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FOREWORD 

"Why have a conference on computer chess?" This question was put to 
me a number of times on the day and I gave a number of different 
answers. This is because any answer must depend on an assessment of 
how much I think the person asking the question knows about the 
subject. To write this foreword is therefore difficult. I am now 
trying to explain to everyone without any of the feedback that is 
so necessary in conversation and so useful when lecturing. 

Let me first kill two myths, both perpetrated by the Lighthill report:-

(i) "It is interesting to consider the result of all this work some 
twenty-five years after the researches aimed at chess-playing 
programs began: unfortunately these results are discouraging. 
The best programs play chess of only 'experienced amateur' 
standard characteristic of county club players in England. 
Chess masters beat them easily." 

The implication here is that the only reason people write chess 
programs is to actually play chess and the discouraging result 
is that they cannot beat Bobby Fischer. There are other reasons 
(some of w~ich are given in these collected papers) and it 
seems unfair to define the only encouraging result as a program 
that would beat everybody and doubly unfair that nobody 1s 
going to get support if that is their declared aim. And the 
main reason why? Quite simple, because for the last twenty 
years 'results are discouraging' etc. 

(ii) Apparently quite considerable resources have been devoted to 
producing an effective program. This is rubbish! Until the end 
of 1972 there were only two people in this country who had ever 
earned a living by writing chess programs. One was John Scott, 
who had just left school at the time, and the other was myself 
who had just left university. Neither of us cost the country a 
great deal, indeed I was employed by a Norwegian-Italian with 
an American grant. I agree that our results were discouraging: 
John's program did not quite manage to hold its own against 
Greenblatt, and my program (written in three months in 1962) 
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has now been translated into only six different computer 
languages and used as the basis of only eight chess programs 
(three in America, four in this country and one in Norway). 

My point here is that it is unfai r to cri ticise the re s ul ts of 
a subject that has never been offi cially supported or funded. 
Do not make the error that the Ame ricans or the Russians are 
any better off; most of the work done in those countri es is by 
people who also beg, borrow and steal computer time. David Slate 
and Keith Gorlen, co-authors of CHESS 3.5 (the·current champion 
program) wrote it in their spare time having failed to obtain 
NIH funds. 

There are, to my knowledge, only five people at the moment who 
are paid to write chess programs. Three of them (Gillogly, 
Berliner and Simon) are at Carnegie-Mellon University; Richard 
Cichelli at Lehigh, Pa, and Soei Tan at Edinburgh. 

The discouraging results are therefore probably due to low 
funding but the fault still lies with the people who would like 
to work on computer chess. They rarely give clear reasons (I 
include myself) why and how they wish to spend money and time 
on the problem. Why don't they? 

Well let's hold a conference and get people together. Find out why 
and how people want to work on the problem now and in the future. 
And the result: most people don't want funds! Instead 'they would 
like more access to their firm's computer (in their own time) and 
less persecution from their superiors. Most practitioners l ike the 
idea of meeting other 'amateurs' at a conference; they can compare 
notes and size up the opposition. But they still prefer to work on 
their own ideas in a small group. In short, the_ British want, now 
and in the future, to treat .it as a hobby, but a reputable hobby. 

So here is an impressive document to enhance the reputation of this 
hobby; pe rhaps it should· be subtitled 'Teach yourself advanced 
programmi ng' because most hobbies are concerned with exercising 
talents and abilities which our normal work does not either 
permit or encourage. 

This point of view is most common amongst computer scientists who 
have tried to pr~gram chess. They will also point out the spin-off 
in techniques first tried in a game playing experiment; for example, 
hash tables, directed search, alpha-beta cut-off, catalogues. 

Despite these very real successes most people actually dabbling in 
computer chess (there were 14 people present who had written programs) 
are , on the whole, reluctant to commi t themselves completely to t he 
prob l em. Perhaps, like Eins tein, they are happier in the obscuri ty of 
their 'pat ents ' office' where they are not expected to continually 
'lay golden eggs'. This i s fair enough. But I would l i ke to co-o r dinate 
some of these labours of love. There are a n umb er of problems and 
experiments on which I would .appreciate other people's opinions and 
I have described some of them in 'Computer Chess Experime_nts'. Although 
I agree with Soei Tan that the Turing-Shannon model is probably 
inadequate I stil_l maintain that it is the only well defined model 

.. 
- l.V -



-,j 

) 

te 

gh 

that we have and that there are many useful techniques it can be used 
to investigate, particularly the refutation (or killer) heuristic. 
This is basically the computer scientists' viewpoint but, in my case, 
is almost certainly due to the way the subject was first 'imprinted'. 
I fully appreciate that other people see computer chess very 
differently but I firmly believe that only a computer scientist can 
gather together and implement all these different ideas because, 1.n 
the end, it has got to be tried in a machine and very few people 
really know how to program; I do not include Botvinn'ick. 

'Imprinting'? As I mentioned above I wrote my first chess program 
over ten years ago. I was employed to generate a 'list of legal 
moves' for any chess position; this generator had to be as fast as 
possible because the research was into models of evolution using 
symbi a-organisms. It was hoped that they would learn to play chess. 

At the time we did consider making the program play · a game. I again 
s_tress that this was not . the main purpose of the research. Without 
reference to any literature we wrote a Turing-Shannon lookahead 
(it is a very obvious model) and an evaluation function based ~urely 
on.mobility. We spent a whole week on this work and the results were 
discouraging, Even we could beat it, let alone chess masters. 

At this point in time the fund ran out and, seeing no future in the 
subject, I went off to earn a living doing something useful. I was 
however left with the naive impression that a chess program could be 
built in three separate pieces, narnely:-

(a) list legal moves; 
(b) lookahead; 
(c) evaluation function. 

To 'list legal moves' is no 'problem, to write a crude lookahead is 
also well defined and trivial but to construct a successful evaluation 
function is where it all fouls up. It is a fact that the fewer 
heuristics in the evaluation function, the more accurate it is, ie 
capture the Black King is exact; material balance much less accurate 
and if you worry about pawn structure during search you are looking 
for a very inaccurate evaluation. 

Berliner says in.his paper that special heuristics (eg 0-0 early in 
the game, not moving a piece twice early in the game, advancing pawns 
during the endgame) are an admission of defeat •- I agree. I have never 
tried to construct a sophisticated evaluation; never tried to express 
my 'chess knowledge' because the performance becomes extremely 
difficultto measure or explain. Indeed, many evaluation functions have 
not so much been designed as been created ad hoe, the programmer has 
had a teeling in his water' and it is impossible to reproduce his 
results no matter how closely you read his publications or listen to 
him. I must emphasise the point that scienc~ is concerned with 
repeatable experiments. 

I said the problem can be considered in three pieces. This is not true 
in practice. The crude lookahead is simply unacceptable and, in order 
to reduce the tree search time, it is necessary to use an evaluation 
function to prune, back up, order and direct this activity (particularly 
if alpha-beta cut-off is incorporated) and, even more important, to 
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know when to stop searching and when to go deeper. So the results 
are discouraging because nobody really knows how to write accurate 
evaluation functions. I was, therefore, very interested when I read 
Ron Atkin's paper 'Multi-dimensional structure in the game of chess'. 
Here was a mathematician who, with lots of squiggly things and some 
hard sums, appeared to propound a mathematically reproduceable 
evaluation function. The missing link?. Unfortunately, I could not 
understand it, so why not get him to talk about it? There were other 
people who had published work I did not understand, so why not have a 
conference? If nothing else I might get some idea of what was going 
on. 

The SRC and the Atlas Computer Laboratory were almost embarrassingly 
helpful (again my impression is that research would be supported if 
only people would make a clear and committed case). Not all the 
speakers I wanted were available but, despite appearances, there was a 
thread in the order of the lectures. 

Basically the morning was intended to be hors d'oeuvres. Peter Kent 
and I agreed that we would merely set the stage (a) to get a relaxed, 
informal atmosphere and (b) to introduce the subject with a simple 
working model. We hoped to get people talking and in the right mood 
for the main course in the afternoon. 

The three principal speakers were therefore Alan Bond on psychology, 
Ron Atkin on the multi-dimensioned approach and Soei Tan on knowledge. 
Rex Malik very kindly agreed at the last minute to lead a discussion. 
I again interpret .his remarks as an unconcious appreciation (py 
him) that most pe9ple in the audience do. not want the responsibility 
of funds but much prefer the subject as a hobby. · 

I still believe that successful computer chess will be the first.step 
in the ascent of machine intelligence. I make rio hypotheses of how 
it will be realised but one thing is certain. If you want to practice 
and improve your ability to program a computer then the subject is 
similar to Fermat's last theorem; you most probably will fail to 
produce anything significant but you will learn a hell of a lot about 

· programming and, incidently, psychology, maths, urban development 
models, epistemology, and the theory of evolution. 

I have given a short introduction to each paper. I would emphasise 
that these are personal observations. 
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by 

A G Bell Rutherford Laboratory 
Science Research Council 
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"The first professor ••• said perhaps I might 
wonder to see him employed in a project for 
improving speculative knowledge by practical 
and mechanical operations," 
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- JONATHAN SWIFT 

Gulliver's Travels 



Editor's Note -

Five finger exercises. The ability to program 
a computer is a necessary but not sufficient con­
dition for prod·ucing a successful chess program. 
A sound knowledge of modern I/O equipment (parti­
·cularly interactive graphics) is also necessary 
but the computer scientist is still dependent on 
ideas from other fields, Meanwhile he should 
practise his art. 
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In the lecture I related the sad fates of a number of pioneers in the 
field of machine intelligence. These included Raimon Lull, Blaise 

-Pascal, Jonathan Swift, the Spanish captain, Charles Babbage and 
Alan Turing. 

It was to show that,although the fascination of intelligent machinery 
has a long history, we still have not . achieved the first significant 
step. The analysis and construction of a successful chess machine could 
be that step. 

One reason for these discouraging results is a lack of co-ordination 
between the different groups and disciplines which dabble in the subject. 

The computer is the only machine we have to perform experiments ln 
machine intelligence in general and chess in particular. It is essential 
to have experience of the strengths and weaknesses of these machines. 
This is the province of the computer scientist and the necessary 
co-ordination must come from computer science. 

Science is concerned with the measurement of -repeat.able experiments 
and application of the results. Computer chess has usually been treated 
less rigorously, almost an art fonn, with the emphasis on the computer 
playing the game and humans gauging its performance. 

This paper describes some repeatable experiments for a chess program. 
The intent is that programs can and should be assessed without them 
actually playing each other. Of course they should play occasionally 
but it is an expensive operation and not always conclusive as to which· 
is the better chess program. 

Handicaps 

When two chess programs play each other with time limits invoked then 
not only the programs but also the computer/compiler systems are in 
competition. Alan Bond raised the question as to whether it is possible 
to isolate the programs performance and ultimately give handicaps 
to the computer/compilers. 
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I published an Algol chess algorithm to solve any two move mate 
proble~ (Bell, 1970) and have since received correspondence from 
people who have tried it on a number of machines in at least six 
languages. 

The times·,. obtained for the different computer /compiler systems to 
solve a two move mate and prove it unique (no cooks) have been 
inieresting. At first I believed that because the algorithm was so 
specialised its performance on different systems could only give 
comparitive results to within a factor of two or three. In fact the 
times for Algol systems agree to within 207. with results obtained by 
B Wichman who has used a sophisticat~d technique to compare and 
analyse the execution performance of over twenty Algol computer/ 
compiler systems (see Computer Journal, February 1972). 

Because of the good agreement with Wichman it is my belief that the 
results for the translations into PL/1 and FORTRAN can give handicap 
data on the performance of these and other computer/compiler systems. 
Moreover, because the algorithm is table driven and highly language 
independent, it can be translated into most computer languages in 
a matter of days. 

!he table below gives the comparable results for six powerful modern 
computers and demonstrates the empirical agreement of the algorithm 
with Wichman's analyses. The Gibson . mix is a measure of the hardware 
power of a machine. The ICL Atlas Algal is taken as the standard. 

Comparable Results for Six Powerful Modern Computers 

COMPUTER/ALGOL COMPILER GIBSON MIX WICHMAN 

ICL Atlas /MKJ 1.0 1.0 
B5500 / MKI 0.3 0.5 
UNIVAC I 108 / (obsolete) 2.0 I. 2 
ICL 1906A / XALT MKS 2.5 3.3 
CDC 6600 / MK] 4.7 I.I 

The results for other computer/compilers are:-

Atlas Basic 
CDC 6600 Basic 
IBM 360/195 in FORTRAN H 
IBM 360/195 in PL/1 

10 seconds 
4 seconds 
4 seconds 
7 seconds 

CHESS .Iv!..ATE 
IN SECS 

100 
220 

90 
30 

100 

All times are for the problem in (Bell, 1970). The Univac 1108 
and CDC Algol compilers have been rewritten; they now have 
Wichman figures of 2.3 and 3.0 respectively. 
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The effort to implement the algorithm in the various languag~s was: 

Algol about I man-day 
PL/1 about 4 man-days 
FORTRAN about 2 man-days 
Atlas Basic about 10 man-days 
CDC Basic about 10 man-days 

From the table we see that, for example, a chess program in Atlas Algol 
should be given 100/4=25 times longer . to consider a move if we wish 
to compare it with a chess program in CDC Basic. 

Programs not using the algorithm can be adjusted to solve two move 
mates. This will mainly measure their power in listing legal moves 
but useful handicaps could result because the conventional program 
spends the majority of its time in this activity; philosophical 
programs would not be so easy to handicap. 

Two and three move mate 

The algorithm mentioned in the previous section is crude. To obtain 
consistent handic;:ips it should not be altered however, it is open to 
great improvement and it is instructive to discuss the inefficiences 
of the algorithm and so introduce a significant programming principle 
- the principle of 'refutation'. · 

The algorithm is table driven (the most powerful of computer languages). 
One important feature is that the 64 squares of the board are not 
scanned but an integer array is consulted. This array, 'piece', contains 
the number of white (black) men on the board and their actual locations. 
For example, in the position 

BP 

BP WP 

BP BP BP WP 

BQ BK BB 

then white 'piece' is: 

BP 

HP 

BP 

WP 

WP 

WI:J WR 

WB 

HK 

64 

56 

40 

32 

24 

8 

j 9 \16 I 71 s \ 12 I Is ] 1 6 j 2 ;. I 2 3 ) 3 s j 
Direction of scan 
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and black 'piece' is:-

In this problem the mating sequence is:-

WI P-B6 
BI 
W2 

BB*P 
N*B checkmate 

but to discover that it is checkmate the program must actually capture 
~· the king. It does this as follows:-

W2 N*B 'am I checking the king?' (to avoid stalemate) . . 

The list of 'piece' is scanned backwards so it finds the rook check 
first. It now continues:-

Black has no further alternatives? at the B2 or the Bl ply so the 
problem is solved. The problem introduces the concept of 'refutation 
move and/or man', in this case the rook. Gillogly calls this the 
'killer heuristic' and shows it to be relevant to actual computer 
chess play (Gillogly, 1972). 

The solution of the mate problem can be speeded up. When white 
discovered the move R*K at the stalemate check it could have re-ordered 
the white 'piece' array thus:-

The rook would now have its moves listed first and in isolation, the 
actual capture of the king at W3 can then be detected without listing 
the moves of any other white men. But this misses the really important 
gain. Black will backtrack to ply Ill. Now in this case it does not 
have another alternative but normally black would. However the 
alternatives are rarely significant and the same refutation move and 
man will usually checkmate at move W2. 

The fact that the order of white's 'piece' for W3 can be heuristically 
optimised from the stalemate check is applicable to the previous plies 
Bl,W2 and B2. Here is a simple experiment to verify this statement. 

