
C O M P _,,U T E R

C H E S S

Atlas Computer Laboratory
Chilton
Didcot
Berkshire
OXl 1 OQY

October 1973

Proceedings of a One-Day Meeting
on

CHESS PLAYING BY COMPUTER

organised by
the Atlas Computer Laboratory
of the Science Resea�ch-Council
on 21 May 1973

ACKNOWLEDGEMENT

The knight was dravm
by Philip G Crane

I '

···_;

. •,

•.

FO�EWORD

. '

. ..

- i -

CONTENTS

.OJ

Foreword

Computer Chess Experiments

AG BELL

A Simpie Working Model

P KENT

Psychology and Computer Chess

AH BOND

Mathematical Relations in Chess

RH ATKIN and I H WITTEN

A Knowledge Based Program to play
Chess End-Games

STAN

Observations

R MALIK

Descriptor Index

AH BOND

References

List of Participants

Page

i

15

29

37

81

89

95

103

1 13

. "'.

1'
I

i'

i

~ ·
·•·

~ • · !

FOREWORD

"Why have a conference on computer chess?" This question was put to
me a number of times on the day and I gave a number of different
answers. This is because any answer must depend on an assessment of
how much I think the person asking the question knows about the
subject. To write this foreword is therefore difficult. I am now
trying to explain to everyone without any of the feedback that is
so necessary in conversation and so useful when lecturing.

Let me first kill two myths, both perpetrated by the Lighthill report:-

(i) "It is interesting to consider the result of all this work some
twenty-five years after the researches aimed at chess-playing
programs began: unfortunately these results are discouraging.
The best programs play chess of only 'experienced amateur'
standard characteristic of county club players in England.
Chess masters beat them easily."

The implication here is that the only reason people write chess
programs is to actually play chess and the discouraging result
is that they cannot beat Bobby Fischer. There are other reasons
(some of w~ich are given in these collected papers) and it
seems unfair to define the only encouraging result as a program
that would beat everybody and doubly unfair that nobody 1s
going to get support if that is their declared aim. And the
main reason why? Quite simple, because for the last twenty
years 'results are discouraging' etc.

(ii) Apparently quite considerable resources have been devoted to
producing an effective program. This is rubbish! Until the end
of 1972 there were only two people in this country who had ever
earned a living by writing chess programs. One was John Scott,
who had just left school at the time, and the other was myself
who had just left university. Neither of us cost the country a
great deal, indeed I was employed by a Norwegian-Italian with
an American grant. I agree that our results were discouraging:
John's program did not quite manage to hold its own against
Greenblatt, and my program (written in three months in 1962)

- 111 -

has now been translated into only six different computer
languages and used as the basis of only eight chess programs
(three in America, four in this country and one in Norway).

My point here is that it is unfai r to cri ticise the re s ul ts of
a subject that has never been offi cially supported or funded.
Do not make the error that the Ame ricans or the Russians are
any better off; most of the work done in those countri es is by
people who also beg, borrow and steal computer time. David Slate
and Keith Gorlen, co-authors of CHESS 3.5 (the·current champion
program) wrote it in their spare time having failed to obtain
NIH funds.

There are, to my knowledge, only five people at the moment who
are paid to write chess programs. Three of them (Gillogly,
Berliner and Simon) are at Carnegie-Mellon University; Richard
Cichelli at Lehigh, Pa, and Soei Tan at Edinburgh.

The discouraging results are therefore probably due to low
funding but the fault still lies with the people who would like
to work on computer chess. They rarely give clear reasons (I
include myself) why and how they wish to spend money and time
on the problem. Why don't they?

Well let's hold a conference and get people together. Find out why
and how people want to work on the problem now and in the future.
And the result: most people don't want funds! Instead 'they would
like more access to their firm's computer (in their own time) and
less persecution from their superiors. Most practitioners l ike the
idea of meeting other 'amateurs' at a conference; they can compare
notes and size up the opposition. But they still prefer to work on
their own ideas in a small group. In short, the_ British want, now
and in the future, to treat .it as a hobby, but a reputable hobby.

So here is an impressive document to enhance the reputation of this
hobby; pe rhaps it should· be subtitled 'Teach yourself advanced
programmi ng' because most hobbies are concerned with exercising
talents and abilities which our normal work does not either
permit or encourage.

This point of view is most common amongst computer scientists who
have tried to pr~gram chess. They will also point out the spin-off
in techniques first tried in a game playing experiment; for example,
hash tables, directed search, alpha-beta cut-off, catalogues.

Despite these very real successes most people actually dabbling in
computer chess (there were 14 people present who had written programs)
are , on the whole, reluctant to commi t themselves completely to t he
prob l em. Perhaps, like Eins tein, they are happier in the obscuri ty of
their 'pat ents ' office' where they are not expected to continually
'lay golden eggs'. This i s fair enough. But I would l i ke to co-o r dinate
some of these labours of love. There are a n umb er of problems and
experiments on which I would .appreciate other people's opinions and
I have described some of them in 'Computer Chess Experime_nts'. Although
I agree with Soei Tan that the Turing-Shannon model is probably
inadequate I stil_l maintain that it is the only well defined model

..
- l.V -

-,j

)

te

gh

that we have and that there are many useful techniques it can be used
to investigate, particularly the refutation (or killer) heuristic.
This is basically the computer scientists' viewpoint but, in my case,
is almost certainly due to the way the subject was first 'imprinted'.
I fully appreciate that other people see computer chess very
differently but I firmly believe that only a computer scientist can
gather together and implement all these different ideas because, 1.n
the end, it has got to be tried in a machine and very few people
really know how to program; I do not include Botvinn'ick.

'Imprinting'? As I mentioned above I wrote my first chess program
over ten years ago. I was employed to generate a 'list of legal
moves' for any chess position; this generator had to be as fast as
possible because the research was into models of evolution using
symbi a-organisms. It was hoped that they would learn to play chess.

At the time we did consider making the program play · a game. I again
s_tress that this was not . the main purpose of the research. Without
reference to any literature we wrote a Turing-Shannon lookahead
(it is a very obvious model) and an evaluation function based ~urely
on.mobility. We spent a whole week on this work and the results were
discouraging, Even we could beat it, let alone chess masters.

At this point in time the fund ran out and, seeing no future in the
subject, I went off to earn a living doing something useful. I was
however left with the naive impression that a chess program could be
built in three separate pieces, narnely:-

(a) list legal moves;
(b) lookahead;
(c) evaluation function.

To 'list legal moves' is no 'problem, to write a crude lookahead is
also well defined and trivial but to construct a successful evaluation
function is where it all fouls up. It is a fact that the fewer
heuristics in the evaluation function, the more accurate it is, ie
capture the Black King is exact; material balance much less accurate
and if you worry about pawn structure during search you are looking
for a very inaccurate evaluation.

Berliner says in.his paper that special heuristics (eg 0-0 early in
the game, not moving a piece twice early in the game, advancing pawns
during the endgame) are an admission of defeat •- I agree. I have never
tried to construct a sophisticated evaluation; never tried to express
my 'chess knowledge' because the performance becomes extremely
difficultto measure or explain. Indeed, many evaluation functions have
not so much been designed as been created ad hoe, the programmer has
had a teeling in his water' and it is impossible to reproduce his
results no matter how closely you read his publications or listen to
him. I must emphasise the point that scienc~ is concerned with
repeatable experiments.

I said the problem can be considered in three pieces. This is not true
in practice. The crude lookahead is simply unacceptable and, in order
to reduce the tree search time, it is necessary to use an evaluation
function to prune, back up, order and direct this activity (particularly
if alpha-beta cut-off is incorporated) and, even more important, to

- V -

know when to stop searching and when to go deeper. So the results
are discouraging because nobody really knows how to write accurate
evaluation functions. I was, therefore, very interested when I read
Ron Atkin's paper 'Multi-dimensional structure in the game of chess'.
Here was a mathematician who, with lots of squiggly things and some
hard sums, appeared to propound a mathematically reproduceable
evaluation function. The missing link?. Unfortunately, I could not
understand it, so why not get him to talk about it? There were other
people who had published work I did not understand, so why not have a
conference? If nothing else I might get some idea of what was going
on.

The SRC and the Atlas Computer Laboratory were almost embarrassingly
helpful (again my impression is that research would be supported if
only people would make a clear and committed case). Not all the
speakers I wanted were available but, despite appearances, there was a
thread in the order of the lectures.

Basically the morning was intended to be hors d'oeuvres. Peter Kent
and I agreed that we would merely set the stage (a) to get a relaxed,
informal atmosphere and (b) to introduce the subject with a simple
working model. We hoped to get people talking and in the right mood
for the main course in the afternoon.

The three principal speakers were therefore Alan Bond on psychology,
Ron Atkin on the multi-dimensioned approach and Soei Tan on knowledge.
Rex Malik very kindly agreed at the last minute to lead a discussion.
I again interpret .his remarks as an unconcious appreciation (py
him) that most pe9ple in the audience do. not want the responsibility
of funds but much prefer the subject as a hobby. ·

I still believe that successful computer chess will be the first.step
in the ascent of machine intelligence. I make rio hypotheses of how
it will be realised but one thing is certain. If you want to practice
and improve your ability to program a computer then the subject is
similar to Fermat's last theorem; you most probably will fail to
produce anything significant but you will learn a hell of a lot about

· programming and, incidently, psychology, maths, urban development
models, epistemology, and the theory of evolution.

I have given a short introduction to each paper. I would emphasise
that these are personal observations.

- Vl -

a

OJ
C O M P U T E R C H E S S E X P E R I M E N T S

by

A G Bell Rutherford Laboratory
Science Research Council

Chilton
Didcot
Berkshire
OXl 1 OQY

"The first professor ••• said perhaps I might
wonder to see him employed in a project for
improving speculative knowledge by practical
and mechanical operations,"

- 1 -

- JONATHAN SWIFT

Gulliver's Travels

Editor's Note -

Five finger exercises. The ability to program
a computer is a necessary but not sufficient con­
dition for prod·ucing a successful chess program.
A sound knowledge of modern I/O equipment (parti­
·cularly interactive graphics) is also necessary
but the computer scientist is still dependent on
ideas from other fields, Meanwhile he should
practise his art.

- 2 -

OJ

In the lecture I related the sad fates of a number of pioneers in the
field of machine intelligence. These included Raimon Lull, Blaise

-Pascal, Jonathan Swift, the Spanish captain, Charles Babbage and
Alan Turing.

It was to show that,although the fascination of intelligent machinery
has a long history, we still have not . achieved the first significant
step. The analysis and construction of a successful chess machine could
be that step.

One reason for these discouraging results is a lack of co-ordination
between the different groups and disciplines which dabble in the subject.

The computer is the only machine we have to perform experiments ln
machine intelligence in general and chess in particular. It is essential
to have experience of the strengths and weaknesses of these machines.
This is the province of the computer scientist and the necessary
co-ordination must come from computer science.

Science is concerned with the measurement of -repeat.able experiments
and application of the results. Computer chess has usually been treated
less rigorously, almost an art fonn, with the emphasis on the computer
playing the game and humans gauging its performance.

This paper describes some repeatable experiments for a chess program.
The intent is that programs can and should be assessed without them
actually playing each other. Of course they should play occasionally
but it is an expensive operation and not always conclusive as to which·
is the better chess program.

Handicaps

When two chess programs play each other with time limits invoked then
not only the programs but also the computer/compiler systems are in
competition. Alan Bond raised the question as to whether it is possible
to isolate the programs performance and ultimately give handicaps
to the computer/compilers.

- 3 -

I published an Algol chess algorithm to solve any two move mate
proble~ (Bell, 1970) and have since received correspondence from
people who have tried it on a number of machines in at least six
languages.

The times·,. obtained for the different computer /compiler systems to
solve a two move mate and prove it unique (no cooks) have been
inieresting. At first I believed that because the algorithm was so
specialised its performance on different systems could only give
comparitive results to within a factor of two or three. In fact the
times for Algol systems agree to within 207. with results obtained by
B Wichman who has used a sophisticat~d technique to compare and
analyse the execution performance of over twenty Algol computer/
compiler systems (see Computer Journal, February 1972).

Because of the good agreement with Wichman it is my belief that the
results for the translations into PL/1 and FORTRAN can give handicap
data on the performance of these and other computer/compiler systems.
Moreover, because the algorithm is table driven and highly language
independent, it can be translated into most computer languages in
a matter of days.

!he table below gives the comparable results for six powerful modern
computers and demonstrates the empirical agreement of the algorithm
with Wichman's analyses. The Gibson . mix is a measure of the hardware
power of a machine. The ICL Atlas Algal is taken as the standard.

Comparable Results for Six Powerful Modern Computers

COMPUTER/ALGOL COMPILER GIBSON MIX WICHMAN

ICL Atlas /MKJ 1.0 1.0
B5500 / MKI 0.3 0.5
UNIVAC I 108 / (obsolete) 2.0 I. 2
ICL 1906A / XALT MKS 2.5 3.3
CDC 6600 / MK] 4.7 I.I

The results for other computer/compilers are:-

Atlas Basic
CDC 6600 Basic
IBM 360/195 in FORTRAN H
IBM 360/195 in PL/1

10 seconds
4 seconds
4 seconds
7 seconds

CHESS .Iv!..ATE
IN SECS

100
220

90
30

100

All times are for the problem in (Bell, 1970). The Univac 1108
and CDC Algol compilers have been rewritten; they now have
Wichman figures of 2.3 and 3.0 respectively.

- 4 -

..

I,

'E

The effort to implement the algorithm in the various languag~s was:

Algol about I man-day
PL/1 about 4 man-days
FORTRAN about 2 man-days
Atlas Basic about 10 man-days
CDC Basic about 10 man-days

From the table we see that, for example, a chess program in Atlas Algol
should be given 100/4=25 times longer . to consider a move if we wish
to compare it with a chess program in CDC Basic.

Programs not using the algorithm can be adjusted to solve two move
mates. This will mainly measure their power in listing legal moves
but useful handicaps could result because the conventional program
spends the majority of its time in this activity; philosophical
programs would not be so easy to handicap.

Two and three move mate

The algorithm mentioned in the previous section is crude. To obtain
consistent handic;:ips it should not be altered however, it is open to
great improvement and it is instructive to discuss the inefficiences
of the algorithm and so introduce a significant programming principle
- the principle of 'refutation'. ·

The algorithm is table driven (the most powerful of computer languages).
One important feature is that the 64 squares of the board are not
scanned but an integer array is consulted. This array, 'piece', contains
the number of white (black) men on the board and their actual locations.
For example, in the position

BP

BP WP

BP BP BP WP

BQ BK BB

then white 'piece' is:

BP

HP

BP

WP

WP

WI:J WR

WB

HK

64

56

40

32

24

8

j 9 \16 I 71 s \ 12 I Is] 1 6 j 2 ;. I 2 3) 3 s j
Direction of scan

- 5 -

..

..

. . .
' ' . ' .

and black 'piece' is:-

In this problem the mating sequence is:-

WI P-B6
BI
W2

BB*P
N*B checkmate

but to discover that it is checkmate the program must actually capture
~· the king. It does this as follows:-

W2 N*B 'am I checking the king?' (to avoid stalemate) . .

The list of 'piece' is scanned backwards so it finds the rook check
first. It now continues:-

Black has no further alternatives? at the B2 or the Bl ply so the
problem is solved. The problem introduces the concept of 'refutation
move and/or man', in this case the rook. Gillogly calls this the
'killer heuristic' and shows it to be relevant to actual computer
chess play (Gillogly, 1972).

The solution of the mate problem can be speeded up. When white
discovered the move R*K at the stalemate check it could have re-ordered
the white 'piece' array thus:-

The rook would now have its moves listed first and in isolation, the
actual capture of the king at W3 can then be detected without listing
the moves of any other white men. But this misses the really important
gain. Black will backtrack to ply Ill. Now in this case it does not
have another alternative but normally black would. However the
alternatives are rarely significant and the same refutation move and
man will usually checkmate at move W2.

The fact that the order of white's 'piece' for W3 can be heuristically
optimised from the stalemate check is applicable to the previous plies
Bl,W2 and B2. Here is a simple experiment to verify this statement.

Put in a two move mate problem. Print white's first move WI and now
print all black's responses BI. Eventually . black will make a move
BIR which refutes WI, the algorithm will cutoff and white -will try
another WI. So we have:-

- 6 -

ure

,n

~red

he
ng
ant

d

lly
ies

Wla
Bia Bib Blc ...•...•.. BIR
Wlb
Bia' Bib' Blc' ..•.•.• BIR
etc

The result of this _exp_eriment is that the black move BIR which refutes
the present WI is usually (60%) the same BIR which refuted the
inunediately previous WI. Even more significant is tne refutation man
(75%), very often the king who just moves away.

Let us assume that we modify the algorithm to preserve the refutation
move BIR. Also assume we can check it exists for the next WI in zero
time. This means that the timings given in the previous section can
be reduced by 60% ie I 00 seconds b_ecomes 40 seconds. By similar
argument W2 and B2 can have their refutation moves optimised and we
obtain a limit of improvement • 93% ie 100 seconds in Atlas Algal
~ould drop to about 7 seconds and basic programs could be less than a
second. A further bonus is that the program is more capable to giving
an 'appreciation' of the problem; reporting white's threats and black's
replies. Unfortunately, the full reduction ca~not be realised, one
reason is that we must check if the move BIR still exists for the
next WI etc. The best we can do is to only list the moves of the man
which generated the previous BIR. So we have the following flow:-

Make move WI .
List moves of refutation man
Check BIR exists

I
yes

I
Apply BIR
Does it refute?

I
yes

no

l
no --> List moves of all other m·en

)
I

Next WI move ----------- -Find new BIR and optimise man
t

none

1
1 • so ut1on

We are now spendi.ng most of the time in 'list moves of all other men'.
However the reordering algorithm (previous page) does optimise the
finding of the next BlR. Note that full implementation requires a
different 'piece' array for Bl, W2, B2, stalemate and W3. When a
solution has been found the order of the men in the various 'piece'
arrays will give a further appreciation of the problem by the computer.

Two move mate problems are too short to accurately measure these
improvements. Consequently three move mates have been used to test
them. Preliminary · results indicate that, in Algol on the ICL 1906A,
the time for a two move mate can be reduced from 30 seconds to about
6 seconds, ie 5 times faster, and a three move mate takes about 50
times longer, ie about 5. minutes.

Apart from Gillogly, other people have 'discover.ed' refutation; in
particular Richard Cichelli of Pennsylvania. In that Jll 'killer'

- 7 -

•

or 'refutation' heuristics are similar the above implementation is
the same as Cichelli's and Gillogly's. However the cost effectiveness
of refutation can vary widely. The McCarthy-Gillogly killer associates
a particular move with a particular position. Gillogly says that this
does not pay for the overheads.

