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FOREWORD 

The seeds of this Symposium were sown in the Autumn of 1973, when an increasing 

number of requests from Atlas Laboratory's engineering users for a comprehensive 

finite element package highlighted the necessity of ACL support for this type of 

computation. It became clear from informal discussions with existing users that 

two courses of action would be desirable - firstly, an assessment of the needs of 

engineers for finite element programs and numerical supoort, and secondly, the 

bringing together of people from the engineering and numerical fields to exchan~e 

ideas on the application of the Finite Element Method to problems of current and 

future interest. 

This Symposium was organised as part of an attempt to satisfy both the above criteria. 

To the extent that the papers presented gave useful and up-co-date information about 

the different aspects of the Method, and that the forty oarticipants were able to 

benefit from a cross-fertilisation of ideas between the different disciplines, the 

symposium can be regarded as a success. 

The Symposium took place on 26, 27 and 28 March 1974 at SRC's Cosener's House, a 

pleasant country house overlooking the River Thames at Abingdon. Fifteen papers 

were presented, together with periods of discussion, and there was a most useful 

session in which a Panel of eminent engineers, chaired by Professor Rosenbrock of 

UMIST, answered questions on SRC policy in the field of engineering computing. The 

meeting was also pleased to welcome Professor Edwards, chairman of the Science 

Research Council, as guest speaker at the Symposium Dinner. 

The papers which were presented have been edited and retyped, with figures redrawn, 

and are now published in this volume for the benefit of symposium participants as 

well as those who were unable to take part. Anyone requiring extra copies should 

contact the Librarian of the Atlas Laboratory who will be pleased to supply them 

free-of-charge to applicants within UK universities. Applicants requiring copies 

to be sent outside the UK may be asked to contribute to the cost of postage. 



It is appropriate here to express my gratitude to all those involved in the 

organisation of the symposium - the staff at Cosener's House for making us so com­ 

fortable, the administrative and secretarial staff at ACL for their hard work and 

cooperation, and particularly Di Byfield, who also acted as a most capable 

receptionist during the meeting and has since been a tower of strength in the 

preparation of these Proceedings. 

It is my earnest hope that the interest which was expressed in our Symoosium will 

continue to inspire cooperation between workers in the different fields of engineering, 

numerical mathematics, and computing. The Finite Element Method is a powerful 

computational tool in engineering and scientific research. It is undoubtedlv the 

most versatile of numerical techniques for solving a wide variety of structural and 

fluid problems, and given continued inter-disciplinary cooperation and SRC suoport, 

can take its place as the acknowledged leader of modern engineering computing methods. 

Jean E Crow 
Editor and Symposium Organiser 
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THE ROLE OF THE SCIENCE RESEARCH COUNCIL 
AND THE ATLAS COMPUTER LABORATORY 
E B Fossey 

Atlas Computer Laboratory 
Chilton 
Did cot 
Oxfordshire 
OX11 0OY 

INTRODUCTION 

This paper is intended to provide some background information against which the 

Finite Element Symposium may be set. This is important because unless it is given 

the outcome of the Symposium may not be properly understood. I do not intend 

giving a complete historical background, but I hope that I have provided enough 

detail to allow the present position and purposes of the Laboratory to be seen in 

their full context. 

THE SCIENCE RESEARCH COUNCIL 

The Council came into being in 1965 because the Government of that time adopted the 

recommendations of the Trend report on the organisation of civil science within the 

United Kingdom. It took over much of the support for scientific and engineering 

research previously provided by the then Department of Scientific and Industrial 

Research, the responsibility for the Royal Observatories at Edinburgh and Greenwich 

(actually Herstmonceux Castle), the support for the United Kingdom's part in Space 

Research, and lastly but by no means least the whole function of the National 

Institute for Research in Nuclear Science (NIRNS). This last body was set up some 

years earlier, chiefly to provide the Universities of the United Kingdom with 

facilities for research in high energy physics. The Rutherford Laboratory (then 

the Rutherford High Energy Laboratory) came into being as the home of the NIMROD 

accelerator, a project which was costly even by present day standards. The Atlas 

Computer Laboratory founded in December 1961 was also a part of NIRNS for reasons 

which we shall see later. 

From the beginning the Council's activities in the scientific and engineering fields 

have taken place either directly within its own laboratories or indirectly through 
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the provision of grants to Universities to allow the purchase of capital equipment 

and the support of research staff. These hallmarks of SRC remain unchanged 

although there has been over the years a shift in emphasis towards greater selectivity 

and, perhaps more importantly for us today, there is the need to judge the timeliness 

and promise of particular pieces of proposed work. We are undoubtedly going to· be· 

faced with a time of financial stringency and so this yardstick will become 

increasingly more important. 

I do not wish to spend a long time discussing the Council's organisation. A quick 

glance at the SRC Annual Report will give much useful detail of this kind. I do 

want now to turn to the other component in my title, the Atlas Computer Laboratory. 

THE ATLAS COMPUTER LABORATORY 

I have already indicated that the Laboratory was founded in December 1961. Its 

pu~pose was to house the large Atlas I computer and to provide facilities on it in 

equal proportion to three groups of custo~er, namely, the Atomic Energy Research 

Establishment (AERE), the Rutherford High Energy Laboratory (RHEL), and the British 

Universities. Precisely because the Laboratory was to serve these groups of user 

the management of the Laboratory was placed under NIRNS, and not under the United 

Kingdom Atomic Energy Authority which, through AERE, had carried out the negotiations 

with Ferranti Limited concerning the Atlas I computer. Atlas was, even at the time 

of its installation in 1964 and of the introduction of the service on it in October 

of that year, a computer with a power very considerably in excess of that available 

in many British Universities. In time both AERE and RHEL stopped using the 

facilities as the result of obtaining machines of their own. The fraction of time 

used by the Universities rose, of course, but other Government Departments and the 

Laboratory itself used some time for work of their own. 

The main uses of Atlas by the Universities arose as one would expect in the physical 

sciences, but engineering calculations always figured in the tables among the 

largest sources of work. Some of that work was a precursor to the work reported in 

this symposium. A most significant development during the formative years was the 

way in which the adoption of the X-RAY system as a standard program for use by 

crystallographers came about. A meeting of most of the crystallographers in the 

UK was arranged and on their advice the Laboratory set about mounting on Atlas the 

X-RAY 63 system developed at the University of Maryland. Once the transfer had 

been completed, the system was given active support not as one might have exnected 
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by trained crystallographers but by people experienced in the maintenance of large 

systems who could provide also active advice on its use. 

valuable and highly appreciated Laboratory service, 

This proved to be a most 

During the late 1960's the impact of the Computer Board in improving the University 

computer equipment led to a lessening of the position of the Atlas Laboratory as a 

source of extreme computer power. It also led to the decision in 1971 by the 

Science Research Council to align the services of the Laboratory much more with 

scientific aims of Council. The present procedure for obtaining time at the Atlas 

Computer Laboratory developed out of that decision, and it was reinforced by the 

allocation to the Laboratory of a 20% share in the Rutherford Laboratory's large 

IBM 370/195 computer installation. This share, together with the ICL 1906A 

computer at the Atlas Laboratory, now constitute the facilities whose resources are 

in the main distributed to users on the approval of the SRC specialist committees. 

We commonly talk of time awarded by the Committees as 'guaranteed" time. We mean 

that a user may expect to obtain each week an amount of time during the period of 

the award. It gives him the advantage of knowing that this work will not be depen­ 

dent upon the vagaries of the demands of other users and that he may therefore plan 

not only the use of the time awarded but perhaps more importantly of his own time. 

We believe that this can contribute very significantly to the pace with which the 

investigation or research is carried out. 

As a result of the Laboratory's greater identification with the general research aims 

of the SRC, the service aspect of the Laboratory has been preserved. Without it, 

the Laboratory could not hope to be an effective instrument in contributing to the 

development of computational science, that is, any scientific or engineering project 

in which the computer plays a central part. (Much work in Fluid Dynamics is of this 

character.) Howe~er, a proposal has been agreed that the Laboratory should play an 

active part in advancing the knowledge and techniques used in a few selected areas 

of computational science. It is to act as a focus for workers in fields selected 

to collaborate under the general scientific direction of a steering panel chosen by 

an SRC Board. No suitable name has been found for this kind of activity, but it has 

been referred to as a ''Meeting House". One such pilot project is now under way and 

the Laboratory looks forward to learning a great deal about this exciting develop­ 

ment, and to playing a full part in the programme of work. 
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SUMMARY 

What we see is therefore that the Council supports selected scientific programmes of 

timeliness and promise; that the Laboratory plays a significant part in· this through 

providing computing on a guaranteed footing to users whose applications have received 

approval from the SRC specialist committees; that the Laboratory can play an active 

part in the development of software considered to meet an overall need; and that the 

Laboratory may in the future be embroiled much more deeply through Meeting House 

activity, 
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CIRCULATION PROBLEMS 

CA Brebbia 
R Adey 

Department of Civil Engineering 
The University 
Southampton 
S09 4NH 

INTRODUCTION 

The environmental consequences and increasing cost of engineering works in tidal 

zones, lakes etc has made the prediction of the motions of water bodies increasingly 

important. The main objectives of tidal models are to predict the motion of the 

tide at certain loca~ions during or after construction of the engineering works, and 

detailed prediction of velocities for water quality studies in areas where known 

tidal data is remote from the region of interest. This prediction can be attempted 

using the shallow water equations deduced in this paper. 

For the case of harbours and similar water bodies it may be important to predict the 

harmonic response of the system, which will affect moorings, structures, etc. The 

equation governing this phenomenon can be obtained as a particular case of the more 

general shallow water equations previously deduced, 

Finally, by linearizing the shallow water equations the flow in lakes, cooling ponds 

and similar bodies can be approximated to provide an initial estimate of the circu- 

lation. Once the preliminary studies are finished the approximation can then be 

checked against the full equations. 

SHALLOW - WATER EQUATIONS 

The present state of the art and the lack of suitable data does not seem to justify 

more complex mathematical models for circulation in coastal regions, lakes, etc than 

those based on the numerical solution of the shallow water equations. Fully three 

dimensional solutions are not warranted at this stage as they would require a large 

amount of extra data and computer time. 
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CIRCULA T/ON PROBLEMS 

Finite difference solutions for circulation problems.have been implemented in the 

past. (Abbott et al 1973; Heaps 1973; Leenderstse 1970; Leenderstse and Gritton 

1971; Reid and Boding 1968; Water Quality Office 1971). They suffer from lack of 

mesh flexibility and, in some cases, difficulty in the satisfaction of the boundarv 

conditions. The method of finite elements allows here for a great flexibility in 

the analysis grid and the advantages of having to satisfy only the essential boundary 

conditions. 

In what follows a consistent derivation of the vertically averaged equations for long 

wave propagation is presented. 

The governing equations for the fluid, neglecting temperature effects, can be written 

-~ + 
hik D(pvk) 

a~ ~ + pbk = 
1 

_D_t_ 

i,k = 1,2,3 

a (pv.) ap 1 
ax:-- + at = 0 

1 

(1) 

(2) 

These equations are.difficult to apply for the solution of shallow water problems 

because of 

(a) the presence of the free surface 

(b) the variable nature of the boundary when the tide rises and falls 

(c) the large number of variables present in the solution. 

These difficulties can be solved by simplifying the equations into what are called 

the shallow water equations. The first simplification we will introduce is to 

reduce the third momentum relationship to 

- pg (3) 

where the negative sign for g is due to the direction of the axis relative to gravity 

(see Figure 1). 

Equation (3) implies that we have neglected all acceleration terms and corresponding 

- 6 - 



CA BREBBIA ANDRA ADEY 

stresses. Integrating (3) we have 

P = [ pgdx3 
3 

pressure. 

+ (4) 

where pa is the pressure acting on the surface of the water, usually atmospheric 

n is the elevation of the free surface. 

The remaining two momentum equations - in x1 x2 directions - can now be written 

+ + + (5) 

The above formula represents two equations, one fork= 1, the other fork= 2. The 

subindex i in this case indicates sunnnation, for i = 1,2,3. The vk are average 

velocities, p is the variable mass density and T is the sum of viscous plus Reynolds 

stresses (T ik = Tki). 

Our aim is now to integrate (2) and (5) with respect to x. 

continuity equation 

This gives for the 

l a (p V,) 
l <ax:- 

1 

+ ~) at dx 
3 

0 (6) 

where his the depth from a datum surface (not necessarily horizontal) and n is the 

free surface variable (Figure 1). 

Figure 1: Geometrical notation for 
shallow water equations -i---+------------X,,Vj 

h 
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Let us now define a momentum flux variable qk (mass per unit length and time) such 

that 

n n 

f 
-h 

(7) 

Note that p (x
1
, x

2
) is assumed not to be a function of x3. 

In order to integrate (6) we need to use the kinematic condition and Leibnitz rule 

for partial differentiation of an integral between variable limits. 

gives for instance 

The latter 

+ (8) 

and similarly for x2. 

The kinematic relationship for the free surfac.e can be written 

Un 
- Dt 

a(pH) -at- 

~ + at 
(9) 

Applying (7) to (9) to equation (6) we obtain 

0 (10) 

where H h + n. 

To integrate now the two momentum equations (5) with respect to x3, we define the 

following instantaneous velocities 

+ 
(11) 

+ 
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where v denotes the vertically averaged velocities and v' the vertical deviations. 

Hence 

n J vk dx3 -h (12) 

since < vk > = 0. 

We will assume tha~ the body forces are only those due to Coriolis effects. 

for the northern hemisphere 

Thus, 

(13) 

One can also assume that the surface and bottom slopes are small with respect to 

unity, 

Figure 2) 

Hence we can approximate the internal stress components as follows (see 

an an + Tl3 } - T -- T 1 I = {-Tll OX! 12 ax
2 surface s 

(14) 

oh oh - Tl3 } Tllb { "n a;- + T -- = 
12 d.X2 

bottom 1 

and similarly for T21s and T2lb' Note that the T's can be interpreted as external 

force components applied at the top and bottom. 

I 
I 
I 
/ 
I 
/ 

x, 

L ___ - - --x1 

( 
~l\.\2 

""i"i"J << I • (•l\. \2 ~;<<I 

Figure 2: Surface notation 
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CIR CU LA TION PROBLEMS 

We will now substitute (11) to (13) into the momentum equations integrated with 

respect to x
3

. One also needs to apply Leibnitz rule plus the kinematic condition 

to obtain the following result 

2 
aql a q1 a q1 q2 aN aN11 aN12 

+ -(-) + -(-) = 
__ p 

+ 
a xl 

+ ax2 
at a x

1 
H a x

2 
H axl 

an ah 
+ f lq 2 + pi dXl 

+ 
\Is 

+ pi ~-Tllb 
s b 1 

aq2 
2 

a Np 3N22 aN12 a qlq2 q 

~ + 
axl 

(-) + _a_ <-2-) 
= - ax2 + a½ + ½ H ax

2 
H 

- f q + a11 + + ah - p - 
\Is 

p - T21 2 1 Is ax2 lb ax2 b 

where 

(15) 

N p < N > p 

n f p dx3 - pg 
-h 

v' > 1 
(16) 

Furthermore, the Nik terms can be approximated by 

Nll 
~ 2Ell 

aql 

axl 

N22 ~ 2e22 
aq2 

ax2 (17) 

The Eik are generalized viscosity coefficients (Connor and Wang 1974). 

behaviour they become e
11 

= e
22 

= e12 = E. 

For isotropic 
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The bottom shear stresses are usually given by the following relationships 

c..L > .! 
c2 P 

(18) 

(g 2) .! 
C p 

where p is the density of the water, g the acceleration due to gravity and c the 

friction factor or Chezy's coefficient. Note that g/c2 is a dimensionless quantity. 

Sometimes a dimensionless friction , cm' is used instead of Chezy's c-0efficient. 

The relationship between them is simply 

C m 
g 
2 
C 

(19) 

The shear components on the surface of the water are generally due to wind and can 

be expressed as 

2 w2 111 
= y pa cos 0 

s 

2 w2 sin 0 12 I = y Pa 
s 

(20) 

where W is the velocity of the wind, pa the density of air and 0 the angle between 

the x
1 

axis and the direction of the wind. r2 is a dimensionless coefficient 

called the wind stress coefficient; its value is given as approximately 0.0026 

(Leenderstse and Gritton 1971). 

Lastly we will assume that p p
0 

1n all the terms except the pressure force terms. 

Equation (15) can now be written 

a q1 
2 a Nl2 a ql a qlq2 a 

Bl at + a;- Cttl + (-H-) = ax/N11 - NP) + 
ax2 

+ 
1 

a x2 

(21) 

2 
a Nl2 aq2 a q1q2 q a 

+ --(-) + _a_ (-2-) = 
ax2 

(N22 - Np) + 
~ 

+ B2 at ax1 H a x
2 

H 
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where the Bl and B.
2 

terms are given by 

2 2 
+ Y .pa W cos 0 - <-¾--> l ql (q/ + q 

2
) ! 

C p 2 H2 

cH + 
+ pa axl 

ah 
P g H a xl 

- f 2 2 - 1 q (q 
2 2) l 

ql + y Pa W sin 0 - (L) _ 2 1 
+ q2 

c2 P H2 

+ aH + P g H ~ Pa -a- 
xl ax

2 

(22) 

Boundary Conditions 

To solve the resulting system of equations (21) under condition (10) we need to 

establish the necessary boundary conditions. Consider that the S boundary 

('Figure 3) consists of two parts, land type boundaries S
1 

and ocean type S
2
• 

S~Nn,dS n 

NnndS 

(N11·Np)~ Jl,, ~ Nn1dS 

N.,dx2 ~ <r 
(N,2Np)dx1 

s, 

o1,.,c01(n,x1) 

•n2•coa(n, a2) 

s, 

··L x, 
Figure 3: Boundary definitions 

On the boundary reference system s-n, the momentum flux can be written as 

n 

qn = f P vn dx
3 = "nl ql + "n2 q2 

-h 

(23) 

n 

qs = f p vs dx3 = - "n2 ql + "nl ql 
-h 

where "nl = cos(n,x1) , an2 = cos (n,x
2
). 
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For the force resultants we have 

Nnl = anl (Nll .;. Np) + an2 1\2 

Nn2 = anl Nl2 + an2 (N22 - No) 

We can transform again to calculate N and N nn ns 

(24) 

N nn 

N ns 

+ 

(25) 

+ 

On land type boundaries we usually have 

0 (26) 

However, if a river enters into the water we can specify its mass input as 

{q} . . fl river in ow 

0 

on part of s
1 boundary. 

(27) 

On an ocean boundary, in 

forces 

N = N nn nn 

tlns = N ns 

principle, one has to prescribe the normal and tangential 

(28) 

but as the eddy viscosity terms in (21) are generally neglected the tangential flux 

or velocities can not be prescribed. Hence our boundary conditions reduce to 

qn = 0 or qn = qn on sl 

plus 

N = N = - N on s2 nn nn p 

(29) 
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FINITE ELEMENT FORMULATION 

In order to formulate our finite element model let us write equations (21) plus 

boundary conditions (29) and (10) plus condition (27) in the following weighted 

residual way 

2 
aN Jji5- q a q2q1 

{ at + _a_ <-1-) + ~ (-H-) + 
_p - B

1 
} oq

1 
dA ax

1 
H 2 a xl 

/ "nl (Np - Np) oq1 dA 

2 

!Ji~ 2 aN a q2q1 a q2 _£_ - B
2
} oq

2 
dA {at + -(-·) + ~ <T) + ax

1 
H 2 ax2 

J" 2 (N - N ) oq2 as S n p p 
2 

ffi~ aq2 
~} oH dA = f<q - q ) su dS + 

dX2 
+ ax1 at n n 

s1 

(30) 

(31) 

(32) 

where oq
1

, oq2, oH are variations which satisfy the boundary conditions in mass 

flux and el=vation. Note that if the elevation is known on s
2 

the boundary condi­ 

tions N = N will be identically satisfied (see equation (16)), hence the boundary p p 
terms on s

2 
do not need to be included in (31) and (32). 

The B. and aN /ax. terms can be combined to give 
1 p 1 

B * 1 

B * 2 

+ 2 2 (g ) 1 y p W cos 0 - - - 
a c2 p 

B - 2 

+ 2 
y Pa w2 sin 0 - 

( 33) 

- pgH a (H-h) 
a x2 
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The continuity equation (32) can be integrated by parts to render a simpler 

expression, ie 

a (pH) su) dA 
at 

oHdS (34) 

which has then to be solved together with the following final momentum equations 

2 

ffi5- a q a qlq2 * rat + -- (-1-) + (-H-) - B1 } 'oql dA = 0 
axl H ax2 ( 35) 

2 ff<~ a q2ql a q2 * {at + (--) + < tt) - B2} oq2 dA = 0 
ax2 H ax2 

The above variational statements are the starting point for the finite element models 

which we are now going to develop. 

functions apply for q. and H, ie 
1 

Let us assume that the same interpolation 

n 
0 !!.1 H (36) 

Substituting these values into the momentum and continuity equations (34)-(35) we can 

obtain 

0 
n,T 

aqn 
( M _:0. - F ) = 0 

11 - at ~1 

n 
n,T a12 

!2) 0
12 (~ at - = 0 (37) 

oHn,T 
aHn 

( M* .::::_ - F ) = 0 
-· at -H 

where 

fftT i dA * = ffp l t dA M = • M - 
(38) 

!.i =ff <t B~ - <l Al) dA 
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=ff 

- 'l A2) dA 

(38) 

+ 

'The A1 and A2 stand for the advective part of the particle derivative, ie 

2 
a q1 a q1q2 
a;- < 11 l + 

1 
~ (-H~) 

2 

a qlq2 
2 

a;- < Ii-) + 
a q2 

(39) 

1 
a;- t tt l 

2 

Equations (37) are a highly non-linear system of equations valid over one element. 

We can then assemble (37) for the whole continuum and write the resultant 

• M Q = F (Q ) ...., ...., ...., •.... o 
(40) 

expression for which we assume the mass flux and elevation boundary conditions has 

been taken into account. M is the global mass matrix, represents the 

derivatives with respect to time of the mass flux and elevation of all the nodes. 

All the other terms-are· included in ·F and computed at t = t , or if an iterative 
-. 0 

method is applied at the end of the time step, they are the values obtained at the 

previous iteration, Integration of (40) may be attempted using an explicit method 

of solution such as Runge-Kutta or Euler technique or an implicit method, eg 

trapezoidal rule, Galerkin's, etc. 

EXAMPLE 1 

A mathematical tidal model for the Solent was developed applying the theory des- 

cribed above (Figure 4). The model used 86 three node triangular elements with 
58 nodes. The motion of shallow waters is strongly dependent on the bottom 

topography, hence the finite element mesh was chosen in such a way as to represent 

the complex channels and shallow flats (Figures 4 (a) to 4(c)), The elevation, H, 

and two momentum flux parameters, q and q , were taken as nodal variables. This 
X y 

gives a total of 174 unknowns. 
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Figure 4(a): The Solent 

---===--"""!. KM 3 0 2 

Sm 

IOm 

ISm 

20m 

SECTION A·A 

Sm 

1cm 

ISm 

20m 
SECTION 8-8 

Figure 4(b): Cross sections and finite element approximation 

Figure 4(c): Finite element mesh 
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The ocean type boundary conditions (elevation only) were obtained from the 

Admiralty Tide tables for the Solent area. The model can take into consideration 

wind effects, bottom friction and Coriolis, although the latter was ignored for the 

Solent. 

•The time integration was carried out using fourth order Runge-Kutta and the model 

was started with zero elevation and flux initial conditions. 

The time step was selected using the Friedrichs-Courant-Lewy finite difference 

criterion 

t:,x 
t:, t .::. k>. (a) 

where>. is the celerity equal to /gii". h was taken to be depth in the deepest part 

of the Solent. 

For a regular finite difference grid the value of k is n. This gives a !:,t of 

approximately 20 seconds. After several tests this value was found to be too small 

and a !:,t=l20 seconds was finally adopted. 

The computer time for each !:,t was around one second on an ICL 1906A; that is 

approximately 6.5 minutes per tidal cycle, 

required for any problem. 

Usually 3 to 4 tidal cycles are 

For this example, bottom friction (but not wind and Coriolis effects) was considered 

with a value for Chezy's coefficient of 

c2 = 100 m/sec2 

throughout all the model. Local variations together with a more realistic value 

of the Chezy's coefficient are to be studied. 

Typical results for mean velocities and tidal elevations are shown in Figures 4(e) 

and 4(f). The velocities are in agreement with those of the Admiralty charts. 

The values of tidal elevations at Cowes depicted in Figure 4(f) closely follow 

those of the chart. 
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Figure 4(d): Typical Spring tidal curve for 
Southampton Water 

-7 -6 -5 -4 -3 -2 -I HW +I •2 -+3 1-4 ,..5 -+6 

Figure 4(e): Circulation 3½ hours after HW Portsmouth 

Figure 4(f): Tidal height at Cowes 
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HARMONIC RESPONSE OF WATER BODIES 

We will study how to predict the harmonic response of water bodies. We neglect the 

convective, friction, Coriolos, eddy viscosities and wind terms in equation ~21). 

This gives 

(41) 

We also assume that the amplitude n is small by comparison with the initial depth, 

h. Hence (41) becomes 

(42) 

For the constant density case, the continuity equation (10) can be written 

+ an 
p at 0 (43) 

On a land boundary, we prescribe the normal integrated velocity 

(44) 

On an~ boundary, the elevation is specified 

n (45) 

The differential equations (42) and (43) can be transformed to a single differential 

equation of second order by differentiating (42) by x
1 

and x
2 

respectively and 

substituting them into the continuity equation (43) differentiated with respect 

to t. This gives 

+ (h ~) - ..!.. a 2n 
a xl g 2 at 

0 (46) 
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where 

h zn, ax 
n 

The normal velocity boundary condition has been replaced with the equilibrium 

equation for the normal direction which is consistent as the order of the differential 

equation governing the problem has increased. 

Resonance and harmonic response due to tidal excitation can be investigated by 

expressing n as 

iwt (4 7) 

where w is the circular frequency. Then (43) becomes 

+ + 
2 w 

g 0 (48) 

For tidal excitation 

f 

For harmonic resonance, one considers a different set of homogeneous boundary 

conditions 

and determines the frequencies and modal shapes, 

Finite Element Formulation 

From (46) and the boundary conditions we can write the following weighted residual 

expression 
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JJ[a~1 
(h 2-.L) a x · 

2 

J<h :! - f ) o~ dS 

s2 

(49) 

Integrating by parts we have 

(50) 

If f = 0 the RHS of equation (50) disappears. 

approximated on each element by 

Assume that the ~ variable can be 

(51) 

where 0 is an interpolation function. n 
~ are the nodal unknowns. 

For an element we have 

w
2 

T J n - - 0 0 dx1 dx
2 

~ g ......, ....., ......, 

We can write (52) as 

K ~n 2 M ~n = p - w - - 
where 

K = Jfh(ll 0 T + £,2 t,2) dxl dx2 ...... , 1 ..... , 1 

M = ½ Jf et dxl dx2 

l = J? f dS 

6_fn,T J [ f dS 

(52) 

(53) 

(54) 

For the whole continuum we have, 

p 
(55) 

where K and M are both symmetric. 
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EXAMPLE 2 

As an illustration the case of Duncan Basin, built during the Second World War in 

Table Bay Harbour, South Africa, was analysed, This basin has been extensively 

studied, (Wilson 1954) as the features of the Bay are such that some of the seiche 

frequencies are greatly amplified ,(Figure 5(a)). This fact has been demonstrated by 

model experiment, harmonic analysis of seiches programmes and simple theoretical 

analysis, which can give reasonable results here as the shape of the basin is 

rectangular. 

ijSLAND 
TABLE 
BAY 

0 

FIRST (COAASE) MESH 

SECOND (REFINED) MESH 

Figure 5(a): Finite element idealisation of Duncan Basin 

It was decided to carry out an eigenvalue-eigenvector finite element analysis using 

a coarse mesh with 30 six node elements and 77 nodes. In this way the first natural 

frequencies were estimated (broken lines in Figure 5(b), T = Zn). w 

Afterwards a more refined finite element analysis was carried out by dividing the 

basin into 168 elements, which gives 377 nodal unknowns. Periods T from 1 to 15 

minutes were chosen and a unit elevation~ input at the entrance of the harbour. 
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If we know the frequency w of the waves and its elevation~ at a given (ocean type} 

boundary, equation (55) can be written 

where the elements of the P vector are due to multiplying the known~ elevations by 

the elements of Kand w2~:nd passing the result to the right hand side. 

The results for berths E and Oare plotted in Figure 5(b) for periods T ranging from l 

to 15 minutes (full lines). 
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Figure 5(b): Harmonic response analysis of Duncan Basin 

The finite element frequencies are in agreement with the experimental frequencies 

found on the physical model. 

damping in the harmonic study. 

The error in amplitude values is due to the lack of 
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CIRCULATION IN LAKES 

Flow in lakes, cooling ponds and other water bodies can be approximated to provide 

an initial estimate of the circulation, which can then be checked against the full 

shallow water equations. This flow is governed by linearized equations which are 

obtained in first instance by neglecting the inertia terms in the momentum equations, 

~ 

-fq2 + pgH E!]_ + ( T 1 I - T I ) = 0 
dXl s 1 b 

(56) 

+ an 
h21 - T 2jb) 0 fql pgH- + = 

ax2 s 

and the time dependent terms in the continuity formula 

+ 0 (5 7) 

If then values are much smaller than the h we can write Hz h in (56), hence 

-fq + o gh E!]_ + (Tlj - T 1 I b) 
= 0 2 axl s 

fql + pgh E!]_ + ( T 2 I - T 2 I b) 
= 0 ox

2 s 

(58) 

The momentum components can now be defined as 

q. 
l 

h ~ l Vi dx3 (59) 

The Tls terms are due to wind stresses and Tlb are bottom friction stress components. 

The latter are assumed here to be linearly proportional to the mean momentum 

components 

(60) 

We can now cross-differentiate equations (58) assuming that the derivatives of hare 

·negligible (ie the bottom slope is small), and afterwards subtract both equations. 

This gives, taking continuity into consideration, the following equation 

(61) 
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One can propose a stream function such as 

(62) 

Whence formula (61) becomes 

w (63) 

where 

w 

The boundary conditions associated with this equation are 

0 on 'land' boundaries 

(64) 

on 'inlet' boundaries 

Equation (63) plus conditions (64) can be written in variational form and the finite 

element technique can then be applied. 

inviscid flow can be used. 

Any of the programs already developed for 

Note that in the above formulation we have included the Coriolis parameter but 

assumed that it is constant for all the lake, ie the lake is small enough to neglect 

local variations in the Coriolis forces. 
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DEFINITION OF STRUCTURAL ENGINEERING 

Some while ago the term 'structural engineering' was used primarily in Civil 

Engineering fields. The use of the term 'structure' has increased with the advent 

of the finite element method and it is my first intention to provide some definition. 

In this paper I shall be concerned with the use of the finite element method for 

obtaining some knowledge about stresses, strains, displacements or natural frequencies 

of vibration of any body which is made of solid material. This encompasses an 

enormously wide range of engineering applications such as bridges, aircraft, machine 

tools, engine components and drilling rigs. This rather wide field of application 

arises because the mathematical techniques and in many cases the computer programs 

themselves are identical for all these cases. The stiffened plate elements used to 

solve a bridge problem may be identical to those used to model an aircraft fuselage. 

The same solid elements may be used for modelling dams, rock strata and diesel engine 

crankshafts. All problems of practical interest happen to be highly irregular. 

THEORETICAL BASIS FOR THE FINITE ELEMENT METHOD APPLIED 
TO STRUCTURAL PROBLEMS 

In a finite element analysis we proceed by dividing the irregular structure into a 

number of simple elements of finite size. Whether we are interested in the displace- 

ments or stresses or the natural frequencies of our structure we next make some 

assumption about how the displacement within this element varies. There are alter- 

native but less common formulations in which we make assumptions about the stresses 

or strains. The displacement within the element can be characterised by a list {u} 

of displacements at the element nodes. It happens that nature behaves in such a way 

that energy is minimised in any structural situation. We therefore write down an 

expression for energy storage which involves a product of stresses with strains. We 

can obtain the strains by differentiating {u} and in most situations the stresses will 

be linear in the strains. Thus our energy becomes a quadratic {u} 
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Strain energy, T (1) 

The use of Castigliano's theorem tells us that a differential of strain energy with 

respect to displacement is a force and therefore we have a linear relationship between 

the forces on an element and the element dis~lacements 

{F } 
e 

a (T) 
~} 

e 
[s ] {u } e e 

(2) 

The [SeJ matrix, which is referred to as the element stiffness matrix, can be found for 

each of the elements in the structure. In order to form a mathematical model of the 

complete structure we observe that the displacements between adjacent elements must 

satisfy certain continuity requirements and additionally that the forces acting at a 

node must be in equilibrium. The process of joining together the finite elements is 

often termed merging and in static problems involving known applied loads the resulting 

set of equations is very similar to equation (2) except that all the matrices are very 

much larger. 

[ S] { u} 

The overall set of equations will be written as 

{F} (3) 

In equation (3) the matrix [s] is square, symmetric and very large and can be arranged 

1n a highly banded form. Fortunately [s] appears to be quite well conditioned even 

if there are thousands of rows and columns. The set of equations (3) is normally 

solved using Gaussian elimination or Choleski factorisation. The former method 

appears to be in most common usage now especially if a frontal technique is adopted to 

minimise core requirements. 

TYPES OF FINITE ELEMENT 

There are a number of quite different types of structural finite element (see Figure 1). 

The first group, beam elements, are essentially one dimensional although they may be 

curved and they may be used to form three dimensional structures. 

Membrane type elements may be used for two dimensional situations in which the dis- 

placements are all in the plane of the element. 

mesh for a turbine disc, 

Figure 2 shows a two dimensional 
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One-dimensional 
elements 

/ 

LJ· 
1
~ I 4 a 

• 
Two-dime . o• bending ei"s,onal and ements 

7 

I 2 
5 

Three di men­ 
sional element 

Shell element 

Figure 1: Types of finite element 

t • O-r"• THICKNESS 

Figure 2: A two-dimensional mesh used for analysing a turbine disc 

Plate bending elements have the same geometry as the membrane elements except that the 

energy storage mechanisms are associated with displacement perpendicular to the plane 

of the element, 
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The membrane and plate bending families may be combined to give shell elements in which 

transverse and membrane displacements are considered. Figure 3 is an example of a 

civil engineering structure that involves shell type elements. Shell type elements 

can usually be extended to include curvature of the element plane, 

BOX-SECTION MEMBER 

Figure 3: A truss problem involving 
shell-type elements 

Figure 4: Parts of a turbine casing idealised using three-dimensional elements 

Full three dimensional elements are only used if none of the simpler structural elements 

is capable of achieving the required complexity of displacement distribution, 

shows portions of a turbine casing which comes into this category. 

