2. THE COMPILER-COMPILER BOOTSTRAP N

2.1, 1Introduction

To initialize the C-C so that it 'is capabie of self-extension and therefore
able to build itself up to the required level we need a set of routines, tables
and dictionaries which must be provided in a language independent of the com-

piler. This set is as follows:=

a. INDEX ,

b, INITIALIZATION ROUTINES 150 and 161

c. INPUT ROUTINES ' 238 and 261

d. MASTER ROUTINE - 24

e. MASTER PHRASE DICTIONARY [MP] 130

f. DOWN and UP" : 239 and 240

g. ANALYSIS ROUTINE 215 with its subroutines 222 and 252
h. ITEM ASSEMBLY ROUTINE 266

i. VARIOUS MACHINE DEPENDENT ROUTINES

These routines need not be in their final form but must be capable of recogniz-

ing and generating ITEM routines. The final formé@bf these routines can then
: g . N
be defined as ITEM routines replacing these temporary Versions. However, DOWN .
. % .

RN

and UP will be inserted in their final forms as most of the mechanism is re- .
quired; also the INDEX and routines 238 and 266 which are machiﬁe&dependent

and will not be changed.

2.2. INKDEX

The INDEX is a set of fixed locations which we will denote by XO’ X], etc,,
up to a figure larger than X300 and less than X1024, These provide locations
for storing fixed global parameters of the sysdtem in é‘similar manner to the
B variables, Their main purpose, however, is to contain the entry points to
all routines and dictionaries. All routipe and diCtionary accesses are made

via the address in their index position so that movement of a routine only re-

B
B3

. £ . 3
quires changing the contents of the index position. Each routine has a number

i

-2

associated with it which corresponds to its index position. Besides the
‘address of the routines each index entry contains a two-bit flag field F which

is used to differentiate between different types of entries:-

FO Routines

'F1‘ Small Routines with simplified entry and exit
F2 Dictionaries and Phrase definitions

Fq Built-in Phrase Definitions.

'As the Item Assembler is capable of defining all 4 types of entries in the

record store but without the mechanism for differenfiatihg between them, the

Flag bits for entries being provided by the Item Assembler must be preloaded

: - : o
into the Index. Also, of course, the entry points for the routines in the boot~

‘strap must bF inserted in the Index.

The complete list of entries necessary is as follows:-

INITIALIZATION PARAMETERS

XO On Atlas this contains an instruction which causes entry to the
‘ routine X150.- This is due to Atlas requiring entry at the start

of a block initially., If entry is made direct to X150 then this

I" : ‘ entry can be left empty.

X Current origin of Record Store., i.e., pointer to next available

location in the record store area,
X = 300, the head of the Index Chain of unused Index Positions.

X = Pointer to set of instructions loaded before an analysis record

to cause the analysis record to be obeyed,

il
I _ X9 " = 1024, the length of the Index.
- X]0 . = Numerical value of the EOL character. This will be used as a
| word to test against in the ITEM routines,
- X11 = Numerical value of the character zero, It will be assumed that
(\1' ’ " the characters for the remaining digits have numerical values

immediately above this, Therefore, for example, the value of

~-28-

character '9' in X]] + 9,

Xi9 = Numerical value of the $ character (or some other character)
which is to be used to signify that the remainder of an input
line, including this character, is to be treated as a comment,

X13 = This location is used to store the address of a replacement

» ITEM while the new ITEM is being compiled,
X14 = The entry pointer B71 is stored here on entering a Small
- routine, It is all that needs to be saved., Note that in
general, a Small routine ‘cannot call other routines;

X15 = 0 for obtaining a listing of the input,

X16 = Pointer to table of Operation Codes on the G-21, It has
been used as a pointer to allow the G-21 PLANT routine to access
the parts of a G-21 opcode that are required,

X]7 a Stack Origin.

X18 = Maximum Chain Address.

X136 = 3, maximum number of lines allowed in a Source Statement.

-X]40 = 10, maximum number of faults to be allowed by [MR].

