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PREFACE

POP-2 is a programming language designed by R. M.Burstall and R. J.
Popplestone and based on R. J. Popplestone's POP-1 (1968). POP-2
differs from most programming languages because it is designed for
non-numerical as well as numerical applications. In addition, POP-2
is a conversational language allowing the user to communicate with his
program and vice versa while it is running. This conversational pro­
perty enables POP- 2 to be used as a rather powerful calculating
machine as well as a conventional computing system. A combination
of these two modes produces a tool which can be matched to the parti­
cular problem being solved.
The first part of this publication is a quick guide to the aims and
features of POP-2. -
The Primer of POP- 2 Programming, forming the second part, acquaints
the reader with the POP- 2 language and its terminology. Not all details
of the language are described; enough is described, however, to provide
the reader with a solid foundation in the language so that further
questions about it can be directed to the Reference Manual. Although
no previous experience of programming languages is required on the
part of the reader, any such experience will be an advantage.
The Reference Manual, forming the third part, is a precise definition of
the POP-2 language. Although the Primer can be read in its entirety
before looking at the Reference Manual, it is recommended that the two
parts are read in conjunction with each other. Thus, having read a
section of the Primer on, say, conditionals, the corresponding section of
the Reference Manual should be studied.
The final part consists of descriptions and listings of programs from
the software library, mostly written at Edinburgh, and tested on the IeL
4100 system there. It illustrates the scope of the language and displays
a number of programming tools and techniques. Examples are DEBUG­
a debugging and tracing aid-and EASYFILE,which provides a disc
filing system for programs and data.
The Reference Manual was originally published in Machine Intelligence
2 (Edinburgh University Press 1968) and then republished with a brief
introduction in POP-2 Papers by Oliver and Boyd (later distributed by
Edinburgh University Press).
Since the reference manual was completed two years ago a number of
errors, ambiguities, and omissions have come to light, and further
experience of using the language has shown the need for a few minor
changes and two additions of some significance. The first of these
additions is jumpout ,a facility which allows immediate exit from execu­
tion of one or more nested function bodies (see also the note on p. 279
on an extension giving generalized jumps and back-tracking). The second
is the ability to break the program down into sections, somewhat anal­
ogous to ALGOLblocks, thus preventing clashes of identifiers.
The significant changes are listed in Appendix 3 of the Reference
Manual. Many existing POP- 2 programs should run unchanged and the
remainder will need only a few simple alterations.
The 'Introduction to POP- 2' which-originally accompanied the reference
manual, was brief and covered only the main points of the language. It
has nowbeen rewritten and greatly expanded to appear here as 'A
primer of POP- 2 programming'.
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PART 1. A QUICK GUIDE TO THE MAIN
FEATURES OF POP-2

R. M. BURSTALL AND R. J. POPPLESTONE

SUMMARY
POP-2 is a new computer language. Conceptual affinities can be traced
to
1. John McCarthy's LISP (1962),from which it takes ideas for
_handling non-numerical objects of computation (lists).
2. Christopher Strachey's CPL (1963) and Peter Landin's ISWIM
(1966),which foreshadow the aim of making a programming language
into a notation with full mathematical generality, akin to algebra.
3. Cliff Shaw's JOSS (1964),which it resembles in its 'conversational'
facilities.
4. Robin Popplestone's POP-1 (1968) of which POP-2 represents a
rationalized and greatly-extended development.
These ingredients have produced a powerful but compact language for
non-numerical programming. POP-2 was designed for implementation
on a medium-sized machine with a modest investment in system pro­
gramming. Because the language had to be stripped down to the level
of the basic mathematical principles of programming, it is unrestric­
tive and open-ended.
The main distinctive features of POP-2 are
1. The syntax is very simple but the programmer has some freedom
to extend it.
2. The programmer can create a wide variety of data structures:
words, arrays, strings, lists, and records. A 'garbage collector' auto­
matically controls storage for him.
3. Functions can be used in the same manner as in mathematics or
logic, for example, as arguments or results of other functions, with no
unfortunate restrictions on free variables.
4. The novel device of 'partial application' allows one to fix the value
of one or more parameters of the function. This has a surprising mul-.
tiplicity of uses, for example, to generalize the notion of an array to
non-numerical subscripts and to disguise the distinction between
stored values and computed values.
5. Another technique, 'dynamic lists', enables a physical device like
a paper tape reader to be treated as if it were an ordinary list.
6. The programmer can call for immediate execution of statements
at any time, giving facilities for conversational use and rapid debugging
of complex programs.
7. The facility for immediate execution together with the variety of
data structures available makes POP- 2 suitable for use as the control
language of a time- sharing system, enabling the user to effect filing,
editing, compilation, and execution.
8. In the context of the widespread shortage of system programmers,
a crucial feature is the open-endedness of the language. Work normally
done in machine code by highly-skilled system programmers can be
done in POP- 2 itself.
9. POP-2 is compact and easy to implement. On the ICL 4100,for
example, the whole system for compiling, running, and time sharing
occupies only 22Kof core (24-bit words). The effort needed to con­
struct the complete system was less than 5 man-years. A machine­
independent POP-2 in POP-2 compiler has been written.

1



2) Part 1:A Quick Guide to the Main Feature

AVAILABILITY
POP-2 compilers are now available for the ICL 4100, ICL 1900,ICL
System 4, and IBM Systems 360 series of machines. A PDP-10 com­
piler is being written. Multi-POP/4130 is a single-language system
for a 64-K machine with disc, serving 8 simultaneous users. The
other three implementations in their present form provide POP- 2
programming in single-user mode, time- shared with batch operations
These systems are available to academic or research bodies from
the Department of Machine Intelligence and Perception, and through
arrangements with the National Research and Development Corporatir
from Conversational Software Ltd. CSL will also contract, on suitable
terms, to develop extended versions of the present systems, and also
new POP systems for other machine ranges. Enquiries may be
addressed to

POP- 2 Enquiries
Department of Machine Intelligence and Perception
Forrest Hill
Edinburgh EH1 2QL.

or to
Conversational Software Ltd
Hope Park Square
Edinburgh EH8 9NW



PAR T 2. A P RIM E R 0 F POP - 2
PROGRAMMING

R.M.BURSTALL AND J.S.COLLINS

1. INTRODUCTION
Two important features of the POP-2 programming language distin­
guishing it from many other languages are its inherent ability to be
used in an on-line mode and the fact that it is not restricted to numeri­
cal manipulations.
One way of using a computer to solve a problem is to specify the prob­
lem, write a program to solve the problem, keypunch the program and
have it executed by the computer. This method of using a computer
assumes that: the problem is well defined; an accurate program is
available; the user is a perfect typist. In some cases, such as routine
data processing, these conditions are met fairly easily. In many cases,
however, such as for computing research or any other research prob­
lem, or when the user is not an experienced programmer, these condi­
tions cannot easily be met. It is then necessary for a dialogue to take
place between the user and the machine. In this dialogue, the computer
is asked to perform some computation. Having studied the results, the
user requests another computation. The dialogue continues in a series
of steps, each of which depends on what has happened up to that point.
In this Situation, the user must be able to request the computer to
carry out tasks without having to specify them all at the start of the
session. POP-2 is a language designed for this kind of use. A funda­
mental property of the language is the ease with which the language
can be extended in ad hoc directions.
Using a calculating machine is clearly an on-line activity with alter­
nate action by the user and the machine. A notable deficiency of the
calculating machine is that it can only execute one step at a time, so
that the user is forced to interact with the machine even when he knows
what the next step will be. Extending the POP- 2 language is like adding
extra keys to a calculating machine and attaching to them a meaning
defined in terms of existing operations.

NON-NUMERICAL COMPUTING
Most programming languages fall into the class of either commercial
or scientific programming languages. COBOL,a well-known example
of a commercial programming language, facilitates the writing of pro­
grams to manipulate large quantities of information, such as payroll
files. ALGOLand FORTRANare well-known examples of scientific
programming languages. Both are particularly suitable for engineering­
type calculations where the bulk of the computing is simply arithmetic.
The more recently introduced PL/l attempts to meet both commercial
and scientific requrrem ents. None of these languages, however, is
really suitable for writing programs to play chess, prove theorems, or
carry out other complex non-numerical activities. This deficiency
has long been felt and list-processing languages such as LISP, or text­
processing languages such as COMIThave been developed for this
type of application. Both LISP and COMITare classed as non-numeri­
cal languages.
It is not easy to class POP-2 with the above languages. It has the
basic numerical capability' of ALGOL,the list-processing capability

3



4) Part 2: A Primer of Programming

of LISP, and elementary record-handling facilities similar to those of
COBOL. POP-2 is not, however, just a mixture of these languages; it
is essentially a simple language which includes the fundamental con­
cepts of FORTRAN,ALGOL,LISP, and COBOL,and has the ability to
add new features in a natural way. For example, it is easy to write
a matrix-processing package in POP- 2 which enables the user to
write arithmetic expressions of any complexity involving matrices.
To get a quick idea of the flavour of the language it may be helpful to
look at the example of POP-2 program text in section 1. 3 of the
Reference Manual (see Part 3) and at some of the programs in the
Program Library (see Part 4).

