

UNIVERSITY OF MANCHESTER

DEPARTMENT OF COMPUTER SCIENCE

Transcribed for the Web by Dik Leatherdale in October 2015

from an archive copy kindly loaned by the School of Computer

Science at the University of Manchester.

No non-trivial corrections have been applied and the look and

feel of the original has been retained as far as possible although

the paper size has been changed from foolscap to A4. In

particular the pagination has been respected, albeit sometimes

at the cost of inconsistency in the layout. Obvious typographical

errors have however, been corrected in red and transcriber’s

comments are rendered as red footnotes. Hyperlinks in the text

are shown in blue.

Acknowledgements are due to Bill Purvis for proof-reading, to

Prof. Jim Miles for authorising the loan of the original and, most

of all to John Davies for his safe keeping of the document for

nearly 50 years.

Corrections and suggestions for improvements should be sent

to dik@leatherdale.net.

AN INTRODUCTION TO THE COMPILER COMPILER

by

R.B.E.Napper

(i)

University of Manchester

DEPARTMENT OF COMPUTER SCIENCE

AN INTRODUCTION TO THE COMPILER COMPILER

by

R.B.E.Napper

Dec. 1965

(Revised Oct 1966)

This document is designed to enable a person who does not

(necessarily wish to use the Compiler Compiler (of R.A.Brooker,

D.Morris and J.S.Rohl1) to appreciate the ideas behind the system

and its potential use.

Some basic experience of programming and general knowledge of

compilers theory is assumed in the reader; the first chapter

summarises the ground that should already be familiar and so

defines the level of knowledge below which there is little point

in trying to appreciate the rest of the document. No previous

knowledge of the Compiler Compiler itself is required, and no

reference need be made to any other literature related to it.

This introduction is not designed as a complete introduction for a

user of the system, i.e. it does not replace the existing papers

published on the system, which provide the only existing 'user's

manual'. It therefore leaves out most of the details of the

implementation of the system, and those features that are

essentially practical devices for making a compiler written in the

system more efficient. It also leaves out those features that have

not been required much in practice. It does not fully describe the

language of the system, and in particular it does not describe the

'list-processing' machinery, which although interesting and very

useful in practice is less novel than the 'language-processing'

machinery that is the central feature of the system.

[Occasional notes are made inside square brackets (e.g. as here).

On an initial reading no time should be spent in trying to

understand them if their point is not immediately obvious.]

Reference

Brooker, R.A. (et al.) (1963) 'The Compiler Compiler'

Annual Review in Automatic Programming, Vol. III.

1
 I. MacCallum was inexplicably omitted from this list.

(ii)

Index

NOTE : Words in brackets indicate terminology which is

introduced and defined within the appropriate sections.

INTRODUCTION Page 1

(Compiler, source program, object code, Compiler Compiler)

CHAPTER 1

A SUMMARY OF THE MAIN FEATURES OF A CONVENTIONAL AUTOCODE

Example of a program

Introduction (Autocode) 2

Top-level routine of the specimen program 3

Routines and input data 4

The main features of an Autocode

(Instruction space, data space, declarations, imperatives) 5

Declarations

Store allocation (Name, address, value, type) 5

Instruction labels 6

Division of program into routines 6

 (Local declarations, [Block])

Imperative instructions

The assignment instruction (Expression) 7

Control instructions 8

Routine calls 8

Permanent routines (Input, output instructions) 8

Implementation of routines

Cue - Subroutine mechanism 9

Parameters 9

Parameter specification (Formal, actual parameters) 10

 (Substitution model)

Calling an expression by value 11

Calling a variable by value 11

[Calling a variable by reference (Side-effects) 11

Calling an expression by substitution 12

Calling a variable by substitution] 12

Functions 12

Conventions of notation in the specimen autocode 13

(iii)

Index

CHAPTER 2

PHRASE STRUCTURE NOTATION

Formats 14

Class word (PHRASE) definitions 15

(Class word, basic phrase, phrase definition, phrase) 15

 (Category number)

 Further conventions :

Order of preference 17

Repeated phrases (* convention) 17

Recursion 18

Optional phrases (? convention) 19

NIL alternative 19

Pseudo-identifiers & meta-symbols (Spaces) 20

(BUT NOT] 21

Definition of an expression 21

Formal specification of a language 22

Interpretation of some formats in terms of the autocode model 24

CHAPTER 3

THE STRUCTURE OF A COMPILER PROGRAM : FORMAT ROUTINES

Recognition of formats (Format routine, master-routine) 25

Principal declarations (PHRASE, FORMAT) 26

Imperative instructions 26

Phrase variables (phrase identifiers) 27

The formal parameters of format routines 30

Phrase-handling instructions 31

 (PHRASE-VARIABLE, PHRASE-VARIABLE-VALUE, PHRASE-EXPRESSION,

 PHRASE-EXPRESSION-VALUE)

1) Conversion from symbol string value to conventional number 32

2) Resolving 32

3) Testing 33

4) Generating 34

 Examples of the use of phrase-handling instructions:

Example A 35

Example B 36

(iv)

Index

CHAPTER 4

THE STRUCTURE OF THE COMPILER COMPILER ; AUXILIARY ROUTINES

Introduction 38

Integration of Compiler Compiler and compiler program 38

Bootstrapping technique in developing the Compiler Compiler 38

Routine mechanisms of the Compiler Compiler:compiling versions 39

Development of a compiler program 41

The languages of the Compiler Compiler system 41

 (Compiler Compiler mode, compiler mode, source mode)

 ([MP] master phrases, [BS] basic statements,

 [AS] auxiliary statements, (SS] source statements)

Auxiliary routines 43

Examples of different uses of routines

1) Use of source symbol string phrase-variables as parameters 44

2) Use of non-source phrases to sub-specify instructions 45

3) Handling conventional variables of the Compiler Compiler

 language 46

4) General routine calls 47

5) Resetting phrase-variables 48

6) [SS] instructions in format routines -- formal macros 49

 (open routine, macro)

7) [SS] instructions in format routines -- informal macros 50

Uses of format classes other than (SS], [AS), and [BS] 53

Other uses of the Compiler Compiler 54

 Appendix

Some notes on implementation 55

- 1 -

INTRODUCTION

The Compiler Compiler was designed by R.A.Brooker and D.Morris as a

special purpose compiler to help the team of compiler-writers in writing the

set of systems compilers for the Manchester Atlas computer. A 'compiler' for

any particular language (on. Atlas) is a computer program existing in machine

code inside the computer. This can be called upon to translate any program

written in the designed language into the machine code required to execute the

job described by the program. The input data for the compiler program is the

'source program' as produced by the programmer, written in the appropriate

language, and its end product is an area of the store filled in with the

machine code instructions of the translated program, the 'object code'. When it

has compiled these instructions, the compiler removes itself from the store and

passes control to the object program.

Similarly the 'Compiler Compiler' is a computer program existing in

machine code inside the computer, which can be called upon to translate any

program written in Compiler Compiler language into the requisite machine code.

In general this program is the description of a compiler, and so instead of

obeying it after translation, the Compiler Compiler transfers the machine code

of the compiled compiler onto magnetic tape under the control of the Atlas

Supervisor. Then whenever the Supervisor gets a program written in this

language, it singles out this particular compiler, copies the machine code into

the store, and passes control to it. The source program is then translated by

the compiler as described in the previous paragraph.

- 2 -

Ch. 1 A SUMMARY OF THE MAIN FEATURES OF A CONVENTIONAL AUTOCODE

Example of a program

It is assumed that there is little point in trying to appreciate the

Compiler Compiler without some knowledge of programming and compiler theory.

The example below of a simple computer program and the discussion following it

will serve :

i) As a reminder of some of the more important features of a programming

language (an 'autocode');

ii) As an example of the input data of a compiler, which will be used to give

some insight into the job a compiler program has to do;

iii) As a reference against which comparisons will later be made between the

structure of a program written in Compiler Compiler language and a conventional

program, and also some of the points of implementation.

On the left hand side of the example is given the program written in a

simple autocode. On the right hand side is given a covering description of each

instruction such as might be the informal verbal comment on its function in the

context of the job being programmed, The reader should not be put off by the

underlining or 'capital words' used in the covering description, which are used

systematically to distinguish the uses of words in different contexts, and will

be referred to again later; nor should he be put off by the practice of

hyphenating phrases of words, which is used where it is convenient to refer to

an object by a self-descriptive phrase intend of a single word.

The input data for this program (which follows the program description) is

a set of 'n' dates giving the year 'Ye' in which a set of successive events

occurred; those years are preceded by the number 'n', which is between 3 and

1000. There are constraints on the relation between successive years (see check

year) and if a date is below 100 it is assumed to be in the same century as the

previous one,

The required output is the three numbers :

 ,

 ,

Thus where the 'squared-difference between x and y' ≡ (x - y)2, The three

values are the 'average difference between successive years', the 'square-root-

average of squared-differences between successive years', and the 'square-root-

average of squared-differences of squared-differences'.

- 3 -

DATA TYPES

INDEX e, n CONTROL PARAMETERS : event ≡ number-of-events-

so-far, number-of-events ≡ final-event

REAL p, q, x, y GENERAL VARIABLES : x, y, p ≡ sum-of-squared-

differences, q ≡ sum-of-squared-differences-

of-squared-differences

INTEGER c INTEGRAL VARIABLE : century

INTEGER ARRAY : Y[1:1000] INTEGER LIST : YEAR for each event from 1 up

to 1000

ROUTINE FORMATS

add update [INTEGER VARIABLE y] Update the century or add it to the [INTEGRAL

ITEM year].

check year [REAL EXPRESSION f] Check that the new year is within reasonable

range of the previous years (factor of [NUMBER

f]).

FUNCTION FORMAT

[REAL a] = sqdf ([REAL a],[REAL b]) [RESULT a] = the squared-difference between

[NUMBER a] and [NUMBER b]

MAIN PROGRAM

read n Read the first number, the 'number of events'.

e = 1 Start with the 1
st
 event.

1: read Y[e] Read the next number, the YEAR of the event.

add update Y[e] Update the century or add it to the YEAR of the event.

check year 4sqrt(e) Check the new year is within reasonable range of the

previous years (factor of 4 TIMES the square-root of the

number of events so far).

->2 if e = n Go to (2) if the event was the final event.

e = e + 1; -> 1 Otherwise, consider the next event and return to (1).

2: p = sqdf(y[2],Y[1]) Set p = the squared-difference between the YEAR of the 2
nd

event and the YEAR of the 1
st
 event.

q = 0 Set q = 0.

cycle e = 3,1,n REPEAT for each event from the 3
rd
 up to the final-event.

x = sqdf(Y[e],Y[e-1]) Set x = the squared-difference between the YEAR of the

current event and the YEAR of the previous event.

y = sqdf(Y[e-1],Y[e-2]) Set y = the squared-difference between the YEAR of the

previous event and the YEAR of the last but one event.

p = p + x Add x to p.

q = q + sqdf(x,y) Add the squared-difference between x and y to q.

repeat When each event has been dealt with.

print (Y[n]-Y[1])/n Print the YEAR of the final-event – the YEAR of the 1
st

event DIVIDED-BY the number-of-events.

print sqrt (p)/(n-1) Print the square-root of the number of squared differences

DIVIDED-BY 1-less than the number-of-events.

print sqrt (q)/(n-2) Print the square-root of the sum-of-squared-differences-

of-squared-differences DIVIDED-BY 2-less than the number-

of-events

stop END the PROGRAM

- 4 -

ROUTINE

Add update [INTEGER VARIABLE y] Update the century or add it to the

[INTERGAL ITEM year].

 -> 1 unless y < 100 Go to (1) unless the year is below 100.

 Y = y + c Add the century to the year.

 return FINISH.

1: c = 100intpt(y/100) Set the century to 100 TIMES the integral-part

of the year / 100.

ROUTINE

Check year [REAL EXPRESSION f] Check tape the new year is within

reasonable range of the previous years

(factor of [NUMBER factor]).

 -> 1 if e = 1 Go to (1) if the event is the 1
st
 event.

 -> 3 unless Y[e] > Y[e-1] Go to (3) unless the YEAR of the current event

is after the YEAR of the previous event.

 -> 1 if e = 2 Go to (1) if the event is the 2
nd
 event.

 -> 2 unless (Y[e]-Y[e-1]) > f(Y[e-1]-Y[e-2]) Go to (2) if the YEAR of the

current event - the YEAR of the

previous event is more than this

FACTOR times the YEAR of the

previous event – the year of the

last-but-one event.

1: return FINISH.

2: print Y[e-2] Print the YEAR of the last-but-one event.

3: print Y[e-1] Print the YEAR of the previous event.

 print Y[e] Print the YEAR of the current event.

 caption INCONSISTENT DATA Print 'INCONSISTENT DATA'.

 stop END the PROGRAM

FUNCTION

[REAL s] = sqdf([REAL a],[REAL b]) [RESULT s] = the squared-difference between

[NUMBER a] and [NUMBER b].

 s = (a-b)(a-b) Set s = the square of a – b.

END OF PROGRAM

14

1894

1897

1910

1914

15

17

19

1925

1935

1940

42

45

1952

1965

- 5 -

The main features of an autocode

When a program is being executed, the utilisation of the computer store can be

divided into two :

i) The instruction space. This is an area of the store which contains the

machine code instructions of the program. Both the extent of this area and the

contents of it usually remain fixed throughout the duration of the program run.

ii) The data space (or 'stack'). This is a separate area of the store which

contains the data on which the instructions operate. Both the extent of this

area and its contents tend to vary during the execution of the program.

The most important function of an autocode is to deal automatically with

the problem of store allocation and reference both for the instruction apace

and for the data space. The instructions of the language can again be divided

into two classes:

i) Declarations. These give the compiler information about the structure of

the program and its data,

ii) Imperatives. These describe the actual sequence of operations to be

carried out on the data of the program in order to execute

the required task.

Generally speaking, the compiler does not compile any instructions in the

place of declarations, but merely carries out behind-the-scenes operations,

making decisions about the organisation of the program and its data, and

building up lists of information about it (which are held in the data space of

the compiler program). Then for imperative instructions the compiler generates

the appropriate machine code to be added to the object program using the

information lists to translate from the objects referred to in the source

language description into the coded representation of the corresponding numbers

or store addresses in the machine.

Note that in this example the compiler is assumed to be a 'one-pass'

system, i.e. it compiles the complete instruction as it reads it in on input,

and therefore all the requisite information must have been declared before the

instruction (in general -- there is an exception in this example in the case of

numerical labels).

Declarations

Store allocation There are usually a number of variables used in a program and

they have to be allocated storage in a consistent manner. Also variables may be

of different 'types', for example, 'integer', 'index' (special form of integer

used in modification), 'real' (general floating point number), and 'complex'.

Therefore DATA TYPE declarations have to be made, e.g. INDEX e, n, and

REAL p,q, x,y, which tell the compiler to reserve suitable store locations for

variables of the appropriate type in the data space of the object program.

- 6 -

A variable is characterized by four main properties :

1).name (or 'identifier') : the symbol of symbol string used to represdent the

variable in the source program description, e.g. 'e', 'n', 'p' and 'q' (or in

another language e.g. 'event' or 'ab4', etc.

2) address : the address of the store location or locations) that has been

allocated allocated to the variable, to hold its value. Sots that for example

a complex number will be held in two locations to a real's one.

3) value : the current contents of the store location(s) allocated to the

variable. This location is usually left empty when compiling, and then it is

set and periodically reset to new values when the program is being obeyed.

4) type : the interpretation to be put on the content of the allocated address

whenever the variable is referred to. The significance of the type is that

variables of different types are held in the store in different ways, and

therefore different machine code instructions have to be used for different

types to carry out the same operation (e.g. the addition of two like

variables), Furthermore, there are restrictions on the possible transformations

between variables of different types (e.g. it is not in general possible to set

an integer equal to a complex number),

Having recorded the name, address, and type for each variable (in its own

data space) the compiler will then know whenever a variable's name is used in

an imperative instruction (implying a reference to its value during program

execution) where in store it been allocated and how to interpret it.

It is also convenient to have objects which are lists of variables of a

certain type, and whose individual elements can (only) be referred to by a

double reference ('indexing' or 'modification'). For example INTEGER ARRAY Y

[1:1000] defines an array with name 'Y', the 'i'th element of which can be

referred to as the variable 'Y[1]'. The declaration gives the name, type, and

extent of the array, so that the compiler as well as allocating the array a

suitable store address knows how much store to allocate it.

Instruction labels It is often required to refer to one imperative instruction

in another instruction, Therefore imperative instructions can be labelled, e.g.

1: or 2:, and they can then be referred to by these numbers,

Division of program into routines A program is usually split up for convenience

into a top-level routine (the MAIN PROGRAM) and a set of subroutines, Each

routine definition gives the name of the routine followed by the set of

instructions associated with this name. A routine can then be called from

inside another routine or the main program by an imperative instruction which

gives its name, e.g. add update Y[e], or check year 4sqrt(e). During the

execution of the program such a 'routine call' will cause the instructions

given in the routine definition to be obeyed.

Each routine has an organisation that is mostly independent of the rest of the

program, and routines can usually be written, and assembled in the source

- 7 -

program text, in any order.

For example a routine has its own labelling system, and it can declare its

own local data space. The effect of a local declaration of data, e.g. (not in

the specimen program) REAL a, b, is that two new locations are set up

associated with the routine that can be referred to inside the routine as 'a'

and 'b'; inside the routine all references to 'a' and 'b' are taken as

referring to these local variables and not to any other 'a' or 'b' that may

have been declared elsewhere in the program. The compiler will probably arrange

to share the space it has allocated to local data of the routine with local

space of other routines; so there is no guarantee that values of local

variables will be preserved in between successive calls on the routine.

A routine may be created because the same set of instructions is to be

obeyed in many different parts of the program, and it is therefore more compact

to only state the set once, and then to just use the routine name at all these

points. Or a routine may be created for a set of instructions that is only

called once, simply for the convenience of splitting the program into

manageable units and/or using the local declaration facilities.

[In the case where a unique set of instructions requires some local

organisation, but the programmer does not wish to write them separately from

the routine they are contained in, he can enclose them in a 'block', e.g.

between declaration BEGIN (followed by any local declarations) and END. An

example of this is not given in the specimen program.]

In this example of an autocode, the declarations of MAIN PROGRAM and

ROUTINE, and the special form of FUNCTION routine, specify the way in which the

program has been broken up into routines. Since a routine may be called before

the routine definition has been given, declarations of ROUTINE FORMATS and

FUNCTION FORMATS can be made at the beginning, in order to give the compiler

sufficient information to recognise and deal with any routine call it meets

before the routine definition has been given.

The implementation of routines and functions will be described later.

The declaration END OF PROGRAM specifies the end of the source program

text. Most programs will have some 'input data' which will follow the program

text. This will be read in under the control of the object program when it is

being obeyed -- whereas of course the program text is read in by the compiler.

Imperative instructions

The Assignment instruction The key imperative instruction is the assignment

statement, in which a new value is assigned to a variable. The value can be a

constant, e.g. e = 1, or Y[e] = 25, or the value of a variable e.g. e = n, or

c = Y[e], or it may be the value of a 'function', a special form of routine to

be described later, e.g. x = sqrt(p).

