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Angle Calculations for 3- and 4-Circle

X-ray and Neutron Diffractometersx*

by William R. Busing and Henri A. Levy

Chemistry Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37830

ABSTRACT

Methods are derived for calculations useful in the
operation of 3- and 4-circle x-ray or neutron single-crystal
diffractometers. These include: (1) establishing the sample
orientation from the cell parameters and the observed angles
for two reflections, or from the observed angles for three
reflections only, (2) calculating the angles for observing
a given reflection either in a special setting or at a
specified azimuthal angle, (3) obtaining the vectors needed
for calculating absorption corrections, and (4) using obser-
vations of several reflections to refine cell and orienta-
tion parameters by the method of least squares. Algorithms

for many of the procedures are presented in an appendix.

*Research sponsored by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.
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It appears that 3- and 4-circle x-ray or neutron
diffractometers will be used increasingly in the next few
years. For this reason it seems desirable to present in a
compact way some mathematical procedures which can be used
with these instruments to establish sample orientation and
to calculate setting angles. All of the techniques described
here have been tested and found useful in our work with the
Oak Ridge automatic 3-circle neutron diffractometer (Busing,
Smith, Peterson & Levy, 1964) and the Oak Ridge computer-
controlled 4-circle x-ray diffractometer (Busing, Ellison &
Levy, 1965). Some of these calculations have been discussed
in a less general way by others (Furnas & Harker, 1955;

Arndt & Phillips, 1957; Willis, 1961; Santoro & Zocchi, 1964;
Wooster, 1964; Rollett, 1965).

Calculations of this type will almost certainly he per-
formed by means of a high-speed computer, and algorithms for
many of the procedures are presented in the Appendix using
the Algol 60 language. Matrix arithmetic is used extensively
because the expressions in expanded form would often be too

cumbersome to be useful.

DEFINITION OF DIFFRACTOMETER ANGLES
The instrument arrangement which we will take as standard
is illustrated schematically in Fig. la, which shows the
instrument axis as vertical. Perpendicular to this axis and

passing through the instrument center is a horizontal plane.
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The primary beam lies in this horizontal plane and is
directed at the sample which is located at the instrument
center. The counter also lies in the horizontal plane and
rotates about the instrument axis to make an angle 26 with
the primary beam direction. The instrument angles may be
adjusted so that a diffracted beam is horizontal and enters
the center of the counter.

Moving the counter through an angle of 26 causes the
crystal orienter and sample to turn through an angle of @
about the vertical axis. The orienter may also be rotated
independently through an additional angle w about the same
axis. In this way the Xi axis which lies in the horizontal
plane is positioned to make an angle of § + w with the
primary beam direction. The reflecting-plane normal
(scattering vector), which bisects the angle between the
diffracted beam and the reverse primary beam, thus makes an
angle of w with the plane of the 7C ring.

The ¢ shaft is supported from the ;(:ring which permits
the ¢ axis to be set at an angle 7( from the vertical instru-
ment axis. The sample is assumed to be rigidly attached to
the ¢ shaft so that it can be turned about this axis.

The diffractometer with all angles set to zero is shown
schematically in Fig. 1lb. The senses of §, 26, w, and ’i are
defined by Fig. la, which shows the instrument with these
angles in the first quadrant. The zero position for ¢ is
chosen arbitrarily, and the figure shows the direction of

rotation which increases this angle.
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Also shown in Fig. la is the angle ¥ which measures
the rotation of the sample about the normal to the reflecting
plane of interest. With this type of diffractometer ¥ motion
is achieved not by the rotation of a single shaft but rather
as the result of a combination of changes in w, ;[, and ¢.
The choice of zero for ¥ will be discussed below.

These definitions will be assumed throughout this paper,
but the results can be applied to instruments with other con-
ventions by making the appropriate transformations. The
3-circle diffractometer can usually be regarded as a special

case for which w is constrained to be zero.

COORDINATE TRANSFORMAT IONS
Let v be the column vector describing some physical
vector v in terms of the right-handed reciprocal lattice

vectors Ei sO that

3
v = 12; vigi' (1)

It will be convenient to define several systems of right-
handed cartesian axes which may also be used to describe y.
Let Y. be the description in terms of the crystal

cartesian axes which are attached in some way to the
reciprocal lattice. If we choose the x-axis parallel to
and the z-axis

gl’ the y-axis in the plane of g and b

1 =2’

perpendicular to that plane, then



where
b1 bzcosB3 b3cos[32
B = 0 b,sinf, -b;sinB, cosa, (3)
0 0 l/a3

Here the ai's and ai's and the bi's and Bi's are the direct
and reciprocal lattice parameters, respectively. This
expression is related to transformations discussed by
Patterson (1959a) and by Rollett (1965), and although our
crystal cartesian system is different from those chosen by
these authors, nothing in this paper except the above
expression for matrix B depends upon this choice. The

algorithm generate B given in the Appendix produces this

matrix from the direct cell parameters.

Let the ¢-axis system be a set of cartesian axes

rigidly attached to the ¢ shaft of the instrument. When all
instrument angles are set to zero this system has the orien-
tation shown in Fig. 1lb with the x-axis along the scattering
vector, the y-axis in the direction of the primary beam, and
the z-axis in the vertical instrument-axis direction.

Let U be the orthogonal matrix which relates this ¢-axis

system to the crystal cartesian system so that

Yy = U X (4)

U will be called the orientation matrix since it depends on

the way in which the crystal has been mounted and also on the
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arc settings if a goniometer head is used. U may readily be
derived for certain special orientations, and in later
sections we will consider general ways of obtaining U.

In a similar way let us define three more cartesian
systems attached to the 7(, w, and 9 axes, respectively, and
coincident with the ¢-axis system when all instrument angles

are zero. The vector v is transformed to these systems as

follows:
X%,= E.X¢: (5)
v, = X !%, (6)
¥y =-Q:.Y.u’ (7)
where
cos¢ sing 0
& = |-sing cos¢g 0 (8)
0 o 1 ),
cos;C 0 s;.n)(,
X = o 1 o (9)
-s:.n% 0 cos]é s
and
cosw sinw 0
{) = |-sinu cosw 0 (10)

S~

Finally let us define a laboratory system fixed with

respect to the primary beam and a 2§-axis system attached to

the counter shaft. Again these cartesian axes will be chosen
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to coincide with the ¢-axis system when all the instrument

angles are zero. A vector

i<

is transformed to these systems

as follows:

v (11)

Yy
Yy =My (12)

i
iz
<

)
i
™ O

where

cos@ sinf O

o

© = |-sind cosf (13)

0 0 1 ,

o

cos2Z sin2)

o

N=6 (= |-sinV cosV (14)

0 0 1

with Y% w + 0,
and

cospy sinp 0O

o

(15)

=
I

@ )= |-sinp cosp
0 0 1
with p = w - 4.
All angles except %,can be considered to be left-

handed rotations about their respective axes.

