( 0.42))+LOG(SIN(0.4") "'" ',
LOG(CllS (0 .42))+LOG (SIN (0 .42))= -.9879973896 _
•.SET X=2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . ••,

<-SET Y-17.645
<-SET Z=EXP (SQRT( Y))
<-TYPE LOG(X+Y~Xt2+3*X*Y+Yt2,EXP (Y)+Z.

LOG(X+Y) = 2.977 82285 3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
xt 2+3*X*Y+Y t2 = 421.216025 _

EXP (Y)+Z = 46039093.39 .......__..__ ,
-TYPE LOG(2+17.645) ,2t2+3*2*17.645+17.645t2 _
LOG(2+17.645 ) '"' 2.977 822853 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .-
2t2+3*2*17.645+17.645t2 = 421.216025 .J"

-TYPE EXP (17.645)+EXP(SQRT( 17.645)) ,
EXP(17.645)+EXP(SQRT (17.645))= 46039093.39 .••
+--TYPELOG(COS(X))FDR X=.2, .5 _
LOG(COS(X))'" -2.013477306&-2 ..,
LOG(COS(X)~ -.1305842405
<-TYPE SQRT(X)FOR X=5 (5)20 _

SQRT(X)= 2.236067978_
SQRT(X)'" 3.16227766
SQRT(X)- 3.872983346
SQRT(X)"" 4.472135955

+-TYPE EXP (X) FOR X= .5, 3 (3) 12,20 .•.... _
EXP (X) '" 1.648721271 ., _
EXP(X)= 20.08553693
EXP(X)= 403.4287936
EXP(X)= 8103.08393
EXP(X)'" 162754.7915
EXP(X)", 485165195.7

+-TYPE LOG(COS( .2)),LOG(COS (.5)) . ~
LOG(COS (.2))'" -2.01347706&-2 ~ __
LOG(COS (.5))= -.1305842405
+lYPE SQRT(5) ,SQRT(10) ,SQRT (15) ,SQRT( 20) . .__ . _

SQRT (5) '" 2 • 2360 679 78 - _ - - - - - - _ - - _ - - _ - - - _ - _ _ _ ",- _
SQRT(10)- 3.16227766
SQRT(15)= 3.872983346
SQRT(20) = 4.472135955,

+-TYPE EXP(.5) ,EXP(3) ,EXP(6) ,EXP(9) ,EXP(12),EXP(20) -
EXP(.5) 1.648721271 •..•.
EXP(3) '" 20.08553693
EXP(6) '" 403.4287936
EXP(9) '" 8103.08393

EXP (12) 162754.7915
EXP ~O) - 485165195.7+-FINISH . _

0.07 ,DELETED ,HH__ ._ .._. . _
16.58.28 0 .0 7 DELETED_._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
16.58.47+--LOGOUT_. . _
16.58.59 0.10 FINISHED ~

BUDGET. USED LEFT ._ _ _ _ _
MONEY +2 +995
TIME(M) +18 +9911

-- -- --_-!!'

18 4194(1.70)



-

----_-

Introductory message.
User logs in.
Password given.
Logging message.
User loads JEAN.
Logging message.
Logging message.

~------

JEAN' introductory message.
Command to answer Examples I to 5. (Mistyping corrected.)
Answer to Example I.
Answer to Example 2.
Answer to Example 3.
Answer to Example 4.
Answer to Example S.
Command to answer Example 6.
Answer to Example 6.
Commands to answer Example 7.

Answer to Example 7 (a).
Answer to Example 7 (b).
'Answer to Example 7 (e).
Command to answer Examples 8 (a) and 8 (b).
Answer to Example 8 (a).
Answer to Example 8 (b).
Command to answer Example 8 (c).
Answer to Example 8 (c).
Command to answer Example 9 (a).
Answers to Example 9 (a).

Command to answer Example 9 (b)
Answers to Example 9 (b).

Command to answer Example 9 (e).
Answers to Example 9 (e).

Command to answer Example 10 (a).
Answers to Example 10 (a).

___ Command to answer Example 10 (b).
___ " Answers to Example 10 (b).

______ Command to answer Example 10 (e)
____ - __ Answers to Example 10 (e).

______ User deletes JEAN.
______ . Logging message.
____ .....,_ Logging message.

___ User logs out.
_ _ Logging message.
_ _ _ _ __ Budget details.

4194(1.70) 19



-

Chapter 4 Compilation

The GEORGE3 command languageincludes commands that have the effect of translating a programwritten in a
programminglanguageinto a binary program that can be loaded into the core store of the computer. These commands
are known as compilation commands; by means of these commands the user has accessto compilers for programs
written in Algol,COBOL,EMA,FORTRAN,PLANand PLAN4.

Each of the compilation commands allowsfor severalalternative courses of action and these are specified in
parameters by the user when issuingthe command. There are parameters specifyingtheorigin of the source program
and the destination of the semi-compiledoutput, the binary output and the compilation listing.A full description
of the facilities availablewith compilation commands is givenin Operating systemsGEORGE3 and 4; under
Program compilation in Chapter 8 there is a general description of the commands and full details are givenin
Chapter 19 both under Program compilation macros and under the specificationsof the individual commands.

. f I'

Since the compilation commands allow for severalinessentialoptions there are commands, the Q-commands, that
provide a subset of the full facilities to speed up the compilation of programs. Since only the basic facilities are
catered for in Q-commands, the implementation of these is quicker than the implementation of the full compilation
commands.Only the Q-commandsare described in this manual but the information givenis sufficient for the user
to be able 10 compile and run his source program.

INPUTTING SOURCEPROGRAM

If a user has a program in cards or paper tape, he can send it to the installation to be read in from a card or paper
tape reader as appropriate. This method of inputting source program to a file is described in Chapter 5 under
Inputting data from a basic peripheral, page 29. On the other hand, if the program is in a high levellanguagesuch
as FORTRAN, the user may wish to type it in line by line. This method of storing source program in a file is
described in this section.

For example, if the user issuesthe command:
INPUTPROGFILE

the systemwill create a terminal file called PROGFILEbelonging to him. Hewill then receivean invitation to
type consistingof a left-facingarrow and should type the first line of his source program. Once this has been
transmitted, it will be stored in the file calledPROGFILE and the user will receiveanother invitation to type. He
should go on typing in the lines of his program in response to the invitations to type output by the system.When
he has finished inputting the program, he should type four asterisks, ****, which the systemwill interpret as the
. terminator fo~the file. (Terminators are described in detail in Chapter 5 under Inputting data from aMOP terminal
page 28.) This\vill 'appearon the log as: ..

11.06.30~ INPUTPROGFILE

~ first line of source program

~ second line of source program

~ last line of source program

~ ****
The name chosen for the file must not havemore than twelve characters, must start with a letter and must consist
entirely of letters, digits, spacesand hyphens.

The file created will be a card file; if the user wishes input to the compiler to be read from this file, he should
specify in the compilation command that the file is a card file.

4194(1.70) 21



-
It is not compulsory for the user to store his program in a file before he compiles it. One of the options in the
compilation commands allows the user to type in his program line by line (as with the INPUT command) in response
to invitations to type issued after the compilation command has been accepted. In this case, however, there will be
no permanent record of the source program in the filestore and the user will not be able to edit it (see Chapter 7)
and recompile should this be necessary; he will have to type in the whole of the corrected program. This option is
described in more detail later in the chapter.

THE Q-COMMANDS

To compile 'an Algol, COBOL, EMA, FORTRAN, PLAN or PLAN 4 program, the user should issue a QALGOL,
QCOBOL, QEMA, QFORTRAN, QPLAN or QPLAN4 command as appropriate. Each of these commands has three
parameters specifying the name of the file (if any) containing the source program, the name of the file (if any) in
which the binary program is to be stored and whether the listing is to be output on the log as well as on a line
printer.

Each command takes the form:

verbvparameter list

where verb is Q followed by the name of the language concerned, for example, QALGOL, QFORTRAN
etc.

is a list of parameters, separated by commas, that define the action to be taken by the
compiler.

Note that the parameters of the Q-commands must occur in a fixed sequence viz. Source, Binary, Output Listing.
Parameters may be null, that is, consisting of only the comma separators. The Output Listing parameter is the only
one that may be omitted (see Examples, page 23).

parameter list

Source

FUNCTION

Specifies whether the source program is held in a file or is to be typed in from the terminal.

FORMAT

If the program is held in a file The name of the file.

If the program is to be typed in from the terminal The parameter is null.

EXAMPLE

SOURCEPROG I The program is held in a file called SOURCEPROG.

Binary

FUNCTION

Specifies whether the binary output is to be stored in a file or loaded into core store. If the program is overlaid,
it must be stored in a file.

FORMAT

If the program is to be stored in a file

If the program is to be loaded into core store

The name of a previously created disc file.

The parameter is null.

EXAMPLE

BINPROG I The program is stored in the disc file called BINPROG, which must already exist.

Note: This parameter is always null for QPLAN 4.

22 4194(1.70)



-

Output Listing

FUNCTION

Specifieswhether the user wants the listing printed on the typewriter log as well as output on a line printer.

FORMAT

If the listing is not to be printed on the log

Any character or set of characters excluding - (hyphen) and%
(percentage sign).The listing on the line printer is identified
by the characters given.

The parameter is omitted.

If the listing is to be printed on the log

EXAMPLE

MOPPLAN I The listing is output on the log and identified on the line printer output asMOPPLAN. •
Examples

AMOPuser has an EMAprogram that he wishes to compile stored in a file called EMAPROG.Hewants the
listing sent to his MOPterminal and the binary program loaded directly into core store. To do this he givesthe
command:

QEMAEMAPROG,,MOP

The system then loads the EMAcompiler and outputs a loggingmessagesayinghow much core store the compiler
is occupying. This is followed by the compilation listing.

2 AMOPuser wants to type in a PLAN4program line by line after the compilation command has been accepted.
Hewants the compilation listing output on a line printer but not sent to his MOPterminal thus he issues the
command:

QPLAN4 "
The system then loads the PLAN4compiler and outputs a loggingmessagesayinghow much core store the
compiler is occupying. This is followed on a new line by an invitation to type. The user can then go ahead and type
in his program. The binary program produced will be loaded directly into core store.

3 AMOPuser has a PLAN4program that he wants to compile stored in a file calledPLAN4PROG.Hewants the
compilation listing sent to his MOPterminal. Hence he issuesthe command:

QPLAN4PLAN4PROG,,MOPLIST

The system then loads the PLAN4compiler and outputs a loggingmessagesayinghow much core store the
compiler is occupying. This is followed by the compilation listing.

ERROR MESSAGES

During compilation, error messagesfrom the compilerswill be printed out on the logunless the user has specified
by a REPORT command (seeMonitoring, page 33) that he does not want to receive such information at his terminal.
Details of the meaningsof these messageswill be found in the manual relating to the languageand the compiler
concerned. A list of the appropriate manuals is givenin the Bibliography.

COMPILERS

The compilers used in response to the compilation commands are givenin the table below.

Language Compiler

Algol #XALE
COBOL #XE20
EMA #XMAE
FORTRAN #XFAT
PLAN #XPLM
PLAN4 #XPLN

4194(1.70) 23



-

Chapter 5 Running a program

When running a program from a MOP terminal, the user must tell the system what he wants done at each stage
during the run. He must specify, for example, that he wants a program loaded or how he wants input and output
to his program dealt with. The GEORGE 3 commands to carry out such operations are issued one by one from the
terminal. When a command has been carried out by the system, an invitation to type is printed out and the user can
go ahead and type the next command. This chapter describes the commands that are used to load a program, service
its transfer requests, set mill (processor) time and core limits on it and enter it. In addition, there is a description of
the monitoring system and its use to control the running of a program. The final section describes how to disconnect
ajob from control by the terminal and have it-run in the background while using the terminal to run another job.

LOADING

Source programs

If a user wants to load a program that he has in source form he must input it and have it compiled before it can be
loaded. He does this by issuing one of the compilation commands described in Chapter 4. If the program is loaded
into core store as a result of the compilation command, it is ready to be run. At this stage, the user can take a copy
of the binary program so that he can run it again without having to recompile. This is described under Saving
programs, below. The next section deals with the program in binary form.