In general, the value to be assigned to a variable is the value of an

'expression', which is a complex of operators and operands set out in the

- 8 -

notation of algebraic formulae, e.g. e + 1, or (Y[n]-Y[n-1])/n, or

100intpt(y/100). In this case the compiler decides from the syntax of the

expression in what order and with what operations to calculate the final value

in terms of the values of the individual operands. Then it assigns this value

to the variable, e.g. setting e = e + 1, or Y[n+i] = (Y[n]-Y[n-l])/n, or

c = 100intpt(y/100).

When compiling the requisite machine code the compiler gets the address

and type of each variable involved in the assignment from the information set

by the data-type declarations. It will also check that the value assigned to

the variable is consistent with its type, for example i = b where 'i' is an

index and 'b' is complex will be taken as an error,

Control instructions Imperative instructions are obeyed in sequence until a

control instruction breaks the sequence, such an instruction is the jump

instruction, e.g. -> 1, which causes control to be switched to the

correspondingly labelled instruction. More useful are the conditional jump

instructions, e.g. -> 2 if e = n, or -> 3 unless Y[e] > Y[e-1], where two

values are compared and control only passed to the labelled instruction if a

specified condition holds.

Then there are control instructions which link up directly with the

general organisation of the program, e.g. stop which means 'finish executing

the program', and return which means 'finish' executing this routine and return

control to the first instruction after the particular call that has caused

entry into this routine.

A more sophisticated control instruction is the 'cycle' instruction, This

automatically organises the requisite control for the case where a set of

instructions has to be obeyed repeatedly in a loop, The extent of the set of

instructions is given by the matching instruction repeat following the cycle,

Note that the labels 1: and 2: in the main program could have been avoided by

writing the sequence :

cycle e = 1,1,n; read Y[e]; add update Y[e]; check year 4sqrt(e); repeat

Routine calls Routines of the program are given names in a consistent manner

and they can be called by writing these names as imperative instructions at the

appropriate points of the program., During execution the set of instructions

defined for the routine will then be obeyed at each such point.

Permanent routines It is convenient for some of the instructions of the

autocode to be implemented in the same way as the programmer's routines, For

consistency calls on such 'permanent' routines are described in the same manner

(format) as programmers' routines.

Examples of permanent routines are the key input instruction, e.g. read n,

or read Y[e], which reads the next number of the input data and sets the

specified variable to its value, and the key output instruction, e.g. print

(Y[n]-Y[1])/n, which prints the value of the specified expression as the next

piece of output data. The other permanent routine shown, i.e. caption

INCONSISTENT DATA, has an

- 9 -

unconventional format; it prints the symbols specified as the next piece of

output data.

Implementation of routines

Cue - Subroutine mechanism A routine allows a set of instructions to be

called from many places in the program by using just a routine name. This

source program convenience is reflected in the object code in that the set of

machine code instructions corresponding to the routine is compiled only once,

and it exists as a machine code 'subroutine' in the instruction space. In the

case of a programmer's routine, the subroutine will tend to occupy the same

space relative to the rest of the program as it does in the source text. For

permanent routines the appropriate subroutine is automatically included in the

object code by the compiler.

Whenever a routine call is met a 'cue' is compiled at this point. It is

the job of this set of machine code instructions to pass control to the

subroutine. Also, since the same set of instructions of the subroutine has to

be obeyed for all calls on the routine, the cue must carry out any operations

that are particular to this call. Most important it has to tell the subroutine

to which instruction it must pass control on return. Before jumping to the

subroutine it therefore plants the requisite address (a 'link') in a special

location associated with the subroutine. Then whenever 'return' is specified in

the routine, and after the last instruction, machine code instructions are

planted to pick up this link and transfer control back to the particular cue

which has called it.

Parameters It is convenient to allow parameters in routine calls, for example

the permanent routine 'print…' could have been named just 'print' and it could

have arranged always to print out the value of the nonlocal variable 'x' say.

In practice this would mean that most print instructions would be preceded by a

resetting of 'x', e.g. the print sequence in the main program would be written

x = (Y[n]-Y[1])/n; print

x = sqrt(p)/(n-1); print

x = sqrt(q)/(n-2); print;

But this is tedious, and it would also mean that the programmer could not use

'x' as an ordinary variable in safety as its value would be interfered with

whenever he printed a number. So it is convenient to include the expression

whose value is to be printed in the routine call, and use a location local to

the routine to hold its value.

Note that the two routines used in the specimen program are only called

once and so do not require parameters, They could equally well have been

defined with just the names 'add update' and 'check year', provided that the

instructions defined for the routines had been altered as follows :

for add update replace each use of 'y' by 'Y[e]'

for check year replace each use of 'f' by '4sqrt(e)'

- 10 -

However if the program had been more complicated it might have been necessary

to call the routines to carry out the same general operations with different

variables and values respectively, and so the parametric form would have been

more suitable. Note that in fact the function sqdf is called 4 times with

different values each time.

Parameter specification The notation for specifying parameters is that the

routine format starts with the routine name (e.g. add update, check year) and

then follows the specification of the 'formal parameter' (e.g. [INTEGER

VARIABLE y] and [REAL EXPRESSION f)). If there is more than one parameter they

are separated by commas. The specification of a formal parameter comprises the

characteristics of the parameter followed by the name by which it will be

referred to inside the routine, e.g. 'y' and 'f'. Then every routine call must

start with the same routine name and follow it with an 'actual parameter'

consistent with the characteristics specified for the formal parameter (e.g.

Y[e] is an integer variable, and 4sqrt(e) is a real expression). Where there is

more than one parameter, the actual parameters are in the same order, separated

by commas, and must match the corresponding specifications.

The simple theory of routines with parameters is the 'substitution model'

that whenever there is a routine call the effect is as if the instructions of

the routine had been written in its place with each reference to a formal

parameter name replaced by the corresponding actual parameter. Thus add update

Y[e] has the same effect as if instead had been written :

-> 1* unless Y[e] < 100

Y[e] = Y[e] + c

-> 2*

l*: c = 100intpt(Y[e]/100)

2*:

where the labels l*: and 2*: are independent of the labelling system of the

main program, and 2*: is introduced to label the instruction to be obeyed on

return, i.e. the next instruction after the call.

However this substitution effect has to be implemented in such a way that

the main body of instructions involved, i.e. the subroutine, has a fixed code

which is independent of the actual parameters. Whenever a formal parameter is

referred to in the routine the code compiled must deal with all actual

parameters in the same way. Therefore it is an additional job of the cue to

transform each actual parameter into a form that is common to all calls on the

corresponding formal parameter.

Leaving aside more sophisticated types of parameters (arrays, routines,

and functions) the commonest parameters deal with the simple data objects used

by the basic assignment statement, i.e. a 'variable' and a 'value'. If a

routine requires to reset the value of a parameter, then each actual parameter

must obviously be a variable. Therefore, the syntax associated with the formal

parameter

- 11 -

is that of a variable. If the routine only requires the current value of

parameter, then the syntax associated with each actual parameter can be an

expression. Although of course an actual expression can be just a variable, an

assumption is made in this specimen autocode that VARIABLE in a formal

parameter specification means that the parameter is to be reset, and EXPRESSION

menus that it is just a 'value', which will not be reset.

Different implementations are used to deal with different situations that

can arise in implementing parameter calls using a cue-subroutine mechanism.

Five of these are listed below, but the last three, which involve the concept

of 'side-effects', are given as notes, in each case all the actual parameters

matching a formal parameter must be of a consistent type, therefore the data

type associated with the formal parameter is included in the specification.

i) Calling an expression by value E.g. [REAL EXPRESSION f]

This is achieved by setting up a local variable, effectively REAL to be

associated with the formal parameter, Then each cue calculates the value of its

actual expression and puts the value in the location allocated to 'f', Then

each reference to 'f' in the routine is taken as a reference to this local

variable, i.e. to the value of the actual expression.

Note however that if 'f' is implemented as a local variable (and not a

'local expression' or a constant) an autocode will usually allow 'f' to be

reset (thus contradicting the simple substitution model of the routine

mechanism). Of course where 'f' is reset the value of the actual expression

will be destroyed.

ii) Calling a variable by value E.g. (INTEGER VARIABLE y]

This is implemented in a similar way to (i). A local variable, e.g.

INTEGER y, is set up and the cue copies the value of the actual variable, e.g.

Y[e], into it. Note however that if 'y' is reset in the routine this will not

reset the actual variable, it will only reset the value of the local variable

'y'. Therefore In the case of calling a variable by value the cue arranges that

on return from the subroutine the final value of the associated local variable

is copied back to reset the actual variable,

iii) Calling a variable by reference E.g. [REAL VARIABLE REFERENCE y]

The implementation of (ii) leaves open the possibility that somewhere in

the routine (or in a routine called in it) some of the actual variables of

different calls are referred to directly by their actual name, e.g. Y[e], and

not by their common formal name 'y'. If while a particular call on a routine is

being obeyed such an actual variable is reset and the formal parameter referred

to afterwards, or if the formal parameter is reset and the actual variable

referred to afterwards, then at the time of the second reference the actual

name and the formal name will be referring to two different values.

Such a 'side-effect' can be avoided by arranging for the subroutine to

deal directly with the actual variable each time reference is made to the

formal parameter, and not just with a local copy. This can be achieved by

setting up a type of local variable, say REAL REFERENCE y. which holds the

address of a real variable, and not just the value of the variable itself. The

cue passes on the address of the actual variable and not its value, and each

- 12 -

reference to the formal parameter e.g. 'y' is made via this address, i.e.

direct to the actual variable. Thus the compiler has to remember that the value

of 'y' is not the usual 'contents' of the store location with address

associated with name 'y' but the 'contents of the store location whose address

is given by the contents of the store location with address associated with y'.

iv) Calling an expression by substitution E.g. INTEGER EXPRESSION NAME x]

Side-effects similar to those described in (iii) can equally happen when

calling an expression. It could happen that some of the variables contained in

some of the actual expressions matching a formal parameter are referred to by

their actual names in the routine (or a routine it calls). And it could

therefore happen that the value of the expression at the time of a reference to

the formal parameter, e.g. 'x' (as calculated from the current values of the

operands) was different from the value calculated in the cue on entry to the

subroutine. If the programmer knows that this cannot happen, or if he knows

that it may but he still wishes to always refer to the entry value, then he can

use implementation (i)

Otherwise, to satisfy the substitution model of a routine with parameters

in all cases, it is desirable that the value of the expression should be

recalculated on each reference to the formal parameter. In this case two

locations are reserved for use by the formal parameter. The cue compiles a

calculation of the expression as a 'secondary subroutine' which places the

value in the first of these locations. But it does not obey the calculation

before entering the subroutine as happens in (1), but it merely passes on (to

the second location) the address of the secondary subroutine. Then whenever the

formal parameter is referred to in the routine, control is first passed back to

the secondary subroutine inside the cue, which calculates the up-to-date value,

and then this value is picked up from the first location as required in the

usual way.

v) Calling a variable by substitution E.g. [REAL VARIABLE NAME y]

Note that implementation (iii) is still not completely general. It is if

all actual parameters corresponding to a formal parameter are simple variables,

but if some are array elements, then it is possible for the index to be altered

by direct reference to a variable involved, e.g. to 'e' for actual variable

Y[e]. In this case complete generality is achieved by compiling a secondary

subroutine in the cue which calculates the value of the address of the variable

and passes it on to the subroutine, On entry the cue only passes on the address

of the secondary subroutine, and each reference to the formal parameter is

carried out by transferring control to the secondary subroutine as in (iv),

which produces an up-to-date address through which the actual variable is

accessed as in (iii).

NOTE : Implementation (iii) is the call-by-simple-name of AA, which does

not have implementations of type (iv) and (v); the Call-by-name of Algol is

implemented as in (iv) and (v) to achieve the full generality of substitution.

Functions

There is an important special case of the routine mechanism where it is

convenient to specify by a calculation a value which is to be an operand in an

expression, e.g. the permanent functions sqrt(p), and intpt(y/100). In this

case the value of an operand is found by passing control to a subroutine

associated with the function routine (as for an ordinary routine), and the

function subroutine will pass back the required value, A function can have

parameters, but (in this example of an autocode) they must be enclosed in round

brackets; also, since it is not usually sensible to wish to reset an actual

variable, EXPRESSION is assumed in each parameter specification and so it can

be left out. Functions can only be called as operands in the calculation of an

expression (i.e. a value), and the main difference between a function and a

routine definition is that a parameter must be specified for the function to

- 13 -

pass back the result to the function-cue; also, this parameter must have a

specified data-type (which is therefore a characteristic of the function as a

whole). In the specimen autocode these two features are specified in the

function format by preceding the function name with a specification of this

'result parameter', e.g. '[REAL s] = ...'. (Note that again no

variable/expression characteristic is required, but this time the assumption is

that a local variable, e.g. REAL s, is set up whose final value in used by the

function-cue — there is no presetting of the result parameter on entry.)

Conventions of notation in the specimen program

Various conventions of notation are used in this example of a program

(and of an autocode) and in the covering description :

'Underlined Capital Words' on a line of their own head the major declarations;

'Capital Words' are used for data-type and parameter characteristics;

'Capital Letters' are used for array names (e.g. Y);

'Small Letters' are used for simple variable names;

'Underlined Small Words' are used for routine and function names, and for words

that are part of the syntax of basic instructions, e.g. if -- note

that this underlining is used to avoid confusion with strings of small

letters which are simple variables under implicit multiplication;

Square Brackets are used to enclose parameter specifications and array indices;

Round Brackets are used to enclose sub-expressions that are operands of

expressions, and to enclose the set of parameters in a function;

';' or a 'new-line' are used to separate instructions.

In the English covering description, conventions differing from these are:

'Small Words' (maybe hyphenated) are used for simple variable names or

for parts of a routine or function name;

A Capital Word can also be an array name, and is used to begin control

instructions that do not involve explicit label references;

An Underlined Capital Word inside an instruction is an 'operator';

The full range of punctuation is used to separate instructions.

In addition, note the trivial functions used in the covering description

but not the program, e.g. previous event ≡ event - 1, current event ≡ event,

etc., with obvious meanings.

- 14 -

Ch. 2 PHRASE STRUCTURE NOTATION

Formats

In order that a programmer can use an autocode he must be given a

description of the model (of a computer) constructed for the autocode, a

specification of the permitted language, and a description of what operations

the language carries out in terms of the model. In the example of the previous

chapter a number of types of instruction were categorised according to their

function, and examples given of each. From this information an experienced

programmer could probably write a simple program in the language, but clearly

this description does not adequately specify the autocode,

In fact the specification of the language is a set of instruction classes,

each one with its own particular 'format'; that is, all instructions belonging

to a class must satisfy the same syntactical (grammatical) rules. All

instructions of a class carry out the same general operation in the context of

the autocode model. The set of instruction classes specify the number of

different kinds of operation that can be done. Any job required to be done

using the autocode must be described using only this set of instructions.

Thus in a slightly simpler language the only way to do a conditional jump

in control might be to use an instruction class with format :

FORMAT : -> [LABEL]if[EXPRESSION][= or >][EXPRESSION]

 e.g. '-> 5 if p = 45' or '-> 11 if 5(a+b) > 2xy'

Here any integer could be written in the position of {LABEL] and any two

mathematical expressions could be written in place of the [EXPRESSION]s, but

the symbols '->', 'if', and '=' or '>' would always have to occur and in their

correct place relative to the rest of the sentence. The compiler would

interpret this instruction as follows : the two mathematical expressions are to

be calculated and their values compared as indicated by the comparison symbol

[= or >]; if the test is satisfied, a jump in control must be made to the

appropriate instruction in the program, labelled by the same integer;

otherwise, control passes to the next instruction as usual.

It is clear that when talking about instruction classes which carry out a

particular generalised task we are forced into the use of class words in

'label', 'variable', 'expression', or 'comparison symbol'. Their

interpretations with respect to the autocode model and language are usually

independent of the particular instruction class they are being used in, so

their definitions can be given once and for all as part of the general

description, However it is convenient when describing general operations, and

it is necessary when describing formats, to use a clear notation to distinguish

between what is a class word and what is an actual object or symbol.

In the above example the notation used is that a class word is represented

by a symbol string (preferably a word in capitals) enclosed in square brackets.

With this convention the definition of the permitted format is clear and

unambig-

- 15 -

uous once the definitions of the class words have been given. The form of every

member of the instruction class is that the string of symbols making up the

particular instruction must match precisely the sequence of symbols given in

the format; except that at the points where a class word occurs, any symbol

string that is a member of this class can occur. The next symbol after a string

matching a class word must of course be the same as the next symbol after the

class word in the format; or if the class word is followed by a second class

word, the next symbol must be the first symbol of a string matching the second

class word.

Thus (ignoring spaces) the first symbol of a conditional jump instruction

must be a '-' the 2nd a '>', and the 3rd and maybe the next one or two must be a

digit; then must come 'i' and then 'f', then an expression (e.g. '45', 'p',

'2xy', or '5(a+b)'), then the comparison symbol '=', or '>', and finally

another [EXPRESSION].

Therefore the precise specification of a simple language can be given by a

set of class word definitions to describe the sub-units of the language, and a

set of format definitions, to describe the set of instruction classes, the

basic units of the language.

Class word (PHRASE) definitions

A 'class word' is a word of the language description language (the 'meta-

language') that represents a specific t set of symbol strings in the language

being described (the 'source language'). Each such string is called a 'basic

phrase', i.e. a single source symbol or a string of source symbols.

A 'phrase definition' defines a class word and its associated set of basic

phrases. Thus :

PHRASE [if,unless] = if, unless

PHRASE (COMPARISON-SYMBOL) = =, ≠, ≥, <, >, ≤

This says that (only) the symbol strings 'if' or 'unless' are a

permissible substitution for the class word [if,unless], and that (only) either

of the 6 symbols =, ≠, ≥, <, >, ≤ is a permissible substitution for

[COMPARISON-SYMBOL].

Thus we could give it slightly more general format for the conditional

jump instruction :

FORMAT [LABEL][if,unless][EXPRESSION][COMPARISON-SYMBOL][EXPRESSION]

This gives 2 × 6 different ways of expressing a condition instead of the

two basic ones 'if ... =', and 'if …>'.

The commas in the phrase definition separate the alternative phrases (if

any). However the phrases need not be basic phrases. A (non-basic) 'phrase' is

a set of basic phrases defined by : a single source symbol, or a class word

representing a set of basic phrases, or a combination of symbols and/or class

words. (Thus a format is a special case of a phrase, where the set of basic

phrases is the set of instructions that are members of an instruction class in

a language.)

- 16 -

E.g. :

PHRASE [EQUALS] = equals, [IS][EQUAL-TO],[IS]

PHRASE [DOES-NOT-EQUAL] = does not equal, [IS] not [EQUAL-TO], [IS] not

PHRASE [IS] = is, was, are, were, will be

PHRASE [EQUAL-TO] = equal to, same as, at

These specify 21 permissible basic phrases which satisfy the class word

[EQUALS]. That is, 1 from the first alternative phrase 'equals', 5 x 3 = 15

from the 2nd alternative phrase [IS] [EQUAL-TO] (is equal to, is same as, is

at, was equal to, was same as, was at, are equal to,, were equal to,,

will be equal to,), and 5 from the 3rd. alternative [IS] (is, was, are,

were, will be). There are 21 similar basic phrases satisfying [DOES-NOT-EQUAL],

(does not equal, is not equal to, is not same as, is not at, was not equal to,

...., is not, are not, ...).