Figure 4 
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In general it is possible to mix all types of finite element together in one idealisa­ 

tion provided that the appropriate continuity and equilibrium constraints are applied 

between the elements. Figure 5 shows an idealisation of part of an aircraft structure 

in which curved shell, flat shell and curved beam elements are all used toge·ther in the 

same idealisation. 

I 
CURVED BEAM 
ELEMENTS 

PLATE ELEMENTS WITH 
MEMBRANE AIID BENDING 
ACTION SUPERIMPOSED 

CURVED SHELL 
ELEMENTS WITH 
VARYING THICKNESS 

Figure 5: An idealisation involving a mixture of shell, plate and beam elements. 
(Only one half of the idealisation is shown since there is symmetry about 
the centre plane. Symmetric or antisymmetric boundary conditions are 
used to obtain all the modes of vibration.) 

When the finite element method first became popular very simple finite elements were 

used. It became clear that more complicated elements gave better solutions for a 

given amount of data preparation and computing effort. 

plicated in one of two ways 

Elements may be made more com-- 

(i) by increasing the number of nodes per element; 

(ii) by characterising the displacement within the element in 

terms of nodal strains as well as nodal displacements. 

The first of these two methods has proved to be of enormous value and the isoparametric 

elements are generally regarded as being the best compromise from considerations of 

accuracy and ease of practical use. 
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TYPES OF STRUCTURE ANALYSES 

The most commonly occuring problem is that defined by equation (3) in which we wish 

to examine the behaviour of a structure under the influence of some known loads. 

Solution of the equations for {u} gives us the displacement of a system which may be 

differentiated to give strains. Stresses may be found from strains using linear 

material laws. Often the list of forces { F} will be derived from a distributed 

loading such as a pressure or gravity. A computer program ·can easily calculate {F}; 

thus a distributed loading problem is virtually identical to a problem in which known 

point loads are applied. 

We often wish to calculate the natural frequencies of vibration of a structure, In 

such cases we subtract the kinetic energy from the strain energy to give a Langrangian 

Langrangian, L T V (4) 

where Vis the kinetic energy, The Langrangian is minimised with respect to the dis- 

placements again and under sinusoidal conditions we obtain the eigenvalue problem 

[s] {u} w2 [M] {u} {O} (5) 

where [M] is the system mass matrix and w is the radian frequency. The solution of 

equation (5) for the eigenvalues w2 and the eigenvectors {u} appears to be a formidable 

task for systems of practical size. However, it happens that we can use static con- 

densation or eigenvalue economisation in order to reduce the thousands of degrees of 

freedom to at most 100 without any appreciable loss of accuracy, 

equation (5) gives a steady state vibration. 

writing 

[s] {u} 

The solution to 

Transient effects may be studied by 

{F ( t)} (6) 

where {F(t)} represents some arbitrary forcing function, Damping may be included 

into equation (6) in various ways. It should be noted however that wave propagation 

problems cannot be solved by the finite elem2nt method in its usual form. Present 

methods only give standing wave solutions and are therefore inapplicable in shock 

situations. For many structures there is a particular load which will cause the 

body to buckle. As usual the strain energy of the structure is important. We also 

need to consider the work done by the load on second order displacements. By 

following through the mathematics we derive an eigenvalue problem which is similar to 

that of equation (5) 

[s] {~} a [s'] {u}={O} (7) 
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where [s~ is the second order or geometric stiffness matrix calculated for a particu­ 

lar applied load and a is the number by which that load needs to be multiplied in order 

to cause {u} to take up any required value; that is, to cause the structure to buckle. 

All the situations considered so far have been within the realms of small displace- 

ments, first order theories and linear stress-strain relation. Wherever possible 

structural analysts will use simple theories because they tend to be at least an order 

of magnitude cheaper to use than the corresponding second order theories. However, 

there are a wide range of structural problems in which non-linearity is important. 

The simplest class of non-linear problems is that in which the displacements which 

the structure undergoes are sufficiently large to change the geometry to such an extent 

that the stiffness matrix is not constant as the load is applied. As a rule of thumb 

these geometric non-linearities will occur when the displacement of a shell surface 

approaches the thickness of that surface. In the large displacement problem we know 

that [s) is a function of {u} but we have no motivation for finding a relation between 

them since equation (3) would become a very large non-linear set of equations in {u}. 

Instead we proceed by observing that the structure is still reasonably linear for 

small increments of load and we can recalculate or adjust [s] as the total load is 

applied in steps. Figure 6 shows how the non-linear effects in a food storage con- 

tainer affect the final deflection. 

p 

INTERN.A.. PRESSURE 

• --- • ----L-:---- • ---- - ---- 
ACTUAL PRESSURE DISPLACEMENT 
RELATIONSHIP USING REVISED 
COORDINATES WltlCH EXHIBITS 
STIFFENING. BASED UPON LINEAR 
ELASTIC MATERIAL LAW. 

Figure 6: Non-linear behaviour of a thin pressure vessel 

b - LINEAR ELASTIC 
LINE 

The materials of which structures are made often exhibit non-linearities in the stress 

strain relationships. At a particular stress level a material will yield and flow 

plastically (see Figure 7). The most common way of solving a problem involving 

plastic flow is to calculate first of all the stresses and strains which occur when a 

small increment of the load is applied. This calculation is based upon the linear 

elastic load and therefore some of 'the stresses and strains calculated do not lie on 

the true material curves. The amount of discrepancy between a typical point and the 

true curve is equated to an initial strain and a set of loads which would be necessary 
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ACTIML STRESS- 

SlllESS 
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Ii 

~
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J- STRESS·STIUJN 
IL LAW 

F.igure 7: Stress-strain relationship for an 
elastic-plastic material 

STRAIN 

to move these points back to the material curve are calculated, The process is not 

exact and an iterative technique is needed. When all points lie sufficiently.close 

to the true material curve a further increment of load is applied. Figure 8 shows the 

manner in which the yield surface varies with load for a bolted flange joint, In 

'75e.c111ao.c1. IIOLT 
LOAD 

GASKET 
REACTION 

AXISYMMETRIC 

Figure 8: The growth of the plastic region in a pipe flange 

linear elastic analysis it is assumed that if a set of forces are constant in time 

then the stresses and displacements are also constants. In practice if we take a 

tension bar and apply a load then there will be a rate of straining which is a highly 

non-linear function of temperature and stress. The solution for displacements and 

stresses in a structure is therefore a function of time and we proceed by considering 

a particular time at which we know all the temperatures, displacements and stresses. 

With a knowledge of material properties we can calculate the rate of straining. After 

a suitably small time increment we can determine the loads which are implied by the 

change of strain and carry out a linear elastic solution for a set of incremental 

displacements, Figure 9 gives an example of a creep solution. 

The creep problem involves a time variation of displacements and this leads naturally 

on to a concept which has been recently gaining popularity in finite element 

structural analysis. 
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,' 

Figure 9:. Creep results for part of a turbine (Stress contours showing the manner in which a stress 
distribution is redistributed with time. The idealisation represents the intersection between 
a toroid and a cylinder in a lead model of a turbine casing.) 

Until a few years ago a time dependent finite element solution was obtained by using 

finite elements in space and the finite difference method in time, Recently a number 

of workers have investigated the possibility of using finite elements in the time 

coordinate. This technique may well become quite standard within a few years. 
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Figure 10: Research effort in finite element 
methods 
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THE FUTURE OF FINITE ELEMENTS 

It is inevitable that this discussion of future trends is highly personal, 

Let us consider first the theoretical methods associated with finite elements. Finite 

elements were originally developed by engineers in order to solve their problems. It 

is only quite recently in the history of finite elements that considerable mathematical 

investigations of their properties have been carried out. Figure 10 shows approxi- 

mately how research trends have progressed. This process will certainly continue, it 
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is probable however that the feed-back to engineers using the method will be in terms 

of improved understanding of the method and its properties rather than any startling 

new techniques. The days in which everyone is developing a new and better element 

seem to be nearly over, at least as regards structural applications of the finite 

e le men t method. 

There are probably less than 10,000 people in the UK who have a reasonable working 

knowledge of the finite element method. This is a very small number considering the 

enormous increase in the usage which will take place in the next 10 years. There is 

a very pressing need to provide widespread education. All Universities and 

Polytechnics ought to include a course on the subject for all students and not for 

just a selected few who happen to choose a particular option. Since finite element 

methods are applicable to an enormous range of problems a finite element program ought 

to be very general. This implies large programs. Large finite element programs will 

become more readily available. There is a danger that these large programs might be 

treated as black boxes and in order to prevent this they must be transparent. Users 

must not be in awe of the code. In particular large programs should 

(i) be written in FORTRAN 

(ii) 

(iii) 

have both internal (comment) and external (manuals) documentation. 

be written in such a way that users can modify or 'play' with them. 
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Figure 11: Finite element data produced with 
the aid of a digitiser 

Figure 12: Finite element mesh generation 
with the aid of PAFBLOCKS 
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Even with the latest mesh generation aids it is still a rather laborious process to 

generate a finite element mesh for a complicated structure. The following mesh 

generation aids which are the subject of much development will probably be augmented 

by new techniques in coming year. 

(1) Use of special purpose programs which are limited to narrow classes of structure. 

(2) The use of a digitiser (see Figure 11). 

(3) The use of building block systems (see Figure 12). 

(4) Interactive graphics. 

(5) The use of mesh generation languages. 

The problem of interpreting output is similar to that of mesh generation and similar 

developments can be expected in this field. It is imperative that complex finite 

element idealisations be checked thoroughly. This is possible with the aid of 

various views and exploded plots, with numbered nodes and/or elements. It is al ready 

common for the results of a two dimensional stress analysis to be plotted in various 

ways to show the principal stresses as vectors (Figure 13) or to show stress contours 

(Figure 14) . There is no really satisfactory method at the moment available for 

Two-dimensional stress out· 
put - vectors representing 
principal stresses in a 
portion of a turbine disc. 
(The arms of the crosses 
represent, to scale, the 
magnitudes and directions 
of the principal stresses) 

AXIS OF SYMMETRY 

Figure 14: Two-dimensional stress output - 
contours of stress in a gyroscope 
flywheel. 
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giving three dimensional stresses in a convenient form. 

remedied. 

This situation ought to be 

In the case of really complicated structures it is inevitable that a finite element 

analysis will involve considerable simplification. Research is necessary in order to 

provide guide lines so that the simplified mesh provides a reasonable accuracy. 

Since we expect the finite element method to become more widely available and to be 

used on more complicated structures the need for building safeguards into finite 

eler,ent systems will become even more essential than it is today. Graphical checks 

on idealisations, such as that shown in Figure 15 are now universal and will become 

more sophisticated. 

Figure 15: Data checking with the aid of a graph plotter 

In conclusion I consider whether or not the finite element method has a long term 

future. For the forseeable future engineers will be interested in the analysis of 

very complicated shapes, Closed form solutions are always likely to be impossible 

for practical problems and we shall have to resort to dissecting the structure into 

components of manageable simplicity. The finite difference method (FDM) was 
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developed before the finite element method (FEM), The FDM turns out to be less con­ 

venient and less accurate than a high order FEM. Because of this there has been a 

tendency to improve the FDM as shown in Figure 16, A recent newcomer to the field 

has been the boundary integral method (BIM), These elements may not always have the 

same properties as those that we know of today, but is very likely that large parts of 

the existing technology will continue to be directly useful and indeed the method of 

the future may well be called the xxxxx finite element method, 

' ' ' ' ' 

VFD Variational Finite Difference 

FOEM Finite Difference Energy Method 

VMFO Variable Mesh Finite Difference 

----;.-- Main Lines of Development 

- +- - Cross Fertilization of Ideas 

[g] Box Represents a Computer Program 

' ' 
Finite Difference 

SIMPLE 

Finite Element 

VMFD 

' ,...., __ 
' - - 

. - - - - - - - - - - - ,._ - - - --.. -_ ---t 
~- - -­ - -- - - - .- ~'""'" r·" ..... 

VFD 
FDEM 

PLANE STRESS 

, , 

Ii, 

MORE COMPLICATED 
FEM 
PLATE BENDING 
3D SOLIDS 

MORE NODES 
PER ELEMENT 

MORE OTHER VAR. 
FREEDOMS METHODS 
PER NODE 

GENERAL FE PROGRAMS 

1 
Figure 16: The relationship of various methods of solving structural engineering problems 

- 41 - 



A FINITE ELEMENT FORMULATION OF HEAT 
CONDUCTION AND HEAT AND MASS TRANSFER 
PROBLEMS 
R W Lewis 

Department of Civil Engineering 
University of Wales 
Singleton Park 
Swansea 
SA2 8PP 

ABSTRACT 

The paper presents techniques for dealing with transient heat conduction problems 

with non-linear physical properties and boundary conditions. Also investigated is 

the coupled phenomenon of heat and mass transfer in porous bodies. The numerical 

results obtained for both these types of problems are compared with known analytical 

results and indicate good agreement. 

INTRODUCTION 

The finite element method has been applied successfully on many occasions to linear 

situations involving heat conduction problems (Wilson and Nickell 1966; Zienkiewicz 

1971; Zienkiewicz and Parekh 1970) but relatively little work has been reported for 

temperature dependent thermophysical properties and/or non-linear radiation-convection 

boundary conditions. In this paper a method is presented of solving simultaneously 

for temperature dependence of thermal conductivity, heat capacity, rate of internal 

heat generation and surface heat transfer coefficients. A three time level 

difference scheme is used for the time marching which obviates the necessity for 

iterations within a time step. 

In the general formulation, latent heat effects are approximated by rapid variations 

of heat capacity within a narrow temperature range as shown in Figure 1. If the 

phase change occurs with almost no variation it is convenient to define a new variable 

H (enthalpy) and then estimate average heat capacity values based on well known 

enthalpy properties. 
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:x: 
u 

k(T) 

pc(T) 

pc(T) k(T) 
I 
I 
t.26T 

Figure 1: Variation of thermal conductivity. heat capacity and enthalpy 
with temperature 

The phenomenon of heat and mass transfer in porous bodies is in many cases not 

accompanied by filtration flows of liquid and/or vapour. Extensive reviews of 

typical examples are quoted in the literature (Bonacina and Comini 1971; Little 1961; 

Luikov 1966) and a widely accepted mathematical model has been establised through the 

use of the thermodynamics of irreversible processes (Luikov 1966). The resulting 

system of coupled partial differential equations are extremely rlifficult to solve 

even for conditions of constant total pressure which is the case considered here. 

In consequence, very few analytical solutions are available for comparison with the 

finite element model. However, the cases considered in this paper indicate very 

favourable agreement between numerical and analytical results. 

MATHEMATICAL MODELS 

Non-linear heat conduction with phase change 

The problem considered in this paper is governed, in a region n, by a quasilinear 

parabolic equation of the following form:- 

aT 
pc at (1) 
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with the following boundary conditions: 

T (la) 

and 

ar ar ar 
k(- i + - i + - i ) + q + q + q 

dX X <ly Y OZ Z C r 0 on r2 (lb) 

where k is the thermal conductivity, pc is the heat capacity, Q is the rate of 

internal heat generation and all are dependent on temperature. The terms i , i 
X y 

and i are the direction cosines of the outward normal to the boundary surface while z 
q, qc and qr represent the imposed heat flux and the rates of heat flow per unit area 

due to convection and radiation. The following relationships are usually written:- 

a (T - T ) 
c ac (2a) 

and 

(2b) 

where a is the convective heat transfer coefficient, £ is the emissivity, a is the 
C 

Stefan constant, "r is a parameter related to the effects of radiation by the 

expression 

(2c) 

and Tac and Tar are the equilibrium temperatures for which no convection or radiation 

occurs. 

In general k, pc, Q and "rare thus temperature dependent functions with k, pc and 

Q being known numerically and "r being expressed explicitly by equation (2c). 

Coupled heat and mass transfer in porous bodies 

If the assumption of constant pressure throughout the moist body is correct then the 

exchange of heat and mass is described by the following equations (Luikov and 

l1ikhailov 1965). 

2 au 
A V T + Erpcm at q 

(3a) 

(3b) 
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where T and u are the heat and mass transfer potentials, pc the heat capacity,• the 

conductivity, E the ratio of the vapour diffusion coefficient to the coefficient of 

the total diffusion of vapour and liquid and 6 is the temperature gradient coefficient. 

The problem as defined by equation (3) can be re-written in a generalised form as a 

system of interconnected parabolic equations: 

aT a
2
T a2T a2T a¾ a2u a¾ C -=L (-+-+-+L (-+-+-) 

q ae q ax2 n2 az2 e ax2 n2 az2 

au a
2
T a

2
T a2T a2u a2u a2u C -=L (-+-+-) +L (-+-+-) 

m ae 6 ax2 aY2 az2 m ax2 aY2 az2 

(4a) 

(4b) 

with the following boundary conditions 

T = T on rl w 

ar or ar 
L ( a X Y + ayY + a y ) + J + A (T - T ) + A (U - U ) = 0 on rl q x y Zz q q a E a 

u = u on r3 w 

au au au 1m(axYx + aiYy + Wz) + Jm + Ao(T - Ta) + Am(u - ua) = O on r4 

(4c) 

(4d) 

(4e) 

(4f) 

In the above expressions T = T/T , U = u/u , 8 = t/t , X = x/e, Y = y/e, Z = z/e a a o 
are dimensionless variables, the C's are generalised capacities, whilst the L's, 

A's and J's can be thought of respectively as generalised transfer coefficient and 

specific fluxes. 

Lewis et al (1974) have shown that equations (4) can be made symmetrical by a suitable 

definition of the coefficients, and it is also convenient to write equation (4d) 

and (4f) -in the following form: 

ar ar ar * = 0 (Sa) 1/axYx + a'fYy + W z) + J q on r2 

1 ( au au au ) J * = 0 on r
4 

(Sb) m axYx + aiYy + az'Yz + m 

* * where J and J are defined by the following expressions: q m 

* J = J + A . (T - T ) + A (U - U ) 
q q q a E a 

* J = J + A0(T - T) + A (U - U) m m a m a 
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and 

L 
E 

en o/, 
m q 

FINITE ELEMENT FORMULATION 

The unknown functions in both the problems are approximated throughout the solution 

domain by the relationships: 

T :: T 
K 

= 'N (X,Y,Z)T (6) /. r r 
r=l 

= NoT (6a) 

and 

K 
u = u =IN (X,Y,z)u (e) 

r=l r r 
= N•U (6b) 

where N are the usual shape functions defined piecewise element by element, T (or T) r r 
and Ur (or,!!) being the nodal parameters. 

The simultaneous equations, allowing the solution for K values of T in the case of r 
the heat conduction problem and for 2K values of T and U in the coupled heat and r r 
mass transfer problem are obtained using Galerkin's method as shown by Lewis and 

Garner (1972) and Zienkiewicz and Parekh (1970). 

In the case of the non-linear heat conduction problem the discretized equations can be 

writte.n in matrix form as: 

• KT+CT+F 0 (7) 

where typical matrix elements are 

K .. 
lJ 

C .• 
lJ 

f aN. an. aN. aN. aN. an. 
k(-' --1. + _i --1. + _i --1.) dil ax ax aY n az az 

ne 
+ f (o. +o. )N .N .ar 

C r i J 
re 
2 

(8) 

N.N.dil 
i J (9) 
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and 

F. 
1 

- a 
C 

T 
ac 

- a T ) df 
r ar (10) 

The equations for the coupled heat and mass transfer problem are more complex but 

can be transformed into a pseudo 'one-degree of freedom' problem. 

equations written in matrix form are: 

where Kand Care 2K x 2K symmetric matrices 

K = [Kq KE] 

Ko Km 

C = [:q : ] 
m 

0 

ft and J are 2K vectors 

0=[T,U)T - - - 
J = (J J ]T ....., q, rn 

The matrices K, K, K, and K are of the following fonn q £ u m 

K .. 
1] / 

aN. aN. 
L(--1 _1_ + ax ax 

rt 

aN. aN. aN. aNJ- 
1 ,l l ) dQ "aY"aY+azaz 

The C and C matrices are of the form q m 

c .. = f C N.N. dQ 
1] 1 J 

ne 

and the 'load' vectors J and J are as follows: -q "'Ill 

(J.) = f(J* * + J L /L ) N. er 
1 q q m £ m 1 

re 

(J .) = JJ* * L/L ) x.er + J 
1 m m q q 1 

re 

The resulting 

(lla) 

(llb) 

(llc) 

(lld) 

(lle) 

(12a) 

(12b) 

02c) 

(12d) 
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The equations 

values of the 

the vector J. 

* * (lla) are non-linear as the generalised fluxes J and J depend on the q m 
potentials at the external nodes,but the non-linearity is confined to 

The time integration scheme for both these types of problems utilizes a three-level 

method first proposed by Lees (1966). 

follows:- 

The governing equations are approximated as 

0 (13) 

This, after some algebra, results in the following recurrence formula for final 

integration: 

[ 
3 ] -1 T = - K + -- C K T + K T -t+llt t 21\t t ( t--t t-t-llt 

-3-cT +3F) 21\t t,-,t-llt -t 
(14) 

This method has the advantage of not requiring iteration as the matrices K, C and vector 

l are evaluated at the mid-time interval and known values of T can be obtained for anv· 

two consecutive time steps. This algorithm has also been shown to be unconditionally 

stable and convergent in the context of both finite difference and finite element 

methods. 

The heat conduction problems solved in the content of this paper are non-linear and 

also include a phase change as the melting or freezing points are reached. 

Therefore, attention has to be paid to the sharp peak present in the heat capacity 

versus temperature curve. This problem is circumvented by interpretation of 

enthalpy, which is a smooth function of temperature even in the phase change zone 

(see Figure 1), and is given by: 

T 

H =f pcdT 
To 

(15) 

Thus, the heat capacity values at the integrating points can be approximated by 

determining the gradient of enthalpy with respect to temperature, ie 

< c> _ .!. ( aH _cl!_ + aH 5- + aH ~ 
P x,y,z = 3 ax aT ay ar az ar) (16) 
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RESULTS 

The first example to be investigated was the solidification of an infinite slab of 

liquid which has been solved exactly by several authors (Luikov 1968), The problem 

is two dimensional and has thermal dependent heat capacity and thermal conductivity, 

The heat capacity is assumed to vary in a discontinuous manner (as a pulse) between 

the liquid and solid phases while the thermal conductivity varies linearly as shown 

in Figure 1. The progress of the freezing front and the spatial temperature 

distributions are compared with analytical results in Figures 2 and 3. 

- X 

Figure 2(a): Solidification of a slab in liquid - finite element mesh. Non conductive boundaries 
are assumed throughout except at the face x = 0. Slab thickness L = 1m 

0·2 

E .., 

O·I 

' 

1j • 283 °K 
~ ,;. • 2S3 °K 1-'-- 

1--- ,.__.. •..... , .••.. 
1....-· 

•/ 
1/ 

L r..-'/ - ,, 
,.,.,. 

,1/ 
1-' 

I/ - ANALYTICAL SOLUTION 

L. • FINITE-ELEMENT SOLUTIONS • - 

. . I 
0 IO 20 30 

Figure 2(b): Solidification of a slab in 
I iqu id - progress of the 
freezing front 

The position of the freezing front is given by the isotherm Tf - dT. The initial 

temperature was. taken to be above freezing as previous investigations have shown that 

such conditions are more critical numerically than those with water initially at the 

freezing point. The phase interval 26T was assumed as O.SK but the results proved 

to be relatively insensitive to this value, 
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20 

10 

Figure 3: Temperature distri­ 
butions at different 
time values during 
the freezing process 
referred to in Figure 
2. 
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.300 
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Since the slab is of finite dimensions the comparison with the theory was terminated 

when temperature changed appreciably at X = L. It was found that the results agreed 

very well with the theory with maximum errors being less than two per cent. 

Figure 4(a): Freezing of a moist soil (sand). Transverse section illustrating the 
finite element mesh used. The thick line corresponds to the 
freezing sheath. The infinite boundary is replaced by a finite one 
which is assumed to be non-conductive. Convection heat transfer 
takes place at the surface. 
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The next example concerns a practical problem of interest in the civil engineering 

industry for which no exact solutions exist. The ground region inside two lengths 

of cooling pipes is frozen in order to stabilise the soil. The time progression of 

the freezing front along with the relevant aspects of the problem are presented in 

Figure 4. 

(1967). 

The same material properties are used as given by Aguirre-Peunte et al 

In the case of the heat and mass transfer problem two examples were run in order to 

assess the accuracy of the model. The first example concerns a slab, insulated at 

the face X O, with convective boundary conditions at the face X = x/e = 1. The 

moisture and temperature values in the slab are assumed to be zero initially with 

constant values of the equilibrium transfer potentials in the surrounding medium. 

4 

0 

·2 

-4 

.c; 
0 

8 
"' 

.c; 

§ .., 
.c; 

8 
Q 
M 

2 4 6 8 10 12 14 
X,IW 

Figure 4(b): Freezing front positions as computed by the finite 
element method. The freezing sheath is maintained 
at 245° K. External temperature is 289° Kand the 
convective heat transfer coefficient is a= 20W/m2 K. 
Material properties (Aguirre-Peunte et al, 1967): 
k = 2.32 W/mK; pc= 2.04 x 106 J/m3 K (frozen) 
k = 1.65 W/mK; pc= 2.815 x 106 J/m3 K (unfrozen) 
Latent heat effect A= 120 x 106• Assumed width of 
the phase change interval 2£:. T = 1 K 

The analytical solution as given by Luikov and Mikhailov (1965) is discussed in 

detail elsewhere (R W Lewis et al 1974) and will not be repeated here. The finite 
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element mesh used is shown in Figure 5 and essentially represents a two-dimensional 

domain as the upper and lower boundaries are non conductive. The comparison shown 

in Figure 6 demonstrates good agreement between the analytical and finite element 

solutions with errors never greater than one per cent. 

Figure 5: "One-dimensional" finite element mesh used in the numer­ 
ical examples. Five parabolic isoparametric elements are 
employed. 

T 
- ANALYTICAL SOLUTION 
o FINITE ELEMENT SOLUTION ~-0 

-2~ 

O· 
I. 

-2 -6 .a • ~ ,. 

u 

·2 
- ANALYTICAL SOLUTION 
o FINITE ELEMENT SOLUTION 

Q.L----'---'---'---1-_.JL--.L......---'---'---'--_...J 

Figure 6: Comparison between analytical and finite element 
solutions for a one-dimensional heat and mass 
transfer problem in the case: Lu : 0.3, e·: 0.5, 
Ko: 1.2, Psn= 0.5, Biq: 1.0, Bim: 10.0 
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The second example utilised the same mesh and initial conditions as for the first 

problem but boundary conditions of the first kind are assumed at the face X = x/e = 1. 

Again the finite element results are shown to agree well with the analytical solution 

as demonstrated in Figure 7. 

-6 

.4 

-2 -- ANALYTICAL SOLUTION 
o FINITE ELEMENT SOLUTICN 

O· -2 .4 .6 
I. 

u I -- ANALYTICAL SOLUTION 
0 FINITE ELEMENT SOLUTION 

.8 

-6 

.a x___. 1. 

Figure 7: Comparison between analytical and finite element solutions 
for a one-dimensional heat and mass transfer problem in 
the case: Lu = 0.3, E = 0.5, Ko = 1.2, Psn = 0.5, 
Biq = Bim~= 
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CONCLUSIONS 

The approach to non-linear heat conduction with phase change and heat and mass transfer 

problems have been shown to be amenable to solution by the finite element method. 

The versatility of the method in dealing with complicated boundaries and/or physical 

property variations along with the phase change relationship opens the door to many 

practical applications. In particular, the problems of heat and mass exchanges 

in buildings and determination of thermal stresses in castings etc, can now be 

tackled effectively. 
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INTRODUCTION 

The aim of the research effort in controlled thermonuclear fusion is the containment 

and heating of a plasma for a time sufficiently long to permit fusion of the deuterium 

nuclei. Various plasma conta,inment schemes have been studied· and their equilibria 

examined. Equilibrium, although a necessary condition, is insufficient since for 

controlled fusion to be attained we must also have stability. 

Early analytic studies (Shafranov 1958; Tayler 1957a; Tayler 1957b) of plasma 

stability concentrated on the linear pinch configuration in which a plasma column of 

circular cross section with an axially flowing current is compressed and contained by 

the;!_ x .!!, force acting radially inwards. This analytic work has recently been 

generalised and extended by Shafranov (1970) and our numerical calculation for the 

linear pinch will be compared, where possible, with his results. 

The linear pinch is an example of an open ended system from which plasma can escape 

through its ends. This loss can be prevented by bending the two ends together thus 

forming a torus. A configuration of considerable current interest is an axially 

symmetric toroidal system (TOKAMAK) (Artsimovich 1972) in which hot plasma is contained 

by the magnetic field of a current flowing within it. A very strong axial magnetic 

field parallel to the current serves to suppress the principal hydromagnetic 

instabilities. Experiments (Artsimovich 1972; Artsimovich and Shafranov 1972) 

indicate that a further improvement in stability can be achieved by making the cross­ 

section non circular. A toroidal belt pinch of rectangular cross-section ISAR IV is 

now operating at IPP Garching, and a larger similar device ISAR TX is under 

construction (Nuclear Fusion 1973). As an example of a pinch with non circular 

cross-section we will consider a cylindrical pinch of rectangular section. This is a 
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first step towards the numerical prediction of the stability ranges for a belt pinch 

of similar cross-section. 

In the work reported here the stability of cylindrical pinches is studied using the 

(numerical) ·finite element method (Zienkiewicz 1971) to implement the hydromagnetic 

energy principle of ideal MHD theory (Rose and Clark 1965), 

When a plasma containing a current::!_,, magnetic field! and of pressure p undergoes 

small pertubations f;_, away from a state of static equilibrium the change in the 

hydromagnetic energy of the system may be written (Bernstein et al 1958) 

(1) 

where the integral ranges over the volume of the device,~ is the perturbed magnetic 

field and y the ratio of specific heats. 

In the finite element method the volume of the pinch is divided into elements with 

chosen nodes. Within each element the perturbations are found by interpolating 

between the nodal values which are taken as parameters of a Lagrangian L 

L = T - W(f:) 

where T is the kinetic energy. 

When the stationary values of the Lagrangian with respect to these variables is sought 

an eigenvalue problem is obtained, 

by the eigenvalues, 

The stability of the configuration is determined 

LINEAR PINCH MODEL 

The linear pinch is modelled as a right circular cylindrical column of plasma, radius 

a, surrounded by an annular vacuum which is bounded on its outer surface, radius b, 

by a perfectly conducting wall. Let us introduce cylindrical polar coordinates 

r,0,z about the axis of synunetry. The plasma is assumed to be incompressible, to 

have infinite conductivity and to contain a magnetic field B which has no radial 
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component (Newcombe 1960). A current with density J. V x B flows within the plasma. 

The vacuum magnetic field is ~v· 

The equilibrium state of the plasma is governed by 

Vp = .:l, x B 
(2) 

V.J!, = 0 
The configuration has cylindrical symmetry hence all quantities are functions only 

of r. 

J r 

Equation (2) thus reduces to 

0 -a B r z' 
(3) 

Equation (2.3) is automatically satisfied. 

We will assume further that B is a constant so that there is no azimuthal current. 
z 

In the vacuum p is zero hence 

~B 
r ea 

(4) 

where Bea is the azimuthal field at the plasma surface. Any azimuthal field Be which 

is a function only of r is a possible equilibrium configuration for the plasma subject 

only to the boundary condition Be= Bea at r = a. 

When the plasma undergoes small perturbations .f the hydromagnetic energy W of the 

system is 

W(~) l f [Q,2 + ,L- £ X Q] dr + l f Q~ d r (5) 

PLASMA VACUUM 

where the quantities 2,, _gv are the perturbed magnetic fields within the plasma and 

vacuum respectively· 
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For the plasma 

(£_ X ~ 
(6) 

and for the vacuum 

(7) 

where A is the vector potential which must satisfy 

~ X ~ = -(£_•,9~ (8) 

at the plasma vacuum interfacer a, and 

n x A = 0 (9) 

at the bounding wall r = b. 

It is convenient to extend the definition of ,f..into the vacuum region and to write 

the vector potential (Newcombe 1960) 

so that the perturbed magnetic field 

SJV = ~ X (£ X ~) 

has the same form as that in the plasma. The boundary condition (8) is automatically 

satisfied if B(a) = B (a), and (9) is satisfied by requiring~ = 0 at r = b. ~ ~v r 

To enable direct comparison with earlier work (Shafranov 1970; Boyd et al 1973; 

Takeda et al 1973) we have expressed the results of our calculations in terms of a 

variable nq defined by 

krBz 
nq = -B­ 

e 

or 

kaB = __ z 
Bea 

a key parameter in discussions of pinch stability. 
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The displacements !;_,can be expressed in terms of normal modes in cylindrical polar 

coordinates (llewcombe 1960) by 

where s is real and ,9, s imaginary. r z 

The equation of continuity now becomes 

0 

For the perturbed motion the Lagrangian is 

2 L = w T - (W + W) 
p V 

where 

"I 2 2 2 T = - p (s -1 s + s ) rdr 2 r 9 z 

(10) 

(11) 

(12) 

(13) 

The plasma hydromagnetic energy W, given by the first integral in equation (5), 
p 

becomes now (Newcombe 1960) 

- r; ) 2]rdr 
0 

(14) 

where 

1 
k2/+m2 

r 
r;o = k2 2 2 

r +m 

[(krB + m,~9) as + (krB z r r z 

+ 

mBe) ~]2 
r 

l;r 
[ (krB9 - mB ) a s - (krB

9 
+ mB ) - ] z r r z r 

(15) 

(16) 

and 

(17) 

The number of independent variables can easily be reduced for this problem by 

minimising the potential energy with respect tor; simply by setting (Newcombe 1960) 

(18) 
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in equation (14). 

and (18) and may be elminated from the Lagrangian which then depends only upon sr 

The displacements s0, s are related to s by equations (11) 
z r 

To implement the finite element method the plasma vacuum radius is divided into N 

line elements in su~h a way that a node occurs at the plasma-vacuum interface, 

eg by points r
0 

= 0, r1, r2, ... ,rk = a, .. ,rN =band nodal parameters ~
0
,s

1 
... ,~

1 
assigned. Within an element the displacements is obtained by linearly inter- 

r 
polating between nodal values. 

