COMPUTER
CHESS

edited
by

A G Bell

Atlas Computer Laboratory
Chilton

Didcot

Berkshire

0X11 0QY

October 1973

Proceedings of a One-Day Meeting
on

CHESS PLAYING BY COMPUTER

organised by

the Atlas Computer Laboratory
of the Science Research-Council
on 21 May 1973

ACKNOWLEDGEMENT

The knight was drawn
by Philip G Crane

FOREWORD

s

‘1

- —

-

CONTENTS

-
2
~. 2
Page !
.’
Foreword i |
Computer Chess Experiments
1 A G BELL 1
;2 A Simple Working Model
P KENT : 15
Psychology and Computer Chess
3 A H BOND - 29
4 Mathematical Relations in Chess
R H ATKIN and I H WITTEN 37
A Knowledge Based Program to play
f; Chess End-Games
S TAN 81 |‘
I
Observations
6 R MALIK 89 ‘,
I
7 Descriptor Index \
A H BOND 95 I
|
E; References 103
Q} List of Participants 113

' FOREWORD

"Why have a conference on computer chess?" This question was put to
me a number of times on the day and I gave a number of different
answers. This is because any answer must depend on an assessment of
how much I think the person asking the question knows about the
subject. To write this foreword is therefore difficult. I am now
trying to explain to everyone without any of the feedback that is
so necessary in conversation and so useful when lecturing.

Let me first kill two myths, both perpetrated by the Lighthill report:-

(i) "It is interesting to consider the result of all this work some
twenty-five years after the researches aimed at chess-playing
programs began: unfortunately these results are discouraging.
The best programs play chess of only 'experienced amateur'
standard characteristic of county club players in England.
Chess masters beat them easily."

The implication here is that the only reason people write chess
programs is to actually play chess and the discouraging result
is that they cannot beat Bobby Fischer. There are other reasons
(some of which are given in these collected papers) and it
seems unfair to define the only encouraging result as a program
that would beat everybody and doubly unfair that nobody is
going to get support if that is their declared aim. And the
main reason why? Quite simple, because for the last twenty
years 'results are discouraging' etc.

(ii) Apparently quite considerable resources have beén devoted to
producing an effective program. This is rubbish! Until the end
of 1972 there were only two people in this country who had ever
earned a living by writing chess programs. One was John Scott,
who had just left school at the time, and the other was myself
who had just left university. Neither of us cost the country a
great deal, indeed I was employed by a Norwegian-Italian with
an American grant. I agree that our results were discouraging:
John's program did not quite manage to hold its own against
Greenblatt, and my program (written in three months in 1962)

% d1d =

has now been translated into only six different computer
languages and used as the basis of only eight chess programs
(three in America, four in this country and one in Norway).

My point here is that it is unfair to criticise the results of

a subject that has never been officially supported or funded.

Do not make the error that the Americans or the Russians are
any better off; most of the work dome in those countries is by
people who also beg, borrow and steal computer time. David Slate
and Keith Gorlen, co-authors of CHESS 3.5 (the’ current champion
program) wrote it in their spare time having failed to obtain
NIH funds.

There are, to my knowledge, only five people at the moment who
are paid to write chess programs. Three of them (Gillogly,
Berliner and Simon) are at Carnegie-Mellon University; Richard
Cichelli at Lehigh, Pa, and Soei Tan at Edinburgh.

The discouraging results are therefore probably due to low
funding but the fault still lies with the people who would like
to work on computer chess. They rarely give clear reasons (I
include myself) why and how they wish to spend money and time
on the problem. Why don't they?

Well let's hold a conference and get people together. Find out why
and how people want to work on the problem now and in the future.
And the result: most people don't want funds! Instead they would
like more access to their firm's computer (in their own time) and
less persecution from their superiors. Most practitioners like the
idea of meeting other 'amateurs' at a conference; they can compare
notes and size up the opposition. But they still prefer to work on
their own ideas in a small group. In short, the British want, now
and in the future, to treat.it as a hobby, but a reputable hobby.

So here is an impressive document to enhance the reputation of this
hobby; perhaps it should be subtitled 'Teach yourself advanced
programming' because most hobbies are concerned with exercising
talents and abilities which our normal work does not either

permit or encourage.

This point of view is most common amongst computer scientists who
have tried to pr6gram chess. They will also point out the spin-off
in techniques first tried in a game playing experiment; for example,
hash tables, directed search, alpha-beta cut-off, catalogues.

Despite these very real successes most people actually dabbling in
computer chess (there were 14 people present who had written programs)
are, on the whole, reluctant to commit themselves completely to the
problem. Perhaps, like Einstein, they are happier in the obscurity of
their 'patents' office' where they are not expected to continually

'lay golden eggs'. This is fair enough. But I would like to co-ordinate
some of these labours of love. There are a number of problems and
experiments on which I would .appreciate other people's opinions and

I have described some of them in 'Computer Chess Experiments'. Although
I agree with Soei Tan that the Turing-Shannon model is probably
inadequate I still maintain that it is the only well defined model

e

that we have and that there are many useful techniques it can be used
to investigate, particularly the refutation (or killer) heuristic.
This is basically the computer scientists' viewpoint but, in my case,
is almost certainly due to the way the subject was first 'imprinted'.
I fully appreciate that other people see computer chess very
differently but I firmly believe that only a computer scientist can
gather together and implement all these different ideas because, in
the end, it has got to be tried in a machine and very few people
really know how to program; I do not include Botvinnmick.

"Imprinting'? As I mentioned above I wrote my first chess program
over ten years ago. L was employed to generate a 'list of legal
moves' for any chess position; this generator had to be as fast as
possible because the research was into models of evolution using
symbio-organisms. It was hoped that they would learn to play chess.

At the time we did consider making the program play a game. I again
stress that this was not the main purpose of the research. Without
reference to any literature we wrote a Turing—Shannon lookahead

(it is a very obvious model) and an evaluation function based purely
on. mobility. We spent a whole week on this work and the results were
discouraging, Even we could beat it, let alone chess masters.

At this point in time the fund ran out and, seeing no future in the
subject, I went off to earn a living doing something useful. I was
however left with the naive impression that a chess program could be
built in three separate pieces, namely:-—

(a) list legal moves;
(b) lookahead;
(c) evaluation function.

To 'list legal moves' is no problem, to write a crude lookahead is
also well defined and trivial but to construct a successful evaluation
function is where it all fouls up. It is a fact that the fewer
heuristics in the evaluation function, the more accurate it is, ie
capture the Black King is exact; material balance much less accurate
and if you worry about pawn structure during search you are looking
for a very inaccurate evaluation.

Berliner says in .his paper that special heuristics (eg 0-0 early in
the game, not moving a piece twice early in the game, advancing pawns
during the endgame) are an admission of defeat. I agree. I have never
tried to construct a sophisticated evaluation; never tried to express
my 'chess knowledge' because the performance becomes extremely
difficult to measure or explain. Indeed, many evaluation functions have
not so much been designed as been created ad hoc, the programmer has
had a 'feeling in his water' and it is impossible to reproduce his
results no matter how closely you read his publications or listen to
him., I must emphasise the point that science is concerned with
repeatable experiments. :

I said the problem can be considered in three pieces. This is not true
in practice. The crude lookahead is simply unacceptable and, in order

to reduce the tree search time, it is necessary to use an evaluation
function to prune, back up, order and direct this activity (particularly
if alpha-beta cut—off is incorporated) and, even more important, to

know when to stop searching and when to go deeper. So the results
are discouraging because nobody really knows how to write accurate
evaluation functions. I was, therefore, very interested when I read
Ron Atkin's paper 'Multi-dimensional structure in the game of chess’.
Here was a mathematician who, with lots of squiggly things and some
hard sums, appeared to propound a mathematically reproduceable
evaluation function. The missing 1link? Unfortunately, I could not
understand it, so why not get him to talk about it? There were other
people who had published work I did not understand, so why not have a
conference? If nothing else I might get some idea of what was going
on.

The SRC and the Atlas Computer Laboratory were almost embarrassingly
helpful (again my impression is that research would be supported if
only people would make a clear and committed case). Not all the
speakers I wanted were available but, despite appearances, there was a
thread in the order of the lectures.,

Basically the morning was intended to be hors d'oeuvres. Peter Kent
and I agreed that we would merely set the stage (a) to get a relaxed,
informal atmosphere and (b) to introduce the subject with a simple
working model. We hoped to get people talking and in the right mood
for the main course in the afternoon.

The three principal speakers were therefore Alan Bond on psychology,
Ron Atkin on the multi-dimensioned approach and Soei Tan on knowledge.
Rex Malik very kindly agreed at the last minute to lead a discussien.
I again interpret his remarks as an unconcious appreciation (by

him) that most people in the audience do not want the responsibility
of funds but much prefer the subject as a hobby.

I still believe that successful computer chess will be the first step
in the ascent of machine intelligence. I make no hypotheses of how

it will be realised but one thing is certain. If you want to practice
and improve your ability to program a computer then the subject is
similar to Fermat's last theorem; you most probably will fail to
produce anything significant but you will learn a hell of a lot about
programming and, incidently, psychology, maths, urban development
models, epistemology, and the theory of evolution.

I have given a short introduction to each paper. I would emphasise
that these are personal observations.

- vi -

COMPUTER

CHESS EXPERIMENTS

by
A G Bell

Rutherford Laboratory
Science Research Council

Chilton

Didcot

Berkshire

0X11 0QY

"The first professor ... said perhaps I might
wonder to see him employed in a project for
improving speculative knowledge by practical
and mechanical operations."

- JONATHAN SWIIT

Gulliver's Travels

Editor's Note -

Five finger exercises. The ability to program
a computer is a necessary but not sufficient con-
dition for producing a successful chess program.
A sound knowledge of modern I/0 equipment (parti-
cularly interactive graphics) is also necessary
but the computer scientist is still dependent on
ideas from other fields. Meanwhile he should
practise his art.

In the lecture I related the sad fates of a number of pioneers in the
field of machine intelligence. These included Raimon Lull, Blaise

-Pascal, Jonathan Swift, the Spanish captain, Charles Babbage and

Alan Turing.

It was to show that, although the fascination of intelligent machinery
has a long history,we still have not achieved the first significant
step. The analysis and construction of a successful chess machine could
be that step.

One reason for these discouraging results is a lack of co-ordination
between the different groups and disciplines which dabble in the subject.

The computer is the only machine we have to perform experiments in
machine intelligence in general and chess in particular. It is essential
to have experience of the strengths and weaknesses of these machines.
This is the province of the computer scientist and the necessary
co-ordination must come from computer science.

Science is concerned with the measurement of repeatable experiments

and application of the results. Computer chess has usually been treated
less rigorously, almost an art form, with the emphasis on the computer
playing the game and humans gauging its performance.

This paper describes some repeatable experiments for a chess program.
The intent is that programs can and should be assessed without them
actually playing each other. Of course they should play occasionally
but it is an expensive operation and not always conclusive as to which -
is the better chess program.

Handicaps

When two chess programs play each other with time limits invoked then
not only the programs but also the computer/compiler systems are in
competition. Alan Bond raised the question as to whether it is possible
to isolate the programs performance and ultimately give handicaps

to the computer/compilers.

I published an Algol chess algorithm to solve any two move mate
problem (Bell, 1970) and have since received correspondence from
people who have tried it on a number of machines in at least six
languages.

The times obtained for the different computer/compiler systems to
solve a two move mate and prove it unique (no cooks) have been
interesting. At first I believed that because the algorithm was so
specialised its performance on different systems could only give
comparitive results to within a factor of two or three. In fact the
times for Algol systems agree to within 207 with results obtained by
B Wichman who has used a sophisticated technique to compare and
analyse the execution performance of over twenty Algol computer/
compiler systems (see Computer Journal, February 1972).

Because of the good agreement with Wichman it is my belief that the
results for the translations into PL/1 and FORTRAN can give handicap
data on the performance of these and other ccmputer/compiler systems.
Moreover, because the algorithm is table driven and highly language
independent, it can be translated into most computer languages in

a matter of days.

The table below gives the comparable results for six powerful modern
computers and demonstrates the empirical agreement of the algorithm
with Wichman's analyses. The Gibson mix is a measure of the hardware
power of a machine. The ICL Atlas Algol is taken as the standard.

Comparable Results for Six Powerful Modern Computers

i CHESS .MATE
COMPUTER/ALGOL COMPILER GIBSON MIX WICHMAN IN SECS
ICL Atlas /MKI 1.0 1.0 100
B5500 / MKl 0.3 0.5 220
UNIVAC 1108 / (obsolete) 2.0 1.2 90
ICL 1906A / XALT MK5 2.5 3.3 30
CDC 6600 / MK1 4.7 1.1 100

The results for other computer/compilers are:-

Atlas Basic 10 seconds

CDC 6600 Basic 4 seconds ;
IBM 360/195 in FORTRAN H 4 seconds ;
IBM 360/195 in PL/] 7 seconds

All times are for the problem in (Bell, 1970). The Univac 1108
and CDC Algol compilers have been rewritten; they now have
Wichman figures of 2.3 and 3.0 respectively.

The effort to implement the algorithm in the various languages was:

Algol about 1 man-day
PL/1 . about 4 man-days
FORTRAN about 2 man—days
Atlas Basic about 10 man-days
CDC Basic about 10 man-days

From the table we see that, for example, a chess prograﬁ in Atlas Algol
should be given 100/4=25 times longer to consider a move if we wish
to compare it with a chess program in CDC Basic.

Programs not using the algorithm can be adjusted to solve two move
mates. This will mainly measure their power in listing legal moves
but useful handicaps could result because the conventional program
spends the majority of its time in this activity; philosophical
programs would not be so easy to handicap.

Two and three move mate

The algorithm mentioned in the previous section is crude. To obtain
consistent handicaps it should not be altered however, it is open to
great improvement and it is instructive to discuss the inefficiences
of the algorithm and so introduce a significant programming principle
- the principle of 'refutation'.

The algorithm is table driven (the most powerful of computer languages).
One important feature is that the 64 squares of the board are not
scanned but an integer array is consulted. This array, 'piece', contains
the number of white (black) men on the board and their actual locations.
For example, in the position

64

BP 56

48

WP | 40

BP EP 32

I'BP WP WP 24

BP | BP | BP | WP we | wB.| 16
BQ| BK | BB W | WR | WK 8

then white 'piece' is:

96|71 8112 |15]16 zrl 23 138

g———— Direction of scan

and black 'piece' is:-

10ff 12319 |10 11|20 |29 31|54

" In this problem the mating sequence is:—

W1 P-B6 ' : : |
Bl BB%P
W2 N*#B checkmate

but to discover that it is checkmate the program must actually capture
"the king. It does this as follows:-

W2 N*B 'am I checking the king?' (to avoid stalemate).

The list of 'piece' is scanned backwards so it finds the rook check
first. It now continues:-—

B2 K-B8
W3 R*K

Black has no further alternatives? at the B2 or the Bl ply so the
problem is solved. The problem introduces the concept of 'refutation
move and/or man', in this case the rook. Gillogly calls this the
'killer heuristic' and shows it to be relevant to actual computer

chess play (Gillogly, 1972).

discovered the move R*K at the stalemate check it could have re-ordered
the white 'piece' array thus:-

| N4

9112 8@ 15]|16]| 21| 23| 46| 7 |
o o e e — e R/

The solution of the mate problem can be speeded up. When white A

\
|
|

The rook would now have its moves listed first and in isolation, the ‘

actual capture of the king at W3 can then be detected without listing 1

the moves of any other white men. But this misses the really important

gain. Black will backtrack to ply Bl. Now in this case it does not
have another alternative but normally black would. However the
alternatives are rarely significant and the same refutation move and
man will usually checkmate at move W2,

The fact that the order of white's 'piece' for W3 can be heuristically
optimised from the stalemate check is applicable to the previous plies
B1, W2 and B2. Here 1is a simple experiment to verify this statement.

Put in a two move mate problem. Print white's first move Wi and now
print all black's responses Bl. Eventually black will make a move
BIR which refutes Wl, the algorithm will cutoff and white will try
another Wl. So we have:-

ure

ered

‘he

lant

Wla
Bla Blb Bl€ .swswwweseBlR
Wib
Bla' BIb' Ble® +ve....BIR
etc

The result of this_experiment is that the black move BIR which refutes
the present Wl is usually (607) the same BIR which refuted the
immediately previous Wl. Even more significant is the refutation man
(75%), very often the king who just moves away.

Let us assume that we modify the algorithm to preserve the refutation
move BIR. Also assume we can check it exists for the next Wl in zero
time. This means that the timings given in the previous section can
be reduced by 607 ie 100 seconds becomes 40 seconds. By similar
argument W2 and B2 can have their refutation moves optimised and we
obtain a limit of improvement > 937 ie 100 seconds in Atlas Algol
could drop to about 7 seconds and basic programs could be less than a
second. A further bonus is that the program is more capable to giving
an 'appreciation' of the problem; reporting white's threats and black's
replies. Unfortunately, the full reduction cannot be realised, omne
reason 1s that we must check if the move BIR still exists for the
next Wl etc. The best we can do is to only list the moves of the man
which generated the previous BIR. So we have the following flow:-

—» Make move Wi
List moves of refutation man

Check BIR exist§ ————3% no
{

yes
Apply B;R . W
Does it refute? ——> 1o —» List moves of all other men
yes
. Next W! move < 'Find new BIR and optimise man
ngne
soldtion

We are now spending most of the time in 'list moves of all other men'.
However the reordering algorithm (previous page) does optimise the
finding of the next BIR. Note that full implementation requires a
different 'piece' array for Bl, W2, B2, stalemate and W3. When a
solution has been found the order of the men in the various 'piece'
arrays will give a further appreciation of the problem by the computer.