Thus if it was required to specify the permissible ways of saying '=' (or

≠) in a conditional instruction in the English covering description, the phrase

[EQUALS] would provide flexible alternatives to match the context of the

sentence while still retaining a rigid and unambiguous specification of whet

must occur at that point in the sentence to satisfy the syntax of the format.

These definitions could be extended to cover the full range of comparisons

as follows :

PHRASE [COMPARES-WITH] = [COMPARISON-SYMBOL] [IS] not [COMPARED-WITH], [IS]

not, [IS] [COMPAPED-WITH], [IS]

PHRASE [COMPARED-WITH] = [GREATER-THAN] or [EQUAL-TO], [LESS-THAN] or [EQUAL-

TO], [GREATER-THAN], [LESS-THAN], [EQUAL-TO]

PHRASE [GREATER-THAN] = more than, greater than, after, above, over

PHRASE [LESS-THAN] = less than, smaller than, before, below, under

PHRASE [COMPARISON-SYMBOL] = =, =, ≠, ≥, <, >, ≤

PHRASE [IS] = is, was, are, were, will be

PHRASE [EQUAL-TO] = equal to, same as, at

Thus where c is the number of alternative basic phrases of [COMPARISON-

SYMBOL] i for [IS], g for [GREATER-THAN], l for [LESS-THAN], and e for [EQUAL-

TO], the number of alternative basic ways of writing (COMPARES-WITH) under this

c + i(ge+le+g+l+e) + i + i(ge+le+g+l+e) + i = 446

For example one of the alternatives is 'are not below or equal to'. And

the analysis of this basic phrase with respect to [COMPARES-WITH] can be

 [COMPARES-WITH]

 |

 2 |

 |

 [IS] not [COMPARED-WITH]

 | |

 3 | 2 |

 | |

are [LESS-THAN] or [EQUAL-TO]

 | |

 4 | 1 |

 | |

 below equal to

represented as shown. Note that each

digit specifies the 'category-number'

of the alternative phrase (below it)

in the definition of the class word

(above).

- 17 -

The phrase definitions that have been given so far are simple enough. But

to give precision to definitions there are a number of small points to observe,

and to achieve the requisite power in defining a language there are a few

convenient extensions to the conventions of phrase definitions :

Order of preference

Consider the phrase definition [EQUALS] = equals, [IS] [EQUAL-TO], [IS].

The last two alternatives have the same stem '[IS]'. There is a convention that

if one alternative of a class word also occurs as the beginning of another, it

is written after it. This is because we make the convention that when matching

alternatives of a class word to the head of a symbol string, the alternatives

are taken in order from left to right, and as soon as one has been found to

match the head of the string we assume that this is the required match for the

class word as a whole; we then go on to match the head of the remainder of the

source string to the next symbol or class word in the phrase or format in which

the class word appeared. So if the stem occurs before the longer alternative

the latter can not be recognised,

Consider the example of matching

'go to (3) if p is equal to a(b-c)'

to a conditional jump instruction of the English covering description :

go to ([LABEL]) [if,unless] [EXPRESSION] [EQUALS] [EXPRESSION]

(assuming now that spaces are not being ignored and that an expression cannot

contain spaces). When we have got as far as matching 'if' to (if,unless) and

'p' to [EXPRESSION] we then try and match the head of 'is equal to a(b-c)'

against (EQUALS). If [IS] occurs before [IS] [EQUAL-TO], than we would match

'is' to [IS] and hence to [EQUALS], and then go on to try and match 'equal to

a(b-c)' to (EXPRESSION). Depending on the precise definition of an

[EXPRESSION], we would either not recognise it, or, say, match it to 'equal',

thus interpreting it as e.q.u.a.l, where '.' denotes multiplication, At the

best (nonrecognition) this would be time-wasting - in the case where it was

possible on nonrecognition to return to [EQUALS] and pick up trying to match

further alternatives of it to 'is equal to a(b-c)' - but note that this implies

that each time we recognise an alternative phrase we have to remember which

alternative it was and what the head of the symbol string was. At the worst

(recognition) this occurrence would cause an unnecessary ambiguity : for even

though 'equal' could be interpreted as an expression, it is quite obvious that

'equal to' occurring after an 'is' that is matching (EQUALS] in as sentence is

part of [EQUALS].

Repeated phrases (*)

Consider the data-type declaration : [TYPE][LIST-OF-ELEMENTS]

Where PHRASE [TYPE] = REAL, INDEX, INTEGER, COMPLEX

E.g., 'REAL p, q', or 'INDEX a,b, x,y', or just 'INDEX r'.

Informally a [LIST-OF-ELEMENTS] is defined as a list of names of single

- 18 -

data elements (as opposed to array elements), separated by commas if there is

more than one; an (ELEMENT] name is any smell letter.

More formally :

PHRASE [ELEMENT] = a,b,c,d,e,f,g,,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

PHRASE [LIST-OF-ELEMENTS] = [ELEMENT][FURTHER-ELEMENTS], [ELEMENT]

PHRASE [FURTHER-ELEMENT] = ,[ELEMENT]

This says that a [LIST-OF-ELEMENTS] is either a single [ELEMENT] followed by a

number of repetitions of [FURTHER-ELEMENT]s, or just a single [ELEMENT]; where

a [FURTHER-ELEMENT] is a comma followed by another [ELEMENT]. Note however that

we have not formally defined [FURTHER-ELEMENTS] only a [FURTHER-ELEMENT].

For example

In 'REAL p, q' the first [ELEMENT] is 'p' and there is one [FURTHER-ELEMENT] ',q';

In 'INDEX a,b x,y' the first [ELEMENT] is 'a' and there are 3

 [FURTHER-ELEMENT]s ',b' ',x' and ',y'

In 'INDEX r' there is one [ELEMENT] 'r' and no [FURTHER-ELEMENT]s.

The situation where we wish to specify any number of repetitions of a

particular class word in a phrase is so common that a special convention is

adopted to cover this case :

'*' convention if there is an asterisk '*' before the right-hand square bracket

in a class name, this means that a permissible substitution for the class word

is any phrase of the (de-asterisked) class word maybe followed by any number of

repetitions of phrases of the class word.

Thus for [FURTHER-ELEMENTS] in the above definition we could write

[FURTHER-ELEMENT*] and so achieve a formal definition.

Recursion

The formal definition of the '*' convention is

PHRASE [SOME-CLASS-WORD*] = [SOME-CLASS-WORD][SOME-CLASS-WORD*], [SOME-CLASS-WORD]

i.e. any number of repetitions of a class word is formally defined as the class

word followed by any number of repetitions of the class word, or just the class

word. This is a simple example of 'recursion'.

In general : it is permissible to include a class word inside one or more

alternatives of its definition, provided that it is not at the beginning of the

alternative, and provided that there is a possibility of the recursion stopping

at some point. Note that PHRASE [SOME-CLASS-WORD] = [SOME-CLASS-WORD] is

meaningless, and that PHRASE [SOME-CLASS-WORD] = a[SOME-CLASS-WORD], b[SOME-

CLASS-WORD] could only 'recognise' an infinite string of 'a's and 'b's,

Thus we could have formally defined

PHRASE [LIST-OF-ELEMENTS] = [ELEMENT][FURTHER-ELEMENTS], [ELEMENT]

PHRASE [FURTHER-ELEMENTS] = [,][ELEMENT][FURTHER-ELEMENTS], [,][ELEMENT]

where [,] indicates a source symbol comma as opposed to a comma used to

separate alternatives of the definition.

A general example of recursion will be given later in the definition of

[EXPRESSION].

- 19 -

Optional phrase (?)

This last definition of a [LIST-OF-ELEMENTS] and the original one are not

very satisfactory. It would be preferable to factor out the [ELEMENT] from the

alternatives of the definition, and say :

PHRASE [LIST-OF-ELEMENTS] = [ELEMENT][ANY-FURTHER-ELEMENTS]

or PHRASE [LIST-OF-ELEMENTS] = [ELEMENT][FURTHER-ELEMENTS?]

or PHRASE [LIST-OF-ELEMENTS] = [ELEMENT][FURTHER-ELEMENT*?]

Here the last two definitions obviously mean an [ELEMENT] maybe followed

by [FURTHER-ELEMENT]s, i.e. followed by [FURTHER-ELEMENT]s or nothing. And

their meaning in terms of [FURTHER-ELEMENT] or [FURTHER-ELEMENT*] is clear.

This again is a common enough and clear enough case for a convention :

'?' convention If there is a query '?' before the ']' in a class word, the

definition of e.g. [SOME-CLASS-WORD?] is taken to be either [SOME-CLASS-WORD]

or 'nothing', where 'nothing' implies that the class word is automatically

recognised without matching any symbol to it.

NIL alternative

Again this '?' convention is a special case of a more general necessary

convention, that of specifying 'nothing', or formally, NIL, as the last

alternative of a phrase definition, Thus

PHRASE [SOME-CLASS-WORD] = [SOME-CLASS-WORD], NIL

NIL must occur as the final alternative, and it means that if none of the

previous alternatives of the class word have been matched to the head of a

symbol string, the class word will be recognised automatically without having

to match any source symbol to it.

Thus using the explicit NIL alternative and explicit recursion we get the

most precise definition of [LIST-OF-ELEMENTS] :

PHRASE [LIST-OF-ELEMENTS) = [ELEMENT][ANY-FUTRTHER-ELEMENTS]

PHRASE [ANY-FURTHER-ELEMENTS] = [,][ELEMENT][ANY-FURTHER-ELEMENTS], NIL

This final form should be compared carefully with the previous forms,

and also with the other neat formal definition :

PHRASE [LIST-OF-ELEMENTS] = [ELEMENT][FURTHER-ELEMENT*?]

PHRASE [FURTHER-ELEMENT) = [,][ELEMENT]

which although more compact, implies knowledge of the '*' and '?'

conventions and implies two further phrase definitions :

PHRASE [FURTHER-ELEMENT*?] = [FURTHER-ELEMENT*],NIL

PHRASE [FURTHER-ELEMENT*]=[FURTHER-ELEMENT][FURTHER-ELEMENT*],[FURTHER-ELEMENT]

Of course, having turned [LIST-OF-ELEMENTS] into a class word with only

one phrase in the definition, we can dispense with it in the format for a

simple variable data-type declaration and define it simply as :

[TYPE][ELEMENT][ANY-FURTHER-ELEMENTS]

where PHRASE [ANY-FURTHER-ELEMENTS] = [,][ELEMENT][ANY-FURTHER-ELEMENTS],NIL

- 20 -

Then the analysis of e.g. 'INDEX a, b, x, y' with respect to this format is

[TYPE][ELEMENT][ANY-FURTHER-ELEMENTS]

2 1 1

INDEX a ,[ELEMENT][ANY-FURTHER-ELEMENTS]

 2 1

 b ,[ELEMENT][ANY-FURTHER-ELEMENTS]

 24 1

 x ,[ELEMENT][ANY-FURTHER-ELEMENTS]

 25 2

 y NIL

Pseudo-identifiers & Meta-symbols

It will already have been observed in the case of the comma that there can

be ambiguity in phrase definitions between symbols occurring in the language-

description language ('meta-symbols') and in the language being described

(source symbols). This is overcome by the convention that such symbols

occurring as source symbols must be represented in phrase definitions by

'pseudo-identifiers' : [SP] for space, [EOL] for end of line, [,] for comma,

and [[] for a left hand square bracket - a ']' will be taken as a meta-symbol

only if it matches a '['. This convention is chosen to look as if (hence

'pseudo') they are class words specially defined to represent them appropriate

source symbol.

Spaces It may have been observed that there has been indecision in the previous

discussion as to whether spaces are to be ignored. In fact it is assumed that

in the autocode language (and in the meta-language) spaces and underlined

spaces are universally ignored; but in the English examples spaces are not

ignored. [Note that the English covering description is in fact a formal

programming language.]

Thus where [S] represents a general space, i.e. including any number of

[SP]s and [EOL]s, and noise words like 'the', the formal phrase definitions for

the English examples should be, for example

PHRASE [EQUALS] = equals, [IS][S][EQUAL-TO], [IS]

PHRASE [EQUAL-TO] = equal[S]to, same[S]as, at

We could also define

PHRASE [EQUALS] = equals, [IS][EQUAL-TO]

PHRASE [EQUAL-TO?] = [S][EQUAL-TO], NIL

But note that we cannot define '[IS][S][EQUAL-TO?]' as an alternative of

[EQUALS], since if there was no [EQUAL-TO] the [S] following [IS] would be

recognised as part of [EQUALS], which would be inconsistent with the above

definitions.

Note also the use here (and later) of the symbol '?' (and *?) in the class

word for an optional phrase (or optional repeated phrase) that has been defined

explicitly instead of using the '?' convention.

- 21 -

BUT NOT

It is sometimes convenient to be able to specifically exclude sub-

alternatives from a phrase definition. This can be achieved by finishing the

definition by BUT NOT and then the prohibited phrases. This effect could of

course generally be achieved by redefining the phrase, but this could well mean

that one could not then use the structure of subphrases which has been used in

defining the main body of the class word set.

For example, note that [DOES-NOT-EQUAL] contains the 4 ungrammatical

phrases 'will be not[EQUAL-TO?]'.

This could be corrected without disturbing the subphrases by redefining it

as :

PHRASE [DOES-NOT-EQUAL] = does[S]not[S]equal, [IS][S]not[EQUAL-TO?],

 will[S]not[S]be[EQUAL-TO?], BUT NOT will[S]be[S]not[EQUAL-TO?]

Definition of an expression

As a final example of a phrase definition, consider the formal definition

of a mathematical expression

E.g. 4, e + 1, q, Y[e], q + 2(Y[e]-Y[e-1])/2-(Y[e-1]3-Y[e-2])/5),

 sqrt(p)/(n-1), ab(b+c)(c+d), Y[e] - 2sqrt((p+q-r)/5)/n+(p-1)(p-2)/3

An informal analysis of the syntax of an expression in the language of the

specimen program is an follows :

An expression is a complex of operators and operands. Two operators cannot

follow each other; two operands can, this being treated as implicit

multiplication, An operand is something with a value, and can be either : a

specific number, e.g. 14, 1, 3: the value of a variable, e.g. e, Y[e], Y[e-2];

or the value of an expression in brackets, e.g. (b+c), (n-1) (Y[e]-Y[e-1]), or

(p+q-r/5), or the value of a function, e.g. sqrt (p).

The formats of these individual operands are :

1) [CONSTANT] = [DlGIT].[INTEGER]α[+?][INTEGER], [INTEGER].[INTEGER],[INTEGER]

e.g. 5.3 α-4, 1.2934α321; 485.35, 0.00004; 8, 439725

2) (VARIABLE] = [ELEMENT], [ARRAY-BASE] [[] [EXPRESSION]]

Where an [ARRAY-BASE] is a capital letter.

 e.g. x, a; Y[e], Y[e-1], P[a+bc]

3) ([EXPRESSION]) i.e. an expression in round brackets

4) [FUNCTION] = [small-letter*] ([EXPRESSION][ANY-FURTHER-EXPRESSIONS])

Where [ANY-FURTHER-EXPRESSIONS] = [,][EXPRESSION] [ANY-FURTHER-EXPRESSIONS],

NIL

 e.g. sqrt(p), sqrt((x+y)/2), sqdf (Y[e]-Y[e-1], (Y[e-1]+Y[e-2])/2)

Note that full recursion with respect to an [EXPRESSION] is possible in

alternatives (2), (3), and (4).

Note that the form of these 4 basic operands is such that it is

immediately clear from the first symbol of a string which of the 4 forms it is,

and further, the extent of the string specifying the operand is unambiguously

defined. Thus :

1) Starts with a [DIGIT], then any further digits, maybe including a '.', may

be followed by 'α[INTEGER]' to give a decimal exponent.

2) Is just a small letter; or it starts with a capital letter, then '[' and

- 22 -

then all symbols up to a matching ']'

3) '(' then all symbols up to a matching ')'.

4) An underlined small letter, then maybe some more, then '(' then all further

symbols up matching ')'.

The formal definition of an expression is therefore :

PHRASE [EXPRESSION] = [+?][OPERAND][OPERATOR-OPERAND*?]

Where

PHRASE [OPERATOR-OPERAND*?] = [OPERATOR][OPEAND][OPERATOR-OPERAND*?],NIL

PHRASE [OPERATOR] = +,-,×,/,NIL

PHRASE [OPERAND] = [CONSTANT],[VARIABLE],([EXPRESSION]),[FUNCTION]

PHRASE [+?] = +,-,NIL

PHRASE [CONSTANT]=[DIGIT].[INTEGER]α[+?][INTEGER],[INTEGER].[INTEGER],[INTEGER]

PHRASE [VARIABLE] = [ELEMENT], [ARRAY-BASE][[][EXPRESSION]]

PHRASE [FUNCTION] = [small-letter*]([EXPRESSION][ANY-FURTHER-EXPRESSIONS]),

 [small-letter*] ((i.e. a parameterless function))

PHRASE [ANY-FURTHER-EXPRESSIONS] = [EXPRESSION][ANY-FURTHER-EXPRESSIONS],NIL

PHRASE [ELEMENT] = a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

PHRASE [ARRAY-BASE] = A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

PHRASE [SMALL-LETTER] = a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

PHRASE [DIGIT] = 0,1,2,3,4,5,6,7,8,9

PHRASE [INTEGER] = [DIGIT][INTEGER],[DIGIT] ((i.e. [INTEGER]≡[DIGIT*]))

The formal analysis of e.g. 'a+(pq-Q[j]/2)' with respect to the class word

[EXPRESSION] is given in the appendix. Note that in this example the basic

symbols in the analysis have been picked out in quotes. Note also that the

basic phrase matching a sub-class-word is sometimes shown to the right of the

category number. Note of course that at any such point in the analysis, the

sub-tree below the point is the formal analysis of this basic phrase with

respect to the class word above it, independent of the rest of the tree.

Formal specification of a language

The class word definitions involved in the definition of an [EXPRESSION]

cover many of the class words involved in the language. The list can be

continued as follows :

PHRASE [if,unless] = if, unless

PHRASE [COMPARISON-SYMBOL] = =,≠,≥, <, >, ≤

PHRASE [;] = ;, [NEWLINE] ((this is the standard instruction separator))

PHRASE {NEWLINE] = [EOL][NEWLINE],[EOL] ((i.e. one or more newlines))

PHRASE [LABEL] = [INTEGER]

PHRASE [OUTPUT-SYMBOL] is the set of symbols that can be printed in 'caption ..'