Put in a two move mate problem. Print white's first move WI and now 
print all black's responses BI. Eventually . black will make a move 
BIR which refutes WI, the algorithm will cutoff and white -will try 
another WI. So we have:-
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Wla 
Bia Bib Blc ...•...•.. BIR 
Wlb 
Bia' Bib' Blc' ..•.•.• BIR 
etc 

The result of this _exp_eriment is that the black move BIR which refutes 
the present WI is usually (60%) the same BIR which refuted the 
inunediately previous WI. Even more significant is tne refutation man 
(75%), very often the king who just moves away. 

Let us assume that we modify the algorithm to preserve the refutation 
move BIR. Also assume we can check it exists for the next WI in zero 
time. This means that the timings given in the previous section can 
be reduced by 60% ie I 00 seconds b_ecomes 40 seconds. By similar 
argument W2 and B2 can have their refutation moves optimised and we 
obtain a limit of improvement • 93% ie 100 seconds in Atlas Algal 
~ould drop to about 7 seconds and basic programs could be less than a 
second. A further bonus is that the program is more capable to giving 
an 'appreciation' of the problem; reporting white's threats and black's 
replies. Unfortunately, the full reduction ca~not be realised, one 
reason is that we must check if the move BIR still exists for the 
next WI etc. The best we can do is to only list the moves of the man 
which generated the previous BIR. So we have the following flow:-

Make move WI . 
List moves of refutation man 
Check BIR exists 

I 
yes 

I 
Apply BIR 
Does it refute? 

I 
yes 

no 

l 
no --> List moves of all other m·en 

) 
I 

Next WI move ----------- -Find new BIR and optimise man 
t 

none 

1
1 • so ut1on 

We are now spendi.ng most of the time in 'list moves of all other men'. 
However the reordering algorithm (previous page) does optimise the 
finding of the next BlR. Note that full implementation requires a 
different 'piece' array for Bl, W2, B2, stalemate and W3. When a 
solution has been found the order of the men in the various 'piece' 
arrays will give a further appreciation of the problem by the computer. 

Two move mate problems are too short to accurately measure these 
improvements. Consequently three move mates have been used to test 
them. Preliminary · results indicate that, in Algol on the ICL 1906A, 
the time for a two move mate can be reduced from 30 seconds to about 
6 seconds, ie 5 times faster, and a three move mate takes about 50 
times longer, ie about 5. minutes. 

Apart from Gillogly, other people have 'discover.ed' refutation; in 
particular Richard Cichelli of Pennsylvania. In that Jll 'killer' 
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or 'refutation' heuristics are similar the above implementation is 
the same as Cichelli's and Gillogly's. However the cost effectiveness 
of refutation can vary widely. The McCarthy-Gillogly killer associates 
a particular move with a particular position. Gillogly says that this 
does not pay for the overheads. 

Hy implementation, associating and ordering particular men with the 
current area of the- search tree, is much less specific; more hits but 
less accurate. Cichelli's work is somewhere between these two extremes, 

The big failure of my implementation is that when the hoped for 
refutation does not exist or fails to work then I list all the moves 
of all the remaining men. It would (or should) be more efficient to 
only list the moves of the next man in 'piece'. However this will 
require a major change to the program. 

The fact that· the program will not then immediately check the legality 
of the opponent's previous move should not matter. It is prepared to 
d'o so; either the refutation is effective against an illegal move or 
the nonnal cutoff will occur eventually. 

Another improvementwould be along the lines of COKO III (Cooper­
Kozdrowicki, I 973) which concentrates on white moves WI, W2 and W3 
that can capture the king ('attack paths 1 ) and consequently narrows 
the search. This again accelerates the solution of mate problems , 
unless Zugzwang is involved. 

Evaluation functions 

It is in the evaluation function rather than any other part of the 
conventional chess program that scientific measurement is most lacking. 
Here the programmer must express what he considers to be relevant to 
chess; his chess 'knowledge' is programmed into the computer, an 
admission of defeat according to (Berliner, , 1970). The usual test of 
the evaluation function is to play the program. 

Here is an experiment. Obtain about 500 positions in chess and have 
them examined and assessed by a panel of ·experts. For each position 
the panel gives an ordering, from best to worst, of all the moves 
~orth considerati2,g, ie the non-Fischer set. This not only allows us 
to compare programs without them actually playing but if Fischer would 
do the test we can compare champion v human and champion ·.v program. 

This is not quite fair. Every time a chess·program has to make a move 
it behaves like it has never seen the previous moves (unless it does 
something like the reordering of the pieces discussed in the previous 
section). Fischer, presented with 500 unconnected positions, would 
probably not be as dominant over a computer as when he actually plays 
a game. 

Note that one does not have to write a complete program to test an 
evaluation function. If it is expressed as an algorithm in an 
acceptable language, Algal or FORTRAN, there is no reason why this 
should not be tested by someone else's well written, modular program. 
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. 1 t us consider perhaps the simplest evaluation 
Now e ' ' 1 d b ' l' 

Y r elevance to chess ie materia an mo i ity 
function which 
evaluation. This 

has an . 
ld be a criterion for other functions. cou 

The 

(a) 
(b) 

evaluation function is:-

for a given position list all the captures first (material); 
all remaining moves are graded by the resulting mobility ratio, 
ie make the move and then calculate (how many moves you have/ how 
many moves the opponent h as) in the new position. 

To i nv estigat e how relevan t this f unction is to actual chess play I 
took the sel ected games ot ten ch es s .mas ters described in Golombek's 
book ' The Game Ch ess'. The mas t e rs ar e Anderss en, Morphy, Blackburne, 
Steinitz , Tarr as eh, Lasker, Cap ablanca , Nimzovitch, Alekhine and Botwinnik . 
In t he t en games the mas ters were faced with 336 positions. Now we 
are not going t o get f ul l a·g r eement on the opening moves they chose, 
neverthe l ess for 95% of the cases t he move chosen by the master was 
one of the top 16 moves selected by the simple evaluation. function. 
Can yo ur chess pr ogr am do be t ter? I t not throw it away. 

Another feature of this evaluation function is that it appears capable 
of distinguishing between conventional players and revolutionary players. 
Conventional players, like Anderssen and Capablanca, are more in 
accord with the function than players like Reti and Reshevsky, but 
this is . the province of game theory not game playing. 

Is it possible to .prove that a given evaluation function is incapable 
of winning against best play? This . is a neglected approach but it 
does have possibilities. For example:-

(a) If the program can. capture then do so, -ie like the no-huffing rule 
in checkers. It is possible to disprove this algorithm, however 
the opponent must offer some important captures to control the 
game. 

(b) If you always have more moves than your opponent then you must 
win. Obviously true? He has no moves when he loses his king but 
is stalemate avoidable? Also how long can- white maintain more 
moves than black? P-K4 gives white an initial ratio of 30 moves 
to black's 20 moves. One unverified result is that white can 
maintain a mobility advantage over black for the first 20 moves 
from the P-K4 opening. Note that if white does have a forced win 
and there is a limit to retaining the greater mobility tben 
white's best play must include a 'mobility gambit'. - How long does 
your evaluation function keep ahead against all black's responses? 

(c) It is not possible to play losing chess by reversing the signs of 
parameters in an evaluation function, eg give black the greater 
mobility? Try playing 'giveaway' checkers; two kings against one 
win in either version of the game. Samuel suffered from this 
misconception. 

Repetition 

One of the reasons chess playing programs have not progressed further 
than the. strong amateur l evel is that they waste time r e creating and 
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reanalysing exactly the same position in the lookahead. This is not 
so apparent in games which computers can play at master level: Kalah, 
Gomoku and checkers. In these games the pieces (and therefore the 
positions) do not usually cycle; the only troublemakers are checker 
~ings, relatively rare pieces. This is n6r the case in chess, all 
the pieces (as distinct from pawns) can .cycle. Humans do not generate 
these loops but computers ,•spend most of their time in pointless 
repetition, even in the imp-roved two-move mate algorithm already 
discussed. 

Consider the chess king. If we look ahead I ,2 and 3 moves we find the 
following histo,grams · c;,f the king's terminal position:-

1 1 1 

1 J 

1 1 1 

I 

J 3 6 

3 6 12 

6 12 27 

7 12 27 

6 12 27 

3 6 12 

. 1 3 6 

III 

I : Total 8 Distinct 8 New 8 

II: Total 64 Distinct 25 New 16 

III: Total 512 Distinct 49 New 33 

7 

12 

27 

24 

27 

12 

7 
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1 2 3 2 1 

2 2 4 2 2 

3 4 8. 4 3 

2 2 4 2 2 ~ 

1 2 3 2 1 

II 

6 3 1 

12 6 3 

27 12 6 

27 12 7 

27 12 6 

12 6 3 

6 3 1 
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Make no mistake, a crude program playing the simple K, R v K ending 
will generate similar rubbish. Of course the actual path can be 
important sometimes; whether castling is still possible and en 
passant capture exists. 

To quickly check for repetition of a position (and hence save . 
re-evaluation) would apparently be easy on a CDC STAR. The word 
length is 64 bits; equivalence of two words containing the two 
positions of the chessmen would indicate possible repetition. A closer 
check would then be n ecessary and the immense complica tions of full 
recognition, cataloguing, garbage collection etc become apparent. 

Now humans do not appear to work in this way, we know that (Wl-BJ-W2-B2) 
is usually equivalent to (W2-BI-WI-B2) and do not generate the final 
position; we recognise similar paths not similar final positions. 

There is no simple answer to this problem, the intent is to spotlight 
the time wasted by chess programs in their evaluation and re-evaluation 
of positions. It seems that almost any attempt to recognise or suppress 
repetition at or before the evaluation level must be highly rewarding 
in terms of saving time - but how rewarding? 

Here is an experiment. Starting i n a corner, how many different ways 
can a knight t our th e board visiting each square only once and 
r eturning to the s t arting square at the 64th move? The answer is not 
known but any person a ttempting to s olve it will quickly realise how 
repetitous t he knight's path can be. For example:-

5 

4 

4 

3 

2 

2 

1 

There are four ways the knight can get to square 5 but all four must 
get the same answer from symmetry? 

A similar problem which has been solved might give some indication of 
the possible savings. The problem i s how many different ways a fly 
can crawl round a five-dimensional cube, vi s iting each corne r once 
only and returning to the starting corner at the 32nd move . An 
abortive attempt was discussed by Mar ti n Gardner in Scient i f ic 
Ameri can , August 1972. Professor Ron a ld Read had est imat ed t he solution 
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would require ten years by computer. Donald Russell, a comput e r scientist, 
obtained the answer 906,545,760 in five minutes! The trick was to treat 
the problem like a game, ie make· legal moves with a 32 ply look-ahead 
but similar paths were recognised and ignored. This crude recognition 
of paths resulted in a program running one million times faster than 
a qualified estimate. The benefits to chess programs of recognising 
equivalence of moves will not be so great but even ten times faster 
can be significant -whe-n machines like the CDC STAR, about 100 times 
faster than Atlas, become available to chess programmers. 
See Tan's paper for other ways of approaching this problem. 

Unscientific myths 

A dangerous myth has arisen from the fact that chess was designed by 
humans to be used by humans.Examples of this myth are statements 
like:-

'Chess is a paradigm of human mind'. 
'Master play will require a program "modelled on human thought 
processes" '. 

'The program must "make use of essentially the same methods as 
those used by men" '. (Women's Lib: Please contact I J Good). 

'The program must be given "chess knowledge" '. 

Such statements have a polarising effect on research. It allows 
phil6sophers, phsychologists, geneticists, chess mast~rs etc to waste 
hours of machine time and then pronounce on the problem as too 
difficult. Computer scientists rarely have the opportunity, yet . 
surely the less information a good program requires from us to attempt 
a problem the quicker and better it can attempt ·a variety of problems. 
It involves us with less work and eliminates misconceptions on our 
part, allowing the computer more freedom and efficiency to do its own 
thing, ie mini-max, alpha-beta and refutation. It seems obvious that 
if we concentrate more on programming technique and produce a chess 
program which only 'knows'' legal moves and only plays to master level 
then this is more useful and adaptable than a highly specialised chess 
model which could play at a higher international master level with 
the high probability that we still could not understand how it 
worked. 

But to return to the computer doing 'it's own thing' with a human 
activity. Consider the Morse code. Like chess it was invented by a 
human for humans to use, surely this must have ·some effect on how a 
computer should handle Morse code? 

It is rov experience that non-professional people who (claim to) know 
Morse code do so in a variety of inefficient visual and phonetic 
mnemonics. Professional Morse ·coders and Bobby Fischer are not included; 
people whose expertise has developed to such sub-concious levels that 
they are no longer aware of how they do it. Laymen, confronted by the 
laborious virtuosity of the non-professionals, are impressed; obviously 
the problem is difficult. You may suffer from this impression. Here is 
an experiment. How long would- it take you to learn Morse code? Define 
learn as a permanent memory of how to decode a Morse roessage written 
on paper; speed is not important. If a person knows binary, ie. 'thinks' 
like a computer then the answer is about five minutes. Hopefully, you 
are surprised. A human activity can be learnt and applied more 
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effectively by humnns if they behave like a computer. Haybe aircraft 
do not have to flap their wings either. 

Here is a pseudo l\.lgol program to decipher Horse code, the input is 
assumed to be · a bar (-), a dot (.) or a space () to delimit the 
letters:-

N:=0; 
A: if its a dot then N:=2*N+I else 

if its a bar then N:=2*N+2 else 

print and clear (letter [NJ ) ; 
r,oto A; 

The ~rray letter [1:28]'contains the following sequence 

ETIAi.'l"HSURWDKGOHVF L PJBXCYZQ 

which a human must commit to 1aemory. This is possible in five minutes 
but it is left to the reader to see how the algorithm works. A final 
word on paradigms: 

Conclusion 

The previous sections have discussed some repeatable experiments. They 
are illustrations of how a limited but more scientific approach to 
chess programs could be made and are intended more as stimulating examples 
in advanced prograrr,ming than experiments to be slavishly emulated, 

Computer chess is a rich field of research for programming technique, 
games have been the original test bed of many important developments 
eg hash tables, alpha-beta cutoff, pattern recognition, H and N" procedure, 
information retrieval studies. It is important to measure and report 
the efficiency of new techniques. 

In this way we could approach, step by measured step, a master chess 
model. In the meantime the techniques that are developed must be a 
valuable fallout, far more important than knowing if white does have 
a forced win. 

Finally a word of encouragement. Compared to the man-decades that have 
been spent on developing computer languages we have only spen.t a 
few man'--years- on chess programs. Lord Rutherford once wrote to Nie ls 
Bohr that 'you cannot expect to solve the whole problem of modern 
physics in a few years. So be cheerful over the fact that there is 
still a great deal to do,' 
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A S I M P L E 

by 

p Kent 

W O R K I N G M O D E L 

Atlas Computer Laboratory 
Science Research Council 

Chilton 
Didcot 
'Berkshire 
OXl 1 OQY 

"And take man's vaunted power of calculation, 
Have we not engines which can. do all manner 
of sums more quickly and correctly than we can? 
In fact, wherever precision is required man 
flies to the machine at once, as far preferable 
to himself," 

- SAMUEL BUTLER 

Erewhon 
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Editor's Note -

A very simple working 'model. The program is 
~eliberat~ly constrained to answer within B few 
seconds and the chosen move is computed almost 
entirely from a shallow .search and evaluation 
'function based on threat and counter threat to 
pieces and squares. 

By limiting tqe depth of search to two plies it 
is easier to understand why an evaluation func­
tion contains· insufficient "cµess knowledge". 
There appears.to be little proof that deeper 
searching must necessarily improve performance. 

However the paper is mainly intended to intro­
duce the classic Turing-Shannon model, 
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The program I am going to describe is based on the '2 move mate' 
problem solving program written by A G Bell (Dell, 1970). 

As this has been published in the Computer Journal I will not describe 
the move generating routine but will instead describe the development 
of the position evaluation function and some of the problems encountered 
<luring that development. The program is written entirely in Algol, 
originally for the Atlas Computer. It is probably the only program to 
have been moved from one machine to another machine in a different language. 