BASIC DIFFRACTOMETER EQUATIONS
Throughout this paper we will assume the following ideal
conditions: a perfect diffractometer, a centered point
sample with no mosaic spread, and a point source of mono-

chromatic radiation. The deviations from these assumptions
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which are found in practice usually do not invalidate the
calculations to be described. One exception is the presence
of the a-doublet in the x-ray spectrum, the effect of which
will be mentioned in the section on least-squares refinement.
To observe a reflection in the ideal diffractometer
setting shown in Fig. la it is necessary for § to satisfy the
Bragg equation and for the plane normal to lie along the
x-axis of the 0 coordinate system. If h, k, and £ are the
indices of the reflecting plane then the corresponding column

vector in the reciprocal lattice system is

h = K (16)
{ .
The length q of this vector which is the reciprocal of the
interplanar spacing in Angstrom units is readily found from

its components in any one of our cartesian systems. For

exanmple
q = (hcl2 + hcz2 + hc32)1/2 (17)
where Qc =B h.
The Bragg equation is then
sin 9 = Aq/2. (18)
The plane normal will have the desired direction if
hy - X2UBnR (19



has the form

hy = 0 (20)

Equations (17) to (20) can be regarded as the fundamental

equations for this diffractometer.

EVALUATING THE ORIENTATION MATRIX

We will now show how the orientation matrix U can be
obtained from the observation of two reflections from
non-parallel planes of known indices provided that the cell
parameters are known. For reasons which will become apparent
we will call these two reflections the primary and secondary
orienting reflections. Let their indices be h, and h,,
respectively.

From the observation of the instrument angles uw, ;ﬁ,
and ¢ which center the diffracted beam in the counter we
can obtain 2¢, the description in the ¢-axis system of a

unit vector which has the direction of the plane normal:

1l
4 -FXWy -FXR |o (21)
0

or in expanded form:
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cosw cos X cos¢ - sinu sing
8y = cosw cos X sing + sinw cos¢ |. (22)
cosw sin;ﬁ
In this way two unit vectors El¢ and 52¢ can be obtained from
the observed angles of the primary and secondary orienting
reflections, respectively.
Since the indices and cell parameters are known we can

calculate the scattering vectors in the crystal cartesian

system:

=
I
(o
=3

~1c ~1
(23)
-13.20 = E -13—2 °

Ideally the desired matrix U should perform the transfor-

mations
21¢ = U 210
and (24)
.13.2¢ =Uh,,.
so that the calculated Q1¢ and 22¢ have the directions of
the observed El¢ and 32¢, respectively. However, because

of experimental errors in the angle measurements Or uncer-
tainties in the cell parameters, it is not in general possible
to find an orthogonal matrix U which satisfies both conditions.

That is to say, the angle subtended by and h, may in

Elc 2C
general differ from that subtended by El¢ and EZ¢'
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In order to avoid this difficulty we will require that
Q1¢ be parallel to El¢ as before, but g2¢ will only be con-
Thus the

Strained to lie in the plane of u, and u

1¢ 2¢°
primary reflection determines the direction of a vector in
the crystal, and the secondary reflection establishes an
angle of rotation about this axis.

Define a right-handed orthogonal unit-vector triple,

t t t

Lier Lo 3.0 in the crystal cartesian system so that t

1c

is parallel to h t,. lies in the plane of h,. and L, ,

lc’ ~2c¢
and 330 is perpendicular to this plane. Define another such
triple, £1¢, £2¢, £3¢, in the ¢-axis system based in the
same way on 21¢ and 52¢. Then, since these two unit vector

triples can be exactly superimposed on each other, the

desired orthogonal matrix U will satisfy exactly the equations

thg = U Lyes n = 1,23 (25)

These three vector equations can be written as one matrix

equation

T, = UL, (26)

where Ic is the matrix with columns Elc’ EZc’ and 330 and

I¢ is similarly constructed from £1¢, £2¢, and £3¢. Then

U=17T-! = (27)

Mo T Tgte
since Ic can be shown to be orthogonal.

The procedure for obtaining U in this way is a part
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of the algorithm generate UB given in the Appendix. The

algorithms triple and normal describe other details of the

calculation.

A PROCEDURE FOR USE WHEN THE LATTICE
PARAMETERS ARE UNKNOWN
When the unit cell parameters are unknown it is still
possible to obtain the matrix UB if the setting angles can
be observed for three reflections with known (or assumed)
indices. Given Zei, Wy }éi’ and ¢i for reflection i, we

can compute the scattering vector in the phi-axis system:

Ei¢ = (2sinf;/M\) Y4 (28)
where Ei¢ is obtained using equation (22). For each of the

three reflections the matrix UB must perform the transfor-

mation
Qi¢ =UB Ei (29)

where Ei is the vector of indices. Then if g is a matrix

¢

made up of the three column vectors gi¢, and if H is

similarly constructed from Ei’ we have

H = UBH (30)
~¢ T e e

and
UB=H, H!. (31)
~— ~ ~¢~

The reflections chosen must correspond to reciprocal
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lattice vectors which are not coplanar or the matrix H will
be singular. The indices should be assigned so that the
vectors can be described with reference to a right-handed
coordinate system, and it can be shown that the determinant
|g EI (which has an absolute value equal to the unit cell
volume) will be positive if and only if this condition is
met.

Having obtained the matrix U B it is possible to derive

from it the corresponding cell parameters. Let us compute the

matrix
Vg g —~— e ~
UBUB-BUUB-BEB. (32)
It can be shown that
EB =g (33)

where g'l is the reciprocal metric tensor with elements

"1 == .
(G )ij gi gd. (34)

Then g is the metric tensor (see, for example, Patterson,

1959b) with elements

G.. = a.-a. (35)

and (36)

cosa, = ij/ajak; i#3#k# 1.
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The algorithms for these calculations are given in the

Appendix as procedures generate UB from three reflections

and compute cell parameters from UB.

ANGLE CALCULATIONS FOR SPECIAL CASES
Once the matrix UB has been evaluated it is possible

to obtain

by ~UBR (37)

for any set of indices h, and ways of computing instrument
angles which bring this vector into the ideal reflecting
position will now be discussed. With a four-circle instru-
ment this reflecting condition can be established in an
unlimited number of ways corresponding to various values

of ¥, the angle of rotation of the sample about the scatter-
ing vector. It will be useful to consider two special cases
in which one of the instrument angles is fixed at a con-
venient value.