It is found, by considering the radial component of the perturbed field Q , that 
r 

s given by r 

-rQr 
iB6(;;+nq) 

can become infinite when m + nq = 0. This event may 

varies across the vacuum. In situations of interest 

(19) 

2 . r 
occur since nq = 2 nq(a) 

this does occur st an 
alternative variable n defined by (Shafranov 1970) 

(20) 

will be used within the vacuum. The boundary conditions to be satisfied by n are 

n(a) = -B0a(m + nq(a))sr(a) 

and 

n (b) = o 

The hydromagnetic energy for a typical plasma element i can, after integrating along 

the element, be written 

and for a typical vacuum element 

Ki is a 2 x 2 matrix corresponding to the element stiffness matrix for solid structures 

(Zienkiewicz 1971). Similarly for the kinetic energy of plasma element i we have 
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i i T 
T = (f;. ,s- l)M (f;. ,f;. 1) 

l 1.- l. 1.- 

where Mi corresponds to the element mass matrix (Zienkiewicz 1971). 

The total kinetic and potential energies are obtained by sunnning contributions from all 

elements. Assembling the element matrices together the Lagrangian is given by 

(21) 

where 

(22) 

is an N + 1 vector. 

A matrix equation 

Node k occurs at the plasma-vacuum interface. 

The quantities Mand Karen+ 1 square matrices. 

2 
(w M-K),2 0 (23) 

is obtained when we seek a stationary value of the Lagrangian. The problem of MHD 

stability has become an eigenvalue problem. The positive eigenvalues w2_give the 

frequency of a mode and the associated eigenvector j_ the amplitude of nodal 

perturbations. A negative eigenvalue implies that the associated mode is unstable, 

with growth rate llw2J. 

LINEAR PINCH RESULTS 

CASE 1 Constant Current Density 

When the current density Jz is constant the magnetic field in the plasma is 

B 
(24) 

B ) 
z 

and in the vacuum 

B a 
(0 ~ B) 

' r ' z 
(25) 

- 63 - 



MHD STABILITY 

where B9a, Bz are constant, so that nq is constant over the plasma. Through a 

normal mode analysis Shafranov (1970) has shown that when the axial wave number k 1s 

small 

~ "' r-m-1 
r (26) 

and 

2 
w 

B2 
0a [2 (m + nq) + ---2 
4npa 

(27) 

When the plasma extends out to the bounding wall so that a 

replaced by (Shafranov 1970) 
b these expressions are 

1 r 
~r a r Jm(zm ,.) (28) 

2 
w 

B2 
ea [z (m ---2 

4npa 

ka 2] + nq) - + (m + nq) z 
m 

(29) 

where z is the first zero of the mth order Bessel function J (z). m m 

Figure 1: Radial variation of the 
perturbation ~r for 
m = -2 mode in a linear pinch 
with free boundary for 
various axial wave numbers 
k and a/b = 0.5. Points • are 
fork= 50 

o, 
~r, .. lg' •: 

o, 

o, 

o, 

,o 

Figure 2: Square of the normalised 
growth rates for linear 
pinch with free boundary 
plotted against nq~ = kaBzlBa 
for m = -2 mode, k = 0.2 
and various values of a/b. 
The points o are Shafranov's an 
analytic results 

We have determined the nodal amplitudes and growth rate for the modem= -2, k = 0.2 

(Boyd et al 1974) and have compared these with Shafranov's analytic expressions in 

Figures 1 and 2. Excellent agreement is found for various a/b ratios. Good 
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agreement is also obtained for the no vacuum case (Boyd et al 19 74). We have also 

determined nodal amplitudes for modes m = -1, .-3, k = 0.2, a/b = 0.5. In the former 

case (Boyd et al 1974) ~ is constant over the plasma, and in the latter case~ 
. 2 . 1 r . . ( 6) r varies as r, in compete agreement with equation 2 . It was found that 16 

elements along the plasma's vacuum radius were sufficient for convergence of the 

solution. 

CASE 2 Exponential Current Density 

In the latter stages of tokamak discharges it has been observed that the current 

density becomes peaked on the cylinder axis. We have therefore studied current 

densities of the form (Grossmann and 0rtolani 1973) 

J = J exp(- ar) 
0 c. 

with a plasma density variation p P/1 - typical of tokamaks 

In Figure 3 the growth rate of mode m -1, with a 

Figure 3: The growth rate of them= -1 mode 
plotted as a function of nqa for the 
current distribution J = J0exp(-3r/a) 

~ 
:0 ., 
-< 
:0 ~ 
:0 
< 
C z 
-< 
"' 

3, is plotted as a function of 

The position of maximum growth rate and the instabilities ranges agree with those 

reported by Grossmann and 0rtolani (1973). We also confirmed that the radial 

distribution is peaked on the cylinder axis; more highly peaked for larger nq a 
values. 

For this case about 40 elements of equal size were needed to ensure conve~gence of 

the solution. When a more judicious arrangement of elerrents was made the nurn~er 

required for convergence was considerably reduced. 
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CASE 3 Bennett Pinch 

It has been suggested (Morse and Friedberg 1970; Harris and Kaneko 1971) that the 

pressure and field configuration of the Bennett pinch (Bennett 1934) are especially 

stable. 

The density variation over the plasma is p (O • 

where Bea' Bz are constants. 

current by 

E_,, is again given by equation (25), and the axial 

J z 

We have determined the growth rate of the modem= -1, k = 0.2 for various a/b 

ratios. These calculations are given in Figure 4. Analytically it has been shown 

that the Bennett pinch is stable if nq > - ..!2.i, (Harris and Kaneko 1971); our results 
- 3 

are in agreement with this conclusion. Them= -1 mode of the Bennett pinch has the 

same ranges of instability as the constant current case (Shafranov 1970) and seemingly 

higher growth rates than those predicted by equation (27). 

radial finite elements were used. 

In these computations 16 

,.o 

0-8 

0-6 

0-4 

0-2 

.; 2 ~ 
e' Q 

0 o., 0-3 0-4 o.s 0-6 
nqo 

0-7 0-8 0-9 ,.o 

Figure 4: Square of the normalised growth rate for the kink modem= -1 of a 
Bennett pinch with free boundary plotted as a function of nqa for various 
values of a/b 
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RECTANGULAR PINCH MODEL 

The pinch is modelled as a right cylinder of rectangular section, sides 2a, 2b, 

bounded by a perfectly conducting wall; - there is no vacuum in this case. Rectangular 
cartesian coordinates are set up with the z-axis along the cylinder axis and the x, y 

axes parallel to cross-section sides. The plasma is assumed to have infinite 

conductivity and to contain an axially flowing current, and a magnetic field 

B =CB, B, B) where B is constant and the other two components are independent "' X y Z Z 

of z. The equilibrium distribution of magnetic fields etc was provided to us by 

Dr Glenn Bateman of IPP Garching in numerical form. 

When the plasma undergoes small perturbations the hydromagnetic energy of the system 

is given by equation Cl). The displacements may be expanded in normal modes by 

£Cx,y,z,t) = [s Cx,y),s Cx,y),s Cx,y)]expCikz + iwt) 
X y Z 

The vector's components are in general complex and will be written 

In this general case we have six nodal parameters. This number is not reduced if we 

consider only the incompressible modes so this assumption is not made. For 

convenience we shall study only the kink modes, for which s = O, so that the nodal 
z 

parameters are reduced to 4. 

The hydromagnetic energy is given by 

a b 

WCQ = if j' A dx dy 
-a -b 

where 

A Cs
2
1 • s

2
2 + s

2
1 + s

2
2) {k

2
B
2 + ca B >2 + a B a B } 

X X y y z XX xvyx 

+ Cs 2a s 1 - s 1a s 2) C-2kB B ) + Cs 1a s 1 + s 2a s 
2
) c2B a B ) xyx xyx yz xyx xyx yyy 

+ Cs 2a s 1 - s 1a s 2)C-2kB B) + Cs 1a s 1 + s 
2
a s 

2
)C-2B a B - JB) xyy xyy xz xyy xyy xyy y 

+ Cs 2a s 1 - s 1a s 2)C2kB B) + Cs 1a s 1 + s 
2
a s 

2
)C-2B a B + JB) yxy yxy yz yxic yxx yxx x 

+ Cs 2a s 1 - s 1a s 2)C-2kB B) + Cs 1a s 
1 

+ s 
2
a s 

2
)C2B a B) yxx yxx xz yxy yxy xxx 
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+ Cs 1a s 1 + s 2a s 2l (-B {a B + a B ll + Cs 1a s 1 + s 
2
a s 

2
) (2B a B l xxy xxy xxy yx xxx xxx yyx 

+{(as 1)2 + ea s 2l2l(B2 + B2 + yp) +{(as 1)2 + ea s 2l2l(B2 + B2 + yp) 
XX XX y Z yy yy X Z 

The kinetic energy T possessed by the plasma, density p,during the perturbations is 

calculated from 

2 w 
T = 4 

a b 

ff 
-a -b 

and the Lagrangian of the perturbations formed. 

The cross-section of the pinch was divided into rectangular finite elements with a 

node at each corner, there are thus 16 nodal parameters per element. In this 

implementation all x,y modes are considered at the same time, but obviously only 

the lowest modes will be determined accurately. 

number of finite elements used. 

Accuracy again depends on the 

For the present configuration the relevant parameter nq
0 

is given by 

2kB [1 0 
=--z dy 1 d x J nqo TI B (a,y) Bx(x,b) y a 

and all growth rates will be presented in terms of this variable. 

RECTANGULAR PINCH RESULTS 

Here we report calculations for the rectangular pinch containing a uniform current 

density. Two cases have been considered which will have direct comparison with 

analytic studies being undertaken at IPP Garching. 
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(1) At the rectangular boundary sn 0. 

(2) At the rectangular boundary sn is free. 

For case (1) we have been unable to detect any instabilities so far. Instability 

results for case (2) for a square pinch and a rectangular pinch, sides in ratio 

1:3, are shown in Figure S. The results for nqa less than 1 are for a first order 

mode; other results are for higher modes. In all cases the growth rate of the most 

unstable mode is plotted. The computations indicate that growth rates for the 

rectangular pinch are higher than those for the square pinch. In all the calculations 

designated 0,+ 4x4 finite elements were used. For the square pinch convergence of 

the solution was tested for nq
0 

= 0.5 by running cases with 2x2 and 3x3 elements. 

Growth rates for these cases are shown by x in Figure 5. 

·' 
6t 

0 
0 

5~ 
0 

·r 0 0 

3 

0 

0 

0 

2 

1e+ 
;,,;. 2x2 

~ 3 X 3 + + + + + 

0 3 nqo 

Figure 5: Square of the growth rate for kink modes of a square pinch+, and 
rectangular pinch (1 :3) Q, plotted as functions of nq0. m = -1, 
k = 0.2, -y = 5/3. 4 x 4 finite elements. Convergence of calculation 
for nq0 = .5 is demonstrated for the square pinch 

Neither case is really physical; no hot plasma can be allowed to touch the container 

walls, but is constrained by a magnetic field, which extends into the vacuum and tends 

to improve stability. 

strictly rectangular. 

In this situation the equilibrium form of the plasma is not 

However the true situation probably lies somewhere between 

the two cases considered above. The next step in this program is to study the 

realistic equilibrium configuration. 
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APPLICATION OF THE FINITE ELEMENT 
METHOD TO METEOROLOGICAL PROBLEMS 
M J P Cullen 

Meteorological Office 
London Road 
Bracknell 
Berkshire 
RGl2 2SZ 

EQUATIONS ARISING IN METEOROLOGICAL PROBLEMS 

The type of equations that have to be solved in the meteorological forecasting problem 

can be typified by the shallow water equations 

au 
at" + ~-1!..Y + II~ + 2-f;, x ~ = 0 

i1+ 
at 0 

Where the vector operations are two-dimensional. When the full three-di~ensional 

problem is solved the scales of motion in the horizontal direction are completely 

different from those in the vertical and so a two dimensional problem can represent 

very well a large number of the motions present in the three dimensional case. This 

set of equations has the following important properties for numerical solution: 

(1) An initial value problem has to be solved to evolve a given initial field into 

a future forecast field. In practical cases there are also forcing terms so 

that the evolution is controlled both by the initial data and by the forcing. 

It is debatable for how long the initial data has influence in the atmospheric 

case. 

(2) The equations are nonlinear and can describe interactions between different 

scales of motion. In the three dimensional case the equations can produce 

discontinuities which are controlled in the atmosphere by the development of 

small scale turbulence. 

(3) The equations describe wave type motions, both gravity waves where the 

pressure gradient balances the acceleration and slow moving waves due to 

the variation of the vertical component of n over the earth's surface. 
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(4) The equations satisfy certain conservation laws which are important for 

long term integrations. 

RELATION OF THE FINITE ELEMENT METHOD TO OTHER METHODS OF SOLUTION 

Historically, most solutions of these equations have been obtained by the finite 

difference method. 

wave functions eikx or spherical harmonics for global integrations. 

Recently the Galerkin approach has been used with a basis of 

We consider 

the advantages of these methods and the finite element method for this type of 

problem: 

(1) If we consider the equation 

au 
at Lu 

and write the finite element projection as Q , so that Qu is some 

approximation to u, then the error can be written as 

Lu - QLQu (I-Q)Lu + QL(I-Q)u 

The first term on the right hand side is the error in making a discrete 

approximation to Lu and can be studied by the usual methods to give an 

order of convergence. This error is unavoidable. The second term 

represents the divergence of the discrete solution actually obtained from 

the discrete approximation to the true solution (see Strang & Fix (1973)). 

It accumulates through time, and must be analysed as well. 

(2) In approaching a nonlinear problem interactions may lead to fields which 

cannot be resolved by the discrete grid. If only values at a discrete 

set of points are used a field which has three wavelengths for every four 

gridpoints will look identical to one with only one wavelength for every 

four gridpoints. If information propagates from point to point this gives 

rise to errors known as 'aliasing'. This error can be avoided by using 

the Galerkin technique which uses information from the whole field. 

Finite element Galerkin methods should do this while the usual finite 

difference approach does not. 

(3) Most discrete schemes do not reproduce the phase speeds of waves correctly 

and if the errors vary with wavelength wrong phase relationships develop in 

the flow. A scheme is thus required which reduces phase speed errors as 
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far as possible. 

(4) Certain conservation laws are· obeyed automatically when the Galerkin method 

is used. However, the full set is only obtained when the basis functions 

are closed under such operations as multiplication and differentiation or 

the extra manipulations needed to get the laws cannot be done. Finite 

difference methods have to be specially designed to obey conservation laws 

and to satisfy a large number of them is very difficult. 

(5) The nonlinearity also involves a lot of computation so that in a Galerkin 

method as few inner products as possible must be non-zero. 

These considerations suggest that a finite element Galerkin procedure should have 

several useful properties for this type of equation, but a simpler collocation 

procedure will probably not gain anything over the usual finite difference schemes. 

FOURIER ANALYSIS OF THE FINITE ELEMENT METHOD 

Using piecewise linear interpolations in one dimension the finite element Galerkin 

approximation to 

is 

1 • 
-u 
6 n-1 + + C (1) 

The accuracy of this formula as opposed to the usual 

u n 
un+l - un-1) 

C ( 26x 

is shown in Figure 1. 

Figure 1: Accuracy of solution of au/at = au/ax with u = eikx 
and exact line integration. 
A: Centred finite difference 
B: Linear finite element 
C: Finite difference with double resolution 

0 o• o. u •·• 20 u 21 u 
'r2 llllz a 
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In many cases greater accuracy can be obtained from (1) than by using the simpler 

formula with twice as many points. 

Using the same interpolation scheme the finite element approximation to 

U = UV 

gives 

+ + 1 
12 (u V n-1 n-1 + + + 

+ + + 

. . ' 
Figure 2 shows the result if u = e1px and v = e1p x in the cases p=p' and p'=O. 

Thus interactions leading to wave-lengths too small to be resolved are strongly 

damped. A point collocation scheme would not do this and large aliasing errors 

would result. 

1/p,Pl 

0 
'½ 

(C) 

C,F 

·1 ~ 
/l<p,p'l 

_, 0 
""2 

Figure 2: (A) Accuracy of solution of au/at= au/ax 
with u = e cmx and ox = 1 

(B) Accuracy of solution of au/at= u2 with 
u = eQpx_ The top curve is the usual finite 
element solution, curves E and D contain 
extra damping. 

(C) Accuracy of solution of au/at= uu0 
(u0 constant) showing effect of extra damping 
on this effectively linear term 
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In the case u 
av 

u ax 

with u 
i p IX i px • e , v = e we obtain 

u 8(p,p') ei(p+p')x 

where 

8(p,p') 
2(-sin p' + 2sin p + sin(p+p')) 

4 + 2cos (p+p') 
(2) 

if the interpolation functions are substituted directly into the equation. However, 

if we use an approximation theory approach and seek, given the model values, best 
. . d av approximations to u.an ax and then perform the multiplications we can choose 

av 

a much more satisfactory representation of 

to be piecewise linear also, instead of being a piecewise 
av 

u ax and 

constant. lie then obtain 

S(p,p') 6sin)l_ • 4 + 2cosp 
3 + cos p + cos p' + cos(p+p') 

4 + 2cos(p+p') 

(3) 

In some cases this gives the same result as (2), in the case p = p' = n/2 we obtain a 

value 0.96p from (3) and 0.6p from (2), the true value being p. This is found to be 

important when the nonlinear terms are an important part of the evolution. 

We now use the Fourier method to analyse the error component QL(I-Q)u discussed in 

the last section and consider the two 

Substitute u = eikx, then Qu = l: a(k) 

operators 
ikx0 

e xn 

L = u 
X 

and L = uv. 

where 

a(k) 

and we have again used linear elements. 

QLu 

QLQu 

12 1 
4 + 2cos k ~2 

{l - cos k)' 

ikx 
l: i k a (k) e nx 

n 

6 · k ikx 
sin a(k) --e "x 

4 + 2cos k n 

Then if L u 
X 

so that QL(I-Q)u is of order k4• 
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A similar calculation shows that with L(u,v) = uv and u = eikx v = ei.P..x 

QL(u,v) - QL(Qu,Qv) is of order k4 + k2£2 + i4. Thus we have achieved fourth order 

accuracy with linear elements. Strang and Fix quote the result that QL(I-Q)u with 

L = u is only O(k3) using Hermite cubics. 
X 

Thus linear elements have especially 

good convergence properties for this component of the error. It appears that using 
th d 1· b. . 1 h. ( ) O(k2(m+l)) m or er spine asis functions on a regu ar mes gives QL I-Q u = 

for L = u . 
X 

Thus for evolutionary problems with this type of operator L the optimal choice of 

higher order elements may not be the same as the conventional quadratic and cubic 

schemes. If the mesh is very irregular the convergence probably reverts to 

O(km-l) for kth order approximations. (See Thomee (1973) for the general result.) 

RESULTS 

. . ,,. ac 
Figures 3 and 4 show the solution o r at = u.VC where C is initially C

0 
+ c1x and 

Figure 3 is obtained by a fourth order finite difference scheme on 

a 32 x 32 mesh and Figure 4 by a bilinear finite element scheme on 16 x 16 rectangles. 

FINITE DIFFERENCE 

Figure 3: Solution of ac/at = u. Ve with u, c as given in text and fourth order 
difference scheme 
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FINITE ELEMENT 

Figure 4: As Figure 3 after some time with bilinear element scheme 

Figures 5 and 6 show the solution of the shallow water equations in a channel 

obtained by a finite element Galerkin procedure on a regular triangular mesh, and 

by a point collocation procedure which allows aliasing errors. The two fields 

have very large differences for this reason. 

Figure 5: Integration of shallow water 
equations after 2 days using 
linear elements and Galerkin 

/ 

Figure 6: As Figure 5 but using a 
collocation formula (uvln 
= UnVn for non-linear terms 
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Figures 7 and 8 show the solution of the shallow water equations on the sphere by 

finite element, finite difference and spectral methods for initial data containing 

a zonal wavenumber 8. All integrations show this wave breaking down after 5 days, 

except a finite difference integration with 4000 points on the sphere. 

element model correctly predicting the breakdown has only 1000 points. 

time required for the two models is similar, 

The finite 

The computer 

(a) 3 days (b) 4 days 

(c) 5 days 

Figure 7: Integration of shallow water equations on sphere using linear elements 

Figure 9 shows an integration of the shallow water equations on an irregular mesh 

and Figure 10 an integration with a higher order finite element scheme. Both have 

large errors due to the QL(I-Q)u term; methods of dealing with these errors are 

under discussion. 
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°"YO • 

Figure 8: As Figure 7 using finite difference 
and spectral methods 
(a) low order spectral; 
(b) low order difference; 
(c) high order spectral; 
(d) high order difference (Doron 

et al 1974) 

Figure 9: Integration of shallow 
water equations on an 
irregular mesh (after 
one day) 

~ ..• !- -tM--IM- -ii+­ 

\ 
Ill 112 Ill) 1,) 114 

I 

•• r ~· 

Figure 10: Integration of shallow water equations using a cubic scheme (after one day) 
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Special types of extra "artificial viscosity" terms of the same order as the errors 

in the solution of the equation are found to allow successful integration of the problm 

in Figure 9 without having a very large effect on a regular problem. It is 

reasonable to have to use such a term because if the true solution contains 

unresolvable features and.the approximate and true solutions conserve energy, then the 

unresolved features must be replaced by erroneous ones of the same energy. 

The solution of linear meteorological type problems is described in Cullen (1973), 

and the solution of non-linear problems is discussed in Cullen (1974). The solutions 

on a sphere will appear in the Quarterly Journal of the Royal Meteorological 

Society. 

Finite element methods are also used for the shallow water equations in one dimension 

by Wong (1972). 

CONCLUSION 

The linear finite element approach seems to be competitive with finite difference 

schemes since the computing time required for 16xl6 elements is similar to that for 

32x32 differences. However, this probably only holds for schemes with special 

convergence properties (apparently splines on a regular mesh a?d the other finite eleme 

schemes may be too expensive to use competitively in this type of problem). 
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PAFEC 70+ 
PROGRAM FOR AUTOMATIC FINITE ELEMENT 
CALCULATIONS 
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HISTORY 

The idea of developing a general finite element program, initially for the use of 

research workers within the Department of Mechanical Engineering, was proposed approxi- 

mately 8 years ago, 1965-1966. Research workers who were individually pursuing different 

activities associated with finite element programs realised that the large amount of 

duplication of programs could be overcome by using common subroutines in each program, 

This had the immediate effect of reducing the time spent by each research worker to get 

his program working as he did not, for example, have to write and test merge and solu- 

tion subroutines. These early researchers prepared their subroutines on a very broad 

basis and by the late 1960's the original PAFEC system contained a large number of 

shell and beam type elements together with a very general merge subroutine and Choleski 

solution subroutine. At this time a number of SRC and Ministry contracts as well as 

SRC studentships with a finite element basis were starting, The research workers 

associated with these contracts were persuaded to use those areas of PAFEC which would 

be useful to them and hopefully the end product of their work would be available to 

subsequent workers. 

One of the major problems at this time, 1969, was in selecting a computer language to 

use, The initial programs had been written in Atlas Autocode for use on the Manchester 

Atlas and also for the Chilton Atlas and Egdon Algal for use on the Nottingham 

University KDF-9. Because of updating problems inherent with two copies of a corn- 

puter program together with paper tape difficulties, a common language using punched 

cards was chosen, Fortran II, It was then possible to use both the Hartran compiler 

on the Chilton Atlas and the Egdon Fortran compiler on the KDF-9 with the same card 

deck, The program immediately became available to other universities as well as being 

commercially available. 
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By 1971 the form of the program was becoming unmanageable as the original ideas had 

been modified and added to as new facilities within PAFEC became available. The pro­ 

gram was radically modified to a file based system leaving the user interface as 

simple as possible. All of the subroutines had to be altered and retested at the 

same time as new data handling facilities were being generated. These activities 

were timed to coincide with the change to ICL 1906A computers at both Chilton and 

Nottingham. This present system, PAFEC 70+, has now been in use for two years and is 

infinitely more attractive to both university and commercial users than the original 

system. PAFEC 70+ is currently being added to as a by-product of many research 

activities and is well documented in a 350 page user's manual. A list of the major 

contributors and their research topics is given in Appendix 1. 

PAFEC 70+ :- WHAT IS IT? 

Problem Types 

PAFEC 70+ is capable of solving many types of structural problems. 

(1) Vibration Analysis - Natural frequency calculations for eigenvectors defined 

by all the degrees of freedom for simple structures or master degrees of 

freedom for large structures. 

(2) External Loading - Static loads applied at any degree of freedom in structure, 

Solution for all degrees of freedom. 

(3) Damped Vibration Analysis - Dynamic response to forcing functions with 

hysteritic damping either constant or variable over the structure. 

(4) Gravity Loading - Self weight of structure in particularly defined co-ordinate 

directions depending on type of structure. 

(5) Inertia Loading - Structure rotates about the global z-axis for non- 

axisyrruretric cases. Axisymmetric cases also available. 

(6) Pressure Loading - Internal and external loading dependent on the element 

topology definition. 

(7) Thermal Deformation - Temperatures defined at all structural nodes. 

(8) Steady State Temperature Calculation - Solution of Laplace equations from 

some known temperatures and heat flows. 
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(9) Temperature Transient Calculation - Solution of Laplace equations from an 

initial defined temperature profile, (also used in combination with (8) 

above), for any number of time increments for a step or ramp temperature 

change. 

(10) Prescribed Displacement - Solution for whole structure from a number of 

known displacements, 

In addition to the static loading type of problems, types (2), (4)-(7) above, 

additional subroutines for the solution of fracture mechanics, creep and plasticity 

problems are available, 

Element Types 

A very large number of finite elements have been developed at Nottingham and are 

available with PAFEC 70+, Other elements developed elsewhere have been programmed 

and added to the system. The present system is now a reduced set of the best and 

most useful of all these different element types. 

Classification of Elements in the PAFEC 70+ Scheme 

l, Beam Elements 

1,1 Simple beam element with a capability for flexure in two orthogonal planes, 

torsion and extension. 

1,2 As simple beam element (1,1) but with inclusion of shear deformation 

and rotary inertia. 

1,3 Offset simple beam element for use in building up sections or stiffened 

plates, 

1,4 Initially curved beam element with shear deformation and rotary inertia. 

2, 2-Dimensional Elements - for the analysis of plane stress, plane strain or 

axisymmetric structures. 

2.1 Simple constant strain 3-node triangle. 

2.2 3-node isoparametric triangle. 

2.3 6-node isoparametric triangle. 

2,4 9-node isoparametric triangle. 

2.5 4-node isoparametric quadrilateral. 

2.6 8-node isoparametric quadrilateral. 

2,7 12-node isoparametric quadrilateral, 
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3. 3-Dimensional Elements - for the analysis of structures with variations of strain 

in 3 directions. 

3.1 6-node isoparametric wedge. 

3.2 15-node isoparametric wedge. 

3.3 24-node isoparametric wedge. 

3.4 8-node isoparametric brick. 

3.5 20-node isoparametric brick. 

3.6 32-node isoparametric brick. 

3.7 16-node superparametric quadrilateral shell (Ahmad type). 

3.8 20-node isoparametric transition brick (Joins 3.7 to 3.2 or 3.5). 

4. Plate Bending Elements 

4.1 3-node curvilinear triangle (various shape functions). 

4.2 6-node curvilinear triangle. 

4.3 4-node curvilinear quadrilateral (various shape functions). 

4.4 8-node curvilinear quadrilateral. 

5. Shell Elements 

5. 1 

5.2 

5. 3 

5.4 

5.5 
5.6 

5.7 2, 3 or 4-node axisymrnetric thin shell for use with axisymmetric or 

harmonically varying loadings. 

3-node Hybrid stretching and bending triangle. 

6-node combined stretching and bending triangle (2.3 and 4.2), 

4-node combined stretching and bending quadrilateral (2.5 and 4.3), 

8-node combined stretching and bending quadrilateral (2.5 and 4.4). 
4-node cylindrically curved hybrid triangle, 

4-node cylindrically curved hybrid quadrilateral. 

6. Anisotropic Elements 

6. 1 4-node isoparametric membrane quadrilateral. 
6.2 8-node isoparametric membrane quadrilateral. 

6.3 4-node isoparametric bending quadrilateral. 
6.4 8-node isoparametric bending quadrilateral. 
6.5 20-node isoparametric solid brick element, 

7. Laplace Elements 

7.1 3-node isoparametric plane or axisymmetric triangle, 

7.2 6-node isoparametric plane or axisyrnmetric triangle, 
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7.3 4-node isoparametric plane or axisynunetric quadrilateral. 

7.4 8-node isopararnetric plane or axisymmetric quadrilateral. 

7. 5 15-node isoparametric solid wedge, 

7.6 20-node isoparametric solid brick. 

The coding for many other elements is available and it is a simple task to add these 

subroutines into the PAFEC 70+ scheme, It is a fairly easy matter to generate the 

extra elements in the isoparametric families due to the present simplicity of the 

coding, 

Solution Methods 

For any static problem there is available a choice of solution depending on the size 

of the problem. 

(1) Full or Banded Stiffness Matrix where the whole matrix can be held 

completely in core. The Choleski banded solution procedure is used 

to find the displacements, 

(2) Semi-Automatic Solution procedure uses the Choleski banded solution to 

solve for a set of master degrees of freedom, the reduced stiffness matrix 

being held in core, The user defines which degrees of freedom are 

inactive and can be reduced out using Gaussian reduction as the solution 

proceeds. The disadvantages of this method are that the reduction data 

can be rather lengthy and tedious and as no backing store is used all the 

reduced-out displacements are lost, 

(3) An Automatic Frontal Solution Technique uses both Gaussian and Guyan 

reduction to maintain a small in-core stiffness and mass matrix if 

required. The use of fast access backing store enables all displacements 

to be calculated, A separate program is available to preprocess the 

data so that the solution is completely automatic, 

For vibration problems the 3 solution methods mentioned above are used to form a final 

square stiffness and mass matrix. The eigenvalues and eigenvectors are found for 

this stiffness and mass matrix using a Householder Tridiagonalisation followed by 

either a Sturms Sequence algorithm or QL algorithm, 

Transient analyses such as creep and plasticity of large problems are solved using 

the resolution technique of the frontal solution with time or load incrementing 

techniques, 

- 87 - 



PAFEC lo+ 

Steady state and transient temperature or prescribed displacement calculations 

are treated as 

(1) Partitioned solutions where the matrices can be held in core, 

(2) Frontal solutions with the known values treated as master degrees of freedom, 

A Crank-Nicholson time marching technique is used for transient temperature calculations, 

Data Inputs 

The data for any PAFEC 70+ job can take a number of forms, The original PAFEC data 

was rather long and required not only a description of every node in the structure 

but also every degree of freedom, Recent modifications have made it possible to 

reduce the data by defining constraints rather than every degree of freedom, Mesh 

generation techniques have also reduced the data input by reducing both the number 

of nodes necessary to define the idealisation as well as the topology of all the 

elements. Now only the chassis nodes and topology together with constraint and 

loading information is necessary. 

An example of a typical simple structure is shown in Figure l(a), The data required 

by the program is shown in Figure l(b) and may be loaded in this form, Alternatively 

using a mesh and data generation facility the data can be drastically reduced, 

Figure l(c). 

IDEALISATION OF HOOK STRUCTURE 

Figure 1 (a): Idealisation of hook structure 
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••• PAFEC 70+JOB ••• 10 ELEMENTS - BANDED SOLUTION TITLE 
2 45 79 79 79 5 22 1 4 10 ~ Job Control Card 
0.000 1.000 0,000 0 1 
0.000 1. 120 0.000 0 2 
0.000 1.240 0.000 0 3 
0.000 1. 395 0.000 0 4 
0.000 1.550 0.000 0 5 
0.120 1.000 0.000 6 7 
0.120 1.240 0.000 8 9 
o. 120 1.550 o.000 10 11 
0.240 1.000 0.000 12 13 
0.240 1.120 0.000 14 15 
0.240 1.240 0.000 16 17 
0.240 1.395 0.000 18 19 
0.240 1.550 0.000 20 21 
o. 286 0.991 0.000 22 23 
0.378 1.213 0.000 24 25 
0.497 1.499 0.000 26 27 
0.325 0.965 0.000 28 29 
0.410 1.050 0.000 30 31 
0.495 1.135 0.000 32 33 
0.603 1.242 0.000 34 35 
o. 711 1.349 0.000 36 37 > CPDDC 
0.351 0.926 0.000 38 39 
0.573 1.018 0.000 40 41 
0.841 1. 131 0.000 42 43 
0. 360 0.880 0.000 44 45 
0.480 0.880 0.000 46 47 
0.600 0.880 0.000 48 49 
o. 738 0.880 0.000 50 51 
0.875 0.880 0.000 52 53 
o. 360 0.715 0.000 54 55 
0.600 o. 715 0.000 56 57 
0.875 o. 715 0.000 58 59 
0. 360 0.550 0.000 60 61 
0.480 0.550 0.000 62 63 
0.600 0.550 0.000 64 65 
o. 738 0.550 0.000 66 67 
0.875 0.550 0.000 68 69 
o. 360 o. 275 0.000 70 71 
0.600 o. 2 75 0.000 72 73 
0.875 0.275 0.000 74 75 
o. 360 0.000 0.000 76 0 
0.480 0.000 0.000 77 0 
0.600 0.000 0.000 0 0 
o. 738 0.000 0.000 78 0 
0.875 0.000 0.000 79 0 

36210 10 0 ~ Element Control Card 
1 9 3 11 6 2 10 7 0.300 
3.0E7 0.250 0.300 

3 11 5 13 7 4 12 8 0.000 
9 17 11 19 14 10 18 15 0.000 

11 19 13 21 15 12 20 16 0.000 
17 25 19 27 22 18 26 23 0.000 ? Element Topo Logy 
19 27 21 29 23 20 28 24 0.000 
25 33 27 35 30 26 34 31 0.000 
27 35 29 37 31 28 36 32 0.000 
33 41 35 43 38 34 42 39 0.000 
35 43 37 45 39 36 44 40 0.000 
9999.0 
1 1 1.0 
7 2 1.0 

13 3 1.0 
1 4 1.0 
7 4 2.0 ~ Loading Information 

13 4 1.0 
0 0 0.0 
1 9 0 
0 0 0 

Figure 1 (b): Standard PAFEC data for hook structure 
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10 ELEMENT HOOK - PAFBLOCKS SOLUTION - BANDED Title 
2 10 8 s 1 1 4 3 - Control Card 
0.000 1.000 
0.000 1.550 
0. 240 1.000 
0. 240 1.550 
o. 325 0 .965 I Chassis CPDDC 
o. 711 1. 349 
0.360 0. 880 
0.875 o. 880 
0.360 0.000 
0.875 0.000 

36210 
1 1 2 1 
1 3 2 4 0. 300 
3.0E7 0.250 0. 300 

1 
24 SS 

36210 
1 2 2 1 1 
3 7 4 8 s 6 
1 1 I Pafblocks topologv 

24 SS 
1 s 2 
0 0 0 

36210 
1 2 2 1 
7 9 8 10 
3 s 

24 SS 
7777.0 
0.000 1.000 0.000 2 1 1.000 
0.120 1.000 0.000 2 2 1.000 
0.240 1.000 0.000 2 3 1.000 
0.000 1.000 0.000 2 4 1.000 I Loading Information 
0.120 1.000 0.000 2 4 2 .000 
0. 240 1.000 0.000 2 4 1.000 
0.000 0.000 0.000 0 0 0.000 

1 10 0 J 0 0 0 Stressing Data 
-9000 1 1 

0.000 1.000 0.000 ] -9000 2 2 Constraint Data 
0. 360 0.000 0.000 

0 0 0 
zzzz 

Figure 1(c): PAFBLOCKS data for hook structure 

Drawing Facilities 

A very important requirement of all finite element programs is the ability to present 

information about the structure in a pictorial form. The PAFEC 70+ program uses 

graph plotters, generally running off line, to produce a wide variety of plots. 

