
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 4, 171-179 (1974)

Implementation of a Management Game
R. E. THOMASANDD. C. TOLL

Atlas Computer Laboratory, Chilton, Didcot, Berks., England

SUMMARY
The purpose of this paper is to describe the implementation of a management training game
on two different computers. A brief description of the game is included, giving an idea of
what the game looks like to the players and the controller. The two implementations are,
firstly, on an Atlas I computer, with a multi-access system provided by an XDS Sigma 2
computer, and secondly on an ICL 1906Arunning under the control of the GEORGE 4
operating system. Mention is made of some of the difficulties encountered in each case, and
of the techniques employed to solve these problems.

KEY WORDS Managementgame Interactive

INTRODUCTION

Management games are now widely used in the training of managers, and some of these
games are controlled by computers. This paper describes the implementation of a game,
originally designed to be controlled manually, on two different computers, together with
plans for enhancing the second version when new facilities become available in the operating
system. It highlights the different techniques required to do the same job under different
conditions, comparing features offered by a remote job entry system and an interactive
system which does not allow more than one terminal to be connected to a single program.

THE GAME

COLAB was designed by John Walsh! to provide a practical exercise for students taking
part in one of the Science Research Council management training courses. There are, of
course, many such games available, but most of these are geared to the running of
industrial firms, whereas most of the course students here are more familiar with the
research laboratory environment. In COLAB, a team of students find themselves in charge
of a research laboratory which receives income from a number of sources, including the
acquisition of contract work. The team has to pay for staff and equipment and allocate staff
to contracts and to research.

Reasons for the choice of factors to be included are given in Reference 1. The game in no
way tries to simulate the real world, since this would involve too many extra factors. There
are sufficient recognizable details, however, for the students to have a 'feel' for what is
likely to happen, and to practise the management skills that the rest of the course has
taught. Further, it was decided that the game should be interactive, in that the game should
be played with more than one laboratory, each competing for the same contracts, grants
etc. ; the actions of one laboratory affecting all the others. Thus the amount of grant received,
for example, by a laboratory depends on various factors relative to the other laboratories.

Received 18July 1973
© 1974by John Wiley& Sons, Ltd.

171



172 R. E. THOMASAND D. C. TOLL

Finally, definite formulae are used to provide numbers for such items as staff resignations.
This removes most of the element of 'MONOPOLY' from the game, since random numbers
are not used. A general description of these dependencies, although not including any
detailed formulae, is to be found in the COLAB manual.f which includes a certain amount
of 'local colour' material to set the scene, and the initial conditions for each laboratory all
start with the same data.

COLAB works in 'quarterly' cycles, each covering a (simulated) three-month period. At
the beginning of a quarter, the laboratory receives information as to how many staff have
resigned, what grants have been made, what the current investment rate is for the labora­
tory's investment fund, and by how much its equipment has depreciated. It also receives a
list of contracts on offer, together with the length of time each contract will last (in man­
years). The laboratory now has to fix its salary and welfare levels (the second, notionally
covering such items as pension funds, canteen etc., being expressed as a percentage of
salary), and make bids for any of the contracts that it would like to undertake, by specifying
an overhead in the form of a percentage of the total salary cost that the contract involves.
The laboratory then receives a list of who has been awarded which contract (but not what
each laboratory bid) and has to allocate all its staff to either the contracts it has won (either
this quarter or in previous quarters) or research. Since the laboratory receives half its bid
price on receipt of a contract and half on completion, and since there are penalty clauses
for taking too long, it is in the laboratory's interest to finish contracts as soon as possible,
but, against this, the level of research affects some of the grants received. The laboratory
must also decide whether to recruit more staff (who will not become available for six months)
or declare staff redundant (both operations costing money in training or redundancy pay)
and whether to buy more equipment to allow for depreciation. Following these decisions, a
balance sheet for the quarter can be prepared, showing how the laboratory is progressing.