Initially the program based its evaluation solely on the number of 
moves available to each side. The greater the difference in the number 
of moves available to one side over the other, the better the position. 
This evaluation function has been suggested before, and although it 
works surprisingly well, it does have a number of faults:- · 

(i) No value is given to an undeveloped piece, such as a rook, in 
the early part of a game. 

(ii) The queen tends to be developed far too soon. (Unless one uses 
a library of openings this problem is very difficult to over­
come.) The value of keeping the queen in reserve for a few moves 
is something that is learned by experience and cannot easily be 
programmed in. 

To overcome the problem of evaluating undeveloped pieces, it was 
necessary to take account of two separate values for each piece on 
the board. 

First its inunediate value (which depended on its position) and second 
its potential value (which usually remained constant· throughout the 
game). This potential value is related to the expected mean value of 
the squares controlled throughout a game. These potential values are 
approximately in the ratio P=I: N=3: B=3: R=S: Q=9. 

The number of moves available to each side had initially been adopted 
as the evaluation because of its ease of computation. 
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Although it had worked surprisingly well there did not seem to be any 
logical reason why it should. 

One did not .need a lot of moves, one good one was all that was necessary, 
and a choice o.f 50 moves was little more likely to provide this than 
a choice of 25. 

I then realised that there was a close correlation between the number 
of moves available and the number of squares threatened. 

I therefore modified the program to compute the number of squares 
controlled. A .square is considered to be controlled if one has more 
threats to that square than the opponent. One should also take 
account of the value of the pieces threatening a square. A pawn would 
for example have more effective control than a queen. Strictly speaking 
a square is only controlled if, during a complete sequence of swaps on 
that square, the difference in the total value of the pieces swapped 
off is never negative. 

To speed the program up, I evaluated all positions one ply deep, 
selected the 'best' six or so, re-ordered these so that the 'best' 
were tried first and then looked one ply deeper, using alpha-beta cutoff 
to avoid unnecessary work (Samuel, 1967). To get the effect of a deeper 
look ahead while minimizing the extra computing time, I gave a value for 
threats to pieces~ If I had just moved, the values of the threats were 
as follows. All threats to my pieces were worth half the value of the 
pieces to my opponent, and all threats to my opponent's pieces were 
worth one third of the value of the pieces to me. 

I tried several values for these threats between one and one quarter 
of the piece values but half and one third seemed most reasonable. 

Essentially, the value is based on the likelihood of a capture. If we 
have one piece en prise, one move may save it, but if we have two pieces 
en prise, we are unlikely to be able to save them both or capture their 
equivalent value. 

All these threats 'could be computed quite cheaply from two arrays 
containing the number of threats I had on each square of the board and 
the number of threats my opponent had. At this point the program 
captured if you gave it the chance, moved a piece if threatened, but 
generally displayed no imagination. 

The computer operators used to play the program at night and write 
sarcastic comments on the output after winning in 15 or so moves. 

I then decided to try building some sort of strategy into the program 
by giving the squares different values. Initially the ratios were 
3 for the central four squares, 2 for the next ring of twelve and I for 
all the remainder. 

The next night the best player among the operators tried playing the 
program, expecting to win with his usual ease. The program opened with 
the rather aggressive if unsound Blackmar gambit:-

I. P-Q4, P-Q4 
2. P-K4, P*P 
3. N-QB3. 
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First Winning Game (Blackmar gambit) 

W (Atlas) B (C.H.) ' 4 

. 
1 • P-Q4 P-Q4 

2. P-K41? P*P .. . 
3. N-QB3 N-KB3 

. . · " 

4. B-KNS N-KNS 

5. B-QNSch P-QB3 

i~ ~:a~~ Q-r-J3 
N-Q2 

7. Q*N Q)':QP? 

8. Q-KBS Q*B 

9. 0-0-0 P-K3 

I O. Q-KNS P-KB3 

11. Q-QRS P-QN3 

12. Q-KRSch P-KN3 

13. Q-KR3 P-K4 

14. P-QN3 B-QR6ch 

15. K-QNl . Q*N? 

16. Q*Q p~:B 

17. Q*QBP R-QNt 

I 8. Q-QB7 o-o 
19. R-QS P-K6 

20. N-KB3 P*P 

21. R-Ql R-Kl 

22. P-QN4 B-QN2? 

23. R*N B*N . 
24. P*B QR-QBI 

25. Q-QN7 R-K8? 

26. Q*Rch R-Kl 

27. Q*R MATE 
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It then proceeded to develop all its pieces fairly rapidly~ castled 
queen side, cloubled its rooks on the open queen file and stormed down 
the board using both rooks and the queen, ending the game with a check 
mate by its queen on the 8th rank and its rook on the 7th. The comment 
on the output was 'well it seems to work now'. It is true that the 
player had made several errors during the game, such as giving pieces 
away, but prior to this modification he had always been able to 
recover such losses wirh little difficulty. For the first time the 
program seemed to have developed a purpose. 

From then on. the operators played more carefully and demon·s trated a 
number of weaknesses in the program. Some are not easy to overcome. 
There was a very definite inability to cope with advancing pawns, no 
danger was · ~een un ti 1 the paun reached the 7th rank and was about to 
queen, at which point it could well be too late. To overcome this 
problem I created new tables for b_lack and white to give the value of 
a pawn, and the value of a threat to a pawn, on any souare of the 
board. These values increased as the pawn advanced. This encouraged 
t;he program to move up its own pawns and to attack its opponent's 
advanced pawns. One could also fiddle the table to force the program 
to open in a particular way. For example, by giving the pawn in QB2 
a large negative value one could force it to use the English opening 
P-QB4, one that it would not normally value very highly, in spite of 
what Petrosian or Spassky might think. 

Another problem more difficult to overcome is the classic failure of 
searching to a fixed depth (Turing, 1953). If the program finds a 
potentially bad position at the full depth ·of its search, it cannot 
search deeper for a refutation and can only search wider. If, as in 
my programi the width of search is also limited, it is often unable 
to find a sensible reply. · 

As a result it adopts a policy of 'sufficient ·unto the move is the 
evil thereof' and \•1ill do anything to avoid the 'fatal 1 move. The 
program will put off the apparently fatal move by an irrelevant check 
or an attack on a queen, even if the checking piece can be taken and 
the original threat remains. A good example of this occurred before 
the advancing pawn problem was corrected. The program (white) had a 
won game but its opponent had pushed a pawn through to the seventh 
rank to reach the following position after move 24 • 

. 
BLACK K N 

p p p 
r!HITE - - -

N 

p p 
-

p p 

p ·x p p p -
I R 



The program continued:-

25. 
26. 
27. 
28. 

R.~~Nch 
N*Pch 
N-Q6 
P-N4 

K-K2 
p ;':N 

P-N8=Q 

This ridiculous coBtinuation was simply due to the fact that the move 
R-KNI was not placed in the top few moves when evaluated at level I. 
After all to do so the program would have to give up a threat on a 
knight for one on a pawn, and also give up contra] of an entire central 
file for control of the K~J2 square. With the complete queen's file open 
there were far too many other moves worth considering first, eg:-

R*Nch 
R-QS 
R-Q7 

or even:-

R-Q4 
R-Q6 

and N~-P fills up the buffer of six moves. With no sensible move in 
the buffer it could only put off the fatal pawn queening move and hence 
lost a winning position. This problem ·of searching to fixed depth can 
also arise with irrelevant threats to the king or queen by pieces that 
can be easily captured or avoided. 

The program tends to give castling a rather low priority unless the 
king is vulnerable or the rook's new fi]e is alre;idy open. Knowjne 
that castling is potentially -a good move, I have had to encourage.it 
by adding a number of point~ for this move. 

To summarize the present position. The program evaluates all the 
positions on the first ply, selects the best n, orders these n moves 
and then evaluates at the second ply using alpha-beta cutoff. The 
position evaluation function uses the following factors:-

Piece Value 

Your Threats 

My Threats 

Square Values 

K 

90 

90 

Q 

324 

162 

108 

4 Centre 22 

12 Next 12 

48 Others 6 

R 

180 

90 

60 

B 

108 

54 

36 

N 

90 

51 

34 

cf (Berliner, 1970) 



Pawn Tables 

Rank 2 3 4 5 6 7 

Q Pawn 36 36 36 48 54 66 

K Pawn 24 36 36 48 54 66 

QB Pawn 4 18· 18 30 48 66 

The Rest 18 18 18 30 48 66 

Your Pawn Threats 

Rank 2 3 4 5 6 7 

Q Pawn 18 18 18 24 27 33 

K Pawn 12 18 18 24 27 33 

The Rest 9 9 9 15 24 33 

My Pawn Threats 

Rank 2 3 4 5 6 7 

Q Pawn 12 12 12 . 16 18 22 

K Pawn 8 I 2 12 16 18 22 

The Rest 6 6 6 10 16 22 

Also 

Your EP pawn threat = 9 
My EP pawn threat = 6 
castling = 25 
stalemate value = 0 
checkmate value = 10000 

Testing the move selector 

In order to test the move selection and ordering routine, I collected 
statistics on over 100 positions. 

I take the move selected at level 2 and find what its position is in 
the complete ordered list at . level 1. If the selection is good all 
the best moves at level 2 should be near the top of the list at 
level 1. The results were as follows:-
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Position 

] 

2 
3 · 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
1 7 
18 
19 
20 
21 
22 
23 
24 
25 

No of Occurrences 

40 
24 
12 
11 
16 

4 
0 
4 
1 
I 
0 
0 
3 
l 

2 

2 
1 

Cumulative% 

32.8 
52.5 
62.3 
71.3 
84.4 
87.7 
87."7 
91.0 
91.8 
92.6 
92.6 
92.6 
95. 1 
95.9 
95.9 
95.9 
95.9 
95.9 
95.9 
95.9 
97.5 
97.5 
97.5 
99.l 

100 

Thus over 90% of the ffiial moves appear in the first eight selected 
at level 1. This seems quite a good distribution of selections if it 
were not for the long tail. 

One would like to be able to cut off the search at width eight but 
some key moves occasionally occur much further down the ordered list, 
the worst example was a mating move that was listed as 24th at the 
first level. 

One can see that while the move selector is reasonable most of the 
time, there are certain positions where it goes completely haywire 
for no apparent reason. It will also at times find the right move for 
the wrong reason. Alex Bell asked me to try it out on an opening trap, 
namely the Blackburne shilling game:-

I. P-K4 . P-K4 
2. N-KB3 N-QB3 
3. B-B4 N--Q5 

does it ,play 4. N*P accepting the offer of a free pawn? 

4. Q-N4 
5. N*BP? 

forking the queen and rook but 

5. 
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whi eh is a win for black. 
In fact it played:-

because of several moves that it considered potentially dangerous to 
its maximum depth of search, particularly N*Pch? 

If we now force it to .the -position after 4 . . N1~P?, Q-N4; it does not 
play 5. N*BP ?:· but 5_. B*Pch, because the check puts off several 
potentially dangerous moves · such as N*Pch? or Q*Pch? or even Q*NP I 
{but that was aboti 4th) .- . 

So the programs sometimes finds the best move or avoids the worst move 
for totally the wrong reasons. This odd behaviour is due in part to 
the shallow fixed depth of search. But searching deeper is not going 
to cure the problem, only hide it from view. The erroneous position 
evaluations will take place deeper in the search tree where their 
effect cannot be easily observed. It is a mistake to use deep 
search ing too soon in a pr ogram's development. The posit i on evaluation 
function and move selection real ly need to be very well developed 
and understood before attempting deep searching. 

Running the progr am 

Finally another sample game to show how moves are input:-

Octal Input 
W(l906A) B (Black) 

1. P-K4 P-K4 6444 
2. N-KB3 N-QB3 7152 
3. B-NS P-QR3 6050 
4. B-Q3' N-KB3 7655 
5: 0-0 B-B4, 7542 
6. N-B3 0-0 00 
7. K-Rl P-Q4 6343 
8. P*P N*P 5543 
9. Q-Kl B-Q3? 4253 

10. N*N R-Kl 7574 
11. Q-K4 N-Q5 5233 
12. Q*Pch K-Bl 7675 
13. Q-R8 mate 
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To play the computer we use an octal notation for input:-

7 

6 

5 

4 

3 

2 

0 

-

-
, 

p 

R 

0 

-

p p 

N B 

2 3 

BLACK 

·-

p p p p p 
WHITE 

Q K B N R 

4 5 6 7 

Thus P-K4 for white is 1434, you may also put in 14 34, spaces are 
ignored.+ means it is waiting for your input. If you input the 
character@ the present position of the board is output. If you wish 
to castle; it will accept 00 or 000. If you get .:i pmm to the 8th 
rank it will ask what you want. Input N, B, ~ or Q; anything else and 
it will assume Q. lt always . turns its own pm.ms into a queen. If the 
character+ is input after the move, eg 1434+, the program will make 
the move without checking it. It will then type out:-

HOVE ACCEPTED 
YOUR MOVE 
+ 

and wait for further input. This is useful for setting up board 
positions for te~ting purposes. Input an A to finish the game and then 
type in QU to quit the chess macro, The program is started by typing 
crm.UN or CERUN E, in the latter case the program plays black. 

Recent developments 

A number of improvements have been made to the program since the 
conference. Several people have noted that the program often achieves 
its primary aim of controlling the centre squares ·of the board but 
then fails to capitalise on its position. This has been corrected by 
setting up a new array which .lists all the squares surrounding the 
two kings. 

Initially, an extra 6 point 'king bias' is awarded for control of each 
of these squares. An extra point is added to the king bias on each 
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move from the JOth to the 22nd. Thus after 22 moves 18 extra points 
are awarded for control of these squares. In addition, from the 10th 
move, all squares having a value greater than 6 are reduced in value 
by one point per move until all squares have the value 6. 

It has been stated (Zobrist and Carlson, 1973) that it is difficult 
to include . new chess concepts in a conventional chess program. 
Several of the concepts mentioned in Zobrist's paper have now been 
implemented with little effort by adding ex.tra tables of piece value 
to the program. 

The value of. a knight is now read from a table. It has the value 85 
at the edge of the board and 90 elsewhere. This not only discourages 
the program from moving its knights to the edges but also encourages 
it to develop its knights from their initial squares. A bishop table 
gives 95 points for a bishop in its initial position .and 108 in all 
other positions. This encourages early development of the bishops 
A queen table gives 350 points for a queen in its initial square and 
324 elsewhere. This discourages early development of the queen. After 
10 moves all\a.lues in the bishop table are set to 108 and all those 
in the queen's table to 324. 

The program was translated into PL/1 and all the above modifications 
included, in about six weeks of spare time programming by John 
Birmingham of AEP.E, Harwell. He has also modified it to search three 
plies deep, ie one more ply. 

At present it uses the unsound centre counter defense 1. P-K4 P-Q4 
and al.so tends to attack its opponent's undeveloped queen with an 
undeveloped bishop. These problems can be overcome by suitable 
modification to the tables. 

The program now plays a far better game, both 2-ply and 3-ply versions. 
The change from central control to attacking the king is very 
noticeable. It defends well and if the position becomes complicated 
it takes level swaps (or bette~ until it can detect no further threats. 
Once a dead position is reached it moves all free men to attack squares 
round its opponent's king. It does not as yet test for a draw by 
repetition and as a consequence has drawn several won games. 

On occasion it has played very good end games, queening its own pawns 
and preventing the queening of its opponent's pawns by long sequences 
of pins and checks. However if a pawn is still on its initial square 
in the end game there is no incentive to advance it because the value of 
all the squar_es is now reduced to 6 and the value of a pawn does not 
start to increase until it reaches the 5th rank. This can be corrected 
easily by modifying the pawn tables to give sn:all increases in value 
on the 3rd and 4th rank. 

FUTURE DEVELOPl!ENTS 

The existing program uses the alpha-beta c.utoff technique to speed up 
tree searching. This is most effective when the moves are ordered so 
that the mos~ likely cutoff moves are examined first. The moves are 
already ordered at the hiBher levels of th~ look ahead tree, but so 
far no attempt has been made to order the moves at the deepest level 
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of search as ·this would require a prior knowledge of the value of 
each move. 