Hy implementation, associating and ordering particular men with the
current area of the- search tree, is much less specific; more hits but
less accurate. Cichelli's work is somewhere between these two extremes,

The big failure of my implementation is that when the hoped for
refutation does not exist or fails to work then I list all the moves
of all the remaining men. It would (or should) be more efficient to
only list the moves of the next man in 'piece'. However this will
require a major change to the program.

The fact that· the program will not then immediately check the legality
of the opponent's previous move should not matter. It is prepared to
d'o so; either the refutation is effective against an illegal move or
the nonnal cutoff will occur eventually.

Another improvementwould be along the lines of COKO III (Cooper­
Kozdrowicki, I 973) which concentrates on white moves WI, W2 and W3
that can capture the king ('attack paths 1) and consequently narrows
the search. This again accelerates the solution of mate problems ,
unless Zugzwang is involved.

Evaluation functions

It is in the evaluation function rather than any other part of the
conventional chess program that scientific measurement is most lacking.
Here the programmer must express what he considers to be relevant to
chess; his chess 'knowledge' is programmed into the computer, an
admission of defeat according to (Berliner, , 1970). The usual test of
the evaluation function is to play the program.

Here is an experiment. Obtain about 500 positions in chess and have
them examined and assessed by a panel of ·experts. For each position
the panel gives an ordering, from best to worst, of all the moves
~orth considerati2,g, ie the non-Fischer set. This not only allows us
to compare programs without them actually playing but if Fischer would
do the test we can compare champion v human and champion ·.v program.

This is not quite fair. Every time a chess·program has to make a move
it behaves like it has never seen the previous moves (unless it does
something like the reordering of the pieces discussed in the previous
section). Fischer, presented with 500 unconnected positions, would
probably not be as dominant over a computer as when he actually plays
a game.

Note that one does not have to write a complete program to test an
evaluation function. If it is expressed as an algorithm in an
acceptable language, Algal or FORTRAN, there is no reason why this
should not be tested by someone else's well written, modular program.

- 8 -

. 1 t us consider perhaps the simplest evaluation
Now e ' ' 1 d b ' l'

Y r elevance to chess ie materia an mo i ity
function which
evaluation. This

has an .
ld be a criterion for other functions. cou

The

(a)
(b)

evaluation function is:-

for a given position list all the captures first (material);
all remaining moves are graded by the resulting mobility ratio,
ie make the move and then calculate (how many moves you have/ how
many moves the opponent h as) in the new position.

To i nv estigat e how relevan t this f unction is to actual chess play I
took the sel ected games ot ten ch es s .mas ters described in Golombek's
book ' The Game Ch ess'. The mas t e rs ar e Anderss en, Morphy, Blackburne,
Steinitz , Tarr as eh, Lasker, Cap ablanca , Nimzovitch, Alekhine and Botwinnik .
In t he t en games the mas ters were faced with 336 positions. Now we
are not going t o get f ul l a·g r eement on the opening moves they chose,
neverthe l ess for 95% of the cases t he move chosen by the master was
one of the top 16 moves selected by the simple evaluation. function.
Can yo ur chess pr ogr am do be t ter? I t not throw it away.

Another feature of this evaluation function is that it appears capable
of distinguishing between conventional players and revolutionary players.
Conventional players, like Anderssen and Capablanca, are more in
accord with the function than players like Reti and Reshevsky, but
this is . the province of game theory not game playing.

Is it possible to .prove that a given evaluation function is incapable
of winning against best play? This . is a neglected approach but it
does have possibilities. For example:-

(a) If the program can. capture then do so, -ie like the no-huffing rule
in checkers. It is possible to disprove this algorithm, however
the opponent must offer some important captures to control the
game.

(b) If you always have more moves than your opponent then you must
win. Obviously true? He has no moves when he loses his king but
is stalemate avoidable? Also how long can- white maintain more
moves than black? P-K4 gives white an initial ratio of 30 moves
to black's 20 moves. One unverified result is that white can
maintain a mobility advantage over black for the first 20 moves
from the P-K4 opening. Note that if white does have a forced win
and there is a limit to retaining the greater mobility tben
white's best play must include a 'mobility gambit'. - How long does
your evaluation function keep ahead against all black's responses?

(c) It is not possible to play losing chess by reversing the signs of
parameters in an evaluation function, eg give black the greater
mobility? Try playing 'giveaway' checkers; two kings against one
win in either version of the game. Samuel suffered from this
misconception.

Repetition

One of the reasons chess playing programs have not progressed further
than the. strong amateur l evel is that they waste time r e creating and

- 9 -

reanalysing exactly the same position in the lookahead. This is not
so apparent in games which computers can play at master level: Kalah,
Gomoku and checkers. In these games the pieces (and therefore the
positions) do not usually cycle; the only troublemakers are checker
~ings, relatively rare pieces. This is n6r the case in chess, all
the pieces (as distinct from pawns) can .cycle. Humans do not generate
these loops but computers ,•spend most of their time in pointless
repetition, even in the imp-roved two-move mate algorithm already
discussed.

Consider the chess king. If we look ahead I ,2 and 3 moves we find the
following histo,grams · c;,f the king's terminal position:-

1 1 1

1 J

1 1 1

I

J 3 6

3 6 12

6 12 27

7 12 27

6 12 27

3 6 12

. 1 3 6

III

I : Total 8 Distinct 8 New 8

II: Total 64 Distinct 25 New 16

III: Total 512 Distinct 49 New 33

7

12

27

24

27

12

7

- 10 -

1 2 3 2 1

2 2 4 2 2

3 4 8. 4 3

2 2 4 2 2 ~

1 2 3 2 1

II

6 3 1

12 6 3

27 12 6

27 12 7

27 12 6

12 6 3

6 3 1

:

-

Make no mistake, a crude program playing the simple K, R v K ending
will generate similar rubbish. Of course the actual path can be
important sometimes; whether castling is still possible and en
passant capture exists.

To quickly check for repetition of a position (and hence save .
re-evaluation) would apparently be easy on a CDC STAR. The word
length is 64 bits; equivalence of two words containing the two
positions of the chessmen would indicate possible repetition. A closer
check would then be n ecessary and the immense complica tions of full
recognition, cataloguing, garbage collection etc become apparent.

Now humans do not appear to work in this way, we know that (Wl-BJ-W2-B2)
is usually equivalent to (W2-BI-WI-B2) and do not generate the final
position; we recognise similar paths not similar final positions.

There is no simple answer to this problem, the intent is to spotlight
the time wasted by chess programs in their evaluation and re-evaluation
of positions. It seems that almost any attempt to recognise or suppress
repetition at or before the evaluation level must be highly rewarding
in terms of saving time - but how rewarding?

Here is an experiment. Starting i n a corner, how many different ways
can a knight t our th e board visiting each square only once and
r eturning to the s t arting square at the 64th move? The answer is not
known but any person a ttempting to s olve it will quickly realise how
repetitous t he knight's path can be. For example:-

5

4

4

3

2

2

1

There are four ways the knight can get to square 5 but all four must
get the same answer from symmetry?

A similar problem which has been solved might give some indication of
the possible savings. The problem i s how many different ways a fly
can crawl round a five-dimensional cube, vi s iting each corne r once
only and returning to the starting corner at the 32nd move . An
abortive attempt was discussed by Mar ti n Gardner in Scient i f ic
Ameri can , August 1972. Professor Ron a ld Read had est imat ed t he solution

- 11 -

;
, .

would require ten years by computer. Donald Russell, a comput e r scientist,
obtained the answer 906,545,760 in five minutes! The trick was to treat
the problem like a game, ie make· legal moves with a 32 ply look-ahead
but similar paths were recognised and ignored. This crude recognition
of paths resulted in a program running one million times faster than
a qualified estimate. The benefits to chess programs of recognising
equivalence of moves will not be so great but even ten times faster
can be significant -whe-n machines like the CDC STAR, about 100 times
faster than Atlas, become available to chess programmers.
See Tan's paper for other ways of approaching this problem.

Unscientific myths

A dangerous myth has arisen from the fact that chess was designed by
humans to be used by humans.Examples of this myth are statements
like:-

'Chess is a paradigm of human mind'.
'Master play will require a program "modelled on human thought
processes" '.

'The program must "make use of essentially the same methods as
those used by men" '. (Women's Lib: Please contact I J Good).

'The program must be given "chess knowledge" '.

Such statements have a polarising effect on research. It allows
phil6sophers, phsychologists, geneticists, chess mast~rs etc to waste
hours of machine time and then pronounce on the problem as too
difficult. Computer scientists rarely have the opportunity, yet .
surely the less information a good program requires from us to attempt
a problem the quicker and better it can attempt ·a variety of problems.
It involves us with less work and eliminates misconceptions on our
part, allowing the computer more freedom and efficiency to do its own
thing, ie mini-max, alpha-beta and refutation. It seems obvious that
if we concentrate more on programming technique and produce a chess
program which only 'knows'' legal moves and only plays to master level
then this is more useful and adaptable than a highly specialised chess
model which could play at a higher international master level with
the high probability that we still could not understand how it
worked.

But to return to the computer doing 'it's own thing' with a human
activity. Consider the Morse code. Like chess it was invented by a
human for humans to use, surely this must have ·some effect on how a
computer should handle Morse code?

It is rov experience that non-professional people who (claim to) know
Morse code do so in a variety of inefficient visual and phonetic
mnemonics. Professional Morse ·coders and Bobby Fischer are not included;
people whose expertise has developed to such sub-concious levels that
they are no longer aware of how they do it. Laymen, confronted by the
laborious virtuosity of the non-professionals, are impressed; obviously
the problem is difficult. You may suffer from this impression. Here is
an experiment. How long would- it take you to learn Morse code? Define
learn as a permanent memory of how to decode a Morse roessage written
on paper; speed is not important. If a person knows binary, ie. 'thinks'
like a computer then the answer is about five minutes. Hopefully, you
are surprised. A human activity can be learnt and applied more

- i2 -

effectively by humnns if they behave like a computer. Haybe aircraft
do not have to flap their wings either.

Here is a pseudo l\.lgol program to decipher Horse code, the input is
assumed to be · a bar (-), a dot (.) or a space () to delimit the
letters:-

N:=0;
A: if its a dot then N:=2*N+I else

if its a bar then N:=2*N+2 else

print and clear (letter [NJ) ;
r,oto A;

The ~rray letter [1:28]'contains the following sequence

ETIAi.'l"HSURWDKGOHVF L PJBXCYZQ

which a human must commit to 1aemory. This is possible in five minutes
but it is left to the reader to see how the algorithm works. A final
word on paradigms:

Conclusion

The previous sections have discussed some repeatable experiments. They
are illustrations of how a limited but more scientific approach to
chess programs could be made and are intended more as stimulating examples
in advanced prograrr,ming than experiments to be slavishly emulated,

Computer chess is a rich field of research for programming technique,
games have been the original test bed of many important developments
eg hash tables, alpha-beta cutoff, pattern recognition, H and N" procedure,
information retrieval studies. It is important to measure and report
the efficiency of new techniques.

In this way we could approach, step by measured step, a master chess
model. In the meantime the techniques that are developed must be a
valuable fallout, far more important than knowing if white does have
a forced win.

Finally a word of encouragement. Compared to the man-decades that have
been spent on developing computer languages we have only spen.t a
few man'--years- on chess programs. Lord Rutherford once wrote to Nie ls
Bohr that 'you cannot expect to solve the whole problem of modern
physics in a few years. So be cheerful over the fact that there is
still a great deal to do,'

- 13 -

A S I M P L E

by

p Kent

W O R K I N G M O D E L

Atlas Computer Laboratory
Science Research Council

Chilton
Didcot
'Berkshire
OXl 1 OQY

"And take man's vaunted power of calculation,
Have we not engines which can. do all manner
of sums more quickly and correctly than we can?
In fact, wherever precision is required man
flies to the machine at once, as far preferable
to himself,"

- SAMUEL BUTLER

Erewhon

- 15 -

Editor's Note -

A very simple working 'model. The program is
~eliberat~ly constrained to answer within B few
seconds and the chosen move is computed almost
entirely from a shallow .search and evaluation
'function based on threat and counter threat to
pieces and squares.

By limiting tqe depth of search to two plies it
is easier to understand why an evaluation func­
tion contains· insufficient "cµess knowledge".
There appears.to be little proof that deeper
searching must necessarily improve performance.

However the paper is mainly intended to intro­
duce the classic Turing-Shannon model,

- 16 -

The program I am going to describe is based on the '2 move mate'
problem solving program written by A G Bell (Dell, 1970).

As this has been published in the Computer Journal I will not describe
the move generating routine but will instead describe the development
of the position evaluation function and some of the problems encountered
<luring that development. The program is written entirely in Algol,
originally for the Atlas Computer. It is probably the only program to
have been moved from one machine to another machine in a different language.

Initially the program based its evaluation solely on the number of
moves available to each side. The greater the difference in the number
of moves available to one side over the other, the better the position.
This evaluation function has been suggested before, and although it
works surprisingly well, it does have a number of faults:- ·

(i) No value is given to an undeveloped piece, such as a rook, in
the early part of a game.

(ii) The queen tends to be developed far too soon. (Unless one uses
a library of openings this problem is very difficult to over­
come.) The value of keeping the queen in reserve for a few moves
is something that is learned by experience and cannot easily be
programmed in.

To overcome the problem of evaluating undeveloped pieces, it was
necessary to take account of two separate values for each piece on
the board.

First its inunediate value (which depended on its position) and second
its potential value (which usually remained constant· throughout the
game). This potential value is related to the expected mean value of
the squares controlled throughout a game. These potential values are
approximately in the ratio P=I: N=3: B=3: R=S: Q=9.

The number of moves available to each side had initially been adopted
as the evaluation because of its ease of computation.

- 17 -

Although it had worked surprisingly well there did not seem to be any
logical reason why it should.

One did not .need a lot of moves, one good one was all that was necessary,
and a choice o.f 50 moves was little more likely to provide this than
a choice of 25.

I then realised that there was a close correlation between the number
of moves available and the number of squares threatened.

I therefore modified the program to compute the number of squares
controlled. A .square is considered to be controlled if one has more
threats to that square than the opponent. One should also take
account of the value of the pieces threatening a square. A pawn would
for example have more effective control than a queen. Strictly speaking
a square is only controlled if, during a complete sequence of swaps on
that square, the difference in the total value of the pieces swapped
off is never negative.

To speed the program up, I evaluated all positions one ply deep,
selected the 'best' six or so, re-ordered these so that the 'best'
were tried first and then looked one ply deeper, using alpha-beta cutoff
to avoid unnecessary work (Samuel, 1967). To get the effect of a deeper
look ahead while minimizing the extra computing time, I gave a value for
threats to pieces~ If I had just moved, the values of the threats were
as follows. All threats to my pieces were worth half the value of the
pieces to my opponent, and all threats to my opponent's pieces were
worth one third of the value of the pieces to me.

I tried several values for these threats between one and one quarter
of the piece values but half and one third seemed most reasonable.

Essentially, the value is based on the likelihood of a capture. If we
have one piece en prise, one move may save it, but if we have two pieces
en prise, we are unlikely to be able to save them both or capture their
equivalent value.

All these threats 'could be computed quite cheaply from two arrays
containing the number of threats I had on each square of the board and
the number of threats my opponent had. At this point the program
captured if you gave it the chance, moved a piece if threatened, but
generally displayed no imagination.

The computer operators used to play the program at night and write
sarcastic comments on the output after winning in 15 or so moves.

I then decided to try building some sort of strategy into the program
by giving the squares different values. Initially the ratios were
3 for the central four squares, 2 for the next ring of twelve and I for
all the remainder.

The next night the best player among the operators tried playing the
program, expecting to win with his usual ease. The program opened with
the rather aggressive if unsound Blackmar gambit:-

I. P-Q4, P-Q4
2. P-K4, P*P
3. N-QB3.

- 18 -

First Winning Game (Blackmar gambit)

W (Atlas) B (C.H.) ' 4

.
1 • P-Q4 P-Q4

2. P-K41? P*P .. .
3. N-QB3 N-KB3

. . · "

4. B-KNS N-KNS

5. B-QNSch P-QB3

i~ ~:a~~ Q-r-J3
N-Q2

7. Q*N Q)':QP?

8. Q-KBS Q*B

9. 0-0-0 P-K3

I O. Q-KNS P-KB3

11. Q-QRS P-QN3

12. Q-KRSch P-KN3

13. Q-KR3 P-K4

14. P-QN3 B-QR6ch

15. K-QNl . Q*N?

16. Q*Q p~:B

17. Q*QBP R-QNt

I 8. Q-QB7 o-o
19. R-QS P-K6

20. N-KB3 P*P

21. R-Ql R-Kl

22. P-QN4 B-QN2?

23. R*N B*N .
24. P*B QR-QBI

25. Q-QN7 R-K8?

26. Q*Rch R-Kl

27. Q*R MATE

- 19 -

It then proceeded to develop all its pieces fairly rapidly~ castled
queen side, cloubled its rooks on the open queen file and stormed down
the board using both rooks and the queen, ending the game with a check
mate by its queen on the 8th rank and its rook on the 7th. The comment
on the output was 'well it seems to work now'. It is true that the
player had made several errors during the game, such as giving pieces
away, but prior to this modification he had always been able to
recover such losses wirh little difficulty. For the first time the
program seemed to have developed a purpose.

From then on. the operators played more carefully and demon·s trated a
number of weaknesses in the program. Some are not easy to overcome.
There was a very definite inability to cope with advancing pawns, no
danger was · ~een un ti 1 the paun reached the 7th rank and was about to
queen, at which point it could well be too late. To overcome this
problem I created new tables for b_lack and white to give the value of
a pawn, and the value of a threat to a pawn, on any souare of the
board. These values increased as the pawn advanced. This encouraged
t;he program to move up its own pawns and to attack its opponent's
advanced pawns. One could also fiddle the table to force the program
to open in a particular way. For example, by giving the pawn in QB2
a large negative value one could force it to use the English opening
P-QB4, one that it would not normally value very highly, in spite of
what Petrosian or Spassky might think.

Another problem more difficult to overcome is the classic failure of
searching to a fixed depth (Turing, 1953). If the program finds a
potentially bad position at the full depth ·of its search, it cannot
search deeper for a refutation and can only search wider. If, as in
my programi the width of search is also limited, it is often unable
to find a sensible reply. ·

As a result it adopts a policy of 'sufficient ·unto the move is the
evil thereof' and \•1ill do anything to avoid the 'fatal 1 move. The
program will put off the apparently fatal move by an irrelevant check
or an attack on a queen, even if the checking piece can be taken and
the original threat remains. A good example of this occurred before
the advancing pawn problem was corrected. The program (white) had a
won game but its opponent had pushed a pawn through to the seventh
rank to reach the following position after move 24 •

.
BLACK K N

p p p
r!HITE - - -

N

p p
-

p p

p ·x p p p -
I R

The program continued:-

25.
26.
27.
28.