- 23 -

And to specify the formats of definitions the following class-words are

required:

PHRASE [DATA-SPECIFICATION] = [TYPE][ELEMENT][ANY-FURTHER-ELEMENTS][NEWLINE],

 [TYPE]ARRAY : [ARRAY-BASE][[][INTEGER]:[INTEGER]][NEWLINE]

Where PHRASE [TYPE] = REAL, INDEX, INTEGER, COMPLEX

 and PHRASE [ANY-FURTHER-ELEMENTS] = [,][ELEMENT][ANY-FURTHER-ELEMENTS], NIL

PHRASE [ROUTINE-FORMAT] = [small-letter*][NEWLINE], ((parameterless routine))

 [small-letter*][PARAMETER-SPEC][ANY-FURTHER-PARAMETERS][NEWLINE]

Where PHRASE [PARAMETER-SPEC] = [[][TYPE][CALL?][ELEMENT]]

 and PHRASE [CALL] = VARIABLE REFERENCE, EXPRESSION NAME, VATIABLE NAME,

 VARIABLE, EXPRESSION

 and PHRASE [ANY-FURTHER-PARAMETERS] =

 [,][PARAMETER-SPEC][ANY-FURTHER-PARAMETERS], NIL

PHRASE [FUNCTION-FORMAT] = [PARAMETER-SPEC][=] [small-letter*][NEWLINE],

 [PARAMETER-SPEC][=] [small-letter*]([PARAMETER-SPEC]

 [ANY-FURTHER-PARAMETERS])[NEWLINE]

Where PHRASE [=] = =

 Also PHRASE [S] = S

Then the list of formats used in the specimen program in order of appearance is

as follows :

FORMAT : DATA TYPE [S?][NEWLINE][DATA-SPECIFICATION*]

FORMAT : ROUTINE FORMAT [S?][NEWLINE][ROUTINE-FORMAT*]

FORMAT : FUNCTION FORMAT [S?][NEWLINE][FUNCTION-FORMAT*]

FORMAT : MAIN PROGRAM [NEWLINE]

FORMAT : read [VARIABLE][;]

FORMAT : [VARIABLE] = [EXPRESSION];

FORMAT : [LABEL]:

FORMAT : [small-letter*][EXPRESSION][[ANY-FURTHER-EXPRESSIONS][;] ((routine call))

FORMAT : -> [LABEL][if,unless][EXPRESSION][COMPARISON-SYMBOL][EXPRESSION][;]

FORMAT : -> [LABEL][;]

FORMAT : cycle [VARIABLE] = [EXPRESSION],[EXPRESSION],[EXPRESSION][;]

FORMAT : repeat[;]

FORMAT : print [EXPRESSION][;]

FORMAT : stop[;]

FORMAT : ROUTINE [NEWLINE][ROUTINE-FORMAT][DATA-SPECIFIFICATION]

FORMAT : return [;]

FORMAT : caption [OUTPUT-SYMBOL*][NEWLINE]

FORMAT : FUNCTION [NEWLINE][FUNCTION-FORMAT][DATA-SPECIFICATION*?]

FORMAT : END OF PROGRAM[EOL]

- 24 -

Thus if the specimen autocode only provided those facilities that have

been illustrated in the specimen program, then this list of formats would be a

sufficient specification of the syntax of the language. To fully specify the

language there would also need to be a description of the computer model

defined for the language, and a description of what each instruction class does

in terms of this model.

The following brief descriptions will indicate the sort of job the

compiler has to do on recognising certain key phrases and formats of the

language.

[DATA SPECIFICATION] : [TYPE][ELEMENT][ANY-FURTHER-ELEMENTS]

For each [ELEMENT] :

Add the name of the [ELEMENT] to the list of variables declared for the current

routine (or the main program), and note that its type is the specified [TYPE].

Allocate an appropriate location of the data space (stack) to this [ELEMENT].

Thus when subsequently the compiler finds the [ELEMENT] referred to in an

imperative instruction, it can look it up in the list of names to get its

address and type. Knowing from the syntax of the imperative what general

operation it wants to perform on the variable, it can then compile the

appropriate machine code instructions.

Imperative instruction : [VARIABLE] = [EXPRESSION][;]

Compile the appropriate set of machine code instructions to calculate the

value of the [EXPRESSION]. If the [VARIABLE] is an [ELEMENT] set this value in

the location that has been allocated to the [ELEMENT]. If the [VARIABLE] is of

the form [ARRAY-BASE][[][EXPRESSION/2]], first compile instructions to

calculate [EXPRESSION/2], add this index to the [ARRAY-BASE] and finally put

the value of the original [EXPRESSION] in the location specified by this

address.

Declaration : [LABEL]:

Add the [LABEL] to the list of labels for the current routine (or the main

program), together with the address of the next machine code instruction to be

compiled in the object program,

Imperative : ->[LABEL][if,unless]

 [EXPRESSION/1)[COMPARISON-SYMBOL][EXPRESSION/2][;]

Compile the appropriate machine code instructions to calculate the value

of [EXPRESSION/1] - [EXPRESSION/2], and then compare it with 0 as indicated by

[if,unless] and the [COMPARISON-SYMBOL], making a jump to the instruction with

this [LABEL] if the test is satisfied.

The compiler can get this address by looking up the [LABEL] in the label

list. However the label may not have occurred yet in the routine; in this case

the address of the machine code instruction containing the jump address is

added to another list, together with this [LABEL] number. Then at the end of

the routine the two lists are matched up and all the label references are

filled in.

- 25 -

Ch. 3 THE STRUCTURE OF A COMPILER PROGRAM : FORMAT ROUTINES

Recognition of Formats

An ordinary one-pass compiler program successively recognises the

instructions of a source program and interprets them in the context of the

autocode it is designed for. So the top-level routine (MAIN PROGRAM) starts

with an initialisation procedure to prepare to compile. Then in the main

section of the program it loops round a procedure to recognise the next

instruction of the source program and then interpret it appropriately. Finally,

at the end of the source program, it ties up all the loose ends, removes itself

from the computer store, and passes control to the object program it has

compiled.

It is clear that the natural unit of recognition is the source

instruction; so the compiler program successively matches the head of the

symbol string that is its input data against the list of formats in the

language. Having found the format it then has to interpret it. As the general

interpretation is the same for each source instruction satisfying a format,

this suggests that the natural routine structure for the compiler program is a

routine associated with each different format, The MAIN PROGRAM recognises

which format the source instruction belongs to and then passes control to the

appropriate 'format routine'.

As is continually being realised in the field of computer languages, as

soon as one sets down information in a reasonably formal and systematic way, it

is possible to write a computer program to recognise such a formal description

and interpret it appropriately. There is no need to write a special set of

instructions in a more basic language to deal with each special situation so

described. Thus in a conventional program there is now no need to write out a

set of basic instruction to calculate the value of an expression. One merely

writes out the expression in a formal language, and the compiler will recognise

it and interpret it correctly in the context of the rest of the program.

So with the Compiler Compiler it is sufficient to write out the formal

definition of the source language in class words and formats – similar to

declarations of the compiler program - for the Compiler Compiler to be able to

organise the whole process of format recognition automatically. To be precise,

it can insert a set of instructions in the compiler program, the 'analysis

routine', which together with the information it stores about the syntax of the

source language (in the instruction space of the compiler program) will

recognise the next instruction of the source language and pass control to the

appropriate format routine.

The MAIN PROGRAM of the compiler program is therefore automatically

included in the compiler program by the Compiler Compiler, and does not appear

in the compiler program's description. This top-level routine will be referred

to as the 'master-routine', and its chief constituent is the analysis routine.

The compiler-writer can specify an initialisation routine for it to obey before

it starts to recognise the source program, and he will arrange to terminate the

compiler program in his END OF PROGRAM format routine.

- 26 -

Principal declarations

The principal declarations of the complier program are therefore the

PHRASE and FORMAT declarations, which define the syntax of the source language,

and the ROUTINE declarations which introduce the format routines that define

the meaning of the source language.

For simplicity, it can be assumed that the compiler program description

(in Compiler Compiler language) starts with the set of PHRASE and FORMAT

declarations, and that these are followed by the format routines.

The form of the PHRASE and FORMAT declarations is virtually the same as

that given in the description of PHRASE STRUCTURE NOTATION.

A phrase definition starts with the word PHRASE, then the class word name

then '=', then the alternative phrases of the definition, separated by commas.

For example :

PHRASE [ANY-FURTHER-ELEMENTS] = [,][ELEMENT][ANY-FURTHER-ELEMENTS], NIL

PHRASE [OPERAND] = [CONSTANT], [VARIABLE], ([EXPRESSION)), [FUNCTION]

The conventions described previously were consistent with the Compiler

Compiler language except that there are some restrictions on the symbol string

that can be chosen for a class word name.

The specification of formats in the Compiler Compiler is much as before,

except that as more than one format class is allowed, the class word name must

be included in the FORMAT format. Built. in to the system is the format class

[SS] (Source Statement), and it is this format class that the master-routine

scans each time it tries to recognise the next instruction of the source

program.

Thus for example

FORMAT [SS] = ROUTINE FORMAT [S?][NEWLINE][ROUTINE-FORMAT*]

FORMAT [SS] = MAIN PRORGRAM[NEWLINE]

FORMAT [SS) = [VARIABLE]=[EXPRESSION][;]

FORMAT [SS) = ->[LABEL][if,unless][EXPRESSION][COMPARISON-SYMBOL][EXPRESSION][;]

Formats must be listed in order of preference.

[Note that this does not mean that e.g. -›[LABEL][;] must be listed

after -> [LABEL][if,unless]... since the instruction-separator [;] ensures that

the unconditional jump format will not recognise the first part of the

conditional jump. This is a commons device to avoid order-of-preference

difficulties (i.e. to end a phrase or format with a 'separator' common to all

the alternatives).

Note however that all the permanent routines which have the same format as

that of the general routine call, e.g. print [EXPRESSIONS][;] will have to be

listed before the format of the general routine call.]

Imperative instructions

Format routines are made up of imperative instructions of the Compiler

Compiler language, to describe the operations to be carried out as appropriate

to recognising an instruction of the source program.

The Compiler Compiler allows conventional variables of only one type, 24-

bit integers ('index'). The permitted form of the names is as follows :

- 27 -

Al, A2, ... A28,...., etc. for variables local to a format routine

B1, B2, ... B17,etc. where there is a practical limit of 40,

for variables global to the program (nonlocal to each routine),

There is therefore no need for any declarations for those variables; the

type is always 'index', A and B indicate 'local' and 'global' respectively, and

the integer, N say, gives the address, i.e. the Nth, location on the list of

such variables in the local or global data space.

No array declarations are provided. Again the use of lists is indicated

implicitly in the notation. There is only one list, the whole computer store

under the interpretation of type 'index', and the notation for an array element

is not e.g. P[i], Y[e], or P(i), Y(e), that is [ARRAY-BASE][[][EXPRESSION]] in

the specimen language, or [Identifier] ([EXPRESSION]) as in Atlas Autocode but

just ([ADDRESS]), e.g. (B1), (A1+7), or (B5+A2), where [ADDRESS] is a limited

form of combination of variables and integers.

The language of the Compiler Compiler includes the conventional types of

instruction : e.g. assignment, jump, and conditional jump, in terms of the

above variables and a labelling system.

E.g. A1 = B4, B35 = B11 + A2, B12 = (A1+2) × B11, (A1+2) = B12/B11,

-> 4 IF B11 + A2 ≥ B5, -› 24 UNLESS (B16> > (B16+1), - > 6

The form of an expression is severely limited, particularly as there is no

recursion allowed. Note that of course (A1+2),(B16), and (B16+1) refer to the

contents of the store address A1+2, B16, and B16+1 respectively„ The values of

the variables A1 and B16 must therefore be absolute store addresses.

The basic language of the Compiler Compiler also provides some

instructions for list processing.

Of the other standard features of a programming language, there is a

'print' instruction but no 'read', as all input is read automatically by the

built-in analysis routine. There is also a subroutine mechanism that will be

described in the next chapter, and there are some special instructions for

handling symbol strings, to be described below.

The data space associated with the variables and the other special

facilities, and the reference to it, is organised automatically by the Compiler

Compiler, However any special data space required by the compiler-writer, e.g.

to hold the name-type-address st list for the variables of the source program,

he must organise himself, using the rudimentary array variables and absolute

store addresses, Such private data space must of course be kept separate from

the instruction space and the data space of the compiler program, and from the

instruction space of the source program which it is compiling.

Phrase Variables (Phrase identifiers)

It should be evident from the previous chapters that the natural

parameters of both the definitions of the language syntax and the

interpretation of instructions in terms of the autocode are the class words. As

we talk about general operations

- 28 -

we refer to class words, on the understanding that in any particular occurrence

of the language or its interpretation there will be associated with each class

word a symbol string which specifies the particular object ('variant') we are

currently dealing with

Consider

FORMAT : -> [LABEL][if,unless][EXPRESSION][COMPARISON-SYMBOL][EXPRESSION][;]

For example :

a) -> 5 if p = 45

b) -> 11 if 5(a+b) > 2xy

 or, from the specimen program :

c) -> 3 unless Y[e] > Y[e-1]

d) -> 2 if (Y[e]-Y[e-1]) > f(Y[e-1]-Y[e-2])

Its interpretation bas been discussed in terms of the [LABEL],

[if,unless], the [COMPARISON-SYMBOL], and the two [EXPRESSION]s, maybe giving

particular examples of the associated symbol string.

But obviously the general interpretation is independent of the particular

matching symbol string :

 [INTEGER] [if,unless] [EXPRESSION] [COMPARISON-SYMBOL] [EXPRESSION]

a) 5 if P = 45

b) 11 if 5(a+b) > 2xy

c) 3 unless Y[e] > Y[e-1]

d) 2 if (Y[e]-Y[e-1]) > f(Y[e-1]-Y[e-2])

Equally clearly much of the subroutine structure of the compiler program

will refer to class words, for example :

COMPILE INSTRUCTIONS TO SET ACCUMULATOR = VALUE OF [EXPRESSION]

COMPILE INSTRUCTIONS TO SET [VARIABLE] = CONTENTS OF ACCUMULATOR

FIND ADDRESS AND TYPE FOR [VARIABLE]

 Etc...

Therefore the Compiler Compiler introduces a new type of variable into the

formal language specially for dealing with these associations between class

words and symbol strings (i.e. basic phrases). These are called 'phrase-

identifiers' in the Compiler Compiler. However since this name word is used in

the Compiler Compiler to refer to class words, to ensure precision these

variables will be called 'phrase-variables' in the following discussion.

It will be remembered that in a conventional autocode there are

conventional variables of the type 'real', 'integer', 'complex', etc., which

are all numbers, or combinations of numbers. Each variable has : a name, i.e. a

string of symbols by which it is referred to systematically in the program

description; an address, i.e. the location in the data space which it has been

allocated; a value, i.e. the contents of the allocated store address(es), which

vary as the program is being executed; and a type, which tells how the value

must be interpreted

- 29 -

whenever it is operated on. A variable can be global (i.e. declared with the

main program), or it can be local, in which case its name can be chosen.

independently from the rest of the program, and during the execution of the

program the address and value only exist while the routine in question is being

obeyed (i.e. the value may be destroyed between successive calls of the

routine).

A 'phrase-variable' is a special non-numerical, variable whose value is a

symbol string. Phrase-variables therefore cannot usually be involved in the

same instructions as conventional variables, and there is a special set of

'phrase-handling instructions' in the Compiler Compiler language for handling

them.

Phrase-variables are always local to a format routine,

Although the value of a phrase-variable is a symbol string (e.g. a source

symbol string that has been matched to a class word in a format), it becomes

clear that, in interpreting the value of a string of symbols, we are more

concerned with its relation to the definition of the class word it is

associated with than the code of each symbol in it. For example (at its

simplest) if we require to set a conventional parameter A5 to represent the

information that 's' is the value of an [ELEMENT], it is easier to identify the

value of 's' as being no.19 in the definition of an [ELEMENT] (and so set A5 =

19, the category number) than to calculate this number from the symbol code for

'a', even though this should be a straightforward calculation,

Therefore the type of each phrase-variable is different for variables

associated with different class words; the type is not interpreted in the

Compiler Compiler as just a string of symbols — in which case the values of all

phrase-variables would be interpreted as ordered lists of numbers interpreted

as symbol codes. For similar reasons symbol strings are not represented in

store as such by the Compiler Compiler, but by 'analysis records' whose

structure reflects the analysis trees shown in Chapter 2 (also see the

appendix), However it will be convenient to continue to refer to the value of a

phrase-variable as a symbol string (or 'phrase value'),

Because the interpretation of a phrase-variable is carried out relative to

the associated class word definition, we can regard the phrase definitions as

being declarations of new types of objects. That is, as well as giving

information to allow the analysis routine to recognise source instructions,

they give the Compiler Compiler the requisite information to interpret the

values of phrase-variables when they occur in instructions of a format routine.

It will, be remembered that the type and address of the conventional

variables in the Compiler Compiler language is implicit in their names — there

is no need to declare variables. The same procedure is used for the special

phrase-variables. The name of a phrase-variable must be the associated class

word name, maybe followed by a '/' and an integer, all in square brackets. Thus

regarding the class word itself as '/0', each different phrase-variable of the

same type is a routine and must be numbered(named) differently relative to the

class word, e.g. [EXPRESSION],[EXPRESSION/1],[EXPRESSION/2], etc..

- 30 -

The formal parameters of format routines

As the analysis routine of the compiler program recognises an instruction

as being a member of a particular format, it builds up a list of associations

between the class words in the format and the particular symbol strings

matching them. These are the natural parameters of the format routine, since

they specify the particular source instruction matching it.

So the form of the ROUTINE heading declaration is the same as the

corresponding format except that the class words in the format are replaced by

phrase-variable names in the routine heading. The routine heading thus serves

to introduce the names of the formal parameters (which must all be different).

For example :

ROUTINE [SS] ≡ ROUTINE FORMAT [S?][NEWLINE][ROUTINE-FORMAT*]

ROUTINE [SS] ≡ MAIN PROGRAM[NEWLINE]

ROUTINE (SS) ≡ [VARIABLE] = [EXPRESSION][;]

ROUTINE [SS] ≡ ->[LABEL][if,unless]
 [EXPRESSION/1][COMPARISON-SYMBOL][EXPRESSION/2][;]

Each routine heading is followed by the set of imperative instructions to

be carried out each time it is entered. As part of the entry mechanism the

phrase-variables in the routine heading will all have had values assigned to

them, i.e. the particular sub-strings of the particular source instruction

causing entry to the routine.

Phrase-variables other than those occurring in the routine heading can be

used in the routine.

Any phrase-variable (including the formal parameters) can have its value

reset any number of times during the execution of a routine (the special phrase

-handling instructions that carry out these operations will be described

below).

Thus the situation with respect to phrase-variables and format routines is

exactly the same as for conventional variables and conventional routines,

except that there can only be local phrase-variables and there need be no

declarations as the types are implicit in the phrase-variable names.

[NOTE : To translate this section into a description of a conventional

routine, where necessary read 'value' for 'symbol string', 'variable' for

'phrase-variable', and 'type' for 'class word', and remember that entry to a

conventional routine is done by the routine call cue, which sets up the current

values of the actual parameters in the call as appropriate to the call, and

hands them on to the routine.

The similarity between the form of a format and of a routine heading

sometimes causes confusion in the Compiler Compiler. This would be resolved

relative to conventional autocodes if e.g. Atlas Autocode used the notation of

leaving out the names from the routine specification, and the Compiler Compiler

required that all phrase-variable names should have explicit numbers.

For example, in Atlas Autocode

routine spec print (real, integer, integer)

routine print (real e, integer b, integer a)

this being a routine say to print out the value of an expression,

specifying the number of digits before and after the decimal point.