A method of performing this ordering has now been proposed. It is based 
on the idea that a refutation for one of your opponent's best moves is 
likely to be a refutation for most of his following moves (see Computer 
Chess Experiments)~ 

The algorithm (known as the 'killer heuristic') will' operate as 
follows:-

(i) List and evaluate all rep'lies to the first move at (full search 
depth - l). Re-order the men. 1.n the WHITEPIECE or BLACKPIECE 
array so that men having a good reply are examined first. 

(ii) Order the moves for each man and use this information to re-order 
the tables used in computing each man's move, so that pref erred 
directions are examined first. 

(iii) Modify LIS™OVES so that the moves of each man are generated and 
evaluated separately. This will avoid unnecessary work listing 
moves that are never examined • 

• 
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P S Y C H O L O G Y A N D C O M P U T E R C HE S S 

by 

AH Bond Queen Mary College 
University of London 
Mile End Road 
London 
El 4NS 

"If you know the enemy and know yourself you 
need not fear the result of a hundred battles, 
If you knm/ yourself but not the enemy, for 
every victory you will suffer a defeat. If 
you know neither you will always be beaten." 

- GENERAL SAN-TZU 
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Editor's Note -

It is mainly due to Alan Bond's interest in psy­
chology and his enthusiasm in communicating that 
interest that I have become convinced that any­
one who wants to write a successful chess program 
must "know the enemy". Unfortunately, due to 
other commitments, Dr Bond has been unable to 
describe investigations of the ''enemy" and his 
"methods" to the extent that I think the subject 
deserves. 

I have spent many hours discussing the problem 
with him and, by and large, we agree upon what we 
disagree upon~ I have ther~fore included a very 
short resume of his talk but have taken the 
liberty of expanding on the subject, not as dogma 
but for contrast. 

I would like to acknowledge the DESCRIPTOR INDEX 
and REFERENCES he has provided. 
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Introduction 

The fraction of workers who believe that the study of human 
behaviour can illuminate the study of "pure" artificial intelligence 
is disturbingly low, probably less than one third. As a member of 
this fraction I cend to picture the relationship between AI and 
cognitive psychology as one of mutual benefit particularly if the 
subject is chess. 

The main illumination that cognitive psychology can suppy to AI is 
in providing ideas. There is no doubt that ideas are now needed 
for a successful chess machine; psychology has used the game for 
decades as a standard task environment. 

The results of such work should be studied more. Apart from 
helping to produce chess machine ideas such studies have given.us 
conc~pts and mechanisms which help us to pose interesting problems 
about intelligence in general. 

Motivation 

As motivation for this talk let me caricature an idea from Simon's 
11The Sciences of the Artificial". It is, that since an adaptive 
machine adapts to its environment, it will in general incorporate 
an efficient adaptation provided the requirements of this new state 
do not violate any natural contraints such as speed or storage of 
the machine. · 

Thus when a machine is well adapted to its environment and 
operating within its limitations, its behaviour will be the same as 
all other optimally adapted machines and will be principally a 
property of the environment and not the machine. Only when 
operating near their limitations do the machines differ. 

If we assume that the best human information processing in the 
environment of chess problems is almost perfect, then we may 
postulate that the human mechanism is the most efficient in the 
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sense of being the best adapted. Hence the most efficient chess 
program must behave like a human. 

I believe that support for this argument exists in that changes in 
recent chess programs brought about for efficiency's sake have been 
changes towards human behaviour. 

Furthermore the key to efficiency seems to rest in the acquisition 
and use of miscellaneous information about the chess position which 
in turn rests upon the flexible description of information. Humans 
are demonstrably impressive at extr~cting and using information in 
a flexible way in the chess environment. 

Experimental Methods 

Turning now to what is known of human behaviour in chess situations 
we find the subject in its infancy. Humanemethods to study human 
information processing must necessarily be rather indirect. We do 
not however need to go to the extremely behaviourist position and 
exclude introspective reports. Verbal reports from a subject are, 
after all, data, and by definition true. Whether there is a 
simple relationship between this data and the information processes 
under study is another matter. I do not know of any model of the 
verbalisation process. 

The methods used then are mainly two, both verbalisation. They are 
introspection and thinking aloud. 

An introspective verbalisation is done after the process to be 
investigated has taken place and consists of the subject's 
description of what he thinks he thought. It ~ay include accounts 
of moving images, intuitions, etc. Introspection was used a lot 
until about 1920 when it fell into disuse. 

Thinking aloud was used as a technique first by Duncker in 1935 and 
is just what it says, namely the subject talks whilst he is solving 
the problem. This must interfere to some extent with his thinking, 
probably inhibiting the non-verbal processes and enhancing the 
rationalisation processes. The relationship of the verbal report 
to the total information processing activity is unclear. However 
most workers accept it as a rough indication of partial contents and 
order of the thoughts described. 

One usually studies a subject's behaviour on a choice of move 
problem in chess, ie one does not study a complete game but instead 
gives the subject a chess position and asks him tci" 'play just the 
next move. Usually the position is taken from a game but not one 
played by the subject. However in one study (Wagner, 1971) a subject 
played a game and in one position verbalised his thought in 
choosing the next move. The behaviour observed was similar to that 
in the artificial positions. 
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Another experimental method that has been used 1n the study of 
human perception of the chess board is the eye movement camera 
which produces a f_ilm showing the point on the board on which the 
eyes are fixed at any moment. 

Summary of Chess Studies 

The earliest" ·study was by the great psychologist Binet who, in 1893 
(reprinted 1966), studied introspective reports of blindfold chess 
players. Hi~ paper remains a classic. 

Cleveland (1907) made some remarks on the stages of learning chess, 
based on reports by players. The . main work on chess was done 1.n 
the war period 1939-45 by De Groot and is presented at length 1n 
his book. De Groot is still professor in Amsterdam and has 
~ursued his 'thinking aloud' method and the study of thought. More 
recent remarks by him are 1n (De Groot, 1967). His book ends with 
some illuminating remarks on chess playing programs and there is 
also a separate paper (De Groot, 1964). 

Following De Groot a detailed analysis of exploratory processes 1.n 
chess was made by Newell and Simon (1965) and this work is 
described in their book (1972). An independent study of their 
findings was undertaken by Wagner and Scurrali (1971). 

Recent work on eye movements has been done by De Groot and his 
student Jongman in (De Groot, 1966) and (Jongman, 1966) and by the 
Russians Tikhomirov and Poznyanskaya (1966). 

Simon and Barenfield (1969} tried to explain some perceptual 
phenomena as coding processes into "chunks" (see next section -
Editorial Extension) and Chase and Simon (1972, 1973) tried to 
establish the existence of and identify some of the perceptual 
"chunks" by further experiments, particularly the technique of 
board reconstruction, 
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Editorial Extension - AG Bell 

The following repeatable results have been obtained by psychologists 
studying chess players. 

(1) From the experimental methods of introspection and thinking 
aloud used by De Groot it was not possible to distinguish the 
grandmaster from an ordinary pl ayer the number of moves 
examined ii the same (usually 2 or 3) _per position; the 
depth and apparent speed of search differs only slightly. 

Obviously the grandmaster must be able to select stronger 
moves for his consideration. How does he do this is the key 
question. 

(2) De Groot repea ted and extended a classic experiment first 
performed by the Russians. Re verified that it is possible to 
distinguish the master from the amateur by briefly displaying, 
for about 5 seconds , positions from master play. Grandmasters 
can reproduce such positions almost perfectly, amateurs can 
replace only one third of the pieces on average. 

(3) displayed are random - the pieces 
then again performance becomes 

If the chess positions 
placed haphazardly 
indistinguishable. 
sixth of the pieces 

Most people can only replace about one 
irrespective of their chess skill. 

are 

The conclusion drawn from these experiments is that chess 
skill cannot be detected from observing the search process but 
can be detected by pattern recognition ability. 

(4) The recognition and reconstruction of a position is done from 
short term memory. GA Miller, in a famous article "The 
magical number seven, plus or minus two", proposed a short 
term memory model with a capacity of about seven "chunks". 

(5) 

The master player must be able to recognise a meaningful 
position by describing it in about seven chunks, ie for about 
twenty pieces recalled he mus t have about three pieces per 
clunk. We can partially explain the remarkable ability of 
chess masters to reconstruct positions by them possessing an 
enormous repertoire (vocabulary) of familiar patterns (chunks) 
any seven of which can be put together to reproduce what he 
has seen. 

Experiments have been performed to find how many "chunks" a 
master player possesses and try to isolate some of them. It 
appears that a chess master can recognise about 100,000 
different clusters of pieces. Here is one of them 
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BR 
' 

BP 

. 

BK 

BB 

BP 

BP 

(Also the most likely 
position these pieces will 
occupy at the 21st move 1n 
a master chess game) 

This is a very familiar pattern to the master player. The 
fact that it is familiar can be verified by eye movement 
experiments, where it can be shown that the master hardly (if 
at all) fixates on any of these pieces. His peripheral 
vision informs him about a pattern he has seen thousands of 
times before, he does not need to look at it closely. 

(6) The chess chunks (words) in a master's vocabulary can be 
isolated more convincingly by, timing and observing the order 
in which the master reproduces a position he can see upon 
another hoard. The subject indicates (unconsciously) the end 
of one chunk and 'the start of another by turning his head. · If · 
the first board is not displayed continuously then any pauses 
in the reconstruction process can also be ~.nferred to be inter 
chunk boundaries. · · 

And so a partial understanding of the processes that expert chess 
players use when choosing a move has been obtained. At first 
sight however it does not appear to be of much use to the computer 
scientist for the following two reasons. 

Firstly, the acquisition of a vocabulary of 100,000 patterns takes 
a human at least six solid years staring at chess positions in 
games he is playing against experts. 

Secondly, even if we could identify and input many of these 
patterns, how does any combination of seven of them suggest 
plausible, strong moves to the master player? 

Quite obviously chess knowledge is not going to be acquired by a 
computer in the same, inefficient way a human acquires it. The 
belief that the program must "make use of essentially the same 
methods as those used by men" seems fatuous because human methods 
derive from practice thous ands of hours of practice with an 
inbuilt limitation of a seven "chunk" short-term memory apparently 
playing an important role. 
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However what may 
chess program is 
of the "enemy". 

be usefully derived from this work in terms of a 
that we may have discovered some of the weaknesses 
We may now be able to "jam" his system. 

Let's assume we can identify and input many of the chess "chunks". 
The program now tries to produce positions or situations which 
require more than seven chunks to be recognised and described 
providing it s normal evalua tion function (however derived) is not 
t oo s e riou~ly viclatcd . This might seriously impair the human's 
ability to have strong moves suggested to him. 

i.n1ether such an approach is possible or not, the point I am trying 
to make is that there appears little proof that humans are 
particularly efficient at chess. If it were so, then I would agree 
that a program would have to simulate very exactly the human 
behaviour at the time of playing, but the limitation of seven­
chunks in the short-term memory could imply that the best humans 
are operating near the human limitation and therefore a successful 
chess machine need not be a "paradigm of the human mind". 
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Editor's Note._ 

Should be read in conjunction with (Atkin, 1972), 
The emphasis is no longer on tree searching, posi­
tion evaluation is done mathematically and should 
be repeatable. 

At present the program considers each legal move by 
white and then examines the consequent changes 
(increases) in (only) seven features, I t then 
sums the scores under these seven headings to give 
an overall positional score for the move. 

Atkin states that there is great scope for improve­
ment particularly if chess masters can be persuaded 
to help in the research, 

\ 
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1.0 Introduction 

We examine the game of chess by looking at an 

important relation which exists between the pieces and 

the squares, and which embodies the moves allowed to 

the former. This relation is mathematically equivalent 

to a simplicial complex which, in its turn, possesses a 

53 geometrical representation in the euclidean space E • 

It is therefore possible to interpret the course of a 

game of chess as tlle expansion and contraction of two 

geometrical structures (one for White and the other for 

Black) in this multi-dimen;ional space[l]. This seems to 

provide ·us with a natural language with which to discuss 

the accepted positional theories in chess. It is also 

particularly well suited to expression in a computer 

language, and we illustrate this aspect by demonstrating 

some typical analysis in specific situations. 

Finally we try to indicate the potential richness of 

this structural language and to suggest various lines of 

research i,1hich might be profi tabf e in the broader context 

of board games plµyed by computers. 
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1.1 The relations rrv' r B 

Let f'/ C {rv.; i .,, 1, 2, ... 16} be the set of lvhi te me_n, 
.l. 

and s = {s .; 
J 

j = 1, 2, ... 64} be the set of squares on the board. 

Then we define the relation rwc r-1 X S in the folloidng i,ray. 

Definition: (r.'i, S j) e: r W if and only if W. "attacks" S .• By 
.l. ) 

"attacks" we mean that one of the'following holds true: 

(a) if it is Nhite's move, and r,1. is a piece (not the 
.l 

king or a pawn), then "W. moves to square s. ,, 
.l J 

is a legal move; 

(b) if Wi is a pawn then S j is a "capturing square" 

for W .; 
.l 

(c) if there is a White man, Wk (k :i-i}, on sj then 

W. is protecting Uk, in the ordinary sense of 
.l 

chess-players' parlance; 

(d) if w1 is the White king {r-lK) then Sj is an immediate 

neighbour to the square occupied by W., horizontally, 
.l. 

vertically, or diagonally; 

(e) if S. contains a Black man, Bk (~ BK), and if it is 
J 

f'lhi te 's move, then "W. captures 
l. 

B " k 
is a legal move; 

(f) the BK is on s. and is in check to w .• 
J l. 

We notice that, under (a), the empty square in front of a 

pa.1-m is not related to that parm via rr,, • Also we notice that if W. is 
.l 

on square sj then mi, S/ ~ r
1
.,; a piece cannot defend itself. These 
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points are not crucial to our discussion - which primarily illustrates a 

method of attacking the , problem. 

It is clear that there is another relation between wands 

whic!i cannot be ignored, vi:., _ that rel,'1.tion which tells us on 

which squares the men are to be found. But this relation is 

actually a mathematical mapping, 

pos: W + S 

and therefore possesses a trivial structure (c.f. section 1.2). 

rve now have the two relations r _W C W x S and r B C. B x S, 

one for each player. When the difference is irrelevant we shall 

denote either by r. As a further point of detail, relevant in 

discussion of specific cases, we shall othen.~se denote the 

members of S by their accepted algebraic notation al, ••• , hB (in 

the order of 1, ••• 64) and we shall denote the members of w by 

the obvious 

WQR, WQN, WQB, WO, r,'K I i,;xn, WKN, WKR, WQRP, • • • f·/KRP 

in the order 1, ••• 16; with a similar notation for D. 

1.2 r w defines t~,ro simplicial complexes 

If there e:ists at least one f'li such thllt (p+l) squares So./ 

r r.1 l, ••• (p+l), are rw-.relatcd to w
1

,, Ye so.y that these S's constitute 

- H -



a p-slmplex (one o:f whose names is w
1
J, and denote it by 

that 

(], so 
p 

Any subset of these (p+l) S's is cc.lled a face of this p-simplex, 

and is n t-simplex (t ~ p) in its own right. It follows tlJat the 

relation rw can be described as a collection of p-simplices, 

for various values of p. Such a collection (closed under the 

relation " - is a face of -") is called a simr,licial complex 

(a "complex" of c.i.mplices) and is denoted by Kr/S1 r,;. 

This notation is used to suggest thut the set S plays a 

special role - i11 terms of whlch the simplices w
1

_ are defined. This 

sets is usuallg referred to as the vertex set. When rw is 

understood we can abbreviate the notation to KW(S); then 

Kw(S) c {p-simplices; o, p, N} 

where p • 0 corres~nds to ·O-simplices of the form (sa)' and where 

N is the maximum value of any pin this collection. The value of 

p is called the dimension of the p-simplex (v. section l. 3) h•hilst 

N is called the dimension of the complex/ N • dim K. 