First let us consider the bisecting position in which

w is constrained to be zero so that the plane of the 7C:ring
bisects the angle defined by the reverse primary and dif-
fracted beams. This arrangement permits access to all
reflections with 6 below an upper limit, and it is the only
position available with most three-circle instruments.
Assume that the diffractometer initially has all angles

set to zero. The vector h

24

can be brought to the scattering
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position by first rotating ¢ to bring it into the plane of
the jﬂring and then changing X to bring it to the horizontal

plane. The required angle changes are

¢ = atan (h¢2,h¢1)

and (38)
- 2 2.1/2
7(— atan E1¢3,(h¢1 +h¢‘2 ) ]

In the above equations and throughout this paper the

expression
a = atan (y,x) (39)

defines an angle o = arc tan (y/x) in the quadrant for which
the signs of sino and cosa are those of y and x, respectively.
An algorithm for evaluating the arc tangent in this way is
given in the Appendix as procedure atan.

The expressions given above yield angles with
—90o gix,g 900 because the square root is taken as positive.

An alternative setting

7

¢ 180° + ¢

KX = 180° - X

corresponds to a rotation of 180O about the scattering vector

(40)

(¥’ = 180° + ¥).
In the bisecting position the Bragg angle which can be
reached may be limited by the fact that the 7Cxﬁng lies

between the counter and the source. In the parallel position
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w is allowed to take values which turn the 7( ring past the
counter so that its plane is more or less parallel to the
reflecting plane. Usually the greatest range can be obtained
by constraining 76 to be 900.

(o]

Consider the instrument with)(== 90 and the other angles

set to zero. The vector h,  can be brought into the horizontal

¢
plane by rotating ¢ and it can then be brought to the scatter-
ing position by changing w. The expressions for these angles

are

¢ = atan (h¢1,—h¢2)

and (41)

w = atanl}(h¢12 + h¢22)1/2,h¢é].

Compared to the bisecting position these settings correspond
to a 90o rotation about the scattering vector.

Reflections with vectors nearly parallel to the ¢ axis
are inaccessible in this arrangement because of interference
between the ;( ring and the counter or primary beam. The
apex angles of the cones which are lost become large at low

Bragg angles. Three alternative settings are available:

1 2 3
¢’ 180° + ¢ ) 180° + ¢
7 90° -90° -90°

w’ —w 180° - w 180° + w
y’ 180° + ¢ 180° + ¢ v
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but the use of these may not reduce the amount of inter-
ference significantly.
Algorithms for making these calculations are given in

the Appendix as procedures angles for bisecting position

and angles for parallel position.

ANGLES FOR A SPECIFIED AZIMUTH
We will now consider the problem of computing the dif-

fractometer settings for some specified value of the azimuthal

angle, VY. Let us define an instrument-angle matrix

E={1X¢2 (42)

S

which transforms a vector from the ¢-axis system to the
p-axis system. For the vector to be in the scattering

position we must have

q
_}3_13¢=11_9= 0| . (43)
0

Choose some diffractometer setting which satisfies this
condition and define ¥ = 0 for this configuration. We can

then evaluate

. (44)

In order to rotate the sample about the reflecting-plane

normal through an angle Y measured from this zero position
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we generate a new matrix

R=2YR, (45)
where
1l 0 0
v = 0 cosY sin¥ . (46)
0 -siny cosY¥

The problem then is to extract from this orthogonal matrix
R the values of the instrument angles w, ;(, and ¢ to which
it corresponds.

Expanding equation (42) we have:

cosucogﬂcos¢-sinwsin¢ coswcos{sing+sinwcosg cosusiqﬂ
R = —sinucos%cos¢-coswsin¢ -sinwcosising+coswcos¢ -sinusiqﬂ
-si%%cos¢ -sinAsing cosX

(47)

and we see that

i

¢

2 2.1/2
atan[}R31 + R32 ) ’R3é]x

atan (—R32,—R31), (48)

and W atan (R R

13°° 23)'

(The more obvious expression, 7C= arc cos R is not used

33?
because round-off could cause excessive errors in 7C when
R, ~ T 1.) By taking the positive square root in the

expression for 7(, we are choosing sinx > 0 so that

0 glx,g 180°. An equally valid solution for the same value
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of ¥ is

180° + ¢ (49)

S
I

180° + w.

€
]

In practice it is usually the range of w which is limited by
the mechanics of the instrument. The procedure should be to
compute angles using equations (48), test w, and make the

transformations (49) if it is out of range. If both solutions
are out of range then the specified value of ¥ is not

accessible for this reflection.

A singular case occurs if R33 =13, Then cos]ﬁ -t 1,
sin;f = 0, and the matrix becomes
T cos(wlg) sin(u B o) 0
R = T sin(w £ ¢)  cos(w I ¢) o] . (50)
0 0 1

Thus the w and ¢ motions have become redundant, and this can
easily be understood in terms of the instrument geometry when
7( is zero or 1800. It can be shown that the continuity of
o

an azimuthal scan can best be attained by selecting w = 90

for this singular case. The matrix then becomes

-sing cos¢ 0
R = *cos¢  *sing 0 (51)
0 0 H

and we have
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©-
]

atan (—Rll,Rlz)

and (52)

W = 900.

The transformations (49) are still valid for this singular
case.

Now let us consider in more detail the choice of the
instrument setting at which we define ¥ to be zero. We
could, for example, use the bisecting position as a reference,

and then we would have

R =X, 8 (53)

since w, = 0. But this choice has the disadvantage of
depending on the sample mounting so that the definition of
¥ would not in general be comparable for different specimens.
To overcome this limitation we will describe a way of defining
the reference position in terms of the crystal lattice itself.
Let g be the plane normal of the reflection to be
observed and let us specify a reference vector go which is
not parallel to g. Then choose as the zero of Y that setting
for which 2 lies in the scattering direction and 2@ lies in
the horizontal plane of the instrument on the same side as the
diffracted beam.(i.e., so that in the f-axis system its =z
component is zero and its y component is positive).
The computation of Bo based on this definition is
analogous to the determination of U described above.

The vectors



h, = UBh
~¢ T T

and (54)
bog = UB B,

are first evaluated. Then the matrix $¢is constructed with

1¢’ £2¢: and £3¢:

right-handed orthogonal unit vector triple defined to have

columns equal to t the components of a

£1¢ parallel to g¢, £2¢ in the plane of E¢ and £o¢’ and £3¢
perpendicular to this plane.

Now we note that our definition of zero ¥ requires the
orthogonal matrix Eo to rotate this unit vector triple into
coincidence with the axes of the § coordinate system. The

matrix which describes these axes in the f-system is just the

identity matrix so that we have

RT =1
~o~¢ ~
and
=T -1 =T,. (55)
~0 ~¢ ~¢

The algorithm for these calculations is given in the

Appendix as the procedure angles for specified psi.