USING A POP- 2 SYSTEM
The Reference Manual defines fully the POP-2 language. It does not,
however, deal with problems like correcting typing errors, punching
POP-2 programs, or getting permission to log into a POP-2 system;
these are likely to vary from one installation to another. Each imple­
mentation of POP-2 for a particular computer system is described in
a junctional specification for the particular implementation. There
are, therefore, as many functional specifications as there are different
computer systems for which POP-2 has been implemented. Before'
any of the examples or exercises in this book can be tried out, the
appropriate POP-2 functional specification must be consulted. It will
describe what peripheral devices are available, how to log into the
system, how the user is charged, and all such details.
A feature of most POP-2 systems is the console, through which com­
munication takes place between the user' and his program. This is
usually a teleprinter, which allows the user to type his requests on
the keyboard and the computer to print the results. Some POP- 2 sys­
tems use another input-output mode, such as punched cards, as the

- main means of communication, but we will talk here as if a console
were being used.

2. S IMP LEA R I T H MET I C
The simplest use of a POP-2 system is as a rather high-powered cal­
culating machine. Having logged into the system, the system is ready
to execute any POP-2 statement we type. If we type the statement
2 + 2 => the answer ** 4 appears almost immediately. The print
arrow sign => indicates that we wish the value of the preceding arith­
metic expression to be printed. All results printed by this sign are
preceded by the double asterisk.
The rules for writing numbers are very free. They are fully defined
in sections 2.2 and 2.3 of the Reference Manual. Briefly, numbers
may be integers or reals. Integers are written without a decimal point
as a sequence of digits. Reals are written with a decimal point with at
least one digit after the decimal point.
For example,
2. 13 .2845 4.0
are legal reals but
4.
is not allowed.
Reals may have an exponent part consisting of the symbol 10 followed
by a positive or. negative integer. The integer is a power of ten by
which the number is scaled.
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For example,
2.13101 .213102 213.010-1 21. 3
all represent the same number.

ARITHMETIC EXPRESSIONS
The usual arithmetic operations + - * (for multiply) and I (for divide)
are available. Arithmetic expressions involving these operations are
evaluated following the usual rules of arithmetic; multiplication and
division are carried out before addition and subtraction.
Thus if we type the statement
12.0 + 2.5 * 3.16- 4
on the POP-2 console, the result
**15.9
is printed because the multiplication operation is carried out first.
Notice that reals and integers can be mixed in arithmetic expressions.
Two further arithmetic operations are provided. The exponential
operation T enables a value to be raised to a power. For example, the
arithmetic expression
(-2.5)i2
means minus two point five squared and produces the value 6.25.
Similarly 4.0 i 0.5 has the value 2. O.
An alternative division operation which may be used only between two
integers is provided. This is written as I I. This integer division
operation produces two results; the quotient and the remainder.
Thus if the statement
25 113=> ,
is typed on the console, the results
**1 , 8
are printed, because 3 goes into 25 eight times with remainder one.
Notice that the print arrow is able to print a sequence of results as
well as just a single result.

PRECEDENC'E AND PARENTHESES
Each of the operations described in the previous section has a prece­
dence associated with it. A precedence is a number which determines
the order in which the operations are applied. Both + and - have a
precedence of 5. *, I, and II however have a precedence of 4, indicat­
ing that these operations are applied before addition and subtraction.
The precedence table for arithmetic operations is as shownbelow.

Operation Precedence

t
* I II
+-

3
4
5

Using this table, it can be seen that the result of typing the statement
3 - 2. 5 t 2 * 1. 5 I 3 =>.
on the POP-2 console will be
**-0.125



6) Part 2: A Primer of Programming

The order of evaluation is as follows:
Original expression 3 - 2. 5 i 2 * 1. 5 / 3
Apply operations of precedence 3 3 - 6.25 * 1.5 / 3

" " " " 4 3 - 3.125
" " " " 5 -0.125

In the case of operators of equal precedence they are applied from
left to right, thus 6/2 * 5 = 15,not O. 6.
The precedence associated with each operation defines an order of
evaluation of an expression. If another order is required, parentheses
can be used in the conventional way.
For example, the statement
(3 - 2.5) i 2 * 1. 5 / 3 =>
produces the result
**0.125
The rules of precedence apply to each expression within a pair of
parentheses.
Thus the statement
(3 - 2. 5i2) * 1. 5 / 3 =>
produces the result
**-1. 625
(The number of figures printed after the decimal point may vary from
one computer implementation to another.) Parentheses may be nested
to any depth, the expressions .within inner parentheses being evaluated
first.

STANDARD FUNCTIONS
A number of mathematical functions are available for the POP- 2 user.
The list may vary from one implementation to another, so the func­
tional specification for the particular implementation should be con­
sulted for the precise list. The usual list is:
sin trigonometric sine, .angle in radians
cos " cosine, " " II

tan II tangent, " " II

arctan " arc tangent " " "
sqrt square root
log natural logarithm
exp " anti-logari thm
In POP- 2, the argument of a function is enclosed in parentheses after
the name of the function. So-./2is written sqrt (2).
Thus the POP-2 statement
exp(2 * log(l. 414» =>
produces the result
**2.0

The standard functions are listed at the end of the Reference Manual.
So are some optional functions which an implementation of POP-2 on
a particular computer mayor may not provide (Appendix2 of the
Manual). Most implementations will provide a library of extra pro­
grams and functions with a simple method of compiling these, for
example, compile (library ([statistics))) might make available functions
mean, correlation, chis quare , and so on, to do statistical tests. Part 4
'Program Library' gives descriptions and listings of many POP- 2
library programs. They will be found to be of interest as examples
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of POP- 2 programming. The contents of the library may vary from
one implementation to another.

EXERCISES
Answers are given as an appendix to this primer.
1. The arithmetic features of POP-2 have been described in this
section. These facilities enable a POP-2 console to be used in a cal­
culating machine mode. Whatwould you type on a POP-2 console to
evaluate the following arithmetic expressions?
(a) 2.5 x 2 (b) 1 + 2(5 - 3) (c)..j 32 + 42

-1.5 x 4
(d) sin20.13 + cos20.13 (e) tan-11. 5
2. What is the value of the following POP-2 expressions?
(a) 8/2 * 6
(b) 1+ 2.°10-2 *8
(c) 7 * (sqrt (16) + 2)

3. The following are not POP-2 expressions. Whynot?
(a) ((2 * 3) + (4 - (6 + 3))
(b) sin 0.5
(c) 1.2510°.5
(d) 6. + .5

3. S TAT E MEN T S, DEe L A RAT ION S,
AND VARIABLES

An imperative is a request to the POP-2 system to do something. An
arithmetic expression followed by a print arrow is an imperative and
requests that the expression be evaluated and the result printed. The
imperative is actually carried out as soon as the print arrow is en­
countered. Thus, as well as being a printing operator, the print arrow
is an imperative separator. The basic imperative separator is the
semicolon and, in a sequence of imperatives, the individual impera-
tives must be separated from each other by a semicolon (or print
arrow if appropriate).
There are two quite distinct types of imperative: the declaration and
the statement. A declaration serves to introduce a new name or
identifier by which some quantity will be known. The simplest kind
of declaration introduces one or more variables. It consists of the
word vars followedby the identifiers of the variables being introduced.
For example, if we propose to use three variables called x, y1 and y2
then the declaration
var-s x y1 y2
should be given. This declaration reserves space for the storage of
three values. The three variables do not yet have any particular
values. (Some POP-2 systems initialize them with values [x.undef],
[y1. urzdef], and [y2. undef] respectively.) Identifiers can be made up
of any group of letters and digits, beginning with a letter. Alternatively,
they can be made up of any group of the following signs:

+ - * / $ & = <> : £ T
For example: ++ - * - :: i:T
If more than eight characters are used the extra ones are ignored:
thus variable; is the same identifier as variable2.



