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FOREWORD

The seeds of this Symposium were sown in the Autumn of 1973, when an increasing
number of requests from Atlas Laboratory's engineering users for a comprehensive
finite element package highlighted the necessity of ACL support for this type of
computation. It became clear from informal discussions with existing users that
two courses of action would be desirable ~ firstly, an assessment of the needs of
engineers for finite element programs and numerical support, and secondly, the
bringing together of people from the engineering and numerical fields to exchange
ideas on the application of the Finite Element Method to problems of current and

future interest.

This Symposium was organised as part of an attempt to satisfy both the above criteria.
To the extent that the papers presented gave useful and up-to-date information about
the different aspects of the Method, and that the forty varticipants were able to
benefit from a cross-fertilisation of ideas between the different disciplines, the

symposium can be regarded as a success.

The Symposium took place on 26, 27 and 28 March 1974 at SRC's Cosener's House, a
pleasant country house overlooking the River Thames at Abingdon. Fifteen papers
were presented, together with periods of discussion, and there was a most useful
session in which a Panel of eminent engineers, chaired by Professor Rosenbrock of
UMIST, answered questions on SRC policy in the field of engineering computing. The
meeting was also pleased to welcome Professor Edwards, chairman of the Science

Research Council, as guest speaker at the Symposium Dinner.

The papers which were presented have been edited and retyped, with figures redrawn,
and are now published in this volume for the benefit of symposium participants as
well as those who were unable to take part. Anyone requiring extra copies should
contact the Librarian of the Atlas Laboratory who will be pleased to supply them
free-of-charge to applicants within UK universities. Applicants requiring copies

to be sent outside the UK may be asked to contribute to the cost of postage.



It is appropriate here to express my gratitude to all those involved in the
organisation of the symposium - the staff at Cosener's House for making us so com-
fortable, the administrative and secretarial staff at ACL for their hard work and
cooperation, and particularly Di Byfield, who also acted as a most capable
receptionist during the meeting and has since been a tower of strength in the

preparation of these Proceedings.

It is my earnest hope that the interest which was expressed in our Symposium will
continue to inspire cooperation between workers in the different fields of engineering,
numerical mathematics, and computing. The Finite Element Method is a powerful
computational tool in engineering and scientific research. It is undoubtedly the
most versatile of numerical techniques for solving a wide variety of structural and
fluid problems, and given continued inter—disciplinary cooperation and SRC support,

can take its place as the acknowledged leader of modern engineering computing methods.

Jean E Crow
Editor and Symposium Organiser
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THE ROLE OF THE SCIENCE RESEARCH COUNCIL
AND THE ATLAS COMPUTER LABORATORY

E B Fossey

Atlas Computer Laboratory
Chilton

Didcot

Oxfordshire

O0X11 0QY

INTRODUCTION

This paper is intended to provide some background information against which the
Finite Element Symposium may be set. This is important because unless it is given
the outcome of the Symposium may not be properly understood. I do not intend
giving a complete historical background, but I hope that I have provided enough
detail to allow the present position and purposes of the Laboratory to be seen in

their full context.

THE SCIENCE RESEARCH COUNCIL

The Council came into being in 1965 because the Government of that time adopted the
recommendations of the Trend report on the organisation of civil science within the
United Kingdom. It took over much of the support for scientific and engineering
research previously provided by the then Department of Scientific and Industrial
Research, the responsibility for the Royal Observatories at Edinburgh and Greenwich
(actually Herstmonceux Castie), the support for the United Kingdom's part in Space
Research, and lastly but by no means least the whole function of the National
Institute for Research in Nuclear Science (NIRNS). This last body was set up some
years earlier, chiefly to provide the Universities of the United Kingdom with
facilities for research in high energy physics. The Rutherford Laboratory (then
the Rutherford High Energy Laboratory) came into being as the home of the NIMROD
accelerator, a project which was costly even by present day standards. The Atlas
Computer Laboratory founded in December 1961 was also a part of NIRNS for reasons

which we shall see later.

From the beginning the Council's activities in the scientific and engineering fields

have taken place either directly within its own laboratories or indirectly through
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the provision of grants to Universities to allow the purchase of capital equipment

and the support of research staff. These hallmarks of SRC remain unchanged

although there has been over the years a shift in emphasis towards greater selectivity
and, perhaps more importantly for us today, there is the need to judge the timeliness
and promise of particular pieces of proposed work. We are undoubtedly going to be’
faced with a time of financial stringency and so this yardstick will become

increasingly more important.

I do not wish to spend a long time discussing the Council's organisation. A quick
glance at the SRC Annual Report will give much useful detail of this kind. I do

want now to turn to the other component in my title, the Atlas Computer Laboratory.

THE ATLAS COMPUTER LABORATORY

I have already indicated that the Laboratory was founded in December 1961. Its
purpose was to house the large Atlas I computer and to provide facilities on it in
equal proportion to three groups of customer, namely, the Atomic Energy Research
Establishment (AERE), the Rutherford High Energy Laboratory (RHEL), and the British
Universities. Precisely because the Laboratory was to serve these groups of user
the management of the Laboratory was placed under NIRNS, and not under the United
Kingdom Atomic Energy Authority which, through AERE, had carried out the negotiationms
with Ferranti Limited concerning the Atlas I computer. Atlas was, even at the time
of its installation in 1964 and of the introduction of the service on it in October
of that year, a computer with a power very considerably in excess of that available
in many British Universities. In time both AERE and RHEL stopped using the
facilities as the result of obtaining machines of their own. The fraction of time
used by the Universities rose, of course, but other Government Departments and the

Laboratory itself used some time for work of their ownm.

The main uses of Atlas by the Universities arose as one would expect in the physical
sciences, but engineering calculations always figured in the tables among the
largest sources of work. Some of that work was a precursor to the work reported in
this symposium. A most significant development during the formative years was the
way in which the adoption of the X-RAY system as a standard program for use by
crystallographers came about. A meeting of most of the crystallographers in the

UK was arranged and on their advice the Laboratory set about mounting on Atlas the
X-RAY 63 system developed at the University of Maryland. Once the transfer had

been completed, the system was given active support not as one might have expected
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by trained crystallographers but by people experienced in the maintenance of large
systems who could provide also active advice on its use, This proved to be a most

valuable and highly appreciated Laboratory service.

During the late 1960's the impact of the Computer Board in improving the University
computer equipment led to a lessening of the position of the Atlas Laboratory as a
source of extreme computer power. It also led to the decision in 1971 by the
Science Research Council to align the services of the Laboratory much more with
scientific aims of Council. The present procedure for obtaining time at the Atlas
Computer Laboratory developed out of that decision, and it was reinforced by the
allocation to the Laboratory of a 207 share in the Rutherford Laboratory's large
IBM 370/195 computer installation. This share, together with the ICL 1906A
computer at the Atlas Laboratory, now constitute the facilities whose resources are

in the main distributed to users on the approval of the SRC specialist committees.

We commonly talk of time awarded by the Committees as 'guaranteed" time. We mean
that a user may expect to obtain each week an amount of time during the period of
the award. It gives him the advantage of knowing that this work will not be depen—
dent upon the vagaries of the demands of other users and that he may therefore plan
not only the use of the time awarded but perhaps more importantly of his own time.
We believe that this can contribute very significantly to the pace with which the

investigation or research is carried out.

As a result of the Laboratory's greater identification with the general research aims
of the SRC, the service aspect of the Laboratory has been preserved. Without it,
the Laboratory could not hope to be an effective instrument in contributing to the
development of computational science, that is, any scientific or engineering project
in which the computer plays a central part. (Much work in Fluid Dynamics is of this
character.) However, a proposal has been agreed that the Laboratory should play an
active part in advancing the knowledge and techniques used in a few selected areas

of computational science. It is to act as a focus for workers in fields selected

to collaborate under the general scientific direction of a steering panel chosen by
an SRC Board. No suitable name has been found for this kind of activity, but it has
been referred to as a "Meeting House'". One such pilot project is now under way and
the Laboratory looks forward to learning a great deal about this exciting develop-

ment, and to playing a full part in the programme of work.
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SUMMARY

What we see is therefore that the Council supports selected scientific programmes of
timeliness and promise; that the Laboratory plays a significant part in' this through
providing computing on a guaranteed footing to users whose applications have received
approval from the SRC specialist committees; that the Laboratory can play an active

part in the development of software considered to meet an overall need; and that the

Laboratory may in the future be embroiled much more deeply through Meeting House

activity.



CIRCULATION PROBLEMS

C A Brebbia
R Adey

Department of Civil Engineering
The University

Southampton
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INTRODUCTION

The environmental consequences and increasing cost of engineering works in tidal
zones, lakes etc has made the prediction of the motions of water bodies increasingly
important. The main objectives of tidal models are to predict the motion of the
tide at certain locations during or after construction of the engineering works, and
detailed prediction of velocities for water quality studies in areas where known
tidal data is remote from the region of interest. This prediction can be attempted

using the shallow water equations deduced in this paper.

For the case of harbours and similar water bodies it may be important to predict the
harmonic response of the system, which will affect moorings, structures, etc. The
equation governing this phenomenon can be obtained as a particular case of the more

general shallow water equations previously deduced.

Finally, by linearizing the shallow water equations the flow in lakes, cooling ponds
and similar bodies can be approximated to provide an initial estimate of the circu-
lation. Once the preliminary studies are finished the approximation can then be

checked against the full equations.

SHALLOW - WATER EQUATIONS

The present state of the art and the lack of suitable data does not seem to justify
more complex mathematical models for circulation in coastal regions, lakes, etc than
those based on the numerical solution of the shallow water equations. Fully three
dimensional solutions are not warranted at this stage as they would require a large

amount of extra data and computer time.



CIRCULATION PROBLEMS

Finite difference solutions for circulation problems have been implemented in the
past. (Abbott et al 1973; Heaps 1973; Leenderstse 1970; Leenderstse and Gritton
1971; Reid and Boding 1968; Water Quality Office 1971), They suffer from lack of
mesh flexibility and, in some cases, difficulty in the satisfaction of the boundarv
conditions. The method of finite elements allows here for a great flexibility in
the analysis grid and the advantages of having to satisfy only the essential boundary

conditions.

In what follows a consistent derivation of the vertically averaged equations for long

wave propagation is presented.

The governing equations for the fluid, neglecting temperature effects, can be written

9T, D(pv,)
'%P_ * alk e < _D?k_ 1
* % &
1) R B8
3 (pv,)
. o,
Bxi * t g (2)

These equations are difficult to apply for the solution of shallow water problems

because of

(a) the presence of the free surface
(b) the variable nature of the boundary when the tide rises and falls
(c) the large number of variables present in the solution.

These difficulties can be solved by simplifying the equations into what are called
the shallow water equations. The first simplification we will introduce is to

reduce the third momentum relationship to

B

ax, = pig (3)

where the negative sign for g is due to the direction of the axis relative to gravity

(see Figure 1).

Equation (3) implies that we have neglected all acceleration terms and corresponding
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stresses. Integrating (3) we have

21
pl = %{. pgdx3 = [Pl <= x3) LR (4)
g

where P, is the pressure acting on the surface of the water, usually atmospheric

pressure. n is the elevation of the free surface.

The remaining two momentum equations - in x; x, directions - can now be written

D 9
(DVk) ) (ovk) a(pvkvi) o A
= = L = - + + b (5)
Dt ot X, Bxk 9X, k
1 i

The above formula represents two equations, one for k = 1, the other for k = 2. The
subindex 1 in this case indicates summation, for i = 1,2,3. The v, are average
velocities, p is the variable mass density and T is the sum of viscous plus Reynolds
stresses (Tik = Tki).

Our aim is now to integrate (2) and (5) with respect to x . This gives for the

continuity equation
3lpv.)
1 ap
(—— + 2 ax = o0 (6)
Zh axi at 3

where h is the depth from a datum surface (not necessarily horizontal) and n is the

free surface variable (Figure 1).

Figure 1: Geometrical notation for
shallow water equations
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Let us now define a momentum flux variable 9 (mass per unit length and time) such

that
n n
q = f pv, dx = p _[ v, dx @)
k & k 3 2% k 3

Note that p (xl’ x2) is assumed not to be a function of xj.

»

In order to integrate (6) we need to use the kinematic condition and Leibnitz rule
for partial differentiation of an integral between variable limits. The latter

gives for instance

=2

h2(xlx2)

2
ah oh
3 af 2 1
—_— = — — f —_—
a%] u/ﬁ f(x1x2x3)dx3 o, dx3 + f h, axl by 3x1 (8)
hl(xlxz) h1
and similarly for Xy
The kinematic relationship for the free surface can be written
Ln an an an (9)
v = — = — 4 —_— % —_—
3 t t b 3 b 3
|xa=n D 1|n X 21, 3%,
Applying (7) to (9) to equation (6) we obtain
9q.
1 3(pH)
ax, ot ! o)

where H = h + n.

To integrate now the two momentum equations (5) with respect to Xy, We define the

following instantaneous velocities

(11)
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where v denotes the vertically averaged velocities and v' the vertical deviations.

Hence
n
SR u/ﬁ v, dx = l == = 1
k % k73 B 7 & E = 12)
since < v' > = 0.

We will assume that the body forces are only those due to Coriolis effects. Thus,

for the northern hemisphere

(13)

One can also assume that the surface and bottom slopes are small with respect to

unity. Hence we can approximate the internal stress components as follows (see
Figure 2)
an an
T = {=-1,, —m@/8 - T.,,— + T }
l|s Ll ey te axz 13 surface
(14)
5 oh 9h
Ll ® 0@ - N TR
b 1 axl 12 axZ = bottom
and similarly for T, and T, - Note that the t's can be interpreted as external
s

force components applied at the top and bottom.

2 2
(R <<, %}"2) <<| dA= dx, dx,

Figure 2: Surface notation

G s
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We will now substitute (11) to (13) into the momentum equations integrated with

respect to x_.

to obtain the following result

where

Furthermore, the Ni

Mo =
Nyp =
e =

The € are generalized viscosity coefficients (Connor and Wang 1974).

behaviour they become €

2
3 (ql : 3 (qqu) o aNp .
Ix H 3x2 axl
on
+ f 1 _— T +
192 | axl 1]s
) 2 oN
B e | 8 iy TP
exl H sz H X,
= G, B Iph e ' D + p
21 IS 2|S
n
N > = d HZ # °H
P i P x3 pg 7 pa
=h
< T S = < p! vl s
11
< 122 > - < pv! Vé >
< T = g BVt Sl B
12 i, %2

k

aq
2511 1

2622 ax

o 2l
=019, 3x2

Il

qu

Bxl

== e

22

terms can be approximated by

12=€.

- 10 -

11 12
axl axz
» 2

ax pl

B 3 lb
s Ny
sz 9x

oh "

b axz 2lb

3 One also needs to apply Leibnitz rule plus the kinematic condition

(15)

(16)

§157)

For isotropic
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The bottom shear stresses are usually given by the following relationships

2
&y L 1, (q, +q2)£
. - B L
1|b 38 T
(18)
2
g. 1 By t4a )
T | = (—50 5
2 b (3 H

where p is the density of the water, g the acceleration due to gravity and c the
friction factor or Chezy's coefficient. Note that g/c? is a dimensionless quantity.
Sometimes a dimensionless friction , o is used instead of Chezy's cpefficient.

The relationship between them is simply

c = 8 (19)
The shear components on the surface of the water are generally due to wind and can
be expressed as

W cos O

1]
<
©

(20)
& = YZ p W2 sin O

where W is the velocity of the wind, Pl the density of air and O the angle between
the Xy axis and the direction of the wind. y2 is a dimensionless coefficient
called the wind stress coefficient; its value is given as approximately 0.0026

(Leenderstse and Gritton 1971),

Lastly we will assume that p = B in all the terms except the pressure force terms.

Equation (15) can now be written

2

3q q q,9 3N

1 5. 3 . 5 B 12
e B G ax, & axl(Nu N & 7%, BBy

(21)

24, 3 119 3 qg 3 (L
e i = T TR NI +
at axl H sz H axz )7 3x1 2

- 11 =
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where the B, and B,2 terms are given by

1
2 B 1l
2 2 A L
= G (S
B, fq2 + p, W ocos 0 (2)p 5
Q H
o9H oh
+Paé)x1+pgﬂax
(22)
2 T d
2 5 1 909+ 9,0
By = = F +YpW51nO-(B——)——
2 q
) a CZQ H2
oH dh
+pa&)x *"gHax

Boundary Conditions

To solve the resulting system of equations (21) under condition (10) we need to
establish the necessary boundary conditions. Consider that the S boundary

(Figure 3) consists of two parts, land type boundaries S, and ocean type S,

s
S N .dS 8 '
sd5
NpndS
(N~ Np) dx, J Np dS
Nz dx,
N, dxll «pecos(n.x,)
otp ecos(n, x,) X, t
(sz' %) dx, X,

Figure 3: Boundary definitions

On the boundary reference system s-n, the momentum flux can be written as

(23)

where @, = cos(n,xl) » @, = cos (n,xz).

= BE) S
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For the force resultants we have

N = a (N - Np) + a . N

nl nl 11 17V 192
(24)
N = =
W = gyl P B Wy =W
We can transform again to calculate N and N
nn ns
N =
an - %1 a1l Y %2 Mao
(25)
N o= -
ns %n2 an * “n1 Nn2
On land type boundaries we usually have
4. = 0 on S1 (26)
However, if a river enters into the water we can specify its mass input as
% T 9% 7 {q}river inflow
on part of S1 (27)
boundary.
%, =0

On an ocean boundary, in principle, one has to prescribe the normal and tangential

forces
N = N
nn an
28
on 82 (28)
an = an

but as the eddy viscosity terms in (21) are generally neglected the tangential flux

or velocities can not be prescribed. Hence our boundary conditions reduce to

n n n on S

plus (29)
N = N = =N on IS

- 13 -
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FINITE ELEMENT FORMULATION

In order to formulate our finite element model let us write equations (21) plus

boundary conditions (29) and (10) plus condition (27) in the following weighted
residual way

aq q.q 3N
1 3 240 P _
/I A ST
2 1
= J @y O, = §) 8q, da (30)
2
g, WA 3 q22 oN
fﬁ +ax (H')+3x (H)+ax -BZ}GquA
1 2 2
= fanz(Np = Np) 8q, ds (31)
S
2
3q aq
1 2 3 (pH) = e
[/ + —sz + e } 6H dA = f(qn qn) S§H dS (32)

where 6q1, qu, 8H are variations which satisfy the boundary conditions in mass
flux and elevation. Note that if the elevation is known on 52 the boundary condi-

tions Np = ﬁp will be identically satisfied (see equation (16)), hence the boundary

terms on 52 do not need to be included in (31) and (32).

The Bi and 8Np/3xi terms can be combined to give

‘fq2+prZcoSO-(——)—————2——- gué—g%——h)
(o p H 1
(33)
oN
b = T
2
2 24
2 . a,(a;" + q,7) =
== iflqis ® WP wzslnG)-(g—)l——--————2 1 4 -ogH—-——a(Hh)
1L a C2 HZ axz

= B =
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The continuity equation (32) can be integrated by parts to render a simpler

expression, ie

36H 36H _ 3 (pH) _ -
,/:/qu = Y s N e SH} dA fqn §HdS (34)
1 2
Sl

which has then to be solved together with the following final momentum equations

)

3q q 9,9

1 5 1 3 192 %,
A R A

1 €

faq 4,9 qz

2 3 2% 5 ) % .
ﬁa: V 7%, e 3%, o B, } 8q, dA &

The above variational statements are thé starting point for the finite element models
which we are now going to develop. Let us assume that the same interpolation

functions apply for qa; and H, ie

q1=011'q2=Q32’H=2n <2

~

Substituting these values into the momentum and continuity equations (34)-(35) we can

obtain
n
aq
n,T =~ _ 5y = o
6q; Cl 5 2
n
agq
n,T =~z _ -
8q M 3¢ E) =0 (37)
e e
’ e 1 -
& ST E) 0
where

=
Il
=
=
s
[+ 9
e
?Z*
n
S
=
lsh
fa =Y
&

(38)

- 15 -
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~ e _
S &gy

(38)
il i 20ll=
= + da - ds
ff o O 2:,99 { & i
1
"The A1 and A2 stand for the advective part of the particle derivative, ie
= q
g &gl dhe g A Z
H
1l axl sz H
(39)
2
PO I ' N T
2 Bxl H 9 x H

Equations (37) are a highly non-linear system of equations valid over one element.
We can then assemble (37) for the whole continuum and write the resultant
[

YGHE [ e
expression for which we assume the mass flux and elevation boundary conditions has
been taken into account. M is the global mass matrix, represents the
derivatives with respect to time of the mass flux and elevation of all the nodes.
All the other terms. are- included in F and computed at t = t , or if an iterative
method is applied at the end of the t1me step, they are the values obtained at the
previous iteration. Integration of (40) may be attempted using an explicit method
of solution such as Runge-Kutta or Euler technique or an implicit method, eg

trapezoidal rule, Galerkin's, etc.

EXAMPLE 1

A mathematical tidal model for the Solent was developed applying the theory des-
cribed above (Figure 4). The model used 86 three node triangular elements with
58 nodes. The motion of shallow waters is strongly dependent on the bottom
topography, hence the finite element mesh was chosen in such a way as to represent
the complex channels and shallow flats (Figures 4 (a) to 4(c)). The elevation, H,
and two momentum flux parameters, B and qy, were taken as nodal variables. This

gives a total of 174 unknowns.

- 16 -
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CALSHOT

Figure 4(a): The Solent

APPROXIMATION  _—— —{5m
\
BOTTOM ~IOm
PROFILE
—1i5m
—20m
SECTION A-A
—
—15m
APPROXIMATION “iom
BOTTOM.~
PROFILE —115m
—20m

SECTION B-B

Figure 4(b): Cross sections and finite element approximation

Figure 4(c): Finite element mesh

_17_
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The ocean type boundary conditions (elevation only) were obtained from the
Admiralty Tide tables for the Solent area. The model can take into consideration
wind effects, bottom friction and Coriolis, although the latter was ignored for the

Solent,

*The time integration was carried out using fourth order Runge-Kutta and the model

was started with zero elevation and flux initial conditions.

The time step was selected using the Friedrichs-Courant-Lewy finite difference
criterion
Ax (a)

At :-EX

where X is the celerity equal to /gh. h was taken to be depth in the deepest part

of the Solent.

For a regular finite difference grid the value of k is V2. This gives a At of
approximately 20 seconds. After several tests this value was found to be too small

and a At=120 seconds was finally adopted.

The computer time for each At was around one second on an ICL 1906A; that is
approximately 6.5 minutes per tidal cycle. Usually 3 to 4 tidal cycles are

required for any problem.

For this example, bottom friction (but not wind and Coriolis effects) was considered

with a value for Chezy's coefficient of

c2 = 100 m/sec2

throughout all the model. Local variations together with a more realistic value

of the Chezy's coefficient are to be studied.

Typical results for mean velocities and tidal elevations are shown in Figures 4(e)
and 4(f). The velocities are in agreement with those of the Admiralty charts.
The values of tidal elevations at Cowes depicted in Figure 4 (f) closely follow

those of the chart.

- 18 -
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Figure 4(d): Typical Spring tidal curve for
Southampton Water

a. 1 )

-7 =6 ~5 ~4 =3 =2 =T HW <i %2 33 +4 =5 +&

Figure 4(e): Circulation 3% hours after HW Portsmouth

MODEL(X)
ADMIRALTY CHARTS(-)

Figure 4(f): Tidal height at Cowes

1

o ¢

LW-6 -5 -4 -3 -2 -| HW <+l +2 +3 +4 +5 LW
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HARMONIC RESPONSE OF WATER BODIES

We will study how to predict the harmonic response of water bodies. We neglect the

convective, friction, Coriolos, eddy viscosities and wind terms in equation (21).

This gives S
aﬁ
1 an
at - X
il
(41)
aq
2L = an
3t pet e

We also assume that the amplitude n is small by comparison with the initial depth,

h. Hence (41) becomes

3
o e
ot #E Ix
1
(42)
9
. B
3
(e sz
For the constant density case, the continuity equation (10) can be written
3q 3q
%t ig P gy =D S
il 2
On a land boundary, we prescribe the normal integrated velocity
G T Gan S ® G 5,0 o By G
On an ocean boundary, the elevation is specified
L T on s, (45)

The differential equations (42) and (43) can be transformed to a single differential

equation of second order by differentiating (42) by X and x, respectively and

substituting them into the continuity equation (43) differentiated with respect

tol s This gives
3 an 3 an 1 82n
(sl + == (h3gl) -220 - o (46)
Bxl ax1 8x2 axl g atz
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where
n = n on S1
T = =i, e
W = 3t (g qn) en Sz

The normal velocity boundary condition has been replaced with the equilibrium
equation for the normal direction which is consistent as the order of the differential

equation governing the problem has increased.

Resonance and harmonic response due to tidal excitation can be investigated by

expressing n as

_ iwt (47)
n(x1 X, t) E (x1 x2) e
where w is the circular frequency. Then (43) becomes
2 2 3 . 36 :
e {mre) E —a——(ha—') 2 :—E = 0 (48)
X 1 x, x,

For tidal excitation

s = & on Sl
3 _
n fs on 52

For harmonic resonance, one considers a different set of homogeneous boundary

conditions

& & _
g = 0 on S » s 0 on S2

and determines the frequencies and modal shapes.

Finite Element Formulation

From (46) and the boundary conditions we can write the following weighted residual

expression

= Ml =
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- f(hg—g = £Y ag as (49)

2
g it 2

f £ 8¢ dS (50)

vy

If £ = 0 the RHS of equation (50) disappears. Assume that the f variable can be

approximated on each element by

n

E= 2 & (51)

= g . : n
where § is an interpolation function. £ are the nodal unknowns.

For an element we have

n,T 2
= ff[h(gl,‘lgg * ﬂTz g © :_ET 2] dxy dx, €7 = ‘Sﬁn’TleT G

G529

We can write (52) as

K n  _ 2 Lo J—

K & - U -z (53
where

Ko i T

~ ffh(~,1 B, * 2,8, dx dx,

M=1f/T

il = 9' 2 dx1 dx2 " (54)

~P=f0deS

For the whole continuum we have,

Ke - whMe = P (55)

where K and M are both symmetric.
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EXAMPLE 2

As an illustration the case of Duncan Basin, built during the Second World War in
Table Bay Harbour, South Africa, was analysed. This basin has been extensively
studied, (Wilson 1954) as the features of the Bay are such that some of the seiche
frequencies are greatly amplified (Figure 5(a)). This fact has been demonstrated by
model experiment, harmonic analysis of seiches programmes and simple theoretical
analysis, which can give reasonable results here as the shape of the basin is

rectangular.
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A
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Figure 5(a): Finite element idealisation of Duncan Basin

It was decided to carry out an eigenvalue-eigenvector finite element analysis using
a coarse mesh with 30 six node elements and 77 nodes. In this way the first natural

frequencies were estimated (broken lines in Figure 5(b), T = %g).

Afterwards a more refined finite element analysis was carried out by dividing the
basin into 168 elements, which gives 377 nodal unknowns. Periods T from 1 to 15

minutes were chosen and a unit elevation £ input at the entrance of the harbour.
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If we know the frequency w of the waves and its elevation £ at a given (ocean type)

boundary, equation (55) can be written

(K-w?Myg= 2

~

where the elements of the E vector are due to multiplying the known E elevations by

the elements of E’and w?ﬂ and passing the result to the right hand side. '

The results for berths E and O are plotted in Figure 5(b) for periods T ranging from 1

to 15 minutes (full lines).
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Figure 5(b): Harmonic response analysis of Duncan Basin

The finite element frequencies are in agreement with the experimental frequencies
found on the physical model. The error in amplitude values is due to the lack of

damping in the harmonic study.

= T =
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CIRCULATION IN LAKES

Flow in lakes, cooling ponds and other water bodies can be approximated to provide
an initial estimate of the circulation, which can then be checked against the full
shallow water equations. This flow is governed by linearized equations which are

obtained in first instance by neglecting the inertia terms in the momentum equations,

ie
. W EE e & (O o w0 ) = ©
2 ax 1 1]
s b
(56)
fq, + pgH %ﬂ~ ® G | = T ) EL©
1 & £ s b
and the time dependent terms in the continuity formula
dq 3q
m S o
1 2
If the n values are much smaller than the h we can write H = h in (56), hence
'fq2 + pgh gn + (Tl = Ty ) = 0
X1 ls |b
(58)
fgle, & pgha—n- # o - 1,,) =0
1 ax, 2 2.
The momentum components can now be defined as
q; q; ]
2D =S = R
= 4 n v, dx3 (59)

=h

The Tls terms are due to wind stresses and le are bottom friction stress components.
The latter are assumed here to be linearly proportional to the mean momentum

components

Tllb 2

b
We can now cross-differentiate equations (58) assuming that the derivatives of h are
negligible (ie the bottom slope is small), and afterwards subtract both equations.

This gives, taking continuity into consideration, the following equation

aT 9T
Uy 2|s) . il gl (61)
axz axl_ 8x2 8)(1-

(
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One can propose a stream function such as

= = = ik
! 3x2 ’ 13 X (62)

Whence formula (61) becomes

Wos oy Py (63)
where
3
T1|s 31215
W= 5 =~ )
%5 *)

The boundary conditions associated with this equation are

g%- = 0 on 'land' boundaries
(64)
v = & on 'inlet' boundaries

Equation (63) plus conditions (64) can be written in variational form and the finite
element technique can then be applied. Any of the programs already developed for

inviscid flow can be used.

Note that in the above formulation we have included the Coriolis parameter but
assumed that it is constant for all the lake, ie the lake is small enough to neglect

local variations in the Coriolis forces.

=)=
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DEFINITION OF STRUCTURAL ENGINEERING

Some while ago the term 'structural engineering' was used primarily in Civil
Engineering fields. The use of the term 'structure' has increased with the advent
of the finite element method and it is my first intention to provide some definition.
In this paper I shall be concerned with the use of the finite element method for
obtaining some knowledge about stresses, strains, displacements or natural frequencies
of vibration of any body which is made of solid material. This encompasses an
enormously wide range of engineering applications such as bridges, aircraft, machine
tools, engine components and drilling rigs. This rather wide field of application
arises because the mathematical techniques and in many cases the computer programs
themselves are identical for all these cases. The stiffened plate elements used to
solve a bridge problem may be identical to those used to model an aircraft fuselage.
The same solid elements may be used for modelling dams, rock strata and diesel engine

crankshafts. All problems of practical interest happen to be highly irregular.

THEORETICAL BASIS FOR THE FINITE ELEMENT METHOD APPLIED
TO STRUCTURAL PROBLEMS

In a finite element analysis we proceed by dividing the irregular structure into a
number of simple elements of finite size. Whether we are interested in the displace-
ments or stresses or the natural frequencies of our structure we next make some
assumption about how the displacement within this element varies. There are alter-
native but less common formulations in which we make assumptions about the stresses

or strains. The displacement within the element can be characterised by a list {u}
of displacements at the element nodes. It happens that nature behaves in such a way
that energy is minimised in any structural situation. We therefore write down an
expression for energy storage which involves a product of stresses with strains. We
can obtain the strains by differentiating {u} and in most situations the stresses will

be linear in the strains. Thus our energy becomes a quadratic {u}

=129) k=
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Strain energy, T = %{ue}T[Se] {ue} (@)

The use of Castigliano's theorem tells us that a differential of strain energy with
respect to displacement is a force and therefore we have a linear relationship between

the forces on an element and the element displacements

3 (T) (2)

() = ggny 7 [S] e

The [Se] matrix, which is referred to as the element stiffness matrix, can be found for
each of the elements in the structure. In order to form a mathematical model of the
complete structure we observe that the displacements between adjacent elements must
satisfy certain continuity requirements and additionally that the forces acting at a
node must be in equilibrium. The process of joining together the finite elements is
often termed merging and in static problems involving known applied loads the resulting
set of equations is very similar to equation (2) except that all the matrices are very

much larger. The overall set of equations will be written as
[s] (v} = {(F} (3)

In equation (3) the matrix [S] is square, symmetric and very large and can be arranged
in a highly banded form. Fortunately [S] appears to be quite well conditioned even
if there are thousands of rows and columns. The set of equations (3) is normally
solved using Gaussian elimination or Choleski factorisation. The former method
appears to be in most common usage now especially if a frontal technique is adopted to

minimise core requirements.

