
-

ON THE CALCULATION OF FACTORIAL

OR

RECURSION & ITERATION EXPRESSED AS •

COMMUNICATING SEQUENTIAL PROCESSES

R ~J l~ITTY

AT LAS Cm"PlJTING D1V I S I O~J

RUTHERFORD LABORATORY

ClfiLTON, DIDeOT

M~(ch. 1\

·_

INTRODUCTION

This paper examines the relationship between iteration and 'recursion,
an issue raised by IvestfieldT S work on HasaL],1J. Hoare T s Corrnnunicating
Sequential Processes[2] are used to model iteration and recursion.
Five. formulations of the 'factorial' algorithm are modelled. They are
the Recursive, the expanded Iterative, the compacted Iterative, the
John Gurd algorithm and the Rob 1vitty algoirthm. The reader would
perhaps have expected only two formulations, the Recursive and the
Iterative. The three other viewpoints are used to argue that recursion
and iteration are merely special cases of inter-process communication
structures and that neither is fundemental with respect to Hoare's
concept of processes. All five formulations are examined for their
efficiency when executed in both I sequential' and 'parallel' environments
with finite and infinite resources.

•
The author has deliberately taken on the role of Devil's Advocate in this
paper. He looks forward to hearing your views on the relationship
between recursion, iteration, functions and processes.

THE RECURSIv~ FACTORIAL

The conventional algorithm ~s usually expressed as:

fac(x):= if x~O then I else x * fac (x-I);

Figure 1 shows how the recursive decent proceeds and Figure 2 shows the
computational ascent. The order of evaluation of the factorial is
equivalent to the statement:

fac(x):=«(I*l) * 2) * 3) * 4) * 5 for x ~ 5

which is the optimal order of evaluation on a sequential machine according
to Nakata[3].

The formulation contains a single recursive call as the last action of
the function. This is 't.ailrecursion' and indicates that; an iterative
solution is possible. Contrast John Gurd's algorithm.

- 1 -

-
fac (5)

/~
5 fac , (4)

4-/ "iac (3)

/'" "'.:."
3/ fac (2)

2/ ~.c (J)

1/ \acl(o)
1

..
Figure 1 Recursive decent

Figure 2 Computatiot al ascent Opt.ima~_Sequential ordering.

- 2 -

·._
In Hoare's notation the recursion rs expressed as a set of c;:.orrun~nicat.ifl~
processes, one process per invokation. (See general model In FIgures
12, 13.)

Loop (O)::[USER?x ;
Loop (!)!x ;
Loop(l)?factorial;
USER! factorial] I I

(i 1 •• max)Loop(i)::[Loop(i-])?x;
[x :::;0 -r Loop(i-l)! 10
x > 0 + [Loop(i+I)!x-I;

Loop (i+1)1£ac ;
Loop(i-l)!x * fac]]]

•

Figure 3 Recursive Factorial

THE EXPANDED ITERATIVE FACTORIAL

It can be seen from the recursive formulation above and the general
model of tail recursion in Figures 12, 13 tha.ttail recursion is
inefficient in that the result is needlessly passed back from invoka­
tion to invokation before reaching the USER. The expanded iterative
formulation, Figure 4, allows each invokation to conmunicate directly
with the USER via a merge process thus eliminating unnecessary unwi.ndi.ng,
The formulation is iterative not recursive and models the conven ti.onaI
iterative formulation:

READ (x);
fac :""1;
i:= 1 ;

while i :::;x i~begi~ fac:=fac*i ; i:=i+I end;

Each iteration is expressed as a process. See the general model in
Figure 14, 15. The order of evaluation is the same as Figure 2, ie
optimal for a sequent.ial machine, but now the time overhead of recursion
is eliminated. Conventional programming languages cannot elegalltly
express expanded iteration.

- 3 -

Fac (0) .. [USER?x;
Eac f l)!J, x;
Herge?factorial;
USER!factorial~ I I

(i:1 •• max)Fac(i): :[Fac(i-l) ?ftic,x;
[i>x ~ meree!fac I I
i~x -}.Fac(i+l) lii~fac,xJJ II

Merge ::[(i:l •.max)Fac(i)?factorial ->- Fac(O)!factorialJ

•
Figure 4. Expanded Iterative Factorial

THE COMPACTED ITERATIVE FACTORIAL

The compacted iterative formulation is the conventional iterative
solution and is expressed in Hoare's notation in Figure 5.

Fac ::[USER?x;
fac t r =L;
i:=1 ;
*[iEx ~ [fact:=i*fact; i:=i+1JJ;
DSER!factJ

Figure 5. Compacted iterative factorial

The formulation is called compacted because the loop body is only
stored once and reused, ie the overhead of one process per
iteration is removed. The evaluation orGer is again optimal for a
sequential machine. See general model in Figure 16, 17.