And in the Compiler Compiler :

FORMAT [SS] = ->[LABEL]

 [if,unless][EXPRESSION][COMPARISON-SYMBOL][EXPRESSION/2][;]

ROUTINE [SS] = ->[LABEL]

 [if,unless/1][EXPRESSION/1][COMPARISON-SYMBOL/1][EXPRESSION/2][;/1]

- 31 -

Phrase-handling instructions

In some format routines the operation to be carried out on recognition is

not varied by any formal parameters, for example stop[;] and return[;]. where

it does not matter whether the separator [;] was a ';' or a [NEWLINE].

However in many routines the operations required may vary in places

according to the particular symbol string values associated with the formal

parameters. Therefore there are some basic 'phrase-handing instructions'

provided. These can convert information from symbol string form into

conventional variables, and can generally manipulate the phrase-identifier

variables, reassigning values to them, and testing them etc..

In order to describe the syntax of these phrase-handling instructions (and

the language of the Compiler Compiler in general), a 'meta-meta-language'

notation will be used to describe the classes of phrase-variables and

conventional variables, etc.. These will be distinguished by underlining the

square brackets round class names. This convention is not adopted by the

Compiler Compiler; the corresponding class words and formats of the Compiler

Compiler will also be given as a reference.

[AB] is a conventional variable [A] or [B], e.g. Al, A7, Al2, B4, B36, etc..

[N] is an integer e.g. 5, 45, 12, etc..

[ABN] is [AB] or [N]; these are called [ABN] [AB], and [N] in the Compiler

Compiler.

[PHRASE-VARIABLE] or [PI] in the Compiler Compiler :

This refers to a phrase-variable to which a value is to be assigned by the

instruction in question

(e.g. the equivalent of [VARIABLE] is '[VARIABLE] = [EXPRESSION]').

[PHRASE-VARIABLE-VALUE] also [PI] :

This refers to a phrase-variable to which a value is to be used as an

operand in the instruction in question

(e.g. the equivalent of a [VARIABLE] occurring inside an [EXPRESSION].

[PHRASE-EXPRESSION-VALUE] or [GENERATED-P] in the Compiler Compiler :

This refers to a phrase with [PHRASE-VARIABLE-VALUE]s instead of class

words. This defines a symbol string value formed from the symbols of the

phrase with the current [PHRASE-VARIABLE-VALUE]s substituted in. Or the

phrase can be a basic phrase itself, without any phrase-variables in it.

This is the equivalent of an [EXPRESSION] in the conventional assignment

instruction.

[PHRASE-EXPRESSION] or [RESOLVED-P] in the Compiler Compiler :

This refers to a phrase with [PHRASE-VARIABLE]s instead of class words (if

any) – the distinction between this and [PHRASE-VARIABLE-VALUE] will

become apparent in context later.

- 32 -

[NOTE : There is normally no distinction made between a conventional

[VARIABLE] and a [VARIABLE-VALUE], i.e. between a variable whose value is being

set and one whose value is being used as an operand. There is a slight

difference in practice, in that the former need not have a current value

assigned to it when it is encountered during program execution, but the latter

must have, Most autocodes will not check for example that variables being used

in an expression have had values assigned to them since the beginning of the

program, or since the routine was reactivated in the case of local variables

that are not formal parameters. If this happens (usually due to a programmer's

error), depending on the particular compiler and whether or not the variable is

a local variable, the value may have been preset at 0, or it may be the final

value of the variable in the previous activation of the routine, or it could be

any arbitrary number – e.g. in the case where local storage space is shared

between routines. However with the Compiler Compiler a check is always made

that a phrase-variable that should have a current value does.

Also note that there is a slight difference in the permitted form of a

[PHRASE-VARIABLE] and a [PHRASE-VARIABLE-VALUE] name in the Compiler Compiler,

due to rarely used facilities that will not be discussed here.]

1) Conversion from symbol string value to conventional number

[AB] = CATEGORY OF [PHRASE-VARIABLE-VALUE]

 or in the Compiler Compiler : [AB] = CATEGORY OF [PI]

E.g. Al = CATEGORY OF [ELEMENT]

or A7 = CATEGORY OF [COMPARISON-SYMBOL/1]

or B23 = CATEGORY OF [OPERAND]

This sets the conventional variable [AB] to the category number of the

phrase-variable value with respect to the corresponding phrase's definition.

Thus if [ELEMENT] was currently an 's', A1 would be set to 19, or if 'c',

to 3, etc..

If the [COMPARISON-SYMBOL/1] (defined as =,≠, ≥, <, >, ≤) was currently

'≠' A7 would be set to 2, or if '>' to 5.

B23 would be set to 1 if the [OPERAND] was a [CONSTANT], 2 if it was a

[VARIABLE], 3 if an ([EXPRESSION]), and 4 if it was a [FUNCTION].

2) Resolving

The previous instruction does not give any information about subphrases of

a phrase, For example if we had a [VARIABLE] on hand e.g. f, P[e], or R[ab+c],

we could find out from the category number if it was an [ELEMENT] (cat, 1) or

an array-element (cat. 2), but we could not find out any further information

until we had broken up the [VARIABLE] into its constituent subphrases.

To accomplish this there is the 'resolve' instruction :1

RESOLVE [PHRASE-VARIABLE-VALUE] INTO [PHRASE-EXPRESSION]

or LET [PI] ≡ [RESOLVED-P]

E.g. RESOLVE (VARIABLE/1] INTO [ELEMENT]

or RESOLVE [VARIABLE] INTO [ARRAY-BASE] [[] [EXPRESSION/3]]:

Here the [PHRASE-EXPRESSION] must be an alternative (or subalternative)

- 33 -

phrase of the definition of the class word associated with the [PHRASE-

VARIABLE-VALUE] - except that the class words in the phrase are [PHRASE-

VARIABLE]s.

This has the effect of setting up new values for the [PHRASE-VARIABLE]s in

the [PHRASE-EXPRESSION], which values are the appropriate sub-symbol-strings of

the current [PHRASE-VARIABLE-VALUE].

The [PHRASE-VARIABLE-VALUE] remains unchanged.

For example, if [VARIABLE/1] was currently an 's' (or a 'k', say)

RESOLVE [VARIABLE/ 1] INTO [ELEMENT]

would reset the value of the [ELEMENT] to 's' (or 'k'), Then the instruction

[AB] = CATEGORY OF [ELEMENT] would yield the number 19 (or 11).

If the (VARIABLE] was currently 'Y[e]' or 'R[ab+c]'

RESOLVE [VARIABLE] INTO [ARRAY-BASE][[][EXPRESSION/3]]

would set up a new value for [ARRAY-BASE] 'Y' or 'R' as appropriate, and is new

value for [EXPRESSION/3] 'e' or 'ab+c'.

Note that the resolve instruction carries out the same kind of operation

as the routine heading implies on entry to the routine. In that case a symbol

string that is a member of the format class e.g. [SS] is automatically split up

to give the initial values of the principal phrase-variables.

Note that the resolve instruction can not be used unless it is already

known that the current value belongs to the appropriate category of the phrase

definition. Thus RESOLVE [VARIABLE/ 1] INTO [ELEMENT] if the current value was

'Y[e]' would be an illegal instruction that would bring the execution of the

compiler program to a halt.

3) Testing

It is frequently required to carry out different instructions in a format

routine depending on the particular alternatives of a class word that a phrase

value belongs to. This can be achieved indirectly by getting the category

number of the phrase-variable. Frequently, having established which alternative

the symbol string belongs to, it is then required to resolve the phrase-

variable in order to get at the subphrases.

These two operations are combined in the phrase testing instruction :

-> [N] [IF,UNLESS] [PHRASE-VARIABLE-VALUE] IS OF THE FORM [PHRASE-EXPRESSION]

 or -> [LABEL] [IU] [PI] ≡ [RESOLVED-P]

E.g. -> 1 UNLESS [VARIABLE/1] IS OF THE FORM [ELEMENT]

Or -> 8 IF [VARIABLE] IS OF THE FORM [ARRAY-BASE][[][EXPRESSION/2]]

Here the symbol string of the current [PHRASE-VARIABLE-VALUE] is compared

with the [PHRASE-EXPRESSION]. And if it matches the phrase : control is changed

(IF) or not changed (UNLESS) to the appropriate instruction as indicated by the

label; and if the [PHRASE-EXPRESSION] contains any [PHRASE-VARIABLE]s the

symbol

- 34 -

string is then resolved into the [PHRASE-EXPRESSION], as described above.

The [PHRASE-VARIABLE-VALUE] remains unaltered.

If the condition holds and there are [PHRASE-VARIABLE]s in the [PHRASE-

EXPRESSION], they are assigned new values as appropriate, But if the condition

does not hold, no new values are assigned, and a jump is made if the condition

is UNLESS.

Note that the [PHRASE-EXPRESSION] need not be a principal alternative

of the class word definition; it can equally well be a subalternative,

for example

-> 23 IF [VARIABLE/5] IS OF THE FORM [ARRAY-BASE] [[] [ELEMENT/4]]

where one might want to deal directly with the special (common) case where the

array modifier is just an index. This is equally true of the resolve

instruction, but it is less likely to occur since it must be known in advance

that the [PHRASE-VARIABLE-VALUE] is a member of the [PHRASE-EXPRESSION] class.

Note that the [PHRASE-EXPRESSION] need not contain any [PHRASE-VARIABLE]s

for example :

-> 18 IF [if,unless] IS OF THE FORM if

4) Generating

It is sometimes required to assign values direct to phrase-variables

instead of indirectly via a routine heading, a resolve instruction, or a

successful test instruction. This can be done by :

SET [PHRASE-VARIABLE] = [PHRASE-EXPRESSION-VALUE]

or LET [PI] = [GENERATED-P]

E.g. SET [VARIABLE/1] = [VARIABLE]

where it is required to makse a copy of the value of the [VARIABLE]

or SET [COMPARISON-SYMBOL/2] = >

or SET [COMPARES-WITH] = [IS][S]not [COMPARED-WITH?]

Here the [PHRASE-VARIABLE] is assigned a new value, being the string

defined by the [PHRASE-EXPRESSION-VALUE], i.e. by the symbol string of the

phrase with the current string of any [PHRASE-VARIABLE-VALUE] in the [PHRASE-

EXPRESSION-VALUE] substituted in.

For example if the [IS] and [COMPARED-WITH?] had been assigned values e.g.

by a successful test instruction :

-> 3 UNLESS [COMPARES-WITH] IS OF THE FORM [IS][COMPARED-WITH?]

and it was required to switch the test implied by [COMPARES-WITH], then the

above instruction would reassign the switched value. If [COMPARES-WITH] had

been 'was greater than or equal to', the test instruction would have resolved

it, setting [IS] = 'was' and [COMPARED-WITH?) = 'greater than or equal to', and

then the generate instruction would have reset [COMPARES-WITH] to 'was not

greater than or equal to'.

- 35 -

Examples of the use of phrase-handling instructions

Example A Consider the format routine for the conditional jump format is a

compiler for the covering-description language :

ROUTINE [SS) ≡ go to ([LABEL]) [if,unless] [EXPRESSON/1] [COMPARES-WITH]

 [EXPRESSION/2][PAUSE]

We would first of all :

COMPILE INSTRUCTIONS TO SET ACCUMULATOR = VALUE OF [EXPRESSION/1] - [EXPRESSION/2]

And then we would have to compile a machine code instruction that tested

the accumulator and executed a conditional jump. Say that the function code of

the machine code instruction is a certain Code F for '=', F+1 for '≠',F+2

for'≥', F+3 for '<', F+4 for '>' and F+5 for '≤'.

The relevant phrase definitions are :

PHRASE [if,unless] = if, unless

PHRASE [COMPARISON-SYMBOL] = =, ≠, ≥, <, >, ≤

PHRASE [COMPARES-WITH] = [COMPARISON-SYMBOL], [IS] [S]not[COMPARED-WITH?],

 [IS][COMPARED-WITH?]

PHRASE [COMPARED WITH?] = [S][COMPARED-WITH], NIL

PHRASE [COMPARED-WITH] = [GREATER-THAN][S]or[S][EQUAL-TO],

 [LESS-THAN][S]or[S] [EQUAL-TO], [GREATER-THAN], [LESS-THAN], [EQUAL-TO]

Etc., (as on P.16)

We require to set A1 to the correct relative code (0 to 5) for the

comparison on which (if successful) we require to change control. Thus

A2 = CATEGORY OF [if,unless] ((1 for 'if', 2 for 'unless'))

-> 1 UNLESS [COMPARES-WITH] IS OF THE FORM [COMPARISON-SYMBOL]

A1 = CATEGORY OF [COMPARISON-SYMBOL]

A1 = A1 – 1 ((A1 is now set correctly for [if,unless] = if))

-> 5

1) -> 2 IF [COMPARES-WITH] IS OF THE FORM [IS][COMPARED-WITH?]

RESOLVE [COMPARES-WITH] INTO [IS][S]not[COMPARED-WITH?]

A2 = 3 – A2 ((in the case of 'not' this effectively switches [if,unless]

 so that the following analysis on [COMPARED WITH?] applies

 to both the 2nd and 3rd alternative of [COMPARED-WITH]))

2) -> 4 IF [COMPARED-WITH?] IS OF THE FORM [S][COMPARED-WITH?]

3) Al = 0 ((Otherwise set Al for '=' as there is no [COMPARED-WITH?]))

->5

4) Al = CATEGORY OF [COMPARED-WITH] ((We now require to operate on Al

-> 3 IF Al = 5 as follows : 1->2, 2->5, 5->0))

-> 5 IF Al ≥ 3 ((3 and 4 are already correct))

A1 = A1 + 1

 -> 5 IF A1 = 2

A1 = 5

- 36 -

5) -> 6 IF A2 = 1 ((We now require to switch the code in the case of

 'unless' : 0 <->. 1, 2 <-> 3, 4 <-> 5))

Al = Al ≢ 1 ((happens carry out this switch direct))

6) Etc. ((A1 is now set to 0 to 5 as required for all the 892

 alternative forms of [if,unless] ... [COMPARES-WITH]))

Example B A classic use of resolving, testing, and resetting values occurs

when dealing-with repeated phrases. And in this case we get a loop of

instructions, so that different executions of the same instructions carry out

the successive manipulations.

Consider the situation of wanting to set a conventional variable, say A5, equal

to the number represented by an [INTEGER]

Where PHRASE [INTEGER] = [DIGIT*]

 RESOLVE [INTEGER) INTO [DIGIT*]

 A5 = 0

1) -> 2 UNLESS [DIGIT*] IS OF THE FORM [DIGIT][DIGIT*]

 A12 = CATEGORY OF [DIGIT] ((1 for '0', 2 for '1', 3 for '2', etc.))

 A5 = A5 + Al2 - 1

 A5 = A5 × 10

 -> 1

2) RESOLVE [DIGIT*] INTO [DIGIT]

 A12 = CATEGORY OF [DIGIT]

 A5 = A5 + A12 - 1

Thus in the case of [INTEGER] = the symbol string '4392', on successive

executions of the instruction labelled (1) the following changes will take

place in the values of :

Time Values of

[DIGIT]

[DIGIT*] A5 ((for A5 are given the changes

in the instructions immediately

following))

Initially: Unassigned '4392' 0

1st time '4' '392' 40

2nd time '3' '92' 430

3rd time '9' '2' 4390

4th time no change as condition was not satisfied, so go on to (2)

(2) '2' unchanged 4392

It will be remembered that the '*' and '?' notations do not always provide

the most precise definitions. Consider instead :

PHRASE [INTEGER] = [DIGIT][ANY-FURTHER-DIGITS]

Where PHRASE [ANY-FURTHER-DIGITS] = [DIGIT][ANY-FURTHER-DIGITS], NIL

- 37 -

This would give the more compact sequence :

1) RESOLVE [INTEGER] INTO [DIGIT][ANY-FURTHER-DIGITS]

 A5 = 0

2) A5 = A5 × 10

 A12 = CATEGORY OF [DIGIT]

 A5 = A5 + A12 – 1

 ->2 IF [ANY-FURTHER-DIGITS] IS OF THE FORM [[DIGIT][ANY-FURTHER-DIGITS]

In this case successive values after obeying the test instruction are :

Time Values of [DIGIT] [ANY-FURTHER-DIGITS] A5

Initially: '4' '392' 0

1st time '3' '92' 4

2nd time '9' '2' 43

3rd time '2' 'NIL' 439

4th time condition not satisfied, no change 4392

[NOTE : that the relative clumsiness of the first version is because for

[DIGIT*], in order to resolve the final [DIGIT] e.g.'2', we are forced to take

a different path from the usual resolution of [DIGIT*] into [DIGIT][DIGIT*].

Note also that there is the same problem in using [DIGIT][DIGIT*?] for

[INTEGER] as it is not possible to resolve [DIGIT*?] into [DIGIT][DIGIT*?]

since [DIGIT*?] is not defined as [DIGIT][DIGIT*?]

but PHRASE [DIGIT*?] = [DIGIT*], NIL ((? convention))

and PHRASE [DIGIT*] = [DIGIT][DIGIT*], NIL ((* convention))]

Finally, consider a section of a routine dealing with the array declaration

[TYPE] ARRAY : [ARRAY-BASE][[][INTEGER/1]:[INTEGER/2]]

We could have used the set of instructions above as a subsequence to

convert the values of both [INTEGER/1] and [INTEGER/2], using as a link to the

subsequence A11 say, so that the subsequence is followed by the switch

 -> A11 ((i.e. go to the label given by the current value of A11)).

Then we could have 'called' the subsequence and set the required value of

the first integer in A8 as follows :

 SET [INTEGER] = [INTEGER/1]

 A11 = 4

 -> 1

4) A8 = A5 ((Thus setting A8 as required))

And then somewhere else in the routine :

 SET [INTEGER] = [INTEGER/2]

 A11 = 14

 -> 1

14) A9 = A5 ((Thus setting A9 = the value of [INTEGER/2]))

- 38 -

Ch. 4 THE STRUCTURE OF THE COMPILER COMPILER : AUXILIARY ROUTINES

The previous chapter described the structure of a compiler program as

written in Compiler Compiler language. The master-routine is built in, and the

format routines are the principal routines of the program. There are special

phrase and format declarations to describe the syntax of the source language.

The imperative instructions of the compiler program were described, and

particular reference was made to the new class of phrase-variables introduced

into the Compiler Compiler language, which are the parameters of the format

routines.

No reference has been made to the structure of the Compiler Compiler, and

no comment made on the way it compiles a program in its language. Nor has any

description been made of any conventional routine mechanism for the compiler

program (as opposed to the conventional routine mechanism the compiler will

provide for the source language).

Integration of Compiler Compiler and compiler program

Of course the Compiler Compiler is itself a compiler program. When it is

presented with a compiler program description it has to recognise it and

translate it into the requisite machine code for translating any program

written in the source language. The permitted language of the Compiler Compiler

can equally be expressed in phrase structure form, e.g. using the phrases [AB],

[N], [IF,UNLESS].

Therefore the machinery that the Compiler Compiler requires to do its own

recognition and translation of a compiler program is much the same as it plants

in the compiler program to recognise and translate source program.