Binary programs

If the user has sent the binary output from compilation to a disc file or if he has stored binary program in a file by
means of an INPUT command, he must give a LOAD command before he can run it, for example':

LOAD BINARYPROG

where BINARYPROG is the name of the file in which the binary program is held. He will then receive a logging
message saying how much core store the program is occupying.

SAVING PROGRAMS

Once the user has a binary program in core store, he may then want a copy of it in a file so that he can run it again
without having to recompile. In this case, he should issue a SAVE command, for example:

SAVE SAVEDPROG

where SAVEDPROG is the name of the file in which the binary program is to be held.

The user can choose his own name for the file provided it consists of no more than twelve letters, digits or hyphens
and begins with a letter. Note that the file name must not include any spaces.

Note: If the user does decide that he wants to take a copy of the binary program in this way, he is advised to do
it before making any peripheral connections since these connections will be lost when the program is saved and will
not be restored with the program.

To load a program that has been saved in this way, the user must give a RESTORE command. (A LOAD command
is not permissible because of the format of the file created by the SAVE command.) For example, the command:

RESTORE SAVEDPROG

restores the binary program that was saved by the SAVE command above. The file SAVEDPROG will still contain
a copy of the binary program.

Examples

A MOP user has a FORTRAN program that he wishes to compile. If there are no compilation errors, he wants
a copy of the binary program as well as having it loaded into core store.

4194(1.70) 25



-

Either of the following series of commands will achieve this:

(a) INPUT FORTPROG

first line of program

last line of program

****
QFORTRAN FORTPROG, NAME

SAVE FORTSAVED

The FORTRAN program is input to a file called FORTPROG and compiled from there. The listing is output on
the typewriter log; it will appear between the QFORTRAN and SAVE commands. The binary program produced
is loaded into core store; it is then saved by the SAVE command into a file called FORTSAVED. If the user wants
to. load this program at any subsequent time, he must give the command:

RESTORE FORTSA VED

(b) QFORTRAN ,DISCFORT,MOP

first line of program

last line of program

****
LOAD DISCFORT

A disc file called DISCFORT has already been created (see Chapter 6) to hold the binary program to be
produced. The compilation command is issued and the source program input line by line from the
terminal. The listing is output on the typewriter log; it will appear before the LOAD command. The Binary
Program parameter causes the binary program produced tc be sent to the me called DISCFORT and it is
loaded from there. If the user wants to load this program at any subsequent time, he must give the command:

LOAD DISCFORT

2 A MOP user has binary program that has been input to a file called BINPROG at the installation (see Off-lining
basic peripherals, page 27, for details). To load this program he issues the command:

LOAD BINPROG
'--

He then receives a logging message saying how much core store the program is occupying.

BASIC PERIPHERAL CONNECTIONS

The user can handle the input and output to his program in three ways:

He can input data from the MOP terminal and have the output from the program printed out on the typewriter
log; this is on-lining the MOP terminal.

2 He can connect basic peripherals at the installation directly to the program in core so that information is input
and output in a way similar to that used when running a job in a normal environment. This is not described in
this manual.

3 He can input data to filestore files so that the program can access it when required and have the output from
the program sent to files that he can access when he chooses. This is known as off-lining.

On-lining the MOP terminal

INPUT

If the user wishes to type in data to his program from a MOP terminal, he must issue an ONLINE command
specifying the peripheral channel that is to expect data from the terminal. For example, the command:

26 4194(1.70)



-
ONLINE *CRO

tells the system that, whenever the program in core store issuesa transfer request for card reader 0, t~e user is to be
invited to type in data from the terminal. *CR specifiesthe type of peripheral as a card reader and 0 IS t~e program
unit number, used in the program to identify one particular card reader. If the user had wanted to type in data for
a paper tape reader identified in his program as paper tape reader 2, he would have issued the command:

ONLINE *TR2
Note that when typing in data to servicetransfer requests for a paper tape reader, any shift characters that the program
expects must be included as graphic characters. For example, a newline character should be typed as t*.

Once the program has been entered (seeEntering, page 32), the systemwill output invitations to type and the user
should type in one line of data in response to each of these invitations.

If the user's program has more than one basic peripheral input channel for which he wants to input data from the
MOPterminal, he should include (IDENTIFY) after the peripheralname, that is, *CROor *TR2 in the examples
above.The requests for input to the programwill then be preceded by the peripheral name. For example, if a user
givesthe command:

ONLINE *CRO(IDENTIFY)

the invitation to type data for input to the peripheral channel for card reader 0will be givenas:

*CRO~

instead of just the left facing arrowwhich would be the invitation to type if identification had not been specified.
Clearlyif there is more than one basic peripheral input channel for which data is being fed in from the MOP
terminal, this identification is essential to enable the user to type in data for the correct channel.

OUTPUT

The user can direct output from the program in core to his MOPterminal. To do this, he should issue an ONLINE
command specifyingthe name of the peripheral whose transfer requests are to be servicedby sending the output
to the terminal. For example, the command: .

ONLINE *LPI

tells the system that output from the line printer with program unit number as 1 is to be sent to the MOP terminal.
Output from card and paper tape punch channels can also be sent to the terminal. For example, *CPOand *TPO
identify card punch 0 and tape punch 0 respectivelyso the commands:

ONLINE *CPO

ONLINE *TPO

will cause output intended for card punch 0 and tape punch 0 respectively to be printed out on the typewriter log.
Note that output intended for a tape punch will include shift characters.

If the user wants to direct output from more than one peripheral channel to his terminal, he should include
(IDENTIFY) after the peripheral names in the ONLINEcommand. Each line that is printed on the typewriter log
will then be preceded by the peripheral name, for example:

*LPI line of line printer output

*CPOline of cardpunch output

Off·lining basic peripherals

INPUT

If the user does not want to type in data to the programwhile in core, he can store it in a filestore me and then
givea command that assignsthis file to one of the peripheral channels of the program. Transfer requests for this
channel are satisfied by reading from the file. To handle data in thisway, the user must first store data in the file
and then connect the file to the program. Data can be input to a file either from the MOPterminal or from a basic
input peripheral at the installation; in both cases the user givesan INPUTcommand to store the data and an ASSIGN
command to connect the file to the program.

4194(1.70) 27



-
Inputting data from a MOP terminal

The user can store data in a file from his MOPterminal in just the sameway as he can store source program ina
file (see Inputting source program, page 21). Hemust issuean INPUTcommand from his terminal t~ cre~te a
me and then type in the data line by line, in response to invitations to type outp~t by the system. Thismight appear
on the typewriter log as:

l0.50.42~ INPUT CARDDATA

~ first line of data

~ second line of data

~ last line of data

~ ****

Note that the system interprets four asterisksas the terminator for the file. The four asterisks are stored in the me
followedby a blank record. The flle thus created is suitable if the user's program expects the last line of data to be
four asterisks.However,if the program expects some other four characters as the last line of data, the user can
specify these characters as the terminator for the file. For example, if he chooses four hash marks as the file
terminator, he must givethe INPUTcommand as:

IO.50.42~ INPUT CARDDATA,S####

The character S specifiesthat the four hash marks will be stored in the file followed by a blank record.

If the user does not want the terminator to be stored, he should precede the terminator with T. Thus, if the user
types:

I0.50.42~ INPUT CARDDATA,T****

~ first line of data

~ second line of data

~ last line of data

~ ****

The file CARDDATAwill contain the data up to but not including the four asterisks.

Examples

INPUTCARDDATA

first line of data

last line of data

****

2 INPUTCARDFILE,T????

first line of data

last line of data

????

28

A card file called CARDDATA is created; it contains all the data
typed in followed by a record containing four asterisks and a blank
record.

A card file called CARDFILE is created; it contains the data typed
in but not the four question marks.

4194(1.70)



-

last line of data

####

A card file calledCARDINFO is created; it contains the data typed
in followed by a record containing four hash marks and a blank
record.

3 INPUTCARDINFO,S####

first line of data

Inputting data from a basicperipheral

If the user wants to input data to a filestore file from a basic peripheral at the installation, he must precede the
data with an INPUTcommand punched in a separate card or before a newline character in paper tape. In the case
of an INPUT command issued in this way, the user must include his user name as the first parameter of the command
with the name of the file as the second parameter.

For card files, that is, where the INPUTcommand is issued from a card reader, the command is otherwise identical
to that which would be issued from the MOPterminal. For example, if the user's user name is :ACCOUNTS,the
three commands issued at the installation that would be equivalent to the commands explained in the examples
above are:

I INPUT :ACCOUNTS,CARDDATA

2 INPUT :ACCOUNTS,CARDFILE,T??_??

3 INPUT :ACCOUNTS,CARDINFO,s####
If the user is inputting information to a paper tape file, he may specify the mode of the file to be created. For
example, if he givesthe command:

INPUT :ACCOUNTS,TAPEFILE,GRAPHIC

the filewill be in GRAPHICmode. The modes availableare:

ALLCHARcorresponding to mode #22

GRAPHICcorresponding to mode #12

NORMALcorresponding to mode #02

If no mode is specifiedNORMALis assumed.Note that the data in the file must be in the mode that the user's
program expects. The mode parameter must be either the third or the fourth parameter in the command. (The
sequence of the terminator and mode parameters is immaterial.) For example, to create a paper tape file called
TAPEDATAin mode #22 with ####as its terminator, the user types:

INPUT :ACCOUNTS,TAPEDATA,ALLCHAR,s####

first line of data

last line of data

####

Connecting a file to a program

Once the user has stored data in a file, he must connect the me before he enters the program. This he does by giving
an ASSIGNcommand specifyingthe name of the peripheral channel and the name of the me involved.For example,
the command:

ASSIGN *CRO,CARDDATA

tells the system that transfer requests for card reader 0 are to be servicedby reading data from the file called
CARDDATA.

Appropriate ASSIGNcommands to connect peripherals to the files created by the INPUT commands givenare
describedbelow.

4194(1.70) 29



-

Input medium INPUT command ASSIGN command

MOPterminal INPUTCARDDATA ASSIGN*CRO,CARDDATA

Card reader INPUT :ACCOUNTS,CARDFILE ASSIGN*CRl,CARDFILE

Paper tape reader (in INPUT :ACCOUNTS,TAPEFILE, ASSIGN*TRO,TAPEFILE
mode #22) ALLCHAR

Paper tape reader (in INPUT :ACCOUNTS,TAPEDATA ASSIGN*TRl,TAPEDATA
mode #D2)

The file named in the ASSIGNcommand need not have been created by an INPUTcommand specificallyfor that
ASSIGNcommand; it may have been created previously. In this case there are certain restrictions on the files that
may be connected to the various types of peripheral channel. These are discussedunder Restrictions on files, below.

OUTPUT

If the user wants output from his program to be sent to a filestore me instead of to hisMOPterminal or an on-line
peripheral, he can connect the peripheral channel to a me by means of an ASSIGNcommand. For example, the
command:

ASSIGN *LPO,OUTFILE

tells the system to send output intended for line printer ° to a file calledOUTFILE.Whenhe wants to know the
contents of the me later, he can givea LISTFILE command (seeListing filestore files, page 39) to print or
punch out a copy of the me.

If the user wishesto write information at the end of an existing file, he must type (APPEND)after the me name
in the ASSIGNcommand, for example:

ASSIGN*LPO,OUTFILE(APPEND)

RESTRICTIONS ON FILES

Input

The flle specified in the ASSIGNcommand must already exist

2 If the peripheral specified in the ASSIGNcommand is a paper tape reader, the filemust have been created by
an INPUT command from a paper tape reader. The mode of the filemust correspond to the mode of the
instructions that are to read data from the file

31 If the peripheral specified in the ASSIGNcommand is a card reader, the filemay have been created by one of
the following:

(a) An INPUTcommand from a card reader

(b) An INPUTcommand from a paper tape reader where GRAPHICmode has been specified

(c) An INPUTcommand from aMOPterminal where the data has been input in card format

(d) An ASSIGNcommand specifyinga card punch

(e) An ASSIGNcommand specifyinga line printer

4 The user must be allowed to read the file. Accessto files is controlled by the system by means of user traps
(seeUsertraps, page 44). If the file is one the user has created himself, he will be allowed to read it unlesshe
has givenan appropriate command to alter his traps. If the file belongs to another user, the owner of the me
must have giventhe current user permissionto read it

Output

If the file already exists, the user must be allowed to write to it (see Usertraps, page 44); it will then be emptied
and written to from the start. If the user wishesonly to write additional information at the end of a file, he
need not be allowed to write to it, but must be allowed to append. In either case, the owner of the flle, whether
the current or another user, must have giventhe appropriate command to allow access

2 If the file does not already exist, it will be created and written to from the start

30 4194(1.70)



-

Releasingperipherals
It is notnecessary to releasea peripheral channel before reallocating it. For example, the user may want to on-line
hisMOPterminal when his data file is exhausted. Hewill have giventhe commands:

INPUT CARDDATA

first line of data

last line of data

****

ASSIGN *CRO,CARDDATA

Whenthe program has read all the data in CARDDATA, the next transfer request will go illegalbecause the file is
exhausted. The message:

FILE *CROEXHAUSTED

is printed out on the typewriter log followed by a loggingmessagegivingdetails of the amount of processor time
used and the stage the program has reached, for example:

om :FAILED :PROGRAMAT 92",

where 92 is the addressof the instruction at which the program failed. The user can then givethe command:

ONLINE*CRO

and resumehis program, typing in the rest of the data from his terminal.