Two move mate problems are too short to accurately measure these
improvements. Consequently three move mates have been used to test
them. Preliminary ' results indicate that, in Algol on the ICL 19064,
the time for a two move mate can be reduced from 30 seconds to about
6 seconds, ie 5 times faster, and a three move mate takes about 50
times longer, ie about 5 minutes.

Apart from Gillogly, other people have 'discovered' refutation; in
particular Richard Cichelli of Pennsylvania. In that 411 'killer’

or 'refutation' heuristics are similar the above implementation is

the same as Cichelli's and Gillogly's. However the cost effectiveness

of refutation can vary widely. The McCarthy-Gillogly killer associates
a particular move with a particular position. Gillogly says that this

does not pay for the overheads.

My implementation, associating and ordering particular men with the
current area of the search tree, is much less specific; more hits but
less accurate. Cichelli's work is somewhere between these two extremes.

The big failure of my implementation is that when the hoped for
refutation does not exist or fails to work then I list all the moves
of all the remaining men. It would (or should) be more efficient to
only list the moves of the next man in 'piece'. However this will
require a major change to the program.

The fact that the program will not then immediately check the legality
of the opponent's previous move should not matter. It is prepared to
do so; either the refutation is effective against an illegal move or
the normal cutoff will occur eventually.

Another improvementwould be along the lines of COKO III (Cooper-
Kozdrowicki, 1973) which concentrates on white moves W1, W2 and W3
that can capture the king ('attack paths') and consequently narrows
the search. This again accelerates the solution of mate problems
unless Zugzwang is involved.

Evaluation functions

It is in the evaluation function rather than any other part of the
conventional chess program that scientific measurement is most lacking.
Here the programmer must express what he considers to be relevant to
chess; his chess 'knowledge' is programmed into the computer, an
admission of defeat according to (Berliner, 1970). The usual test of
the evaluation function is to play the program.

Here is an experiment. Obtain about 500 positions in chess and have
them examined and assessed by a panel of experts. For each position
the panel gives an ordering, from best to worst, of all the moves
worth consideration, ie the non-Fischer set. This not only allows us
to compare programs without them actually playing but if Fischer would
do the test we can compare champion v human and champion.v program.

This is not quite fair. Every time a chess-program has to make a move
it behaves like it has never seen the previous moves (unless it does
something like the reordering of the pieces discussed in the previous
section). Fischer, presented with 500 unconnected positions, would
probably not be as dominant over a computer as when he actually plays
a game.

Note that one does not have to write a complete program to test an
evaluation function. If it 1is expressed as an algorithm in an
acceptable language, Algol or FORTRAN, there is no reason why this
should not be tested by someone else's well written, modular program.

o ilet US consider perhaps the simplest evaluation function whitch
NO: any relevance to chess ie material and mobility evaluation. This
2zu1d be a criterion for other functions.

The evaluation function is:=

(a) for a glven position list all the captures first (material);

(b) all remaining moves are graded by the resulting mobility ratio,
ie make the move and then calculate (how many moves you have/ how
many moves the opponent has) in the new position.

To investigate how relevant this function is to actual chess play I

took the selected games ot ten chess.masters described in Golombek's

book "The Game Chess'. The masters are Anderssen, Morphy, Blackburme,
Steinitz, Tarrasch, Lasker, Capablanca, Nimzovitch, Alekhine and Botwinnik.
In the ten games the masters were faced with 336 positions. Now we

are not going to get full agreement on the opening moves they chose,
nevertheless for 95% of the cases the move chosen by the master was

one of the top 16 moves selected by the simpie evaluation function.

Can your chess program do better? It not throw it away.

Another feature of this evaluation function is that it appears capable
of distinguishing between conventional players and revolutionary players.
Conventional players, like Anderssen and Capablanca, are more in

accord with the function than players like Reti and Reshevsky, but

this is the province of game theory not game playing.

Is it possible to prove that a given evaluation function is incapable
of winning against best play? This is a neglected approach but it
does have possibilities. For example:—

(a) If the program can capture then do so, -ie like the no-huffing rule
in checkers. It is possible to disprove this algorithm, howevVer
the opponent must offer some important captures to control the
game.

(b) If you always have more moves than your opponent then you must
win. Obviously true? He has no moves when he loses his king but
is stalemate avoidable? Also how long can. white maintain more
moves than black? P-K4 gives white an initial ratio of 30 moves
to black's 20 moves. One unverified result is that white can
maintain a mobility advantage over black for the first 20 moves
i from the P-K4 opening. Note that if white does have a forced win
and there is a limit to retaining the greater mobility then
white's best play must include a 'mobility gambit'. How long does
your evaluation function keep ahead against all black's responses?

(¢) It is not possible to play losing chess by reversing the signs of
parameters in an evaluation function, eg give black the greater
mobility? Try playing 'giveaway' checkers; two kings against one
win in either version of the game. Samuel suffered from this
misconception.

Repetition

One of the reasons chess playing programs have not progressed further
than the strong amateur level is that they waste time recreating and

_9.—

reanalysing exactly the same position in the lookahead. This is not
so apparent in games which computers can play at master level: Kalah,
Gomoku and checkers. In these games the pieces (and therefore the

. positions) do not usually cycle; the only troublemakers are checker
kings, relatively rare pieces. This is not the case in chess, all

the pieces (as distinct from pawns) can cycle. Humans do not generate
these loops but computers "spend most of their time in pointless
repetition, even in the improved two-move mate algorithm already
discussed. R .

Consider the chess king. If we look ahead 1,2 and 3 moves we find the
following histograms of the king's terminal position:-

1 1] 1 20 21 4] 21 2
1] 31 4| 8] 4| 3
1] 1] 1 2|1 2] 4| 2| 2

6 |12 (272727 |12] 6

7 | 121272427 |12 7

6 [12|27]27]27]12] 6

III

I : Total 8 Distinct 8 New 8

II : Total 64 Distinct 25 New 16
III : Total 512 Distinct 49 New 33

10

Pap——

Make no mistake, a crude program playing the simple K, R v K ending
will generate similar rubbish. Of course the actual path can be
important sometimes; whether castling is still possible and en
passant capture exists.

To quickly check for repetition of a position (and hence save
re—evaluation) would apparently be easy on a CDC STAR. The word

length is 64 bits; equivalence of two words containing the two
positions of the chessmen would indicate possible repetition. A closer
check would then be necessary and the immense complications of full
recognition, cataloguing, garbage collection etc become apparent.

Now humans do not appear to work in this way, we know that (W1-B1-W2-B2)
is usually equivalent to (W2-BI-WI-B2) and do not generate the final
position; we recognise similar paths not similar final positions.

There is no simple answer to this problem, the intent is to spotlight
the time wasted by chess programs in their evaluation and re-evaluation
of positions. It seems that almost any attempt to recognise or suppress
repetition at or before the evaluation level must be highly rewarding
in terms of saving time - but how rewarding?

Here is an experiment. Starting in a corner, how many different ways
can a knight tour the board visiting each square only once and
returning to the starting square at the 64th move? The answer 1is not
known but any person attempting to solve it will quickly realise how
repetitous the knight's path can be. For example:-

There are four ways the knight can get to square 5 but all four must
get the same answer from symmetry?

A similar problem which has been solved might give some indication of
the possible savings. The problem is how many different ways a fly

can crawl round a five-dimensional cube, visiting each corner once

only and returning to the starting corner at the 32nd move. An

abortive attempt was discussed by Martin Gardner in Scientific
American, August 1972. Professor Ronald Read had estimated the solution

11

would require ten years by computer. Donald Russell, a computer scientist,
obtained the answer 906,545,760 in five minutes! The trick was to treat
the problem like a game, ie make legal moves with a 32 ply look-ahead

but similar paths were recognised and ignored. This crude recognition

of paths resulted in a program running one million times faster than

a qualified estimate. The benefits to chess programs of recognising
equivalence of moves will not be so great but even ten times faster

can be significant when machines like the CDC STAR, about 100 times

faster than Atlas, become available to chess programmers.

See Tan's paper for other ways of approaching this problem.

Unscientific myths

A dangerous myth has arisen from the fact that chess was designed by
humans to be used by humans. Examples of this myth are statements
like:-

'Chess is a paradigm of human mind'.

'Master play will require a program ''modelled on human thought
processes" '.

'The program must ''make use of essentially the same methods as
those used by men" '. (Women's Lib: Please contact I J Good).

'"The program must be given "chess knowledge" '.

Such statements have a polarising effect on research. It allows
philosophers, phsychologists, geneticists, chess masters etc to waste
hours of machine time and then pronounce on the problem as too
difficult. Computer scientists rarely have the opportunity, yet!:
surely the less information a good program requires from us to attempt
a problem the quicker and better it can attempt ‘a variety of problems.
It involves us with less work and eliminates misconceptions on our
part, allowing the computer more freedom and efficiency to do its own
thing, ie mini-max, alpha-beta and refutation. It seems obvious that
if we concentrate more on programming technique and produce a chess
program which only 'knows' legal moves and only plays to master level
then this is more useful and adaptable than a highly specialised chess
model which could play at a higher intermational master level with

the high probability that we still could not understand how it .
worked.

But to return to the computer doing 'it's own thing' with a human

activity. Consider the Morse code. Like chess it was invented by a

human for humans to use, surely this must have -some effect on how a

computer should handle Morse code? ;

Morse code do so in a variety of inefficient visual and phonetic

mnemonics. Professional Morse coders and Bobby Fischer are not included; ;
people whose expertise has developed to such sub—concious levels that
they are no longer aware of how they do it. Laymen, confronted by the
laborious virtuosity of the non-professionals, are impressed; obviously
the problem is difficult. You may suffer from this impression. Here is
an experiment. How long would- it take you to learn Morse code? Define
learn as a permanent memory of how to decode a Morse message written

on paper; speed is not important. If a person knows binary, ie 'thinks'
like a computer then the answer is about five minutes. Hopefully, you
are surprised. A human activity can be learnt and applied more

: |
It is mv experience that non-professional people who (claim to) know J
|

..'12_

effectively by humans if they behave like a computer. Maybe aircraft
do not have to flap their wings either.

Here is a pseudo Algol program to decipher Morse code, the input is
assumed to be-a bar (), a dot (.) or a space () to delimit the
letters:—

N:=0;
A: if its a dot then N:=2#N+] else
iﬁ its a bar then N:=2%N+2 else

print and clear(letter [NJ);
goto Aj

The 'array letter [l:28]'contains the following sequence
ETTIANMSURWDKGOHVF L PJDXCYZQ

which a human must commit to wemory. This is possible in five minutes
but it is left to the reader to see how the algorithm works. A final
word on paradigms:

Conclusion

The previous sections have discussed some repeatable experiments. They
are illustrations of how a limited but more scientific approach to

chess programs could be made and are intended more as stimulating examples
in advanced programming than experiments to be slavishly emulated.

Computer chess is a rich field of research for programming technique,
games have been the original test bed of many important developments

eg hash tables, alpha-beta cutoff, pattern recognition, M and N procedure,
information retrieval studies. It is important to measure and report

the efficiency of new techniques.

In this way we could approach, step by measured step, a master chess
model. In the meantime the techniques that are developed must be a
valuable fallout, far more important than knowing if white does have
a forced win.

Finally a word of encouragement. Compared to the man—decades that have
been spent on developing computer languages we have only spent a

few man-years. on chess programs. Lord Rutherford once wrote to Niels
Bohr that 'you cannot expect to solve the whole problem of modern
physics in a few years. So be cheerful over the fact ‘that there is
still a great deal to do.'

...13.._

A SIMPLE

WORKING MODEL

by
P Kent

Atlas Computer Laboratory
Science Research Council

Chilton

Didcot

Berkshire

0X11 0QY

"And take man's vaunted power of calculation.
Have we not engines which can do all manner

of sums more quickly and correctly than we can?
In fact, wherever precision is required man
flies to the machine at once, as far preferable
to himself,"

- SAMUEL BUTLER

Erevhon

.-.15_

Editor's Note -

A very simple working model. The program is
deliberately constrained to answer within a few
seconds and the chosen move is computed almost
entirely from a shallow search and evaluation
function based on threat and counter threat to
pieces and squares. -

By limiting the depth of search to two plies it
is easier to understand why an evaluation func-
tion contains- insufficient "chess knowledge".
There appears to be little proof that deeper
searching must necessarily improve performance.

However the paper is mainly intended to intro-
duce the classic Turing-Shannon model.

The program I am going to describe is based on the '2 move mate'
problem solving program written by A G Bell (Bell, 1970).

As this has been published in the Computer Journal T will not describe

the move generating routine but will instead describe the development

of the position evaluation function and some of the problems encountered
during that develiopment. The program is written entirely in Algol,
originally for the Atlas Computer. It is probably the only program to

have been moved from one machine to another machine in a different language.

Initially the program based its evaluation solely on the number of
moves available to each side. The greater the difference in the number
of moves available to one side over the other, the better the position.
This evaluation function has been suggested before, and although it
works surprisingly well, it does have a number of faults:- ’

(i) No value is given to an undeveloped piece, such as a rook, in
the early part of a game.

(ii) The queen tends to be developed far too soon. (Unless one uses
a library of openings this problem is very difficult to over-
come.) The value of keeping the queen in reserve for a few moves
is something that is learned by experience and cannot easily be
programmed in.

To overcome the problem of evaluating undeveloped pieces, it was
necessary to take account of two separate values for each piece on
the board.

First its immediate value (which depended on its position) and second
its potential value (which usually remained constant' throughout the
game). This potential value is related to the expected mean value of
the squares controlled throughout a game. These potential values are
approximately in the ratio P=1: N=3: B=3: R=5: Q=9.

The number of moves available to each side had initially been adopted
as the evaluation because of its ease of computation.

—17_

Although it had worked surprisingly well there did not seem to be any
logical reason why it should.

One did not need a lot of moves, one good one was all that was necessary,
and a choice of 50 moves was little more likely to provide this than
a choice of 25. .

I then realised that there was a close correlation between the number
of moves available and the number of squares threatened.

1 therefore modified the program to compute the number of squares
controlled. A square is considered to be controlled if one has more
threats to that square than the opponent. One should also take

account of the value of the pieces threatening a square. A pawn would
for example have more effective control than a queen. Strictly speaking
a square is only controlled if, during a complete sequence of swaps on
that square, the difference in the total value of the pieces swapped
off is never negative.

To speed the program up, I evaluated all positions one ply deep,
selected the 'best' six or so, re-ordered these so that the 'best'

were tried first and then looked one ply deeper, using alpha-beta cutoff
to avoid unnecessary work (Samuel, 1967). To get the effect of a deeper
look ahead while minimizing the extra computing time, I gave a value for
threats to pieces. If I had just moved, the values of the threats were
as follows. All threats to my pieces were worth half the value of the
pieces to my opponent, and all threats to my opponent's pieces were
worth one third of the value of the pieces to me.

I tried several values for these threats between one and one quarter
of the piece values but half and one third seemed most reasonable.

Essentially, the value is based on the likelihood of a capture. If we

have one piece en prise, one move may save it, but if we have two pieces
en prise, we are unlikely to be able to save them both or capture their
equivalent value. ‘

All these threats ‘could be computed quite cheaply from two arrays ‘
containing the number of threats I had on each square of the board and !
the number of threats my opponent had. At this point the program
captured if you gave it the chance, moved a piece if threatened, but
generally displayed no imagination.

The computer operators used to play the program at night and write
sarcastic comments on the output after winning in 15 or so moves.

I then decided to try building some sort of strategy into the program I
by giving the squares different values. Initially the ratios were

3 for the central four squares, 2 for the next ring of twelve and 1 for ‘
all the remainder. '

The next night the best player among the operators tried playing the
program, expecting to win with his usual ease. The program opened with '
the rather aggressive if unsound Blackmar gambit:-—

r

First Winning Game (Blackmar gambit)

W (Atlas)
1. P-Q4
2, P-K4!17?
3 N-QB3
4. B-KN5
5. B-QN5ch
» BB
i Q*N
8. Q-KB5
9. 0-0-0
10. Q-KN5
1. Q-QR5
12, Q-KR5ch
13. Q-KR3
14, P-QN3
15. K-QN1
16. Q*Q
17. Q*QBP
18. ' Q-QB7
19. R~-Q5
20. N-KB3
21. R-Q!
22. P-QN4
23, RAN
24. P*B
25. Q-QN7
26. Q*Rch
27, Q*R MATE

- 19 -

It then proceeded to develop all its pieces fairly rapidly, castled
queen side, doubled its rooks on the open queen file and stormed down
the board using both rooks and the queen, ending the game with a check
mate by its queen on the 8th rank and its rook on the 7th. The comment
on the output was 'well it scems to work now'. It is true that the
player had made several errors during the game, such as giving pieces
away, but prior to this modification he had always been able to

recover such losses with little difficulty. For the first time the
program seemed to have developed a purpose,

From then on the operators played more carefully and demonstrated a
number of weaknesses in the program. Some are not easy to overcome.
There was a very definite inability to cope with advancing pawns, no
danger was seen until the pawn reached the 7th rank and was about to
queen, at which point it could well be too late. To overcome this
problem I created new tables for black and white to give the value of
a pawn, and the value of a threat to a pawn, on any square of the
board. These values increased as the pawn advanced. This encouraged
the program to move up its own pawns and to attack its opponent's
advanced pawns. One could also fiddle the table to force the program
to open in a particular way. For example, by giving the pawn in QB2
a large negative value one could force it to use the English opening
P-QB4, one that it would not normally value very highly, in spite of
what Petrosian or Spassky might think.