8) Part 2: A Primer of Programming

Some identifiers are reserved as the names of standard variables,
mostly those whose values are standard functions such as sin, cos ,
and sqrt, Others are reserved for syntactic purposes such as =>,
: ,->,end. These are called syntax words. Syntax words such as
end are printed in bold face in this book to remind the reader that
they are so used, but in the actual POP- 2 text they are not distinguished
from any other identifier. Attempts to use reserved identifiers, for
example, by writing vars end; are illegal.
A statement is an imperative that causes some computation to take
place. An expression followed by a print arrow is an example of a
statement. Another type of statement is an assignment, which enables
a new value to be assigned to a variable. The assignment
2 +2 -> X

assigns the value 4 to the variable x replacing whatever was the pre­
vious value of x . Note that a semicolon must separate this statement
from any statement or declaration preceding or following it. A typical
imperative sequence might be:
vars x y L y2;
2 +2 ->x;
x + 1 -> yl;
yl =>
**5
yli 2 -> y2;
y2 =>
**25

Notice that, assuming this imperative sequence is typed on the console
keyboard, the imperatives are executed one by one as they are typed.
It is quite all right to write
x + 1 -> x;
This means that the new value of x is to be the old value ·plus one.
If a variable is used without declaring it first, it will be automatically
declared and a message will be printed to indicate that this has
happened.
Note that only variables may appear on the right-hand .side of an
assignment (a later section will indicate how certain kinds of expres­
sion may appear in this position too). It is not correct to execute
assignments such as

X -> 2;
or
5->x +.y;
The first is wrong because 2 is a constant-not a variable. The second
assignment is incorrect because x + y is an expression.

Note that it is illegal to attempt to assign a new value to a standard
variable, for example,2 -> sin;
The reader may have wondered when, if ever, it is necessary to put
in spaces or newlines. There is no distinction between a space and
a newline, or between these and any sequence of spaces and newlines.
They all serve to separate sequences of characters which might
otherwise be confused. For example, if we want to write the identifier
x2 followed by the number 3 we must write x2 3 not x23 which would
form a single identifier, but 3x2 wouldbe a number followed by an
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identifier since it could not form a single identifier. Similarly
/// -> *** is three identifiers whilst 1//->*** is one, but x -> y is
the same as x->y. In the case of real numbers spaces and newlines are
not permitted in the middle of the number.

EXERCISES
1. Write assignments to exchange the value of two variables x and y.
This can be done using a third variable.
2. What will be printed after typing in the following sequences of
imperatives?
(a) vars xl x2; .-

3 -> x L; 5 -> x2;
xl +x2 ->x2;
x I +x2 =>

(b) vars a b c
6 -> a; 7 -> b; a +b -> c;
c*a->b;
a, b , c =>

3. Introduce a new temporary variable to write the following program
more briefly and efficiently.
sqrt(sin(x + a» * exp(sin(x + a» =>

4. THE S T A C K
Consider the type of statement which consists of an arithmetic expres­
sion followed by a print arrow. This causes the arithmetic expression
to be evaluated and the result to be printed on the console.
This process can be considered to take place in two stages:
(1) The arithmetic expression is evaluated.
(2) The result is printed.
In order that this can happen, the result obtained by evaluating the
arithmetic expression must be left in some communication area for
the print function to pick it up. This communication area is known as
the stack. The stack is like a stack of cards on a table. When a new
result is placed on the stack it becomes the new top of the stack and
the first to be removed. The stack is therefore a last-in-first-out
device.
Because the stack can accommodate more than one result, it is possible
to write several expressions separated from each other by commas.
For example,
2.5+ 3.6,5/ 2, 2i3
results in the three results 6.1, 2.5, and 8.0 being placed on the stack
with 8. 0 at the top.
The print arrow => does more than was implied in the previous section.
It prints the entire stack, starting from the bottom, and empties it.
Thus if the three expressions above were followed by a print arrow,
the result
**6.1,2.5,8.0
would be printed and the stack would be left empty. Note that the top
element of the stack is printed last. If we want to print just the top
element instead of the whole stack we may write pr ( ); .
We may write a whole sequence of statements which put numbers onto
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the stack or remove them from the stack. Thus the sequence of four
statements
1;2;-> Y;-> x;

puts 1 on the stack, then 2 on top of it, then removes 2 assigning it to
y, then removes 1 assigning it to x, leaving the stack in its original
state. We have nowmet the following kinds of statement
(a) expression => .
(b) expression;
(c) expression -> variable;
(d) -> variable;
In any of these the expression may be replaced by a sequence of ex­
pressions separated by commas, and in (c) or (d) the part -> variable
may be replaced by a sequence of variables each preceded by an
arrow. Thus instead of the sequence above we could write
1,2->y->x;

CAUTION. Leaving numbers around on the stack and using them later
is an easy way to make mistakes. Do not do it wantonly.
The standard function stacklength which has no arguments tells the
number of items on the stack. Thus we can discover this by typing
pr (stack length (»;

The standard function setpop , also of no arguments, clears the stack.
POP- 2 functions take their parameters, if any, from the top of the
stack, and leave their results, if any, on the stack. Thus the function
sin removes the top item from the stack, computes its sine, and places
this number on the stack. Whenwe write
sin(0.143)

0.143 is loaded on the stack and function sin is called. If we write
sine )

whatever is currently on top of the stack is used by the function sin.
If this expression were executed with the stack empty, an error mes­
sage would be printed indicating that the stack had underflowed.
Provided the number of parameters (arguments) put on the stack when
a function is called is the same number as taken by the function, any
numbers previously on the stack are unaffected by the transaction.

Note the difference between writing
sin
which loads the sin function itself onto the stack and
sine )
which actually causes the sin function to be executed. An alternative
way of writing the latter is
. sin
which has an identical effect.

There is a standard function erase which takes one parameter and
produces no result. Erase simply removes one item from the stack.
Thus if we type

erase (2 +2) =>

the expression in the parentheses will be evaluated but no result will
be printed. A more useful example of erase is

erase (23//6) =>
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which produces the result
**5
because the quotient, put on top of the stack by the integer division, is
removed by the function erase.

EXERCISES
1. Assuming the functions add and mult replace the top two mem­
bers of the stack with the sum and product respectively, what is left
onthe stack after executing the following?
2,3,4;add( ); mult( );
2. What is the effect of the following statements?
(a) x, y -> x - >y;
(b) ->x -> y;x,y;
3. Write a sequence of statements which exchange the first (top) and
third items on the stack.

5. FUN C T ION DEe L A RAT ION S
Any POP-2 system will have a number of built-in standard functions
such as square root. Facilities are provided to extend this basic set
by defining new functions in terms of existing ones.
The function definition:
function su ms q x y;
xi2 + yi2
end
defines a new function called sums q whose value is the sum of the
squares of two numbers. x and y are called formal parameters. When
the function is called, for example, by writing sumsq(3, 4), these formal
parameters will be assigned the values of the corresponding actual
parameters, or arguments, that is, 3 and 4, before the expression in
the body of the function definition is evaluated. Thus evaluating the
expression sumsq(3, 4) causes the body of sums q, that is, xi2 + yi 2
to be evaluated with x initialized (given an initial value) to 3, and y
initialized to 4. The value 25.0 is left on the stack as a result.
Note that a function definition does not cause any calculation to be
done; it simply creates a new function and assigns it as the value of
a variable, in this case the variable sumsq. If the variable has not
been previously declared, the function definition acts as a declaration
of it. We must distinguish the act of defining a function from that of
calling it, that is, applying it to some parameters, when the function is
actually used to perform a calculation.
It is useful to know something about what takes place when a function
is called. When the expression
sumsq(3,4)
is evaluated, the values of the actual parameters 3 and 4 are placed
on the stack. The piece of program associated with sumsq is then
entered. ,

'.
Because sumsq has two arguments, it takes two itemsoff the stack
and assigns them to y and x . (Note that y will be on top of the stack
and will be the first to be removed.) The expression
xiZ + yi2
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is then evaluated using these values of x and y and the result is left
on the stack. The variables x and y belong to the function sumsq and
have no connection with variables having the same .name that might
exist outside the function definition.
As a matter of fact we could achieve the same result as above without
using this parameter mechanism defining sumsq in the following way:
function sums q;
vars x y;
-> Yj-> x
xT2 + yi2
end

(take two numbers off the stack and assign them
to y and to x)

