3. INITIALISATlON

.3.1 Introduction

Once the Bootstrap has been written for a particular machine all

future routines added to the system can be written as ITEM routines. As

stated in the previous chapter, the macro orders are in a machine indepen-

dent form and so the remainder of the Compiler-Compiler need only be written

once. The ITEM routines added fall into well defined sections. Each

. section will produce a significant difference in the power of the system,

The current section replaces the simplified form of the routines defined

in the Bootstrap by their final forms and initialises the dictionaries of

the system.

3.2 Deletion and Replacement of Items

The Bootstfap defines two Master Phases ITEM and REPLACE ITEM and pro-
‘vides an analysis routine capable of recognising these two phrases and paé§iﬁg
control to the relevant routines, These are not the only basic Master Phréses}
that ﬁe would like in our dictionary and our first aim will be to replace the
ﬁﬂP] dictionary by one contéining all the Master Phrases we intend to build in.
Therefore our first task is to define the REPLACE ITEM routine (164) and its
subroutine 155 which deletes an item from the store. . Routine 155 has one
.parametér B61 which is the number of the routine requiring deletion,

The action of the REPLACE ITEM routine is straightforward. It first
‘calls the ITEM routine which will con@ilé the new copy of the relevant o
routine andlstore the old entry»point'in X165. Thi; cén then be deleted
py calling 155 with B61 set to 165.

In general execution would then continue by the REPLACE ITEM routine

returning control to the Master Routine which would look for the next

-

Master Phrase. However if the Master Routiné itself has been replaced we
would be returning to the deleted old version of the routine. Therefore_
_this special case has to be tested for, in which case the END OF MESSAGE
routine is called to reinitialise the compiler.

The routine 155 will delete the routine at index position B61l and return
with the. length of the deleted routine in B62. As the code used in tﬁe
routines of the Compiler-Coﬁpiler are relocatable without alteration it is
only necessary to move routines down over the space left by the deleted
routine and alter the relevant Indeg positions. The only complication is
due to the routine 155 itself being one of the routines that may need moving.

The action of the routine is as follows:=

a. Find the length of routine B61l. As no record qf the routine's
length is kept it is necessary to search the index positions to
find the starting position of thé\rqutine followiﬁg the routine
B61 in the record store. h

b, Move all routines higher up the record store down over the

. position held by this'routine.. If the routine 155 is belbw the
deleted routine, the move is trivial., If above, then we must move
all routines down includiﬁg the firstlhalf of réutine 155. Control
is then passed to the front of routine 155 which moves the remainder
of itself together with any routines abévé‘it in the store.

c. The Index Position for the deleted routine has its address field

~set to zero. The Index Positions for all thé routines moved have
their address fields decreased by the‘amoupt 362.

d. The routines 232 (Transplant) and 239 (Down) for Historic reasons

‘have their entry points also stored in B74 and B76 respectively.

3=
These must therefore be reset if either of these routines have moved.

The new EMPJ dictionary. will also define a Master Phrase:-
DELETE ITEM
This routine will set B61 to the routine number and enter 155 to delete

this routine.

3.3 Dictionary Initialisation

A complete description of the structure of dictionaries in the
Compiler-Compiler is given in the paper 'Trees and Routines.' The
dictionaries are able to reside either in the Record r‘torle or the Chain
‘Store. The most commonly used dictionaries tend to be_léft in the Chain
Store, while the remainder réside in the Record.Store untii alterationg-‘
are required in which case they are moved to the Chain Store. The Analysis -
Routine is capable of analysing input with respect to dictionaries stored
in either the Record or Chain Store. However éome routines expect to find
dictionaries in one or other of the stores and'it is necesséry‘for the
. Master Routine to ensure that the dictionaries are in their correct positions.
" Two supervisory lists are thérefore provided which point to the dictiomaries
which are required to be moved:-

. 1. CONVENTIONAL LIST OF FORMAT CLASSES 129

This contains a list of fhe standard format classes MP, AS, BS and
SS provided by the system. This can be extended by the user.

2. LIST OF ADDITIONAL DICTIONARIES TO BE PACKED, 169
This is initialised to contain the Class Identifier Dictionary,
(CID) 134 and the Double Entry List, 256 which stores the Compile

versions of routines.

The Master Routine therefore moves all the dictionaries referenced by 129

-l

and 169 to and from the Chain Store automatically.

Copies of all the;e dictionafies must be provided therefore before
the final form of the Master Routine is added. The BS, AS and SS
dictionaries are initialised to empty as is the Double Entry List.256.