We notice too that rw may be such that some squares sj are not 

, vertices of any simplex w
1

, not being "attacked" by• any of White's 

men. 

. -l 
Dut we also notice tlw.t r W possesses an .inverse rel ation f W 

. . r -1 (which relates s
1 

to a set of W} - the incidence matrix of 
j . w being 
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the transpose of that of ri,• This relation therefore defines a 

simpliclal complex 

referred to t1s conju':fate to KJ.,(S}. In K
5

(w) the vertex set is W 

wllilst each s
1 

(in rw-l) is a simplex; for example, if Si is a 

p-simplex, then 

... 

which means tlu1t Si is simultaneously attacked by the (p + l} White 

men wa , i a 1, .•. , (p + 1). 
1 

We shall describe the complex 

KW(S} as White's view of E-oard 

and KS(fi) as Board's view of T-thite 

Similarly, KB(S) is Dlack's vier'I of Board 

whilst K
5

(B) is Board's view of Black . 

These complexes are well-defined at each stage of the game. When 

Io/hi te has made I moves arid Black has made J moves we shall say that 

the game is in mode [I, J). Clearly J • I - l or I. Also, in terms 

of a well-known convention, mode {I, J) corresponds to the completion 

of (I+ J) plys. 
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TJ1e complexes defined above are f,unctions of the aode1 they need 

to be recomputed after every move. It is clear that, in general, 

a move by Ullit'e, say affects all four complexes. 

1.3 A geometrical representation of KW(S} in E
53 · 

(Sal, ••• s(J.p+l) 
polyhedron, vertices the S , in p-dimensional euclidean space 

ai 

If we identify the p-simplcx uith a convex 

tlien we can obtain a ffeometrical representation of tha whole 

complex l(r/S), i .n a r,ui table space -di. A well-known thcorem{:l] · 

tells us that, if N = dim K, an economical value of His 

Jim 2N + l 

From a consideration of r W we notice thc1t the maxin1um value 

of dim w
1

, r'1
1 

e: W, is 26. This occurs when the WO is in the 

centre of ~ia board (say, on square d4}, for if its range is 

unobstx·uctcd it then a.ttacks a • total of 27 squares. This means 

that under these circumstances WQ is a 26-simplex. It follows 

53 that Kr/S) can alt>-!ays be represented in the space E - and this 

is independent of how many Queans are on the board. 

Since dim(BQ) , 26 in K
8

(S) we can contemp.late the complex 

Kw(S) U KB(S) and find a representation of.it in the euclidean space 

E
53 • Thus both of the geometrical ·~tructures ·KN(S) and KB(S) can 

' 
be regarded as existing in E

53
, for all possible mo<Jes . [I, J], in 

all possible chess games. 

In this sensc-1 we c.:m say that a game of chess · can be modelled, , 

via the interplo.!/ of connected polyhedra, in E53 • 
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l. 4 q-conncctivi ty in the complex Kr/SJ 

Simplices Wi ,Jn~ f'lj are sa.if] t 'o be joined by a chain of connection 

if there exists a f.inite sequence of simpli'ces 

... 

such that 

(i) er . is a face of r1
1 al 

(ii) a is 
<:J.2 

a 'face of W. 
J 

(iii) CJ and a l1ave a common face (say} oe.' i = 1, •.•• , (h-1). 
<:J.. ai+l l. J. 

We say that this chain of connection is a q-connectivity if q is 

the least of the integers 

As a special case, a simplex a is p-connected to itself, but is not 
p 

(p+l)-connected to any a. r 

If we define a relatjon yq as meaning" is q-connected with" then 

yq is an equivalence relation on the simplices of K. The classes of 

y , or the me.mbers of the quotient set 
q 

Kl , are now the pieces 

Yq 

of K which are separately q-connected. We use the notation 

oq = cardinality of the set x1 ·Y q 

" and the process of computing all - the values of Q, for q = 0, ••• , dim K, 
q 

• f d Q l . (5 J is re crre to a~ a -ana ysis • I~ N = dim X, we arrange . these 
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q-values to give a vector, what elsewhere151 has been called the 

structure vector, 

The value Q 
O 

is, in fact, the same as the zero-order Betti-nu11zb.::Jr 

of tlJe complexr but the higher order values Q must not be confused 
q 

with the higher order Betti numbers. Thus, 0-connectivity is the 

same concept as arc~dse connecti·vit~!l our higher order Q -tralues 
q 

are a generalisation of this notion. 

2.0 Positional motifs a.rising in K {S) rv 

In this section we use the following definitions: 

,., 
q • top q-value of a simplex 

• dimension of the simplex in Kw(S}, 

q • bottom q-value of a simplex 

n largest q-value at which the simplex is connected 

to a distinct simplex, 

Ecc (a} ,.. eccentricity of a simplex CJ 

,._ V -I i • .,, (q - q} f (q + 1), when f:.hat rat o f:KJ.sts. 

(A) The value of q (W.) is the dimension of the mii te man W 1 in 
.1 

the complex Kr./S}; it therefore equals the value 

{number of squares attacked} - l 

This top-q value therefore tells us the dimension of that subspace 



of E53 in which is located the polyhedra whose name 1s w1 • It is 

therefore an indication of the geometrical. ~orizon (in E
51J enjoyed 

"· ' 
by iv i° This suggests that g (W i) is a measure of the mobility of. W i, 

in this particular mode. 

" we notice that the maximum valups of the q-numbers for the 

various men are as follows: 

" " " max q (Q) 0 26, max q (R) "" 13, max q (N) - 7 

" max q (IJ) /0 12 (on half the board)• 6 (on whole board) 

" max q (P) a l 

" The ratio of max (q + l) for all the men are therefore 

27: 14: 8: 7: 2 

for Q : R : N : B : P 

These should be compared with the classical static "values" of 

the pieces, namely, 

Q : R : N : B : P • 9 : ~ : 3 : 3 : l 

(B) 
V Since q (W .} • max dim (W. f'\ Wk) it follows that 

i k J. 

~ w1 and Wk are simultaneously attacking (q + l) squares, they share 

V . 
. a q-face in the structure KW(S). This value indicates the extent of 

the co-operation of the pieces wi, wk, as well as their mutual mobility • 

.. 
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V .., 
(C} TheEcc (W.} a (q - q) 

J. 
• (q + 1) indicates the extent to which 

r'l, is a lone attacker. If Ecc (W .} = 0, then 
l .1 

"' V 
q = q 

and so the acti.on of l'.7 , is entirely in harmony with (at least one of} 
.1 

the oth~r pieces. 
V 

flc notice that when q = -1 (r·l, is then totall-q 
.1 

d.isconncctecl from all other pieces} Ecc (I-I,} = 00 • Otherwise the 
.1 

largest value of Ecc ('i'li) i_s q (t'1hen q = O}. E:..cluding the · extreme 

case, when q = -1, ve therefore have the inequa.li ty. 

for Ecc O-,' . ) • 
J. 

,.. 
0 t: Ecc 0,, .} , q 

J. 

l1 move which lo.,:ers Ecc (W.) can · clearly do so in one of two 
.1 

;,.. 

ways; either by decreasing q (W.} - reducing its effectiveness 
.1 

\J (de velop;;:ent ) on the Board; or by increasing q(W
1

) - increasing the 

co-operation and mutuai mobility with other pioccs. 

f'le notice, for example, that if we were to use the value of 

Ecc a,1 .) to obtain a static "value" for r1. then the classical 
J. .1 

numbers 9, 5, 3, 3, l can arise in various ways - which depend 

upon -the bottom-q values. Thus if we take 

(i} 

(ii) 

(iii) 

V 
q :,:: 0 

" q = 1 .., 

V 
q,: 

we obtaiJ, (rv,} Ecc = 9, 5, 3, 
.1 

,., 
when q(W .} = 9, 5, 3, 

l. 

we obta.in {rl ,) s, Ecc = 9, J, 
.l 

when 

2 we obtain Ecc (W.} r 9, s; 3 
.l 

" 

l 

l 

1 

when q(W~) ~ 29, 18, 12 
.l 

(pawn exclud(;!d) 



This latter case is impossible £or any of the pieces, and so we deduce 

that the classical values can only plausibly correspond to Ecc (w1J 

at the level of q O O. At. th;~ level Wj ·and wj are 0-connected if 

they simultaneously attack a common square (only one). 

(D} A move which lowers the value of Qt' for some fixed t, in 

the structure vector~ can do so in more than one way. In the 

first place, Qt can only change by multiples of unity (~Qt•! n}, 

and if 

~ V 
then q must have increased for some wi, and q cannot have decreased 

for any W j" Thus /j() t < 0 can result from an increase in the 

co-operation of the pieces. 

On the other hand it is possible for tot< 0 by some one (at 

least} component disappearing at the t-level. This can happen ·by 
A 

a reduction in q (Wi} for some i - in such a wag that, after the 

move, -. 
A 

q (Wi) < t 

,. 
whereas, before the move, q .(w1J > t. We notice too that it need 

not be the piece Wi which is involved directly in themove; the 

.n,vement of Nj can effectively block the action o~ Ni so as to induce 
A 

the reduction of q (w1J. 
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The co-operation of pieces and pawns, manifest at various t-levels, 

can be displayed as follows: 
I 

t -0 any pair of {K, 0, R, N, B, p} (share l square) 

t - l any pair of {K, 0, R, N, B, p} (share 2 squares) 

t ,. 2 any pair of {o, R, N, .B} 

any pair of {x, 0, R) .( share 3 squares) 

t = 3 any pair of {o, R, N} 

any pair of {K, Q, R} 

B and N 

Q and B on same diagonal (share 4 squares) 

t == 4 Q and B on same diagonal 

Q and R on same file or rank 

R and R on same file or rank (share 5 squares) 

t = 5 0 and B on same diagonal 

Q and R on same file or rank 

R and R on same file or rank (share 6 squares) 

t = 6 Q and R on same edge file 

or edge rank (share 7 squares) 

t ) 7 no two pieces 7-connected (share ) 8 squares) 

z·t follOI\TS that if 6Q t < 0, when t :":l 7, the reason must be 

the fact that• a piece W, exists for which the move has resulted 
.l 

" in old q a,.) ~ 7 and ne1t' q (f'l.) < 7 
.l .l 

An exception to this occurs if there are tk'O White Queens 

on the Board - s.:iy, one on al and .the -othe.r on aB. These Queens 

-· are then 7-connectcd {if the 1st and ·Bth ranks, as well as the 

leading diagonals,. are other1dse clear. In this specia.l (and 
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unusual) case ~07 < 0 can be the result of an increase in piece 

co-operation at th_e 7-level. , 

2.l Positional motifs arising in -K5 (W) 

It is in a/ consideration of the geometry of K~(W) that we 
,,;J 

can see an exP,r.ession of the positional theories first advanced 

by Steinitz[b]. 

(A) Each square Si E K5 (W) is a p-simplex, for s~~e value of p, 

so that 

where the w
8 

denote White men attacking s1 • Other things being 
i 

equal, it is clear that dim (Si) is a measure of the eontrol 

exercised over Si by the White men. But the question of absolute 

control cannot be settled •"i thout 

and (ii) a.llowinCJ. for the relative "values" oE the vertices 

(the w~.J in the simplex Si. 
J. 

In the sense of Steinitz, Si is a stronq square for White when 

the control is maximal or absolute. Ideally, for White, Si£ KS(W) 

but s
1 

t K5 (B}. But failing this, and taking (ii) into consideration, 

.. 
the presence of pawns in the p-simplex Si of x

5
(w} - and their 

absence in the simplex Si of K5 (D} - makes Si a strong square for 

White, and a weak square for Black. A not-able example of such a squ_are 

is one which lies in front of an isolated Black pawn; for here we have 

a situation in i-11µ.ch Black cannot (usually) introduce a pawn into the 
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simplex s1 of X5 (B). Thus Black has a permanent weakness - the geometry 

cannot be rapaired (except perhaps with White's co-operation). 

This would suggest that tle whol e simpl e x s
1 

is in some sense, 

which must eventuillly .be gir,tcn c1 numerical _value, a measure of the 

s t r en rr th of that square S . . In this coritext ,,.,e must clearly 
.1 

distinguish between the contr ol v a lue of a piece ll j i1I1d its piece 

value; the former being, in some sense, inverse to tJ-ie latter. 

It seems natu.t·ul in the light of these remarks to ir1terp.i:et 

control t'alue of Wj as a mapping 

c val : W-+ J 

from the vertex set w of Board's view of rvh.i te, KS Of}, into (say) 

the integers J; Jt"hilst the piece value of W j will be a mapping 

p val : W-+ J 

from the simnl i c es of Kf/SJ, f'lhite's view of Board. 

Thus c val and p val are wconjugatew in the sense that they 

have conjugate complexes as their domains. Naturally the choice 

of J as the range for theGe mappings is not crucial - but it can be 

a convenient ~omputing feature. 

(BJ 
V V 

The bottom q-value, q (s1}, meittls tha,t Si shares a q-fa.ce 

-· with at least 6ne other squar e Sj" ThJ,s means that s1 and sj are 
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simultaneously attacked by (q + 1) pie~es. 

simplex 

V 
Let this q-f,,ce be the 

diich must therefore be an indication of the "square-co-operation" 

beti.·~en Si and Sj, · via the White men_. The value of q therefore 

indicates the f l ox i bili t q inherent in White's game, the existence 

of multiple threats. The ~quares Si, sj, Sk, ••• which share a 

common q-face -define areas of the board where i-?hite's fl e::ibl e 

threats are to be found. The "value" of a threat depends on 

whether it is 

(i) a tii1·eat to control (a squarej 

or (ii) a threat to occupy (a square). 

If it is a threat to control then, for J-lhite, it would be 

valued as (plausibly) 

w. e: a 
.1 

whilst if it is a threat to occup~ its value·will be 

This is because, in the first case, we are dealing with K
5

(w}, 

but in the second case we are dealing with KW(S). 

(C} A move which lowers Qt' £or some fixed t, in the structure 

vector ~ for :_1:
5 

(W) 11ill (c.f. sect.ion 2.0) do so because of two 

V 
possibilities. On the one hand thcre'might be an increase in q 
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for some square s1 , so that ~q > 0 results in ~Ot < 0 
v 

(q , . t) • 
. , 

This means that tha flexibility of White's threats has increased. 

,._ 
On the other hand ~Ot < 0 can result from a· decrease in q (s

1
), 

for some square Si (q '.:I- t}. This means that Uhite's control over Si 

has been reduced. 

The "r..night fork" is an obvious example of square co-operation , 

a.t the level of q O 0, .in K8 (r-?) - flhen Si ami sj are not adjacent. 

For other pieces the co-operation involves neighbouring squares -

either on the ranks, files, or diagonals. The action of the N cannot 

be blocked by other pieces or pawns so that, placed in the larger 

central area of the Doard, a knight always induces a 0-connectivity 

between 8 squares. 

(D} The positions of the squares {.<;.}, relative to the locations 
J. 

of the Black men, ar.o clearly important. 'lhis is embodied in the 

importance normally attached to the centre squares, to open Eiles, 

to open (long} d.iagonals, to the seventh/eighth r 11nks. W~ naturally 

add to these the squares occupied bg the Black men, that is to 

say, tlle set 

as well as th~ King fliqht squares. 

'I;he centre squares, as -~ (rv
1

}, -·allow the possibility oE 

maximum q-values for the r?hite Q and Br 'fho open Elles are necess:iry 

for the achievement of maximum g-\•al ucs for the ithi te R 's. Each 
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of these featur·es is further enhanced bg open diagonals and open 

ranks~ The Ron the sev~nth rank is usually associated with the 

King flight squares, but lllso i .t can pose strong tactical threats 

behind the Black pak~S (which ~re t~en on weak squares). 