The routines defined in the bootstrap must also have their entry points loaded

.in the INDEX. These are 130(F2), 150, 161(F1), 214% 215, 216(F1), 222, 238, 239,
240, 241(F1), 245, 248(F1), 252§F1), 261(F1), 266, 275, 283(F1). The ITEM'routhe’
‘élso has>a suBsidiary entry‘point ét position 168 which is used to enter the'.
routine for finding an integer arriving fro@ thé‘input.

In the original Atlas implementation storage was 1eft‘following the INDEX

so that a fast non-relocatable form of the Source Statement Analysis Routinen

and DOWN sequence could be inserted. This is not essential, but if impleméntgd

in this way, then storage should be reserved at this point. As it is not re-
quired until the complete Compiler has been produced, we will leave discussion

of this until later,

. AR

Flag bits for the following positions must be set:-

F, X170, 177, 183, 187 to 212, 216, 217, 219, 223, 228, 231 to 236, 248,
' 259, 262 to 265, 267 to 271, 273, 277

F, X131, 132, 133, 142, 151, 156, 157, 159, 163, 168, 171, 174, 176, 179,
185, 229

F, X148, 149, 152, 158, 160, 166, 167, 172, 173, 181, 184, 244, 250, 255

Finally the free Index positions are chained together starting at X300,
Thus X300 contains 301, X301 contains 302, and so'én. It is conventiénai to
leave the last 20 or 30 Index Positions as a set of Small Routine bositioqs for
the user and these would not be ch;ined.. On Atlés these were positions 1000,J

to 1024, The last chained Index wés therefore X998 which contained 999 and X999

was set to zero to indicate exhaustion of chain. The number of Index Positions

depends only on the amount of storage available.

2.3, Initialization Routines

 Lv r b F . F b f L\.' b [b 'f %343’_ A ’ A F": f": r-; r-: r-: _E;;;M T"I‘ r-

The initialization routine 150 together with its subroutine 161 define the
storage layout of the compiler and initialize. the Stack and Chain Store.

At this stage all that is required in Routine 150 is:-

a. Set B76 = Entry point of the DOWN routine.
b, call R161
c. Enter MASTERnROUTINE

7

‘In general the user would not be expected to alter RI150 but he could alter R161.

(For example he might require a longer chain).
Routine 161 defines the positions of the stack, chain store and record
store. - In a machine with a conventional storage layout it would be reasonable

to have:-

lpm

a, At the lowest address position would be space allocated to the 127 B
variables follwed by the INDEX table, Following this room would be
left for the source statement analysis routine and then the bootstrap

routines defined above. The record store will then be from this point

Wiy

B

up the store.

b. Near the top end of the store will be allocated an area to be used
both by the stack and Chain Store. The CC is written so that increas-

e

ing core addresses correspond to higher locations in the stack. The'
stack is therefore designed to eat inté the chain store which is
chained up so that the highest address on the chain will be used first

(a description of chains is given in [6]). This does not give us any

S S S v e

protection against the stack and chain running into each other but is

sufficient until more complex routines can be added for storage alloca-

tion and protection.

If we assume the region extends from location N to M. then we require:-~

&

R (il

B72 = N Base of Working area
B90 = N+l Stack Pointer
B89 = M-1 Chain Pointer

The Chain shbuld be linked as(follows:é

- s _ ' Address Contents
e . . . N+4 N+

- ° . N5
- N+6 » . N+3
- Ve .

! M-7

-
- M-5

.

-5-

by

In addition Routine 161 sets the following:-

X4 = B90
X138 = 0 Number of faults detected by Master Routine
X140 = 10 Maximum number of faults allowed by Master Routine
B74 = X232 The entry address of the_traﬁsplant routine,
B86 = 0 The line number
B87 = 300 The first free Index position
= X2 First free address in record store-

B88

~ 2.4, Input Routines

These routines will &ebend largely on the particular machine available.
The Compiier Compiler restricts the number of possible input characters to 127
and these are assigned the numerical values 1 to 127. The correépondence between

particular characters and numerical values is immaterial and can be chosen to

' . suit the particular peripheral equipment or internal representation of a machine..

Routine: 238 is designed to read the next section of input into a circular

chain list (as described in reference [6]). Each chain position should contain ‘

" a number between 1 and 127 corresponding to the character found on the input,

The newline character should be assigned a value. -1t is unfortunate that some
characters may be referred to specifically by their numerical values in the Item
routines, The most likely characters involved in this way will be the Néwline;.