CONTROLLING THE RUN

Before entering his program, the user should consider how he wants to control its running. He can set limits on the
amount of mill time and core store availableto the program. The monitoring system (seeMonitoring, page 33)
will inform him of any errors in his run and he can then take what action he thinks necessary. In addition, he can use
the MONITORcommand to enhance the monitoring facilities. The rest of this chapter describeswhat conditions
in the run will giverise to messageson the log and the user is advisedto read this before entering his program so
that he will be able to deal with whatever situations arise.

Setting a time limit

In order to avoid usingup central processor time if the program goes into a loop, the user can set a limit on the
amount of mill time that may be expended on the run. Whenthis runs out, he will be informed by the message:

TIMEUP

on the log. For example, the command:

TIME2SECS

will set a limit of two seconds on the mill time of the program concerned.

SECSand MINSare the only sets of alphabetic characters allowed; if neither is given,SECSis assumed.Thus the
command:

TIMES

will set a mill time limit of five seconds.

If this command is not given,the mill time limit will be set automatically to a time determined by the installation
manager.

Alteringthe core allocation

The user can alter the amount of core store allocated to his program at any time while the program is in core.
If the user wishes to change the allocation because the core requirement is not correctly specified in the program's
request slip, he must givethe requisite command before the program is entered; if he wants to change the allocation

4194(1.70) 31



-
while the program is running, he can givethe command at any time after the program is loaded. Note that he must
include an instruction in the program that outputs a messagewhen the allocation is to be changed. This will cause
a program event (seeProgram events, page 35) and givethe user an opportunity to issue the command.

The CORE command alters the amount of core store availableto a program. For example, if the user givesthe
command:

CORE 4096
the programwill be allocated 4096 words of core store. The number givenin the command is alwaysrounded up
to the nearest higher multiple of 64 if it is not already a multiple of 64. If the core requested is too much for the
sizeof the machine, the maximum core allowableis given.

Once the system has obeyed this command, a messagestating the amount of core that has been givenis printed out
on the typewriter log.

The MON ITOR command

The monitoring facilitiesare described underMonitoring andProgram events, below. Since the MONITORcommand
to supplement these facilitiesmust be issuedbefore the program is entered, it is describedhere.

There are three types of MONITORcommand, each fulfillinga different function. However,only two of these types
are useful in a MOPenvironment. Details of the other can be found in Chapter 8 of Operating SystemsGEORGE
3 and 4 under Categories of program event.

If the user wants to be informed when a program is goingto delete itself, he should givethe command:

MONITORON,DELETE

Instead of obeying the instruction to delete itself, the programwill halt and output whatever messagewould have
been output when the programwas deleted. The facility is useful if the user wants to examine the state of the program
after it has run. To do this he would use the PRINT command, seePrinting out areas of core, page 35.

If the user wants to keep a close track of the progressof a program, he can include instructions in his program that
output messagesto the operator at certain stagesof the run. Whencontrolling the run from aMOPterminal, the
user can givehimself the opportunity to issue a command whenever one of these instructions is obeyed by giving
the command:

MONITORON,DISPLAY

before the program is entered. The programmedmessagewill not be output to the operator but the system will
output:

DISPLAY

on the MOPterminal and the user will be givenan invitation to type a command. This facility is useful for program
testing.

It is possible to switch off the effect of either of these commands by givingthe command:

MONITOROFF ,DELETE

or MONITOROFF,DISPLAY

as appropriate.

ENTERING

Once the user has connected all his peripheral channels and decided how he wants to control the program run, he
can enter the program. To do this, he givesan ENTER command. For example, the command:

ENTER 2

will cause the program to be entered at entry point 2. The parameter of the command indicates the entry point
and the programwill be entered at entry point 0 plus the number specified. If no parameter is given,the program
willbe entered at entry point O.

32 4194(1.70)



-

MONITORING
Whenevera job is started with a LOGINcommand, the system sets up a monitoring me to contain all t~e information
generated by the system in the course of the job. This information comprisesa number of messagesWhIChhave been
assignedvarious categories, the names and contents of which are givenin the table below.

Category Contents

POSTMORT

Command error messages,that is, information about commands that have the
wrong format, are issued at the wrong time etc.
Copy of each command read and lines of comment. (Comment lines are not acted
on by the system; they must be preceded by #.)

Repliesgenerated by some of the GEORGE3 commands, for example, ALTER (see
page 36).

Messagescausedby the DISPLAY,QUESTIONand ANSWERcommands (see
page 36).

Information about changesin the filestone in the course of the job.

Output from the L1STFILEcommand (see page 39) if directed to the monitoring
file system and the MOPterminal.

Details of the amount of mill time, core and peripheral useageof the job.

Information generated by object programs, for example, output directed to the
MOPterminal and reports of program failures.

Output of the PRINT command (see page 35).

COMERR

COMMANDS

COMMENT

DISPLAY

FILES

LISTING

LOGGING

OBJECT

Table 1 Monitoringfile categories
The user can decide for himselfwhich categoriesof information he wants to receiveat his terminal. The system is
preset to send all the categoriesexcept COMMANDSand if a different selection of output is wanted, a REPORT
commandmust be given.For example, the command:

REPORTCOMERR,DISPLAY,LOGGING,OBJECT

will send output from the COMERR,DISPLAY,LOGGINGand OBJECTcategories to the terminal. Note that if
output from the L1STFILEcommand or the PRINT command is to be receivedat the MOPterminal, the user must
have specified that the LISTINGor POSTMORTcategories as appropriate of the monitoring file are to be sent to
the terminal. (This will be the case if no REPORT command is given.)
The user can indicate groups of categories to be output by means of the terms ALL,ALLBUTand NONE. For
example:

REPORTALL will cause all the categories to be output.

REPORTNONE will suppressprinting of all the categories.

REPORTALLBUT,DISPLAY will suppressprinting of all the categories except DISPLAY.

If the user wants to know the contents of the monitoring file but does not want them printed out whilehe is
running the job, he can specifywhich categorieshe wants listed when he logs out (see Chapter 8).

Examples of system output

Severalof the messagesdescribed in Chapter 2 are sent to the monitoring file in different categories. For example:

STARTED :ACCOUNTS,MOPJOBNOl,17JUL6917.08.50

is a LOGGINGmessageand

ERROR IN LOGIN:USERNAME/PASSWORDINYALID

is a COMERR message.

4194(1.70) 33



-
Cause of the event Program state Messages output

1 Program obeys an Deleted. Amount of mill time used followed by DELETED (and the
instruction to delete itself member number if subprogramming is used) and the message
(and also possibly to send (if any) that would have been output to the operator.
a message to the operator).

2 Program obeys an Ready to obey the Amount of mill time used followed by HALTED (and the
instruction to suspend instruction after the one member number if subprogramming is used) and the message
itself and output a message causing the event. that would have been output to the operator.
to the operator.

3 Program obeys an Ready to obey the Amount of mill time used followed by HALTED (and the
instruction to delete itself instruction after the one member number if subprogramming is used) and the message
(and also possibly to output causing the event. (if any) that would have been output to the operator.
a message to the operator)
when a MONITOR ON,
DELETE command has
been given.

4 Magnetic tape on-line to Ready to obey the failing There are three messages, the last two of which are common
the program has failed instruction if the failure to several program events:
(see Connecting magnetic was detected before the (a) ONLINE followed by the name of the magnetic tape
tapes to the program, transfer request was peripheral that has failed followed by FAIL.
page 42). accepted; otherwise ready (b) Amount of mill time used followed by FAILED (and

to obey the next instruction. the member num ber and values of the order number
registers if subprogramming is used).

(c) The failing instruction (sometimes followed by further
details).

5 Allowed run time has Ready to obey the There are three messages:
been used. instruction after the last (a) TIME UP.

completed one. (b) As (b) in 4 above.
(c) As (c) in 4 above.

6 Program has tried to obey Ready to obey the There are three messages:
a transfer request for a failing instruction. (a) UNALLOCATED followed by the name of the
peripheral not allocated peripheral.
to it. (b) As (b) in 4 above.

(c) As (c) in 4 above.

7 Program has tried to read Ready to obey the failing There are three messages:
beyond the end of a file. instruction. (a) FILE followed by the name of the peripheral trying

to read followed by EXHAUSTED.
(b) As (b) in 4 above. -
(c) As (c) in 4 above.

8 Program has tried to write Ready to obey the There are three messages:
to a file that is full. failing instruction. (a) OUTPUT followed by the name of the peripheral

trying to write followed by FILE FULL.
(b) As (b) in 4 above.
(c) As (c) in 4 above.

9 Program has exceeded Ready to obey the There are three messages:
the limit on the number failing instruction. (a) OUTPUT followed by the name of the peripheral
of transfer requests allowed trying to access the file followed by LIMIT.
to the file on the current (b) As (b) in 4 above.
run. This limit is set by (c) As (c) in 4 above.
the installation manager
but may be altered by the
user (see the specification
of the ASSIGN command
in Chapter 16 of Operating
Systems GEORGE 3 and 4).

10 Any other illegal instruction Ready to obey the There are three messages:
in a program run. failing instruction. (a) ILLEGAL followed by an identification of the cause

of the event.
(b) As (b) in 4 above.
(c) As (c) in 4 above.

11 Program obeys an Ready to obey the DISPLAY followed by the amount of mill time used and
instruction to outpu t a instruction after the MONITOR (and the member number if subprogramming
message to the operator one causing the event. is used).
when a MONITOR ON,
DISPLAY command has
been given.

Table 2 Program events

34 4194(1.70)



-
PROGRAM EVENTS

Aprogram event occurs if an instruction to suspend or delete the program is obeyed, ~fthe program ~oesillegal
or if a condition beingmonitored occurs. Provided the user has not suppressed reporting on the terminal of the.
OBJECTcategory of the monitoring file, he will be informed of the program event by a messageon the typewnter
log. Hewill then beinvited to type a command and he should take appropriate action. For example, if the program
has issued a transfer request for an unallocated peripheral channel, the user could on-line the MOPterminal and
resume the program. Table 2 givesa list of the causes of program events, the resulting state of the program and an
indication of the messagelikely to be output.

Action on program events

The user can decide for himself what action he wants to take on each program event as it arises;this is one of the
reasonswhy working from a MOPterminal is useful. The action that is appropriate in each case depends on the
cause of the event and the resulting state of the program in core. The user has severaloptions:

He can try to correct the fault that caused the event by givinga GEORGE3 command, for example, ASSIGNing
a data file if the program tried to obey a transfer request for an unallocated peripheral

2 He can have specified areas of core printed out (the PRINT command) and alter the contents of specified locations
(the ALTER command). This is useful if the program has encountered an illegalinstruction

3 He can communicate with the operator, for example, to ask him when his MOPsessionends

If the user is successfulin dealingwith the cause of the program event, he can then resume the program; otherwise
he can delete it and carry on, for example, loading another program.

•

CORRECTING FAULTS

There are severalsituations in which the fault givingrise to the program event can be righted by givingan
appropriate GEORGEcommand. Once this has been done, the user can resume his program as described under
Resuming the program, page 36.

If the program has used up its allocation of mill time, the user can giveit more by issuinga TIMEcommand as
describedunder Setting a mill time limit, page :31. This facility should be used with care since the programmay have
run out of time because it has gone into a loop. If the user suspects that this is the case, he is advisedto use the
PRINT command to get a print out of the program in core and check that it is correct before proceedingwith
the program.