Another problem more difficult to overcome is the classic failure of
searching to a fixed depth (Turing, 1953). If the program finds a
potentially bad position at the full depth of its search, it cannot
search deeper for a refutation and can only search wider. If, as in
my program, the width of search is also limited, it is often unable
to find a sensible reply.

As a result it adopts a policy of 'sufficient unto the move is the
evil thereof' and will do anything to avoid the 'fatal' move. The
program will put off the apparently fatal move by an irrelevant check
or an attack on a queen, even if the checking piece can be taken and
the original threat remains. A good example of this occurred before
the advancing pawn problem was corrected. The program (white) had a
won game but its opponent had pushed a pawn through to the seventh
rank to reach the following position after move 24.

BLACK

| =
—
=

| ro
|ro
|ro

WHITE

The program continued:-

25. R¥Nch K#R
26. N*Pch K-K2
27. 1-Q6 P*N
28. P-N4 P-N8=Q

This ridiculous continuation was simply due to the fact that the move
R-KN1 was not placed in the top few moves when evaluated at level 1.
After all to do so the program would have to give up a threat on a
knight for one on a pawn, and also give up control of an entire central
file for control of the Kil2 square. With the complete queen's file open
there were far too many other moves worth considering first, eg:-—

R*Nch
R-Q5
R-Q7

or even:-—

R-Q4
R-Q6

and N*P fills up the buffer of six moves. With no sensible move in

the buffer it could only put off the fatal pawn queening move and hence
lost a winning position. This problem of searching to fixed depth can
also arise with irrelevant threats to the king or queen by pieces that
can be easily captured or avoided.

The program tendsto give castling a rather low priority unless the
king is vulnerable or the rook's new file is already open. Knowing
that castling is potentially -a good move, I have had to encourage it
by adding a number of points for this move. '

To summarize the present position. The program evaluates all the
positions on the first ply, selects the best n, orders these n moves
and then evaluates at the second ply using alpha-beta cutoff. The
position evaluation function uses the following factors:-—

K Q R B N
Piece Value . 324 180 108 90
Your Threats 90 162 90 54 51
My Threats 90 108 60 36 34
Square Values 4 Centre 22 cf (Berliner, 1970)
12 Next 12

48 Others 6

- 21 -

Pawn Tables

Rank 2 3 4 5 6 7
Q Pawn 36 36 36 48 54 66
K Pawn 24 36 36 48 54 66
QB Pawn 4 18 18 30 48 66
The Rest 18 18 18 30 48 66

Your Pawn Threats

Rank 2 3 4 5 6 7

Q Pawn 18 18 18 24 27 33
K Pawn 12 18 18 24 27 33
The Rest 9 5 9 15 24 33

My Pawn Threats

Rank .2 3 4 5 6 7

l
J
\
Q Pawn 12 12 12 .16 18 22 *
K Pawn 8 12 12 16 18 22
The Rest 6 6 6 - 10 16 22 |
5 I
Also |
Your EP pawn threat = 9
My EP pawn threat = 6
castling = 25
stalemate value =0 1
checkmate value = 10000

Testing the move selector

In order to test the move selection and ordering routine, I collected
statistics on over 100 positions.

I take the move selected at level 2 and find what its position is in
the complete ordered list at level 1. If the selection is good all
the best moves at level 2 should be near the top of the list at
level 1. The results were as follows:—

| B

Position No of Occurrences Cumulative 7

1 40 32.8
2 24 52.5
3 12 62.3
4 11 71.3
5 16 84.4
6 4 87.7
7 0 87.7
8 4 91.0
9 1 91.8
10 1 92.6
11 0 92.6
12 0 92.6
13 3 95.1
14 1 95.9
15 = 95.9
16 = 95.9
17 = 95.9
18 - 95.9
19 N 95.9
20 = 95.9
21 2 97.5
22 = 97.5
23 - 97.5
24 2 99.1
25 1 100

Thus over 90% of the final moves appear in the first eight selected
at level 1. This seems quite a good distribution of selections if it
were not for the long tail.

One would 1like to be able to cut off the search at width eight but
some key moves occasionally occur much further down the ordered list,
the worst example was a mating move that was listed as 24th at the
first level. ’

One can see that while the move selector is reasonable most of the
time, there are certain positions where it goes completely haywire
for no apparent reason. It will also at times find the right move for
the wrong reason. Alex Bell asked me to try it out on an opening trap,
namely the Blackburne shilling game:-—

1. P-K4 . P-K4
2. N-KB3 N-QB3
3. B~B4 N-Q5
does it play 4. N#P accepting the offer of a free pawn?

4, Q-N4
5. N#*BP?

forking the queen and rook but

5. Q%NP

23

which is a win for black.
In fact it played:—

4. N*N!

because of several moves that it considered potentially dangerous to
its maximum depth of search, particularly N*Pch?

If we now force it to the position after 4. N#*P? , Q-N4, it does not
play 5. N*BP? but 5. B*Pch, because the check puts off several
potentially dangerous moves such as N*Pch? or Q*Pch? or even Q*NP!
(but that was about 4th). : '

So the programs sometimes finds the best move or avoids the worst move
for totally the wrong reasons. This odd behaviour is due in part to
the shallow fixed depth of search. But searching deeper is not going
to cure the problem, only hide it from view. The erroneous position
evaluations will take place deeper in the search tree where their
effect cannot be easily observed. It is a mistake to use deep
searching too soon in a program's development. The position evaluation
function and move selection really need to be very well developed

and understood before attempting deep searching.

Running the program

Finally another sample game to show how moves are input:-

Octal Input

W(1906A) B (Black)
1. P-K&4 P-K4 6444
2. N-KB3 N-QB3 7152
3. B-N5 P-QR3 6050
4. B-Q3" N-KB3 7655
5. 0-0 B-B& 7542
6. N-B3 0-0 00
7. K-R1 P-Q4 6343
8. P*P N*P 5543
9. Q-K1 B-Q3? 4253 i
10. N*N R-K1L ° 7574
11 Q-K&4 N-Q5 5233
12. Q*Pch K-Bl 7675

13. Q-R8 mate

To play the computer we use an octal notation for input:-

BLACK

WHITE

Thus P-K4 for white is 1434, you may also put in 14 34, spaces are
ignored. < means it is waiting for your input. If you input the
character @ the present position of the board is output. If you wish
to castle, it will accept 00 or 000. If you get a pawn to the 8th
rank it will ask what you want. Input N, B, R or Q; anything else and
it will assume Q. 1t always turns its own pawns into a queen. If the
character + 1is input after the move, eg 1434+, the program will make

the move without checking it. It will then type out:-

MOVE ACCEPTED
YOUR MOVE

-+~

and wait for further input. This is useful for setting up board
positions for testing purposes. Input an A to finish the game and then
type in QU to quit the chess macro, The program is started by typing
CHRUN or CHRUN B, in the latter case the program plays black.

Recent developments

A number of improvements have been made to the program since the
conference. Several people have noted that the program often achieves
its primary aim of controlling the centre squares of the board but
then fails to capitalise on its position. This has been corrected by
setting up a new array which lists all the squares surrounding the
two kings. :

Initially, an extra 6 point 'king bias' is awarded for control of each
of these squares. An extra point is added to the king bias on each

move from the]10th to the 22nd. Thus after 22 moves 18 extra points
are awarded for control of these squares. In addition, from the 10th
move, all squares having a value greater than 6 are reduced in value
by one point per move until all squares have the value 6.

It has been stated (Zobrist and Carlson, 1973) that it is difficult
to include.new chess concepts in a conventional chess program.
Several of the concepts mentioned in Zobrist's paper have now been
implemented with little effort by adding extra tables of piece value
to the program.

The value of. a knight 1s now read from a table. It has the value 85
at the edge of the board and 90 clsewhere. This not only discourages
the program from moving its knights to the edges but also encourages
it to develop its knights from their initial squares. A bishop table
gives 95 points for a bishop in its initial position and 108 in all
other positions. This encourages early development of the bishops

A queen table gives 350 points for a queen in its initial square and
324 elsewhere. This discourages early development of the queen. After
10 moves allwlues in the bishop table are set to 108 and all those
in the queen's table to 324,

The program was translated into PL/1 and all the above modifications
included, in about six weeks of spare time programming by John
Birmingham of AERE, Harwell. He has also modified it to search three
plies deep, ie one more ply.

At present it uses the unsound centre counter defemse 1. P-K4 P-Q4
and also tends to attack its opponent's undeveloped queen with an
undeveloped bishop. These problems can be overcome by suitable
modification to the tables.

The program now plays a far better game, both 2-ply and 3-ply versions,
The change from central control to attacking the king is very
noticeable. It defends well and if the position becomes complicated

it takes level swaps (or better) until it can detect no further threats.
Once a dead position is reached it moves all free men to attack squares
round its opponent's king. It does not as yet test for a draw by
repetition and as a consequence has drawn several won games.

On occasion it has played very good end games, queening its own pawns
and preventing the queening of its opponent's pawns by long sequences

of pins and checks. However i1f a pawn is still on its initial square

in the end game there is no incentive to advance it because the value of
all the squares is now reduced to 6 and the value of a pawn does not
start to increase until 1t reaches the 5th rank. This can be corrected
easily by modifying the pawn tables to give small increases in value |
on the 3rd and 4th rank.

FUTURE DEVELOPMENTS

The existing program uses the alpha-beta cutoff technique to speed up
tree searching. This is most effective when the moves are ordered so
that the most likely cutoff moves are cxamined first. The moves are

already ordered at the higher levels of the look ahead tree, but so
far no attempt has been made to order the moves at the deepest level

-26_

of search as this would require a prior knowledge of the value of
each move.

A method of performing this ordering has now been proposed. It is based
on the idea that a refutation for one of your opponent's best moves is
likelv to be a refutation for most of his following moves (see Computer
Chess Experiments)..

The algorithm (known as the 'killer heuristic') will operate as
follows: -

(1) List and evaluate all replies to the first move at (full search
depth = 1), Re~order the men in the WHITEPIECE or BLACKPIECE
array so that men having a good reply are examined first.

(i1) Order the moves for each man and use this information to re—order
the tables used in computing each man's move, so that preferred
directions are examined first.

(iii) Modify LISTMOVES so that the moves of each man are generated and
evaluated separately. This will avoid unnecessary work listing
moves that are never examined.

PSYCHOLOGY AND COMPUTER CHES®SS

A H Bond Queen Mary College
Umiversity of London
Mile End Road
London
El 4NS ‘

"If you know the enemy and know yourself you
need not fear the result of a hundred battles.
If you know yourself but not the enemy, for
every victory you will suffer a defeat. If
you know neither you will always be beaten."

-~ GENERAL SAN-TZU

Editor's Note -

It is mainly due to Alan Bond's interest in psy-
chology and his enthusiasm in communicating that
interest that I have become convinced that any-
one who wants to write a successful chess program
must "know the enemy". Unfortunately, due to
other commitments, Dr Bond has been unable to
describe investigations of the "enemy" and his
"methods" to the extent that I think the subject
deserves,

I have spent many hours discussing the problem
with him and, by and large, we agree upon what we
disagree upon. I have therefore included a very
short resume of his talk but have taken the
liberty of expanding on the subject, not as dogma
but for contrast,

I would like to acknowledge the DESCRIPTOR INDEX
and REFERENCES he has provided.

..30...

(2

Introduction

The fraction of workers who believe that the study of human
behaviour can illuminate the study of "pure'" artificial intelligence
is disturbingly low, probably less than one third. As a member of
this fraction I tend to picture the relationship between AI and
cognitive psychology as one of mutual benefit particularly if the
subject 1s chess.

The main illumination that cognitive psychology can suppy to Al is
in providing ideas. There is no doubt that ideas are now needed
for a successful chess machine; psychology has used the game for
decades as a standard task environment.

The results of such work should be studied more. Apart from
helping to produce chess machine ideas such studies have given.us
concepts and mechanisms which help us to pose interesting problems
about intelligence in general.

Motivation

As motivation for this talk let me caricature an idea from Simon's
"The Sciences of the Artificial". It is that since an adaptive
machine adapts to its environment, it will in general incorporate
an efficient adaptation provided the requirements of this new state
do not violate any natural contraints such as speed or storage of
the machine.

Thus when a machine is well adapted to its environment and
operating within its limitations, its behaviour will be the same as
all other optimally adapted machines and will be principally a
property of the environment and not the machine. Only when
operating near their limitations do the machines differ.

If we assume that the best human information preocessing in the
environment of chess problems is almost perfect, then we may
postulate that the human mechanism is the most efficient in the

sense of being the best adapted. Hence the most efficient chess
program must behave like a human.

I believe that support for this argument exists in that changes in
recent chess programs brought about for efficiency's sake have been
changes towards human behaviour,

Furthermore the key to efficiency seems to rest in the acquisition
and use of miscellaneous information about the chess position which
in turn rests upon the flexible description of information. Humans
are demonstrably impressive at extracting and using information in
a flexible way in the chess environment.

Experimental Methods

Turning now to what is known of human behaviour in chess situations
we find the subject in its infancy. Humanemethods to study human
information processing must necessarily be rather indirect. We do
not however need to go to the extremely behaviourist position and
exclude introspective reports. Verbal reports from a subject are,
after all, data and by definition true. Whether there is a

simple relationship between this data and the information processes
under study is another matter. I do not know of any model of the
verbalisation process.

The methods used then are mainly two, both verbalisation. They are
introspection and thinking aloud. ’

An introspective verbalisation is done after the process to be
investigated has taken place and consists of the subject's
description of what he thinks he thought. It may include accounts
of moving images, intuitions, etc. Introspection was used a lot
until about 1920 when it fell into disuse.

Thinking aloud was used as a technique first by Duncker in 1935 and
is just what it says, namely the subject talks whilst he is solving
the problem. This must interfere to some extent with his thinking,
probably inhibiting the non-verbal processes and enhancing the
rationalisation processes. The relationship of the verbal report
to the total information processing activity is unclear. However
most workers accept it as a rough indication of partial contents and
order of the thoughts described.

One usually studies a subject's behaviour on a choice of move
problem in chess, ie one does not study a complete game but instead
gives the subject a chess position and asks him to play just the
next move. Usually the position is taken from a game but not one
played by the subject. However in one study (Wagner, 1971)asubject
played a game and in one position verbalised his thought in
choosing the next move. The behaviour observed was similar to that
in the artificial positions.

...32...

Another experimental method that has been used in the study of
human perception of the chess board is the eye movement camera
which produces a film showing the point on the board on which the
eyes are fixed at any moment.

Summary of Chess Studies

The earliest study was by the great psychologist Binet who, in 1893
(reprinted 1966), studied introspective reports of blindfold chess
players. His paper remains a classic.

Cleveland (1907) made some remarks on the stages of learning chess,
based on reports by players. The main work on chess was done in
the war period 1939-45 by De Groot and is presented at length in
his book. De Groot is still professor in Amsterdam and has
pursued his 'thinking aloud' method and the study of thought. More
recent remarks by him are in (De Groot, 1967). His book ends with
some illuminating remarks on chess playing programs and there is
also a separate paper (De Groot, 1964).

Following De Groot a detailed analysis of exploratory processes in
chess was made by Newell and Simon (1965) and this work is
described in their book (1972). An independent study of their
findings was undertaken by Wagner and Scurrali (1971).

Recent work on eye movements has been done by De Groot and his
student Jongman in (De Groot, 1966) and (Jongman, 1966) and by the
Russians Tikhomirov and Pcznyanskaya (1966).

Simon and Barenfield (1969) tried to explain some perceptual
phenomena as coding processes into ''chunks' (see next section -
Editorial Extension) and Chase and Simon (1972, 1973) tried to
establish the existence of and identify some of the perceptual
"chunks'" by further experiments, particularly the technique of
board reconstruction.

Editorial Extension — A G Bell

The following repeatable results have been obtained by psychologists
studying chess players.

(1)

(2)

(3)

(4)

(5

From the experimental methods of introspection and thinking
aloud used by De Groot it was not possible to distinguish the
grandmaster from an ordinary player = the number of moves
examined is the same (usually 2 or 3) per position; the
depth and apparent speed of search differs only slightly.

Obviously the grandmaster must be able to select stronger
moves for his consideration. How does he do this is the key
question.

De Groot repeated and extended a classic experiment first
performed by the Russians. He verified that it is possible to
distinguich the master from the amateur by briefly displaying,
for about 5 seconds, positions from master play. Grandmasters
can reproduce such positions almost perfectly, amateurs can
replace only one third of the pieces on average.

If the chess positions displayed are random - the pieces are
placed haphazardly - then again performance becomes
indistinguishable. Most people can only replace about one
sixth of the pieces irrespective of their chess skill.

The conclusion drawn from these experiments is that chess
skill cannot be detected from observing the search process but
can be detected by pattern recognition ability.

The recognition and reconstruction of a position is done from
short term memory. G A Miller, in a famous article "The
magical number seven, plus or minus two', proposed a short

" term memory model with a capacity of about seven "chunks".

The master player must be able to recognise a meaningful
position by describing it in about seven chunks, ie for about
twenty pieces recalled he must have about three pieces per
chunk. We can partially explain the remarkable ability of
chess masters to reconstruct positions by them possessing an
enormous repertoire (vocabulary) of familiar patterns (chunks)
any seven of which can be put together to reproduce what he
has seen.

Experiments have been performed to find how many '"chunks" a
master player possesses and try to isolate some of them. It
appears that a chess master can recognise about 100,000
different clusters of pieces. Here is one of them

_34.—

BR | BK (Also the most likely
position these pieces will
4 BB, BE occupy at the 21st move in
BP a master chess game)

This is a very familiar pattern to the master player. The
fact that it is familiar can be verified by eye movement
experiments, where it can be shown that the master hardly (if
at all) fixates on any of these pieces. His peripheral
vision informs him about a pattern he has seen thousands of
times before, he does not need to look at it closely.