Wé now have the routines required to allow us to replace the original
form of the EMP] dictionary and the new version contains the following

Master Phrases:-

PHRASE 218

ITEM 266
"END OF MESSAGE 227
FORMAT 220
FORMAT CLASS 272
DELETE ITEM ' 145
REPLACE ITEM 164
DEFINE COMPILER 275
 LIST 284
DO NOT LIST 285

The CID Dictionary is initialized to contain the following class identifiers:-

AS 132
ABN | 154
AB 153
A 166
BS 131
B 167
PI " 181
EOL 4
55 o 133
sP 65
SEP 179
~ GENERATED-P 186
< RESOLVED-P 185 N

LABEL ‘ 184

-5

N 149

‘COMMA 229
0-3 178 (Probably redundant) ‘ 'ﬂ
s 10
ERAZE 127
FD 251
[81
ow- : 173
MP 130

3.4 Dictionary Packing and Unpacking

‘The routine 243 is added which will pack all the routines defined

in the two lists described above into the Record Store. It uses a
subroutine 223 which transfers an individual dictionary to the Record
Store. The routine 245 and its subroutine 231 do the reverse operation,

The standard form of a dictionary in the Record Store is:-

M& eovsnsans I K

where the dotted interio? is described in Trees‘and Routines with the
ampersands pointing at the category numbers, The keywords described
in Tfees"and Routines wére not implemented. Instead a single K word
giving the maximum number of ampersénds on éhe top level of any
‘alternative is added at the end. We have a similar form in the Chain
' Store with the Index enfry pointing at the M word and the link from the
K word pointing back to the M word.

The subroutine 231 is entered with B69 pointing at the initial
ampersand and B68 at the M word. It will convert all information
between and including the outer ampersand and I word to chain form

with B67 pointing at the ampersand on return. In addition B66 is left

pointing at the K word., The routine 245 works through all the dictionariesb
in both lists; filling in the M and K words itself. The action for a

Double entry list is different. This conversion is done entirely by~

245, 1In the record store the first entry'of the dictionary contains
length of list followed by a word containing o and then the words of

the dictionary. In the Chain Store only the words of the dictionary

ey

- appear with the Index position pointing at the last word.

The action of 243 and 228 is similar but provides the reverse

operation. The flowdiagrams in the appendix give the details of these

routines.

3.5 Analysis Routine

The Analysis Routine 215.is the central routine of the Compiler and
provides all the mechanism for the syntactic scan. In the appendix are
two flowdiagrams. One gives a'complete description of the routine while

.the second gives a simplified form of the routine showing only thé main
flow. 1Its purpose is to analyse a string'bf characters with respect to

some class of phrase or dictionary and produce on recognition an analysis

record showing how the scan proceeded.

The input parameters to the routine are:=-

‘B61

]

address of string .to be analysed, This must be in the

form of a circular chain with B61 pointing to the last

=
i

: word.

:g .

é B62 = class number with respect to which the analysis is to

. take place. The dictionary or phrase may be either in

- , the Record‘or Chain Store,)

? B63 = (0 for usual entry

) 1 for a special entry

. :

1 2 for re-entry ‘ N .
4 In its use during the bootstrapping of the compiler, the special
%3' and fe—entry modes. are not used, Consequently discﬁssion of these will

? ; - be left until later,

K3

" this (bottom left of flowdiagram (ii)) can be left for the time being.

In the case of a Phrase being defined as 'Contract Record,' the

analysis record is delete , This will be used when the analysis record

e

contains no useful information. In the diCtionary‘this is signified
by the M word having the J4 bit set. All tests on J4 deal with con-
tracting‘out records in the routine.

Another section of the Analysis Routine which can beAdiscussed
later in more detail i; £hat involving parameters, - It is possible that
when'we are reading in genuine Compiler-Compiler routines that the

input stream may contain phrase identifiers. The section dealing with

Looking at the simplified flowdiagram (i), the main paths are as

foliows:~

1. For basic symbols a test is made bétween the character in the
dictionary and on the input stream. If a match is found we
move down both checking until we get to the end of an al;erna-
tive. This is known,as aﬁ ampersand always pdints to the
category number at the end of an alternative and so we check
until we reach this point. If a failure occurs then to get
to the next alternative we must reset the'origiﬁal position

of the input pointer, find where the last ampersand pointed

and reset the pointer to the analyéis record being produced.
This information is made availaﬁle by storing in the stack on
arrival at any. ampersand the three quantities B62, B63 and
where‘ampersand is pointing. .Getting t§ the next alternative
is then simpiy a matter of unloading the top three stack
positionms. |

2. 1If the dictionary or phrase contains.phfases in its definition

as well as basic symbols then when this appears in the dictiomary

we must suspend our present search on the current level and

-8~

virtually reenter the Analysis Routine looking for the recogni=-
tion of the sub—phrgse. This could have been implemented in
‘this way. However for efficiency reasons the stacking of leveié
is done internai to the routine, On descending to attempt
‘recognition of a sub-phrase we store Qﬁ the stack the origin of
the stack for this level (B69), the pointer in the énalysis
record (B63), the pointer to tﬁe dictiénary (B67), the‘M word (B66):'v
and thé origin of the dictionary (B65).