CONTROLLING THE GAME

The previous section has given a general view of the game from the point of view of the
student. However, there must also be a controller who awards contracts, calculates
resignations, grants etc. and checks that student-prepared documents are correct. Originally,
COLAB was designed without a computer in mind, so most of the tables, graphs etc. had to
be compiled by hand. To the student, each quarter is split into separate actions roughly
identifiable as bidding for contracts and allocating staff. However, having made bids, each
team must wait while all other laboratories make their bids and also while control checks
them, performs adjustment calculations on these bids according to relative salary levels,
welfare levels and other factors, and awards the contracts according to the lowest adjusted
bid. Similarly, having allocated staff to contracts, the team must wait for all other labora­
tories to make their allocations and for control to check them and calculate the new levels
of resignations, grants etc. prior to issuing new contracts. Although waiting for other
laboratories cannot be avoided, the amount of work to be done by control must be cut to a
minimum.

THE FIRST IMPLEMENTATION

The Atlas Computer Laboratory was approached to implement COLAB. At the time, the
laboratory had an Atlas I computers with multi-access facilities provided by a front-end
XDS Sigma 2 computer.v " The satellite provided the control of the file store and the



IMPLEMENTATION OF A MANAGEMENT GAME 173

terminals, but user jobs were submitted to Atlas for execution. The results of these jobs
could either be output on the usual Atlas peripherals or returned to the file store for future
interrogation. No user jobs ran in the satellite itself, and no interaction was possible with a
job in Atlas. On such a system, COLAB was implemented.

The implementation can be divided into two parts: provision of programs to perform
calculations and construction of a controlling system. The first deals with the calculation
of grants, awarding of contracts, provision of balance sheets etc., and is machine independent
in that these actions can be performed in the same way whatever control structure is used.
This part was written in FORTRAN using free-format input and was readily transferable
to another system (see below). However, the provision of a control structure involves making
use of the facilities offered by the operating system on the computer, and is necessarily (with
the current state of the art) very machine dependent. The rest of the paper will highlight
the different control systems used in the various implementations employed so far.

The Atlas-Sigma 2 system, then, is non-interactive, and so some tricks have to be used to
implement an inherently interactive system. It is also noted in passing that students who
play COLAB have, in general, no experience of using computers, so unnecessary 'red tape'
must be kept to a minimum (in this context 'red tape' means any typing or conventions that
are not directly connected to the data being input or results being printed). The following
features of the system were important in this respect.

(1) Command level macro facility.
(2) The ability to send messages from terminal to terminal.
(3) Timeout suppression (i.e. the removal of any system action caused by a user not

typing within a given time limit).
(4) The ability to detect automatically when a job in Atlas finished.
The macro facility allowed many system commands to be obeyed by typing one pseudo

command. This included the ability to type lines from a file (and hence cue input requests)
and accept input from a terminal. Thus all the data for one run could be accumulated and
the job to process the data submitted by typing one command only. However, since all data
(such as, for one job, salary scales, welfare and contract bids) had to be available before the
processing job was run, data errors were not picked up until later. This meant that separate
macro commands for viewing the results of a job were needed in case a user had made a
mistake and wished to correct it. Corrections were made by re-submitting all the relevant
data which involved extra delays.

Messages could be sent to another terminal by using the command SIGNAL, which
entered the message into a 'pigeon hole' file and also typed a short comment at the receiving
terminal. The user at that terminal could then, at his convenience, use the MESSAGE
command to read the message. In this way, each laboratory could inform control when some
action such as bidding had been completed (i.e. data input, job run, results correct), and
control could inform the laboratories when new contracts were available. This method of
communication, of course, relies heavily on the fact that both the students and control must
follow a strict sequence in use of commands. In practice this has worked quite well, since
everybody co-operates fully on training courses (!), but mistakes have inevitably occurred.

One of the essential provisions of a multi-access facility which has more lines available
than it can handle at once is the timing out of users who appear to have 'gone to sleep' (i.e.
not typed anything for a predetermined period). However, COLAB necessarily generates
long periods of thought, and any functioning of a timeout under these conditions is a
nuisance. On Sigma 2, it was possible to suppress this feature for the duration of the game.



174 R. E. THOMASAND D. C. TOLL

Since ATLAS sent a message to Sigma 2 when any job submitted by the satellite had
finished, it was possible to tell each laboratory to check results as soon as they became
available. Each job was very short, and so the time taken to control the game dropped
considerably. Furthermore, the possibility of control making simple mathematical errors
(very present under manual running) was eliminated.