Because of this the Compiler Compiler has been carefully designed so that

a considerable part of its organisation can be used both when it is compiler-

compiling a compiler program and when the compiler program is compiling a

source program.

Therefore the master-routine and other powerful machinery that is useful

during compiling is not in fact planted in the compiler program by the Compiler

Compiler; it is part of the Compiler Compile machinery itself, which is taken

over by the compiler program.

The situation is more complicated even than this. The source program

translation machinery and the compiler program translation machinery can also

be used when writing the Compiler Compiler itself, to generate the less basic

section, (e.g. the equivalent of 'permament routines') in terms of the more

basic machinery.

Bootstrapping technique in the. Compiler Compiler

Given the problem of writing a Compiler Compiler, without the aid of a

Compiler Compiler compiler, there are two obvious ways : write it entirely in

machine code (i.e. using a primitive assembly language), or write it using some

existing autocode. The former is very hard work and difficult to revise; the

latter generates an inefficient program compared with machine code.

- 39 -

However, particularly since the same mechanism is useful after the

Compiler Compiler has been written, the solution chosen is neither of these,

but a 'bootstrapping' technique. The overall design of the system being decided

in advance, the basic core organisation is written in primitive assembly

language to the stage where it can recognise language and compile the

appropriate code (albeit primitively). Then the core machinery takes over to do

the recognition and translation of the further material to be added to the

system. As this new machinery is added on (e.g. routines to deal with new

formats), the language the system can recognise gets more and more powerful. So

that by the time the Compiler Compiler is ready for use, the last sections to

be completed have been written using virtually the full power of the Compiler

Compiler that is available to the compiler-writer.

Since the Compiler Compiler will be kept on magnetic tape, and will be

called by the Atlas Supervisor as a compiler when required, it is convenient

during development to be able to store the current version on tape in between

runs, as if it were a working compiler, and call it down at the beginning of

each run. Then the input of each development run will merely comprise some

additional new machinery (and/or corrections to the existing machinery),

together with a test on it, or a request to update the current version if the

new machinery is already tested,

The structure of the Compiler Compiler is therefore such that it can

easily add new program material to itself, and such that it can easily replace

old sections (e.g. routines) with new ones, In order to permit this, all the

machine code and all the other information stored with the Compiler Compiler is

stored in 'relocatable', form.

[To achieve this, every item (e.g. a stored form of a phrase definition or

a routine) is given a serial number. Then the only fixed part of the Compiler

Compiler is the first 1024 (in fact) locations, which contain the current

address of the item with the corresponding serial number (if there is one).

Then within an item, all references to addresses within the item are coded

relative to the base address of the item (or in the case of instructions

containing addresses, relative to the instruction itself); all references from

one item to another are made via the serial-number-address list. Items can then

be moved around in any fashion provided that the address on the item list is

altered appropriately.]

A powerful effect of this replacement facility - which is primarily

required for making corrections while developing the system - is that routines

can be written in a more primitive language earlier on, maybe only doing a

limited job, and they can then be replaced later on by a version in a more

powerful and/or efficient language, maybe doing a more powerful job, using new

facilities that the earlier version has itself helped to provide.

Routine mechanisms of the Compiler Compiler ; compiling versions

In order to achieve the working system there are a number of different

routine mechanisms, some very primitive, some very sophisticated. The variety

is a convenience, so that the Compiler-Compiler-writer or the experienced

compiler-writer can in the interests of economy cut out some of the

organisational machinery involved in using the more sophisticated routine

forms. The simpler routines do not

- 40 -

have any parameters, Some are only required for the earliest-stages of the

bootstrapping.

The most powerful and general machinery is an adaptation of the format and

format routine machinery described in the previous chapter. There are two for

the 'compiling version' (or 'primary compiling routines') and the ordinary

routine mechanism.

The ordinary routine mechanism will be discussed later, as it applies

equally to the compiler-writer as well as the Compiler-Compiler-writer. It can

be regarded as analogous to the conventional routine mechanism whereby an

autocode programmer can specify a routine of instructions and a format by which

it can be called. Then he can use this call in any other routine, and the

instructions of the routine will be obeyed whenever the cue is encountered in

the execution of his program (i.e. relative to the compiler-writer, when his

compiler is translating source program),

When the source programmer uses a basic instruction of an autocode he

expects that the requisite machine code instructions will be compiled on the

spot. When he uses a routine call he knows that this will not happen, but

instead instructions will be compiled ending in a jump to another section of

the program, to the appropriate subroutine which carries out the required task.

If he wants to specify a new format of the language, and specify what

instructions must be compiled on the spot to execute the task, he cannot do it

in terms of the autocode - the whole object of the Compiler Compiler is to

provide the compiler-writer with a convenient language to describe how to

translate from an actual variant of a format into the requisite machine code

instructions.

In general the specification of how to carry out a particular task is

different from the specification of how to compile the requisite machine code

instructions to carry out the task. They are only the same when the task can be

expressed entirely in terms of a set of more basic instructions in the given

language, and then of course the routine mechanism can be used instead (see

note on P.52). The source programmer using an autocode, and the compiler-writer

using the routine mechanism of the Compiler Compiler, are only concerned with

the former type of specification. However the Compiler-Compiler-writer has to

be able to describe the latter operation, and in his own language.

Therefore a key mechanism of the Compiler Compiler which is not generally

used by the compiler-writer is the 'compiling-version'. This is a routine which

on recognition of a particular format in the Compiler Compiler language, e.g.

[AB] = [WORD], e.g. A1 = B1, or B8 = B1 + 4, is entered immediately to compile

the appropriate machine code instructions to be added to the routine of the

compiler program (or Compiler Compiler) in which it occurs. Of course this code

must be consistent with the conventions of the Compiler Compiler, e.g. it must

be relocatable.

As will be illustrated (P.44) it is not always possible for the Compiler

Compiler to compile the requisite code on recognition of a basic instruction,

and

- 41 -

it has to use a routine mechanism. Therefore two routine forms must be

associated with each basic format of the language, an ordinary routine version

and the compiling-version.

Development of a compiler program

The following discussion will now be true not only for the later stages of

the writing of the Compiler Compiler but also for the writing of a compiler

program. Because of the complete integration of the two processes, the writing

of the later stages of the Compiler Compiler is the same process as the writing

of a compiler program using the Compiler Compiler; and equally the compiler

program is added to the existing Compiler Compiler as if it was an official

part of it.

As is the case when developing the Compiler Compiler, it is convenient for

the compiler-writer store the current version of the compiler program on

magnetic tape, only including additions or alterations to the system in the

input for any particular development run. So the process of growth during

development is identical in the two cases, except that the Compiler Compiler

stops growing at a point where it is of general application, whereas the

compiler program, starting from a copy of the Compiler Compiler, grows on to it

in a particular way adapted to the autocode it is designed to implement.

Thus apart from the fact that there are no [SS] formats in the Compiler

Compiler, the structure of the compiler program during development is the same

as that of the Compiler Compiler.

When a compiler program is fully developed, a special declaration can be

used, END OF PRIMARY MATERIAL, to eliminate from the final version of the

compiler-cum-Compiler-Compiler those sections of the Compiler Compiler that are

not required for the translation of source program (e.g. compiling versions for

the basic language).

The languages of the Compiler Compiler system

The analysis machinery of the Compiler Compiler, which recognises the

format of an instruction in terms of phrase and format definitions, is used

both when compiler-compiling a compiler program and when compiling a source

program.

Since there are differences in the conventions and organisation relevant

to the two processes, the machinery operates in two distinct modes

1) Compiler Compiler Mode

 (The translation of the compiler program by the Compiler Compiler)

2) Compiler Mode

 (The translation of a source program by the compiler)

The usual development run will therefore start with additions and corrections

to the current version of the compiler program, to be read and translated in

Compiler Compiler mode. This will then be followed either by a

'DEFINE COMPILER ...' declaration to update the compiler, or by a declaration

'END OF MESSAGE' to

- 42 -

indicate a switch to compiler mode, the subsequent material being some piece of

source program to test the new machinery. Often it will then be required to

obey the piece of compiled source program; in this case, under the control of

(say) the format routine for 'end of program', the compiler will pass control

to the compiled program, maybe removing itself from store first, and

instructions will then be obeyed in 'Source Mode'.

When the system is in compiler mode, it is only required to recognise the

source language. When it is in Compiler Compiler mode, it is required to

recognise the language of the Compiler Compiler.

As has been mentioned, the routine mechanism of the Compiler Compiler is

an adaptation of the format routine machinery. Here, instead of using a preset

routine format, e.g. [small-letter*] (EXPRESSION][ANY-FURTHER-EXPRESSIONS] as

in the specimen language, the compiler-writer can define the format of his

subroutines in phrase structure notation, and the parameters of the associated

routines are phrase-variables as for (SS) format routines.

To keep the source language, the basic Compiler Compiler language and the

language of these routines apart, there are 4 format classes built in to the

system :

1) [MP] Master Phrases These are the principal declarations of the

Compiler Compiler language, e.g. PHRASE, FORMAT, and ROUTINE.

2) [BS] Basic Statements This is the class of formats that represents the

basic imperative language of the Compiler Compiler. They can only be recognised

inside format routines in Compiler Compiler mode. In general, on recognising

such an instruction, the Compiler Compiler will pass control to the

corresponding compiling-version routine which will then compile the requisite

machine code instructions to be added to the compiler program (or the Compiler

Compiler), according to the Compiler Compiler conventions (e.g. relocatable

programming).

3) [AS] Auxilliary Statements This is the class of formats representing

the routines of the Compiler Compiler language. Some of these are already

included in the Compiler Compiler ('permanent routines') and the compiler-

writer will add more as convenient for the subroutine structure of his program.

They can only be recognised in Compiler Compiler mode. In general, on

recognising such an instruction, the Compiler Compiler will plant a cue, so

that when the routine it is contained in is being obeyed, in compiler mode, a

jump will be made to the associated format routine.

4) [SS] Source Statements This is the class of formats specifying the

language of the source program. It is only this class that is recognised in

compiler mode, and on recognition control is passed to the appropriate format

routine, which is then obeyed - in the case of an imperative instruction, this

will then compile machine code instructions to add to the source program,

according to the source program conventions (which will in general be quite

separate from the compiler).

- 43 -

Source statements can also be recognised in Compiler Compiler mode, in

which case a cue will be compiled into the compiler program, so that when the

instruction is encountered in compiler mode, control will be passed to the

associated format routine - i.e. [SS] instructions in Compiler Compiler mode

are treated exactly the same as [AS] routine calls.

Note that the division of the Compiler Compiler language itself into [BS]

and [AS] formats roughly marks the point where in practice the completion of

the Compiler Compiler can be achieved using its own machinery at very near full

power. In practice most of these [AS] formats also have compiling-versions.

Note that although in general it is only compiling-version routines that

are obeyed in Compiler Compiler mode, it is possible for an ordinary format

routine to be obeyed in Compiler Compiler mode if a compiling-version calls it.

Auxiliary routines

The most general routine mechanism of the Compiler Compiler language is

the auxiliary statement. This is a class of instructions that is defined in

phrase structure notation, in the way described in previous chapters.

The conventions are exactly the same as for source format definition -

there is no 'meta-meta-syntactical' convention like underlining square

brackets. Therefore class word names must be kept distinct from the names of

the basic language (e.g. [PI], [N], [AB]) and those of the source language.

Auxiliary phrases and formats can use phrases of the source language both

auxiliary and source formats can use phrases of the basic language,

Phrase and format definitions of both the source language and the

auxiliary language can be included anywhere in the program description (e.g. in

between format routines), provided they are defined before they are used in

format routines and before their own format routines.

It is possible to use an instruction in a format routine before its own

format routine has been given. An instruction can occur in any format routine,

including its own (i.e. it can be used recursively).

The format routine mechanism of an [AS] format is exactly the same as for

an [SS] format, except that it can never be entered direct from the master-

routine of the compiler program.

Any instruction occurring in a format routine can contain phrase-

variables, provided that the instruction is the formal form, or a formal

subform, of the format definition.

For example, consider the basic statement [AB] = [WORD]

 (where the definition of a [WORD] has not been given).

Permissible instructions satisfying this format are for example

B5 = A18, A23 = (B1+2), A8 = A7 + 15, [AB/1] = B17, A36 = [WORD],

 [AB] = [AB/2] + [N], [AB] = [WORD/1].

Where [AB] + [N] is a formal subalternative of [WORD].

Note however that e.g. [AB] = [AB/2] + [INTEGER] would not be recognised as a

- 44 -

member of this format. For although [INTEGER] is defined to recognise the same

set of symbol string as [N], it is not a formal alternative phrase or subphrase

of the definition of [N] - obviously so in this case [N] is a name of the basic

language, and so was defined first and independently.

This example demonstrates the case where a compiling-version of a [BS]

statement cannot be used, it will be used for the first 3 examples, but the

other 4 all contain phrase-variables whose values will not be known until the

instruction are obeyed in compiler mode. Therefore for the parametric uses of

the instruction cues must be planted to the 'ordinary' format routine

associated with the format, so that the instruction can be carried out

interpretively during compiler mode when the values of the phrase-variables are

known.

Remembering that a format is merely a special class of phrase the effect

of a routine cue on execution in compiler mode is exactly the same as if it was

regarded as a [PHRASE-EXPRESSION-VALUE] in the routine it is contained in. That

is, when it is obeyed it defines a unique phrase-value (instruction), being the

symbol string of the instruction with the current values of any [PHRASE-

VARIABLE-VALUE]s in it substituted at the appropriate places. The cue therefore

generates this symbol string, which defines the unique variant of the format

required to be obeyed at this point, and then resolves it into the routine

heading of the corresponding format routine, thus setting up the initial values

of the principal phrase-variables of the format routine (see example 6).

The cue mechanism for parametric forms of the basic instructions, and for

all calls on auxiliary routines (except for nonparametric calls for [AS]

routines which have compiling versions), and for all source statements

occurring in format routines, thus simulates the familiar mechanism described

in the previous chapter where the master-routine, having recognised a symbol-

string of the input stream as corresponding to an instruction of the source

language, notes the symbol strings matching the class words in the format and

passes control to the associated format routine with these symbol strings as

the initial values of the formal parameters.

On return from the format routine (via an END directive) the next

instruction after the cue in the routine it was contained in will be obeyed.

This might be a basic set of machine code instructions corresponding to a

nonparametric form of a basic instruction (i.e. which was compiled using a

compiling-version), or it may be another routine cue.

Examples

There are a number of different ways in which routines and phrase-variable

parameters can be used. The following examples demonstrate some of these

usages:

1) Use of source symbol-string phrase-variable as parameters

One of the simplest examples of the use of auxiliary routines is where a

routine is required to process a phrase-variable of the source language in some

consistent manner.

- 45 -

For example, where [SEP] is a separator in Compiler Compiler mode :

FORMAT [AS] = FIND ADDRESS AND TYPE FOR [VARIABLE] [SEP]

FORMAT (AS] = COMPILE INSTRUCTIONS TO SET ACCUMULATOR =

 VALUE OF [EXPRESSION][SEP]

FORMAT [AS] = COMPILE INSTRUCTIONS TO SET [VARIABLE] =

 CONTENTS OF ACCUMULATOR[SEP]

Here the format, routine heading, and routine call will all tend to look

the same (except for numbering in the phrase-variable names), and the routine

call will just pass on the current value of the phrase-variable to the

appropriate format routine.

For example the call : FIND ADDRESS AND TYPE FOR [VARIABLE/1]

 to :

ROUTINE [AS] ≡ FIND ADDRESS AND TYPE FOR [VARIABLE] [SEP]

-> 1 IF [VARIABLE] IS OF THE FORM [ARRAY-BASE] [[] [EXPRESSION]]

RESOLVE [VARIABLE] INTO [ELEMENT]

A1 = CATEGORY OF ELEMENT

B28 = (B4+Al)

B29 = (B5+A1)

B30 = 0

END ((i.e. 'return'))

1) etc.

B4 & B5, say, are the positions in the private

store of the lists for the address and type for

each of the 26 possible element names. 'B30 = 0'

says that the [VARIABLE] is not an array

element.

Note that the phrase-variable is not the same as that in the routine call;

it is in effect a copy of it (i.e. a call-by-value). Any reassignment of the

[VARIABLE] in the routine would not affect the value of [VARIABLE/1] in the

routine calling it.

Note that the routine passes on the required information using the global

variables B28, B29, and B30.

2) Use of non-source _phrases to sub-specify instructions

Special class words can be defined for [AS] formats to distinguish

variations on the job to be done in a routine.

For example in FIND ADDRESS AND TYPE FOR [VARIABLE] the compiler-writer

may decide that he wants to carry out some extra operations if the variable (of

the source program) is being assigned rather than its value referred to, and

that he may sometimes require the routine to compile the necessary instructions

to calculate the array index in the case where the variable is an array element

and the index is an expression. He might then define (where 'M' stands for

'mode') :

PHRASE [M5] = REFERENCE, ASSIGNMENT

PHRASE [M6?] = (FOR IMMEDIATE ACCESS), NIL

 Then :

FORMAT [AS] = FIND ADDRESS ([M5]) AND TYPE FOR [VARIABLE] [M6?][SEP]

- 46 -

This format could be called by e.g. :

FIND ADDRESS (REFERENCE) AND TYPE FORM [VARIABLE]

FIND ADDRESS (ASSIGNMENT) AND TYPE FOR [VARIABLE/3]

FIND ADDRESS (REFERENCE) AND TYPE FOR [VARIABLE/1] (FOR IMMEDIATE ACCESS)

FIND ADDRESS (ASSIGNMENT) AND TYPE FOR [VARIABLE] (FOR IMMEDIATE ACCESS)

Then in the format routine, the 4 subspecifications could be isolated by

e.g. :

-> 6 IF [M5] IS OF THE FORM REFERENCE

-> 21 UNLESS [M6?] IS OF FORM (FOR IMMEDIATE ACCESS)

etc.

3) Handling conventional variables of the Compiler Compiler language

There are no facilities for using conventional variables as parameters of

auxiliary routines. However the same effect can be achieved by using their

names as phrase-variable parameters.

For example we might like to turn into a subroutine the sequence given at

the end of the previous chapter for converting a symbol string [INTEGER] into

its value in conventional variable form :

FORMAT [AS] = CONVERT [INTEGER] INTO [AB] [SEP]

 Called by e.g. :

CONVERT [INTEGER] INTO A5

CONVERT [INTEGER/2] INTO B21

 With routine :

ROUTINE [AS] ≡ CONVERT (INTEGER] INTO [AB] [SEP]

 RESOLVE [INTEGER] INTO [DIGIT][ANY-FURTHER-DIGITS]

 Al = 0

1) Al = Al × 10

 A2 = CATEGORY OF [DIGIT]

 Al = Al + A2 - 1

 -> 1 IF (ANY-FURTHER-DIGITS] IS OF THE FORM [DIGIT][ANY-FURTHER-DIGITS]

 [AB] = Al

END

The instruction that sets the conventional variable to its desired value

is [AB] = Al, a parametric form of a basic assignment instruction. In the two

calls shown above, the effect of this instruction will be A5 = Al and B21 = Al

respectively,

Note that as it stands the instruction A5 = Al is ambiguous, as the [A]s

are local variables and, as in this case, can belong to different routines.