Space, Comma and [. It is hoped to eventually remove these by having indirect

references to these via the INDEX, The amount of input in a section is up to the

user but the Item Routines assume one instruction per section so that having a
section equivalent to a line is a reasonable choice initially. R238 exits with

the next section in a circular chain list poihted at by B6i1., 1In addition the line

-numbexr B86 is updated,

Routine 261 is used to convert some characters or character strings to

.unique special meta-syntactic characters required for the analysis of a line with

‘reSpecq to the Master Phrase dictionary. In particular it removes any redundant

characters., Space and erasg'are'noh-significant for example when analysis takes
piace with respect to thek[MB] dictiqnary; Also, it sets the numerical value.fér.
t»énd , td'specia1 values which will‘be:needed for checking against. 1In the oriéiq
nal version the position 4 for EOL (End of Liﬁe),-S for [and 105(8) for COMMA
were chosen. On the G21 104, 106 and 105 octal were chosen, respectively..'At

the moment I am unclear how necessary this change is. 1o allow pacts of u line to act as comment

all characters afler and |rlcluc1|'nj the one whose numerical value is shored 1w X1z s rgnored | (4 vl begeed ‘m'\\.-'\al\!
The output form R261 is, in general, a reduced and modified form of the

original string. The Routine expects B69 to point to the input chain list . and on

exit will have built up'thé reduced line and have B68 pointing at it. The origin#l

"line is unchanged and may be required if, for example, the statement is not to be
"analyzed with respect to the Master Phrase Diétionary. It may be worth introduc-

ing at this stage some comment convention for ignoring parts of the input section.
. Lo i

2.5, Master Routine and [MP] Dictionatry

Initially all that is required of the Maéter Routine is to be able to
fecognize the one entry in the [MP] dictionary which is ITEM. However, before -
the [MP] dictionary can be replaced By its final form it will be necessary to
define a routine for replacing ITEM routines. Therefore, a second phrase - |
REPLACE ITEM is also required to be recognized. Using the notaéion of the‘in—
structions in the Item Routine and the form of dictionaries defined in [5] we

have for the Master Phrase Dictionary 130:-

= 56 + J2 M - word
= 19 + F1 & - word
=7 +Fl & - word
=1

= 266 ' ' Index Position of ITEM Assembler

= R B

QOO E o000 0 @D @ o3
!
=

T T — — A —

.

. . - .

— O ©® u O D W N

o

.
12.
13,
14,

15.

-Tm

it
o= s |

64 ‘ Index Position of Replace ITEM routine

)

oM o O O a a o aaa o
i
- T = S => B @

SO

‘We are now in a position to define the action of the Master Routine 214, Brackets
will be used in the Compiler-Compiler convention. For example (B61 + 1) means

the contents of the address B61 + 1. We have; therefore:- ‘ s

Enter Input Routine 238 -

If line empty go to 1 ([B61 = (B61+1)]
B85=B69=B61 and enter Conversion Routine 261
B61
B62

i

B68 = condensed form of input line

130, [MP] dictionary position

i

. B63 = 0, denotes primary entry to analysis routine

Enter Analysis Routine 215
If B64 #£ 1 then no recognition and we have an error
B79 = B61, unrecognized part of line

Return original line pointed at by B85 and recognized part of line
pointed at by B62 back to Main Chain

B77 = B63, analysis record of 'ITEM'

B60 = B77 - 5 (This may not be necessary)

Enter routine whose position in Index is (B77)
If B79 = 0 then no input remains to be analyzed and go to 1

If B79 # 0 set B61 = B79 and go to 5.

-8

2.6, DOWN ‘and UP Routines

These two routines will not be changed later on as most of the mechanism

is necessary immediately, and so it is convenient to store them in théir final

form initially,

There are basically two different entries to the DOWN routine., The purpose
of the DOWN routine in the normal entry is to updatg the stack before entering
the new routine. Back and forward links are inSertea in the stack and work space
for the new routine is allocated, Sufficient information is stored so that the
UP routine can restore the state of the stack to its initial form on exit from’

the routine.