TYPES OF FINITE ELEMENT

There are a number of quite different types of structural finite element (see Figure 1).
The first group, beam elements, are essentially one dimensional although they may be

curved and they may be used to form three dimensional structures.

Membrane type elements may be used for two dimensional situations in which the dis-
placements are all in the plane of the element. Figure 2 shows a two dimensional

mesh for a turbine disc.
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Figure 1: Types of finite element
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Figure 2: A two-dimensional mesh used for analysing a turbine disc

Plate bending elements have the same geometry as the membrane elements except that the

energy storage mechanisms are associated with displacement perpendicular to the plane
of the element.
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The membrane and plate bending families may be combined to give shell elements in which

transverse and membrane displacements are considered, Figure 3 is an example of a

civil engineering structure that involves shell type elements. Shell type elements

can usually be extended to include curvature of the element plane,

CIRCULAR
_ MEMBERS

i A
||/ L —wewo
|/ voow

BOX- SECTION MEMBER

STRUT

Figure 3: A truss problem involving
shell-type elements

'3.\:
L]

Figure 4: Parts of a turbine casing idealised using three-dimensional elements

Full three dimensional elements are only used if none of the simpler structural elements
is capable of achieving the required complexity of displacement distribution.

Figure 4
shows portions of a turbine casing which comes into this category.
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In general it is possible to mix all types of finite element together in one idealisa-
tion provided that the appropriate continuity and equilibrium constraints are applied

between the elements. Figure 5 shows an idealisation of part of an aircraft structure
in which curved shell, flat shell and curved beam elements are all used together in the

same idealisation,

7 7

s p /7

NI
o / )

CURVED BEAM PLATE ELEMENTS WITH CURVED SHELL
ELEMENTS MEMBRANE AND BENDING ELEMENTS WITH
ACTION SUPERIMPOSED VARYING THICKNESS

Figure 5: An idealisation involving a mixture of shell, plate and beam elements.
{Only one half of the idealisation is shown since there is symmetry about
the centre plane. Symmetric or antisymmetric boundary conditions are
used to obtain all the modes of vibration.)

When the finite element method first became popular very simple finite elements were
used, It became clear that more complicated elements gave better solutions for a
given amount of data preparation and computing effort. Elements may be made more com

plicated in one of two ways

(1) by increasing the number of nodes per element;

(ii) by characterising the displacement within the element in

terms of nodal strains as well as nodal displacements.

The first of these two methods has proved to be of enormous value and the isoparametric
elements are generally regarded as being the best compromise from considerations of

accuracy and ease of practical use.
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TYPES OF STRUCTURE ANALYSES

The most commonly occuring problem is that defined by equation (3) in which we wish
to examine the behaviour of a structure under the influence of some known loads.
Solution of the equations for {u} gives us the displacement of a system which may be
differentiated to give strains. Stresses may be found from strains using linear
material laws., Often the list of forces { F} will be derived from a distributed
loading such as a pressure or gravity. A computer progr#m‘can easily calculate {F};
thus a distributed loading problem is virtually identical to a problem in which known

point loads are applied.

We often wish to calculate the natural frequencies of vibration of a structure. In

such cases we subtract the kinetic energy from the strain energy to give a Langrangian
Langrangian, L = T - V 4)

where V is the kinetic energy. The Langrangian is minimised with respect to the dis-

placements again and under sinusoidal conditions we obtain the eigenvalue problem
[s] {(u} - w? [M] {u} = {0} (5)

where [M] is the system mass matrix and w is the radian frequency. The solution of
equation (5) for the eigenvalues w? and the eigenvectors {u} appears to be a formidable
task for systems of practical size. However, it happens that we can use static con-—
densation or eigenvalue economisation in order to reduce the thousands of degrees of

freedom to at most 100 without any appreciable loss of accuracy. The solution to

equation (5) gives a steady state vibration. Transient effects may be studied by
writing
[s] (w} - [M]{& = (F(o)} (6)

where {F(t)} represents some arbitrary forcing function. Damping may be included
into equation (6) in various ways. It should be noted however that wave propagation
problems cannot be solved by the finite element method in its usual form. Present
methods only give standing wave solutions and are therefore inapplicable in shock
situations. For many structures there is a particular load which will cause the
body to buckle. As usual the strain energy of the structure is important. We also
need to consider the work done by the load on second order displacements. By
following through the mathematics we derive an eigenvalue problem which is similar to

that of equation (5)

[s] tw} - a[s] {ul=(0)} ©)
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where [Sq is the second order or geometric stiffness matrix calculated for a particu-
lar applied load and a is the number by which that load needs to be multiplied in order

to cause {u} to take up any required value; that is, to cause the structure to buckle.

All the situations considered so far have been within the realms of small displace-
ments, first order theories and linear stress-strain relation. Wherever possible
structural analysts will use simple theories because they tend to be at least an order
of magnitude cheaper to use than the corresponding second order theories. However,

there are a wide range of structural problems in which non-linearity is important.

The simplest class of non-linear problems is that in which the displacements which

the structure undergoes are sufficiently large to change the geometry to such an extent
that the stiffness matrix is not constant as the load is applied. As a rule of thumb
these geometric non-linearities will occur when the displacement of a shell surface
approaches the thickness of that surface. In the large displacement problem we know
that [S] is a function of {u} but we have no motivation for finding a relation between
them since equation (3) would become a very large non-linear set of equations in {u}.
Instead we proceed by observing that the structure is still reasonably linear for
small increments of load and we can recalculate or adjust [S] as the total load is
applied in steps. Figure 6 shows how the non—-linear effects in a food storage con-
tainer affect the final deflection.

o b
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i ; 3 & ) RELATIONSHIP USING REVISED '['I:E”‘ ELASTIC

: i COORDINATES WHICH EXHIBITS
STIFFENING. BASED UPON LINEAR
ELASTIC MATERIAL LAW.

Figure 6: Non-linear behaviour of a thin pressure vessel

The materials of which structures are made often exhibit non-linearities in the stress
strain relationships. At a particular stress level a material will yield and flow
plastically (see Figure 7). The most common way of solving a problem involving
plastic flow is to calculate first of all the stresses and strains which occur when a
small increment of the load is applied. This calculation is based upon the linear
elastic load and therefore some of the stresses and strains calculated do not lie on
the true material curves. The amount of discrepancy between a typical point and the

true curve is equated to an initial strain and a set of loads which would be necessary
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Figure 7: Stress-strain relationship for an
elastic-plastic material
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to move these points back to the material curve are calculated. The process is not
exact and an iterative technique is needed. When all points lie sufficiently close
to the true material curve a further increment of load is applied. Figure 8 shows the

manner in which the yield surface varies with load for a bolted flange joint. In
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AXISYMMETRIC

Figure 8: The growth of the plastic region in a pipe flange

linear elastic analysis it is assumed that if a set of forces are constant in time
then the stresses and displacements are also constants. In practice if we take a
tension bar and apply a load then there will be a rate of straining which is a highly
non-linear function of temperature and stress. The solution for displacements and
stresses in a structure is therefore a function of time and we proceed by considering
a particular time at which we know all the temperatures, displacements and stresses.
With a knowledge of material properties we can calculate the rate of straining. After
a suitably small time increment we can determine the loads which are implied by the
change of strain and carry out a linear elastic solution for a set of incremental

displacements. Figure 9 gives an example of a creep solution.

The creep problem involves a time variation of displacements and this leads naturally
on to a concept which has been recently gaining popularity in finite element

structural analysis.
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Figure 9: Creep results for part of a turbine (Stress contours showing the manner in which a stress
distribution is redistributed with time. The idealisation represents the intersection between
a toroid and a cylinder in a lead model of a turbine casing.)

Until a few years ago a time dependent finite element solution was obtained by using
finite elements in space and the finite difference method in time. Recently a number

of workers have investigated the possibility of using finite elements in the time

coordinate. This technique may well become quite standard within a few years.
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THE FUTURE OF FINITE ELEMENTS

It is inevitable that this discussion of future trends is highly personal.

Let us consider first the theoretical methods associated with finite elements. Finite
elements were originally developed by engineers in order to solve their problems. It
is only quite recently in the history of finite elements that considerable mathematical
investigations of their properties have been carried out. Figure 10 shows approxi-

mately how research trends have progressed. This process will certainly continue, it
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is probable however that the feed-back to engineers using the method will be in terms
of improved understanding of the method and its properties rather than any startling
new techniques. The days in which everyone is developing a new and better element
seem to be nearly over, at least as regards structural applications of the finite

element method.

There are probably less than 10,000 people in the UK who have a reasonable working
knowledge of the finite element method. This is a very small number considering the
enormous increase in the usage which will take place in the next 10 years. There is

a very pressing need to provide widespread education. All Universities and
Polytechnics ought to include a course on the subject for all students and not for
just a selected few who happen to choose a particular option. Since finite element
methods are applicable to an enormous range of problems a finite element program ought
to be very general. This implies large programs. Large finite element programs will
become more readily available. There is a danger that these large programs might be
treated as black boxes and in order to prevent this they must be transparent. Users

must not be in awe of the code. In particular large programs should

(1) be written in FORTRAN

(i1) have both internal (comment) and external (manuals) documentation.

(1i1i) be written in such a way that users can modify or 'play' with them.
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Figure 11: Finite element data produced with Figure 12: Finite element mesh generation
the aid of a digitiser with the aid of PAFBLOCKS
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Even with the latest mesh generation aids it is still a rather laborious process to
generate a finite element mesh for a complicated structure. The following mesh
generation aids which are the subject of much development will probably be augmented

by new techniques in coming year.

(1) Use of special purpose programs which are limited to narrow classes of structure.
(2) The use of a digitiser (see Figure 11),.

(3) The use of building block systems (see Figure 12),

(4) Interactive graphics,

(5) The use of mesh generation languages.

The problem of interpreting output is similar to that of mesh generation and similar
developments can be expected in this field. It is imperative that complex finite
element idealisations be checked thoroughly. This is possible with the aid of
various views and exploded plots, with numbered nodes and/or elements. It is already
common for the results of a two dimensional stress analysis to be plotted in various
ways to show the principal stresses as vectors (Figure 13) or to show stress contours

(Figure 14). There is no really satisfactory method at the moment available for
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Figure 14: Two-dimensional stress output —
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Figure 13: Two-dimensional stress out- flywheel.
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portion of a turbine disc.
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giving three dimensional stresses in a convenient form.

remedied.

This situation ought to be

In the case of really complicated structures it is inevitable that a finite element

analysis will involve considerable simplification.

Research 1is necessary in order to

provide guide lines so that the simplified mesh provides a reasonable accuracy.

Since we expect the finite element method to become more widely available and to be

used on more complicated structures the need for building safeguards into finite

element systems will become even more essential than it is today.

Graphical checks

on idealisations, such as that shown in Figure 15 are now universal and will become

more sophisticated.
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Figure 15: Data checking with the aid of a graph plotter

In conclusion I consider whether or not the finite element method has a long term

future.

very complicated shapes.

For the forseeable future engineers will be interested in the analysis of

Closed form solutions are always likely to be impossible

for practical problems and we shall have to resort to dissecting the structure into

components of manageable simplicity.

The finite difference method (FDM) was
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developed before the finite element method (FEM). The FDM turns out to be less con-
venient and less accurate than a high order FEM. Because of this there has been a
tendency to improve the FDM as shown in Figure 16. A recent newcomer to the field
has been the boundary integral method (BIM). These elements may not always have the
same properties as those that we know of today, but is very likely that large parts of
the existing technology will continue to be directly useful and indeed the method of

the future may well be called the xxxxx finite element method.

VFD Variationsl Finite Difference

FDEM Finite Difference Energy Method

VMFD Variable Mesh Finite Difference

—3»— Main Lines of Development

= == (Cross Fertilization of Ideas

X @] Box Represents a Computer Program

Finite Difference N,

-
-
-
-
-
-

-
e o
-

SIMPLE
Finite Element
PLANE STRESS

Boundary Integral Method

MORE COMPLICATED
FEM
PLATE BENDING
3D SOLIDS

VMFD VFD,
FDEM

MORE NODES MORE OTHER VAR.
PER ELEMENT FREEDOMS METHODS
PER NODE

b

L)
[]
|

GENERAL FE PROGRAMS

Figure 16: The relationship of various methods of solving structural engineering problems
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A FINITE ELEMENT FORMULATION OF HEAT
CONDUCTION AND HEAT AND MASS TRANSFER
PROBLEMS

R W Lewis

Department of Civil Engineering
University of Wales

Singleton Park

Swansea

SA2 8PP

ABSTRACT

The paper presents techniques for dealing with transient heat conduction problems
with non-linear physical properties and boundary conditions. Also investigated is
the coupled phenomenon of heat and mass transfer in porous bodies. The numerical
results obtained for both these types of problems are compared with known analytical

results and indicate good agreement.

INTRODUCTION

The finite element method has been applied successfully on many occasions to linear
situations involving heat conduction problems (Wilson and Nickell 1966; Zienkiewicz
1971; Zienkiewicz and Parekh 1970) but relatively little work has been reported for
temperature dependent thermophysical properties and/or non-linear radiation-convection
boundary conditions. In this paper a method is presented of solving simultaneously
for temperature dependence of thermal conductivity, heat capacity, rate of internal
heat generation and surface heat transfer coefficients. A three time level
difference scheme is used for the time marching which obviates the necessity for

iterations within a time step.

In the general formulation, latent heat effects are approximated by rapid variations
of heat capacity within a narrow temperature range as shown in Figure 1. If the

phase change occurs with almost no variation it is convenient to define a new variable
H (enthalpy) and then estimate average heat capacity values based on well known

enthalpy properties.
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)
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I
' : 2AT
H(T) | l i
i ! 1 -
To Tt L

Figure 1: Variation of thermal conductivity, heat capacity and enthalpy
with temperature

The phenomenon of heat and mass transfer in porous bodies is in many cases not
accompanied by filtration flows of liquid and/or vapour. Extensive reviews of
typical examples are quoted in the literature (Bonacina and Comini 1971; Little 1961;
Luikov 1966) and a widely accepted mathematical model has been establised through the
use of the thermodynamics of irreversible processes (Luikov 1966). The resulting
system of coupled partial differential equations are extremely difficult to solve

even for conditions of constant total pressure which is the case considered here.

In consequence, very few analytical solutions are available for comparison with the
finite element model. However, the cases considered in this paper indicate very

favourable agreement between numerical and analytical results.

MATHEMATICAL MODELS

Non-linear heat conduction with phase change

The problem considered in this paper is governed, in a region Q, by a quasilinear

parabolic equation of the following form:-

3 9T &l aT N T
¥ 3§(k 3;) + ——(k'sz) #2 Q) = peie— (1)

9 T
- k
3 ( 9z ot

x ° Ax

- N =
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with the following boundary conditions:

T = Tw on Fl (1a)
and
oT aT T
s —— = = s
k(ax 2x % ay 2y s ¥4 £Z) kg qc * qr & - 2 (1b)

where k is the thermal conductivity, pc is the heat capacity, Q is the rate of
internal heat generation and all are dependent on temperature. The terms Qx, L

Xt
and lz are the direction cosines of the outward normal to the boundary surface while

1 q,

due to convection and radiation. The following relationships are usually written:-

and q, represent the imposed heat flux and the rates of heat flow per unit area
g, = g (T ~ T .0 (2a)
and

salel” & Tar“) =a (T-T,) (2b)

Na]
]

where @, is the convective heat transfer coefficient, ¢ is the emissivity, o is the
Stefan constant, oL is a parameter related to the effects of radiation by the

expression

2 2
@ = eo (T7 + Tar Y(T + Tar) (2¢)

and TaC and Tar are the equilibrium temperatures for which no convection or radiation

occurs.

In general k, pc, Q and a_ are thus temperature dependent functions with k, pc and

Q being known numerically and o being expressed explicitly by equation (2c).

Coupled heat and mass transfer in porous bodies

If the assumption of constant pressure throughout the moist body is correct then the
exchange of heat and mass is described by the following equations (Luikov and

Mikhailov 1965).

9T 2. Jdu
O e — 3
pcq ot AqV T + Erpcm e (3a)
ou _ 2 2
L xqsv T + AV u (3b)
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where T and u are the heat and mass transfer potentials, pc the heat capacity, A the
conductivity, E the ratio of the vapour diffusion coefficient to the coefficient of

the total diffusion of vapour and liquid and § is the temperature gradient coefficient,

The problem as defined by equation (3) can be re-written in a generalised form as a

system of interconnected parabolic equations:

2 2 2 2 2 2
Cg%=L(__8’;‘+_3’£+_8’§+L€(3_121+9_121+3_‘21) (4a)
q 9 5x Y 3z axX 3y 3z
) 2 2 2 9) 7
3xX 3Y 3z X Y 3z

with the following boundary conditions

T = Tw on Fl (4c)
Lq(%yx + g—gyy-r S+ J 4B -T) +A W-U)=0 onl) (4d)
U= U, on F3 (4e)
Lm<§’—§Yx + g—g'yy + %’yz) $d B @=T) 58 (=) =0-only (4£)

In the above expressions T = T/Ta’ U= u/ua, 8 = t/to, X =x/e, Y=y/e, Z = z/e
are dimensionless variables, the C's are generalised capacities, whilst the L's,

A's and J's can be thought of respectively as generalised transfer coefficient and

specific fluxes.

Lewis et al (1974) have shown that equations (4) can be made symmetrical by a suitable
definition of the coefficients, and it is also convenient to write equation (4d)

and (4f) in the following form:

aT T aT *

Lq(E)XYx o 'y = SZYz) + Jq (U on F2 (52D
U U U *

Lm(SKYx o EYYy 5 SEVZ) % Jm =& s FA (5b)

* *
where Jq and Jm are defined by the following expressions:

J

* 8
e i =
. Jq + Aq(T Ta) + Ae( a)

*

I =d # A (T = Ta) + Am(U = Ua)

g

sty =
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The unknown functions in both the problems are approximated throughout the solution

domain by the relationships:

|
~1R

T T ECOREE 40 = et
s r pa ~ o~
r=1
and
. B
UZU =) N_(X,Y,2)U_(8) = NeU
r=1 5 2 Sa

(6a)

(6b)

where Nr are the usual shape functions defined piecewise element by element, Tr (or T)

and Ur (or U) being the nodal parameters.

The simultaneous equations, allowing the solution for K values of Tr in the case of

the heat conduction problem and for 2K values of Tr and Ur in the coupled heat and

mass transfer problem are obtained using Galerkin's method as shown by Lewis and

Garner (1972) and Zienkiewicz and Parekh (1970).

In the case of the non-linear heat conduction problem the discretized equations can be

written in matrix form as:

.
B E (G S s iE SO

~

where typical matrix elements are

ij

(G = /pc N.N.dQ
Ly 1]

= 37 =

(7N

(8)

9
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and

F, = - fn.odo +/;Ii(q =T — &8 Han (10)

e
as Ty

The equations for the coupled heat and mass transfer problem are more complex but

can be transformed into a pseudo 'one-degree of freedom' problem. The resulting

equations written in matrix form are:
Kg+cCcg+31=0 (11a)

where K and C are 2K x 2K symmetric matrices
K K
K= 9 € (11b)
K. K
§ m

cC o0
q
c =[0 & :l (11¢)

2 and J are 2K vectors

il (114d)

ey
I
m~
1]
=
—

_ 4
&I., - iq’ im] (11e)

The matrices Kq, Ke’ Ké and Km are of the following form

BN, ON; N ON; N, N,
Biy ™ /L(ax X T 3w Tz oz W (2a23)

Qe

The Cq and Cm matrices are of the form

G- =/c N.N. dQ (12b)
1) SER|

Qe

and the 'load' vectors J and J are as follows:

* *
(Ji)q - f(Jq E Jrn Le/Lm) Nidr (12¢)
e
T
* *
(Ji)m —[Jm + Jq LG/Lq) NidI‘ (124d)
re
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. . . * *
The equations (lla) are non-linear as the generalised fluxes Jq and Jm depend on the
values of the potentials at the external nodes,but the non-linearity is confined to

the vector‘g.

The time integration scheme for both these types of problems utilizes a three-level
method first proposed by Lees (1966). The governing equations are approximated as

follows:-

B Mo Yole * Tepel® ¥ ST iy S Lopl) @480 % B, =0 2
This, after some algebra, results in the following recurrence formula for final

integration:

-1
3 =)
g B R — + - = &
Et*‘At [ t 2At Ct] (Ktzt Ktzt—At 2At Ct'It'At :i\lft) (14)

This method has the advantage of not requiring iteration as the matrices K, C and vector
E are evaluated at the mid-time interval and known values of T can be obtained for anv
two consecutive time steps. This algorithm has also been shown to be unconditionally
stable and convergent in the context of both finite difference and finite element

methods.

The heat conduction problems solved in the content of this paper are non-linear and
also include a phase change as the melting or freezing points are reached.
Therefore, attention has to be paid to the sharp peak present in the heat capacity
versus temperature curve. This problem is circumvented by interpretation of
enthalpy, which is a smooth function of temperature even in the phase change zone
(see Figure 1), and is given by:

T

H =-/ pcdT (@)

To

Thus, the heat capacity values at the integrating points can be approximated by

determining the gradient of enthalpy with respect to temperature, ie

3H o , oH dy . OH 2z (16)

= 3 3y 3T * 3z 30

~

<pc> & l
=3

= 20} =
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RESULTS

The first example to be investigated was the solidification of an infinite slab of
liquid which has been solved exactly by several authors (Luikov 1968). The problem

is two dimensional and has thermal dependent heat capacity and thermal conductivity.

The heat capacity is assumed to vary in a discontinuous manner (as a pulse) between
the liquid and solid phases while the thermal conductivity varies linearly as shown
in Figure 1. The progress of the freezing front and the spatial temperature

distributions are compared with analytical results in Figures 2 and 3.

i

L e e L el A L L S

NRERR

\
N\

LAV RE LY L LAY BALRE P AL LT Hodo il f Rl Pl PP

XsO X

-
r

Figure 2{a): Solidification of a slab in liquid — finite element mesh. Non conductive boundaries
are assumed throughout except at the face x = 0. Slab thickness L = 1m
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w /"’ Figure 2(b): Solidification of a slab in
/‘ liquid — progress of the
¥ freezing front
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3
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The position of the freezing front is given by the isotherm T, - AT. The initial

i
temperature was, taken to be above freezing as previous investigations have shown that

such conditions are more critical numerically than those with water initially at the
freezing point. The phase interval 2AT was assumed as 0.5K but the results proved

to be relatively insensitive to this value.
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Figure 3: Temperature distri-
butions at different oX

time values during =

the freezing process
referred to in Figure
2.
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Since the slab is of finite dimensions the comparison with the theory was terminated

when temperature changed appreciably at X = L.

very well with the theory with maximum errors being less than two per cent.
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y.m

o

i Mmoo

F L LTS o F R
(@]

AP ML
8

R R SRR AT A o

x,.m

/////2

O N T T TmTmTmT T MM T T T T TETTETETETE T I R TSR]

Figure 4(a): Freezing of a moist soil (sand). Transverse section illustrating the
finite element mesh used. The thick line corresponds to the
freezing sheath. The infinite boundary is replaced by a finite one
which is assumed to be non-conductive. Convection heat transfer
takes place at the surface.
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It was found that the results agreed
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The next example concerns a practical problem of interest in the civil engineering
industry for which no exact solutions exist. The ground region inside two lengths
of cooling pipes is frozen in order to stabilise the soil. The time progression of
the freezing front along with the relevant aspects of the problem are presented in
Figure 4. The same material properties are used as given by Aguirre-Peunte et al

(1967).

In the case of the heat and mass transfer problem two examples were run in order to
assess the accuracy of the model. The first example concerns a slab, insulated at
the face X = 0, with convective boundary conditions at the face X = x/e = 1. The
moisture and temperature values in the slab are assumed to be zero initially with

constant values of the equilibrium transfer potentials in the surrounding medium.

&
|
5.000h

Figure 4(b): Freezing front positions as computed by the finite
element methed. The freezing sheath is maintained
at 245°K. External temperature is 289°K and the
convective heat transfer coefficient is o« = 20W/m” K.
Material properties {Aguirre-Peunte et al, 1967):

k = 2.32 WmK; pc = 2.04 x 10° J/m* K (frozen)

k = 1.65 W/mK; pc = 2.815 x 10° J/m*K (unfrozen)
Latent heat effect A = 120 x 10°. Assumed width of
the phase change interval 2AT = 1K

The analytical solution as given by Luikov and Mikhailov (1965) is discussed in

detail elsewhere (R W Lewis et al 1974) and will not be repeated here. The finite
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element mesh used is shown in Figure 5 and essentially represents a two-dimensional

domain as the upper and lower boundaries are non conductive. The comparison shown

in Figure 6 demonstrates good agreement between the analytical and finite element

solutions with errors never greater than one per cent.

~g

NON CONDUCTIVE BOUNDARIES
KL S/ L LA AN SN S IY SRR L

o

iy

A

it v,

% 1 7 o 12 m “ 22 X 27

/] L/

/) v

3{ 77l S8 A TR TR0 AT s S ke .

0 '3 xsh

Figure 5: “One-dimensional’ finite element mesh used in the numer-

ical examples. Five parabolic isoparametric elements are
employed.

I T Al T T T
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M

T k
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—— ANALYTICAL SOLUTION
o FINITE ELEMENT SOLUTION

Figure 6: Comparison between analytical and finite element
solutions for a one-dimensional heat and mass
transfer problem in the case: Lu = 0.3, € =05,
Ko = 1.2, Psn= 0.5, Biq =1.0, Bi, = 10.0
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The second example utilised the same mesh and initial conditions as for the first
problem but boundary conditions of the first kind are assumed at the face X = x/e = 1.
Again the finite element results are shown to agree well with the analytical solution

as demonstrated in Figure 7.

—— ANALYTICAL SOLUTION
O FINITE ELEMENT SOLUTICN

| 1 1 1
(o] 2 4 6 8 X — |
I T T \ T T T T T T
LA ANALYTICAL SOLUTION i
o  FINITE ELEMENT SOLUTION
8k =
9:2:0
.6 o
4 _—
2 _
o

Figure 7: Comparison between analytical and finite element solutions
for a one-dimensional heat and mass transfer problem in
the case: Lu=0.3, € =0.5, Ko= 1.2, Psn = 0.5,
Biq =Bi, >
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CONCLUSIONS

The approach to non-linear heat conduction with phase change and heat and mass transfer

problems have been shown to be amenable to solution by the finite element method.

The versatility of the method in dealing with complicated boundaries and/or physical
property variations along with the phase change relationship opens the door to many
practical applications. In particular, the problems of heat and mass exchanges

in buildings and determination of thermal stresses in castings etc, can now be

tackled effectively.
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INTRODUCTION

The aim of the research effort in controlled thermonuclear fusion is the containment
and heating of a plasma for a time sufficiently long to permit fusion of the deuterium
nuclei. Various plasma containment schemes have been studied ‘and their equilibria
examined. Equilibrium, although a necessary condition, is insufficient since for

controlled fusion to be attained we must also have stability.

Early analytic studies (Shafranov 1958; Tayler 1957a; Tayler 1957b) of plasma
stability concentrated on the linear pinch configuration in which a plasma column of
circular cross section with an axially flowing current is compressed and contained by
the J x B force acting radially inwards. This analytic work has recently been
generalised and extended by Shafranov (1970) and our numerical calculation for the

linear pinch will be compared, where possible, with his results.

The linear pinch is an example of an open ended system from which plasma can escape
through its ends. This loss can be prevented by bending the two ends together thus
forming a torus. A configuration of considerable current interest is an axially
symmetric toroidal system (TOKAMAK) (Artsimovich 1972) in which hot plasma is contained
by the magnetic field of a current flowing within it. A very strong axial magnetic
field parallel to the current serves to suppress the principal hydromagnetic
instabilities. Experiments (Artsimovich 1972; Artsimovich and Shafranov 1972)
indicate that a further improvement in stability can be achieved by making the cross-—
section non circular. A toroidal belt pinch of rectangular cross-section ISAR IV is
now operating at IPP Garching, and a larger similar device ISAR TX is under
construction (Nuclear Fusion 1973). As an example of a pinch with non circular

cross-section we will consider a cylindrical pinch of rectangular section. This is a
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first step towards the numerical prediction of the stability ranges for a belt pinch

of similar cross-section.

In the work reported here the stability of cylindrical pinches is studied using the
(numerical) finite element method (Zienkiewicz 1971) to implement the hydromagnetic

energy principle of ideal MHD theory (Rose and Clark 1965).

When a plasma containing a current J, magnetic field B and of pressure p undergoes
small pertubations £ away from a state of static equilibrium the change in the

hydromagnetic energy of the system may be written (Bernstein et al 1958)
2 2
W) = 4f[Q° + 3.k x Q + V.ECEp) + vp(7.0) (D

where the integral ranges over the volume of the device, Q is the perturbed magnetic

field and y the ratio of specific heats.

In the finite element method the volume of the pinch is divided into elements with
chosen nodes. Within each element the perturbations are found by interpolating

between the nodal values which are taken as parameters of a Lagrangian L
L =T - W)

where T is the kinetic energy.

When the stationary values of the Lagrangian with respect to these variables is sought
an eigenvalue problem is obtained. The stability of the configuration is determined

by the eigenvalues.

LINEAR PINCH MODEL

The linear pinch is modelled as a right circular cylindrical column of plasma, radius
a, surrounded by an annular vacuum which is bounded on its outer surface, radius b,
by a perfectly conducting wall. Let us introduce cylindrical polar coordinates
r,0,z about the axis of symmetry. The plasma is assumed to be incompressible, to

have infinite conductivity and to contain a magnetic field B which has no radial
P~
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component (Newcombe 1960) . A current with density J = ¥ x B flows within the plasma.

The vacuum magnetic field istgv.

The equilibrium state of the plasma is governed by

O=gRE
Vp = J xB (2)
VisBl=t 0

The configuration has cylindrical symmetry hence all quantities are functions only

of r Equation (2) thus reduces to

s - -
U =1 J, =-3B, 3, =20 L)

(3)
B

0
+ — =
8rp + BzarBz = Br(rBe) 0

Equation (2.3) is automatically satisfied.

We will assume further that Bz is a constant so that there is no azimuthal current.

In the vacuum p is zero hence

=1
Be ok Bea &

where Bea is the azimuthal field at the plasma surface. Anv azimuthal field Be which
is a function only of r is a possible equilibrium configuration for the plasma subject

only to the boundary condition Be = Bea at r = a.

When the plasma undergoes small perturbations £ the hydromagnetic energy W of the

system is
u(E) = f (@ + 1.5 * Q]d + ifQS‘ dt (5)
PLASMA VACUUM _

where the quantities g)‘gv are the perturbed magnetic fields within the plasma and

vacuum respectively-
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For the plasma

Q=9x(gxB (6)

~

and for the vacuum

0 =9 xA )
~V ~ s

where A is the vector potential which must satisfy

BB ==0E (e

at the plasma vacuum interface r = a, and
3xA=O (9)

at the bounding wall r = b.

It is convenient to extend the definition of £ into the vacuum region and to write

the vector potential (Newcombe 1960)

L

~

x B
~v
so that the perturbed magnetic field

R R R

has the same form as that in the plasma. The boundary condition (8) is automatically

satisfied if B(a) =,§v(a), and (9) is satisfied by requiring I 0 at r = b.

To enable direct comparison with earlier work (Shafranov 1970; Boyd et al 1973;
Takeda et al 1973) we have expressed the results of our calculations in terms of a

variable nq defined by

krB

nq = 2
Be
or
kaB
nq_ = =
a Bea

a key parameter in discussions of pinch stability.
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The displacements §, can be expressed in terms of normal modes in cylindrical polar

coordinates (Newcombe 1960) by
g=[e, (0, g,(r), € ()] exp[imd + ikz + iwt] (10)

vhere ir is real and Ee, Ez imaginary.

