¥

ATLAS

N A,

SCIENCE RESEARCH COUNCIL

COMPUTER LABORATORY

S0L

Paul Bryant e e

NOVEMBER 1966

= ACKNOWLEDGEMENTS

The author wishes to thank the Atlas Computer
Laboratory staff for their help and advice duriné
. the implementation of this compiler. Also grate-
ful thanks are due to J. McNeley for kind permission
to reproduce his original papers on S0OL, and to the

- Institute of Electrical and Electronics Engineers

<. in whose transactions these papers first appeared.

Foreword
Py e rr——

This is a provisional manual., Dr, Bryant has written a
compiler for the simulation language SOL and this language is now
available to any user of the Atlas Laboratory. We believe that -

“the ocompiler is free from, at any rate serious, errors and we
'w0u1d not have undertaken this task if we did not believe that the
language is powerful and flexible and provides a unified method
for attacking complicated problems of the "operational research"
type. But we need practical experience and have therefore decided
" to put it on field trial as quickly as possible. Dr. Bryaat will
be glad to help anyone Wwho has difficulty in interpreting these
" notes or in using the compiler, and will be glad also to know of
. errors and to receive suggestions for changes or additions and for
_the form and oontent of & final version of the manual. '

J. Howlett

' Director , :
Atlas Computer Laboratory

i

15th December 1966l Gunigch: A ,.' R

R o

Chapter I

i

I1T

VII

VIII

CONTENTS

Introduction

SOL - A Symbolic Language
for General-Purpose Systems
Simulation

A Formal Definition of SOL
Differences in Aflas SOL
Compile time diagnostics
Run time diagnostics
Limitations

Sample program output

Page 1

10

16

18

19

20

21

CHAPTER I

Introduction

The simulation of complex systems on digital computers is a powerful
tool in the design of such systems. Examples of the types of problems
amenable to this form of solution are the flow of traffic through a road
network, the flow of material through a factory, or the most economical
way of deploying a fleet of ships. Simulation models have the advantage
over the live system that the parameters associated with a given system
may be varied at will, cheaply and easily and the resulting effects can be
computed and the inferences drawn without the vast cost of making the

changes to the actual system.

The earliest simulation problems were tackled with hand coded
programs and were 'one off jobs' tailored to a particular need but with
the development of large and powerful computers the essentials of simula-
. tion problems were extracted and put into the framework of compilers which

were then capable of tackling large problem areas.

One such compiler is SOL (Simulation Orientated Language) designed by
D. E. Knuth and J. L. McNeley. The author first met this language at
Carnegie Institute of Technology where it was being used extensively for
the simulation of multi-access computing systems. There is no better
introduction to the language than the original papers which are reproduced
- in Chapters II and III. Chapter II gives an easy introduction to SOL by
way of a fairly complicated example and the reader is advised to fully
understand this Chapter before proceeding. Chapter III gives a formal
definition of the language; the Atlas implementation has adhered to this
as far as possible. This Chapter may be omitted at a first reading.
Chapter IV gives the exact differences between SOL as defined in Chapter
III and Atlas SOL. These differences have been demanded by the card
character set on Atlas and the limitations of the Atlas Compiler Compiler
language by means of which Atlas SOL has been implemented. Chapter VIII
gives a listing of the Sample problem of Knuth and McNeley in Atlas SOL
followed by the output from the actual running on Atlas of the problem.
The results differ from those of Knuth and McNeley only because a different

random number generator was used. -

CHAPTER TII

SOL—A Symbolic Language for General-Purpose

Systems Simulation

D. E. KNUTH anp J. L. McNELEY

Summary—This paper lllustrates the use of SOL, a general-
purpose algorithmic language useful for describing and simulating
complex systems. Such a system is described as a number of indi-
vidual processes which simultaneously enact a program very much
like a computer program. (Some features of the SOL language are
directly applicable to programming languages for parallel computers,
as well as for simulation.) Once a system has been described in the
language, the program can be translated by the SOL compiler into an
interpretive code, and the execution of this code produces statistical
information about the model, A detailed example of a SOL model for
a multiple on-line console system is exhibited, indicating the nota-
tional simplicity and intuitive nature of the language.

IMULATION by computer is one of the most im-
S portant tools available to scientists and engineers

who are studying complex systems. The first com-
puter programs of this type were especially designed to
simulate some particular model; but afterwards the
authors of several of these programs abstracted the es-
sential features of their program organization and pre-
pared general-purpose simulation programs. The most
extensively used general-purpose programs of this type
have apparently been the SIMSCRIPT compiler of
Markowitz, Hauser, and Karr [1], and the GPSS (Gen-
eral-Purpose Systems Simulator) routines of Gordon
[2]-[4].

Although SIMSCRIPT and GPSS are both general-
purpose simulation programs, they are built around
quite different concepts because of their independent
evolution, and so they bear little rescmblance to each
other. SOL (Simulation-Oriented Language) is another
general-purpose simulation routine, in which we have
attempted to incorporate the best features of the other
languages. After a careful study of SIMSCRIPT and
GPSS, and after having implemented a version of GPSS
for another computer, we found that it would be possible
to generalize the characteristics of the former programs,
while at the same time the language became simpler
and more convenient for the preparation of models. This
simplification was achieved by extracting the essential
characteristics of GPSS and recasting them into a sym-
bolic language such as SIMSCRIPT. There are, of
course, a great many ways in which this can be done,
and we are not sure that the compromises we have
chosen have been optimal; but a year of experience with
the SOL language, after applying it to a number of
problems of different kinds, indicates that SOL is a

Manuscnpt recewcd ﬂnnuury 3, 1964
D. E. Knuth is with the California Institute of Technology,
Pasadena, Calif,
L. McNeley is with the Burroughs Corporatlon, Pasadcena,

Calil,

S

quite powerful and flexible way to describe systems for
simulation. We also found that the increased generality
available in SOL was actually simpler to implement
into a computer program than the previous routines
were, i

A complex system can be represented as a number of
individual processes, each of which follows a program
very much like a computer program. For example, if we
were simulating traffic in a network of streets, we might
have one program describing a typical automobile (or
perhaps two programs, one which describes all of the
women drivers and one which describes all of the men),
another program which represents the action of traffic
signals, and possibly some other programs representing
pedestrians, etc. Each program depends not only on
quantities which are specified in advance, but also on
random quantities which describe a probabilistic be-
havior; thus, we can specily the probability that a driver
will turn left, the probability that he will switch lanes,
the distribution of speeds, etc. Although each program
represents only a single entity (such as a single auto-
mobile), there can be many entities each carrying out
the same program, each at its own place in the program.

Because of these considerations, SOL is a language
which is in many respects very much like a problem-
oriented language such as ALGOL or FORTRAN.

There are three major points of difference between SOL

and conventional compiler languages. SOL provides

1) mechanisms for parallel computation,

2) a convenient notation for random elements within
arithmetic expressions,

3) automatic means of gathering statistics about the
elements involved.

On the other hand, many of the features of problem-
oriented languages do not appear in SOL, not because
they are incompatible with it, but rather because they
introduce more complication intg this scheme than
scems to be of practical value for simulation processes.

A program written in the SOL language is punched
onto cards and it is then compiled by the SOL compiler
into an interpretive pseudocode. The SOL snterpreter is
another machine program, which executes this pscudo-
code and produces the results. (The SOL system has
been implemented for the B5000 computer, but at the
present time it is being used only for research within the
Burroughs Corporation, and it is not cucréntly available
for distribution.)

A self-contained, complete description of SOL ap-

IEEE TRANSACTIONS ON

pears in another paper [§]. The definition there is rather
terse since it is intended primarily as a reference de-
scription; we will introduce the language here by means
of an example, discussing the significance of cach state-
ment in an intuitive fashion.

ExamprLe: COMMUNICATION WITII
ReMOTE TERMINALS

The following example has been chosen not only to
illustrate most of the features of SOL, but also because
it is a practical application in which SOL has been used
to evaluate the design of an actual system of some com-
plexity.

Consider the configuration shown in Fig. 1. This
represents one of four similar groups of devices which
all share the processor shown at the right. The “TU’s"
are terminal units which may be thought of as inquiry
stations or typewriters. There are three groups of type-
writers, with three in the first group (TU[1], TU[3),
TU[S]), two in the second group (TU[2], TU[4]) and
only one in the third (TU[6]). These groups are located
many miles from each other and from the central proces-
sor. People come in at the rate of about five or six per
minute to use each typewriter, and they wait in the
appropriate queue until the typewriter is free.

These people will send one of three kinds of messages.

Message Frequency Compute time f;;g;ggr&ro:;';'
A 20 per cent 250 msec 3
B 50 per cent 300 msec 4
C 30 per cent 400 msec S

Each message type has a different frequency and re-
quires a different amount of central processor time.
Communication between the typewriters and the
processor is handled by site buffers SB[1],SB(2], SB(3],
one at each remote site, and by two processor buffers
PBU's, which receive the information and transmit it to
the computer. These processor buffers sequentially scan
TU[1], TU[2], - - -, TU[6], TU[1], - - - until locat-
ing a typewriter ready to transmit information; this
scanning is done by sending control pulses to all lines,
then receiving a “positive” response from the SB if the
appropriate TU is ready. Then a message is transferred
from SB to the PBU and from there to the processor;
after computing the answer, the processor refills the
PBU, and the appropriate nummber of words is sent back
to the SB and is typed on the TU (one word at a time).
Further details will be given as we discuss the program.
We will compose three programs.

1) A program which describes the action of each per-
son who uses the remote typewriters.
'2) A program which describes the action of each of
the two PBU's. :
3) A program which simulates the action of the other

ELECTRONIC COMPUTERS August
six 1’BU’'s, which share the central processor with
the configuration shown in Fig. 1.

IFig. 2 shows these three programs together with the con-
trol information, as a complete SOL model.

The independent quantities which enact the programs
as the simulation proceeds are called lransactions. (Much
of the terminology used in SOL is taken from Gordon's
simulator [2]-[4].) As simulation begins, there are only
three transactions: one {or cach of the programs 1), 2),
3). Therefore, these programs describe not only the ac-
tion of the quantities mentioned above, they also de-
scribe the creation and dissolution of new transactions.