Considering a typical three-month period, a player (i.e. a member of the laboratory team,
as opposed to control) typed a request for contracts on offer. At the same time, he received
details of resignations, grants etc. as before. He then typed a command which requested
salary levels, welfare and bids, and ran a job to check the data. When the job finished, he
typed a results file to see that all was well, and repeated the data if not. Finally, he sent a
message to control.

Control waited for completion messages from all players before running a job to award
contracts. On completion of this job, he typed the results and could, if he wished, run another
job to make manual alterations to the awards (a rare occurrence). Messages were then sent
to each player.

On receipt of the message, the player typed a request for award details. He then typed a
command which requested staff allocation, recruitment, redundancies and equipment
purchase, and ran a job to compile his balance sheet. When this job finished, and the data
had been checked, he informed control by message.

Control, on receipt of all player messages, could now prepare for the next quarter by
typing in the new contracts and running a job to calculate resignations, grants etc. for each
player. When checking was complete, a message was sent to each player, who then repeated
the cycle.

In this way, and, with the co-operation of all concerned, an 'interactive' system was
provided, whose response time was quite acceptable. It demonstrates what can be done to
run such a job on a system not designed to cater for that type of operation.

SECURITY

One general feature not mentioned so far is that of security. COLAB, as part of an organized
course, must be run for the period stated in the course program (an evening and all next day),
whatever the state of the machine. It is therefore essential to have safeguards against
malfunction at every stage. As has been mentioned briefly above, a user could correct any
mistake by re-running the job that performed the calculation. Since the jobs in Atlas
appeared to be accessing normal FORTRAN 1/0 channels, it was possible to run the
programs from cards, involving the punching of player data, if the terminal system went
inoperable. Further, as the system was designed originally to run without a computer, it
was always possible to revert to complete manual running at any stage if Atlas itself failed.
Regular dumping of the system state on to backing store enabled temporary breaks by Atlas
to cause minimal inconvenience, and, indeed, if the computer came back on the air after a
prolonged absence, the current state of the game reached by manual means could quickly be
set up for continued play at the terminal. In this way, security was assured.

SECOND IMPLEMENTATION

The second (and present) implementation of COLAB is on the Atlas Laboratory's new
computer, a paged 1906A running under the control of the GEORGE 4 operating system."
This operating system includes full multi-access facilities, the terminals being handled via a
message-buffering communications processor.



IMPLEMENTATION OF A MANAGEMENT GAME 175

When the 1906A implementation was initiated, there were three stated aims. Firstly, it
was decided to try to run the FORTRAN programs from Atlas on the 1906A, so as to
minimize the amount of re-programming necessary. Secondly, the programs were to be made
interactive, in that a player would type in data to a FORTRAN program when the program
requested it, rather than input the data to a file and then connect the file to a background
job (as was the case on Atlas). This enables the program to check for errors in the data as it
is typed in, report on any as they are found and then offer the person responsible for the
data a chance to correct it. Thirdly, in the Atlas system, in order to proceed with the game,
the players (as well as control) had to type in commands to the systems. If a player typed in
the wrong command, it was possible for various mishaps to occur, such as that player
omitting part of the game. It was intended on the new system that either it would be made
impossible for a player to type in an incorrect command for the current point in the game,
or (preferably) the need for the players to type in commands at all would be removed.

Some problems were immediately apparent. In the Atlas implementation of COLAB, the
controller and players communicated via the message facility of the Sigma multi-access
system; GEORGE provides no similar facility. A second problem was possibly rather more
serious; the COLAB game proceeds via a series of independent FORTRAN programs, some
of which are run for control and some for the players. These FORTRAN programs access
a common data area (held, on Atlas, in a disk file) so that a given program has a means of
knowing the results of previous programs. In general, a program reads in this data, alters it
and writes it back to the disk file. Further, when a FORTRAN program is to be run for a
laboratory, one copy of the FORTRAN program is required per laboratory (since it was
decided to use the original Atlas programs as far as possible) and these copies may only be
run one at a time since all data is written to the same disk file. Hence if these FORTRAN
programs are to be interactive under these conditions, one team typing in its data (and
pausing to think about it) would cause the other teams to wait.
The chosen solution was to write a 'Range Compatible Trusted Program' (to use ICL