This produces -the same effect because the parameter mechanism is
defined to work in this way. The parameter mechanism is simply a
shorthand notation for the above.
Notice that the body of a function definition, that is, the text occurring
after the names of the function and its parameters, may be simply an
expression, or it may be a sequence of statements. In either case it
may include some declarations. It may also include the print arrow
=>, so that calling the function may cause some values to be printed.
If used inside a function, the print arrow =>prints and removes
only the top item on the stack.
If we have defined a functionf and want to change it we simply redefine
it. For example:
function f x; x + 1 end;
function f x; x + 2 end;
f(3) =>
**5

LOCAL VARIABLES
Consider the following piece of program:
vars a; 2 -> a;
function f x; vars a;

xi3 -> a;
a+a

end;
/(3), a =>
The value printed for f(3) is clearly 54.0, that is, 33 + 33, but what
has happened to a? Is it now 27.0, the value it assumed in the calcu­
lation of/ (3), or is it still 2, as it was originally? In fact the value
printed will be 2, showing that the evaluation off (3) has not affected
the value of a.
This is because one identifier can name more than one variable, and
each variable may have a different value. Whenwe write an identifier
the context determines which variable is named by that identifier.
Whenwe pass through the declaration of an identifier a new variable
is associated with that identifier. Thus vars a in the first line of the
example above creates a new variable called a, and the vars a in the
second line also creates a new variable called a whenever the function
f is applied to some argument, for example, in the evaluation off (3).
Whenf (3) has been evaluated this new variable is no longer required,
thus a variable declared in the body of a function ceases to exist when
that body has been evaluated. Such a variable is called a local variable.
When an identifier occurs in a statement it always denotes the variable
which has most recently been associated with that identifier, excluding
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any variables which have ceased to exist. For this purpose mentioning
an identifier as a formal parameter, for instance, x in the example
above, also acts as a declaration, and the variable it creates ceases
to exist when the function body has been evaluated.
This convention enables us to use new identifiers freely to name formal'
parameters and local variables in a function body,knowing that what is
done inside the function body cannot affect any variables outside which
happen to have the same name.
Variables which are declared outside any function body (not formal
parameters or local variables) are called global variables.
Just as the parameter list provides a convenient facility for declaring
variables which are given values from the stack, so it is possible to
declare local variables whose values are automatically placed on the
stack when execution of the function is finished. Such a variable is
called an output local. The function sumsq could be defined using an
output local in the following way: .
function sumsq x y => z;'
xi2 + yi2 -> Z
end
In this case, Z is a local variable whose value is placed on the stack
at the end of executing the function sumsq. Although the sign => is
used to separate the parameters from the output locals, used in this
context it has nothing to do with printing values. It is particularly
convenient for functions which produce more than one result, for
example,
function bothroots x => posroot negroot;

sqrt(x) -> posroot; =posroot -> negroot
end:,
bothroots (2) =>
**1.414,-1.414
If the results were merely left on the stack, instead of using output
locals, the function would still work, but anyone reading its definition
would have to look quite carefully to notice that it produces two results
and to tell which comes first. Thus using outputlocals helps to make
the program more readable, it is a matter of taste not necessity ..
If we have already declared a variable as a local variable of a given
function we may not declare it again as a local to the same function,
unless the new declaration is inside some interior function.
Thus
function f x; vars a; vars a; .•• end;
is illegal, but
function f x; vars a;

function g y; vars a; .•. end

end;
is all right.
If similar declarations occur twice globally, that is, outside any
function body, the second one is simply ignored.

EXERCISES

1. Declare a function roots which takes three parameters a, b , and c,
and produces, as results, the roots of the quadratic equation
ax2 + bx + c = 0
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using the expressions
-b ± ....j (b2 - 4ac)

2a
If your first definition of roots does the same calculation twice, such
as .J(b2 - 4ac), rewrite it avoiding this duplication.
2. What is printed by the following program?
varsa b ci L -> a;2 -> b;3 -> c; .
function! a => c; vars b ;

a * a -> b; b + b -> C
end;
f (a + b + c) + f (a + b -+ c) =>
3. Assume that the function applyl ton takes two arguments, the first
an integer n and the other a function of one argument, and applies the
function to all integers from 1 to n. For example,
function prsqrt n; sqrt(n) => end;
applylton(4, prsqrt);
**1.000
**1.414
**1.732
**2.000

Howwould you use this function to tabulate the value of the expression
(1 + x + 1;2x2 + 1/#3) in the range 0 to 3.0 at intervals of 0.1? (The
function itself is to be defined as an exercise in section 7.)

6. CON D I T ION A L S
It often occurs within a function definition that the particular result
depends upon whether some condition is true or not. A conditional
enables one of two possible courses of action to take place according
to a condition.
Consider the function definition
function max x y;
if x > y then x else y close
end
The value of the .expres sion max (a, b) is a or b ,whichever is greater.
The operation > is an operation which produces a truth value. The
two possible truth values are false and true. They are represented
by the numbers 0 and 1 respectively, but for convenience the standard
variables false and true always have these values.
Other operations which produce truth values are
>= greater than or equal
=< less than or equal
> greater than
< less than

equal to.
All relation operations have a precedence of 7. Thus comparison
between arithmetic expressions will always take place after all
arithmetic operations have been carried out. For example:
10 >3 =>
**1
50 =<20 =>
**0
true =>
**1
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A conditional is always terminated with the syntax word close. Any
imperative sequence (including conditionals) can appear between the
then and the else and between the else and the close.
Quite complicated conditions can be tested using the syntax words
and and or to join a series of conditions. For example,
if x > 3 and y =< 2 then x + y else x - y close
will leave x + y on the stack if x is greater than 3 and y is less than
or equal to 2. Otherwise the value of x - Y is left on the stack.
Note that and and or are not operations. They are syntax words
associated with conditionals which simplify testing complicated
conditions. They may only appear after if or elseif (see below) 'and
before then. The conditionals joined by these syntax words are
evaluated from left to right according to the following table (if there
is no else then 'else statement' means the statement after close).

basic word' value of what is
following cond condition evaluated next

and false else statement
and true next condition
or false next condition
or true then statement
then false else statement
then true then statement

The reason why and and or are not operations like * and +, and may
not be used freely to form expressions, is that in the expression x > 3
or yi 10 > 2, for example, if x is greater than 3 there is no point in
calculating yi 10 and comparing it with 2. Analogous functions are
provided which do evaluate both arguments and may be used to form
parenthesized expressions (see section 24 'Some useful standard
functions'). The function not reverses a truth value so that we may
write
if not(p) or not(x = 3) then ... close;
A conditional can be used to select one of two possible imperative
sequences or one of two possible expressions. In the first case, the
conditional behaves like a statement and is usually called a conditional
statement. In the second case it behaves like an expression, and is
usually called a conditional expression.
Consider the following conditional expression:
if x = 1 then 2 else
if x = 2 then 4 else
if x = 3 then 3 else -1 close close close
Its value is 2,4, 3, or -1 depending on the value of x . This structure
occurs so often in programming that it is convenient to avoid having
to write many closes at the end. This is achieved using the syntax
word elseif, which behaves exactly like else followed by if except that
no corresponding close is required. Using elseif, the above conditional
expression may be rewritten:
if x = 1 then 2
elseif x = 2 then 4
elseif x = 3 then 3
else -1 close
which only has one if requiring a corresponding close.
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Sometimes there is no action to be taken if the condition is false. In
this case the else part may be omitted, for example,
if x > 0 then x => close;

EXERCISES
1. Rewrite the function roots defined in the exercise in section 5 to
(a) produce the complex roots if b 2 - 4ac < 0
(b) work correctly if a = O.
2. Write a function to test whether a given number is less than 100
and divisible by 3,4, or 5. .
3. Tax is not levied on the first £ 150 of a man's income. It is levied
at 10% on the next £ 250, at 25% on the next £ 200 and at 33°10 on the
remainder. Write a function tax such that tax (i) is the tax levied on
an income of £i.
4. Write a function which takes three parameters and puts them in
ascending order of magnitude, for example,
f(l, -2, 4) =>
** -2,1,4

7. LAB E L SAN D GOT 0 S TAT E MEN T S
In an imperative sequence, the statements are normally executed in
the order in which they are written. The goto statement and its
associated label enable statements to be executed in some other
specified order. The destination of a goto statement is labelled with
an identifier. The identifier (called a label) precedes the statement
and is separated from it by a colon. After execution of a goto state­
ment, the next statement to be executed is the one whose label is the
destination of the goto statement.
Consider the following function definition:
function tab fun x step hi;
again: if x =< hi then fun (x) =>
X + step +-> x; goto again close
end
This defines a function tab which tabulates the values of a function
fun over a range from x to hi in steps of step. Executing the statement
tab (sqrt, 1,1,3)
causes the following results to be printed:
**1.0
**1.414
**1.732

