SOME ASPECTS CF THE IMPLEMENTATICN
OF THE COMPILER COMPILER ON ATLAS

by
I1,R. MacCallum,

Thesis presented in support of an application
for the degree of Master of Science in the

Viectoria University of Manchester

Computing Machine Laboratory. January 1963.

CONTENTS

page
Acknowledgements
Chapter 1 Introduction 1
Chapter 2 The Bootstrap 11
Chapter 3 The Language of the Hand Coding 22
Chapter & A Proposed Scheme for using the
Compiler Compiler on an IBM 7C%20
Data Processing System 31
Chapter % Development Techniques 4]
Chapter 6 Primary Assembly Routines 53
Conclusion 62

Appendix 1 The Compiler Compiler,
Paper published in "Annual
Review in Automatic Programming",

Vol, 3 Pergamon Press, 1962,

inside back cover

Appendix 2 Formats of the Hand Coded
Language 6l
Appendix 3 The Primary Assembly Routines 67

References 88

ACKNOWLEDGEMENT

I am indebted to Mr. R.A. Brooker and in particular
to Dr., D, Morris, both of the Computing Machine Laboratory
for suggesting the subject and for extensive assistance

and helpful criticism in the preparation of this thegis,

I would also like to thank Miss M. Bruce for her

careful typing of the manuscripts.

I am also indebted to the Department of Scientific
and Industrial Research for a grant for the period in

which the work for this thesgis was done,

CHAPTER I

Introduction

1.1

The present day multiplicity of source languages for
automatic digital computers and the continued need for
special purpose languages presents the compiler writer with
a problem of considerable magnitude. The purpose of this
thesis is to describe recent work on the implementation and
general development of one system which aims to reduce
significantly the time taken to write such compilers. 1t
also simplifies the corrections and amendments which often
have to be made to a compiler once it is in regular use,
This system is known as the COMPILER COMPITER.

Briefly, the system allows the syntax of statements in
a phrase structure language (e.g. a seientifle autocode) %o

be specified in terms of formats and phrase definitions, and

the semantics in terms of format routines, Given such a

specification of a compiler, the system will generate (in
machine instructions) a compiler which will translate
statements of the source language into machine instructions
and immediately enter the compiled program. A source
language may be extended by intrcducing into the program
further phrase definitions, formats and format routines to
define additional source statements which can be used

subseqguently in the program. Appendix 1 consists of a

detailed description of the way in which a compiler is to be
defined for the sgystem,

Although the compiler compiler hasg been written in the
first place for the Ferranti Atlas computer, it was realised
‘at the outset that fundamental concepts such as list structures,
syntactical analysis, and manipulation of integers and binary
numbers are in no way Atlas oriented, and consedquently it
has been coded in such a way that subsequent adaptation to
another suitable computer can be effected with a minimum of
woTkK, This has been done by coding one section of the
compiler compiler in its own language, (namely, the language
in which a compiler is defined,) and the other section in a
language which is largely a subset of the class of built-in
instructions (see Appendix 1, p. 10), and by using a Mercury
computer to translate from this language into the requilred
machine code. The division of material into these sections
is explained in chapter 2.3 and in chapter 3 the Mercury
translation program is described. It was hoped that it
would be possible to make use of this machine independence
in the development of the compiler compiler for three reasons.
First, it was desirable for the compiler compiler to work
on Atlas as soon as possible so that the Manchester University
Mercury Autocode Computing Service could be transferred to
Atlas at the earliest possible date; second, the writing

of the compiler compiler was almost complete some seven

months before the main core store was available on Atlas;
third, there was a possibility of using time on an IBM 7090
computer (with a 32K store) for such development., It was
'therefore decided to adapt the system for the IBM computer
mainly for the purpose of development until sufficient
store was installed in Atlas, but also for the knowledge of
whether such a project would be practiecal, Chapter 4
containg an account of the proposed version for the IBM
7090 which was almost complete when it was learned that
the computer would no longer be availabhle, At this time
a small store of 1024 words was being commissioned on the
Manchester University Atlas (MUSE), and in order to make
use of the next few months, a scheme for testing selected
parts of the system on this store was devised, as described
in chapter 5, This small subgidiary store is used by
programs in a slightly different manner to the main store,
and a program written for the latter will generally require
modification if it is to operate on the former, The
necessary modifications were few, and relatively simple to
implement, largely due to the machine independence of the
coding and the flexibility of the Mercury translation program,
1.2

A full description of the Atlas computer is to be found
in the Ferranti Manual (ref.l) but it is worth noting here

some features of the computer which have influenced the

coding of the compiler compiler and i1ts development on
Atlas. Although 1t has a core store of 16,38% words, the
hardware and drum supervisor program (ref.2) enable the drum
backing store and the core store to be regarded by the
programmer as a store of over 114,000 words in the MUSE
installation. The standard word lengths are 24 and 48
bits. Instructions and floating-point numbers occupy full
48-bit words, while integers and addresses occupy 2bh-bit
half-words. The structure imposed on half-words is shown
in fig.l from which it can be seen that an address s, lies
in the range 0554221— 1, and an integer n lies in the range

-Zglsnszzl-l.

LIIIHHIIIIII]TIIIIH]LOI

23 a2 oam ... P

E Integer : sign digit

digit 23

(address : always C
digits 2-22 integer or address
digits O=1 spare

fig. 1
Atlas has 128 B-modifier registers, some of which are
reserved for special purposes (ref. 1 section 2.2.2) and
those generally used by the compller lie in the range BO-B9Q
(BO is identically zero). Since all input and output
Operations are time-shared simple instructions cannot be
bProvided for the user. In their place, a pseudo-instruction,

known as an extracode, must be used which calls a fixed

- .

gtore sequence to perform the necessary operations, Extra-
codes are also used by the compiler compiler for other
common operations such as shifting, subroutine entry,
integer multiplication and division etc,
1.3

Before it is possible to decide whether the compiler
compiler is suitable for use with a certain computer, 2
number of important features of the system must be taken
into account. The most significant of these is the size
of the compiler compiler. The method adopted for lcading
it into the computer (described in chapter 2) renders it
difficult to calculate exactly how much space is required
by format routines and phrase definitions. Its size also
depends to some extent on the efficlency of translation
desired, which is discussed in chapter 6, However it is
estimated that a minimum of about 6,000 instructions and
6,500 half-words are needed by the Atlas version for the
compiler compiler itself, and for the Mercury Autocode
compiler a further 4,000 instructions and 8,000 half-words
are required, making a total in the region of 10,000
instructions and 14,500 half-words, An estimate of the
Space required in the machine under consideration can be
made by comparing the coding of the same instructions for
Atlas and the other computer. Tig,2 shows the Atlas and
IBM 7090 machine instructions for one of the built-in

Phrase routines of the system which is fairly typical of

el AT

Cla 130 A%, G0, UA v wlss B.if AR gy L g

EEALR) Hepu SEAVL Hou

b Buo LAk ,00, 08, v wla Loy UAZ1,08,45,X

YAy Bos AL ke

s V) Srai, 94. gl gt RYRS) '1.59 -

N Taish FDD WA 3.} QAR , $2T 0,10

CLA DU, G5 v, UYTI2 e (23uit2,03,43,0

510 BOH Suls i L2, LT 14T Ly
Y172 LAU BUZ, L { A)oauwn,08,04, 1 120 N WEES Y o7 |

CLA ETP Wi JERE] QL2 ,04.,0,0 B

Lo By U3 £ TURA, LA, 1T, Lo

Chas B RO, 0% 01,0 gD O L6%,4

S0 BoZ ik o1, G 105 1 41034550

CLA P GXT2 04 50, 15 ANA GEOT Gy, e XE

subB el A2 AT R (L Uss

YAl AN AR R SLW

G B4 T2 0% 058 UL VLAY ,00 v

sUB -3 Ty KA, LA Lia SR

A Y Le2 Y14, A CLA ULZE,03,08, 1

Clad By ST, B LK

HUL i Ry LB LA) BV

AL VOB LR VS % e Ry, U, L

Chih Bas PR VI VPO TAR UL, LA ,To 0

b
CAN =25 W2 TR 1/ B VA g P B2 Gubll € 5Muhi4,0,0,1
Taidh SYLYZ Y14, 4 S0 BI™w

NOP Tridi 34 YLK, LA, TS, 0

whp By GET 0,0, Xy Uy L% Lb £ QIEZE, 02,00,
CAS AN A Tet y Lal SR S0 Bo%
TRe AG L2 Y L2y LA B) G124, 05,03,
NOP YN Bus

33098 Led Y - 5 PR LT ALV PR § ol Ui LGIEE 240 u101,97,u,£p4b1a5
WU B34 SFLY 354 .

AY N2 b Bya (0 ASural,Ua,01,y Lag Bty A AR, KT 0,4
YT BU4 Latdd i

#is 2. Cronpat oo, Lotreen Lol oy ot oailln e PSR Rt B ARt o Eh b St i SNV 7 SN

the kind of instructions which appear in the compiler compiler,
The ratioc of Atlas to IBM machine instructions is about

1: 1,7, and since it 1s not possible to refer explicitly
to half-words in the latter machine the total number of
words required is of the order of 31,000, leaving about
1,000 words for object program space, For development
purposes, the IBM 7090 would have been adequate, but before
the compiler compiler could be used as a practical means of
program translation, some modifications for dumping object
program on magnetic tape would have to be Incorporated.