VECTORS FOR CALCULATING ABSORPTION CORRECTIONS

In order to calculate absorption corrections it is
generally necessary to compute for each reflection the
direction cosines of the diffracted beam and of the reverse
primary beam referred to some coordinate system in which the

sample shape is described (see, for example, Busing & Levy,
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1957). The ¢-axis system may often be a suitable reference
system, and the required direction cosines are just the
components of the appropriate unit vectors in this system.
Let p and g represent unit vectors in the primary and dif-

fracted beam directions, respectively, so that

0
Ry = dyg = 1 . (56)
0
Then the required vectors are
Ry T T 2XXNp,
and (57)
Q¢ =2XM ng’
and expanding we obtain
sin(g T w) co%ﬂlcos¢ I cos(g T w) sing
sin(g T w) co%ﬂysin¢ ¥ cos(g T w) cosp (58)
sin(8 T w) siqﬂ

where the upper and lower signs apply to ‘E¢ and g¢,
respectively.

If a sample has natural faces it may be preferable to
refer its description to the crystal cartesian system. In
this case the desired vectors, A and gc’ are readily
obtained by multiplying Ry and g¢ by U.

Algorithms for obtaining these vectors are included in

the Appendix.
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REFINEMENT OF LATTICE AND ORIENTATION PARAMETERS

So far we have established the matrix UB either from
known cell parameters and observations of two reflections
or from observations of three reflections alone. A better
procedure would be to observe angles for several reflections
and to use the method of least squares to refine the cell
parameters and orientation parameters simultaneously.
Computer programs are available (see, for example, Busing &
Levy, 1962) which, when given a list of trial parameters, a
set of observations, and a procedure for calculating the
quantity comparable with these observations, will refine
specified parameters by the method of least squares.
Analytical expressions for the required derivatives are not
needed since these are computed numerically.

The parameter list includes the three axial lengths and
three interaxial angles of the direct unit cell. 1In some
cases these will be subject to constraints imposed by the
symmetry of the crystal system. Angles with fixed values
of 90° or 120° are simply not varied in the least-squares
procedure. Two or more parameters can be constrained to be
equal by choosing one of them to be varied and setting the
others equal to it. Since numerical derivatives are obtained
by recalculating the function after adding an increment to
the corresponding parameter, these derivatives will be correct
if the constraint is applied immediately after each parameter

is incremented.



—24-

The wavelength may also be included in the parameter
list since it is not always precisely known (especially in
neutron diffraction work). It is clear, however, that the
wavelength is redundant with the axial lengths and the four
of these parameters cannot be adjusted simultaneously.

The sample orientation is represented in the parameter
list by the six angles w,, ;Cl, P10 Wy ;ﬁz, and ¢, for the
primary and secondary orienting reflections. Only three of
these angles can be varied, however, since only three
parameters are required to define orientation. The variables
must include two angles of the primary reflection chosen to
define the direction of this vector, and one angle of the
secondary reflection chosen to measure rotation of the sample
about this primary vector. Acceptable sets of variables are
listed in Table I for various choices of orienting
reflections. For example, if Wy ;(l, Py and /{2 are all
near zero and if ¢, and ¢, differ by about 90°, then we see
that 7C1, ¢,, and 752 or wy, 761, and 762 are suitable
variables.

After refinement, the angles Wy, ;(1, and ¢1 define the

best estimate of the direction of h and the calculated

=1’
angles for this reflection based on the new parameters will
correspond exactly to this vector. The angles Wy ;{2, and
¢2 no longer define EZ’ however, because only one of them has

been varied. Instead they represent a vector direction which

will yield the best estimate of the orientation matrix U.
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Calculation of angles for 22 will correctly yield the best
estimate of a setting for this reflection, but these angles
will generally not be the same as the refined parameters.

A reciprocal lattice vector has three independent
properties consisting of two directional parameters and a
length which is related to the corresponding Bragg angle.

We will consider six ways of observing these variables or
combinations of them, identifying these ways as observations
of types 1 to 6. For each type of observation we will show
how the corresponding calculated value can be obtained from
the known instrument settings and the assumed trial
parameters.

In the course of these calculations it will be convenient
to distinguish the instrument dial readings and their matrices
by the subscript d (e.g., ¢d and gd) since these will not in
general be equal to the ideal angles used earlier in this
paper. Similarly, calculated angles and their matrices will
be identified by the subscript c.

Type 1 observations. Several ways of measuring the Bragg

angle are essentially equivalent to centering the diffracted
beam in the counter and using the counter angle, Zed, as the
observation. The corresponding calculated quantity is ZGC =
20 where 9 is obtained from the trial parameters by means of
equations (17) and (18).

Type 2 observations. If the counter angle is adjusted

to center the diffracted beam horizontally in the aperture,
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then 29d may be used as an observation even though the beam
may not be centered vertically.

In deriving the corresponding 29c it will be useful to
recall the diffraction equation

d=p+ 2sinf u . (59)

Here d, p, and u are unit vectors in the directions of the
diffracted beam, the primary beam, and the scattering vector,

respectively. Evaluating d in the laboratory system we obtain

(sin®20 - 4sin’@ uu3z)1/2

g = cos28 (60)

2siné u 3 .

Here dﬁ2 has been derived from the fact that Qﬁ makes an
angle of 26 with Ry which is directed along the y axis. The
component d£3 is obtained from the diffraction equation (59)

remembering that Pgp3 = 0 and that Up; = U 3. Finally d is

w3 21

derived from the requirement that d be a unit vector.

The quantity to be computed is the value of the counter

angle, 290, which makes d29,1 = (0, We have
29 ~ Ec §c 4 (61)
and
d29,1 = cos2(9cd!l1 - sinZGc d22 =0 (62)

sOo that
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29c = atan (dﬂl’diz) (63)

and the desired expression is

2
3

1/2

260 = atan [(sinzze - 4sin’p u )

c ,cos20]. (64)

The vector u, is obtained from the trial parameters and the

ﬂ, and ¢ dial settings:

u, = X,3,U B h/a , (65)

and the Bragg angle § is again obtained from equations (17)
and (18). It is readily seen that the result reduces to that
for type 1 if the scattering vector is horizontal so that

u = 0.

w3
Type 3 observations. It is possible to center the

diffracted beam vertically in the counter by adjusting ;{d
provided that wy is not nearly % 90°. Let the value of ;&d
for this condition be taken as an observation.

The requirement is that d = 0, and from equations

20,3
i (60) and (61) we see that this reduces to u,; = 0. Now
u, = §c576 (66)
and
U, = —51n760 u7C1 + cos %c ux3 = 0 (67)

so that the calculated angle is either

’)Lc = atan (ux_,’,u%l) (68)
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or

X = Ko+ 180°. (69)

Here Y] is obtained from the trial parameters and the ¢

dial setting:
27L=gdp_§g/q. (70)

In this case and in others to be described below we have
two widely separated solutions both of which are physically
reasonable. A simple computational procedure is to select
the result which is closest to the observation, adding or
subtracting 360O if necessary to make the quantities compa-
rable. The procedure select described in the Appendix per-
forms this operation.