- 4 -

-
JOHN CURD'S FACTORIAL ALGORITHM

.JohnCurd's factorial algorithm is expressed conventionally as:

Fac(x):= if x ~ 0 then) else fact(x, J)

r1~factW:= i~ x=y then x

else fact(x, (x+y)/2+1)":fact((x+y)/2,y)

This algorithm is doubly recursive and so
It generates a recursive decent tree, for
evaluation order of as in Figure 7.

cannot be expressed iteratively.
x=5, as in Figure 6 and

5

\
•

5,1

r>:
5,4 . 3,1r >. .r>.

5,5 4,4 3,2 1,1
I I .r:'>. I
5 4 3,3 2,2 I

I I
3 2

Figure 6. Recursive decent of Gurd's algorithm for x=5

Figure 7. Evaluat.ion order, x=5, Gurd's algorithm

-The evaluation order in Ei.gure 7 is optimal for a parallel machine with
(lO number of processors or arithmetic units according to Stone[4J. This
algori thm is perhaps typical of a who Le class which have a high degree
of parallelism in them. If the overheads of recursive decent were small
compared to the computation per invocation then this class of fomulation
has much to recommend it if the parallelism can be exploited. Figure 8
shows the algorithm in Hoare's notation and Figure 9 indicates how the
processes communicate.

- 5 -

-~---
Fac(O)::[USER?x;

[x~O -+ USER! 1II
x>O -+ [Fac(l)!x,l;

Fac(l)?factorial;

USER!factorialJJJ I I

(i:l.•2max-l)Fac(i)::[Fac(i!2)?x,y;

[x=y -+ Fac(i/2)!x I I ..
x~y -+ [Fac(2*i)!x,(x+y)/2+1;

Fac(2*i+l)!(x+y)/2,y;

Fac(2i-i) ?a;

Fac(2*i+l)?b;

Fac(i/2)!a*bJ]]

Figure 8. John Curd's algorithm

Fac (0)

Fac (1)

\
Figure 9. Process communication in Curd's algorithm

- 6 -

-
ON FACTORIAL ALGORITHMS March 11, 1978

1 ROB WITTY'S FACTORIAL ALGORITHM

Iterative and recursive formulations are traditional solutions. Hoare's notation
allows a solution which is neither iterative nor recursive in principle. Consider
the algorithm in·Figure 1 whose processes are structured as in Figure 2. The
processes form' a tree-structured pipeline. The pipeline will compute the
factorial in minimum time if x <= width=2'I(mp-l)=number of leaves of the tree,and
mp='size' of pipeline. If x > width then the loader processes feed in successive
sets of values. This structure allows a finite resource to compute any factorial
quickly and efficiently. It overcomes the drawback to Gurd's elegant
algorithm,narnely the heavy recursive overhead associated with non-trivial values
of x ,

This algorithm is an instance of a general algorithmic structure which is neither
recursive nor iterative. It is probable that Hoare's notation will generate a
flood of new algorithms exploiting novel process connection structures. •

Fact::[USER?x;
Starterlx;
Fac(O)?factorial;
USERIfactorial] II

Starter::[Fact?x;
[(k:1••width)Loader(k)lx]] , ,, ,

(i:l••width)Loader(i)::[Starter?x;
nwn:=i;
Go:=~;
Stop:=false;
~[num<=x -> Fac(width+i-1)!num,Go;

num:=num + width];
Fac(width+i-l)11,Stop] I I

(i:1.•(21Imp-l»Fac(i)::[Go:=true;
~[Go -> Fac(2Ii) ?a,contrl1;

Fac(2Ii+l)?b,contrI2;
Go:= contrll and contrl2;
Fac(i/2) la1b,Go]] II

Fac(O)::[Go:=true;
factorial:=1;
~[Go -> Fac(1)?f,Goj

"factorial:=f1factorial];
JlS.E-RI factorial]

fvd! fM}M.#

Figure 1. Rob Witty's factorial algorithm

1

-
~ , -

x

"

•

factorial

Figure 2. Process structure for mp~

2

••••

2 ROB WITTY'S NON-DETERMINISTIC ALGORITHM

Fact::[USER?Xj Generatorlxj Controllerlxj
Controller?factorialj USER!factorial] I I

'Generator::[Fact?xjj:=1j
. ~[j<=x -> [Merge!j,Oj j:=j+1]] I I

Merge:1{(i:1..mp)MPY(i)?f,mpynum -> Controllerlf,mpynum [J
Generator?f,mpynum -> Controller!f,mpynum] I I

Controller::[Fact?maxmpysjMerge?f,mpynumj
~[mpynum<maxmpys -> Merge?g,mpynumj

Distributorlf,gj
Merge?f,mpynum] •

Fact!f] I I

Distributor::[Fact?maxmpysjmpynum:=1j
~[mpynum<=maxmpys -> [Control?a,b;