The facility for introducing new phrase definitions and
formats into a source program may be digpensed with making
a further 3,000 words available for object program in the
IBM computer.

The two spare bits referred to in fig. 1 are used in
the Atlas version as tags (ref, 3, p.22%; ref., 4, pp.33,
L3), No assumptions have been made in the coding of the
compiler compiler as to their position in a word except that
they do not interfere with its use as an address. However,
before any arithmetic operations are performed on two words
which may be tagged, the tag will be removed from at least
one of the words, There must, then, on the computer under
consideration, be two spare digits in a word, suitable for
use as tags.,

The method of using the store has been described
elsewhere (ref, 3, p.220) where it is stated that all items

in the record store are "store invariant', Since 2l11

B

hand-coded items are initially in this part of the store,

all instructions whieh cause control transfers or set

links must have dynamic access to the address of the current
instruction, or at least to some fixed part of the routine,
such as the first instruction, In Atlas it is possible

to make relative control transfers using just one instruction;
for example, 121, 127, 127, 10 causes control to be advanced
by 5. In order to perform the same operation with the

IBM 7090 three instructions are necessary, namely,

STL B99
LAC B99, 1
TRA 7,1

Since control transfers are frequently occurring operations,
space may be saved by utilising the B-register which contains
the address of the current routine, (see chapter 4,)
1.4

It may be regarded as a natural consequence of writing
an input program that at some stage it becomes possible to
read in the rest of the program using that part already
within the computer. This has certainly been true in the
cagse of the compller compiler and therefore some understanding
of the system is essential for a full appreciation of the
implementation and development, This section provides a
brief outline of the compiler compiler,

A compiler for a phrase structure language is described
essentially by three types of primary statement, namely

phrase definitions (or simply, phrases), formats and format

routines. Each type of statement consists of a heading
or master phrase followed by the gtatement proper, the end
of which is denoted by the next master phrase, This
primary material is read a line at a time by a line recon-
struction process which forms a chain 1ist in which one
cell represents each printed character or space on the line,
This list is then submitted to an editing routine which
generates a new list removing spaces and erazes, and
converting symbols with meta-syntactical significance into
their internal form, The edited list is now analysed by
the expression recognition routine (ERR)x with respect to
the format class of master phrases. This format class

initially has the form

. I | 1 — N 3 [

M & & PHRASE 2.8 & ITEM 266 & ENDOFMESSAGE 227 & FORMAT
— }

5% & DELETEITEM 145 REPLACEITEM 164

The ERR plants the analysis record (a single word, belng
the serial number of the routine to interpret the 'meaning'
of the statement) which enables the appropriate routine to
be entered. Thus it is a simple matter to enter a routine
of a supervisory or diagnostic nature by means of the

appropriate master phrase, ¢.g. END OF MESSAGE, Additional

% see ref. %, p.36 ff.

master phrases may be added, as in the case of the format
routine heading, by means of the format,
FORMAT [MP] = ROUTINE, 221

A source program 1s translated into machine instructions
by a similar process to that used for processing the primary
material, Since the punching convention for input material
of source programs will, in general, differ from that used
in the primary material, a different editing routine is
used, The edited line is analysed with respect to the
format class of source statements by a special recognition
routine, It is desirable that those parts of the compiler
compiler which are used for the translation of source
programs should he as efficient as possible and so the
source statement recognition routine has been 'fixed! in
the store in order to achieve more effective use of the
machine instruction code than if it were 'store invariant',
The first word of the analysis record planted by this routine
is the serial number of the format routine for translating
the source statement just recognised, and the remainder of
the analysis record provides the format routine with its

input parameters.

CHAPTER 2

The Bootstrap.

2.1,

Before any program may be read into a computer it is
essential that there should he some instructions already
in the machine to interpret the program and establish in
the store the required pattern of digits whieh the computer
can obey, The question which immediately arises 1s,
"How is the most elementary input routine read into the
computer?” The answer to this ig often by means of a
procedure known as a 'bootgtrap'. This term is used to
deseribe a recursive process in which one program is used
to read in material to compose a more complex program until
an input routine suitable for more general use 1s in the
store. The first input program must be introduced into
the computer by some means other than the normal input
channel (e,g., paper tape, cards) and is usually by means
of fixed store program (Atlas), by manually operated
instructions which read from hand keys to store (Mercury)
or in the hardware (Titan), A good example of a classical
'nootstrap! is given by the starting procedure for the
Mercury computer which furnishes it with a binary input

program, Tt consists initially of a loop of 4 instructions

which are read manually from the hand keys to the core store.

12

A further manual order is required to set control to the
first of these instructions and the simple loop reads the
bootstrap tape which consists of 3 dlstinct sections,

each corresponding to a different phase of the recursive
operation, Once the bootstrap tape has been read, the
computer is able to accept binary tapes. In this example,
an attempt has been made to reduce the number of manual
instructions and the length of the bootstrap tape to a
minimum,

An indication of the size of the compiler compiler
has been given in the introduction, and this chapter
describes how the principle of a bootstrap has been used
to reduce coding errors and to simplify their correction,
First, those principles which are computer=-independent
will be described, and then in some detail, the method by
which the compiler compiler is bootstrapped into Atlas.
2.2,

The compiler compiler is 'complete' in the sense that
it may be written in 1ts own language. In other words, it
consigts of phrase definitions, format dictionaries, and
routines whose instructions belong to an extended set of
the built-in instructions and auxiliary statements. The
general implication of this is that once the material for
interpreting one of these primary statements has been loaded,

it is possible to process subsequent statements of that

type written in the system language. This type of

13

bootstrapping procedure has been adopted for the compiler
compiller for three reasons.

First, 1t hag been possible to write a considerable
part of the system in a language which is particularly
suited to its own requirements and which reduces the likeli-
hood of errors in the coding, Second, it provides more
positive evidence that the variocus parts of the system
function properly; for example, if a phrase which has been
processed by the phrase assembly routine is subsequently
used by other parts of the program and is found to give the
expected results then it is almost certain that the phrase
has been assembled correctly. Third, once the compller
compiler is working on Atlas, it will be possible to
produce a compiler for another computer by providing the
Atlas version with a set of primary assembly routines
(ref, Y, p.46) which will plant machine instructions for
the other computer, By reading the compiler again,
written entirely in the language of the system, a compiler
for the other machine will be generated, It is quite
likely, that if the compiler compiler is used on the Titan
computer, its compilers will be written in thig manner.

2. 3.

Having decided that a bootstrap is both suitable and
degirable for the compiler compiler, it is necessary to
decide in what order the material should be assembled, in
order to simplify the programming and optimise the resulting

compiler.