All these dimensional considerations are expressive of the 

complex 1:W{S). Thus we see tl1at the consideration of "square-value" 

in K
5

(r-{} is inevitably involved with considerations 0£ "contr.ol-value,, 

in K5 UO. And tiie conjugate IU2ture of K5 (fv) and Ki/SJ would then 

suggest that there should be a close relation between "piece-value" 

in KW(S) and what we might introduce and call "~trength=value" in 

Precisely, we can proceed as follows. 

Define a mapping to represent the square-value of a simplex s1 c K
5

(w), 

s val : S-+ J 

and require tl1e condition that 

then l c val (h'/ 
j 

• • • (I) 

Define a mapping to represent the s tren gth-val ue 0£ a vertex S j E i.1/SJ, 

st val : S -+- J 
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and require the condition that 

then p val (W .) 
.1 

• • • (II) 

The process of estimating the relative "values" of pieces 

a.nd squares can now be seen as a cyc;ic one 1,;hich al ternatcs between 

the th'O conjug;;.te complexes. This is because, in some sense to 

be defined, we must have p va.i. (T·l .) to be "inverse" to c val (rv .) 
.l --- .l 

and, similarly, s val (S .) to be "im,-erse" tc st val (S .) • By 
] ] 

"inverse" we mean only 

then 

or 

or 

s val (S
1

) > s val (S
2

) 

st v~~ (s2 ) > st val (S1 ) 

One way of ensuring this reversal of orderiJ1g is to take, 

for example, 

c val (fv .) • p 'lral (r1 .) = a constant integer 
.l --- .l 

and then truncate on division. 

Another way would be to fix an integer n and take 
0 

c val (r'l.) - p val (W.) (mod n ) 
.l - J. 0 

The cycle can be entered in a crude way by taking, for example, 

p val {K, 0, R, N, B, P} = {10, 9, 5, 3, 3, l} 

and inventing some similar rigid square-values, depending on the Board, 

for example 
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where s. • a centre square 
.l 

sj = an off-centre square 

s = DK · flight-square, wtth obvious extensions. 
k 

. __ t,. 

(E) The condition of checkmate can be described in terms of the 

apparent conflict between the geometrical structures of Jthite 

arrl Black. In KB(S) the BK is a p-simplex, with 2 i; p , 7. Each 

square S. in this simplex BK is a possible flight-square, allowing 
.2. 

for obstruction by Black men. In addition~ (BK) is a single 

square, say SBK" 

Now suppose that, in mode [I, I-ll, we have 

and (ii) BK 

then we know that the BK is in check, by (1), and the possible 

flight-squares are under attack, by (ii). Hence the BK cannot · 

get out of check bg moving · (himself). The only escape is for 

Black to change (i), presumably by blocking or capturing the checking 

piece. 

We can therefore deduce that Black is in checJanate if the 

above conditi ons {i) ~ (11) are invariant under all leqal tram;it.ions 

from mode [I, I-1] to mode [I, I]. 

The Wlµte geometrical structure has .Hannexed" that portion of 

Black's structure which contains the BK and his flight-squares. 

- 57 -



. 

f 

I 

3.0 A computer program for the analysis 

The computer program which embodies the positional chess 

heuristics is written in Fortran and runs in 9K of core on 

a PDP-10. Although more modern and sophisticated .l~nguages 

like LISP, ECPL, and POP-2 were considered, Fortran was 

chosen in spite of its many and obvious disadvantages for 

the ~ollowing reasons: 

(i} speed of execution - the PDP-10 Fortran compiler 

produces· unusually efficient object code, 

(ii} transparent compilation - when ,,rri ting sections 

of Fottran, one knows (roughly) what machine 

code the compiler is going to produce, 

(iii} modular subroutine structure, 

(iv) critical sections written in machine code can 

be interfaced easily to the rest of tlle program, 

(v) good compiler error diagnostics, 

(vi) fast array handling • 

The progfam is designed to allow interactive analysis of existing 

chess gam~s from a teletype keybo~rd. 1h addition, requests 

tor extensive analysis of complete games can be submitted to the 
~ 

PDP-10 batch system. Using existing games by master players · 

permits repeated analysis of a large nwnber of high-quality games, 
I 

eliminating time-cons~~ing keyboard sessions with chess players. 

/L further c.dvantage of playing exlst:J:ng ,games is that: 1 t 'allows 
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study of all phases of the game - 1n computer chess, checkmate 

usually intervenes before the end-game is reached/ The program Juts 

nover attempted to play a complete game itself. 

To facilitate human interaction with the computer, the 

program accepts and obeys commands typed in at the keyboard. 

The ciie!!,.~. game to be analysed is stored in a disk file in a slightly 

extended version of the International Algebraic Notation for chess 

games ( a mw· description of the notation is given in Appendix A). 

Commands are provided to print the bo,u·d, make a specified number of 

moves from the g2me 1 move to a specified point in the game; and so 

on. It is possible to im,estigate varietions on the game by typing 

in a sequence of moves different from those actually played. Further 

commands print the connectivity matrix and structure vector for 

either side's view of the board, and initiate a complete positional 

analysis of the current state of play. Repeated analysis cf the 

game at various stages is accomplished by a NACRO command ..,-hich 

continually performs any sequence of other commands. A typical 

command sequence for a batch run is 

BOARD 

POSN 

HOVE 2 

MACRO 

/print the board 

/perform a positional analysis 

/make two moves (one for Nhi te, one for Black) 

/repeat the abo,,e command sequence until 

/t12e end of the game. 
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3.1 Boa rd rc orescntation and move qeneration 

The chess-board is represented as an array of length 144, 

with the contral 64 elements giving th~ position on the Bx 8 Ix?ard, 

and the remaining elements containing -1 to indicate that they an:! 

off the hoard. This representation al.lows move calculation by 

repeated addition of offsets, Tdth a· simple test at each stage 

to check t.1c1.t the proposed destination square is still on the board. 

For example, the offBets for a rook's rr.ove are +l, -1, +12,_and -12, 

and each of these is :repeatedly added to the square number of the 

rook's initial position to give the moves. Nore detail:; about hotv 

moves are generated 1·:ith this board representation are given by 

Koz.drov!icki et al {1971){ 41Althoug·h it may appear that a one-square 

border containing -1 - giving an array of length 100 - is all that 

is needed to detect -.,:hen a man has. reached the edge of the board, . 

a knight r,.rould be able to cross such a border, causing unexpected 

·results, In fact only 132 elements are necessary in the array, 

representi.ng a 12 x 11 "extended board" (Gillogly, 1972)[ 3], but 

we have found that the 12 x 12 extended board is easier to deal with 

and facilitates program writing and debugging. The men on the board 

are indicated by numbers l - 16 (for White) and 17 - 32 (for Black), 

so that, for example, the rlQR can be distinguished from the WKR. The 

board in the initial position is shown below: 
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-l s·: -1 -1 -1 . -1 -1 ; -1 -1 -l -1 -1 .-l 

-l -l -1 -l -l -l -1 -l -l -l -l -1 

-:l -1 17 18 19 20 21 22· 23 24 -l -1 

-1 -1 25 , 26 27 tB 29 30 3l 32 -1 -l 

-l -1 0 0 0 0- 0 0 0 0 -1 ~1 

-l -l 0 ;!o 0 0 0 0- 0 0 -l -l 

-1 -l 0 0 0 0 0 0 0 0 -l -1 

-l -l 0 0 0 0 0 0 0 0 -l -l 

-l -l 9 10 ll 12 13 14 15 16 -l -l 

-l -l l 2 3 4 5 6 7. 8 -1 -1 

-1 -1 -1 -1 -l -1 -l .-l -1 -l -l -l 

-1 -1 -l -1 -l -l -1 -l -l -1 -1 -1 

Moves are generated by adding offsets as outlined above, bearing 

in mind that 

(1) a man cannot move off the board, 

(11) a man cannot move to a square occupied by 

another man on his side, 

(iii) for pawns, knights, and kings, the offsets 

must be added once only, 

(iv} pawns in their initiaI position have a 

special move available. 

Thls'algorithm generates all "nonnal" moves (but not castling, etc). 

Because of the importance of the relation~hip of "attacking" 

for the connectivity analysis, and the similarity of this 
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relationship to that of "moving", the routine which generates moves 

also lists all legal attacks. All moves are attacks, except 

pa1,71 moves, J>.'hich are never ,"lttacks. In addition, a man can attack 

a square occupied by another man on his side. Pak71 attacks are 

generated by adding offsets different from those used for pawn moves. 

In order to find all :Legal moves, eacl1 move generated by 

adding offsets mu.st be testod to see if a check results. If 

castling is stiJ.l legal, and the squ,1res between the king and rook 

ai·e empty and not attacked, the appropriate castling move is added to 

the lit;t of legal mo,,es. En passants ,,re spotted bg examining the 

previous move in conjunction with the current list of attacks. The 

possibility of pawn promotion is also considered. The result of 

all this is a list of legal moves, each stored as 4 computer h-ords: 

(SOURCE SQUARE, DESTINATION SQUARE, X, Y) 

where X and Y are only used·for castling moves, pawn promotion, etc •• 

·-. r·.'hen moves are read in from the teletype, or the disk file • 

containing a chess game, they are decoded from International Algebraic 

Notation into thr 4-word internal move representation, using standard 

methods of syntax analysis. Checks are nude for obvious errors, and 

then tl1e move generation routine is called· and the list of .m:ives is 

searched for the proposed move. To make a move on the chess-board, 

one can either place it on a move stack in a 5-word reversible representation 

(the fifth word specifies the man taken in the move, if any) so that 

the previous board position can be recovered by unstacking, or empty 
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the stack, make the mo_ve, and place it at the base of the stack 

(so that the previous move is always available to check en passant . 

.l-egality). 

3.2 Connectivit y anal ysis 

The relationship, r w' of "attacking", computed in the form 

of a list of squares attacked by each man, provides the basis of 

the connectivity analysis. To find the connectivity niatr.ix CONN, 

where 

CONN (I, J) n number of squares attacked by both 

man I and man J, minus one, 

the lists of squares attacked by the men are compared in the obvious 

way. 

Computation of the structure vector for White's view of Board 

is a· rather tricky matter. For each Q-level from zero up, a routine 

is called which returns the number of simplices at that level. The 

array of numbers obtained at each Q-level is the structure vector. 

If any component of .the structure vector is zero, all higher components 

~ill be zero too. To determine the number of simplices at any O-level, 

one starts with an array of length 16 - an element for each man on 

the side - which is destined to hold a simplex identification number 

I 
for each man. A man I is allocated a new Gimplex identification 

number if 

(1) CONN (I, I) ~ 0-lcvel, 

and (ii) 'he has not already been allo.:a.ted a simplex 

identification number. 
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If J1e is allocated a new simplex identification number, CONN (I, .. ) 

and CONN (*, I) are scanned for elements at least as big as 

Q-lcvel, and for any th:it are found, the man who is connected to I 

at that level is allocated the current· simplex identification nl.11llber. 

A similar search must be carried out for all the new men who are 

attached to the simplex. flhen no more men in the simplex can be 

found, the next man on the side is examined and allocated a new 

simplex identification number if he satisfies the above two criteria. 

Once all men 01, the side have been given a simplex identif'ica.tion 

number, the structure vector component at that Q-level is found by 

count:.ing ho;-, many distinct identification numbers have been issued. 

An example of a board positio~, the corresponding connectivity 

matrix for White, and the ~implices at each O-level, is given below, 

for the complex KW(S). 

Board position 

8 BR BN BB ** BK BB .... BR 

7 BP ** ** BP '** BP BP BP 

6 * * ,t ,t ** ** ** BN BQ ** 

5 ** BP ** ** ** rm ** ** 

4 ** ** ** ** WP BP rvP rvP 

3 ** * .. ** WP ** * * ** * ,t 

2 rvP WP rvP ** ** ** ** ** 

l WR rm fvB WQ ..... ~IK r-m ** 

a b -c d e f g h 
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CoMectivity · (shared-face) ~atrix for KW(~) 

OR ON OB 0 K KB , YJ{. - KR p p p p p p p p 
.<" 

l OR 

2 0 0 ,! l ON 

3 0 - 0 .:. -\ QB 

8 l l 0 Q 
··•· . . 

4 . o - . .' ."!,:,;- - -A 
K 

. ;, . -.. . - - KB 

7 0 KN 

4 ·- KR 

0 0 p 

l p 

l p 

l p 

l 0 p 

p 

l p 

0 p 

• 
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. q-level q-connected components · -· 

0 (OR) (ON OD O K KN KR P P P) (P) (PP} (P) 

l {QR) · (ON P) (OB} {Q K KR) {KN) (P) (P) (P) (P) 

2 (01) (()B} (Q} (K) (Y..N) (KR) . 

3 (QB) (Q} (K) (KN) {KR) 

4 {Q) (K) {Kll) (KR) 

5 (O) (KI-l) 

6 (Q) (KN) 

7 (0) (KN) 

8 (Q) 

structure vector for Kr/SJ 

8 - ~ 
Q_ a {l, 2, 2 1 2, 4 1 S, 6, 9, 5} 

3.3 •A simpl e valuation procedure 

Before the program can analyse the structures positionally 

1 t needs to compute the mapping 

s val (S,} 
' .l --

for each Si, (v. section 2.1). This , mapping is independent of 

what piece occupies S ,,. However we shall i'ntroduce, in 3.4, what 
J. , 
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might be called a tactical value, tact (Si), and this will involve 

some valuation of any pccupying piece. 

Using the relations I, II of. section 2.3 we set about finding 

c val (rv .) , p val (r'I.) , and st val (S .) • 
] . l. J 

We allow that st val (S.) depends upon 
J 

(i) whether S j is· in the central block, 

(ii) the value p val (Bk) of any Blar.k man Bk 

occupying S • , 
J 

(iii) if W. is a pawn, whether S, is on the 7th or 8th rank, 
.1 J 

and is best indicated by giving the numbers 

of the squares in the mode (0, OJ position. 

If attacking man is a piece, 

8 16 10. 9 29 

7 4 4 4 4 

6 2 2 2 2 

5 2 2 4 6 

4 2 2 4 6 

3 2 2 2 2 

2 2 2 2 2 

l 2 2 2 2 

a b C d 
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{st val (S.)}, for White, 
.1 

10 9 10 16 

4 4 4 4 

2 2 2 2 

6 4 2 2 

6 4 2 2 

2 2 2 2 

2 2 2 2 

2 2 2 2 

e f g h 



I 

If attacking man is a pawn, 

8 30 24 23 43 24 23 24 30 

7 12 12 12 12 12 12 12 12 

6 2 2 2 2 2 2 2 2 

5 2 2 4 6 6 4 2 2 

4 2 2 4 6 6 4 2 2 

3 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 

1 2 2 2 2 2 2 2 2 

a b C d e f g h 

Ue t1wn get p val (W .) by relation II, ,md we use the 
.l 

hypothetical relation 

c val (W) • p val (W) = 200 

to obtain c val (rv.) • 
.l 

The positional ani.llysis with which we have experimented 

to-date considers ,each legal move by White and then examines the 

consequent changes (increases) in (only) the following features. 

(i) 

(ii) 

dim Kw(S), or the maximum .q-value; 

-Q, the minus sign being justified in sections 
0 

2.0 and 2~1; 

(iii) -Q
1

; 

(iv) 

(v) 

(vi) 

(vii) 

c val (I?EE, BK) ; 

(S .) h'here Bx'"" 1 ... S • •• • \
1 

in KB(S); 
.l . - \ ' .l 

I: C val 
i ... ... 

('EEE._ B.), _for all 'nl,,cl: men B. (:/ BK); 
.l . J 

r C val 
j 

' I: ·C' val 
i 

(S .) li•hcre S. is a centre square. 
.l J. 
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The side's control over any set of squares is just the sum of tl1e 

positional values of the squares fqr the side. 

At present the program simply sums the scores under these · 

7 headings to give ~n overall positional _score for a move. There 

is oJJviously great scope for improvement over. this, but even with 

such a naive metllod ·of scoring, significant correlation with 

chess-players' positional judgement is obtained. 