(6) The chess chunks (words) in a master's vocabulary can be
isolated more convincingly by, timing and observing the order
in which the master reproduces a position he can see upon
another board. The subject indicatec (unconscicusly) the end

of one chunk and ‘the start of another by turning his head. - If

the first board is not displayed continuously then any pauses
in the reconstruction process can also be inferred to be inter
chunk boundaries. " Y

And so a partial understanding of the processes that expert chess
players use when choosing a move has been obtained. At first
sight however it does not appear to be of much use to the computer
scientist for the following two reasons.

Firstly, the acquisition of a vocabulary of 100,000 patterns takes
a human at least six solid years staring at chess positions in
games he is playing against experts.

Secondly, even 1f we could identify and input many of these
patterns, how does any combination of seven of them suggest
plausible, strong moves to the master player?

Quite obviously chess knowledge is not going to be acquired by a
computer in the same, inefficient way a human acquires it. The
belief that the program must ''make use of essentially the same
methods as those used by men' seems fatuous because human methods
derive from practice - thousands of hours of practice = with an
inbuilt limitation of a seven ''chunk' short-term memory apparently
playing an important role.

However what may be usefully derived from this work in terms of a
chess program is that we may have discovered some of the weaknesses
of the "enemy'". We may now be able to "jam" his system.

Let's assume we can identify and input many of the chess '"chunks".
The program now tries to produce positions or situations which
require more than seven chunks to be recognised and described
providing its normal evaluation function (however derived) is not
too seriously viclated. This might seriously impair the human's
ability to have strong moves suggested to him.

Whether such an approach is possible or not, the point I am trying
to make is that there appears little proof that humans are
particularly efficient at chess. If it were so, then I would agree
that a program would have to simulate very exactly the human
behaviour at the time of playing, but the limitation of seven
chunks in the short-term memory could imply that the best humans
are operating near the human limitation and therefore a successful
chess machine need not be a "paradigm of the human mind".

MATHEMATTICAL

RELATIONS IN CHESS

by

R H Atkin
and
I H Witten

Mathematics Department
University of Essex
Wivenhoe Park

Colchester
Essex
Co4 35Q -

"I gather this work is so learned that few
people are able to read it."

Comment on the "Treatise
on the Application of
Mathematical Analysis to
the Game of Chess" by
JAENISCH (a Russian), pub-
lished about 1890,

A ety

...37....

Editor's Note =

Should be read in conjunction with (Atkin, 1972).

The emphasis is no longer on tree searching, posi-
tion evaluation is done mathematically and should

be repeatable.

At present the program considers each legal move by
white and then examines the consequent changes
(increases) in (only) seven features. It then
sums the scores under these seven headings to give
an overall positional score for the move.

Atkin states that there is great scope for improve-

ment particularly if chess masters can be persuaded
to help in the research.

38

l.0 Introduction

We examine the game of chess by looking at an
important relation which exists between the pieces and
the squares, and which embodies the moves allowed to
the former. This relation is mathematically equivalent
to-a simplicial complex which, in its turn, possesses a
geometrical representation in the euclidean space 553.

It is therefore possible to interpret the course of a
game of chess as the expansion and contraction of two
geometrical structures (one for White and the other for
Black) in this mul;i-dimenéional space[lj. This seems to
provide us with a natural language with which to discuss | ‘
the accepted positional theories in chess. It is also

particularly well suited to expression in a computer

language, and we illustrate this aspect by demonstrating

some typical analysis in specific situations.

Finally we try to indicate the potential richness of
this structural language and to suggest various lines of
research which might be profitable in the broader context

of board games played by computers.

..39-.

1.1 The relations Pw, r

B

Let W= {w&; i=1,2, ... 16} be the set of White men,

and S = {Sj; j=1,2, ... 64} be the set of squares on the board.

Then we define the relation FWJ: W x S in the following way.

Pefinition: (W, Sj) € TW if and only if Wi "attacks" Sj' By

"attacks" we mean that one of the following holds true:

(a)

(b)

(c)

(d)

(e)

(£f)

if it iIs White's move, and h& is a piece (not the
king or a pawn), then "Wi moves to square Sj"

is a legal move;

b W& is a pawn then Sj is a "capturing square"

for W,;
1

if there is a White man, Wk (k #.1), on Sj then

W& is'protecting Wk' in the ordinary sense of

chess-players' parlance;

if w& is the White king (WK) then S, is an immediate

J

neighbour to the square occupied by Wi, horizontally,

vertically, or diagonally;

if Sj contains a Black man, B, (# BK), and if it is

k

White's move, then "Wi captures B, " 1is a legal move;

k

the BK is on Sj and 15 in check to w&.

\ We notice that, under (a), the empty éguare in front of a

pawn 1s not related to that pawn via PW' Also we notice that if wi is

on square Sj then (w&, Sj) o4 TW; a piece cannot defend itself. These

..40_

points are not crucial to our discussion - which primarily illustrates a

method of attacking the. problem.

It is clear that there is another re¢lation between W and S
which cannot be ignored, viz., that relation which tells us on
which squares the men are to be found. But this relation is

actually a mathematical mapping,
pos: W+ S

and therefore possesses a trivial structure (c.f. section 1.2).

We now have the two relations .I'W CWxS ard I’B CBxS,
one for each player. When the difference is irrelevant we shall
denote either by T . As a further point of detail, relevant in
discussion of speci-ig casecs, we shall ctherwise denote the
members of S by thelr accepted algebraic notation al, ..., h8 (1;

the order of 1, ... 64) and we shall denote the members of W by

the obvious
WOR, WQN, WQB, WQ, WK, WKB, WKN, WKR, WORP, ... WKRP

in the order 1, ... 16; with a similar notation for B.

1.2 Fw defines two simplicial complexes

If there exists at least one Wy such that (ptl) squares Sa ’
i r

re=1,... (ptl), are Tw-related to W!h we say that these S's constitute

a p-simplex (one of whose names is H&), and denote it by Op' so

that

g ;
W, =0 .<S 'S P oes 's >
1 D a, e, ap+1
Any subset of these (p+l) S's is called a face of this p-simplex,
and is a t-simplex (t € p) in 1its own right. It follows that the
relation PW can be described as a collection of p-simplices,
for various values of p . Such a collection (closed under the

relation " — is a face of —") is called a simplicial complex

(a "complex"™ of eimplices) and 1s denoted by KW(S; Th).

This notatlon is used teo suggest that the set S plays a
special role - in terms of which the simplices W! are defined. This

set S is usually referred to as the vertex set. When FW is

understood we can abbreviate the notation to XW(S); then

K (S) = {p-simplices; 0 € p ¢ N}

where p = 0 corresponds to 0O-simplices of the form (Sa), and where
N is the maximum value of any p in this collection. The value of
p is called the dimension of the p-simplex (v. section 1.3) whilst

N is called the dimension of the complex; N = dim K,

We notice too that FW may be such that some sguares Sj are not
.vertices cf any simplex Wi, not beihg fattacked" by any of White's

meli.

But we also notice that TW possesses an inverse relation Fw-l

(which relates 5, to a set of W,) = the incldence matrix of Tw-l being

1 3

._42...

the transpose of that of TW. This relation therefore defines a

simplicial complex ,

=1

K (W; I‘W

), or KE(W)

referred to as conjugate to KW(S)' In Ké(w) the vertex set is W

whilst each Si (in TW.l) 1s a simplex; for example, 1If Si is a

p-simplex, then

s, =<wsl, WB.?' WBpu>

which means that Si is simultaneously attacked by the (p + 1) Khite
men WB 'ia.l’ cee (P"'l)-

1

We shall describe the complex

KW(S) as White's «view of Roard

© and KS(W) as Board's view of White
Similarly, KB(S) is Black's view of Board
whilst KS(B) is Board's view of Black .

These complexes are well-defined at each stage of the game. When
White has made I moves and Black has made J moves we shall say that
the game is in mode [I, J]. Clearly J =1I -1 or I, Also, in terms
of‘a well=-known convention, mode [I, J] corresponds to the completion

of (I + J) plys.

The complexes defined above are functions of the mode; they need

to be recomputed after every move., It is clear that, Iin general,

a move by White, say affects all four complexes.

1 -

1.3 A geometrical representation of KW(S) in 553-

If we ldentify the p-simplex (S S >_ with a convex
G.l, oo (Ip+l e
polyhedron, vertices the Sa » 1n p-dimensional euclidean space eP
1
then we can obtain a geometrical representation of the whole
complex KW(S), in a sultable space EH. A well=-known theoremrz]

tells us that, if N = dim K, an economical value of K is

H=2N+1

From a consideration of FW we notice that the maximum value
of dim Wi' Wi € W, 1s 26. This occurs when‘the WQ 1s in the
centre cof the board (say, on squara d4}, for if its ranée is
unobstructed it then attacks a- total of 27 squafes. This means
that under these circumstances WQ 1s a 26~simplex. It follows

53

that KW(S) can always be represented in the space E°° =~ and this

is independent of how many Queens are on the board.

Since dim(BQ) € 26 l1n Kb(s) we can contemplate the complex
KWIS)\J KB(S) and f£find a representation of .1t in the euclidean space
E53. Thus both of the geometrical'structures‘KW(S) and KB(S) can

be regarded as existing In E53, for all possible modes.[X, J], in

all possible chess games.

In this sense we can say that a game of chess can be modelled, .

via the interplay of connected polyhedra, in E53.

“'204"

1.4 g-connectivity in the complex KW(S)

Simplices W& and Wj are said to be joined by a chain of connection

if there exists a finite sequence of simplices

0 loa;l.oo

a o

1 2 h

such that

(i) o, is a face of Wy

1
(ii) Ua is a face of W5
2
(iii) <« and O have a common face (say) 0_ ¢ 1 = 1,..e,.(h=1).
o, o, B.
1 1+2 a

We say that this chain of connection is a g-connectivity if q is

the least of the integers

{Glr 81' le eo vy Bh"l' ah}

As a'special case, a simplex ap 1s p-connected to itself, but is not

(ptl)-connected to any Or.

If we define a relation Yq as meaning " is g-connected with" then

Y_ is an equivalence relation on the simplices of K., The classes of

Yg’ or the members of the gquotient set K} , are now the pieces
' Y
q

of K which are separately g—-connected. We use the notation

Qq = cardinality of the set K)

Tq

and the prééess of computing all-the values of Qq’ for g = 0,..., dim X,

is referred to as a Q-analysis[SJ. If N = dim X, we arrahge these

—.45._

e ———

e —— gl

P

e

5]

g-values to give a vector, what elsewhere has been called the

structure vector,

g? {Q.Nl QN-I’ L Y 1’ Qo}

The value Qo ls, in fact, the same as the zero-order Bettl-numbeor
of the complex, but the higher order values Qq must not be confused

with the higher order Betti numbers. Thus, O-connectivity is the

same concept as arcwise connectivity; our higher order Qq-values

are a generalisation of this notion.

2.0 Positional motifs arlsing in KW(S)

In this section we use the following definitionss:

a = top g-value of a simplex

= dimension of the simplex in KWLS),

5 = ﬁottom g-value of a simplex

largest g-value at which the simplex is connected

to a distinct simplex,

Ecc(0) = eccentricity of a simplex O

= (a' -q) ¢ (§ + 1), when that ratioexists.

(A) The value of a(Wi) is the dimension of the white man Wy in
the complex KW(S); 1t therefore equals the vglue
> {number of squares attacked} - ;

This top~q value therefore tells us the dimension of that subspace

- G -

of 853 in which 1s located the polyhedra whose name 1s Hi. It is

therefore an Indication of the geometrical horizon (in 553) enjoyed

' ' 4 A .’b- . »
by W&. ?hls suggests that q(W1) is a measure of the mobzlztglof.wi,

in this particular mode.

o ~
We notice that the maximum values of the g-numbers for the i
various men are as follows:
max q (Q) = 26, max g (R) = 13, max q (N) = 7
max g (B) = 12 (on half the board) = 6 (on whole board) '
. ‘
max g (P) = 1

N
The ratio of max (q + 1) for all the men are therefore

N
N

L

[
o
<
~
N

for Q¢ R:N:B: P

" These should be compared with the classical static "values" of

the pieces, namely,

(B) Since 5 (Wi) = max dim (Wicﬁ Wk) it follows that
k .

Wi and Wk are simultaneously attacking (5 + l) squares; they share

a 5-face in the structure KW(S). This value indicates the extent of

the co-operation of the pleces W&, W., as well as theilr mutual mobility.

—.47_

A v .
(C) TheEcc (Wi) = (g = 5) T (q + 1) indicates the extent to which

Wi is a lone attacker. If Ecc (Wi) = (0, then

-~ v
q=4q
d . ; fwW, 1 [re T] 2
and so the action o© Sl is entirely in harmony with (at least one of)

the othoer pieces. e notice that when 5 = -] (Wi 1s then totally

disconnected from all other pieces) Ecc (Wi) = o, QOtherwise the
largest value of Ecc (Wi) is & (when é = (). Ezcluding the extreme
case, when ﬁ = ~], we therefore have the inequality.

0 € Ecc (W&) <qg
for Ecc (Hi).

A move which lowers Ecc (Wi) can clearly do so in one of two

-~
ways; either by decreasing g (W&) - reducing its effectiveness
(development) on the Board, or by increasing é(Wi) - increasing the

co-operation and mutual mobility with other piszes.

We notice, for example, that iIf we were to use the value of
Ecc (Wi) to obtain a static "value" for Wi then the classical
numbers 9%, 5, 3, 3, 1 can arise Iln various ways = which depend

upon the bottom-qg values. Thus if we take

(i) q = 0 we obtain Ecc (W,) = 9,5, 3,1

[}

when E}(wi) 9,5, 3,1

(i1i) g

1
o

we obtain Ecc (W&) =9,5, 3,1

when gw,) =19, 11,7, 3

(iii) 5 = 2 we obtain Ecc (Wi) = 9, 5, 3 (pawn excluded)

29, 18, 12°

4

when ' a‘”i)

-ZIS'

This latter case is impossible for anyot’the'pieées) and so we deduce
that the classical values can only plausibly correspond to Ecc (W&)
at the level of é = 0, At'thiS;level W& and W3 are O-connected if i

they simultaneously attack a common Square (only one).

(D) A move which lowers the value of Qt' for some fixed t, in

the structure vector g can do so in more than one way. In the
first place, Qt can only change by multiples of unity (A Qt = +n),
and 1f

AQt <0

then 6 must have increased for some W&, and 5 cannot have decreased
for any w&. Thus AQt < 0 can result from an lncrease in the

co-operation of the pieces.

On the other hand it 1is possible for AQt < 0 by some one (at
least) component disappearing at the t-level. This can happen by

a reduction in g (Wi) for some 1 - in such a way that, after the

move,

q (Wi) <t

~

whereas, before the move, @ {W&) > t. We notice too that it need !

not be the piéce W! which is involved directly in themove; the |

movement of W-, can effectively block the action of W, so as to induce]

by 1
the reduction of q (Wi)' ,

- 49 - |

The co-operation of pieces and pawns, manifest at various t-levels,

can be dfsplayed as follows:

t ; 0 any pair of {k,
t =] any pair of {K,
t = 2 &ny pair of {Q,
any pair of {x,
t =3 any pair of {Q,
any pair of {K,
B énd N
Q and B on same
t =4 Q and B on same
Q and R on saée

R and R on same
t=25 Q and B on same

Q0 and R on same

0, R, N, B, P}
0, R, N, B, P}
R, N, B}

0, R}

R, N}

0, R}

diagonal
diagonal
file or rank
file or rank
diagonal

file or rank

R and R on same file or rank
t =6 0 and R on saﬁe edge file
or edge rank
t>7 no two pieces 7-connected

(share 1 square)

(share 2 squares)

{share 3 squares)

(share 4 squares)

(share 5 squares)

(share 6 squares)

(share 7 squares)

(share > 8 squares)

It follows that if AQt < 0, when t 3 7, the reason must be

the fact that a plece Wi exists for which the move has resulted

inold ¢ (W) > 7 and new q (W) <7

A

An exception to this occurs if there are two White Queens

on the Board - say, one on al and the other on a8.

These Queens

are then 7-connected (if the 1st and‘BEh ranks, as well as the

leading diagonals, are otherwise clear. In this special (and

upusual) case AQ7 < 0 can be the result of an increase in piece

co-operation at the 7-level.

r

2.1 Positional motifs afising iﬁyKS(WQ

It is In a:iconslderation of the geometry of K_(W) that we

can see an expkession of the positional theories first advanced

by Steinitzrb].

(A) Each square-Si € KS(WU is a p-simplex, for some value of p,

so that

S, = ([’V’ ’ W 2 ooy W X
s = (%, P, By

where the WB denote White men attacking Si' Other things being
A 4 ' .

equal, it is clear that dim Lsi) ls a measure of the control

exercised over Si by the White men. But the question of absolute

control cannot be settled without

(i) comparing dim (S;), S, € Kg(W), with dim (S;), S, € Ky (B),

and (ii) allowinq for the relative "values" of the vertices

(the WB) in the simplex Si'
1

In the sense of Stelnitz, s, is a strong square for White when

the control i; maximal or absolute. I&eally, for White, Si € Ks(W)
but Si Z KS(B). But failing this, and taking (ii) into éonsideration,
the presencg of pawns in the p-simplex Si of Ks(wv - and thelir

absence in the simplex Si of KS(B) - makes Si a strong square for
White, and a yeak square for Black. A notable example of such a square
is one which lies in front of an isolated Black pawn; for here we have

a situation in which Black cannot (usually) introduce a pawn into the

..51_

simplex Si of KS(B). Thus Black has a permanent weakness - the geometry

cannot be repaired (except perhaps with White's co-operation).