Iy

Tt should be apparent that the routine which assembles
the routines of the system cannot itself be read into the
computer in the language of the compiler compiler. This
routine therefore, and its subroutines belong to the section
which is to be hand coded, However, there are two ways
of coding the remaining material which enables this routine
to operate and phrases and formats to be assembled, One
is to hand code all the built-in phrases and format
dictionaries for the built-in instructions and then to read
the routines for processing phrases and formats through
the system, The other is to hand code the phrase and
format assembly routines and use them to read the bullt-in
phrases and formats required by the routine assembly
routine, One digsadvantage of the firgt method is that
most of the subroutines required for the phrase and format
agsembly routines are also required by the routine agssembly
routine, and consequently the amount of material to be read
in by the system would be quite small, However, the maln
reason for choosing the latter method was because routines
sre easier to code by hand and subsequently alter than
dietionaries. Further, because of the gimilarity between
the language of the hand coding and the built-in instructions,
1little would be gained at thig stage, from coding these

routines as format routines,

When a routine is being assembled, each instruction
is examined to decide whether it is possible to plant
machine ingtructions rather than the analysis record of
the instruction which has later to be interpreted, For
most of the built-in instructions therefore, there is an
interpretive routine and a primary assembly routine (or
compiling version of the routine) which provides a direct
translation. Tt is unnecessary for both the interpretive
and the compiling version of each routine to be hand coded,
for the compiling versions may subsequently be interpreted
or the interpretive routines may be compiled. In faet it
is possible that if only three interpretive routines were
hand coded, namely

(AB} LWORD]

[AB] {WORD1 [OPERATOR] [WORD]
— [LABEL]1 [IU) [(WORD) ([COMPARATOR] [WORD]

I

then the remaining interpretive routines and all the
compiling routines could be bootstrapped in by these.

At this point it is important to realise that maximum
efficiency must be achieved at that time when object
programs are being translated rather than the time when a
compiler is being assembled. It is therefore necessary
to examine the structure of a format routine which would

be used to translate a source statement into machine code.

N & I IEi o | IE I .. | .- - LAREL DIRECTORY
E]
W\QC'I‘\{‘\?. SPQC:O&‘ mou'.k'\'\&
orders exbracode sedees

—_—

The machine orders are those which are planted by the
compiling routines and therefore the orders planted, rather
than the routines which plant them, must be as efficient as
possible. The analysis records are tobeyed! by the
interpretive routines and therefore their effilcilency is
important, Tor these reasons it was thought best that all
the interpretive routines for the built-in instructions
should be hand coded and that the compiling routines should
be written in the language of the gystem.

2.4

The compiler compiler may now be considered as being
in two sections, namely that which is written in 1ts own
language, and that which is hand coded for translation on
Mercury into a suitable. form of input for Atlas. The latter
part occupies some 3,750 instructions in Atlas and this
section describes the way the system has been extended to
simplify its development on Atlas.

The approach which has been adopted was influenced
mainly by two factors. The first of these 1s the existence,
within the compiler compiler, of a routine for recovering
the space occupied by a redundant item in the record store
(ref. 4, p.33). 1f there were some means of reading a new
item to the head of the record store and updating the index,
this would provide an easy way of replacing faulty items
in the record store. A simple input routine incorporated

into the compiler compiler, for use before the routine

assembly routine is operational, could then be used for

this purpose, The other factor was the nature of the
simple input routines which had been written for Atlas at
the time when limited testing of the system began, Two
forms of input were available for the 102% word store in
March 1962. The more elementary of these, Octal Input,

is held in 64 words of the fixed store and makes the whole
of the subsidiary store available to the user. An instruc-
tion, in this form of input, is represented by 16 octal
digits which makes errors both hard to find and in some
cases, where an instruction has to be inserted, awkward to
correct, The other was a simple form of Atlas Intermediate
Input which only left about 300 words of the subsidiary
store for use. Nelther the elementary form of Intermediate
Input nor any of its proposed forms had any facilities for
evaluating the relative distances between two labelled
Instructions in a program, and so this form of input was

rejected,

As suggested already, an elementary input routine was
embedded into the system itself, its réle being that of a
simple routine assembly routine which is entered upon
recognition of a master phrase, For this purpose the

master phrase ITEM has been introduced and the corresponding

routine is known as the item routine, This routine, together

\8

with those routines which are essential for its operation

are read into Atlas by Oetal Input and the remaining routines
of the hand coded section are read by the item routine in

a language resembling Intermediate Input but tailored to

meet the requirements of the compiler compiler.

The symbolic language which is used, differs from
Intermediate Input mainly in two respects, Since all
instruections causing control transfers within a routine are
of the form

function digits , 127, 127, address ’
reference to a label in the address part of an instruction
i1s interpreted as referring to the number which must be
added to, or subtracted from control in order to effect the
jump, The other difference is concerned with the position
of the implied binary point. In accordance with fig. 1,
it is taken to be two blnary places from the right whereas
Intermediate Input assumes it to be three places from the
right.

The language 1s best described by means of phrases,
Statements may belong to three classes,

(i) H = [ADDRESS PART1

(1i) [FDI [COMMAT LN1 [COMMA] (NI [COMMA} [ADDRESS PART]

(1i1) I [N1 = CC
where, [ADDRESS PART) = ([-?1(W1[0o-31, [-?1. {0-31, [-?1(mwl,

L Lwl, fo-31, T [N}

(¥p] = [BD] {op] {oD] (OD]
8] = 0,1, 2, 3, ceusn
(BD] = 0,1
top} = o0, 1, 2, 3, 4, 5, 6, 7
fo-31 = 00, 01, 10, 11, 0, 1, 2, 3

and COMMA denotes a,

Any instruction may be preceded by a label which is
written ([N]) and LN]¢40. An asterisk punched in front
of an instruction causes an entry to the post-mortem
routine to be made if the instruction it precedes is about
to be obeyed, An example of a routine written in this
language has been given in fig., 2. in instruction of the
type (iii) above is used to denote an alternative entrj to
a routine, During input, 1t causes the address of the
next available register in the record store to be loaded
into the[Nlth position in the index.

The usefulness of having a routine such as this embedded
in the compller compiler can be summarized as follows:

(1) The quantity of material to be read by

Octal Input amounts to only about one third

of the hand coded section.

(i1) Alterations to program are easily made in

this language and a facility for replacing an

item is readily incorporated into the system.

(iii) It was a suitable routine for early

development on the subgidiary store and

20
enabled certain other routines to be
tested at that time,
{(iv) During the development of the compiler
compiler it was necessary to use interrupt
control (B125) but main control (B127) was
nsed throughout the symbolic ccoding and a
few orders in the item routine substituted
127 for 125 whenever it appeared as the
number of a B-line, When main control
hecame available it was necessary only to
remove these orders.,
2.5
Tt is now possible to summarize the various stages of
the input of the comniler compiler,
. What may be done
ITtems input. at_each stage.
Item routine and those items Read items in
necessary for its operation (in octal), symbolic language.
Routines for deleting and replacing Replace any item in
items. Miscellaneous subroutines the record store
of items in 1, which are not fexeept—bhe—routine for
required by item routine, replacingditemg) and
delete any redundant
item,
Phrase and format assembly routine Read phrases and formats
and subroutines,. in language of system,
Built-in phrases and formats; Read format routines
routine assembly routine and
subroutines,
Interpretive routines and transplant Format routines can

sequence (ref.4, p.42). be obeyed.

Auxiliary formats;
auxiliary format routines

required by compiling routines.

Compiling routines, built-in
phrase assembly routine,.

Remaining auxiliary format
routines, compiling routines
for second time,

Notes:

21

Read and obey compiling
versions,

Builit~in phrases can be
read in the system language
and obeyed,

Compiler can now be read,

1, In practice, the built-in phrases and formats are not
input until after the interpretive routines and the
transplanting sequence, since it is convenient to have
them on 7-hole tape and all the material in sections 1.5

ig on %5-hole tape.

2. F'or a sgpecification of the built-in phrases of section

7, see Appendix 1, p.37 f.

22

CHAPTER 3

The language of the hand ccoding.