The equation of continuity now becomes

img

i 6 e
42 ¢ =0
~ Brgrgr) + + 1k£z (11)

For the perturbed motion the Lagrangian is

2

L=wT—(wp+Wv) (12)
where
2 2 2
v=Z ol e, + 6 mar (13)

The plasma hydromagnetic energy Wp, given by the first integral in equation (5),

becomes now (Newcombe 1960)

a 242 2
_m WL e ) = 2
where
(S )
_ 1 o = o4
fire s [(krBZ +mbe) 3.6 + (krB, - mBy) —
k"r +m
E" (15)
2 r
+ [(rB, + mB )" - 283 (rB,)] “z
- it _ - s
&=~y [(krBe mB ) 8 € = (krB, + mB ) - ] (16)
k r +m
and
g = i(gB, - € By) 17)

The number of independent variables can easily be reduced for this problem by

minimising the potential energy with respect to f simply by setting (Newcombe 1960)

E=g (18)
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in equation (14). The displacements Ee, Ez are related to gr by equations (11)

and (18) and may be elminated from the Lagrangian which then depends only upon Er.

To implement the finite element method the plasma vacuum radius is divided into N
line elements in such a way that a node occurs at the plasma-vacuum interface,

eg by points b ™ o, Tys Toseensly = a,. = b and nodal parameters Eo,gl...,EN

-
N :
assigned. Within an element the displacement Er is obtained by linearly inter-

polating between nodal values.

It is found, by considering the radial component of the perturbed field Qr’ that

gr given by

-rQr

B iBe(m+nq) (19)

[

- . . . . r
can become infinite when m+ nq = O. This event may occur since nq = ) nq(a)
Q 3 ‘ 3 a
varies across the vacuum. In situations of interest this does occur so an

alternative variable n defined by (Shafranov 1970)
n.= -By(m + nq)t_ (20)
will be used within the vacuum. The boundary conditions to be satisfied by n are

n(a) = -Bea(m + nq(a))Er(a)

and

]
(<)

n(b)

The hydromagnetic energy for a typical plasma element i can, after integrating along

the element, be written

i i T

and for a typical vacuum element

£ T

v

it
W (ni,ni_l)h (ngsn;_q)

o . : : ; :
K" is a 2 x 2 matrix corresponding to the element stiffness matrix for solid structures

(Zienkiewicz 1971). Similarly for the kinetic energy of plasma element i we have
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i1 i )
i = (Ei’gi-l)M (Eiagi_l)

i s : o
where M~ corresponds to the element mass matrix (Zienkiewicz 1971).

The total kinetic and potential energies are obtained by summing contributions from all

elements. Assembling the element matrices together the Lagrangian is given by

L =w?sTMs - §TKs (21)
where

3T ot (B oBaumdk ) (22)

o O’ 1... k’nk*"l”'nn

is an N + 1 vector. Node k occurs at the plasma-vacuum interface.

The quantities M and K are n + 1 square matrices.

A matrix equation ;
2 -
(W'M-K)§ =0 (23)

is obtained when we seek a stationary value of the Lagrangian. The problem of MHD
stability has become an eigenvalue problem. The positive eigenvalues szgive the
frequency of a mode and the associated eigenvector § the amplitude of nodal
perturbations. A negative eigenvalue implies that the associated mode is unstable,

with growth rate /[mzL

LINEAR PINCH RESULTS

CASE 1  Constant Current Density
When the current density Jz is constant the magnetic field in the plasma is

B r (24)
Ba . B
z

3= 0,

and in the vacuum

g fa
B, = (05 <war® Bz) (25)
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where B, , Bz are constant, so that ng is constant over the plasma.

Sa

Through a

normal mode analysis Shafranov (1970) has shown that when the axial wave number k is

small

-m1

and

2

B 2
w2 _ _ Oa . [Z(m % md) & 2(m + ng ]

a, -2m
4mpa 1 - (E)

(26)

27)

When the plasma extends out to the bounding wall so that a = b these expressions are

replaced by (Shafranov 1970)

it i
" T Il D
82
W = - Laz[Z(m + nq) ? + (m + ng)?]
4mpa m

(28)

(29)

where z, is the first zero of the mth order Bessel function Jm(z).

1or k=002

(X Xl

o4

FIXED BOUNDARY CURVE

02

Figure 1: Radial variation of the
perturbation £, for
m = -2 mode in a linear pinch
with free boundary for
various axial wave numbers
k and a/b = 0.5. Points ® are
for k =50

Figure 2:

Square of the normalised
growth rates for linear

pinch with free boundary
plotted against nq, = kaB, /B,
for m = -2 mode, la< =0.2

and various values of a/b.

The points o are Shafranov’s an
analytic results

We have determined the nodal amplitudes and growth rate for the mode m = S SR )

(Boyd et al 1974) and have compared these with Shafranov's analytic expressions in

Figures 1 and 2.

Excellent agreement is found for various a/b ratios. Good
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agreement is also obtained for the no vacuum case (Boyd et al 1974). We have also
determined nodal amplitudes for modes m = -1, -3, k = 0.2, a/b = 0.5, In the former

case (Boyd et al 1974) Er is constant over the plasma, and in the latter case Er

varies as r , in complete agreement with equation (26). It was found that 16
elements along the plasma's vacuum radius were sufficient for convergence of the

solution.

CASE 2 Exponential Current Density

In the latter stages of tokamak discharges it has been observed that the current
density becomes peaked on the cylinder axis. We have therefore studied current

densities of the form (Grossmann and Ortoclani 1973)

3 e 2

4
with a plasma density variation p = po(l = Ei?, typical of tokamaks
a
In Figure 3 the growth rate of mode m = -1, with a = 3, is plotted as a function of
ng -

Figure 3: The growth rate of the m = -1 mode
plotted as a function of ng, for the
current distribution J = Joexp(-3r/a)

SLINN AHVHLISHY

1 1 1 x ' i,

nq,
The position of maximum growth rate and the instabilities ranges agree with those
reported by Grossmann and Ortolani (1973). We also confirmed that the radial
distribution is peaked on the cylinder axis; more highly peaked for larger nq,

values.

For this case about 40 elements of equal size were needed to ensure convergence of
the solution. When a more judicious arrangement of elements was made the number

required for convergence was considerably reduced.

_65..



MHD STABILITY

CASE 3 Bennett Pinch

It has been suggested (Morse and Friedberg 1970; Harris and Kaneko 1971) that the

pressure and field configuration of the Bennett pinch (Bennett 1934) are especially

stable.
r2 =7 2B9 ar
The density variation over the plasma is p = p (1 + -72) and B = (O, —g—jL—Ew B )
& a a® +r .
where B

6a’ Bz are constants. IEV is again given by equation (25), and the axial

current by

4B a3
§ b
z (a2+r2)2
We have determined the growth rate of the mode m = -1, k = 0.2 for various a/b
ratios. These calculations are given in Figure 4. Analytically it has been shown

that the Bennett pinch is stable if nq B = %gm (Harris and Kaneko 1971); our results
are in agreement with this conclusion. The m = -1 mode of the Bennett pinch has the
same ranges of instability as the constant current case (Shafranov 1970) and seemingly
higher growth rates than those predicted by equation (27). In these computations 16

radial finite elements were used.

-

pa’
2
Bo

1.OF

o8} a/bs 0.5

a/bs0-91

Figure 4: Square of the normalised growth rate for the kink mode m = -1 of a
Bennett pinch with free boundary plotted as a function of ng, for various
values of a/b

- 66 -



L R TGARDNER AND G A GARDNER

RECTANGULAR PINCH MODEL

The pinch is modelled as a right cylinder of rectangular section, sides 2a, 2b,
bounded by a perfectly conducting wall; - there is no vacuum in this case. Rectangular
cartesian coordinates are set up with the z-axis along the cylinder axis and the x, y
axes parallel to cross-section sides. The plasma is assumed to have infinite
conductivity and to contain an axially flowing current, and a magnetic field

= (Bx’ By, Bz) where Bz is constant and the other two components are independent
of z.  The equilibrium distribution of magnetic fields etc was provided to us by

Dr Glenn Bateman of IPP Garching in numerical form.

When the plasma undergoes small perturbations the hydromagnetic energy of the system

is given by equation (1). The displacements may be expanded in normal modes by

&(x,y,2z,t) = [Ex(x,y),Ey(x,y),iz(x,y)]eXP(ikz + iwt)
The vector's components are in general complex and will be written

y2; 62 - 5zl

e =g & £ 55 Rk + g,

In this general case we have six nodal parameters. This number is not reduced if we
consider only the incompressible modes so this assumption is not made. For
convenience we shall study only the kink modes, for which Ez = 0, so that the nodal

parameters are reduced to 4.

The hydromagnetic energy is given by

a b,
w(,ﬁ\_):f_[‘/‘/\dxdy
-a =b
where
A= (€2 BE & 52 + gz ){sz2 + (3_B )2 + 3B 3B }
x1 x2 yl y2 z X X X Vyx
+ (Exz yox1 ” Exl y 2)( 2kB B ) + (E xl 5 Exzayixz)(ZByayBy)
+ (€x23y€y1 = Exlayiyz)(-ZkaBz) & (Ex13y€y1 & Exzaygyz)(-ZBxayBy = JBy)
+ (€y23x€y1 = E x yz)(ZkB B ) i (6 Xl & Eyzaxgxz)(—ZByaxBx + JBX)
+ (gyzaxgxl = E )( 2kB B ) # ({8 1 = yl i €y2ax5y2)(2BxaxBx)

=6 =
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+ B30k, * BB ) (CBLIB ¢ BB D)+ (g * €3 ,E,,) (28,3 B )

ylyyl

+ (& -0 & 1+ szaxéyz) (-Bx{axBy + 3 B W & (@

x1 ' x’y * Ex28x€x2)(2By3yBx)

xl X xl

22

2 2642 2
+ 0E0" % G In, » {EE 0% % BLE )

(CIF G O WA

Y el WYL y’x2 y’y2 5 3x£y18 ¢ ¥ axEyZaxEXZ)(_Bx.By)

x°x1
2 2 2 2 2 2 2 2
CTRE Y S GE SUE* B &) » 085 0* & G A8 &5 =)

i (Bxﬁxlayiyl el A v y2) (B + vp)

The kinetic energy T possessed by the plasma, density p, during the perturbations is

calculated from
w
=T

b

2 2 2

S dyd
f HEE, ©hg =y e
-b

and the Lagrangian of the perturbations formed.

£“-\m

The cross-section of the pinch was divided into rectangular finite elements with a
node at each corner, there are thus 16 nodal parameters per element. In this
implementation all x,y modes are considered at the same time, but obviously only
the lowest modes will be determined accurately. Accuracy again depends on the

number of finite elements used.

For the present configuration the relevant parameter ng is given by

B (a,y) f B (x b)]

and all growth rates will be presented in terms of this variable.

RECTANGULAR PINCH RESULTS

Here we report calculations for the rectangular pinch containing a uniform current
density. Two cases have been considered which will have direct comparison with

analytic studies being undertaken at IPP Garching.
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@)) At the rectangular boundary £n = Q.
(2) At the rectangular boundary £ is free.

For case (1) we have been unable to detect any instabilities so far. Instability
results for case (2) for a square pinch and a rectangular pinch, sides in ratio

1:3, are shown in Figure 5. The results for nq, less than 1 are for a first order
mode; other results are for higher modes. In all cases the growth rate of the most
unstable mode is plotted. The computations indicate that growth rates for the
rectangular pinch are higher than those for the square pinch. In all the calculations
designated 0,+ 4x4 finite elements were used. For the square pinch convergence of

the solution was tested for nq = 0.5 by running cases with 2x2 and 3x3 elements.

Growth rates for these cases are shown by x in Figure 5.

&2
6.
Do
o [0}

2l [o]

[0}

o]

4t o o
3—
2.-.
1+

*x2x2

x3x3 + + o+ o+ o+

1 1 1

o i 2 ) ",

Figure 5: Square of the growth rate for kink modes of a square pinch +, and
rectangular pinch (1:3) 0, plotted as functions of nqy. m = -1,
k = 0.2, vy =5/2. 4 x 4 finite elements. Convergence of calculation
for ngg = .5 is demonstrated for the square pinch

Neither case is really physical; no hot plasma can be allowed to touch the container
walls, but is constrained by a magnetic field, which extends into the vacuum and tends
to improve stability. In this situation the equilibrium form of the plasma is not
strictly rectangular. However the true situation probably lies somewhere between

the two cases considered above. The next step in this program is to study the

realistic equilibrium configuration.

= Fal=
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APPLICATION OF THE FINITE ELEMENT
METHOD TO METEOROLOGICAL PROBLEMS

M J P Cullen

Meteorological Office
London Road
Bracknell

Berkshire

RGI12 282

EQUATIONS ARISING IN METEOROLOGICAL PROBLEMS

The type of equations that have to be solved in the meteorological forecasting problem

can be typified by the shallow water equations

Ju
SE'+ Efzy & V¢ + ng X 2’ = 0
34 -
5¢ * V(4w = O
Where the vector operations are two-dimensional. When the full three-dimensional

problem is solved the scales of motion in the horizontal direction are completely
different from those in the vertical and so a two dimensional problem can represent
very well a large number of the motions present in the three dimensional case. This

set of equations has the following important properties for numerical solution:

(1) An initial value problem has to be solved to evolve a given initial field into
a future forecast field. In practical cases there are also forcing terms so
that the evolution is controlled both by the initial data and by the forcing.
It is debatable for how long the initial data has influence in the atmospheric

case.

(2) The equations are nonlinear and can describe interactions between different
scales of motion. In the three dimensional case the equations can produce
discontinuities which are controlled in the atmosphere by the development of

small scale turbulence.

(3) The equations describe wave type motions, both gravity waves where the
pressure gradient balances the acceleration and slow moving waves due to

the variation of the vertical component of Q2 over the earth's surface.
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(4) The equations satisfy certain conservation laws which are important for

long term integrations.

RELATION OF THE FINITE ELEMENT METHOD TO OTHER METHODS OF SOLUTION

Historically, most solutions of these equations have been obtained by the finite
difference method. Recently the Galerkin approach has been used with a basis of
wave functions eikx, or spherical harmonics for global integrations. We consider
the advantages of these methods and the finite element method for this type of

problem:
(1) If we consider the equation

Su
at

= Lu
and write the finite element projection as Q , so that Qu is some

approximation to u, then the error can be written as
Lu - QLQu = (I-Q)Lu + QL(I-Q)u

The first term on the right hand side is the error in making a discrete
approximation to Lu and can be studied by the usual methods to give an
order of convergence. This error is unavoidable. The second term
represents the divergence of the discrete solution actually obtained from
the discrete approximation to the true solution (see Strang & Fix (1973)).

It accumulates through time, and must be analysed as well.

(2) In approaching a nonlinear problem interactions may lead to fields which
cannot be resolved by the discrete grid. If only values at a discrete
set of points are used a field which has three wavelengths for every four
gridpoints will look identical to one with only one wavelength for every
four gridpoints. If information propagates from point to point this gives
rise to errors known as 'aliasing'. This error can be avoided by using
the Galerkin technique which uses information from the whole field.
Finite element Galerkin methods should do this while the usual finite

difference approach does not.
@) Most discrete schemes do not reproduce the phase speeds of waves correctly

and if the errors vary with wavelength wrong phase relationships develop in

the flow. A scheme is thus required which reduces phase speed errors as
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far as possible.

(4) Certain conservation laws are obeyed automatically when the Galerkin method
is used. However, the full set is only obtained when the basis functions
are closed under such operations as multiplication and differentiation or
the extra manipulations needed to get the laws cannot be done. Finite
difference methods have to be specially designed to obey conservation laws

and to satisfy a large number of them is very difficult.

(5) The nonlinearity also involves a lot of computation so that in a Galerkin

method as few inner products as possible must be non-zero.

These considerations suggest that a finite element Galerkin procedure should have
several useful properties for this type of equation, but a simpler collocation

procedure will probably not gain anything over the usual finite difference schemes.

FOURIER ANALYSIS OF THE FINITE ELEMENT METHOD

Using piecewise linear interpolations in one dimension the finite element Galerkin

approximation to

o 3w
ot ax
is
1s + —2—1.1 + ll.l = c (———un+1 — un._1)
6 n-1 3 6 n+l 26x (L

The accuracy of this formula as opposed to the usual

u u
e it n+l n—l)

n 26x

is shown in Figure 1.

Figure 1: Accuracy of solution of du/dt = du/3x with u = efkx

and exact line integration.

A: Centred finite difference

B: Linear finite element

C: Finite difference with double resolution
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In many cases greater accuracy can be obtained from (1) than by using the simpler

formula with twice as many points.

Using the same interpolation scheme the finite element approximation to

u = uv
gives
il 285 lgo 1
%1 T 3% 7 % Ynel T 12 (un—lvn—l M A unvn—l) v
% “n'n i f% (unvn+l e “n+1'n . un+lvn+l)
Figure 2 shows the result if u = eipx and v = eip'x in the cases p=p' and p'=0.

Thus interactions leading to wave-lengths too small to be resolved are strongly
damped. A point collocation scheme would not do this and large aliasing errors

would result.

Figure 2: (A) Accuracy of solution of du/dt = du/dx
withu=e tMX and §x = 1

W i
'
(B) Accuracy of solution of du/dt= u? with
£ u = ePX_ The top curve is the usual finite
ey element solution, curves E and D contain
o extra damping.
o "‘ﬁ * m 3;2
()
| CF
3
{C} Accuracy of solution of dwWdt = uug
Ap.p 0 {(ug constant) showing effect of extra damping
on this effectively linear term
o .,1‘2 L
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In the case u = u %%

with u = eip'x’ v = eipx we obtain
8 = ot er R

where

2(-sin p' + 2sin p + sin(p+p'))
4 + 2cos(p+p')

B(p,p') = (2)

if the interpolation functions are substituted directly into the equation. However,
if we use an approximation theory approach and seek, given the model values, best

6 3 9V T 5 v
approximations to u.and —— and then perform the multiplications we can choose ——

9x X
to be piecewise linear also, instead of being a piecewise constant. We then obtain
a much more satisfactory representation of u %% and

8(p,p'") = 6sinp . 3+ cos p + cos p' + cos(p+p') (3)
4 + 2cosp 4 + 2cos(p+p')
In some cases this gives the same result as (2), in the case p = p' = m/2 we obtain a

value 0.96p from (3) and 0.6p from (2), the true value being p. This is found to be

important when the nonlinear terms are an important part of the evolution.

We now use the Fourier method to analyse the error component QL(I-Q)u discussed in

the last section and consider the two operators L = u and L = uv,

4 1kx
Substitute u = elkx, then Qu = £ a(k) e an.

where
12 !
i) = ==t ;5 (1 - cos k),
and we have again used linear elements. Then if L = u
. ikx
QLu = I ik a(k) e nXn
6sin k ikxy ; 4 ikxp
iy = + 0 k
QLQu } e a(k) < x =Tik Q (k" Na(k) e X,

so that @ (I-Q)u is of order kM.
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A similar calculation shows that with L(u,v) = uv and u = elkx, v = ellx,
QL(u,v) - QL(Qu,Qv) is of order k" + k222 + Oty Thus we have achieved fourth order
accuracy with linear elements. Strang and Fix quote the result that QL(I-Q)u with
L = u is only 0(k3) using Hermite cubics. Thus linear elements have especially
good convergence properties for this component of the error. It appears that using
th . . ; ; 2(m+1)
m  order spline basis functions on a regular mesh gives QL(I-Q)u = 0O(k )

Lo Lisw
X

Thus for evolutionary problems with this type of operator L the optimal choice of
higher order elements may not be the same as the conventional quadratic and cubic
schemes. If the mesh is very irregular the convergence probably reverts to

1
O(knr ) Jfor kth order approximations. (See Thomée (1973) for thé general result.)

RESULTS

Figures 3 and 4 show the solution of-%% = u.VC where C is initially Co + Clx and

u = uo(—y,x). Figure 3 is obtained by a fourth order finite difference scheme on

a 32 x 32 mesh and Figure 4 by a bilinear finite element scheme on 16 x 16 rectangles.

FINITE DIFFERENCE

Figure 3: Solution of 3¢/0t=u.Vc with u, c as given in text and fourth order
difference scheme

_76_



MJPCULLEN

FINITE ELEMENT

Figure 4: As Figure 3 after some time with bilinear element scheme

Figures 5 and 6 show the solution of the shallow water equations in a channel
obtained by a finite element Galerkin procedure on a regular triangular mesh, and
by a point collocation procedure which allows aliasing errors. The two fields

have very large differences for this reason.

s (
|7 3
i

g o

e 2 E : &y

/;/ //

e // . //;

gty EZZ

/;/ 1'," i i j/

T

o’

Figure 6: As Figure 5 but using a
collocation formula (uv),
= upvp for non-linear terms

Figure 5: Integration of shallow water
equations after 2 days using
linear elements and Galerkin
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Figures 7 and 8 show the solution of the shallow water equations on the sphere by

finite element, finite difference and spectral methods for initial data containing

a zonal wavenumber 8. All integrations show this wave breaking down after 5 days,
except a finite difference integration with 4000 points on the sphere. The finite
element model correctly predicting the breakdown has only 1000 points. The computer

time required for the two models is similar.

(a) 3days (b) 4 days

me?:mmmmwnMﬂmwwwmﬂemeMonmeuwmﬁmmehmmB

Figure 9 shows an integration of the shallow water equations on an irregular mesh
and Figure 10 an integration with a higher order finite element scheme. Both have

large errors due to the QL(I-Q)u term; methods of dealing with these errors are
under discussion.
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Figure 8: As Figure 7 using finite difference
and spectral methods
(a) low order spectral;
(b) low order difference;
(c) high order spectral,
(d) high order difference {Doron
et al 1974)

2 W7 14 e M2 a4 3 T8 M T
+ +

Figure 9: Integration of shallow
water equations on an
irregular mesh (after
one day)
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Figure 10: Integration of shallow water equations using a cubic scheme (after one day)
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Special types of extra "artificial viscosity" terms of the same order as the errors

in the solution of the equation are found to allow successful integration of the probler
in Figure 9 without having a very large effect on a regular problem. It is

reasonable to have to use such a term because if the true solution contains
unresolvable features and the approximate and true solutions conserve energy, then the

unresolved features must be replaced by erroneous ones of the same energy.

The solution of linear meteorological type problems is described in Cullen (1973),
and the solution of non-linear problems is discussed in Cullen (1974). The solutions
on a sphere will appear in the Quarterly Journal of the Royal Meteorological

Society.

Finite element methods are also used for the shallow water equations in one dimension

by Wong (1972).

CONCLUSION

The linear finite element approach seems to be competitive with finite difference
schemes since the computing time required for 16x16 elements is similar to that for
32x32 differences. However, this probably only holds for schemes with special
convergence properties (apparently splines on a regular mesh apa the other finite eleme

schemes may be too expensive to use competitively in this type of problem).
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HISTORY

The idea of developing a general finite element program, initially for the use of
research workers within the Department of Mechanical Engineering, was proposed approxi-
mately 8 years ago, 1965-1966. Research workers who were individually pursuing different
activities associated with finite element programs realised that the large amount of
duplication of programs could be overcome by using common subroutines in each program.
This had the immediate effect of reducing the time spent by each research worker to get
his program working as he did not, for example, have to write and test merge and solu-
tion subroutines, These early researchers prepared their subroutines on a very broad
basis and by the late 1960's the original PAFEC system contained a large number of
shell and beam type elements together with a very general merge subroutine and Choleski
solution subroutine. At this time a number of SRC and Ministry contracts as well as
SRC studentships with a finite element basis were starting. The research workers
associated with these contracts were persuaded to use those areas of PAFEC which would
be useful to them and hopefully the end product of their work would be available to

subsequent workers,

One of the major problems at this time, 1969, was in selecting a computer language to
use, The initial programs had been written in Atlas Autocode for use on the Manchester
Atlas and also for the Chilton Atlas and Egdon Algol for use on the Nottingham
University KDF-9, Because of updating problems inherent with two copies of a com-
puter program together with paper tape difficulties, a common language using punched
cards was chosen, Fortran II. It was then possible to use both the Hartran compiler

on the Chilton Atlas and the Egdon Fortran compiler on the KDF-9 with the same card
deck. The program immediately became available to other universities as well as being

commercially available,
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By 1971 the form of the program was becoming unmanageable as the original ideas had
been modified and added to as new facilities within PAFEC became available. The pro-
gram was radically modified to a file based system leaving the user interface as
simple as possible. All of the subroutines had to be altered and retested at the
same time as new data handling facilities were being generated. These activities
were timed to coincide with the change to ICL 1906A computers at both Chilton and
Nottingham. This present system, PAFEC 70+, has now been in use for two years and is
infinitely more attractive to both university and commercial users than the original
system. PAFEC 70+ is currently being added to as a by-product of many research
activities and is well documented in a 350 page user's manual. A list of the major

contributors and their research topics is given in Appendix 1.

PAFEC 70+ :- WHAT IS IT?
Problem Types
PAFEC 70+ is capable of solving many types of structural problems,
(1) Vibration Analysis - Natural frequency calculations for eigenvectors defined
by all the degrees of freedom for simple structures or master degrees of

freedom for large structures.

(@29) External Loading - Static loads applied at any degree of freedom in structure.

Solution for all degrees of freedom.

(3) Damped Vibration Analysis - Dynamic response to forcing functions with

hysteritic damping either constant or variable over the structure.

(4) Gravity Loading - Self weight of structure in particularly defined co-ordinate

directions depending on type of structure,

(5) Inertia Loading - Structure rotates about the global z-axis for non-

axisymmetric cases, Axisymmetric cases also available.

(6) Pressure Loading - Internal and external loading dependent on the element

topology definition.

(7 Thermal Deformation - Temperatures defined at all structural nodes.

(8) Steady State Temperature Calculation - Solution of Laplace equations from

some known temperatures and heat flows,
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(9) Temperature Transient Calculation - Solution of Laplace equations from an
initial defined temperature profile, (also used in combination with (8)
above), for any number of time increments for a step or ramp temperature

change.

(10) Prescribed Displacement - Solution for whole structure from a number of

known displacements.

In addition to the static loading type of problems, types (2), (4)-(7) above,
additional subroutines for the solution of fracture mechanics, creep and plasticity

problems are available,

Element Types

A very large number of finite elements have been developed at Nottingham and are
available with PAFEC 70+, Other elements developed elsewhere have been programmed
and added to the system, The present system is now a reduced set of the best and

most useful of all these different element types.

Classification of Elements in the PAFEC 70+ Scheme

1., Beam Elements

1l Simple beam element with a capability for flexure in two orthogonal planes,
torsion and extension.

) As simple beam element (1.1) but with inclusion of shear deformation
and rotary inertia,

1.3 Offset simple beam element for use in building up sections or stiffened
plates.

1.4 Initially curved beam element with shear deformation and rotary inertia.

2., 2-Dimensional Elements - for the analysis of plane stress, plane strain or

axisymmetric structures.,

2.1 Simple constant strain 3-node triangle.
D2 3-node isoparametric triangle.

2.3 6-node isoparametric triangle.

2.4 9-node isoparametric triangle,

2.5 4-node isoparametric quadrilateral.

2.6 8-node isoparametric quadrilateral.

2577, 12-node isoparametric quadrilateral.
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3. 3-Dimensional Elements - for the analysis of structures with variations of strain

in 3 directions.,

Sheul! 6-node isoparametric wedge.

3512 15-node isoparametric wedge.

3 24-node isoparametric wedge.

3.4 8-node isoparametric brick.

8l 20-node isoparametric brick.

3546 32-node isoparametric brick.

S 16-node superparametric quadrilateral shell (Ahmad type).

2118 20-node isoparametric transition brick (Joins 3.7 to 3.2 or SN

4, Plate Bending Elements

4 3-node curvilinear triangle (various shape functions).

4 6-node curvilinear triangle.

4.3  4-node curvilinear quadrilateral (various shape functions).
4

A 8-node curvilinear quadrilateral,

5. Shell Elements

Shoul 3-node Hybrid stretching and bending triangle.

Srt2 6-node combined stretching and bending triangle (2.3 and 4.2).

5.3  4-node combined stretching and bending quadrilateral (2.5 and 4.3).

5.4 8-node combined stretching and bending quadrilateral (2.5 and 4.4).
4-node cylindrically curved hybrid triangle.

540 4-node cylindrically curved hybrid quadrilateral.

S, 2, 3 or 4-node axisymmetric thin shell for use with axisymmetric or

harmonically varying loadings,

6. Anisotropic Elements

6.1 4-node isoparametric membrane quadrilateral.
6.2 8-node isoparametric membrane quadrilateral.
653 4-node isoparametric bending quadrilateral.
6.4 8-node isoparametric bending quadrilateral.

6.5 20-node isoparametric solid brick element,

7. Laplace Elements

At 3-node isoparametric plane or axisymmetric triangle.

) 6-node isoparametric plane or axisymmetric triangle,
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7.3  4-node isoparametric plane or axisymmetric quadrilateral,
7454 8-node isoparametric plane or axisymmetric quadrilateral,
/=S 15-node isoparametric solid wedge,

T 20-node isoparametric solid brick.

The coding for many other elements is available and it is a simple task to add these
subroutines into the PAFEC 70+ scheme. It is a fairly easy matter to generate the
extra elements in the isoparametric families due to the present simplicity of the

coding.

Solution Methods

For any static problem there is available a choice of solution depending on the size

of the problem.

(1) Full or Banded Stiffness Matrix where the whole matrix can be held
completely in core. The Choleski banded solution procedure is used

to find the displacements.

(2) Semi-Automatic Solution procedure uses the Choleski banded solution to
solve for a set of master degrees of freedom, the reduced stiffness matrix
being held in core. The user defines which degrees of freedom are
inactive and can be reduced out using Gaussian reduction as the solution
proceeds. The disadvantages of this method are that the reduction data
can be rather lengthy and tedious and as no backing store is used all the

reduced-out displacements are lost.

(3) An Automatic Frontal Solution Technique uses both Gaussian and Guyan
reduction to maintain a small in-core stiffness and mass matrix if
required, The use of fast access backing store enables all displacements
to be calculated, A separate program is available to preprocess the

data so that the solution is completely automatic.

For vibration problems the 3 solution methods mentioned above are used to form a final
square stiffness and mass matrix. The eigenvalues and eigenvectors are found for
this stiffness and mass matrix using a Householder Tridiagonalisation followed by

either a Sturms Sequence algorithm or QL algorithm.

Transient analyses such as creep and plasticity of large problems are solved using
the resolution technique of the frontal solution with time or load incrementing

techniques.
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Steady state and transient temperature or prescribed displacement calculations

are treated as

(1) Partitioned solutions where the matrices can be held in core.
(2) Frontal solutions with the known values treated as master degrees of freedom.

A Crank-Nicholson time marching technique is used for transient temperature calculations.

Data Inputs

The data for any PAFEC 70+ job can take a number of forms,. The original PAFEC data
was rather long and required not only a description of every node in the structure
but also every degree of freedom. Recent modifications have made it possible to
reduce the data by defining constraints rather than every degree of freedom. Mesh
generation techniques have also reduced the data input by reducing both the number
of nodes necessary to define the idealisation as well as the topology of all the
elements, Now only the chassis nodes and topology together with constraint and

loading information is necessary.

An example of a typical simple structure is shown in Figure 1(a). The data required
by the program is shown in Figure 1(b) and may be loaded in this form. Alternatively
using a mesh and data generation facility the data can be drastically reduced,

Figure 1(c).
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1.550 0.000
0.991 0.000
1.213 0.000
1.499 0.000
0.965 0.000
1.050 0.000
%1135 0.000
1.242 0.000
1.349 0,000
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10 ELEMENTS - BANDED SOLUTION
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0,300

0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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TITLE
Job Control Card

> CPDDC

Element Control Card

¢ Element Topology

r Loading Information

Figure 1(b): Standard PAFEC data for hook structure
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10 ELEMENT HOOK - PAFBLOCKS SOLUTION - BANDED Title
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0.000 1.000
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0.875 0.000 o
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3 5
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0.240 1.000 0.000 2 3 1.000
0.000 1.000 0.000 2 4 1.000 Loading Information
0.120 1.000 0.000 2 4 2.000
0.240 1.000 0.000 2 4 1.000
0.000 0.000 0.000 0 0 0.000 -]
1 10 0
o] 0 0 :] Stressing Data
-9000 1 1
0.000 1.000 0.000 ]
-9000 2 2 Constraint Data
0.360 0.000 0.000
0 0 0
YANNA _

Figure 1(c): PAFBLOCKS data for hook structure

Drawing Facilities

A very important requirement of all finite element programs is the ability to present
information about the structure in a pictorial form., The PAFEC 70+ program uses

graph plotters, generally running off line, to produce a wide variety of plots.

(1) Drawing of all or part of the structure in "blown-up" form.
(The elements are slightly separated from one another and the

structure appears to have disintegrated.)
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As (1) but with nodal circles drawn in.