The subsidiary entry is the TRANSPLANT entry described in [5]., The main
nodes of the analysis record are moved into the stack and the associated routine
is entered. This will be described in more detail later.

The normal entry is as follows:-

B90, temporary storage for stack pointer B90

5

1. B60 =

2, B77 = -1, switch to denote normal entfy\ ‘
v N

3. B92 = (B70-i) = Routine Number N

The actual macro for entering the DOWN seqﬁence'must contain
the rougine number to be executed. B70 must be the return
pointer and B70-i here is used to denote the storage position‘
of the Routine Number. This is machine dependent and the ﬁsgr
can make his own chbice. |
4. B91 = contents of Index position B92, the routine entry point
‘5. If F1 bit of B91 set then small poutine. -Set B60 = B91 and enter
14

routine in this case. Store old B71 in X.,. Set B71 = B91.

-6, ‘If not small routine then:-

(B72) = B90 Forward link

(B90) = B70 - B71 Relative ppéition ofsreturn in old
‘ routine . .

(B90+1) = B75 A 0ld routine number

-9.
, : (B90+2) = B60O Backward Pointer
_E:) . (B90+3) = B72 : Origin of workspace in old routine
:B71 = B91 Location of current routine
-B75 = B92 ' New routine number
T B72 = BY0+4 New forward link position and origin of
e workspace :
. ' B73 = B71 + (B7141) Location of label directory for routine
o B90 = (B71) + B72+1 New stack pointer position having moved - '
over workspace -
7. B60 = B91 and enter routine.
| . If the DOWN routine is entered for TRANSPLANT then entry is made at 4. In this
- case B77 will contain the position of the analysis record (= 0) and B92 set to

" Index position of analysis record. In this case between 6. and 7, is inserted:- -

6.1 (B72+1) = B77
(B7242) = (B77+1)
(B7243) = (B77+2)
etc,
I" until all &'s of top level of'analysis record have been copied into stack; that
is until a word without F1 set is encountered. The rest of the workspace area
- ‘ o B . o ‘ - ' 4
I ‘ . up to B90 is then initialized to zero. This will be discussed in more detail.later.
- The UP routine returns stack to the position before entry to the previously
l—_ called routine which we are now wxiting from. The stack must be adjusted as follows:-
- B70 = (B72-4) Recover relative position of return
e~ "B75 = (B72-3) Routine number
- B90 = (B72-2) , Stack Pointer
L__ B72 = (B72-1) .Pointer to storage area
- B71 = Contents of Index position B75 = entry position of the old routine.
'B73 = (B71+1) + B71 = Location of label directory .
Transfer to B71 + B70.
- !
T L2.7. Analysis Rgggéga
- , ,
'gﬂ\' o This is only required to recognize ITEM and REPLACE ITEM so far so that it
o can have'the following simplified form:- =
b) ®

-10-
1. B43 = B62 N
2. B62 = B61 A A (A = address mask)
3. B63 = B8
4, B68 = B90
5. B67 = (Contents of Index B43) A A
. B65 = B67 , '
6. (B90) = [B67 + (B67) J.A A
7. B90 = B90+1
B69 = B9
9, B67 = B67+
10. B43 = (B67)
11. If B43 is &, that is F1 bit set then: -
(B90) = B62 ‘
(B90+1) = B63 v
(B90+2) = (B65 + B43) A A
B90 = B90+43
goto 9
12. If B67 = (B90-1) then recognition and goto 16.
13. B92 = (B62+1)
© B93 = (B92)
14, If B43 # B93 then no match and
either B90 # B69 and we set:- B90 = B90-3
| " B62 = (BYD)
B63 = (B90+1)
B67 = (B90+2)
goto 12
or B90 = B69 and we set (B72-2) = B72-4
' B64 = 0
B62 = 0
and exit with no match
15. 1f B43 = B69 then character is matched and we set B62 = B92 and goto_12.~&
16, Dictionatly entry has been recognized;~
(B63) = B43
. N
B63 = B63+] .
BYO = B68 S
B64 = T - h e
B69 = B61
B68 = B62 .