3.1

In the Introduction it was stated that the fundamental
concepts of the compiler compiler are machine-independent
and that it is desirable to reflect this in the way in which
the system is coded, It has alsgo been noted that the
program is of considerable size and that the language used
should simplify the ecoding and reduce the occurrence of
errors, As explained in the previous chapter, part of
the compiler compiler has been written in its own language
which is fundamentally machine-independent and also simple
to program, and the remainder has been written in what has
been referred to as the 'hand coded' language. In order to
facilitate translation from the hand coded language into
basic machine orders for Atlas (or another sultable computer),
a Mercury Autocode program has been written. This chapter
degcribes the hand coded language and the translation program,

The Mercury program resembles the compiler compiler in
many respects. The syntax and semantics of the instructions
of the hand coded language are specified in the first phase
of its operation, and in the translation phase a crude form
of syntactical analysis identifies instructions one at a
time, leading to the corresponding machine orders being
brinted, In the analysis and in the syntax of the language

all integers (except certain digits specifying tags) are

23

repregsented by the character n {(or '),

Before entering into details, it should be noted that
the process described in this chapter is intended for the
initial development of the compiler compiler. At the time
vwhen it was hoped to develop the system on an IBM 7090 prior
to Atlas, this method of producing both 1BM mnemonic code
and machine orders for Atlas proved to be most useful, 1f
it were now required to adapt the compiler compiler for
another computer z method similar to that mentioned in
2.2, using Atlas, would be employed.

3.2

The types of operation most frequently occurring in
the compiler compiler are those involving store transfers,
arithmetic and logical operations on integers and binary
words, and conditional control transfer Instructions.

The language of the hand coding therefore, is primarily
intended for such operations but the primary phase of the
translation program enables extensions to the language to

be easily made, as and when they are required. Two distinet
storeg are referred to, namely, the main store and a small
store of 128 registers referred to as BO, Bl, B2,,

B127 , which corresponds to the B store of Atlas, B100-
B127 inclusive are reserved for speclal use, and do not
generally appear in the hand coding.

In order that the Mercury translation program should

be as simple as possible, the syntax of the hand coded

24

language is only one level deep. Bvery instruction used
should conform exactly to one of those specified in the
primary phase of the progra@. Floating addresses are used
for control transfers, and any instruction may be preceded
by a label thus

n) instruction
A complete list of the instructions used in the hand coded
language is given in appendix 2. It is convenient for
explaining the language, to consider them in the following
classes,

(1) Arithmetic and store transfer instructions.

These are largely a subset of the four

built-in instructions

(AB] = (WORD]

(AR = [WORDI] [OPERATOR){WORD]
(LADDR1) = [WORD]
(LADDR]) = LWORD] {OPERATORI{WORD]

Parentheses are used, as in the built-in instructions, to
denote the contents of the store address specified but the
local variables of, ;%5 cannot be used.

A& further set of instructions in this eclass permits
access to the Index~. It includes

INDEXIB?) n = [B?] n
Bn = INDEX [B?) n

(where (Bl= BR)

* Ref., 4, p.33

(ii) Logical operations.

tach of the boolean operators AND, OR, NOT EQUIVALENCE
(EXCLUSIVE OR) may be used with B-registers or integers
as operands.

Bn AND n
Bn NOT EQV Bn

e, o, Bn
Bn

25

A group of instructicns for manipulating tags includes,

Bn
and Bn

Bn WITH TAG [0 - 3]
Bn LESS TAG

it

(where[0-3]= 00, 01, 10, 11)

(iii) Control transfers,

These are generally written in the form
—p Il
where n denotes the floating address specified by label n
in the same routine. Where the absolute address for the
transfer is available in a B-line, the instruction
C = Bn

may be used, Routines, which are preceded by two infor-
mation words are entered at the first machine instruction by

ENTER Bn
and phrase routines are entered from the BRR by

ENTER PR Bn
which also sets the necessary link,

(iv) Conditionsal control transfers.

The meanings of most of these are clearly conveyed
by the format of the instructions, for example

— 11 Iy Bn 2 n
—» n UNLESS Bn HAS TAG 01

A simple form of multiway switch is incorporated,
SKIP Bn INSTRUCTIONS

— 11
— 11

- & ® & w

—» N
This causes control to be advanced so as to jump past the
number of unconditional control transfers specified by Bn.

(v) Ttem directives.

The directive which precedes all hand coded routines

and dictionaries, is

ITEM n
and additional entry points are denoted by

INDEX n = CC
Both directives cause the address of the following word to
be entered in the index, and the former, in addition, limits
the scope of labels to an item.

(vi) Subroutine calls.

In the hand coded language these take the form
CALL Rn and CALL SMALL Rn
The semantics of these instructions have been influenced by
the Atlas extracode for subroutine entry,

1162, Ba, Bm, n

The specification of this extracode which is to be simulated

on other machines, is

26

27

Ba = address of next instruction,-+-Bm
The B~register denoted by Bm contains the address of the
DOWN sequenceaE which obtainsg the serial number of the
routine to be entered from (Ba ~ 1),

The instruction signifying the dynamic end of a
routine is

END

which transfers control to the END (or UP) sequencex.

(vii} 8hiftine oberations.

These are intended only for transferring information
digits to another part of a word via consecutive registers,
They should not be used for circular shifting or be relied
on for losing digits which overflow or underflow, The
principal instructions in this class are

SHIFT Bn UP n , SHIFT Bn DOWN n

(viii) Peripheral Instructions.

The instruetion for reading one character from
the input stream is

Bn = NEXT CH /fn

=
Ref, L4, p, Wi

28

It reads the character in Atlas Internal Code™ to Bn, but
at the end of a line or card, it transfers control to
label n of the routine,

The output instructions enable characters (basic or
composite), octal words and decimal numbers to be printed,
and permit the layout to be influenced by spaces and new lines.

(ix) Constants,

For hand coded dictionaries and other miscellaneous
purposes, integers and & words may be written into the
program by means of the formats

n
-n
n + TAG 01
3.3

The Mercury program which translates the hand coded
language into machine orders can now be considered in
greater detail,

The gyntax and semantics of the language are specified
on a tape which 1s read by the primary phase of the program,
The syhtaxrof each instruection is specified by the instruc-
tion itself which is followed on a new line by its translation
in machine code, finally terminated by the reserved symbol

@, for example,

% Ref. 1, section 8.7,2

19

Bn = (Bn + n)
8101, nl, n2, n3

(Bn) =Bn + n

0121, 99, n2, n3

0113, 99, nl, ©

g

ete,

A subroutine of the program reads this material a section at
a time, simultaneously performing an operation similar to
that in the compiler compiler which converts characters with
metasyntactical significance into their internal form,
This consists malnly of changing the two-shift 5-bit paper
tape characters into a 6-blt single shift code, and of
ignoring erazes and spaces, Each format and its translation
is written to a sector of the drum, The Manchester University
Mercury computer with two drums, permits the use of up to
384 instructions, of which only about 180 are used.

In the translation phase of this program, Instructions
are read a line at a time by the subroutine mentioned above,
This ensures that insignificant differences in punching
between the instruection and its syntactical definition are
removed in order to make recognition possible, The next
stage is to scan the line, substituting the character n for
each decimal integer, and to preserve these Integers in a
list for future reference, Since integers greater than
222 - 1 do not occur in the compiler compiller, it is possible
to use un-rounded accumulator arithmetic (which is exact for

integers less than 2 29) to evaluate and store these numbers,

30

If the instruction bears a label it is then removed from
the line, The format and position of labels in the object
program, and hence their treatment at this point, depend
upon the nature of the target language.

The instruction is now in a form suitable for analysis.
Sectors are read from the drum and compared to the lnstruc-
tion on hand until either complete recognition is made, or
an empty sector 1s read (i.e. the instruction has not been
recognised), In the former case, the translation is
obtained directly from the words immediately following the
recognised format and in the latter instance the unidentified
instruction is printed out, together with the caption -
UNKNOWN FORMAT, and a warning hoot.

Any of thé 5-hole tape characters which is known not
to appear in the target language may be reserved to modlify
the output. For example, the character @ which terminates
the semantics of an instruction is used to terminate the
output of each translated format. If more types of
modification are required than there are spare characters
available, then one of the spare characters can be used to
enter the sequence of instructions in the Mercury program
at the label whose number follows that character, The
symhol T is reserved for this purpose in the Atlas and
IBM 7090 versions of the program for such purposes as
optimizing the translation and simulating the extracodes

which perform the general shifting operaticns on Atlas,

3

CHAPTER L

A grogosed scheme for using the compiler compiler
on an 1BM 7000 Data Processing Svstem,

k1

When the writing of the compller compiler was almost
completed some seven months before Atlas was sufficiently
developed it was hoped to begin the experimental development
of the system on an IBM 7090 computer with a main store of
32,768 words, Although the proposals outlined in this
chapter did not materialise, they may serve as suggestions
for subsequent adaptation to another suitable computer.