R.~~Nch
N*Pch
N-Q6
P-N4

K-K2
p ;':N

P-N8=Q

This ridiculous coBtinuation was simply due to the fact that the move
R-KNI was not placed in the top few moves when evaluated at level I.
After all to do so the program would have to give up a threat on a
knight for one on a pawn, and also give up contra] of an entire central
file for control of the K~J2 square. With the complete queen's file open
there were far too many other moves worth considering first, eg:-

R*Nch
R-QS
R-Q7

or even:-

R-Q4
R-Q6

and N~-P fills up the buffer of six moves. With no sensible move in
the buffer it could only put off the fatal pawn queening move and hence
lost a winning position. This problem ·of searching to fixed depth can
also arise with irrelevant threats to the king or queen by pieces that
can be easily captured or avoided.

The program tends to give castling a rather low priority unless the
king is vulnerable or the rook's new fi]e is alre;idy open. Knowjne
that castling is potentially -a good move, I have had to encourage.it
by adding a number of point~ for this move.

To summarize the present position. The program evaluates all the
positions on the first ply, selects the best n, orders these n moves
and then evaluates at the second ply using alpha-beta cutoff. The
position evaluation function uses the following factors:-

Piece Value

Your Threats

My Threats

Square Values

K

90

90

Q

324

162

108

4 Centre 22

12 Next 12

48 Others 6

R

180

90

60

B

108

54

36

N

90

51

34

cf (Berliner, 1970)

Pawn Tables

Rank 2 3 4 5 6 7

Q Pawn 36 36 36 48 54 66

K Pawn 24 36 36 48 54 66

QB Pawn 4 18· 18 30 48 66

The Rest 18 18 18 30 48 66

Your Pawn Threats

Rank 2 3 4 5 6 7

Q Pawn 18 18 18 24 27 33

K Pawn 12 18 18 24 27 33

The Rest 9 9 9 15 24 33

My Pawn Threats

Rank 2 3 4 5 6 7

Q Pawn 12 12 12 . 16 18 22

K Pawn 8 I 2 12 16 18 22

The Rest 6 6 6 10 16 22

Also

Your EP pawn threat = 9
My EP pawn threat = 6
castling = 25
stalemate value = 0
checkmate value = 10000

Testing the move selector

In order to test the move selection and ordering routine, I collected
statistics on over 100 positions.

I take the move selected at level 2 and find what its position is in
the complete ordered list at . level 1. If the selection is good all
the best moves at level 2 should be near the top of the list at
level 1. The results were as follows:-

- 22 -

Position

]

2
3 ·
4
5
6
7
8
9

10
11
12
13
14
15
16
1 7
18
19
20
21
22
23
24
25

No of Occurrences

40
24
12
11
16

4
0
4
1
I
0
0
3
l

2

2
1

Cumulative%

32.8
52.5
62.3
71.3
84.4
87.7
87."7
91.0
91.8
92.6
92.6
92.6
95. 1
95.9
95.9
95.9
95.9
95.9
95.9
95.9
97.5
97.5
97.5
99.l

100

Thus over 90% of the ffiial moves appear in the first eight selected
at level 1. This seems quite a good distribution of selections if it
were not for the long tail.

One would like to be able to cut off the search at width eight but
some key moves occasionally occur much further down the ordered list,
the worst example was a mating move that was listed as 24th at the
first level.

One can see that while the move selector is reasonable most of the
time, there are certain positions where it goes completely haywire
for no apparent reason. It will also at times find the right move for
the wrong reason. Alex Bell asked me to try it out on an opening trap,
namely the Blackburne shilling game:-

I. P-K4 . P-K4
2. N-KB3 N-QB3
3. B-B4 N--Q5

does it ,play 4. N*P accepting the offer of a free pawn?

4. Q-N4
5. N*BP?

forking the queen and rook but

5.

- 23 -

whi eh is a win for black.
In fact it played:-

because of several moves that it considered potentially dangerous to
its maximum depth of search, particularly N*Pch?

If we now force it to .the -position after 4 . . N1~P?, Q-N4; it does not
play 5. N*BP ?:· but 5_. B*Pch, because the check puts off several
potentially dangerous moves · such as N*Pch? or Q*Pch? or even Q*NP I
{but that was aboti 4th) .- .

So the programs sometimes finds the best move or avoids the worst move
for totally the wrong reasons. This odd behaviour is due in part to
the shallow fixed depth of search. But searching deeper is not going
to cure the problem, only hide it from view. The erroneous position
evaluations will take place deeper in the search tree where their
effect cannot be easily observed. It is a mistake to use deep
search ing too soon in a pr ogram's development. The posit i on evaluation
function and move selection real ly need to be very well developed
and understood before attempting deep searching.

Running the progr am

Finally another sample game to show how moves are input:-

Octal Input
W(l906A) B (Black)

1. P-K4 P-K4 6444
2. N-KB3 N-QB3 7152
3. B-NS P-QR3 6050
4. B-Q3' N-KB3 7655
5: 0-0 B-B4, 7542
6. N-B3 0-0 00
7. K-Rl P-Q4 6343
8. P*P N*P 5543
9. Q-Kl B-Q3? 4253

10. N*N R-Kl 7574
11. Q-K4 N-Q5 5233
12. Q*Pch K-Bl 7675
13. Q-R8 mate

- 24 -

To play the computer we use an octal notation for input:-

7

6

5

4

3

2

0

-

-
,

p

R

0

-

p p

N B

2 3

BLACK

·-

p p p p p
WHITE

Q K B N R

4 5 6 7

Thus P-K4 for white is 1434, you may also put in 14 34, spaces are
ignored.+ means it is waiting for your input. If you input the
character@ the present position of the board is output. If you wish
to castle; it will accept 00 or 000. If you get .:i pmm to the 8th
rank it will ask what you want. Input N, B, ~ or Q; anything else and
it will assume Q. lt always . turns its own pm.ms into a queen. If the
character+ is input after the move, eg 1434+, the program will make
the move without checking it. It will then type out:-

HOVE ACCEPTED
YOUR MOVE
+

and wait for further input. This is useful for setting up board
positions for te~ting purposes. Input an A to finish the game and then
type in QU to quit the chess macro, The program is started by typing
crm.UN or CERUN E, in the latter case the program plays black.

Recent developments

A number of improvements have been made to the program since the
conference. Several people have noted that the program often achieves
its primary aim of controlling the centre squares ·of the board but
then fails to capitalise on its position. This has been corrected by
setting up a new array which .lists all the squares surrounding the
two kings.

Initially, an extra 6 point 'king bias' is awarded for control of each
of these squares. An extra point is added to the king bias on each

- 25 -

move from the JOth to the 22nd. Thus after 22 moves 18 extra points
are awarded for control of these squares. In addition, from the 10th
move, all squares having a value greater than 6 are reduced in value
by one point per move until all squares have the value 6.

It has been stated (Zobrist and Carlson, 1973) that it is difficult
to include . new chess concepts in a conventional chess program.
Several of the concepts mentioned in Zobrist's paper have now been
implemented with little effort by adding ex.tra tables of piece value
to the program.

The value of. a knight is now read from a table. It has the value 85
at the edge of the board and 90 elsewhere. This not only discourages
the program from moving its knights to the edges but also encourages
it to develop its knights from their initial squares. A bishop table
gives 95 points for a bishop in its initial position .and 108 in all
other positions. This encourages early development of the bishops
A queen table gives 350 points for a queen in its initial square and
324 elsewhere. This discourages early development of the queen. After
10 moves all\a.lues in the bishop table are set to 108 and all those
in the queen's table to 324.

The program was translated into PL/1 and all the above modifications
included, in about six weeks of spare time programming by John
Birmingham of AEP.E, Harwell. He has also modified it to search three
plies deep, ie one more ply.

At present it uses the unsound centre counter defense 1. P-K4 P-Q4
and al.so tends to attack its opponent's undeveloped queen with an
undeveloped bishop. These problems can be overcome by suitable
modification to the tables.

The program now plays a far better game, both 2-ply and 3-ply versions.
The change from central control to attacking the king is very
noticeable. It defends well and if the position becomes complicated
it takes level swaps (or bette~ until it can detect no further threats.
Once a dead position is reached it moves all free men to attack squares
round its opponent's king. It does not as yet test for a draw by
repetition and as a consequence has drawn several won games.

On occasion it has played very good end games, queening its own pawns
and preventing the queening of its opponent's pawns by long sequences
of pins and checks. However if a pawn is still on its initial square
in the end game there is no incentive to advance it because the value of
all the squar_es is now reduced to 6 and the value of a pawn does not
start to increase until it reaches the 5th rank. This can be corrected
easily by modifying the pawn tables to give sn:all increases in value
on the 3rd and 4th rank.

FUTURE DEVELOPl!ENTS

The existing program uses the alpha-beta c.utoff technique to speed up
tree searching. This is most effective when the moves are ordered so
that the mos~ likely cutoff moves are examined first. The moves are
already ordered at the hiBher levels of th~ look ahead tree, but so
far no attempt has been made to order the moves at the deepest level

- 26 -

[

of search as ·this would require a prior knowledge of the value of
each move.

A method of performing this ordering has now been proposed. It is based
on the idea that a refutation for one of your opponent's best moves is
likely to be a refutation for most of his following moves (see Computer
Chess Experiments)~

The algorithm (known as the 'killer heuristic') will' operate as
follows:-

(i) List and evaluate all rep'lies to the first move at (full search
depth - l). Re-order the men. 1.n the WHITEPIECE or BLACKPIECE
array so that men having a good reply are examined first.

(ii) Order the moves for each man and use this information to re-order
the tables used in computing each man's move, so that pref erred
directions are examined first.

(iii) Modify LIS™OVES so that the moves of each man are generated and
evaluated separately. This will avoid unnecessary work listing
moves that are never examined •

•

- 27 -

. ••
;.

- 28 -

P S Y C H O L O G Y A N D C O M P U T E R C HE S S

by

AH Bond Queen Mary College
University of London
Mile End Road
London
El 4NS

"If you know the enemy and know yourself you
need not fear the result of a hundred battles,
If you knm/ yourself but not the enemy, for
every victory you will suffer a defeat. If
you know neither you will always be beaten."

- GENERAL SAN-TZU

- 29 -

Editor's Note -

It is mainly due to Alan Bond's interest in psy­
chology and his enthusiasm in communicating that
interest that I have become convinced that any­
one who wants to write a successful chess program
must "know the enemy". Unfortunately, due to
other commitments, Dr Bond has been unable to
describe investigations of the ''enemy" and his
"methods" to the extent that I think the subject
deserves.

I have spent many hours discussing the problem
with him and, by and large, we agree upon what we
disagree upon~ I have ther~fore included a very
short resume of his talk but have taken the
liberty of expanding on the subject, not as dogma
but for contrast.

I would like to acknowledge the DESCRIPTOR INDEX
and REFERENCES he has provided.

- 30 -

•'",•

Introduction

The fraction of workers who believe that the study of human
behaviour can illuminate the study of "pure" artificial intelligence
is disturbingly low, probably less than one third. As a member of
this fraction I cend to picture the relationship between AI and
cognitive psychology as one of mutual benefit particularly if the
subject is chess.

The main illumination that cognitive psychology can suppy to AI is
in providing ideas. There is no doubt that ideas are now needed
for a successful chess machine; psychology has used the game for
decades as a standard task environment.

The results of such work should be studied more. Apart from
helping to produce chess machine ideas such studies have given.us
conc~pts and mechanisms which help us to pose interesting problems
about intelligence in general.

Motivation

As motivation for this talk let me caricature an idea from Simon's
11The Sciences of the Artificial". It is, that since an adaptive
machine adapts to its environment, it will in general incorporate
an efficient adaptation provided the requirements of this new state
do not violate any natural contraints such as speed or storage of
the machine. ·

Thus when a machine is well adapted to its environment and
operating within its limitations, its behaviour will be the same as
all other optimally adapted machines and will be principally a
property of the environment and not the machine. Only when
operating near their limitations do the machines differ.

If we assume that the best human information processing in the
environment of chess problems is almost perfect, then we may
postulate that the human mechanism is the most efficient in the

31 -

sense of being the best adapted. Hence the most efficient chess
program must behave like a human.

I believe that support for this argument exists in that changes in
recent chess programs brought about for efficiency's sake have been
changes towards human behaviour.

Furthermore the key to efficiency seems to rest in the acquisition
and use of miscellaneous information about the chess position which
in turn rests upon the flexible description of information. Humans
are demonstrably impressive at extr~cting and using information in
a flexible way in the chess environment.

Experimental Methods

Turning now to what is known of human behaviour in chess situations
we find the subject in its infancy. Humanemethods to study human
information processing must necessarily be rather indirect. We do
not however need to go to the extremely behaviourist position and
exclude introspective reports. Verbal reports from a subject are,
after all, data, and by definition true. Whether there is a
simple relationship between this data and the information processes
under study is another matter. I do not know of any model of the
verbalisation process.

The methods used then are mainly two, both verbalisation. They are
introspection and thinking aloud.

An introspective verbalisation is done after the process to be
investigated has taken place and consists of the subject's
description of what he thinks he thought. It ~ay include accounts
of moving images, intuitions, etc. Introspection was used a lot
until about 1920 when it fell into disuse.

Thinking aloud was used as a technique first by Duncker in 1935 and
is just what it says, namely the subject talks whilst he is solving
the problem. This must interfere to some extent with his thinking,
probably inhibiting the non-verbal processes and enhancing the
rationalisation processes. The relationship of the verbal report
to the total information processing activity is unclear. However
most workers accept it as a rough indication of partial contents and
order of the thoughts described.

One usually studies a subject's behaviour on a choice of move
problem in chess, ie one does not study a complete game but instead
gives the subject a chess position and asks him tci" 'play just the
next move. Usually the position is taken from a game but not one
played by the subject. However in one study (Wagner, 1971) a subject
played a game and in one position verbalised his thought in
choosing the next move. The behaviour observed was similar to that
in the artificial positions.

- 32 -

Another experimental method that has been used 1n the study of
human perception of the chess board is the eye movement camera
which produces a f_ilm showing the point on the board on which the
eyes are fixed at any moment.

Summary of Chess Studies

The earliest" ·study was by the great psychologist Binet who, in 1893
(reprinted 1966), studied introspective reports of blindfold chess
players. Hi~ paper remains a classic.

Cleveland (1907) made some remarks on the stages of learning chess,
based on reports by players. The . main work on chess was done 1.n
the war period 1939-45 by De Groot and is presented at length 1n
his book. De Groot is still professor in Amsterdam and has
~ursued his 'thinking aloud' method and the study of thought. More
recent remarks by him are 1n (De Groot, 1967). His book ends with
some illuminating remarks on chess playing programs and there is
also a separate paper (De Groot, 1964).

Following De Groot a detailed analysis of exploratory processes 1.n
chess was made by Newell and Simon (1965) and this work is
described in their book (1972). An independent study of their
findings was undertaken by Wagner and Scurrali (1971).

Recent work on eye movements has been done by De Groot and his
student Jongman in (De Groot, 1966) and (Jongman, 1966) and by the
Russians Tikhomirov and Poznyanskaya (1966).

Simon and Barenfield (1969} tried to explain some perceptual
phenomena as coding processes into "chunks" (see next section -
Editorial Extension) and Chase and Simon (1972, 1973) tried to
establish the existence of and identify some of the perceptual
"chunks" by further experiments, particularly the technique of
board reconstruction,

- 33 -

r
r
l
r

I

f

I

Editorial Extension - AG Bell

The following repeatable results have been obtained by psychologists
studying chess players.

(1) From the experimental methods of introspection and thinking
aloud used by De Groot it was not possible to distinguish the
grandmaster from an ordinary pl ayer the number of moves
examined ii the same (usually 2 or 3) _per position; the
depth and apparent speed of search differs only slightly.

Obviously the grandmaster must be able to select stronger
moves for his consideration. How does he do this is the key
question.

(2) De Groot repea ted and extended a classic experiment first
performed by the Russians. Re verified that it is possible to
distinguish the master from the amateur by briefly displaying,
for about 5 seconds , positions from master play. Grandmasters
can reproduce such positions almost perfectly, amateurs can
replace only one third of the pieces on average.

(3) displayed are random - the pieces
then again performance becomes

If the chess positions
placed haphazardly
indistinguishable.
sixth of the pieces

Most people can only replace about one
irrespective of their chess skill.

are

The conclusion drawn from these experiments is that chess
skill cannot be detected from observing the search process but
can be detected by pattern recognition ability.

(4) The recognition and reconstruction of a position is done from
short term memory. GA Miller, in a famous article "The
magical number seven, plus or minus two", proposed a short
term memory model with a capacity of about seven "chunks".

(5)

The master player must be able to recognise a meaningful
position by describing it in about seven chunks, ie for about
twenty pieces recalled he mus t have about three pieces per
clunk. We can partially explain the remarkable ability of
chess masters to reconstruct positions by them possessing an
enormous repertoire (vocabulary) of familiar patterns (chunks)
any seven of which can be put together to reproduce what he
has seen.

Experiments have been performed to find how many "chunks" a
master player possesses and try to isolate some of them. It
appears that a chess master can recognise about 100,000
different clusters of pieces. Here is one of them

- 34 -

.I

BR
'

BP

.

BK

BB

BP

BP

(Also the most likely
position these pieces will
occupy at the 21st move 1n
a master chess game)

This is a very familiar pattern to the master player. The
fact that it is familiar can be verified by eye movement
experiments, where it can be shown that the master hardly (if
at all) fixates on any of these pieces. His peripheral
vision informs him about a pattern he has seen thousands of
times before, he does not need to look at it closely.

(6) The chess chunks (words) in a master's vocabulary can be
isolated more convincingly by, timing and observing the order
in which the master reproduces a position he can see upon
another hoard. The subject indicates (unconsciously) the end
of one chunk and 'the start of another by turning his head. · If ·
the first board is not displayed continuously then any pauses
in the reconstruction process can also be ~.nferred to be inter
chunk boundaries. · ·

And so a partial understanding of the processes that expert chess
players use when choosing a move has been obtained. At first
sight however it does not appear to be of much use to the computer
scientist for the following two reasons.

Firstly, the acquisition of a vocabulary of 100,000 patterns takes
a human at least six solid years staring at chess positions in
games he is playing against experts.

Secondly, even if we could identify and input many of these
patterns, how does any combination of seven of them suggest
plausible, strong moves to the master player?

Quite obviously chess knowledge is not going to be acquired by a
computer in the same, inefficient way a human acquires it. The
belief that the program must "make use of essentially the same
methods as those used by men" seems fatuous because human methods
derive from practice thous ands of hours of practice with an
inbuilt limitation of a seven "chunk" short-term memory apparently
playing an important role.

-· 35 -

I

I

I

However what may
chess program is
of the "enemy".

be usefully derived from this work in terms of a
that we may have discovered some of the weaknesses
We may now be able to "jam" his system.