If recognitionlat the sublevel is achieved we reset the ébo&p
values and carry on where we left off. 1If no recognition then wé
must apart from récovering these values also go on to next alterna-
tive.

3. On recognition at the top level we must split fhe-recognised and
unrecognised parts of the input (Routine 252); change the.Analysis
Record to its:DUAL form (Routine 222) and exit,

The output parameters are

i

B61 pointer to unrecognised part of input.
B62 = pointer to recognised part,

B63 = pointer to analysis record,

i

B64 0 for no recognition
= 1 for recognition
> 1 for maybe

A flowdiagram for the Dual routine is given in the appendix. A com-

plete description of analysis records is given in the Trees and Routines.

3.5 Fault Routines

The Analysis Routine and most other routines of the system on recog-
nition of fault conditions enter one of the two fault routines, If some

kind of recovery is possible from the error then Routine 258 is entered

otherwise 259,

Both routines require a fault number to be set in B65. The action
z (V/ﬂ of these routines is mainly up to the implementation. The fault number
together with the routine number (B75) give a good indication of the fault.
Additional information that could be printed would be the conténts of the
B variables, the stack and other parts of the Record and Chain Store as

desired.

3.6 Master Routine

The Master Routine provides the implicit control structure of the
Compiler-Compiler. There are instructions available in the Compiler-Com-
piler which allows the user to override the implicit control but, until
these have been implemented, all control on the global level is provided
by the Master Routine. This can be expressed briefly as follows:-

1. Form line of input and attempt to recognise Master Phrase.

2. If successful enter the relevant routine and on return repeat

the process from 1.

3. If unsuccessful attempt to recognise a Source Statement.

4, 1If successful enter relevant routine and on return repeat from 3.

5. 1If unsuccessful try and recognise a Master Phrase again.

Safeguards are of course added to make sure that we do not get into an
infinite loop. The Master Routine (i) flowdiagram shows the flow for steps
1 and 2 above. Note that the line of input has a subscan by Routine 261
before entering the Analysis Routine. This is mainly for the removal of
spaces and the setting of unique basic symbols for the meta-syntactic
symbols '[' and ','. On Atlas different input forms used different
representations for the open bracket and it was helpful to have a unique

form being passed around. On the G21 these have still been given unique

-10-

E—

values although I am still not clear how necessafy this is now, The

27! . | éecond méin point is that some routines called omn fecognitioﬁ of Master‘
Phrases assume'fhat the diqtionaries reside in. the Chain Store and so
tﬂese digtionaries must be put there (if not already thefe) before entering
routine.

The Master Routine (ii) flowdiagram gives the flow for steps 3 and 4
above. This is very similar to the floﬁ for‘recognition of Master Pﬁrases.
A ée#qfate subscan routine 142 is provided and the input is passed through
this before calling the analysis routine 135, Routine 135 is basiéally
identical to Routine 215. On Atlas it is compiied iﬁ a - non-relocatable
form for efficiency purposes and also produces the Dual form of the analysis
reéord'directly. (This is the reason for the K word on dictionmaries.)

The otherx main difference between-the two flows is thét there is aﬂ'

assumption that the Master Phrase can be recognised with the available

input. In the flow for Source Statements it is possible to get a 'maybe'
. recognition which will reenter the Analysis Routine afﬁer précessing further
input., The Routine 135 on Atlas will only analyse with réspect to dictionaries
~in the Record Store (again for efficiency). Coﬁsequently dictionaries must
be packed into Record Store the first time we look for a Source Statement.
A Tittle care must beAtakén when replacing the Master Routine. As
stated before the REPLACE ITEM routine will call the END OF MESSAGE
foutiné in this case. ~Just before reblacing the Master Routine an interim
version of the END OF MESSAGE routine is added. This reenters the Master
Routine as though it had been called from Routine‘15d. -Once the Master
vRoutine has beep replaced the final version of END OF MESSAGE is added. This

packs up dictionaries into the Record Store. This was not required originally

as the unpacking had not been done by the original Master Routine due to

Routine 245 being replaced by ‘a dummy.