This would suggest that tle whole simplex Si is in some sense,

which must eventually be given a numerical value, a measure of the
strength of that square Si' In this context we must clearly
distinguish between the contrel value of a plece W, and its piece

J

value; the former being, in some sense, inverse to the latter,

It seems natural in the light of lhese remarks to 1interpret

contrel value of W, as a mapping

J

from the vertex set W of Becard's view of White, KS(W), into (say)

the integers J; whilst the plece value of W3 will be a mapping

pval : W=+ J

from the simplices of XW(S)' white's view of Board.

Thus ¢ val and p val are "conjugate” in the sense that they
have conjugate complexes as thelr domains. Naturally the choice
of J as the range for these mappings is not crucial - but it can be

a convenient computing feature.

(B) The bottom q—value,lg (Si), means that Si shares a a-face
with at least cne other square S,. Th}s means that Si and Sj are

3

i

.52

simultaneously attacked by (é + 1) pie&es. Let this g-face be the

simplex

g -'<W1, Wz, es oy Wq+1>
which must therefore be an indication of the Ysquare-co-oparation®

between Si and S,, via the White men. The value of 5 therefore

J

indicates the {lexibility inherent in White's game2, the existence

of multiple threats. The squares S;e S, S . which share a

j J{’..

common g-face-define areas of the becard where White's flexible

threats are to be found. The "value" of a threat depends on

whether it is

(1} a threat to control (a square)

or (11) a threat to occupy (a square).

If it i1s a threat to control then, for White, 1t would be

valued as (plausibly)

z c val (Wi) Wi EC

whilst 1f it 1s a threat to occupy its value will be

g p val (Wi)

This 1s because, in the first case, we are dealing with Ks(wv,

but in the second case we are dealing with Kh(s).

(C) A move which lowers Qt’ for some fixed t, in the structure
vector foriﬁé(w) will (e.f. section 2.0) do so because of two

possibilities. On the one hand there' might be an increase in 5

..53-.

I
|
|

for some square Si' so that Agq > 0 results in Aot <0 (; £ t)s

This means that the flexibility of wWhite's thrcats has increased,

. ~
On the other kand AQt < 0 can result from a decrease In q (Si)’

for some square S, (3 > t). This means that Phite's control over s;

has been reduced.

The "knight fork" 1s an obvious example of square co-operation,

at the level of g = 0, in KS(W) - when Si and Sj are not adjacent.
for other pleces the co—éperation involves neighbouring squares -
either on the ranks, files, or diagonals. Thé action of the N cannci
be blocked by other pieces or pawns so that, placed in the larger
central area of the Board, a knight always induces a O-connectivity

between 8 squares.

(p) The positions of the squares {Si}' relative to the locations
of the Black men, are clearly important. This is embodied in the

importance normally attached to the centre squares, to open flles,

to open (long) dlagonals, to the seventh/eighth ranks. We naturally

add to these the squares occupied by the Black men, that is to

say, the set

{pos (8,)}

as well as the King flight squares.

The centre squares, as .pos (Wi),'allow the possibility of
maximum g-valuzs for the White O and B, The open files are necessary’

for the achicvement of maximum g-values for the White R's. Each

R —————

of these features ls further enhanced by open diagonals and open
ranks. The R on the seventh rank i1s usually assoclated with the
King flight squares, but also 1t can pose strong tactical threats

" behind the Black pawns (which are then on weak squares).

All these dimensional considerations are expressive of the
complex KW(S). Thus we see that the consideration of "square-value"
in KS(W) 1s inevitably involved with conslderations of "control-value®”
in KS(W). And the conjugate nature of KS(W) and KH(S) would then
suggest that there should be a close relation between "piece-value"
in Kﬁ(s) and what we might introduce and call "strength=value™ in
KH(S).

Precisely, we can proceed as follows.

Define a mapping to represent the square=-value of a simplex Si € KS(W)’

sval : §+J

and require the condition that
= Y !
whenever S[<... Wj. ..> in Xs(hv

then s val (Si) = z c val (w&) eee (T)

*

Define a mapping to represent the strength-value of a vertex S

4 € KW(S)'

st val : &8+ J

and require the conditlon that

whenever Wi = <... Sj ...> in KW(S)

then pval (W.) = 2 st _val (Sj) oo (II)
, J

The process of estimating the relative "values" of pieces
and squares can now be seen as a cyclic one which alternates between
the two conjugate complexes. This is because, In some sense to
be defined, we must have p val (Wi) to be "inverse" to ¢ val (Wi)
and, similarly, s val (Sj) to be "inverse" te st val (Sj). By
"inverse" we mean only
that if p val_(wl) > p_val (WZ) or s val (Sl) > 5 val (52)

then c val (w2) > ¢ val (Wi) or st val (SZ) > st val (Sl)

One way of ensuring this reversal of ordering is to take,

for example,

c val (Wi) « p val (W&) = a constant integer

and then truncate on division.

Another way would be to fix an integer 'no and take

c val (W&) = pval (Wi) (mod no)

The cyéle can be entered in a crude way by taking, for example,
p val 1%, @ Ry N,-B, P} = {20, 9, 5, 3, 3, 1}

and inventing some similar rigid square-values, depending on the Board,

for example . ”

st val {Si' S

37 s}_} < {351, 5}

where Si = a centre square .
Sj = an off-centre square
r

Sk = BX flight-square, with obvious exténsions.

-

{

(E) The condition 9} checkmate can-be described in terms of the
apparent conflict bétween the geometrical structures of White

arl Black. In KB(S) the BK i1s a p-simplex, with 2 £ p€ 7. Each
square Si in this simplex BK is a possible flight-square, allowing

for obstruction by Black men. In addition pos (BX) is a single

square, say SBK'

Now suppose that, in mode [I, I-1], we have

(1) <SBK> € K (W)
and (ii1) BKX € xs(w;

then we know that the BK is in check, by (1), and the possible
flight-squares are under attack, by (i1). Hence the BK cannot -
get out of check by moving (himself). The only escape is for

Black to change (1), presumably by blocking or capturing the checking

plece. .

We can therefore deduce that Black 1s 1ln checkmate i1f the

above conditions (1) and (11) are invariant under all legal transitions

from mode [I, I-1] to mode [I, IX].

The White geometrical structure has “annexed" that portion of

Black's structure which contains the BK end his flight-squares.

- —— -

3.0 A computer program for the analysis

The computer program which embodies the positional chess
heuristics is written in Fortran and runs in 9K of core on
a PDP-10. Although mére modern and sophisticated languages
like LISP, BCPL, and POP-2 were considered, Fortran wa§

chosen in spite of its many and obvious disadvantages for

the following reasons:

(1) speed of execution - the PDP-10 Fortran compller

produces unusually efficient object code,

(11) transparent compllation - when writing sections
of Fortran, one knows (roughly) what machilne

code the ccmpiler is going to produce,
(1i11) modular subroutine structure,

(iv) critical sections written in machine code can

be interfaced easily to the rest of the progran,
(v} good compller error diagnostics,

(vi) fast array handling.
The pr;g;am is d;signed to allow lnteractive aqalysis of existing
chess gaﬁes from a teletype keyboard. I addition, requasts
for extensive analysis of complete games can be submitted to ﬁfe
pPDP=10 bétch system., Using exlsting games by master players:
perTits repeated analysis of a large number of high-quallity games,
eliminating time=-consuming kgyboard sessions with chess players.

A further advantage of playing existing games 1s that it allows

study of all phases of the game = in computer chess, checkmate
usually intervenes before the end-game is reached! The program has

4

never attempted to play a complete game itself.

To facilitate human interaction with the computer, the
program accepts and obeys commands typed in at the keyboard.
The cheiq game to be analysed 1s stored in a disk file in a slightly
extended version of the International Algebraic Notatlon for chess
games (a BNF description of the notation Is given in Appendix &).
Commands are provided to print the board, make a specified number of
moves from the game, move to a specified point Iin the game, and so
on. It is possible to Investigate variaticons on the game by typlng
in a sequence of moves different from those actually played, Further
commands print the connectivity matrix and structure Qector for
either side's view of the board, and initiate a complete positional
analysis of the current state of play. Repeated analysls cf the
game at varlous stages is accomplished by a MA&RO command which
continually performs any sequence of other commands. A typical

command sequence for a batch run is

BOARD /print the board
“rosn /perform a positional analysis
MOVE 2 /make two moves (one for White, one for Black)

MACRO /repeat the above command sequence until

/the end of the game, . |

3.1 Board representation and move generation

The chess-board 1s represented as an array of length 144,
with the contral 64 elements giving the position on the 8 x 8 board,
and the remaining elements containing -1 to indicate that they are
off the board. This representation allows move calculation by
repcated addition of offsets, with a simple test at each stage
to check that the proposed destination square is still on the board.
For example, the offsets fér a rook's move are +1, -1, +12, and =12,
and each of these is repeatedly added to the sguare number of the
rook's initial position to give the moves. More detailk about how
moves are generated with this board representation are given by
Kozdrowicki et al (1971){4]A1though i1t may appear that a one-square
borde{ containing -1 - giving an array of length 100 - is all that
is needed to detect when a man has. reached the edge of the board,

a xnight would be able to cross such a border, céusing unexpected
results, In fact only 132 elements are necessary in the arrag,‘
representing a 12 x 11 "extended board" (Gillogly, 1972)[3], but

we have found that the 12 x 12 extended board is easier to deal with
and facilitates program writing and debugginé. The men on the board
are indicated by numbers 1 - 16 (for White) and 17 - 32 (for Black),

so that, for example, the WQR can be distinguished from the WKR. The

board in the initial position is shown below:

- 60 -

-1 =1 - =1
-1 -1 -1
-1 -1 17 .
-1 =1 25
-1 -1 0
-1 -1 0
-1 -1 0
-1 -1 0
-1 =1 9
-1 -1 1
-1 =1 -l
-1 -1 -1

Moves are generated by adding offsets as outlined

in mind that

18

+ 26

19

27

20

28

21

29

22

30

23

31

(1) a man cannot move off the board,

24

32

-1 =1
-1 -1
-1 -1
-1 -1
-1 =1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1 =l

above, bearing

(11) a man cannot move to a square occupied by

another man on his side,

(i1i) for pawns, knights, and kings, the offsets

must be added once only,

(iv) pawns in their initial position have a

This'algorithm generates all "normal” moves (but not castling, etc).

special move availlable.

Because of the importance of the relationship of "attacking"

for the connectivity anzlysiz, and the similarity of this

'P—d

relationship to that of "moving", the routine which generates moves

also lists all legal attacks. All moves are attacks, except
pawn moves, which are never attacks. Inadditien, a man can attack
a square occupled by another man on his side. Pawn attacks are

generated by adding offsets different from those used for pawn moves.

In order to find all lcggl moves, each move generated by
adding offsets must be tested to see if a check results. If
castling 1s still legal, and the squares between the king and rook
are empty and not attacked, the appropriate castling move is added to
the 1ist of legal moves. En passants are spotted by examining the
previous move in conjunction with the current list of attacks. The
possibility of pawn promotion is also considered., The result of

all this is a list of legal moves, each stored as 4 computer words:
(SOURCE SQUARE, DESTINATION SQUARE, X, Y)

where X and Y are only used' for castling moves, pawn promoticn, etC..

L vhen moves are read in from the teletype or the disk fille

» containing a chess game, they are decoded from International Algebraic

Notation into thg 4-word intcrnal move representation, using standard

methods of sgdtax analysis. Checks ére made for obvious errors, and

then the move generation routine 1s called and the list of moves is

searched for the proposed move., To mazke a move on the chess-board,

one can eitheruplace it on a move stack in a 5-word reversible rep}esentation
(the fifth word specifies the man taken in the move, if any) so that

the previous board position ¢an be recovered by unstacking, or empty

—62 —

the stack, make the move, and place it at the base of the stack
(so that the previous move 1s always avallable to check en passant

14

legality).

i Connectivity analysis

The relationship, T , of "attacking"”, computed in the form

174
of a list of squares attacked by each man, provides the basis of
the connectivity analysis. To find the connectivity matrix CORN,
where

CONN (I, J) = number of squares attacked by both

man I and man J, minus one,

the lists of squares attacked by the men are compared in the obvious

waye.

Computation of the structure vector for White's view of Board

Is a rather tricky matter. For each O-level from zero up, a routine

is called which returns the number of simplices at that level. The
array of numbers obtalned at each d-level is the structure vector.

If any component of the structure vecfor is zero, all higher components
will be zero too. To determine the nuhﬂer of simplices at any Q-level,

one starts with an array of length 16 - an element for each man on ‘ ‘

the side - which 1s destined to hold a simplex identification nuﬁber
for each Ean. A man I is allocated a new slmplex identification
number 1if

(1) CONN (I, I) 3 O-level,

and (ii) ‘he has not already been allocated a simplex

identification number.

..,63..

If he is allocated a new simplex identification number, CONN (I, *)
and CONN (*, I) are scanned for elements at least as big as

Q-level, and for any that are found, the man who is connected tb I
at that level is allocated the current simplex identification number.
A similar search must be carried out for all the new men who are
attached to the simplex. When no more men In the simplex can be
found, the next man on the side is examined and allocated a new
simplex identification number if he satisfies the above two'criteria.
Once all men on the side have been given a simplex identification
number, the structure vector component at that Q-level is found by

counting how many distinct identification numbers have been Issued.

An example of a board position, the corresponding connectivity
matrix for White, and the simplices at each Q-level, is given below,

for the complex KW(S)'

Board position

6 * *ok L L * BN BD *
5 * BP *x *k >k N & *
4 Ly *ok * * ok WP BP wp WP
3 *# "k ** wp *k A *2
2 WP WP WP L LE S 2 Ak

2 WR WN WB WO *ok WK R *a

Connectivity (shared-face) matrix for KW(S)

OR QN OB Q0 K KB KN KR P P

4 - -
0 -
1

OR

ON

OB

. g-level g-connected components -

0 (OR) (ON OB 0 K KN KR P P P) .(P) (P f) .(P)

1 (OR) (ON P) (OB} (Q K KR) (KN) (P) (P) (P) (P)
2 (&) (0B) (Q) (K) (KN) (KR)®

3 (QBl) (Q) (K) (KN) (KR)

4 (Q) (K) (KN) (KR)

5 (Q) (KN)

6 (Q) (KN)

7 () (KN)

8 Q)

Structure vector for KW(S)

6 - 0
.o=1{1,2,2,2,4,5, 6,9, 5}

~

3.3 A simple valuation procedure

Before the program can analyse the structures positionally

it needs to compute the mapping
= vk 150

for each Si' (v. section 2.1). This mapping is independent of

what piece occupies S.i" However we shall introduce, in 3.4, what
4

66

wn L;D

might be called a tactical value, tact (Si)’ and this will involve

some valuation of any gccupying piece.

P

Using the relationé I, 11 of,section 2.3 we set about finding

c val (Wj), p valv(wi), and st val (Sj)’

We allow that st val (Sj) dépends upon

(i) whether S, is-in the central block,

b

(ii) the value p val (Bk) of any Black man Bk
occupying Sj'

(iii) if W& is a pawn, whether Sj is on the 7th or 8th rank,

and is best indicated by giving the numbers {st val (Si)}’ for White,

of the squares in the mode [0, 0] position.

If attacking man is a piece,

...67_

| If attacking man is a pawn,

ka
N
N
Ny
N
N
V]
V)
L]

We then get p val (W,) by relation II, and we use the

L

hypothetical relation

c val (W) . p val (W) = 200

to obtain ¢ val (Wi).

{ ' The positional analysis with which we have experimented

to~date considers each legal move by White and then examines the

¢ consequent changes (increases) in (only) the following features.

(1)

(ii)

(1i1)
(iv)
(v)
(vi)

- (vii)

__

dim KW(S), or the maximum.g-value;

—Qo, the minus sign being justified in sections
2.0 and 2.1;

-Ql;

c_val (pos BK);

: K = { AN ;
c val (Si) u@gre BK = <'°f Si > in KB(S),

T
i . .
; c val (Qgs Bi),.forjall'Black men Bj (# BK);
J . i
L ¢ val (Si) where Si is a centre square.

b

68

The sidc's control over any set of squares is just the sum of the
positional values of the squares for the side.

At present the ﬁfogram simply sums the scores under these
7 headings to give an overall positional score for a move. There .

is obviously great scope for improvement over this, but even with

such a naive method of scoring, significant correlation with

chess-players' positional judgement is obtained.

3.4 Loss/gain tactics

The program as describhed so far is a weak tactician. It !
is designed to score moves on a positional basis, taking into account {
the control over important sets of squares and the co-operation of {
men on the board. It neglects forcing moves and is oblivious to ‘ :
métcrial loss and gain. Because positional features of the game
cannot be completely divorced from the téctical viewpoint - for-example, E
experienced playc;; simply do not consider moves which are tactically ‘ |
unsound when asked to make a positional judgement - an elementary material
loss/gain calculation has been incérporated, and thé program or&ers {
moves primarily according to material exchange, and only secondarily ‘
from a positibnal analysis. (Clearly a less extreme balance should be

struck here. Material sacrifices for positional gain are not uncommon |

in master chess).
|
|

We take the tactical value of a man, wi, as l+max a (Wi),

in X (5). This gives a measure of the potecntial of the geometrical

horizon of Wi, whereas the piece value, p_val (Wi),rcflcctsthe

man's actual worth in the present board position. The value of a
bishop 1s halved to account for the fact‘that it can potentially
control only half of the board's squares. This gives the values

(c.f., section 2.0)

K Q R N B p

8 27 14 8 7 2

For investigation of material exchanges, the king 1s assigned an
g (Ul

arbitrary value of 1000).