Type 4 observations. Vertical centering of the dif-

fracted beam can also be obtained by adjusting ¢d provided

that Wy is not nearly 0 or 180°. Let this ¢d be taken as

an observation.
Again the requirement is that u , = 0, but‘gjd is known

and ¢c is to be calculated. We have

B, = X4 2 Yy (71)

and

u,z = —sin;&d(cos¢c u(i)1 + sin¢c u¢2) + cos){d u¢3. (72)

Then the equation for ¢, is
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sin;(d Us1 cos¢, + sin;(d U2 sing = cos)(d U3 (73)

where

Yy = U B h/q . (74)

Equation (73) is an expression of the form
€ cos ¢, + £ sin ¢, = g

which has solutions

where

}(75)

n = atan (f,e)

Yy = atan[(e2 + £2 - gz)l/z,g]. ,/

Again the appropriate solution is chosen by using procedure
select. The two solutions become complex or equal if

eZ + fz - gz < 0, but this does not occur if the type of
observation is chosen in a sensible way. An algorithm for
the solution of an equation of this form is given in the

Appendix as procedure trig eq.

Observations of types 5 and 6. Consider the obser-

vation that the Bragg condition is satisfied so that the
intensity of the reflection is maximized. It is important
to note that this condition can be observed with configu-

rations other than that of Fig. la if the counter aperture
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is large enough. The requirement is only that the scatter-
ing vector u makes an angle of 900 + 6 with the primary beam

direction, that is

u,, = -sing. (76)

Now
=N u (77)
and
u,, = -sinVY_  u ,, + cosy_u, (78)
so that the condition becomes
u,, cos Zz - U, sin.zg = -sing. (79

Here u, can be evaluated from the trial parameters and

instrument settings:

u, = %4 83 UB b/a , (80)

and 0 is calculated from equations (17) and (18). The
procedure trig eq can then be used to obtain two solutions

for 2%.

Let a type 5 observation be the value of w_, which

d
establishes the Bragg condition when 29d is fixed. Then

the corresponding calculated value is

W, = Zé - 29d/2 . (81)
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Let a type 6 observation be the value of ZOd which

establishes the Bragg condition for a given Wy Then the
calculated quantity is
ZGC = 2( ZJC - ud)t (82)

In each case there will be two computed values corre-
sponding to the two solutions for L%. The procedure select
may be used to choose the appropriate one.

The algorithms for calculating the angles corresponding
to the six types of observations are given in the Appendix
as the single real procedure y calc.

We have used three different schemes for making obser-
vations for least-squares refinement. With a 4-circle dif-
fractometer it is possible to vary Wy to establish the Bragg
condition while centering the reflection vertically in the
counter by adjusting ;Ld or ¢d. The reflection can then be
centered horizontally by changing 29d while using a compen-

sating w, motion to hold the crystal fixed in the laboratory

d
system. The resulting settings are used as three obser-
vations of types 2, 3 or 4, and 5, and both the cell
parameters and orientation parameters are adjusted. 1In
practice it makes little difference if the ZBd measurement
is used as a type 1 observation rather than type 2.
Measurements of the Bragg angle can be used as type 1

observations for the determination of cell parameters. Such

observations contain no information about the orientation and
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the orientation parameters should not be varied. In x-ray
work it is difficult to assign an effective value to A unless
the a-doublet is resolved. For the most accurate work,
therefore, the observations should be limited to regions of
high Bragg angle.

Observations of type 6 can be extracted from the output
data of any 3- or 4-~circle instrument which records the
intensity profile for a §-260 scan. For several years we have
routinely obtained such observations from the paper-tape
output of our 3-circle neutron diffractometer and used them
to improve the cell and orientation parameters for subsequent
angle calculations.

In principle it is possible to include in the list of
variables parameters which measure the systematic errors of
the experiment. These would include angular errors such as
scale zero corrections or inaccurately directed instrument
shafts as well as displacement errors due to non-intersecting
axes or a poorly centered sample. Although we have found the
adjustment of certain error parameters to be useful, we will

present no further discussion of the method at this time.
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Table I. Acceptable sets of variables for the refine-
ment of orientation listed as a function of ul, ;Cl, wz,

732, and ¢, - ¢,. Values of 0 designate angles within about

450 of 0 or 1800, and values of 90 are used for angles within

about 45° of ¥ 90°.

Y1 X1 Two variables Y2 Zz %2 = %1 Third variable
0 0 and ¢, or 0 0 0 |
% 1 0 0 90 ‘)2
w, and 0 90 0 W
1 *1 0 90 90 s
90 0 0 *
90 0 90 I
90 90 0 Wy
90 90 90 I
0 90 W, and 0 0 0 or 90 W, or ¢
1 ;tl 0 90 0 or 90 2 J 2
90 0 0 or 90 w, or ¢2
90 90 0 or 90 9,
90 0 *
90 90  w, and ¢ 0 0 0 X
: ' o 0 90 2
0 90 0
0 90 90 %2
90 0 0 I
90 0 90 *
90 90 0 I
90 90 90 W,

“The two orienting reflections are parallel or nearly so.

A different pair should be chosen.

*No instrument variable is available to adjust this vector
in the desired way. Another reflection or another setting

of this reflection should be used.

L
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APPENDIX
We present here algorithms for several of the procedures
which have been described. The language used is Algol 60
(see, for example, Baumann, Feliciano, Bauer & Samelson, 1964)
except that, following the precedent of several hardware
representations, an asterisk (*) is used to denote multipli-
cation.

Real variables and arrays.

The following identifiers are assumed to be declared for
use by the algorithms. Those names with dimensions represent
arrays. All others describe real variables. The correspond-

ing mathematical symbols which were used in the text are also

listed.

a[l:3] ay Axial lengghs of the direct
cell in Angstrom units.

alpha[1l:3] a; Interaxial angles of the direct
unit cell in degrees.

cosal[1l:3] cosa,

sina[1l:3] sina

b[1:3] b, Axial lengths of the geciprocal
cell in reciprocal Angstrom
units.

cosb[1:3] cosf, Cosine and sine of the inter-
axial angles of the reciprocal

sinb[1:3] sinB, cell.

B[1:3,1:3] B Matrix which transforms a recip-

rocal lattice vector to the
crystal cartesian system.



theta

two theta
omega

chi

phi

two thetan

omegan

n=1,2,3

chin

phin

two theta calc[l:2]

omega calc[1l:2]
chi calc[1:2]

phi calc[1l:2]

two theta dial
omega dial

chi dial

phi dial

c
calec[1l:2]

Chi dial[1:3,1:3]
circle

d phi[1:3]

d cryst[1:3]

d 1lab[1:3]
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o)
26

W Instrument angles in degrees as
> defined in the text.