The IBM 7090 is a single address machine with standard
word length of 36 binary digits, which is normally used for
instructions, integers and floating-point numbers. In
addition to the main store, there are three index registers
(XR1, ¥XR2, XR4) which are primarily used for address modi-
ficationh, In such cages the lnstruction is executed as if
the address were the stated address minus the contents of
the specified index register. The concept of address
modification is extended for a large group of instructions
by means of indirect addressing. when this is indicated In
an instruction, the address 1is caleulated in the normal
manner, but instead of taking this word as an operand, the
instruction interprets this word as the addresg of its operand.

The operations of both fixed and floating point arithmetic

32

are performed with a single accumulator, The normal input
is from 80 col x 12 row cards and cutput is either to a card
punch or line printer, A full description of the IBM 709C
Data Processing System is to be found in ref, 5.

The principal input languages available for the IBM
7090 computer are FORTRAN, and FAP (FORTRAN Assembly Program),
a mnemonic machine language, The 709C FORTRAN Monitor
Sj;rstemgAE makes 1t possible for a program to be written in
both FORTRAN and FAP where it is necessary that the inner
loop of a program should be as efficient as possible.
This system has been used for the compiler compiler since
FORTRAN gimplifies the input/output subroutines and FAP ig
more sultable for the detailled coding of the major
remaining part,
4.2

Since there are a large number of analysis records,
dictionaries and lists in the compiler compiler, careful
consideration must be given to the sllocation of store to
integers and addresses. In the Atlas version the instruc-
tion code makes it convenient to have two integers or addresses
in a full 48-bit word and the possibility of doing something

similar in the IBM 7090 wversion has to be considered, The

E
Ref., 6, p.bl

maximum length of the address of a word in the store is

15 binary digits; 2 digits are required for tags, making

it possible to pack two such words into 36 digits. However,
the 7090 instruction code containg no single instruction for
accessing 18-bit words, making it necessary to use full 36-
bit words for all integers and addresses, A 36-bit word

has therefore been given the following structure.

$r 23 .. oz L0 21 34 35
HEEEEEE NN EEEN NN EREE RS NEEE! Ll
— : —)
Tegs 24 dis}k.s corresrnndinj K Attlas l\&,l" word

Digit 's' is the sign digit, and digits 1 and 2 are used as
the tags. When such a word 1s interpreted as an address,
digits 1-20 are ignored.

A convenient method of loading a 36-bit word with
integers which may or may not be tagged, is provided by the
binary structure of certain instructions. The four
instruetions which correspond to the four different tags in

digits 1 and 2 are

TOCD 000
TXT 001
TIX 010
TXH 011

The use of the core store is in principle, the same as
for the compiler compiler on Atlas (ref.%, p.33), but since
the one level store is of more limited size, the position
of the object program has bheen moved and reasonable estimates

of the size of record store and chain have been made (fig.3).

33

Approx, size

F00

TQ, 000

T2, 000

1,000

Pig 3,

<

{

-

Al

‘

TNPIFT/0UTPUHT ROIPTINES

e 4

MASKS FOR TAGS FTIC,
EXTRACONE. SIMITLATION RNS,

INDEX

HANTY CODED ITEMS

PHRASKS,

FORMATS ,

FOBRMAT ROUFPINES

STACK

CHAIN %

ORJECT PROGRAM

CARD WELL

B=-LINES

compiler compiler,

34

FORTRAN S/R's

FAD
PROGRAM

COMMON

Storage allocation for IBM 7000 version of

35

Whenever an extracode has been used in the Atlas version
it ealls a closed subroutine (generally in the fixed store,)
to perform the desired operations, The extracodes which
have been used extensively have been simulated in the
IBM 7090 version by placing closed subroutines in a part of
the store where they will not be moved by the deleting
mechanism, The area which has been allocated to thesge and
other routines which are more conveniently made 'store
invariant', 1s at the front of the store, immediately before
the index. First in this region are a number of FORTRAN
routines for output and a subroutine of the line reconstruc-
tion routine which reads a card. Following these in this
'fixed' region is that part of the main FAP program which
consisfs of the closed 'extracode' subroutines and a number
of masks in fixed addresses which are used in the manipulation
of tags,

Communication between FAP and FORTRAN routines within
a program 1s generally made by means of COMMON storage,

This 1s the region at the back of the store, beginning at
77461 (octal) and continuing forward through the store.

In the compiler compiler, parameters are usually passed from
one routine to another, by placing them in registers in the
B store, By using the COMMON area for this purpose it is
poséible to use the B registers as parameters of the FORTRAN
routines, The symbolic addresses of these registers are

simply Bo, Bl, B2,, B127. The FORTRAN subroutine

36

which reads a card uses a further 72 registers in this

regicon in order to pass on its output to the line reconstruc-

tion routine,.

4.3

One feature of the compiler compiler which it is
desirable to retain is the 'store invariance' of the hand
coded items in the record store, This meansg that instruc-
tions causing control transfers within routines must depend
on a relative distance rather than the absolute location of
the instruction to which control is passed, Thisg is
achieved quite simply in the Atlas version, for the control
is in B127, and the relative distance (which is computed
at the time the instruection is compiled) is added to B127
to make the transfer, Since control transfers occur
frequently in the compiler compiler it is important that
the FAP coding of these instructions should be as efficient
as possible. This has been achieved by calculating the
address of the instruction to which control is to be passed,

relative to the origin of the routine at FAP assembly time,

and modifying this 2t run time by index register XR4 which
is arranged always to contain the 2's complement of the
address of the current routine, In this way, the single
lnstructicon

TRA 7,4

causes control to go to the instruction occupying the eighth

37

word of the routine,

An extra instruction, however, is required at every
point where a routine may be entered, to set XRY4, but since
the number of subroutine calls is considerably less than
the number of control transfer instructions, fewer orders
are required for this method than for that mentioned in 1.3.
There are in fact, only five instructions in the hand coded
language, and one which the system compiles itself, which
cause routines to be entered, namely, CALL Rn, CALL SMALL
Rn, ERTER Bn, ENTER PR Bn, DOWN, and the entry to the
TRANSPLANT sequence, The translation of each of these
instructions, and the sequences which simulate the extracodes
all ensure that XBY4 is set to the 2's complement of the
address of the appropriate routine,

The method of labelling the hand coded FAP items has
been adopted to simplify the coding of the index. A1l the
FAP material is treated as one FAP routine in order that
symbolic labels may be used in the index to refer to an
item in the record store. The first word of each item is
effectively labelled by a right bracket followed by the item
number (see fig,2) and the corresponding entry in the index
consists of the instruction which corresponds to the appro-
pfiate tag, followed in the address part hy the symbolie
label, On translating the single FAP routine into machine
language object program, the location of each item will

automatically be entered into the address field of the

38

of the corregponding entry of the index. This system for
labelling items 1s extended to provide a way of labelling
instructions within items, Label m in routine n is written
ag m)n thus distinguishing it from label m in any other

routine (see fig,2),

hob

The Atlas extracode 1102, Ba, Bm, n is used in three
different contexts in the compiler compiler, namely, the
call for a large routine, the call for a small routine,
and the entry to the TRANSPLANT sequence prior to calling
the appropriate interpretive routine. It is better to
have a closed subroutine for each case than a general one
which would simulate the extracode more precisely because
of the difficulty of specifying whether the DOWN or TRANSPLANT
sequence is to be entered, The three cases are quite
similar, and therefore the call for a large routine will

serve as an example,

Translation of CALL Rn.

TSX BIGR, L jump to closed s/r. to
simulate extracode, XR4
= 2's comp, of addr., of
next instn.

I0CD nl parameter for DOWN seq,
LAC ORIGIN + nO, 4 XRY¥ = 2's comp., of addr, of

routine, for return from
called routine, (see Notes.)

Cloged subroutine

BIGR PXA 4 Ace = XRh
ERA =0777777777777 Ace = 1's comp. of XRhL
ADD =2 Ace = link
STO B70 Set B70 = link

LAC ORIGIN + 239,k XRY set for DOWN seq.