11~

17. CALL R252. (Split chain into two sub-chains)
i8. B61 = B69

B62 = B68

B63 = B88

CALL R222 (Dual Routine)

The routine 252 splits the recognized and unrecognized part of the input

 stream into two sub-chains. - On entry B69 points to the wh01e input chain and

B68 points to the last character that has been recognized. On exit B68 points
to recognized chained list and B69 points to the unrecognized part, If recognized:
part is null then B68 = 0 and if unrecognized part is null then set B69 = 0.

The routine 222 takes on analysis record pointed at by B63 and converts

. it to the Dual form. 1In the simple form.of analysis record we have so far it is

only necessary to move the one word analysis record to the top of the stack. To.

- speed up the return mechanism the Routine 222 first moves the stack to its position

before entry to 222 so that the return on exit causes control to go right back to

the Master Routine, Orders required are:- B90 = B90-4 _ e

(B90-1) = (B63) -
B63 = B90-1

(B90) = 0

B72 = B72-5

(B72-2) = B90+1

_Return

2.8, Item Assembly Routine

The ITEM assembly routine was origindlly designed to compile Atlas Machine

‘Orders. On examining the Compiler-Compiler it was found that the set of orders

used corresponded very closely with the set of orders required for manipulating-

the B variables and with very little change it was possible to remove the Atlas

dependent features, It can, therefore, be thought of as an assembler for certain.

macros which describe operations on the B variables.

-12-

The B variable can be thought of as being split into several fields:-

a 3-bit field =
a subsidiary address field
2-bit field

main address field

2-bit field.

Lo T~ > R o R

The Z-field need not be as long as the field A ahd its length is one of the
parameters of a particular implementation. It should be at least 7 bits in iengtﬁ.
;It will be filled by first inserting the information in the A field followed‘by
a move'order which will move it to the Z-field. The.contents of the Z-field will‘
be extracted in a similar manner.

Logic operations are provided on all fields other than the Zifield.

The syntax of an ITEM routine is as follows:-

The symbol] is used to delimit alternatives and * and ? have their
;éi;) Compiler-Compiler meaning.

|

- K .
I <Item Routine> ::= ITEM <N> <EQOIL> <instruction * ? >

, <N> ::= an integer
I . <EQL> ::= newline
? _ .<instruction> ::= <label 7> <unl-instructior> <EOL>
IH- <unl-instruction> ::= LH«instr>] <C~instr> | <I-instr> | <OP-instr>
<label> ::= / <> /

P

.

<H-instr> ::= H = <H-addr>

<H-addr> :i= <IB<HJSF * >
<HISF> 1:= + J <> | + 8 <> | + F <>

| <C-instr> ii= C = <C> ‘ : p

<C> ::= possible input character s
<I-instr> ::= I<N>

. ==

<OP-instr> ::= <LOGIC> | <MOVE> | <NORMAL> | <TEST> | <TRANSFER> | <OUTPUT> |
<101> | <121> | <124> |

G | :
L_C/ ‘ N.§. When 7,8 Frelds are Frescul‘ then the A field need o-\ld be 10 bty in le.‘3k

l

|

lflbnﬁl—u

-13-

<LOGIG> ::= <LOGICOP> , <BA> , 0 , <LOGICADR> | 0165, <BA> , <BM> , <LOGICADR>

<LOGICOP> ::= 0127 | 0167 | 0121

<LOGICADR> ::= <N> | F <> | J <& [A}M

<BA> ::= integer between 0 and 126

<MOVE> ::= <MOVEOP> , <BA> , 0 , 0

<MOVEOP> ::= 0105 | 0106 | 0163 | 0164 '

<NORMAL> ::= <NORMALOP > , <BA> , <BM> , <XN> .

<NORMALOP> ::= 0101 | 0104 | 0107:| 0170 | 0113 | 0114 |-0121 | 0122 | 0123 |
L0124 | 0145 | 0147 | 1102 | 1117 | 1166 -

K> 1= X <> | <D '

<TEST> ::= <IESTOP>, <BA>, <BM>, <XN>
<TESTOP> i:= 0152 | 0170 | 0172

1

<TRANSFER> ::= <TRANSFEROP> , 127, 127, L <> S
<TRANSFEROP> ::= 0224 | 0225 | 0226 | 0227

<OUTPUT> ::= 1064, 0 , <BM> , 0 | 1064 ,0 , 0 , <>
1065 , 0, 0 , <> | 1066 , 0 , 0., <C>

<101> o3

= 0101 , 127 , <BM, <XN>

<121> ::= 0121, 127, 127, 1 <0 | 0121, 127, <BM> , <>
. 0121, <BA> , 127, L
<124> 1:= 0124 , 127 , 0 , 1 <>

The semantics of these instructions are:-

2.8.1., <H-instr>

This 'sets the next store location equal to the value of the expression on

the right of the equal sign.