If the program has.tried to obey a transfer request for a peripheral that is not allocated to it, the user should
allocate the relevant peripheral channel as describedunder Basic peripheral connections, page 26.

If the program has tried to read beyond the end of a file, has tried to write to a file that is full, or has exceeded the
limit on the number of transfer requests allowed to the file, the user can reallocate the relevant peripheral channel
by givingan ONLINEor ASSIGNcommand; there is no need to release the channel first. This is describedunder
Releasing peripherals, page 31.

PRINTING OUT AREAS OF CORE

The user willwant to have areas of core printed out if his program goes illegal.This is done by the PRINT command.
For example, the command:

PRINT 100(20)

will print.out 20 words of core store starting with word 100. The user can specify a number of regions in the same
PRINTcommand. For example, the command:

PRINT 100(20),(200,300),400,415

will cause locations 100 to 119, 200 to 300,400 and 415 to be printed out. Note the different ways of specifying
which locations are to be printed. Printing is in standard format as describedunder the specification of the PRINT
command in Chapter 16 of Operating SystemsGEORGE3 and 4.

Note: The output from the PRINT command is sent to the POSTMORTcategory of the monitoring file and the
user will receiveit on his terminal unless he has suppressed reporting of this category.

4194(1.70) 35



-
ALTERING THE CONTENTS OF A LOCATION

If the user decides to alter his program, he must givean ALTER command for each location whose contents he
wants to change. For example, the command:

ALTER 100,0

will zeroizeword 100. Similarly, the commands:

ALTER 100,[99]

ALTER 99,0
will put the contents of word 99 into word 100 and zeroiseword 99. Note that square brackets, [ ] , indicate
the contents of a location.
Unlesshe has suppressed reporting of the COMMENTcategory of the monitoring file, the user will receivedetails
of the altered contents of the locations on his log, for example:

X[100] = #00001240

X[99] = #00000000

COMMUNICATING WITH THE OPERATOR

The user may want to communicate with the operator, for example, to ask how much longer the MOPsessionwill
last. There are two ways in which he can do this. If he wants a reply, he should givea QUESTIONcommand and the
operator's answerwill be printed out on the log. If he does not require a reply he should givea DISPLAYcommand.
In both cases, the first parameter of the command is 1 (a routing parameter to send the text to the operator's
console) and the second parameter is the text of the message(not more than 40 characters long) to be sent.

For example, the user could type:

QUESTION1, HOWMUCHLONGEROF SESSION?

Unlessthe user has suppressed reporting of the DISPLAYcategory of the monitoring file, he will receivethe operator's
answer, for example:

10MINUTES

In this casehe cannot continue with the job until the operator replies, except by breaking in, seeBreaking in, below.
If the user has a messagethat does not require an answer, he should use the DISPLAYcommand. For example, he
might type:

DISPLAY1,PLEASEPHONEIF SESSIONABOUTTO END

if he wants to carry out a lengthy operation, like havinga large file listed at the terminal, seeListingfilestore
files, page 39.

RESUMING THE PROGRAM

If the user has givena MONITORON, DISPLAYcommand, he willwant to restart his program after each part
of it has been successfully tested. In other cases,he may want to restart, for example, after altering the program.
To restart, he must givea RESUMEcommand specifyingthe address of the instruction at which the program is to
be restarted. For example:

RESUME100

will cause the program to be entered at the instruction in location 100.

If the user wants to re-enter at the next instruction he should givea RESUMEcommand with no parameter, that
is:

RESUME

DELETING THE PROGRAM

If the user cannot correct the fault, he willwant to delete the program in core. To do this, he should givethe command:
DELETE

The programwill then be deleted and he will receivemessagesto this effect on the log. He can then go ahead with
another part of his job.

36 4194(1.70)



-

BREAKING IN
The user can halt his program in the middle of a run when no program event has occurred by givinga bre~k-in
signal.This signalconsists of pressingthe CTRL and A keys together followed by the ACCEPTkey. Hewill then
receivea messageof the form:

BREAKIN

BROKENINDURINGENTER

12.02.00+-

This facility is useful if the user wants to examine and alter his program in core. To do this, he givesthe PRINT
and ALTER commands, see page 3S, in response to the invitation to type.

If he wants to resume his program after breaking in in this way, the user must givea CONTINUEcommand. For
example the command:

CONTINUE

will resume the program from the point at which the break in occurred, that is, at the instruction whose address
is held in word 8. The user can re-enter the program at another instruction by altering the contents of word 8 to
the address of that instruction.

If the user wants to delete his program after examining it by using the PRINT command, he can do so by givingthe
QUIT command, that is:

QUIT

The programwill than be deleted and he will receivemessagestelling him so on the log. The QUIT command also
terminates the break-in and the user receivesan invitation to type another command. He can go ahead by loading
another program or callingJEAN, for example.

OFF-LINE JOBS

The user may wish to run a job partly as a MOPjob and partly as a background job, that is, not controlled directly
from the MOPterminal. This will be the case if the MOPjob involvesa lengthy operation, for example, compiling
a long program, not requiring any intervention by the user. Rather than waste time waiting for this operation to
finish, the user can disconnect the job from the MOPterminal and allow it to run temporarily as a background job.
In the meantime he can use the terminal to run another MOPjob and later reconnect the first job to the terminal
so that he can control it directly again.

Disconnecting a job

To disconnect the current job, the user should givea break-in signal(CTRL and A followed by ACCEPT)and then
a DISCONNECTcommand. For example, the command:

DISCONNECTNEWMOPJOB

will disconnect the current job and start a newMOPjob with the job name NEWMOPJOB.This newjob will have
a separate monitoring me and the user must giveanother REPORTcommand if he wants to alter the selection of
monitoring me output from the present value of all the information except a copy of the commands. If the
DISCONNECTcommand is givenwithout a job name for the newjob, the user will be loggedout and must give
a break-in signaland a LOGINcommand to resumeMOPoperations.

For example, suppose a user issuesa compilation command and then wants to disconnect this job and use JEAN
whilehe is waiting for the compilation to finish. The log would then appear as:

12.02.1S+-INPUTPLANFILE Source program stored in PLANFILE.

+- first line of PLAN program

12.12.52+-QPLANPLANFILE"

+last line of PLAN program

+- ****

4194(1.70) 37



Usergives the break-in signal

BREAKIN

BROKENIN AFTER AS IN QPLAN

12.13.15~ DISCONNECTMOPJOB2

12.13.20~JEAN

12.14.150.04 COREGIVEN7680

12.14.300.06 COREGIVEN7168

JEAN IS READY

-
Compilation command tells compiler to read source program
from PLANFILE, load binary program into core and output the
listing on a line printer.

Response to break-in signaltells the user that he has broken in after
an ASSIGNcommand issuedby the system as part of the QPLAN
command.

Job is disconnected, a new one started.

JEAN is requested.

JEAN is loaded and allocated core store.

The user can go ahead and use JEAN.

Reconnecting a job

Whenthe user wants to reconnect the first job, he must givea CONNECTcommand specifyingthe job name of the
first job (as givenin the LOGINcommand), for example:

CONNECTMOPJOBNOI

The MOPjob in progresson the terminal is terminated and MOPJOBNOIconnected. Initially the connected job
will be in the same state as if the user had givena break-in signal.A messagein the form:

BROKENINDURINGENTER

willbe output and the user will be givenan invitation to type. He can then go ahead and control the job directly
in the normal way.

A disconnected job will be suspended if it completes the command that it was obeying when it was disconnected.
The job will be terminated if it is not reconnected by the user within a certain period of time determined by the
installation manager.The user should make sure he connects the job againbefore this period runs out ifhe wants
to continue to control it from his terminal.

38 4194(1.70)



-

Chapter 6 Further input and output

This chapter describesmethods of input and output not described in Chapters 4 and 5. As described in Chapter
5 basic peripheral channels in a program are handled via the MOPterminal, on-linebasic peripherals or filestore
files, In the first two casesdata is read (either from the terminal or from a peripheral) as the program requires it;
ill the last case it is stored first in filestore files and accessedas required. This chapter describesthe further handling
of.the filestore by using the LISTFILE command to obtain a listing of a file and the ERASE command to remove
all trace of a flle from the filestore.

The handling of magnetic tapes and direct accessdevicesis introduced and the connection of magnetic tape and
direct accessperipheral channels is described. Fuller information can be found in Chapter 10 of Operating Systems
GEORGE3 and 4.

The final section of the chapter describesthe user traps by which the system keeps track of which users are allowed
accessto which files. Each user can grant or refuse himself or another user accessto the files-and tapes that belong
to him.

LISTING FILESTORE FILES

The user can have a listing of any of the files that he is allowed to read by givinga LISTFILE command. If the flle
belongs to him and he has not givena command to withdraw READaccessfrom himself (seeAltering traps, page
45), he will be allowed to read it. If the file belongs to another user, that other user must have granted READ
accessbefore the current user could list the file. For example, the command:

LISTFILE OUTPUTDATA

will cause the contents of the file called OUTPUTDATA to be sent to the LISTINGcategory of the monitoring
file and, unless reporting of this category has been suppressed, to be printed out on the log. This command could
be used, for example, if the user ASSIGNedthe me OUTPUTDATA to one of the output peripheral channels
of his program.

The user may prefer to have the file listed on an output peripheral rather than the typewriter log especiallyif it
is a largeme because the rate of transfer to a basic peripheral is faster. In this case he must specify the type of
peripheral to which the listing is to be sent, that is:

*LP for a line printer

*CPfor a card punch

*TP for a tape punch

For example, the command:

LISTFILE OUTPUTDATA,*LP

will cause the contents of the flle OUTPUTDATA to be listed on a line printer.

The peripheral type specified in the USTFILE command need not correspond to the type of the file being listed.
Any type of basic peripheral file may be listed on a line printer or sent to the MOPterminal; any but line printer
filesmay be listed on a paper tape punch; any but paper tape filesmay be listed on a card punch.

The user need not have the whole of a file output. Ifhe does not want to start the listing from the beginningof
a file, he should specify the number of the line at which he does want to start by including a parameter of the
form:

FROM 30

which will start listing at the 30th line of the file. Similarly, if he does not want to list to the end of the file, he
should include a parameter of the form:

4194(1.70) 39



-

LINES 100
whichwill cause listing of 100 lines of the file.
Note: If a paper tape flle is to be listed on a line printer or sent to the MOPterminal, the user must include another
parameter, SPECIAL,in the LlSTFILE command. Thus to send the paper tape fileOUTPUTDATA to the MOP
terminal the user must givethe command:

LISTFILE OUTPUTDATA,SPECIAL
In this casea listing of a paper tape file will include shift characters and the user should make allowance for this
when trying to interpret the listing. .

Examples

A user wants to output the whole of a paper tape file called RESULTSon a line printer. The appropriate command
is:

LISTFILERESULTS, *lP,SPECIAL

2 A user wants to output the first 50 lines of a card file calledTAPEDATAon a paper tape punch. The appropriate
command is:

LISTFILETAPEDATA,*TP,LINES50

3 A user wants the 30th to 99th lines of a line printer me called OUTPUTto be sent to his MOPterminal. The
appropriate command is:

LISTFILEOUTPUT,FROM30,LlNES 70

Output format

HEADINGS

If the listing is not sent to the MOPterminal (via the monitoring file), the LISTFILE command outputs three lines
of heading at the start to identify it. These are in the form:

#PRODUCEDON 17JUL69AT 12.03.45

(This givesthe date and time when the file waslast written to.)

#OUTPUTBYLISTFILE IN: ACCOUNTS.MOPJOBNOI ON 18JUL69AT 17.06.30

(This givesthe user name and the job name of the job in which the LISTFILE command was issued. The date and
time indicate when the listing was started.)

DOCUMENTOUTPUTDATA

(This givesthe name of the file specified in the LISTFILE command and thus identifies the listing.)

RECORDS

The exact format of the contents of the files output depends on their type and the output deviceon which they
are listed. Details are givenunder the specification of the LISTFILE command in Chapter 16 of Operating Systems
GEORGE3 and 4 but it should be noted here that records more than 72 characters long will be output on more
than one line of the MOPtypewriter log.

ERASING FILESTORE FILES

If the user wants to erase a me that belongs to him, for example, after it has been listed, he must givean ERASE
command specifyingthe name of the file to be erased. For example, the command:

ERASEMYFILE

will remove all trace of the file calledMYFILEfrom the system.