As (2) but with node numbers added.

As (1) but with element numbers added.

All or part of structure not 'blown up".

As (5) dotted with degree of freedom arrows and numbers drawn.

As (5) dotted with constraint arrows drawn.

Outline of structure.

Stress vectors on (8) or (5)

Displaced shape plot,

The drawing facility is used initially to check the data as errors are usually

immediately apparent, Presentation of graphical output for reports saves time and

by suitably scaling the plot the output can be used directly. An example of a plot

used for data checking is shown in Figure 2.

2

/
>

Figure 2: ldealisation of flanged turbine casing
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SOFTWARE

The PAFEC 70+ program is a file based system, Each program is expected to run in 2

Oor more parts

(1) Card data read

Mesh and/or Data generation

Plotting

Write

Input data for program to magnetic tape

(2) Read Input data for program from magnetic tape

Form element matrices and merge

Solve

for displacements, eigenvalues, etc.

Calculate stresses

Plot stresses

There are many variations to the basic concept but the main intention is that the user

checks his output and graph plots from the first program before commencing the second

more expensive part of the program,

The PAFEC 70+ program is broken down into 12 separate libraries. It would be possible

to run with as few as 4 libraries but owing to the ICL restriction on filestore size

together with the restriction of the single pase conselidater (link-editor) the 12

libraries have

PAFECLIBCI

PAFECMRGCI

PAFECSEMCI

PAFECAUTCI

PAFECBSHCI

PAFECEL2CI

PAFECEL3CI

PAFECBLKCI

PAFECDGNCI

been chosen, Their titles and contents are as follows

- All data handling, polynomial, matrix pack and some solution

subroutines

- Merge subroutine for full or banded matrices

- Merge subroutine for semi-automatic solution

- Merge and solution subroutines for frontal solution

- All Beam and Shell type element subroutines

- All 2-dimensional Membrane and Bending element subroutines

- All 3-dimensional element subroutines

- Mesh Generation subroutines

- Data Generation constraint subroutines
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PAFECDRWCI - Plotting subroutines

PAFECTMPCI - Laplacian element and solution subroutines

PAFECMATCI - Matrix pack written in assembler code.

For any program only a few of these libraries will be required depending on the problem
but they have to be called in the order depicted by Figure 3. It is possible from
the data to generate not only the main program but also the information required to

determine the libraries required by the program.

PAFECMRG PAFECSEM PAFECAUT
PAFECDRW PAFECBLK

PAFECLIB

Figure 3: PAFEC library layout
(It is important that the library files are called in the order indicated by the arrows
so that no subroutines are omitted by a single pass consolidator (eg a job using
R36210 with automatic front solution required ‘‘semi-compiled”’ PAFECL2,
PAFECAUT, PAFECLIB libraries to be scanned. The library PAFECMATCI
contains matrix handling subroutines written in PLAN. This library of subroutines
is available for ICL 1900 series computers.)

Two macros are available at present for ICL GEORGE operating systems which only require
a data file for each job. The macros generate 2 programs as described previously, the
default conditions being a limited jobtime, a plot of the structure, a mesh generation
if the control parameters are correct, data generation and frontal solution. Other

options are available by altering the default options by insertion in the datafile.
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The macros enable the user to be guaranteed that the job control and main program
including the dimension statements will be correct for every program, Up to 50% of
research programs fail on their first run due to either main program or job control

errors.

USE OF PAFEC 70+

PAFEC 70+ was originally written as a research tool but has since become available as
a program for production analyses. The program is highly segmented which enables the
research activities with PAFEC 70+ to carry on unimpeded, Modifications and new

facilities are easily incorporated into the program due to this segmentation.

The program is freely available to academic establishments and is at present being used
by a number of universitie’ and polytechnics. Interaction with other finite element
research groups should hopefully cut down on repetitive development work and yield a
larger and generally more useful program, Increase in academic usage would require
support from a research organisation as the present servicing is supported from

commercial activities,

FUTURE OF PAFEC 70+

Present developments are aimed at improving the input and output facilities of the
program, The mesh generation program PAFBLOCKS is being extended and it is hoped
that the recently developed data language PAFTRAN can be suitably modified to
incorporate the PAFBLOCKS subroutines. The mesh generation is being further extended
to incorporate a number of regularly shaped structures, A recent addition to the
ease of data preparation is a digitising table to be used in conjunction with the

mesh generation facility.

Extra output facilities being developed include contour plotting to complement the
Present stress vector plotting facility, Other modifications anticipated in the near
future are a frontal blocking solution technique and possibly a banded partitioned
solution, A standard program is being developed for incorporating the individual
creep and plasticity subroutines more generally into the main program. Development
of elements includes a doubly curved shell and a general non-symmetric loading

axisymmetric isoparametric element.
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APPENDIX | CONTRIBUTORS TO PAFEC 70+

BATCHELOR A, The Correlation of Roadway Displacements with the Stress Redistribution

and Strata Movements caused by Longwall Mining, PhD Thesis (1972)
BICKLEY A, Elastic Distortion of Crankshafts, PhD Thesis (1968)

BISHOP P T, Failure of Reinforced Plastics caused by Stress Concentrations,

PhD Thesis (1973)

BOND T J, Some Considerations of the Finite Element Method in Stress Analysis,

PhD Thesis (1972)
COHEN E, Transformer Noise, PhD Thesis (1968)

DAVIS R, Advances in Beam Finite Elements and Applications to Stiffened Plates,

PhD Thesis (1972)
DASGUPTA A, The Behaviour of Joints in Tubular Trusscs, PhD Thesis (1970)
DICKENSON S M, Flexural Vibration of Rectangular Plate Systems, PhD Thesis (1966)
EDWARDS G, Cylindrical Shell Hybrid Finite Elements, PhD Thesis to be submitted (1974)
HENSHELL R, Transmission of Vibration in Damped Elastic Structures, PhD Thesis (1967)

JOHNSON K, The Mechanical Behaviour of Laminated Carbon Fibre Reinforced Plastics,
PhD Thesis (1973)

JONES C, Stress Analysis of Aircraft Components and Advanced Aspects of Finite Element

Software, PhD Thesis to be submitted (1975)

MAKOJU J 0, The Finite Element Analysis of Thick Shells, PhD Thesis to be submitted
(1976)

NEALE B K, Vibration of Shell Structures, PhD Thesis (1971)

ONG J H, Finite Element Analysis of Transmission Systems, PhD Thesis to be submitted

(1976)

PARKES D A C, Finite Element Analysis of Stresses and Creep in Turbine Casings,
PhD Thesis (1973)

RIGBY N, Hybrid Shell Finite Elements, PhD Thesis to be submitted (1976)

ROPER C, An Analytical Study of the Strength and Flexibility of Tubular Joints, MPhil
Thesis to be submitted (1974)
SAFAVI F, Automatic Data Checking for Structural Analysis using Graphical Techniques,

MSc Thesis (1971)

SHAW K, Finite Element Analysis of Crack Propagation in a non-Uniform bi-axial Stress

Field, PhD Thesis to be submitted (1974)

SULLIVAN C, Stresses in Hooks, MPhil Thesis (1972)
Finite Element Analysis of Aircraft Structures,

PhD Thesis to be submitted (1975)
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SWANNELL J, Plasticity and Creep Using Finite Element Techniques with Special
Reference to Taper Hub Flanges, PhD Thesis to be submitted (1974)

WALTERS D, Paftran; A Finite Element Mesh Generation Language, PhD Thesis (1973)

WALTERS J, The Stress Analysis of Joint Links using Anisotropic Materials, PhD
Thesis to be submitted (1975)

WEBSTER J J, Free Vibration of Shells of Revolution, PhD Thesis (1968)

WINDSOR A A, Vibration of Shells using Finite Elements, PhD Thesis to be submitted
(1975)
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ASAS - A GENERAL PURPOSE FINITE ELEMENT
SYSTEM

J B Spooner

Atkins Research and Development
Ashley Road

Epsom

Surrey

DESIGN OBJECTIVES

ASAS is a large scale, general purpose finite element program based on the matrix
displacement method. Although originally based on a special purpose package
delivered to AWRE Aldermaston, its designers set themselves the objective that the
program should be commercially attractive and thus generate sufficient revenue
through sales, rentals, leases and bureau royalties to cover the not inconsiderable

development costs together with a reasonable profit margin.

In considering how this requirement should be met, further objectives were isolated
by the design team: many were rejected as impracticable and the following represent

its assessment of the essential combination.

It was decided right from the very first that the program should be general purpose,
that is, not restricted to any one class of engineering problem. This was made
possible by the fact that the underlying mathematics and modelling techniques are
common to all structural problems. Above all, however, it should be easy to use

by the design engineer with little or no experience of writing computer programs.

It was thought that this would go a long way to help break down the aura of

mystique built round the finite element method - probably as a result of the
technical literature doing relatively little to encourage discussion on the practical
application of the method or, more likely, as a result of unfortunate experiences

with some early program.

In spite of trying to achieve generality and ease of use, the program was also
expected to be cheap to use, again in an attempt to attract back to the method
those many engineers frightened off by the high cost of some early analyses.

It should again be noted that the term cheap to use embraces all activities, from

setting up the initial data to interpretation of the final results, and does not,
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therefore, refer only to the running costs on the computer. Early experience of
the finite element method indicated that computing contributed about sixty percent
of the total bill for any job - this nowadays has sunk to about forty percent of

the total cost. Note, however, the total cost may be only one-third of that for

the corresponding analysis done five years ago.

Another essential requirement was that the program should be flexible, that is,
easy to extend, modify and adapt. This was primarily in recognition of the fact
that, although a great effort was to be expended in trying to make the program
genuinely general purpose, it would have been foolish to pretend that all require-
ments of all branches of engineering could be met and that addition would always

be expected.

A further and not inconsiderable requirement was that the program should be easily
transportable from one computer make or configuration to another: many finite
element programs have fallen at this hurdle. In spite of great care in the design

of a system, this is always a point at which some difficulty can be expected.

The final requirement was that the program should be well documented, serviced
and supported at all levels. Furthermore, it sh&uld be shown to be a living
system - that is, development does not stop after the first few successful runs,
but that it continues so that new facilities are offered, new applications found

and that user experience is circulated from one installation to another.

THE OBJECTIVES IN GREATER DETAIL

It was only to be anticipated that the satisfaction of the above concurrent
requirements placed severe demands on the program design. The next section
amplifies each main requirement and following sections describe design features
implemented in ASAS to meet these objectives, giving some indication, where possible,
of the effectiveness of the approach. It should be recognised that there is a
strong cross~coupling between several of the declared objectives, and this is

clarified in the following sections.

Generality
It can be assumed that if the description "general purpose" is applied to a finite

element program it implies suitability for use by engineers in the many branches of
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the profession ranging, for example, from university research workers in finite
element theory to high-pressure vessel 'designers. However, "suitability for use"
implies in turn that the program provides adequate modelling facilities for both
structure and loading, performs reasonably efficiently in all different applications
and is therefore not noticeably more effective in one field at the expense of

another.

A good indication of the generality of a finite element program is given by its
library of finite elements. Obviously, the more elements of different type and

facility, the greater the structural modelling capability available to the user.

The elements listed below form the basic library of displacement elements: a new
range of force continuity and special elements has recently been introduced and

used in the analysis of several aircraft structures.

Flange (bar) 2 and 3 node axial elements with constant
elements and linearly varying cross-section.

Beam and grillage 2 node beam in 2-D and 3-D with

elements and without shear area,

Curved (circular arc) beam element.

Membrane elements 3 and 6 node triangular elements with
constant and linearly varying strain field,

4 and 8 node quadrilateral elements.

Solid elements 4 and 10 node tetrahedra,.
8, 20 and 32 node isoparametric solids.
6 and 15 node isoparametric wedges.
6 node triangular axisymmetric element
for axisymmetric loading.
9, 18 and 30 node axisymmetric sector elements

for non-axisymmetric loading.

Plate bending 3 node (18 degrees of freedom) tri-

elements angular element.
8 node curved, quadrilateral isoparametric
thin/thick element including transverse shear,

24 degrees of freedom,
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Shell elements 3 node axisymmetric thin shell (line)
element.
3 node thin shell triangular element,
27 degrees of freedom (cubic interpolation
of geometry and displacements).
3 node thin shell triangular element,
54 degrees of freedom (quintic inter-
polation of geometry and displacements).
3 node thin shell triangular element,
18 degrees of freedom (flat plate bending

element plus membrane element).

Special purpose Rectangular shear wall element.
elements Warped quadrilateral shear panel with
force continuity. Axial load carrying
element with force continuity for use
with warped quadrilateral.
Warped semi-monocoque element (stringer

stiffened membrane element).

Many of the above elements allow the consideration of orthotropic as well as
isotropic material behaviour. This library of elements is not static and will be

added to as demand necessitates.

To complement an extensive range of elements for modelling many different structures,
it is necessary to include facilities for handling various loading types. ASAS

accepts the following loadings:

Nodal forces (point loads, moments, torques)
Line and surface (line loads on beams, edge loads on
forces membrane structures, pressure loads on

bending, shell and solid elements)

Body forces (self weight, centrifugal and inertia forces)

Initial strains (usually arising from a temperature distribution)

Prescribed displacements.
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These loading types may be combined in anv way in one or manv different load cases.
There is virtually no restriction to the number of load cases that can be handled

in one run (the maximum to date is 108).

Should a consideration of other types of loading be necessary, the program should
be sufficiently adaptable to enable the user to readily incorporate his require-

ments., This is covered later under "flexibility",

Easy to use

There seems little point in developing a general purpose finite element program
that is not easy to use in all its phases - déta preparation and correction,
execution of the analysis on the computer, and interpretation of the results.
Experience shows that given the easy to use program, straightforward guidelines
and possibly a little assistance in the early stages, design engineers are well
able to make a success first of small analyses and later, as experience grows, of

more complex analyses.

Experience also shows that ease of use of a finite element program is virtually
synonymous with ease of use and completeness of its user manual, This must contain
a clear description of how all data is to be prepared and what is necessary to
execute a job on the particular computer installation, using a minimum of systems
analyst's or mathematical jargon. It has also been found that pre-printed, self
descriptive data preparation sheets not only make a good impression but, together
with the user manual, make data preparation less of an error prone process than is

usually the case.

Having briefly mentioned 'external to program' aids to ease of use, mention should
be made of internal features that have been programmed in ASAS. First the program
accepts the description of the structure's geometry, element topology, loading and
support conditions punched on the data cards in very compact form. This data is
then interpreted and expanded by the program and a comprehensive series of checks
made for consistency. Should errors be found, they are reported by the program
using straightforward English language descriptions rather than complicated codes.
The program cannot proceed with an analvsis if errors have been found and not

corrected,

Warnings of data giving rise to suspect idealisation are also given, but the user

is allowed the option of overriding them if he has deliberately set up his problem
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that way. At this point, provision is also made for a graphical display of the
idealisation. Should the data be consistent and any warning messages overridden,
the program proceeds automatically to any stage selected by the user. Usually,
after the data checking phase, he will select to carry a calculation through to
displacements but could, of course, carry it through to the output of stresses.
All these options are under full control of the user and are declared using
mnemonic descriptions at the beginning of the data input. Automatic restart
facilities are also available so that the program can be stopped and restarted at

various points through job execution.

Finally, the results of the analyses are clearly formatted with title and headings
for each set and column of numbers, and facilities also exist whereby the output

is automatically stored for post-processing — for example, factored load combinations.

Cheap to Use

'Cheap to use' and 'easy to use' are in many ways closely interwoven. For example,
compact data input, good data checking and plotting facilities not only make the
prgram easy to use, but simultaneously reduce the overall costs of data preparation.
It has been found advantageous to include a substantial volume of code in the data
checking phase at the expense of slightly extended run times in this area of the
program — this cost disadvantage is heavily overweighed by the cost savings in

quick location of errors.

Once the data is as correct as can be checked by the computer, it is used to establish
the idealised structure and loading. At the solution stage, two alternative paths
are available. For small problems the frontal solution technique is employed,

whilst for large problems a partitioned sparse matrix scheme is used. The
appropriate solution routine is, normally, automatically selected by the main

program, Both obviously, recognise the banded nature of the structural stiffness

matrix, though in the frontal solution this matrix is not formally assembled.

Flexibility

It has already been stated that at the design stage it is impossible to anticipate
all the uses the program may be put to, so it is imperative that it is easy to
modify or extend to meet specialist requirements. This is achieved by a

combination of modular program design plus full system documentation.
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Machine Independence

It has been stated that a program cannot be called machine independent until it is
completely operational on at least two distinct ranges of hardware. For this
reason, ASAS is written in ASA Standard FORTRAN and the first version relies on
sequential access of backing store files through standard FORTRAN Input/Output
instructions. Although this introduces a measure of inefficiency at the assembly
and solution stages, it has not proved as penalising as many would suspect. The
benefit of machine dependent facilities, notably in the two areas mentioned above,
has been recognised, and a version of ASAS using direct access facilities to backing
files has been produced. The program is currently mounted on RXDS SIGMA 5 and
SIGMA 7, UNIVAC 1108 (Exec 2 and Exec 8), UNIVAC 1106 (Exec 8), IBM 360/75 and IBM
370/150, and conversions are being prepared for the ICL 1900 series and CDC 6600

machines.

Service at All Levels

The success of a general purpose finite element program depends to a very large
extent on the back-up provided. Back-up ranges from hand holding and first-aid
treatment during initial use of the program to access to the originators of the
program or equally qualified personnel in case of unexpected or unusual difficulties,
or should modifications or new developments be required. Furthermore, the program
should be seen to be a living thing with guaranteed support and adequate development

to come,

An elasto-plastic version of ASAS and a thermal analyser ASASHEAT have been
produced and the design team is currently extending sub-structuring facilities
and the calculation of dynamic response. Figure 1 summarises current ASAS

analytical capabilities.

THE DESIGN OF ASAS

This section describes how the framework of ASAS was planned so as to meet the

objectives declared in earlier sections.

ASAS is subdivided into a number of modules, each performing a distinct operation,
linked together by an overall steering or header program. The modules are designed

mainly for use with other types of problems. The interface between each module is
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Figure 1: ASAS analytical capabilities

clearly defined by the use of data blocks, which simplify the work involved in the
addition of new facilities, and allow internal information to be used outside the
main program for both pre- and post-processing work. Mesh generation and stress
plotting are examples. Another advantage of this modularity is the ease with

which improved versions of existing modules may be added to the system, For example,
a complete double precision version of the structural stiffness assembly routine can

be incorporated without disturbing other parts of the system.

Envisaging the continuous development and addition of new finite elements, there

are clearly defined points where new element dependent routines may be added. These
points appear at the element checking stage, the calculation of the element stiff-
ness, element loads and element stresses. The element dependent routines can be
written with no knowledge of ASAS, as their introduction to the main system requires
only a simple 'capping' routine that accepts the element data in the format provided

and returns the element characteristic matrices in a similar manner,

Key information, giving certain details about the elements, is kept permanently in
core in FORTRAN arrays termed 'libraries'. Typically, they contain the number and
types of freedoms and the number and types of stresses on an element, The element

dependent stages are guided by references to these libraries and hence there are
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no imposed restrictions on the type of element employed, and the number of nodal
parameters permitted at a node. Any number of elements of any type can meet at a
node providing they have some common freedoms, although the number of parameters on

one element may differ from that on another and may vary from node to node.

An essential feature of ASAS is that it is designed to handle both small and large
problems by the use of dynamic storage allocation and automatic core overflow
techniques. The method used within ASAS recognises the simple flow of data
inherent in the finite element method, while giving the primary advantage of core
allocation at job execution time. This is achieved by regarding the available

data area as a single, one-dimensional FORTRAN array termed 'freestore', From
this, any amount of space can be called for and used by each module of the program,
The information created can then be written to a backing file and the space

returned to freestore for use in some other part of the program, This simple
approach has the advantage that no program space is required for complicated control

software and that no organisational overheads are incurred during job execution.

ASAS is capable of performing an efficient analysis of most practical engineering
and research problems. This flexibility is achieved by controlling the storage
of internal information, word packing and a choice of solution routines. The
user, however, does not have to make a choice as to which modules are necessary

for an efficient solution to his problem; this is decided in the header program,

Ideally, there should be no restrictions on the size of problem that a structural
analysis system is capable of handling. Practical limitations, such as the amount
of core and backing store available on a particular configuration place certain
restrictions on the size of problems that ASAS can tackle. Typically, a problem
with 3,000 unknowns and a large number of load cases will run successfully on a 32
bit, 32K word store machine, and a 64K word machine will solve problems very much
larger than this without difficulty. Substructuring facilities are currently
beiné implemented to remove some of the difficulties associated with the very large
problem, particularly in the description of the idealisation and with the solution

of the equilibrium equations.

A restart facility exists in ASAS which allows the user a degree of control in the
execution of large jobs and in salvaging jobs in the event of inadequate limits
specification (time, number of output pages), or if a machine failure occurs. In

all, there are twelve restart stages in the program,
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NEWPAC - A PROGRAM FOR LINEAR ELASTIC
STRUCTURAL ANALYSIS BY FINITE ELEMENTS

A Scholes

British Railways Board
London Road
Derby

INTRODUCTION

The need for a general purpose structural analysis program was formulated in British
Rail's Research and Development Division in Derby in 1966, A wide variety of

railway structures, eg coaches, wheels, bridges, required detailed stress calculations
and the traditional methods were proving inadequate, The Division had developed
expertise in the finite element method using some small and special purpose programs
and came to the conclusion, along with some other organisations at that time, that
there was no suitable general purpose program available from external sources and hence
that a program, written in house and thus more closely allied to railway engineers'

needs, would be most appropriate.

This latter point was most important since it was considered that the successful intro-
duction of more exact computational techniques into the design offices of British

Rail would be eased by the local availability of any programs and of qualified support
staff,

The major aims in producing a program were formulated as:-

(i) Capability for 3-D static and dynamic analysis using finite elements of all

structures likely to be of interest to railway engineers.

(ii) No arbitrary limits (as far as possible) in regard to the complexity of

structure it can tackle.

(11i) Simple form of data input which requires little learning. The data can

now be checked using interactive graphics.,

(iv)  Modularity in the program so allowing ease of amendment and additionms.
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(v) Use of standard high level language (FORTRAN IV) with minimum of assembler

level language.

The aim of this paper is to show how we attempted to meet these objectives and to allow

our attempts to be compared and discussed in the light of other solutionms.

History

The program NEWPAC was begun in 1966 and was in productive use at the end of 1969, In
the meantime, smaller programs, particularly one called OLDPAC, were developed to allow
the wider introduction of finite element methods into the design offices and to gain
experience of users reactions to, for example, different forms of data input (West 1969).
All those programs were developed on an ICL 1909 computer with five magnetic tape

decks. NEWPAC was subsequently transferred to an IBM System 360 (and later a 370)
computer, working under the OS/MFT2 operating system. The subsequent description refers
to the latest version of the program. All facilities, particularly those involving
graphical output, may not be available with all versions of the program (see user guide,

(Patel et al 1974)).

ANALYSIS PERFORMED

The various types of analysis which may be performed are:-

(1) Static analysis to calculate the displacements and stresses due to prescribed

loads, displacements and temperature fields.
(ii) Static analysis as (i) but including terms due to geometric stiffness, eg
where tensile or compressive loads in end-load members are taken to have

stiffening or de-stabilising effects respectively.

(1ii) Calculation of natural frequencies and corresponding modal displacements and

stresses,

(iv) Calculation of buckling load factors and the corresponding buckled shapes.
(v) Steady-state analysis of temperature or other potential problems.

(vi) Transient analysis for mechanical systems with mass, damping and stiffness

to calculate displacements and stresses under time-varying loads.
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Thermal transient analysis to calculate temperature-histories under varying

heat load inputs.

Static Analysis

This is the basic finite element procedure which involves the following steps:-

(1)

(1i)

(@tiy®)

The idealisation of the structure under consideration as a number of elements
(members), connected at nodes (joints). The movements of each node are

defined in terms of displacements (both linear and rotationmal).

the specification of this idealisation (as nodal co-ordinates and element
properties) and also of the loading and constraints imposed on the structure
in a form suitable to the computer, This is done on specially designed

"input' data sheets,

the computer analysis itself. The input information is used to calculate
the relationships between the forces on each element and the displacements
of its connecting nodes. These relationships are called "element stiffness
matrices" and are used for setting up simultaneous equations which, in

matrix notation, can be represented as

(] = [x] « [4] 1)

where [d] is the vector (set) of the unknown nodal displacements and [P] is
the vector of the loads applied at the nodes. The matrix [K] is referred to
as the "assembled stiffness matrix" since all the forces on all the elements

as assembled into the complete structure are taken into account,

The vector [P] may, in fact, also be a matrix, if more than one load case is
applied, and may be assembled from element load matrices if loads are applied

to an element rather than only as nodal forces.

The stress/displacement characteristics of each element are also generated

in the computer. This may be expressed in matrix form as

(5] = [ o 2] @

where [S] is the vector of stresses and [F] the "stress-matrix". The loads
[P] are given and the computer determines the displacements and then calcu-
lates the stresses for each element. It is also possible by a modification

of the above procedure to specify some of the displacements [d] :
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(iv) The basic stresses calculated may be further modified, eg by combination, or

by calculation of principal stresses,

Static Analysis with Geometric Stiffness

Further element stiffness matrices are derived for elements for which stiffness modifi-
cation due to end-load effects is to be considered. These are assembled with the other

element matrices giving

(r] = [k + k;]e[d] (3)

The rest of the static analysis 1s unchanged.

Natural Frequencies

Additional element matrices are derived for the nodal forces arising from mass effects.
These matrices are assembled into a structure mass matrix [M] where [M] . wzo[d] are the
set of nodal forces arising from inertia effects from displacements [d] at frequency w.

The combined equation including inertia forces and stiffness forces is thus
(w2 [M] +[xDe[a] = o0 (4)

Since the structure is assumed in free vibration, the applied forces are zero. This is
an eigenvalue problem which is solved to give natural frequencies and mode shapes [d] A
During this process, the number of displacements in [d] may be reduced by a condensation

procedure (Zienkiewicz and Cheung 1967). Stresses may be calculated thereafter.

Buckling Analysis

The element geometric stiffness matrices mentioned above are proportional in magnitude
to the end load or direct stresses in the respective elements. If this is assumed to
be true for the whole structure, ie if all such effects are proportional with pro-

portionality factor A, then equation (3) can be replaced by

([k] + 2»[K;])e [ = 0 (5)
Since the structure is buckling, the applied loads other than those producing geometric

stiffnesses are zero, The condensation procedure can also be applied in buckling

analysis,
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Steady State Temperatures

This analysis is similar to static stress analysis with the variable at each node the
temperature rather than displacements., Element matrices are calculated and assembled
and the equation (1) solved where [d] are the nodal temperatures and [ﬁ] the heat
inputs and outputs. This analysis may also be used for other potential problems,

such as electric fields and fluid flows,

Mechanical Transients

For each element, mass, damping and stiffness matrices are calculated and assembled to

give the following equation for the force balance at the nodes.

] o [P + [c] o (u] + [x] o [a] = [F] 6)
The applied loads [P] may also vary with time. The equation is solved time-step by

time-step throughout the time interval specified. The mass, stiffness and damping

matrices may be condensed as above. Stresses may be calculated as required.

Thermal Transients

This analysis results in a similar equation to the time-history analysis, except that
there is no mass matrix. The [C} matrix is called the specific heat matrix and the

[K] matrix, the conductivity matrix.

THEORY

No theoretical details are given in this note. The elements details are covered in
Prempeh and Patel (1971) and Sunley (1971). The solution procedure used in Choleski's
factorization; the eigenvalue algorithm is by Jacobi (Rolston and Wilf 1962) and the

time history iteration is Newmark's beta method (Chan et al 1962).

NEWPAC ORGANISATION

The analysis of a structure using a complex finite element program involves several

steps including:- idealisation, data input, data checking and preferably display, the
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analysis itself and output printing and display. The way in which these steps are re
lated and the other auxiliary programs which may be used with NEWPAC are shown in the

block diagram (Figure 1) and described below,

IDEALISATION
STRUCTURE & LOADS

Structure
Geometry
Elcmcnt: ; TANDARD
Com'lro nts DATA
Loading HEETS
Processor data TINGRID"
Cotmmards INPUT DISPLAY
& AMENDMENT
‘STIN' PROGRAM
INPUT & DATA
CM’:JI:)7 AMENDWENT INPUT DATA HARD Annotated picture
INP PROGRAM FILE COPY | tnput card Images
5TGRIN
CHECK PLOT L 2
PROGRAM PLOTTE
INPUT
LISTING Grid of node & elements.
Focsimile of display.
(hard copy)
NEWPAC DIRECTIVES
DATA CHECK SAVE
ANALYSIS RUN FLe
RETRIEVE RESULTS (MULTI~-J0B)
OUTPUT 'sTGROUT ' 'IGOR'
OUTPUT ouTPUT
LISTING PLOTTING DISPLAY
PROGRAM PROGRAM
Dispiacements y ¥
Element stresses loods etc. Y A
Reactions
Flexibilities B DISPLAY
Frequencies SCREEN
Mode shapes PLOTTER
also Displacements
input data End-load sheor s 8.M Displacements

Ingut

Each analysis will start from an IDEALISATION of the structure to be analysed,
complex structure will generally be made up of different types of elements and the user
must have sufficient knowledge of the behaviour of the various element types so that the
idealisation produces the accuracy and detail of results required.
structure has then to be specified on STANDARD DATA SHEETS given in the format shown on

Error messages

Figure 1:

for line elements
Principal stresses
Vibration mode shapes

Block diagram — NEWPAC system
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Figure 2; this includes the degrees of freedom required at each node, the node numbering,
the nodal coordinates, element names and parameters, structure supports and applied loads.
This data is punched on CARDS and may be entered in an INPUT DATA FILE. For some
specific configurations of structure, data may be produced in the required format by

special purpose programs,
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Figure 2 (part 1): NEWPAC input data formats
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Figure 2 (part 2): NEWPAC input data formats

Data Checking

Complex structures require a considerable amount of data to be input and mistakes
are likely to occur. The checking facilities offered within the NEWPAC system are
programs STGRIN which can draw on an incremental plotter scaled pictures of the

idealisation (Figure 3); program INGRID which displays views of the idealisation on

S el A



A SCHOLES

an interactive display and allows data amendment (West and Scholes 1972); and
NEWPAC itself running under the DATACHECK directive. This directive terminates
NEWPAC after format and consistency checks are made on geometry, elements, loads,
constraints etc , and each error found produces an explanatory note on the OUTPUT
LISTING. Other useful information, eg degree of freedom numbers, element band-

widths, load summations are produced.

Figure 3: Input plot of idealised structure

NEWPAC INPUT PLOT -
C.T.LOADING VEHICLE CURVED DOOR T<:‘

z
GRID SCALE = 0.0350 UNITS = MMS
TRI VIEVW FROM -1.00 0.60 0.60 VERTICAL AXIS = Y

Analysis

The second mode of operation of NEWPAC is for a main or ANALYSIS RUN; all the
commands used and the amount of core store required are now checked. If there are
no errors, the main analysis required is completed and results are printed and

also retained on the SAVE FILE.

Output Processing

A third mode of operation is to RETRIEVE RESULTS from the SAVE FILE, when certain
further analysis or processing is possible. Additionally results held on SAVE

FILE may be assessed by program STGROUT which plots the calculated deflections and
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stresses superimposed on a structure grid (Figure 4) and program IGOR which draws

chosen results on an interactive display (West and Scholes 1972).

S ; Figure 4: Output plot of bending moments
: ; 2 lr H plotted normal to element axes
; e e
A RERdr

NEVPAC OUTPUT PLOT

MK 3 COACH FRAME RUN NO. TVO

GRID SCALE = 0.0500 UNITS = MM

Y-Z VIEV VERTICAL AXIS = Y

LOAD CASE NO. 1 ¢ 0.001 N/MM2 )

MOMT 1 PLOTTEQ RESULTS SCALE =.7S0E OS NEVTON-MM/HM

MAXTHUM RESULTS VALUE FOR THIS LOAD CASE =  0.2199€ 07
RESULTS FOR ALL RELEVANT ELEMENT TYPES PLOTTED

Commands

NEWPAC is guided as to the user's requirements by DIRECTIVES and COMMANDS. The

former specify the modes of operation as mentioned above, DATACHECK, ANALYSIS RUN
or RETRIEVE RESULTS. The latter specify the analysis and output required. Some
examples are HARMONICS, LOAD COMBINATION, PRINCIPAL STRESS, REACTIONS, TRANSIENTS.