Each transaction contains local variables which have
values that can be referred to only by that transaction.
There are also globel variables, and some other cypes of
global quantities, which can be referred to by all trans-
actions. Thus, transactions can interact with each other
by sctting and testing global quantities. Only one
“copy” of each global variable is present in the system,
but there are in general many copies of each local vari-
able (one for each transaction).

Program 1), which represents the people using the
typewriters, might begin as follows:

process USERS;

begin integer Q, START TIME, MESSAGE TYPE;

new transaction to START; new transaction to START;

ORIGIN: new transaction to START; wait 0:5000; go to
ORIGIN; 3

START:

The first line merely identifics a process (s.¢., a program)
with the name “users.” The language resembles
ALGOL, and we distinguish control words by putting
them in bold-face type. The second line states that there
are three local variables in these transactions, having the
names Q, START TIME and MESSAGE TYPE. The statement
“new transaction to START” describes the creation of a
new transaction whose local variables have the same
values as the local variables of the parent transaction (in
this case zero, since all local variables are automatically
set to zero at the beginning of a process), and this new
transaction begins executing the program at the state-
ment labeled sTART. The statement “wait 0:5000"
means an amount of simulated time, chosen randomly
from 0 to.5000, is to elapse before the nuxt statement is
executed. In general, the statement “wait E,” where E
is some expression, means that E units of time are to
pass before excuting the next statement. The expression
E,: E, always denotes a random integer chosen between
E, and E,, and therefore “wait 0:5000” has the meaning
stated above. A unit of time in this case represents
1 msec in the simulated model.

The reader should now reread the above sequence of .
coding before proceeding further. The essential action it
describes is that three transactions will begin executing
the program beginning at the statement called sTART,
and therealter a new transaction (i.e., a new user enter-

»

-3 -

1964

Knuth and McNeley: SOL—Symbolic Language for Systemns Simulation

hree
other

o .{\1

-

Tu(e) SBI3)

Tersinal
Unite

Bite

Queuss
Bulfers

\ [/

Communication Frocessor Buffer
Lines

=

FProcesser
Units (PBU's)

Fig. 1—Multiple console on-line communication system.

begin

facility Tu[6], sp[3], LINE, cOMPUTER;

store 10 QUEUE([6];

integer TusTATE (6], sBNUMBER [6], TUMESSAGE[6];

table (2000 step 500 until 15000) TABLE[6];

process MAST_[_'IR CONTROL;

begin suNUMBER[1]+1; SBNUMBDER [2]+2;
SBNUMBER [3]«—1; sONUMBRER [4]¢2;
SBNUMBER[5]«1; SBNUMDER [6]+3;

wait 60601000, stop end;

process USERS;

begin integer Q, START TIME, MESSAGE TYPE;"

new, transaction to START; new transaction to START;

ORIGIN: new transaction to START; wait 0:5000; go to

ORIGIN;

START: Q«1:6; enter QUEUE[Q];

MESSAGE TYPE+(1,1,2,2,2,2,2,3,3,3);

seize TU[Q];

TUMESSAGE [Q] «~MESSAGE TYPE;

wait 6000:8000;

START TIME+time;

output #TU#, Q, fSENDS MESSAGE#, MESSAGE TYPE,

#AT TIMEF, time;

TUSTATE [Q]«—1;

wait until TusTATE [Q] =0;

release Tu[Q]; leave QUEUE([Q];

tabulate (timo —START TIME) in TABLE [¢];

output #TU#, Q, #RECEIVES REPLY AT TIMEf, time;

cancel end;

process PBU; begin integer s, T, WORDS;

new transaction to SCAN; T+3;

SCAN: T+T+1; if T>6 then T—1; wait 1;

S+SBNUMBER[T];

seize LINE;

walit 5; if sn[s] busy then (wait 80; release LINE; go to
SCAN);

seize sn[s]; wait 15; if TusTATE[r]#1 then

(wait 65; release LINE; release sns]; go to scan);

wait 225; SEND: wait 170; if pr(0.02) then (wait 20; go to
SEND) ;

new transaction to COMPUTATION; wait 20; release sB [s];

release LINE; TUSTATE [T]+2; cancel;

COMPUTATION: Seize COMPUTER; WORDS —TUMESSAGE [T)
S

wait (if worps =3 then 250 else if worDs =4 then 300
else 400);

release COMPUTER;

OUTPUT: wait 1; seize LINE; wait 5;

if sn[s] busy then (wait 80; release LINE; go to OUTPUT);

seize sp[s]; wait 75;

RECEIVE: wait 80; if pr(0.01) then (wait 20; go to
RECEIVE) ;

release LINE;

WORDS+—=WORDS —1;

if worps =0 then new transaction to SCAN;

wait 325; release sn[s]; wait 170;

if worps >0 then go to ouTPUT;

TUSTATE [T]+0; cancel end;

process OTIIER PBUS;

begin integer 1; 16;

~ CREATE: new transaction to COMPUTE;

I1—i—1; if 1I>0 then go to CREATE; cancel;

COMPUTE: wait 3200:5000; seize COMPUTER; '

wait (250, 250, 300, 300, 300, 300, 300, 400, 400, 400);
release COMPUTER; go to COMPUTE end;

end.

Fig. 2—Complete SOL program [o:j the on-line system.

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

ing the system) will be created at intervals of about 2.5
scc. We have started the system with three transactions
so that it will not take it very long Lo arrive at a more or
less stable condition.

The program now proceeds as follows:

START: Q—1:6; enter QuEvL[Q];

The statement “Q«1:6” means that local variable Q is
sct to a random number between 1 and 6; thus the user
is assigned to one of the six typewriters. The “enter”
statement refers to one of six global quantities,
QUEVE[1], + + -, QuEUE[6]. At the conclusion of the
simulation, data will be reported giving the average
number of people in each queue at a given time, and
also the maximum number.

MESSAGE TYPE«—(1,1,2,2,2,2,2,3,3,3);

The expression (E,, E,, - -+, E,) denotes a random
choice selected from among the n expressions. There-
fore, the given statement nieans that the local variable
MESSAGE TYPE receives the value 1 with probability 20
per cent, 2 with probability 50 per cent and 3 with
probability 30 per cent; this represents the choice of
message A, B or C as stated carlier.

seize Tu[Q];

This statement refers to one of the global quantities
Tu[l], - -+, TU[6], which are classified as facilitics. A
facility is seized by one transaction, and then it cannot
be scized by another transaction until it has been re-
leased by the former transaction. Therefore, if transac-
tion X comes to a scize statement, where the correspond-
ing facility is busy (i.e., has been seized by transaction
Y), transaction X stops exccuting its program until
transaction Y releases the facility. If several transac-
tions are waiting for this event, they are processed in a
first-come-first-served fashion.

Thus, the statement “seize TU [Q]” expresses the situ-
ation that the user takes control of typewriter number
Q, after possibly waiting in line for it to become avail-
able.

TUMESSAGE [Q] «—MESSAGE TYPE;
This statement says that the global variable TuMEs-
saGE[Q] is set to indicate the type of message. This

global variable is used to communicate with the PBU
process which is described below.

wait 6000:8000;

This statement simulates the time of 6 to 8 sec, taken
by the man to type his request on the terminal unit.

START TIME+time;

We now set the local variable START TIME equal to
“time,” the current value of the simulated clock.

output fTuf, Q, #SENDS MESSAGE#, MESSAGE TYPE,
FAT TIMEF, time;

August

This statement causes the printing of a line during the
simulation, having the form “TU 3 SENDS MESSAGE 2 AT
TIME 12610.” The “#” symbols indicate a string inserted
into the output.

TusTATE[Q]1;

Another global variable TusTATE[Q] is now set to 1 to
indicate that the typed message is ready to send.
TUSTATE [Q] has three possible settings.

TUSTATE =0 means the TU is free.
TUSTATE =1 mecans the message has been typed.
TUSTATE = 2 means the answer nicssage may be typed.

The next statement :
wait until TUSTATE[Q]=0;

means the transaction is to stop at this point until
TusTATE [Q] has been set to zero (by some other trans-
action). This indicates that we are to wait until the
answer message has been fully received. When that oc-
curs, the transaction finishes its work as {ollows:

release TU[q]; leave QueuE(q];
tabulate (time —START TIME) in TABLE[Q];

The latter statement is used f[or statistical data;
TABLE[Q] is a global quantity which receives “readings”
by mecans of “tabulate” statements. At the end of simu-
lation, this table is printed out giving the mean, the
standard deviation and a histogram of the data .. has
received. =

output #TUf, Q, #FRECEIVES REPLY AT TIME#, time;
cancel end;

The last statement, “cancel,” causes the disappearance
of the transaction, and the word “end” indicates the
end of the program for this process.

Program 2), which runs simultaneously with 1) and
3), describes the action of the PBU's.

process PoU; begin integer s, T, WORDS;

new transaction to SCAN; T+3;
SCAN:

We have three local variables, s, T and wWORDS. At the
beginning, two transactions (representing the two
PBU's) start at ScAN, one with its variable T=0, the
other with T=3.