(1) Drawing of all or part of the structure in "blown-up" form. 

(The elements are slightly separated from one another and the 

structure appears to have disintegrated.) 
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(2) As (1) but with nodal circles drawn 1n, 

(3) As (2) but with node numbers added, 

(4) As (1) but with element numbers added, 

(5) All or part of structure not "blown up", 

(6) As (5) dotted with degree of freedom arrows and numbers drawn, 

(7) As (5) dotted with constraint arrows drawn, 

(8) Outline of structure, 

(9) Stress vectors on (8) or (5) 

(10) Displaced shape plot, 

The drawing facility is used initially to check the data as errors are usually 

immediately apparent, Presentation of graphical output for reports saves time and 

by suitably scaling the plot the output can be used directly, 

used for data checking is shown in Figure 2, 

An example of a plot 

Figure 2: Idealisation of flanged turbine casing 
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SOFTWARE 

The PAFEC 70+ program is a file based system, 

or more parts 
Each program is expected to run in 2 

(1) Card data read 

Mesh and/or Data generation 

Plotting 

Write Input data for program to magnetic tape 

(2) Read Input data for program from magnetic tape 

Form element matrices and merge 

Solve for displacements, eigenvalues, etc. 

Calculate stresses 

Plot stresses 

There are many variations to the basic concept but the main intention is that the user 

checks his output and graph plots from the first program before commencing the second 

more expensive part of the program. 

The PAFEC 70+ program is broken down into 12 separate libraries, It would be possibl, 

to run with as few as 4 libraries but owing to the ICL restriction on filestore size 

together with the restriction. of the si.u~l~ \\a'S.s. ~Q.~s.~lidat.c'"i: (li.t',k-e-dit.c,:) t.ue 11 

libraries have been chosen, Their titles and contents are as follows 

PAFECLIBCI - All data handling, polynomial, matrix pack and some ~olution 

subroutines 

PAFECMRGCI - Merge subroutine for full or banded matrices 

PAFECSEMCI - Merge subroutine for semi-automatic solution 

PAFECAUTCI - Merge and solution subroutines for frontal solution 

PAFECBSHCI - All Beam and Shell type element subroutines 

PAFECEL2CI - All 2-dimensional Membrane and Bending element subroutines 

PAFECEL3CI - All )-dimensional element subroutines 

PAFECBLKCI - Mesh Generation subroutines 

PAFECDGNCI - Data Generation constraint subroutines 
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PAFECDRWCI - Plotting subroutines 

PAFECTMPCI - Laplacian element and solution subroutines 

PAFECMATCI - Matrix pack written in assembler code, 

For any program only a few of these libraries will be required depending on the problem 

but they have to be called in the order depicted by Figure 3. It is possible from 

the data to generate not only the main program but also the information required to 

determine the libraries required by the program, 

PAFECBSH PAFECEL2 

l 
PAFECEL3 

PAFECMRG PAFECSEM PAFECAUT 

PAFECLIB 

Figure 3: PAFEC library layout 
(It is important that the library files are called in the order indicated by the arrows 
so that no subroutines are omitted by a single pass consolidator (eg a job using 
R36210 with automatic front solution required "semi-compiled" PAFECL2, 
PAFECAUT, PAFECLIB libraries to be scanned. The library PAFECMATCI 
contains matrix handling subroutines written in PLAN. This library of subroutines 
is available for IC L 1900 series computers.) 

Two macros are available at present for ICL GEORGE operating systems which only require 

a data file for each job, The macros generate 2 programs as described previously, the 

default conditions being a limited jobtime, a plot of the structure, a mesh generation 

if the control parameters are correct, data generation and frontal solution. Other 

options are available by altering the default options by insertion in the datafile, 
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The macros enable the user to be guaranteed that the job control and main program 

including the dimension statements will be correct for every program, Up to 507. of 

research programs fail on their first run due to either main program or job control 

errors. 

USE OF PAFEC 70+ 

PAFEC 70+ was originally written as a research tool but has since become available as 

a program for production analyses, The program is highly segmented which enables the 

research activities with PAFEC 70+ to carry on unimpeded, Modifications and new 

facilities are easily incorporated into the program due to this segmentation, 

The program is freely available to academic establishments and is at present being used 

by a number of universities and polytechnics. Interaction with other finite element 

research groups should hopefully cut down on repetitive development work and yield a 

larger and generally more useful program, Increase in academic usage would require 

support from a research organisation as the present servicing is supported from 

commercial activities. 

FUTURE OF PAFEC 70+ 

Present developments are aimed at improving the input and output facilities of the 
program, The mesh generation program PAFBLOCKS is being extended and it is hoped 

that the recently developed data language PAFTRAN can be suitably modified to 

incorporate the PAFBLOCKS subroutines. The mesh generation is being further extended 

to incorporate a number of regularly shaped structures. A recent addition to the 

ease of data preparation is a digitising table to be used in conjunction with the 

mesh generation facility, 

Extra output facilities being developed include contour plotting to complement the 

present stress vector plotting facility. Other modifications anticipated in the near 

future are a frontal blocking solution technique and possibly a banded partitioned 
solution. A standard program is being developed for incorporating the individual 

creep and plasticity subroutines more generally into the main program, 

of elements includes a doubly curved shell and a general non-symmetric loading 

axisymmetric isoparametric element. 

Development 
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APPENDIX I CONTRIBUTORS TO PAFEC 7o+ 

BATCHELOR A, The Correlation of Roadway Displacements with the Stress Redistribution 

and Strata Movements caused by Longwall Mining, PhD Thesis (1972) 

BICKLEY A, Elastic Distortion of Crankshafts, PhD Thesis (1968) 

BISHOPP T, Failure of Reinforced Plastics caused by Stress Concentrations, 

PhD Thesis (1973) 

BOND T J, Some Considerations of the Finite Element Method in Stress Analysis, 

PhD Thesis (1972) 

COHEN E, Transformer Noise, PhD Thesis (1968) 

DAVIS R, Advances in Beam Finite Elements and Applications to Stiffened Plates, 

PhD Thesis (1972) 

DASGUPTA A, The Behaviour of Joints in Tubular Trusses, PhD Thesis (1970) 

DICKENSON SM, Flexural Vibration of Rectangular Plate Systems, PhD Thesis (1966) 

EDWARDS G, Cylindrical Shell Hybrid Finite Elements, PhD Thesis to be submitted (1974) 

HENSHELL R, Transmission of Vibration in Damped Elastic Structures, PhD Thesis (1967) 

JOHNSON K, The Mechanical Behaviour of Laminated Carbon Fibre Reinforced Plastics, 

PhD Thesis (1973) 

JONES C, Stress Analysis of Aircraft Components and Advanced Aspects of Finite Element 

Software, PhD Thesis to be submitted (1975) 

MAKOJU JO, The Finite Element Analysis of Thick Shells, PhD Thesis to be submitted 

(1976) 

NEALE BK, Vibration of Shell Structures, PhD Thesis (1971) 

ONG J H, Finite Element Analysis of Transmission Systems, PhD Thesis to be submitted 

(1976) 

PARKES D AC, Finite Element Analysis of Stresses and Creep in Turbine Casings, 

PhD Thesis (1973) 

RIGBY N, Hybrid Shell Finite Elements, PhD Thesis to be submitted (1976) 

ROPER C, An Analytical Study of the Strength and Flexibility of Tubular Joints, MPhil 

Thesis to be submitted (1974) 

SAFAVI F, Automatic Data Checking for Structural Analysis using Graphical Techniques, 

MSc Thesis (1971) 

SHAW K, Finite Element Analysis of Crack Propagation in a non-Uniform bi-axial Stress 

Field, PhD Thesis to be submitted (1974) 

SULLIVAN C, Stresses in Hooks, MPhil Thesis (1972) 

Finite Element Analysis of Aircraft Structures, 

PhD Thesis to be submitted (1975) 
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SWANNELL J, Plasticity and Creep Using Finite Element Techniques with Special 

Reference to Taper Hub Flanges, PhD Thesis to be submitted (1974) 

WALTERS D, Paftran; A Finite Element Mesh Generation Language, PhD Thesis (1973) 

WALTERS J, The Stress Analysis of Joint Links using Anisotropic Materials, PhD 

Thesis to be submitted (1975) 

WEBSTER J J, Free Vibration of Shells of Revolution, PhD Thesis (1968) 

WINDSOR A A, Vibration of Shells using Finite Elements, PhD Thesis to be submitted 

(1975) 
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ASAS-A GENERAL PURPOSE FINITE ELEMENT 
SYSTEM 
J B Spooner 

Atkins Research and Development 
Ashley Road 
Epsom 
Surrey 

DESIGN OBJECTIVES 

ASAS is a large scale, general purpose finite element program based on the matrix 

displacement method. Although originally based on a special purpose package 

delivered to AWRE Aldermaston, its designers set themselves the objective that the 

program should be commercially attractive and thus generate sufficient revenue 

through sales, rentals, leases and bureau royalties to cover the not inconsiderable 

development costs together with a reasonable profit margin. 

In considering how this requirement should be met, further objectives were isolated 

by the design team: many were rejected as impracticable and the following represent 

its assessment of the essential combination. 

It was decided right from the very first that the program should be general purpose, 

that is, not restricted to any one class of engineering problem. This was made 

possible by the fact that the underlying mathematics and modelling techniques are 

common to all structural problems. Above all, however, it should be easy to use 

by the design engineer with little or no experience of writing computer programs. 

It was thought that this would go a long way to help break down the aura of 

mystique built round the finite element method - probably as a result of the 

technical literature doing relatively little to encourage discussion on the practical 

application of the method or, more likely, as a result of unfortunate experiences 

with some early program. 

In spite of trying to achieve generality and ease of use, the program was also 

expected to be cheap to use, again in an attempt to attract back to the method 

those many engineers frightened off by the high cost of some early analyses. 

It should again be noted that the term cheap to use embraces all activities, from 

setting up the initial data to interpretation of the final results, and does not, 
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therefore, refer only to the running costs on the computer. Early experience of 

the finite element method indicated that computing contributed about sixty percent 

of the total bill for any job - this nowadays has sunk to about forty percent of 

the total cost. Note, however, the total cost may be only one-third of that for 

the corresponding analysis done five years ago. 

Another essential requirement was that the program should be· flexible, that is, 

easy to extend, modify and adapt. This was primarily in recognition of the fact 

that, although a great effort was to be expended in trying to make the program 

genuinely general purpose, it would have been foolish to pretend that all require­ 

ments of all branches of engineering could be met and that addition would always 

he expected. 

A further and not inconsiderable requirement was that the program should be easily 

transportable from one computer make or configuration to another: many finite 

element programs have fallen at this hurdle. In spite of great care in the design 

of a system, this is always a point at which some difficulty can be expected. 

1be final requirement was that the program should be well documented, serviced 

and supported at all levels. Furthermore, it should be shown to be a living 

system - that is, development does not stop after the first few successful runs, 

but that it continues so that new facilities are offered, new applications found 

and that user experience is circulated from one installation to another. 

THE OBJECTIVES IN GREATER DETAIL 

It was only to be anticipated that the satisfaction of the above concurrent 

requirements placed severe demands on the program design. The next section 

amplifies each main requirement and following sections describe design features 

implemented in ASAS to meet these objectives, giving some indication, where possible, 

of the effectiveness of the approach. It should be recognised that there is a 

strong cross-coupling between several of the declared objectives, and this is 

clarified in the following sections. 

Generality 

It can be assumed that if the description "general purpose" is applied to a finite 

element program it implies suitability for use by engineers in the many branches of 
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the profession ranging, for example, from university research workers in finite 

element theory to high-pressure vessel'designers. However, "suitability for us e" 

implies in turn that the program provides adequate modelling facilities for both 

structure and loading, performs reasonably efficiently in all different applications 

and is therefore not noticeably more effective in one field at the expense of 

another. 

A good indication of the generality of a finite element program is given by its 

library of finite elements. Obviously, the more elements of different type and 

facility, the greater the structural modelling capability available to the user. 

The elements listed below form the basic library of displacement elements: a new 

range of force continuity and special elements has recently been introduced and 

used in the analysis of several aircraft structures. 

Flange (bar) 

elements 

Beam and grillage 

elements 

Membrane elements 

Solid elements 

Plate bending 

elements 

2 and 3 node axial elements with constant 

and linearly varying cross-section. 

2 node beam in 2-D and 3-D with 

and without shear area. 

Curved (circular arc) beam element. 

3 and 6 node triangular elements with 

constant and linearly varying strain field, 

4 and 8 node quadrilateral elements. 

4 and 10 node tetrahedra. 

8, 20 and 32 node isoparametric solids. 

6 and 15 node isoparametric wedges. 

6 node triangular axisymmetric element 

for axisymmetric loading. 

9, 18 and 30 node axisymmetric sector elements 

for non-axisymmetric loading. 

3 node (18 degrees of freedom) tri­ 

angular elerrent. 

8 node curved, quadrilateral isopararretric 

thin/thick element including transverse shear, 

24 degrees of freedom. 
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Shell elements 

Special purpose 

elements 

3 node axisymmetric thin shell (line) 

element. 

3 node thin shell triangular element, 

27 degrees of freedom (cubic interpolation 

of geometry and displacements). 

3 node thin shell triangular element, 

54 degrees of freedom (quintic inter­ 

polation of geometry and displacements). 

3 node thin shell triangular element, 

18 degrees of freedom (flat plate bending 

element plus membrane element). 

Rectangular shear wall element. 

Warped quadrilateral shear panel with 

force continuity. Axial load carrying 

element with force continuity for use 

with warped quadrilateral. 

Warped semi-monocoque element (stringer 

stiffened membrane element), 

Many of the above elements allow the consideration of orthotropic as well as 

isotropic material behaviour. This library of elements is not static and will be 

added to .as demand necessitates. 

To complem~nt an extensive range of elements for modelling many different structures, 

it is necessary to include facilities for handling various loading types. ASAS 

accepts the following loadings: 

Nodal forces 

Line and surface 

forces 

Body forces 

Initial strains 

(point loads, moments, torques) 

(line loads on beams, edge loads on 

membrane structures, pressure loads on 

bending, shell and solid elements) 

(self weight, centrifugal and inertia forces) 

(usually arising from a temperature distribution) 

Prescribed displacements. 
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These loadin~ types ~ay be combined in anv way in one or manv different load cases, 

There is virtually no restriction to the number of load cases that can be handled 

in one run (the maximum to date is 108), 

Should a consideration of other types of loading be necessary, the program should 

be sufficientiy adaptable to enable the user to readily incorporate his require- 
ments. This is covered later under "flexibility". 

Easy to use 

There seems little point in developing a general purpose finite element program 

that is not easy to use in all its phases - data preparation and correction, 

execution of the analysis on the computer, and interpretation of the results. 

Experience shows that given the easy to use program, straightforward guidelines 

and possibly a little assistance in the early stages, design engineers are well 

able to make a success first of small analyses and later, as experience grows, of 
more complex analyses. 

Experience also shows that ease of use of a finite element program is virtually 

synonymous with ease of use and completeness of its user manual. This must contain 
a clear description of how all data is to be prepared and what is necessary to 

execute a job on the particular computer installation, using a minimum of systems 

analyst's or mathematical jargon. It has also been found that pre-printed, self 

descriptive data preparation sheets not only make a good impression but, together 

with the user manual, make data preparation less of an error prone process than is 

usually the case. 

Having briefly mentioned 'external to program' aids to ease of use, mention should 

be made of internal features that have been programmed in ASAB. First the program 
accepts the description of the structure's geometry, element topology, loading and 

support conditions punched on the data cards in very compact form. This data is 
then interpreted and expanded by the program and a comprehensive series of checks 
made for consistency. 

using straightforward English language descriptions rather than complicated codes. 

The program cannot proceed with an analvsis if errors have been found and not 
corrected. 

Should errors be found, they are reported by the program 

Warnings of data giving rise to suspect idealisation are also given, but the user 

is allowed the option of overriding them if he has deliberately set up his problem 
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that way. At this point, provision is also made for a graphical display of the 

idealisation. Should the data be consistent and any warning messages overridden, 

the program proceeds automatically to any stage selected by the user. Usually, 

after the data checking phase, he will select to carry a calculation through to 

displacements but could, of course, carry it through to the output of stresses. 

All these options are under full control of the user and are declared using 

mnemonic descriptions at the beginning of the data input. Automatic restart 

facilities are also available so that the program can be stopped and restarted at 

various points through job execution. 

Finally, the results of the analyses are clearly formatted with title and headings 

for each set and column of numbers, and facilities also exist whereby the output 

is automatically stored for post-processing - for example, factored load combinations. 

Cheap to Use 

'Cheap to use' and 'easy to use' are in many ways closely interwoven. For example, 

compact data input, good data checking and plotting facilities not only make the 

prq,ram easy to use, but simultaneously reduce the overall costs of data preparation. 

It has been found advantageous to include a substantial volume of code in the data 

checking phase at the expense of slightly extended run times in this area of the 

program~ this cost disadvantage is heavily overweighed by the cost savings in 

quick location of errors. 

Once the data is as correct as can be checked by the computer, it is used to establish 

the idealised structure and loading. At the solution staee, two alternative paths 

are available. For small problems the frontal solution technique is employed, 

whilst for large problems a partitioned sparse matrix scheme is used. The 

appropriate solution routine is, normally, automatically selected by the main 

program. Both obviously, recognise the banded nature of the structural stiffness 

matrix, though in the frontal solution this matrix is not formally assembled. 

Flexibility 

It has already been stated that at the design stage it is impossible to anticipate 

all the uses the program may be put to, so it is imperative that it is easy to 

modify or extend to meet specialist requirements. This is achieved by a 

combination of modular program design plus full system documentation. 
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Machine Independence 

It has been stated that a program cannot be called machine independent until it is 

comp,J.etely operational on at least two distinct ranges of hardware. For this 

reason, ASAS is written in ASA Standard FORTRAN and the first version relies on 

sequential access of backing store files through standard FORTRAN Input/Output 

instructions. Although this introduces a measure of inefficiency at the assembly 

and solution stages, it has not proved as penalising as many would suspect. The 

benefit of machine dependent facilities, notably in the two areas mentioned above, 

has been recognised, and a version of ASAS using direct access facilities to backing 

ftles has been produced. The program is currently mounted on RlCDS SIGMA 5 and 

SIGMA 7, UNIVAC 1108 (Exec 2 and Exec 8), UNIVAC 1106 (Exec 8), IBM 360/75 and IB~ 

370/150, and conversions are being prepared for the ICL 1900 series and CDC 6600 

machines. 

Service at All Levels 

The success of a general purpose finite element program depends to a very large 

extent on the back-up provided. Back-up ranges from hand holding and first-aid 

treatment during initial use of the program to access to the originators of the 

program or equally qualified personnel in case of unexpected or unusual difficulties, 

or should modifications or new developments be required. Furthermore, the program 

should be seen to be a living thing with guaranteed support and adequate development 

to come. 

An elasto-plastic version of ASAS and a thermal analyser ASASHEAT have been 

produced and the design team is currently extending sub-structuring facilities 

and the calculation of dynamic response. 

analytical capabilities. 

Figure 1 summarises current ASAS 

THE DESIGN DF ASAS 

This section describes how the framework of ASAS was planned so as to meet the 

objectives declared in earlier sections. 

ASAS is subdivided into a number of modules, each performing a distinct operation, 

linked together by an overall steering or header program. The modules are designed 

mainly for use with other types of problems. The interface between each module is 
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Figure 1: ASAS analytical capabilities 

clearly defined by the use of data blocks, which simplify the work involved in the 

addition of new facilities, and allow internal information to be used outside the 

main program for both pre- and post-processing work. Mesh generation and stress 

plotting are examples. Another advantage of this rrodularity is the ease with 

which improved versions of existing rrodules may be added to the system. For example, 

a complete double precision version of the structural stiffness assembly routine can 

be incorporated without disturbing other parts of the system. 

Envisaging the continuous development and addition of new finite elements, there 

are clearly defined points where new element dependent routines may be added. These 

points appear at the element checking stage, the calculation of the element stiff- 

ness, element loads and element stresses. The element dependent routines can be 

written with no knowledge of ASAS, as their introduction to the main system requires 

only a simple 'capping' routine that accepts the element data in the format provided 

and returns the element characteristic matrices in a similar manner. 

Key information, giving certain details about the elements, is kept permanently in 

core in FORTRAN arrays termed 'libraries'. Typically, they contain the number and 

types of freedoms and the number and types of stresses on an element. The element 

dependent; stages are guided by references to these libraries and hence there are 
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no imposed restrictions on the type of element employed, and the number of nodal 
parameters permitted at a node, 

node providing they have some common freedoms, although the number of parameters on 

one element may differ from that on another and may vary from node to node. 

Any number of elements of any type can meet at a 

An essential feature of ASAS is that it is designed to handle both small and large 

problems by the use of dynamic storage allocation and automatic core overflow 

techniques. The method used within ASAS recognises the simple flow of data 

inherent in the finite element method, while giving the primary advantage of core 
allocation at job execution time. 

data area as a single, one-dimensional FORTRAN array termed 'freestore'. 
This is achieved by regarding the available 

this, any amount of space can be called for and used by each module of the program. 

The information created can then be written to a backing file and the space 

returned to freestore for use in some other part of the program. This simple 

approach has the advantage that no program space is required for complicated control 

software and that no organisational overheads are incurred during job execution. 

From 

ASAS is capable of performing an efficient analysis of most practical engineering 

and research problems. This flexibility is achieved by controlling the storage 

of internal information, word packing and a choice of solution routines. The 

user, however, does not have to make a choice as to which modules are necessary 

for an efficient solution to his problem; this is decided in the header program. 

Ideally, there should be no restrictions on the size of problem that a structural 

analysis system is capable of handling. Practical limitations, such as the amount 

of core and backing store available on a particular configuration place certain 

restrictions on the size of problems that ASAS can tackle. Typically, a problem 

with 3,000 unknowns and a large number of load cases will run successfully on a 32 

bit, 32K word store machine, and a 64K word machine will solve problems very much 

larger than this without difficulty. Substructuring facilities are currently 

being implemented to remove some of the difficulties associated with the very large 

problem, particularly in the description of the idealisation and with the solution 
of the equilibrium equations. 

A restart facility exists in ASAS which allows the user a degree of control in the 

execution of large jobs and in salvaging jobs in the event of inadequate limits 

specification (time, number of output pages), or if a machine failure occurs. In 

all, there are twelve restart stages in the program. 
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NEWPAC - A PROGRAM FOR LINEAR ELASTIC 
STRUCTURAL ANALYSIS BY FINITE ELEMENTS 
A Scholes 

British Railways Board 
London Road 
Derby 

INTRODUCTION 

The need for a general purpose structural analysis program was formulated in British 

Rail's Research and Development Division in Derby in 1966. A wide variety of 

railway structures, eg coaches, wheels, bridges, required detailed stress calculations 

and the traditional methods were proving inadequate. The Division had developed 

expertise in the finite element method using some small and special purpose programs 

and came to the conclusion, along with some other organisations at that time, that 

there was no suitable general purpose program available from external sources and hence 

that a program, written in house and thus more closely allied to railway engineers' 

needs, would be most appropriate. 

This latter point was most important since it was considered that the successful intro­ 

duction of more exact computational techniques into the design offices of British 

Rail would be eased by the local availability of any programs and of qualified support 

staff. 

The major aims in producing a program were formulated as:- 

(i) Capability for 3-D static and dynamic analysis using finite elements of all 

structures likely to be of interest to railway engineers. 

(ii) No arbitrary limits (as far as possible) in regard to the complexity of 

structure it can tackle. 

(iii) Simple form of data input which requires little learning. The data can 

now be checked using interactive graphics. 

(iv) Modularity in the program so allowing ease of amendment and additions. 
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(v) Use of standard high level language (FORTRAN IV) with ~inimum of assembler 

level language. 

The aim of this paper is to show how we attempted to meet these objectives and to allow 

our attempts to be compared and discussed in the light of other solutions. 

History 

The program NEWPAC was begun in 1966 and was in productive use at the end of 1969. In 

the meantime, smaller programs, particularly one called OLDPAC, were developed to allow 

the wider introduction of finite element methods into the design offices and to gain 

experience of users reactions to, for example, different forms of data input (West 1969). 

All those programs were developed on an ICL 1909 computer with five magnetic tape 

decks. NEWPAC was subsequently transferred to an IBM System 360 (and later a 370) 

computer, working under the OS/MFT2 operating system. The subsequent description refers 

to the latest version of the program. All facilities, particularly those involving 

graphical output, may not be available with all versions of the program (see user guide, . 
(Patel et al 1974)) . 

ANALYSIS PERFORMED 

The various types of analysis which may be performed are:- 

(i) Static analysis to calculate the displacements and stresses due to prescribed 

loads, displacements and temperature fields. 

(ii) Static analysis as (i) but including terms due to geometric stiffness, eg 

where tensile or compressive loads in end-load members are taken to have 

stiffening or de-stabilising effects respectively. 

(iii) Calculation of natural frequencies and corresponding modal displacements and 

stresses. 

(iv) Calculation of buckling load factors and the corresponding buckled shapes. 

(v) Steady-state analysis of temperature or other potential problems. 

(vi) Transient analysis for mechanical systems with mass, damping and stiffness 

to calculate displacements and stresses under time-varying loads. 
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(vii) Thermal transient analysis to calculate temperature-histories under varying 

heat load inputs. 

Static Analysis 

This is the basic finite element procedure which involves the following steps:- 

(i) The idealisation of the structure under consideration as a number of elements 

(members), connected at nodes (joints). The movements of each node are 

defined in terms of displacements (both linear and rotational). 

(ii) the specification of this idealisation (as nodal co-ordinates and element 

properties) and also of the loading and constraints imposed on the structure 

in a form suitable to the computer. 

"input" data sheets. 

This is done on specially designed 

(iii) the computer analysis itself. The input information is used to calculate 

the relationships between the forces on each element and the displacements 

of its connecting nodes. These relationships are called "element stiffness 

matrices11 and are used for setting up simultaneous equations which, in 

matrix notation, can be represented as 

[K] • [d] (1) 

where [d] is the vector (set) of the unknown nodal displacements and [P] is 

the vector of the loads applied at the nodes. The matrix [K] is referred to 

as the "asserrbled stiffness matrix" since all the forces on all the elements 

as assembled into the complete structure are taken into account. 

The vector [P] may, in fact, also be a matrix, if more than one load case is 

applied, and may be assembled from element load matrices if loads are applied 

to an element rather than only as nodal forces. 

The stress/displacement characteristics of each element are also generated 

in the computer. This may be expressed in matrix form as 

[s] [F] • [d] (2) 

where [s] is the vector of stresses and [F] the "stress-matrix". The loads 

[P] are given and the computer determines the displacements and then c a l cu- 

lates the stresses for each element. It is also possible by a modification 

of the above procedure to specify some of the displacements [d] 
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(iv) The basic stresses calculated may be further modified, eg by combination, or 

by calculation of principal stresses. 

Static Analysis with Geometric Stiffness 

Further element stiffness matrices are derived for elements for which stiffness modifi- 

cation due to end-load effects is to be considered. 

element matrices giving 

These are assembled with the other 

(3) 

The rest of the static analysis is unchanged. 

Natural Frequencies 

Additional element matrices are derived for the nodal forces arising from mass effects. 

These matrices are assembled into a structure mass matrix [M] where [M] • w2e[d] are the 

set of nodal forces arising from inertia effects from displacements [d] at frequency w. 

The combined equation including inertia forces and stiffness forces is thus 

0 (4) 

Since the structure is assumed in free vibration, the applied forces are zero. This is 

an eigenvalue problem which is solved to give natural frequencies and mode shapes [a] 
During this process, the number of displacements in [d] may be reduced by a condensation 

procedure (Zienkiewicz and Cheung 1967). Stresses may be calculated thereafter. 

Buckling Analysis 

The element geometric stiffness matrices mentioned above are proportional in magnitude 

to the end load or direct stresses in the respective elements, If this is assumed to 

be true for the whole structure, ie if all such effects are proportional with pro­ 

portionality factor,, then equation (3) can be replaced by 

0 (5) 

Since the structure is buckling, the applied loads other than those producing geometric 

stiffnesses are zero. 

analysis. 

The condensation procedure can also be applied in buckling 
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Steady State Temperatures 

This analysis is similar to static stress analysis with the variable at each node the 

temperature rather than displacements. Element matrices are calculated and assembled 

and the equation (1) solved where [d] are the nodal temperatures and [P] the heat 

inputs and outputs. This analysis may also be used for other potential problems, 

such as electric fields and fluid flows. 

Mechanical Transients 

For each element, mass, damping and stiffness matrices are calculated and assembled to 

give the following equation for the force balance at the nodes. 

(6) 

The applied loads [P] may also vary with time. The equation is solved time-step bv 

time-step throughout the time interval specified. The mass, stiffness and damping 

matrices may be condensed as above. Stresses may be calculated as required. 

Thermal Transients 

This analysis results in a similar equation to the time-history analysis, except that 

there is no mass matrix. The [c] matrix is called the specific heat matrix and the 

[K] matrix, the conductivity matrix. 

THEORY 

No theoretical details are given in this note. The elements details are covered in 

Prempeh and Patel (1971) and Sunley (1971). The solution procedure used in Choleski's 

factorization; the eigenvalue algorithm is by Jacobi (Rolston and Wilf 1962) and the 

time history iteration is Newmark's beta method (Chan et al 1962). 

NEWPAC ORGANISATION 

The analysis of a structure using a complex finite element program involves several 

steps including:- idealisation, data input, data checking and preferably display, the 
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analysis itself and output printing and display. The way in which these steps are re 

lated and the other auxiliary programs which may be used with NEWPAC are shown in the 

block diagram (Figure 1) and described below. 

I0EALISATION 

STRUCTURE I LOADS 

Structure 
G•om•try 
Elcmcnt1 
Conatrolnh 
loading 
Procusor data 
Commands 

AMENDMENT 
PROGRAM 

Grid of node • elements. 
Focsimllc ot display. 
(hard copy) 

NEWPAC DIRECTIVES 

DATA CHECK 
ANALYSIS RUN 

RETRIEVE RESULTS 

SAVE 
FILE 

'STGROUT 1 

OUTPUT 
PLOTTING 
PROGRAM 

01GOR1 

OUTPUT 
DISPLAY 
PROGRAM 

Oi1ploumcnt1 
Element 1trcHU looch lltc. 
Rcocllon1 
Flolbilltlu 
Frequcnclc1 
Mode 1hopc1 

0110 

Input dota 
Error mu1agu 

Ol1placcmcnt1 
End-load 1h11ar 1 8.M. 
tor ltnc elcmcnu 
Prlncipol 1trcuu 
Vibration mode 1hapn 

Oi1plac,mut1 
Strcncs 
Mode 1hopu 
Etc. 

Figure 1: Block diagram - NEWPAC system 

Each analysis will start from an IDEALISATION of the structure to be analysed, A 

complex structure will generally be made up of different types of elements and the user 

must have sufficient knowledge of the behaviour of the various element types so that the 

idealisation produces the accuracy and detail of results required, The idealised 

structure has then to be specified on STANDARD DATA SHEETS given in the format shown on 
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Figure 2; this includes the degrees of freedom required at each node, the node numbering, 

the nodal coordinates, element names and parameters, structure supports and applied loads, 

This data is punched on CARDS and may be entered in an INPUT DATA FILE. For some 

specific configurations of structure, data may be produced in the required format by 

special purpose programs. 

· l 1111 I 111111 1111 ' 1111 : I I 1 1 I I I I TITLE 

1•iu,N;viN!8i ;vi I i I i I I I I 
Vi>l•!•r<l0i I•, I I I I I I 
lo;•'.1;•l•i•1•i•I I I I I I I 
l•i•l•l•i••i•iol•l•IYl•I I I I I 11 I I [TI] 
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iITIJ TOTAL No. OF DISPLACEMENTS 

CIII] TOTAL No. Of' ELEMENTS 
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·- ·--· 
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DISPLACE.MIEN T 

0 
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Figure 2 (part 1): NEWPAC input data formats 
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PROCESSOR P,\TA SHEET (BZOI/Pp) 
I 10 17 

I•/ 1 : 1 1 1 11 1 1 11 I 1 1 1 I 

i'1 11l·111 ~111111111 ii Hill I I I Li 1111111 a 
I 9 

!•jcjojwjwl•INl01 •I 
TICk COMMANDS TO aE PUNCHED 
REPEATED COMMANDS MAY IE WRITTEN N SPACES PROVl0£D 

T 
I 
C • 

CALCULATION / PfttHT PRINT 
ALTERNATIVE PAINT TITLE 

COMMANDS FORMA 

I 10 16 17 .• ,0 JO 35 
D I s • L A C E M E N T S V I I I I 
S T R E s s E S V I I i i 
F e R C E S V I I ' ; 
R E A C T I 8 N S V I ' 

V I ' ! 

