SR T

6. THE ROUTINE STATEMENT

" 6.1. Introduction

So far the implementation has been primarily concerned with the syntactic

'analysis of statements. The ROUTINE statement.provides the means for defin-

- ing the semantics associated with a particular statement. Once this has

been incorporated together with some Basic Statements, the compiler will be
in its minimum workable form. Once this point has been reached, extensioﬁ.
of the Compiler can be achieved by using its own‘definitional facilities.

A CC ROUTINE can be divided into two parts: the héading followed by
the Eody. The main purpose of the heading i; to define to which Index posi-
tion this routine is to be attached. This can be done by either specifying
the Index position or providing a heading which can be matched against a
FORMAT already defined. In this second method parameters can be specifiea

as‘input parameters to the ROUTINE. In the FORMAT statement for a particular

_instruction will be Phrase Identifiers which define the syntactic phrases

expected at certain points in the FORMAT. In the ROUTINE heading, Phrase
Variables will appear at positions corresponding to the Phrase Identifiers

in the FORMAT statement. When a particular statement of this type is recog-

,nized, then the Phrase Variables in the Routine heading will be given as

values the analysis' trees produced during thg recognition of the associated
Phrase Identifiers in the FORMAT,

The FORMAT statement, therefore, defines the types.of phrases expected’
while the ROUTINE heading states which Phrase Vatiables are assigned‘the |
analysis tree values when a particular statement is recognized.

The ROUTINE body consists of statementsnin ény of the threé Format

classes: - BS, AS and 85, To initialize the bootstrapping process some

-

5
]
4

\ basic statements must, of course, be provided external to the general
‘_system. These are the BASIC STATEMENTS to be defined as ITEM routines

which will be described later.

6.2. Identifier Conversion

" Like the PHRASE and FORMAT statements, the whole of the ROUTINE is in-
put initially, and the Phrase Variables are converted using the Identifier-
Conversion Routine 230. In the case of the ROUTINE statément Phrase Vari-
ables rather than Identifiers appear. These may-ﬁave>labels and indiqes
attached, and the'output from the routine is more complex than the Index:
Position produced in the case of the PHRASE énd FORMAT statements. This
alternative path is marked by B78 beiné set to zero on entry; The additionélx

part of the Identifier Conversioﬂ Routine is given in flow diagram (iii).

~The output for each Phrase Variable is now as follows:-

1. TFIRST WORD. 'A' field set to Index Position of Phrase Identifier.
If the Phrase Variable is the * type, then the Index Position is

that of the Ideﬂtifier with the * deleted.

2, SECOND WORD. 'A' field set to position of Phrase Variable in the
L.S.E. A double entry list is kept of the Phrase Variables as they
appear. Each new one is allocated the next position in the L.S.E.

and entered in the list. (See Trees and Routines,)

'Z' field set to numericxyalue of index
'S'" field set to 0, 1, 2 depending on whether index is [N], [A]

or [B] type.

For example, the Phrase Variable [ZY*/7(A5)] where

a = Index Position [ZY*]
b = Index Position [Z2Y]
i = Position of [ZY*/7] in L.S.E.

-3

would produce as output:-

1. A field set to

b

2. A field set to i
~Z field set to 5

1

" 8§ field set to

A Phrase Variable without a label is assuméd\to have a label value of zero.

6.3. Routine Heading

The Routine Heading is recognized by the Analysis Routineswhere the
. built-in syntax can be described as follows:-
PHRASE [ROUTINE HEADING]

 PHRASE [COMPILE]
PHRASE [RESOLVED-P]

il

SMALL R [N], R [N], [COMPILE] [PI] [EQV] [RESOLVED-P]
(COMPILER), NIL '
[SET P'] [ANY PI] [RESET P]

1

The Index Positions associated with these are as follows:-

254 ROUTINE HEADING
249 COMPILE.

181 PI
185 RESOLVED - P
152 ANY PI
244 SET P'

1250 RESET P

The first two alternatives are st;aightforward. The SMALL Routine is defiﬁéd
as one which only needs the simple form of entry mechanism and cannot have
statements in its body which cannot be compiled. Iﬁ is entered using the
simplified non-stacking entry via the DOWN routine.

The [COMPILE] option, if present, states that this version of the
routine is designed to produce compiled\gode for the statement rather than 3
interpret the Anélysis'Recordf More wiii\bg said of COﬁPILE routines later.

The phrase [PI] is built-in and will recogzize any Phrase Identifier.