%
¢ )

Instrument angles in degrees for
reflections used to define
orientation.

ZOC Calculated values of instrument
angles in degrees for use in

W, least-squares refinement when
it is necessary to distinguish

7% these from the ideal angles.
Each array contains two

¢ possible solutions for the
angle.

20d

Instrument angle settings in

Wy degrees at which an obser-
vation for use in least-
7(d squares refinement is made.
94
Quantity used in calculating
reciprocal cell parameters.
Two possible solutions for an
angle in degrees.
gd Matrix which transforms a vector

from the chi-axis system to
the omega-axis systemn.

Integral multiple of 360 degrees.

d Unit vector in the direction of
9 the diffracted beam described
gc in the phi-axis system, the
crystal cartesian system, or
4, the laboratory system,
respectively.
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delta 0 T u

epsilon A small positive number chosen
to be safely larger than
expected round-off errors.

eta ‘ n

Quantities used in solving the

gamma ¥ trigonometric equation.

e (S

Known coefficients in the

£ f trigonometric equation.

g
G[1:3,1:3]

)

Direct and reciprocal metric

G inv[1:3,1:3] tensors.

o}
’

\:;w“/ ~——

h[1:3]

=

Reciprocal lattice vector with
components equal to the
indices of a reflection.

h cryst[1:3] Vector h described in the

crysf%l cartesian and phi-

h phi[1:3] axis systems.

&FF
——

hn[1:3]

Vector h for reflections used

hn cryst[1:3] n=1,2,3 to deTine orientation.

hn phi[1l:3]

H[1:3,1:3] H Matrix with vectors hn as its
columns.

H inv[1:3,1:3] H-!

H phi[1:3,1:3] §¢ Ma?zix with vectors hn phi as
its columns.

hz[1:3] h, Indices of a reference
reflection used to define
zero of psi.

hz phi[1:3] h, Vector of the reference

¢ reflection in phi-axis

systen.
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i

3 Integers used as indices in for
statements. _

k

lambda A Wavelength in XngstrOm units.

min diff Minimum difference between
observed and calculated
angles.

minus p phi[1:3] -% Unit vector in direction of the
reverse primary beam described

minus p cryst[1:3] B, in phi-axis system or crystal
cartesian systen.

nu calc[1l:2] b, Two calculated values for

¢ D=0 + w.

Phi dial[1:3,1:3] 24 Matrix which transforms a vector
from the phi-axis system to
the chi-axis system.

psi Y Azimuthal angle in degrees as
defined in the text.

Psi[1:3,1:3] T Matrix which rotates a vector

-~ about the x-axis by an angle
psi.

a q Leggth of the vector h in
Angstrom units. -

R[1:3,1:3] R Instrument angle matrix.

R = )X3.

Rz[1:3,1:3] R, Matrix R for zero psi.

Rz trans[1:3,1:3] R, Transpose of matrix R .

sign Plus or minus one.

sin chi sinf,

sin theta sinf

T[1:3,1:3] T Matrix with columns equal to unit

vectors forming a right-handed
orthogonal triple.



T cryst[1:3,1:3]

T phi[1:3,1:3]

T cryst trans[1:3,1:3]

tn[1:3], n =
type
U[1:3,1:3]

1,2,3

U trans[1:3,1:3]

ul(1:3]

u phi[1l:3]
u chi[1:3]

u omega(1l:3]

un phi[1l:3],

UB[1:3,1:3]

n=

UB trans[1:3,1:3]

v[1:3]

w[1l:3]

vn[1l:3], n

y calc

y obs

1,2
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(=]

=4

~

c

|

& 15

Matrix T referred to the
crystal cartesian system and
the phi-axis systen,
respectively.

Unit vectors forming a right-
handed orthogonal triple.

Integer which defines the type
of measurement made for least-
squares refinement. See text.

Orientation matrix which trans-
forms a vector from the
crystal cartesian system to
the phi-axis system.

Transpose of matrix U.

General unit vector.

Unit vector in the scattering
direction described in the
phi-, chi-, or omega-axis
systems.

Unit vectors corresponding to
reflections used to define
the orientation.

General vectors.

Two vectors used to define a
unit vector triple.

Arguments for atan(y,x).

Calculated quantity correspond-
ing to an observation for
least-squares refinement.

Observed quantity for least-
squares refinement.
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Procedures.

The following procedures are defined for use by the
algorithms. All matrices and vectors have dimensions
M[1:3,1:3] and v[1:3], respectively.

acos(x) Given x, compute o in degreesoso
that x = cosa. O L 2 g 180".

arctan(x) Given x, compute a in degrees so
that x = tana. -90° < a < 90°.

asin(x) Given x, compute a in_ degrees so
that x = sina. -90° ¢ a  90°.

columns(vl,v2,v3,M) Given vectors vl, v2, and v3, store

them as columns 1,2, and 3,
respectively, of the matrix M.

constrain Set those cell parameters chosen as
dependent variables in terms of
those chosen as independent in
order to maintain the crystal
symmetry in a least-squares
refinement.

cos(a) Given an angle o in degrees, compute
its cosine.

invert(M,M inv) Given a matrix M, compute its
inverse, M inv.

MM(X,Y,Z) Given matrices X and Y, compute the
product matrix Z = XY.

Mv(X,y,z) Given matrix X and vector y, compute
the product vector z = Xy.

out of range A Boolean procedure the value of
which is true if the computed
angle settings are not accessible
to the diffractometer.

set j and k Given i =1, 2, or 3, set j =
mod(i,3) + 1 and k = mod(j,3) + 1
where mod(n,m) is the remainder of
n/m.

sin(a) Given o in degrees, compute its sine.
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transpose(M,M trans) Given matrix M, store its transpose,
M trans.

unit(v,u) Given a non-null vector v, compute
vector u, a unit vector parallel
to v.

x rot(a,M) Given an angle o in degrees, store
the matrix M which rotates about

y rot(a,M) the x-, y-, or z-axis, respectively,
in the sense defined by equations

z rot(a,M) (46), (9), and (8).

Algorithms.