Remember that if it is used in a function body => prints only the top
item of the stack.
Goto statements and labels can only be used in a function definition,
because labels are only appropriate if the labelled instruction is
stored. Statements ·executed directly from the keyboard are not stored
and cannot be labelled. Moreover a goto statement can only refer to.a
label in the same function definition as the goto statement itself.
Clearly, to avoid ambiguity, no two statements may have the same
label in a given function definition.
The goto statement which skips to the end of a function definition
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occurs so frequently that a special form is provided which requires
no label. The statement
return
terminates execution of the function in which it occurs and returns
to the program calling the function exactly as if the last statement
had been executed. The function tab could have been defined using
return as follows:
function tab fun x step hi;
again: if x > hi then return close;
jun(x) => x + step -> x; goto again
end;
We could have put a label, say finish, before end and put goto finish
instead of return. It is just that return is a little neater.
Another syntax word exit is provided. The word exit is identical to
the pair of syntax words return followed by close. This pair occurs
together quite frequently, and can always be replaced by the single
word exit.
As well as illustrating the goto statement, the definition of the function
tab above has-some other features worth commenting on. The formal
parameter fun is used to denote a function. The particular function is
specified when the function tab is called. This ability to use a variable
whose value is a function is an important property of POP- 2. It means
that it is easy to define functions which operate on functions and, as
we shall see later, produce functions as results.
A further point to note about the definition of tab is the use of a formal
parameter x as a variable whose value is changed during execution of
tab. As x is a local variable which has merely been given.the value of
the actual parameter (via the stack), changing x cannot change any
variables in the calling program. This means that if we defined a
function increment as

_ function increment x;x + 1 -> X end
and called it by executing the statement
increment (y )
this would have no effect on y because the parameter given to
increment is simply the current value of y. The effect is simply to
declare a local variable x, give it the value of y, add 1 to it, and then
lose the value on exit from the function. To increment y we may
define
function increment;y + 1 -> Y end

and call it by increment().

Many loops, that is, sequences of instructions which may be executed
repeatedly, start off with a conditional. For example, in computingn
factorial

l: i~ i =< n then i*P -> P; i+1->i; goto 1
close;

.To save making up a label and putting a statement to go back to it, we
may replace if by loopif.

loopif i=<n then i*p->p;i+1->i
close;
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In general we can always replace if by loopif, even when elseif and
else are being used. As soon as a condition succeeds we jump back
to if (we think of else as being preceded by the condition true). Thus
we have the equivalence
loopif . .. then ...
elseif . .. then •..

else ...

loop: if . .. then ; goto loop
elseif . . . then ; goto loop

else ; goto loop
close close
Here loop is any label which does not occur in any part of the same
function definition. Of course this goes on for ever unless the dots
contain some other goto, but so long as we leave out the else there
is a way of stopping, since all the conditions may fail.
Counting on integers or real numbers is so common that a further
abbreviation (in fact a standard 'macro', see section 22) is introduced
to cope with the most common cases. Suppose I stands for any identifier
and M, K, andN' denote any identifiers or unsigned numbers. Then we
may write
forall 1M K N
to stand for
M-K->I;
loopif (I+K->I;I=<N) then
Thus forall I M K N means for aU values of I from M up toN increasing
in steps ofK. The factorial loop above can be written simply as
forall i 1 1 n;

i*p->p
close;
If K is a real number we should take care over rounding errors.
forall x O.0 O.1 1. 01;
is safer than
forall x O.0 0.1 1.00;

since 0.0 plus ten times 0.1 might come to, say, 1. 0003 to within the
computer's accuracy, and then the x = 1. 0 value would not be done.
Remember that forall involves conditionals and goto so it can only be
used inside a function body.
Straightforward loops can be done with forall, A more powerful and
elaborate looping facility, the FOR facility, is provided in the Program
Library (see Part 4).
We have not used loopif or forall in the answers to exercises of the
Program Library since they were added during the revision of POP-2
and were not defined when this work was being done.

EXERCISES
1. The function tab used- as an example in this section tabulates a
function of one parameter over a specified range. Define a function
tab2 which tabulates a function of two parameters over specified
ranges of the two parameters. Use tab2 to print the products of all
pairs of integers between 1 and 10. (For a way to get a proper tabular
layout of the results see section 8 'Printing results'.)
2. The sequence

;%+11 1/2(Xk + :k)
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gets closer and closer to the square root ofN as k increases. Write
a function terms such that terms (n, epsilon) is the value of k needed
to compute the square root of n to within plus or minus epsilon. For
example,ifn=9 thenxo=1,xl=5,x2=3.6,x3=3.05 and terms(9,0.1) = 3.
3. Define the function apply1ton described in example 3 of section 5
'Function declarations'.

S. P R I N TIN G RES U L T S
So far we have used => to print results. This prints one or more
results off the stack on a new line preceded by **.
Often we would like a different layout, and the following standard
functions are provided (others are given in section 20).
pr(;c) - this causes the value ofx to be printed. Negative numbers
are printed with a minus sign, positive ones preceded by a space.
prreal(r, rn, n) - prints a real with m digits before the point and n
digits after it.
nl(k) - this prints k new lines
sp(k)- this prints k spaces.
For example, to print the multiplication table:
function multab; vars i j p; 1-> i;

loopi: if i > 12 then exit;
1-> i: nl(1);

loopj: if j > 12 then i + 1 -> i; goto loopi close;
i * j -> p;
sp(if p < 10 then 2 elseif p < 1UOthen 1 else 0 close);
pr(p);
j + 1-> j; goto loopj

end;
multab ():

1 2 3 4 .5 6 7 li 9 1U 11 12

2 4 6 8 10 12 14 16 18 20 22 24

3 6 9 12 15 18 21 24 27 30 33 36

etc.

Section 1S 'Input and output facilities' gives further information about
reading data and printing results, using the console or other input/
output devices. Thus when we say above that something is printed we
include the case where it is output to some other device, such as a
disc file.

9. W 0 R D S
So far, we have seen how a POP-2 variable can have a numerical value
or a function value. Another important type of values is the word. A
word, like an identifier, is made up of letters, digits, or signs. Only the
first S characters are significant. Examples of words are

"
pdp? +
happy

(
birthday

x
++

a5

The exact rules for constructing words are given in section-S. 6 of
the Reference Manual.
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In order to assign a word to a variable, it is necessary to indicate
that the word itself is meant, not the value of the variable designated
by the word. For example, the assignment

cost -> x

assigns the value of the variable cost to the variable x . In order to
assign the word cost it must be enclosed in quotes "and". In this
case, the assignment would be

"cost" -> x

after 'which the value ofx would be the word "cost" and the effect of
printing x by typing

X =>

would be to print

**cost

If the variable c has value 100 then
pr(" cost"); pr("="); pr(c);
prints
cost= 100

Wemay test words for equality, for example, "cat" = "cat" has value
true.

EXERCISES
1. What is printed by the following programs?
(a) function out n w;

nl (2);pr(n); sp (1); pr(w); pr(", ,,);pr("please")
end;
out (20, "pounds");
out (40, '''dollars'');

(b) function truthval p;
if p then "true" else "false" close

end;
truthval(SO>40) =>

2. The standard function destword takes as its parameter any word
and leaves on the stack integer representations of the characters and
the number of characters in the word, for example, destword("CAT")
leaves ic, ia, it, 3 on the stack where ic, ia, and it are the integers
corresponding to c, a, and t. Define a function order which takes two
words and produces "before", "same", or "after", depending on whether
the first letter of the first word is before, the same as, or after the
first letter of the second word. Assume that the integer representations
.of the letters are in consecutive ascending order.

10. LIS T SAN D LIS T PRO C E S SIN G
A list is simply an ordered sequence of items. A list of words or
positive integers or positive reals can most easily be constructed by
enclosing the words, integers, or reals in square brackets. For example,
the assignment

[cat dog horse] -> X
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makes x a list of three words. The value of x is the whole list and if x
is printed by executing

X =>
the result
** [cat dog horse]

is printed.
Another example of a list formed in this way wouldbe
[1 cat 2 dogs 3.1416 horses ***]
Note that although cat is used as a word, not a variable, there is no
need to enclose it in quotes since the brackets serve the same purpose
as quotes.
Ther~ is a standard operation, written <>, which joins two lists to­
gether. Thus the expression
x <> [donkey cow]

produces a list like x but with 2 new items on the end. If this is now
printed, the result would be
** [cat dog horse donkey cow]

The value of the variable x is not changed.
An item on a list may itself be a list. The list
[[ cat dog] [horse donkey]]
is a list of two items. The first item of the list is the list [cat dog].
The second item is the list [horse donkey].