terminology), which is in effect a form of operating system. This program is 'trusted' to run
other programs (in this case the COLAB FORTRAN programs) under its control. The
commands required by COLAB are then typed into this program, which can check that they
are in the correct sequence. The controller's terminal was online to this control program, and
thus the controller conversed directly with the system. There were no facilities in
GEORGE 4 Mark 6 (the version current at the time of writing this program) to have more
than one terminal online to a single program. To overcome this difficulty, each player's
terminal had a small program online to it, and these small programs communicated with the
control program via two basic peripheral communication files, one 'inward' and one
'outward'. Communication filesappear to a program to be a card reader or a card punch and
are organized such that one program can add to the end of the filewhile another program is
reading data from the body of the file. The data put into the outward communication file by
the control program had a control word on the front specifying which player should receive
the line of data, and also containing a command to the program controlling the terminal
such as 'print the rest of this line on the teletype' or 'read a line of data from the teletype
and put it into the inward communication file'. Each player program could determine which
lines from the control program were for its attention, and could also add the appropriate
identification to the front of lines sent to the control program.
When a FORTRAN program is to be run for the players, the n copies (where 2 ~ n ~ 4 is

the number of players) are multi-programmed together. These programs are each run either
to completion or to the point at which a program asks for data from the player; time sharing



176 R. E. THOMAS AND D. C. TOLL

could be implemented, since a trusted program receives timer interrupts, but it was decided
that time sharing would involve unnecessary program swapping and would actually make
the system slower. If a FORTRAN program terminates, it is marked as finished and the
control program looks for another program that is free to run. If the FORTRAN program
asks for input from the player, it is marked as awaiting input, and again the control program
will attempt to run another.
When a FORTRAN program is being run, it must be positioned at the start of the

'Program Under Control' (PUC) area; further, when a trusted program is run under
GEORGE 4, this PUC area has to be at least one quire (that is, 64 pages or 64K words) in
size, and must start at a quire boundary (in this case, address S12K, since the control
program is sparse-not all intervening pages are present). Hence when the current PUC is
suspended it must be swapped out before another PUC can be run. Since the FORTRAN
programs are approximately 9K words long, there are about SSK words of PUC area which
have to exist but are wasted, and so this spare core area is used as a swap area. (Remember
that we have to set up an operating system within an operating system!) It is also very
much faster to swap into core than to swap programs out into a disk file. The swapping
algorithm is such that swapping only occurs if necessary, so as to minimize the number of
page turns.

The problem of simultaneous data access from the disk file is solved in the following way.
The data is held in core by the trusted program, and when a FORTRAN program attempts
to read from or write to this data area, the trusted program performs a core-to-core transfer.
If the FORTRAN program is being run for a player, it will read data from the master copy
held by the trusted program. However, when it writes the data block, the trusted program
will generate a fresh data area for that player only. Thus when the FORTRAN program for
each player has terminated, there will be the original (unaltered) master data area, plus one
new data area per player, so it is possible to re-run the program for one or more players if
necessary. After running programs for the players, the next stage of the game involves
running a FORTRAN program for control, which reads in the data areas output by the
previous player programs, and produces a new master data area to overwrite the original
master data area. Thus, since this program's input data areas remain unaltered, it is also
possible, if necessary, to re-run a program for control.

To make the COLAB system secure against a GEORGE crash or a COLAB system
failure, or to enable the game to be stopped while the participants go to lunch etc., the
master data area held in core is written to a disk file twice per cycle of the game. A new
GEORGE file store file is used each time, so that previous files are not overwritten. Then,
on a restart of the COLAB system, the latest file is read back into core, and the game
continues from where it halted. Keeping the old disk files facilitates running a program to
summarize the performance of each laboratory, since this program can obtain data at
various points in the game from these files. Previously, all performance evaluation was
carried out by the controller with paper and pencil during the evening following the game.
The system described above allows the FORTRAN programs to be interactive, by

avoiding the disk file access problem. Further, the players only have to read what is printed
on their consoles, and type in the data requested: otherwise, to the players, the game appears
to run automatically. If the controller types in the commands in the wrong order, or types a
command when the program is in the wrong state for that command, then the control
program will flag an error and ask for another command. One disadvantage of the initial
version of this system was that when FORTRAN programs were being run for the players,
the controller could not interrogate the system to find out what (if anything) was happening.