2.2.2, <C-instr>

This sets the next store location equal to the numerical number equivalent

to the character defined in .the address field.

2.8.3. <I-instr>

This sets the index position <N> equal to the current position in the

record store. It, therefore, provides a subsidiary entry point to an ITEM routine.

-14-~

2.8.4. <OP-instr>

O

These correspond fairly closely to the numerically equivalent Atlas machine
orders. (The <MOVEOP>'s and 1066 are different;)
In the address field we have:-

<N> meaning the constant integer
.] . th | -
"X<N> meaning the location of the N index position

F<N> meaning F field set to N

g
Ve

- JXN> meaning J field set to N
A meaning address mask

M. meaning mask for instruction word other than address field

". The B-variable 127 on Atlas is also the location counter. The value of I<N< is

EEEEERER

the relative position of label <N> from the current position of the location
" counter. ' Therefore, 121, 127, 127, L<N> is equivalent to setting the location

counter equal to its present value + the relative position of I<N> from the

F

present value; that, jump to label <> Looking at it this way will perhaps show

.

the reason for the different instructions and also some hint on how to implemeﬁt-

them on a particular machine,

2.8.5 <LOGIC>

0127, i , 0 , k sets Bi = Bi A k
0167, i , 0 , k .sets Bi = Bi vV k
0121, i , 0, k sets Bi = k
0165, i 4, 7 , k- sets Bi = Bj A k
©2.8.6 <MOVE>

. 0105, i, 0, 0 -Z field of Bi moved to A
0106, i , 0 , 0 A field of Bi moved to Z
0163, i , 0, O S field of Bi moved to A
0164, i , 0, 0 A field of Bi moved to S .

)‘ . 2.8.7 <NORMAL>
6101, 1, 3, G sets Bi = (Bj+G)
0104, i , j , G sets Bi = Bi + (Bj4G)
?‘“Q

S

~715-

0107, i ,
0110, i,
0113, i,
0114, i ,
0121, i ,
0122, i,
0123, i ,
0124, i,
0145, i ,
0147, i ,
1102, 70, 76,

“sets Bi = Bi A (Bj4G)
sets (Bj+G) = (Bj4G) - Bi
sets (Bj4G) ‘
sets (Bj+G)

B j+P

Bi - Bj - P

- Bj - P

Bi+Bj+P

Bj A (G)

Bi v (Bj+G)

Bi
(Bj+G) + Bi

R

sets Bi

i

sets Bi

]

sets Bi

it

sets Bi

il

sets Bi

1l

i

sets Bi

[S O SO P SOV SO ST Y
¥ Q 6 " o"ordo"d o0 0o

sets B70 to return;. inserts k into store at this
point and jumps to DOWN routine -

terminates execution

see TRANSPLANT

1117, 0, 0,
1166,
2.8.8. <TEST>

(o5}
~
-
o
-
[

These instructions should be followed immediately by a <TRANSFER> instrub-'

tion. They set the accumulator or some store to positive, negative or zero.

= Bi - (Bj4G)
0170, i, i, P sets accumulator = Bj + P - Bi
0172, 1 , 3, P sets accumulator = Bi - Bj - P

2.8.9., <TRANSFER>

Jumps to label defined in instruction depending on accumulator value,

0224, 127, 127, Li jump to Li if Accumulator

0
0225, 127, 127, Li jump: to Li'if.Accumulatdr.# 0
0226, 127, 127, Li jump to Li if Accumulator = 0
0227, 127, 127, Li jump to Li if Accumulator < 0
The label position is defined by inserting‘(i) before the required instruction.
Later iﬁ will be seen that all rqutineé must be relocatable in the record transfer.