Therefore the Compiler Compiler makes a special case in recording the symbol-

string

- 47 -

value of the phrase-variable [A] (and also of a label) so that it is

possible to tell which routine out of the stack of routines currently being

obeyed the actual symbol-string occurred.

Note that the call could have been

CONVERT [INTEGER] INTO [AB/1]

where [AB/1] was itself a. conventional-cum-phrase-variable parameter of the

routine containing the call; in this case the relevant local variable would be

coming from an even higher level routine.

Note that again the phrase-variable [AB] in the routine is only a local

copy. [AB/1] in the call is not reset. This is obvious in the previous calls

where there is an explicit variant A5 or B21 in the instruction. However the

effect of the 'CONVERT ...' routine relative to conventional parameters is a

call-by-substitution. This is true of all variables and expressions relative to

conventional parameters, i.e. the values of expressions and the addresses of

variables are recalculated on each reference to the formal parameter.

4) General routine calls

In all the examples so far the relation between format and routine call

has been simple. That is, either the call has handed on a source phrase-

variable, e.g. [VARIABLE] or [INTEGER], or it has contained a basic form of a

non-source class word, e.g. (FOR IMMEDIATE ACCESS), or it has contained a basic

or parametric form of the conventional variable [AB].

However any routine call can contain any subform of the defined format,

provided it is a formal subform.

In the examples given above, variations on the calls using different

subforms are not likely to arise in practice :

e.g. FIND ADDRESS AND TYPE FOR e

is not likely to occur, as no general compiler is likely to want to deal

specially with a particular element.

And CONVERT 74 INTO A5

would be an extravagant way of carrying out the basic instruction A5 = 74.

However situations can arise when the routine call contains nonbasic

subphrases of class words.

 For example in the routine

ROUTINE [SS] ≡ [INTEGER] [if,unless][EXPRESSION/1][COMPARISON-SYMBOL]

 [EXPRESSION/2][;]

Where the first thing to do might be

COMPILE INSTRUCTIONS TO SET ACCUMULATOR = VALUE OF

 ([EXPRESSION/1]) - ([EXPRESSION/2])

Note here that '[EXPRESSION/1] – [EXPRESSION/2]' is not a formal subphrase of

[EXPRESSION]/ Instead we must write '([EXPRESSION/1] – [EXPRESSION/2])'.

- 48 -

5) Resetting phrase-variables

None of the uses of auxiliary routines so far described have affected the

values of any phrase-variables involved in the routine cue. There are however

some restricted ways in which this can be done.

A formal 'call-by-reference' facility has not been implemented in the

Compiler Compiler. There is no particular reason why this has not been done,

except that it has not been required much in practice and it can be 'got round'

by experienced users using existing informal facilities.

As there is so little that can be done with the existing formal

facilities, the following description will be given only as a note, Note

however that it would be fairly easy to add one or two formats to the Compiler

Compiler (to simulate calling a variable by value) that could be used formally

by inexperienced users to achieve greater power than at present.

The phrase-variable identifying parameter [PI] (i.e. [PHRASE-VARIABLE] or

[PHRASE-VARIABLE-VALUE]) can itself be used in a fomat, to give a means of

'calling by reference', i.e. dealing directly with the phrase-variable in the

call instead of a copy of it. There is a special phrase-handling instruction

not described in the previous chapter that can then reset this variable, i.e.

[PI] = [AB], but this requires fairly expert knowledge of the implementation of

the Compiler Compiler to use safely.

The basic phrase-handling instructions for assigning phrase-values as

given in the previous chapter are :

LET [PI] = [RESOLVED-P][SEP]

 i.e. RESOLVE [PHRASE-VARIABLE-VALUE] INTO [PHRASE-EXPRESSION]

-> (LABEL] [IU][PI] ≡ [RESOLVED-P][SEP]

 i.e. -> [ABN][IF,UNLESS] [PHRASE-VARIABLE-VALUE] IS OF THE FORM [PHRASE-EXPRESSION]

LET [PI] = [GENERATED-P][SEP]

 i.e. SET [PHRASE-VARIABLE] = [PHRASE-EXPRESSION-VALUE]

In each of these, the Compiler Compiler on recognising the instruction

uses the phrase definition of the particular [PI] to analyse the phrase-

expression following it, It must know explicitly which [PI] it is, and the

phrase-expression must (therefore) follow it.

Therefore (PI] cannot be used parametrically in a format routine unless

the phrase following it is itself the parametric form of a phrase-expression.

i.e. [RESOLVED-P] or [GENERATED-P]. Equally, [RESOLVED-P] and [GENERATED-P] can

not be used in the place of [PI] (i.e. on the left hand side of the

instruction).

Therefore [PI] cannot be involved in one of these phrase-handling

instructions unless the [RESOLVED-P] or the [GENERATED-P] occurs in the routine

heading, and therefore in the format, because they cannot be formed inside the

format routine in any other way. Therefore a phrase-variable cannot be reset by

a nonbasic instruction (except by the unorthodox method referred to above)

unless the values involved in the resetting occur explicitly in the

instruction, i.e. the instruction contains a [PHRASE-VARIABLE-VALUE] followed

by a matching [PHRASE-EXPRESSION] into which it can be resolved, or a [PHRASE-

VARIABLE] followed by a [PHRASE-EXPRESSION-VALUE] to which it can be reset.

Therefore routines can only be defined for fairly simple variations on the

existing phrase-handling instructions.

For example, to make the conditional instruction as used in the previous

chapter recognisable by the Compiler Compiler :

FORMAT [AS] = -> [LABEL] [IF,UNLESS] [PI] IS OF THE FORM [RESOLVED-P][SEP]

ROUTINE [AS] ≡ -> [LABEL] [IF,UNLESS] [PI] IS OF THE FORM [RESOLVED-P][SEP]

LET [IU] = IF

-> 1 IF [IF,UNLESS] ≡ IF

LET [IU] = UNLESS

1) -> [LABEL][IU][PI] ≡ [RESOLVED-P]

END

- 49 -

Note that [LABEL] (and not e.g. [ABN]) must be used as this is a special

phrase-variable where the Compiler Compiler arranges to remember the particular

routine the actual symbols occurred in (therefore [LABEL] should not in fact be

used as a class word of the source language description).

It is possible to follow a [PI] by more than one phrase-expression, so if

we wanted to be more ambitious we could define

FORMAT [AS] = -> [LABEL][IF,UNLESS][PI] ≡ [RESOLVED-P] OR [RESOLVED-P][SEP]

ROUTINE [AS] ≡ -> [LABEL][IF,UNLESS][PI] ≡ [RESOLVED-P/1] OR

 [RESOLVED-P/2][SEP]

 -> 1 IF [IF,UNLESS] ≡ UNLESS

 -> [LABEL] IF [PI] ≡ [RESOLVED-P/1]

 -> [LABEL] IF [P1] ≡ [RESOLVED-P/2]

 END

1) -› 2 IF [PI] ≡ [RESOLVED-P/1]

 -> [LABEL] UNLESS [PI] ≡ [RESOLVED-P/2]

2) END

6) [SS] instructions in format routines - formal macros

Consider a situation where it was required that the add update routine of

the specimen program should be part of the specimen language. And further, it

is required that all instructions should be compiled on the spot instead of

using a cue-subroutine mechanism, i.e. as an 'open routine' or a 'macro'.

We could define :

 FORMAT [SS] = add update[VARIABLE][;]

 ROUTINE [SS] ≡ add update [VARIABLE][;]

 -> 1 unless [VARIABLE] < 100

 [VARIABLE] = [VARIABLE] + c

 return

1: c = 100intpt([VARIABLE]/100)

 END

Note that 'return' still means 'jump to the first instruction to be obeyed

after this routine has been obeyed' but the code compiled is different as an

open routine does not require a link.

If the instruction 'add update Y[e]' were recognised this format routine

would be entered with phrase-variable value [VARIABLE] a 'Y[e]'.

Therefore the successive symbol strings generated by the 5 cues in the

format routine would be :

-> 1 unless Y[e] < 100

Y[e] = Y[e] + c

return

 1:

c = 100intpt(Y[e]/100)

- 50 -

The effect of this format routine is therefore the same as if these 5

instructions (4 imperatives, 1 declaration) had been written in the program in

the place of each call. As each of the sub-format-routines is entered the same

resolution takes place in each case, E.g. for the first [VARIABLE] =

[EXPRESSION] the format routine would have been entered with the formal phrase-

identifier parameter [VARIABLE] set to the actual value 'Y[e]' and [EXPRESSION]

= 'Y[e] + c'.

To be more precise, the effect of the format routine is exactly the same

as that shown on P.10 to illustrate the simple 'substitution' theory of

routines, in the case where the actual parameter was again 'Y[e]'. In that case

the effect (in execution) of the cue-subroutine mechanism is the same as if the

instructions of the routine had been written down with each occurrence of a

formal parameter, e.g. 'y', replaced by the corresponding actual parameter,

e.g. Y[e]. In this case the actual compilation is the same as if each

instruction of the format routine had been written down with each occurrence of

a formal phrase-identifier parameter, e.g. [VARIABLE], replaced by the actual

phrase-variable variant, e.g. 'Y[e]'.

Therefore in general, a format routine which is written down as the

corresponding conventional routine but with each formal parameter replaced by

the corresponding phrase-variable compiles an open sequence of instructions

unique to the actual parameters of the call; and this sequence is exactly that

postulated in the simple substitution theory of routines, and the routine

carries out the same action as if each parameter of the routine call had been

implemented by substitution (using a cue-subroutine mechanism).

Such a routine can be called a formal macro.

[To be even more precise, the effect of a formal macro (and of the

substitution model of a routine) is the same as if the routine call had been

replaced by the instructions of the corresponding routine enclosed in a block,

e.g, BEGIN;; END, with each occurrence of a formal parameter replaced by

the corresponding actual parameter. This overcomes the problem of local

declarations (including labels) and 'return" is interpreted as 'Jump to the END

of the block'.]

7) [SS] instructions in format routines - informal macros

Consider a format routine for the English autocode :

FORMAT [SS] = choose random [ITEM] [NUMBER] ([NUMBER]) or [NUMBER] ((NUMBER])

 [orNUMBER-WEIGHT*?][PAUSE]

Where PHRASE [orNUMBER-WEIGHT*?] = [S]or [NUMBER] ([NUMBER])

 [orNUMBER-WEIGHT*?], NIL

E.g.choose random direction left(5) or right(5) or forwards(8) or backwards(2).

[Note that [S]s are being left out except where they occur at the beginning of

phrases. [ITEM] is a variable in this language and [NUMBER] an expression;

'direction', 'left', 'right' etc. are simple variable names.]

- 51 -

The purpose of the routine is to set the [ITEM], e.g. 'direction', equal

to one of the given alternative values (in this case 4 : 'right', 'forwards',

and 'backwards') at random with probability weighted in the ratios given in

brackets (e.g. 5:5:8:2). [See the next page for the source routine required for

this example.]

The corresponding format routine is :

ROUTINE [SS] ≡ choose random [ITEM] [NUMBER/1] ([NUMBER/2]) or [NUMBER/3]

 ([NUMBER/4])[orNUMBER-WEIGHT*?][PAUSE]

 SET [NUMBER] = ([NUMBER/2]) + ([NUMBER/4])

 SET (orNUMBER-WEIGHT*?/1] = [orNUMBER-WEIGHT*?] ((i.e. make a copy))

1) -> 2 UNLESS (orNUMBER-WEIGHT*?/1] IS OF THE FORM

 [S]or[NUMBER/5] ([NUMBER/6])[orNUMBER-WEIGHT*?/1]

 SET [NUMBER] = ([NUMBER]) + ([NUMBER/6])

 -> 1

2) LOCAL GENERAL VARIABLES : limit, random-number

 generate a random-number between 0 and this (NUMBER].

 set the limit = [NUMBER/2].

 go to (1) unless the random-number is below this limit.

 set the [ITEM] = [NUMBER/1].

 FINISH. ((i.e. 'return'))

 A1 = 1

 ASSIGN VALUE Al TO [N]

3) [N]: ((i.e. source program label = A1))

 -› 4 IF [orNUMBER-WEIGHT*?] IS OF THE FORM NIL

 A1 = A1+1

 ASSIGN VALUE Al TO [N]

 add [NUMBER/4] to the limit.

 go to ([N]) unless the random-number is below this limit.

 set the [ITEM] = [NUMBER/3].

 FINISH.

 RESOLVE [orNUMBER-WEIGHT*?] INTO [S]or[NUMBER/3]([NUMBER/4])

 (orNUMBER-WEIGHT*?]

 -> 3

4) set the [ITEM] = [NUMBER/3].

 END

If this format routine is entered after meeting the instruction :

'choose random direction left(5) or right(5) or forwards(8) or backwards(2).'

the initial settings of the formal parameter phrase-variables are :

[ITEM] = 'direction'

[NUMBER/1] = 'left'

[NUMBER/2] = '5'

[NUMBER/3] = 'right'

[NUMBER/4] = '5'

[orNUMBER-WEIGHT*?] = ' or forwards (8) or backwards (2)'

[PAUSE] = '. '

- 52 -

Then the sequence of SS instructions complied is in effect :

 LOCAL GENERAL VARIABLES : limit, random-number

 generate a random-number between 0 and (((5)+(5))+(8))+(2).

 set the limit = 5.

 go to (1) unless the random-number is below this limit.

 set the direction = left.

 FINISH.

1: add 5 to the limit.

 go to (2) unless the random-number is below this limit.

 set the direction right,

 FINISH.

2: add 8 to the limit.

 go to (3) unless the random-number is below this limit.

 set the direction = forwards,

 FINISH.

3: set the direction = backwards.

Note that ASSIGN VALUE [AB] TO [N] is an [AS] instruction of the given

Compiler Compiler language. A label in the English autocode is [N] (i.e. [N],

an integer). 'Generate a random-number ...' is an [SS] instruction of the

English autocode.

Note in this example that the format of the routine contains a class word,

i.e. [orNUMBER-WEIGHT*?] that is not one of the net of class words

corresponding to permitted formal parameters for routine headings (e.g. (ITEM],

a variable, or [NUMBER], an expression); in fact this class word has been

created specially for this format. Similarly the instructions of the format

routine do not consist of [SS] instructions only, but include [BS] and [AS]

instructions as well.

This routine is therefore not a 'formal macro', but an informal macro.

[Note that the example of the formal macro illustrates the remark made on

page 40 :

The specification of how to carry out a particular task is only the same as the

specification of how to compile the requisite machine code instructions to

carry out the task if the task can be expressed entirely in terms of a set of

more basic instructions in the given language.

It should be observed that an instruction e.g. '-> 1 unless y < 100'

occurring in a source program routine describes what action is to be taken on

meeting this instructions when the routine is being obeyed. The same

instruction occurring inside a format routine does not mean that 'go to (1)

unless y < 100' is to be obeyed when this instruction is reached during the

execution of the format routine, but instead 'COMPILE INSTRUCTIONS TO -> 1

unless y<100'.

In the case of example (6) this distinction is blurred, but the situation

is much clearer in the case of (7) since the format routine contains many [BS]

and [AS] instructions of the Compiler Compiler language. These instructions

obviously describe actions which are obeyed when the format routine is being

obeyed, and so in this context it is clear that the [SS] instructions are not

obeyed when the format routine is being obeyed, but when the corresponding open

routine is obeyed at execution tine. Any possible confusion can be avoided if

we always remember to mentally preface each [SS] instruction occurring in a

format routine with e.g, 'COMPILE INSTRUCTIONS TO ...'. Then every instruction

in the format routine reads correctly as an operation to be carried out at

compile time.

In fact if it happened that a source language required the same syntax for

certain instructions as that of the Compiler Compiler language, then such an

[SS] instruction occurring in a format routine would be ambiguous. If it had

been thought likely in designing the Compiler Compiler that such occurrences

would be common, then it would have been decided to prohibit [SS] instructions

- 53 -

from format routines, and instead a new [AS] format would have been provided to

cover this case, e.g. :

FORMAT [AS] = COMPILE [SS]

Therefore a formal macro description and a source routine description look

the same (apart from the formal parameters) simply because the 'COMPILE' before

each [SS] instruction in the format routine can be left out. Conversely because

whether or not we should preface each [SS] instruction with 'COMPILE' is

implicit in the type of routine it is contained in (i.e. a format routine or a

source program routine) it is possible for the body of the routine to be the

same in both cases. That is, in the case of a formal macro the two

specifications as stated in the opening paragraph are the same.]

Uses of format classes other than [SS] [AS], and [BS]

A format class is an alternative form of phrase definition. It has the

special property that its alternatives can be defined in separate declarations

and that a format routine can be associated with it.

It can be handled exactly like a phrase, i.e. it can be included in phrase

and format definitions, it can be used as a phrase-variable, and it can be

involved in phrase-handling instructions,

But there is an exception in that CATEGORY OF [PHRASE-VARIABLE-VALUE] will

not yield the normal number, 1, 2, ..., but the system serial number that has

been allocated to it, whose only property relative to the imagined category

number is that it steadily increases.

However the 'format-variable', has the property of being immediately

resolvable into the associated format routine. It is therefore classically used

in the situation where each phrase of a set of phrases has just one specific

operation associated with it, which is independent of any others of the set.

The most obvious candidate for a format class in the previous discussion is the

[FUNCTION].

The permanent functions have the property that they cannot be recognised

on their own as a single instruction of the source program, but otherwise they

are distinct operations of the language, e.g like the permanent routines.

So in the specimen autocode it may be more convenient to define :

 FORMAT CLASS [FUNCTION)

 ((this declaration introduces a new format class))

 FORMAT [FUNCTION] = sqrt ([EXPRESSION])

 FORMAT [FUNCTION] = cos ([EXPRESSION])

 FORMAT [FUNCTION] = intpt ([EXPRESSION])

 FORMAT [FUNCTION] = radius ([EXPRESSION][,][EXPRESSION])

 etc.

 FORMAT [FUNCTION) = [small-letter*] ([EXPRESSION][ANY-FURTHER-EXPRESSIONS])

This last format is the 'catch-all' to recognise any program-defined

functions.

- 54 -

Then for example in the routine :

COMPILE INSTRUCTIONS TO SET ACCUMULATOR = VALUE OF [EXPRESSION]

if any [OPERAND] in the [EXPRESSION] turns out to be a [FUNCTION], we

could obey :

CALL R [FUNCTION]

which would call the appropriate format routine e.g.

ROUTINE [FUNCTION] ≡ radius ([EXPRESSION/1][,][EXPRESSION/2])

COMPILE INSTRUCTIONS TO SET ACCUMULATOR = VALUE OF

 sqrt (([EXPRESSION/1])((EXPRESION/1]) + ([EXPRESSION/2])([EXPRESSION/2]))

END

Other uses of the Compiler Compiler

There is a special instruction the Compiler Compiler language for planting

a machine code instruction in a location of the store. This has not previously

been referred to. It in no way requires elaborate facilities of the Compiler

Compiler, nor is the Compiler Compiler specially oriented to its use.

So if there is any other job than writing a compiler for which the main

structure of a compiler program is convenient, then the Compiler Compiler can

be used as an ordinary compiler with which to write the program.

A suitable Job might be any data-processing job which has a complex input

data structure expressible in phrase structure notation. In the field of

computer languages, it could equally well be used to translate source programs

written in a particular language into another language (e.g. the assembly

language of a particular computer), producing an output document that can be

used as input to another compile.