' V I ! 
V I 

F L E X )! B I L I T y V I I 
F I I RTE S T R E s s V ,·~ I ••• A Ml& N I C S I V ~ I I I 

IP • 1 NIC I P A L S T R E s s V ~- ' 
V I ,, 
V ' I 

I V I I i 1 
~ .. A D C e ••• I H A T I e H V I ! ' 

I V ' : : 
V ; 
V ' I 
V I 

• • •• y I •• A T I e N ' V ' ' V , ' I 
I V I ! ! I ! 
I V I I : ' I 

; V I ; I ' I 
I • y • • • s u L T S V ~ 

Figure 2 (part 2): NEW PAC input data formats 

Data Checking 

Complex structures require a considerable amount of data to be input and mistakes 

are likely to occur. The checking facilities offered within the NEHPAC system are 

programs STGRIN which can draw on an incremental plotter scaled pictures of the 

idealisation (Figure 3); program INGRID which displays views of the idealisation on 
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an interactive display and allows data amendment (West and Scholes 1972); and 

NEWPAC itself running under the DATACHECK directive. This directive terminates 

NEWPAC after format and consistency checks are made on geometry, elements, loads, 

constraints etc , and each error found produces an explanatory note on the OUTPUT 

LISTING. Other useful information, eg degree of freedom numbers, element band- 

widths, load summations are produced. 

Figure 3: Input plot of idealised structure 

NEVPAC INPUT PLOT 

C.T.LOAOING VEHICLE CURVED ODOR 

GRIO SCALE 0.0350 UNITS • HHS 
TRI VIEV FROH -1.00 0.60 0.60 VERTICAL AXIS• Y 

Analysis 

The second mode of operation of NEWPAC is for a main or ANALYSIS RUN; all the 

commands used and the amount of core store required are now checked. If there are 

no errors, the main analysis required is completed and results are printed and 

also retained on the SAVE FILE. 

Output Processing 

A third mode of operation is to RETRIEVE RESULTS from the SAVE FILE, when certain 

further analysis or processing is possible. Additionally results held on SAVE 

FILE may be assessed by program STGROUT which plots the calculated deflections and 
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stresses superimposed on a structure grid (Figure 4) and program IGOR which draws 

chosen results on an interactive display (West and Scholes 1972). 

Figure 4: Output plot of bending moments 
plotted normal to element axes 

NEVPAC OUTPUT PLOT 

H( 3 COACH FRAME RUN NO. TVO 
GRIO SCALE • 0.0500 UNITS • HH 
Y-Z VIEV VERTICAL AXIS • Y 

LOAD CASE NO. I f· 0. 001 N/HM2 

HOHi I PLOTIEO RESULTS SCALE •• 750E OS NEVION-t\N/MM 
HAXIHUH RESULTS VALUE FOR THIS LOAD CASE "' 0.2199E 07 
RESUL IS FOR ALL RELEVANT ELEMENT TYPES PLOTIEO 

Commands 

NEWPAC is guided as to the user's requirements by DIRECTIVES and COMMANDS. The 

former specify the modes of operation as mentioned above, DATACHECK, ANALYSIS RUN 

or RETRIEVE RESULTS. The latter specify the analysis and output required. Some 

examples are HARMONICS, LOAD COMBINATION, PRINCIPAL STRESS, REACTIONS, TRANSIENTS. 

Some sequences of COMMANDS are illogical or impossible and NEWPAC determines on input 

whether the sequence specified may be executed in the core store available. 

An error message is produced if the job cannot be run and the user is often saved an 

embarrassing and expensive failure. 

Program Limitations 

The structure o~ NEWPAC is such that it can run on various partition sizes on an IBM 

360 or 370 computer; thus different sized structures can be analysed using the same 

program. However, there are many parameters which determine whether a given structure 
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will fit into the amount of core and disk space available, 

apply generally but are not exhaustive. 

The following limitations 

No of nodes: 4000 

No of displacements: 

No of elements: 

No of constraints: 

from nil to six per node 

limited only by backing storage, normally more than .3000, 

sum of dependent and independent constraint entries within 

any bandwidth to be less than 250 

The maximum displacement number difference Band number of applied load cases, NL, for 

static runs and the number of master displacements for vibration and buckling analysis, 

NPD, are limited (approx) as given below. 

Core size 

180 k 

B 

130* 

NL 

40 

NPD 

50 

240 k 180 50 60 

300 k 220 50 70 

*100 only for vibration and buckling analysis. 

Exact limits for any partition size are calculated and printed by NEWPAC. 

ELEMENTS 

The NEWPAC program contains a large number of different types of finite elements. 

These may be grouped as:- (a) Line elements, (b) Planar elements, (c) Axi-symmetric 

elements, (d) Field elements and (e) Point elements. Each element type has a code 

name, a mnemonic formed by two initial letters of the element type name, followed by 

the number of noc!es to which it is incident, 

For each element in the program a stiffness matrix is generated. Other matrices, 

such as the stress, mass, damping and different types of loading matrices, are 

calculated depending upon the type of analysis being performed and the parameters 

provided for the particular element. 
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The input for each element consists of an element name (user selected), the element 

type, the nodes to which it is connected and parameters describing its properties. 

For some elements a reference plane is also required. Details of the format of 

this input are shown in Figure 2 and details of each element type available are 

shown in Table 1. 

TABLE 1 
ELEMENTS AVAILABLE IN NEWPAC 

Code Description Displacement Form 

Beams 

EL2 
EL3 
BM2 

GB2 
PB2 
BG2 
BM4 
RB4 

End Load Element 
-II - It (with mid-side node) 
General ~e~ (with shear, torsion) 

MT3 
MT6 
BT3 
BT6 

Grillage Beam 
Plane Frame Beam 
Beam with Geometric Stiffness 
BeaM (with-four corner nodes) 
Referred Beam - - 

Triangular elements 

Membrane Triangle 
- " - " (with mid-side nodes) 
Bending Triangle (Shieh,Lee,Parmalee) 
- " - " (with mid-side nodes) 

MR4 
WR4 
SR4 
BR4 

MQ4 
MQ8 
BQ4 
BQ8 

Quadrilateral elements 

Membrane Rectangle 
Web Rectangle 
Shear Rectangle 
fending !ectangle (Zienkiewicz) 

linear 
quadratic 
cubic bending, linear 
torsion etc. 
reduced form of BM2 

" " " 
BM2 plus 
generalised form of PB2 
BM2 with rigid offsets 

linear 
quadratic 
quadratic in sub-triangles 
cubic (Razzaque) 

linear with xy terms 
" (but constant shear) 

shear only 
cubic with two quartic 
terms 

Membrane Quadrilateral 
- " - " (with mid-side nodes) 
Bending Quadrilateral 
- 11 - II (with mid-side nodes) 

AT3 
AA3 
HT3 
HA3 
AT6 
HT6 

Axisymmetric elements 

Axisymmetric Triangle 
Axisymmetric Anisotropic Triangle 
Harmonic Triangle 
Harmonic Anisotropic Triangle 
Axisymmetric Triangle (with mid-side nodes) 
!!armonic !riangle (with mid-side nodes) 

Field elements 

Field Triangle (for heat flow problems) 
field ~xisymmetric Triangle 

(with mid-side nodes) 
Axisymmetric Boundary element 
- 11 - II 11 

derived from 
II II 

II II 

4 MT3 
4 MT6 
4 BT3 

cubic in sub-triangles 
(de Veubeke) 

linear (constant circum) 
" 
" 

" 
(harmonic circum) 

" 
quadratic (constant circum) 

" (harmonic circum) 

FT3 
FA3 
FA6 

AB2 
AB3 

(with mid-side nodes) 

linear 
linear 
quadratic 

linear 
quadratic 

Point elements 

PSl 
PDl 
PMl 

Point 
Point 
Point 

Stiffness 
Damping 
Mass 
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Element Matrices 

A range of element matrices may be calculated, although not all are provided for 

each element type. A stiffness matrix is, of course, calculated for all elements 

(the conductivity matrix for field elements used in heat flow problems). A 

"s t re s s+ma t r i x" is also available which allows the calculation of various stresses 

and stress resultants. 

For beam elements, these stresses are the direct and bending stress resultants 

at each end. Where such an element abuts along its length to a shear carrying 

panel, the transfer of load between the two elements is assumed to be as a constant 

shear flow and the end load in the beam adjusted accordingly. Further, fibre 

stress can be calculated at any specified position on the beam cross-section. 

The stress matrices provided for the planar elements give stress resultants (such as 

moments/unit length) and the stresBes on both surfaces of the element (where different). 

Depending on the element, stresses are evaluated at the corner nodes or the element 

centroid. Principal stresses ma)' also be calculated and plotted (Figure 5). 

Consistent mass matrices are provided for all beam elements. However, since the mass 

condensation procedure is almost invariably used, it is not thought worthwhile to 

extend this to other elements and all other element matrices are of lumped mass type. 

Additional lumped masses are often necessary and these may be provided by point mass 

elements. 

Only a very few element damping matrices are provided. However the facility exists to 

specify the structure damping matrix to be used for mechanical transient analysis as 

[c] [ce] + a[MJ + b[K] 

where [CeJ is the damping matrix assembled from the element matrices, [M] and [K] are 

the structure mass and stiffness matrices and a and bare constants. 

A geometric stiffness matrix is only available with the general beam element at present, 

although all that is required to extend this facility to other elements is the insertion 

of the appropriate element routine. 
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-1-+1--1--- 

NEVPAC OUTPUT PLOT 

MASONRY ARCH BRIDGE RUN NO. ONE 

GRID SCALE 
X-Y V!EV 

0.0300 UNITS M. 
VERTICAL AXIS; Y 

LOAD CASE NO. 5 ( HROl+SF VT+OM+LL 

PSTT PLOTTED RESULTS SCALE ;.875E 08 N/SO.M/M 
(RESULTS SCA~E TRUE ONLY IF ELEMENT PLANE PERP TU VIEVl 
MAXIMUM RESULTS VALUE FOR THIS LOAD CASE; 0.1107E 07 
RESULTS FOR ALL REL~VANT ELEMENT TYPES PLOTTED 

Figure 5: Output plot of principal stresses 

Element loads may be specified in addition to nodal loads, the program automatically 

generating the corresponding nodal load matrices which are subsequently assembled. Beam 

elements may be subject to six types of point and line load (Figure 6), Planar elements 

may be subject to uniform pressure loads normal to the panel or in one of the axis 

directions. 

Element Axes 

A right handed Cartesian set is used for nodal geometry definition, Each element has a 

local set, generally with one axis parallel to one side, which is used for stress 

definition, 
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ELEMENT TYPE ELEMENT LOADS LOAD LOAD NO.OF LOAD VALUES 
TYPE DIRN INPUT REQUIRED 

LINES 
BEAM ELEMENTS A-Point force on Line AX LX a=magnitude of 

Element AY LY 2 force 

Ja AZ LZ bzcdistance of 
force from 

1~b~ 'z end 1, 

B-Point moment on BX RX acmagnitude of 
Line Element BY RY 2 moment 

I Ja BZ RZ b==Distance of 
moment from 

1-b- 2 end 1 

C - U,D,L. on Line ex LX a-U,D.L, in 
Element CY LY 1 force/unit 

cz LZ length of 

afj 111111111111 l beam 

1 2 

D - U,D.M. on Line DX RX a=U,D.M. in 
Element DY RY 1 moment/unit 

DZ RZ length of 

al 111111111111 [ I beam 

1 2 

E-Linearly varying EX LX a=force - End 1 
Load on Line EY LY 4 b=f'o r ce - End 2 
Element EX LZ c-=distance of a 

1 at nTffilll lb I from End 1 
d=d is t ance of b 

from End 2 
1 .•. c- •d•2 

F-Linearly varying FX RX 4 a=moment - End 1 
moment on Line FY RY b•moment - End 2 
F.lement FZ RZ c•distance of a 

I at nTrrn lb -t 

from End 1 
d=-distance of b 

from end 2 

1 -c- --d-2 
PLANAR U-Normal pressure UN Normal a=pressure in 
ELEMENTS load to force per unit 

or pressure loads Panel area 
along one of the ux LX 
structure axes UY LY 1 

uz LZ 

AXISYMMETRIC TH-Thermal Load TH 1 a•Temperature 
ELEMENTS 

RT-Rotational Load RT 1 a=Ci rcular 
frequency 
(Radians/Unit 
Time) 

a, b, c, dare the load values to be entered on the first, second, third and fourth 
lines of input data. 

Figure 6: Element loads 
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OTHER FACILITIES 

Axisymmetric Harmonic Analysis 

For axisymmetric structures under non-axisymmetric loads, an analysis in terms of 

Fourier serie~ circumferentially may be r.ade. NEWPAC automatically generates the 

equations for all sets of harmonics, solves and recombines the separate harmonics 

to give the results required at specified angular intervals. 

elements have anisotropic material properties. 

Some of· these 

Matrix input and output 

A precomputed stiffness matrix may be input and a specified flexibility matrix 

calculated and output. 

Load Combination 

Linear combinations of deflection and stress results from different load cases may 

be made. These load cases may be from different analysis runs, having different 

constraints. This facility thus allows the combination of symmetric and anti- 

symmetric loading on a symmetric structure, where advantage has been taken of 

symmetry to analyse only part (generally half) of the structure. 

Cons train ts 

Any displacement may be specified as having zero value, as being in a linear 

relationship with other displacements, as having a pre-specified value or as being 

the (summed) combination of the last two. 

Save File 

All results are usually saved on a magnetic tape file, from whence they may be 

reprocessed (for instance by further load combinations or to find further fibre 

stresses) or plotted. 

SOME PROGRAMMING DETAILS 

NEWPAC is a heavily overlaid program, having over 130 subroutines of which 50 

are for generating element stiffness, stress, mass and load matrices. All but 

5 of these routines are written in FORTRAN; the ASSEMBLER routines are generally 
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small and perform such functions as packing and unpacking words, finding the extent 

of core available, allowing input to be buffered and re-read in different formats. 

Intermediate data is transferred between main routines via disc and a number of 

temporary data sets are used for this purpose. 

One, labelled the OUTWELL is organised in a special way and is used for data to 

be retained throughout the program. The others are used as scratch areas and will 

generally hold only one or two "blocks" of data. A block is here defined as an 

adjacent set of FORTRAN logical records limited by a trailer record. Each block 

of data is also preceded by a header record, which gives a code specifying the 

type of block following. This allows this data set to be searched for a particular 

block. Flexibility regarding which data set any particular block of data is 

allocated to is maintained by holding channel identifiers as parameters in the 

calling sequence of subroutines. 

Common ---- 
Two main COMMON areas are used, one, CONTROL, holding the main problem parameters, 

both structural (degrees of freedom, number of load cases etc) as well as 

computational (allocation of input/output channels). The other COMMON area is 

always arranged to be at the bottom of each branch of the overlay tree and expands 

to the limit of the area available. In this extendible COMMON area, generally 

only one variable is declared eg, A(l). Assembler routines are used to determine 

the limit of core available to the COMMON area, leaving an appropriate amount for 

input/output buffers and other OS requirements, and for determining the relative 

position of any variable, such as A(l) above, in a COMMON area. The subroutine 

writer then has the maximum possible amount of core available to him, though this 

will vary according to the partition size in which the program is run. However 

he must now work within one single dimensional array and distinguish different 

parts of the data he is working on by relative shifts, ie what would normally be 

B(I) becomes AfIB+I) and D(I,J) becomes A(ID +Ix N + J), where the size of D 

is M x N. These additional book-keeping activities are essential if core is to 

be allocated at run-time, an absolute necessity if the program is not to be 

considerably constrained by the array dimensioning requirements of FORTRAN. 

During the assembly, constraining and solution phases of the program, a triangular 

part only of the lower band of the structure matrix is held in core. This triangle 

is of semi-band width and effectively moves down the lower band of the structure as 
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columns of finished data are written out and new rows read in, The mapping of the 

triangle onto the single dimensional array mentioned above is such as not to require 

any core rearrangement at any time. A marker is also held of the first non-zero 

element in each row and this together with the mapping arrangment minimises the 

computation while maximising the bandwidth which can he held in a particular core 

size, A flow chart of the program is given as Figure 7. 

I - 

( START ) ~ ~ A 
lli5!.I ,, 

~ 
DATA - -- ,. 

~ FILE .. READ OUTPUT 
READ l CHECK - - COMMAND ANO 

~ 
CALL "" 

INPUT DAT,i. . . APPROPRIATE 
- - ROUTINE ------ 

SORT ~ 
ELEMENTS ~ '\ RETRIEVE 

INTO 
RESULTS ,i.SCENDING 

STATIC OUTPUT NODE ORDER _.) . - ......,...,.ES.SEO - CALCULATIONS - - INPUT 
l ELEMENT 

~IAAND' STRESSES. ~ ~ ,, ~ 
REACTIONS 

HARMONIC 
SYNTHESIS SAVE CALCULATE 

FIBRE STRESS - FILE ELEMENT . -- STIFFNESS RESULT - COMBINATION r STRESS, MASS ~ SAVE ETC MATRICES ETC - . 
ELEMENT PRINCIPAL - - STRESS t,t,i.TRICES - - r ,, ' 

VIBRATION 
,i.sSEMBLE I+- CALCULATIONS r _.; 
STIFFNESS - CONDENSE 
l LOAD - STRUCTURI - MASS,STIFFNES' 

MATRICES - MATRICES . DAMPING 
FORM EIGEN- 

' ~ VALUES l 
VECTORS - ,p MECHANICAL/ 
THERMAL - TRANSIENT . 

CONSTRAIN - BUCKLING STRUCTURE r ., 
STIFFNESS l " 

- 
CONST- y LOADS RAINED PRINT OUTPUT 
MATRICES 

~ AND . - OTl1ERS 
R 

J IB""DED CHOL· ... . ESKI SOLUTION - 
OF EOUA TION S - - " ------ r ~ DE-CONSTR,i.lN 
"'SPI..ACEMENTS ~ DISPLACE· - ( FINISH ) MENTS - 1 ~ 

Figure 7: NEWPAC flow chart 
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APPLICATIONS 

Details of some of the mechanical and civil applications of NE\./PAC in British Rail 

are given in previous papers (Dodd 1972 and Scholes 1974). The structures analysed 

at Derby as well as including railway vehicle superstructures and components, such as 

bogies and wheels, have encompassed a wide variety of bridges, in steel, concrete or 

brick and frame structures. Studies have also been made on details of rail joints, 

pantographs on electric trains and of the overhead electrified wire itself. 

The program has also been used outside BR for such diverse structures as blast 

furnace hoods and bus frames and by civil engineering consultants for bridges and 

dock gates. 

Computational details of some of the larger jobs run on BR's IBM 370/145 are 

included below (Table 2). 

TABLE 2 
SOME LARGER JOBS 

DESCRIPTION TYPE OF RUN DEGREES OF SEMI-:BAND- CPU 
FREEDOM WIDTH (mins) 

Coach (half) Static 2440 137 112 

Coach (quarter) Nat frequency 966 75 40 

Bus (whole) Static 1374 209 130 

Wheel Harmonic 6558 33 420* 

Bridge Static 1920 77 361* 

* ICL 1909 

REMARKS 

It is hoped that an impression has been given of a robust system, simple to use, 

where the emphasis has been on providing the user with as general a program as 

possible with a large number of time saving facilities on output. On input, it 

has generally been left to the user to provide his own data generation program, 

mainly because of the wide variety of structural types analysed. 
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The program has been designed to be modular in concept and operation and this has 

eased the enhancements made although requiring additional effort in holding source 

code, in overlay design and in documentation. 

As the program became more complex, the process of logical checking of commands and 

other data to guard the unskilled user assumed a greater importance, although it 

undoubtedly saves much of the user's computing time, 

NEWPAC is currently a mature program, well used but with plenty of potential for 

future enhancement to meet the needs of engineers and designers. For instance, 

procedures for optimisation and for checking against allowable stresses are being 

planned. 
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SUMMARY 

A number of techniques for automatic mesh generation will be reviewed and some current 

work of the author will be described, 

INTRODUCTION 

When setting up a finite-element model it has been usual to position the elements and 

number the variables manually. This procedure is very tedious and prone to error and 

its cost can exceed by a substantial factor the cost of running the final program that 

produces the solution. These disadvantages can be mitigated in a number of ways, for 

example by the use of a good input data format allowing repeating elements and groups 

of elements to be specified in a condensed form and by the extensive use of graphical 

facilities to check the grid and even to specify it with the h~lp of light-pen. Here 

we discuss the alternative of making the computer generate the whole grid, As well 

as avoiding the disadvantages we have mentioned of the simple manual approach it has at 

least the potential of permitting the computer to choose for itself mesh sizes that 

are everywhere appropriate both for the adequate representation of the region and for 

the adequate representation of the solution. This would be particularly useful, for 

example, if. a sequence of problems of widely varying smoothness were to be solved over 

the same geometrical region. 

REVIEW OF TECHNIQUES 

A number of authors have begun from a sequence of points on the boundary, fitting an 

internal triangulation to them. George (1971) successively removes one triangle at a 

time, as illustrated in Figure 1, his algorithm trying to ensure that each is nearly 
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(I) 

\ Ill ) 

/ 

/ ( lv) 

(VI (VI) 

Figure 1: Illustration of George's triangulation algorithm 

equilateral. A similar algorithm has been proposed by Bykat (1972) but its details 

are different, If he cannot remove a triangle of reasonable shape (Figure 2 (a)) th, 

he introduces a cut (Figure 2(b)) which gives his removal code scope to proceed 

(Figure 2(c)). George finishes by smoothing with general sweeps of the grid moving 

points successively so that their coordinates are the means of the coordinates of 

their immediate neighbours in the grid. An example of a final George triangulation 

(a) (b) (cl 

Figure 2: Illustration of Bykat's triangulation algorithm 
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shown in Figure 3, Bykat's triangulation of the same region is shown in Figure 4 and 

his triangulation of a more complic~ted region is shown in Figure 5. Collier, 

Ellington and Rees (1971) have developed an algorithm based on the same idea and this 

is incorporated in TRESS, a finite element code for stress analysis problems. A 

Figure 3: A final George triangulation 

Figure 5: Another Bykat triangulation 

Figure 4: Bykat's triangulation of the region 
of Figure 3 
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similar form of input has been used by Winslow (1964). A fictitious potential is 

associated with each grid point and Laplace's equation is solved so that equipotentials 

provide one set of grid lines and orthogonal trajectories another. This generates a 

smooth quadrilateral grid which can be subdivided into triangles. The solution of 

Laplace's equation seems rather a "sledgehammer for cracking a nut", and one wonders 

whether really complicated regions can be handled but it has the virtue of producing 

smooth variations of triangle size, generally agreed to be desirable. 

Another approach involves the user in providing an original gross triangulation which 

is subdivided by an automatic procedure. George (1971) begins with triangles, whieh 

may vary in size (see Figure 6, for example), and divides each uniformly into the same 

number of parts. Zienkiewicz and Phillips (1971) begin with quadrilaterals, allow the 

user to specify where on each quadrilateral side grid points are wanted, and fill in 

the interior with lines parallel to the quadrilateral sides. The idea is given 

greater power by superimposing isoparametric mapping and by identifying topologically 

different quadrilateral sides to allow complicated structures such as box girders with 

internal diaphragms to be handled. The results are impressive but the technique 

really falls into the category of a mechanical aid to a hand method for all the 

essential decisions about the shapes and positions of elements are made manually. 

Figure 6: Another George triangulation 

THE AUTHOR'S WORK 

The Early Stages 

My own work (Reid (1970), Reid and Turner (1970)) involved taking an original uniform 

equilateral grid and distorting it by moving grid points near the boundary onto the 

boundary. In Figure 7(a) the points 1,2, ••. 16 are points of the original uniform grid 

and the points l',2',3',4' ,S' are points of intersection of the boundary with grid 

lines; the distorted grid is shown in Figure 7(a) and is formed by moving point 1 to 

position l', 2 to 2', etc. I was able to show that, with the help of some rules 

exploiting the freedom that sometimes exists over to which boundary point a grid point 

should be moved, no triangle could have an angle outside the range {cot-l 3/i; Sn/6} 

""{11°, 150°) and that with a smooth boundary and a sufficiently fine grid these bounds 

- 132 - 



JK REID 

-1 r-. 0 0 could be improved to {cot (5/v3), 2rr/3} "=' {19 , 120 }, The procedure produced use- 

ful triangulations, particularly for the practical problem of A B Turner that first 

aroused my interest in the subject, and one of the triangulations produced for him is 

shown in 'Figure 7 (b) . It has, however, been justly criticized for the fact that the 

grid on which it is based is uniform so that an unreasonably large number of elements 

may be produced just because the geometry of the region or bad behaviour of the 

solution may require this in one small area. 

for holes but not for internal interfaces. 

A further disadvantage is that I allowed 

Figure 7(a): Grid distortion at a boundary 

0 

-,o 

Figure 7(b): A final triangulation incorporating boundary grid distortion 

Recent Developments 

My current work is aimed at overcoming these deficiencies and also at allowing the 

automatic choice of suitable grid sizes everywhere in the region, The work is not yet 

complete but I propose to tell you of my progress so far. I have replaced the earlier 

uniform grid by a grid consisting of equilateral triangles and bisected equilateral 

triangles, an example of which is shown in Figure 8. I take an original equilateral 

triangle and subdivide it successively to any depth (within reason) but see no need to 

be able to reverse the process. Using only equilateral triangles and bisected 

equilateral triangles means that dividing one triangle may necessitate dividing several 
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neighbouring ones too, For example dividing the triangle 6-7-9 of Figure 8 will 

necessitate triangles 3-5-6 and 7-8-9 having their bisectors removed and then being 

divided into four. The topology of this structure is very simple and can conveniently 

be stored using three pointers in association with each node giving the neighbouring 

nodes in the directions 0, 2n/3, 4n/3 respectively (see Figure 8). In each case the 

dummy value zero is used when there is no neighbour in the relevant direction either 

Figure 8: A Reid triangulation 

because we are at the edge of the big triangle or because of a local change of mesh- 

size. It is actually unnecessary to hold the coordinates of the nodes and I have 

written a subroutine which holds a pointer consisting of a node number, its x and y 

coordinates and the local mesh size. The subroutine is able to move this pointer 

around to find which triangle contains any given point. However I have decided 

against this scheme in favour of holding the coordinates explicitly because this gives 

code that will execute faster and I do not anticipate shortage of storage on our 

machine; in any case the extra storage can be used later to hold the finite-element 

matrix. 

Following my earlier work I fit the real boundary by distorting the grid. Each smooth 

section of boundary or internal interface is specified by the user in parametric form 

(eg (t,t), t = 0,1, representing the line joining (0,0) to (1,1)) and is represented 

by a sequence of adjacent grid points each of which is moved to a nearby point of the 

boundary. An obvious logical problem exists in the choice of this sequence. It must 

be such that the topology of the given region is correct; for example separate internal 

holes must not be connected to each other or to the outside of the region. Also we 

want to be able to handle efficiently the case where a solution on a finer grid is 

wanted because the present grid has not produced a solution that is sufficiently 

accurate everywhere. In fact, I am encouraged by the work of ~ice (1973) to hope that 
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many singularities could be treated automatically without the user even knowing of 

their existence.) I therefore use separate double-linked lists for the boundaries 

so that each can be traversed easily in either direction and extra points introduced 

conveniently. Each element of one of these lists contains, in addition to forward 

and backward pointers to other elements in the same list, the coordinates of a point 

on the boundary and a pointer to an associated node in the undistorted grid. It is 

also necessary to give each node a pointer to its associated boundary point (if any). 

I choose the node to associate with a boundary point by the simple device of taking 

the nearest. This means that each node has a "catchment area" of possible positions 

of boundary points associated with it. The catchment area of point 8 of Figure 8 is 

shown in Figure 9. We aim to find a sequence of boundary points in distinct adjacent 

Figure 9: Catchment area of point 8 of 
Figure 8 

catchment areas. If adjacent boundary points are not in adjacent catchment areas then 

we search between them for a boundary point in another catchment area and insert it 

into the boundary linked list. Two distinct boundary points must not be associated 

with the same node, for we cannot move the node to both. Occasionally this can 

happen because two adjacent boundary points are in the same catchment area and in this 

case we simply remove one of them from its linked list. More usually it is because 

the local step length is too large so that two different boundaries or remote parts of 

the same boundary have entered the same catchment area; in this case it is clear that 

a local refinement of the mesh is needed if the geometry is to be represented properly 

so we divide into four parts the equilateral triangle containing the midpoint of the 

line joining the two boundary points which were associated with the same node. 

Dividing any triangle alters the catchment area of its vertfces so we reset to the 

dummy value zero their pointers to boundary points in case the old assignment is now 

wrong. Following a division we backtrack along the boundary on which we are currently 

working until an unaffected point is reached and recommence from there. Of course other 

boundaries may be affected too so we continue until all of them are swept successively 

without any divisions being caused. Another reason for requiring subdivision is when 

a distorted triangle is found to be pathologically thin for it can be caused by the 
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situation illustrated in Figure 10 where the equilateral triangle is distorted to the 

nearly flat triangle 1'2'3'. The situation does not occur with the divided region 

because the boundary is then near a grid line, Currently I subdivide if any angle is 

less than 0.3c:., 17.2° and I hope to show that such a limit will not cause any 

difficulties. 

Figure 10: A situation that produces a 
pathologically thin triangle 

For data input I require the user to write a subroutine which gives each smooth section 

of the boundary in parametric form, and to specify region numbers on both sides of 

each boundary. He may also specify a desired local step-size for each point on any 

boundary and (separately) for each point of the whole region, An original undistorted 

triangulation satisfying the whole region requirement is set up and as each boundary 

point is found a check is made on the local step-size, An example of the use of the 

"whole r eg i o n" step-size control is shown in Figure 11 where the function 

h(x,y) = 0,2(x2+y2)1/3 was used to allow for a potential singularity at the origin 

Figure 12: Distorted grid for the 
example of Figure 11 

Figure 11: An example of "whole region" step size control 

caused by an internal interface, The distorted grid for this case is shown in 

Figure 12. A triangulation of a simpler region is shown in Figure 13 and the same 

region is shown retriangulated in Figure 14 after a refinement in the top left-hand 

corner, as might be caused by the poor behaviour of the solution of a differential 

equation there, A more complicated region with two circular holes and six circular 
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Figure 13: A triangulation of a simple 
region 

Figure 14: Retriangulation of the region of 
Figure 13 after refinement 

internal interfaces is shown triangulated in Figures 15 to 17, the three figures 

being produced by using successively smaller values for the required mesh size as the 

boundaries are traversed. 

Figure 16 
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SUMMARY 

Should Crank-Nicholson noise effects be dealt with as and when they arise or should 

they be avoided? This paper looks at both strategies in a series of experiments 

with the linear diffusion equation with finite element and finite difference methods 

and reaches a tentative conclusion that a simple averaging process is the best. 

INTRODUCTION 

This paper contains an account of a number of experiments made by Roland Lewis of 

Swansea and the author. These were inspired by troublesome noise effects experienced 

when using the Crank-Nicholson method in time together with finite element discretisation 

in space. We decided to take a simple linear heat conduction problem to which we 

knew the exact answer and to conduct experiments to test various ways of dealing 

with the noise and to compare the accuracies of these and other time-stepping schemes. 

So that standard element subroutines can be used the problem is taken to be that of 

heat conduction in a bar 4 units long and 1 unit wide; ie made up of four square 

elements. The elements used are "serendipity" type (Zienkiewicz 1971): linear, 
quadratic and cubic with 4, 8, 12 nodes respectively. The problem becomes 

essentially one-dimensional by supposing the bar is insulated along its length as well 

as at one end. It is initially at zero temperature and a temperature of unity is 

applied at the other end fort> 0. 

In following sections the exact solution is obtained and compared with the solution 

of the space-discretised problem and the solution of the generalised two-level time 

difference scheme. The origin of the noise effects is discussed and two possible 
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ways of dealing with them are analysed. Two methods which do not produce noise 

effects are also analysed; these are the backward difference method and a method 

suggested by Richtmyer and Morton (1967) which has the same accuracy as Crank­ 

Nicholson. Results for the corresponding finite difference method are also included 

for comparison. All these methods have been assessed for their average percentage 

relative errors and the results are presented in Tables I, II and III. 

THE PROBLEM 

The problem considered is represented by the non-dimensionalised linear heat 

conduction equation 

dC 
at 0 < X < 4 (1) 

with C 0 at X 0, vc 
at 0 at X = 4; t 

and c(x, O) given, 0 < x < 4 

0 

(2) 

This represents heat conduction in a bar of length 4 units; c is the temperature. 

'!or time t > 0 the end x = 0 of the bar is maintained at unit temperature. The 

other end of the bar is insulated so the steady state solution is unit temperature 

for the whole bar. 

0-8 

0-7 

~0-6 :::, 
~ a: 0-5 
lt' 
~04 
1--- 

0-3 

0-2 

0-1 

Figure 1: Exact.solution. Temperature variation along the bar 
at different times 

0 1-0 2-0 X 3-0 4-0 
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If the bar is initially at temperature c = 0 the exact solution is 

~ 4 [(2k - l)n]2 . [(2k - l)nx] c = 1- [ w/?~ _ l\ exp{- R t} sin 0 
k=l 

(3) 

As k increases the exponential factor decreases so rapidly that for practical 

purposes only the first few terms have any influence. This point is important when 

comparisons are made with the approximate solution. To fix ideas the exact solution 

is shown in Figure 1. 

Suppose the spatial finite element discretisation of equations (1) and (2) gives 

the system of ordinary differential equations 

Ne (4) 

where ..': is the vector of unknowns at the nodes at time t and 
=· is the steady state value of ..': ..': ' 

N is the mass matrix {($i' $.) } and 
J 

K is the stiffness matrix 

1c:i ~)! ' 

where J$i\ is the set of basis functions. 

Assuming A 

eigenvalues µi we can write 

..': (0) 

-1 
N K has a complete set of eigenvectors 

[a.u. 
1-1 

= [y.u. 
1-1 

The solution of the system of equations (4) is then 

-µ. t] 
(a. - y.)e 1 u. 

1. 1. -1. 

u. 
-1 

with corresponding 

(5) 

(6) 

However if equation (4) is replaced by the time-difference scheme 

n+l n 
(C - C ) N - - tit 0 < ·9 < 1 (7) 

this is the recurrence relation 

n+l 
(I + Slit A)_<: 

with general solution 

(8) 

(9) 
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-µ.t 
Comparing equations (6) and (9) we see that e 1 is being approximated by 

n 

[
1 - 6t(l - e)µi] 

l + 6t0µ. 
1 

(10) 

The scheme is stable for any value of 6t if < e < 1. 