40 4194(1.70)



-

The user should take care that he has no further need for the file before he givesthis command because'he will
no longer be able to refer to it. Once a file has been erased, a n~w~ilewith the ,same~ame can,be created, for
example, by an INPUTcommand, without causingany errors; It WIllbe an entirely different file,

MAGNETIC TAPES

Magnetictapes are used by the system as part of the backing store on which the filestore is organized.However,
the user may want.to ensure that a particular batch of information always stays on a particular magnetic tape so
that, for example, it can be transferred easily to another installation. To enable the user to have this facility,
conventionalmagnetic tapes may be included in the system. A record of all the tapes known to the system is
kept in system fileswhich are handled by routines known as the librarian; these tapes are known as librarian tapes.
Tapes on the installation but not known to the system are known as insecure tapes. The user can introduce insecure
tapes to the librarian and thus take advantageof the security facilities offered by the system (see User traps, page
44). Librarian tapes ~re classifiedinto owned tapes, which belong to a particular user, and pool tapes, which are
availableto any user as work tapes.

This section describeshow a user can acquire tapes for his own use and how to connect tapes to the program in
core. Before a user can use magnetic tapes, he must have been allocated a budget of magnetic tapes, known as a
SPACEMTbudget, by the installation manager. If he tries to acquire a tape for his own use without havinga
sufficient SPACEMTbudget, he will be informed of this by the system and will not be allowed to bring the tape
under his control until he is givena larger allocation.

Acquiring magnetic tapes

INSECURE TAPES

To bring an insecure tape under his direct control, the user must givea NEWcommand specifyingthe serialnumber
of the tape. For example, the command:

NEW(1234) (*MT) ,(56213) (*MT)

will cause the magnetic tapes with serialnumbers 1234 and 56213 to belong to the user. Note that any number of
tapes may be brought under the user's control by a singleNEWcommand and that each must be identified by
its tape serial number in parenthesis followed by (*MT).

Once a NEWcommand has been given, the tapes specified are known by the system to belong to the user. They
are known only bytheir serialnumbers until they have been loaded at least once and the system has read the
names from the tape header labels. A tape may be referred to by its tape serial number, its name or both. For
example, a magnetic tape with the name MAGTAPE in its header label and with serialnumber 1234 can be referred
to as anyone of the following:

(1234)

MAGTAPE

(1234, MAGTAPE)

It should be noted that the user does not need to givea NEWcommand before he can connect an insecure tape to ,
his program. Provided that the tape has a standard 1900 Seriesheader label, an ONLINEcommand or transfer
request in the program specifyingthe correct serialnumber of the tape will connect it to a magnetic tape peripheral
channel of the program (see Connecting magnetic tapes to the program, below).

POOL TAPES

A pool tape is already under the control of the librarian but to acquire one for his own permanent use the user must
givea GET command specifyingthe name to be written in the new header label. For example, the command:

GET MYTAPE(*MT)

will cause the system to allocate one of the pool tapes to the user and write the name MYTAPE in the header
label. Note that the name givenmust consist of not more than twelve letters, digits, hyphens or spacesbeginning
with a letter and that it must be followed by (*MT). If there is no pool tape available,the system asks the operator
to load one.

Note: Amagnetic tape name may be qualified by certain details, for example, a generation number. These details
are not givenhere but a description of them may be found in Chapter 9 of Operating SystemsGEORGE3 and 4
under Referring to files.

4194(1,70) 41



-

Work tapes

If the user wishes to use a pool tape simply as a work tape, he does not have to issue a GET command for it. The
appropriate ONLINE command or transfer request (see below) will allocate a tape from the pool temporarily and
give it the name POOLvTAPE.

Connecting magnetic tapes to the program

A magnetic tape can be connected to the program in core either by an ONLINE command or by an instruction
in the program to open a magnetic tape. If the user issues an ONLINE command, this overrides an equivalent
program instruction to open a tape. If the required tape is not loaded, the system will ask the operator to load it
and will specify whether or not a write permit ring should be present; the user will also be informed by a message
on the log in the form:

WAITING FOR MT MASTERvTAPE

that his job is waiting for the tape to be loaded.

OWNEDTAPES

If a user owns a tape with serial number 3604 and the name MASTERvFILEA known to the system (that is, the
tape was formerly a pool tape or has been loaded at least once since the NEW command referring to it was issued),
he can connect this tape to magnetic tape peripheral channel zero of his program by any of the commands:

ONLINE *MTO,MASTERvFILEA

ONLINE *MTO, (3604)

ONLINE *MTO, (3604, MASTERvFILEA)

If this is the first time the tape has been loaded since the NEW command referring to it was issued, the serial number
must be given in the description since the system does not yet know the name. In any case it is advisable to give the
serial number because this helps the system to locate the required tape more quickly.

Note that if the user has acquired this tape by a NEW command, he must give an appropriate TRAPGO command
(see User traps, page 44). before he can write to it since he initially has only READ access to it.

POOL TAPES

If the user wants to connect a pool tape to his program as a work tape, he can give a command in the form:

ONLINE *MTl

He will then be allocated a pool tape with a write permit ring.

If, on the other hand, the user wants to connect a pool tape to his program but also wants to become the owner
of the tape, he should give a GETONLINE command. As its title suggests, this command combines the functions
of the GET and ONLINE commands. For example, the command:

GETONLINE *MTl ,.MASTERV FILEA

is equivalent to the two commands:

GET MASTERvFILEA (*MT)

ONLINE *MTl, MASTERvFILEA

Thus the effect will be to allocate a pool tape to the user, give it the name MASTERvFILEA and connect it to the
program as unit 1.

INSECURE TAPES

To connect an insecure tape to his program, the user should give an ONLINE command specifying the serial number
of the tape. For example, the command:

ONLINE *MTl, (32765)

will connect the tape with serial number 32765 to the program as unit 1, provided the tape is loaded.

42 4194(1.70)



-

Releasingmagnetic tape decks
Magnetictape decks allocated to a program Canbe releasedby an instruction in the program to close the tape on
the deck, by the deletion of the program to which the tape on the deck is connected or by a RELEASEcommand.
For example, the command:

RELEASE*MT2

will release the tape that the program is using as unit 2.

Returning magnetic tapes to the pool

If a user wishes to return an owned magnetic tape to the pool, he must givea RETURN command, for example:

RETURNOLDTAPE(*MT)

The tape can be referred to by serialnumber, name or both and the description must be followed by (*MT). Since
the user has a limited allocation of tapes, he will find it expedient' to RETURN any tapes that he does not need.

Removingmagnetic tapes from control by the system

If the user wants to remove a magnetic tape from control by the system, he must ask the operator to unload it. He
should then givea RETURNcommand (since only pool tapes can be withdrawn from the system) and ask the
operator to givethe command (the DEADcommand) necessary to withdraw it. Thus the followingcommandswould
be appropriate if the user wanted to remove the tape with serialnumber 7702 from the system's control:

DISPLAY I, PLEASEUNLOADMT7702

RETURN(7702) (*MT)

DISPLAY1,PLEASEGIVEDEADCOMMANDFORMT 7702

Loadinga program from magnetic tape

The user can load a program held on a magnetic tape by givinga FIND command specifyingthe name of the program
and identifying the tape. For example, to load the program #ABCDheld on magnetic tape with serial number
76305 the user should issue the command:

FIND #ABCD,MT, (76305)

Note that the second parameter is alwaysMT.

If the.program cannot be found on the magnetic tape specified, the user will receivean appropriate messageon
the log. For example, if #ABCD is not on the tape with serialnumber 76305, the message:

#ABCDNOTFOUNDON (76305)

will be sent. If he wants to be sure of receivingthis message,the user must not suppress reporting of the DISPLAY
category of the monitoring file.

DIRECT ACCESS

Direct accessfiles

Files in the filestore created by INPUTor ASSIGNcommands are serialmesoHowever, the user may want to create
a direct accessfile, for example, to store the binary program produced by a compiler (page 22). A direct access
file may have disc or drum format but regardlessof the format, the file may be held on any part of the direct
accessbacking store. Thus a disc file may be physicallyheld on drum but will be organized as though it were held
on disc.To create a direct accessme, the user must giveaCREATE command specifyingwhat type of file he
wants (E.D.S., F.D.S. or drum) and its maximum size. For example, the command:

CREATENEWFILE(*ED,KWORDS4)

will set up a direct accessfile calledNEWFILEin E.D.S. format with a size of 4K words.

The user indicates the type of me he wants by means of the characters *ED for an E.D.S. me, *FD for an F.D.S.
file or *DRfor a drum file. The sizeof the file must be givenin units of 1024words and is specified as KWORDS
followed by the number of units of 1024 words. Thus KWORDS4 indicates that the maximum sizeof the file
is 4096 or 4Kwords. Note that these details of the file are enclosed in parentheses and follow the file name. They
are known as qualifiers.

4194(1.70) 43



-
If the file that is being created is a disc file, then the user can specify how the file is to be organized by giving
certain other qualifiers in the parentheses that follow the file name. For example, he can specify the bucket size?
the length of the bucket header, whether the records are to be of fixed or variable length an.d so on. An expla~atJ.on
of these qualifiers is given in Chapter 14 of Operating systems GEORGE 3 and 4 under Optional entrant description
qualifiersand the full specification of the CREATE command can be found in Chapter 16 of the same manual.

Once a direct access file has been set up in this way, the user can refer to it by name just as he would do with any
other file. He can assign it to his program by an ASSIGN command or erase it with an ERASE command. Note,
however, that a direct access file cannot be listed by a LISTFILE command; to get a listing the user must make
use of an appropriate standard software routine (see Library Specifications).

Direct access devices

The user may wish to ensure that a particular set of information always stays on a particular direct access device.
To do this he must make use of exofiles, that is, files on direct access devices not used as part of the GEORGE
filestore; they have the same status as insecure magnetic tapes. An explanation of the use of exofiles is given in
Chapter 10 of Operating systems GEORGE 3 and 4 under Exofiles.

Direct access peripheral channels

The user can satisfy transfer requests for the direct access peripheral channels of his program by giving ASSIGN
commands connecting these channels to direct access files. A disc channel must be connected to a disc file and a drum '--
channel to a drum file. Regardless of whether the channel being connected is for input or output, the file ASSIGNed
to it must already exist. For example, if the user wants to send output from the disc channel identified as 0 in his
program to a direct access file, he should issue the commands:

CREATE NEWLINE (*ED,KWORDS 8)

ASSIGN *EDO,NEWFILE

Note that the ASSIGN command has the same format as for a basic peripheral channel (see page 29). An E.D.S ..
channel is identified as *ED followed by the number used to identify it in the program, an F.D.S. channel as *FD
and the appropriate number and a drum channel as *DR and the appropriate number.

It is possible to satisfy transfer requests for direct access channels by on-lining an exofile. This is described in Chapter
10 of Operating systems GEORGE 3 and 4.

USER TRAPS

Every file and owned magnetic tape has one or more user traps associated with it. These traps are the means by
which the system keeps a check on which users are allowed to access the file or tape and in what way. The modes
of access are:

READ

WRITE

The user can read the contents of the file or tape

The user can write to the file or tape from the beginning thus overwriting the existing
contents

The user can write further information to the end of the file or tape

The user can execute the contents of the file or tape, for example, load and enter a binary
program held in a me

The user to whom the file or tape belongs controls the access of himself and all other users to it. Unless he
specifically grants access to another user, he will be the only one allowed to access it in any way. Initially the
system allows the user owning a file or tape access in certain modes only (see Initial traps,below). If he wishes to
change these initial traps or to grant another user access, he must give an appropriate command (see Altering traps,
below).

APPEND

EXECUTE

Initial traps

SERIAL FILES

When a user first opens a serial file, for example, by an INPUT or an ASSIGN command, he is allowed to write to
it. However, once the me is closed after the initial writing operation, the user can only read it or execute its
contents (if it is a program). These initial traps prevent the user from accidentally overwriting a file whose contents
he wished to preserve.

44 4194(1.70)



-

DIRECT ACCESSFILES

Whena direct accessfile is created (by a CREATEcommand), the user is allowedREAD,WRITEand EXECUTE
accessto it. Only if he wishesto append to the file, must he change the initial traps.