Let's assume we can identify and input many of the chess "chunks".
The program now tries to produce positions or situations which
require more than seven chunks to be recognised and described
providing it s normal evalua tion function (however derived) is not
t oo s e riou~ly viclatcd . This might seriously impair the human's
ability to have strong moves suggested to him.

i.n1ether such an approach is possible or not, the point I am trying
to make is that there appears little proof that humans are
particularly efficient at chess. If it were so, then I would agree
that a program would have to simulate very exactly the human
behaviour at the time of playing, but the limitation of seven­
chunks in the short-term memory could imply that the best humans
are operating near the human limitation and therefore a successful
chess machine need not be a "paradigm of the human mind".

- 36 -

M A T H E M A T I ' C A L R E -L A T I O N S I N C H E S S

by

R H Atkin
and
I H Witten

Mathematics Department
University of Essex
Wivenhoe Park
Colchester
Essex
C04 3SQ

"I gather this work is so learned that few
people are able to read it."

- 37 -

Comment on the "Treatise
on the Application of
Mathematical Analysis to
the Gai:ne of Chess" by
JAENISCH (a Russian), pub­
lished about 1890.

Editor's Note._

Should be read in conjunction with (Atkin, 1972),
The emphasis is no longer on tree searching, posi­
tion evaluation is done mathematically and should
be repeatable.

At present the program considers each legal move by
white and then examines the consequent changes
(increases) in (only) seven features, I t then
sums the scores under these seven headings to give
an overall positional score for the move.

Atkin states that there is great scope for improve­
ment particularly if chess masters can be persuaded
to help in the research,

\

- 38 -

1.0 Introduction

We examine the game of chess by looking at an

important relation which exists between the pieces and

the squares, and which embodies the moves allowed to

the former. This relation is mathematically equivalent

to a simplicial complex which, in its turn, possesses a

53 geometrical representation in the euclidean space E •

It is therefore possible to interpret the course of a

game of chess as tlle expansion and contraction of two

geometrical structures (one for White and the other for

Black) in this multi-dimen;ional space[l]. This seems to

provide ·us with a natural language with which to discuss

the accepted positional theories in chess. It is also

particularly well suited to expression in a computer

language, and we illustrate this aspect by demonstrating

some typical analysis in specific situations.

Finally we try to indicate the potential richness of

this structural language and to suggest various lines of

research i,1hich might be profi tabf e in the broader context

of board games plµyed by computers.

- 39 -

1.1 The relations rrv' r B

Let f'/ C {rv.; i .,, 1, 2, ... 16} be the set of lvhi te me_n,
.l.

and s = {s .;
J

j = 1, 2, ... 64} be the set of squares on the board.

Then we define the relation rwc r-1 X S in the folloidng i,ray.

Definition: (r.'i, S j) e: r W if and only if W. "attacks" S .• By
.l.)

"attacks" we mean that one of the'following holds true:

(a) if it is Nhite's move, and r,1. is a piece (not the
.l

king or a pawn), then "W. moves to square s. ,,
.l J

is a legal move;

(b) if Wi is a pawn then S j is a "capturing square"

for W .;
.l

(c) if there is a White man, Wk (k :i-i}, on sj then

W. is protecting Uk, in the ordinary sense of
.l

chess-players' parlance;

(d) if w1 is the White king {r-lK) then Sj is an immediate

neighbour to the square occupied by W., horizontally,
.l.

vertically, or diagonally;

(e) if S. contains a Black man, Bk (~ BK), and if it is
J

f'lhi te 's move, then "W. captures
l.

B " k
is a legal move;

(f) the BK is on s. and is in check to w .•
J l.

We notice that, under (a), the empty square in front of a

pa.1-m is not related to that parm via rr,, • Also we notice that if W. is
.l

on square sj then mi, S/ ~ r
1
.,; a piece cannot defend itself. These

- 40 -

--- --- ~-~

points are not crucial to our discussion - which primarily illustrates a

method of attacking the , problem.

It is clear that there is another relation between wands

whic!i cannot be ignored, vi:., _ that rel,'1.tion which tells us on

which squares the men are to be found. But this relation is

actually a mathematical mapping,

pos: W + S

and therefore possesses a trivial structure (c.f. section 1.2).

rve now have the two relations r _W C W x S and r B C. B x S,

one for each player. When the difference is irrelevant we shall

denote either by r. As a further point of detail, relevant in

discussion of specific cases, we shall othen.~se denote the

members of S by their accepted algebraic notation al, ••• , hB (in

the order of 1, ••• 64) and we shall denote the members of w by

the obvious

WQR, WQN, WQB, WO, r,'K I i,;xn, WKN, WKR, WQRP, • • • f·/KRP

in the order 1, ••• 16; with a similar notation for D.

1.2 r w defines t~,ro simplicial complexes

If there e:ists at least one f'li such thllt (p+l) squares So./

r r.1 l, ••• (p+l), are rw-.relatcd to w
1

,, Ye so.y that these S's constitute

- H -

a p-slmplex (one o:f whose names is w
1
J, and denote it by

that

(], so
p

Any subset of these (p+l) S's is cc.lled a face of this p-simplex,

and is n t-simplex (t ~ p) in its own right. It follows tlJat the

relation rw can be described as a collection of p-simplices,

for various values of p. Such a collection (closed under the

relation " - is a face of -") is called a simr,licial complex

(a "complex" of c.i.mplices) and is denoted by Kr/S1 r,;.

This notation is used to suggest thut the set S plays a

special role - i11 terms of whlch the simplices w
1

_ are defined. This

sets is usuallg referred to as the vertex set. When rw is

understood we can abbreviate the notation to KW(S); then

Kw(S) c {p-simplices; o, p, N}

where p • 0 corres~nds to ·O-simplices of the form (sa)' and where

N is the maximum value of any pin this collection. The value of

p is called the dimension of the p-simplex (v. section l. 3) h•hilst

N is called the dimension of the complex/ N • dim K.

We notice too that rw may be such that some squares sj are not

, vertices of any simplex w
1

, not being "attacked" by• any of White's

men.

. -l
Dut we also notice tlw.t r W possesses an .inverse rel ation f W

. . r -1 (which relates s
1

to a set of W} - the incidence matrix of
j . w being

- 42 -

the transpose of that of ri,• This relation therefore defines a

simpliclal complex

referred to t1s conju':fate to KJ.,(S}. In K
5

(w) the vertex set is W

wllilst each s
1

(in rw-l) is a simplex; for example, if Si is a

p-simplex, then

...

which means tlu1t Si is simultaneously attacked by the (p + l} White

men wa , i a 1, .•. , (p + 1).
1

We shall describe the complex

KW(S} as White's view of E-oard

and KS(fi) as Board's view of T-thite

Similarly, KB(S) is Dlack's vier'I of Board

whilst K
5

(B) is Board's view of Black .

These complexes are well-defined at each stage of the game. When

Io/hi te has made I moves arid Black has made J moves we shall say that

the game is in mode [I, J). Clearly J • I - l or I. Also, in terms

of a well-known convention, mode {I, J) corresponds to the completion

of (I+ J) plys.

- 43 -

.,,

. I

TJ1e complexes defined above are f,unctions of the aode1 they need

to be recomputed after every move. It is clear that, in general,

a move by Ullit'e, say affects all four complexes.

1.3 A geometrical representation of KW(S} in E
53 ·

(Sal, ••• s(J.p+l)
polyhedron, vertices the S , in p-dimensional euclidean space

ai

If we identify the p-simplcx uith a convex

tlien we can obtain a ffeometrical representation of tha whole

complex l(r/S), i .n a r,ui table space -di. A well-known thcorem{:l] ·

tells us that, if N = dim K, an economical value of His

Jim 2N + l

From a consideration of r W we notice thc1t the maxin1um value

of dim w
1

, r'1
1

e: W, is 26. This occurs when the WO is in the

centre of ~ia board (say, on square d4}, for if its range is

unobstx·uctcd it then a.ttacks a • total of 27 squares. This means

that under these circumstances WQ is a 26-simplex. It follows

53 that Kr/S) can alt>-!ays be represented in the space E - and this

is independent of how many Queans are on the board.

Since dim(BQ) , 26 in K
8

(S) we can contemp.late the complex

Kw(S) U KB(S) and find a representation of.it in the euclidean space

E
53 • Thus both of the geometrical ·~tructures ·KN(S) and KB(S) can

'
be regarded as existing in E

53
, for all possible mo<Jes . [I, J], in

all possible chess games.

In this sensc-1 we c.:m say that a game of chess · can be modelled, ,

via the interplo.!/ of connected polyhedra, in E53 •

- 4L, -

l. 4 q-conncctivi ty in the complex Kr/SJ

Simplices Wi ,Jn~ f'lj are sa.if] t 'o be joined by a chain of connection

if there exists a f.inite sequence of simpli'ces

...

such that

(i) er . is a face of r1
1 al

(ii) a is
<:J.2

a 'face of W.
J

(iii) CJ and a l1ave a common face (say} oe.' i = 1, •.•• , (h-1).
<:J.. ai+l l. J.

We say that this chain of connection is a q-connectivity if q is

the least of the integers

As a special case, a simplex a is p-connected to itself, but is not
p

(p+l)-connected to any a. r

If we define a relatjon yq as meaning" is q-connected with" then

yq is an equivalence relation on the simplices of K. The classes of

y , or the me.mbers of the quotient set
q

Kl , are now the pieces

Yq

of K which are separately q-connected. We use the notation

oq = cardinality of the set x1 ·Y q

" and the process of computing all - the values of Q, for q = 0, ••• , dim K,
q

• f d Q l . (5 J is re crre to a~ a -ana ysis • I~ N = dim X, we arrange . these

- 45 -

q-values to give a vector, what elsewhere151 has been called the

structure vector,

The value Q
O

is, in fact, the same as the zero-order Betti-nu11zb.::Jr

of tlJe complexr but the higher order values Q must not be confused
q

with the higher order Betti numbers. Thus, 0-connectivity is the

same concept as arc~dse connecti·vit~!l our higher order Q -tralues
q

are a generalisation of this notion.

2.0 Positional motifs a.rising in K {S) rv

In this section we use the following definitions:

,.,
q • top q-value of a simplex

• dimension of the simplex in Kw(S},

q • bottom q-value of a simplex

n largest q-value at which the simplex is connected

to a distinct simplex,

Ecc (a} ,.. eccentricity of a simplex CJ

,._ V -I i • .,, (q - q} f (q + 1), when f:.hat rat o f:KJ.sts.

(A) The value of q (W.) is the dimension of the mii te man W 1 in
.1

the complex Kr./S}; it therefore equals the value

{number of squares attacked} - l

This top-q value therefore tells us the dimension of that subspace

of E53 in which is located the polyhedra whose name 1s w1 • It is

therefore an indication of the geometrical. ~orizon (in E
51J enjoyed

"· '
by iv i° This suggests that g (W i) is a measure of the mobility of. W i,

in this particular mode.

" we notice that the maximum valups of the q-numbers for the

various men are as follows:

" " " max q (Q) 0 26, max q (R) "" 13, max q (N) - 7

" max q (IJ) /0 12 (on half the board)• 6 (on whole board)

" max q (P) a l

" The ratio of max (q + l) for all the men are therefore

27: 14: 8: 7: 2

for Q : R : N : B : P

These should be compared with the classical static "values" of

the pieces, namely,

Q : R : N : B : P • 9 : ~ : 3 : 3 : l

(B)
V Since q (W .} • max dim (W. f'\ Wk) it follows that

i k J.

~ w1 and Wk are simultaneously attacking (q + l) squares, they share

V .
. a q-face in the structure KW(S). This value indicates the extent of

the co-operation of the pieces wi, wk, as well as their mutual mobility •

..

- 47 -

..

V ..,
(C} TheEcc (W.} a (q - q)

J.
• (q + 1) indicates the extent to which

r'l, is a lone attacker. If Ecc (W .} = 0, then
l .1

"' V
q = q

and so the acti.on of l'.7 , is entirely in harmony with (at least one of}
.1

the oth~r pieces.
V

flc notice that when q = -1 (r·l, is then totall-q
.1

d.isconncctecl from all other pieces} Ecc (I-I,} = 00 • Otherwise the
.1

largest value of Ecc ('i'li) i_s q (t'1hen q = O}. E:..cluding the · extreme

case, when q = -1, ve therefore have the inequa.li ty.

for Ecc O-,' .) •
J.

,..
0 t: Ecc 0,, .} , q

J.

l1 move which lo.,:ers Ecc (W.) can · clearly do so in one of two
.1

;,..

ways; either by decreasing q (W.} - reducing its effectiveness
.1

\J (de velop;;:ent) on the Board; or by increasing q(W
1

) - increasing the

co-operation and mutuai mobility with other pioccs.

f'le notice, for example, that if we were to use the value of

Ecc a,1 .) to obtain a static "value" for r1. then the classical
J. .1

numbers 9, 5, 3, 3, l can arise in various ways - which depend

upon -the bottom-q values. Thus if we take

(i}

(ii)

(iii)

V
q :,:: 0

" q = 1 ..,

V
q,:

we obtaiJ, (rv,} Ecc = 9, 5, 3,
.1

,.,
when q(W .} = 9, 5, 3,

l.

we obta.in {rl ,) s, Ecc = 9, J,
.l

when

2 we obtain Ecc (W.} r 9, s; 3
.l

"

l

l

1

when q(W~) ~ 29, 18, 12
.l

(pawn exclud(;!d)

This latter case is impossible £or any of the pieces, and so we deduce

that the classical values can only plausibly correspond to Ecc (w1J

at the level of q O O. At. th;~ level Wj ·and wj are 0-connected if

they simultaneously attack a common square (only one).

(D} A move which lowers the value of Qt' for some fixed t, in

the structure vector~ can do so in more than one way. In the

first place, Qt can only change by multiples of unity (~Qt•! n},

and if

~ V
then q must have increased for some wi, and q cannot have decreased

for any W j" Thus /j() t < 0 can result from an increase in the

co-operation of the pieces.

On the other hand it is possible for tot< 0 by some one (at

least} component disappearing at the t-level. This can happen ·by
A

a reduction in q (Wi} for some i - in such a wag that, after the

move, -.
A

q (Wi) < t

,.
whereas, before the move, q .(w1J > t. We notice too that it need

not be the piece Wi which is involved directly in themove; the

.n,vement of Nj can effectively block the action o~ Ni so as to induce
A

the reduction of q (w1J.

- 49 -

I •

The co-operation of pieces and pawns, manifest at various t-levels,

can be displayed as follows:
I

t -0 any pair of {K, 0, R, N, B, p} (share l square)

t - l any pair of {K, 0, R, N, B, p} (share 2 squares)

t ,. 2 any pair of {o, R, N, .B}

any pair of {x, 0, R) .(share 3 squares)

t = 3 any pair of {o, R, N}

any pair of {K, Q, R}

B and N

Q and B on same diagonal (share 4 squares)

t == 4 Q and B on same diagonal

Q and R on same file or rank

R and R on same file or rank (share 5 squares)

t = 5 0 and B on same diagonal

Q and R on same file or rank

R and R on same file or rank (share 6 squares)

t = 6 Q and R on same edge file

or edge rank (share 7 squares)

t) 7 no two pieces 7-connected (share) 8 squares)

z·t follOI\TS that if 6Q t < 0, when t :":l 7, the reason must be

the fact that• a piece W, exists for which the move has resulted
.l

" in old q a,.) ~ 7 and ne1t' q (f'l.) < 7
.l .l

An exception to this occurs if there are tk'O White Queens

on the Board - s.:iy, one on al and .the -othe.r on aB. These Queens

-· are then 7-connectcd {if the 1st and ·Bth ranks, as well as the

leading diagonals,. are other1dse clear. In this specia.l (and

- 50 -

unusual) case ~07 < 0 can be the result of an increase in piece

co-operation at th_e 7-level. ,

2.l Positional motifs arising in -K5 (W)

It is in a/ consideration of the geometry of K~(W) that we
,,;J

can see an exP,r.ession of the positional theories first advanced

by Steinitz[b].

(A) Each square Si E K5 (W) is a p-simplex, for s~~e value of p,

so that

where the w
8

denote White men attacking s1 • Other things being
i

equal, it is clear that dim (Si) is a measure of the eontrol

exercised over Si by the White men. But the question of absolute

control cannot be settled •"i thout

and (ii) a.llowinCJ. for the relative "values" oE the vertices

(the w~.J in the simplex Si.
J.

In the sense of Steinitz, Si is a stronq square for White when

the control is maximal or absolute. Ideally, for White, Si£ KS(W)

but s
1

t K5 (B}. But failing this, and taking (ii) into consideration,

..
the presence of pawns in the p-simplex Si of x

5
(w} - and their

absence in the simplex Si of K5 (D} - makes Si a strong square for

White, and a weak square for Black. A not-able example of such a squ_are

is one which lies in front of an isolated Black pawn; for here we have

a situation in i-11µ.ch Black cannot (usually) introduce a pawn into the

- 51 -

simplex s1 of X5 (B). Thus Black has a permanent weakness - the geometry

cannot be rapaired (except perhaps with White's co-operation).

This would suggest that tle whol e simpl e x s
1

is in some sense,

which must eventuillly .be gir,tcn c1 numerical _value, a measure of the

s t r en rr th of that square S . . In this coritext ,,.,e must clearly
.1

distinguish between the contr ol v a lue of a piece ll j i1I1d its piece

value; the former being, in some sense, inverse to tJ-ie latter.

It seems natu.t·ul in the light of these remarks to ir1terp.i:et

control t'alue of Wj as a mapping

c val : W-+ J

from the vertex set w of Board's view of rvh.i te, KS Of}, into (say)

the integers J; Jt"hilst the piece value of W j will be a mapping

p val : W-+ J

from the simnl i c es of Kf/SJ, f'lhite's view of Board.

Thus c val and p val are wconjugatew in the sense that they

have conjugate complexes as their domains. Naturally the choice

of J as the range for theGe mappings is not crucial - but it can be

a convenient ~omputing feature.

(BJ
V V

The bottom q-value, q (s1}, meittls tha,t Si shares a q-fa.ce

-· with at least 6ne other squar e Sj" ThJ,s means that s1 and sj are

- 52 -

simultaneously attacked by (q + 1) pie~es.

simplex

V
Let this q-f,,ce be the

diich must therefore be an indication of the "square-co-operation"

beti.·~en Si and Sj, · via the White men_. The value of q therefore

indicates the f l ox i bili t q inherent in White's game, the existence

of multiple threats. The ~quares Si, sj, Sk, ••• which share a

common q-face -define areas of the board where i-?hite's fl e::ibl e

threats are to be found. The "value" of a threat depends on

whether it is

(i) a tii1·eat to control (a squarej

or (ii) a threat to occupy (a square).

If it is a threat to control then, for J-lhite, it would be

valued as (plausibly)

w. e: a
.1

whilst if it is a threat to occup~ its value·will be

This is because, in the first case, we are dealing with K
5

(w},

but in the second case we are dealing with KW(S).

(C} A move which lowers Qt' £or some fixed t, in the structure

vector ~ for :_1:
5

(W) 11ill (c.f. sect.ion 2.0) do so because of two

V
possibilities. On the one hand thcre'might be an increase in q

- 53 -

for some square s1 , so that ~q > 0 results in ~Ot < 0
v

(q , . t) •
. ,

This means that tha flexibility of White's threats has increased.