SCAN: 1—T+1; if T> 6 then T«1; wait 1;

These statements represent the cyclic scanning process
which we assumie takes 1 msec. The variable T repre-
sents the number of the TU which the PBU will be

referencing.
S—SBNUMBER[T];

“spNUMBER” is a table of constants, which is used to
tell which SB corresponds to the TU scanned.

seize LINE;

- 5 -

e

vt kT

1964 Knuth and McNeley: SOL—Symbolic Language for Systems Simulation

We now seize the facility LINE, which represents the
long-distance communication lines. (If the other PBU
has seized LINE already, we must wait until it has been
released.)

walt 5; if sp[s] busy then :
: (wait 80; release LINIK; go to SCAN);

We wait 5 msec for a control signal to propagate to the
SB unit. Here sn[s] is a facility; if it is busy (i.e., has
been scized by the other PBU) we wait 80 msec more,
receiving no signal back, so we releasc the line and re-
turn to scan the next TU.

seize sp(s]; wait 15; if TusTATE] 1 then
(wait 65; release LINE; release sb[s]; go to SCAN);

If sB[s] received the control signal, it is brought under
the control -of this PBU. Fifteen milliseconds later, the
number T has been transmitted across the line, and it
takes 65 msec for the SB to determine if TU[T] is ready
to transmit or not. If not, we release the SB and the
line, and scan again.

wait 225; sEND: wait 170; if pr(0.02) then
(wait 20; go to SEND);

It takes 225 msec for the SB to get ready to transmit
the message and to send a warning signal across the
line to the PBU. Then 170 msec are required to send the
input message. The construction “if pr(0.02)” means
“2 per cent of the time,” and so this statement indicates
that, with probability 0.02, a parity error in the trans-
mission is detected; in such a case, we send back a signal
calling for retransmission of the message.

new transaction to COMPUTATION; wait 20; release sn[s];
release LINE; TUSTATE [T]+2; cancel;

At this point two parallel processes take place. As the
PBU tries to send the message to the computer, it also
sends a “message received” signal across the lines to the
SB, and, 20 msec later, the SB and the lines are released.
The TUSTATE is adjusted, and then this portion of the
transaction is cancelled.

COMPUTATION: seiz¢ COMPUTER;
WORDS +~TUMESSAGE [T | +2;
wait (if worDs =3 then 250 else

if WoRrDs :
=4 then 300 else 400);
release COMPUTER;

Here we send the message to the computer facility,
possibly waiting for it to become available. The local
variable WoRDs is set to the number of words output
for thc current message, and we also wait the appropri-
ate amount of computer time. At this point, the output
message has been created by the computer, and it has
been sent back to the PBU. The final job is to output
this message, one word at a time:

OUTPUT: walit 1; seize LINE; wait §;
if sn[s] busy then (wait 80; release LINE; go to OUTPUT);

A control word is sent out to interrogate the SB, as in
the case of input above.

seize sn[s]; wait 75;

RECEIVE: wait 80; if pr(0.01) then
(walt 20; go to RECEIVE);

release LINE;

We have output one word to the SB; there was proba-
bility 1 per cent that a transmission error was detected,

WORDS —WORDS — 1
if worps =0 then new transaction to SCAN;
wait 325; release sn[s]; wait 170;

After the last word has been transmitted, a parallel
activity starts with another scan. It takes 325 msec for
the SB to send the word to the typewriter, and another
170 msec are required for the typewriter to finish its
typing.

if worps >0 then go to ouTruT;

TUSTATE [T]+0; cancel end;

When the output has all been typed, TUSTATE is reset to
zero (thus activating the USER transaction) and this
parallel branch of the program disappears.

Program 3) is used to describe the traffic which takes
place at the computer, by creating six simulated PBU's
as follows:

process OTIHER PBUS;
begin integer 1; 16;

CREATE: new transaction to COMPI'TE;

1+1—1; if 1>0 then go to CREATE; cancel;
COMPUTE: wait 3200:5000; seize COMPUTER;
wait (250,250,300,300,300,300,300,400,400,400) ;
release COMPUTER; go to COMPUTE end;

Our example program is now almost complete. We
precede the three processes given above by the following
code, which declares the global quantities. There is also
a fourth process which accomplishes the initialization
and which stops the simulation after 1 hour of simulated
time.

facility Tu[6], sB[3], LINE, COMPUTER;

store 10.QUEVE[6];

integer TUSTATE (6], SBNUMBER[6], TUMESSAGE[6];

table (2000 step 500 until 15000) TABLE [6];

process MASTER CONTROL;

begin sBNUMBER [1]+1; sbNUMBER [2]+2;
SBNUMBDER [3]+1; SDNUMBER [4]«2;
SBNUMBER [§]«—1; SBNUMBER [6]+3;

walt 6060 1000; stop end;

REMARKS

We have purposely chosen a rather complex example
to show how SOL can be used to solve an actual problem
of practical importance, and to show in what a natural
manner the system can be described in the language.

Fig. 3 is a sample of some of the ‘output resulting
from the program of the preceding section,

»

e

e

August

LIECTRONIC COMPUTERS

-
rl

IEEE TRANSACTIONS ON

volv
1208
€CELL
INNO)

35N N1 3n11l 30 NOTLIVHS

2INdw0)
1nd1n0
NYJS
138y
2ivQe EL 9
94¢6¢
8568¢
990S¢
Ve 211 ANl
4900E 3rIL
gL2t¢
&091¢
60v1€ ELINY
t42 1414 Wty
65622
L F4 144 . W1l
622n2
9v912 INIy
2ivl2
. 9s112
S0uvsl 3NIL
9ivil ELB§Y
80691 Nty
€S€€t
c0e01
€266
s822 3ngl
es1y InTL
9859 INWLL

£066°0
£999°0
0212°0
1229°0
1509°0
$852°0
20€9°0
$Q08°0
1882°0
€508°0
91£8°0

9
9unl
50l
INPOD

iv 1

Inll LY And3¥
Inll LY A143N
Inll LY 3A43y

iv €
v €

Iwll LY ind3¥
3nll LY 1143¥

—q N
v 1

Inll 1Y 3143

1v e

InIl LIV 11434

v [4

Inll LV 1943¥
InILl gV 4143¥

Ly 1
iy Z
iy €

3nll 1Y 1 43N
Inll LY jng3¥
3rILl IV x143¥

v 2
iv 1
v 1

¥31ngnoy .
ELD B
(E0o018S
t20018s
L10018S
(900101
[sooiny
(vo0iNn1
(€o0010n1
(zooiny
(10010)

onupzDOUzu 3Inds §138vA

= 31V3N¥)
« NOIJVINdROD
- ly¥vV)S
- 138v1
000009¢
39Y583n SON3IS 1
S3A1323 £
S3A1323¥ 4
S3A1323y S
39vSs3n SONIS (4
39vSs3n SONIS €
S3A1333y]
S3A13)03y 1
39v553k SON3S s
39VSS3n SON3IS v
S3A13238 €
39VSS3n SON3IS i
S3A13)73y S
39v$s3n SQON3S €
S3IAI323y 2
S3A1303y 9
39¥sS3n SON3S S
39VSS3m SON3S 2
3IPYSSIN SON3IS 9
S3A1323y [4
$3A1323y L
S3A1303y 9
39VSS3W SON3S s
39VsSsin SON3IS v
29VSS3in SAN3S 9

ALITIdvd 40 3NWN

0666
2401
ssol
LNNO)

ni
ni
ni

ni
ni
ni
ni

ni
ni

ni
nl
ni

nL

ni
ni

ni
ni
ni
nt
ni

ni
ni

ni
ni
ni

Lo

3A1303Y

= QON3S

= Nl9lwo

- 138v1

S3nly Jo ¥38WAN

SYM NOTLVANWIS 40 ON3 LV 3IN1) %2013

LA i

o

2 ; g

-2 ‘pauteiqo 1ndino jo sedwes—(L0490k ‘d49) £ "Hg

5 |

] 6u€6°2 00°'001 00°0 0 000cl

3 0zEQ*2 | 00'001 00°0 0 0051

@A 2eti'2 | 00°001 00°0 0 000s!

il p1v9*Z | 00°001 00°0 it) 005¢ !

2 9gvete vo*oct 00'0 0 00o¢1

& lcwn2 | 00°001 00°0 0 00521

= YL Iat: 00°001 00°0 0 00021

) 1062°2 / 00°*cot £v°0 1 00611

. gagnre -\ 15°66 00°0 0. 0001t

L ves0°2 : 15°66 £8'0 1 0050t

= 9956°1 S1°66 ge°p 1 00007

® 1958°1 2i'86 £v'0 1 0068

H 6092°1 0£*98 02’1 v 0008

Mo 1€99*1 LALT) £%'0 1 00sg

5 £59¢°1 11°96 Esp 3 0009

. v90'1 20% 96 92° ol 00§72

w 969€°1 62°6% 1es 21 0002

5 8122t 99' 08 99°¢L 8l 00$9

= 6€41°1 20° 1L 29°01 s2 0009

g 1920°1 8€°'99 82°6 £2 0066

> £946%0 09°9% 15461 9% 000¢

cm 50980 20° € 29°€1 2¢ 00Sy

R 923.°0 ov'e2 2€°S1 9€ 0000

S 8ve9'0 60'8 96°S (2 006¢

ozl 0295°0 €12 (%3 s 000¢

& 16900 00'0 00'0 0 0052

ks €16€°0 00'0 00°0 0 0002

G

M NY3IN 40 3741170w JATLYIARND * 1N3) ¥3d RPN LINIA ¥3ddn

i 22115 toal NOTI¥IA30 OMVONYLS 1196°0116 378v1 40 NY3Iw

= 9701021 S3INTYA ANINI 17V 340 KNS {4 SITHINI 3178Y) 40 ¥3IE8WAN

{7 (€00)378vL SI 3INVN 378v)

=
261’0 : ; 17601 4 ct £900313n3N3
LEREA] vpglt2 8§ ot {s0013n3np .
0z21°%0 96911 Il i o1 (r0g130300
vgg2°0 SEBE’2 ; o1 ot [(£0013n3N8
9202°0 sg2v'2 o1 ot £20033n3Np

M d2¢2'c 21282 a1 ot (10013n3Np

i NOTIYZINLIN 39yu3ay AINYENII0 39v¥IAY Q3Sn WOWIXVN AL19vdY)- J¥0LS 4O INUN

IEEE, TRANSACTIONS ON ELECTRONIC COMPUTERS

The ideas used in SOL for creating and canceling
" transactions have applications in the design of languages
for highly parallel computers.

The techniques which are used in the implementation
of SOL will be the subject of another paper. 1t should be
indicated here, however, that the implementation gives
a rather efficient program because separate lists are
kept for transactions which are waiting for different
reasons. Those which are waiting for time to pass are
kept sorted on the required time. Those which are wait-
ing for a condition such as “wait until A=0," [or some
global variable A, are kept in a list associated with A;
this list is interrogated only when the value of A has
been changed.

The SOL system has proved to be especially advan-
tageous for simulating computer systems since “typical

programs,” which we assume are to be run on the simu-
lated computers, are casily coded in SOL's language.