Some sequences of COMMANDS are illeogical or impossible and NEWPAC determines on input

whether the sequence specified may be executed in the core store available.

An error message is produced if the job cannot be run and the user is often saved an

embarrassing and expensive failure.

Program Limitations

The structure of NEWPAC is such that it can run on various partition sizes on an IBM
360 or 370 computer; thus different sized structures can be analysed using the same

program, However, there are many parameters which determine whether a given structure
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will fit into the amount of core and disk space available. The following limitations

apply generally but are not exhaustive,

No of nodes: 4000

No of displacements: from nil to six per node

No of elements: limited only by backing storage, normally more than .3000:
No of constraints: sum of dependent and independent constraint entries within

any bandwidth to be less than 250

The maximum displacement number difference B and number of applied load cases, NL, for
static runs and the number of master displacements for vibration and buckling analysis,

NPD, are limited (approx) as given below.

Core size 1B} NL NPD
180 k 130% 40 50
240 k 180 50 60
300 k 220 50 70

*100 only for vibration and buckling analysis.

Exact limits for any partition size are calculated and printed by NEWPAC,

ELEMENTS

The NEWPAC program contains a large number of different types of finite elements.

These may be grouped as:- (a) Line elements, (b) Planar elements, (c) Axi-symmetric
elements, (d) Field elements and (e) Point elements. Each element type has a code
name, a mnemonic formed by two initial letters of the element type name, followed by

the number of nodes to which it is incident,

For each element in the program a stiffness matrix is generated. Other matrices,
such as the stress, mass, damping and different types of loading matrices, are
calculated depending upon the type of analysis being performed and the parameters

provided for the particular element.
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The input for each element consists of an element name (user selected), the element

type, the nodes to which it is connected and parameters describing its properties.

For some elements a reference plane is also required.

Details of the format of

this input are shown in Figure 2 and details of each element type available are

shown in Table 1.

TABLE 1
ELEMENTS AVAILABLE IN NEWPAC

Code

Beams

EL2
EL3
BM2

GB2
PB2
BG2
BM4
RB4

MT3
MT6
BT3
BT6

MR4
WR4
SR4
BR4

MQ4
MQ8
BQ4
BQ8

AT3
AA3
HT3
HA3
AT6
HT6

FT3
FA3
FA6

AB2
AB3

PS1
PD1
PM1

Description

End Load Element
Ly L (with mid-side node)

General BeaM (with shear, torsionm)

Grillage Beam

Plane Frame Beam

Eeam with ggometrlc Stiffness
BeaM (with four corner nodes)
Referred Beam

Triangular elements

Membrane Triangle
b " (with mid-side nodes)
Bendlng Triangle (Shieh,Lee,Parmalee)

L (with mid-side nodes)

Quadrilateral elements

Membrane Rectangle

Web Rectangle

Shear Rectangle

Bendlng Rectangle (Zienkiewicz)

Membrane Quadrilateral
& L (with mid-side nodes)
Bendlng Quadrilateral

i (with mid-side nodes)

Axisymmetric elements

Field

Point

Axisymmetric Triangle

Axisymmetric Anisotropic Triangle

Harmonic Triangle

Harmonlc Anisotropic Triangle

Ax1symmetr1c Triangle (with mid-side nodes)
Harmonic Trlangle (with mid-side nodes)

elements

Field Triangle (for heat flow problems)
Fleld Axisymmetric Triangle
LA " t
(with mid-side

Axisymmetric Boundary element
" "

nodes)
(with mid-side nodes)
elements

Point Stiffness
Point Damping
Point Mass
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Displacement Form

linear
quadratic
cubic bending, linear
torsion etc.
reduced form of BM2
" " "

BM2 plus
generalised form of PB2
BM2 with rigid offsets

linear

quadratic

quadratic in sub-triangles
cubic (Razzaque)

linear with xy terms

Y (but constant shear)
shear only
cubic with two quartic
terms
derlved from 4 MT3

" 4 MI6

" " 4 BT3
cubic in sub-triangles
(de Veubeke)

linear (constant circum)
1" "

" (harmonic circum)
" "
quadratic (constant circum)

Al (harmonic circum)

linear
linear
quadratic

linear
quadratic
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Element Matrices

A range of element matrices may be calculated, although not all are provided for
each element type. A stiffness matrix is, of course, calculated for all elements
(the conductivity matrix for field elements used in heat flow problems). A
"stress-matrix' is also available which allows the calculation of various stresses

and stress resultants.

For beam elements, these stresses are the direct and bending stress resultants

at each end. Where such an element abuts along its length to a shear carrying
panel, the transfer of load between the two elements is assumed to be as a constant
shear flow and the end load in the beam adjusted accordingly. Further, fibre

stress can be calculated at any specified position on the beam cross-section,

The stress matrices provided for the planar elements give stress resultants (such as
moments/unit length) and the stresses on both surfaces of the element (where different).
Depending on the element, stresses are evaluated at the corner nodes or the element

centroid. Principal stresses may also be calculated and plotted (Figure S

Consistent mass matrices are provided for all beam elements. However, since the mass
condensation procedure is almost invariably used, it is not thought worthwhile to
extend this to other elements Qnd all other element matrices are of lumped mass type.
Additional lumped masses are often necessary and these may be provided by point mass

elements.,

Only a very few element damping matrices are provided. However the facility exists to

specify the structure damping matrix to be used for mechanizal transient analysis as

[ = [c.) +al] + b[x]
where [Ce] is the damping matrix assembled from the element matrices, [M] and [K] are

the structure mass and stiffness matrices and a and b are constants.

A geometric stiffness matrix is only available with the general beam element at present,
although all that is required to extend this facility to other elements is the insertion

of the appropriate element routine.
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NEWPAC OUTPUT PLOT

MASONRY ARCH BRIDGE RUN NO. ONE
GRID SCALE = 0.0300 UNITS = M.
X-Y VIEV VERTICAL AXIS = Y

LOAD CASE NO. S ( HRO1+SF WT+0OM+LL )

PSTT  PLOTTED RESULTS SCALE =.87SE 08 N/SQ.M/M
(RESULTS SCALE TRUE ONLY IF ELEMENT PLANE PERP TQ VIEW)
MAXIMUM RESULTS VALUE FOR THIS LCAD CASE =  0.1107E 07
RESULTS FOR ALL RELEVANT ELEMENT TYPES PLOTTED

Figure 5: Output plot of principal stresses

Element loads may be specified in addition to nodal loads, the program automatically
generating the corresponding nodal load matrices which are subsequently assembled. Beam
elements may be subject to six types of point and line load (Figure 6). Planar elements
may be subject to uniform pressure loads normal to the panel or in one of the axis

directions.

Element Axes

A right handed Cartesian set is used for nodal geometry definition, Each element has a
local set, generally with one axis parallel to one side, which is used for stress

definition.
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ELEMENT TYPE ELEMENT LOADS LOAD | LOAD NO.OF LOAD VALUES
TYPE | DIRN INPUT REQUIRED
LINES
BEAM ELEMENTS A-Point force on Line AX LX a=magnitude of
Element AY LY 2 force
a AZ Lz b=distance of
force from
{—p=e 2 end 1.
B-Point moment on BX RX a=magnitude of
Line Element BY RY 2 moment
BZ RZ b=Distance of
moment from
{—p— ? end 1
C - U.D.L. on Line CcX LX a-U.D.L. in
Element cY LY 1 force/unit
cz Lz length of
beam
al
1 2
D =TU.D.M. on Line DX RX a=U.D.M. in
Element DY RY 1 moment/unit
DZ RZ length of
beam
a
1 2
E-Linearly varying EX LX a=force - End 1
Load on Line EY Y 4 b=force - End 2
Element EX Lz c=distance of a
from End 1
b d=distance of b
at - from End 2
1~0Co ] ‘dzz
F-Linearly varying FX RX 4 a=moment - End 1
moment on Line EY RY b=moment - End 2
Element FZ RZ c=distance of a
from End 1
d=distance of b
| [T trom end 2
| ~=C=> -—d— 2
PLANAR U-Normal pressure UN Normal a=pressure in
ELEMENTS load to force per unit
or pressure loads Panel area
along one of the UXx LX
structure axes Uy LY 1
vz LZ
AXISYMMETRIC TH-Thermal Load TH 1 a=Temperature
ELEMENTS )
RT-Rotational Load RT 1 a=Circular
frequency
(Radians/Unit
Time)
a, b, ¢, d are the load values to be entered on the first, second, third and fourth
lines of input data.

Figure 6: Element loads
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OTHER FACILITIES

Axisymmetric Harmonic Analysis

For axisymmetric structures under non-axisymmetric loads, an analysis in terms of

Fourier series circumferentially may be made. NEWPAC automatically generates the
equations for all sets of harmonics, solves and recombines the separate harmonics

to give the results required at specified angular intervals. Some of these

elements have anisotropic material properties.

Matrix input and output

A precomputed stiffness matrix may be input and a specified flexibility matrix

calculated and output.

Load Combination

Linear combinations of deflection and stress results from different load cases may
be made. These load cases may be from different analysis runs, having different
constraints, This facility thus allows the combination of symmetric and anti-
symmetric loading on a symmetric structure, where advantage has been taken of

symmetry to analyse only part (generally half) of the structure.

Constraints

Any displacement may be specified as having zero value, as being in a linear
relationship with other displacements, as having a pre-specified value or as being

the (summed) combination of the last two.

Save File

All results are usually saved on a magnetic tape file, from whence they may be
reprocessed (for instance by further load combinations or to find further fibre

stresses) or plotted.

SOME PROGRAMMING DETAILS

NEWPAC is a heavily overlaid program, having over 130 subroutines of which 50
are for generating element stiffness, stress, mass and load matrices. All but

5 of these routines are written in FORTRAN; the ASSEMBLER routines are generally

SN
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small and perform such functions as packing and unpacking words, finding the extent

of core available, allowing input to be buffered and re-read in different formats.

Intermediate data is transferred between main routines via disc and a number of

temporary data sets are used for this purpose.

One, labelled the OUTWELL is organised in a special way and is used for data to

be retained throughout the program. The others are used as scratch areas and will
generally hold only one or two "blocks" of data. A block is here defined as an
adjacent set of FORTRAN logical records limited by a trailer record. Each block

of data is also preceded by a header record, which gives a code specifying the

type of block following. This allows this data set to be searched for a particular
block. Flexibility regarding which data set any particular block of data is
allocated to is maintained by holding channel identifiers as parameters in the

calling sequence of subroutines.

Common

Two main COMMON areas are used, one, CONTROL, holding the main problem parameters,
both structural (degrees of freedom, number of load cases etc) as well as
computatiénal (allocation of input/output channels). The other COMMON area is
always arranged to be at the bottom of each branch of the overlay tree and expands
to the limit of the area available. In this extendible COMMON area, generally
only one variable is declared eg, A(1l). Assembler routines are used to determine
the limit of core available to the COMMON area, leaving an appropriate amount for
input/output buffers and other 0S requirements, and for determining the relative
position of any variable, such as A(1) above, in a COMMON area. The subroutine
writer then has the maximum possible amount of core available to him, though this
will vary according to the partition size in which the program is run. However
he must now work within one single dimensional array and distinguish different
parts of the data he is working on by relative shifts, ie what would normally be
B(I) becomes ACIB +1I) and D(I,J) becomes A(ID + I x N + J), where the size of D

is M x N. These additional book-keeping activities are essential if core is to
be allocated at run-time, an absolute necessity if the program is not to be

considerably constrained by the array dimensioning requirements of FORTRAN.

During the assembly, constraining and solution phases of the program, a triangular
part only of the lower band of the structure matrix is held in core. This triangle

is of semi-band width and effectively moves down the lower band of the structure as
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columns of finished data are written out and new rows read in. The mapping of the
triangle onto the single dimensional array mentioned above is such as not to require
any core rearrangement at any time. A marker is also held of the first non-zero
element in each row and this together with the mapping arrangment minimises the
computation while maximising the bandwidth which can bhe held.in_a particular core

size. A flow chart of the program is given as Figure 7,

READ OUTPUT #
RESDISCHECH > COMMAND AND
T DAT CALL
s A > APPROPRIATE
] ROUTINE
SORT |
ELEMENTS [ \
RETRIEVE
INTO
ASCENDING RESULTS
NODE ORDER p-(STATIC OUTPUT
CALCULATIONS
ELEMENT
STRESSES.
REACTIONS
HARMONIC
SYNTHESIS SAVE
CALCULATE SAVE
ELEMENT FIBRE STRESS |—p— FILE
STIFFNESS RESULT
STRESS, MASS COMBINATION —»>—
MATRICES ETC SAVE ETC
PRINCIPAL
STRESS
L B
VIBRATION
ASSEMBLE P cALCULATIONS
STIFFNESS TCONDENSE
& LOAD MASS, STIFFNESY
MATRICES DAMPING
FORM EIGEN -
VALUES &
VECTORS [
MECHANICAL /
THERMAL
P TRANSIENT  {—p»—ri
1
STRUCTURE BUCKLING
STIFFNESS &
LOADS _————
PRINT OUTPUT LINE
- AND L PRINTER
OTHERS
DE- CONSTRAIN
DISPLACEMENTS
i FINISH

Figure 7: NEWPAC flow chart
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Details of some of the mechanical and civil applications of NEWPAC in British Rail

are given in previous papers (Dodd 1972 and Scholes 1974). The structures analysed

at Derby as well as including railway vehicle superstructures and components, such as

bogies and wheels, have encompassed a wide variety of bridges, in steel, concrete or

brick and frame structures. Studies have also been made on details of rail joints,

pantographs on electric trains and of the overhead electrified wire itself.

The program has also been used outside BR for such diverse structures as blast

furnace hoods and bus frames and by civil engineering consultants for bridges and

dock gates.

Computational details of some of the larger jobs run on BR's IBM 370/145 are

included below (Table 2).

TABLE 2

SOME LARGER JOBS

DESCRIPTION TYPE OF RUN
Coach (half) Static

Coach (quarter) Nat frequency
Bus (whole) Static

Wheel Harmonic
Bridge Static

* ICL, 1909

REMARKS

DEGREES OF
FREEDOM

2440

966

1374

6558

1920

SEMI~-BAND- CcPU
WIDTH (mins)
137 16182
75 40
209 130
33 420%

ki) 361%*

It is hoped that an impression has been given of a robust system, simple to use,

where the emphasis has been on providing the user with
possible with a large number of time saving facilities
has generally been left to the user to provide his own

mainly because of the wide variety of structural types

= 125] =

as general a program as
on output. On input, it
data generation program,

analysed.



NEWPAC

The program has been designed to be modular in concept and operation and this has
eased the enhancements made although requiring additional effort in holding source

code, in overlay design and in documentation.

As the program became more complex, the process of logical checking of commands and
other data to guard the unskilled user assumed a greater importance, although it

undoubtedly saves much of the user's computing time.

NEWPAC is currently a mature program, well used but with plenty of potential for
future enhancement to meet the needs of engineers and designers. For instance,
procedures for optimisation and for checking against allowable stresses are being

planned.
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MESH GENERATION

J K Reid
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SUMMARY

A number of techniques for automatic mesh generation will be reviewed and some current

work of the author will be described.

INTRODUCTION

When setting up a finite-element model it has been usual to position the elements and
number the variables manually. This procedure is very tedious and prone to error and
its cost can exceed by a substantial factor the cost of running the final program that
produces the solution, These disadvantages can be mitigated in a number of ways, for
example by the use of a good input data format allowing repeating elements and groups
of elements to be specified in a condensed form and by the extensive use of graphical
facilities to check the grid and even to specify it with the help of light-pen. Here
we discuss the alternative of making the computer generate the whole grid. As well
as avoiding the disadvantages we have mentioned of the simple manual approach it has at
least the potential of permitting the computer to choose for itself mesh sizes that
are everywhere appropriate both for the adequate representation of the region and for
the adequate representation of the solution. This would be particularly useful, for
example, if a sequence of problems of widely varying smoothness were to be solved over

the same geometrical region,

REVIEW OF TECHNIQUES

A number of authors have begun from a sequence of points on the boundary, fitting an
internal triangulation to them. George (1971) successively removes one triangle at a

time, as illustrated in Figure 1, his algorithm trying to ensure that each is nearly
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Figure 1: lllustration of George's triangulation algorithm

equilateral, A similar algorithm has been proposed by Bykat (1972) but its details
are different. If he cannot remove a triangle of reasonable shape (Figure 2 (a)) the
he introduces a cut (Figure 2(b)) which gives his removal code scope to proceed
(Figure 2(c)). George finishes by smoothing with general sweeps of the grid moving

points successively so that their coordinates are the means of the coordinates of

their immediate neighbours in the grid. An example of a final George triangulation

JPSRE o

(a) (b (c)

Figure 2: llustration of Bykat’s triangulation algorithm
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shown in Figure 3, Bykat's triangulation of the same region is shown in Figure 4 and
his triangulation of a more complicated region is shown in Figure 5. Collier,
Ellington and Rees (1971) have developed an algorithm based on the same idea and this

is incorporated in TRESS, a finite element code for stress analysis problems, A

- SIS
At%%%%yﬂ
skt~ =
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o

V>/\/ \/
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g

Figure 3: A final George triangulation Figure 4: Bykat's triangulation of the region
of Figure 3

Figure 5: Another Bykat triangulation
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similar form of input has been used by Winslow (1964). A fictitious potential is
associated with each grid point and Laplace's equation is solved so that equipotentials
provide one set of grid lines and orthogonal trajectories another. This generates a
smooth quadrilateral grid which can be subdivided into triangles. The solution of
Laplace's equation seems rather a "sledgehammer for cracking a nut'", and one wonders
whether really complicated regions can be handled but it has the virtue of producing

smooth variations of triangle size, generally agreed to be desirable.

Another approach involves the user in providing an original gross triangulation which
is subdivided by an automatic procedure. George (1971) begins with triangles, whieh
may vary in size (see Figure 6, for example), and divides each uniformly into the same
number of parts. Zienkiewicz and Phillips (1971) begin with quadrilaterals, allow the
user to specify where on each quadrilateral side grid points are wanted, and fill in
the interior with lines parallel to the quadrilateral sides. The idea is given
greater power by superimposing isoparametric mapping and by identifying topologically
different quadrilateral sides to allow complicated structures such as box girders with
internal diaphragms to be handled. The results are impressive but the technique
really falls into the category of a mechanical aid to a hand method for all the

essential decisions about the shapes and positions of elements are made manually.

Figure 6: Another George triangulation

THE AUTHOR'S WORK

The Early Stages

My own work (Reid (1970), Reid and Turner (1970)) involved taking an original uniform
equilateral grid and distorting it by moving grid points near the boundary onto the
boundary. In Figure 7(a) the points 1,2,...16 are points of the original uniform grid
and the points 1',2',3',4',5' are points of intersection of the boundary with grid
lines; the distorted grid is shown in Figure 7(a) and is formed by moving point 1 to
position 1', 2 to 2', etc. I was able to show that, with the help of some rules
exploiting the freedom that sometimes exists over to which boundary point a grid point
should be moved, no triangle could have an angle outside the range {<:ot:_1 3/3; Smn/6}

0 :
= {117, 150°} and that with a smooth boundary and a sufficiently fine grid these bounds
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could be improved to {(:ot_1 (5/V3), 2n/3} = {190, TR The procedure produced use-
ful triangulations, particularly for the practical problem of A B Turner that first
aroused my interest in the subject, and one of the triangulations produced for him is
shown in Figure 7 (b). It has, however, been justly criticized for the fact that the
grid on which it is based is uniform so that an unreasonably large number of elements
may be produced just because the geometry of the region or bad behaviour of the
solution may require this in one small area. A further disadvantage is that I allowed

for holes but not for internal interfaces.

13 14 15 /B /

Figure 7(a): Grid distortion at a boundary
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Figure 7(b): A final triangulation incorporating boundary grid distortion

Recent Developments

My current work is aimed at overcoming these deficiencies and also at allowing the
automatic choice of suitable grid sizes everywhere in the region. The work is not yet
complete but I propose to tell you of my progress so far, I have replaced the earlier
uniform grid by a grid consisting of equilateral triangles and bisected equilateral
triangles, an example of which is shown in Figure 8. I take an original equilateral
triangle and subdivide it successively to any depth (within reason) but see no need to
be able to reverse the process., Using only equilateral triangles and bisected

equilateral triangles means that dividing one triangle may necessitate dividing several
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neighbouring ones too. For example dividing the triangle 6-7-9 of Figure 8 will
necessitate triangles 3-5-6 and 7-8-9 having their bisectors removed and then being
divided into four, The topology of this structure is very simple and can conveniently
be stored using three pointers in association with each node giving the neighbouring
nodes in the directions 0, 2m/3, 4m/3 respectively (see Figure 8). In each case the

dummy value zero is used when there is no neighbour in the relevant direction either

Figure 8: A Reid triangulation

Y

because we are at the edge of the big triangle or because of a local change of mesh-
size, It is actually unnecessary to hold the coordinates of the nodes and I have
written a subroutine which holds a pointer consisting of a node number, its x and y
coordinates and the local mesh size, The subroutine is able to move this pointer
around to find which triangle contains any given point, However I have decided
against this scheme in favour of holding the coordinates explicitly because this gives
code that will execute faster and I do not anticipate shortage of storage on our
machine; in any case the extra storage can be used later to hold the finite-element

matrix.

Following my earlier work I fit the real boundary by distorting the grid, Each smooth
section of boundary or internal interface is specified by the user in parametric form
(eg (t,t), t = 0,1, representing the line joining (0,0) to (1,1)) and is represented
by a sequence of adjacent grid points each of which is moved to a nearby point of the
boundary. An obvious logical problem exists in the choice of this sequence. It must
be such that the topology of the given region is correct; for example separate internal
holes must not be connected to each other or to the outside of the region. Also we
want to be able to handle efficiently the case where a solution on a finer grid is
wanted because the present grid has not produced a solution that is sufficiently

accurate everywhere, In fact, I am encouraged by the work of Rice (1973) to hope that
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many singularities could be treated automatically without the user even knowing of
their existence.) I therefore use separate double-linked lists for the boundaries
so that each can be traversed easily in either direction and extra points introduced
conveniently. Each element of one of these lists contains, in addition to forward
and backward pointers to other elements in the same list, the coordinates of a point
on the boundary and a pointer to an associated node in the undistorted grid. It is
also necessary to give each node a pointer to its associated boundary point (if any).
I choose the node to associate with a boundary point by the simple device of taking
the nearest. This means that each node has a "catchment area" of possible positions
of boundary points associated with it. The catchment area of point 8 of Figure 8 is

shown in Figure 9. We aim to find a sequence of boundary points in distinct adjacent

Figure 9: Catchment area of point 8 of
Figure 8

catchment areas. If adjacent boundary points are not in adjacent catchment areas then
we search between them for a boundary point in another catchment area and insert it
into the boundary linked list. Two distinct boundary points must not be associated
with the same node, for we cannot move the node to both. Occasionally this can

happen because two adjacent boundary points are in the same catchment area and in this
case we simply remove one of them from its linked list. More usually it is because
the local step length is too large so that two different boundaries or remote parts of
the same boundary have entered the same catchment area; in this case it is clear that
a local refinement of the mesh is needed if the geometry is to be represented properly
so we divide into four parts the equilateral triangle containing the midpoint of the
line joining the two boundary points which were associated with the same node.

Dividing any triangle alters the catchment area of its vertices so we reset to the
dummy value zero their pointers to boundary points in case the old assignment is now
wrong, Following a division we backtrack along the boundary on which we are currently
working until an unaffected point is reached and recommence from there. Of course other
boundaries may be affected too so we continue until all of them are swept successively
without any divisions being caused. Another reason for requiring subdivision is when

a distorted triangle is found to be pathologically thin for it can be caused by the
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situation illustrated in Figure 10 where the equilateral triangle is distorted to the
nearly flat triangle 1'2'3'", The situation does not occur with the divided region
because the boundary is then near a grid line. Currently I subdivide if any angle is
less than 0.3C %~ 17.2° and I hope to show that such a limit will not cause any

difficulties.

Figure 10: A situation that produces a

pathologically thin triangle BOUNDARY

For data input I require the user to write a subroutine which gives each smooth section
of the boundary in parametric form, and to specify region numbers on both sides of
each boundary. He may also specify a desired local step-size for each point on any
boundary and (separately) for each point of the whole region. An original undistorted
triangulation satisfying the whole region requirement is set up and as each boundary
point is found a check is made on the local step-size. An example of the use of the
“whole region" step-size control is shown in Figure 11 where the function

h(x,y) = 0.2()(2+y2)1/3 was used to allow for a potential singularity at the origin

S
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Figure 12: Distorted grid for the
example of Figure 11

Figure 11: An example of “whole region’’ step size control

caused by an internal interface. The distorted grid for this case is shown in
Figure 12, A triangulation of a simpler region is shown in Figure 13 and the same
region is shown retriangulated in Figure 14 after a refinement in the top left-hand
corner, as might be caused by the poor behaviour of the solution of a differential

equation there, A more complicated regiom with two circular holes and six circular
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Figure 13: A triangulation of a simple
region
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Figure 14: Retriangulation of the region of
Figure 13 after refinement

internal interfaces is shown triangulated in Figures 15 to 17, the three figures

being produced by using successively smaller values for the required mesh size as the

boundaries are traversed.
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SUMMARY

Should Crank-Nicholson noise effects be dealt with as and when they arise or should
they be avoided? This paper looks at both strategies in a series of experiments
with the linear diffusion equation with finite element and finite difference methods

and reaches a tentative conclusion that a simple averaging process is the best.

INTRODUCTION

This paper contains an account of a number of experiments made by Roland Lewis of

Swansea and the author. These were inspired by troublesome noise effects experienced
when using the Crank-Nicholson method in time together with finite element discretisation
in space. We decided to take a simple linear heat conduction problem to which we

knew the exact answer and to conduct experiments to test various ways of dealing

with the noise and to compare the accuracies of these and other time-stepping schemes.

So that standard element subroutines can be used the problem is taken to be that of
heat conduction in a bar 4 units long and 1 unit wide; 1ie made up of four square
elements. The elements used are "serendipity" type (Zienkiewicz 1971): linear,
quadratic and cubic with 4, 8, 12 nodes respectively. The problem becomes
essentially one~dimensional by supposing the bar is insulated along its length as well
as at one end. It is initially at zero temperature and a temperature of unity is

applied at the other end for t > O.

In following sections the exact solution is obtained and compared with the solution
of the space-discretised problem and the solution of the generalised two-level time

difference scleme. The origin of the noise effects is discussed and two possible
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ways of dealing with them are analysed. Two methods which do not produce noise

effects are also analysed; these are the backward difference method and a method

suggested by Richtmyer and Morton (1967) which has the same accuracy as Crank-

Nicholson. Results for the corresponding finite difference method are also included

for comparison. All these methods have been assessed for their average percentage

relative errors and the results are presented in Tables I, II and III.

THE PROBLEM

The problem considered is represented by the non-dimensionalised linear heat

conduction equation

ac kzc
E T S med (1)
X
with ¢ =0 at x = 0, %‘%=o at x=4; t » 0

(2)

and c(x, 0) given, O < x < 4

This represents heat conduction in a bar of length 4 units; c¢ 1is the temperature.

For time t > O the end x =0 of the bar is maintained at unit temperature.

The

other end of the bar is insulated so the steady state solution is unit temperature

for the whole bar.

o.8 at different times

TEMPERATURE

o
W
T

Figure 1: Exact solution. Temperature variation along the bar
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If the bar is initially at temperature ¢ = O the exact solution is

4 - I -
T =D exp{- [iZE—g—lll] =) 51n[£zk—§—111§] 3)

As k 1increases the exponential factor decreases so rapidly that for practical
purposes only the first few terms have any influence. This point is important when
comparisons are made with the approximate solution. To fix ideas the exact solution

is shown in Figure 1.

Suppose the spatial finite element discretisation of equations (1) and (2) gives

the system of ordinary differential equations
NE = -K(c-¢) ()

where c¢ is the vector of unknowns at the nodes at time t and
Ef‘ is the steady state value of ¢,

N is the mass matrix {(¢i, ¢j)} and

K is the stiffness matrix 3(d¢i fii)i

3

dx dx

where {¢i} is the set of basis functions.

: 3l : ; o
Assuming A = N 'K has a complete set of eigenvectors u. with corresponding

eigenvalues u; we can write

£©) = Zou. , ¢ =1lvu, (5)

The solution of the system of equations (4) is then

=Nt
e = Z[Yi + (og = vpde l:lu. (6)

—1
However if equation (4) is replaced by the time-difference scheme

= E[ET T (-] +xe”, E9 =1 %)
it

this is the recurrence relation

n+l

(@ + 6o A = [1- (1 - e)ae A" + At AT (8)

with general solution

u, (C))

=

1 = Melt = B
ey, 4+ (e -y :
< Yi i i’ | T+ atey;
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=
Comparing equations (6) and (9) we see that e is being approximated by

1= BtfLl - @) 2 5
1+ Ateui

The scheme is stable for any value of At if <8 <1

The expression (10) gives values of alternating sign if

s

b T o, (11)

Thus there is no oscillation effect with the backward difference scheme (6 = 1).

The Crank-Nicholson (or trapezoidal rule) scheme with 8 = ! is equivalent to

-us At B
approximating e = by the (1,1) Pade approximation

1 - daey.
e
1 + jatp.

1

This scheme is very popular because it is unconditionally stable and has accuracy

0((at)?). The formula

n

L= S8 (12)

1 + $Aty.

pE
—uit

where nAt = t, gives a very good representation of e for smaller values of uiAt

5 g THi 5 s
but if uiAt becomes large the expression (12) — (-1)n whereas e = - 0. This is
the origin of the Crank-Nicholson noise effect and the reason why the method may be

described as '"'marginally" stable.

There is no oscillation from any mode if

_ 2
b Atcrit " max ui (13)

The greater the number of degrees of freedom the smaller is the. critical value of

At because the g are approximations to the eigenvalues

. 2
(21 = 1) " @
T 64 bl

of the original problem which appear in equation (3).
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The g obtained with the finite element method are overestimates of the corresponding

eigenvalues (14). Hence with n degrees of freedom
2
(2n - 1) = Cl's)
max bi > —64__
il W o DA (el
(2n = 1)

For each of the three types of element used, linear, quadratic and cubic the

matrices N, K have been recovered and their eigenvalues found. The corresponding
values of At . are
(St
linear element 0.187

quadratic element 0.049

cubic element 0.012

As the number of degrees of freedom is increased either by increasing the number of
elements or by increasing the degree of the basis functions, the critical value of
At is decreased. It is clearly out of the question to avoid noise effects by

keeping At below the critical value.

Figures 2 and 3 show typical results from solving equation (8) with zero initial
starting vector (ai =0 for all i), for At = 0.5 and 4.0. The result for

At = 4.0 shows an effect which is also noticeable for At = 8.0, namely a dying away

o8 -r“"*

i Sanal

>*\

TEMPERATURE
o O o o
w 'S w -3
T L] T T
-
0. T
){\

o
~

T
~—
Sl

o & Il 1 1 1 1 2

o 1.0 20 3.0 4.0 50 6.0 70 t

Figure 2: Temperature variation at x = 1.0 for At = 0.5 {Crank-Nicholson)
+ Linear x Quadratic 0 Cubic

- 143 -



MARGINAL STABILITY: THE DIFFUSION EQUATION

O
0
T

Iol( + 7_\ 5 * X x X X

] / ’Q,\Q/"\Q/-'\_/Q/J\"O‘A/é?
[Ne) IQ"‘\:MI\’?(\_'/' o7 \+/ NG, N/ o +o
‘\.z/ X X X

o
~
i

TEMPERATURE

o O

I 1 1 1 1 ! i
o [o] 20 30 40 50 60 t

Figure 3: Temperature variation at x = 1.0 for At = 4.0 (Crank-Nicholson)
+ Linear x Quadratic 0 Cubic

and subsequent increase in the amplitude of the oscillations for the quadratic
and cubic elements. The At = 8.0 case when run for 100 time steps to see how this
develops merely continues with the hunting about the true solution. The factors are

~0.956, -0.988, -0.996 for the linear, quadratic and cubic elements respectively.