The expression (10) gives values of· alternating sign if 

6t > (1- 0)µ. (11) 
l 

l 

Thus there is no oscillation effect with the backward difference scheme (0 = 1). 

The Crank-Nicholson (or trapezoidal rule) scheme with e 
-µ·6t 

approximating e 1 by the (1,1) Pad~ approximation 

1s equivalent to 

l - j6tµ. 
1 

l + j6tµi 

This scheme is very popular because it is unconditionally stable and has accuracy 

0((6t)2). The formula 

(12) 

-µ.t 
where n6t = t, gives a very good representation of e 1 for smaller values of µ.6t 

-µ. t l 
but if µ.6t hecornes large the expression (12) - (-l)n whereas e 1 

~ 0. This is 
1 

the origin of the Crank-Nicholson noise effect and the reason why the method may be 

described as "marginally" stable. 

There is no oscillation from any mode if 

6t < .!ltcrit 
2 

max µ. 
l 

( 13) 

The greater the number of degrees of freedom the smaller is the. critical value of 

6t because the µi are approximations to the eigenvalues 

(2i - 1) 2 TT2 

64 ( 14) 

of the original problem which appear in equation (3). 
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The ~i obtained with the finite element method are overestimates of the corresponding 

eigenvalues (14). Dence with n degrees of freedom 

max \Ji 
2 2 

> (2n - 1) n 
f,4 

(15) 

and ll t . cr1t 
< 128 

(2n - 1) 2n2 
(16) 

For each of the three types of element used, linear, quadratic and cubic the 

matrices N, K have been recovered and their eigenvalues found. 

values of 6t . are 
cr1t 

The corresponding 

linear element 0.187 

quadratic element 0.049 

cubic element 0.012 

As the number of degrees of freedom is increased either by increasing the number of 

elements or by increasing the degree of the basis functions, the critical value of 

llt is decreased. It is clearly out of the question to avoid noise effects by 

keeping llt below the critical value. 

Figures 2 and 3 show typical results from solving equation (8) with zero initial 

starting vector (o. = 0 for all i), for llt = 0.5 and 4.0. The result for 
l 

llt = 4.0 shows an effect which is also noticeable for llt = 8.0, namely a dying away 

,.o 

0.9 

o.e 

0.7 

w 
~0·6 .., 
ffi 05 
Q. :. 
~o ..• 

0.3 

0.2 

0.1 

0 ,.o 2.0 3.0 ~.o 5.0 6.0 7.0 

Figure 2: Temperature variation at x = 1.0 for 6t = 0.5 (Crank-Nicholson) 
+ Linear x Quadratic O Cubic 

- 143 - 



MARGINAL STABILITY: THE DIFFUSION EOUA TION 

1.,, 
••• r. ,.o 

0.9 

0-8 

0-7 
w a: . 
:::>0-6 
ti a: W0,5 a. ::i: 
~0-4 

0,3 

0.2 

0-1 

i 
0 10 20 30 40 50 60 t 

Figure 3: Temperature variation at x ; 1.0 for M; 4.0 (Crank-Nicholson) 
+ Linear x Quadratic 0 Cubic 

and subsequent increase in the amplitude of the oscillations for the quadratic 

and cubic elements. The At; 8.0 case when run for 100 time steps to see how this 

develops merely continues with the hunting about the true solution. .The factors are 

-0.956, -0.988, -0.996 for the linear, quadratic and cubic elements respectively. 

o.e 

0.1 
w 
§ Q.6 
•· < 
~o~ 

~04 

o.a 

0.2 

o., 

I 
0 ,.o 

Figure 4: Linear element. (Crank-Nicholson) M; 1.0 
Variation of temperature along bar at different times 
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Figures 4, 5, 6 show the variation of temperature along the bar for the first few 

time steps for the three different elements. 

0 ,.o •••• ..o 

Fiture 5: OuMiratic element. (Crank-Nicholson) llt = 1.0 
Variation of temperature alon, bar at different times 

F..,. I: Cllllie .i.-t. (Crank-Nicholsen) lit= 1.0 
V•iatian ef wmparatuni alon9 bar for t • 1,2 
Computed results O Exact results x 
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METHODS OF DEALING WITH THE NOISE EFFECT 

(1) One way of dealing with the noise effect from Crank-Nicholson is to take 

the mean of the initial values and the values at the end of one time step 

(with Crank-Nicholson) and use these values as new starting values thus 

b . . l . lit 0llt 01\t l . . . 
o t a i m ng so ut i ons at z:, "2"' ~ = t c . The resu t with this linear 

problem is just the same from continually taking the mean of succssive 

values. 

If n 
V 

n n+l r: + C 

2 (17) 

then from equation (8) with 6 I l , 

n+l 
(I + jllt A):!_ n ~ 

(I - jllt A):!_ + At Ac (18) 

Hence v
0 

satisfies the same recurrence relation as c0 but with 

starting value 

0 1 
C + C 

0 
V 2 

(2a. + l\tµ.y.)u. 
l. 1 1 -1 

2 + litµ. 
i 

(from (9) with e l ) 

Hence the solution of equation (18) is 

n 
V 

This now has exp[- µ. (t + Jllt)] 
i 

(a. - y.)/u. 
i i ,~ 

(19) 

approximated by 

(1 + jlltµ. )n+l 
i 

(20) 

There is still oscillation if llltµ. < 1 but for large litµ. the expression 
. i i 

(20) does -+ 0 so that taking the mean of successive values obtained from 

Crank-Nicholson does damp out the noise effect. 

Figures 7, 8 illustrate the improvement made by averaging. 
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,.o 

0-9 

0.8 

0-7 

~Q.6 
:, 
~0-S 

" ~o• 
w 
•... Q.) 

0.2 

o., 

0 •·O 

Figure 7: Quadratic element. (Averaged Crank-Nicholson). l\t; 1.0 
Variation of temperature along bar at different times. 
Computed results x Exact results @ 

0.9 

0-8 

o., 

Q.) 

0-2 

o., 
I I ~-~ 9 C : 5 

O 1-0 l 2-0 ).Q ~-0 

Figure 8: Cubic element. (Averaged Crank-Nicholson) l\t; 1.0 
Variation of tem;:erature along bar at different times. 
Computed results O Exact results • 

(2) Another method for dealing with the noise effects is equivalent in the 

present problem to raising the temperature at the end x; 0 by l. in each 
m 

of m time steps instead of making it jump to unity in one time step. 

We write the recurrence relation (8) with 0 in the form 

cn+l (21) 
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where 

(22) 

Then the rn-step method takes 

llck-1 + ~ h 
m- 

-k -k-1 = C - C 

k 
then.!!! 

l < k < m (23) 

1 < k < m 

k-1 l Bw +-h, 2<k<m 
- m 

The matrices A and B have a common basis of eigenvectors 

and the eigenvalues of Bare 

2 - litµ. 
1 

2 + litµi (24) 

With "c
0 = 0 and h EB.u. we have 

1-1 

l 
w 

and k 
w 

B­ 
E_!:. u. 
• m -1 
1 

(25) 

Hence 

-k -k-1 
C - C 

k , . )u. 
1 -1 

-k-1 -k-2 
C - C 

B. 
1 

E • _)(l - 
1 

B. 
=E--1 

m(l - , . ) ( l - • ~-l) u. l l -1 

B. 
1 (1 c I -co • E m(l - \) - L)u. 

1 -1 

-o and c = 0 
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Hence addition gives 

-k 
C 

~ 

s .k 
l: 1 

m(l - \) I U. 
m(l - A.) L _, 

1 

>-. (1 - , ~)] 
1 1 

1 - , . ~i 
1 

(26) 

since Bi (1 - ;\.)y. 
1 1 

Hence at the end of the m steps we take 

[ 
(,. + .~ + ..• + ,".'j 1 -m 1 1 1 

C • C • l:·y. 1 - U 
i. m -i (27) 

instead of 

l: y i (l - \>~i 

1e 'i is replaced by 

;\.+,~+ ..• +>-~ 1 1 1 
m 

(28) 

The usual Crank-Nicholson method then starts with the new value of 
1 -m h" . -~ = .£ T 1s gives 

n ~l C = [ [Y· + (e. - y.)A. )u' 
-S l l 1 l -1 

[ 

,.(1 - .~)] 
where ei = yi 1 - ~(l _ ,:) 

(29) 

If m is even and 'i O -1 then, from equation (28), the corresponding 

component vector will be almost eliminated. With the linear, quadratic 

and cubic elements and 6t = 2.0 the highest frequencies correspond to values 

of 'i approximately -0.83, -0.95, -0.98 respectively. 

nearer to -1 with higher values of 6t. 

They are uf course 

Results are presented with three ways of using them-step start: 

(a) as above, finishing at t = 6t; 

(b) starting at t = 6t. This gives better accuracy. 
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With this method we take 

and proceed with Crank-Nicholson from there 

1e ,~ is replaced by 
1 

,. + ,~ + ... + ,~ 
1 1 1 

m 

(c) starting at "';1 steps back 

m+ 1 
2 ie C 

-m = C 

This is a kind of average of (a) and (b) and gives the best accuracy 

of the step methods. 

Figure 9 illustrates (a) and (b) form 2, lit 2.0. 

1-0 

09 

0-8 

I a 
0-7 

:;! 0-6 

~ 
a: 0-5 
~ 
:ii 
~0-4 

0-3 

02 

0.1 

0 2 4 6 8 10 12 14 16 18 20 t 22 

Figure 9: Quadratic element 
(a) @J (b) & 

2 step start 
Exact solution - 

(3) Richtmyer and Morton (1967) recommend a scheme (p 190) of the same order 

of accuracy as Crank-Nicholson and designed to damp out high frequencv 
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oscillation. The equivalent with the finite element discretisation is 

n-1 s. ) (30) 

Results have been obtained from this, using an averaged Crank-Nicholson 
1 

value for the s_ necessary at the start. Also, for comparison, some 

results have been obtained using a zero-zero start. 

The amplification factor~- corresponding to the eigenvalueµ. is given 
1 1 

by 

(3 + 26tµ.H~ - 4~. + 1 
1 1 1 

0 (31) 

Put µ.tit = a. 
1 

Then if a < ! , one root approximate_s e -a, the other is 

the spurious root 

2 - I! - 2a 
3 + 2a 

2 < - 
3 

When a > l the roots of (31) are complex and of modulus P =[ ~l 
3 + 2aj 

J 
which -->O for large a. 

COMPARISON WITH THE FINITE DIFFERENCE METHOD 

For comparison results are also obtained using the standard finite difference method 

for discretising in space. This corresponds to using a linear element with a lumped 

mass matrix. If all the terms of the mass matrix are positive (as they are with the 

linear element) then lumping by making the diagonal terms equal to the row sums cannot 

decrease the eigenvalues. The spectral radius, in particular, must be increased 

(because, with an irreducible matrix it could not previously have been a boundary 

point of the union of the Gerschgorin circles). 

If we assume the matrices N, K have a corranon set of eigenvectors (as is true with 

the simple problem currently being studied) with corresponding eigenvalues µN' µK 

respectively, it is evident that 

lit . 
cr1t 

2 min (32) 

is increased by lumping. 
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The matrix A now has the general form 

A 

with n mesh points (using a fictitious node to bring in the right hand boundary 

condition). 

. - . 2[(2p - 1) n] _ The eigenvalues of A are 4 sin 
4
n , p - 1,2, ... , n. 

Hence the spectral radius p (A) . 2[(2n - l)n] < 4 and 4 sin 4n 

lit . > 0. 5 
cr i t (33) 

Finite difference results are included in the Tables for comparison for 6t = 0.25, 

0. 5 and 2.0. Only the 6t = 2.0 results were averaged as the others are below 

lit .. 
cr1t The errors for 6t = 2.0 are alternately positive and negative as expected. 

SUMMARY OF RESULTS 

Tables I, II and III present the comparison of results from the above methods based 

on average percentage relative error. They are all compared on the solutions given 

up to a time of about 10 units except one result in Table I which shows how the 

average improves with more time steps. It is noticeable also how in some cases 

the average is improved when the first result is omitted. 

The conclusion seems to be that the method of averaging with Crank-Nicholson and 

omitting the first result is a simple and reasonably effective way of dealing with 

the noise. The results with this are better than with more elaborate methods. 

The quadratic and cubic elements give a better performance than the linear element 

especially with the smaller time steps. 

extremely well. 

The finite difference. method shows up 
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AVERAGE PERCENTAGE RELATIVE ERROR TABLES 

Table I: x = 1.0, l\t = 2.0 
(values in brackets omit the first result) 

Linear Quadratic Cubic No. 
steps 

Backward difference 2.88 3.79 3.71 12 

Crank-Nicholson 13.08 9.08 6.72 5 

Crank-Nicholson 6.02 13.23) 8.29 17.32) 4.27 (2.70) 12 111) 

Averaged C-N 2.00 11.17) 2.85 11.13) 2.62 (1.05) 13 112) 

2-step start la) 3.77 3.49 3.48 10 

lb) 1.30 1.58 1.49 10 

le) 1.38 1.33 1.22 10 

3-step start la) 4.90 5.12 4.47 10 

lb) 2.94 4.14 3.39 10 

le) 1.59 2.26 1. 17 10 

Finite difference and 
Crank-Nicholson 2.7 11.0) 13 112) 

Averaged F. D. C-N 2.26 I0.77) 13 112) 

Richtmyer-Morton 2.12 2.56 2.53 12 
averaged C-N start 
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Table II: x = 1.0, Lit = 0.5 
(values in brackets omit the first result) 

Linear Quadratic Cubic No_ 
steps 

Backward difference 0.71 3.45 311 20 

Crank-Nicholson 3.14 4.10 3.38 20 

Averaged C-N 3.59 (1.84) 1.29 (0.36) 0.71 (0.41) 20 (19) 

Finite difference 
with C-N 0.54 (0.14) 20 (19) 

Table Ill: x 1 .0, Lit = 0.25 

Linear Quadratic Cubic No. 
steps 

Backward difference 2.98 3.76 2.78 20 

Crank-Nicholson 3.89 1.92 1.56 40 

Averaged C-N 7.32 (2.49} 0.35 (0.31) 1.87 (0.36) 41 (40) 

Finite difference 
0.90 (0. 19) 40 (39) with C-N 

Richtmyer-Morton 
0.28 2.20 39 averaged C-N start 
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INTRODUCTION 

Slowly decaying noise is a hazard all too familiar to those researchers who must 

integrate large problems in time. It is not enough that a numerical scheme he "stahle" 

in the strict mathematical sense: if a problem is nearly unstable, and nonlinear, 

roundoff alone can eventually drive it mad. Thus the problem we are discussing is 

neither trivial nor academic. Indeed, according to the researches of J Tinsley Oden, 

the behaviour of the noise means success or failure in, for example, a nonlinear problem 

that encounters shock waves. 

Desperate problems engender desperate measures. It is our intention here to initiate 

research into algorithms which modify or "doctor" the given forcing function F, very 

slightly, to avoid at source those features which generate the noise. The changes are 

not always such as to make the function "srnoo the r" in any ordinary sense. 

routine that makes the adjustments is appropriately called DOCTOR. 

The sub- 

Before proceeding further, we must define the sort of noise we are concerned with. We 

see it frequently, as a perturbation (on an otherwise fairly accurate solution) which 

almost exactly changes sign in successive timesteps. In particular, the Crank- 

Nicholson scheme generates zigzag noise. It was this observation that led certain 

early workers, notably Chandra Parekh and Ken Fullard, to invent a simple technique 

now widely used - which virtually eliminates the most persistent noise of the type we 

are considering. 

averaged them. 

time ti+ ! . 

They took the response vectors q in successive timesteps, and 

With this vector, they then re-started at 

We seek here to combine the two techniques. Accordingly, we shall describe another 

subroutine HUSH, which decides when to re-start, and when the doctoring technique can 

cope alone. 
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G':NERAL OBSERVATIONS 

It was a remark of Argyris that prompted the present work. He observed that a step 

in the forcing function introduced as in E'i g ur a 1 (a) generated considerable noise; 

whereas Figure l(b) did not. (He was not using Crank-Nicholson.) According to our 

view, this was because he had two steps instead of one. The first alone produces a 

zigzagging after-effect, but the second produces the opposite after-effect, which cancels 

it. 

Figures l(c) to (i) were pure conjecture, but at the time it was a useful exercise to 

discover how a step reinforces or cancels a later step, depending (a) on whether it is 

of opposite sign, and (b) whether it occurs an odd or an even number of timesteps later: 

this we shall see is crucial. In the general case, what determines the residual noise 

is (sum of jumps at odd timesteps) minus (sum of jumps at even timesteps), 

·-·-· ..•. _____ ! /·-· -·- 
•--• /. -• 

(O/ !AD 

r·-·~ 
• 

(bJ GOOD ·-·~ / • . / _____ / 
(d) BAD AGAIN 

/.\ ·-·- ·-· / 
• 

(g) BAD 

_,,, 
_/ 

·-·-·/ 
(~) BAD 

(h) 6000 

/ • ·-·J 
(c) EVEN BETTER / • / 

/ . 
• ·-·-·..../ 

(f) BETTER 

·- / •--• 
(I) GOOD 

Figure 1: Showing good and bad representations of forcing functions 

We can express this idea in finite difference form, writing the noise at step i caused 

by the doctored forcing function G: 

(noise)i 

T { ... 2, -2, 2, -2, 1) 
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If the decay ratio R is not exactly - 1, as assumed here, 

(noise) . 
l 

GT s. (say) 
l 

This is a rather poor first approximation to the vectors.. To get a second approxi- 
1 

mation we shall compute a transient response according to the Crank-Nicholson scheme. 

This part of the work should be generally useful. 

NOISE ANALYSIS IN THE CRANK-NICHOLSON PROCESS 

We shall take as our trial equation q = o.(G - q), so that q tends to follow G after 

some lapse of time. 

unit steplength: 

The recurrence formula according to Crank-Nicholson is, with 

We assume 

G 
0 

0, and G
1 1, giving 

C q. 
l 

0. 

1 + !o. 
2 i-1 i) (1 + R + R + ••• + R + jR 

where 

R (1 - lo.)/ (1 + [c ) decay ratio 

q~ converges to 1, but in a zigzag fashion if a is large. l We shall compare this with 
the "correct" answer, and we shall regard the error as noise. 

represents a step function from Oto 1, at t = j, 
Taking the view that G 

s q. 
l 

-o.(t-!) 1 - e for t ~ 1 
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Alternatively, we may take the more generous view that the data implies a continuous 

function, a ramp that goes linearly from G
0 

= 0 to G
1 

= 1, and that takes a constant 

value, zero or one, elsewhere. The exact solution becomes 

R -1 o. -at qi = 1 - o. (e -1) e for t :,.. 1 

We now tabulate the consequences of these two views. 

R Ct Method Values at steps 

-.95 78 Step o .• 1.0000, 1,0000, ... 
Ramp o .• .9872, 1.0000, ... 
Crank-Nicholson o .• • 975, 1.0237, .9774, 1.0214 

-.9 38 Step o.' 1.000, 1. 0000, ... 
Ramp o .• .9737, 1.0000, ... 
Crank-Nicholson o .• .95, 1.045, .9595, 1.0364 

-.q 18 Step o .• .9999, 1,0000, 1.0000, ... 
Ramp o .• .9444, 1.0000, 1.0000, ... 
Crank-Nicholson o .• .9, 1.08, .936, 1.0512 

-.5 6 Step (J •• .9502, .9999, 1. 0000, ... 
Ramp o .• .8337, • 9996, 1.0000, ... 
Crank-Nicholson o .• • 75, 1.125, • 9375, 1.0312 

Step o .• .6321, .9502, .9932, .9991 
0 2 Ramp o •• • 56 77, .9415, .9921, .9989 

Crank-Nicholson o •• • 5, 1.0, 1.0, 1.0 .. 

A REFINEMENT TO DEAL WITH RAMP FUNCTIONS 

The table shows two analytic comparisons with Crank-Nicholson. Both are interesting, 
but practical considerations predispose us irresistably towards the second interpretation, 

We frequently meet examples in which G climbs, fairly steadily, over the whole time 
range. We should expect the initial noise to decay to zero, yet according to equation 
(1) it will not. We remark that a ramp function G = kt over 200 timesteps is identical 
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to the sum of 200 short ramps, each extending over a single timestep: the implication is 

that if we synthesize the response from ramps we shall cover this important case. 

To this end we shall modify si, following the clue that the error in the first time­ 

step in the table is only half what we should expect, and at the end of the unit ramp 

we find only half of the zigzag value, on the evidence from later timesteps: 

(a) We seek a formula which gives evanescent noise in an extended ramp. 

(b) The noise must decay after a single step also, 

A formula which satisfies these requirements, and which is easily computed, is 

(noise)i 

where 

q (1) 

A PRACTICAL OVERALL MEASURE OF NOISE 

It is now an easy matter to state our intentions in general terms. We shall aim to 

minimise the sum of (noise)~ over all the timesteps: 
1 

. ) 2 (noise + ••. 

GTSG say (2) 

(We note in passing that Sis positive definite, but not very well-behaved.) This 

minimization is subject to the doctoring terms d being reasonably small, again in a 

least-squares sense: 

(G-F}T(G-F) (3) 

where F undoctored forcing function. 
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Now that the problem is defined, we hope it will be possible to do even better than 

the "good" examples of Figure 1 and, furthermore, to deal with general input data. 

Computational technique: Subroutine DOCTOR will compute SP many times, 

fortunate that [s] - a large matrix - need never be stored. 

thus: 

We are 

SP 

We use a single vector for the s. and update it as required. 
i 

Instead, it computes SP 

(4) 

This is more difficult, 

but it takes a little less computing time, as coded in DOCTOR, than the matrix version, 

Note: Any approach based on S admits that the direction of marching is significant. 

Noise is the residue of history, and there is a difference between past and future. 

STRATEGIES FOR OPTIMISING THE NOISE REDUCTION 

Let us now examine critically three strategies which we could adopt to minimise the 

noise: 

. . T . (1) We could fix the amount of doctoring, d d, and seek the greatest noise 

reduction. 

(2) Perhaps we may find the amount of doctoring more than adequate; we could 
. . . . . . T aim instead for some acceptable noise level with m1n1rnum d d. 

(3) The last strategy, actually used in DOCTOR, emerges from the algebra of 
. . . . T . . versions 1 and 2 above. Suppose we m1n1m1se G SG, subject to the constraint 

constant, impos~d by the Lagrange multiplier\: 

+ stationary (5) 

or, substituting d G-F and differentiating: 

SG -\ (G-F) - \d (6) 

6 ( 7) 
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But here strategy (3) is different: we pre-assign to A some value which gives reasonable 

smoothing, and we let 6 take what value it will. Thus, fixing p = A-l, we merely 

solve the equations for G: 

[r + oS]G F (8) 

This philosophy gives a simple robust program. Let us enquire how it affects the user. 

CONSEQUENCES OF THE STRATEGY CHOSEN 

(a) We can demonstrate that provided A> 0 in (6), then GTSG is a global 

minimum for dTd = constant, 

For, perturbating d to d + c, 

T 
C C 

- l T 
C C (9) 

T T Hence G SG becomes (G + c) S (G + c) 

But from (6) we have SG - Ad, giving 

(10) 

for any nonzero E because Sis positive definite. Thus whatever positive 

value we give to A, we have a global optimum, in this special sense. 

. . T . . . Conversely we can show, by a similar argument, that d d 1s a global rn1n1mum 

for GTSG = constant. 

(b) This result will not convince a sceptic of the wisdom of choosing p rather 

than a level of doctoring or of noise reduction, It is therefore reassuring 

to discover that o is related ~onotonically and continuously to both of 

these. Let us introduce the eigenvectors and eigenvalues of S: 
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Sv. 
i 

Lv. 
i i 

where v'. v. 
i i 

1 

and let us write 

F = i:c.v. 
i i 

c. 2 
D.(-1 '_) 

l. +p11. 
i 

( I I ) 

and 
(12) 

. . . . T . Clearly with increasing p, the noise G SG decreases continuously from 
T . . T . . 

F SF to zero. Meanwhile, the doctoring d d increases continuously from 

zero to FTF. There is a (1,1,1) correspondence relating p, dTd and GTSG. 

All the relations are monotonic and continuous within the allowed ranges. 

(c) Writing: 

F Ec.v. 
i i 

G 
c. 
i 

E ( l +p),. ) v i 
i 

We observe that if A. is very small, v. carries over from Finto G almost 
i i 

unchanged in amplitude. On the other hand, if \ is large, ie vi is a 

zigzag function, it is greatly reduced in amplitude. The amount of 

doctoring d'.d. will evidently depend on the data submitted. If there is 
i i 

a consistent zigzag error pattern, it will be virtually obliterated, at the 

cost of a good deal of doctoring. If there is a single sharp jump, we 

may expect compensatory zigzags before and after. But if the noise 1s 

random, ie there is no consistent zigzag pattern, we should aim for 

moderate doctoring, and moderate noise reduction. 

choice of p. 

Note: Hand calculations lead us to expect [s] to have a conditioning 

number , / , . = N5, for R = -1. For the sum of the roots is 
2 . max mi n 

(2N - 3jN + ll) - the largest root being of the same order - and 

the product of the roots is only 2-N. Evidently [s] could be a brutal 

tool with Nin the hundreds. But we observe that [I+ os] has a condition- 
. 2 . . . . ing number of order 2pN which we can handle confidently in solving the 

This will dictate our 

equations. 
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Since it is easy and economical to multiply by [s] , we use conjugate gradients 

to compute [1 + pS] -lF. It is a bad technique for solving finite element 

equations. But we believe this is because the initial direction is too wildly 

different from the final answer. In the present case the zigzag responses 

emerge very quickly and it is a good algorithm. 

AN ANALYSIS OF THE AVERAGING PROCEDURE 

Before discussing HUSH, we must define exactly what happens to the noise amplitude when 

we average; we seek some formula: 

(noise)i+! A(noise). + B(noise). 1 1 1+ 

To this end, we supplement the table, and this helps us to deduce B. From 

ql - ql; [la/(1 + ja)] - [l - a-1(1 - e-la)J 

1 
" a(!a+T) 

q~ - q~; [!a/(1 + !a)] - [1 - a-1(1 - e-")] 

" 
1- j a 

a(ja+l) 

Because qc - qr ; O, this gives B. 
0 0 

the dwell after a single step: 

To get A we invoke the case of a decay during 

(noise)i 1, (noise)i+l R, (noise)i+! j(l+R) 

The formula for the residue of noise after averaging thus has A; 0: 

(noise)i+j (zero) • (noise). - 61 (noise). 1 1 ~a-1. 1+ 

l+R (noise)i+l 
2R (13) 

on substituting Ja 
1-R 
l+R 
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R -.95 -.9 -.8 -.5 0 

(l 78 38 18 6 2 

Value at first 

halfstep from 

averaging Crank- .4875 . 4 75 .45 . 375 .25 

Nicholson 

Exact value for ramp .4872 . 4737 .4445 .3416 .1839 

We now enquire how to introduce this initial noise into the next segment to be smoothed, 

Let us write the noise vector thus: 

{noise amplitude} = I q Gl 

R - q q G2 

R2 - R R - q q G3 

R3 - R2 R
2 

- R R - q q G4 

Because this implies that G 
0 

are q, R, R
2

. R
3

. Apart from the first, it is exactly as if unit noise amplitude had 

the noise amplitudes 

existed at time t1. Therefore, we contrive to add (noise)! to all the values of F to 

be smoothed, and, finally, we subtract it from the G values, 

THE MIXED STRATEGY - SUBROUTINE "HUSH" 

In a large marching problem, DOCTOR will account for only a small part of the computing 

cost. Therefore we advocate the mixed approach of subroutine HUSH which, before the 

marching starts, both doctors the forcing functions and decides at which timesteps we 

should apply the averaging technique to eliminate accumulated noise. 

of HUSH is roughly as follows: 

The organisation 
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(1) We doctor F for steps l to NZ, the full range. 

(2) We compute the noise amplitudes, s~G, and we observe that the noise first 
1 

becomes intolerable at step NSTOP" 

(3) We doctor F again for steps NA= l to NZ= NSTOP" 

(4) We record in Gour intention to suppress the noise at N
8 

and to re-start 
• I at t1mestep NSTOP - l• 

(5) We doctor F again for steps NA 

Therefore the first task in subroutine HUSH is to find the interpolated values of Fat 

the half timesteps. We use cubic interpolation, except in the end intervals, where 
we use linear interpolation. (These are usually unimportant.) 

In order to satisfy the requirements of HUSH, subroutine DOCTOR must do slightly more, 

It is not enough to assume a zero starting value: we must include the effect of the 

value at which we averaged, and also the residual noise. 

A vexed question now arises - if the noise becomes intolerable at NSTOP' should we 

smooth up to and i~cluding NSTOP' or should we go back one time~tep? In an extreme 

case where intense noise suddenly strikes, we shall probably have to inch forward 

over the crisis, in a series of averaged half-steps, Our view is that the 
undoctored values should be used here. Accordingly, HUSH regards a noise amplitude 

of DINLIM * /FF as merely objectionable, and smooths as far as NSTOP' However, if 

the noise amplitude reaches the higher level of DINBAD * ill it smooths only as far 

as NSTOP - 1. 

PRELIMINARY EXPERIMENTS 

The random forcing function F was generated automatically. 

randomly distributed between-! and ! was created. 

A vector VR of numbers 

Then F was smoothed from these: 

F. 
1 

oo -A~ 
E V .. e J 

-<Xl l+J 
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The problem chosen was a spring of uniform section, with uniformly distributed viscous 
i-1 drag, There were 40 elements, of lengths 1,05 , The longest element was earthed, 

and the force was applied at the opposite end, This problem should give a broad band 

of eigenvalues, yet it is not too expensive to compute. 

It was run in three forms: 

(a) with the original F. 

(b) with the doctored F. 

(c) with F interpolated to quarter-intervals. 

The results of these experiments, so far, is somewhat inconclusive. The noise can 

certainly be reduced, but the doctoring inevitably alters the values produced, As far 

as accuracy is concerned, as measured by comparing (a) - (c) with (b) - (c), there is 

no improvement, the doctoring introduces errors in the response of the same order as the 

noise removed! 

CONCLUSIONS 

In seeking a technique for doctoring the input forcing function, so as to reduce the 

noise, a simple and adequate representation of the noise generation in the Crank- 

Nicholson process has been evolved, 

a ramp rather than a step function, 

In particular, it was found necessary to consider 

Other workers are recommended to do likewise, 

However, the results so far from the doctored forcing function are disappointing. 

Perhaps there will be more profitable applications, 

better performance. 

Or perhaps variants will give a 

In any case equations (1) and (13), which give the noise with and without averaging, 

should be useful as a tool of analysis even if further attempts at synthesis should 

fail. 
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ADDENDUM 
A FOURTH STRATEGY FOR OPTIMISING THE NOISE REDUCTION 

In addition to the techniques outlined in the section entitled "Strategies for 

Optimising the Noise Reduction" there is another radically different approach which 

leads to a much simpler algorithm. ~he philosophy is as follows: 

( 1) We decide on a value of a6t, and hence of R = (1-'ja)/(l+Ja) at which we 

want the greatest suppression of noise. Presumably the a chosen would 

be near the highest eigenvalue, as estimated from the smallest element, 

(2) We consider, as the exact solution, the analytic solution based on the 

values of the original forcing function F, connected by straight lines. 

(3) We define Gas the values which would give exactly these analytic values, 

via the Crank-Nicholson process, assuming the chosen decay ratio R, 

This is potentially an exact method, but for simplicity we shall ignore the 

exponential terms as in deriving equation (1), The following formulae are very 

accurate. Indeed with a6t = 18, R = -0.8, they are accurate to four decimals. 

q. = Crank-Nicholson value based on G 
l 

1-R 
-2- (Gi + Gi_l) + Pqi-1 

* qi = analytic value based on unit ramps 

l-3R l+R 
--F +---F 
2(1-R) i 2(1-R) i-1 

. ~ Putting qi q. 
1 qi-l we find 

1-R R(l-3R) R(l+R) 
-2- (Gi + Gi-1) + 2(1-R) Fi-I + 2(1-R) Fi-2 

l-3R l+R --R +---F 2(1-R) i 2(1-R) i-1 

G. 
1 

-G. l-3R 1 - 1 + _ _:..:_:_ F . 
(1-R)2 1 

+ 1+3R2 

(1-R) 2 
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To apply this very simple recurrence relation we must assume that F_
1 

For example, with R = -0.8 we have the following step function: 

F 0 0 1 1 1 1 

G 0 0 1.0493 0.9012 1.0988 0.9012 etc. 

This is a remarkable result, in that G is now zigzagging with constant amplitude. 

Yet before the jump there is no zigzag. 

We have not yet tried this promising variant. If it is successful, it will be 

necessary to re-formulate the averaging process, so as to detect the noise buildup 

at another, presumably lower, value of a, and then to discover how to re-start 

the process. 
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SUMMARY 

The patch test is presented in a form accessible to engineers, emphasizing its useful- 

ness as a debugging tool, and as a practical guide in element research. The appli- 

cations are straightforward, A final section enquires into the implications of the 

patch test, In particular we show that it is not possible with a given nodal confi- 

guration to beat the patch performance of an element which conforms according to the 

classical criteria. 

INTENTIONS 

Irons and Razzaque (1972) gave a historical introduction to the patch test for conver- 

gence, emphasizing its usefulness to engineers. It seems to have failed. Admittedly 

people now talk knowledgeably about the test: but few workers would automatically seek 

its advice whenever a new set of interpolating functions or a new technique for inte- 

gration came into use. In my opinion it should be regarded as unprofessional to 

publish any such development without giving the patch test performance, I hope in this 

paper to persuade others, beyond the handful of students I have supervised, to use it 

routinely as a debugging aid and research guide, and to record the results for posterity. 

What then is the patch test? Often it has been merely a computer run, using a per- 

fectly standard program, on a compact assemblage of perhaps six elements, We give 

the external nodes of this patch the,displacements, slopes etc corresponding to some 

state of constant stress. For example, if the plate bending 

are to be subjected to a quadratic patch test, we put say w = 
elements of Figure 1 
2 ' ' x + 3xy, g1v1ng 

aw/ax = 2x + 3y and aw/ay = 3x and hence also the prescribed slopes at certain boundary 

nodes. The nodes inside the patch are unloaded, The final answers from the computer 
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will include twenty or more stresses, and if we are lucky they are all equal to the 

values we intended: if not, then we must discover what has gone wrong. 