ACKNOWLEDGMENT
The authors wish to express their appreciation to J.
Merner for many helplul suggestions.

REFERENCES

1) H. M. Markowits, B. Hauser, and . W. Kare, *“SIMSCRIPT—"
A Simulation Progmmming Language,” Prentice-lall, Iac.,
Englewood Cliffs, N. J.; 1963,

(2] G. Gordon, “A gencral purpose systems simulation program,®
Proc. Eastern Joint Com puters Conf., pp- 87--104; December, 1961,

[3) ——, *A geoeral purpose systems simulation progeam,” [BM
Systems J., vol. 1, pp. 18-32; September, 1962,

4] “Reference Manual, General Purpose Systema Simulator 11,7
I1BM Corp., White I’kins, N. Y.; 1963,

15] D. E. Knuth and J. l.. McNcley, “A formal definition of SOL,"
this issue, page 409. - :

6] M. R. Lackner, “Toward a general simulation capability,” Proc.
Spring Joint Compuler Conference, pp. 1-14; May, 1962.

P

CHAPTER III

A Formal Definition of SOL

D. E. KNUTH anp J. L. McNELEY

Summary—This paper gives a formal definition of SOL, a general-
purpose algorithmic language useful for describing and simulating
complex systems. SOL is described using meta-linguistic formulas
as used in the definition of ALGOL 60. The principal differences be-
tween SOL and problem-oriented languages such as ALGOL or
FORTRAN is that SOL includes capabilities for expressing parallel
computation, convenient notations for embedding random quantities
within arithmetic expressions and automatic means for gathering
statistics about the elements involved. SOL differs from other simu-
lation languages such as SIMSCRIPT primarily in simplicity of use
and in readability since it is capable of describing models without
including computer-oriented characteristics.

1. GENERAL Duscmr‘r!oﬁ

OL IS an algorithmic language used to construct
S models of ‘general systems for simulation in a

readable form.. The model builder describes his
model in terms of processes whose number and detail
are completely arbitrary and definable within the con-
stramnts of the language elements. A SOL model con-
sists of a nwnber of statements and declarations which
have a character similar to that found in progmmmmg
languages such as ALGOL.

The model is not built to be executed in a sequential
fashion as ordinary programming languages require,
Rather, the processes are written and executed as if all
were running in parallel. Control between processes is
maintained by the interaction of global entities and by
control and communication instructions within the
different processes. At the initiation of the simulation
all processes are begun simultaneously.

Variables declared within a process are called local
variables. Within a given process it is-possible to have
several actions gaing on at once; therefore, we may
think of several objects on which the action takes place
each in its own place’in the process at any given time.
These objects will be referred to as lransactions. A set of
local variables corresponding in number to those de-
clared iii the process is “carried with” each transaction
of that process. Transactions situated within one proc-
ess may not refer to the local variables of another proc-
ess nor to the local variables of another transaction in
the same process.

Global quantities are of thre¢ major fypes: global
variables, facilities and stores. Globel variables can be
referenced or changed by any transaction {rom any
process in the system, and the variable possesses only
one value at any given time.

Manuseript received January 3, 1964,

D. E. Knuth is with the California Institute of Technology,
Pasadena, Calif.
J: L. Mc Neley is with the Burroughs Corporation, Pasadena,

Calil.

A facility is a global element which can be controlled
by only one transaction at a time. Associated with each
request for the facility is a “control strength,” and if a
requesting transaction has a higher strength than the
transaction controlling the facility, an interrupt will
occur. Interrupts may be nested to any depth. If the
requesting transaction is not of greater strength than
the controlling transaction, then the requesting transac-
tion stops and waits for the facility until the controlling
transaction releases its control. When a transaction is
interrupted, it cannot advance to any other position in
its program until it regains control of the facility.

Stores are space-shared rather than time-shared global
elements, and they are assigned a specific storage capac-
ity. As long as there is sufficient storage to accommodate
the requesting transaction the request { - space is satis-
fied; otherwise, the transaction waits until the space it
is requesting becomes available. In this sense, a facility
may be regarded as a store which has a capacity of one
unit only, except for the fact that no Interrupt capabil-
ity is provided [or stores.

Simulated time passes in discrete units indicated in
“wait statments.” The model builder requires the trans-
actions to wait a proper number of time units at the
appropriate places in the processes, and this specifies
the time element. The interpretation of the physical
significance of a unit of time is immaterial in the SOL
language; if all time interval specifications are multi-
plied by a lactor of ten it will not decrease the speed by
which the model is simulated.

Control within or between processes is also introduced
into the simulation by allowing a transaction to wait
until a global variable or expressipn obtains a certain
value. A transaction may also be forced to wait until a
space- or time-shared element attains a certain status.

Qutput statements which display the progress of the
simulation may be inserted at will in the model. Special
types of statistics are automatically available, such as
the per cent of utilization of a f'u:\hty. the average and
maximum number of elements in a store at a given
moment, etc. Another type of global quantity, called a
table, is introduced to record statistical information
about desired data. The mean, the standard deviation
and a histogram are provided for all data recorded in a
table. :

Processes initiate parallelism within themselves by
using a duplication operation. The transaction makes an
exact copy of itsclf and sends the copy to a specified
location in the process while the original continues in .
sequence. A transaction is taken out of the system when -~
it executes a “cancel” statement. :

- 10 &

IEEE, TRANSACTIONS ON

Other operations available in SOL are similar to those
of existing algorithmic languages, but these portions of
the language are at the present time less powerful than
the features available in a large scale programming lan-
guage. 7

A detailed example of a complete SOL moddel appears
in a companion paper in this issue [2].

II. SyNTaX AND SEMANTICS oF SOL

We will define the syntax of SOL using meta-linguistic
formulas as given in the definition of ALGOL 60 [1].
Certain things which have been carclully defined in
ALGOL 60 will not be redefined here but will merely
be stated to have the came interpretation as given by
ALGOL., We will use the abbreviation *(A)* to mecan “a
list of (A),” i.e.,

T sAp =) MAY (A

Comments may be written in the form “comment
{string without semicolons);” as in ALGOL 60.

A. Identificrs and Constants

(letter):: =A|B|C|D| - - - |Z

(digit):: =0[1]2]3] -+« |9

(number): : = (constant}| {decimal constant)

{constant):: =*(digit)*

{decimal constant): : = (constant).(constant)

(identifier): : = (letter)| (identifier)(letter)|
{identifier) (digit)

Identifiers are used as the names of variables, statisti-
cal tables, stores, facilities, processes, procedures and
statements. The same identifier can be used for only one
purpose in a program. Constants are used to represent
integer numbers. Decimal constants represent real num-
bers. !dentifiers must be declared before they are used
elsewhere.

B. Declarations

{(declared item)::

{variable declaration)::
real* (declared item)*

{facility declaration): : =facility *(declared item)*

{(store declaration): : =store *{constant){declared item)*

(table declaration): : =table *({number)step(number)
until (number)){declared item)*

{monitor declaration):: =monitor *(identifier)*

= (identifier)| (identificr) [(constant)]
=integer *(declared item)*|

If the declared item is simply an identifier, it means
that a single item of that name is being declared. The
other form, e.g., a[10], means 10 similar items called
al1], a[2), - - -, a[10] are being declared.

The variable declaration is used to specily variables
(either local or global, depending on where the declara-
tion appears). All variables are initially set to zero when
declared. “Integer” variables differ from “real” variables
in that when a value is assigned to them it is rounded to
the nearest integer.

- 11

ELECTRONIC. COMPUTERS August
When a (acility is declared, it is initially “not busy”;

at the end of the simulation run, statistics are reported

giving the per cent of time cach facility was in use.

A store declaration gives the capacity of each store
(the number preceding the identifier). At the end of the
simulation run statistics are given on the average and
the maximum number of items occupying the store (as a
function of time). Stores are empty when first declared,

A “table” is used to gathe detailed statistical ine
formation of any desired type; readings are tabulated
and aflterwards the mean, the standard deviation, histo-
gram distribution, etc., are output. The constants pre-
ceding the table name give the starting point for histo-
gram intervals, the increment between intervals and the
highest value.

A monitor declaration names items which already
have been declared, with the understanding that these
identifiers are to be “monitored.” This means that when-
ever a change in the state of the corresponding quantity
is detected, a line will be printed giving the details. This
capability is especially useful when checking out a
model, and it can also be used to advantage for output
during a regular simulation run.

C. Expressions and Relations
(name): : = (identifier)| {identifier) [{(expression)]

By (variable name), (facility name), etc., we will
mean that the identifier in the name has appeared in a
{variable declaration), (facility declaration), etc., re-
spectively.

(primary): : = (variable name}| (store name)|

{constant)| {(decimal constant)|time|

(*{expression)*) | abs({expression))|

max(*{expression)*)] min(*{expression)*)|

normal{{expression), {expression))

exponential ({expression)) f poisson ((expression)) |

geometric({expression))| random
(term):: = (primary)| {term) X (primary)|

(term)= {primary)| (term)/{primary)|

{term)mod{primary}

(sum): : = (term)| +(term)| = (term)| (sum)+(t)|

{sum}—{term) =
(unconditional expression): : = (sum)| (sum): (sum)
(expression): : = (unconditional expression)

if (relation) then {expression) else (expression)

The meaning of the arithmetical operations inside ex-
pressions is identical to the meaning in ALGOL 60.