There are two standard functions for accessing the items of a list. The
function hd has as value the first item, or head, of the given list. Thus
if x is the list [a bed] the value of the expression
hd(x)

is the word "a". The function tl has as value the tail of the given list.
The tail of a list is the list with the head removed. The value of the
expression

tl(x)

is the list [b cd]. Thus the functions hd and tl can be used together to
access any item on a list. The first item of the list x is hdtx), the
second item is hd(tl(x)), the third item is hd(tl (tl (x))) , and so on.
The tail of a list of one item is the word "nil", which represents the
empty list. The standard variable nil has the word "nil" as its value.
Any attempt to use the functions hd and tl on anything other than a list
will result in an error. Thus an attempt to extract the third item from
a list of two items by writing

[a b] -> x;
hditl (tl (x))) =>

results in an attempt to evaluate the expression

hd(nil)

which produces an error message because the word nil is not a list.
There is a standard function null whose value is true for an empty list
and false otherwise. It is very frequently used to test for the end of a
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list. Consider, for example, a possible definition of a function lengthl,
the length of a list.
function length1 x; vars n;
0-> n;
11: if null (x) then n exit;
n + 1 -> n; tl(x) -> x; goto l1
end;
One way of constructing a list is to use square brackets. A more
fundamental function is cons (short for construct) also written as ::,
an operation of precedence 2. The expression eons(a,b), or a :: b , con­
structs a list whose head is a and whose tail is b. Thus

"eat":: nil->x;

makes x a list of one item-the word cat. A list of several items could
be constructed using cons as follows:

"a" :: ("b":: (fie" :: nil» ->x

which creates exactly the same list as

[a b e] -> x
The latter is a shorthand notation for the first.

The function cons (t.e., ::) puts an item in front of a list. Let us define
a function to put an item at the end of a list. This is

function append x xl.;xl <> (x::nil) end;

Here x is an item and xl a list (wewill make a habit of using identifiers
such as x l and yl for lists),x::nil is the list whose only element is x ,
and the operation <> [oins the list x l to the list x::nil. Thus

appendta ; [_r 2 3]) =>
**[1234]

The reader may find the distinctton between :: and <> and between x
and x::nil a little puzzling. He may find the following picture helpful.
Items are coloured beads and a list is a string with beads on it. The
empty list nil is a string with no beads on it. If x is a bead and xl is
a string of beads then x::xl puts an extra bead on the front of the string.
If x l is a string of beads and yl is another string then xl <> vt ties
the end of the first string to the beginning of the second. Thus if x
is a bead xl <> x would be nonsense, since you cannot tie a bead onto
the end of a piece of string, but xl <> (x::nil) is all right.

As a matter of fact this explanation is not strictly accurate. What
happens if we do the following?

[2 3 4] -> x;
1::x -> y;
x =>

The answer should be [2 3 4] since it would be inconvenient if the
second statement upset the result of doing the first. To ensure this
l::x does not put the bead 1 onto the str ingcalled x but rather ties a
fresh piece of string with the bead 1 on it in front of the string x,
placing the beginning of this fresh piece in y. Similarly <> uses fresh
string to copy its first argument so that the operation does not affect
the value of other variables. The details will be described fully
later on.
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The following function tests whether an item occurs in a list.
function member x xl;
loop: if null(xl) then false

elseif hd(xl) = x then true
else tl(xl) -> xl; goto loop

close
end;
member(I, [2 1 5]) =>
**1
member("Joe", [Fred Alf Bert])..=>
**0

The following pair of functions manipulate 'association lists', for
example,
[dog chien cat chat Pig eoehon]
function assoe x xyl => Yivars xl;
loop: if null (xyl) then undef -> y

else hd(xyl) -> xl i tl (xyl) -> xyl;
if xl = x then hd(xyl) -> y

else tl(xyl) -> xyl; goto loop
close

close
end;
Note: .undef is a standard variable with value" undef" meaning undefined.
function makeassoc x y xyl => xylI;

x t : f;y: :xyl) -> xyll
end;
Nowwe can use these in the following way

[dog chien cat chat Pig eoehon] -> diet;
'assoe ("cat", diet) =c-
** chat
makeassoc ("hen", "poule'u dict) -> diet;
assoe ("hen", diet) =>
** poule

Suppose that we wish to obtain a new list, each member of which is
derived from the corresponding member of some given list by applying
a function to it. We could define a function maplist such that, for
example, maplist ([1 2 3 4], sqrt) is [1.001.41 1. 73 2.00]

function maplist xl f =>yl; nil -> yl;
loop: if not (null (xl») then append(f(hd(xl», yl) -> yli

tl(xl) -> xl;goto loop
close

end;
In fact maplist is a standard function.

EXERCISES
1. Given a function p which produces a truth value as its result,
write a function exists such that exists ixl, P) is true just if p produces
true for some element of xl ..
2. Write a function delete such that delete (x, xl) is a list similar to
xl but with any items equal to x on it deleted.
3. An association list price associates a price in pence with each of
a number of articles. Write a function which will take a list of articles
purchased and work out the total price (use associ,
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4. You are given a list, each of whose elements is an association list
describing a knowncriminal thus

[[name jones hair sandy eyes brown height 65]
[name crippen hair none eyes green height 61].... ]

Write a function which takes a specification of a wanted man, for
example,

[hair grey eyes brown height 60],
and produces a list of the names of known criminals whomight
correspond to the description.
5. An association list is given which associates with each town a
list of other towns which can be reached from it by a direct flight.
Write a function to produce a list of all the towns which can be reached
from a given one with not more than 1 change. Nowwrite one for not
more than n changes. (Hint. A function to remove repeated elements
from a list would be useful, for example,prune ([1 2 3 2 5 3 ]) =
[1 2 3 5].)

11. LAM B D A E X PRE S S ION S

It was mentioned in the section on functions that variables can have
functions as values, as well as the more obvious types of values such
as numbers or truth values, A function definition is therefore a kind
of assignment in which a function value is assigned to a variable. It
is possible in POP-2 to write function constants just like we can write
numerical constants (for example, 0, 3.15) or truth values (true,jalse).
A function constant is called a lambda expression and is simply a way
of defining a function and leaving the definition on the stack. The func­
tion sums q defined earlier in the conventional way could have been
defined as follows:
vars sums q;
lambda x y; xi 2 + yi2 end -> sumsq;
Thus the basic word lambda is very similar to the basic word function
except that no function name is included. A lambda expression is an
'anonymous' function.
Lambda expressions are useful in a variety of circumstances. A
frequently-occurring situation is illustrated by the following. We wish
to use the tab function defined above to tabulate the values of xi3
between 1 and 10 in steps of O. 5.
We cannot write
tab (xi3, 1, O.5.•10).;
because tab assumes the value of the first parameter is a functi.on,
whereas the result of evaluating the expressibn xi 3 is a number.
Executing the above statement would therefore cause an error message.
We could, however, write
function cube x; xi 3 end;
tab (cube, 1,O.5,10);
and this would work correctly but it is Simpler to write
tab (lambda x; xi 3 end, 1, O.5,10);
and the effect is identical except that no cube function remains after
execution of the statement.
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EXERCISES
1. Howwould you use t(lb to tabulate the values of the expression

x2 - 2x - 1for integers from 0 to 100.
2. What is the value of x after execution of the following?

vars x kg;
lambda x; x * x end ->k;
lambda J; j{P) end -> g;
g(k) -> x;