. For this reason all jumps should be made either relative to the entry point of

h
fe)
)
,dzg - 0152, i , 7 , G sets accumulator
S
—
. the routine (B71) or relative to themselves.
e

7{} 2.8.10.<OUTPUT> <
e These instructions produce output on a selected device as follows:-
- 1064, 1 , j, 0 outputs character with numerical value Bj
- 1064, 0 , 0 , k outputs character with numerical value k
- 1065, 0 , 0, k outputs newline (this could be extended)
— 1066, 0 , 0 , D outputs character D.
2.8.11.<101>
= This 'is an indirect transfer instruction
e o101, 127, j , XO transfers control to the address given by the contents
of Xj o _
0101, 127, 3 , G transfers control to the address given by the contents
- : of Bj+G :
S $2.8.12. <121>
- 0121, 127, 127, Lj transfers control to Lj

0121, 127, Bj, 0
0121, Bj, 127, Lj

transfers control to address stored in Bj

sets Bi equal to address of label Lj

2.8.13. <124>

- C L 0124, 127, 0, Lj

].

transfer control to Lj

The complete action of the ITEM assembler can be described as follows:-

Get Item number and store current value of the record store pointer
B88 in the corresponding Index position., Replace remains of ITEM
line back on main chain. Set /B54 = Item Number and old Item dddress

in X165,

CALL R238, R2671, R215 as in steps 1. to 7. of Master Routine.

If B64 %/O on return from analysis routine then we have recognized
the next Master Phrase and so we must_set B79 to point to complete

line (i.e., rejoin recognized and unrecognized parts), complete any

label references which cneed to be fixed and exit.

i

-17-

4, 1If B64 = 0 then no recognition and this must be the next instruc-
tion of the ITEM routine. 'Assemble'and store in B88 region up-
dating B88 so that B88 always points to the next free location

in the record store. Replace line back on chain and repeat from 1,

2.9. ITEM Assembler

Although different implementations will be forced to use different methods

" for the assembler, it is probably worthwhile giving a broad description of the

way the G-21 assembler is organized. A completé flow diagram of the routine
is given in the flow charts marked ITEM ROUTINE 266 (i), (ii) and (iii).

The outer structure given above is shown on (i). To allow the DELETE

ITEM routine itself to be deleted it is necessafy to plant the address of the- -

new routine in X13 initially, and only when the routine is complete will this

"be moved to the corresponding index position.

Two adjacent tables pointed at by B81 and B78 are required for handling

‘labels. The first table pointed at by B81 has 40 entries corresponding to the

addresses of‘labels 0, 1, 2, etc.. The second table pointed at by B78 contains
the addresses of all the instructions which referred to labels, These instruc-
tions are compiled initially with the label number in the address field. At
the end of the routine this table is looked at and all the instructions have

their correct address parts inserted.

2.9.1. CODE SKELETONS

On the G-21 it was decided to store in a table code pieces for ali the
possible instructions macros aﬁd pick ouﬁ the required skeleton depending on
Fhe instruction. There are 32 instruction opcodes, and these can be stored
e;onomicglly and witﬁ quick access by having a 32 entry Hash Table having as

key (c%+2) * 8 + d where the opcode is abecd. For example, the opcode 0152

..].8_

) - has key 22 gy (5%2 = 25 % 8 + 2 = 22)
If two keys pointed at the same entry point then the key had 5 added
to it and the process repeated.
- The complete table used was:-
- OP CODE POSITION
- ' 0110 ‘ 00
— 0101 ' 01
1102 02
- 0113 03
, 0104 ' ‘04
- T 0105 05
» 0106- 06
0107 ’ : 07
— 1066 10
- 0121 T 11
. 0122 . 12
. 0123 ° ‘ 13
0124 14
— 0225 - 15
' 0226 16
O a 0127 17
— 1064 20
L : c o 0226 21
: 0152 ; 22
0114 23
b 0227 .24
0145 25
1117 26
—~ 0147 B 27
l__ 0170 30
1065 ~31
_ 0172 32, .
0163 _ 33 =
—— 0164 - 34
. ‘ . 0165 35
- ' 1166 36
. ' 0167 : 37
- I'kiis table then gives the position of an‘entryvin two other tables. The
first is used as a switch, depending on the type of opcode (shown as "Jumpl on
typé' at bottom of flow diagram (ii)); the second points to the skeleton for
» the particular opcode,
._..-O There are basically two types of skeletons. The first is for the standard
~ opcodes where the pointer is direct to the required ske‘leton. The second is

.