The new elements here are “a mod b," the. positive
remainder obtained wupon dividing @ by ¥
“max(ey,. * -, &))" and “min(ey, -+ +, e),” which de-
note the maximum and minimum values, respectively,
of the # expressions; and there are also notations for ex-
pressing random values. The expression “(e;, * + +, €a)"
indicates that a random sclection is made from among
the » expressions with equal probability of choosing any

»

1964

expression. The expressions normal(M, §), poisson(M),
geometric(M) and exponential(M) indicate random
values with special distributions which occur frequently
in applications. A random number drawn from the nor-
mal distribution with mean M and standard deviation
S is denoted by normal{M, S) and is a real (not neces-
sarily integer) value. A number drawn from the ex-
ponential distribution with mean M is denoted by ex-
ponential(M) and is also of type real. The poisson
distribution significd by poisson(M), on the other hand,
yields only integer values; the probability that pois-
son(M)=n is (eM"/n!). The geometric distribution
with mean M, denoted by geometric(M), also yielda
integer values, where the probability that geometric(M)
=nis 1/M(1—1/M)*. The symbol random denotes a
random real number between 0 and 1 having uniform
distribution. Finally, we have the notation !¢, which
denotes a random integer between the limits ¢ and es;
more formally

{ 0, a> e
€63 =
(‘lsel+1|" ‘|¢3)

The normal, exponential, poisson and geometric dis-
tributions are mathematically expressible in terms of
random as follows:

normal(M,S) = § X +/=2 In (random)

X sin (2x random) -+ M

asa.

exponential(M) - =Mln (random)
Mnr—i
r (n—1) l)

M~
érandom(e‘“(1+M+ +-—-l-)
n

M2
poisson(M) = n if e~ ¥ (1 + M+ £TH Sy

geometric(M) = [1 + In (random)/In (1 - —;E)]

(The poisson distribution should not be used for
values of M greater than 10.) As examples of the use of
these distributions, consider a population of customers
coming to a market with an average of one customer
every M minutes. The distribution of waiting time be-
tween successive arrivals is exponential(M). On the
other hand, if an average of M customers come in per
hour, the distribution of the actual number of customers
arriving in a given hour is poisson(M). If an individual
performs an experiment repeatedly with a chance of
success, 1/M on each independent trial, the number of
trials needed until he first succeeds is geometric(M).

The special symbol “time” indicates the current time;
intially, time is zero. The value of a store name is the
current number of occupants of the store.

(relational operator):: = = | #| <[=] >]|2
{relation primary): : = (unconditional expression)

Knuih and McNeley:s A Formal Definition of SOL

{relational operator)(unconditional expression)
(facility name) busy | (facility name) not busy
(store name) full | (store name) not fulll
(store name) empty| (store name) not empty[
pr({expression)) | ({relation))

(relation): : = {relation primary)
(relation primary)V/ (relation primary)
{relation primary) A (relation primary)
“relation primary)

These relations have obvious meanings except for the
construction “pr(e)” which stands for a random condi-
tion which is true with probability e. (Here e must be
less than or equal to 1.) Thus we might say

if pr(0.12) then (12 per cent of the time)
else (88 per cent of the time).

I11I. STATEMENTS

A. Processes

As this simulator operates, any number of processes
written in the language may be in use at once, We may
think of several objects, each in its own place in the
process at any given time. These objects are referred to
as lransaclions. In this section, we describe the various
manipulations that transactions can perform in the lan-

guage.

(process description): : = process (identifier);
(statement)
process {identifier); begin
{process declaration list); (statement list) end
{process declaration): : = (variable declaration)|
(procedure declaration)| (monitor declaration)
(process declaration list): : = (process declaration)|
(process declaration list); (process declaration)

There are two kinds of variables, global variables (not
declared in a process) and local variables (those which
are declared in a process). All transactions can refer to
the global variables, and a global variable has only one
value at any given time. But a local variable is “carried
with” each transaction within a given process, and there
is in general, a different value for a local variable de-
pending on which transaction is using it. Transactions
situated within one process miay not refer to the local
variables of another process, nor can the local variables
of one transaction within a process be reached directly
by other transactions in that same process. Communica-
tion between processes is accomplished solely with the
help of global quantities.

B. Labels
A statement may be named by any identifier as fol-
lows:

(statement): : = (unlabeled statement)|:
{identifier): (statement)

- 12 -

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

By the designation (label) we will mean the name of a
statement.

C. Creation of Transactions

At the beginning of simulation, there is one transac-
tion present for each process described. Each of these
initial transactions starts at time zero and is positioned
at the beginning of the process. More transactions may
be created by using “start statements.”

(start statement): : =new transaction to (label)

This statement, when executed, creates a new transac-
tion (whose local variables are the same in number and
value as those of the transaction which created it). The
new transaction begins executing the program at (label)
while the original transaction continues in sequence.
New transactions are also created by input statements
(Section II1-T). :

D. Disappearance of Transactions

Transactions “die” when they execute a cancel state-

ment. i
{cancel statement): : =cancel

An implied cancel statement is at the end of every
process, so cancel statements nced not always be ex-
plicitly written,

E. Replacement Slatements

{replacement statement):: = (variable name)
+—(expression)

This replaces the value of the variable by the value of
the expression. The variable may be global or local, but
not the name of a store. If the variable is an integer
variable, the expression is rounded.

F. Priority

Time is measured in discrete units, so it may happen
that by coincidence two transactions want to do some-
thing at precisely the same time. They may be in con-
flict, e.g., they may both want to seize a facility, or
to change the value of the same global variable or one
may want to change it while the other is using its value.
Actually, in such cases of conflict, the simulator does
choose a specific order for execution; no two things
actually happen at the same instant, as we deal more
properly with infinitesimal units of time between the
discrete units. The choice of order is fairly arbitrary ex-

cept when a difference of priority is specified; in that

case, the transaction with kigher priority will be acted
on first. Each transaction has a priority, which is ini-
tially zero; priority is changed by the statement

PRIORITY+—(expression).

The declaration “integer prioriTY” is implied at the
beginning of each process, i.e., PRIORITY is treated as a
local variable. In the present implementation of SOL,
the priority must be between 0 and 63. The eflfect of
priority is spelled out further in Section IV.

August

G. Wait Slalements

(wait statement): : =wait {expression)

The expression is rounded to the nearest integer, and
then this statement advances “time” by max(0,
{cxpression)), as far as this transaction is concerned. All
time delays in a'simulated process are, in the last analy-
sis, specified by using wait statements.

H. Wait-Until Statements
(wait-until statement): : =wait until {relation)

This causes the transaction to freeze at this point
until the relation becomes true (because of action by
other transactions). The relation must not involve ex-
pressions which have a fandom value; e.g., it is not legal
to write “wait until pr(10)” or “wait until A[1:4]=0,"
etc.

I. Enter Slalement.é

(enter statement): : = enter (store name)|
enter (store name), {expression)

The first form is an abbreviation for “enter (store
name), 1.” The value of the expression, rounded to the
nearest integer, gives the number of units requested of
the store. The transaction will remain at this statement
until that number of units is available and until all
other transactions of greater or equal priority’ which
have been waiting for storage space have been serviced.

J. Leave Statement

(leave statement): : =leave (store name)|
leave (store name), {expression)

The first form is an abbreviation for “leave (store
name), 1.” This statement returns the number of units
equivalent to the value of the (rounded) expression.,

K. Seize Slatements

(scize statement):: =seize (facility name)]
seize (facility name), {expression)

The first form is equivalent to “seize (facility name),
0.” This statement is usually rather simple, but there
are situations when complications arise. If the facility
is not busy when this statement occurs, then it becomes
busy at this point and remains busy until later released
by this transaction. (Note: If this transaction creates
another transaction by means of a start statement, the
new transaction does not control the facility.)

The expression appearing above represents the “con-
trol strength” which is normally zero. Allowance is
made, however, for one transaction to interrupt an-
other. Il the facility is busy when the seize statement
occurs, let I, be the control strength with which the
facility was scized and let L, be the control strength
of this scize statement. If 153 S I, the transaction waits
until the facility is not busyy If 15> E,, however, infer-
rupt occurs. The transaction 73 which had control of

»

SR

1964

the facility is stopped wherever it was in its program,
and the present transaction 173 scizes the facility. When
T; releases the [acility, the lollowing occurs:

1) If T, was exccuting a wait statement when inter-
rupted, the time of wait is increased by the time
which passed during the interrupt. ¢

2) Tliere may be several transactions not waiting to
scize this facility. If any of these has a higher
control strength than I, then 77 is interrupted
again. The transaction which interrupts is chosen
by the normal rules for deciding who obtains con-
trol of a facility upon release, as described in the
next section.

The control strength in the present implementation of
SOL must be an integer between 0 and 4095, This al-
lows interrupts to be nested up to 4095 deep.
L. Release Statenients

(relcase statement):: =release (facility name)

This statement is permitted only when the transac-

tion is actually controlling the [acility because of a pre-
vious seizure. When the facility is released, there may
be several-.other transactions waiting because of seize
statements. In this case, the one which gets control of
the facility next is chosen by a consideration of the fol-
lowing three quantities in order:

1) highest control strength,
2) highest PRrRIORITY,
3) first to request the facility.

M. Go To Slatemenits

(go to statement):: =go to (label}]
go to (*(label)*), (expression}

This statemeat is used to transler to another point in
the program; statements are usually executed sequen-
tially. In the second form, the expression is used to
select which statement to transfer to; if there are =
labels, the expression, when rounded to the nearest
integer, must have a value between 0 and #. Zero means
continue in sequence, 1 means go to the first statement
mentioned, and so on.

N. Compound Stalemenis

Several statements may be combined into one, as
follows:

(statement list):: ={3tatement)] (statement list);
(statement) :

(compound statement);: : =begin (statement list) end|
((statement list))

0. Conditional Slatements

{conditional}:: =if (relation) then {unconditional
statcmcnt)t :
if (relation) then (unconditional statement) else
(statement)

Knuth and MeNeley: A Formal Definition of SOL

The meaning is the same as in ALGOL; testing of the
relation requires no simulated time.

L. Tabulate Slalemenis

(tabulate statement): : =tabulate {(expression) In
(table name)

The value of the expression is recorded as a statisti-
cal observation in the table specified.

Q. Quiput Stalements

{carriage control):: = (empty)| page|line| double
{atring):: = {any sequence of characters excluding “#”)
{output list item}: : = f(string)#| (expression)|
{store name)| (table name)| (facility name)
{output statement): : =output *(carriage control)
{output list item)*

Output occurs for all items listed, in turn, alter doing
the appropriate carriage control positioning. The out-
put for a string is the string itsell. An output for an ex-
pression is the value. For a store, table or facility, the
appropriate statistical information is output. At the
conclusion of an output statement, the final line is
printed out.