12. R E CUR S ION
A function may call itself during its execution. The POP-2 system
automatically provides a distinct set of local variables when this
happens.
Consider two possible ways of defining a function for computing the
factorial of a number; first, an iterative definition using a goto state­
ment
function/act n => p;
1-> P;
loop: if n >1 then p * n -> P; n - 1-> n;
goto loop close
end
second, a recursive definition in which the function itself is called
from within
functionjact n;
if:n > 1 then n * jact(n - 1) else 1 close
end
An obvious difference between these two definitions is that the second,
recursive definition is much simpler to write. However, a more
important difference is that execution of the recursively-defined func­
tion involves much more storage space. In fact, the whole arithmetic
expression
* . 1 * ->* *2. * 1n n- n~...... I

is set up before it is evaluated, whereas in the first case, the result
is accumulated factor by factor.
Where a choice exists between an iterative and a recursive definition,
the former is usually pr~~erable on grounds of efficiency. Often,
however, the recursive definition will be briefer and more perspicuous,
particular ly in handling complex data structures.
As an example of the use of recursive functions in list processing let
us define a function to produce the list of all items on a given list
which are greater than 100. We use x for an item and xl (t.e., x-list)
for a list.
function gr100 xl;vars x;

if null (xl) then nil
else hd (xl) -> x;

if x > 100 then x :: gr100(tl(xl))
else gr100(tl(xl»)

close
close

end;
gr1 00([90 101 85106 107]) =>
** [101 106 107]
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More generally if P is any property, that is, a function producing a
truth value

function sublist xl p;vars x;
if null(xl) then nil

else hd(xl) -> x;
if p(x) then x::sublist(tl(xl),p)

else sublistitlt xl), p)
close

close
end;
function big x; x > 100
end;
sublist([90 101 85 106 107], big) =>
* * [101 106 I 07J

Since we often want both the head and tail of a list the function dest
is provided. It produces both the head and the tail. Thus we may write
'function sublist xl p;vars Xi

if null( xl) then nil
else dest(xl) -> xl -> x;

if P (x) then x: :sublist(xl, p)
else sublist (xl, p)

close
close

end;
Another example is a function to test whether an item occurs in a list.
function member xl xl;vars x ;

if null (xl) then false
else dest(xl) -> xl -> x ;

if x = xl or member(xl, xl) then true else false close
close

end;,
EXERCISES
1. Write a recursive definition of the function hcf to determine the
highest common factor of two integers. Also write an iterative defini­
tion of the same function. Which function is more efficient
(a) in terms of storage requirement .
(b) in terms of running time?
2. Define the function maplist recursively (it was defined with a loop
in the section on lists). You had better give it another name such as
maplistz since maplist is standard. .
3. What is the output of the following program?
function itlist xl y g;

if null(xl) then y
else g(hd(xl), itlist(tl (xl), y, g»

close
end; ..
function add x y; x+y end;
itlist([l 2 34],.0, add) =>
itlist([1 2 3 4], nil, append}=>

4. Write recursive functions for exercises 1 and 2 of section 10
(p. 23).
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13. D E FIN I N G NEW 0 PER A T ION S
Having defined a function such as sumsq with the function definition·
function sumsq x y;
xi2 + yi2
end
we can evaluate expressions involving the function such as
3 + sumsq(sumsq(4, 5 *2),3) =>

It is often convenient, however, to use an operation rather than an
ordinary identifier to denote a function. This is standard practice in
the case of arithmetic operations where it is much simpler to write
a+b+c+d
than to wri te
add(add(ad_d(a,b), c), d)

where add is a function for adding a pair of integers. The only
difference between an ordinary identifier denoting a function and an
operation is that the latter has a precedence which can affect the
order of evaluation of the expression, and hence it may be written
between its agreements without any parentheses.
We can declare new operations called, say, ++ with precedence 5 and
** with precedence 3 by executing the declaration
vars operation 5 ++ operation 3 **;
and write 6 ++ 8 ** 10,meaning 6 ++ (8 ** 10). It is usual, though
not necessary, to use identifiers made up of signs rather than letters
and digits when naming operations. This convention helps the (human)
reader parse an expression. .
Having declared an operation, an assignment is used to assign a
function value to it. It is not possible to write
sumsq -> ++
because we do not wish to perform the operation ++, only assign a
value to it. To make an operation behave like an ordinary identifier,
we place the word n.onopbefore it. Thus the assignment
sumsq -> nonop ++
makes ++ into an operation for adding the square of the two expressions
surrounding it. Alternatively we could simply write operation 5 ++
instead of function sumsq in the function definition.
Another use for nonop is when we wish to pass a function denoted by
an operation variable to another function as a parameter. For example,
if - - denotes a function of one argument, we could write
tab (nonop- -, 1, 1, 100)
but not
tab(- -,1,1,100)

The latter would apply - - once before applying tab instead of applying
it 100 times inside tab; .
By associating a precedence with an identifier we can dispense with
some parentheses in expressions containing that identifier. Another
way of avoiding parentheses is to use the dot notation. Instead of
writing f(x) we write x .f , instead of sin (cas (x)) + cas (sin (x )) we write
x, cas. sin + x, sin. cas. This is allowed when the argument of the
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function is denoted by an identifier or a constant, or is itself a dot
expression.

E XE ReISE
POP- 2 does not have a standard not equals operation whose value is
true if the arguments are not equal and false otherwise. Define a
suitable operation written 1=with the same precedence as the =
operation, I.e, 7.

14. M 0 REA B 0 U T LIS T S

LISTS WHOSE ELEMENTS ARE LISTS
Lists may have other lists as their elements, for example,
[[1 2 3] 2 [1[2 3] 4]]
This has 3 elements, the first a list, the second a number, and the
third a list of 3 elements, one of them itself a list. The following
function will count howmany numbers there are in such a list of
lists,8 in the one above.
function lengthll l;

if null (l) then 0
elseif islist(hd(l)) then lengthll(hd(l)) + lengthll(tl(l))
else 1 + lengthll(tl(l))

end:,
Note that the function is list recognizes lists.
Consider the following function to read a list from the keyboard. The
standard function itemread reads one word or positive number from
the keyboard, and append (y, x) appends the item y to the end of the
listx.
function listread;

vars x y;
itemread() -> x;
if x = "[II then nil -> y;

loop: listread() -> x;
if x = n] n then y

else appendix, y) -> Y
goto loop

close
else x

close
end;
Note that a recursive definition is necessary here in order to allow
lists to contain lists to any complexity.
Thus listread() -> x;
[1 [2 3]]
has the same effect as
[1 [23]] -> x;

DECORATED LIST BRACKETS
The list brackets described above provide a convenient notation for
writing list structures consisting entirely of words or positive numbers.
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Alternative decorated brackets [% and %] are provided for use when
the individual elements of the list structure are obtained by evaluating
expressions. Within decorated brackets, the expressions are separated
from each other by commas. For example, the list
[%x,3 + 4, "X"°k,]
is a list of three items: the value of the variable x , 7, and the word "x",
Decorated brackets can be used to create list structures of any com­
plexity. They must be used to create lists with negative numbers
since negative numbers are expressions. For example,
[% -3 .5, 7.0,-2 . 6 %]
has a value the list of three numbers -3. 5,7.0, and -2.6.

UPDATING LISTS
Given a lis t x , say [a b c], it is possible in POP- 2 to use an assignment
to change part of the list. By executing the assignment
"d" -> hd(x)

the list x becomes [d be].
The function tl can also appear on the right-hand side of an assignment.
The statement
tl(tl(x)) -> tl(x)
results in the middle item of the list being deleted and x becomes [d c].
Also, if-x is [a b c], the statement
d -> hd(tl(x))

gives x the value [a d c].
Functions like hd and tl which can be used on either side of an assign­
ment are called doublets. They actually consist of 'two functions, one
of which is chosen for use depending upon which side of the assignment
the function is called. There is a difference between the two functions
of a doublet because on the left-hand side of an assignment the function
must produce a value, but on the right-hand side a value must be used
to change some structure. These two component functions of a doublet
are called the 'selector' and the 'updater' respectively. Thus the
function sqrt is not a doublet because there is no reasonable interpre­
tation of the assignment
3 -> sqrt(2);

The POP-2 user may define doublets. Consider, for example, a function
element to get the nth element from a listx. The definition of element
is
function element n x;
if n = 1 then hd(x) else
element (n-l J tl(x.)) close
end;
Thus if y is the list [a b c] then element (2J y)is b. Because element
has not been defined as a doublet, we cannot write
"z" -> element (2J y);

even though there is a very reasonable interpretation of such an
assignment. That is, to replace the second element of the list y with
the word z. In order to make element into a doublet with this meaning
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when used onthe right-hand side of an assignment, an auxiliary function,
say changeelement must be defined. A suitable function is
function changeelement a n x;
if n = 1 then a -> hdix) else
changeelement(a, n-l, tl(x)) close
end;
Notice that changeelement has an extra formal parameter a before the
other two formal parameters n andx which were used in the definition
of element. The extra formal parameter represents the value to be
assigned. Having defined change element, it can itself be used to update
a list. The statement
changee lement ("z" ,2, x)
replaces the second item of the listx with the word z; the effect
required of element on the r ight-hand side of an assignment. To
make element into a doublet, the assignment
changeelement -> updater (element)
is executed using a standard function updater, This assignment puts
the function changeelement in the place that element goes to when
called on the right-hand side of an assignment. Nowwe can execute
the statement
"z" -> element (2, x)
Oddly enough, the standard function updater is itself a doublet. It acts
on functions and can be used to get at their update part. Thus updater
(element) = changee lement would nowbe true.
An important point to note about doublets, is that the updater function
of a doublet is called only if the function is the main function on the
right-hand side of an assignment. Thus in the assignment
hd(tl(x)) -> hd(tl(y))
which replaces the second item of list y with the second item of list
x , only the function hd on the right-hand side uses its updater function
rather than its selector. The function tl on the right-hand side is used
in its normal sense.