1
(o] 10 20 X 30 4.0

Figure 4: Linear element. (Crank-Nicholson) At = 1.0
Variation of temperature along bar at different times
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Figures 4, 5, 6 show the variation of temperature along the bar for the

time steps for the three different elements.

te
(13
wOQ4r ®
tad
3]
03
o2t 12 e ———|
G:1; tel
A 1
] 10 20 X 30 40

Figure 5: Quadratic element. (Crank-Nicholson) At = 1.0
Variation of temperature along bar at different times
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first few

Figure 6: Cubic siement. (Crank-Nicholsen) At = 1.0
Varistion of temperature along ber for t = 1,2
Computed results 0 Exact results x
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METHODS OF DEALING WITH THE NOISE EFFECT

(1) One way of dealing with the noise effect from Crank-Nicholson is to take
the mean of the initial values and the values at the end of one time step

(with Crank-Nicholson) and use these values as new starting values thus
At At At

obtaining solutions at ) 377, 57? atc. The result with this linear
problem is just the same from continually taking the mean of succssive
values.
n n+l
S S iE
If ¥ = — 17

then from equation (8) with 6 = }

(I + jat A)Xn+1 = (I - $at M)V + At Ac” (18)

n e . n .
Hence v satisfies the same recurrence relation as but with

starting value

o 1
(S (]
Vo=— —
= 2
by i Yh :
(Za1 AtulYl)El
2 5= A
an

(from (9) with 6 = })

lience the solution of equation (18) is

O = e litay 5™
v o= JI S ?I":_;ZZE_;E:T (di = Yi) Ei (19)
it

This now has exp[- ui(t + %At)] approximated by

n
(1 - %Atui)

n+l (20)

1
(1 + QACUi)

There is still oscillation if %Atui < 1 but for large Atui the expression
(20) does ~ O so that taking the mean of successive values obtained from

Crank-Nicholson does damp out the noise effect.

Figures 7, 8 illustrate the improvement made by averaging.
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TEMPERATURI

Figure 7: Quadratic element. (Averaged Crank-Nicholson). At = 1.0
Variation of temperature along bar at different times.
Computed results x Exact results ®

TEMPERATURE

Figure 8: Cubic element. (Averaged Crank-Nicholson) At= 1.0
Variation of temgerature along bar at different times.
Computed results @ Exact results »

Another method for dealing with the noise effects is equivalent in the
present problem to raising the temperature at the end x = O by % in each

of m time steps instead of making it jump to unity in one time step.

We write the recurrence relation (8) with 6 = } in the form

ic = Bec + h (21)
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where
¥ = A0 3 LA Vi - lat A)
(22)
ho= (I + ot &) lae ac”
Then the mstep method takes
§k=3§k-1+-§h, L <k < m (23)
Putgk='§k-~£k_1, LeRam
then w = B! + %h, 2l i
The matrices A and B have a common basis of eigenvectors
and the eigenvalues of B are
2= Atui
Ai =2+ oty )
i
With'E? =0 and h = ZBiEi we have
] B
w =32y,
= m —i
i
and w* = 81t 2 - y7ha 8 n (25)

Hence
8.
~k  ~k-1 i K
&5 TR AL
~kel _~ke2 o (i
£ & ) LT
1
~1 ~o Bi
£ T Igmeap e

- 148 -



WINIFRED L WOOD

Hence addition gives

K
ol ol B e *i)] .
- PESEI " S - g
[ %0-3D
=0 wIE" o= ! (26)

since Bi = (1 - )\i)yi

Hence at the end of the m steps we take

. O + xf ¥ i A?)
o EE =i A 1) = = Ei (27)
instead of
ie Ai is replaced by
2 m
)i + Ai O Xi (28)

The usual Crank-Nicholson method then starts with the new value of
1 ~m

Gl = e This gives
Sor= 8
o= ry, + (8 - v, A u
=S o i 1 - J=)
(29)
A =D
here 6. = v.|1 - - - 2
v i i m(l - Ai)
If m is even and Ai = -1 then, from equation (28), the corresponding

component vector will be almost eliminated. With the linear, quadratic
and cubic elements and At = 2.0 the highest frequencies correspond to values
of Ai approximately -0.83, -0.95, -0.98 respectively. They are of course

nearer to -1 with higher values of At.
Results are presented with three ways of using the m-step start:

(a) as above, finishing at t = At

(b) starting at t = At, This gives better accuracy.
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With this method we take

fo) 1=

and proceed with Crank-Nicholson from there

. A.+x2.+...+x’i"
. ] il ;
le Ai is replaced by = 5
(c) starting at E%— steps back
m+1
~T
ie ¢? =7

This is a kind of average of (a) and (b)

of the step methods.

Figure 9 illustrates (a) and (b) for m

TEMPERATURE
o o
w o

o]
S

and gives the best accuracy

1]
N
M
>
r
]

1 1 ] 1 1 1 t 1 1 LS|
(o) 2 4 6 8 o 12 14 16 18 20t 22
Figure 9: Quadratic element 2 step start

(a) @

(3) Richtmyer and Morton (1967)

(b) A Exact solution -

recommend a scheme (p 190) of the same order

of accuracy as Crank-Nicholson and designed to damp out high frequencv
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oscillation. The equivalent with the finite element discretisation is

j & g 5 R (30)

2} n+1 n 1 N (D n-1
- - —— N(¢" - ¢
Sac DL B = gay T L
Results have been obtained from this, using an averaged Crank-Nicholson
1
value for the ¢ necessary at the start. Also, for comparison, some

results have been obtained using a zero-zero start.

The amplification factor Ei corresponding to the eigenvalue by is given
by
2
(@326 2Atpi)£i Agi +1=0 (31)

; 2 =6 ’
Put uiAt =t e Then if « < }, one root approximates e , the other is

the spurious root

2= vl = 2a = 2
3 + 2a 3
Whe > } the root f (31) 1 d of dul L
na oots o are complex and of modulus p = ——=—=
V3 + 2a
J

which -0 for large a.

COMPARISON WITH THE FINITE DIFFERENCE METHOD

For comparison results are also obtained using the standard finite difference method
for discretising in space. This corresponds to using a linear element with a lumped
mass matrix. If all the terms of the mass matrix are positive (as they are with the
linear element) then lumping by making the diagonal terms equal to the row sums cannot
decrease the eigenvalues. The spectral radius, in particular, must be increased
(because, with an irreducible matrix it could not previously have been a boundary

point of the union of the Gerschgorin circles).

If we assume the matrices N, K have a common set of eigenvectors (as is true with
the simple problem currently being studied) with corresponding eigenvalues By Mg

respectively, it is evident that

U

iR . 5B (32)
(ch e UK ¥

is increased by lumping.
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The matrix A now has the general form

— =

with n mesh points (using a fictitious node to bring in the right hand boundary

condition).

~ i 2 -
The eigenvalues of A are 4 sin [(2 Anl)n] s PV E Vs mrasey D

llence the spectral radius p(Z) =4 sinz[izﬂ—%;lll] < 4 and

Berig 7 003 (33)
Finite difference results are included in the Tables for comparison for At = 0.25,
0.5 and 2.0. Only the At = 2.0 results were averaged as the others are below

At The errors for At = 2.0 are alternately positive and negative as expected.

crit’

SUMMARY OF RESULTS

Tables I, II and III present the comparison of results from the above methods based
on average percentage relative error. They are all compared on the solutions given
up to a time of about 10 units except one result in Table I which shows how the
average improves with more time steps. It is noticeable also how in some cases

the average is improved when the first result is omitted.

The conclusion seems to be that the method of averaging with Crank-Nicholson and
omitting the first result is a simple and reasonably effective way of dealing with
the noise. The results with this are better than with more elaborate methods.
The quadratic and cubic elements give a better performance than the linear element
especially with the smaller time steps. The finite difference method shows up

extremely well.
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AVERAGE PERCENTAGE RELATIVE ERROR TABLES

Tablel: x = 1.0, At = 2.0
{values in brackets omit the first result)

Linear Quadratic Cubic slt\:z(;s
Backward difference 2.88 8§79 37 12
Crank-Nicholson 13.08 9.08 6.72 5
Crank-Nicholson 6.02 (3.23) 8.29 (7.32) 4.27 (2.70) 12 (11)
Averaged C-N 2.00(1.17) 2.85(1.13) 2.62 (1.05) 13(12)
2-step start  (a} 3.77 3.49 3.48 10
(b) 1.30 1.58 1.49 10
(c) 1.38 138 1.22 10
3-step start  (a) 4.90 5.12 4.47 10
(b) 2.94 4.14 Sr39 10
(c) 1.59 2.26 =17 10
Sl Ty 27 (1.0) 13012
Averaged F.D. C-N 2.26 (0.77) 13(12)
2
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Tablell: x = 1.0, At = 0.5
{values in brackets omit the first result)

Linear Quadratic Cubic No.
steps
Backward difference 0.71 3.45 3.1 20
Crank-Nicholson 3.14 410 3.38 20
Averaged C-N 3.59 (1.84) 1.29 (0.36) 0.71 (0.41) 20 (19)
Finite difference
with C-N 0.54 (0.14) 20 (19)
Table IN: x = 1.0, At = 0.25
Linear Quadratic Cubic No.
steps
Backward difference 2.98 3.76 2.78 20
Crank-Nicholson 3.89 1.92 1.56 40
Averaged C-N 7.32 (2.49) 0.35(0.31}) 1.87 (0.36) 41 (40)
Finite difference
with C-N 0.90 {0.19) 40 (39}
Richtmyer-Morton
averaged C-N start e %20 -
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INTRODUCTION

Slowly decaying noise is a hazard all too familiar to those researchers who must
integrate large problems in time. It is not enough that a numerical scheme be ''stahle"
in the strict mathematical sense: if a problem is nearly unstable, and nonlinear,
roundoff alone can eventually drive it mad. Thus the problem we are discussing is
neither trivial nor academic. Indeed, according to the researches of J Tinsley Oden,
the behaviour of the noise means success or failure in, for example, a nonlinear problem

that encounters shock waves.

Desperate problems engender desperate measures. It is our intention here to initiate
research into algorithms which modify or '"doctor" the given forcing function F, very
slightly, to avoid at source those features which generate the noise. The changes are
not always such as to make the function "smoother" in any ordinary sense. The sub-

routine that makes the adjustments is appropriately called DOCTOR,

Before proceeding further, we must define the sort of noise we are concerned with. We
see it frequently, as a perturbation (on an otherwise fairly accurate solution) which
almost exactly changes sign in successive timesteps. In particular, the Crank-
Nicholson scheme generates zigzag noise. It was this observation that led certain
early workers, notably Chandra Parekh and Ken Fullard, to invent a simple technique -
now widely used - which virtually eliminates the most persistent noise of the type we

are considering. They took the response vectors g in successive timesteps, and

averaged them. With this vector, Oy = (qi + qi+1) they then re-started at
2
time t. ;-
i+
We seek here to combine the two techniques. Accordingly, we shall describe another

subroutine HUSH, which decides when to re-start, and when the doctoring technique can
cope alone.
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GENERAL OBSERVATIONS

It was a remark of Argyris that prompted the present work. He observed that a step

in the forecing function introduced as in Figure 1(a) generated considerable noise;
whereas Figure 1(b) did not. (He was not using Qrank-Nicholson.) According to our
view, this was because he had two steps instead of one, The first alone produces a
zigzagging after-effect, but the second produces the opposite after-effect, which cancels

15t

Figures 1(c) to (i) were pure conjecture, but at the time it was a useful exercise to
discover how a step reinforces or cancels a later step, depending (a) on whether it is
of opposite sign, and (b) whether it occurs an odd or an even number of timesteps later:
this we shall see is crucial. In the general case, what determines the residual noise

is (sum of jumps at odd timesteps) minus (sum of jumps at even timesteps).

r—— o oe— 0 - oo /—0—-0*
.

/'/ 4

[ ]
O @ @ G @@ .—.—/

(a) BAD (by 600D (c)EVEN BETTER A
/ .
./ / ./
e . /

.—'.'—./. ._.—./ = .—.—/.
(d) BAD AGAIN (e) BAD (f) BETTER
[ ) *—9 ®
.—-0/ \ [ T .—0/ \ B .——-./ \. o
O/ 0——./ \./
(g) BAD (h) 6000 (1) 600D

Figure 1: Showing good and bad representations of forcing functions

We can express this idea in finite difference form, writing the noise at step i caused

by the doctored forcing function G:
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If the decay ratio R is not exactly - 1, as assumed here,

(noise)i = AGi_l + RAGi_2 + R ACi_3..
= [c1 Gy Gy eun ci] T v BF b= i e R2, P By B= A 3
= GTsi (say)
This is a rather poor first approximation to the vector S To get a second approxi=-

mation we shall compute a transient response according to the Crank-Nicholson scheme,

This part of the work should be generally useful.

NOISE ANALYSIS IN THE CRANK-NICHOLSON PROCESS

We shall take as our trial equation q = a(G - q), so that q tends to follow G after

some lapse of time. The recurrence formula according to Crank-Nicholson is, with

unit steplength:

g g = U0 & Gy =y = ailg)
We assume
el Go 0, and G1 = G2 =" 15 [glving
qf =5 3 = G e B & a3 IrRY)
where
R = (1 - {a)/(1 + ja) = decay ratio
q; converggs to 1, but in a zigzag fashion if « is large. We shall compare this with
the "correct" answer, and we shall regard the error as ncise. Taking the view that G

represents a step function from O to 1, at t = s

A 1 = e~a(t-£) for T .3 4
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Alternatively, we may take the more generous view that the data implies a continuous
function, a ramp that goes linearly from G0 =0 to G1 = 1, and that takes a constant

value, zero or one, elsewhere. The exact solution becomes

R E = a-l(l-e—at) for 0 « i 1

e
]

1 - oz_l(em—l)e—mt flom (&7 23 1,

Nal
]

We now tabulate the consequences of these two views.

R o Method Values at steps
=55 78 Step O'%; 1.0000, 1,0000, SO0
Ramp Oless +9/87:2; 1.0000, Sers
Crank-Nicholson Ok SIS% 1:02:37, .9774, 1.0214
00 38 Step 0., 1.000, 1.0000, S
Ramp Ok =373V, 1.0000, orais
Crank-Nicholson 0., S9157 1.045, .9595, 1.0364
=8 18 Step 0., .9999, 1,0000, 1.0000, SNe
Ramp OFss . 9444, 1.0000, 1.0000, e
Crank~Nicholson Ofs a9k 1.08, .936, 130515
= 6 Step Ufers «+9502;; .9999, 1.0000, S
Ramp Qlsiy S8R .9996, 1,0000, e
Crank-Nicholson (059 /58 Hsigli250; 4937755, 1. 0312
Step Ol .6321, 19502 31991324 .9991
0 2 Ramp 0k, SO0k 914 155, 397205 .9989
Crank-Nicholson Ol b 1.0, 1540, 10

A REFINEMENT TO DEAL WITH RAMP FUNCTIONS

The table shows two analytic comparisons with Crank-Nicholson, Both are interesting,
but practical considerations predispose us irresistably towards the second interpretation,
We frequently meet examples in which G climbs, fairly steadily, over the whole time
range. We should expect the initial noise to decay to zero, yet according to equation

(1) it will not, We remark that a ramp function G = kt over 200 timesteps is identical
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to the sum of 200 short ramps, each extending over a single timestep:

B M IRONS

the implication is

that if we synthesize the response from ramps we shall cover this important case.

To this end we shall modify ;s following the clue that the error in the first time-

step in the table is only half what we should expect, and at the end of the unit ramp

we find only half of the zigzag value, on the evidence from later timesteps:

(a) We seek a formula which gives evanescent noise in an extended ramp.

(b) The noise must decay after a single step also.

A formula which satisfies these requirements, and which is easily computed, is

4 3 3 2

(noise)i = [... REE=S) RES IRFHe= RS, R2 =3 RY, RS = [, 14 ]{G}

where

A PRACTICAL OVERALL MEASURE OF NOISE

It is now an easy matter to state our intentions in general terms.

minimise the sum of (noise)? over all the timesteps:
i

o 2 iR T s i
= +
(noise) G slsIG + G $,8 2G

= GTSG say

(1)

We shall aim to

(2)

(We note in passing that S is positive definite, but not very well-behaved.) This

minimization is subject to the doctoring terms d being reasonably small, again in a

least-squares sense:

di N dg + dg B oass ool e (05 et

where F = undoctored forcing function.

= BB}y 2

(3)



SLOWLY DECAYING NOISE

Now that the problem is defined, we hope it will be possible to do even better than

the "good" examples of Figure 1 and, furthermore, to deal with general input data,

Computational technique: Subroutine DOCTOR will compute SP many times. We are

fortunate that [S] - a large matrix - need never be stored. Instead, it computes SP
thus:
3G St
Sp = (slP)s1 + (szP)s2 S 4)
We use a single vector for the s; and update it as required. This 1s more difficult,

but it takes a little less computing time, as coded in DOCTOR, than the matrix version,

Note: Any approach based on S admits that the direction of marching is significant.

Noise is the residue of history, and there is a difference between past and future,

STRATEGIES FOR OPTIMISING THE NOISE REDUCTION

Let us now examine critically three strategies which we could adopt to minimise the

noise:

(1) We could fix the amount of doctoring, de, and seek the greatest noise

reduction,

(2) Perhaps we may find the amount of doctoring more than adequate; we could

aim instead for some acceptable noise level with minimum de.
(3) The last strategy, actually used in DOCTOR, emerges from the algebra of
versions 1 and 2 above. Suppose we minimise GTSG, subject to the constraint
de = 6 = constant, imposed by the Lagrange multiplier X:
s T g
G'SG + A(d'd - &) .= stationarv (5)
or, substituting d = G-F and differentiating:

SG = =X (G-F) = - 2d (5)

d'd = 6 (7
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But here strategy (3) is different: we pre-assign to A some value which gives reasonable

smoothing, and we let & take what value it will, Thus, fixing p = A 7, we merely

solve the equations for G:

[T+05)c=rF (8)

This philosophy gives a simple robust program, Let us enquire how it affects the user,

CONSEQUENCES OF THE STRATEGY CHOSEN

(a) We can demonstrate that provided X > 0 in (6), then GTSG is a global
minimum for de = constant.

For, perturbating d to d + ¢,
Al 2 o e e i
9T 30
& die = = dee 9)

Hence CTSG becomes (G + e)T S (G + &)

GTSG it 2 sTSG + eTSc

1]

But from (6) we have SG = - X\d, giving

(e 5 @ SUE & o =050 = Pidie & i

GTSG + AcTe & eTSs

> GTSG (10)

for any nonzero e because S is positive definite. Thus whatever positive

value we give to X, we have a global optimum, in this special sense,

Conversely we can show, by a similar argument, that de is a global minimum

for GTSG = constant,

(b) This result will not convince a sceptic of the wisdom of choosing p rather
than a level of doctoring or of noise reduction. It is therefore reassuring
to discover that p is related monotonically and continuously to both of

these. Let us introduce the eigenvectors and eigenvalues of S:
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where v? v. =1
e S

F = Tcav.
> o
Then Y Ci 2
= —l 11
G~SG z)‘i(l-fp)\.) (11)
b
and
c.px. 2
T, - e (12)
S = (g

. : 2 : T 3
Clearly with increasing p, the noise G SG decreases continuously from
. ; s - .
FTSF to zero. Meanwhile, the doctoring d d increases continuously from
zero to FTF. There is a (1,1,1) correspondence relating p, de and GTSG.

All the relations are monotonic and continuous within the allowed ranges.

(c) Writing:

B = BC, Vis
1
¢4
G = “u—pg)%

We observe that if Xi is very small, % carries over from F into G almost
unchanged in amplitude. On the other hand, if Xi is large, ie vy is a
zigzag function, it is greatly reduced in amplitude. The amount of
doctoring dfdi will evidently depend on the data submitted. If there is
a consistent zigzag error pattern, it will be virtually obliterated, at the
cost of a good deal of doctoring. If there is a single sharp jump, we
may expect compensatory zigzags before and after. But if the noise is
random, ie there is no consistent zigzag pattern, we should aim for
moderate doctoring, and moderate noise reduction. This will dictate our
choice of p.

Note: Hand calculations lead us to expect [S] to have a conditioning

number Xmax/ A = NS, for R = -1. For the sum of the roots is

(ZN2 - 34N + 1£;lt the largest root being of the same order - and

the product of the roots is only Z-N. Evidently [S] could be a brutal

tool with N in the hundreds. But we observe that [I + oS] has a condition-
ing number of order 20N2 which we can handle confidently in solving the

equations.
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Since it is easy and economical to multiply by [S] , we use conjugate gradients
to compute [I + pS] _1F. It is a bad technique for solving finite element

equations, But we believe this is because the initial direction is too wildly

different from the final answer. In the present case the zigzag responses

emerge very quickly and it is a good algorithm.

AN ANALYSIS OF THE AVERAGING PROCEDURE
Before discussing HUSH, we must define exactly what happens to the noise amplitude when

we average; we seek some formula:

(n015e)i+% = A(n01se)i #: B(n01se)i+1

To this end, we supplement the table, and this helps us to deduce B. From

qi = q; w e/ + 3ad] ~ [} = o S = e—id)]

1
= a(za+l)

a$ - af = [/ + 3] —[1- a7 - e™)]

O ol 1
" a(la+l)

Because qz = qz = 0, this gives B. To get A we invoke the case of a decay during

the dwell after a single step:

(noise) = R, (noise)i+% = J(1+R)

(noise)i =1, o)

The formula for the residue of noise after averaging thus has A = O:

N i i
(zero) o(no1se)i = Tol (no].se)].ﬁ1

(noise)i+%

o B ot
BT U TS (13)
1-R

on substituting ia = TR
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Value at first

halfstep from

; .4875 <475 <45 «375 +25
averaging Crank-
Nicholson
Exact value for ramp 4872 Sl 37 L4445 .3416 .1839

We now enquire how to introduce this initial noise into the next segment to be smoothed,

Let us write the noise vector thus:

{noise amplitude} = (q & C1
RUE
q q G2
2
RE“ = Ry R. == G
q q 3
3 2 2
_R R R R Ri= g q | C4
Because this implies that Go =0, if we put G1 = c2 = c3 = c4 = 1, the noise amplitudes
are q, R, Rz. R3. Apart from the first, it is exactly as if unit noise amplitude had
existed at time tl. Therefore, we contrive to add (noise)% to all the values of F to

be smoothed, and, finally, we subtract it from the G values.

THE MIXED STRATEGY — SUBROUTINE “HUSH"

In a large marching problem, DOCTOR will account for only a small part of the computing
cost. Therefore we advocate the mixed approach of subroutine HUSH which, before the
marching starts, both doctors the forcing functions and decides at which timesteps we
should apply the averaging technique to eliminate accumulated noise. The organisation

of HUSH is roughly as follows:
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@) We doctor F for steps 1 to N the full range.

Z,
(62%) We compute the noise amplitudes, s?G, and we observe that the noise first
it

becomes intolerable at step NSTOP'

W F in £ = = "
(3) e doctor again for steps NA 1 to NZ NSTOP
(4) We record in G our intention to suppress the noise at NB and to re-start
2 |
at timestep NSTOP 3
() We doctor F again for steps N, = N -4 toN

A STOP

Therefore the first task in subroutine HUSH is to find the interpclated values of F at
the half timesteps. We use cubic interpolation, except in the end intervals, where

we use linear interpolation. (These are usually unimportant.)

In order to satisfy the requirements of HUSH, subroutine DOCTOR must do slightly more,
It is not enough to assume a zero starting value: we must include the effect of the

value at which we averaged, and also the residual noise.

A vexed question now arises - if the noise becomes intolerable at N should we

STOP’

smooth up to and including N p» °r should we go back one timestep? In an extreme

STO
case where intense noise suddenly strikes, we shall probably have to inch forward
over the crisis, in a series of averaged half-steps. Our view is that the
undoctored values should be used here. Accordingly, HUSH regards a noise amplitude

of DINLIM * VFF as merely objectionable, and smooths as far as N However, if

STOP*®
the noise amplitude reaches the higher level of DINBAD * YFF it smooths only as far

as NSTOP = W5

PRELIMINARY EXPERIMENTS

The random forcing function F was generated automatically. A vector VR of numbers
randomly distributed between -} and } was created. Then F was smoothed from these:
2
® =A%
Fi =, Vi+je J
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The problem chosen was a spring of uniform section, with uniformly distributed viscous

drag. There were 40 elements, of lengths 1.051_1. The longest element was earthed,

and the force was applied at the opposite end. This problem should give a broad band

of eigenvalues, yet it is not too expensive to compute.

It was run in three forms:

(a) with the original F,

(b) with the doctored F.

(c) with F interpolated to quarter-intervals.

The results of these experiments, so far, 1s somewhat inconclusive. The noise can
certainly be reduced, but the doctoring inevitably alters the values produced. As far
as accuracy is concerned, as measured by comparing (a) - (c) with (b) - (c), there is

no improvement, the doctoring introduces errors in the response of the same order as the

noise removed!

CONCLUSIONS

In seeking a technique for doctoring the input forcing function, so as to reduce the
noise, a simple and adequate representation of the noise generation in the Crank-
Nicholson process has been evolved. In particular, it was found necessary to consider

a ramp rather than a step function. Other workers are recommended to do likewise.

However, the results so far from the doctored forcing function are disappointing.
Perhaps there will be more profitable applications. Or perhaps variants will give a

better performance.

In any case equations (1) and (13), which give the noise with and without averaging,
should be useful as a tool of analysis even if further attempts at synthesis should

fail.
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ADDENDUM
A FOURTH STRATEGY FOR OPTIMISING THE NOISE REDUCTION

In addition to the techniques outlined in the section entitled "Strategies for
Optimising the Noise Reduction' there is another radically different approach which

leads to a much simpler algorithm. The philosophy is as follows:

(1) We decide on a value of aiAt, and hence of R = (1-}a)/(1+ia) at which we
want the greatest suppression of noise. Presumably the o chosen would

be near the highest eigenvalue, as estimated from the smallest element.

(2) We consider, as the exact solution, the analytic solution based on the

values of the original forcing function F, connected by straight lines.

(3) We define G as the values which would give exactly these analytic values,

via the Crank-Nicholson process, assuming the chosen decay ratio R.

This is potentially an exact method, but for simplicity we shall ignore the
exponential terms as in deriving equation (1). The following formulae are very

accurate. Indeed with aAt = 18, R = ~0,8, they are accurate to four decimals.

qi = Crank-Nicholson value based on G
_ TR
=gy SO b By
* . .
O analytic value based on unit ramps
=38R 1+R
ol i T E e !
. x _ . - .
Putting a; q; 9;_q Doty 2o find
- R(1-3R R(1+R
IR ¢ 46 ) ( ) + R(1+R)

Yo e TR g

1-3R 1+R
2 e !

~ 2 2
Gy = =G, + _l_EEE F, o+ 1125_2 Fig 1 = _EEELE.F,_Z
(1-R) (1-R) CAz=Rf= =
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To apply this very simple recurrence relation we must assume that F_1 = FO = Go.
For example, with R = -0.8 we have the following step function:

F =0 0 i il il 1

G = 0 0 1,0493 0.9012 1.0988 0.9012 etc.

This is a remarkable result, in that G is now zigzagging with constant amplitude.

Yet before the jump there is no zigzag.

We have not yet tried this promising variant. If it is successful, it will be
necessary to re-formulate the averaging process, so as to detect the noise buildup

at another, presumably lower, value of o, and then to discover how to re-start

the process.
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SUMMARY

The patch test is presented in a form accessible to engineers, emphasizing its useful-
ness as a debugging tool, and as a practical guide in element research. The appli-
cations are straightforward. A final section enquires into the implications of the
patch test, In particular we show that it is not possible with a given nodal confi-
guration to beat the patch performance of an element which conforms according to the

classical criteria.

INTENTIONS

Irons and Razzaque (1972) gave a historical introduction to the patch test for conver-
gence, emphasizing its usefulness to engineers, It seems to have failed. Admittedly
people now talk knowledgeably about the test: but few workers would automatically seek
its advice whenever a new set of interpolating functions or a new technique for inte-
gration came into use. In my opinion it should be regarded as unprofessional to
publish any such development without giving the patch test performance. I hope in this
paper to persuade others, beyond the handful of students I have supervised, to use it

routinely as a debugging aid and research guide, and to record the results for posterity.

What then is the patch test? Often it has been merely a computer run, using a per-
fectly standard program, on a compact assemblage of perhaps six elements, We give

the external nodes of this patch the.displacements, slopes etc corresponding to some
state of constant stress, For example, if the plate bending elements of Figure 1

are to be subjected to a quadratic patch test, we put say w = x2 + 3xy, giving

3w/dx = 2x + 3y and 3w/3y = 3x and hence also the prescribed slopes at certain boundary

nodes. The nodes inside the patch are unloaded. The final answers from the computer
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will include twenty or more stresses, and if we are lucky they are all equal to the

values we

EXTERNAL NODES

intended: 1if not, then we must discover what has gone wrong.

—

Figure 1: These patches in 2 dimen-
sions have actually been
used.

INTERNAL NODES

So anybody can do a classical patch test. Moreover, it performs several important

roles in engineering:

(1)

(2)

(3)

With certain provisos, it establishes fine-mesh convergence,

Note: Engineers are seldom if ever interested in high accuracy.

In assessing a new element we should let the patch test take care of the fine-
mesh performance, and concentrate our attentions on those meshes which give
the permitted errors (about + 57 in most applications), and also on even
coarser meshes to see how sensitive the element is in this critical region,

A good element is foolproof in every sense.

It provides one more criterion for accepting or discarding a new element.

Note: Of course, there should be no question of rejecting an element because
it is non-conforming, provided it passes the patch test and therefore converges,
But there are elements which have been heavily sold, eg our nonconforming
triangle (Bazeley et al 1965), and those Ahmad layered shells and plates

(Ahmad 1969) which fail the test for quadrilateral geometry. They should
perhaps be discarded, as a matter of principle; we now have many elements

to choose from, for virtually every job.

(In practice the patch test has usuallv acted as nurse rather than as
executioner. The one simple, permissive criterion has encouraged me more
often to modify a formulation than to abandon it. And, being simple, it
does not distract one's attention away from all the other important criteria -

ease of implementation, ruggedness etc.)

To some extent, it helps us to debug our programs.

Note: Debugging tends to be a progressive affair for most of us.
Initially we might work on a single element, until it will accept an
arbitrary constant strain, given the appropriate nodal values, The second
stage might be to check that a patch of elements is in equllibrium - this

test sometimes gives a more revealing diagnosis than actually solving the
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equations. Again, let us remind ourselves that the patch test (like any
other) can fail spuriously owing to an error in the data! This is why I
suggest that the correct values and slopes should at some stage be pres-
cribed at all the nodes. The printout should then give the correct stresses,
even for most of the elements known to fail the patch test. Elements that
pass, however, will give zero reactions at the internal nodes of the patch.

If this approach gives correct stresses and nonzero reactions, the evidence

is very decisive. For what can then be wrong? — only such details as faulty
node numbering and nonuniform material properties, details which are rela-

tively easy to check.

(Of course there is a missing ingredient. This technique overlooks the pos-—

sibility of a singular assembled matrix. The third test, then, might be to

fix just enough deflections to prevent rigid body motions, and to apply to the
patch boundaries the forces already calculated in the second stage. 1f there
is a danger that the element might give a singular assembled matrix, this pro-
cedure will encourage it to misbehave under the controlled research conditions
of the patch test rather than later in a commercial job. But should we

regard this as an appropriate task for the patch test? - a rhetorical question,
maybe, but the subject of mechanisms, and especially of those that can propagate
and infect the whole problem, is more difficult in practice than that of con-

vergence, and is at least as deserving of separate research effort,)

(4) Even more important, it helps us to debug our thoughts,
Note: I should hate to admit how often my predictions have been wrong, and
therefore how much the computer has taught me. A patch test is an experiment,
whose results often acquire a much greater significance if they contribute
towards some general theory or working hypothesis. It pays to think and to
do experiments. The frenzied thought which follows an unexpected result is
especially productive and we learn far more when some fancied element fails

the patch test.