TRA O,k enter DOWN seq.

Notes:

(1) ORIGIN is symbolic address of the first location
in the index of the compller compiler,

(i1) nO is replaced by the current routine's serial
number by the Mercury translation program.

39

4O

4.5

The planting of machine orders in the Atlas version
of the compiler compiler is a falrly straightforward process
since the function code resembles so closely the internal
form of an instruction, The alphabetic function code of
the IBM 7090 on the other hand, bears no more than a one-
one correspondence with the pattern of digits representing
the instruction, Also, the internal format of the instruc-
tions vary so that a type number has to be allocated to
each instruction to enable it to be correctly assembled.
A table, therefore, is provided which gives the function
digits and type number corresponding to the mnemonic code
of each instruction,. The built-in phrase routine for the
alphabetic part of a machine instruction then uses this

table to construet an znalysis record

& By Wy Wo
in which W7 is the word representing the function digits,
and W, is the type number of the instruction,

The interpretive routines for planting and obeying FAP
machine instructions use a common sub-routine which assembles
the instruction in a 36-bit word. This subroutine examines
W2 to determine the type of instruction on hand, and plants
the address, tags, flags, counts and decrements in the

correct digits,

4l

CHAPTER 5

Development technigues

5.1

It was intended as part of the Manchester University
itlas project, that the Mercury Autocode Computing Service
should be transferred to Atlas at the ecarliest possible
date. The general implication of this was that the Mercury
Autocode compiler, and hence the compiler compiler, would
have to be tested and developed on Atlas during its wvarious
stages of commissioning. Ag different parts of the
computer came intc use it became necessary to make changes
in the machine coding of the program, which confirmed the
degirability of the machine-independent language of the
hand ceding and its flexible translator, In this chapter,
the general approach to the testing and development of the
compiler compiler is discussed, and an account is given of
the manner in which the temporary deficlency of hardware on
Atlag at different stages was overcome,
5.2

In section 2,4 the Atlas version of the compiler compiler
was divided into three phases, associated with the three
forms of input used. The first phase, written in Atlas
Octal Input, consisted of an input program which enabled
the second phase to be input in 2 more sophlsticated language,

which 1n turn allowed the remaining part to be written and

input in the language of the compiler compiler.

12

Errors oceurring in the last of these phases present
no problem, for the incorrect statements can simply be
corrected and recompiled as they stand, but those occurring
in the octal section are generally less conveniently
rectified,. If the correction can bhe made in its own space
then the relevant changes can easily be worked out in octal,
but when extra orders are required, control transfer
instructions throughout the routine may be affected, and
the location of each of the following items will be altered
accordingly.

One of the advantages of having a simple 1input routine
embedded in the compiler compiler is that together with the
routine for deleting an item, it simplifies the correction
of all kinds of errors in the program which 1t reads. In
order to amend an item in the record store the faulty version
is deleted (i.e. the store which 1t occupied is recovered)
and the corrected version is read in the normal manner,

This procedure is quite satisfactory so long as the faulty
item is not one of those which enables the Item routine or
the deleting routine to funection,. It is conceivable that
one of these items is found to contain an error which does
not affect the simple path used by the Item routine and its
replacement 1s required, In order to replace these items
(and others too,) an item replacement routine (IRR) which
uses the Item routine snd the deleting routine as subroutines

has been included in the system, This routine reads the

b3

new version of the routine to the record store and allocates
it a specially reserved serlal number to prevent any
attempt by the rest of the program to use it before it has
been assembled, Once it is complete the serial numbers
of the old and the new versions are interchanged, and the
old version (with the reserved serial number) can safely
be deleted, Certain precautions must be taken when replacing
an item,
(i) It must be in the record store, No facility
has been provided for replacing chain dictionary,
(ii) The IRR itself and the top-level 'master routine’
may be replaced, but in general the program will not
be able to continue in these cases., The IRR,
therefore, in these instances ends with a loop stop,

and has to be restarted manually.

The IRR is entered, in the same manner as
the Item routine, upon recognition of the master

phrase REPLACE ITHEM,

5.3

A simple method of correcting mistakes in the program
is valuable in the development of a large system such as
the compiler compiler, but of equal importance is an efficient
means for diagnosing errors, or rather for printing those
parts of the store which enable the error to be located.

Two diagnostic routines which are part of the system itself

bl

have been extended to meet the special needs of developing
various parts of the program. In many of the routines in
the compiler compiler, checks are made to ensure that the
material being processed is legal; a fault is identified
by the fault number and the serial number of the routine
in whieh it occurs. The faults which are detected reveal
logical errors in the user's compiler and illegal statements
in the source language program, Whenever a fault is
discovered, one of the diagnostic routines is entered,
depending on the nature of the fault. If the error is
such that compiling (of compiler or source program) nmay
continue, the fault is monitored and the program proceeds.
The output at this point gives the fault number, routine
number and the line number of the line of input which caused
the fault, in the following format.

COMPILER CCMPILER FAULT n Rn L n
If the fault is catastrophic and further compiling is
impossible, then the monitoring above is printed out together
with the values of all the non-zero B registers.

Although the information above is useful in the diagnosis
of faults it is often insufficient and further store lines
are required, The catastrophic fault routine is therefore
extended to print any specified region of the store in octal,
with the address of every eighth word, A number of different
verslons of this routine have been made, which print the

main stack and various parts of the record store and chain,

45
It 1gs helpful sometimes to know not only in which

routine a fault occurred, but also which routines the
program had been in before the fault was discovered, When
this is required, modified versions of the DOWN and END
sequences can be inserted by the IRR, which print out the
serial numbers of routines as they are entered,

Two routines of the system allocate serial numbers to
newly occurring phrases and formats. In order to diagnose
faults concerned with phrases, formats and format routines
which have been read by the system it is advantageous to
know the appropriate serial number. For this purpose,
whenever a new serial number is allocated, the phrase or
format is printed out together with its gerial number,

5ol

In March 1962 the subsidiary store from the prototype
Atlas (1024 words) was temporarily connected to the Manchester
University Atlas to enable preliminary testing of the central
computer to begin, and some of the system programs to be
developed. Since the first 8,192 words of main core store
were not to be working until October 1962, it was useful to
commence testing, if at all possible, on the 1024 available
words of store using interrupt control, It was concluded
therefore, that that part of the compiler which would enable
the Item routine to function should be tested, and having
done this, to test certain other important routines, whose

subroutines and working space would fit into the small store.

b

It was possible to make fairly thorough tests of the Item
routine, the ERR and the two dictionary routinesEE which gave
little or no trouble when they were later used in the main
store.

For these tests extracodes were not available and it
was necessary to write two routines to read one character
from 5-hole tape, converting it to Atlas Internal Code,
and to punch on 7-hole tape a 24-bit half-word in octal
followed either by a space or a new line, These two
routines use the same B-lines as the extraccdes (B91-Bg9)
and have been written so as to occupy only 73 instructions,
These sequences are complicated by the hardware which is
provided for the time-sharing of peripherals and such things
as stopping and starting the reader have to be programmed,

The serial numbers of the routines used in this phase
all lie in the range 130-266 which means that the index
need occupy only 69 48-bit words. However the program
assumes that the origin of the index (i,e. index 0) lies
in the store, snd so the first 65 unused full words of the
index are overwritten with the last 65 words of the input/

output routines.
' origin " of index

1 | | i
2] q 73 3

e "

\-\?ut /Output enulines Pﬂ(t of rwdex wsed

% Ref. 4, p.34 f,

b7

In order to reduce the number of instructions still
further, some routines are reduced to the few orders which
will actually be obeyed in the simple tests and two other
routines which are called in, but have no effect on the
program, are removed and replaced by a dummy routine which
simply returns control to the calling routine via the HEND
sequence, Incorporating all these modifications sufficient
store remains in which to assemble an item of about 12
instruections.