IMPLEMENTATION OF A MANAGEMENT GAME 177

Another was the fact that, if one of the teletypes becomes detached from the system for some
reason (e.g. console 'inoperable'), the COLAB system crashed, and the game had to be
restarted from a previous dump. A new version of the system, currently being tested, over­
comes these difficulties. In this version, the controller's console, instead of being online to
the control program, will be attached to a small program similar to the programs controlling
the players' consoles. This additional program will communicate with the control program
via the same communication files as are used by the players.

There are certain problems with this system. It involves the use of five programs at the
same time (six in the latest version), which is a considerable drain on the 1906A's resources.
Further, to ensure a rapid response at the terminals, the number of (non-COLAB) jobs in
the machine has to be restricted. There are also some difficulties as far as the players are
concerned, in particular, the fact that if they take too long to reply to a read request (that is,
more than about 50 seconds), the console 'times out'. To get back to the previous state, it is
necessary to 'break in', and hence it is necessary to explain extra features of GEORGE to
the players. This timeout is particularly annoying here in that it is possible to effect a true
'break in' by pressing the key twice, which leads again to yet more detail that a player has to
be told.

PROPOSED ENHANCEMENT

When GEORGE 4 Mark 7 is introduced, a new facility will be available to programs,
namely the 'conceptual multiplexer'. This is a means whereby a program can online what
appears to be a message buffering communications processor, but in fact is just a small part
of the main computer's communications system. In this way a program can control a

,---------1 Message1--_---------,
file

Message
file

Message
file

Control

Player 1 Player2

Programsare started only after receipt of the appropriate messages

Figure 1. 1906A control system



178 R. E. THOMASANDD. C. TOLL

multiplexor directly, while the usual GEORGE multi-access facilities are available on the
remaining lines. It is intended that COLAB will use a conceptual multiplexor to control the
five terminals. The latest version of the control program has been carefully arranged so that
it uses communication files, but can be made to use a conceptual multiplexor merely by
providing the extra code required in the input/output routine, the great majority of the
program requiring no alteration. The coding for the communication files will be retained,
since it is possible to input cards which look to the program like the lines of data in the
communication file, and so the system can be run (albeit imperfectly) when the communica­
tions hardware is not working. Use of a conceptual multiplexor will alleviate some of the
problems mentioned above, in that there will be only one program required to run COLAB.
Further, any break-in can be dealt with by the program controlling the conceptual
multiplexor, and hence it will be possible to avoid the added difficulties of restarting after
a timeout.

Control

Communication
file
A

Communication
file
B

Player 1 Player 2

Programsare controlled by messagesin the communication files

Figure 2. RJE control system

CONCLUSION

This paper has shown how an interactive game can be implemented on considerably different
systems, and what facilities in those systems help or hinder the work. It is interesting to note
here that whereas the manual system managed to complete four quarters in the time
available, the two computerized versions managed seven and ten quarters respectively.
User reaction to the use of the terminal has been favourable, on the whole, although there
is now a tendency to blame every player error and every delay on 'the computer'. In general,



IMPLEMENTATION OF A MANAGEMENT GAME 179

however, the interaction with the terminal has helped to remove some of the inhibitions
surrounding the use of such machines and has in fact managed to speed the game. At the
interprogram communication level, most operating systems provide different facilities so
that anyone wishing to run COLAB on a different machine will need to provide all such
communication himself. However, the cases studied here represent a wide range of possible
methods of attack, and should provide sufficient guidelines for similar exercises elsewhere.

REFERENCES

1. R. E. Thomas and J. D. Walsh, 'COLAB: designing a Rand D management game', European
Training, 1, 133-144 (1972).

2. J. D. Walsh, COLAB Manual, Science Research Council Internal Publication, London, 1973.
3. T. Kilburn, D. J. Howarth, R. B. Payne and F. H. Sumner, 'The Manchester University operating

system. Part 1', Comput.J. 4, 222-225 (1961).
4. J. C. Baldwin and R. E. Thomas, 'Multi-access on the Chilton Atlas', Compute]: 14, 119-122 (1971).
5. J. C. Baldwin and R. E. Thomas, 'A critical evaluation of the Chilton multi-access system', Software­

Practice and Experience, 2,313-320 (1972).
6. 'Operating systems GEORGE 3 and 4', ICL Manual, Technical Publications Service, ICL, Putney,

1972.