3.4 Loss/gain tactics 

The program as described so far is a weak tactician. It · 

is designed to score moves on a positional basis, taking into account 

the control over important sets of squares and the co-oper~tion of 

men on the board. It neglects forcing moves and is oblivious to 

material loss and gain. Because positional features of the game 

cannot be completely divorced from the tactical viewpoint - for example, 

experienced players simply do not consider moves which are tactically 

unsound i,,1hcn asked to make a positional judgement - an elementary material 

loss/gain calculation has been incorporated, and the program orders 

moves primarily according to material exchange, and only secondarily 

.from a positional analysis. (Clearly a less extreme balance should be 

struck here. Material sacrifices for positional gain are not uncommon 

in master chess). 

"' Ne take the tactical value of a man, rv., as l+max q (rl .) , 
. - J. .l 

1n 1: (S). This gives .:-1 measure of the potential of the geometrict.d 
I/ -
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horizon of rii, whereas the piece value, p val Ovi), reflects the 

man's actual worth in the present board position, The value of a 

bishop is h.::il vcd to account for the fact that it can potentially 

control only half of the board's squares. This gives the values 

(c.f, section 2.0) 

K Q R 

8 27 14 

N 

8 

D 

7 

p 

2 

(For investigat.ion of m,"t tcr.ial exchanges, the king is assigned .:m 

arbitrary value of 1000). 

nie ..: ;;;ctical ·vaJ. uc of a square is then given by the mapping 

where 

where tact ([4 .) 
J 

tact : s • J 

tact (S .) = 
J. 

is the above 

s. = (. ~. 
l. 

C ( • • o 

minimax . 
i, j 

(special) case of p 

rv. ... ) in K
5

av) 
J 

B .. ·) in K
5

(B). 
K 

val (W .) , and · 
J 

The tactical. vc::1 U:3 of squares in Doa:td positions taken 

from actual chess games is almost_ always zero, but the positional 

analysis often suggests moves .1-1hich, if made, would result in some 

squares having negative values for the side under consideration. By 

first ordering moves from this simple m~terial viewpoint, this situation 

is usually avoided. 
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3.5 Some comparisons with actual games 

Using the valuatio~·procedures discussed above we obtained 

the following posit1Qnal assessment of actual g,,mes. 

(A} Morph~J ,, Duke of Brunswick et al. (1858) 

Game score Positional rankinv of Morphy's moves 

1. e2 - e4 . e7 - e5 2 l rr d2 - d4 . 
2. N - f3 l d7 - d6 8 l = d2 - d4 

]. d2 - d4 . ,.., - g4 l . ~ 
4. d4 * eS : B * f3 1 

5. 0 * f3 . d6,.. e5 2 l = g2 ,.. f3 . 
6. B - c4 : N - f6 ~ 4 l a c2 - c4 

7. 0 - b3 . 0 - e7 24 l = c2 - c3 . 
8. N - c3 . c7 - c6 4 l - f2 - f3 . 
9. B - g5 : b7 - b5 s l s f2 - f4 

10. N it b5 . c6 ,.. bS l . 
.11. B * b5+ . N(b8} - d7 2 l a: 0 it bS . 
12. 0-0-0 . R - dB 3 l -f2 - f4 . 
13. R ,i, d7 :.R ,.. d7 l 

14. R - dl · . Q - e6 2 l IC f2 - f4 . 
15. B * d7+ : N ,.. d7 · 2 l ,.. R it d7 

16. 0 - bB+ . N it bB 8 l •R it d7 . 
17. R - dB mate. 

A total of 82% of Morphy's moves fall in the first 5 positional 

rankings, e.nd 70% fall in the fir~t 3. 
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(D) Andersscn v. Kieseritsk~ (1851), the Immortal Game 
I 

Game score Positional ranking of Uhite's moves 

l. e2 - e4 : e7 - e5 2 l 0 d2 - d4 

2. f2 - f4 : e5 it f4 2 l = d2 - d4 

3. n - c4 0 - h4+ 9 l u d2 - d4 

4. K - f1 . b7 - b5 l . 
s. B it b5 . N - f6 2 l = B - b3 . 
6. N - f] . 0 - h6 3 l r::: Q - f3 . 

. 7. d2 - d3 : N - ll5 l 

8. N - h4 . Q - g5 26 l Z!'< K - f2 . 
9. N - £5 . c7 -- c6 4 l = K - f2 . 

10. g2 - g4 . N - f6 2 l ., h2 - h4 . 
11. R - gl . c6 * b5 2 · 1 ""' B - c4 . 
12. h2 - h4 . Q - g6 10 l = a2 - a4 . 
13. h4 - h5 . Q - g5 9 l = a2 - a4 . 
14. 0 - f] : N - gB 6 l id a2 - a4 

15. B it f4 : Q - f6 6 l = a2 - a4 

16. N - cJ : B - c5 4 l = a2 - a4 

11. N dS . Q * b2 2 l = g4 gS . 
18. B - d6 . Q * al+ 5 l = B * b8 . . 
19. K - e2 : IJ * gl 1. 

20. e4 - e5 . N - a6 25 l ,.. B * bB . 
21. N * g7 . K - dB 14 l • N(b5) - e7 . 
22. 0 - f6+ . Resigns 4 l -= c2 - c4 . 

A total of 64% of Anderssen's -moves fall in the first 5 positional 

rankings, and 45% fall in the first J/~lhitc's pl.1y emerges a.s highly 

tactical bfJ this program. 
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(C) Fischer v.Petrosian (1971) 

I 

Game score • Pos i tion ,1. l r ankinq of White's moves 

1. e2 - , e4 . c7 ·- c,5 2 l • d2 - d4 . 
2. N - £3 . e7 - e6 12 .z • d2 - d4 . 
3. d2 - d4 : cS it d4 l 

4. N .. c:14 : a7 - a.6 2 l u O it- d4 

s. B - d3 . N - c6 27 l • c2 - c3 . 
6. N at c6 . b7 it c6 l . 
7. 0 0 . d7 d5 . 
B. c2 - c4 . N - f6 l . 
9. c4 it d5 . c6 it d5 l . 

10. e4 • dS . e6 it dS l . 
11. N - c3 l B - e7 4 l • f2 - f3 

12. () - a4+ : () d7 6 l • f2 - f3 

13. R - el : 0 it a4 3 l & f'2 - f3 

14. N it a4 . B - e6 l . 
15. B - e3 : 0 - 0 21 l -£2..: f3 

16_. B - cS . R(f8) - eB 2 l • N - cS . 
17. B it e7 . R it e7 l . 
18. b2 - b4 : I( - fB 17 l • f2 - f3 

19. N(a4) - cS: B - cB 3 l • f2 - f3 

20. f2 - f3 : R (e7) - a7 2 l ""b4 - bS 

21. R(el) - eS: B - d7 10 l • b4 - bS 

22. N "'d7 . R * d7 l . 
23. R - cl : R - d6 6 l • b4 - bS 

24. R(cl) - c7: N - d7 4 l • b4 - bS 

25. R - e2 l g7 - g6 4 l •R - gS 
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Fischer v. Pctrosian cont. 

Game score Positionc!l ranking of I-.'hite's moves 

26. K - £2 : h7 - h5 5 1 = b4 - b5 

27. fJ - f4 : Jis -- h•1 12 l :r:z g2 - g4 

28. K - f] f7 - fS 3 1 = g2 - gJ 

29. K - eJ : d5 - d4+ 17 1 = g2 - g4 

30. K - d2 : N - b6 2 l = K - fJ 

31. R - e7 : N - d5 2 l = R (c7) - e7 

32. R f7+ : K - eB 2 1 = R (c7) e7 

33. R - b7 : N ,t b4 3 l a R(c7) - a7 

34. B - c4 : Resigns 16 l = R (b7) - a7 

A total of 68% of White's moves fall J.n the first 5 positional 

rankings, and 56% fall in the first 3. 

3. 6 T<csearch nco.<:::'>ects 

The positional criteria used so far, and illustrated in the 

previous section, are characterised by the following features. 

{l) R~striction to consideration of 60
0

, 60
1

, ~ dim K, when 

the argument shows that the other Qt values in•Q have profound positional 

influences. 

(2) Restriction to a -consideration of K (S) and K
5 

(rv) so 
vl 

as to }mprove certain geometrical properties of rvhi te 's position. 

CleD.rly it would be desirable to assess the possible changes in the 

Black position, by consi~erir.g KB(sJ - and K5 (D). A good move for lvllite 

-· 
1-.'ill prcsur.:.:ibl!] irr:prove h1hitc's geometr;1 whilst at the same time cDuse 

a dctcrior~tion in Black's structure. 



(3) Restriction to a particular mode [t, JJ, that 

is to say, without .:iny effective "look ahead" analysis. Future 

.i:cseilrch must clearly take into account the overall positional 

features over a sequence of moves -. Drastj.c changes in the abstract 

geometrical structures ·might i,,1ell be the result of "give-;md-take" 

over 3 or 4 moves by r,;hi te. Thus we need to allow for tho positional 

advantages which can accrue by way of moves which are apparently 

tactically chosen. But even here, and referring back to the 

discussions in sections 2.0 and 2.1, ,~e begin to see how the line 

between "tactical" and "positional" becomes blurred. 

But this approach to the game means, above all things, 

that the emphasis is no lonqer on tree-searching. Positional features 

must be used to reduce the conventional tree-search to manageable 

proportions. Further study of the connectivity structures of the 

various complexes, such as the search for specific chains of 

q-connection or the dependence on such chains of the mappings c val, 

s val, p val, st val, should greatly assist in this aim. It is to 

be expected that during the course of a game these mappings must 

themselves vary a great deal, and so we must search for the dependence 

of c val etc. on the structures KW(S) etc. which are linked to the 

modes. This would allo~ the possibility of the positional criteria 

being influenced by the tactical possibilities, and therefore of the 

computer (as player) being able to change its mind about the positional 

goals as the game proceeds. 

Furthermore it is obviously going to be of great help if 

chess masters can be persuaded to help in the research - if only by 
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ranking the positional motifs in a few hundred positions. So far 

there has been an encouraging response to this cry for help, although 

we have not yet reached a level of organised co-operation with thoso 

players who are anxious to help. 

• 
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APPENDIX A 

Internationa.I lllcrebraic N_otc1tion 

A chess move in international algebraic notation has the 

follo~1ing for[JI: 

0ove): = (source) (oper~tion) \square designation) <check indication) (1) 

where 

(source):= (piece) I (square designation) I (piece) (\square designation)) 

(piece):= R IN I BI QI K 

( square designation): = Al I A2 I. . . . I AB I Bl I . . . I 118 

( check indication): = + I e: 

Tlw follotdng special moire types are also al'lowed: 

0 - 0 

0 - 0 - 0 

.(2) 

(3) 

( move) 'iJ EP (4) 

( move ) 'iJ (promotion) ; where (promotion):= *R I *NI *B I *Q (5) 

(il denotes a blank; e: denotes the null string) 
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The interpretation of a string of type (1) is that the man indicated 

by (source) 1.1.::iJ:es the (operation) on the destination ( square designation j· 
If the source man is a paim, he is specified by giving the 

~quare designation) of the square he occupied before the move; if 

he is a piece, then the piece's name alone is used unless ambiguity 

rcsul ts, in ,:h.ich the (square designation) must also be specified. 

'1.'hc (operation) ci::n be e .i-thcr 11 
-

11 
, · 1-1hich indicates that the designation 

square was unoccupied prior to the move, or "* ", which indicates 

thc:t it was occupied by one of t -he opponent's men. The \check 

_indication) is II + 
,, 

if and only if the move results ill a check. 

Type (2) and (3) moves indicate castling on the King's side and 'on 

the Queen's side, respectively. A type (4) move signifies capturing 

en passant, and type (5) refers to pawn promotion, the new piece being 

specified explicitly a.s \promotion). 
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Editor's Note -

Must be read in conjunction with (Tan, 1972), 
The psycholo8ical studies described by Bond and 
the connectivity described by Atkin are mainly 
concerned with (and most relevant to) t~e middle 
game. Clusters of pieces (chunks) and connec­
tivity become less evident; the decisions are 
more critical, in the end game, 

Note that Tan is not concerned with how a pronram 
may reach an end game but with the problems of 
representing and using chess knowledge for the 
very deep analyses which must be performed, 

An outline is given of a program to solve end­
ings with king and two J"Hi.wns vs kine and bishop . 
The approach is basically the same as in (Tan, 1972) 
except that a more flexible interpreter is used 
this time, Also added are extens ions of the 
notions of predicates, actions and patterns, as 
well as the use of goals, simple cross-connnunication 
between branches of the analysis tree and the 
extraction of plans from analysis trees , 
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A. PROBLEH AND APPROACH . 

This work is a continuation and extension of the knowledge-based 
approach described in (Tan, 1972). Our concern is with the problem of 
representing and using chess knowledge, not how knowledge is acquired. 
The emphasis on knowledge is important in view of the inadequacy of 
the classical Shannon-Turing game-playing framework: game-tree, 
evaluation, minimax etc. We envisage programs that play almost always 
correctly (never throw away a win or a draw) in their problem domains, 
which means having to make very deep analyses (the domain we are 
tackling now is that of king and 2 pawns vs king and bishop, it 
contains studies where analyses of ply~depth 20 · are necessary, for 
king, rook and pm-ms vs king and rook the corresponding number is 
about 40), and must therefore be radically selective in generating 
moves. Variations of the Shannon-Turing type of programs may be able, 
assuming that a good evaluation function can be found, to find good 
moves, but that would be far from sufficient for solving end-game 
studies correctly. 

In the following, representation and use of knowledge are considered 
inseparable, representation is specified by giving a virtual 'chess 
machine' which acts as an interpreter. Given an input board situation, 
this interpreter will then 'parse' it to produce the move to be 
played, plans an~ a prediction of the value of the situation. The 
'parsing' process is directed by a network representation of the 
program's knowledge of playing methods. Some of the problems encountered 
in designing such a interpreter are:-

(i) Since specifying an interpreter is in effect developing a m1.n1.-
theory of end-games, one may ask what sorts of things are allowed 
in the ontology of the theory (does the theory accomodate plans, 
threats, intentions, episodes, scenes, demons, etc) and what are 
the relations between these sorts (eg how are goals used in a 
situation-action production system). 

(ii) How do we choose the primitive actions of the interpreter, in 
other words, how much compilation should be done (in (Tan, 1972) 
the whole program is compiled, the virtual POP-2 machine is the 
chess machine). Shall we adopt a multipnss interpreter that can 
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account for the plwnomena of progressive deepenine (De Groot, 
19(,5), and if so, how do we handle communication between the 
different passes (besides the problem of communication between 
branches of the analysis-tree). 

(iii) How much advice, deductive po,:cr should the program have, what 
search strategy and evaluation function should be used. 

There are many more q'uestion that can be asked, but here we can only 
attempt to answer a few of them with respect to the pro~lem domain 
we have in mind . No doubt there are no general answers to most of 
the above questions ; compi ler-i'(lterpreter, deduction-search, advice­
search , evaluation-look-up, backward search-forward search etc , are 
pairs of i terns that are of ten traded-off inter-changeably. 

The attitude taken here is to try to proceed from the simple to 
increasing complexity, and to be flexible and delay ultimate decisions 
when further clarification or experimentation are necessary. 

The next section outlines the typology of the theory , it is relatively 
rich compared to existing chess programs, but not as rich as found in 
chess psychology (compare the De Groot op- cit) . He have not made 
provisions to include progressive deepening (which may be implemented 
serially or in parallel by coroutines) at present, but De Groot may 
be right in pointing out the importance of it for computer programs 
(De Groot , 1965, p 401) . Kotov (J), on the other hand, who is interested 
in teaching 'hurnan beings to analyse with the accuracy of a machine ', 
argues that a branch of the analysis - tree should never be searched 
more than once , and only lack of confidence can make us do otherwise . 