R. Stop Statements
(stop statement):: =stop

A stop statement causes simulation to terminate im-
mediately, and all transactions cease. The statistics for
all stores, tables and facilities are output as in the out-
put statement, as well as the final time, the number of
times each labeled statement was referenced and the
number of transactions which appeared in each process.

S. Procedures

(procedure declaration): : = procedure (identifier);
(statement}
(procedure statement): : = (procedure name)

A procedure is simply a subroutine used to save cod-
ing. Parameters are not allowed, but their effect can be
achieved by sctting local variables in the transactions
before calling the procedure. There are local procedures
and global procedures (the latter are declared outside

‘of a process). Global procedures cannot refer to local

variables. A go to statement may not lead out of a pro-
cedure body. Procedures may be used recursively.

. T. Transaction Input-Output

(transaction read statement): : =read (coustant) to
{label) :

{transaction write statement): : = write (constant)

The read statement inputs a set of values of local
variables for a transaction of the same type as the one
exccuting the read statement; this set of values is used
in the creation of a new transaction which begias exe-

S

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

cuting the program at the statement mentioned. The
write statement writes the current values of the local
variables of the transaction onto the unit specified and
does not cancel the present transaction. The constant
in cach refers to a tape or card unit number. The same
tape should not be used for both input and output in
the same simulation run. .

U. Summary of Statements

(unlabeled statement): : = (unconditional statement)|
{conditional)

{unconditional statement):: = (start stntcmcnt)]
{cancel statement)]
{replacement stntcment)] {wait sta:emcnt)I
{wait-until stutcmcnt)i {enter statement)|
(leave smtemcm)i (scize statcmcut)|
(release smtcment)l {go to statcmcnt)-l
(compound statement)] (output statement)|
(tabulate statemcnt)] {(stop statcmcnt)l
(transaction read statement)| (procedure statement)|
(transaction write statement)| (empty)

IV. Tue MobEL As A WIIOLE

{imodel): : =begin (global declaration list); {process list)
end.
(declaration): : = (variable declaration)]
(facility declaration)]
(store declaration)] (table declaration)|
{(monitor declaration)| (procedure declaration)
{(global declaration list):: = (dcc]nration)[
(global declaration list); (declaration)
(process list): : = (process sdescription)|
{process list); (process description)

Initially all variables are zero, all facilities are “not
busy,” all stores are “empty,” the time is zero, one trans-
action appears for each process described and the simu-
lator is in the “choice state.”

When the simulator is in “choice state,” each trans-
action is either positioned at a wait statement, a wait-
until statement, a seize or enter statement or else it has

just been created. (We will dispense with the latter case
by assuming a “wait 0” statenient has been inserted just
before the present position when a new transaction is
created.) If there are no transactions which can move
at this time, the time is advanced to the carliest com-
pletion time for a wait statement. Now, from the set of
transactions able to move, that one is sclected which has
the highest rrioriTy, and in case of ties, which- has
been waiting the longest. (If there is still a tie, an arbi-
trary choice is made.) The sclected transaction is acti-
vated, and it continues to execute its statements until
encountering a cancel or stop statement, a priority as-
signment statement, a wait statement, a wait-until
statement with a false relation or a scize or enter state-
ment which cannot take place at that time. We examine
all other transactions which are stopped because of a
wait-until statement involving global quantitics
changed by the present transaction. If the correspond-
ing relation is now true, these transactions become free
to move at the current time. Then we have once again
reached “choice state.” Note that all release statements
which are passed during the time the selected transac-
tion was moving are process~1 immediately in such a
way that the facility becomes-not busy only if no other
transaction were interrupted or were waiting to seize it;
if other transactions are in the latter category, the choice
of successor and the transfer of control described in
Section III-L takes place immediately as the relcase
statement is exccuted. Therefore, it is conceivable that
the statement “wait until FAC not busy” may never be
passed if other fransactions are always ready to seize the
facility Fac. Similar remarks apply to the leave state-
ments.

Since this paper was written, a few additions have
been made to the SOL language, including “synchron-
ous” variables and some additional diagnostic capabili-
ties.

REFERENCES

[1] “Revised report on the algorithmic language ALGOL 60," Comni.
ACM, F(p 1-17; January 6, 1963.

(2] D. E. Kauth and J. L. McNeley, “SOL—A symbolic language
for gencral-purpose systems simulation,” this issue, page 401.

e

kR

CHAPTER IV

Differences in Atlas SOL

A. Some character and phrase substitutions have been made to suit

the Atlas character set. These dre as follows:

ah
(2)
£3)
(&)
(5)
(6)
(7)
(8)
(9)

(10).

(11)
(12)
(13)
(1%4)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

(22)

- 50L Atlas SOL
((
] |)
3 New line or new card
x W

-~

= B,
. NE.
< LT
S o LE,
> . GT,
z . GE,
:) after a label
s ' dn<sum>: < sum >
?F-_-]
busy «BUSY
not busy +NOT BUSY
full : ... «FULL
not full .NOT FULL
empty « EMPTY
not empty «NOT EMPTY

Spaces are ignored everywhere including text to be output.

In the case of text to be output * is interpreted as space.

For example OUTPUT A, '**THIS*IS*TEXT**',B will be printed
5, THIS IS TEXT 129

All letters are upper case, It is therefore unwise to

use syntactically meaningful letter combinations as
identif'iers or as the first characters of an identifier.

WAIT or OUTPUTABC would not be wise cholces for identifiers,
Only the first eight characters of identifiers are féﬁognised
although identifiers may be of arbitrary length, hence the
first eight characters must uniquely define an identifier,

- 16 -

Other syntactic changes are as follows:

Statements or declarations may be terminated by either end
of line or ®, Where there is no ambiguity no terminator 1is
necessarye. For example the following sequences are equivalent

(i) PECTY - (ii) BEGIN INTEGER I,J,%
INTEGER I,d REAL K
REAL K

(1ii) BEGIN = INTEGER I,J% REAL K=

The dictionaries for identifiers and labels (procedure names
are treated as labels) are distinct and the same names may
appear in each, All labels must be distinct and there is
no check that jumps from one transaction to another are not
made and this could cause trouble, The names of local

variables are local to a process,

A few changes have also been made in the interpretation of state-

B,
(1)
(2)
C.
ments,
(1)
(2)
(3)
(%)
D, Two

(1)

(2)

If not explicit in a seize statement, the seize strength is
taken to be one, not zero, SEIZE FAC,0 has the effect of
making the facility NOT BUSY but is not recommended as the

facility is not released correctly.

There is no check that transactions do not release store
not entered by them,

The cancel statement does not release the facilities or

leave the stores associated with the transaction,

TIME is a preloaded integer which may, in fact, be used .
on the lef't hand side of an expression, probably with

disasterous effects.
extra statements have been inecluded:

DUMP-this statement causes all the variables, stores,
facilities and tables to be printed together with information
about each transaction, The dumping is in octal and is

designed as a 'last ditch' debugging aid.

CODE. This statement causes the code produced by the
compiler to be dumped and also the jump table éﬁ& the
directories, This statement can be used in conjunction
with the DUMP statement,

-t

CHAPTER V

Compile time diagnostics

(1)
(2)
(3)

(%)
(5)

(6)
(7)

(8)

(9)

IDENTIFIER NOT DEFINED
IDENTIFIER DEFINED TWICE -
IDENTIFIER DEFINED TWICE, STORE

IDENTIFIER DEFINED TWICE, TABLE
INSTRUCTION NOT RECOGNISED

LABEL SET TWICE

‘STORE BUSY

 FACILITY FULL

NON STORE IN ENTER

.(10) NON STORE IN LEAVE
(11) NON FAC IN SEIZE
(12) NON FAC IN RELEASE
(13) L.H.S. NOT VAR

(14) FAC. OR TAB. IN EXPRESSION

no corresponding REhL, INTEGER,
or FACILITY declaration

caused by a REAL, INTEGER, or
PACILITY declaration

caused by STORE declaration
caused by TABLE declaration

The SOL declarations or any
process is syntacticaliy checked
before the more detailed compila-
tion takes place. Any failure
in this checking will cause the
above diagnostic which will be
printed after the first line
which could not be recognised.
In general the compilation will
have diff'iculty proceeding and
will continue prodﬁcing erroneous
INSTRUCTION NOT RECOGNIZED on the
rest of the source material

self’ explanatory

non-facility found in a .BUSY or
.NOT BUSY relation

non-store found in a .FULL etec
relation

faulty enter statement

faulty leave statement

faulty seize statement

faulty releass statement

left hand side of a replacement
statement is not real or integer
facility or table used in an

expression

R

CHAPTER VI

Run time diagnostics

(1) END OF SIMULATION : caused by the stop statement

(2) NOTHING TO DO g1l transactions halted

(3) ILLEGAL SEIZE transaction seizing a facility -
it already controls

(4) NEGATIVE SEIZE negative seize strength

(5) ILLEGAL RELEASE transaction releasing a facility

: it does not control

(6) LEAVE NEGATIVE transaction leaving a negative
amount of store

(7) LEAVE TOO BIG transaction leaving more store

5 than has been entered,

(8) ENTER NEGATIVE transaction entering a negative

: amount of store

(9) ENTER TOO BIG transaction trying to enter
more store than the capacity of
the store

(10) TABULATE OUT OF RANGE tabulated quantity out of range
of the table

Both NOTHING TO DO and END OF SIMULATION will be followed by
the statistics, After an error, the simulation will attempt
to continue and the statement in error will be omitted. This

would probably, of course, cause further errors,

= 19 =

CHAPTER VII

Limitations

In general all arithmetic is executed in floating point and a
number is truncated if an integer is required at any stage.

Real variables and expressions are printed with 8 places before
the decimal point and)4 after, Integers are printed with a maximum
of 8 digits.

Seize strengths and priorities may be from O to 1048575.

The size of program which can be compiled is governmed by two
factors - the store request, and the size of the largest process (or
maybe the size of the global declarations if these are large), The
exact size is difficult to estimate but processes of 150 lines have
been compiled successfully.

There is no check on array bounds.

CHAPTER VIII

Sample program output

There follows a listing of the sample problem given by Knuth and
McNeley rewritten in Atlas SOL. The program is prefaced by the job
description to give the.user some idea of the store and time
requirements of a typical program, The final END card would normally
be followed by a file card but in this case it is followed immediately
by the program output. A listing of the program is always produced

before execution.