- 55 -

Appendix

NOTES ON IMPLEMENTATION OF PHRASE VARIABLES

Observations on analysis trees

The analysis of a basic phrase with respect to a class word can be represented by

an 'analysis tree' as shown in Chapter 2. A more complex example is given on P.60, of

'a+(pq-Q[j]/2)' with respect to the class word [EXPRESSION]. [The basic symbols have

been picked out in quotes, and alongside some of the category numbers is given (as a

reminder) the substring associated with the class word above.]

In such a representation it will he noticed that the subtree of each class word,

e.g. the lower half of the tree, stemming from [OPERATOR-OPERAND*?] 'Q[j]/2', is

'independent' of the rest of the tree. That is, if the rest of the tree apart from that

stemming from the class word was stripped away, we would be left with a formal analysis

of the associated symbol string with respect to the class word.

In this example then the tree for 'a+(pq-Q[j]/2)' contains 37 independent analysis

(sub)trees (including itself), that is one corresponding to each class word in the

tree. 16 of the trees are 'degenerate', i.e. the tree ends immediately in a basic

phrase (or NIL). The other 21 trees contain further (sub)trees If the alternative of a

class word (given by the category number) is a basic phrase its tree is degenerate.

Otherwise the tree branches at the next stage into a separate subtree for each class

word in the alternative (non-basic) phrase.

Note for example that the branch point under '-Q[j]/2' which matches [OPERATOR-

OPERAND*?] corresponds to a resolution instruction e.g.:

RESOLVE [OPERATOR-OPERAND*?] INTO [OPERATOR][OPERAND][OPERATOR-OPERAND*?]

 1 –Q[j]/2

[OPERATOR][OPERAND][OPERATOR-OPERAND*?]

 2 - 2 [Q[j] 1 /2

This resolves the value associated with

[OPERATOR-OPERAND*?] i.e. the subtree

stemming from [OPERATOR-OPERAND*?] above

'-Q[j]/2', to set up 3 new values

corresponding to the subtrees stemming

from [OPERATOR],[OPERAND], and [OPERATOR-

OPERAND*?], representing values '-',

'Q[j]/2' and '/2' respectively.

When [EXPRESSION] is being dealt with, e.g. in :

COMPILE INSTRUCTIONS TO SET ACCUMULATOR = VALUE OF [EXPRESSION]

in order to extract all the information about it, at each of the 21 branch points it

will be necessary to have a resolve instruction (or a successful test instruction) and

for each of the 16 degenerate points it will be necessary to use a 'CATEORY OF'

instruction (or an unsuccessful test for the NIL alternatives).

Note however that although some of these 37 instructions may be obeyed as separate

instructions in the format routine, many will be carried out in subroutines, or by the

same instruction obeyed repeatedly, or by the same instruction in a recursive use of

the routine, e.g. for sub[EXPRESSION/1] 'pq-Q[j]/2', to :

 COMPILE INSTRUCTIONS TO SET ACCUMULATOR = VALUE OF [EXPRESSION/1]

Representation of a phrase-variable

Consider now the problem of representing a phrase-variable. Since the analysis

tree so closely represents the information required in the phrase-handling

instructions, it will be expected that the representation in store will reflect the

same tree structure. The representation of an analysis tree in store is called an

'analysis record'.

As is the general practice with variables, associated with each phrase-variable is

an address (fixed relative to the local data space) defining a certain number of

locations to hold its value. In the case of a degenerate tree the only information we

require is the category number, and this could be held in just one location at this

address. Remember that each phrase-variable is of a different 'type', i.e. each phrase-

value is interpreted in relation to the corresponding class word definition; therefore

there is no need for example to store the system serial number of the class word with

the category, or to store the actual symbol or symbol string of the basic phrase as

this is implicit is the category number.

However for a non-degenerate tree it is clear that (e.g. where recursion is being

used) there is no limit to the amount of information that can be contained in an

analysis tree, and so it is impossible to allocate a set number of locations

- 56 -

in advance to a phrase-variable. Therefore it is necessary to adopt the standard

procedure in this situation of allocating just one fixed location at the address

associated with the 'name' of the phrase-variable, and this location always contains

the address of the (rest of the) 'value' of the phrase-variable; this value can then be

allocated storage as convenient each time a new value is assigned to the phrase-

variable. The fixed location(s) associated with a variable can be called the

'name-location'.

For generality the same procedure is adopted for all phrase-values. Thus even for

a degenerate tree the store representation (i.e. the analysis record) is an address in

the name-location which 'points' to another location anywhere in store which contains

the category number.

Address Contents Consider the local data space ('stack')

organisation, for example of the ROUTINE[SS] ≡

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

Information

necessary for

'stack'

organisation

“

Address of tree for [SS}

e.g. S'4 “ [S?]

e.g. S'5 “ [NEWLINE]

[DATA-SPECIFICATION*]

S'8 [DATA-SPECIFICATION]

Address of tree for [TYPE]

S'14 “ [ELEMENT]

 “ [ANY-FURTHER-ELEMENTS]

 “ [ELEMENTS/1]

 “ [INTEGER]

 “ [ARRAY-BASE]

 “ [INTEGER/1]

 “ [INTEGER/2]

 “ [ANY-FURTHER-ELEMENTS/1]

DATA-TYPE[S?][NEWLINE][DATA-SPECIFICATION*]

Here S[N] represents the [N]th location in

store after the base address S0 for the local

data space of the routine and S'[N] is a

location in another area of store S' containing

the category numbers, etc.

Assume that the phrase-variables used by the

routine are as shown on the list opposite (in

order of appearance), and that the highest local

conventional variable A[N] used is A7.

The examples of degenerate trees whose full

analysis record is shown are those for [S?],

[NEWLINE], and [ELEMENT], with category numbers

2, 2 and 16 respectively, which imply the symbol

string value NIL, [EOL], and 'p'.

S19

S20

S21

S22

S23

S24

S25

S26

Value of A0

 “ A1

 “ A2

 “ A3

 “ A4

 “ A5

 “ A6

 “ A7

Consider now the problem of storing the value of a non-

degenerate tree, e.g. for [DATA-SPECIFICATION] with the first

alternative phrase [TYPE][ELEMENT][ANY-FURTHER-

ELEMENTS][NEWLINE]. An analysis tree for this phrase (without

the [NEWLINE]) is given on P.20. The first thing to be contained

at the address (e.g. S'8) pointed to by the name-location is

clearly the category number still. Then the most obvious thing

to do to is place the analysis records of the set of (e.g. 4)

S'0

S'1

 .

 .

S'4

S'5

 .

 .

S'8

 .

 .

S'14

 .

 .

.

.

.

.

2

2

.

.

1

.

.

16

.

.

sub-trees it branches into in the locations following the category

number.

We are now faced with the sub-problem of representing N analysis

records in store starting from a fixed location (e.g. S'9)where N is the

number of class words in the alternative phrase associated with the

category number in the corresponding class word definition. But this is

exactly the same problem as we have started from, in representing the

values of the set of (e.g. N'=14) phrase-variables that are used in that

format routine in the given area of store from S5 onwards.

We therefore use the same solution as before. That is, we follow the

category number by N locations each giving (in order) the address of the

(rest of the) analysis record of the corresponding class word in the

alternative phrase. The rest of the analysis record can then be

positioned anywhere in store.

This process can of course be continued indefinitely : all the locations pointed to by

this sublist or addresses will contain category numbers; each one which corresponds to

a non-basic subalternative will be followed by its own sub-sublist of addresses, etc..

For example consider the analysis tree of

with respect to [SS], the source language.

[Note that since [SS] is a format and not a

DATA-TYPE

REAL p, q, r

class word the 'category number', e.g. 435, is the system serial number of the format

and its associated format routine.]

- 57 -

 [SS]

 435 DATA-TYPE

 REAL p, q, r

DATA-TYPE[S?][NEWLINE][DATA-SPECIFICATION*]

 2 2 2

 NIL [EOL] [DATA-SPECIFICATION]

 1

 [TYPE][ELEMENT][ANY-FURTHER-ELEMENTS][NEWLINE]

 1 16 1 2

 REAL p [EOL]

 ,[ELEMENT][ANY-FURTHER-ELEMENTS]

 17 1

 q ,[ELEMENT][ANY-FURTHER-ELEMENTS]

The corresponding analysis

record could be stored as

shown below (using two

different ways of

representing the same

storage).

 18 2

 r NIL

 Conventionally :

Addr.

S5

S'0

S'1

S'2

S'3

S'4

S'5

Contents

S'0

435

S'4

S'5

S'6

2

2

(S5) = S'0

 435 S'4 S'5 S'6

 2 2 2 S'8

Or alternatively :

Here strings of hyphenated numbers; (or

single numbers) represent the contents

of successive locations; the address of

the first location in the set is given

by the address pointing (down) to it.

S'6

S'7

S'8

S'9

S'10

S'11

S'12

S'13

S'14

S'15

S'16

S'17

S'18

S'19

2

S'8

1

S'13

S'14

S'15

S'24

1

16

1

S'18

S'19

17

1

 1 S'13 S'14 S'15 S'24

 1 16 2

 1 S'18 S'19

 17 1 S'22 S'23

 18 2

S'20

S'21

S'22

S'23

S'24

S'22

S'23

18

2

2

 Note that although in this example the storage of subtrees

has been systematic, this is not essential to the

representation; treating each category number together with

any addresses immediately following it as a unit, these

units could have been placed anywhere in store.

Consider now the instruction

-> 5 UNLESS [DATA-SPECIFICATION] IS OF THE FORM

 [TYPE][ELEMENT][ANY-FURTHER-ELEMENTS/1][NEWLINE]

The name-locations associated with these phrase-variables are S'9,S'10,

S'11, S'18, and S'7 respectively, or where the system B-variable B72 gives the

address of S0, the base of the local data space, B72+9, B72+10, ...B72+7.

Say that at the time the instruction is obeyed, [DATA-SPECIFICATION] has

the value 'REAL p, q, r[EOL]', with analysis record held in the same locations

as in the appropriate subtree above (stemming from S'8) :

- 58 -

[DATA-SPECIFICATION] (S9) = S'8 'REAL p, q, r[EOL]

 1 S'13 S'14 S'15 S'24

 2

 1 16

The required operation can be

achieved by the following set of

basic instructions (where B91 is a

'working-space' B-variable) :

 1 S'18 S'19

 17 1 S'22 S'23

 18 2

B91 = (B72+9) Set B91 to the contents of the name-location S9 (e.g. = s'8).

-> 5 IF (B91) ≠ 1 Go to (5) if the category number in B91 is not 1 (it is).

(B72+10)=(B91+1)

(B72+11)=(B91+2)

(B72+18)=(B91+3)

(B72+ 7)=(B91+4)

Set the name-location for [TYPE] to point to the address

given in the location after the category number; set

{ELEMENT] to point to that given in the next location, [ANY-

FURTHER-ELEMENTS] to the next and [NEWLINE] to the address

given in the 4th location after B91.

This sets up the new phrase-values :

e.g. : [TYPE] [ELEMENT] [ANY-FURTHER-ELEMENTS/1] [NEWLINE]

 (S10)=S'13 (S11)=S'14 (S18) = S'15 (S7) = S'24

 1 16 1 S'18 S'19 2

By reference back to the analysis tree on

the previous page, it will be seen that

[TYPE] is now set to 'REAL', [ELEMENT] to

'p', [ANY-FURTHER-ELEMENTS/1] to ',q,r'

and [NEWLINE] to '[EOL]'.

 17 1 S'22 S'23

 18 2

Note that, although a resolve instruction resets the value of each phrase-

variable, no new locations are required to hold the new values. They

automatically share the space used for the phrase-variable being resolved.

A resolve instruction is implemented in the same way as a test, except

that there is a jump-to-monitor if the category number is not correct.

In place of the instruction e.g. A1 = CATEGORY OF [DATA-SPECIFICATION]

would be compiler-compiled the basic sequence : B91=(B72+9), A1=(B91).

Consider now a generate instruction,

E.g. SET [DATA-SPECIFICATION] = [TYPE][ELEMENT]

 [ANY-FURTHER-ELEMENTS/1][NEWLINE]

Assume, say, that the value of the [DATA-SPECIFICATION] has been altered since

the test instruction shown above was obeyed, but that the new values that were

created then have not been; it is required to reset [DATA-SPECIFICATION] to its

former value.

This would be achieved by :
(B72+9) = B90

(B90) = 1

(B90+1) = (B72+10)

(B90+2) = (B72+11)

(B90+3) = (B72+18)

(B90+4) = (B72+7)

 B90 = B90+5

[DATA-SPECIFICATION]

(S9) = S27

Where B90 is the end of the local data space (e.g. S27) for the routine,

we are going to use this area for the new space required for the new

value. The first location contains the category number, the next the

address in the name-location of [TYPE] (e.g. S'13), the next that for

[ELEMENT], the next that for [ANY-FURTHER-ELEMENTS/1] and the 4
th
 that for

[NEWLINE]. Finally we add 5 to the end-of-stack to preserve the new space

used.

This sets up the new analysis record shown.

Note that this value is identical to the previous value of

 1 S'13 S'14 S'15 S'24

 2

 1 16

 1 S'18 S'19

 17 1 S'22 S'23

 18 2

[DATA-SPECIFICATION], since the two trees have the

same structure and each pair of corresponding

category numbers match; but the area of store

occupied by the analysis record is partially

different, i.e. any exploration of the tree is now

'routed' through the 5 new locations S27-S31

instead of S'8-S'12 as in the previous analysis

record.

- 59 -

Top-level [SS] routine implementationm

While the analysis routine is trying to recognise an (SS] instruction (in Compiler

mode) it builds up an analysis record in a fixed location, say S'0; this is no trouble

as the structure of an analysis tree exactly reflects the method of recognition.

At the stage where it has recognised an [SS] instruction it carries out certain

organisation pertinent to the associated format routine, e.g. setting up the local data

space at SO following the last location of S' it required for the analysis record (e.g.

at S'25). Initially all the values of the A[N] variables and the contents of the name-

locations are cleared to 0. B90 is set as appropriate (e.g. = S0 + 27). Then S'0 is set

in the name-location of [SS], and the format routine is entered with a sequence

resolving into the formal parameters,

E. g. for

ROUTINE [SS] ≡ DATA TYPE[S?][NEWLINE][DATA-SPECIFICATION*]

with analysis record as shown on P.57, the initial values set will be [S?] in S6

= S'4, [NEWLINE] in S7 = S'5, and [DATA-SPECIFICATION*] in S8 = S'6.

As always in the case of a resolution, the analysis records of the formal

parameters therefore share the storage space of the original analysis record.

Subroutine [AS] implementation

The implementation of format subroutines (i.e. [AS] routines, and sometimes [SS)

or e.g. [FUNCTION] routines) is closely analogous. When the analysis routine (in

Compiler Compiler mode) recognises a routine call it stores the analysis record of the

instruction with respect to its class in the cue. When the cue is obeyed (in Compiler

mode) the analysis record is copied into the stack and the data space for the routine

is set up underneath it. Then (e.g.) [AS] is set to point to the copy and the routine

is entered with a resolution of the format class into the principal parameters.

However there is a difference from the top-level recognition machinery, because it

is possible for an instruction to contain phrase-variables. If this happens the

analysis record is truncated at each such point (i.e. where on trying to match a class

word to the head of the symbol string it finds a phrase-variable of the appropriate

type). Special information is planted at each truncation point so that when the

analysis record is copied the appropriate subtree is attached to the main analysis

record by filling in at this point the current address in the name-location associated

with the phrase-variable.

Note that when a phrase-variable is called from the routine above in this way it

is a call-by-value U a call-by-reference, A resetting of the phrase-variable in the

subroutine will not affect the current setting of the corresponding phrase-variable in

the routine above. The fact that the name-location of a phrase-variable always contains

an address is not relevant; it contains a 'value address' not a 'variable address'. For

a call-by-reference it would be necessary to have a special form of address which

pointed to a name-location and not to a category number as is the usual case.

Note that in a conventional compiler there is rarely any need to use the SET ...

instruction except to make copies of phrase-variables. All settings of phrase-variables

tend to be done by resolutions. Therefore in the case of source material there is never

any need to acquire further storage space as illustrated above. All the material of all

the analysis records except for the name-locations themselves is therefore contained in

the original analysis record of the [SS] instruction, Therefore in the DATA TYPE

example all the 12 phrase-values that are created in the execution of the format

routine will comprise addresses pointing to the appropriate area S' of the original

analysis record. This is equally true if a source phrase-variable is passed down to a

subroutine.

Note that it is not possible in the formal language to reset the contents of store

locations involved in analysis records except the name-locations of phrase-variables.

Therefore the area S' remains inviolate. If this area is interfered with (as is

possible using informal facilities) then this is done at the compiler-writer's risk.

Such an alteration may alter the current values of a number of phrase-variables (i.e.

all those using this value as a subvalue). Such as arbitrary alteration contradicts the

fundamental property of a variable, that it can only be altered by referring directly

to its name (e.g. is an assignment statement, or as an actual parameter of a routine

which resets the parameter).

It is of course a novel feature of the phrase-variable that different phrase-

variables share the same store without mutual interference. This is an

- 60 -

economic advantage, and the fact that the store outside name-locations cannot be

altered in the formal language allows the implementation to take advantage of the

'sharing' property of analysis trees. [Note that if phrase-values had been represented

as symbol strings instead of analysis records it would still have been possible to

share storage space. E.g. S' would comprise the original [SS] string and name-locations

Analysis of 'a+(pq-Q[j]/2)

w.r.t [EXPRESSION]

 1

[+?][OPERAND][OPERATOR-OPERAND*?]

3 2 a 1 +(pq-Q[j]/2)

would now be pairs of addresses pointing to the first and

last symbols of the phrase-value. However in this case

every phrase-handing instruction except SET ... would

require entry to the analysis routine to re-analyse the

symbol-string involved, and SET instructions would not be

able to share existing space (in general.]

 NIL [VARIABLE] [OPERATOR][OPERAND][OPERATOR-OPERAND*?]

 1 1 3 2

 [ELEMENT] '+' '('[EXPRESSION]')' NIL

 1 1 pq-Q[j]/2

 'a'

 [+?][OPERAND][OPERATOR-OPERAND*?]

 3 2 p 1 q-Q[j]/2

 NIL [VARIABLE] [OPERATOR][OPERAND][OPERATOR-OPERAND*?]

 1 5 2 q 1

 [ELEMENT] NIL [VARIABLE]

 q-Q[j]/2

 16 1

 'p' [ELEMENT]

 17

 'q'

 [OPERATOR][OPERAND][OPERATOR-OPERAND*?]

 2 - 2 Q[j] 1 /2

 '-' [VARIABLE] [OPERATOR][OPERAND][OPERATOR-OPERAND*?]

 2 4 1 2

 [ARRAY-BASE]'['[EXPRESSION]']' '/' [CONSTANT] NIL

 17 1 j 3

 'Q' [+?][OPERAND][OPERATOR-OPERAND*?] [INTEGER]

 3 2 2 2

 NIL [VARIABLE] NIL [DIGIT]

 1 3

 [ELEMENT] '2'

 10

 'j'