OWNED MAGNETIC TAPES

If the user acquires an insecure tape for his private use by a NEWcommand, he is allowedREAD accessto it. If
he acquires a pool tape by a GET or GETONLINEcommand, he is allowedREADandWRITEaccess to it.

Altering traps

THE USER'S OWNTRAPS

To givehimself accessto a file or tape in a mode not currently permitted, the user must givea TRAPGOcommand.
For example, suppose a user has just introduced a tape to the librarian by the command:

NEW(62405) (*MT)

and wants to write to it. He must givethe command:

TRAPGO(62405), WRITE

•

Note that since the user has just introduced the tape, he must refer to it by its serialnumber. The corresponding
command for a file calledDATAFILE in which data has been stored is:

TRAPGODATAFILE,WRITE

In both these cases the contents of the tape or file could be overwritten. For example, if the user gavethe command:

ONLINE *MTl, (62405)

the contents of the tape would be overwritten and if he gavethe command:

ASSIGN*LPl, DATAFILE

the contents of the file would be overwritten.

If the user wants to write to a basic peripheral file without over-writingthe existing contents, he should specify
APPENDinstead of WRITEin the TRAPGOcommand.

To safeguardhimself from accidentally overwriting the contents of a file or tape, the user can withdrawWRITE
accessfrom himself by a TRAPSTOPcommand. For example, havingwritten new information to the tape with
serialnumber 62405 and nameMASTERQFILE,the user can preserve this information by the command:

TRAPSTOPMASTERQFILE, WRITE

Note that the tape can now be referred to by name since it has been loaded and the system has read the header
label.

OTHER USERS' TRAPS

The owner of a tape or file can grant another user accessto it by givinga TRAPGOcommand specifyingthe
appropriate user name. For example, the command:

TRAPGODATAFILE,:PLANNING,READ

allows the user with user name :PLANNINGto read the contents of the me calledDATAFILE. Thus this user
will now be allowed, for example, to have a listing (by givinga LISTFILE command) of the file if it is a serial
file.
One TRAPGOcommand is sufficient to grant accessin more than mode. For example, the command:

TRAPGODATAFILE,:PLANNING,READ,APPEND

allows the user with user name :PLANNINGaccessto the file calledDATAFILE in READ and APPENDmodes.

Similarly, to withdraw accesspreviously granted to another user, the owner of the file or tape should givea
TRAPSTOPcommand, for example:

TRAPSTOPDATAFILE,:PLANNING,APPEND

4194(1.70) 45



-

Chapter 7 Editing

This chapter contains a simplifieddescription of the GEORGE3 editor available,to the MOPuser. Only the basic
facilitiesare describedhere and the reader is referred to Operating systemsGEORGE3 and 4 for a full specification.
The user is givenenough information to enable him to make straightforward insertions and deletions in an existing
serial file. The file to be edited may be of any peripheral type; the editor produces a new file of the same type as
the old file.

CALLING THE EDITOR

To call in the editor, the MOPuser must givean EDIT command specifyingthe file to be edited and the name to
be givento the new file that is created. For example, the command:

EDITOLDFILE,RIGHTFILE

tells the system that the user wants to edit the file called OLDFILE and store the resulting information in a me
called RIGHTFILE. The file that is to be edited must be a serial file to which the user has READaccess.

When the editor has opened the files, the user receivesthe message:

EDITOR IS READY

on the typewriter log. He is then givenan invitation to type his first instruction to the editor.

EDITING INSTRUCTIONS

The old file is edited in accordance with editing instructions typed by the user at the MOPterminal. Each editing
instruction may specify an action to be performed on the existing file and a position within the file at which the action
is to stop. For example, the user might want to transcribe part of the existingme. He then types T (to indicate
transcription) and specifieswhere the transcription is to stop. Hemay then want to skip a few records so he types
P (to indicate that the pointer is to be moved in the old file) and specifies the new position of the pointer.

Pointer

Position within the file is indicated by a moveablepointer which points at a particular character in a particular
record. Before every invitation to the user to type an instruction the current position of the pointer is output in
the form:

record number. character number

Records and characters are numbered from zero so that the position of the first character of the first record is
-0.0.Initially the pointer is at this first character of the me and so the initial invitation to type is:

D.D+-

The user may then perform some editing in the course of which the pointer is moved to the twelfth character of the
sixth record, that is, character II of record:5: The next invitation to type is then:

S.ll+-

NEWPOSITION OF THE POINTER

When the user wants to specify a new position of the pointer within the old me, he must giveit in the form:

record. characfer

Usingthis format, there are severalways in which the user can express the parameters describingthe record and
the character within the record that he wants. Note that these are all different from the way in which the position
of the pointer is output by the editor.

4194(1.70) 47



-

Record

The record may be specified in any of the followingways:
The absolute number of the record within the file; for example, #6 denotes record 6, that is, the seventh
record and #16 denotes record 16, that is, the seventeenth record

2 The number of the record relative to the record at which the pointer is currently positioned (as indicated by
the editor when outputting an invitation to type); for example 6 denotes the sixth record after the current one
and 13 denotes the thirteenth record after the current one

3 The next record beginningwith or containing a certain set of characters; for example, 'ABC' denotes the next
record beginningABCand C'ABC' denotes the next record containing the characters ABC

4 The record after the last record in the file. This is specifiedby givingE. This method of positioning the pointer
is useful when readingor deleting as far as the end of the file (see below)

If he is specifyinga record by a set of characters, the user must precede and follow the set with the samecharacter
.('in the examples above). This character is known as a string delimiter and must not be included in the set of
characters used to identify the record; it may be any character from the set:

:;<=>1!i,£0/0& '~/ []
Thus £ABCD£and [ABCD[are acceptable methods of denoting the next record that starts ABCDbutXABCDX
and [ABeD] are not.

If the record part of the format is omitted, the editor assumesthe record at which the pointer is currently positioned.

Character

The character may be specified in any of the followingways:

The position of the character within the record; for example, 2 denotes character 2, that is, the third character
and 24 denotes character 24, that is, the twenty-fifth character in the record

2 The first of a certain set of characters; for example 'ABC' denotes the A of the next occurrence of the characters
ABCin the record specified and' 'FIELDv" denotes the F of the next occurrence of FlpLDV 1i, in the record
specified.Note that the characters specifiedare preceded and followed by a string delimiter (seeRecords,
above)

3 The imaginaryend of record or newline character (after the last character in the record). This is specifiedby E.
Thismethod of positioning the pointer is useful when reading or deleting as far as the end of a record (see below)

If the character part of the format is omitted, the editor assumescharacter 0, that is, the first character of the
record.

Examples

This section contains some examplesof how to specify a position within a flle. Suppose a file contains records
as shown in Figure 6.

ABCDEFG Record 0

HIJKLM Record 1

NOPQRSTUV Record 2

WXYZAB Record 3

CDEFGH Record 4

IJKLM Record 5

NOPQR Record 6

STUVWXYZ Record 7

Figure 6

The table below givessomeways of indicating a record and a character in that record. The first column indicates
the character at which the pointer is pointing before the position specified in the second column is given;the
third column givesthe character at which the pointer will be pointing once it has been moved to the new position.

48 4194(1.70)



-

Characterat which Characterpointed
the pointer is at by the new
currently positioned Positiongiven position of the pointer

A (Record 0) .4 E (Record 0)

A (Record 0) 1.4 L (Record 1)

F (Record 0) 1 H (Record 1)

H (Record 1) #1.'KLM' K (Record 1)

H (Record 1) 0.4 L (Record 1)

N (Record 2) £IJK£.3 L (Record 5)

N (Record 2) #5.!KLM! K (Record 5)

N (Record 2) C'OPQ','STU' S (Record 2)

N (Record 2) C'ZAB'.2 Y (Record 3)

I (Record 5) ?NOP?E Character after R (Record 6)

I (Record 5) &STUV& S (Record 7)

N (Record 6) 1.4 W (Record 7)

N (Record 6) E First character of the record after
Record 7

•

Correcting mistakes

To correct a mistake in any of the instructions described below, the user can type F, which means forget the last
line typed.

Transcribing

To transcribe part of the old file to the new file, the user types T (to indicate transcription) followed by a new
position of the pointer leavingit at the character after the last character he wants to transcribe. He then presses
the ACCEPTbutton to transcribe the part of the file from (and including) the character described by the current
position of the pointer up to (but not including) the character indicated by the new position of the pointer.

For example, if the user has a file with the records as described in Figure 6, he can transcribe the first 26 characters
by givingany of the following instructions in response to the invitation to type, 0.0+-

T#3.4

T3.4

T'WXYZ'.4

TC'ZA'.'A'
He will then receivethe invitation to type, 3.4~, and can givethe next editing instruction.

If the user givesan instruction that would involvereading off the end of the old file, he will receive the message:

YOU'VERUNOFF THE ENDOF THE FILE

When the editor has transcribed to the end of the file and he will then be invited to giveanother instruction.

Deleting

To delete part of the old file, the user types P (to indicate moving the pointer without transcribing) followed
by a new position of the pointer leavingit at the character after the last character to be deleted.

For example, if the user wants to edit the file described in Figure 6 in order to produce a new file consistingof
the first three and the last two records of the old file, he can achieve this by the instructions T#2.E,P#S.E and
TE. This would appear on the log as:

4194(1.70) 49



-

0.0+-T#3

3.0+-P#6.0
6.O+-TE

Transcribe the whole of the first three records.

Movethe pointer to the beginningof the seventh record, that is, record 6.

Transcribe to the end of the file.

The new filewould then consist of the records:

ABCDEFG

HIJKLM

NOPQR

STUVWXYZ

To produce from the original file a new file consistingof the records:

ABCDEFG

HIJAB

CDEFGH

STUVWXYZ

the user could givethe instructions shown below:

3.4+-T#5

5.0+-P.E

5.4+-TE

Transcribe the rest of the current record, that is, record 0, and the
first three characters of the next.

Transcribe to the start of record 5.

Movethe pointer past the end of the record (which has 5 characters).

Transcribe to the end of the file.

0.0+-T1.3

Inserting

CHARACTERS

To insert a character or set of characters, the user must type I followed by the character (s) to be inserted (enclosed
in string delirniters). For example, I'ABC' will insert the characters ABCbefore the current position of the pointer.
For example, suppose the user wants to insert the characters ABCbetween the fourth and fifth characters of record
3 of the file described in Figure 6; otherwise the file is to be unchanged. This could be achievedby the instructions:

3.4+- I' ABC'
3.4+-TE

Transcribe the first three records and the first four characters of the
fourth record.

Insert the characters ABC.

Transcribe to the end of the file.

0.0+-T#3.4

Record 3 of the new me would then be WXYZABCAB.

Suppose the user wants to add the characters XYZ to the end of the second record and to insert the characters
ABCat the beginningof the third record. He could then givethe instructions:

O.O+-T1.E

1.5+-I?XYZ?

1.5+-T1

2.0+-I?ABC?

2.0+-TE

Transcribe to the end of the next record.

Insert XYZat the end of record 1.

Start the next record.

Insert ABCat the beginningof record 2.

Transcribe to the end of the file.

RECORDS

To insert a complete record, the user should move the pointer to the beginningof the record that is to follow the
new record and then givethe appropriate I instruction. For example, to insert a record consistingof ABCDbetween
the second and third records of the existing file, the following instructions could be used:

50 4194(1.70)



-
T#2.0

I?ABCD

Transcribe the first two records.

Insert ABCD before the present position of the pointer.

Start a new record.

Transcribe to the end of the file.

?

TE

If he wanted to add the characters XYZ to the end of the second record and to insert a new record, consisting of the
characters ABCD between the second and third records, he could give the following instructions:

T#I.E

I?XYZ

ABCD

?

Transcribe to the end of the second record.

Insert XYZ before the present position of the pointer.

Start a new record with ABCD.

Start a new record.

Transcribe to the end of the file.TE

Visible space

In order to make it easier for the MOP user to keep track of the number of spaces he has typed, he is allowed to
issue a V instruction which allows a character to be nominated as a visible space. For example, V* tells the system
to interpret an asterisk as a space when encountered within string delimiters. The character nominated as the visible
space then loses its normal significance in strings.

This facility is also useful if the user wants to insert records since trailing spaces are deleted by the input routines.
The V instruction makes trailing spaces significant. For example, the instructions:

T#2.0
I'ABCDvv

TE.O

will insert a record ABCD after the second record of the old file. However, the instructions:

V*

T#2.0

I'ABCD:**

TE.O

will insert a record ABCDv V after the second record of the old file.