Its action is given in the flow diagram. Note that it modifies. the syntax

-~ for [GENERATED-P] and also [RESOLVED-P]. The latter modification changes
[ANY PI] to the particular Phrase Identifier recégnizedkby [PI]. This
ensures that the analysis depeﬁds on the initial [PI]; that is the remainder
of the heading is analyzed with ‘'respect to this Format Class,

Once the ROUTINE heading has been.recognized a check is made that a
match at the top level between the Phrase Identifiers appearing in the
Format and the Phrase Variables appearing in the ROUTINE heading. For
example, it Woudl.be illegal to have:-

FORMAT [AS] = GET [ABN]

ROUTINE [AS] = GET [AB/1]
The Phrase Variable must Ee of type [ABN]. "This check is easily made as
the top level should consist of P words. In the caselof a COMPILE routine

we must allocate an Index position for the routine and enter it in the

Double Entry List 256 containing Routine Positions and the corresponding

positions of the COMPILE versions.

" 6.4. ROUTINE Body

The compilakion of the ROUTINE body is mainly done by the!Routine‘253,

(Compilg Body of Routine). |

"The compilation of Label declarations and uses,isbachieved by using
two lists. Each time a Label is declared, its numerical value is iﬁserted
into the B52 double entry list, together with its address in the ROﬁTINE
body. Eaéh time a Label is used, the Label's numeric value is inserted in
the-address.part of the instruction and the addresé of thé instruction is
added to the B53 nest. |

Once Routine 253 has compiled the body of the routine, the ROUTINE

routine inserts into the first two words of the routine:-

> 1. Length of L.S.E.
o | 2., Length of routine up to Label Directory.
The Label Directory is added at the end of the routine. . It consists of
a direct look-up table containing the addresses of the labels relative
to the start of the foutine. The length of the table being the maximum
ﬁgmeric value of the labels. The directory is made by scanning the B52

'double entry list.

6.5. Compile Body of Routine 253

Unless a Compile version of the routine associated with a statement
‘exists, a statement in a routine body is interpreted. The 'compilation'
~of the statement then consists of storing a call of the TRANSPLANT routine

followed by the Analysis Record of the statement.

The first action of the routine is to analyze the input to test for

the end of the ROUTINE body, the presence of a 1abe1bor a étatement.

If the end has been reached, the address fields of.instructions refer-
ring‘to labels must be set to their correct value. The label uses are with-.
drawn from the B53 nest and‘looked up in the B52 double entry list to find
the correct address. If the 'label does not appear in the list, then it is
undefined and a diagnostic is output.

"If -a label is declared, its address is added to the B52 double entry
-1is€ together with thevlabel number. |

If neither of the above are present then the ﬁext statement must be
analyzed, and this can belong to one of the ﬁhree Format Classes, [BS],
[AS] or [SS] énd analysis is tried against these in that order. If a [BS]
statement has the same FORMAT as one of the statements in the other two

classes these can be. recognized by adding an '*' before the statement.

-

The built-in syntax can be described as follows:-

PHRASE [LABEL OR END] = [SEP*?] [EOS], [SEP*?] [LABL]
PHRASE [LABL] = [N]), NIL

PHRASE [SEP] = [COMMA], [EOL] built in and Contract Record
PHRASE [STATEMENT] = [BS], [*?] [AS], [*?] [SS]

PHRASE [*#?] = *, NIL ‘

The Index positions are as follows:-

144 LABEL OR END

146 - LABL

148 SEP*?

147 STATEMENT
182 %7

Once a [STATEMENT] has been recognized it may be possible to compile the
statement if a Compile ver;ion of the Routine éssociated with the Statgment
exiéts. The Compile routine is called as long as no parameters exist in
the statement. This is done by checking the Analysis Record for P' words.
P' words will appear whenever a Phrase Variable is recognized in a [RESOLVED-P].
This can be seen in the flow diagram (ii) for the Analysis Routine 215 (lower
left). 1If a Phrase Variable is recognized then the Anaiysis Record produced
consists of the second word produced by the Identifier Conversion Routine
(see 6.2) with an F‘field set to 2 (P word). If in [RﬁSOLVED-P] then it is
a parameter P' in which case the J4 bit is set., This is achieved by [SETP']
setting B44 to J4 + F3 and ERESET’E] resetting B44 to F3,

If no P' words ére present the COMPILE routine for the statement is
entered if it exists and an attempt is made to compile the statement. If
"it is unable to compile the routine (normally due to the complexity of the
'stateméntj then it returns with B54 set to -1. Note that this would be an’

error if the ROUTINE heading defined a SMALL routine.

-7

If no COMPILE routine exists for the statement, then the 'interpreta-

tion' is achieved by calling:-

217 CONVERT ABSOLUTE &'s to RELATIVE &'s

This routine stores first the call of the TRANSPLANT routine followed by
the Analysis Record for the statement. As the Analysis Record is added,
the ampersands are changed so that all pointers are relative .to the front

of the routine.

=

g