,._
On the other hand ~Ot < 0 can result from a· decrease in q (s

1
),

for some square Si (q '.:I- t}. This means that Uhite's control over Si

has been reduced.

The "r..night fork" is an obvious example of square co-operation ,

a.t the level of q O 0, .in K8 (r-?) - flhen Si ami sj are not adjacent.

For other pieces the co-operation involves neighbouring squares -

either on the ranks, files, or diagonals. The action of the N cannot

be blocked by other pieces or pawns so that, placed in the larger

central area of the Doard, a knight always induces a 0-connectivity

between 8 squares.

(D} The positions of the squares {.<;.}, relative to the locations
J.

of the Black men, ar.o clearly important. 'lhis is embodied in the

importance normally attached to the centre squares, to open Eiles,

to open (long} d.iagonals, to the seventh/eighth r 11nks. W~ naturally

add to these the squares occupied bg the Black men, that is to

say, tlle set

as well as th~ King fliqht squares.

'I;he centre squares, as -~ (rv
1

}, -·allow the possibility oE

maximum q-values for the r?hite Q and Br 'fho open Elles are necess:iry

for the achievement of maximum g-\•al ucs for the ithi te R 's. Each

- 54 -

of these featur·es is further enhanced bg open diagonals and open

ranks~ The Ron the sev~nth rank is usually associated with the

King flight squares, but lllso i .t can pose strong tactical threats

behind the Black pak~S (which ~re t~en on weak squares).

All these dimensional considerations are expressive of the

complex 1:W{S). Thus we see tl1at the consideration of "square-value"

in K
5

(r-{} is inevitably involved with considerations 0£ "contr.ol-value,,

in K5 UO. And tiie conjugate IU2ture of K5 (fv) and Ki/SJ would then

suggest that there should be a close relation between "piece-value"

in KW(S) and what we might introduce and call "~trength=value" in

Precisely, we can proceed as follows.

Define a mapping to represent the square-value of a simplex s1 c K
5

(w),

s val : S-+ J

and require tl1e condition that

then l c val (h'/
j

• • • (I)

Define a mapping to represent the s tren gth-val ue 0£ a vertex S j E i.1/SJ,

st val : S -+- J

- 55 -

and require the condition that

then p val (W .)
.1

• • • (II)

The process of estimating the relative "values" of pieces

a.nd squares can now be seen as a cyc;ic one 1,;hich al ternatcs between

the th'O conjug;;.te complexes. This is because, in some sense to

be defined, we must have p va.i. (T·l .) to be "inverse" to c val (rv .)
.l --- .l

and, similarly, s val (S .) to be "im,-erse" tc st val (S .) • By
]]

"inverse" we mean only

then

or

or

s val (S
1

) > s val (S
2

)

st v~~ (s2) > st val (S1)

One way of ensuring this reversal of orderiJ1g is to take,

for example,

c val (fv .) • p 'lral (r1 .) = a constant integer
.l --- .l

and then truncate on division.

Another way would be to fix an integer n and take
0

c val (r'l.) - p val (W.) (mod n)
.l - J. 0

The cycle can be entered in a crude way by taking, for example,

p val {K, 0, R, N, B, P} = {10, 9, 5, 3, 3, l}

and inventing some similar rigid square-values, depending on the Board,

for example

- SG -

where s. • a centre square
.l

sj = an off-centre square

s = DK · flight-square, wtth obvious extensions.
k

. __ t,.

(E) The condition of checkmate can be described in terms of the

apparent conflict between the geometrical structures of Jthite

arrl Black. In KB(S) the BK is a p-simplex, with 2 i; p , 7. Each

square S. in this simplex BK is a possible flight-square, allowing
.2.

for obstruction by Black men. In addition~ (BK) is a single

square, say SBK"

Now suppose that, in mode [I, I-ll, we have

and (ii) BK

then we know that the BK is in check, by (1), and the possible

flight-squares are under attack, by (ii). Hence the BK cannot ·

get out of check bg moving · (himself). The only escape is for

Black to change (i), presumably by blocking or capturing the checking

piece.

We can therefore deduce that Black is in checJanate if the

above conditi ons {i) ~ (11) are invariant under all leqal tram;it.ions

from mode [I, I-1] to mode [I, I].

The Wlµte geometrical structure has .Hannexed" that portion of

Black's structure which contains the BK and his flight-squares.

- 57 -

.

f

I

3.0 A computer program for the analysis

The computer program which embodies the positional chess

heuristics is written in Fortran and runs in 9K of core on

a PDP-10. Although more modern and sophisticated .l~nguages

like LISP, ECPL, and POP-2 were considered, Fortran was

chosen in spite of its many and obvious disadvantages for

the ~ollowing reasons:

(i} speed of execution - the PDP-10 Fortran compiler

produces· unusually efficient object code,

(ii} transparent compilation - when ,,rri ting sections

of Fottran, one knows (roughly) what machine

code the compiler is going to produce,

(iii} modular subroutine structure,

(iv) critical sections written in machine code can

be interfaced easily to the rest of tlle program,

(v) good compiler error diagnostics,

(vi) fast array handling •

The progfam is designed to allow interactive analysis of existing

chess gam~s from a teletype keybo~rd. 1h addition, requests

tor extensive analysis of complete games can be submitted to the
~

PDP-10 batch system. Using existing games by master players ·

permits repeated analysis of a large nwnber of high-quality games,
I

eliminating time-cons~~ing keyboard sessions with chess players.

/L further c.dvantage of playing exlst:J:ng ,games is that: 1 t 'allows

- 58 -

-

study of all phases of the game - 1n computer chess, checkmate

usually intervenes before the end-game is reached/ The program Juts

nover attempted to play a complete game itself.

To facilitate human interaction with the computer, the

program accepts and obeys commands typed in at the keyboard.

The ciie!!,.~. game to be analysed is stored in a disk file in a slightly

extended version of the International Algebraic Notation for chess

games (a mw· description of the notation is given in Appendix A).

Commands are provided to print the bo,u·d, make a specified number of

moves from the g2me 1 move to a specified point in the game; and so

on. It is possible to im,estigate varietions on the game by typing

in a sequence of moves different from those actually played. Further

commands print the connectivity matrix and structure vector for

either side's view of the board, and initiate a complete positional

analysis of the current state of play. Repeated analysis cf the

game at various stages is accomplished by a NACRO command ..,-hich

continually performs any sequence of other commands. A typical

command sequence for a batch run is

BOARD

POSN

HOVE 2

MACRO

/print the board

/perform a positional analysis

/make two moves (one for Nhi te, one for Black)

/repeat the abo,,e command sequence until

/t12e end of the game.

59 -

3.1 Boa rd rc orescntation and move qeneration

The chess-board is represented as an array of length 144,

with the contral 64 elements giving th~ position on the Bx 8 Ix?ard,

and the remaining elements containing -1 to indicate that they an:!

off the hoard. This representation al.lows move calculation by

repeated addition of offsets, Tdth a· simple test at each stage

to check t.1c1.t the proposed destination square is still on the board.

For example, the offBets for a rook's rr.ove are +l, -1, +12,_and -12,

and each of these is :repeatedly added to the square number of the

rook's initial position to give the moves. Nore detail:; about hotv

moves are generated 1·:ith this board representation are given by

Koz.drov!icki et al {1971){ 41Althoug·h it may appear that a one-square

border containing -1 - giving an array of length 100 - is all that

is needed to detect -.,:hen a man has. reached the edge of the board, .

a knight r,.rould be able to cross such a border, causing unexpected

·results, In fact only 132 elements are necessary in the array,

representi.ng a 12 x 11 "extended board" (Gillogly, 1972)[3], but

we have found that the 12 x 12 extended board is easier to deal with

and facilitates program writing and debugging. The men on the board

are indicated by numbers l - 16 (for White) and 17 - 32 (for Black),

so that, for example, the rlQR can be distinguished from the WKR. The

board in the initial position is shown below:

- 60 -

-l s·: -1 -1 -1 . -1 -1 ; -1 -1 -l -1 -1 .-l

-l -l -1 -l -l -l -1 -l -l -l -l -1

-:l -1 17 18 19 20 21 22· 23 24 -l -1

-1 -1 25 , 26 27 tB 29 30 3l 32 -1 -l

-l -1 0 0 0 0- 0 0 0 0 -1 ~1

-l -l 0 ;!o 0 0 0 0- 0 0 -l -l

-1 -l 0 0 0 0 0 0 0 0 -l -1

-l -l 0 0 0 0 0 0 0 0 -l -l

-l -l 9 10 ll 12 13 14 15 16 -l -l

-l -l l 2 3 4 5 6 7. 8 -1 -1

-1 -1 -1 -1 -l -1 -l .-l -1 -l -l -l

-1 -1 -l -1 -l -l -1 -l -l -1 -1 -1

Moves are generated by adding offsets as outlined above, bearing

in mind that

(1) a man cannot move off the board,

(11) a man cannot move to a square occupied by

another man on his side,

(iii) for pawns, knights, and kings, the offsets

must be added once only,

(iv} pawns in their initiaI position have a

special move available.

Thls'algorithm generates all "nonnal" moves (but not castling, etc).

Because of the importance of the relation~hip of "attacking"

for the connectivity analysis, and the similarity of this

- 61 -

,,

r

relationship to that of "moving", the routine which generates moves

also lists all legal attacks. All moves are attacks, except

pa1,71 moves, J>.'hich are never ,"lttacks. In addition, a man can attack

a square occupied by another man on his side. Pak71 attacks are

generated by adding offsets different from those used for pawn moves.

In order to find all :Legal moves, eacl1 move generated by

adding offsets mu.st be testod to see if a check results. If

castling is stiJ.l legal, and the squ,1res between the king and rook

ai·e empty and not attacked, the appropriate castling move is added to

the lit;t of legal mo,,es. En passants ,,re spotted bg examining the

previous move in conjunction with the current list of attacks. The

possibility of pawn promotion is also considered. The result of

all this is a list of legal moves, each stored as 4 computer h-ords:

(SOURCE SQUARE, DESTINATION SQUARE, X, Y)

where X and Y are only used·for castling moves, pawn promotion, etc ••

·-. r·.'hen moves are read in from the teletype, or the disk file •

containing a chess game, they are decoded from International Algebraic

Notation into thr 4-word internal move representation, using standard

methods of syntax analysis. Checks are nude for obvious errors, and

then tl1e move generation routine is called· and the list of .m:ives is

searched for the proposed move. To make a move on the chess-board,

one can either place it on a move stack in a 5-word reversible representation

(the fifth word specifies the man taken in the move, if any) so that

the previous board position can be recovered by unstacking, or empty

- 62 -

the stack, make the mo_ve, and place it at the base of the stack

(so that the previous move is always available to check en passant .

.l-egality).

3.2 Connectivit y anal ysis

The relationship, r w' of "attacking", computed in the form

of a list of squares attacked by each man, provides the basis of

the connectivity analysis. To find the connectivity niatr.ix CONN,

where

CONN (I, J) n number of squares attacked by both

man I and man J, minus one,

the lists of squares attacked by the men are compared in the obvious

way.

Computation of the structure vector for White's view of Board

is a· rather tricky matter. For each Q-level from zero up, a routine

is called which returns the number of simplices at that level. The

array of numbers obtained at each Q-level is the structure vector.

If any component of .the structure vector is zero, all higher components

~ill be zero too. To determine the number of simplices at any O-level,

one starts with an array of length 16 - an element for each man on

the side - which is destined to hold a simplex identification number

I
for each man. A man I is allocated a new Gimplex identification

number if

(1) CONN (I, I) ~ 0-lcvel,

and (ii) 'he has not already been allo.:a.ted a simplex

identification number.

- 63 -

If J1e is allocated a new simplex identification number, CONN (I, ..)

and CONN (*, I) are scanned for elements at least as big as

Q-lcvel, and for any th:it are found, the man who is connected to I

at that level is allocated the current· simplex identification nl.11llber.

A similar search must be carried out for all the new men who are

attached to the simplex. flhen no more men in the simplex can be

found, the next man on the side is examined and allocated a new

simplex identification number if he satisfies the above two criteria.

Once all men 01, the side have been given a simplex identif'ica.tion

number, the structure vector component at that Q-level is found by

count:.ing ho;-, many distinct identification numbers have been issued.

An example of a board positio~, the corresponding connectivity

matrix for White, and the ~implices at each O-level, is given below,

for the complex KW(S).

Board position

8 BR BN BB ** BK BB BR

7 BP ** ** BP '** BP BP BP

6 * * ,t ,t ** ** ** BN BQ **

5 ** BP ** ** ** rm ** **

4 ** ** ** ** WP BP rvP rvP

3 ** * .. ** WP ** * * ** * ,t

2 rvP WP rvP ** ** ** ** **

l WR rm fvB WQ ~IK r-m **

a b -c d e f g h

- 64 -

~ - -- - ---

CoMectivity · (shared-face) ~atrix for KW(~)

OR ON OB 0 K KB , YJ{. - KR p p p p p p p p
.<"

l OR

2 0 0 ,! l ON

3 0 - 0 .:. -\ QB

8 l l 0 Q
··•· . .

4 . o - . .' ."!,:,;- - -A
K

. ;, . -.. . - - KB

7 0 KN

4 ·- KR

0 0 p

l p

l p

l p

l 0 p

p

l p

0 p

•

- 65 -

r

. q-level q-connected components · -·

0 (OR) (ON OD O K KN KR P P P) (P) (PP} (P)

l {QR) · (ON P) (OB} {Q K KR) {KN) (P) (P) (P) (P)

2 (01) (()B} (Q} (K) (Y..N) (KR) .

3 (QB) (Q} (K) (KN) {KR)

4 {Q) (K) {Kll) (KR)

5 (O) (KI-l)

6 (Q) (KN)

7 (0) (KN)

8 (Q)

structure vector for Kr/SJ

8 - ~
Q_ a {l, 2, 2 1 2, 4 1 S, 6, 9, 5}

3.3 •A simpl e valuation procedure

Before the program can analyse the structures positionally

1 t needs to compute the mapping

s val (S,}
' .l --

for each Si, (v. section 2.1). This , mapping is independent of

what piece occupies S ,,. However we shall i'ntroduce, in 3.4, what
J. ,

- 66 -

~
. s

9

6

5

4

2

2

2

l

might be called a tactical value, tact (Si), and this will involve

some valuation of any pccupying piece.

Using the relations I, II of. section 2.3 we set about finding

c val (rv .) , p val (r'I.) , and st val (S .) •
] . l. J

We allow that st val (S.) depends upon
J

(i) whether S j is· in the central block,

(ii) the value p val (Bk) of any Blar.k man Bk

occupying S • ,
J

(iii) if W. is a pawn, whether S, is on the 7th or 8th rank,
.1 J

and is best indicated by giving the numbers

of the squares in the mode (0, OJ position.

If attacking man is a piece,

8 16 10. 9 29

7 4 4 4 4

6 2 2 2 2

5 2 2 4 6

4 2 2 4 6

3 2 2 2 2

2 2 2 2 2

l 2 2 2 2

a b C d

- 67 -

{st val (S.)}, for White,
.1

10 9 10 16

4 4 4 4

2 2 2 2

6 4 2 2

6 4 2 2

2 2 2 2

2 2 2 2

2 2 2 2

e f g h

I

If attacking man is a pawn,

8 30 24 23 43 24 23 24 30

7 12 12 12 12 12 12 12 12

6 2 2 2 2 2 2 2 2

5 2 2 4 6 6 4 2 2

4 2 2 4 6 6 4 2 2

3 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

1 2 2 2 2 2 2 2 2

a b C d e f g h

Ue t1wn get p val (W .) by relation II, ,md we use the
.l

hypothetical relation

c val (W) • p val (W) = 200

to obtain c val (rv.) •
.l

The positional ani.llysis with which we have experimented

to-date considers ,each legal move by White and then examines the

consequent changes (increases) in (only) the following features.

(i)

(ii)

dim Kw(S), or the maximum .q-value;

-Q, the minus sign being justified in sections
0

2.0 and 2~1;

(iii) -Q
1

;

(iv)

(v)

(vi)

(vii)

c val (I?EE, BK) ;

(S .) h'here Bx'"" 1 ... S • •• • \
1

in KB(S);
.l . - \ ' .l

I: C val
i

('EEE._ B.), _for all 'nl,,cl: men B. (:/ BK);
.l . J

r C val
j

' I: ·C' val
i

(S .) li•hcre S. is a centre square.
.l J.

- GS -

.•I

The side's control over any set of squares is just the sum of tl1e

positional values of the squares fqr the side.

At present the program simply sums the scores under these ·

7 headings to give ~n overall positional _score for a move. There

is oJJviously great scope for improvement over. this, but even with

such a naive metllod ·of scoring, significant correlation with

chess-players' positional judgement is obtained.

3.4 Loss/gain tactics

The program as described so far is a weak tactician. It ·

is designed to score moves on a positional basis, taking into account

the control over important sets of squares and the co-oper~tion of

men on the board. It neglects forcing moves and is oblivious to

material loss and gain. Because positional features of the game

cannot be completely divorced from the tactical viewpoint - for example,

experienced players simply do not consider moves which are tactically

unsound i,,1hcn asked to make a positional judgement - an elementary material

loss/gain calculation has been incorporated, and the program orders

moves primarily according to material exchange, and only secondarily

.from a positional analysis. (Clearly a less extreme balance should be

struck here. Material sacrifices for positional gain are not uncommon

in master chess).

"' Ne take the tactical value of a man, rv., as l+max q (rl .) ,
. - J. .l

1n 1: (S). This gives .:-1 measure of the potential of the geometrict.d
I/ -

- 69 -

horizon of rii, whereas the piece value, p val Ovi), reflects the

man's actual worth in the present board position, The value of a

bishop is h.::il vcd to account for the fact that it can potentially

control only half of the board's squares. This gives the values

(c.f, section 2.0)

K Q R

8 27 14

N

8

D

7

p

2

(For investigat.ion of m,"t tcr.ial exchanges, the king is assigned .:m

arbitrary value of 1000).

nie ..: ;;;ctical ·vaJ. uc of a square is then given by the mapping

where

where tact ([4 .)
J

tact : s • J

tact (S .) =
J.

is the above

s. = (. ~.
l.

C (• • o

minimax .
i, j

(special) case of p

rv. ...) in K
5

av)
J

B .. ·) in K
5

(B).
K

val (W .) , and ·
J

The tactical. vc::1 U:3 of squares in Doa:td positions taken

from actual chess games is almost_ always zero, but the positional

analysis often suggests moves .1-1hich, if made, would result in some

squares having negative values for the side under consideration. By

first ordering moves from this simple m~terial viewpoint, this situation

is usually avoided.

- 70 -

3.5 Some comparisons with actual games

Using the valuatio~·procedures discussed above we obtained

the following posit1Qnal assessment of actual g,,mes.