The user can change the visible space character at any time by giving another V instruction. If Valone is typed, the
editor assumes that there is now no visible space character, .

BREAKING IN

If the user wishes to break in on the edit, he may do so by pressing CTRL and A followed by ACCEPT as usual. To
terminate the break-in and return to the edit, he should type Z.

ENDING THE EDIT

The user can end the edit by typing E. The remainder of the old file is transcribed to the new and the edit terminated.
If the user wishes to abandon the edit, he should type Q; the new file will be erased and the message:

EDIT ABANDONED

output on the log.

The user is then given an invitation to type another GEORGE 3 command and can continue with his job.

4194(1.70) 51



-
Chapter 8 Logging out

Whena user has finished all the work he wanted to do from his MOPterminal, he should log out. At this stage, he
can ask for some or all of the categoriesof the monitoring file, see page 33, to be output on the log. Since the user
has no way of communicating with the system after he has loggedout, it is important that he should check that he
has completed the job he set out to do. If he wants, for example, to list a file that he has edited, he must givethe
appropriate LISTFILE command at this point. Once he has decided that he has finished, the user givesa LOGOUT
command specifyingthe action to be taken on the monitoring file.

ACTION ON THE MONITORING FILE

Whenhe logs out, the user should consider which (if any) of the monitoring file categorieshe wants output on the
log. For example, the user will probably want to know how much of his budgets he has used and how much he has
left but will not be interested in a list of the commands he has issued. In this case he must specify that the LOGGING
category is to be output but that the COMMANDScategory is to be suppressed.The required categories are specified
by means of parameters of the LOGOUTcommand (see below). These parameters have exactly the same format
as the parameters of the REPORTcommand (see page 33)..

In addition to having its contents printed on the log, the user can have a copy of the monitoring file sent to a
filestore file. This he does by givinga suitable parameter to the LOGOUTcommand. For example, the parameter:

RETAIN(COPYFILE)

will send a copy of the monitoring file for the present job to a serial file called COPYFILE.Note that the name of
the file is enclosed in parentheses. If the user later wanted to know the contents of this file, he could givea LISTFILE
command for it. The user should note that if he gets a listing of the monitoring file in this way each record will
be preceded by a category code word indicating the category of the record.

THE LOGOUT COMMAND

To logout, the user givesa LOGOUTcommand specifyingthe action to be taken on the monitoring file as explained
above, for example:

WGOUT LISTING,POSTMORT,RETAIN(MONITORFILE)

If the LOGOUTcommand is givenwith no parameters, none of the categories of the monitoring file will be listed.

Examples
If the user givesthe command:

LOGOUT

he will receiveno monitoring information and no copy of the monitoring file will be taken

2 If the user givesthe command:

WGOUT ALL,RETAIN(COPYFILE)

he will receiveall the information in the monitoring file and a copy of the monitoring file will be held in a file
called COPYFILE

3 If the user givesthe command:

LOGOUTLOGGING,LISTING

he will receive the information in the LOGGINGand LISTINGcategories of the monitoring file and no copy
of the monitoring file will be taken ..

4194(1.70) 53



-
OTHER MESSAGES

During a MOP session messages other than those described here may appear on the typewriter log, for example, ·error
messages and communications from the operator. For an explanation of these the user should consult the manual
Operating systems GEORGE 3 and 4.

54 4194(1.70)



-
Appendix 1 Reference

This appendix contains a description of all the parameters and all the commands introduced in the manual; it is
intended as a quick reference section. It should be noted, however, that the descriptions given here do not
constitute full specifications; for these the reader must consult the manual Operating Systems GEORGE 3 and 4.
In addition, a brief outline is given of the function of the other GEORGE 3 commands, relevant to the MOP user
but not described in this introduction.

First of all the parameter formats are described; the parameters ate arranged in alphabetical order. The commands
introduced in the manual are then specified by giving their name (and its shortened form, which may be used
instead), a brief outline of their function, a picture of their format and a reference to their explanation in the text
of the manual. Finally the other GEORGE 3 commands are listed and their function briefly outlined. Within each
section the commands are arranged in alphabetical order.

PARAMETERS

Access mode

This parameter is one of the following: READ, WRITE, APPEND, EXECUTE.

Action on monitoring file

This parameter consists of a list of the desired categories of the monitoring file, individual categories being
separated by commas. The categories may be grouped by using ALL (the whole file is wanted), ALLBUT (the whole
me except the categories that follow ALLBUT is wanted) or NONE (none of the file is wanted).

Event type

This parameter is either DELETE or DISPLAY.

File name

This parameter consists of up to twelve letters, digits, spaces or hyphens, beginning with a letter; leading spaces
are ignored and trailing spaces have no effect since the system space fills the name up to twelve characters. If the
name is the name of a saved file, it must not contain any spaces.

Job name

This parameter consists of up to twelve letters, digits or hyphens, beginning with a letter.

Magnetic tape description

This parameter may be given in one of three ways:

(tape serialnumber)

2 magnetic tape name

3 (tape serialnumber, magnetic tape name)

For the formats of tape serial numbers and magnetic tape names see below under the appropriate headings.

Magnetic tape name

This parameter consist of twelve letters, digits, spaces or hyphens, beginning with a letter.

Mill time

This parameter consists of a number followed by SECS or MINS as appropriate. If neither SECS nor MINS is
given, SECS is assumed.

4194(1. 70) 55



-
Mode
This parameter may be one of the following:

ALLCHAR meaningpaper tape mode #22.

GRAPHIC meaning paper tape mode #12.

NORMAL

CARDS

meaningpaper tape mode #02.

meaningline image(0).

If the mode parameter is omitted, NORMALmode is assumed from a paper tape file and CARDSmode from a
card file or the MOPterminal.

Number

This parameter may be any of the following:

A decimal number not greater than 8388607

2 An octal number (indicated by #) less than #40000000

3 The contents of a location (indicated by [ ])

4 An expression formed by combining any of the above three formats by means of the operators + (plus), - (minus),
* (multiplied by) and / (divided by)

Peripheral name

This parameter consists of the appropriate peripheral type (see below) followed by a decimal integerless than ,64
(corresponding to the integer used in the program to identify the peripheral channel). If the integer is omitted, it
is assumedto be zero.

Peripheral type

This parameter consists of an asterisk followed by a two-character code identifying the peripheral. A list of
peripheral types is givenin Table 3 below.

Peripheral type Description

* TR Paper tape reader

* TP Paper tape punch

* LP Line printer

* CR Card reader

* CP Card punch

* MT Magnetictape

* ED Exchangeabledisc

* DR Magneticdrum

* FD Fixed disc

Table 3: Peripheral types

Program name

This parameter consists of # followed by the four-character program name.

Region

This parameter can be specified in one of three ways:

1 As (n,m) where nand m are numbers specifyingthe first and last locations of the region respectively

2 Asn(m) where n is a number specifyingthe first location of the region and m is a number givingthe total
number of words to be printed

56 4194(1.70)



-

3 Asn where n is a number specifyinga location to be printed

Tape serial number
A tape serial number is an octal integer less than #40000000; it is not preceded by # and must be enclosed in
parentheses.

Terminator

This parameter consists of Tor S followed by the terminator chosen by the user for the input document. If the
terminator is less than four non-spacecharacters long, spacesare inserted at the-end and the terminator thus formed
will be assumed in the input document. For cards, the terminator may be any four characters not including acomma;
space characters are ignored. For paper tape, the four characters must be a shift or a/fJ shift characters, this:
excludes lower case letters, the underline character, the first national character, $, ] , t and +-.

Text

This parameter may consist of any of the characters that can be generated using the MOPterminal.

User name

This parameter consists of a colon followed by up to twelve letters, digits, spacesor hyphens, beginningwith a
letter; spacesbefore the first letter are ignored.

Version

This parameter is E for English,F for French and G for German. If it is omitted, E is assumed.

COMMANDS DESCRIBED IN THE MANUAL

ALTER (AL)

Resets the contents of a location in the program in core.

ALTERnumber.number
SeeAltering the contents of a location, page'36.

ASSIGN (AS)

Causesa filestore file to be opened and associatedwith the current program in such a way that transfer requests
for a specifiedperipheral are servicedby reading from or writing to the file.

ASSIGNperipheralnamefile name

SeeConnectinga file to a program,page 29.

CONNECT (CN)

Connects a background job to the MOPterminal.

CONNECTjob name

SeeReconnecting ajob, page 38.

CONTINUE (CU)

Terminates a break-in and continues a job from the point at which the break-in occurred.

CONTINUE

SeeBreakingin, page 37.

4194(1.70) 57



-
CORE (CO)

Alters the amount of core store availableto an object program.

COREnumber
SeeAltering the core allocation, page 31.

CREATE (CE)

Createsa direct accessfile in the filestore.

CREATEfile name

SeeDirect access files, page 43.

DELETE (DL)

Deletes the program currently in core.

DELETE

SeeDeleting the program, page 36.

DISCONNECT (DC)

Disconnects the current MOPjob from the terminal and continues it as a background job.

DISCONNECTjob name

SeeDisconnecting a job, page 37.

DISPLAY (DP)

Sendsa messageto the monitoring file system and the operator's console.

DISPLAY I ,text

(The text may be up to 40 characters.)

SeeCommunicating with the operator, page 36.

EDIT (ED)

Callsin the editor.

EDITfile name.file name

SeeCalling the editor, page 47.

ENTER (EN)

Enters the current program at the specifiedentry point.

ENTERnumber

SeeEntering, page 32.

ERASE (ER)

Removesall trace of a file from the filestore.

ERASEfile name

SeeErasing fi/estore files, page 40.

58 4194(1.70)



-
FIND
Loads the named program from the specifiedmagnetic tape.

FINDprogram name,MT,magnetic tape description

SeeLoading a program from magnetic tape, page 43.

GET (GE)

Allocatesa magnetic tape currently in the pool to the user and relabels it.

GETmagnetic tape name(*MT)

SeePool tapes, page 41.

GETONLINE

Takes a magnetic tape frcrn the pool, relabels it and makes it on-line to the current program.

GETONLINEmagnetic tape peripheral name.magnetic tape name

SeePool tapes, page 42.

INPUT (IN)

Reads the lines immediately followinginto a serialme.

INPUTuser name.file name,mode,terminator (used when inputting from a basic peripheral)

2 INPUTfile name,mode,terminator (used when the user is known to the system)

SeeOff-lining basic peripherals, page 27.

JEAN

Runs GEORGE3 JEAN.

JEAN version

SeeLoading the program, page 13.

LlSTFILE (LF)

Outputs part or all of a serial file on a basicperipheral or writes it to the monitoring file system (and thence to the
MOPterminal).

LISTFILEfile name,peripheral type, FROMnumber, LINESnumber, SPECIAL

SeeListing fi/estore files, page 39.

LOAD (LO)

Loads into core the binary program contained in the named file.

LOADfile name

SeeBinary programs, page 25.

LOGIN (LN)

Starts a MOPjob.

LOGINjob name,user name

SeeLogging in, page 9.

4194(1.70) 59



-

LOGOUT (LT)

Terminates a MOP job.

LOGOUT action on monitoring file,RETAIN(file name)

See The LOGOUT command, page 53.

MONITOR (MN)

Starts or stops the monitoring of program events of a specified type.

MONITOR ON,event type

2 MONITOR OFF ,event type

See TheMONITOR command, page 32.

NEW (NE)

Brings one or more magnetic tapes under the user's control.

NEW tsn.tsn, ... tsn

See Acquiring magnetic tapes, page 41.

NEWPASSWORD(NP)

Changes the user's password.

NEWPASSWORD text

(The text may be up to twelve characters).

See Getting a new password, page 9.

ONLINE (OL)

Connects a magnetic tape on-line to the current program.

ONUNE peripheralname,magnetic tape description

See Connectingmagnetic tapes to the program, page 42.

PRINT (PT)

Sends one or more regions of the program currently in core to the monitoring me system (and possibly to the
MOP terminal dependent upon the current reporting). '

PRINT region,region... region

See Printingout areasof core, page 35.

OALGOL,OCOBOL,OEMA,OFORTRAN,OPLAN,OPLAN4

Compile programs written in Algol, COBOL, EMA, FORTRAN, PLAN and PLAN 4 respectively.