The cactical value of a square 1s then given by the mapping
tact : S J

where : ' '

tact (S;) = minimax. {tact (wj), tact (Bk)}
i, j

where tact (Wﬁ) is the above (special) case of p val (Wj), and -
. y = sse W, sen i
s; = W Y in K (w)
= <... B, ...> in KS(B).

The tactical value of squares in Boax'd positions taken
from actual chess games is almost always zero, but the positional
analysis often suggests moves .which, if made, would result in some
squares having negative values for the side under consideration. By
first ordering moves from thils simple material viewpoint, this situation

is wusually avolded.

3.5 Some comparisons with actual games

Using the valuation procedures discussed above we obtained

the following positional assessment of actual games.

(A) Morphy v Duke of Brunswick et al. (1858)

Game score Positional ranking of HMorphy's moves

; e2 - ed : e7 - e5 2 l=d2 - d4

2. N =~f£3 :1d7 -d6 8 1=d2 - dd

¥ d2 -~ dd4 ¢ B - g4 1

4. d4 * e5 : B * £3 1

5. Q* f3 :d6 * e5 2 1= g2.* £3

6. B~-c4 : N - f6 . 4 '1 = c2 - c4

?. Q-b3: Q-e7 . 24 l=c¢c2 -c3

8. N-¢3 :c7 -cé6 4 l=f2 - f3 |

9. B-g5 : b7 -b5 5 l=f2 - f4 |
10, N * b5 : c6 * b5 d
11. B * b5+ : N(b8) - d7 2 l1=0*Dbs5

12. 0-0-0 : R -d8 | 3 1=£2-£4

i3, R # d7 :.R * a7 1

14. R=-dl- :Q ~ eé6 g * 1=7f2-f4 ¥
15. B* d7+ : N * d7 "2 l=R*dadz

16. O - b8+ : N * b3 8 l=R* d7

17« R = d8 mate.

A total of 82% of Morphy's moves fall in the first 5 positional

rankings, and 70% fall in the first 3.

-71-

(B) Anderssen v, Kieseritsky (1851), the Immortal Game

Game score Positional ranking of White's moves

1. | e2 - ed4 ¢ e - e5 2 1l =d2 - d4
2. £2 - f4 : ;5 ‘ £<4 2 1 =d2 - d4
3 B~-c¢cd : Q0 - hid+ V 9 1l = d2 - d4
4. K= fl1 : b7 - b5 1

5 B* b5 : N - f6 2 l=5B -«b3
6. N ~-Ff3 :0~ho 3 l=Q-£3
7 d2 -d3 : N - Ih5 1

8. N-hd4d :Q-g5 26 l=K-=-£2
g. N ~f5 :¢c7 = c6 4 l=K-f2
10, g2 -~ g4 : N - £6 ‘ 2 l = h2 - h4
11, R -gl : cé6* b5 2 'l = B - c4
12. h2 - h4d ¢: Q0 - g6 10 1l =a2 - a4
13. h4 = h5 : 0 - g5 9 1l =a2 - a4
14, 0 -f3 :N-g8 6 1= a2 - a4
15, B*f4 : Q- f6 6 1 =a2 - a4
16. N-¢c3 :B=c5 4 l=a2 - a4
17. ‘ N-d5 :Q* b2 . 2 1l =g4 - g5
18. B~-d6 : Q* al+ 5 l=DB*%*)8
19. K=-e2 :B* gl 1.

20. ed -~ e5 : N - a6 .25 1l =5B"* b8
21, N * g7 : K~-d8§ ; 14 1l = N(b5) - e7
22. Q - £f6+ : Resigns 4 l=c¢c2 -c4

A total of 64% of Anderssen's-moves fall in the first 5 positicnal
rankings, and 45% fall in the first 3; white's play emerges as highly

tactical by this program.

o ‘ C T [|

(C) Fischer v.Petrosilan (1971)
Game score - Positional ranking of White's moves

1. e2 -ed : c7 - @5 2 l =d2 - d4
2. N = £3 :e?-eS | 12 l = d2 - d4
3. d2 - dd4 : c5* d4 1
4. N *d4 : a7 - a6 2 l=Q* d4
5. B-d3 : N - cé6 27 l =c2 - c3
6. N#® ¢c6 : b7 * cé6 d
7. 0-0 :d7 -ds5 ?
8. c2 -c4 : N - £6 1 | ‘5
9. cd * d5 : c6 * d5 1 |
10. ed * d5 : e6 * d5 1 ' l
11, N-c3 :B-e7 ¢ 1=1rf2-f£3 |
12. Q- a4t : 0 - d7 6 1 & £2 - £3 -
13. R-el :0*ad 3 l=f2 - £3 ‘
14. N*ad :B-eb 1 |
15, * B~e3 :0-0 | 21 l=f2-f3 |
16. B-c5 : R(f8) - e8 2 l1=N-c5 i |
17. ° B*el :R*e7 1 |
18. b2 - b4 : K - £8 17 l=f2 - £3
19, N(ad) - c5 : B - c8 ' 3 1= f2 - f3
20. £2 - £3 : R(e7) - a7 2 1= b4 - b5 . |
21. R(el) - e5 ¢ B - d7 10 l = b4 - b5
22, N*d7 :R*dz7 S
23. R-cl :R-4d6 6 1 = b4 - b5
24, R(cl) = ¢7 ¢ N - d7 . 4 l = bd - b5
25, R ~e2 : g7 - gé 4 l=R=-g5

Fischer v. Petrosian cont,

Game scere Positional ranking of White's moves

26. K = £f2 ¢ b7 - h5 5 . 1= b4 - b5

27. £f3 - f4 : h5 - h4 12 l=g2 - g4

26, K- £3 : £7 - £5 3 " 1=g2-g3

29. K=-e3 :d5 - d4+ 17 l=g2 - g4

30. K =4d2 N - D6 2 l=K-=-1f13

31, R-e7 : N-=-4d5 2 l = R(c7) - e7
32, R - f7+ : K - e8 2 1l =R(c7) - e7
"33, R - b7 : N * b4 3 l = R(c7) - a7
34. B ~ c4 : Resigns 16 l = R(b7) - a7

A total of 68% of White's moves fall in the first 5 positional

rankings, and 56% fall in the first 3.

3.6 Research prospects

The positional criteria used so far, and illustrated in the

' previous section, are characterised by the following features.

(1) R?striction to consideration of AQO, AQl, A dim K, when
the argument shows that the other Qt values in-Q have profound positional
influences.

(2) Restriction to a-consideration of Kw(s) and KS(W) so
as to improve certain geometrical properties of White's position.

Clearly it would be desirable to assess the possible changes in the
Black position, by considering KB(S)’and Ké(B)' A good move for White
will presumably improve White's geométry whilst at the séme time cause

a dcterioration in Black's structure.

(3) Restriction to a particular mode [I, J], that
is to say, without any effective "look ahead" analysis. Future

r
research must clearly take into account the overall positional
features over a sequence of moves. Drastic changes in the abstract

geometrical structures might well be the result of "give~and—-take"

over 3 or 4 moves by White. Thus we needto allow for the positjonal

advantages which can accrue by way of moves which are apparently
tactically chosen. But even here, and referring back to the
discussions in sections 2.0 and 2.1, we begin to see how the line

between “tactical"” and "positional" becomes blurred.

But this approach to the game means, above all things,

that the emphasis is no longer on tree-secarching. Positional features

must be used to reduce the conventional tree-search to manageable
proportions. Further study of the connectivity structures of the
various complexes, such as the search for specific chains of
g-connection or the dependence on such chains of the mappings ¢ val,

s val, p val, st val, should greatly assist in this aim. It is to

be expected that 4uring the course of a game these mappings must
themselves vary a great deal, and so we must search for the dependence
of ¢ val etc. on the structures KW(S) etc. which are linked to the
modes. This would allow the possibility'of the positicnal criteria
being influenced by the tactical possibilities, and therefore of the
computer (as.player) being able to change its mind about the positional

goals as the game proceeds,

Furthermore it is obviously going to be of great help if

chess masters can be persuaded to help in the research - if only by

-

—— =
-

-

ranking the positional motifs in a few hundred positions. So far
there has been an encouraging response to this cry for help, although
we have not yet reached a level of organised co-operation with those

players who are anxious to help.

- '76 &

APPENDIX A

International Algebraic Notation

A chess move in international elgebraic notation has the

following form:

<?ové>: = <sdurce> <operation> <Fguare designation> <check indication) (1)

where

(source): = (piece> l <square designation) I <piece> ((square designation))

<piece> s =R | N I B l Q I K

<square designation}: = Al l a2 I.... I A8 l Bl I cos | H8

<operation>: = -l*

(check indication>: = +|€
The following special move types are also allowed:
0-20

0-0+~-0

(move) V Ep

(2)

(3)
(4)

(move) v <promotion\; where <promotion>: = *R | *N] *B | *0 (5)

/

(V denotes a blank; € denotes the null string)

o —————
-

The Interpretation of a string of type (1) is that the man indicated

by <source> nmaxes the <operation> on the destination <square desiénation>.
If the source man is a pawn, he is specified by giving the ‘
<§guare designation> of the square he occupied before the move; if

he is a piece, then the piece’s name alone is used unless ambiguity
results, in which the <square designation> must also be specified.

The <opcration> can bhe either " - ", which indicates that the designation
square was unoccupied prior to the move, or " * ", which indicates

that it was occupied by ané of the opponent's men., The (check

indication> is " + " if and only if the move results in a check.

Type (2) and (3) moves indicate castling on the King's side and on
the Queen's side, respectively. A type (4) move signifies capturing
en passant, and type (5) refers to pawn promotion, the new piece being

specified explicitly as <promotioﬁ>.

REFERENCES

[17 Alkin, R.H., : Multi-dimensional Structure in
the -Game of Chess,
Int. J. Man-Machine Studies (1972),4,

341-362.

[2] Hilton, P.J. & Wylie S., Homology Theory, (1960), Cambridge

University Press.

[3] Gillogly, J.J., The Technology Chess Program, (1972).

Artificial Intelligence 3:145 - 163.

[4] Kozdrowicki, E.W., (1971) Algorithms for a minimal
= R Chess Player. Int. J. Man-Machine

Geepesy ik | Studies 2(2), 141 - 166, April.

[5) Atkin, R.H., . From Cohomology in Physics to
g-connectivity in Social Science,
Int. J. Man-Machine Studies (1972),

4, 139.

-

[6] Lasker, E., A Manual of Chess, Constable (1932);

Dover (1947).

- 80 -

A KNOWLEDGE BASED PROG RAM

TO PLAY CHESS END-GAMES

by
S Tan

Department of Machine Intelligence
University of Edinburgh

8 Hope Park Square

Edinburgh

EH8 9NW

"A little (knowledge) is a dangerous thing.
Drink deep or taste not the Pierian spring.
There, shallow draughts intoxicate the brain
But drinking largely sobers us again."

- ALEXANDER POPE

Essay on Criticism

o~

——

Editor's Note -

Must be read in conjunction with (Tan, 1972).
The psychological studies described by Bond and
the connectivity described by Atkin are mainly
concerned with (and most relevant to) the middle
game. Clusters of pieces (chunks) and connec-
tivity become less evident; the decisions are
more critical, in the end game,

Note that Tan is not concerned with how a program
may reach an end game but with the problems of
representing and using chess knowledge for the
very deep analyses which must be performed.

An outline is given of a program to solve end-

ings with king and two pawns vs king and bishop.

The approach is basically the same as in (Tan, 1972)
except that a more flexible interpreter is used

this time. Also added are extensions of the
notions of predicates, actions and patterns, as
well as the use of goals, simple cross—communication
between branches of the analysis tree and the
extraction of plans from analysis trees.

T
1

[a]
\¥)

A. PROBLEM AND APPROACH

This work 1s a continuation and extension of the knowledge-based
approach described in (Tan, 1972). Our concern is with the problem of
representing and using chess knowledge, not how knowledge is acquired. !
The emphasis on knowledge 1s important in view of the inadequacy of
the classical Shannon—-Turing game-playing framework: game-tree,
evaluation, minimax etc. We envisage programs that play almost always
correctly (never throw away a win or a draw) in their problem domains,
which means having to make very deep analyses (the domain we are
tackling now is that of king and 2 pawns vs king and bishop, it
contains studies where analyses of ply—-depth 20 are necessary, for
king, rook and pawns vs king and rook the corresponding number 1is
about 40), and must therefore be radically selective in generating
moves. Variations of the Shannon-Turing type of programs may be able, { W
assuming that a good evaluation function can be found, to find good ’
moves, but that would be far from sufficient for solving end-game)
studies correctly, 1

e S ———

In the following, representation and use of knowledge are considered
inseparable, representation is specified by giving a virtual 'chess
machine' which acts as an interpreter. Given an input board situation,
this interpreter will then 'parse' it to produce the move to be
played, plans and a prediction of the value of the situation. The
'parsing' process is directed by a metwork representation of the 0 3
program's knowledge of playing methods. Some of the problems encountered
in designing such a interpreter are:- :

(1) since specifying an interpreter is in effect developing a mini- |
theory of end-games, one may ask what sorts of things are allowed

in the ontology of the theory (does the theory accomodate plans, |
threats, intentions, episodes, scenes, demons, etc) and what are

the relations between these sorts (eg how are goals used in a \

situation—-action production system). ‘

. |

(11) How do we choose the primitive actions of the interpreter, in
other words, how much compilation should be done (in (Tan, 1972)
the whole program is compiled, the virtual POP-2 machine is the
chess machine). Shall we adopt a multipass interpreter that can

account for the phenomena of progressive deepening (De Groot,
1965), and if so, how do we handle communication between the
different passes (besides the problem of communication betwecn
branches of the analysis-trec).

(i11) How much advice, deductive power should the program have, what
search strategy and evaluation function should be used.

There are many more question that can be asked, but here we can only
attempt to answer a few of them with respect to the problem domain
we have in mind. No doubt there are no general answers to most of
the above questions; compiler-interpreter, deduction-scarch, advice-
search, evaluvation-look-up, backward search-forward search etc, are
pairs of items that are often traded-off inter-changeably.

The attitude taken here is to try to proceed from the simple to
increasing complexity, and to be flexible and delay ultimate decisions
when further clarification or experimentation are necessary.

The next section outlines the typology of the theory, it is relatively
rich compared to existing chess programs, but not as rich as found in
chess psychology (compare the De Groot op-cit). We have not made
provisions to include progressive deepening (which may be implemented
serially or in parallel by coroutines) at present, but De Groot may

be right in pointing out the importance of it for computer programs

(De Groot, 1965, p 401). FKotov [1], on the other hand, who is interested
in teaching 'human beingsto analyse with the accuracy of a machine'
argues that a branch of the analysis—tree should never be searched

more than once, and only lack of confidence can make us do otherwise.

There is no explicit deductive power at present, other than those that
can be implicitly embedded in the program's playing methods. A simple
depth—first strategy augmented by a preliminary breadth-first search
is adopted. For the last mentioned search, an evaluation function
similar to the one used by (Newell et al, 1959) is adopted, the value
of a position is a feature vector. Unlike Newell et al however, there
is not a prior lexicographic ordering of the vectors, since it seems
to be counter-intuitive; possibilities of trading—off material for
space or development, pawn structure for a bishop etec, which is
cartainly the essence of what chess is about, being excluded.

B. LRILEF OVERVIEW

[In this section we will only give an informal description of the
different categories of object in the theory, their relations to each
other and their properties. No attempt 1is made to present a formal
theory. Most examples given apply to the case of 2 pawns vs a bishop,
the pawns are always white. Some of the assumptions made below are
somewhat arbitrary, they are made with this restricted problem domain
in mind.

— e ——

Ts Situations

A situation is a data—~structure coptaining . all the board information:
board position, who is to move, and sometimes a little history (has the
king been moved, what was the last move etc), clock etc. In the following,

“

- 84 =

R ——

situations will be distinguished from states of the interpreter (see
7 below), and we assume that no history and clock are recorded in a
situation. Thus the interpreter will not make use of knowledge of
the opponent's last move (eg if piece captured, try recapture) in
selecting its reply. It does not however consider every situation
presented as new: it has plans and recognizes repetition of
situations. i ;

2 Concepts

A concept is a POP-2 function describing general relations between
pieces, squares, numbers etc. Lxamples: rank, distance as number

of king moves, block-distance, critical square, breakthrough square,
different kinds of blockades, doubles, isolated and connected pawns,
pin, mobility, center, shelter, good bishop, queen side majority etc.
We restrict ourselves here to simple static concepts, there are no
concepts which involve dynamic search, succession of states or which
refer to the state of the interpreter (no concepts of overloading,
desperado, encirclement, Zugzwang, initiative etc) though it is possible
to bave overloading as a predicate, encirclement as an action or plan
etc . It is assumed above that critical squares, breakthrough squares,
shelters etc, can be determined in a static manner, though in general
they may be dynamic.

Concepts are used in predicates and goals.

3 Predicates

Predicates are POP-2 functions defining partial functions from states

to truth-values. This is an extension of the early notion of a predicate
as a partial function from situations to truth-values used in (Tan, 1972)
Examples:= ’

(a) mate, stalemate, check, can-advance, can-capture, etc;

(b) those associated with concepts directly: has-critical-square,
is~blockaded, etc; ’

(c) those associated with patterns: match (pattern);

(d) those referring to the state of the interpreter: has-no-plan,
has-occurred-before, etc;

(e) the most important predicates are those connected with lookahead
searches, they make recursive calls to the program's body of
knowledge, eg: the predicate: 'starting with this situation,
removing the following pieces, using all the chess-knowledge that
I have, applying the following action, white will win'. With the
exception of the action try (below), this is also the only place
where (full or partial, forward or backward) lookahead searches
can occur.