0f course, to do any good in patch testing we must be decisive about what we do, clear
about why we are doing it, and explicit in our reporting of the results. For example,
in the isoparametric elements a lower integration rule will often suffice if the patch
contains no curved edges. For me, a 3-element test in two dimensions as in Figure 1
sometimes carries sufficient conviction; I never remember going above 9 elements and
that was when the patch boundary was square. The geometry must be arbitrary, with no
pattern at all, and the stress must usually be arbitrary. For we shall conclude from
this one test, or a second for the nervous operator, that any combination of elements

will give patch equilibrium,
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This conclusion carries less risk than might be supposed. For one geometry that
passes the patch test fortuitously, we expect to find an infinity that do not. (We

have the opposite problem in detecting a propagating mechanism,)

Evidently the test is useful, and easy to do. Perhaps it 1s not always very easy to
think about, so we shall adopt here an "educational" rather than an "academic'" tone.
However I cannot resist the temptation to include a section at the end about an inter-

esting new area revealed by the patch test,

INTRODUCING THE PATCH TEST

In teaching any new concept, one seeks to strike a balance between, on the one hand,
presenting some application which is so trivial that it hardly registers, and, on the
other hand, presenting an application so obscure that a class will lose the principle
in the details, For example, in teaching isoparametric elements the best choice
seems to be Ian Taig's bilinear quadrilateral of 1957, not because it was the first,
but - more important — because it avoids both triviality and obscurity. Good

teaching is not always good history.

I have only recently recognised a uniquely entertaining introduction to the patch test,
Without some variational crime, the test will seem trivial, and to a beginner non-—
conformity will seem the most audacious crime yet perpetrated. A continuous beam in
bending is wilfully treated as discontinuous in the example chosen: as we shall show
him, the crime goes unpunished, At least he will make a mental note of our defence

counsel,

A shape function for this extraordinary beam is illustrated in Figure 2, The numbers
1, 2... represent the nodes, while A, B.., are midway between these nodes. The slopes

are not represented as nodal variables, Instead, we have w W, ... as unknowns, the

07 =7,
deflections at the nodes.

EA :B !C :D
[} | ] [}
! ! ! ! Figure 2: Showing the response to unit
' I,}/’TTTK: ! deflection w at node 3
) L7 e \\\J‘~\\ )
i - !_/iyl | D~ _,]
l 2 3 4 5
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The construction of Figure 2 is to draw parabolas through the values at 1, 2, 3, at 2,
8l G andi a8y Yy Bk But each parabola extends only over half the range: that
through 2, 3 and 4 extends only from B to C. The deflections are therefore zero left
of A and right of D. Furthermore, it follows that at C, for example, there is a dis-
continuity of deflection, but the slope is continuous. For the slope at C, the mid-
point of segment 34, is the mean slope (w4 = w3)/(x4 = x3) for both parabolas. We
have the curious phenomenon of continuous first derivatives with discontinuous values -

0]
as if we had C(]) without C( ).

This completes the geometric arguments, and we now appeal to structural theory. We

postulate, for the patch test, that the points Wi W all lie on some

g +t¥gs Ygs Yig
parabola, as in Figure 3. (This is not altogether magic. We could achieve such a

Figure 3: An assemblage of beam elements of Figure 2

state by fixing Wi Wos g and Yo crudely, this is like fixing the values and the
slopes at the two ends.) If we now let nodes 3...8 go unloaded, so that they can
choose their preferred w, on the basis of minimum strain energy, we have a recognizable

patch test.

We now argue that nodes 3...8 will prefer their positions on the given parabola of
Figure 3, rather than seek some perturbated positions, involving the discontinuities of
Figure 2, In other words, in the context of this patch test we do not have conformity
in the usual, obligatory sense, but we do have continuity because the model prefers not
to misbehave, To reach this conclusion, we consider what happens if we give, say,

node 3 a virtual deflection, thus perturbating the smooth parabola of Figure 3 by a

function scaled from that of Figure 2. If this perturbation causes nonzero virtual
work, then node 3 is not in equilibrium, But the virtual work is zero. For the
bending moment M is constant in Figure 3. The work caused by a virtual deflection §
is
Xq1
fM(dz—g)dx =M [g_cs] “ = 0
d i G

integrated over all the elements; this is zero because d§/dx is continuous, and because

both end pairs of nodes are fixed. (Of course, it is possible to integrate this in the
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ordinary way, with considerable effort, but we do not recommend it: the more direct

technique is too useful in the sequel.)

What is more, when we try to reproduce this on the computer, it works, just as predicted,
It is safe practice always to check one's conclusions in this way. The error rate of
computed patch tests has been considerably less than the error-rate of my own thought

processes.,

Note: Those who already know these particular finite difference assumptions may well
be astonished: the appeal of finite elements to the imagination is strong, so that

physical absurdities are emphasized.

IMPLICATIONS OF THE PATCH TEST

The patch test is merely the translation into finite element terminology of the test

for consistency in finite differences. We have been trying to solve the beam

a 4 4 S : ; 2
equation, d w/dx = q(x), whose variational formulation in terms of strain energy
; ; . : 2 ' .
involves w and 1ts derivatives up to dzw/dx » the curvature. The case to watch is

d?w/dx? = constant, giving uniform bending stresses.
s 8 g

According to the classical approach;

2 et
(1) The element must be able to reproduce any chosen case, w = a + bx + cx , giving

dzw/dx2= constant.

(2) The shape functions must guarantee continuity of w and dw/dx between elements,

regardless of the nodal values.

According to the patch test, we have convergence only if a group, or "patch", of
elements do not misbehave when we attempt to reproduce w = a + bx + cx by prescribing

the nodal values at the boundaries of the patch,

One's first reaction might well be that the patch test is a less permissive criterion

than the classical requirements, because we can choose arbitrarily the geometry of every

element in the patch, to some extent. Thanks to the discontinuous beam, we can see
already that it is more permissive. Indeed, I have had to use it at various times

to justify the following crimes:
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(1) Elements without the continuity of the classical requirements. (These have
always been common, but not all have converged.)

(2) Elements in which the energy is approximately integrated. (This is the most
important case.)

(3) Elements whose shape functions are rational functions with singularities.
(They might have a little historical interest: they are relatively poor
performers.)

(4) Elements with no clear physical basis at the time of their discovery (Irons
and Razzague 1972; Irons and Razzaque 1962). Exploration is often motivated
by fake reasoning.

(5) Bending elements in which the Kirchhoff assumption that normals remain
normal is imposed discretely, eg, at certain points in the element
(Stricklin et al 1969). (These are usually good performers.)

A worker might, at this moment, be planning an even more wicked crime. Again, the

patch test defence will be that if he refines his mesh sufficiently then the patches,

as well as the elements, will be small. Assuming that his answers are good, the

variation of stress over any patch will be small. Therefore he has applied a test

very similar to what will actually be required of the element, in some real job, but

with fine mesh,

Yes, very similar conditions - but not identical. I am always frightened that a patch

of elements will be abnormally sensitive to some particular perturbation from constant

stress conditions. Alas, this really happens, and it can be calamitous. A pertur-

bation which carries very little strain energy is called a "near-mechanism': one which

. . . " 0 . .
carries no straln ener at all, a "mechanism . According to the computation, 1t
8y ’ P )

resembles a rigid body motion, as if the structure were unsupported, or were supported

on a flexible spring. The phenomenon has several ways of making a nuisance of itself:

(a)

(v)

The answers are large random numbers, of order 1ON—2 too large if the

computer gives N-decimal accuracy.
The answers are random numbers, a little larger than expected in general

magnitude. We see this if the combination of forces that excites the

mechanism happens to be zero.
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(c) The pilot examples are successful, and perhaps so are the first few
commercial jobs. Then a large, expensive, and important commercial job

fails with the symptoms of (b) above. We have a near—-mechanism,

These phenomena are examples of instability, in which a spurious perturbation or
parasitic response takes control, The problem normally arises only if each element
has too many zero-energy modes, ie more than the rigid body modes. It is possible,

if unlikely, that an assemblage of elements can find a way of combining their mechanisms
without contradiction. Occasionally, we find a collective mechanism where the

individual elements have none.

In general, we can teach our students to estimate roughly the side-effects in a solu-
tion by considering a ''matched solution'" corresponding to some chosen exact solution:
here we substitute the exact nodal values into the finite element model. The
matched solution gives a very good bound on the potential energy for a conforming
model. But if instabilities are present, then a crazy set of nodal deflections can
give slightly lower potential energy, so the exercise is worthless., Perhaps the
answer will be to avoid using elements with spurious mechanisms, together with those
that fail the patch test. Yet this too might be unacceptable, because so many of

the best performers have mechanisms.

In practice, such instabilities are not always revealed by the patch test. Again,
the patch test says nothing about the manner or order of convergence. It does not

progress towards the limiting case: it is the limiting case - exactly.

DEFINITIONS RELEVANT TO THE PATCH TEST

It remains to define the patch test in a way that we can interpret in an unfamiliar
case, chosen for convenience only. The elements cover the whole region without

overlapping.

An element is a region of integration.

A patch is a collection of elements containing internal nodes of every type

envisaged. (We consider only those nodes which control the elements of the patch.)
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An internal node is a node completely surrounded by elements, a node whose zone of

influence does not trespass outside the patch: otherwise we have an external node.

The target-state for the patch test of lowest order is ¢ = constant, where ¢
contains the highest derivatives present in the functional. In a higher patch test

the target-state may be any simple analytic solution.

The patch test may be a computer run which seeks to reproduce the target-state
exactly (ie to 6 or more decimals) by any means short of prescribing the values
at the internal nodes. (For example, in a higher patch test we may have to load
the internal nodes, in exactly the same way as in a real problem.) Or the patch
test may be a computer run which prescribes all the nodal values and merely

calculates the residuals. Or it may be a theoretical argument which concludes

that the residuals vanish at the internal nodes.

APPLICATIONS OF THE PATCH TEST

The Isoparametric Elements (Irons 1966) are economic only because low-order integration

suffices. I1f we had to integrate the coefficients accurately, these elements would
have been too costly; but we know that inaccurate coefficients can sometimes yield
quite accurate final answers. This was expected: a simple argument leads to the
conclusion that the patch test will be satisfied if the rule chosen can integrate

element volumes accurately. The argument went in three steps (Irons 1966):

(1) An accurately integrated iso-P element conforms and accepts constant stresses,

so 1t passes the test.

(2) Under constant stress, a less accurately integrated element may give identi-

cal nodal loads with the nodal deflections of the patch test, but not

otherwise.

(2) Therefore if 2 replaces 1, the patch remains in equilibrium, We say that
1 and 2 are mixable, in the sense that we could mix them indiscriminately in

a patch.

If we can postulate that in the limit all the edges are relatively straight, and the

midside nodes are truly central - the sides are linear - the position is even better.
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In this case, all we need integrate accurately is a determinant (Irons and Razzaque
1972), typified by the force in the x-direction at node i due to a given state of stress

throughout a 20-node brick:

=S S S| axfag ax/an 3x/dz o d¢  dn dz

XX

3y/3E dy/an ay/ac ny

9z/3¢ 3z/9n 3z/93¢ o
Xz

5140 . ;

3N1/ & 3N1/3n aNl/GC 0
But this is for a classical patch test, with prescribed deflections at the external
nodes, However we should be able simply to apply the appropriate tractions over all

the patch boundaries. Success depends also on integrating expressions like that for

the x—force at node 1 due to tractions over the face £ = 1:
-SSN, [ax/an ax/3z o dn dt

dy/an dy/azg a

9z/3n 3z/3¢ oXz

The requirements for product~Gauss rules are identical.

g . 2
If the edges are linear, x for example has no terms like £ n £, although these
still occur in Ni' Then for the 20-node brick we can show that the 2 x 2 x 2 Gauss
rule suffices: a reassuring conclusion in view of the popularity of 2 x 2 x 2

integration, (It does however give mechanisms.)
Note: The bi-quadratic quadrilateral, with its 9 nodes (the last being at the centre)

passes the quadratic patch test. When the internal freedoms have been eliminated, it

looks like a variant of the 8-node element. The norm would be 3 x 3 integration.

The 8-node Ahmad layered plate has a less happy ending. I had always assumed that a

quadrilateral with linear sides would allow constant bending stress, because one can

treat the membrane layer f = constant as a case of plane stress, where the patch
test is satisfied even with 2 x 2 integration, Razzaque had his doubts, and some
two years ago he quietly did the test. It is easy to see the fallacy in my argument,
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To achieve constant membrane strain in the laver ¢ = constant with normal remaining
normal, it is kinematically necessary to have a lateral deflection w varying quadra-
tically with X and y. With quadrilateral geometry x = a + bg + cn + dén, so that x2
contains the term anz. This is not available, which is why Razzaque's patch test
failed. Thanks to a timely experiment, I did not repeat this particular blunder in

Semiloof (Irons 1973a; Irons 1973b).

It is doubly unfortunate that the first patch test argument depended on symmetry.
Such arguments have never been used since. Moreover, the conclusions on the Ari

Adini Parallelogram (Adini & Clough 1961) were weaker than they need have been, and it

was only when R H Gallagher suggested that a patch test on parallelograms of varying

sizes would succeed that we tried such a mesh. A restrictive argument actually

delayed progress.

With a little imagination, we can discuss this more general case with less difficulty
than the original demonstration. Considering a unit square, the basis for the shape
functions can be expressed in terms of the cubics of Figure 4. We have the four
products Li(x) Lj(y), iand j = 0 or 1. Then we have the eight products,

Li(x) Sj(y) and Si(x) Lj(y). These twelve functions are activated by the value

and two slopes at each of the four corners.

T\Jco s SO y\n
|

\/ﬂq l Rt

Te——

Figure 4: Constituent cubics for the Ari Adini rectangle

We imagine that a patch of such elements is in a target-state of constant bending
moments. Now comes the trick: we consider that the patch is perturbated by the
products C (x) C (y), C (x) S (y) and S (x) C (y) in which C consistently replaces L.
With these functlons we can preserve slope contlnulty between elements. It follows
that if we actually used L instead of C, the change in slope would be the same at
opposite edges of the elements, SO that as much virtual work would be lost at one as

would be gained at the other: therefore the total would be zero.

An even simpler argument of the same type applies to the Veubeke constant stress

equilibrium triangle which connects to its neighbours at three midside nodes, Any
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Figure 5: Nonconformity between two Figure 6: Diagram of elements with Loof nodes
Veubeke elements

nonconformity must be like that depicted in Figure 5 which does zero work in a field

of constant stress.

Elements with Loof nodes at the two Gauss points along each side, as in Figure 6, can
be treated in the same way. The shape functions are cubic along the edges, for both
the triangle and the quadrilateral. The assumed stress field is still constant, so

we can use the 2-point Gauss rule to compute exactly the work due to nonconformity,

ie zero.

The argument for the Veubeke triangle must be extended slightly for the Morley

equilibrium plate bending triangle. This has quadratic lateral deflection w, giving

uniform bending stress controlled by w at the corners and normal slopes at the midsides.
The top membrane, for example, is under constant strain, and the in-plane deflection
normal to the edge is common to two neighbouring elements, being controlled by the
normal slope at the midside. Finally the slope along the side is given by

(wB - WA)/AB in Figure 7, so that the deflection along the edge is also common between

neighbouring elements. Therefore nonconformity in that membrane can do no work in a

patch test.

%B
Figure 7: The Morley bending triangle \

*A

We have now encountered all the ingredients in the synthesis which enabled the
"Semiloof" shell element to pass the test - the first Ahmad layered model to do so -
for general quadrilaterals and triangles with linear sides and again when the 2 x 2
Gauss integration was changed to 5-point integration to remove the mechanisms., This

promising element owes its very existence to the patch test (Irons 1973a; Irons 1973b).
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ALCHEMY AND THE PATCH TEST

We have seen that the patch test transcends the displacement or equilibrium formula-
tions., Let us now enquire what is possible with "nondescript" elements, perhaps with
no physical basis whatsoever. What other properties must a formulation have, given
only that it passes the patch test? We must try to discover what is intrinsically
necessary, and also what is intrinsically possible. Can we for example find a four-
node element, with four degrees of freedom, that passes a patch test with quadratic
variation of the variable? The gquick answer is obviously, no. For we could choose
as target-state a quadratic variation giving zero values at the four nodes - six are
needed to define it - and the four zero nodal values would presumably give zero

responses everywhere. But

(a) 1f the stresses are to be calculated at certain prescribed points, it is
conceivable that zero nodal values always give zero stress at those points,

whatever the quadratic variation.

(b) In say an elastic problem we could, perhaps, invoke for example the equations
of equilibrium, which operate in the patch test, and hence reduce the number

of independent coefficients to less than six per variable.

These are wild thoughts., But our next is slightly more sober. Suppose we use
hexagonal elements, with six simple nodes at the corners? We should have just enough
degrees of freedom to define a quadratic variation, and provided the six vertices do
not lie on a conic section the shape functions certainly exist. 1f it were possible
to create a mesh of decagons, could it pass a cubic patch test? These are still
flippant suggestions, but they lead to the serious general question; 1is it possible
for an element to pass a higher patch test by virtue of its number of degrees of
freedom, regardless of the dispostion of nodes along a typical side? In particular,

can we ever do better than a conforming model with the same nodal configuration?

//Y

Figure 8: Two elements considered together,
to develop conformity requirements

B X

To be more precise, let us consider what are the unavoidable constraints in designing

a nodal configuration for a conforming element to do a given job. In Figure 8, elements
I and II have C(l) continuity across AB, repardless of the nodal values. In order to
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make deductions we assume that all the nodal values of element I are zero, so that its
response must be zero everywhere, In particular w and 9w/3y are zero at all points

along AB. We assume that II can give all the cubic terms:

w=a+ (bx + cy) + (dx2 + exy + fy2) + (gx3 + hxzy + ixy2 + jy3)

i)

The minimum connectivity requirement for C isw=0aty=0givinga=b=d-=g

=0, and ow/dy = 0 at y = 0 giving ¢ =e = h = 0, This implies four simple nodes

along AB, with w only, and three nodes with 3w/3y, as nodal variable, We say ng

number of nodal tractions = 7. We may replace some of the w by 3w/3x or Bzw/axz, and

some of the 3w/dy by 32w/3x3y etc. Our assumption initially is that there are not

more than ng v kel 1Tl

Note: The importance in later arguments is that we shall have just enough nodal

tractions to give the correct work done at the element boundaries due to bending moment

and shear force, in going from one target-state to another,

We add the corollary that if, for example, we had azw/ay2 at a midside node on AB in
Figure 8, a variable superfluous to the n required, these arguments would still hold.
For such a variable must control a shape function with zero w and normal slope on all
the element boundaries. It would give patch equilibrium in each of the elements
concerned, considered separately. As far as the patch test is concerned, it makes

no difference if we enforce equality between neighbours.

Thus n_ may exceed the minimum number of tractions without necessarily excluding an
element from the theorems we shall develop. We must certainly exclude an element which
could, in principle, pass a higher patch test than it in fact does, for example the
"quadratic" isoparametric elements which pass only a linear patch test. To clarify

the subtle distinction, we have three just-successful configurations in Figure 9,

VALUE
FIRST DERIVATIVES VALUE
SECOND DERIVATIVES IRST DERIVATIVES
NORMAL ~—VALUE
SLOPE ONLY
Ng = 21 Ng = 24 Ne =27
ng =13 Ng =i Ny, =il

Figure 9: Three quintic triangles for plate bending, with NT =21
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It happens that the first is the only version giving analytic shape functions = but this

is not relevant to the count of degrees of freedom. The second is just feasible in

a displacement formulation, because the functions with singularities give finite (but high)
straln energy. The third gives indeterminate slopes at the corners; but Pian's

approach remains open even in a fourth version, without any corner nodes, so that the

corner values are indeterminate, as with Loof nodes.

The first gives us excess continuity, but here - as usually - it is not of the simple

variety envisaged in the corollary above. As a variable, Bzw/ay2 at A in Figure 8

would not now be wasted, but would be needed for the continuity of side AC with another

neighbour. Indeed, the three second derivatives at a corner node are called upon to
do four jobs. Notwithstanding n_ being 13 instead of 11, by arguments of nodal
valency we should have fewer assembled degrees of freedom (Irons 1973)-s (See alsc

appendix. )

Our alchemy is concerned with super-patch behaviour which would imply super—convergence,

That is, we seek a ''nondescript' element which passes a higher patch test than would be
possible with a conforming element. Later we shall prove that we cannot succeed. But
is it worth the effort? Indeed yes: this is not fool's gold. For example, Figure
10(a) shows an attractive l4-node brick element which could perhaps give excellent per=
formance., But could it pass a quadratic patch test, in view of the fact that each face
has only 5 nodes, whereas 6 are needed to define a quadratic variation over a plane?
Again, Figure 10(b) shows a plate bending element, of familiar nodal configuration -
the value and the two slopes at each cormer. It has 12 degrees of freedom, and a com-
plete cubic in x, y requires 10. We doubt however whether such an element can pass a
cubic patch test, because the nodes along any one side contain only enough information
to define a linear variation of normal slope. We can say decisively that a conforming

displacement model cannot pass. Could a hybrid succeed?

(a) (b)

Figure 10: A plausible replacement for the 20-node isoparametric brick, and a
nondescript plate bending element
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make deductions we assume that all the nodal values of element I are zero, so that its
response must be zero everywhere. In particular w and 3w/dy are zero at all points

along AB. We assume that II can give all the cubic terms:

w=a+ (bx + cy) + (ax® + exy + fyz) + (gx3 + hxzy % iX.VZ s jy3)

(L)

The minimum connectivity requirement for C isw =0 at y =0 givinga=b=d-=g

= 0, and 9w/3y = 0 at y = 0 giving ¢ =e = h = 0, This implies four simple nodes

along AB, with w only, and three nodes with 3w/dy, as nodal variable. We say n

number of nodal tractions = 7, We may replace some of the w by 3w/3x or azw/axz, and

some of the dw/3y by 32w/dxdy etc. Our assumption initially is that there are not

more than ng in all.

Note: The importance in later arguments is that we shall have just enough nodal

tractions to give the correct work done at the element boundaries due to bending moment

and shear force, in going from one target-state to another.

We add the corollary that if, for example, we had 32w/3y2 at a midside node on AB in
Figure 8, a variable superfluous to the n, required, these arguments would still hold.
For such a variable must control a shape function with zero w and normal slope on all
the element boundaries. It would give patch equilibrium in each of the elements
concerned, considered separately. As far as the patch test is concerned, it makes

no difference if we enforce equality between neighbours,

Thus n_ may exceed the minimum number of tractions without necessarily excluding an
element from the theorems we shall develop. We must certainly exclude an element which
could, in principle, pass a higher patch test than it in fact does, for example the
"quadratic'" isoparametric elements which pass only a linear patch test. To clarify

the subtle distinction, we have three just-successful configurations in Figure 9.

VALUE
FIRST DERIVATIVES VALUE
SECOND DERIVATIVES IRST DERIVATIVES
NORMAL #~VALUE
SLOPE ONLY
Ne = 2I Ne = 24 Ne =27
ng = 13 ng = I ng =Ml

Figure 9: Three quintic triangles for plate bending, with NT =21
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This brings us to our conclusion, For in Figure 12 we have introduced a very small
element at each vertex. According to the lemma for small elements we can argue that
the forces they exert in a field of constant stress are insignificant. Ordinary

dimensional analysis provides this result for the moment, and a better argument will
soon appear, Therefore the boundary forces shown in Figure 12 are entirely due to
the elongated boundary elements. We conclude that for a given formulation each side
makes its individual, calculable contributions to the boundary forces at the nodes on
that side. And this conclusion is inescapable - it follows directly from the nature
of the patch test, for the most criminal elements. Perhaps the patch test is less

permissive than we thought.

Note: We now return to the lemma for small elements. In Figure 12 the slender
elements generate certain nodal forces. I1f we now discard the small elements, these

forces will change only slightly, on account of the change in boundary geometry. We
interpret this change in terms of the small elements taking their small share of the
traction, and without proving the lemma strictly this is enough. We have separated

the slender elements.

LT

P
= .
/
TRACNON]
4 J ~ SURFACE
Figure 12: A variant on the inner Figure 13: A patch with zero traction

patch

Let us now consider the implications of the patch in Figure 13, with a flat surface,
across which there is zero traction; thus the available target-states are limited.

We shall prove the zero traction theorem, that the nodal forces on AB are zero if the

tractions are zero. For we could make ABCD a needle-shaped element like EFGH without
changing these forces, and we can make the forces on EF arbitrarily small by reducing
the depth of EFGH. (The forces in BC, including the corner node at B, need not be

small,)

For the next theorem we shall need the lemma of element strain energy, more obvious in

its statement than in its implicationms. Of course, if the stress everywhere repro-
duces the target-state exactly, then the strain energy integrated over the element
must be correct. Therefore, it makes no difference if the formulation studiously
avoids energy principles - the patch test introduces them inescapably in this sense,

provided that we consider only the target-states.
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Our next theorem is strongly suggested by the zero-traction theorem, but at this point
we must introduce the assumption that the nodal configuration along each side would be
just acceptable in a conforming model, as discussed above. Thus we suppose that
element ABCD in Figure 14(a) has Ne nodal variables and that there are N <Ne target-

i
states, To prove the mixability theorem we shall try to compute the patch forces at

the nodes on AB by considering only ng of the target-states, fixing to zero (NT-nS)

of the nodal variables not on AB. (It may be necessary to choose carefully which to
F165,) Let us imagine that the remaining (Ne—NT) non-target responses are suppressed,
by constraining the remaining variables. We now perturb the patch, to another target-
state only slightly different; hence we do work directly on the element through the
nodes on AB, but we also allow energy to be transmitted from neighbouring elements

through any consequent perturbations of the remaining (Ne-NT) constrained variables,

\UD €

— ] /D C

') (b)

Figure 14: Patches for arguing the mixability theorem

To complete the argument, we go back and repeat the perturbation, but this time we do
not allow the (Ne_NT) variables, previously constrained, to depart from their initial
positions. Thus we prevent the nodes not on AB from receiving energy from neigh-
bouring elements, and in so doing we commit only a second order error in the total
potential energy, beacuse of patch equilibrium at the internal nodes. The only
energy now entering the element is that transmitted via the nodal tractions on AB,
and it must therefore equal the virtual work computed along AB, and along AD and BC
for the corner nodes, as a continuum, considering only the target-states. We now
move on to Figure 14(b) in which the virtual work along AD and BC will be relatively

small, The argument still holds, for any perturbation of AB.

But from the point of view of virtual work, the nodal values along AB just define the
values and, if necessary, the slopes on AB for any target-state, The nodal values are
correct, we assume. Thus whatever the inventor thinks is happening along AB, it is
as if the target-state values were there in any patch test, Therefore we can compute
the tractions for the patch test, if only we assume that the virtual work done at the
nodes is correct, It would be difficult to sustain a model, for example, with an

unsymmetrical stiffness matrix: the work done would be patch-dependent. Thus the
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argument brings us especially close to Pian's viewpoint, although by a totally un-
familiar route.

Note: It is fortuitous that all adequately integrated iso-P elements are mixable,
including those whose patch behaviour is not as good as would be suggested by the nodal

configuration.

The theorem just proved has a close affinity with the super—convergence theorem, our

last. Indeed, it is possible to use the patch of Figure 14(b), or even that of
Figure 12 with the original lemma for small elements, but we choose here to vary the
argument., The rudimentary patch of Figure 15 contains only a slender element, flanked
by two small square elements, (Indeed it is not strictly a patch at all, without any
internal corner nodes,) There is little change if we remove the external patch
tractions from the small elements. If we wish to discard all energy principles,
including virtual work, then we can proceed taking this statement as a premise. Other-—
wise we can argue it from structural principles, ie if element CDFE has fixed
displacements along DF and CE, then the change in the strain energy of CDFE cannot

exceed a relatively small quantity.

A C E G

B D F H

Figure 15. Patch for the super-convergence theorem

Lemma We prove the statement just made by dividing the inter-element boundaries of

Figure 15 into three regions:

7z = DF + CE, whose displacements remain fixed according to the target-state.
Q = CD + EF, the inter—element region which remains free of external loads.
L = (AC + AB + BD) + (FH + HG + EG), whose displacements are initially those of

the target—state; but subsequently L becomes free, ie unloaded.

When the patch is initially set up, Z and L are given the target-state displacements,
and an easily calculable amount of work becomes strain energy. Then L 1s slowly un-
loaded, and as the boundary moves from displacements 1 to lf the patch does work on
the decreasing forces on L, reducing the strain energy by the same amount. (The
forces on Z also change, but because Z remains fixed no work is done.) We note that
(l* - 1) is the displacement caused by applying load L to the unloaded patch, earthed
along Z, giving the required change in strain energy exactly. However, we prefer

something larger — a bound - and something more easily calculated. In withstanding
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the end-loads L, the slender element must stiffen the small elements, so we now remove
it, thus isolating the small elements. Therefore we set Q to zero, and we apply loads
L to the small elements, giving the strain energy e as our bound on the change in strain

energy. e is normally small,

Note: e can be infinite if the square elements have mechanisms - for we are no longer
dealing with target-states. This proviso was implied more subtly in Figure 14, where

the removal of the constraints could have caused infinite deflections elsewhere.

Having removed the tractions from the small elements, we cannot expect to reproduce
any target-state exactly, but the modified patch test must evidently give nearly the
correct stress field. The conclusion follows. For the number of distinct stress
fields available (which are nearly target-states), plus the rigid body motions, must
be 2n, just as for a conforming model. The 2n items of information - the nodal
tractions - entering the element along sides EC and DF must define the displacement
field adequately for any target-state when EC comes close to DF, which is the same
requirement as for a conforming element, Otherwise we can argue that with less than
2n tractions, or with inappropriate tractions, the virtual work in going from one

target-state to another might be wrong.

We conclude, sadly, that super-patch behaviour is intrinsically impossible, and that

workers should look elsewhere for profitable research. If the patch test has led us

into an alchemist's dream, it has also taken us a step nearer to modern chemistry.

CONCLUSIONS

Most of the material reported here was unknown to me at the time of our 1972 paper
(Irons and Razzaque 1972). I did not expect this outcome, which reflects the indis-
pensibility of the patch test in my research. One's attitude towards those tools that
one uses only occasionally does not change from year to year, whereas there are other
tools for which one constantly finds new uses and new adaptations. For years I imagined
that all my fellow workers used the patch test in their secret thoughts, and I was only

gradually persuaded otherwise, I needed it, and I assumed others needed it too.

The usefulness of the patch test requires no pedagogic thumping - the examples speak for
themselves. Therefore I should like, finally, to emphasize the subtle and characteris-

tic philosophy that was struggling to emerge in the final section above. It gave me
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great pleasure to discover that the patch test itself is leading us towards the concept
of the hybrid elements, and not the other way around. For the patch test is more funda-
mental and universal than any single formulation. It begins to appear that Pian's

technical note of 1964 (Pian 1964) held the whole future, not just a part of it.

APPENDIX

I once thought that the frontwidth was independent of how the necessary nodal tractions
were distributed between corner, midside and mid-face nodes.  This is far from true.
Figure 16 considers possible nodal configurations for a quintic plate bending element,
and we imagine a rectangular problem n elements in width, treated with a horizontal

front (indicated by the full lines) progressing vertically as the equations are reduced.
(a) frontwidth = 7n + 21

(b) frontwidth

8n + 24

(c) frontwidth = 6n + 26

(The last is probably of academic interest only.)

AW, Wy ,Wy.Wey Wey ONLY
(c)

Figure 16: Nodal configurations for discussing frontwidth
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PREPARATION OF FINITE ELEMENT DATA

Data prepared for a finite element analysis of a structure is set out in a particular
manner. Having selected a suitable idealisation of the structure and chosen the
method of solution to be used the data can be prepared. In general it is necessary
to give each node in the structure a label or number and calculate the coordinates

of these nodes in some suitable coordinate system.

The figure shows the particular method of defining the data necessary to run a
finite element analysis using PAFEC 70+. Detailed descriptions of each of the
options are given in the sections referred to by the flow chart (Nottingham

University 1974). The basis of the PAFEC 70+ data is:

(1) Control Integers

@2) Nodal Coordinate Data
@3) Element Topology

(4) Loading Information

(5) Constraint Data

All finite element programs will require the above 5 sets of information but these

may be supplied in a different manner to those described for PAFEC.

REFERENCES

NOTTINGHAM UNIVERSITY, PAFEC 70+ Data Preparation Guide (1974)

=71 089181 =



PREPARATION OF FINITE ELEMENT DATA

DECISION CHART FOR DATA PREPARATION

Note: All variables are fixed field formats.
Integers are those beginning I-N.
Real data is fieldwidth of 10.
Integer data is fieldwidth of 5 right
justified except where stated.