QALGOL
QCOBOL
QEMA file namefile name,text
QFORTRAN (The text excludes the characters % and -).
QPLAN
QPLAN 4

See The Q-commands, page 22.

60 4194(1.70)



-
QUESTION (QN)

Sendsa question to the monitoring file and the operator's console.

QUESTION1,text
(The text may be up to 40 characters long.)

SeeCommunicating with the operator, page 36.

QUIT (QU)

Cancelsa break-in and deletes the program currently in core.

QUIT

SeeBreaking in, page 37.

RELEASE (RL)

Releasesa peripheral from the current program.

RELEASEperipheral name

SeeReleasing magnetic tape decks, page 43.

REPORT (RP)

Alters the selection of the monitoring file to be output on the MOPterminal during a MOPjob.

REPORTaction on monitoring file

SeeMonitoring, page 33.

RESTORE (RS)

Loadsa program from a file in which it has been saved.

RESTORE file name

SeeSaving programs, page 25.

RESUME (RM)

Restarts the current program at the next instruction or at the location specified.

RESUMEnumber

SeeResuming the program, page 36.

RETURN (RT)

Returns a magnetic tape to the pool.

RETURNmagnetic tape description(*MT)

SeeReturning magnetic tapes to the pool, page 43.

SAVE (SV)

Savesthe current program in a file.

SAVE file name

(The file name must not contain any spaces.)

SeeSaving programs, page 25.

4194(1.70) 61



-

TIME (TI)

Sets a limit on the mill time allowed to the current program.

TIMEmill time
SeeSetting a time limit, page 31.

TRAPGO (TG)

Permits a user accessto a file or magnetic tape.

TRAPGOfile name,user name,access mode,access mode ... (used for file traps)

2 TRAPGOmagnetic tape description,user name, access mode, access mode ... (used for magnetic tape traps)

SeeAltering traps, page 45.

TRAPSTOP (TS)

Withdrawsfrom a user access to a file or magnetic tape.

TRAPSTOPfile name.user name,access mode.access mode ... (used for file traps)

2 TRAPSTOPmagnetic tape description.user name,access mode,access mode ... (used for magnetic tape traps)

SeeAltering traps, page 45.

OTHER GEORGE COMMANDS

BUDGETQUERY
COpy

COPYIN

COPYOUT

REALTIME

enables a user to find out the budgets at his disposal.

makes a copy of an existing terminal file.

copies subfiles from a magnetic tape into card files in the filestore.

copies basic peripheral files from the filestore to a magnetic tape, in subfile
format.

introduces a document on a basic peripheral.

causes the object program to simulate a failed state.

transcribes non-overlaybinary programs from a magnetic tape to card files
in the filestore.

puts the object program into a halted state.

produces a listing of selected information about file entries contained in a
directory.

combines the functions of LOADand ENTER.

enables the user to store a set of frequently used commands that can be
implemented by a singlecommand with run-time valuesgivenas parameters.

switchesoff specifiedbits in the switch word.

switcheson specifiedbits in the switch word.

writes one or more regions of the core imageof a savedor loadable file to the
monitoring file system.

informs the system that the requirements of the currently loaded program are
such that it must be kept permanently in store and plugged in.

enables a user to check in what modes he is allowed to accessa file or tape.

suspendsa job until a specifiedperiod of time has elapsed.

DOCUMENT

FAIL
FILEMLT

HALT

LISTDIR

LOADENTER

MACDEF

OFF

ON

POSTMORTEM

TRAPCHECK

WAIT

62 4194(1.70)



-

Appendix 2 Bibliography

This appendix contains a list of all relevant leL 1900 Seriesmanuals.

Operating systems GEORGE 3 and 4 (Edition 3) TP4169

GEORGE 3Operation Management (Edition I) TP4154

GEORGE 3 Operating (Edition I) TP4140

7071 Teletypewriter Operating (Edition I) TP4081

JEAN (Edition 2) TP4090

Algol: 16K Disc Compiler (Edition I) TP4129

COBOL (Edition I) TP4082

EMA manual (Edition 2) TP3146

FORTRAN: 32K Disc Compiler (Edition I) TP4149

PLAN reference manual (Edition I) TP4004

Library Specifications (Edition 2) TP4011

4194(1.70) 63



Index

7071 Teletypewriter 5 FIND 43,59
FINISH 17

ACCEPTkey 8 GET 41,59
Accessmode 44, 55 GETONLINE 42,59
Acquiringmagnetic tapes 41 INPUT 27,59
Action on JEAN 13,59

monitoring file 55 LISTFILE 39,59
program events 35 LOAD 25,59

ALTER (AL) command 36,57 LOGIN 9,59
Altering LOGOUT 53,60

the contents of a location 36 MONITOR 32,60
the core allocation 31 NEW 41,60
traps 45 NEWPASSWORD 9,60

Answer to examples 17 ONLINE 42,60
APPEND PRINT 35,60

accessmode 44 QALGOL 22,60
qualifier 30 QCOBOL 22,60

Arithmetic operators 14 QEMA 22,60
ASSIGN(AS) command 27,29,57 QFORTRAN 22,60

QPLAN 22,60
Basicperipheral QPLAN4 22,60

connections 26 QUESTION 36,61
inputting data from 29 QUIT 37,61

Bibliography 63 RELEASE 43,61
Binary REPORT 33,61

parameter 22 RESTORE 25,61
programs 25 RESUME 36,61
BOTH-WAYposition of function switch 7 RETURN 43,61

BREAK 7 SAVE 25,61
Breakdowns 8 SET 15
Break-insignal 37 TIME 31,62
Breakingin 37,51 TRAPGO 45,62
Budget 41 TRAPSTOP 45,62
.Budgets 1 TYPE 14

Command language 2,9
Callingthe editor 47 COMMANDScategory of monitoring file 33
Character, position 48 Commandsdescribed in the manual 57
Characters, inserting 50 COMMENTcategory of monitoring file 33
CNCLkey 8 Communicating
COMERRcategory of monitoring file 33 with the operator 36
Command' with the system 2

ALTER 36,57 Compilation 21
ASSIGN 29,57 commands 21
CONNECT 38,57 Compilers 23
CONTINUE 37,57 CONNECT(CN) command 38,57
CORE 31,58 Connecting
CREATE 43,58 a file to a program 29
DELETE 36,58 magnetic tapes to the program 42
DISCONNECT 37,58 Contents of a location, altering the 36
DISPLAY 36,58 CONTINUE(CD) command 37,57
EDIT 47,58 Continuation character 8
ENTER 32,58 Controlling the run 31
ERASE 40,58 Conversational language 13

4194(1.70) 65



-

CORE(CO) command 31,58 GEORGEcommands, other 62
Core 31 GET (GE) command 41,59

allocation 31 GETONLINEcommand 42,59
printing out areasof 35 Graphic characters 28

Correcting
faults 35 Headingson LISTFILE output 40
mistakes 8,49 Hints 8

CREATE(CE) command 43,58 -Hyphen 8
CTRLkey 7

Identification of peripheral channel 51
DELETE(DL) command 36,58 IDENTIFYqualifier 27
Deleting 49 Initial traps 44

JEAN 17 INPUT(IN) command 27,59
the program 36 Input 26,27

Direct access 43 further 39
devices 44 Inputting
flles 43,44 data from a basic peripheral 26,28
peripheral channels 44 data from aMOPterminal 29

Directory 1 source program 21
DISCONNECT(DC) command 37,58 Insecure tapes 41,42
Disconnection 8 Inserting 50
Disconnectinga job 37 Instant calculation 13
DISPLAYcategory of monitoring file 33 Interrupts 16
DISPLAY(DP) command 36,58 Invitation to type 8
Drum file 43

JEAN 13,59
EDIT (ED) command 47,58 clauses 16
Edit, ending the 51 commands 14
Editing 47 deleting 17

instructions 47 expressions 13
Editor, callingthe 47 language 13
E.D.S. file 43 Job
End-of-record character 48 disconnecting a 37
Ending the edit 51 name 55
ENTER (EN) command 32,58 reconnecting a 38
Entering 32

the system I Keyboard 6
ERASE(ER) command 40,58
Erasingfilestore files 40 Librarian 41
Error messages 23 tapes 41
Event type 55 LISTFILE (LF) command 39,59 '---~EXECUTEaccessmode 44 LISTINGcategory of monitoring me 33
Exoflles 44 Listing filestore files 39

LOAD(LO) command 25,59
F.D.S. file 43 Loading 25
File a program from magnetic tape 43

name 55 the JEAN program 13
to a program, connecting a 29 LOCALposition of function switch 7

FILES category of monitoring file 33 Location, altering the contents of a 36
Files LOGIN(LN) command 9,59

erasingfilestore 40 LOGGINGcategory of monitoring file 33
listing filestore 39 Loggingin 9
restrictions on 30 out 53

Filestore 2 LOGOUT(LT) command 53,60
FIND command 43,59
FINISH command 17 Magnetictape
FOR clause 16 description 55
Function switch 5 loading a program from 43
Functions 13 name 55

Magnetictapes 41
GEORGE3 I Mainsindicators 7 -command language 2,9 Messages,other 54

'--'

66 4194(1.70)



Mill time 36,55 events 35
limitfsetting 36 events, action on 35

Mistakes 8,49 loading from magnetic tape 43
Mode 56 name 56
MONITO_R(MN)command 32,60 resuming the 36
Monitoring 32,33 running a 25

fIle 33 testing 32
file, action on 33,55 Programmedcalculations 13

MOP 1 Program's request slip 31
terminal, inputting data from a 28 Punch, paper tape 7
terminal, on-liningthe 26

Multi-access 1 Q-commands 22,60
QALGOL 22,60

NEW(NE) command 41,60 QCOBOL 22,60
Newpassword 9 QEMA' 22,60
Newlinecharacter 27 QFORTRAN 22,60
NEWPASSWORD(NP) command 9,60 QPLAN 22,60
NORMALposition of function switch 7 QPLAN4 22,60
Number 56 Qualifiers 43

QUESTION(QN) command 36,61
OBJECTcategory of monitoring file 33 QUIT (QU) command 37,61
Off-line 1

jobs 37 READ accessmode 44
Off-lining 26 Reader, paper tape 7

basic peripherals 27 Reconnecting a job 38
ONLINE(OL) command 42,60 Record, position 48
On-line 1,5 Records, inserting 50
On-lining 26 Region 56

the MOPterminal 26 RELEASE(RL) command 43,61
Operator 43 Releasingmagnetic tape-decks 43

communicatingwith the 36 Releasingperipherals 31
Order of evaluation 14 REPORT (RP) command 33,61
Output 27,30 Restrictions on files 30

format with LISTFILE 40 RESUME(RM) command 36,61
further 39 Resuming the program .36
listing parameter 23 RESTORE(RS) command 25,61

Owned tapes 41,42,44 RETURN (RT) command. 43,61
Returning magnetic tapes to the pool 43

Paper tape Run, controlling the 31
punch 7 Running
reader 7 a program 25

Parameter standard software 2
Binary 22 ""Output Listing 23 SAVE(SV) command 25,61
Source 22 Savingprograms 25

Parameters 55 Serial files 43,44
Password 1,9 SET command 15
Peripheral Setting a mill time limit 31

name 56 Shift characters 27
type 56 Software, running standard 2

Pointer 47 Source
Pool parameter 22

returning magnetic tapes to 43 programs 25
tapes 41,42 Starting up 5

POSTMORTcategory of monitoring file 33 String delimiter 48
PRINT (PT) command 35,60 Switchboard system, private 7
Printing out areas of core 35 Switchingon 7
Private switchboard system 7 System
Program breakdowns 8

connecting a file to 29 communicatingwith the 2
connecting magnetic tapes to 42 entering the 1
deleting the 36 messages 11

4194(1.70) 67



-

output, examples of 33

Tape serial number 57
Terminal vii

breakdowns 8
files 1

Terminator 57
Testing, program 32
Text 57
TIME (TI) command 36,61
Time-out 8
Transcribing 49
Transmission

breakdowns 8
plug 7

TRAPGO (TG) command 45,62
TRAPSTOP (TS) command 45,62
TYPE command 14
Typewriter log 7

User name 57
User traps 44

Version 57
. Visible space 50

WRITE access mode 44
Write permit ring 42
Work tapes 42

-
68 4194(1.70)