4, Actions (or action-schemes)

Partial unary operations on situations or states are called actions.
Actions can be POP-2 functions or represented as a network in the
same way as the whole move finding routine. They may be primitive
(eg actions corresponding to moves, dummy operations, update white-—
list ectc); or built-up from predicates and primitive actions by

v

e e —.

conditionals (eg support, approach, letpass etc).
Associated to patterns, there are actioms of the form: try (pattern, x),

which mecans: try. to reach (usually backward scarch) the pattern in at
most x moves, if x=o the pattern must contain a suggestion on what is

to be done.

5. Goals

Goals are defined by (Newell and Simon, 1972, p 807) by the character-
1stlesi—
(i) 'a goal carries a test to determine when some state of affairs
has been attained';
(ii) 'a goal is capable of controlling behaviour under appropriate
conditions. The control takes the form of evoking patterns of
behaviour that have a rational relation to the goal - ie methods

for attaining the goal'.

The goals we have at present satisfy the first characteristic and the

second to some extent. They are related directly to concepts, eg:

for black : blockade (there are different strengths of blockades),
mobility of the bishop;

minimize distance (white king, pawm);

for white
minimize distance (white king, bishop) etc.

The set of goals, also called feature vector, is only-partially ordered,
it is used for preliminary elimination of moves in a breadth-first
search up to depth one. A goal in itself does not propose actions (that
is why it does not quite satisfy the second characteristic), but used
within an action routine it does control the choice of actions to be

taken.

At present there are no mechanics for activating/de-activating and
welghtings of goals.

6. Patterns

There is a stock of important didactic patterns that must be recognised
quickly by the program. These patterns may be geometric or defined by
more general predicates. They may or may not have actions associated
to them, and are used as an action: try (patteyn, x) or as predicate:

match (pattern).

The stock of patterns is considered fixed; non-permanent patterns
created during analysis are not allowed at present.

Ta States

The state of the interpreter is given by a stack of situations used to
keep track of recursion, and an environment in the form of an analysis-
tree. The stack is hidden and never referred to by the user.

8. Analvsis-trecs

This is the tree of moves considered in the analysis. Attached to its
nodes we have a white-list (list of good moves for white), a black-list
(list of good moves for black), and the value (win, lose or draw) of
the situation corresponding to the node (if known). The white and
black lists serve for communication between biranches of the analysis-—
tree, a good killing move in one branch is often good in other branches
as well (compare McCarthy's killer list, (De Groot, 1965, p 395)).

The analysis—tree is the most dynamic part of the interpreter, it is
grown and pruned most of the time.

9. Plans

At present therc are only concrete plans extracted from the analysis—
trees by pruning the insignificant branches. These plans are used to
anticipate the opponent's move.

Use of abstract (containing action-schemes rather than the actual
moves) plans (eg breakthrough, distribution of effort between king
and bishop) during the analysis itself are being considered.

10. Network

As mentioned earlier, the interpreter 1s directed by a network
representing the program's chess knowledge. Its nodes are records
consisting of a predicate, action 1, LLINK, action 2 and RLINK, where
LLINK and RLINK are pointers to other nodes. A node implies an
instruction} if the predicate is true, do action 1 then follow LLINK,
else perform action 2 and follow RLINK. Example of a node (omitting
links): 'in case of two connected pawns, where they are abreast, if
we decide to push, advance the pawn which is not on the same colour
as the bishop' (Fine). '

LOCAL REFERENCE

[1] Kotov A. Think like a grandmaster, Batsford 1972.

- 88

OBSERVATIONS . |

by
-]
R Malik 107 North End Road
London '
NWi1

"There is nothing more difficult to take in :
hand, more perilous to conduct, or more un- !
certain in its success,; than to take the lead (
in the introduction of a new order of things."

- MACHIAVELLI (

Editor's Note -

Rex Malik is a writer who specialises in the sys-
tems and computer sciences. He is also Senior
Resecarch Associate and technical author with
Professor Gordon Pask and System Research Limited.

.90.

This report is the speech I would have given had I not chosen to cut
it short and lead a discussion! It is nowhere near as abrasive as my
remarks at the conference, and of course being rewritten, added to,
and amended to after the event probably puts my remarks into a more
coherent, not to say more elegant context. I do not now, as I had

to at the conference. worry about the problem of stepping out from
behind the typewriter and facing an experienced audience without the
shelter of editors, cold print or the unanswerable at-this—time
microphone.

I must once again state that having spent a day listening to the
speakers and the variocus points of view put forward, I was struck
(with respect to my fellow speake¥s) with the low level of the
discussion. 1 had better qualify what I mean by this immediately.

It seems to me that ten years ago, even five years ago, the conference
would have been generally discussing problems at and beyond the front
end of ‘'art'. But in the context of today, much of the discussion

was out of date, and concerned with subject matter which I would have
expected an audience with the degree of expertise present to already
have been familiar with; even bored with.

Against this, one must set the argument basically raised by Alex Bell
that the conference was intended to bring together people,many of

whom had never met, in the hope that from it something useful would
spring, contacts would be made, and the place of computer chess

in the scheme of things would perhaps be more closely defined. Given
that the pcople had not been brought together before, any starting point
must be useful; it gives some indication of what people know, as well

as what they do not know.

My observations on the meeting come into three groups. First, the
general atmosphere. It seems to me that the general interest level
displayed was quite high and on the right lines. I have sat as an
interested spectator writer on the sidelines of attempts to play
computer chess for many years, and what I found striking was that
(with what I would call first gencration 'technical' knowledge) the *
audience should display second generation attitudes and be concerned
with second generation problems. The concern seemed to be with making
computers play 'people' chess, not machine to machine chess. Though it

Ty —

e —

would no doubt be of general interest if one computer chess program
played well against another, the focus was on chess as a human activity
and what stems from it. True, there will no doubt be some quiet
jollification when and if a chess program does beat a Grand Master,

it is only to.be expected, but this seemed a peripheral and non-central
matter. And this is an improvement, indeed if I am right and this holds

across the field it denotes a major departure from historic pre-occupations.

One thinks of John von Neumann and his famous predictions, goes back to
Babbage; indeed it is possible to go back beyond even this, though as
someone who has been involved in research into the history of computing,
including mere idle speculation,I can find few traces before this which
are not of the Golem or Delphic oracle variety.

Second, and also peripheral to the meeting, which in some ways I find
unfortunate, the question what we should now do together was not
answered at all satisfactorily. It may be that pcople wish to continue
quite independently of each other, 're-inventing the wheel' to quote
the meeting's most popular cliche. Sixty people goes a long way to
dispel this. I do not believe that this was the wish of the meeting,
rather that it was due to the fact that the question was never put in
a way which it found attractive. But certainly a2 case was being made
almost throughout for some organisation which would encompass those
who play chess and are interested in attempts to play it by computer;
those computer scientists who find the chess problem one of interest
in that it provides professional intellectual satisfaction, and those
who regard the chess computer problem as a suitable test-bed with
which to test out deeper ideas about how we ourselves approach
problems. This grouping of interests does not obviously fit into a
computer professionals' society, a chess club or congress, or indeed
the 'artifical intelligence' chapter.

It may be that those interested are going to have to sit down

together to work out what to do. That could vary widely, but it is
quite apparent to me that one thing that needs to be done (and which
the SRC might somehow or other usefully undertake) would be to provide
something a little more comprehensive than a bibliography which could
and should be made available at least as a beginning to the
participants. The situation must not occur again that many of those
with a serious interest in the subject, whatever their motives, should
find themselves in a position where their basic knowledge is such that
effectively they still think in terms of the horse and buggy, though
some others in the same meeting are already working with jet propulsion.
Yet both can find much of what they want to know in the available
literature - if they knew where to look.

The starting point for my third set of comments arises from the
remarks made both by Alex Bell and Peter Kent. The first exhibited
general dissatisfaction with the level of chess knowledge displayed
by the programmers and the chess knowledge obtained from plavers,
saying in effect 'if the chess experts could tell us what to do, we
should do it'. The second during his presentation remarked not only
that mini max is dead, though it could be inferred that many people
had not realised it yet, but that often chess programs made the right
moves for the wrong rcasons: they might play legal chess, they did
not play anything resembling good human chess. This was further
discussed by Dr Tan, notably his unchallengeable (and unchallenged

which itself is interesting) comment that the Shannon/Turing framework
is inadequate, and that we now need to look for a new one, a search

in which he and some others are and have for some time been taking
part.

It is not my wish to quote extensively in a report which also

contains the original ‘papers. However it does seem to me to be worth
pointing out that the remarks concerned with 'where do we go from

here' fall into two groups. One group is obviou=ly that of 'chess

as played by humans' and what we can learn abo:t how people behave

and operate in the context of the world of the chess board, this is
also the concern of the field of congnitive studies, including
computerised artificial intelligence. Thus Atkin's paper here I
consider as of considerable importance; indeed his theory really

ought to be tested using not only past games, but also techniques
arising out of pattern recognition. One can foresce also some
experiments which arise from the notion of over optimism/pessimism

in relation to the real strength of the positioned pieces, and its
effect on the actual game. That this as a general proposition 1s true,
is obvious; what is not obvious is the elaboration or all the extensions,
but certainly there is almost bound to he a connection between this and
and the middle aged syndrome, and what that connection is might be both
fun and instructive to discover. And for the middle aged syndrome,

read also a large number of other problems concerned with operations

in the wider outside world.

The point I am making 1s that a study of the world of chess using
computers and computer generated techniques might now turn out to be
of some very practical importance in other spheres, and should not be
left in the generally bemoaned - at least this scemed to me to be

the feeling - situation that the work has generally been done in spare
time with minimal machine time available. Thus-I should like to see
for instance much more intensive work on the De Groot conclusion that
Alan Bond discussed; that perception in the case of a Grand Master

is almost hard wired. I am well aware that as a general propositon
this can be tested elsewhere, but testing it in this field seemsto
present some interesting advantages, not least in that the world of
chess has boundaries which can be sharply delineated.

The second part of this third grouping is concerned with the
'mechanics' of the second generation of chess programs. We are now

at the level of I SPY rather than computer chess as it has been
hitherto understood, and I SPY is more difficult. And if it is to

be properly tackled, then cbviously the machine and time requirements
go up and we need to examine techniques, whether fashionable or not,
which have not seriously been looked at in this field in this country
before. Thus we do need to have programs which are more dynamic, which
alter as the game progresses. We need not only good threat value
tables, might I suggest we also need dynamic threat value tables
which adjust according to not just the potentiality of the player
across the board but also the actuality. Put in this way of course
this is asking for a lot, and there may in fact be other ways of
solving the problem, even so it does scem to me at this time to be
something worth thinking about if not following up. - :

We are stopped by the inability of programs to generalise, and not
only when they come on an 'amazing fact', by the lack of libraries,

_93-.

and by the inability of the systems as yet to take a synoptic view

of the board. And as was also pointed out, hardly anyone is as yet
trying to solve the problem proper by searching backwards and forwards,
'the way that a Grand Master might operate'. '

To end, I would say that the conference was immensely worthwhile.

It seemed to me to indicate that though it might not have suspected its
own existence, there was now a community present. And the creation of
that is always the first step in getting something done and moving in
any field. As for the SRC and its involvement? Well those in the field
are in there mostly in their own time, out of interest if not love.
This is not a situation so rare that it can be overlooked,
particularly when the problems encountered and the possible solutions
might tell us so much about ourselves. It ought to be encouraged, and
the first thing might well be more programming and more computer time
during official hours. Certainly it 1s as useful as, if not more than,
much of the computing which seems to clutter up the publicly provided
systems the country has available.

s el e el e, et et

- 94 -

i
!‘
.

DESCRIPTOR INDEKX

by |
|

A H Bond Queen Mary College |
University of London §

Mile End Road |

London
El 4NS

96 -

DESCRIPTOR INDLX

(* = recommended)

Overviews and Surveys

(Newell 72)%*, (Michie 66), (llewell 59), (Slagle 71), (Bell 72),
(Mittman 73)

Report of Lxperience with Program

(Berliner 70)*

Minimaxing

(Slagle 69)
(Gillogly 72)

|
|
a—8 Pruning ‘ ; 1
|
Description (Newell 59)
Functional description (Cdwards 63)
Theoretical bound (Slagle 69)%*

Dynamic ordering (Slagle 69) ‘ 1
|
\

Dead Position j

(Strachey 59)
(Good 65)
(Greenblatt 67)
(Berliner 70)

Plausible Move Generators

(Bernstein 58), (Newell 59), (MNewell 72), (Greenblatt 67)

97

Data Structures for Chess

Newell and Prasad (Newell 63), (Baylor 66)

Greenblatt (Cerf 69)
Scott (Scott 69)
General (Williams 65)

Ordering by Shallow Search

(Samuel 67), (Scott 69)

Goal Seeking

(Newell 72), (Baylor 66)

Using the 'No Move' Move

| (Baylor 66)*

Particular Chess Programs

, ’ Bernstein (Bernstein 58)
Newell (Newell 55), (Newell 59), (Newell 72)
| ‘ Kotok (Kotok 62)
Greenblatt (Greenblatt 67), (Cerf 69)
Scott (Scott 69)
Gillogly (Gillogly 72)
Berliner (Berliner 70)
Slate and Atkin (Slate '70)
: Adelson-Velsky (Adelson 66)
‘ Zobrist—Carlson (Zobrist 73)

Kozdrowicki-Cooper (Coko 73)

A Legal Move Generator in Algol 60

(Bell 70) -

Endgame Players

(Baylor 65,66), (Hubermann 68)
(Tan 72)

Suggested Chess Programs

Means ends reasoning (Pitrat 68 and 71)
Humanoid (De Groot 64 and 65)
Method of horizons (Botvinnik 70) =

_98 -

Pattern Directed Play (GO)

(Zobrist 69)

’

Lvalution Function Based. on Pattern Recogniser

(Samuel 67)

Plaver Based on Torcing Patterns

(positional games) (King 71)

Statistical Facts and Approaches

(Good 66)
(De Groot 66, 65)

Formal Approaches

Approach by Set Theoretic TFormalism

(Banerji 69, 71)
(Dunning 69)
(Marino 66)

Topological Approach

(Atkin 72)

Reports of Chess Games Played by Computers

(Kewell 72)
(Scott 69)
(Good 69)

also SIGART newsletters

Go

(Ryder 71)
(Zobrist 69)
(Thorp 64)
(Thorp 70)
(Good 65)
(Remus 62)

Kalah

(Bell 67)
(Russell 64)

Positional Games

(generalisations of noughts and crosses)
(Citrenbaum 70), (King 71), (Banerji 69)
(Elcock 67), (Murray 68), (Konniver 63)

Go-Moku -
Qubic (Daly 61)

Case Institute Game Player

Card Games

(Foster 66)
(Carley 62), (Wasserman 71)
(Findler 71), (Waterman 69)

(Thorp 67)

Chemin-de-Ter
Bridge

Poker

Black Jack

Draughts
(Strachey 52)

(Samuel 59 and 67)

Hare and Hounds

(Storey 69)

Learning in Game Plavers

Rote Learning (Samuel 59), (Slate 70)
Optimisation of coefficients (Samuel 59 and 67)

Learning of forcing patterns (King 71), (Elcock 67)
Learning of descriptions (Popplestone 69), (Newman 65)

Learning of heuristic rules (Waterman 71)

Psychology of Chess

Perception (Chase 72), (Simon 67, 69)%,
(Tikhomirov 66), (Newell 72), (Pushkin 71),

(De Groot €5), (Jongman 68)
Search (Newell 65 and 72)*%, (De Groot 65),
(Baylor 66), (Scurrah 70), (Simon 62)

(De Groot 65)*

Reorganisation

Memory (Binet 66)%, (Cleveland 04), (Chase 72)

Fsychoanalytic ; (Fine 67), (Karpman 37), (Jones 51),
(Coriat 41)

Individual Differences (Ve Groot 65)

- 100 -

IPsychology of Other Cames f

Halma (Elithoxrn 70)
Go—-}Moku (Rayner 58)

REFERENCES

_mmn miHuuU\L!

- 0% -

REFERENCES
(I possess copies of almost all these references = A H Bond)
(1) Adelson-Velskiy G M, Arlasarov V L and Uskov A G (1966).

Programme Playing Chess, Report on Svmposium on Theory and
Computing Methods in the Upper Mantle Problem.

(2) Atkin R (1972). Multidimensional Structure in the Game of
Chess, Int J Man-Machine Studies, 4, 341-362.

3) Banerji R B (1969). An Overview of Game Playing Programs,
Tech Report, Cleveland: Case W R University.

(4) Banerji R B (1969). Theory of Problem Solving, New York:
Elsevier. ‘

Strategy Comstruction, Computers and Automata Proceedings of
21st Brooklvn Polytechnic Svmposium, 337-357.

(6) Banerji R B and Ernst G W (1971). Changes in Representation
which Preserve Strategies in Games, IJCAI2, 651-658;
Longer version technical report of same name, Case WRU.

(7) Banerji R B and Ernst G W (1972). Strategy Construction Using
Homomorphisms between Games, AI 3, 223-250.

(5) Banerji R B (1971). Similarities in Games and Their Use in
(8) Barker R (1971). Report on Human Gamé—Playing as Illustrated J
by the Game of Halma, M Sc Thesis, London: Computer Science J
Department, Queen Mary College.]

(9) Baylor G W (1965). Report on a Mating Combinations Program,
SDC Paper SP-2150. J

|

(10) Baylor G W (1966). A Computer Model of Checkmating Behaviour H
in Chess, Heuristic Processes in Thinking, eds De Groot A D and l
Reitman W 7, Moscow: Nauka. ’ '

Ll (11) Baylor G W and Simon H A (1966). A Chess Mating Combinations
Program, SJCC, 431-447.