For simplicity we have omitted tests for conditions
which lead to attempted division by zero or which result in a
negative radicand. It is left to the user to determine the

best way to treat such situations.
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procedure generate Bj
ANANNANANANN s e—
c omment Given the direct cell parameters a and alpha,
VAANAANAAAA - .
compute the matrix B which transforms a vector from
the reciprocal lattice system to the crystal
cartesian system;
begin
WNAAAAA
for 1:=1,2,3 do
AN AN
begin
VNAAAN
cosa [i] : =cos(alpha [i] );
sina [i] : =sin(alpha [i] )
end ;
VAN
ci=sqrt(l-cosa [1]12-cosa [2]{2-cosa [3]12
+2*cosa [1] *cosa [2] *cosa [3] );
for 1:=1,2,3 do
WA VWA
2B
set J and k;
b [1] :=sina [1] /(a [i] *c);
cosb [1] :=(cosa [j] *cosa [k] -~cosa [1] )
/(sina [j] #sina [k] );
sinb [1] :=sart(l-cosb [1]12)
end;
A% %]
B[1,1]:=b[1];
B[2,1]:=0;
B[3,1):=0;
B[1,2]:=b[2] *cosb [3] ;
B[2,2]:=b [2] *sinb [3] ;
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B[3,2]:=0;
B[1,3] :=b [3] *cosb [2] ;

B[2,3] :=-b [3] *sinb [2] #cosa [1] ;
B[3,3] :=1/a (3]

end;
Y% va'4

procedure generate UB;

ANAAAAAAANAAN

comment Given the matrix B and the indices and angle
VAAAAANAN -

settings hl, phil, chil, omegal, h2, phi2, chi?,

and omega?2 for the primary and secondary orienting
reflections, respectively, compute the matrix UB
which transforms a vector from the reciprocal lattice
system to the phi-axis system;

Mv(B,hl,hl cryst);

Mv(B,h2,h2 cryst);

compute u phi(omegal,chil,phil,ul phi);

compute u phi(omega2,chi2,phi2,u2 phi);

triple(hl cryst,h2 eryst,T cryst)s;

triple(ul phi,u2 phi,T phi);

transpose(T cryst,T cryst trans);

MM(T phi,T cryst trans,U);

MM(U,B, UB)

end;
VWAAS



-4 4 -

procedure generate UB from three reflections;
AAAANAAAAAAN

comment Given the instrument angles and indices for

VINAANAAAN
three reflections, compute the matrix UB which
transforms a vector from the reciprocal lattice
system to the phi-axis system;

begin

VVAAAAANNA
compute h phi(two thetal,omegal,chil,phil,hl phi);
compute h phi(two theta2,omega2,chi2,phi2,h?2 phi );
comoute h ohi(two theta3,omega3,chi3,phi3,h3 phi);
columns (hl phi,h2 phi,h3 phi,H phi);
columns(hl,h2,h3,H);
invert(H,H inv);
MM(H phi,H inv,UB)

end;
nWAANY

procedure compute cell parameters from UB;
AAANANANAN

comment Given the matrix UB which transforms a vector
AAAANANN -_

from the reciprocal lattice system to the phi-axis

system, compute the cell parameters a and alpha;
begin
VWV\AAAAA

transpose (UB,UB trans )}

MM(UB trans,UB,G inv);

invert(Q 1inv,G);

for 1:=1,2,3 do

WA waV

ali] :=sqre(ali,1] );
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for 1:=1,2,3 do
WVAANN la% "
begin
AAANANNN
set j and k3

alpha [1] :=acos(G[J,k] /(a[j] *a[] ))

end

nrocedure compute u phi(omega,chi,phi,u phi);
VVAAAAANAN VN

real omega,chi,phi;

wwvvww

array u phi;

comment Given instrument angles omega, chi,

WV\AAANAANA - -
and phi, compute u phi, the unit scattering

vector in the phi-axis system;

begin
YWAAAN

u phi [1] :=cos(omega )*cos(chi )*cos(phi)
-sin(omega )*sin(phi);

u phi [2] :=cos(omega )*cos(chi )*sin(phi )
-sin(omega )*cos(phi);

) u phi [3] :=cos(omega )*sin(chi )

end;
VAN
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procedure compute h phi(two theta,omega,chi,phi,h phi);

KEE%,tWO theta,omega,chi,phi;

array bophi;

comment Given instrument angles two theta, omega, chi,
VAN NANNY

and phi, compute h phi, the scattering vector in the
phi-axis system;
begin
VAiAAAAN
compute u phi(omega,chi,phi,u phi);
q:=2*sin(two theta/2)/lambda;
for 1:=1,2,3 do
AN VAN

h phi [i] :=g*u phi [i]

gaggaggﬁg angles for bisecting position;

comment Given the matrix UB and the indices h of a
WAV —_— —

reflection, compute the setting angles phi, chi,
and two theta for an omega of zero;
begln
Mv(UB,h,h phi);
phi:=atan(h phi [2] ,h phi [1] );
chi:=atan(h phi [3],sqrt(h phi [1]12+h phi [2]12));
omega:=0;
compute two theta

end;
VVAAA
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RERSSQEES angles for parallel position;

comment  Given the matrix UB and the indices h of a

reflection, compute the setting angles phi, omega,

and two theta, for a chi of 90 degrees;
begin

Mv(UB,h,h phi);

ohi:=atan(h phi[1],-h phi [2] );

chi:=90;

omega: =atan(-sart(h phi [1]112+h phi [2]12),h phi [3] );

compute two theta
end;

VAW

procedure angles for specified psi;
AANANNNAAN

Egggeﬂg Given the matrix UB, the indices h of a
reflection, the desired azimuthal angle psi, and
the indices hz of a reference reflection used to
define psi=0, compute the setting angles phi, chi,
omega, and two theta;

begin
Mv(UB,h,h phi);
compute two thetaj;

Mv(UB,hz,hz phi);

triple(h phi,hz phi,Rz trans );
transoose (Rz trans,Rz);

x rot(psi,Psi);

MM(Psi,Rz,R);
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sin chi:=sqrt(R[3,1]T2+R[3,2]T2)3

chi:=atan(sin chi,R[3,3] );

%S sin chi>epsilon ggsa
phi::atan(-R[B,Z],—R[S,l])5
omega:=atan(-R[2,3] ,R[1,3] )

end

AW

else

VVANAN
phi:=atan(-R[1,1],R[1,2] );
omega: =90

end;
if out of range then
v wnAay
begin
VANV
phi:=180+phi;
chils=-=chij
omegas =180+omega

end
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procedure compute two theta;
MAANANANNAANAANAAN

c omment Given h phi, the scattering vector in a
VAAAANANY ————
cartesian system, compute the ideal counter setting
two theta;
begin,
two theta:=2*asin(lambda*sqrt(h phi [1]12+h phi [2]12
+h phi [3]12)/2)

RESSSQEE& absorption vectors in phi system;

comment Given the instrument angles two theta, omega,
NN
chl, and phi, generate two unit vectors in the phi-axis

system, minus p phi and d phi, parallel to the reverse

primary beam and to the diffracted beam, respectively;
begin

absorption vector(l,minus p phi);

absorption vector(-1,d phi)

end ;
VAV

comment Given the orientation matrix U and the instru-
NANNANNAN

ment angles two theta, omega, chi, and phil, generate

two unit vectors in the crystal cartesian system,

minus p cryst and d cryst, parallel to the reverse

nrimary beam and to the diffracted beam, respectively;
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begin
absorption vectors in phi system;
transpose(U,U trans );
Mv(U trans,minus p phi,minus p cryst);
Mv(U trans,d phi,d cryst)

end;