= of i

JOB SOL EXAMPLE
COMPUTING 12500 INSTRUCTIONS
STORE 45/70 BLOCKS

OUTPUT O LINE PRINTER 700 LINES
TAPE 1 S5.R.C. COMPILERS
COMPILER SPECIAL

S0L

BEGIN .

FACILITY Tu(6),SBL3),LINE,COMPUTERY

INTEGER TUSTATE(6),SBNUMBER(6)»TUMERSAGE(6)Y
TABL'E (2000 STEP 500 UNTIL 15000)TARLE(S)F
STORE 10 OUEUE(6)¥

PROCESS MASTER CONTROL
BEGIN SBNUMBER(1)317 SBNUMBER(2)=2%
SBNUMBER(¥)=1" SBNI/IMBER(4)=27
SBNUMBER(5)=17 SBNUMBER(6)=3f7
WAIT 360000% STOP END?

PROCESS ()SERSY
BEGIN INTEGER QsSTART TIME,MESSAGE TYPEw
NEW TRANSACTION TO START® NEW TRANSACTION TO STARTY
ORIGIN} NEW TRANSACTION TO STARTY WAIT 0'5000* GO TO ORIGINY
START) Q=1t6® ENTER QUEUE(GQ)Y
s MESSAGE TYPE=(1,1,2+2,¢,2:2:3,3,3)F
SEI7E TULD)*
TUMRSSAGE(Q)=MESSAGE TYPEY
WAIT 600040000
START TIME=TIMES
QUTRUT 'TU',Q, ' **#*SENUS*MESSAGE' ,MFSSAGE TYPE, '#weeaAToTIME!, TIME
TUSTATE(Q) =1
WAIT UNTIL TUSTATE(Q).EQ.O0¥
RELFASE TUtndv LEAVE DUEUELQ)®
TABULATE (TIME-START TIME) IN TABLE(QG) Y .
QUTAUT '"#e##T('s Qs ' #*#sRECIEVES#RESLY#AT*TIME"»TIME ¥
CANCEL END¥

PROCESS pBUW BEGIN INTEGER S,T,WnRDSY
NEW TRANSACTION TO SCaNs T=3r¢
SCAN) T=T+1f IF T.GT.6 THEN T=1" WAIT 4ir
SESANUMBER(T) ™
SEI7E LINE¥
WAIT 5S¢ IF SB(S).BUSY THEN (WAIT 80r RELEASE LINEv GO TO SOAN}®
"SEI7E SB(S)IY WAIT 15¢ [f TUSTATE(T),NE.,1 THENCWAIT 657
RELEASE LINE" RELEASE SB(S)¥ Ga TO SCAN)Y
WAIT 225¢ SEND) WAIT 170w IF PR(0.02) THEN (WAIT 20r GO TO SEND) ¥
NEW TRAMSACTION TO COMPUTATIONY WAIT 207 RELEASE sB(S)*
RELEASE LINEY TUSTATE(T)=z2r CANCELY
COMPUTATION) SE1ZE COMPUTERY WORNS=TUMESSAGE(T)+2¢
WAIT(IF WORDS.EG.3 THEN 250 ELSE IF WORDS.EQ.4 THEN 300 ELSE 400)¢
RELFASE COMPUTERT
OUTPT) WAIT 1v SE[ZE LINEY wWAlT 57
IF gB(S).BUSY THEN (WAlT 80f RELEASF LINEY GO TO AUTPTIY
’ SEIZE SR(SI® WAIT 75¢
RECEIVE) WAIT 80f IF PR(U.N1) THEN (WAIT 20« GO TO RECEIVE)Y
RELEASE LINET
WORNS=WORDS=-1w
1F WORDS+EQ.0 THEN NEW TRANSACTION TO SCAN?
WAIT 325Y RELEASE SB(S)¥ WALY 170¢
IF WORDS.GT.0 THEN GO Tn OUTPTY
TUSTATE(T)=0F CANCEL ENDTF

PROCESS 0THEa PBUSY
BEGIN INTEGER [¥ [=6¢
CREATE} NEW TRANSACTION TO COMPUTET
1=1=17 IF 1.GT.0 THEN Go To CREATEY CANCELY
COMPUTE) WAIY 3200'S5000% SEIZE CnmPUTERY
WAIT (250,250,300,800,30U,300,300,400,400,400)¢
RELEASE COMPUTERY GO TO COMPUTEY ENnNY
END

<

TU 6 SENDS MESSAGE i AT TIME 6546
TU 3 SENDS MESSAGE . 2 AT TIME 7532
TV 1 SENDS MESSAGE 3 AT TIME 7704
Tu 6 RECIEVES REPLY AT TIME 9810
Ty 3 RECIEVES REPLY AT TIME 13248
Tu ' SENDS MESSAGE 2 AT TIME 14390
T 3 RECIEVES REPLY AT TIME 14423
Yu 2 RECIEVES REPLY AT TIME 18152
Ty 1 SENDS MESSAGE i AT TIME 20172
TU 3 SENDS MESSAGE - 1 AT TIME 20979
Tu 1 RECIEVES REPLY AT TIME 23159
Tu 2 SENDS MESSAGE 2 AT TIME 25651
YU 3 RECIEVES REPLY AT TIME 26467 -
T 1 SENDS MESSAGE 3 AT TIME 29706
Ty 2 RECIEVES REPLY AT TIME 30114
Tu 6 SENDS MESSAGE 2 AT TIME 32347
TU 3 SENDS MESSAGE 2 AT YIME 33747
Tu 1 AECIEVES REPLY AT TINME 35001
T 6 RECIEVES REPLY AT TIME 36358
TU 2 SENDS MESSAGE 1 AT TIME 37507
Tu 5 SENDS MESSAGE 3 AT TIME 37936
Tu 3 RECIEVES REPLY AT TIMF 39065 :
TV 2 RECIEVES REPLY AT TIME 41078
SN L SENDS MESSAGE 3 AT TIME 42975
T 5 RECIEVES RERLY AT TIME 43521
Y 6 SENDS MESSAGE 2 AT TIME 44910
Tu 2 RFCIEVES REPLY AT TIME %18350
TU 8 RECIEVES REPLY AT TIME =®19030
Tu 3 SENDS HESSAGE 1 AT TIME 319619
Tl = 4 SENDS MESSAGE] AT TIME 320555
TU 2 RFCTEVES REPLY AT TIME ®22250
T 6 RECIEVES REPLY AT TIME 323066
TU. 3 RECIEVES REPLY AT TIME 324769
el 5 SENDS MFSSAGE 3 AT TIME 325871
Ty 4 RECIEVES REPLY AT TIME 225948
TV 2 SENDS MESSAGE 2 AT TIME 329381
Tu 5 RECIEVES REPLY AT TIME =30182
TV 3 SENDS MESSAGE 1 AT TIME 331590
TU 2 RECIEVES REPLY AT TIME x33540
T 3 RECIEVES REPLY AT TIME 334481
TV 1 SENDS MESSAGE 3 AT TIME 335006
T 1 RFCIEVES REPLY AT TIME 339821 _
Tu 2 SENDS MESSAGE 3 AT vIME 340371
Tu 4 SENDS MFSSAGE 2 AT TIME 341458
Tu 3 SENDS MESSAGE 2 AT TIME 341620
Tu 2 HECIEVES REPLY AT TIME x44806
Tu 3 RECIEVES REPLY AT TIME Rx46163
TU 5 SENDS MESSAGE 2 AT TIME 347808
T 4 RECIEVES REPLY AT TIME x%48864
TV 2 SENDS MESSAGE 1 AT TIME 351765
Tu 5 RECTEVES REPLY AT TIME 351912
TU 6 SENDS MESSAGE 2 AT TIME 352493
Tu 3 SENDS MESSAGE 1 AT TIME 353549
TV 2 RECIEVES REPLY AT TIME %54698
TV 1 SENDS MESSAGE 3 AT TIME 354974
TU 4 SENDS MESSAGE 2 AT TIME 356486
Tu) RECIEVES REPLY AT TIME 1356606
Tu 3 RECIEVES REPLY AT TIME x57202

TU 5 SENDS MESSAGE 3 AT TIME 359688
END OF STMULATION : g

CLUCK TIME AT END OF SIMULATION was$ 340000
NUMGER OF TIMES LABELS WERE ENCOUNTERED
COUNT LABEL

LABEL - COUNT LABEL - = COUNT
START - 150 ORJGIN . 148 SCAN o 1993
SEND - 141 COMPYUTAT = 138 OUTPT - 649
ReECEIVE - 564 CREATE % 6 COMPUTE = 477

NAME OF FaCILITY FRACTION OF TIME IN USE
Tu (101) 0,7389
TU (no0g) 0.9145
TU (u03) 1,0000
TU (404 0.7281
TU (005) 0.5014
TU t306) 0.6470
5B (no1) 0.5967
$B (602) 0.4437
$8 (103) 0.1959
LINE (901) 0.8771

COMPUTER(N01) 0.5412

=23

NV3IW 40 374ILTINK

0000°08666

Tpe0°0
70400
y0LT°0
8692°0
egeve’l
2L91°0

NOILYZITLLNn 39VH3AY

A
2261
T280°¢
02L6°2
0298°2
6TSL'2
eTvS'e
l1ee°e
9T2v'e
STTsd
st0ete
pT60°2
£T86°1

S Dl

L9t i
TT69't
OTPe'T
0TeP°t
602¢° 7T
qi0ies T
L0OT*T
9066°0
9088°0
G0LL0
y099°0
f0se’ 0
cobbta

I-J,Nl.