S TR N S O

-19-

for the;0101, 0124, 0121 type of instruction wﬁere the instruction may have
one or more sub-forms. In this case ;he pointer 'is to a word containihg tﬁe.
length of the first skeleton followed by that skele#on. This is repeatednuntil
we.reach the last sub-form.

Each instruction has its skeleton divided. into sub-skeletors grouped in

the same way as the sub-forms are grouped. This is not necessary, as, of

- course, only one set of instructions is required for each opcode, However,

.in the cases where either the <BM> or address fields are zero, considerable

economy of code may be achie&ed. Therefore, each skeleton is divided into

four sections with the lengths préceding them:-

1. BM#0 - Address # 0
2. BM = 0 Address # 0
3. BM#0 Address = 0
4, BM = 0 Address = 0

On the G-21 the address field of an instruction is not as large as the
field of a B variable (as it is on Atlas). Consequently, several instructions
have to be changed to alternative instructions when the longer field is required.
For exémple, 0121 with a constant larger than the contents of the addfess field
mﬁst be changed to 0101, together with the address constant stored away in aﬁ* '
address. A typical example is:;

¥

0121, 90, 0, F1

. which would be changed to:-

0101, 90, 0, R

where R is an address containing the constant F1.

The' standard flag settings are stored in an array in the bootstrap.

~2.10. Machine Dependent Routines

It is intended that all parts special to a particular machine should be

included in the bootstrap. The routines in this section at present are:-

P

275

219

248

241

283

216

DEFINE COMPILER <>

This has been implemented on the G-21 such that the parameter

defines the logical file that the compiler should be dumped on.
If is necessary, before dumping, to pack up the dictionaries in
the Record Store by a call of'routiné 243 and té reset the &alues
of X2 and X3 to the current values of B88 and §8?, respectively.

It is then only necessary to dump the' INDEX, Record Store and dny

constants'used;
PRINT B82 1IN OCTAL

PRINT B82 1IN DECIMAL

Two routines which print the value of B82,

PRINT B VARIABLES-
This routine is useful for debugging purposes and prints the

values of all B .wariables.

PRINT FROM BI125 to B126
Another debugging routine. The G-21 version dumps the area of

store between VYalue of B125 and B126.

INTEGER MULfIPLICATION AND DIVISION

As implemented on the G-21 and Atlas this is a non-standard routine
which has its return address sfored in B97 and has iﬁs two arguments
in B98 and B99. If BY7 has the F1 flag get it calculates B99/B9S,

otherwise B99 * B98, The result is returned in B99,

;TRANSPLANT SKELETON
" As will be described later, each statement used in the body of a

routine is interpreted unless a compile-version of the relevant

i

X

N

- statement is available and the statement has ‘simple parameters.

The form of.interpretation is to insert instructions in. the
routine which will call fhe TRANSPLANT routine and follow them

by the analysis fecord for the particular instruction, On Atlas
this can be achieved by a single instrﬁction which is stored in.
7¢ This value is then picked up and inserted in the Record Store
as desired. On the G-21 it was necessary té insert a set of in-
structions, and these were pointed at by X7. ‘The instructions
must set B70 pointing two places beforé start of analysis record,

then jump to address stored in B74 (entry point to transplant

routine).

Conclusion

Once the above has been written for a particular machine it should be

1

ﬁossiblé to wrge the remainder of the Compiler Compiler in a machine inde-
_'pepdent_form. The next phase is to write a set éf ITEM's which will overwrite
the.crude versions of the routines like the Analysis Routine already defined.
In general, the initial versions of the routines meed an_be relocatable in
" the Compiler Compiler form as long as the order of changing routines is in
the reverse order to the one in which they were defined, For this reason

the oxdering of the routines given above in the Record Store should be as. follows:-

1. Machine dependent routines

2. %161, 214, 261, 215, 252 and 222, in that order.