NAANA

procedure absorption vector(sign,v phi);
AANANANNNANAANAANS

real sign;
VNN eiamane
axray v phi;

comment Given the insfrument angles two theta, omega,
NAANNANANANANS

chi, and phl, generate a unit vector in the phi-axis

system parallel to the reverse primary beam or to the

diffracted beam according to whether sign is plus one

or minus one, respectively;

delta:=two theta/2+sign¥*omega ;

v phi [1] :=sin(delta )*cos(chi )*cos(phi)
+sign*cos(delta )*sin(phi);

v phi [2] :=sin(delta )*cos(chi )*sin(phi)
-sign*cos(delta )*cos(phi);

v phi [3] :=sin(delta )*sin(chi)

end;

WA
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real progedure y cales
c omment Given an observation y obs of a specified
VAAANANANANAAN -
type on a reflection with indices h, and given the
cell parameters and wavelength a, alpha, and lambda

and the orientation information hl, phil, chil,

omegal, h2, phi2, chi2, and omega2, compute y calc
corresponding to this observation. For some types
of measurements the instrument dial settings, two

theta dial, omega dial, chi dial, and phi dial, at

which the observation was made are also required;

constrain;

generate B;

Mv(B,h,h cryst);

sin theta:=lambda*sqrt(h cryst [1]{2+h cryst [2]12
+h cryst [3]12)/2;

theta:=asin(sin theta);

ir type=1 then

type 1:

begin
vy obs:=two theta dial;
two theta calc [1] :=2%theta;
two theta calc [2] :=~2*theta;
v calc:=select(two theta calc);
ﬁgmgg END

end;

VWV
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not type 1:
generate UBj
Mv(UB,h,h phi);
unit(h phi,u phi);
if type=4 then
type 4:
begin
ANANNAN
v obs:=phi dial;
trig eq(sin(chi dial)*u phi [1],sin(chi dial)
*u phi [2],cos(chi dial)*u phi [3],
phi calc);
y calc:=select(phi calc);
go to END
WVWANAANS
end ;

WWAAN

not type 1 or 4:
z rot(phl dial,Phi dial);
Mv(Phi dial,u phi,u chi);
12, type=3 then
type 3:
begin
NVANAANAN
y obs:=chi dial;
chi cale [1] :=atan(u chi [3],u chi[1]);
chi calec [2] +=180+chi calc [1];
v calc:=select(chi calc);

go to END
VAANAAN

end;
VANV
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not type 1 or 3 or 4:
y rot(chi dial,Chi dial);
Mv(Chi dial,u chi,u omega);
trig eq(u omega [2],-u omega [1],-sin theta,nu calc);

1f type=5 then

type 5:
y obs:=omega dial;
omega calc [1] :=nu calc [1] -two theta dial/2;
omega calc [2] :=nu calc [2] -two theta dlal/2;
y calc:=select(omega calc);
go to END
VANAAAN
end;

aa type=6 then

type 6:

begin

VAAAANV
y obs:=two theta dial;
two theta calc [1] :=2%(nu calc [1] ~omega dial);
two theta calc [2] :=2%#(nu calc [2] -omega dial);
v calc:=select(two theta calc);
go to END
AAMNAAAN

end ;

(2% "%
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15, type=2 then

type 23
begin
y obs:=two theta dial;
d 1ab [1] :=sqrt((sin(2*theta) )}2
-(2*u omega [3] *sin theta )12 );
d lab [2] :=cos(2*theta );
two theta cale [1]:=atan(d lab [1],d 1lab [2] );
two theta calc [2] :=-two theta calc [1];
y calc:=select(two theta calc)
end;
END:sgei

real procedure atan(y,x);

read ik

comment Given x and y, the components of a
NANANAAN

two-dimensional vector, compute the angle in degrees
subtended by the vector and the x axis.

-180 < atan(y,x )< 180;
begin

if y=0 and x=0 then
V) VAN

wvwAANS
begin
ANV
atan:=03;
go to END
AANAAANN

end;
ANNAN
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ir abs(y)<abs(x) then
atan:=arctan(abs(y/x))
else
NANASN
atan:=90-arctan(abs(x/y));
ir x<0 then
atan:=180-atan;
af"’ y< 0 then
atan:=-atan;

END:end;
wwrwvv

procedure trig eq(e,f,g,cale);

Tead e.f, s

array calc;

VA AN e

comment Given the real variables e, £, and g, solve
[YaVa e ad —_ - -

the equation e*cos(calc f*sin(calc )=g. The two

solutions are stored at calc [l] and calec [2];
bees

etas=atan(f,e);

gamma: =atan(sart(ef2+r12-gt2),e);

cale [1] :=eta+gamma;

cale [2] :=eta-gamma

end
VAV V. V]
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real procedure select(calc);
MAANNAAANAANANANANS

array calc;
AVANANAAS ——
comment Given two calculated angles calc[l] and
\/\/\AMNW\' T ——
calc [2], choose the one which 1s closest to y obs,
adding or subtracting full circles if necessary;
begin
VIAAAN
min diff:=180}
for i:=1,2 do
AN vy
for circle:=-720 step 360 until 720 do
NN VAAALNY WVAAANAS AN
if abs(calc [1]+circle-y obs )< min diff then
begin
min diff:=abs(calc [i]+circle~y obs )3
select:=calc [i]+circle

end

AAAAL
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procedure normal(v,w,u);
WWAAANNAN N

array v,w,u;
VAN T
comment Given two vectors v and w, generate a unit
VVAAAANANAN ——— —
vector u perpendicular to them in the direction of
the vector product [vw];
begln
VaAAANN
u 1] s =v [2] *w [3] -v [3] *w [2] ;
ul2] s=v [3] *w (1] -v (1] *w [3] ;
‘ w 3] r=v [1] *w [2] —v [2] *w [1] 5
unit(u,u)

end;
A% A% %4

procedure triple(vi,v2,T);

array vli,v2,T;
NAANANNAA e
comment Given the vectors vl and vZ2, generate the
SMNANAANAAN —_— —_
matrix T with columns equal to the orthogonal unit
vectors tl, $2, and t3 which form a right-handed
system chosen so that tl is parallel to vl, t2 lies
in the plane of vl and v2, and t3 1s perpendicular
to that plane;
begin
unit(vl,tl);
normal(vl,v2,t3);
normal(t3,t1,t2);
columns(tl,t2,t3,T)

end;

WA
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Figure 1. Schematic representation of a 4-circle
diffractometer.

a. The configuration when each instru-
ment angle has a value in the first
quadrant.

b. The instrument with all angles set
to zero. The coordinate axes are
those of the ¢-axis, -axis, w-axis,
f-axis, 20-axis, and laboratory
systems which are all coincident
under these conditions.
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