(A} Morph~J ,, Duke of Brunswick et al. (1858)

Game score Positional rankinv of Morphy's moves

1. e2 - e4 . e7 - e5 2 l rr d2 - d4 .
2. N - f3 l d7 - d6 8 l = d2 - d4

]. d2 - d4 . ,.., - g4 l . ~
4. d4 * eS : B * f3 1

5. 0 * f3 . d6,.. e5 2 l = g2 ,.. f3 .
6. B - c4 : N - f6 ~ 4 l a c2 - c4

7. 0 - b3 . 0 - e7 24 l = c2 - c3 .
8. N - c3 . c7 - c6 4 l - f2 - f3 .
9. B - g5 : b7 - b5 s l s f2 - f4

10. N it b5 . c6 ,.. bS l .
.11. B * b5+ . N(b8} - d7 2 l a: 0 it bS .
12. 0-0-0 . R - dB 3 l -f2 - f4 .
13. R ,i, d7 :.R ,.. d7 l

14. R - dl · . Q - e6 2 l IC f2 - f4 .
15. B * d7+ : N ,.. d7 · 2 l ,.. R it d7

16. 0 - bB+ . N it bB 8 l •R it d7 .
17. R - dB mate.

A total of 82% of Morphy's moves fall in the first 5 positional

rankings, e.nd 70% fall in the fir~t 3.

- 71 -

$

(D) Andersscn v. Kieseritsk~ (1851), the Immortal Game
I

Game score Positional ranking of Uhite's moves

l. e2 - e4 : e7 - e5 2 l 0 d2 - d4

2. f2 - f4 : e5 it f4 2 l = d2 - d4

3. n - c4 0 - h4+ 9 l u d2 - d4

4. K - f1 . b7 - b5 l .
s. B it b5 . N - f6 2 l = B - b3 .
6. N - f] . 0 - h6 3 l r::: Q - f3 .

. 7. d2 - d3 : N - ll5 l

8. N - h4 . Q - g5 26 l Z!'< K - f2 .
9. N - £5 . c7 -- c6 4 l = K - f2 .

10. g2 - g4 . N - f6 2 l ., h2 - h4 .
11. R - gl . c6 * b5 2 · 1 ""' B - c4 .
12. h2 - h4 . Q - g6 10 l = a2 - a4 .
13. h4 - h5 . Q - g5 9 l = a2 - a4 .
14. 0 - f] : N - gB 6 l id a2 - a4

15. B it f4 : Q - f6 6 l = a2 - a4

16. N - cJ : B - c5 4 l = a2 - a4

11. N dS . Q * b2 2 l = g4 gS .
18. B - d6 . Q * al+ 5 l = B * b8 . .
19. K - e2 : IJ * gl 1.

20. e4 - e5 . N - a6 25 l ,.. B * bB .
21. N * g7 . K - dB 14 l • N(b5) - e7 .
22. 0 - f6+ . Resigns 4 l -= c2 - c4 .

A total of 64% of Anderssen's -moves fall in the first 5 positional

rankings, and 45% fall in the first J/~lhitc's pl.1y emerges a.s highly

tactical bfJ this program.

- 7'..!. -

~--- ---

(C) Fischer v.Petrosian (1971)

I

Game score • Pos i tion ,1. l r ankinq of White's moves

1. e2 - , e4 . c7 ·- c,5 2 l • d2 - d4 .
2. N - £3 . e7 - e6 12 .z • d2 - d4 .
3. d2 - d4 : cS it d4 l

4. N .. c:14 : a7 - a.6 2 l u O it- d4

s. B - d3 . N - c6 27 l • c2 - c3 .
6. N at c6 . b7 it c6 l .
7. 0 0 . d7 d5 .
B. c2 - c4 . N - f6 l .
9. c4 it d5 . c6 it d5 l .

10. e4 • dS . e6 it dS l .
11. N - c3 l B - e7 4 l • f2 - f3

12. () - a4+ : () d7 6 l • f2 - f3

13. R - el : 0 it a4 3 l & f'2 - f3

14. N it a4 . B - e6 l .
15. B - e3 : 0 - 0 21 l -£2..: f3

16_. B - cS . R(f8) - eB 2 l • N - cS .
17. B it e7 . R it e7 l .
18. b2 - b4 : I(- fB 17 l • f2 - f3

19. N(a4) - cS: B - cB 3 l • f2 - f3

20. f2 - f3 : R (e7) - a7 2 l ""b4 - bS

21. R(el) - eS: B - d7 10 l • b4 - bS

22. N "'d7 . R * d7 l .
23. R - cl : R - d6 6 l • b4 - bS

24. R(cl) - c7: N - d7 4 l • b4 - bS

25. R - e2 l g7 - g6 4 l •R - gS

- 73 -

Fischer v. Pctrosian cont.

Game score Positionc!l ranking of I-.'hite's moves

26. K - £2 : h7 - h5 5 1 = b4 - b5

27. fJ - f4 : Jis -- h•1 12 l :r:z g2 - g4

28. K - f] f7 - fS 3 1 = g2 - gJ

29. K - eJ : d5 - d4+ 17 1 = g2 - g4

30. K - d2 : N - b6 2 l = K - fJ

31. R - e7 : N - d5 2 l = R (c7) - e7

32. R f7+ : K - eB 2 1 = R (c7) e7

33. R - b7 : N ,t b4 3 l a R(c7) - a7

34. B - c4 : Resigns 16 l = R (b7) - a7

A total of 68% of White's moves fall J.n the first 5 positional

rankings, and 56% fall in the first 3.

3. 6 T<csearch nco.<:::'>ects

The positional criteria used so far, and illustrated in the

previous section, are characterised by the following features.

{l) R~striction to consideration of 60
0

, 60
1

, ~ dim K, when

the argument shows that the other Qt values in•Q have profound positional

influences.

(2) Restriction to a -consideration of K (S) and K
5

(rv) so
vl

as to }mprove certain geometrical properties of rvhi te 's position.

CleD.rly it would be desirable to assess the possible changes in the

Black position, by consi~erir.g KB(sJ - and K5 (D). A good move for lvllite

-·
1-.'ill prcsur.:.:ibl!] irr:prove h1hitc's geometr;1 whilst at the same time cDuse

a dctcrior~tion in Black's structure.

(3) Restriction to a particular mode [t, JJ, that

is to say, without .:iny effective "look ahead" analysis. Future

.i:cseilrch must clearly take into account the overall positional

features over a sequence of moves -. Drastj.c changes in the abstract

geometrical structures ·might i,,1ell be the result of "give-;md-take"

over 3 or 4 moves by r,;hi te. Thus we need to allow for tho positional

advantages which can accrue by way of moves which are apparently

tactically chosen. But even here, and referring back to the

discussions in sections 2.0 and 2.1, ,~e begin to see how the line

between "tactical" and "positional" becomes blurred.

But this approach to the game means, above all things,

that the emphasis is no lonqer on tree-searching. Positional features

must be used to reduce the conventional tree-search to manageable

proportions. Further study of the connectivity structures of the

various complexes, such as the search for specific chains of

q-connection or the dependence on such chains of the mappings c val,

s val, p val, st val, should greatly assist in this aim. It is to

be expected that during the course of a game these mappings must

themselves vary a great deal, and so we must search for the dependence

of c val etc. on the structures KW(S) etc. which are linked to the

modes. This would allo~ the possibility of the positional criteria

being influenced by the tactical possibilities, and therefore of the

computer (as player) being able to change its mind about the positional

goals as the game proceeds.

Furthermore it is obviously going to be of great help if

chess masters can be persuaded to help in the research - if only by

- 75 -

J.

ranking the positional motifs in a few hundred positions. So far

there has been an encouraging response to this cry for help, although

we have not yet reached a level of organised co-operation with thoso

players who are anxious to help.

•

- 76 -

APPENDIX A

Internationa.I lllcrebraic N_otc1tion

A chess move in international algebraic notation has the

follo~1ing for[JI:

0ove): = (source) (oper~tion) \square designation) <check indication) (1)

where

(source):= (piece) I (square designation) I (piece) (\square designation))

(piece):= R IN I BI QI K

(square designation): = Al I A2 I. . . . I AB I Bl I . . . I 118

(check indication): = + I e:

Tlw follotdng special moire types are also al'lowed:

0 - 0

0 - 0 - 0

.(2)

(3)

(move) 'iJ EP (4)

(move) 'iJ (promotion) ; where (promotion):= *R I *NI *B I *Q (5)

(il denotes a blank; e: denotes the null string)

- 77 -

The interpretation of a string of type (1) is that the man indicated

by (source) 1.1.::iJ:es the (operation) on the destination (square designation j·
If the source man is a paim, he is specified by giving the

~quare designation) of the square he occupied before the move; if

he is a piece, then the piece's name alone is used unless ambiguity

rcsul ts, in ,:h.ich the (square designation) must also be specified.

'1.'hc (operation) ci::n be e .i-thcr 11
-

11
, · 1-1hich indicates that the designation

square was unoccupied prior to the move, or "* ", which indicates

thc:t it was occupied by one of t -he opponent's men. The \check

_indication) is II +
,,

if and only if the move results ill a check.

Type (2) and (3) moves indicate castling on the King's side and 'on

the Queen's side, respectively. A type (4) move signifies capturing

en passant, and type (5) refers to pawn promotion, the new piece being

specified explicitly a.s \promotion).

- 78 -

-

[1]

[2)

[3)

[4)

[SJ

[6)

R E F E R E N C E S

i'.;;.kin, R.H.,

Hilton, P.J. & r·lylie s.,

Gillo9·ly, J .J.,

Kozdrowicki, E.W.,

Licwinko, J .S.,

Cooper, D.W.

Atkin, R.ll.,

Lasker, E.,

Multi-dimensional Structure in

the-Game of Chess,

Int. J. Nan-Machine Studies (1972) ,i,

341-362.

Homology Theory, (1960), Cambridge

University Press.

The Technology Chess Program, (1972).

Artificial Intelligence 3:145 - 163.

(1971) Algorithms for a minimal

Chess Player. Int. J. Man-Machine

Studies 3(2), 141 - 166, April.

From Cohomology in Physics to

q-conncctivity in Social Science,

Int. J. Man-Machine Studies (1972),

i, 139.

A Hanual of Chess, Constable (1932);

Dover _(1947) •

- 79 -

- 80 -

....

A K N O W L E D G E

by

S Tan

,.

BA S E D P R O G R A M

T O P L A Y C H E S S E N D - G A M E S

Department of Machine Intelligence
University of Edinburgh
8 Hope Park Square
Edinburgh
EH8 9NW

"A little (knowledge) is a dangerous thing.
Drink deep or taste not the Pierian spring,
There, shallow draughts intoxicate the brain
But drinking largely sobers us again."

. - 81 -

- ALEXANDER POPE

Essay on Criticism

Editor's Note -

Must be read in conjunction with (Tan, 1972),
The psycholo8ical studies described by Bond and
the connectivity described by Atkin are mainly
concerned with (and most relevant to) t~e middle
game. Clusters of pieces (chunks) and connec­
tivity become less evident; the decisions are
more critical, in the end game,

Note that Tan is not concerned with how a pronram
may reach an end game but with the problems of
representing and using chess knowledge for the
very deep analyses which must be performed,

An outline is given of a program to solve end­
ings with king and two J"Hi.wns vs kine and bishop .
The approach is basically the same as in (Tan, 1972)
except that a more flexible interpreter is used
this time, Also added are extens ions of the
notions of predicates, actions and patterns, as
well as the use of goals, simple cross-connnunication
between branches of the analysis tree and the
extraction of plans from analysis trees ,

- D2 -

A. PROBLEH AND APPROACH .

This work is a continuation and extension of the knowledge-based
approach described in (Tan, 1972). Our concern is with the problem of
representing and using chess knowledge, not how knowledge is acquired.
The emphasis on knowledge is important in view of the inadequacy of
the classical Shannon-Turing game-playing framework: game-tree,
evaluation, minimax etc. We envisage programs that play almost always
correctly (never throw away a win or a draw) in their problem domains,
which means having to make very deep analyses (the domain we are
tackling now is that of king and 2 pawns vs king and bishop, it
contains studies where analyses of ply~depth 20 · are necessary, for
king, rook and pm-ms vs king and rook the corresponding number is
about 40), and must therefore be radically selective in generating
moves. Variations of the Shannon-Turing type of programs may be able,
assuming that a good evaluation function can be found, to find good
moves, but that would be far from sufficient for solving end-game
studies correctly.

In the following, representation and use of knowledge are considered
inseparable, representation is specified by giving a virtual 'chess
machine' which acts as an interpreter. Given an input board situation,
this interpreter will then 'parse' it to produce the move to be
played, plans an~ a prediction of the value of the situation. The
'parsing' process is directed by a network representation of the
program's knowledge of playing methods. Some of the problems encountered
in designing such a interpreter are:-

(i) Since specifying an interpreter is in effect developing a m1.n1.-
theory of end-games, one may ask what sorts of things are allowed
in the ontology of the theory (does the theory accomodate plans,
threats, intentions, episodes, scenes, demons, etc) and what are
the relations between these sorts (eg how are goals used in a
situation-action production system).

(ii) How do we choose the primitive actions of the interpreter, in
other words, how much compilation should be done (in (Tan, 1972)
the whole program is compiled, the virtual POP-2 machine is the
chess machine). Shall we adopt a multipnss interpreter that can

- 83 -

I '

account for the plwnomena of progressive deepenine (De Groot,
19(,5), and if so, how do we handle communication between the
different passes (besides the problem of communication between
branches of the analysis-tree).

(iii) How much advice, deductive po,:cr should the program have, what
search strategy and evaluation function should be used.

There are many more q'uestion that can be asked, but here we can only
attempt to answer a few of them with respect to the pro~lem domain
we have in mind . No doubt there are no general answers to most of
the above questions ; compi ler-i'(lterpreter, deduction-search, advice­
search , evaluation-look-up, backward search-forward search etc , are
pairs of i terns that are of ten traded-off inter-changeably.

The attitude taken here is to try to proceed from the simple to
increasing complexity, and to be flexible and delay ultimate decisions
when further clarification or experimentation are necessary.

The next section outlines the typology of the theory , it is relatively
rich compared to existing chess programs, but not as rich as found in
chess psychology (compare the De Groot op- cit) . He have not made
provisions to include progressive deepening (which may be implemented
serially or in parallel by coroutines) at present, but De Groot may
be right in pointing out the importance of it for computer programs
(De Groot , 1965, p 401) . Kotov (J), on the other hand, who is interested
in teaching 'hurnan beings to analyse with the accuracy of a machine ',
argues that a branch of the analysis - tree should never be searched
more than once , and only lack of confidence can make us do otherwise .

There is no explicit deductive power at present, other than those that
can be implicitly embedded in the program's playing methods . A simple
depth-first strategy aµgmented by a preliminary breadth- first search
is a opted . For the last mentioned search, an avaluation function
similar to the one used by (Newell et al, 1959) is adopted, the· value
of a position is a feature vector . Unlike Newell et al however, there
is not a prior lexicograpliic ordering of the vectors , since it seems
to be counter-intuitive ; possibilities of trading-off material for
space or development , pawn structure for a bishop etc , which is
certainly the essence of what chess is about , being exc luded .

B. BRIEF OVERVIEW

In this section we will only give an infonnal description of the
different categories of object in the theory, their relations to each
other and their properties. No attempt is made to present a formal
theory. Nost examples given apply to the case of 2 pawns vs a bishop,
the pawns are always white. Some of the assumptions made below are
somewhat arbitrary, they are made with this restricted problem domain
1.11 mind.

I. Situations

A situation is a data- structure cootaining .all the board information:
board position, who is to move, and sometimes a little history (has the
king been moved, what was the last move etc), clock etc. ln the following,

- 8!: -

---------- ---

situations will be distinguished from states of the interpreter (see
7 below), and we assume that no history and clock are recorded in a
situation. Thus the interpreter will not make use of knowledge of
the opponent's last'move (eg if pi~ce captured, try recapture) in
selecting its reply. It does not however consider every situation
presented as new: it has p'l'ans and recognizes repetition of
situations.

2. Concepts

A concept is a· POP-2 function describing general relations between
pieces, squares, numbers etc. Examples: rank, distance as number
of king moves, block-distance, critical square, breakthrough square,
different kinds of blockades, doubles, isolated and connected pawns,
pin, mobility, center, shelter, good bishop, queen side majority etc.
We restrict ourselves here to simple static concepts, there are no
concepts which involve dynamic search, succession of states or which
refer to the state of the interpreter (no concepts of overloading,
desperado, encirclement, Zugzwang, initiative etc) though it is possible
to have overloaning as a predicate, encirclement as an action or plan
etc. It is assumed above that critical squares, breakthrough squares,
shelters etc, can be determined in a static manner, though in general
they may be dynamic.
Concepts are used in predicates and $Oals.

3. Predicates

Predicates are POP-2 functions defining partial functions from states
to truth-values. This .is an extension of the early notion of a predicate
as a partial function from situations to truth-values used in (T'an: 1972)
Examples:-

(a) mate, stalemate, check, can-advance, can-capture, etc;
(b) those associated with concepts directly: has-critical-square,

is-blockaded, etc;
(c) those associated with patterns: match (p9-ttern);
(d) those referring to the state of the inte

0

rpreter: has-no-plan,
has-occurred-before, etc;

(e) the most important predicates are those connected with lookahead
searches, they make recursive calls to the program's body of
knowledge, eg: the predicate: 'starting with this situation,
removing the following pi e ces, using all the chess-knowledge that
I have, applying the following action, white will win'. With the
exception of the action try (below), this is also the only place
,-,here (full or partial, forward or backward) lookahead searches
can occur.

4. Actions (or action-schemes)

Partial unary operations on situations or states are called actions.
Actions can be POP-2 functions or represented as a network in the
same ,,.,3y as the whole nave find i ng routine . They may be primitive
(e8 actions corresponding to moves, dummy operations, update white­
list ct:c); or built-up from predicates and primitive actions by

- 85 -

f

I

r
(

conditionals (eg support, approach, l etpass etc).
nssociated to p::itterns, there are action; of the form: try (pattern, x),
which means: tr; . to r • ach (usually backward search) the pat tern in at
mosL x moves, if x=o the pattern must contain a suggestion on ,~at is
to be done.

5. Goals

Guals are defined by (Newell and Simon, 1972, p 807) by the character­
istics:-

(i) 'a goal carries a test to determine when some state of affairs
has been attained ';

(ii) 'a goal is capable of controlling behaviour under appropriate
conditions. The control takes the form of evoking patterns of
behaviour that have a rational relation to the goal - ie methods
for attain ing the ~oal' .

The goals we have at present satisfy the first characteristic and the
second to some extent. They are related directly to concepts, eg:
for black Llot..:kade (there are different strengths of blockades),

mobility of the bishop;
for white minimize distance (white king, pmm);

minimize distance (white king, bishop) etc.