Figure 1: These patches in 2 dimen­ 
sions have actually been 
used. 

INTERNAL NODES 

So anybody can do a classical patch test, 

roles in engineering: 
Moreover, it performs several important 

(1) With certain provisos, it establishes fine-mesh convergence. 

Note: Engineers are seldom if ever interested in high accuracy. 

In assessing a new element we should let the patch test take care of the fine­ 

mesh performance, and concentrate our attentions on those meshes which give 

the permitted errors (about: 5% in most applications), and also on even 

coarser rreshes to see how sensitive the element is in this critical region. 

A good element is foolproof in every sense. 

(2) It provides one more criterion for accepting or discarding a new element. 

Note: Of course, there should be no question of rejecting an element because 

it is non-conforming, provided it passes the patch test and therefore converges, 

But there are elements which have been heavily sold, eg our nonconforming 

triangle (Bazeley et al 1965), and those Ahmad layered shells and plates 

(Ahmad 1969) which fail the test for quadrilateral geometry. They should 

perhaps be discarded, as a matter of principle; 

to choose from, for virtually every job. 
we now have many elements 

(In practice the patch test has usuallv acted as nurse rather than as 

executioner. The one simple, permissive criterion has encouraged me more 

often to modify a formulation than to abandon it, And, being simple, it 

does not distract one's attention away from all the other important criteria - 

ease of implementation, ruggedness etc.) 

(3) To some extent, it helps us to debug our programs. 

Note: Debugging tends to be a progressive affair for most of us, 

Initially we might work on a single element, until it will accept an 

arbitrary constant strain, given the appropriate nodal values. The second 

stage might be to check that a patch of elements is in equilibrium - this 

test sometimes gives a more revealing diagnosis than actually solving the 
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equations. Again, let us remind ourselves that the patch test (like any 

other) can fail spuriously owing to an error in the data: This is why I 

suggest that the correct values and slopes should at some stage be pres- 

cribed at !!.11 the nodes. The printout should then give the correct stresses, 

even for most of the elements known to fail the patch test. E le men t s that 

pass, however, will give zero reactions at the internal nodes of the patch. 

If this approach gives correct stresses and nonzero reactions, the evidence 

1s very decisive. For what can then be wrong? - only such details as faulty 

node numbering and nonuniform material properties, details which are rela­ 

tively easy to check. 

(Of course there is a missing ingredient. This technique overlooks the pos­ 

sibility of a singular assembled matrix. The third test, then, might be to 

fix just enough deflections to prevent rigid body motions, and to apply to the 

patch boundaries the forces already calculated in the second stage. If there 

is a danger that the element might give a singular assembled matrix, this pro­ 

cedure will encourage it to misbehave under the controlled research conditions 

of the patch test rather than later in a commercial job. But should we 

regard this as an appropriate task for the patch test? - a rhetorical question, 

maybe, but the subject of mechanisms, and especially of those that can propagate 

and infect the whole problem, is mare difficult in practice than that of con­ 

vergence, and is at least as deserving of separate research effort.) 

(4) Even more important, it helps us to debug our thoughts, 

I should hate to admit how often my predictions have been wrong, and 

therefore how much the computer has taught me. A patch test is an experiment, 

whose results often acquire a much greater significance if they contribute 

towards some general theory or working hypothesis. It pays to think and to 

do experiments. The frenzied thought which follows an unexpected result is 

especially productive and we learn far more when some fancied element fails 

the patch test. 

Of course, to do any good in patch testing we must be decisive about what we do, clear 

about why we are doing it, and explicit in our reporting of the results. For example, 

in the isoparametric elements a lower integration rule ~ill often suffice if the patch 

contains no curved edges. For me, a 3-element test in two dimensions as in Figure 1 

sometimes carries sufficient conviction; I n~ver remember going above 9 elements and 

that was when the patch boundary was square. The geometry must be arbitrary, with no 

pattern at all, and the stress must usually be arbitrary. For we shall conclude from 

this one test, or a second for the nervous operator, that any combination of elements 

will give patch equilibrium, 
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This conclusion carries less risk than might be supposed. For one geometry that 

passes the patch test fortuitously, we expect to find an infinity that do not. (We 

have the opposite problem in detecting a propagating mechanism.) 

Evidently the test is useful, and easy to do. Perhaps it is not always very easy to 

think about, so we shall adopt here an "educational" rather than an "academic" tone. 

However I cannot resist the temptation to include a section at the end about an inter­ 

esting new area revealed by the patch test. 

INTRODUCING THE PATCH TEST 

In teaching any new concept, one seeks to strike a balance between, on the one hand, 

presenting some application which is so trivial that it hardly registers, and, on the 

other hand, presenting an application so obsc~re that a class will lose the principle 

in the details. For example, in teaching isoparametric elements the best choice 

seems to be Ian Taig's bilinear quadrilateral of 1957, not because it was the first, 

but - more important - because it avoids both triviality and obscurity. 

teaching is not always good history. 

Good 

I have only recently recognised a uniquely entertaining introduction to the patch test. 

Without some variational crime, the test will seem trivial, and to a beginner non- 

conformity will seem the most audacious crime yet perpetrated. A continuous beam 1n 

bending is wilfully treated as discontinuous in the example chosen: as we shall show 

him, the crime goes unpunished. 

counse 1. 

At least he will make a mental note of our defence 

A shape function for this extraordinary beam is illustrated in Figure 2. The numbers 

1, 2 •.• represent the nodes, while A, B ..• are midway between these nodes. The slopes 

are not represented as nodal variables. 

deflections at the nodes. 

Instead, we have w
1

, w2 ... as unknowns, the 

!A IB IC •D 
I I I I 
I I I I 
I I I I 
I I I I 

! ,,,-r=r!---- i 
. r;.----::. 1··--------t=1 I _::...:-= J I --- - - - - - ===---- I I I I 

2 3 4 5 

Figure 2: Showing the response to unit 
deflection w at node 3 
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The construction of Figure 2 is to draw parabolas through the values at 1, 2, 3, at 2, 

3, 4 , and at 3, 4, 5. But each parabola extends only over half the range: that 

through 2, 3 and 4 extends only from B to C. The deflections are therefore zero left 

of A and right of D. Furthermore, it follows that at C, for example, there is a dis- 

continuity of deflection, but the slope is continuous. For the slope at C, the mid- 

point of segment 34, is the mean slope (w
4 

- w
3
)/(x4 - x3) for both parabolas. We 

have the curious phenomenon of continuous first derivatives with discontinuous values - 
. f h ( l) . ( 0) as 1 we ad C without C , 

This completes the geometric arguments, and we now appeal to structural theory, We 

postulate, for the patch test, that the points w1, w
2 

... w8, 

parabola, as in Figure 3. (This is not altogether magic, 

w
9
, w

10 
all lie on some 

We could achieve such a 

4 5 6 

9 
IQ 

Figure 3: An assemblage ofbeam elements of Figure 2 

state by fixing w
1
, w

2
, w

9 
slopes at the two ends.) 

and w
10

: crudely, this is like fixing the values and the 

If we now let nodes 3 ... 8 go unloaded, so that they can 

choose their preferred wi on the basis of minimum strain energy·, we have a recognizable 

patch test, 

We now argue that nodes 3,,.8 will prefer their positions on the given parabola of 

Figure 3, rather than seek some perturbated positions, involving the discontinuities of 

Figure 2, In other words, in the context of this patch test we do not have conformity 

in the usual, obligatory sense, but we do have continuity because the model prefers not 

to misbehave. To reach this conclusion, we consider what happens if we give, say, 

node 3 a virtual deflection, thus perturbating the smooth parabola of Figure 3 by a 

function scaled from that of Figure 2. 

work, then node 3 is not in ·equilibrium. 

bending moment Mis constant in Figure 3. 

15 

If this perturbation causes nonzero virtual 

But the virtual work is zero. For the 

The work caused by a virtual deflection 6 

io }"1(-
2
)dx 

dx 
0 

integrated over all the elements; this is zero because dO/dx is continuous, and because 

both end pairs of nodes are fixed, (Of course, it is possible to integrate this in the 
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ordinary way, with considerable effort, but we do not recommend it: the more direct 

technique is too useful in the sequel.) 

What is more, when we try to reproduce this on the computer, it works, just as predicted, 

It is safe practice always to check one's conclusions in this way. The error rate of 

computed patch tests has been considerably less than the error-rate of my own thought 

processes. 

Note: Those who already know these particular finite difference assumptions may well 

be astonished: the appeal of finite elements to the imagination is strong, so that 

physical absurdities are emphasized. 

IMPLICATIONS OF THE PATCH TEST 

The patch test is merely the translation into finite element terminology of the test 

for consistency in 
. 4 / 4 equation, d w dx 

involves wand its 

finite differences. We have been trying to solve the beam 

= q(x), whose variational formulation in terms of strain energy 

derivatives up to d2w/dx2, the curv~ture. The case to watch is 

d2w/dx2 = constant, giving uniform bending stresses. 

According to the classical approach; 

(1) The element must be able to reproduce anv chosen case, w 
2 2 d w/dx = constant. 

2 .. a + bx + ex , g1 v1ng 

(2) The shape functions must guarantee continuity of wand dw/dx between elements, 

regardless of the nodal values. 

According to the patch test, we have convergence only if a group, or "patch", of 

elements do not misbehave when we attempt to reproduce w 

the nodal values at the boundaries of the patch. 

a+ bx+ ex by prescribing 

One's first reaction might well be that the patch test is a less permissive criterion 

than the classical requirements, because we can choose arbitrarily the geometry of every 

element in the patch, to some extent. Thanks to the discontinuous beam, we can see 

already that it is~ permissive. Indeed, I have had to use it at various times 

to justify the following crimes: 
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(1) Elements without the continuity of the classical requirements. 

always been common, but not all have converged.) 

(These have 

(2) Elements in which the energy is approximately integrated. 

important case.) 

(This is the most 

(3) Elements whose shape functions are rational functions with singularities. 

(They might have a little historical interest: they are relatively poor 

performers.) 

(4) Elements with no clear physical basis at the time of their discovery (Irons 

and Razzague 1972; Irons and Razzaque 1962). 

by fake reasoning. 

Exploration is often motivated 

(5) Bending elements in which the Kirchhoff assumption that normals remain 

normal is imposed discretely, eg, at certain points in the element 

(Stricklin et al 1969). (These are usually good performers.) 

A worker might, at this moment, be planning an even more wicked crime. Again, the 

patch test defence will be that if he refines his mesh sufficiently then the patches, 

as well as the elements, will be small. Assuming that his answers are good, the 

variation of stress over any patch will be small. Therefore he has applied a test 

very similar to what will actually be required of the element, in some real job, but 

with fine mesh. 

Yes, very similar conditions - but not identical. I am always frightened that a patch 

of elements will be abnormally sensitive to some particular perturbation from constant 

stress conditions. Alas, this really happens, and it can be calamitous. A pertur- 

bation which carries very little strain energy is called a "near-mechanism": one which 

carries no strain energy at all, a 11mechanisrn
11

• According to the computation, it 

resembles a rigid body motion, as if the structure were unsupported, or were supported 

on a flexible spring. The phenomenon has several ways of making a nuisance of itself: 

(a) 
N~ 

The answers are large random numbers, of order 10 too large if the 

computer gives N-decimal accuracy. 

(b) The ans~ers are random numbers, a little larger than expected in general 

magnitude, We see this if the combination of forces that excites the 

mechanism happens to be zero. 
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(c) The pilot examples are successful, and perhaps so are the first few 

commercial jobs. Then a large, expensive, and important commercial job 

fails with the symptoms of (b) above, We have a near-mechanism, 

These phenomena are examples of instability, in which a spurious perturbation or 

parasitic response takes control. The problem normally arises only if each element 

has too many zero-energy modes, ie more than the rigid body rnod es , It is possible, 

if unlikely, that an assemblage of elements can find a way of comhining their mechanisms 

without contradiction. Occasionally, we find a collective mechanism where the 

individual elements have none. 

In general, we can teach our students to estimate roughly the side-effects in a solu­ 

tion by considering a "matched solution" corresponding to some chosen exact solution: 

here we substitute the exact nodal values into the finite element model, The 

matched solution gives a very good bound on the potential energy for a conforming 

model, But if instabilities are present, then a crazy set of nodal deflections can 

give slightly lower potential energy, so the exercise is worthless, Perhaps the 

answer will be to avoid using elements with spurious mechanisms, together with those 

that fail the patch test, Yet this too might be unacceptable, because so many of 

the best performers have mechanisms. 

In practice, such instabilities are not always revealed by the patch test, Again, 

the patch test says nothing about the manner or order of convergence. 

progress towards the limiting case: it is the limiting case - exactly. 

It does not 

DEFINITIONS RELEVANT TO THE PATCH TEST 

It remains to define the patch test in a way that we can interpret in an unfamiliar 

case, chosen for convenience only. 

overlapping, 

The elements cover the whole region without 

An element is a region of integration. 

A patch is a collection of elements containing internal nodes of every type 

envisaged. (We consider only those nodes which control the elements of the patch.) 
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An internal node is a node completely surrounded by elements, a node whose zone of 

influence does not trespass outside the patch: otherwise we have an external node. 

The target-state for the patch test of lowest order is£= constant, where E 

contains the highest derivatives present in the functional, 

the target-state may be any simple analytic solution. 

In a higher patch test 

The patch test may be a computer run which seeks to reproduce the target-state 

exactly (ie to 6 or more decimals) by any means short of prescribing the values 

at the internal nodes. (For example, in a higher oatch test we may have to load 

the internal nodes, in exactly the same way as in a real problem.) Or the patch 

test may be a computer run which prescribes all the nodal values and merely 

calculates the residuals. Or it may be a theoretical argument which concludes 

that the residuals vanish at the internal nodes. 

APPLICATIONS OF THE PATCH TEST 

The Isoparametric Elements (Irons 1966) are economic only because low-order integration 

suffices. If we had to integrate the coefficients accurately, these elements would 

have been too costly; but we know that inaccurate coefficients can sometimes yield 

quite accurate final answers. This was expected: a simple argument leads to the 

conclusion that the patch test will be satisfied if the rule chosen can integrate 

element volumes accurately. The argument went in three steps (Irons 1966): 

(1) An accurately integrated iso-P element conforms and accepts constant stresses, 

so it passes the test. 

(2) Under constant stress, a less accurately integrated element may give identi­ 

cal nodal loads with the nodal deflections of the patch test, but not 

otherwise. 

(3) Therefore if 2 replaces 1, the patch remains in equilibrium. We say that 

1 and 2 are mixable, in the sense that we could mix them indiscriminately in 

a patch. 

If we can postulate that in the limit all the edges are relatively straight, and the 

midside nodes are truly central - the sides are linear - the position is even better. 
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In this case, all we need integrate accurately is a determinant (Irons and Razzaque 

1972), typified by the force in the x-direction at node i due to a given state of stress 

throughout a 20-node brick: 

- ff f I ax/a~ ax/an 

ay/an 

aN. / an 
i 

ax/ar, 

ay/ar, 

az/ ar, 

a 
XX 

a xy 

a xz 

0 

d~ dn dr, 

But this is for a classical patch test, with prescribed deflections at the external 

nodes. However we should be able simply to apply the appropriate tractions over all 

the patch boundaries. Success depends also on integrating expressions like that for 

the x-force at node i due to tractions over the face~= 1: 

-f J'». 
i 

ax/an 

ay/an 

still occur in N .. 
i 

ax/ar, 

ay/ar, 

az/ar, 

a 
XX 

a xy 

o xz 

dn dr, 

The requirements for product-Gauss rules are identical. 

. . .2 1 If the edges are linear, x for example has no terms like s n ~, a though these 

Then for the 20-node brick we can show that the 2 x 2 x 2 Gauss 

rule suffices: a reassuring conclusion in view of the popularity of 2 x 2 x 2 

integration, (It does however give mechanisms.) 

Note: The bi-quadratic quadrilateral, with its 9 nodes (the last being at the centre) 

passes the quadratic patch test. When the internal freedoms have been eliminated, it 
looks like a variant of the 8-node element, The norm would be 3 x 3 integration. 

The 8-node Ahmad layered plate has a less happy ending. I had always assumed that a 

quadrilateral with linear sides would allow constant bending stress, because one can 

treat the membrane layer r; constant as a case of plane stress, where the patch 

test is satisfied even with 2 x 2 integration. Razzaque had his doubts, and some 

two years ago he quietly did the test. It is easy to see the fallacy in my argument. 
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To achieve constant membrane strain in the layer i; = constant with normal remaining 

normal, it is kinematically necessary to have a lateral deflection w varying quadra- 
. . 2 With quadrilateral geometry X =a+ bs +en+ dsn, so that X tically with x and y. 

. 2 2 
contains the terms n • This is not available, which is why Razzaque's patch test 

failed. Thanks to a timely experiment, I did not repeat this particular blunder in 

Semiloof (Irons 1973a; Irons 1973b), 

It is doubly unfortunate that the first patch test argument depended on symmetry, 

Such arguments have never been used since. Moreover, the conclusions on the Ari 

Adini Parallelogram (Adini & Clough 1961) were weaker than they need have been, and it 

was only when R H Gallagher s_uggested that a patch test on parallelograms of varying 

sizes would succeed that we tried such a mesh. 

delayed progress, 

A restrictive argument actually 

With a little imagination, we can discuss this more general case with less difficulty 

than the original demonstration. Considering a unit square, the basis for the shape 

functions can be expressed in terms of the cubics of Figure 4. We have the four 

products L. (x) L.(y), i and j 
i J 

L. (x) S.(y) and S. (x) L.(y). 
i J i J 

and two slopes at each of the 

b---=.1co 

= 0 or 1. Then we have the eight products, 

These twelve functions are activated by the value 

four corners. 

~ILo 

Figure 4: Constituent cubics for the Ari Adini rectangle 

We imagine that a patch of such elements is in a target-state of constant bending 

moments. Now comes the trick: we consider that the patch is perturbated by the 

products C.(x) C.(y), C.(x) S.(y) and S.(x) C.(y) in which C consistently replaces L. 
l J l J i J 

With these functions we can preserve slope continuity between elements. It follows 

that if we actually used L instead of C, the change in slope would be the same at 

opposite edges of the elements, so that as much virtual work would be lost at one as 

would be gained at the other: therefore the total would be zero, 

An even simpler argument of the same type applies to the Veubeke constant stress 

equilibrium triangle which connects to its neighbours at three midside nodes. Any 
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Figure 5: Nonconformity between two 
Veubeke elements 

Figure 6: Diagram of elements with Loot nodes 

nonconformity must be like that depicted in Figure 5 which does zero work in a field 

of constant stress. 

Elements with Loaf nodes at the two Gauss points along each side, as in Figure 6, can 

be treated in the same way. The shape functions are cubic along the edges, for both 

the triangle and the quadrilateral. The assumed stress field is still constant, so 

we can use the 2-point Gauss rule to compute exactly the work due to nonconformity, 

1e zero. 

The argument for the Veubeke triangle must be extended slightly for the Morley 

equilibrium plate bending triangle. This has quadratic lateral deflection w, giving 

uniform bending stress controlled by w at the corners and normal slopes at the midsides. 

The top membrane, for example, is under constant strain, and the in-plane deflection 

normal to the edge is common to two neighbouring elements, being controlled by the 

normal slope at the midside, Finally the slope along the side is given by 

(W8 - WA)/AB in Figure 7, so that the deflection along the edge is also common between 

neighbouring elements. 

patch test. 

Therefore nonconformity in that membrane can do no work in a 

Figure 7: The Morley bending triangle 

We have now encountered all the ingredients in the synthesis which enabled the 

"Semiloof" shell element to pass the test - the first Ahmad layered model to do so - 

for general quadrilaterals and triangles with linear sides and again when the 2 x 2 

Gauss integration was changed to 5-point integration to remove the mechanisms. This 

promising element owes its very existence to the patch test (Irons 1973a; Irons 1973b). 
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ALCHEMY AND THE PATCH TEST 

We have seen that the patch test transcends the displacement or equilibrium formula- 

tions. Let us now enquire what is possible with "nondescript" elements, perhaps with 

no physical basis whatsoever, What other properties must a formulation have, given 

only that it passes the patch test? We must try to discover what is intrinsically 

necessary, and also what is intrinsically possible, Can we for example find a four- 

node element, with four degrees of freedom, that passes a patch test with quadratic 

variation of the variable? The quick answer is obviously, no. For we could choose 

as target-state a quadratic variation giving zero values at the four nodes - six are 

needed to define it - and the four zero nodal values would presumably give zero 

responses everywhere. But 

(a) If the stresses are to be calculated at certain prescribed points, it is 

conceivable that zero nodal values always give zero stress at those points, 

whatever the quadratic variation. 

(b) In say an elastic problem we could, perhaps, invoke for example the equations 

of equilibrium, which operate in the patch test, and hence reduce the number 

of independent coefficients to less than six per variable. 

These are wild thoughts. But our next is slightly more sober, Suppose we use 

hexagonal elements, with six simple nodes at the corners? We should have just enough 

degrees of freedom to define a quadratic variation, and provided the six vertices do 

not lie on a conic section the shape functions certainly exist. 

to create a mesh of decagons, could it pass a cubic patch test? 

If it were possible 

These are still 

flippant suggestions, but they lead to the serious general question; is it possible 

for an element to pass a higher patch test by virtue of its number of degrees of 

freedom, regardless of the dispostion of nodes along a typical side? In particular, 

can we ever do better than a conforming model with the same nodal configuration? 

Figure 8: Two elements considered together, 
to develop conformity requirements 

To be more precise, let us consider what are the unavoidable constraints in designing 

a nodal configuration for a conforming element to do a 

I and II have C(l) continuity across AB, regardless of 

given job. In Figure 8, elements 

the nodal values. In order to 
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make deductions we assume that all the nodal values of element I are zero, so that its 

response must be zero everywhere. In particular wand aw/ay are zero at all points 

along AB. We assume that II can give all the cubic terms: 

Th . . . . . f C ( l) . 0 0 . . b e m1n1mum connect1v1ty requirement or 1s w = at y = g1v1ng a= = d = g 

= o, and aw/ay 0 at y = 0 giving c = e = h = 0, This implies four simple nodes 

along AB, with w only, and three nodes with aw/ay, as nodal variable. 

number of nodal tractions= 7, 

We say n 
2 2s 

We may replace some of the w by aw/ax or a w/ax, and 

some of the aw/ay by a2w/axay etc. Our assumption initially is that there are not 

more than ns in all. 

Note: The importance in later arguments is that we shall have just enough nodal 

tractions to give the correct work done at the element boundaries due to bending moment 

and shear force, in going from one target-state to another. 

We add the corollary that if, for example, we had a2w/ay2 at a midside node on AB in 

Figure 8, a variable superfluous 

For such a variable must control 

to then required, these arguments would still hold. s 
a shape function with zero wand normal slope on all 

the element boundaries. It would give patch equilibrium in each of the elements 

concerne~, considered separate!~. As far as the patch test is concerned, it makes 
no difference if we enforce equality between neighbours. 

Thus n
5 

may exceed the minimum number of tractions without necessarily excluding an 

element from the theorems we shall develop. We must certainly exclude an element which 

could, in principle, pass a higher patch test than it in fact does, for example the 
11quadratic11 isoparametric elements which pass only a linear patch test. To clarify 

the subtle distinction, we have three just-successful configurations in Figure 9. 

VALUE 
FIRST DERIVATIVES 
SECOND DERIVATIVES 

JVALUE 
jlf lRST DERIVATIVES 

21 
n = 13 s 

N = 24 C 
n = II s 

Figure 9: Three quintic triangles for plate bending, with NT= 21 
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It happens that the first is the only version giving analytic shape functions - but this 

is not relevant to the count of degrees of freedom. The second is just feasible in 

a displacement formulation, because the functions with singularities give finite (but high) 

strain energy. The third gives indeterminate slopes at the corners; but Pian's 

approach remains open even in a fourth version, without any corner nodes, so that the 

corner~ are indeterminate, as with Loaf nodes. 

The first gives us excess continuity, but here - as usually - it is not of the simple 

variety envisaged in the corollary above. As a variable, 
a2 1 2 . . way at A in Figure 8 

would not now be wasted, but would be needed for the continuity of side AC with another 

neighbour. Indeed, the three second derivatives at a corner node are called upon to 

do four jobs. Notwithstanding ns being 13 instead of 11, by arguments of nodal 

valency we should have fewer assembled degrees of freedom (Irons 1973). (See alsc 

appendix.) 

Our alchemy is concerned with super-patch behaviour which would imply super-convergence, 

That is, we seek a "nonde sc r i p t;" element which passes a higher patch test than would be 

possible with a conforming element. Later we shall prove that we cannot succeed, But 

is it worth the effort? Indeed yes: this is not fool's gold, For example, Figure 

lO(a) shows an attractive 14-node brick element which could perhaps give excellent per- 

formance, But could it pass a quadratic patch test, in view of the fact that each face 

has only 5 nodes, whereas 6 are needed to define a quadratic variation over a plane? 

Again, Figure lO(b) shows a plate bending element, of familiar nodal configuration - 

the value and the two slopes at each corner. It has 12 degrees of freedom, and a corn- 

plete cubic in x, y requires 10. We doubt however whether such an element can pass a 

cubic patch test, because the nodes along any one side contain only enough information 

to define a linear variation of normal slope. We can say decisively that a conforming 

displacement model cannot pass. Could a hybrid succeed? 

(o) ( b) 

Figure 10: A plausible replacement for the 20-node isoparametric brick, and a 
nondescript plate bending element 
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make deductions we assume that all the nodal values of element I are zero, so that its 

response must be zero everywhere. In particular wand aw/ay are zero at all points 

along AB, We assume that II can give all the cubic terms: 

w a+ (bx+ cy) + ( 3 2 . 2 . 3) + gx + hx y + 1xy + JY 

Th . . . . . f (1) . 0 0 . . b e m1n1mum connect1v1ty requirement or C 1s w = at y = g1v1ng a= = d = g 

= o, and aw/ay 0 at y = 0 giving c e = h = 0, This implies four simple nodes 

along AB, with w only, and three nodes with aw/ay, as nodal variable. 

number of nodal tractions= 7. 

We say n 
2 2s 

We may replace some of the w by aw/ax or a w/ax, and 

some of the aw/ay by a2w/axay etc. Our assumption initially is that there are not 

more than ns in all. 

Note: The importance in later arguments is that we shall have just enough nodal 

tractions to give the correct work done at the element boundaries due to bending moment 

and shear force, in going from one target-state to another. 

We add the corollary that if, for example, we had a2w/ay2 at a midside node on AB in 

Figure 8, a variable superfluous to then required, these arguments would still hold. 
s 

For such a variable must control a shape function with zero wand normal slope on all 

the element boundaries, It would give patch equilibrium in each of the elements 

concerne~, considered separate!}'. As far as the patch test is concerned, it makes 
no difference if we enforce equality between neighbours, 

Thus n
5 

may exceed the minimum number of tractions without necessarily excluding an 

element from the theorems we shall develop. We must certainly exclude an element which 

could, in principle, pass a higher patch test than it in fact does, for example the 

"quadratic" isoparametric elements which pass only a linear patch test. To clarify 

the subtle distinction, we have three just-successful configurations in Figure 9. 

VALUE 
FIRST DERIVATIVES 
SECOND DERIVATIVES 

JVALUE 
+lflRST DERIVATIVES 

21 
n = 13 
I 

Ne= 24 
n = II s 

Ne = 27 
n • II s 

Figure 9: Three quintic triangles for plate bending, with NT= 21 
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This brings us to our conclusion. For in Figure 12 we have introduced a very small 

element at each vertex. According to the lemma for small elements we can argue that 

the forces they exert in a field of constant stress are insignificant. Ordinary 

dimensional analysis provides this result for the moment, and a better argument will 

soon appear. Therefore the boundary forces shown in Figure 12 are entirely due to 

the elongated boundary elements. We conclude that for a given formulation each side 

makes its individual, calculable contributions to the boundary forces at the nodes on 

that side. And this conclusion is inescapable - it follows directly from the nature 

of the patch test, for the most criminal elements. 

permissive than we thought. 

Note: We now return to the lemma for small elements. 

Perhaps the patch test is less 

In Figure 12 the slender 

elements generate certain nodal forces. If we now discard the small elements, these 

forces will change only slightly, on account of the change in boundary geometry. We 

interpret this change in terms of the small elements taking their small share of the 

traction, and without proving the lemma strictly this is enough, 

the slender elements. 

We have separated 

Figure 12: A variant on the inner 
patch 

D C 

-------·'------' A B 

Figure 13: A patch with zero traction 

Let us now consider the implications of the patch in Figure 13, with a flat surface, 

across which there is zero traction; thus the available target-states are limited. 

We shall prove the zero traction theorem, that the nodal forces on AB are zero if the 

tractions are zero. For we could make ABCD a needle-shaped element like EFGH without 

changing these forces, and we can make the forces on EF arbitrarily small by reducing 

the depth of EFGH. 

small.) 

(The forces in BC, including the corner node at B, need not be 

For the next theorem we shall need the lemma of element strain energy, more obvious in 

its statement than in its implications. Of course, if the stress everywhere repro- 

duces the target-state exactly, then the strain energy integrated over the element 

must be correct. Therefore, it makes no difference if the formulation studiously 

avoids energy principles - the patch test introduces them inescapably in this sense, 

provided that we consider only the target-states. 

- 187 - 



THE PATCH TEST FOR ENGINEERS 

Our next theorem is strongly suggested by the zero-traction theorem, but at this point 

we must introduce the assumption that the nodal configuration along each side would be 

just acceptable in a conforming model, as discussed above. Thus we suppose that 

element ABCD in Figure 14(a) has N nodal variables and that there are NT~N target- 
e e 

states. To prove the mixability theorem we shall try to compute the patch forces at 

the nodes on AB by considering only n of the target-states, fixing to zero (NT-n) 
s s 

of the nodal variables not on AB. (It may be necessary to choose carefully which to 
fix.) Let us imagine that the remaining (Ne -NT) non-target responses are suppressed, 

by constraining the remaining variables. We now perturb the patch, to another target- 

state only slightly different; hence we do work directly on the element through the 

nodes on AB, but we also allow energy to be transmitted from neighbouring elements 

through any consequent perturbations of the remaining (Ne-NT) constrained variables. 

..... 

- 

D C 

A (a) B 
=- ( (D C\ I_:: 

A B 

(b) 

Figure 14: Patches for arguing the mixability theorem 

To complete the argument, we go back and repeat the perturbation, but this time we do 

not allow the (Ne-NT) variables, previously constrained, to depart from their initial 
positions. Thus we prevent the nodes not on AB from receiving energy from neigh- 

bouring elements, and in so doing we commit only a second order error in the total 

potential energy, beacuse of patch equilibrium at the internal nodes. The only 
energy now entering the element is that transmitted via the nodal tractions on AB, 

and it must therefore equal the virtual work computed along AB, and along AD and BC 

for the corner nodes, as a continuum, considering only the target-states. We now 
move on to Figure 14(b) in which the virtual work along AD and BC will be relatively 

small. The argument still holds, for any perturbation of AB. 

But from the point of view of virtual work, the nodal values along AB just define the 

values and, if necessary, the slopes on 

correct, we assume. Thus whatever the 
AB for~ tareet-state. The nodal values are 

inventor thinks is happening along AB, it is 
as if the target-state values were there in any patch test. 

the tractions for the patch test, if only we assume that the virtual work done at the 

Therefore we can compute 

nodes is correct. It would be difficult to sustain a model, for example, with an 

unsymmetrical stiffness matrix: the work done would be patch-dependent. Thus the 
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argument brings us especially close to Pian's viewpoint, although by a totally un­ 

familiar route. 

Note: It is fortuitous that all adequately integrated iso-P elements are mixable, 

including those whose patch behaviour is not as good as would be suggested by the nodal 

configuration. 

The theorem just proved has a close affinity with the super-convergence theorem, our 

last. Indeed, it is possible to use the patch of Figure 14(b), or even that of 

Figure 12 with the original lemma for small elements, but we choose here to vary the 

argument. The rudimentary patch of Figure 15 contains only a slender element, flanked 

by two small square elements. (Indeed it is not strictly a patch at all, without any 

internal corner nodes!) There is little change if we remove the external patch 

tractions from the small elements, If we wish to discard all energy principles, 

including virtual work, then we can proceed taking this statement as a premise. Other­ 

wise we can argue it from structural principles, ie if element CDFE has fixed 

displacements along DF and CE, then the change in the strain energy of CDFE cannot 

exceed a relatively small quantity. 

A C 

D 
E G 

D 
B D F H 

Figure 15: Patch for the super-convergence theorem 

Lemma We prove the statement just made by dividing the inter-element boundaries of 

Figure 15 into three regions: 

Z = DF + CE, whose displacements remain fixed according to the target-state. 

Q =CD+ EF, the inter-element region which remains free of external loads, 

L = (AC+ AB + BD) + (FH +HG+ EG), whose displacements are initially those of 

the target-state; but subsequently L becomes free, ie unloaded. 

When the patch is initially set up, Zand Lare given the target-state displacements, 

and an easily calculable amount of work becomes strain energy, Then Lis slowly un­ 
* loaded, and as the boundary moves from displacements 1 to 1, the patch does work on 

the decreasing forces on L, reducing the strain energy by the same amount. (The 

forces on Z also change, but because Z remains fixed no work is done,) We note that 

* (1 - 1) is the displacement caused by applying load L to the unloaded patch, earthed 

along Z, giving the required change in strain energy exactly. However, we prefer 

something larger - a bound - and something more easily calculated, In withstanding 
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the end-loads L, the slender element must stiffen the small elements, so we now remove 

it, thus isolating the small elements, Therefore we set Q to zero, and we apply loads 

L to the small elements, giving the strain energy e as our bound on the change in strain 

energy, e 1s normally small, 

Note: e can be infinite if the square elements have mechanisms - for we are no longer 

dealing with target-states, This proviso was implied more subtly in Figure 14, where 

the removal of the constraints could have caused infinite deflections elsewhere, 

Having removed the tractions from the small elements, we cannot expect to reproduce 

any target-state exactly, but the modified patch test must evidently give nearly the 

correct stress field, The conclusion follows, For the number of distinct stress 

fields available (which are nearly target-states), plus the rigid body motions, must 

be 2n, just as for a conforming model, The 2n items of information - the nodal 

tractions - entering the element along sides EC and OF must define the displacement 

field adequately for any target-state when EC comes close to OF, which is the same 

requirement as for a conforming element. Otherwise we can argue that with less than 

2n tractions, or with inappropriate tractions, the virtual work in going from one 

target-state to another might be wrong. 