[(k:1••mp)MPY(k)?free -> MPY(k)la,b,mpyn
um]
mpynum:=mpynum+1]]] I I

(i:1•.mp)MPY(i)::t~[~ -> [DistributorIfree;
Distributor?a,b,mpynumj
Merge!a*b,mpynum]]

Figure 3. Rob Witty's NondeterministiriAlgorithm

This algorithm evaluates factorials by an essentially iterative method which
exploits a fixed. number of multiplier processes to in7re~se speed. The
parallelism is introduced in a way which keeps as many multlpller~ ~unning as
possible irrespective of their individual speeds or numbers. Thls 1S possible
because the commutativity of the multiply operator enables factorials to be
evaluated in a non-deterministic order.

The Generator produces the stream of integers 1through x. These are merged with
partial results. Each partial result carries with it an integer which says which
of the (x-1) required multiplications produced it. The Controller process
exploits the fact that factorial(x) always requires (x-1) multiply operationsj
thus when the Merge process supplies th~ Controller with the result of the (x-1)th
multiply the Controller terminates the calculation. The Distributor takes the
next two partial results from the Controller and gives them to a randomly
chosen,free multiply process, tagging them with a count of the multiplications so
far. Each MPY process passes its answer to the Merge process and then signals the
Distributor that it is free to perform a fresh computation.

3

-

..

Figure 4. Process structure of non-deterministic algorithm.

4

-
,/

u s ~ <l--------

..

Figur~ J J. J,Jj tty' s a-I god j-hmusing 23 processes

GENERAL HODELS

The f oTl ow'ing seven Figures are intended to help the reader see the
communication structures behind recursion and iteration. In Hoare's
notation the maximum depth of recusion or the maximum number of
iterations in an expanded iteration must be specified at compile time.
An err.oroccurs if a message is sent to a non-existant process. It is
debatable whether this is a restriction or a feature. The author
would say a feature [5J.

- 9 -

Loop(O)::[USER? init;

Loop(l) unit;

Loop(l) ? final;

USER ! final] II

(i:l .. max)Loop(i)::[Loop(i-l)? vi;

[bool + Loop(i~l) vi II
not booI + [body(i) ! vi; body(i) ? viplus1;

Loop(i+l)!viplusl;loop(i+I)?fin;

Loop(i-l)! fin]]]

Figure 12. Loop (v):= if bool then va e~se Loop (body (vi));

final

Figure 13. 'Recursive' process communication

- 10 -

~g
I~-o

-

•

-
LoopeO) [USER?unit;

Loop(l) ! unit;

Merge? final;

USER ! final J I I

(i:I..max)Loop (i) [Loop(i-I)? vi;

[bool + Merge ! vi I I
not bool + [Body(i) vi; Body(i) ? viplusl;

Loop(i+I)! vipluslJJ •

Figure 14. Expanded Iteration in Hoare's notation

r­
I
I
I
I
1-_ -:-.

I

final

I

_--~:____---!..~__ r
1_

Figure 15. Process communication in Expanded Iteration

- 11-

-
Loop :: [USER?init,max;

vi:=init; i:=-=];

*[bool and ~ ~ lllClX -+ [Body ! vi ; Body ? v~ i:=i+lJ

bool and ~ > max -+ error action]

User ! vi]

Figure 16. while bool and i ~ max do begil2_v i, • - body (vi); i: =i +1 end;

•

Figure 17. Convent_ional, compacted iteration

- 12 -

init

6-
~
CI

\

final

init, max

-

TAIL RECURSION

•

EXPANDED ITERATION

COHPACTED ITERATION

Figure 18. Flowcharts of General Hodels

- 13 -

-
CONCLUS TOtxT

This paper tackled the question, raised by Hasal, "Is iteration non­
fundemcntal?" By considering the question from Hoare's standpoint the
suprising answer is that neither recursion nor iteration is fundcmental.
Each is just a special case of inter-process communication. Hitty's
algorithm shows how considering processes 11S fundement al and iteration
and recursion as not fundemental can lead to a new algorithmic approach to
a well known problem.

H.EFERENCES

J • Hankin, Sharp. "An Informal Introduction to Hasal"

•
Hestfield College, Augu1:it1977.

2. Hoare. "Commun i.cati.ngSequential Processes"

to be published in CAC!'1.

3. Nakata. "On.compiling algorithms for.arithmetic expressionsll

CACM VallO p492 1967.

4. Stone. "One pass compilation of arithmetic expressions for
a parallel processor"

CACM Vol 10 p220 1967.

5. Anderson, ~~itty. "Safe Progrannning"

to be published in BIT. \&" (\Ct'1~) rp\-~

- 14 -