The set of goals, also call ed feature vector, is only -partially ordered ,
it is used for preliminary elimination of moves in a breadth-first
search up to depth one. A goal in itself does not propose actions (that
is why it does not quite satisfy the second characteristic), but used
within an action routine it does control the choice of actions to l>e
taken.

At present there are no mechani.cs for activating/de-activating and
weightings of goals.

6. Patterns

The·re is a stock of important didactic patterns that must be recognised
quickly by th0 program. These patterns may be geometric or defined by
more general pr•->.;licates. They may or may not have actions associated
to them, and are used as a.u action: try (patte~n, x) or as predicate:
match (pattern).

The stock of patterns is considered fixed;· non-permanent patterns
created during analysis are not allowed at present.

7. States

The state of the interpreter is given by a stack of situations used to
keep track of recursion, and an environment in the form of an analysis­
tree. The stack is hidden and never referred to by the user.

- 86 -

r • ,

8. Analvsis-trecs

This is the tree of moves considered in the an.::ilysis. Attached to its
noues we have a ,}1ite-list (list of good moves for white), a black-list
(.list of good_r.10ves for black), and the value (win, lose or draw) of
the situation corresponding to the node (if known). The white and
black lists serve fo 'r eommunication between b1anches of the analysis­
tree, a good killing move in on~ branch is often good in other branches
as well (compare McCart~y's killer list, (De broot, 1965, p 395)).
The analysis-tree is the most dynamic part of the interpreter, it is
grown and prtined most of the time.

9. Plans

At present there are only concrete plans extracted from the analysis­
trees by prunin8 the insignificant branches. These plans are used to
anticipate the opponent's move.

Use of abstract (containing action- schemes rather than the actual
moves) plans (eg breakthrough, distribution of effort between king
and bishop) during the analysis itself are being considered.

10. Network

As mentioned earlier, the interpreter is directed by a network
representing the program's chess knowledge. Its nodes are records
consisting of a predicate, action 1, LLINK, action 2 and FLINK, where
LLINK and RLINK are pointers to other nodes. A node implies an
instruction; if the predicate is true, do action I then follow LLillK,
else perform action 2 and follow RLINK. Example of a node (omitting
links): 'in case of two connected pawns, where they are abreast, if
we decide to push, advance the pawn which is not on the same colour
as the bishop' (Fine).

LOCAL REFERENCE

[IJ Kofov A. Think like a grandmaster, Batsford 1972.

- 37 -

.

I
f
f ·

r
f

f

[

l
(

{·
'

8~ -- i.)

0 B S E R V A T I O N S

,f ..

by

R Malik

•

·"

107 North End Road
London
NWI J

"There is nothing more difficult to take in
hand, more perilous to conduct, or more un­
certain in its success, than to take the lead
in the introduction of a new order of things."

- MACHIAVELLI

- 89 -

(

f
f
f .

···- r

f
(

f

r

1.

r
(
I
I
I
(

I
(
f

Editor's Note -

Rex Malik is a writer who specialises in the sys­
tems .and computer sciences. He is also Senior
Research Associate and technical author with
Professor Gordon Pask and System Research Limited.

•

- 90 -

This report is the speech I would have giv_en had I not chosen to cut
it short ancl lead a discussion! It is nowhere near as abrasive as my
remarks at lhe conference, and of course being rewritten, added to,
and amended to after the event probably puts my remarks into a more
coherent, not to say more elegant context. I do not now, as I had
to at the conference: worry about the problem of stepping out from
behind the typewriter and facing an experienced audience without the
shelter of editors, cold print or the unanswerable at-this-time
microphone.

I must once again state that having spent a day listening to the
speakers and the various points of view put forward, I was struck
(,.!ith respect to my fellow speakers) with the low level of the
discussion. I had better qualify what I mean by this immediately.
It seems to me that ten years ago, even five years ago, the conference
would have been generally discussing problems at and beyond the front
end of 'art'. But in the context of today, much of the discussion
was out of date, and concerned with subject matter which I would have
expected an audience with· the degree of expertise present to already
have been familiar with; even bored with.

Against this, one must set the argument basically raised by Alex Bell
that the conference was intended to bring together people, many of
,~horn had never met, in the hope that from it something useful would
spring, contacts wou]d be made, and the place of computer chess
in the scheme of things would perhaps be more closely defined. Given
that the people had not been brought together before, any starting point
must be useful; it gives some indication of what people know, as well
as what they do not know,

My observations on the meeting come into three groups. First, the
general atmosphere. It seems to me that the general interest level
displayed was quite high and on the right lines. I have sat as an
interested spectator writer on the sidelines of attempts to play
computer chess for many years, and what I .found striking was that
(with what I would call first generation 'technical' knowledge) the
audience should display second generation attitudes and be concerned
with second generation problems. The concern seemed to be with making
computers play 'people' chess, not machine to machine chess. Though it

- 91 -

I
I.

would no doubt ·be ol: general interest if one computer chess program
played wc. 11 against another, the focus was on chess as a human activity
and wli3t stems from it. True, there will no doubt be some quiet
jollification when and if a chess progr.:1m does beat a Grand M.J.ster,
i-t is only to . be expected , but this seemed a peripheral and non-central
matter. And this is an improvement, indeed if I run right · and this holds
across the field it denotes a major departure from historic pre-occupations.
One thinks of John von Neumann and his .[amous predictions, goes back to
Babbage; indeed it is possible to go back beyond eve n this, though as
someone who bas be en invohred in research into the history of computing,
inclucllng mere id le s pccul.:1t' on,I c an find few tr aces before this which
are not of Lh e Golem or Delphic oracle variety.

Second, an d also peripheral to the mee tin:;., which in some ways I find
unfortun ate , the question what we should now do together was not
answered at a ll satisfactorily . It may be that people wish to continue
quite independently of ea ch othe r, 're-inventing the wheel' to quote
th e meet ing 's most popular cliche . Si xty people goes a long way to
dispe l this. I do not believ , that this was the wish of the meeting,
rather that it was due to the fact tbot the question was never put in
a way which it found attractive. But certainly a case was being made
almoct throu ghout £or some organisation \·,hich would encompass those
who play che5s and are interested in attempts to play it by computer;
thos e computer scient ists who find the chess problem one of interest
in that it provide s profe ssional intellectual satisfaction, and those
who regard the ch e ss compute r problem as a suitabl e test-bed with
which to test out deeper ideas about how we ourselves approach
problems. This grouping of interests does not obviously fit into a
computer professionals' society, a chess club or congress, or indeed
the 'artifical intelligence' chapter.

It may he that those interested are going to have to sit down
together to work out what to do. That could vary widely , but it is
quite apparent to me that one thing that needs to be done (and .which
the SBC might someh ow or other usefully undertake) would be to provide
something a little more comprehensive than a bibliography which could
and should be made available at least as a beginning to the
part icipants . The situation must not occur again that many of those
with a serious interest in the subject, whatever their motives, should
find themselves in a position where their basic knowledge is such that
effectively th ey sti-11 think in terms of the horse and buggy, though
some others in th e same meeting are already working with jet propulsion.
Yet both can find much of what they want to know in the available
literature - if they knew where to look. ·

The starting 'point for my third set of comments arises from the
remarks made both by Alex Bell and Peter Kent. The first exhibited
genera l dissatisfaction with the level of chess knowledge displayed
by the programmers and t\ie chess knowledge obtained from players,
saying in ef fect 'if the chess experts could tell us what to do, we
should do it'. The second du.ring his pr_esentation remarked not only
that mini max is dead , though it cou1c.l be inferred that many people
had not realis ed i t y(,!t , but that oft.en chess programs made the right
moves fo r the wrong re as ons: they might play l egal chess , they did
not pl ay anyth ing resembling goud human ches s . Thi s was further
discussed by Dr Tan , not ably his unchal l engeab le (and unchallenged ,

- 92 -

which itself is interestine;) comment that the Shannon/Turing framework
is ina<lequ~te, and that we now need to look for a new one, a search
in which he and some others are and have for some time been taking
part.

It is not my wish to quote extensively in a report which also
contains the original •'papers. However it does seem to me to be worth
pointing out that the · ·e111arks concerned with ',,,here do we go from
here' fall into two groups. One group is obviow : ly that of 'chess
as played by humans' and what we can learn abo :. ~ how people behave
and operate in the context of the world of the chess board, this is
also the concern of the field of congnitive studies, including
computerised artificial intelligence. Thus Atkin's paper here I
consider as of considerable importance; indeed his theory really
ought to be tested using not only past games, but also techniques
arising out of pattern recognition. One can foresee also some
exper~nents which arise from the notion of over optimism/pessimism
in relation to the real strength of the positioned pieces, and its
effect on the actual game. That this iis a general proposition is true,
is obvious; ,,hat is not obvious is the elaboration or al 1 the extensions,
but cert~inly there is almost bound to be a cbnnection between this and
and the middle aged syndrome, and what that connection is might be both
fun and instructive to discover. And for the middle aged syndrome,
read also a large number of other problems concerned with operations
in the wider outside world.

The point I am making is that a study of the world of chess using
computers and computer generated techniques might now turn out to be
of some very practical importance in 0U1er spheres, and should not be
left in the generally bemoaned - at least this seemed to me to be
the feeling - situation that the work has generally been done in spare
time with minimal machine time available. T.hus -I should like to see
for instance much more intensive work on the De Groot conclusion that
Alan Bond discussed; that perception in the case of a Grand Master
is almost hard wired. I am well aware that as a general propositon
this can be tested elsewhere, but testing it in this field seem, to
present some interesting advantages, not least in that the world of
chess has boundaries which can be sharply delineated.

The second part of this third grouping is concerned with the
'mechanics' of the second generation of chess programs. We are now
at the level of i SPY rather than computer chess as it has been
hitherbo un'derstood, and I SPY is more difficult. And if it is to
be properly tackled , then obviously t.he machine and time requirements
go up and we need to examine techniques, whether fashionable or not ,
which have not seriously been looked at in this field in this country
before. Thus we do need to have programs which are more dynamic, which
alter as the game progresses. We need uot only good threat value
tables, might I suggest we also need dynamic threat value tables
which adjust according to not just the potentiality of the player
across the board but also the actuality. Put in this way of course
tbis is asking for a lot, and there may in fact be other ways of
solving the problem, even so ·it does seem to me at this time to be
s01ne thing worth thinking · about if not fallowing up.

We are stopped by the inability of programs to generalise, and not
only when they come on an '~,mazing fact', by the l.J.ck of libraries,

- 93 -

and by the inability of the systems as yet to take a s nopt · c view
of the board . And as was also pointed out , h ardly anyone is as yet
trying to solve the probl e,r..1 proper -by searching backwards and forwards ,
' the way thot a Cr.:md Hoster rri.ght operate '. ·

To end , I would say that the conference was irn.rnensely worthwhile.
It seemed to me to indicate that though it might not have suspected its
m-m existence, there was now a community pr •sent . And the creation of
hot is always the first step in getting something <lone _and moving in

any field . As for the sr.c and its inv olvement? Well those in the field
a1·e in there mostly in their own time _, out of interest if not love.
This is not a situation so rare th.-t it can be overlooked ,
particularly when the problems encountered and the possible solutions
mii;ht tell us so much about ourselves . It ought to be encot1raged , and

he first thing might we ll be t>1or e programming and more computer time
during official hours . Cer tainly it is as useful as , if 11ot rnore than ,
much of the computing which seems to clutter up the publicly provided
systems the country has available .

. .

DESCRIPTOR IND E· X

by

AH Bond Queen Mary College
University of London
Mile End Road
London
El 4NS

- 95 -

l
. I
r
l .
·,

r
.,.

- 96 -

. ,

DESCRIPTOR INDEX

(*=recommended)

Overviews and Surveys

(Newell 72)*, (Michie 66), (newell 59), (Slagle 71), (Bell 72),
(Hittman 73)

Report of Experience with Program

(Berliner 70) *

Minimaxing

(Slagle 69)
(Gillogly 72)

a- $ Pruning

Description
Functional description
Theoretical bound
Dynamic ordering

Dead Position

(Strachey 59)
(Good 65)
(Greenblatt 6 7)
(Berliner 70)

Plausible Hove Gener ::i to r s

(Newell 59)
(Edward s 63)
(Slagle 69),-:
(Sl ag l e 69)

(Bernstein 58), (Ne~·1ell 59), (Hewell 72-), (Greenblatt 67)

- 97 -

Data Structures for Chess

Newell and Prasad
Greenblatt
Scott
General

(Newell 63), (Baylor 66)
(Cerf 69)
(Scott 69)
(Williams 65)

Ordering by Shallow Search

(Samuel 67), (Scott 69)

Goal Seeking

(Newell 72), {Baylor 66)

Using the 'No Move' Move

(Baylor 66)*

Particular Chess Prov.rams

Bernstein
Newell
Kotok
Greenblatt
Scott
Gillogly
Berliner
Slate and Atkin
Adelson-Velsky
Zobrist-Carlson
Kozdrowicki-Cooper

(Bernstein 58)
(Newell 55), (NeHell 59), (Newell 72)
(Kotok 62)
(Greenblatt 67), (Cerf 69)
(Scott 69)
(Gillogly 72)
(Berliner 70)
(Slate '70)
(Adelson 66)
(Zohris t 73)
(Coko 73)

A Legal Move Generator in Algol 60

(Bell 70)

Endgame Players

(Baylor 65, 66), (Hubermann 68)
(Tan 72)

Suggested Chess Programs

Heans ends reasoning
Humanoid
Method of horizons

(Pitrat 68 and .]!)
(De. Groo·t 64 and 65)
(Botvimiik 70),.,,;

- 98 -

Pattern Directed Play (GO)

(Zobris t 69)

:valution Function Based. on Pattern 'Recogniser

(Samuel 67)

Player Based on Forcing Patterns

(positional g,lJl1es) (Kinf; 71)

Statistical Facts and Appro~ches

(Good 66)
(De Groot 66, 65)

Formal Approaches

Approach by Set Theoretic Ji'ormalism

(Banerji 69, 71)
(Donning 69)
(:Marino 66)

Topolof',ical Approach

(Atkin 72)

Reports of Chess Games Played by Computers

(Hewell 72)
(Scott 69)
(Good 69)

also SIGART newsletters

Go

(Ryder 71)
(Zobrist 69)
(Thorp 64)
(Thorp 70)
(Good 65)
(Remus 62)

- 99 -

I

I
.I.

I:
r ,
I
I
:r

Kalah

(Bell 67)
(Russell 64)

Positional Games

(generalisations of noughts and crosses)

Case Institute Game Player
Go-Moku
Qubic

Card Games

(Citrenbaum 70), (King 71), (Banerji 69)
(Elcock 6.7), (t·furray 68), (Konniver 63)
(Daly 61)

Chemin-de-Fer
Bridge

(Foster 66)

Poker
Black Jack

(Car l ey 62), (Wasserman 71)
(Findler 7 I) , (Waterman 69)
(Thorp 67)

Draugh ts

(Strachey 52)
(Samuel 59 and 67)

Hare and Hounds

(Storey 69)

Learning in Game Plavers

Rote Learning
Optimisation of coefficients
Learning of forcing patterns
Learning of descriptions
Learning of heuristic rules

Psychology of Chess

Perception

Search

Reorganisation
11emory
Psychoanalytic

Individual Differences

(Samue l 59), (Slate 70)
(Samue l 59 and '67)
(King 71), (Elcock 67)
(Poppl estone 69), (Newman 65)
(Wat erman 71)

(Chase 7 2) , (Simon 6 7 , 6 9) ;',,
(Tikhomi rov 66), (. tewell 72), (Pushkin 71),
(De Groo t 65), (Jongman 68)
(Newell 65 and 72) * , (De Groot 65),
(Bay lor 66), (Sc~rr ah 70), (Simon 62)
(De Groot 65) *
(Dinet 6"6) ,'· , (Cl ev eland 04), (Chase 72)
(Fine ·67), (l ~ar pman 37), (Jones 51),
(Coria..t I, I)
(De Gr oot 65)

- 100 -

Psychology of Other Games

Halma
Go-Hoku

(Elithorn 70)
(Rayner 58)

- 101 -

. (

I
r

r

r
I
(

I , --~-~---

. I I •

l
r

r

r
. r

1·

r

- 102 -

. .

REFERENCES -

•

- 103 -

l
f

r

J
I

r
I
I

- 104 -

REFERENCES

(I possess copies of almost all these references - A H Bond)

(1) Adelson-Velskiy GM, Arlasarov V Land Uskov AG (1966).

(2)

(3)

(4)

Programme Playing Chess, ~eport on Symposium on Theory and
Computinr, J!ethods in the. Upper Ha11tle Problem.

Atkin R (1972). Multidimensional Structure in the Game of
Chess, Int J Han-Hachine Studies, !:_, 341-362.

Banerji RB (1969). An Overview of Game Playing Programs,
Tech Report, Cleveland: Case WR Universi~y.

Banerji R B (1969). The·ory of Problem Solving, New York:
Elsevier.

(5) Banerji RB (1971). Similarities in Games and Their Use in
Strategy Construction, Comnuters and Automata Proceedings of
2 I st Brookl vn Polytechnic Syri1nosium, 337-357.

(6) Barn".!rj i R B and Ernst G W (197 I). Changes in Representation
which Preserve Strategies in Garnes, IJCAI2, 651--658;
Longer version technical report of same name, Case WRU.

(7) Banerji RB and Ernst G W (1972). Strategy Construction Using
Homomorphisms between Games, AI 3, 223-250.

(8) Barker R (I 971). Report on lluman Game-Playing as Illustrated
by the Game of Halma, MSc Thesis, London: Computer Science
Department, Queen Mary College.

(9) Baylor G W (1965). Report on a Hating Combinations Program,
SDC Paper SP-2150.

(JO) Baylor G W (1966). A Computer Model of Checkmatinr; Behaviour
in Chess, Heur:isti.c Processes 1.n Thinking, eds De Groot AD and
Reitman H 1~., Hoscow: Nauka.

(1 I) Baylor G W and Simon 11 A (1966). A Chess Hating Combinations
Program, SJCC, 431-4!17.

- 105 -

·•

[

r
[

r

r
I
[

I

.,.

..

I

'!'

r

r

-r

·f
I

./

I

(12) Bell AG (J%7). Kalah on Atlas, HI3, J8J-J94.

(13) Bell A G (l 970). llow to rrograr.1 a Cmaputer to Play Legal Chess,
CJ, ..!_2, 208-219.

(JL1) Bell AG (1972). Games Playing with Computers, London: Allen
and Unwin.

(15) Berliner HJ (1969), Chess Playing Programs, SIGART; .!2_, 19-20.

(16) Berliner H (1970). Experiences Gained in Constructing and Testing
a Chess Program, IEEE Svmn System Sc and Cybernetics, Pittsburgh.

(17) Bernstein J; ,md Roberts !1. de V, Arbuckle T and Belsky '1 A (1958).
A Chess Playing Program for the IB?-1 704 Computer, WJCC, 157-158.