There is no explicit deductive power at present, other than those that 
can be implicitly embedded in the program's playing methods . A simple 
depth-first strategy aµgmented by a preliminary breadth- first search 
is a opted . For the last mentioned search, an avaluation function 
similar to the one used by (Newell et al, 1959) is adopted, the· value 
of a position is a feature vector . Unlike Newell et al however, there 
is not a prior lexicograpliic ordering of the vectors , since it seems 
to be counter-intuitive ; possibilities of trading-off material for 
space or development , pawn structure for a bishop etc , which is 
certainly the essence of what chess is about , being exc luded . 

B. BRIEF OVERVIEW 

In this section we will only give an infonnal description of the 
different categories of object in the theory, their relations to each 
other and their properties. No attempt is made to present a formal 
theory. Nost examples given apply to the case of 2 pawns vs a bishop, 
the pawns are always white. Some of the assumptions made below are 
somewhat arbitrary, they are made with this restricted problem domain 
1.11 mind. 

I. Situations 

A situation is a data- structure cootaining .all the board information: 
board position, who is to move, and sometimes a little history (has the 
king been moved, what was the last move etc), clock etc. ln the following, 
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situations will be distinguished from states of the interpreter (see 
7 below), and we assume that no history and clock are recorded in a 
situation. Thus the interpreter will not make use of knowledge of 
the opponent's last'move (eg if pi~ce captured, try recapture) in 
selecting its reply. It does not however consider every situation 
presented as new: it has p'l'ans and recognizes repetition of 
situations. 

2. Concepts 

A concept is a· POP-2 function describing general relations between 
pieces, squares, numbers etc. Examples: rank, distance as number 
of king moves, block-distance, critical square, breakthrough square, 
different kinds of blockades, doubles, isolated and connected pawns, 
pin, mobility, center, shelter, good bishop, queen side majority etc. 
We restrict ourselves here to simple static concepts, there are no 
concepts which involve dynamic search, succession of states or which 
refer to the state of the interpreter (no concepts of overloading, 
desperado, encirclement, Zugzwang, initiative etc) though it is possible 
to have overloaning as a predicate, encirclement as an action or plan 
etc. It is assumed above that critical squares, breakthrough squares, 
shelters etc, can be determined in a static manner, though in general 
they may be dynamic. 
Concepts are used in predicates and $Oals. 

3. Predicates 

Predicates are POP-2 functions defining partial functions from states 
to truth-values. This .is an extension of the early notion of a predicate 
as a partial function from situations to truth-values used in (T'an: 1972) 
Examples:-

(a) mate, stalemate, check, can-advance, can-capture, etc; 
(b) those associated with concepts directly: has-critical-square, 

is-blockaded, etc; 
(c) those associated with patterns: match (p9-ttern); 
(d) those referring to the state of the inte

0

rpreter: has-no-plan, 
has-occurred-before, etc; 

(e) the most important predicates are those connected with lookahead 
searches, they make recursive calls to the program's body of 
knowledge, eg: the predicate: 'starting with this situation, 
removing the following pi e ces, using all the chess-knowledge that 
I have, applying the following action, white will win'. With the 
exception of the action try (below), this is also the only place 
,-,here (full or partial, forward or backward) lookahead searches 
can occur. 

4. Actions (or action-schemes) 

Partial unary operations on situations or states are called actions. 
Actions can be POP-2 functions or represented as a network in the 
same ,,.,3y as the whole nave find i ng routine . They may be primitive 
(e8 actions corresponding to moves, dummy operations, update white­
list ct:c); or built-up from predicates and primitive actions by 
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conditionals (eg support, approach, l etpass etc). 
nssociated to p::itterns, there are action; of the form: try (pattern, x), 
which means: tr; . to r • ach (usually backward search) the pat tern in at 
mosL x moves, if x=o the pattern must contain a suggestion on ,~at is 
to be done. 

5. Goals 

Guals are defined by (Newell and Simon, 1972, p 807) by the character­
istics:-

(i) 'a goal carries a test to determine when some state of affairs 
has been attained '; 

(ii) 'a goal is capable of controlling behaviour under appropriate 
conditions. The control takes the form of evoking patterns of 
behaviour that have a rational relation to the goal - ie methods 
for attain ing the ~oal' . 

The goals we have at present satisfy the first characteristic and the 
second to some extent. They are related directly to concepts, eg: 
for black Llot..:kade (there are different strengths of blockades), 

mobility of the bishop; 
for white minimize distance (white king, pmm); 

minimize distance (white king, bishop) etc. 

The set of goals, also call ed feature vector, is only -partially ordered , 
it is used for preliminary elimination of moves in a breadth-first 
search up to depth one. A goal in itself does not propose actions (that 
is why it does not quite satisfy the second characteristic), but used 
within an action routine it does control the choice of actions to l>e 
taken. 

At present there are no mechani.cs for activating/de-activating and 
weightings of goals. 

6. Patterns 

The·re is a stock of important didactic patterns that must be recognised 
quickly by th0 program. These patterns may be geometric or defined by 
more general pr•->.;licates. They may or may not have actions associated 
to them, and are used as a.u action: try (patte~n, x) or as predicate: 
match (pattern). 

The stock of patterns is considered fixed;· non-permanent patterns 
created during analysis are not allowed at present. 

7. States 

The state of the interpreter is given by a stack of situations used to 
keep track of recursion, and an environment in the form of an analysis­
tree. The stack is hidden and never referred to by the user. 
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8. Analvsis-trecs 

This is the tree of moves considered in the an.::ilysis. Attached to its 
noues we have a ,}1ite-list (list of good moves for white), a black-list 
(.list of good_r.10ves for black), and the value (win, lose or draw) of 
the situation corresponding to the node (if known). The white and 
black lists serve fo 'r eommunication between b1anches of the analysis­
tree, a good killing move in on~ branch is often good in other branches 
as well (compare McCart~y's killer list, (De broot, 1965, p 395)). 
The analysis-tree is the most dynamic part of the interpreter, it is 
grown and prtined most of the time. 

9. Plans 

At present there are only concrete plans extracted from the analysis­
trees by prunin8 the insignificant branches. These plans are used to 
anticipate the opponent's move. 

Use of abstract (containing action- schemes rather than the actual 
moves) plans (eg breakthrough, distribution of effort between king 
and bishop) during the analysis itself are being considered. 

10. Network 

As mentioned earlier, the interpreter is directed by a network 
representing the program's chess knowledge. Its nodes are records 
consisting of a predicate, action 1, LLINK, action 2 and FLINK, where 
LLINK and RLINK are pointers to other nodes. A node implies an 
instruction; if the predicate is true, do action I then follow LLillK, 
else perform action 2 and follow RLINK. Example of a node (omitting 
links): 'in case of two connected pawns, where they are abreast, if 
we decide to push, advance the pawn which is not on the same colour 
as the bishop' (Fine). 

LOCAL REFERENCE 

[IJ Kofov A. Think like a grandmaster, Batsford 1972. 
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0 B S E R V A T I O N S 

,f .. 

by 

R Malik 

• 

·" 

107 North End Road 
London 
NWI J 

"There is nothing more difficult to take in 
hand, more perilous to conduct, or more un­
certain in its success, than to take the lead 
in the introduction of a new order of things." 

- MACHIAVELLI 
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Editor's Note -

Rex Malik is a writer who specialises in the sys­
tems .and computer sciences. He is also Senior 
Research Associate and technical author with 
Professor Gordon Pask and System Research Limited. 

• 
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This report is the speech I would have giv_en had I not chosen to cut 
it short ancl lead a discussion! It is nowhere near as abrasive as my 
remarks at lhe conference, and of course being rewritten, added to, 
and amended to after the event probably puts my remarks into a more 
coherent, not to say more elegant context. I do not now, as I had 
to at the conference: worry about the problem of stepping out from 
behind the typewriter and facing an experienced audience without the 
shelter of editors, cold print or the unanswerable at-this-time 
microphone. 

I must once again state that having spent a day listening to the 
speakers and the various points of view put forward, I was struck 
(,.!ith respect to my fellow speakers) with the low level of the 
discussion. I had better qualify what I mean by this immediately. 
It seems to me that ten years ago, even five years ago, the conference 
would have been generally discussing problems at and beyond the front 
end of 'art'. But in the context of today, much of the discussion 
was out of date, and concerned with subject matter which I would have 
expected an audience with· the degree of expertise present to already 
have been familiar with; even bored with. 

Against this, one must set the argument basically raised by Alex Bell 
that the conference was intended to bring together people, many of 
,~horn had never met, in the hope that from it something useful would 
spring, contacts wou]d be made, and the place of computer chess 
in the scheme of things would perhaps be more closely defined. Given 
that the people had not been brought together before, any starting point 
must be useful; it gives some indication of what people know, as well 
as what they do not know, 

My observations on the meeting come into three groups. First, the 
general atmosphere. It seems to me that the general interest level 
displayed was quite high and on the right lines. I have sat as an 
interested spectator writer on the sidelines of attempts to play 
computer chess for many years, and what I .found striking was that 
(with what I would call first generation 'technical' knowledge) the 
audience should display second generation attitudes and be concerned 
with second generation problems. The concern seemed to be with making 
computers play 'people' chess, not machine to machine chess. Though it 
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would no doubt ·be ol: general interest if one computer chess program 
played wc. 11 against another, the focus was on chess as a human activity 
and wli3t stems from it. True, there will no doubt be some quiet 
jollification when and if a chess progr.:1m does beat a Grand M.J.ster, 
i-t is only to . be expected , but this seemed a peripheral and non-central 
matter. And this is an improvement, indeed if I run right · and this holds 
across the field it denotes a major departure from historic pre-occupations. 
One thinks of John von Neumann and his .[amous predictions, goes back to 
Babbage; indeed it is possible to go back beyond eve n this, though as 
someone who bas be en invohred in research into the history of computing, 
inclucllng mere id le s pccul.:1t' on,I c an find few tr aces before this which 
are not of Lh e Golem or Delphic oracle variety. 

Second, an d also peripheral to the mee tin:;., which in some ways I find 
unfortun ate , the question what we should now do together was not 
answered at a ll satisfactorily . It may be that people wish to continue 
quite independently of ea ch othe r, 're-inventing the wheel' to quote 
th e meet ing 's most popular cliche . Si xty people goes a long way to 
dispe l this. I do not believ , that this was the wish of the meeting, 
rather that it was due to the fact tbot the question was never put in 
a way which it found attractive. But certainly a case was being made 
almoct throu ghout £or some organisation \·,hich would encompass those 
who play che5s and are interested in attempts to play it by computer; 
thos e computer scient ists who find the chess problem one of interest 
in that it provide s profe ssional intellectual satisfaction, and those 
who regard the ch e ss compute r problem as a suitabl e test-bed with 
which to test out deeper ideas about how we ourselves approach 
problems. This grouping of interests does not obviously fit into a 
computer professionals' society, a chess club or congress, or indeed 
the 'artifical intelligence' chapter. 

It may he that those interested are going to have to sit down 
together to work out what to do. That could vary widely , but it is 
quite apparent to me that one thing that needs to be done (and .which 
the SBC might someh ow or other usefully undertake) would be to provide 
something a little more comprehensive than a bibliography which could 
and should be made available at least as a beginning to the 
part icipants . The situation must not occur again that many of those 
with a serious interest in the subject, whatever their motives, should 
find themselves in a position where their basic knowledge is such that 
effectively th ey sti-11 think in terms of the horse and buggy, though 
some others in th e same meeting are already working with jet propulsion. 
Yet both can find much of what they want to know in the available 
literature - if they knew where to look. · 

The starting 'point for my third set of comments arises from the 
remarks made both by Alex Bell and Peter Kent. The first exhibited 
genera l dissatisfaction with the level of chess knowledge displayed 
by the programmers and t\ie chess knowledge obtained from players, 
saying in ef fect 'if the chess experts could tell us what to do, we 
should do it'. The second du.ring his pr_esentation remarked not only 
that mini max is dead , though it cou1c.l be inferred that many people 
had not realis ed i t y(,!t , but that oft.en chess programs made the right 
moves fo r the wrong re as ons: they might play l egal chess , they did 
not pl ay anyth ing resembling goud human ches s . Thi s was further 
discussed by Dr Tan , not ably his unchal l engeab le (and unchallenged , 
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which itself is interestine;) comment that the Shannon/Turing framework 
is ina<lequ~te, and that we now need to look for a new one, a search 
in which he and some others are and have for some time been taking 
part. 

It is not my wish to quote extensively in a report which also 
contains the original •'papers. However it does seem to me to be worth 
pointing out that the · ·e111arks concerned with ',,,here do we go from 
here' fall into two groups. One group is obviow : ly that of 'chess 
as played by humans' and what we can learn abo :. ~ how people behave 
and operate in the context of the world of the chess board, this is 
also the concern of the field of congnitive studies, including 
computerised artificial intelligence. Thus Atkin's paper here I 
consider as of considerable importance; indeed his theory really 
ought to be tested using not only past games, but also techniques 
arising out of pattern recognition. One can foresee also some 
exper~nents which arise from the notion of over optimism/pessimism 
in relation to the real strength of the positioned pieces, and its 
effect on the actual game. That this iis a general proposition is true, 
is obvious; ,,hat is not obvious is the elaboration or al 1 the extensions, 
but cert~inly there is almost bound to be a cbnnection between this and 
and the middle aged syndrome, and what that connection is might be both 
fun and instructive to discover. And for the middle aged syndrome, 
read also a large number of other problems concerned with operations 
in the wider outside world. 

The point I am making is that a study of the world of chess using 
computers and computer generated techniques might now turn out to be 
of some very practical importance in 0U1er spheres, and should not be 
left in the generally bemoaned - at least this seemed to me to be 
the feeling - situation that the work has generally been done in spare 
time with minimal machine time available. T.hus -I should like to see 
for instance much more intensive work on the De Groot conclusion that 
Alan Bond discussed; that perception in the case of a Grand Master 
is almost hard wired. I am well aware that as a general propositon 
this can be tested elsewhere, but testing it in this field seem, to 
present some interesting advantages, not least in that the world of 
chess has boundaries which can be sharply delineated. 

The second part of this third grouping is concerned with the 
'mechanics' of the second generation of chess programs. We are now 
at the level of i SPY rather than computer chess as it has been 
hitherbo un'derstood, and I SPY is more difficult. And if it is to 
be properly tackled , then obviously t.he machine and time requirements 
go up and we need to examine techniques, whether fashionable or not , 
which have not seriously been looked at in this field in this country 
before. Thus we do need to have programs which are more dynamic, which 
alter as the game progresses. We need uot only good threat value 
tables, might I suggest we also need dynamic threat value tables 
which adjust according to not just the potentiality of the player 
across the board but also the actuality. Put in this way of course 
tbis is asking for a lot, and there may in fact be other ways of 
solving the problem, even so ·it does seem to me at this time to be 
s01ne thing worth thinking · about if not fallowing up. 

We are stopped by the inability of programs to generalise, and not 
only when they come on an '~,mazing fact', by the l.J.ck of libraries, 
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and by the inability of the systems as yet to take a s nopt · c view 
of the board . And as was also pointed out , h ardly anyone is as yet 
trying to solve the probl e,r..1 proper -by searching backwards and forwards , 
' the way thot a Cr.:md Hoster rri.ght operate '. · 

To end , I would say that the conference was irn.rnensely worthwhile. 
It seemed to me to indicate that though it might not have suspected its 
m-m existence, there was now a community pr •sent . And the creation of 
hot is always the first step in getting something <lone _and moving in 

any field . As for the sr.c and its inv olvement? Well those in the field 
a1·e in there mostly in their own time _, out of interest if not love. 
This is not a situation so rare th.-t it can be overlooked , 
particularly when the problems encountered and the possible solutions 
mii;ht tell us so much about ourselves . It ought to be encot1raged , and 

he first thing might we ll be t>1or e programming and more computer time 
during official hours . Cer tainly it is as useful as , if 11ot rnore than , 
much of the computing which seems to clutter up the publicly provided 
systems the country has available . 

. . 
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