B826°9L21

6666 000
6666 00°0
6666 00°0
6666 00°0
6666 000
6666 00°0
6666 00°0
6666 00°0
56'66 00°0
6666 00°0
66°66 00°0
6666 - 00°0
66" 66 00°0
56*66 00°9
6666 00°0
46" 66 60°6
0606 00°0
0606 vS*'y
9¢*98 vG'y
19°18 8T*9T
£9°¢9 PSSy
60" 65 8T'97
16 0 2L 22
9T° 871 PGty
£9°¢T £9°97T
0o0°*o 000
00°0 000

JATLYINWND 4N39 ¥3d
NOTLYIAZQ Q¥YaN
22

S3NIYA AY¥LIN3 TV 40 WNS

9Tre* o0
0T0L*0.
k2 B el
9869°¢
L22y2
02L9° T

AONVJNIJ0 39VH3IAY

(T00) anavl

DYoo M

d3sn WIWIXYKW

vis

M AN T AT A o~

H38WNN

L2L2*2bSY

00nc
0060
00nb
20¢¢
dane
Cogz
0907
CoaT
Gont
G0g
Conao
00ck
08064
Gogen
00ga
00g/
20n¢
00co
cano
08¢gq
Capa
00gw
S0nw
Jige
J0q¢
G0g2
2002
LIWIT Y3dgn

4718vyL 40

T
T
T
T
T
1-
T
1
T
T
T

Nv3IW

S1 S3IYLN3 3T4VL 40 438NN

SI 3W¥yn 378VL

= s B o8 B oo Tl v |

el

&

ALTOVdVD

(9040)
(g00)
(vo0?
(£0G)
(260
(T00)

34¥0LS 40

aNanop
4N3no
nano
3nano
3nano
3Nano

IWVYN

0000°259623

NVY3N

p6ge*e
L Lol
reel*e
yoTE°2
GLog*e
G665°'2
cT6c'2
ce8v’e
cGle'e
919¢°'2
96612

.91¢0'2

9¢p6° T
9686 T
Ll s
LO6TS' T
LTiLe
L0V T
L662"'%
LLRTES
A6L0°T
RTLE'D
f898°0
fcelt0
8Lv9°0
66%¢°0
6T80°0
J0 3d119nK

SENTYA AMLINI 17V 40 WNS

lle

66°66 -00°%0 00naT.
66°66 00°0 00cwpT
66°66 00°0 000bT
66°66 00°0 Coaet
: 66°66 00°0 00q0cT
6666 00°'0 G0g2t
66'66 00°0 0092t
6666 00°9 i 00gTT
66°66 00°*0 ngqTT
66°66 g0°q 00cat
66°66 00'q 0o0ant
66°66 00*0] C0c4
6666 is'¢ T 2004
2v°96 009 Coea
2096 LGt¢ T 00ne
G8°'26 0l080 00g¢
G826 LS8 T 60n¢
R2°*68 l5*¢ T Poco
T.tG8 LG9 T Gono
pT*28 009 00cq
»T°28 212 9 00na
TL°09 L2=Ge s d Cogh
66°p2 g82'%1 b 000t
L/t O LG T J0¢ge
b L treE /! 2 00n¢
no°o 00*0 00g?
000 000 9002
JAILYINWND AN3D ¥3d HIEWNN LIWIT ¥3d4n
2985° 8181 NOILVYIA=g ayvdNvyls GR2p Ne9d 378VL 40 Nv3IW
82 SI S3IIYLINI 378VL 40 H3gunN
e (200) 478v1 SI 3InWynN 378VL

TABLE NAME 1S

NUMBER OF TABLE ENTRIES IS

MEAN OF TABLE

UPPER LIMIT
2009
€500
$000
$500
4000
4500
2000
2200
el0p
6200
72000
7200
8000
8200
%000
¥200
1000y
10509
11009
11500
1200¢
12500
10000
185090
14000
14209
150090

4930.6000

NUMBER

N A N

[y

TABLF
30

STANDARD DeVIATION

PER CENT
0.00
0.00
3.33
$.33

23.33
10.00
10.00
19.99
13.33
6.66
6.66
0.00
333
0.00
0.00
0.00
0.00
.00
0.00
0.00
0.00
0.00
.00
0.00
6.00
0.00
0.00

(003)

SUM OF ALL ENTRY VALUES.

CUMULATIVE |
0,00 :
0.00
3.33
6.66

30.00
39.99
50,00
69,99
83,33
89.99
96.66
96,66
99.99
99.99
99.99
99.99
99.99
99.99
99.99
99.99
99.99
99.99
99.99
99,99
99.99
99.99
99.99

o mpol

1157.1875

MULTIPLE OF MEAN

0.,4056
0.,5070
0.6084
0.7098
0.8112
0.9126
1.0140
1.1154
1.2168
1.3182
1.4197
1. 021l
1.6225
1.,7239
1.8258
1.9267
2.02861
2.1295
2.2309
2,3323
2,4337
2.5351
2.6365
2.7360
2.8594
2.9408
3.0422

147918.0000

9945°% 6666 00%0 0006t
Ty92°e 66°66 00°0 00gbT
6I61°¢% 66°66 00°0 000bt
. 0620°¢ 66°66 00°0 0ocet
vo2é°e 66°66 00°0 0onet
62762 66°66 00°0 : 0ogzt
£10£4°2 66°66 00°0 000271
L88¢°2 6666 00°0 0061t
294v°8 _ 66°66 00°0 0o0pTt
9¢9¢°28 66°66 00°0 00g0t
T162°2 66°66 00°0 0000t
6eete 66°66 00°0 00466
0920°2 66°66 00°0 00n6
peT6°s 66°66 00°0 : 00ga
8008°7% 66°66 00°0 i 000R
£889°% 66°66 Sy ¥ 00g¢
LGLE"S 6h°66 00°0 00n¢
289bv° % Gh*66 00°0 ; 00ge
906¢€°S Gb'aé 00°0 00n9
4 T8¢£2°'% Gp*sé 606 2 ‘ 00gq
6G21°% 9¢°98 (e le 9 0096
08T0° % 60°66 T8°1¢ L 00gGh
: ¥006°0 terie 60°6 2 000w
8L8L°0 979t 879t ¥ 0oge
£645°0 00°*0 00°0 00p¢
L295°0 00°0 00°0 00g2
206b*0 no°0 00°0 00n2
NV3W 40 37dILINKW JAILYINWND +N30 ¥3d ¥38wWNN LIWIT ¥3d4n
: B202°048 NOTLYIA3Q QyvaNvls 2122 2vbY 374vL 340 Nv3W
0000°624L6 S3NIVYA AHLIN3 7V 40 WNS 22 S1 S3THLIND 378VL 40 H3AGuNN

(¥00) 47avl SI 3WVN 378vY

TABLE NAME IS

NUMBER OF TABLE ENTRIES IS

MEAN OF TABLE

UPPER LIMIT
2000
€500
0o
$500
400¢
auwo
5000
50500
6l0gQ
6509
7006
7200
8000
8500
900p
$500
10009
105090
11009
11500
120090
12500
15009
13500
14000
4500
i5000

TABLE

MN.

(005)

CUMULATIVE

Lol

SUM OF ALL ENTRY VALUES

5292.9285 STANDARD DevIATION
NUMBER PER CENT
0.00 0.00
0.00 0.00
0.00 0.00
e 14.28 14,28
0.00 14.28
5 X5 71 50,00
i Fiadid 57.14
0.00 57.14
2 14.28 71.42
0.00 71.42
2 14.28 857
.00 a5 71
0.00 85,71
i ety 92.85
i 7414 99,99
0.00 99,99
.00 99,99
0.00 99,99
0.00 99.99
0.00 99.99
0.00 99.99
0.00 99.99
.00 99.99
0.00 99.99
0,00 99.99
.00 99,99
0.00 99,99

1678.4334

MULTIPLE OF MEAN

8.3778
0.4723
0.5667
0.6612
G757
0.8501
0.9446
1.0391
1.1335
1.2280
a32Eb
1.4169
10014
A 5059
1.7003
L7988
1.8893
1.9837
2.0782
217e?
2.2671
2.3616
2.4561
2.5505
2.5450
2.7395
2.8339

74101.0000

lmNi

Tble R 6666 00°*0 00nct
069%°% 66°66 00°0 006yt
9660°¢S 66°66 00°0 000kt
Lobe'2 66°66 00°0 00GeT
Gl88°¢ 66°66 00°0 ConeT
yaeL’e ; 66°66 00°n 006271
£6T6"2 § 66°66 00°0 00021
T0tTE’2 66°66 00°0 C0cTT
0T0v*2 66°66 00°0 D0ntt
6162°2 66°66 00°*0 00607
L2812 66°66 000 00007t
9¢£0°2 6666 00°0 9046
p$96° T 66°66 00°0 0006
£666°7T 66°66 00°g L 0dgo
29%¢L°T : 66° %6 00°0q 0one
0L85°F 66° 16 00°*0 : 00g/
6L2¢'T 66°H6 00°g T 09n¢
L8TH°T 66°68 00°0 0dgo

4 960£°% 66°68 00°*g T Cong
Go02°T 86°v8 66°HT ¢ 0oge
£160°% 6669 00°0T 2 0one
22960 00°09 00°0¢ 9 0o0ch
TeL8°0 00°08 6667 b 000y
6592°0 00°0T 00°07F 2 00ge
ap6s* 0 00°0 00°0 090%
964S° 0 a0°o 00°0 0062
Gogb 0 00°0 00°0 0002

NY3W 40 374140H JATLYINWND &N3D ¥3d Y3AWNN LIWI ¥3d4n
. 96L.6°087TT NOILYIA2Q QuVANVLS 00Gs°ToaY 379vL 40 Nvy3IW
0000°£29T6 S3NTIVA AHLN3 17V. 40 WNS : 02 S1 S3IIHLNI 378YL 40 ¥3gunn

(900) a7avy SI 3nVvN 378VL

SOL EXAMPLE
DAIE L8 ({2 068
TIME: 19.52.44

SERIAL NUMBER 15537143

INSTRUCTION INTERRUPTS

COMPILE sTORE
EXECUTION STORE
MAGNETIC TAPES

COMPILER NUMRER

INPUT 0 2
OUTRUT. - o 564

2"

REQUESTED USeD
12500 103n4
7¢ X
45 a0
DECKS BLOCKS
2 z2
STORE TIME DRUM TIME
4058 al
29

RLOCKS READER 0
RECORDS PRIVATE TAPE

COMPILE
10986

WAITING :
15
DECK Tk
156

™

0