Apart from the difference between the size of the
subsidiary store and the main store, there is a difference
in the way the central computer treats instructions from
the two stores. In order to prevent programmers from
making inadvertent references to a store other than the one
in which the instruction is located, by means of B-modi-
fication, the presumptive address (i.e. the address part of
the instruction) and the effective address of an instruction
must, in general, refer to the same store, In the compiler
compiler, whenever a store reference is made, it is generally
by mesns of an address which is in a B-line. For example,
if B78 is to be planted in the next available half-word of
record store (whose address is in B88) then the instruction

0113, 78, 88, ©
is the natural one to use, However, the presumptive
address refers to the main store, and the effective address

refers to the subsidiary store. The origin of the

48

subsidiary store 1s in oetal loecation 7000 0000, and therefore
this number should be subtracted from B88 before the order
is obheyed and the order rewritten
0113, 78, 88, 7000 0000 (octal).

A1l store addresses then, are initially made relative to
the origin of the subsidiary store and instructions referring
to the store have 7000 C0CO added into the address part,
The latter modification is conveniently made during the
translation of the symbolic machine language into Atlas
Octal Input,
5.5

As soon as the first 8,192 words of main core store
became operational, it was essential to transfer the
development of the compiler compiler to this store even
though much of the hardware and fixed store programs was
not yet working. Interrupt control was still the only
practical control to use, so extracodes could not be used,
The only extracode for which substitution cannot easily bhe
made, is that which is planted in front of an analysis
record in a format routine. It was therefore possible to
develop the entire primary phase of the compiler compiler
whilst on interrupt control and to postpone the change to
main control until operation on this control was more certain.
Later, when main control became available, it was possible
to use some extracodes (including the one planted in format

routines) but full operation under the Atlas Supervisor had

49

to be left until a later date, Thus, the system was
developed on the main store in three phases.

(1) Interrupt control; no extracodes,

(11) Main control; certain extracodes.

(1ii) Main control under supervisor; all extracodes.

Throughout the first two phases, the subsidiary store
was employed for all the extracode simulation routines and
for certain other operations which the supervisor would
perform later, The following routines were written.

(i) Read one character in Internal Code from 5

or 7-hole tape.

(1i) Punch one character in Internal Code on

7-hole tape,

(iii) Disengage reader and disengage punch,

(iv) Set up page address registers.

(v) Change from interrupt control to main centrol.

(vi) intry sequence to catastrophic fault routine,

Notes:

a) The input/output routines were made compatible
with the extracodes which would later replace them,

b) The seguences for disengaging reader and punch are
used as a means of controlling input and output. The
master phrase mND OF MESSAGE appearing at the end of
all tapes read by the system, causes the reader to

disengage, and the tape to stop, Subsequent tapes are
entered by re~engaging,

¢) Due to the 'store-invariance! of all routines, the
location of the fault routine is uncertain. The sequence
(vi) above enables it to be entered manually should the
need srise,

50

One of the disadvantages of the bootstrap procedure is
that much of the material is in the symbolic machine language
which is not a very compact form of input. As 1t 1is
essential to keep input to a minimum, a more compact form
of input is achieved by means of a binary locader and binary
output routines located in the subsidiary store. This
makes full use of 7-hole tape, reducing to about 25% the
time reguired to input a given section of the program.

The representation chosen used eight tape characters to
represent a 48-bit Atlas word, The most slgnificant tape
digit is chosen as a parity digit and makes each character
of odd parity (allowing a binary tape to be reperforated
on the Flexowriters in the laboratory). In addition to
the parity check, a h4-character check-gum™is punched at
the end of esch binary block, Blocks can be of any length,
and may be written to any part of the main or subsidiary
stores. At the beginning of each block there i1s a block
marker, a d-character address specifying the location of
the first word of the block, and a Y-character number
denoting the length of the block, About six inches of

Flexowriter upper case characters separate the blocks,

£ The check-sum is calculated by simple addition. The
technique of using 'end-around~carry' is unnecessary since
the most significant digits are parity-checked.

5t

Binary output normally commences at the origin of the
index and continues in blocks of sixty-four 48-bit words
until the block containing the address in B88 (the head of
the record store) has been punched, At this point an
'end-of-tape' marker is punched, the reader and punch are
disengaged, and control is passed to a routine which checks
the tape againgt the store, Should the tape fail to
correspond to the store, the reader is disengaged and the
block is punched from store again. On re-engaging the
reader, checking is resumed until the 'end-of-tape' marker
is reached and any blocks which have been punched for a
second time can be checked again,. In this way a convergent
process is established in which the number of incorrectly
punched blocks becomes zero,

The most serious disadvantage of the method of develop-
ment which has been described, i1s in the length of the
binary tapes which have to be input before each test can be
run, If a test ends in an unexpected manner, there is no
guarantee that the program has not been overwritten al some
stage, and therefore the whole program should be read again
before the test may be repeated or further tests run. Even
with the binary loader, paper tape input is prohibitively
slow, When magnetic tape became available on Atlas it was
possgible to use this for the same purpose as the binary tapes

had been used for, and the time taken to write the program

to the main store was reduced from minutes to a matter of
seconds thus increasing the amount of testing which could

be done in a given time.

52

53

CHAPTER 6

Primary Assembly Routines.

6.1

In section 2.3 reference was made to routines which
compile a direct translation of certain instructions
oceurring in format routines, instead of planting analysis
records which are later to be interpreted whenever the
format routine is obeyed. In the literature on the compiler
compller, these routines have been referred to as 'primary
agssembly routines' and 'primary compiling routines', but
since each one is generally associated with an interpretive
routine for the same instruction, when referred to in this
context, they are sometimes called 'compiling versions'.

The compiling versions are not fundamental to the
compiler compiler inasmuch as a compiler could be generated
without them, but their chief purpose is to produce a more
efficlent compiler, To illustrate this, consider the
sequence of Atlas machine orders te be obeyed when the
analysis record for the bullt-in instruction

Pag <fegs + 1

is 'obeyed?t, The analysis record of this instruction is
17 half-words long and the TRANSPLANT sequence which copies
it to the main stack, obeys about six machine orders for
each word of the analysis record. A further 2% orders are

obeyed in going down to the interpretive routine for [ABl= [WORD]

54

which itself takes about 80 orders to interpret the record,
making a total of the order of 200 machine orders whereas
a single machine instruction planted by a compiling routine
would have the same effect, From this 1t can also be seen
that a considerable amount of space can be saved in some
circumstances. The analysis record above 1s preceded by
an extracode and 1s finally rounded up to make it occupy
an even number of half-words., In this example, nine 48-bit
words are saved by the compiled form of the instruction.
The space which the primary assembly routines themselves occupy
is only of secondary importance, for they can be deleted if
desired, once the compiler has been assembled, vacating the
store which they occupied for the use of object programs,

In one sense, the compiling versions belong more to
the compiler which is generated than to the compiler compiler
itself, for it is in the format routines of the former that
the greatest efficiency is required. The choice of
compiling versions, and even the coding of them, may depend
to some extent upon the type of instructions which occurs
with greatest frequeney in the format routines of the
compiler, However, compiling versions of most of the built-
in instructions have been provided since 1t 1s expected that
the compiler writer will use these fairly frequently in his
format routines. If he repeatedly uses some auxiliary
statements for which compiling versions would increase

efficiency appreciably, then he is recommended to write his

55

own on the lines of those which have been included in the
compiler compiler. (See Appendix 1, p.38f. and Appendix 3.)

Although the length of the compiling versions themselves
is not of primary importance, it is nevertheless undesirable
that they should be any longer than necessary, especially
as there is a simple way of shortening them, By reading
them in a second time, and deleting the first copies, they
compile. themselves, making them both shorter and more efficient,

Not all the built-in instructions result in compiled
sequences which are shorter than the corresponding analysis
record; for instance the instruction

(AB] = NUMBER OF [PI)]

requires 10 compiled instruetions whereas its analysis record
occupies only 7 words. Some compromise therefore, has to
be made in deciding which instructions are worth compiling
for sake of efficiency, and which should be interpreted in
order to conserve space, This 1s considered in some detail
for each type of instruction in the following section,
6.2

The built-in instructions conveniently fall into six
groups within which the usefulness of compiling versions
for each type of instruction is discussed, The effect of

most of these instructions is deseribed in appendix 1, p.10 ff,

(1) {aBl = LWORD]
[LABY = UL(WORD] LOPERATOR] LWORD]

(C(ADDR1) = [WORD)]
(LADDR]1) = LWORD] [OPERATOR] [WORD]

56

An illustration has been given above of the advantage
in compiling a simple instruction in this group; an example
of a more complex instruction is now given in detail. Consider

(o) + o) = (ot + %2) = (otg + xy)

The representation of this instruction as a tree structure is,

B I & & & &
N L
v 1 & & 2 & &
b } | } {
o1& 1& 0 ;T e '
: } Lo . | 5
| Bl B | : :
t E i | 5
analysis record of + T
K, T analysis record of T
1 2 0(1 +o(2 analysis record of

K3 Xy,

wnich occupies the space of 23 full words.