- 105 -

(12}
13)

(14)

(15)
(16)

(17)
(18)
(19)

(20)

(21)

(22)

(24)
(25)
(26)

(27)

(28)

(29)

(30)

Bell A G (1967). Kalalh on Atlas, MI3, 181-194,

Bell A G (1970). How to Trogram a Cowputer to Play Legal Chess,
cJ, 13, 208-219.

Bell A G (1972). Games Playing with Computers, London: Allen
and Unwin.

Berliner H J (1969), Chess Playing Programs, SIGART, 17, 19-20.

Berliner H (1970). Experiences Gained in Constructing and Testing
a Chess Program, IELE Svmo System Sc and Cybernetics, Pittsburgh.

Bernstein A and Roberts 1! de V, Arbuckle T and Belsky M A (1958).
A Chess Playing Program for the IBM 704 Computer, WICC, 157-158.

Bernstein A and Roberts M de V (1958). Computer vs Chess Player,
Scientific American, 198, 96-105.

Jinet A (1894). Psychologie des Grands Calculateurs et des Jouers
d'Echecs, Paris: Hachette.

Binet A (1893 and 1966). lMnemonic Virtuosity: A Study of Chess
Plavers, Genetic Psych onog, 74, 127-162;

originally prublished as:-

Les Grandes Memoires: Resume d'une Enquete sur le Jouers d'Echecs,
Revue des Deux Mondes, 117, 826-859.

Botvinnik M M (1960). One Hundred Selected Games, New York: Dover.

Botvinnik M M (1970). Computers, Chess and Long-Range Planning.
London: Longmans.

Brannasky W (1927). Psychologie des Schacﬁspiels, Berlin:
De Gruyter.

Carley G (1962). A Program to Play Contract Bridge, M Sc Thesis,
EE MIT.

Cerf V and Kline C (1969). The Greenblatt Chess Program,
Unpublished term paper at UCLA, '

Chase W G and Simon H A (1972). Perception in Chess, Cog Psvch.
(See also (133).)

Citrenbaum R L (1970). Efficient Representations of Optimal
Solutions for a Class of Games, Thesis, Cleveland: Case WR
University; Tech Report SRC-69-5.

Clarke M R B (1973). Some Ideas for a Chess Compiler,
Artificial and Muman Thinking, eds Elithovn A and Jones D,
Elsevier.

Cleveland AA (1907). The Psycholqu of Chess and of Learning
to Play It, Am Jour Psvch, l§)‘269-308.

Coriat T H (1941). The Unconscious Motives of Interest in Chess,
Psychoanalvtic Review, 28, 30-36.

= 106 -

I

e e

Daly W (1961). Computer Strategics for the Game of Qubic,
M Sc Thesis, Elcctrical Engineering MIT.

De Groot A D (1964). Chess Playing Programs, 385-398.

De Groot A D (1965). Thought and Choice in Chess, The Hague:
Mouton. :

NDe Groot A D (1966). Perception and Memory versus Thought,
Problem Solving, ed Kleinmuntz B, Hew York: John Wiley.

Duncker K (1945 (35)). On Problem Solving, Psych Monographs,

58, no 270.

Dunning C A, Ko B M and Banerji R B (1969). Some Results on
Graph Interpretable Games, Tech Report, Cleveland: Case
W R University.

Ldwards D J and Hart T P (1963). The a—B8 Algorithm, MIT AI
Memo, 30.

Fifermann P R (1272). Computer Analysis of Board Games in the
Light of Street Games, NSSHT, ed LElithorn A.

Elcock E W and Murray A M (1967). Experiments with a Learning
Component in a Go—Moku Playing Program, MII, 87-104.

Elithorn A and Telford A (1969). Computer Analysis of Intellectual
Skills, Int J Man-Machine Studies, 1. 189-209.

I'lithorn A and Telford A (1970). Game and Problem Structure in
Relation to the Study of Human and Artificial Intelligence,

Mature, 227, 1205-1210,

Tindler N V, Klein H, Gould W, Kowal A and Menig J (1971).
Studies on Decision Making Using the Game of Poker, IFIP7I.

Findler N V (1971). Computer Experiments on the Formation and
Optimization of Heuristic Rules, NSSHT, ed Elithorn A.

Fine R (1967). The Psychology of the Chess Player, New York: Dover.

Foster F G (1966). Chemin-de-Fer analysed, Computer Journal, 7,
124-130.

Gillogly J J (1972).The Technology Chess Program, AI 3, 145-164;
also: Technical Report 71, Pittsburgh: Carnegie—Mellon.

Good I J (1965). The Mystery of GO, New Scientist, 427, 172-174.

Good I J (1966). A Five Year Plan for Automatic Chess, MI2,
89-118. ==

Cood T J (1969). Analysis of the Machine Chess Game J Scott
(White), ICI—1900 versus R D Greenblatt, PDP-10, MI4, 267-269.

(50)

51

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

Greenblatt Richaxrd D, Eastlake Donald E II and Crocker Stephen D
(1967). The Greenblatt Chess Program, FJCC, 801-810.

Greenblatt Richard D, Eastlake Donald L III and Crocker Stephen D
(1967). .The Greenblatt Chess Program, extended version rough
draft.

Greene P (1961). Networks Which Realise a Model for Information
Representation, Trans Univ Illinois Svmp Self Org..

Harkness and Battell (1947). Article in Chess Review.

Hubermann B J (1968). A Program to Play Chess End Games,
Stanford Technical Memo CS 106, C S Department.

Jones E (1951). The Problem of Paul Morphy: A Contribution to
the Psvchology of Chess, Essavs in Applied Psvchoanalvsis,
London: Hogarth.

Jongman R W (1968). Het Oog van de Meester, Amsterdam: Van
Gorcum.

Karpam B (1937). The Psychology of Chess, Psychoanalytic Rev,
24, 54-69.

King P F (1971). A Computer Program for Positional Games,
Report 1107, Jennings Computer Center, Case WRU.

Kister J, Stein P, Ulam S, Walden W and Wells M (1957).
Experiments in Chess, JACM, 4, 174-177.

Koffman EB (1967). Learning through Pattern Recognition Applied
to a Class of Games, Systems Research Center Report SRC 107-1-67-45,

Case IT.

Koniver D (1963). Computer Heuristics for Five-in—a—Row,
M Sc Thesis Mathematics, MIT.

Korschelt O (1966). The Theory and Practice of GO, Tuttle,
Ruttland, Vermont.

Kotok A (1962), A Chess Playing Program for the IBM 7090,
B S Thesis, MIT, MMemo 41.

Kozdrowicki E W and Cooper D W (1973). COKO III, Comm ACM, 16,
411-427.

Lasker E (1960). Go and Go-Moku, New York: Dover.

Levy D N L (1969). Computerised Chess: Prospects, Chess April 22nd
1969, 242-251.,

Levy D N L (1971). Computer Chess — A Case Study on the CDC 6600,
MI6, 151-164.

Luce R D and Raiffa I (1957). Games and Decisions, New York:
Wiley.

(69)

(70)

(71)

(72)

(73)

(74]

(75)

(76)
(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

Maier N R F (1960). Screening Solutions to Upgrade Quality:
A New Approach to Problem Solving under Conditions of Uncertainty,
J Psych, 49, 217-231,

Marino L R (1966). Winning and Non-Losing Strategies in Games
and Control, Tech Penort SRC 91-A-66-36, Case WRU, Cleveland.

McKinsey J (1952). Introduction to the Theory of Games,
New York: McGraw Hill.

Michie D (1966). Game Playing and Game Learning Automata,
Programming and Non-Numerical Computation, ed Fox L, Oxford:

Pergamon.

Mittman B (1973). Can a Computer Beat Bobby Fischer?, Datamation,
June,

Murray A ! and Elcock E W (1968). Automatic Description and
Recognition of Board Patterns in Go-Moku, I2, 75-88.

Newell A, Shaw J C and Simon H A (1959). Chess Playing Programs
and the Problem of Complexity, IPAJ, 2, 320-335;

also in: Feigenbaum E A and Feldman J A (1963), Computers and
Thought.

Newell A (1955). The Chess llachine, WJCC55, 101-110.
Newell A (1966). On the Representations of Problems, CSRR CMU.

Newell A and Prasad (1963). IPL-V Chess P

sition Program,
Internal Meme No 63, CS Dept, Carnegie-Mellon.

o}
1

I
e

Newell A and Simon H A (1965). And Example of Human Chess Play
in the Light of Chess Playing Programs, Progress in Biocvbernetics,
eds Weiner N and Schade J P, Amsterdam: Elsevier, 2, 19-75.

Newell A and Simon H A (1972). Human Problem Solving, Prentice-
Hall.

Newman and Uhr L (1965). Bogart: A Discovery and Induction Program
for Games, Proc ACM Conf 65, 176-186.

Nilsson N J (1971). Problem Solving Methods in Artificial
Intelligence, McGraw-Hill.

Penrose J (1965). The Psychology of Chess, New Society, 29,
967-968.

Philidor A D (1777). Analvsis of the Game of Chess, London:
Elmsley.

Pitrat J (1968). Realization of a General Game-Playing Program,
IFIP 68, H120-124.

Pitrat J (1971). A General Game-Playing Program, Artificial
Intellizence and lleuristic Programming, eds Findler N V and
Meltzer B, Edinburgh University Press.

(90)

(93)

(94)

(95)

(96)

(97)

(98)
(99)

(100)

(101)

Poe E A (c 1860). The Meazel Chess Automaton.

Fopplestone R J (1969). An Experiment in Automatic Induction,
MIS, 203-218.

Pushkin V A and Shershnev (1972). On Different Modes of Acquiring
Information in a Person Solving Discrete Combinatorial Problems,
Problems of leuristics, ed Pushkin V N, Jerusalem: Israel Program
for Scientific Translations.

Rayner E H (1958). A Study of LEvaluative Problem Solving,
Quart J Exp Psvch, 10, 155, and 10, 193;
also in: Wason P C et al, Thinking and Reasoning, Penguin.

Remus H (1962). Simulation of a Learning !achine for Playing GO,
IFIPG2.

Russell R (1964). Kalah; The Game and the Program, Stanford AI
Memo No 22.

Ryder J (1971). Go, Thesis, California: Stanford University.

Samuel A L (1967). Some Studies in Machine Learning using the
Game of Checkers II = PRecent Progress, IBMJ, 11, 601-617; i
also in: Annual Review of Automatic Programming, ed Halpern M,
Pergamon, 6, 1-36.

Samuel A L (1959). Machine Learning, Tech Rev, 62, 42-45.

Samuel A L (1959). Some Studies in Machine Learning Using the
Came of Checker, IBPMJ, 3, 210-229;

also in: Computers and Thought, (1963), eds Feigenbaum E A ‘and
Feldman J, New York: McGraw-Hill, 71-105.- L

Samuel A L (1960). Programming Computers to Play Games, Advances |
in Computers, 1, 165-192.

Scott J J (1969). A Chess Playing Program, MI4, 255-266.
Scott J J (1969). Lancaster vs MACHAC, SIGART, 16, 9-11. b
Scurrah M J and Wagner D A (1970). Cognitive Model of Problem

Solving in Chess, Science, 169, 290-291. (Fuller version in
Cog Psych, 1972).

Selfridge O (1965). Reasoning in Game Playing by Machine,
Svmposium on Computer Augmentation of Human Reasoning, eds
Sass M A and Wilkinson W D, Washington: Spartan.

Shannon C E (1950). Automatic Chess Player, Sci Am, 182, 48-51.

Shannon C E (1950). Programming a Digital Computer for Playing
Chess, Phil Mag, 41, 356-375.

Silver R (1967). The Group of Automorphisms of the Game of
3-Dimensional Tic-Tac-Toe, American Math Monthly, 74, 247-254.

=

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)
(120)

(121)

(122)

(123)

Simon H A (1966). Nepresentation in Tic-Tac-Toe, CIP Paper No 90,

Carnegie IT.

Simon I A (1967). An Information-Processing Lxplanation of
Some Perceptual Phenomena, Br J Psvch, 58, 1-12.

Simon H A and Simon P A (1972). Trial and Error Search in
Solving Difficult Problems: Evidence from the Game of Chess,
Beh Sc, II, 425-429.

Simon H A and Siklossy L (}972) Representation and Meaning,
Prentice-Hall,

Simon H A and Barenfield M (1969). Information—Processing
Analysis of Perceptual Processes in Problem Solving, Psych Rev,
76, 473-483.

Slagle J R (1971). Artificial Intelligence, New York: McGraw-Hill.

Slagle J R and Dixon J K (1969). Experiments with Some Programs
which Search Game Trees, JACM, 16, 189-207.

Slagle J R and Dixon J K (1970). Experiments with the M x N Tree
Searching Program, CACM, 13, 147-154 + 159,

Slate D and Atkin (1970). CDC File Printout from ULCC, London
WCL.,

Smith R C (1969), The Schach Chess Program, SIGART, 15, 8-12.

Storey S H and Maybrey M A (1969). The Game of Hare and Hounds
and the Statistical Study of Literary Vocabulary, MI4, 337-348.

Strachey C § (1952). Logical or Non-Mathematical Programmes,
Proc ACM Conf, 46-49.

Tan S T (1972) Representation of Knowledge for Very Simple
Pawn Endings in Chess, Thesis, Edlnburgh Department Machine
Intelligence.

Thiele T N, Lemke R R and Fu K S (1963). A Digital Computer
Card Playing Program, Beh Sci Vol III, 362-268.

Thorp I (1967). Beat the Dealer, TABS.
Thorp E and Walden W (1964). A Partial Analysis of GO, CJ, 7.

Thorp E and Walden W (1970). A Compter—Assisted Study of GO on
M x N Boards, TANNPS.

Tikhomirov OK and Poznyanskaya (1966). An Investigation of
Visual Search as a lMeans of Analyzing Heuristics, Soviet Psych,
5, 2-15, translated from: Voprosy Psikbdlogii, 12,, 39-53,

Turing A M (1963). A Digital Computer Applied to Games, Faster
than Thought, ed Bowden B V, London: Iitman, 286-310.

(124)

(125)

Vigneron H (1914). Les Automates, La Natura.

Wasserman A I (1970). Realisation of a Skillful Bridge Bidding

. Program, FJCC70, 433-444,

(126)
(127)
(128)

(129)

(130)
(131)
(132)

(133)

Waterman D (1970). Generalisation Learning Techniques for
Automatlng chewLearnlng of Heu1lst1cs, ‘AI, 1, 121-170.

Weizenbaum J (f962) How to Make a Computer Appear, Intelligent;
Five-in-a-Row nffers No Guarantee, Datamation, 24-26.

Weizénbaum J and Shepherdson R C (1962). Gamesmanship, Datamation,
10.°

Wiener N (1948). Cybernetics, lst edition, New York: Wiley.

‘Williams T G (1965). Some Studies in Game Playing with a

Digital Computer, Thesis, Pittsburgh: Carnegie-llellon University.

Zobrist A L (1969). A Model of Visual Organisation for the Game
of GO, SICC69, 103-112.

Zobrist A L and Carlson F R (1973). An Advice-Taking Chess
Computer, Scientific American, 228, No 6.

Simon H A and Chase W G (1973) Skill in Chess, American
Scientist, 61, No 4.

R R T — —

LIST

OF

PARTICIPANTS

= 113 -

»

. ‘,*,"' Y

-

BEAL D T
BOARDMAN R M
BROWN D

BURLEY T A
CAMPBELL G
CAMPBELL J A

CATLOW G W
CHESHIRE I M
COVINCTON J P
CROWTHER R D
CUTTERIDGE Dr O P D
DEANS D

DIBB A T
DORAN J E
ELDER M
FLEMING J
FLETCHER R
FRASER L
GOODEY T

HAILSTONE J E
HALLOWELL P J
HILSUM Miss K A
HOWLETT Dr J
HUMBY E

Queen Mary College
London University

Brunel University

King's College
London University

AERE Harwell
AERE Harwell

Leicester University

AERE Harwell

Atlas Computer Laboratory

Atlas Computer Laboratory

. AERE Harwell

Southampton University

Queen Mary College
London University

Atlas Computer Laboratory
Rutherford Laboratory
AERE Harwell »

Atlas Computer Laboratory
ICL

- 115 -

JAMES B

JOHNSON R D

KELLY I D K »
KERMEEN S/LDR R W
LARGE R

LEIGE D J

LIGHTON R J

LONG D H
NACDONALD—RdSS M

MACDONALD~ROSS Mrs M

McEVOY J
MANNING J R
MOULSDALE R
PdLLARD J M
POWELL-EVANS D
RAPLEY K

READ B J
REES-JORES G

ROBERTS C L
RYAN Dr D M
SCOTT J J

SHACKLETON P
SHEARING Dr G
SHORE Wing Cdr G B
SIMMONS Dr J

SOPER Dr J M
STANIER A M
SUNSHINE K W
WITTEN I H

WRIGHT D J

Press Representatives

Ifrom the 'Oxford Mail!

W PEREIRA
C POSTHLETHWAITE

"The Open University

Queen Mary College
London University

Lanchester Polytechnic

RAF College, Cranwel]
Glamorgan folytechnic

North Staffs Polytechnic

Radio and Space Rescarch Station

The Open University
Milton Keynes

Milton Keynes

Shoe and Allied Trades Research Associatio
Birmingham University

Plessey Telecommunications

Operational Research Branch
BEA

Portsmouth Polytechnic

Operational Research Branch
BEA

Atlas Computer Laboratory
AERE Harwell

Queen Mary College
London University

RAF College, Cranwell
Birmingham University
AERE Harwell

Essex University
Portsmouth Polytechnic
Essex University

Leicester University