We conclude, sadly, that super-Patch behaviour is intrinsically impossible, and that 

workers should look elsewhere for profitable research, If the patch test has led us 

into an alchemist's dream, it has also taken us a step nearer to modern chemistry. 

CONCLUSIONS 

Most of the material reported here was unknown to me at the time of our 1972 paper 

(Irons and Razzaque 1972), I did not expect this outcome, which reflects the indis- 

pensibility of the patch test in my research, One's attitude towards those tools that 

one uses only occasionally does not change from year to year, whereas there are other 

tools for which one constantly finds new uses and new adaptations. For years I imagined 

that all my fellow workers used the patch test in their secret thoughts, and I was only 

gradually persuaded otherwise. I needed it, and I assumed others needed it too. 

The usefulness of the patch test requires no pedagogic thumping - the examples speak for 

themse 1 ves, Therefore I should like, finally, to emphasize the subtle and characteris- 

tic philosophy that was struggling to emerge in the final section above. It gave me 
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great pleasure to discover that the patch test itself is leading us towards the concept 

of the hybrid elements, and not the other way around, For the patch test is more funda- 

mental and universal than any single formulation, It begins to appear that Pian's 

technical note of 1964 (Pian 1964) held the whole future, not just a part of it. 

APPENDIX 

I once thought that the frontwidth was independent of how the necessary nodal tractions 

were distributed between corner, midside and mid-face nodes. This is far from true, 

Figure 16 considers possible nodal configurations for a quintic plate bending element, 

and we imagine a rectangular problem n elements in width, treated with a horizontal 

front (indicated by the full lines) progressing vertically as the equations are reduced, 

(a) frontwidth 

(b) frontwidth 

(c) frontwidth 

7n + 21 

Bn + 24 

6n + 26 

(The last is probably of academic interest only.) 

(0) (b) 

---- 

\W, Wx,Wy,Wxx•Wxy ONLY 
(C) 

Figure 16: Nodal configurations for discussing frontwidth 
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PREPARATION OF FINITE ELEMENT DATA 

Data prepared for a finite element analysis of a structure is set out in a particular 

manner. Having selected a suitable idealisation of the structure and chosen the 

method of solution to be used the data can be prepared. In general it is necessarv 

to give each node in the structure a label or number and calculate the coordinates 

of these nodes in some suitable coordinate system. 

The figure shows the particular method of defining the data necessary to run a 

finite element analysis using PAFEC 70+. Detailed descriptions of each of the 

options are given in the sections referred to by the flow chart (Nottingham 

University 1974). The b a s i.s of the PAFEC 70+ data is: 

(1) Control Integers 

(2) Nodal Coordinate Data 

(3) Element Topology 

(4) Loading Information 

(5) Constraint Data 

All finite element programs will require the above S sets of information but these 

may be supplied in a different manner to those described for PAFEC. 

REFERENCES 

NOTTINGHAM UNIVERSITY, PAFEC 70+ Data Preparation Guide (1974) 

- 193 - 



PR EPA RATION OF FINITE ELEMENT OA TA 

DECISION CHART FOR DATA PREPARATION 
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INTRODUCTION 

Computer graphics is basically very simple, consisting of combinations of three 

operations. 

(a) Draw a line 

(b) Not draw a line (remove the pencil from the paper) 

(c) Finish the picture (ie replace drawing with a fresh sheet of oaper) 

These operations are used not only by computers but by human draughtsmen, designers 

and artists. 

Engineering and Science are based on exact laws with a mathematical superstructure. 

This means that unlike 11pictorial" art, scientific and engineering graphics are in 

the main numerically definable making them easy to produce by digital methods. 

What is required to produce computer graphics, besides access to a digital computer? 

These requirements can be subdivided into hardware and software requirements. 

GRAPHICS HARDWARE 

We shall first consider the main types of hardware that are presently available. 

(a) Flat bed and drum plotters 

The flat bed plotter is simplv a large table with a pen gantry such that the 

pen can move anywhere on a sheet of paper placed on the table. 
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Drum plotters consist of a roll of paper, a drum on which the plotting is 

done and a take up roller. The pen traverses the width of the paoer and 

the paper moves back and forth to give the required drawing capacitv. Such 

plotters are usually up to 36 inches wide and allow plots up to 140 feet 

long, an advantage to wallpaper designers. 

Flat bed plotters have the advantage of producing .good quality plots of often 

very large size. However, they do tend to be rather slow. 

Drum plotters on the other hand are less accurate, usually a little faster 

than flat bed plotters, but generally do not produce pictures greater than 

36 inches in width. 

(b) Visual Display Units 

These dev i ces are based on cathode ray tubes. Two types are generally 

available, first the refreshed type where the picture is continuallv 

regenerated from some digital representation held in the controlling 

computer's memorv. Second, the storage tube devices. These are marketed 

by Tektronix and use the phosphor and CRT technology developed for their 

memory oscilloscopes. The picture is stored on a long lived tube phos~hor 

and after transmitting the picture to the VDU the computer plavs no part in 

keeping the picture on the screen. 

(c) Microfilm plotters 

These are a cross breed between (a) and (b). In some wavs they offer 

greater flexibility over the (a) type plotters, but they possess certain 

disadvantages. They consist of a special CRT on which the picture is 

generated. This picture is photographed either onto photographic paper 

which is processed to produce a paper picture, or on to photographic film 

to produce a microfilm image. This latter facility can be used to comoact 

documents and also gives the possibility of making computer generated 

films. 

GRAPHICS SOFTWARE 

Let us now consider computer graphics software, that is, how the various tvpes of 

plotter can be driven. 

Pictures consist of a large number of lines, or vectors defined by the coordinates of 

their beginning and end points (or in some cases just the end point, the starting 
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point being defined by the previous vector's end point). Thus any but the simplest 

drawing graphics is fairly demanding on the output of vectors to the plotter; 

especially when it is remembered that most plotters can only draw straight lines, and 

curves must be approximated by a number of straight lines. Plotters are generally 

slow devices compared to computer CPU and other peripherals, and it is better to run 

such devices off line. Essentially the user's program, which might be very large, 

generates a magnetic tape. This tape is either taken to the plotter which is 

physically separate from the computer or it is played back to a connected plotter 

using a small efficient program. The SD4020 at AGL works in the former mode whilst 

the drum plotters at many universities work in the latter mode, VDUs are rather 

different; storage tubes can be run at relatively high speed and are usually run 

online to the computer but off line to the users program. the interface being via a 

disc file. In smaller installations such devices can be run online to the users 

program with a limited amount of interaction. 

The refreshed devices require continual servicing by the driving computer. Thev are 

generally used for interactive applications and enable the use of light pens etc. 

Let us now briefly consider interaction especially as far as it concerns graphics. 

Drum plotters and microfilm plotters are obviously one way devices. Storage tubes 

offer a limited degree of interaction in that lines can be added to a picture but 

not removed without replotting the entire picture. 

Refresh displays where the picture is effectively being replotted continually do not 

suffer from this disadvantage and are particularly suitable for heavy interactive 

work. 

Interactive graphics where graphical information flows both ways is an expensive 

activity and should be resorted to only when other graphical methods cannot be used 

or there is some tremendous advantage in using interactive techniques. Generally 

interactive methods do not help when a problem can be defined algorithmically, and 

this would cover most problems encountered in science and rather less in engineering. 

In dealing with heuristic problems, eg design work, they are almost essential, Such 

methods usually require specialised hardware. A particularly good example where 

interactive graphics has proved valuable in an algorithmic case is the National 

Economy, The Central Statistical Office has an interactive graphics facility which 

enables economists with no computing training to manipulate statistics, correlate, 
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predict etc both rapidly and simply. The economic gains in such a case are obvious, 

although in many cases it is not so clear cut. 

Between fully interactive graphics and graph plotter type graphics lies online 

graphics where a storage tube device is used to view generated pictures after the 

completion of a job. Here the flow 1s one way. Such methods enable rapid 

development of graphical programs. Although the operations of graphics are 

fundamentally simple various problems can arise concerning scaling of data, 

generating characters, drawing arches and graphics. This is the area of software. 

Much graphics software is very crude, the user having to manipulate the plotter as if 

he were drawing the graph himself. A lot of effort has gone into packages that 

allow automatic graph production, scaling and character generation. 

COMPUTER MOVIES 

Earlier I mentioned the possibility of making computer movies. A rnovie consists of 

a number of frames, each differing slightly from the previous frame, such that when 

the film is shown an apparently smooth action is portrayed. Silent films are shown 

at 18 frames per second (fps) and sound films at 24 fps. Thus a few minutes of 

film requires quite a lot of frames. A lot of software effort has gone into pro- 

ducing programs to allow users to use some of the tricks of cinematograohv easilv 

eg zooms, pans, titling etc. They may not be of professional standard but scientists 

and engineers are primarily interested in research films ie subject content and 

things like "nice" titling are just frills. 

I will now show a short film entitled "The Flexpede". It is not about anvthing 

scientific, and is really very frivolous. It is very simple both in terms of what 

it tries to do and in the graphical shapes that are manipulated. There is basicallv 

one shape plus a few others that are linked together to produce what I feel 1s a 

very effective little film. 

In both science and engineering computer movies can be useful for studying the time 

evolution of a system in a qualitative fashion. Often one might wish to expand or 

compress the time scale. In the case of molecules moving in a liquid at speeds of up 

to several metres a second some expansion of the time scale is required. In the case 

of galaxies however where there is little change over a million years the time scale 

must be compressed. 
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Of course, it is possible to map some other variable onto the real time axis of the 

film eg stress on a component as a linear function of time. 

CONCLUSION 

I would like to sum up by making the following points: 

(a) Computer Graphics are essential for the automatic production of graphs and 

charts, which can lead to a more rapid and thorough understanding of the 

numerical information emerging from the computer. 

(b) It is important to choose the right graphical technique for a given tvpe 

of problem. 

(c) Computer generated films can now give a time dependent displav facility, 

not cheaply but more easily and cheaply than electronic disnlays. 
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INTRODUCTION 

In 1968 the Engineering Department at Leicester University took delivery of an ICL 

(then Elliott) "4280 advanced display" (purchased with funds provided by the Science 

Research Council) to be attached to the University's 4130 computer for "investigating 

engineering uses of digital computer graphical display equipment" under the leader- 

ship of Professor GD S MacLellan, Further funds were subsequently provided for a 

disc and a teletypewriter. The author spent four months in the early part of 196~ 

in the computer-aided design group led by Dr D T Ross in Project MAC (Butlin 1968). 

The fundamental graphics and data handling techniques and software that have subse­ 

quently formed the basis of all the work at Leicester have close links with the AED 

approach to computer applications (which is described by Ross (1967)). Almost all 

the programming has been done in Fortran, the primary aim being to ease transfer of 

programs to other computing systems. 

The hardware configuration used for all the work described in this paper is shown 

in diagrammatic form in Figure land the display terminal is shown in Figure 2. 

Software appropriate for operating the display in a timeshared mode was never forth­ 

coming from ICL and consequently whenever the display has been used the 4130 has 

always had to be dedicated to it. 

Among the many investigations of the use of the display in engineering that have been 

made in Leicester such as hydraulic control system design, mechanism design, traffic 

control simulation, fluid flow visualization etc the main interest has been the 

improvement of the finite element method in continuum mechanics. The long term aim 

here has been to provide the means for a designer to improve his understanding of 

structural behaviour through the combined use of interactive graphics and the finite 

element method. 
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Two early systems that explored the potential of this combination were 

(1) LUISAl (Leicester University Interactive Struct,,ral Analysis - 1) and 

(2) a slab bridge design program. 

While limited to certain relatively small structures these exploratory systems led to 

the identification of critical problem areas such as: 

(i) digital representation of a complex three-dimensional object in a form 

immediately suitable for engineering analysis; 

(ii) techniques for rapid re-analysis and assessment of performance 1n 

connection with engineering design modification; 

(iii) programming aids for large, changing interactive graphics systems 

in Fortran; 

(iv) operating system, data paging and program overlay requirements for severe 

real time applications; 

(v) ergonomics and operatlonal strategy of intense man-machine interaction; 

(vi) the introduction of new design/analysis procedures into existing practices. 

Research in these areas is in progress and forms the basis of a four year programme 

for which funds are being sought. 

Recent work has concentrated on producing systems for the rapid generation of data 

input to and rapid assessment of output from finite element structural analysis. 

Such systems are seen as an attempt to meet the present need that is illustrated in 

Figure 4 (Tocher 1970), and also as a basis for future design/analysis systems on the 

lines of our early exploratory design systems but capable of handling complex structures. 

This paper presents the facilities and example applications of: 

(1) LUISAl and the slab bridge design programs; 

(2) an input data generation system; 
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(3) an output assessment system; 

followed by notes on system design. 

(1) Design Systems 

(i) LUISAl - was designed as an aid to a structural engineer in investigating 

the effects of changes in element configuration and properties in simple 

two-dimensional structures. All data defining topology, geometry, displace- 

ment constraints and applied forces are generated, checked and, if desired, 

modified at the display using the lightpen, function buttons and an adjacent 

teletype keyboard. Figures S(a)-(r) illustrate some of these features. 

Because of the nature of the 4100 Fortran software the system is limited to 

about 70 elements and it has been possible only to provide for triangular 

elements and for a selected range of types of displacement constraint, applied 

loading and display of stresses. The system has been fully described in 

earlier publications (Butlin and Hubbold 1969; Butlin 1969; Butlin and 

Leckie 1970). 

(ii) a slab bridge design program, 

As a result of a joint project by E W H Gifford and Partners and the Leicester CAD 

group a program was written (by Miss Rachel Britton under the direction of M J Platts) 

to make possible rapid interaction with computer analysis in the early stages of a 

structural design using finite element methods, It provides the means for an engineer 

to study alternative solutions to a design problem at the conceptual stage by making 

full use of interaction and display with both input data and computed results. The 

design program for rectangular bridges produced in this project enables an engineer 

to obtain an overall picture of the behaviour of a rectangularpre-stresse~ concrete 

bridge deck under pre-stressing, loading and support conditions which can be varied on 

command. (Typical display screen layouts are shown in Figures 6 (a) and 6 (b).) It was 

used to good effect in the design of the Newport Harbour 3-span bridge in the Isle of 

Wight (shown in Figure 7 (a)), resulting in an improved pre-stressing scheme (shown in 

Figure 7 (b)). Programming aspects are described in Britton & Platts (1971) and 

experience of the system in use is described in Platts and Britton (1972), 

(2) Input Data Generation System 

A system of Fortran programs known as the LUISA2 family has been developed to permit 

interactive computer graphics to aid the rapid generation of finite element data, 

It consists of seven subsystems: 
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( i) LUISA-OUTLIN for structural shape definition 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

LUISA-PAMGEN for parametric generation of finite element meshes 

LUISA-FEMMOD for finite element mesh generation and modification 

LUISA-COMPAS for assembly of component meshes into large structures 

LUISA-ELTYPE for element type and material property assignment 

LUISA-NOONUM for nodal numbering 

LUISA-LOADBC for specification of applied loads and displacement boundary 

conditions. 

Each subsystem has access to a library of structural components which forms a data 

base on disc and provides the means for passing data between subsystems, Each sub- 

system is operated on an interactive refresh display terminal, All input is from 

the lightpen, function buttons and keyboard of the display terminal; approximate 

values usually being input through the tracking cross (which follows the lightpen) 

with visual assessment of magnitude, and accurate numerical values usually being 

input through the keyboard; except in subsystems OUTLIN and PAMGEN where some initial 

data may come from cards. Facilities for dimensioning, zooming and windowing, 

hardcopy plotting and dumping and restoring are made available throughout the systems. 

In each subsystem provision is made for re-entry, retrieval of old data, modification 

and re-filing, A sample of sequences of operation through the subsystems that the 

user may follow is shown in Figure 8, 

Figures 9 to 14 present a sample of currently available facilities, 

(i) Figures 9(a)-(f) show the way a simplified outline may be input from 

cards, checked visually, adjusted interactively with subsystem OUTLIN 

and passed to the interactive element mesh generation subsystem PA.~GEN 

which provides parametric control of mesh density and grading through a 

set of patches representing the area enclosed within the outline, 

(ii) Figures lO(a)-(f) show two further examples with an indication of the 

total time taken, from designing and punching the initial card input 

to filing the element data on disc and requesting hard copy output. 
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(iii) 

(vii) 

FEMMOD provides an alternative method of mesh generation that includes 

more detailed control of nodal coordinates and element assemblies, 

Regular regions of a mesh can be generated by a simple command and 

subsequently 'edited', joined and copied with additions and deletions 

of single elements where required, 

in use within LUISAl, 

interactive assembly. 

Figures S(a)-(c) show this method 

Figure ll(b) shows some meshes that have been 

generated this way and filed as substructures, 

how FEMMOD may be used to edit an existing mesh, 

too large to be held in core at one time, 

Figures 12(a)-(f) show 

(iv) Figures ll(a)-(i) show the use of COMPAS in assembling a set of component 

meshes, or substructures to form a representation of a structure that is 

Examples are shown of a dam/ 

foundation (ll(a)-(d)), a ship bulkhead (ll(e)-(f)), a bridge diaphragm 

(ll(g)-(i)) and a centre-line girder of a ship tank (17(a)-(b)), Al~ the 

component meshes have first been generated with FEMMOD and then reduced to 

the form shown eg in Figure ll(e) to make them available to COMPAS for 

Coding is in hand to permit meshes generated by 

PAMGEN to be passed to COMPAS. 

(v) LUISA-ELTYPE is at present being coded and will provide the means to change 

the fundamental geometric types of triangle and quadrilateral to element 

types such as linear strain triangle, axisyITL~etric quadrilateral with mid­ 

side nodes etc and in addition will provide the means to assign material 

properties to appropriate regions of a mesh. The geometric and topological 

data structure is of a fundamental form that is not limited to structural 

problems,. ELTYPE forms the interface with the physical system that is being 

represented, Another physical system would need an alternative ELTYPE 

(and LOADBC), 

(vi) Figures 13(a)-(d) show how one may control the "shape" of the stiffness 

matrix of a substructure by numbering the nodes with the lightpen and there- 

by reduce the required storage space and computation time, However such 

a technique on its own is of limited value and there is a need to co~bine 

it with those of Gill's SHELL system (Gill 1972) and some automatic band 

width optimization program, 

Applied loads and displacement boundary conditions may be specified with 

LOADBC which uses standard interactive identification procedures in common 

with other subsystems, Rapid selection of element nodes is achieved with 

a combined use of lightpen and function buttons, and numerical values may 

be keyed in where required with an immediate visual check always available. 

Figures 14(a)-(b) show the display of loads and boundary conditions for the 
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dam/foundation and the centre-line girder, Loads and boundary conditions 

may be specified at the reduced structure level or the element mesh (sub­ 

structure) level, 

Coding is in hand to permit 2-D components like those used in the examples 

of Figures ll(e), ll(a) and 17(a) to be assembled into a 3-D configuration 

like that shown in Figure lS(a) which represents a structure like that 

shown in Figure lS(b), (These two figures (lS(a) and (b)) are taken from 

publications of Det Norske Veritas,) 

Progress with fundamental techniques for generating and modifying a finite 

element representation of a 3-D solid object is shown in Figures 16(a)-{b) 

which show a short section of a spine-beam bridge that has been inter­ 

actively generated on the display screen composed of 3-D "bricks" from 

which an appropriate finite element mesh could be generated, This work 

is the subject of a PhD research project, and is aimed at handling such 

structures as those shown in Figure 18. 

Transfer of data from the LUISA2 family to input files for ASAS has been 

organised through simple interface routines. To code interface routines 

for other such analysis systems would be a relatively simple task. 

(3) An Output Assessment System 

While many finite element analysis systems include some facilities for presenting 

results in a graphical form on passive devices such as digital and micro-film plotters 

relatively little use is made of the more active devices such as storage or refresh 

crt display (Butlin 1972b; International Ship Structures Congress 1973). An 

exception is the very imaginative work being done at Utah (Christiansen 1971) where 

impressively realistic displays of structural displacements and stress patterns are 

being produced with a special purpose display capable of rendering a full range of 

tones. 

The current work in Leicester is designed to especially exploit the interactive 

facility in conjunction with a convential crt display. Figures 17(a)-(i) illustrate 

some of the display options that may be interactively requested by the user to aid 

him in assessing the behaviour of a structure and to prepare a record in hard copy 

form of only the most relevant analysis results. 
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Incorporation of these facilities into the previously mentioned 3-D work is the sub­ 

ject of an MSc project, 

(4) System Design 

Features of the design of the LUISAl and bridge systems of section (1) are described 

in Butlin and Hubbold (1969); Britton and Platts (1971); and are now onlv of 

historical interest. 

Fortran is not the most appropriate language for coding these interactive graphics 

applications, Algal would be preferable but by no means as effective as AED or 

Algol-68, However the ogre of transferability has forced us to compromise and to 

establish a methodology for the production of large interactive graphics systems in 

Fortran, There follows some brief notes under the headings of graphics, interaction 

and data handling: 

Graphics 

A package of routines called FRED (International Computers Ltd 1969) written in 

assembly code provides all the basic facilities in Fortran for picture organisation 

and display, An additional package (Butlin 1973b) written in Fortran aids the 

organisation of menus of options, warnings, error messages etc. 

Interaction 

Control of interaction from Fortran is provided by other FRED routines. An 

"interaction processor" package of Fortran programs (Butlin 1973a; Butlin 1972a) 

provides a framework within which each subsystem is designed and its operation 

assessed prior to implementation and ensures compatibility in the display screen 

control language between the subsystems which are designed by different people. It 

includes means for: 

(a) defining connnands with data, using a simple numerical association between 

command names and their corresponding subroutines; 

(b) storing a set of options so as to minimise the interaction necessary to 

communicate an instruction to the computer; 

(c) introducing optional diagnostics; 
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(d) modifying a large system to optimise its operation in the light of 

experience or to produce different versions suited to a novice, for 

example, instead of a skilled user. 

Data Handling 

While some of the LUISA2 family of subsystems have the same type of data structure 

others have quite distinctive structures. Each data structure has been designed to 

suit the set of operations that need to be performed on it. As data is read from 

the disc data base into core or out to disc it is transformed to or from the 

appropriate in-core data structure. All subsystems use a free storage package which 

manages the allocation and return of core storage. Rather than garbage collection 

its strategy includes an attempt to prevent the fragmentation of unused space, 

Basic data structuring techniques are described in Butlin (1973c). 

In OUTLIN, COMPAS and the 3-D system a paging package (Hubbold 1971; Hubbold 1972) 

is used to manage core/disc data transfers and has been designed to satisfy the 

special requirements of on-line demands. 

DISCUSSION 

Although applications of interactive graphics are now in regular production use in 

some aeronautical and aerospace organisations the current benefits to be found are 

still a long way short of what had been expected in the mid-sixties. 

The most widespread productive applications to date in structural engineering have 

employed the rather more passive devices (eg digital and micro-filmplotters) for 

checking input data and for displaying results. The extension to the more active 

lightpen and refresh display has been restrained by the special programming problems, 

lack of appropriate general purpose software, lack of uniformity of hardware and the 

difficulty in assessing benefits. 

However as a result of research in Leicester some software has been produced for 

production structural analysis and in a form that makes possible its transfer to 

other hardware. The graphics packages mentioned in section (4) have 

been converted to run on a DEC system 10 at Time Sharing Ltd and as a first trial the 
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subsystem LUISA-PAMGEN has been transferred to this computer to be operated from a 

Tektronix 4002A storage tube display shown in Figure 3, Support is now required 

for the commercial implementation of this and the other LUISA subsystems, 

The problems of achieving the longer term aims of providing design engineers with 

aids to explore alternative solutions have been brought into focus, Some of these 

problems have already been solved and a large research programme is in hand to 

tackle the others over the next few years. 
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display processor unit central processor unit 

display 

file 

sc~nned 

10 times· 

N ...., 
N 

Fortran program 

disc 
4 x IM words 

CORE STORE 

Figure 1: Diagrammatic representation of ICL 4130/4280 hardware and fundamental software 
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Figure 2: ICL 4280 refresh display terminal with 
lightpen (and foot pedal), function buttons 
and keyboard 

Figure 3: Tektronix 4002A storage tube display with 
joystick, keyboard and hard copy unit 
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PRODUCTION EFFORT DEVELOPMENT EFFORT 
PRODUCTION USAGE OF TYPICAL DEVELOPMENT 
TYPICAL PROGRA."iS ACTIVITIES 

MANPOWER MACHINE TIME MANPOWER "iACH I NE TI ME 
% % % % 

•DATA PREPARATION 
50 40 •DATA GENERATORS 

10 10 • DATA CHECKING •GRAPHIC DISPLAYS 

•NEW FINITE ELEMENTS 
•SOLUTION PHASE 10 50 •BETTER EQUATION SOLVERS 

80 80 •ADDITIONAL FEATURES 
•NONLINEAR CAPABILITIES 

•INTERPRETATION OF 40 10 •GRAPHIC DISPLAYS 10 10 
RESULTS 

Figure 4: (From Tocher, 1970) Typical work breakdown comparison between production use of finite element programs 
and development effort on new analysis programs 
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(a) Basic topology generated by 
copying and joining 

(c) Copied and joined again to produce 
required mesh 

(b) Distorted to fit required 
dimensions 

(d) Dimensions checked 

(e) Displacement constraints 
specified 

(f) Loads applied 

Figure 5 (part 1): LUISA1 
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(g) Displaced shape 

+ l l 
(i) Sigma x displayed for four elements 

from datum at tracking cross 

(h) With increased scale on display of 
displacements 

+ 

(j) Sigma y 

+ 

(k) Sigma xy (I) Second load case 

Figure 5 (part 2): LUISA 1 
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(m) Displacements (n) Numerical value of displacement 
for node chosen with lightpen 

+ I I 
(o) Sigma x 

+ 

(p) Sigma y 

+ l l 

(q) Sigma xy (r) Numerical value of sigma x for an 
element chosen with lightpen 

Figure 5 (part 3): LUISA 1 

- 217 - 



INTERACTIVE GRAPHICS FOR FINITE ELEMENTS 

[ W M GIFfl'O"O ANO ,..,,,.TNE"'S AIIALYSlS OF" N(WPOf'Q" 1-U,11180V" 9.IIIIOGE 
SELECT SU'"~"'T ON D[O: 

0111; N[XT Ol"TION "'Ew SU,.,.O"T 
0 200£ + ,o 

,.LACE 

ALT[A 

Gil'IIO 

THICK 
su •• ,.r LONGT HIAMS HA He 

CABLE CABLE LO.-.o LOAO 
,.Oll'tT LOAD SOU'( 

LOAD C.ut:S 

Figure 6(a): Typical display screen layout - showing setting 
of supports 

[ W H GtFFOl'tO AHO '"AIIIITN(IIS 
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I FO"' N[.IIT 0rl10N 

2 J"OII OtS,.LACEM[l'lt 01111 sv,-,-o"' l.o..OS 

jOQ!NT LOAD 

. . 
+ ••.••. . 

SHl[SS. 

G,t1D 

THICK 

SVl",.T LOlolG! T"AMS HA 

c ••.• l[ CAaLE LOAD 

. . 

•• 
LOAD 

. . .·.·.· ... ·. · .. 

LOAD I SOLVE I 
CAHS 

Figure 6(b): Typical display screen layout - showing display 
of stress for point load 
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Figure 7(a): Newport Harbour Bridge - general arrangement 
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Figure 7(b): Newport Harbour Bridge - prestress details 
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cl:'_ ~UISA-OUTLI~ 

~---- (::5:'-- 

\ 

possrbl e return 
sequerces for 
mod1ficol1on after 
assessment of 
results 

subsystems for 
geometn:: oota 
generation 

------------(LUISA-(l)M~v 

-~ 

~UISA-NOCNJM) 

I 

similar 
return 
sequerces 

Figure 8: User sequences for LUISA subsystems 
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INTERACTIVE GRAPHICS FOR FINITE ELEMENTS 

(a) Simplified outline shape of turbine disc 
input from cards 

(c) Division into patches complete and mesh 
types chosen (0, 1 etc) 

+ 
(e) Small group of patches selected for 

adjustment of grading 

(b) Outline shape adjusted and first line drawn 
to divide into plane patches 

(d) Single patch selected, scaled up and internal 
parametric control points (the four crosses) 
being used to adjust mesh 

(f) Full mesh showing different mesh types 
and consequent grading 

Figure 9: Parametric mesh generation 
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00 

) 

+ 

(a) Outline of underground railway tunnels 
input from cards 

(b) Subdivided interactively into patches and 
mesh types selected 

(c) Resulting mesh; total elapsed time for 
stages 1-3 = c 1 hour (computer time is a 
fraction of this) 

(d) Outline of quarter of disc input from cards 

(e) Subdivided interactively into patches 

(f) Resulting mesh; total elapsed time= c 
45 mins (computer time is a fraction of 
this) 

Figure 10: Example meshes generated with OUTLIN and PAMGEN subsystems of LUISA 
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LIBRARY OF SUBSTRUCTURES 
GROUP ' 

NAME ELTYP NNOOS ASEMB DECOMP MOOIF 

WALL 41 l4 
TANS JO ,. 
S012 
LCRN 

S013 
BAKF 
TEST 8 9 
5011 
CNTR 25 21 
BASE 

(a) Library of substructures 

• 

• • 
• 

(c) Substructures being assembled (in reduced 
form) into dam/foundation example 

D D 

D D 
+ 

(e) A selection of substructures shown in 
reduced form in another library 

(b) Meshes of some substructures in library 

(d) Full mesh of dam/foundation; total elapsed 
time taken = c 2 hours (computer time is 
a fraction of this) 

+ 

• 

(f) assembled to represent part of a ship 
bulkhead 

Figure 11 (part 1 ): Substructure assembly 
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(g) Meshes of substructures for a bridge diaphragm 

'11 '11 
'11 '11 )I( )I( )I! • ••........ ...,.._ ~ 

)I! "-.+./ )II 

)I( )I( 

(h) Assembled substructures in reduced form 

(i) Resulting mesh 

Figure 11 (part 2): Substructure assembly 
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r -=:r 

• I 

~_>. 
~ 

. . . 
. 

(a) Substructure extracted for modification 

(c) Expanded view of area to be modified 
·showing elements deleted 

(e) Boundary nodes lined up and internal 
nodes adjusted 

(b) Mesh retrieved from library file 

(d) New, finer mesh sketched in 

(f) Full modified mesh after rejoining 
modified substructure 

Figure 12: Mesh modification 
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B1 NUMBER ALL NODES; B2 SOME, 83 ZOOM; 

84 CENTRE ZOOM; B5 VIEW MATRIX, 86 EXIT, 

PLOT 

41 31 21 11 6 16 2G 36 

42 32 22 12 2 7 17 27 37 

43 33 23 13 3 8 1B 28 38 

44 34 24 14 4 9 19 29 39 

45 35 25 15 5 10 20 30 40 

Figure 13(a): Internal nodes (from 1 to 35) numbered sequentially starting 
with the left-most column of internal nodes 

OUT 1 TO SAVE NUMBERING REPRESENTED IN MATRIX 
2 TO LOOK AT PREVIOUSLY SAVED NUMBERING 
J TO LOOK AT CURRENT NUMBERING 

internal nodes 

10 

PLOT 

•o 

10 

•• •• •• • 

,o 

30 

•o 

super 
nodes 
matrix 

•• •• 

Figure 13(b): The corresponding matrix pattern showing a well banded 
internal matrix (Band width= 12 nodes) but an ill shaped 
super nodes matrix with non zeros at top right 
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B1 NUMBER ALL NODES, B2 SOME. B3 ZOOM, 

B4 CENTRE ZOOM, B5 VIEW MATRIX, B6 EXIT, 

PLOT 

41 6 11 16 21 26 31 36 

42 2 7 12 17 22 2,7 32 37 

43 3 8 13 18 23 33 38 

44 4 9 14 19 24 29 34 39 

45 5 10 15 20 25 30 35 40 

Figure 13(c): Internal nodes numbered alternately starting with the middle 
column of nodes 

OUT 1 TO SAVE NUMBERING REPRESENTED IN MATRIX 
2 TO LOOK AT PREVIOUSLY SAVED NUMBERING 
3 TO LOOK AT CURRENT NUMBERING 

PLOT 

10 

20 

•o 

•o 

Figure 13(d): The corresponding matrix pattern with a larger band width 
for the internal nodes matrix while the super nodes matrix 
has no non-zeros at top right 
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(a) Loads and boundary conditions of dam/foundation 

(b) Loads and boundary conditions of ship girder 

Figure 14: Loads and boundary conditions 
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Figure 15(a): (reproduced from a SESAM paper) Diagrammatic view 
of finite element idealisation of part of the structure of 
a tanker 

Figure 15(b): (reproduced from "Optimisation and Automated 
Design of Structures", edited by Johannes Moe and 
Kaare M Gisvold, Trondheim 1971) Typical internal 
structure of a tanker 
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Figure 16(a): Section of spine beam bridge composed of 3-D "bricks" 

Figure 16(b): Same set of "bricks" but with some lines removed to improve visual 
appreciation 
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(a) Assembled substructures of a centre line 
girder of a ship 

(c) Overall displaced shape under loads and 
boundary conditions shown in figure 14(b) 

(e) Displaced shape of a single component 
(that has been selected with the lightpen) 

(b) Corresponding full finite element mesh 

(d) Display of numerical values of a displace­ 
ment following identification of a node. 

(f) Stress profile along a section chosen with 
the lightpen 

Figure 17 (part 1): Output assessment 
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(g) As (f) but without mesh 

(i) Principal stresses at each node 

(k) Nodes marked at which compression 
stress exceeds a specified critical value 

. ' ... '=:::::-r7 o. 
(h) Stress profile along boundary with 

correlation numbers 

(j) As (i) but with mesh 

(I) As (k) but for tension 

Figure 17 (part 2): Output assessment 
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Figure 18: Typical finite element assemblies that will be more rapidly generated and checked 
with the aid of interactive computer graphics 

Top: Basic element mesh in highly stressed region of 45° - pipe intersection (reproduced 
from "Application of computerised methods in analysis and design of ship structures, 
marine structures and machinery," Det Norske Veritas, Oslo 1972) 

Bottom: Finite element representation of a marine steam turbine (by courtesy of GEC 
Power Engineering Ltd) 
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