The compiled ingstructions for the same are

0101, 83, 72, 1 + m
oLok, 83, 72, 2 +m
0lol, 82, 83, O
0lcl, 83, 72, 3 +m
0104, 83, 72, 4 +m
olol, 84, 83, ©
0120, 84, 82, 0
0Ll21, 82, 8%, ©
0101, 83, 72, 1 +m
0lO4, 83, 72, 2 + m
0101, 83, 83, ©
0113, 82, 83, 0

(wvhere m is the number of LSE entries)
wnich are 12 words shorter than the analysis record.
Not a1l instructions of this class are compiled, Those
involving the third category of [(ADDRI , namely [AR] (+)

LABN] are interpreted since they do not occur very often,

57

and the planting of a loop of instructions to pass along
a chain list 1s not considered worthwhile.
A Tew frequently ocecurring instructions such as

(Bl = [@e1 + (W)

LAl = ([a)+ (WD)
which would have inefficient translations if treated
generally, are singled out at the start of the routine for
LaBl = [WORD] and more efficient translations are specially
compiled, (See appendix 3.)

(ii) L FDI{COMMAILWORD]LCOMMA] [WORDI LCOMMAYLWORD]
PLANT [¥D] [COMMA] [ABN] (COMMA] [ABN][COMMA) LWORDY IN [8]

The compiling version for the first of these instructions
simply plants an instruction which is oheyed when the format
routine being assembled is used; the second plants instruc-
tiong for compiling Atlas machine orders, Often when these
instructions are used, the B-registers and the address parts
are explicitly stated, and it is a simple matter to compile
them, When anoor ap appear, then Instruetions would have
to be planted to evaluate the value of the variables,
assemble the instruction and plant ift, For this reason
only those instructions where the B-registers are explicitly
stated are compiled, The advantages of compiling in these
cases 1ls again shown by comparing the tree with the compiled
orders for the instruction

PLANT 0l21, 127, 83, 2 N R 38

The tree structure is

5§

E I & & & - & &
¢ { ¢ } b
0504 00G8 3 & 3 & 5 & & 88
(octal) 4 | bl
127 83 2 2

whereas the compiled orders are
0121, 82, 0, 0507 7723 (octal)
0113, 82, 83, 0
0121, 82, © 2
0113, 82, 88, 1
o124, 88, 0, 2
which are 6 words shorter.

(iii) CJUMP] [LABEL]

LJUMP]) [LABEL] {IUJLWORDI {COMPARATORILWORD]
LFDy, (WORD], 0, LILABEL]

Most cases of »LLABEL] take the form—L{N1 and these
can be compiled into a single instruCtion. The label
reference is added to the list of label references which
the routine assembly routine uses, and the value of the
label is filled in at the end of the format routine being
compiled, by the rcutine assembly routine. Where the
.label is an « or af , instructions are planted which call
in a small routine of the system which consults the label
directory at the end of the routine in order to make the
control transfer,

The conditional control transfer, and the Atlas machine
instruetion are compiled only if the label is an [N3 and

in the latter case LWORD] is again restricted to [NI;

- otherwise the instructions are interpreted,

59

Consideration of the conditional jump instruction

-4 IF 38;(«1 + 4)

shows the efficiency of the compiled instructions,

E I & & & & &
¢ { {1
B'www 1 1& 62 &
3 } ¢
L & 1& &
| ¢ {
2 & 1& 3 &
b) }
8 B 1w L
0101, 83, 72, m + 1
0124, 83, 0, 4
0101, 83, 83, 0
0170, 83, 8, 0
0226,127,127, 6

‘(where m is the number of LSE entries. The address part
of the last instruction is filled in by the routine assembly
routine.) 12 words are saved each time such an instruction

is compiled,

(iv) LABl = NUMBER OF tPI]
(ABl = CATEGORY QFIPI]
[(ABY = ADDRESS OF [PI]
LABl = CLASS OF (P11}

The compiling version for the first instruction of this
group plants a loop of orders which counts the number of
recursions in the structure of LPI]. In the next two,
faults are indicated if the ldentifier [PI] igs illegal,
control being transferred to the fixed location (octal)

2001 3760 from which the fault routine is entered,

b0

The two forms of a typieal instruection in this group,
namely
o, = ADDRESS OF [a]
are analysed as before,

B' W (7 words)

oicl, 82, 72, n
0172 82 0, O
0224 127, O 2001 3760
0121, 83, 8? C
0113, 83 72, m + 1
(where n is the LSE number of [A))

(v) LET (PI][EQV]{RESOLVED=P]

(JUMP] [LABELY {IU} {PI] [EQV] [RESOLVED~P]
LET (PI) = [GENERATED- P]

{JUMP] [LABEL] {IUI[PT] = [GENERATED=P]
[PI] = [AB]

It is generally too complicated for it to be worthwhile
complling machine orders to perform parameter testing or
resolving instructions, However, a fairly common type of
instruction in this group can be complled without too much
difficulty, It is in those cases of the first two instruc.
tions of this group where the analysis record of [RESOLVED.P]
with respect to [PI] is only one level deep, The analysis
record for LRESOLVED-P] in this case consists entirely of

P~ words.E The compiled form of these instructions 1s

% Ref. 4, p.37

generally longer than the:corresponding tree structure but
the efficiency of the former makes them worth inecluding,
The instruection
—» 3 IF [ADDR] I [aB1 + [ABN]

hag an analysis record

E I &: & & &
¢ L '
B _WWW 1 B! WWW 1 &
3 3 l
IPP

which occupies 11 words; 12 compiled orders are required

(- for details, see the program in appendix 3).

(vi) The remaining built-in instructions are of less

interest, and the details of the compilingrversions are

obvious from the program in the appendix,

G

62

CONCLUSICN

The main purpose of the compiler compiler, as stated
in the Introduction, is to simplify and shorten the
implementation of compilers on automatic digital computers.
At the time of writing, a compiler for Mercury Autocode
is in the course of being developed on Atlas,

Initial testing of the compiler compliler began in
March 1962 and continued for about a month while only
the subsidiary store was available for programs. It was
not until October 1962 that the first 8,192 words of main
store were working. During the following 3 months, the
program was developed in the three phases described in
chapter 5 in order to make meximum use of the hardware
as 1t was commissioned. However, the machine was not
available for the whole of that time since other sections
were still being commissioned. On 31lst December 1962
when only 16,384 words of store could be used, the first
gsimple Mercury Autocode program was compiled and obeyed,
Less than a week later, most of Mercury Autocode with the
exception of matrix, double length and complex facilities
were tested and working, having used less than 20 hours
useful machine time,

It is hoped that Atlas Autocode, Hxtended Mercury

Autocode, ALGOL and other compilers to be implemented on

Atlas in the future, will require even less machine time
for development using the Atlas Supervisor and the

'one-level storel.

63

g

" REFERENCES

1. Ferranti Ltd.

Atlas Reference Manual,
(This document has not been published generally. It
constitutes a description of the system from the view point
of a knowledgeable programmer and is primarily intended
for the use of persons concerned with the design of the

system.,)

2. Kilvburn, T., Payne, R.B., Howarth, D.J.
The Atlas Supervisor,
Paper presented at the E.J,C.C.,
December 1961,

3. Brooker, R.A., Morris, D,
Some Proposals for the Reallization of
a Certain Assembly Program,

The Computer Journal, Vol,3, p.220,

k, Brooker, R.A., Morris, D., Rohl, J.S.
Trees and Routines

The Computer Journal, Vol.5, p.33

5. IBM Reference Manual

7090 Data Processing System (A22-6528-1)

6. IRM Reference Manual

709/7090 FORTRAW Programming System
(C28-6054=2)