Patec Macro Option Cards

PAFEC JOB

Option Cards

2222 Pef. Section 1.0

Card

Job Description
'TITLE'OF'JOB'—J’INCHED'CYLlND!:R'—
Ref Section 11

!

Program Contro! Card
IM 1P IOT 1D IDF IX IW IK ILO IE ICO JDC 1SS ICA [ICB ICC
Ref Section 1.2
S Drawing Data Cordls)
1cc ALPHA BETA XLTH BRTH NP NE1 NE2 IN
Aef Section 1.3
- ]
Cpddc Array Data — Co-ordinates, Degrees of Freedom, Locat Direction Cosines
X Y Zz v w 10X 1oy 10z CONT 1w 21
X Y z ) T v T Tw T ox Tov =i
0z CONT D
- 0CA12 DCA13 DCA2Y DCA22 0CA23 1 1X=18,CONT19999.0
DCAN DCA12 DCA1I3 DCA21 DCA22 DCA23 If CONT-INODE Ref Section 1.4
Standard Elument Data or, Palblocks Data_
IERN IL ISN 8 Mw NW NA N NE# ISSN
TP NN NM NL NK MESH  INMICIRC INEST
Element Topology and Material Propertics Patblock Tapotoqgy and Material Properties
Ref Section 1.5.1 IR IR2 1IR3 IR4 {Mcsh Spacing)
N1 N2 N3 {Circular Arc)
iINB IER (Nesting) Ref Section 1.5.2
| == T
1 j\ 10,11
aw = M M M D
% 245 \[/e 12 7.8 9 1
Back Substitution Duta Centrifuyal Pressure or Thermal Transient
for Vibration Problems - Speed Loading Data Temperature Data
Bl A CURWL L i apced, =20Gng B 19 2mMp:
IC N {format 15,110} OMEG{\ rad/s X1 DELTA IKN INS JP TMAX 1Q
Rof Section 1.6,1 HetiSection :6i6 Ref Section 1.6.7 N1 N2 SPRING (INS cards)
N T TOOT (KN cards)
5 l 9999 0 8888.0
&——‘ NG Q QDOT (1Q cards)

Ref Section 1.6.10

[ NODE XNOD?] [ XNODE (IP-1 cards) ]

TEMP {IP cards)
Ref Section 1.6.11

External Load Data

i

3 —
Ref Section 1.7 IKN INS 10
°/\ ) N1 N2 SPRINGIINS cards)
6666 0 N T {IKN cards)
& . /F‘\ N Q 1Q cards)
5555.0 9999.0
77770 8888.0 Ret Section 1.6.9

FNODEUOT-1 carus)
Ref Section 1.7.1

XY

Ref Section 1.7.2

NODE IDISP ILO F
Ref Section 1.7.3

ZIDISPILO F

IDEFILOF
Ret Section 1.7.4

g

Y

Yo T

B

Steady Stote
Temperature Data

Constraint Data (if apphicabie)

INODE IDISP IREPT
RefSection 1.9

Stressing Data
N1 N2 N3

Ref Section 1.8
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INTRODUCTION
Computer graphics is basically very simple, consisting of combinations of three

operations.

(a) Draw a line
(b) Not draw a line (remove the pencil from the paper)

(c) Finish the picture (ie replace drawing with a fresh sheet of paper)
These operations are used not only by computers but by human draughtsmen, designers

and artists.

Engineering and Science are based on exact laws with a mathematical superstructure.
This means that unlike "pictorial" art, scientific and engineering graphics are in

the main numerically definable making them easy to produce by digital methods.

What is required to produce computer graphics, besides access to a digital computer?

These requirements can be subdivided into hardware and software requirements.

GRAPHICS HARDWARE

We shall first consider the main types of hardware that are presently available.

(a) Flat bed and drum plotters

The flat bed plotter is simplv a large table with a pen gantry such that the

pen can move anywhere on a sheet of paper placed on the table.
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Drum plotters consist of a roll of paper, a drum on which the plotting is
done and a take up roller. The pen traverses the width of the paper and
the paper moves back and forth to give the required drawing capacitv. Such
plotters are usually up to 36 inches wide and allow plots up to 140 feet

long, an advantage to wallpaper designers.

Flat bed plotters have the advantage of producing good quality plots of often

very large size. However, they do tend to be rather slow.
Drum plotters on the other hand are less accurate, usually a little faster
than flat bed plotters, but generally do not produce pictures greater than

36 inches in width.

(b)  Visual Display Units

These devices are based on cathode ray tubes. Two types are generally
available, first the refreshed type where the picture is continuallv
regenerated from some digital representation held in the controlling
computer's memorv. Second, the storage tube devices. These are marketed
by Tektronix and use the phosphor and CRT technology developed for their
memory oscilloscopes. The picture is stored on a long lived tube phosphor
and after transmitting the picture to the VDU the computer plays no part in

keeping the picture on the screen.

(=) Microfilm plotters

These are a cross breed between (a) and (b). In some wavs they offer
greater flexibility over the (a) type plotters, but they possess certain
disadvantages. They consist of a special CRT on which the picture is
generated. This picture is photographed either onto photographic paper
which is processed to produce a paper picture, or on to photographic film
to produce a microfilm image. This latter facility can be used to commact
documents and also gives the possibility of making computer generated

films.

GRAPHICS SOFTWARE

Let us now consider computer graphics software, that is, how the various tvpes of

plotter can be driven.

Pictures consist of a large number of lines, or vectors defined by the coordinates of

their beginning and end points (or in some cases just the end point, the starting
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point being defined by the previous vector's end point). Thus any but the simplest
drawing graphics is fairly demanding on the output of vectors to the plotter;
especially when it is remembered that most plotters can only draw straight lines, and
curves must be approximated by a number of straight lines. Plotters are generally
slow devices compared to computer CPU and other peripherals, and it is better to run
such devices off line. Essentially the user's program, which might be very large,
generates a magnetic tape. This tape is either taken to the plotter which is
physically separate from the computer or it is played back to a connected plotter
using a small efficient program. The SD4020 at ACL works in the former mode whilst
the drum plotters at many universities work in the latter mode. VDUs are rather
different; storage tubes can be run at relatively high speed and are usually run
online to the computer but off line to the users program. the interface being via a
disc file. In smaller installations such devices can be run online to the users

program with a limited amount of interaction.

The refreshed devices require continual servicing by the driving computer. They are

generally used for interactive applications and enable the use of light pens etc.

Let us now briefly consider interaction especially as far as it concerns graphics.
Drum plotters and microfilm plotters are obviously one way devices. Storage tubes
offer a limited degree of interaction in that lines can be added to a picture but

not removed without replotting the entire picture.

Refresh displays where the picture is effectively being replotted continually do not
suffer from this disadvantage and are particularly suitable for heavy interactive

work.

Interactive graphics where graphical information flows both ways is an expensive
activity and should be resorted to only when other graphical methods cannot be used
or there is some tremendous advantage in using interactive techniques. Generally
interactive methods do not help when a problem can be defined algorithmically, and

this would cover most problems encountered in science and rather less in engineering.

In dealing with heuristic problems, eg design work, they are almost essential. Such
methods usually require specialised hardware. A particularly good example where
interactive graphics has proved valuable in an algorithmic case is the National
Economy. The Central Statistical Office has an interactive graphics facility which

enables economists with no computing training to manipulate statistics, correlate,
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predict etc both rapidly and simply. The economic gains in such a case are obvious,

although in many cases it is not so clear cut.

Between fully interactive graphics and graph plotter type graphics lies online
graphics where a storage tube device is used to view generated pictures after the
completion of a job. Here the flow is one way. Such methods enable rapid
development of graphical programs. Although the operations of graphics are
fundamentally simple various problems can arise concerning scaling of data,
generating characters, drawing arches and graphics. This is the area of software.
Much graphics software 1s very crude, the user having to manipulate the plotter as if
he were drawing the graph himself. A lot of effort has gone into packages that

allow automatic graph production, scaling and character generation.

COMPUTER MOVIES

Earlier I mentioned the possibility of making computer movies. A movie consists of
a number of frames, each differing slightly from the previous frame, such that when
the film is shown an apparently smooth action is portraved. Silent films are shown
at 18 frames per second (fps) and sound films at 24 fps. Thus a few minutes of

film requires quite a lot of frames. A lot of software effort has gone into pro-
ducing programs to allow users to use some of the tricks of cinematographv easilv

eg zooms, pans, titling etc. They may not be of professional standard but scientists
and engineers are primarily interested in research films ie subject content and

things like 'nice" titling are just frills.

I will now show a short film entitled "The Flexpede'. It is not about anvthing
scientific, and is really very frivolous. It is very simple both in terms of what
it tries to do and in the graphical shapes that are manipulated. There is basicallv

one shape plus a few others that are linked together to produce what I feel is a

very effective little film.

In both science and engineering computer movies can be useful for studving the time
evolution of a system in a qualitative fashion. Often one might wish to expand or
compress the time scale. In the case of molecules moving in a liquid at speeds of up
to several metres a second some expansion of the time scale is required. In the case
of galaxies however where there is little change over a million years the time scale

must be compressed.
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Of course, it is possible to map some other variable onto the real time axis of the

film eg stress on a component as a linear function of time.

CONCLUSION

I would like to sum up by making the following points:

(a) Computer Graphics are essential for the automatic production of graphs and
charts, which can lead to a more rapid and thorough understanding of the

numerical information emerging from the computer.

(b) It is important to choose the right graphical technique for a given tvpe

of problem.

(c) Computer generated films can now give a time dependent displav facility,

not cheaply but more easily and cheaply than electronic disnlays.
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INTRODUCTION

In 1968 the Engineering Department at Leicester University took delivery of an ICL
(then Elliott) '4280 advanced display" (purchased with funds provided by the Science
Research Council) to be attached to the University's 4130 computer for "investigating
engineering uses of digital computer graphical display equipment" under the leader-
ship of Professor G D S Maclellan, Further funds were subsequently provided for a
disc and a teletypewriter. The author spent four months in the early part of 196%
in the computer—aided design group led by Dr D T Ross in Project MAC (Butlin 1968).
The fundamental graphics and data handling techniques and software that have subse-
quently formed the basis of all the work at Leicester have close links with the AED
approach to computer applications (which is described by Ross (1967)). Almost all
the programming has been done in Fortran, the primary aim being to ease transfer of

programs to other computing systems.

The hardware configuration used for all the work described in this paper is shown
in diagrammatic form in Figure 1 and the display terminal is shown in Figure 2.
Software appropriate for operating the display in a timeshared mode was never forth-
coming from ICL and consequently whenever the display has been used the 4130 has

always had to be dedicated to it.

Among the many investigations of the use of the display in engineering that have been
made in Leicester such as hydraulic control system design, mechanism design, traffic
control simulation, fluid flow visualization etc the main interest has been the
improvement of the finite element method in continuum mechanics. The long term aim
here has been to provide the means for a designer to improve his understanding of
structural behaviour through the combined use of interactive graphics and the finite

element method.
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Two early systems that explored the potential of this combination were

(1) LUISAl (Leicester University Interactive Structural Analysis - 1) and

(2) a slab bridge design program .,

While limited to certain relatively small structures these exploratory systems led to

the identification of critical problem areas such as:

(1) digital representation of a complex three-dimensional object in a form

immediately suitable for engineering analysis;

(i1) techniques for rapid re-analysis and assessment of performance in

connection with engineering design modification;

(GHGL) programming aids for large, changing interactive graphics systems

in Fortran;

(iv) operating system, data paging and program overlay requirements for severe

real time applications;

(v) ergonomics and operational strategy of intense man-machine interaction;

(vi) the introduction of new design/analysis procedures into existing practices.

Research in these areas is in progress and forms the basis of a four year programme

for which funds are being sought.

Recent work has concentrated on producing systems for the rapid generation of data

input to and rapid assessment of output from finite element structural analysis.

Such systems are seen as an attempt to meet the present need that is illustrated in
Figure 4 (Tocher 1970), and also as a basis for future design/analysis systems on the
lines of our early exploratory design systems but capable of handling complex structures,
This paper presents the facilities and example applications of:

(1) LUISAl and the slab bridge design programs;

(2) an input data generation system;
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(3) an output assessment system;

followed by notes on system design.

(1) Design Systems

(1) LUISAl - was designed as an aid to a structural engineer in investigating
the effects of changes in element configuration and properties in simple
two-dimensional structures. All data defining topology, geometry, displace-
ment constraints and applied forces are generated, checked and, if desired,
modified at the display using the lightpen, function buttons and an adjacent
teletype keyboard. Figures 5(a)~(r) illustrate some of these features,
Because of the nature of the 4100 Fortran software the system is limited to
about 70 elements and it has been possible only to provide for triangular
elements and for a selected range of types of displacement constraint, applied
loading and display of stresses. The system has been fully described in

earlier publications (Butlin and Hubbold 1969; Butlin 1969; Butlin and
Leckie 1970).

(ii) a slab bridge design program.

As a result of a joint project by E W H Gifford and Partmers and the Leicester CAD
group a program was written (by Miss Rachel Britton under the direction of M J Platts)
to make possible rapid interaction with computer analysis in the early stages of a
structural design using finite element methods. It provides the means for an engineer
to study alternative solutions to a design problem at the conceptual stage by making
full use of interaction and display with both input data and computed results. The
design program for rectangular bridges produced in this project enables an engineer

to obtain an overall picture of the behaviour of a rectangular pre-stressed concrete
bridge deck under pre-stressing, loading and support conditions which can be varied on
command ., (Typical display screen layouts are shown in Figures 6 (a) and 6(b).) It was
used to good effect in the design of the Newport Harbour 3-span bridge in the Isle of
Wight (shown in Figure?7 (a)), resulting in an improved pre-stressing scheme (shown in
Figure 7 (b)). Programming aspects are described in Britton & Platts (1971) and

experience of the system in use is described in Platts and Britton (1972).

(2) Input Data Generation System

A system of Fortran programs known as the LUISA2 family has been developed to permit
interactive computer graphics to aid the rapid generation of finite element data,

It consists of seven subsystems:
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(1) LUISA-OUTLIN for structural shape definition
(R0) LUISA-PAMGEN for parametric generation of finite element meshes
(iii) LUISA-FEMMOD for finite element mesh generation and modification
(iv) LUISA~COMPAS for assembly of component meshes into large structures
(v) LUISA-ELTYPE for element type and material property assignment
(vi) LUISA-NODNUM for nodal numbering

(vii)  LUISA-LOADBC for specification of applied loads and displacement boundary

conditions.

Each subsystem has access to a library of structural components which forms a data
base on disc and provides the means for passing data between subsystems, Each sub-
system is operated on an interactive refresh display terminal. All input is from
the lightpen, function buttons and keyboard of the display terminal; approximate
values usually being input through the tracking cross (which follows the lightpen)
with visual assessment of magnitude, and accurate numerical values usually being
input through the keyboard; except in subsystems OUTLIN and PAMGEN where some initial
data may come from cards. Facilities for dimensioning, zooming and windowing,

hardcopy plotting and dumping and restoring are made available throughout the systems.

In each subsystem provision is made for re-entry, retrieval of old data, modification
and re-filing. A sample of sequences of operation through the subsystems that the

user may follow is shown in Figure 8,

Figures 9 to 14 present a sample of currently available facilities.

(i) Figures 9(a)=(f) show the way a simplified outline may be input from
cards, checked visually, adjusted interactively with subsystem OUTLIN
and passed to the interactive element mesh generation subsystem PAMGEN
which provides parametric control of mesh density and grading through a

set of patches representing the area enclosed within the outline,
(i1) Figures 10(a)-(f) show two further examples with an indication of the

total time taken, from designing and punching the initial card input

to filing the element data on disc and requesting hard copy output.
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(1ii) FEMMOD provides an alternative method of mesh generation that includes
more detailed control of nodal coordinates and element assemblies,
Regular regions of a mesh can be generated by a simple command and
subsequently 'edited', joined and copied with additions and deletions
of single elements where required. Figures S(a)-(c) show this method
in use within LUISAL, Figure 11(b) shows some meshes that have been
generated this way and filed as substructures. Figures 12(a)-(f) show

how FEMMOD may be used to edit an existing mesh,

(iv) Figures 11(a)-(i) show the use of COMPAS in assembling a set of component
meshes, or substructures to form a representation of a structure that is
too large to be held in core at one time. Examples are shown of a dam/
foundation (l1(a)-{(d)), a ship bulkhead (11¢e)-(£f)), a bridge diaphragm
(11(g)-(i)) and a centre-line girder of a ship tank (17(¢a)=-(b)). All the
component meshes have first been generated with FEMMOD and then reduced to
the form shown eg in Figure 11(e) to make them available to COMPAS for
interactive assembly. Coding is in hand to permit meshes generated by

PAMGEN to be passed to COMPAS.

(v) LUISA-ELTYPE is at present being coded and will provide the means to change
the fundamental geometric types of triangle and quadrilateral to element
types such as linear strain triangle, axisymmetric quadrilateral with mid-
side nodes etc and in addition will provide the means to assign material
properties to appropriate regions of a mesh. The geometric and topological
data structure is of a fundamental form that is not limited to structural
problems, . ELTYPE forms the interface with the physical system that is being
represented. Another physical system would need an alternative ELTYPE

(and LOADBC).

(vi) Figures 13(a)-(d) show how one may control the "shape" of the stiffness
matrix of a substructure by numbering the nodes with the lightpen and there-
by reduce the required storage space and computation time. However such
a technique on its own is of limited value and there is a need to combine
it with those of Gill's SHELL system (Gill 1972) and some automatic band

width optimization program.

(vii) Applied loads and displacement boundary conditions may be specified with
LOADBC which uses standard interactive identification procedures in common
with other subsystems. Rapid selection of element nodes is achieved with
a combined use of lightpen and function buttons, and numerical values may
be keyed in where required with an immediate visual check always available.

Figures l4(a)-(b) show the display of loads and boundary conditions for the

= 205" =



INTERACTIVE GRAPHICS FOR FINITE ELEMENTS

dam/foundation and the centre-line girder, Loads and boundary conditions
may be specified at the reduced structure level or the element mesh (sub-

structure) level,

Coding is in hand to permit 2-D components like those used in the examples
of Figures 11(e), 11(a) and 17(a) to be assembled into a 3-D configuration
like that shown in Figure 15(a) which represents a structure like that

shown in Figure 15(b). (These two figures (15(a) and (b)) are taken from

publications of Det Norske Veritas,)

Progress with fundamental techniques for generating and modifying a finite
element representation of a 3-D solid object is shown in Figures 16(a)-(b)
which show a short section of a spine-beam bridge that has been inter-
actively generated on the display screen composed of 3-D "bricks" from
which an appropriate finite element mesh could be generated, This work
is the subject of a PhD research project, and is aimed at handling such

structures as those shown in Figure 18,

Transfer of data from the LUISA2 family to input files for ASAS has been
organised through simple interface routines. To code interface routines

for other such analysis systems would be a relatively simple task.

(3) An Output Assessment System

While many finite element analysis systems include some facilities for presenting
results in a graphical form on passive devices such as digital and micro-film plotters
relatively little use is made of the more active devices such as storage or refresh
crt display (Butlin 1972b; International Ship Structures Congress 1973). An
exception is the very imaginative work being done at Utah (Christiansen 1971) where
impressively realistic displays of structural displacements and stress patterns are
being produced with a special purpose display capable of rendering a full range of

tones,

The current work in Leicester is designed to especially exploit the interactive
facility in conjunction with a convential crt display. Figures 17(a)-(2) illustrate
some of the display options that may be interactively requested by the user to aid
him in assessing the behaviour of a structure and to prepare a record in hard copy

form of only the most relevant analysis results,
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Incorporation of these facilities into the previously mentioned 3-D work is the sub-

ject of an MSc project.

(4) System Design

Features of the design of the LUISAl and bridge systems of section (1) are described
in Butlin and Hubbold (1969); Britton and Platts (1971); and are now only of

historical interest.

Fortran is not the most appropriate language for coding these interactive graphics
applications, Algol would be preferable but by no means as effective as AED or
Algol-68, However the ogre of transferability has forced us to compromise and to
establish a methodology for the production of large interactive graphics systems in
Fortran. There follows some brief notes under the headings of graphics, interaction

and data handling:

Graphics

A package of routines called FRED (International Computers Ltd 1969) written in
assembly code provides all the basic facilities in Fortran for picture organisation
and display. An additional package (Butlin 1973b) written in Fortran aids the

organisation of menus of options, warnings, error messages etc.

Interaction

Control of interaction from Fortran is provided by other FRED routines. An
"interaction processor" package of Fortran programs (Butlin 1973a; Butlin 1972a)
provides a framework within which each subsystem is designed and its operation
assessed prior to implementation and ensures compatibility in the display screen
control language between the subsystems which are designed by different people. It

includes means for:

(a) defining commands with data, using a simple numerical association between

command names and their corresponding subroutines;

(b) storing a set of options so as to minimise the interaction necessary to

communicate an instruction to the computer;

(c) introducing optional diagnostics;
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(d) modifying a large system to optimise its operation in the light of
experience or to produce different versions suited to a novice, for

example, instead of a skilled user.

Data Handling

While some of the LUISA2 family of subsystems have the same type of data structure
others have quite distinctive structures. Each data structure has been designed to
suit the set of operations that need to be performed on it. As data is read from
the disc data base into core or out to disc it is transformed to or from the
appropriate in-core data structure, All subsystems use a free storage package which
manages the allocation and return of core storage. Rather than garbage collection
its strategy includes an attempt to prevent the fragmentation of unused space,

Basic data structuring techniques are described in Butlin (1973c).

In OUTLIN, COMPAS and the 3-D system a paging package (Hubbold 1971; Hubbold 1972)
is used to manage core/disc data transfers and has been designed to satisfy the

special requirements of on-line demands.

DISCUSSION

Although applications of interactive graphics are now in regular production use in
some aeronautical and aerospace organisations the current benefits to be found are

still a long way short of what had been expected in the mid-sixties,

The most widespread productive applications to date in structural engineering have
employed the rather more passive devices (eg digital and micro-filmplotters) for
checking input data and for displaying results, The extension to the more active
lightpen and refresh display has been restrained by the special programming problems,
lack of appropriate general purpose software, lack of uniformity of hardware and the

difficulty in assessing benefits.

However as a result of research in Leicester some software has been produced for
production structural analysis and in a form that makes possible its transfer to
other hardware, The graphics packages mentioned in section (4) have

been converted to run on a DEC system 10 at Time Sharing Ltd and as a first trial the
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subsystem LUISA-PAMGEN has been transferred to this computer to be operated from a
Tektronix 4002A storage tube display shown in Figure 3. Support is now required

for the commercial implementation of this and the other LUISA subsystems,

The problems of achieving the longer term aims of providing design engineers with
aids to explore alternative solutions have been brought into focus, Some of these
problems have already been solved and a large research programme is in hand to

tackle the others over the next few years,
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Figure 2: ICL 4280 refresh display terminal with
lightpen (and foot pedal}, function buttons
and keyboard

Figure 3: Tektronix 4002A storage tube display with
joystick, keyboard and hard copy unit

== I3



=91 =

PRODUCTION USAGE OF

PRODUCTION EFFORT

TYPICAL DEVELOPMENT

DEVELOPMENT EFFORT

TYPICAL PROGRAMS ACTIVITIES
MANPOWER | MACHINE TIME MANPOWER |MACHINE TIME
7 Z % 7

® DATA PREPARATION 50 40 ®DATA GENERATORS 10 10

® DATA CHECKING ®GRAPHIC DISPLAYS
ONEW FINITE ELEMENTS
®BETTER EQUATION SOLVERS

oSOLUTION PHASE 10 50 ®ADDITIONAL FEATURES 80 80
ONONLINEAR CAPABILITIES

® INTERPRETATION OF 40 10 ®GRAPHIC DISPLAYS 10 10

RESULTS

Figure 4: (From Tocher, 1970) Typical work breakdown comparison between production use of finite element programs
and development effort on new analysis programs
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Figure 5 (part 1): LUISA1
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Figure 5 {part 3): LUISA1
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possible return
sequences for

modification after
assessment of
results

1

LUISA-PAMGEN

7

LUISA - ELTYPE

LUISA — NODNUM

——

LUISA - LOADBC

< CONVENTIONAL ANALYS@

= P2l

LUISA -COMPAS

./'

\

J /
LUISA— LOADBC

G ABUTLIN

subsystems for
geometric data

generation

similar
return
sequences

LUISA -NODNUM

‘ SUBSTRUCTURE ANALYSIS >

Figure 8: User sequences for LUISA subsystems



INTERACTIVE GRAPHICS FOR FINITE ELEMENTS

{a) Simplified outline shape of turbine disc {b) Outline shape adjusted and first line drawn
input from cards to divide into plane patches

{d) Single patch selected, scaled up and internal
parametric control points (the four crosses)
being used to adjust mesh

(c} Division into patches complete and mesh
types chosen (0, 1 etc)

S e
___}; !
(e} Small group of patches selected for (f) Full mesh showing different mesh types
adjustment of grading and consequent grading

Figure 9: Parametric mesh generation
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G ABUTLIN

2

OO 2

(a) Outline of underground railway tunnels
input from cards

{d) Outline of quarter of disc input from cards

(e} Subdivided interactively into patches

{b) Subdivided interactively into patches and
mesh types selected

+ RS

(c) Resulting mesh; total elapsed time for (f) Resulting mesh; total elapsed time = ¢
stages 1-3 = ¢ 1 hour (computer time is a 45 mins (computer time is a fraction of
fraction of this) this)

Figure 10: Example meshes generated with OUTLIN and PAMGEN subsystems of LUISA
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INTERACTIVE GRAPHICS FOR FINITE ELEMENTS

LIBRARY OF SUBSTRUCTURES
GROUP 3 /
NAME ELTYP NNODS  ASEMB DECOMP MODtF
WALL 4t 3¢ L
TRNS 30 26 L —— SHE
$012 C
LCRN .. ‘
S013
BAKF i
TEST 8 9 LA e |
SO
CNTR 25 21 Ul -0,
BASE
(a) Library of substructures (b) Meshes of some substructures in library

et

{c) Substructures being assembled {in reduced
form) into dam/foundation example

(d) Full mesh of dam/foundation; total elapsed
time taken = ¢ 2 hours (computer time is
a fraction of this)

(e) A selection of substructures shown in (f) assembled to represent part of a ship
reduced form in another library bulkhead

Figure 11 {part 1): Substructure assembly
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G A BUTLIN

{g) Meshes of substructures for a bridge diaphragm

3 x * 4
X ! ) 4 x
»
s 9
3 4 » »
! 4 - !

{h} Assembled substructures in reduced form

NN

N

=

aVAVAYA

5 2
S 2
% X

(i) Resulting mesh

Figure 11 (part 2): Substructure assembly
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INTERACTIVE GRAPHICS FOR FINITE ELEMENTS

L1 [

{a) Substructure extracted for modification (b) Mesh retrieved from library file

¢ LI

-

{c) Expanded view of area to be modified

(d) New, finer mesh sketched in
showing elements deleted

Fa ¥ >

/ AV

/

%
i
(e) Boundary nodes lined up and internal {f) Full modified mesh after rejoining
nodes adjusted

modified substructure

Figure 12: Mesh modification
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B1 NUMBER ALL NODES; B2 SOME, B3 ZOOM;

B4 CENTRE ZOOM,; BS VIEW MATRIX, B6 EXIT,

.41 .31 .21 .11 .1 .6 .16
.42 .32 '22 .12 .2 .7 .17
.43 .33 . 23 .13 ' 3 .8 . 18
.44 .34 .24 .14 .4 .9 .19
.45 .35 .25 .15 .S .10 .20

PLOT

26

2

28

29

30

G A BUTLIN

36

37

38

40

Figure 13(a): Internal nodes (from 1 to 35) numbered sequentially starting
with the left-most column of internal nodes

OUT 1 TO SAVE NUMBERING REPRESENTED IN MATRIX

PLOT
2 TO LOOK AT PREVIOUSLY SAVED NUMBERING
3 TO LOOK AT CURRENT NUMBERING
internal nodes matrix
10 20 /30 40
w I f x
X C t ¥ 3
= xx an
xx xR
u  § x
34 x
x =
nx L 2]
: ¢ ] | nx
10 - ll‘
xx IR 3 super
xx LS nodes
Fr. s Es matrix
L 3 ] L 3.3
s ] K
20 w ll' J
K L3 xx
xx K
L $ ] X ux
o d
e :l
nn ] -
nn L xR
30 l"l
.=l " L ]
- -
23
t 1
un x
[ 3 1 by )
40 &
':- DY
t 3 3
XX L3

Figure 13(b): The corresponding matrix pattern showing a well banded
internal matrix (Band width = 12 nodes) but an ill shaped
super nodes matrix with non zeros at top right
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INTERACTIVE GRAPHICS FOR FINITE ELEMENTS

B! NUMBER ALL NODES., B2 SOME

B4 CENTRE ZOOM, BS5 VIEW MATRIX,

41

42

43

44

45

.6 ‘11 .16
.7 .12 .17
.8 .‘13 ‘18
.9 .14 .19
10 15 20

83 ZOOM,
B6 EXIT,
21 26
22 29
23 28
24 29
25 30

PLOT

31

32

S|

34

35

36

S/

38

39

40

Figure 13(c): Internal nodes numbered alternately starting with the middle

column of nodes

OUT 1 TO SAVE NUMBERING REPRESENTED IN MATRIX

2 TO LOOK AT PREVIOUSLY SAVED NUMBERING

3 TO LOOK AT CURRENT NUMBERING

Figure 13(d):

20

S0

40

PLOT

The corresponding matrix pattern with a larger band width
for the internal nodes matrix while the super nodes matrix

has no non-zeros at top right
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G ABUTLIN

(a) Loads and boundary conditions of dam/foundation

T

ny

(b) Loads and boundary conditions of ship girder

Figure 14: Loads and boundary conditions
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INTERACTIVE GRAPHICS FOR FINITE ELEMENTS

wb?&q

2. 'D\Naa N\
NN

W
' ARV
,/. n ﬁhﬁ.ﬂnfopﬁ%ﬁﬂoﬂaﬁﬁuﬁﬁaﬂw’dﬁaﬂcn
AL\ Y 3
AN f;—aarﬁa.am’?

- - -
Ty
.

"

FHE
A
W,

[4
(4

g

3 L)
T L 0"/
5///5%; LY

grammatic view

Figure 15(a): (reproduced from a SESAM paper) Dia

f the structure of

of finite element idealisation of part o

a tanker

“Optimisation and Automated

(reproduced from

Figure 15(b):

Design of Structures”, edited by Johannes Moe and
Kaare M Gisvold, Trondheim 1971) Typical internal

structure of a tanker
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of spine beam bridge composed of 3-D “bricks”

16(a): Section

Figure

al

removed to improve visu

of “bricks’’ but with some lines

Figure 16(b): Same set
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INTERACTIVE GRAPHICS FOR FINITE ELEMENTS

NV

(a) Assembled substructures of a centre line {b) Corresponding full finite element mesh
girder of a ship

N NZ

{c) Overall displaced shape under loads and (d) Display of numerical values of a displace-
boundary conditions shown in figure 14(b) ment following identification of a node

(e) Displaced shape of a single component (f) Stress profile along a section chosen with
{that has been selected with the lightpen) the lightpen

Figure 17 {(part 1): Output assessment
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(g) As (f) but without mesh

\\\\\\ \
\ \\\
N\

N\

<
N
N
\

(i} Principal stresses at each node

(k) Nodes marked at which compression

stress exceeds a specified critical value

G A BUTLIN

{h) Stress profile along boundary with
correlation numbers

L

-

Py

(i) As (i) but with mesh

(1) As (k) but for tension

Figure 17 (part 2): OQutput assessment



INTERACTIVE GRAPHICS FOR FINITE ELEMENTS

Figure 18: Typical finite element assembilies that will be more rapidly generated and checked
with the aid of interactive computer graphics

Top: Basic element mesh in highly stressed region of 45° — pipe intersection (reproduced
from ’'Application of computerised methods in analysis and design of ship structures,
marine structures and machinery,” Det Norske Veritas, Osto 1972)

Bottom: Finite element representation of a marine steam turbine (by courtesy of GEC
Power Engineering Ltd)
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