(18) Bernstein A and 'Roberts 11 de V (1958). Computer vs Chess Player,
Scientific hnc.rican, 198, 96-105.

(19) llinet A (1894). Psychologie des Grands Calculat eurs et des Jouers
d'Ec.:hecs, Paris: Hachette.

(20) Binet A (1893 and 1966). Hnemonic Virtuosity: A Study of Chess
Players, Genetic Psych :fono~ , 74, 127-162;
originally prub lished as:- -
Les Grandes Hemoires: Resume d'une Enquete sur le Jouers d'Echecs,
Revue des Deux !fondes, ..!...!1_, 826-859.

(21) Botvinnik 1111 (1960). One Hundred Selected Games, New York: Dover.

(22) Botvinnik M l1 (1970). Computers, Chess and Long-Range Planning.
London: Longmans:

(23) Brannasky W (1927). Psychologie des Schachspiels, Berlin:
De Gruyter.

(24) Carley G (1962). A Program to Play Contract Bridge, MSc Thesis,
EE HIT.

(25) Cerf V and Kline C (1969). The Greenblatt Chess Program,
Unpublished term paper at UCLA.

(26) Chase W G and S~non HA (1972). Perception in Chess, Cog Psych .
(See also (133).)

(27) Citrenbaum R L (1970). Efficient ~epresentations of Optimal
Solutions for a Class of Games, Thesis, Cleveland: Case WR
University; Tech ~eport SRC-69-5.

(28) Clarke ~r R Il (1973). Some Ideas for a Chess Compiler,
Artificial and Htrrnan Thinking , eds Elithm;n A and Jones D,
Elsevier.

(29) C]eveland AA (1907). The Psychology of Chess and of Learning
to Play It, i' .. m Jour Psych, ~' 2t9-308.

(30) Coriat I H (1941). The Unconscious Motives of Interest in Chess,
Psychoanc1.l)'tic Review, ~_§_, 30-36.

- 106 -

i/
j,
1I

I
I
I

. I

' :1

. 1

f ·

I

· I

I
),

I

f

j

t
1

(31) Daly W (1961). Computer Strategics for the Game of Qubic,
MSc Thesis, Electrical Engineering MIT.

(Jn De Groot A 11 (190!1). Chess Playing Programs, 385-398.

(33) De Groot AD (1965). Thought and Choice in Chess, The ~ague:
Mouton.

(3!,) ne Groot A D (1966). Perception and Hemory versus Thought,
Problem Solvine , e<l Kleinmuntz B, Hew York: John Wiley.

(35) Duncker K (1945 (35)). On Problem Solving, Psych Monographs,
58, 110 270.

(36) Dunning C f,., Ko H Mand Banerji P. B (1969). Some Results on
Graph Interpretable Games, Tech Report, Cleveland: Case
i{ R University.

(37) Edwards D J and Hart T P (1963). The a-B Algorithm, HIT AI
Hemo, 30.

(38) Eifermann P R (1972). Computer Analysis of Board Games 1.11 the
Light of Street Games, NSSHT, ed Elithorn A.

(39) Elcoc!<. E W and Hurray A H (1967). Experiments with a Learning
Component in a Go-Moku Playing Program, HII, 87-104.

(40) Eli thorn A and Telford A (1969). Computer Analysis of Intellectual
Skills, Int J Man-i'fachine Stvdies, _!_. 189-209.

(id) Elithorn A and Telford A (1970). Game and Problem Structure 1.n
Relation to the Study of Human and Artificial Intelligence~
nature, 227, 1205-1210.

(42)

(43)

(44)

(45)

(46)

(4 7)

(48)

(49)

Findler N V, Klein H, Gould W, Kowal A and Monig J (I 971).
Studies on Decision :Making Using the Game of Poker, IFIP71.

Findler N V (I 971). Computer Experiments on the Formation and
Optimization of Heuristic P.ules, NSSlIT, ed Eli thorn A.

Fine R (1967). The Psychology of the Chess Player, New York: Dover.

Foster F G (1966). Chemin-de-Fer analysed, Computer Journal,]_,
124-130.

Gillogly J J (1972).The Technology Chess Program, AI 3, 145-164;
also: Technical Rerort 71, Pittsburgh: Carnegie-i-'lellon •

Good I J (1965). The Mystery of GO, New Scientist, 427, 172-174.

Good I J (1966). A Five Year Plan for Automatic Chess, MI2,
89-118.

Good I J (1%9). Analysis of the Machine Chess Game J Scott
(White), ICL-1900 versus RD Gr e enblatt, PDP-10, NI4, 267-269.

1.07 -

(50)

(51)

Greenblatt Richard D, Eastla~e Donald E II and Crocker Stephen D
(1967). The Greenblatt Chess Program, FJCC, 801-810.

Gr e enblatt Richard D, Eastlake Donald E III ancl Crocker Stephen D ,
(1967) •. The Greenblatt Chess P·rognim, extended version rough
draft.

(52) Greene P (1961). Networks Which Realise a Model for Information
Representatiqn, Trans llni v Illinois Symp Self Org ..

(53) Harki.1ess and Battell (l 947). Article in Chess Iteview.

(54) Hubcrmann B J (1968). A Program to Play Chess End Games,
Stanford Technical Memo CS I 06, C S Department.

(55) Jones E (1951). The Problem of Paul Norphy: A Contribution to
the Psychology of Chess, Essays i n Anplie.d Psy ch oana l ysis,
London: Hogarth.

(56) Jo11gman R W (I 968). Het Oog van de Neester, Arns t e rclam: Van
Gorctm1.

(57) Karpam B (1937). The Psychology of Chess, Psy choanalvtic Rev,
24, 54-69.

(58) King P F (1971). A Computer Program for Positional Games,
Report 1107, Jennings Computer Center, Case WT:rn.

(59) Kister J, Stein P, Ulam S, Walden Wand Wells M (1957).
Experiments in Chess, JAC~1, ~' 174-177.

(60) Koffman EB (I 967). Learning through Pattern Recognition Applied
to a Class of Games, Systems Research Center Report S::ZC 107-1-67-45,
Case IT.

(61) Koniver D (1963). Computer Heuristics for Five-in-a-Row,
M Sc Thesis Mathematics, HIT.

(62) Korschelt O (1966). The Theory and Practice of GO, Tuttle,
Ruttland, Vermont.

(63) Kotok A (1962), A Chess Playing Program for the IBM 7090,
B S Thesis, MIT, Nemo 41.

(64) Kozdrm,Ticki E W and Cooper D W (1973). COKO III, Connn /I.CM, _!_§_,
41 l-/427'.

(65) Lasker E (I 960). Go and Go-Moku, New York: Dover.

(66) Levy D NL (1969). Computeris e d Chess: Prospects, Chess April 22nd
1969, 242-251.

(67) Levy D NL (1971). Computer Chess - A Case Study on the CDC 66Q0,
MI 6 , I 5 I - I 6 4 .

(68) Luce H. D and Raiffa H (1957). Games ai1d Decisions, New York:
Wiley.

- 108 -

1·

I

I
·r
r
i ·
I.

J

.I

I
I

(69) Maier N RF (1960). Screening Solutions to Upgrade Quality:
A New Approach to Problem Solving w1der CondJtions of Uncertainty,
J Psych, !:2_, 21 7-23 I.

(70) Mari.no L R (J 966). Winning aud lfon-Losing Strategies in Games
and Control, Tech !'.enort S1~.C 91-A-66-36, Case HRU, Cleveland.

(71) McKinscy J (I 952). Introduction to the Theory of Games,
New York: NcGraw Hill.

(72) Hichie D (1966). Game Playing and Game Learning Automata,
Prog rammin g and Non-Numerical Comnutation, ed Fox L, Oxford:
Pergarnon.

(73) Mittman B (19 73). Can a Computer Beat Bobby Fischer?, Datamation,
June.

(74) Hurray A l1 and Elcock E W (1968). Automatic Description and
Recognition of Board Patterns in Go-Moku, NI2, 7 5-88.

(75) Newell A, Shaw J C and Simon HA (1959). Chess Playing Programs
and the Problem of Complexity, IB',!J, 2, 320-335;

(76)

(77)

(78)

also in: Feigenbaw~ EA and Feldman J-A (1963), Computers and
Thought.

Newell A (1955). The Chess 11achine, HJCC55, 101-110.

Newell A (1966). On the Representations of Problems, CSRR CHU.

Newell A and Prasad (1963). IPL-V Chess Position Program,
Internal Memo No 63 • CS Dept, Carnegie-Mellon .

(79) Newell A and Simon H A (I 965). And Example of Buman Chess Play
in the Light of Chess Playing Programs, Prog ress in Bioc,,.bernetics,
eds Weiner N and Schade J P, !,nJ.sterdam: Elsevier, 2, 19-75.

(80) Newell A and Simon II A (1972). Human Problem Solving, Prentice­
Hall.

(81) Newman and Uhr L (1965). Bogart: A Discovery and Induction Program
for Games, Proc ACM Conf 65, 176-186.

(82) Nilsson N J (1971). Problem Solving !1ethods rn Artificial
Intelligence, HcGraw-Hill.

(83) Penrose J (1965). The Psychology of Chess, New Society,~,
967-968.

(84) Philidor AD (1777). Analysis of the Game of Chess, London:
Elmsl9y.

(85) Pit rat J (1968). r,ealization of a General Game-Playing Program,
IFIP 68, Hl20-124.

(86) Pitrat J (1971). A General Game-Playing Pror,ram, Artificial
Intelli g e nce and lleuris t.ic l'ror. rarmning , eds Findler N V and
Meltzer n, Edinburgh Unive rs i ty Press.

- 109 -

(87) Poe EA (c 1860). The Meazel Chess Automaton.

(88) Popplcstone R J (] 9G9). An Experiment in Automatic Induction,
MIS, 203-218, -- ,

(89) Pushkin V A a11d Shershnev (1972). On Different Modes of Acquiring
Information· in. a Person Solving Piscrete Comhinatorial Problems,
Problems of Heuristics, ed Pushkin V N, Jerusalem: Israel Program
for Scientific - Translations.

(90) P..ayner E H (1958). A Study of Ev11.luative Problem Solving,
Quart J Exp Psych , J__Q_, 155, and .!..Q_, 193;
als'o in: Oason P C et a.1, Thinl~ing and Ttcasoning, Penguin.

(91) Remus H (1962). Simulation of a Learning 11achine for Playing GO,
IFIP62.

(92) Russell R (1964). Kalah; The Game and the Program, Stanford AI
t1emo No 22..

(93) Ryder J (1971). Go, Thes i s, California: Stanford University.

(94) Samuel AL (1967). Some Studies in Machine Learning using the
Game of Checkers II - P.ecent Progress, IB'.1J , 11, 601-617;
also in: Annual Review of Automatic Pro~'I'.i;g, ed Halpern M,
Pergamon, ~' 1-36.

(95) Samuel A L (1959). Machine Learning, Tech P.ev , .§1., Lf2-45.

(96) s~1uel AL (1959). Some Studies in Machine Learning Using the
Came of Check.er, IBHJ, 3, 210-229;
also in: Comr>uter~d Though t, (1963), eds Feigenbaum E A ·and
Feldman J, New York : McGraw-Hill, 71-105.·

(97) Samuel AL (1960). Programming Computers to Play Games, Advances
in Computers, J_, 165-192.

(98) Scott J J (1969). A Chess Playing Program, HI4, 255-266.

(99) Scott J J (1969). Lancaster vs MACHAC, SIGAlIT, ..!2., 9-11.

(100) Scurrah H J and Wagner D A (1970). Cognitive Model of Problem
Solving iu Chess, Science , 169, 290-291. (Fuller version in
Cog Psvch, 1 972). --

(101) Selfridge O (1965). Reasoning in Game Playing by Hachine,
_Svmposiun on Computer Augmentation of Ruman Reasoning, eds
Sass HA and Wilk i nson W D, Washington: Spartan.

(102) Shannon C E (1950). Automatic Chess Player, Sci Pm, 182, 48-51.

(103) Shannon C E (1950). Programming a Digital Computer for Playing
Chess, Phil Mag, !!J_, 356-375.

(I 0!-1) Silver Il (1967). The Group of Automorphisms of the Game of
3-Dimensional Tic-Tac-Toe, J\merican Math donthl y, J..!l_, 247-254.

- lJCl -

:,

h

I
.I

.l

. I

I
I

1·

·1

l
r
T

. '

. "

(105) Simon HA (J966). rrepresentation in Tic-Tac-Toe, CIP Paper No 90,
Carnegie IT.

(J06) Simon 11 A (1967). /1.n lnform.:1tion-rrocessing Explanation of
Some Perceptual Phenomena, Rr J Psvch, ~. 1-12.

(107) Simon HA and Simon PA (1972). trial and Error Search in
Solving Difficult ~roblems: Evidence from the Game of Chess,
Beh Sc, .!.!_, 425-429.

(l 08) Simon H A and Siklossy L (l 972). Representation and Meaning,
Prentice-Hall.

(109) Simon HA and Barenfield M (1969). Information-Processing
Analysis of Perceptual Processes in Problem Solving, Ps y ch Rev,
I!!_, 4 7 3-483. .

(110) Slagle J R (1971). Artificial Intelligence, lfow York: McGraw-Hill:

(111) Slagle J R and Dixon J K (1969). Experiments with Some Programs
which Se.arch Game Trees, JACH, _ _!£, 189-207.

(112) Slagle J Rand Dixon J K (1970). Experiments with the M x N Tree
Searching Program, CACM, ..!1_, 147-154 + 159.

(113) Slate D and Atkin (1970). CDC File Printout from ULCC, London
WCL •

(llL1) Smith R C (1969), The Schach Chess Program,_SIGART, .!2, 8-12 •

(115) Storey S H and Maybrey M A (1969). The Game of Hare and Hounds
and the Statistical Study of Literary Vocabulary, MI4, 337-348.

(116) Strachey C S (1952). Logical or Non-1:--!athematical Programmes,
Proc ACM Conf, 46-49.

(117) Tan S T (1972). Representation of Knowledge for Very Simple
Pmm Endings in Chess, Thesis, Edinburgh: Department Machine
Intelligence.

(I 18) Thiele T N, Lemke R R and Fu K S (1963). A Digital Computer
Card Playing Program, Beh Sci Vol III, 362-268.

(119) Thorp E (1967). Beat the Dealer, TABS.

(120) Thorp E and Walden W (1964). A Partial Analysis _9f GO, CJ, J_.

(121) Thorp E and Walden W (1970). A Compter-Assisted Study_ of GO on
M x N Boards, TANNPS.

(122) Tikhomirov OK and Poznyanskaya (1966). An Investigation of
Visual Search as a Heans of .!malyzing --Heuristics, Soviet Psych,
_2, 2-15, translated from: Vo-prosy Psik~ologii, _!2, 39-53.

(123) Turing AM (1963). A Digital Computer Applied to Games, Faster
than Thought, ed Bowden B V, London: ritman,, 286-310.

- 111 -

(12ft) Vigneron H (1914). Les Automates, La Natura.

(I 25) Wasserman A I (1970). Realisation of a Skillful Bridge Bidding
P.rograr.l, FJCC70, 433-44{1, ,

(126) Watennan D (I 9.70) • . Generalisation Learning Techniques for
Au~omating the,;. Learning of Heuristics~ AI; .!_, 121-170.

(I 27) Weizenbaurn J (f962). How to Make a Comput e r Appear Intelligent;
Five-in-a-Rm-t Of:f:ers No Guarantee, Datama t ion , 24-26.

, -jf ' ..

(]28) Weizenbaum J and Shepherdson R C (1962). Gamesmanship, Datamation,
I O •··

(129) Wiener N (1948). Cybernetics, 1st edition, New York: Wiley.

(130) ·Williams T G (1965). Some Studies in Game Playing with a
Digital Computer, Thesis, Pittsburgh: Carnegie-Hellon University.

(131) Zobrist AL (1969). A Model of Visual Organisation for the Game
of GO, SJCC69, 103-112.

(132) Zobrist AL and Carlson FR (1973). An Advice-Taking Chess
Computer, Scientific American, 228, No 6.

(133) Si mon 1~ A and Chase W G (1973). Skill 1.n Chess, American
Sc i entist , 61, No 4.

- 112 -

[
I.

t
I
1:

1.

l

[
I

l
,.

r
I

' "

.

. ,.

L I ST 0 F P A R T I C I P A N T S

- 113 -

- -- --~ ~--

. I
I

t

l
f

'f
r
[

I
' ..

,.

\.
, .

J

.I
l

.,.

r
l
J
J

,,,.

)

t
!
' ~

t ..
' l
,.L

"

•

~

BEAL D F

BOARDMAN RM

BROv.'N D

BURLEY T A

CAMPBELL G

CAMPBELL JA

CATLOW G w
CHESHIRE I M

c·ovrncroN J P
CROWTHER R D

CUTTERIDGE Dr 0 P D

DEANS D

DIBB A T

DORAN J E

ELDER M

FLEMING J

FLETCHER R

FRASER L

GOODEY T

HAILSTONE J E

ll.i\LLOWELL p J

HILSDM Niss KA

HO-WLETT Dr J

BUMBY E

l
, .
('

Queen Mary College
London University

Brunel University

King's College
London University

AERE Harwell

AERE Harwell

Leicester University

AERE Harwell

Atlas Computer Laboratory

Atlas Computer Laboratory

- AERE Harwell

Southampton University

Queen Mary College
London University

Atlas Computer Laboratory

Rutherford Laboratory

AERE Harwell

Atlas Computer Laboratory

ICL

]15 -

..

. f

JAMES B

JOHNSON RD

KELLY I D K

KERHEEN S/LDR R W

LARGER

LEIGH D J

LIGHTON R J

LONG D H

NACDONALD-RQSS M

MACDONALD-ROSS Mrs M

NcEVOY J

MANNING J R

MOULSDALE R

POLLARD JM

POWELL-EVANS D

RAPLEY K

READ B J

REES-Jmrns G

ROBERTS CL

RYAN Dr D M

SCOTT J J

SHACKLETON P

SHEARING Dr G

SHORE Wing Cdr GB

SitvIT.vIONS Dr J

SOPER Dr JM

STANIER A M

SUNSHINE K W

WITTEN I H

WRIGHT D J

Press Representatives
from the 'OxforJ Mail'

W PEREIP,A
C POSTIILETHWAITE

Queen Mary College
London University

Lanchester Polytechnic

RAF College, Cranwel!

Glam,organ Polytechnic

North Staffs Polytechnic

Radio an~ Space Research Station

The Open University
Milton Keynes

·The Open University
Hilt.on Keynes

Shoe and Allied Trades Research Associatio

Birmingham University

Plessey Telecommunications

Operational Research Branch
BEA

Portsmouth Polytechnic

Operational Research Branch
BEA

Atlas Computer Laboratory

AERE Harwell

Queen Mary College
London University

RAF College, Cranwell

Birmingham University

AERE Harwell

Essex University

Portsmouth Polytechnic

Essex University

Leicester University

-- 116 ..