STATIC AND DYNAMIC LISTS
No mention has so far been made of the structure of lists as they
appear in the memory of the machine. Lists have two representations,
static and dynamic. The functions which operate on lists described so
far work equally well with either static or dynamic lists, or even
combinations of the two types.
The list brackets (both plain and decorated) and the cons operator : :
all generate static lists.
An element of a static list is called a pair. A pair contains two values.
One is the head and the other the tail. The pair is normally represented
in the computer by two adjacent memory cells and to designate a
specific pair it suffices to pass the 'address' or serial number in
memory of the first of these cells. Thus if we write 4·,','nil->x two
adjacent memory cells are reserved and 4 and nil are placed in them.
The address of the first of these cells is placed on the stack and then
removed and placed as the value of x.
Wemay represent the situation thus, using an arrow to show that x
contains the address of a pair.
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We see that an assigrunent which updates a component of a list which
is the value of one variable can alter the value of another variable.
Consider now the following piece of program
x =>
**[123]
Y =>
**'[123]
4 -> hd(y);
x =>
What will be printed, [1 2 3] or [4 2 3]? This depends on whether x
and y share the same list [1 2 3], or have as their values distinct lists
which happen to have the same elements, or indeed some intermediate
situation such as sharing only the last two elements. We could find out
by looking back over the preceding program, or more directly we can
print x y. This will be true just if x and y share the same list, not
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just copies with the same elements. Similarly tl(x) = tl(y) tests
whether they share their last two elements.
Howcan we test the weaker proposition that the lists x and y have the
same elements?

function equallist x y;
if x = y or null (x) and null (y) then true

elseif null (x) or null(y) then false
elseif hd(x) = hd(y) and equallist(tl(x), tl(y» then true
else false

close
end;

Thus [1 2 3] = [1 2 3] is false but equallist ([1 2 3], [1 2 3]) is true.

Equallist as defined assumes that the elements of the given lists are
to be tested for strict equality, not merely list equality, and equallist
([1[2 3]], [1[2 3]]) is false. To make equallist test for element-wise
equality throughout put if atom{x) or atom(y) then x = y exit; before if
and to replace h~(x)=hd(y) by equallist(hd(x), hd(y».

Wewill see later that the pair used to build static lists is just a special
standard kind of record.

If the elements of a list are arbitrary and have no relation to each
other, the static representation is very suitable. If, however, each
element of a list is related to its predecessor by a well-defined rule;
the list can be represented by this rule rather than by the actual
elements. Thus the rule 'add l' 'couldbe used to represent the infinite
list 0, 1, 2....• A dynamic list is a list represented by a rule in the
form of a POP-2 function. The function must be a function of zero
parameters and must always yield exactly one result. The function
must be so written that each successive call generates the successive
elements .of the list. There is a built-in function called fntolist which
converts such a function into a dynamic list.

Consider how the dynamic list, 0, 1, 2, and so on,might be constructed.
The following will achieve it.

vars no -1 -> n', , ,

function suc; n + 1 - > n;n end;
fntolist(suc) -> y;

The above POP-2 text produces the dynamic listy, which behaves just
like any static list except that very little storage space is required.
For example, the function element defined above to extract the nth
item from a list will work just as well with a dynamic list as with a
static list. Thus

element(y, ;ZO) =>

produces the output

**19

because the twentieth item on the list y is the integer 19.
An important use of dynamic lists is to 'represent a stream of items
read from an input device. For example, the function itemread described
earlier, which reads one item from the keyboard, can be turned into
a dynamic list,

Jntolist(itemread) -> x
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enabling any program that processes a list of items .to work on items
typed directly on the keyboard.
Dynamic lists provide a variant of the facility called a stream devised
by Landin (1965).

EXE RCISE S
1. The function makeassoc was previously defined as
function makeassoc x y xyl ==> xyll

x : : (y : :xyl) -> xyll
end;
Rewrite it so that if x is already on the list xyl it changes the
associated value to y producing the altered list as a result.
2. What is the output of the following program?
[l..?]->X;
x -> x , tl. ti;
x .hd,x. tl. hd,x. tl. n.hd, x . tl. tl.tl.hd ==>
3. Define a function edit which has as parameters three lists. The
function should look for the second list within the first list and replace
it with the third list. For example,
[Jim is a son of a bitch and so is bob] -> xl;
edit (xl, [son of a bitch], [* * * *]) -> xl ;
xl ==>** [iim is a * * * * and so is bob]
4. Write a function to produce as a dynamic list the prime numbers
from 1to n.

15. R E COR D S
The pair described in the previous section is a special case of a
record. A pair consists of two components called the front and the
back. When a pair is used as an element in a static list, the functions
hd and tl refer to the front and back of the pair respectively. A pair
is created by the function conspair, which finds an area of memory and
places two values in the front and back of the new pair. The function
cons used in list processing is the same as conspair, Conspair is
called the constructor for pair records. Just as a constructor takes
the components of a record and produces a record containing the com­
ponents' there is a complementary function, called a destructor, which
takes a record and yields the components of the record as results. In
the case of a pair, the destructor function is destpair ,which takes a
pair and produces the front and back components of the pair as results,
Note, however, that in spite of its name, a destructor does not actually
destroy the record; it merely extracts its components.
The pair can be used by the POP-2 programmer in many ways. It is
not restricted to its use in list processing. A pair could be used to
represent a complex number and functions and operators defined for
handlmg pairs representing complex numbers. Thus 1::2 represents
the number 1 +2i. The following might serve as a basis for complex
number manipulation.
operation 6 +++ x y;
conspairlfronttx) + front(y), back (x) + back(y)
end;
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operation 6 - - - x y;
conspair ifronttx) - front(y), back (x) - back (y»
end",
operation 5 * * * x y;
conspairifrontix) * front(y) - back (x) * back(y)
front(x) * back(y) + back(x) * frontty)
end;
operation 5 / / / x y;
vars zjsqrt(jront(y)i2 + back (y»2) -> Z;
conspairslfronttx) * frontiy} + back(x) * back(y»/z,

(back(x) * front(y) - front (x) * back(y»/z)
end;
(-1 )::2 -> u;
1::2 +++ 3::(-3) .*** U -> u;
u.front, v. back =>
** 4,11

The record therefore enables a collection of quantities to be knownby
one name. This is useful not only for complex numbers but for a wide
variety of situations, such as constructing list processing functions for
lists with both,forward and backward pointers or storing several
items of information about an individual employee. The pair record
cannot be used of course if more than two items of information are
associated with the particular object.
POP-2 provides facilities for defining new records and functions for
dealing with them. If the pair was not already defined it could be de­
fined using the recordfns function
recordfns ("pair",JO 0]) -> back -> front -> destpair -> conspair;
The standard function recordfns takes two parameters: the name to be
associated with the type of record being defined, and a list of integers.
The number of integers in the list indicates the number of components
the records are to have-in this 'case two. In this list, the integer zero
indicates space for storing a POP-2 value just like any variable. Any
value other than zero indicates the number of bits required to store
the particular component. This enables more than one component to be
stored in a single machine word. Instead of an integer we may have
"COMPND", meaning the component must be a compound item, i.e., not
a real or integer.
It is important to note that recordfns does not produce records; it pro­
duces functions for handling a new class of records. In the case of the
pair, recordfns places on the stack the constructor function conspair ,
the destructor function destpair; the doublets for accessing the two
components front and back (called select/update doublets because they
allow us either to select out part of a record or to update that part of
the record, giving it a new value). In order to use these functions they
must be taken off the stack and assigned to variables. Note that with
functions producing more than one result, the order of assignment is
the reverse of the order in which results are placed on the, stack.
Consider the problem of handling information about a collection of
persons. Each person can be represented by a record with three com­
ponents indicating the person's name, age, and sex. The name can be
represented by a word, the age by an integer less than 128,and the sex
by the integers 0 or 1. We can therefore set up functions for handling
such records as follows:
recordfns ("person", [0 7 1]) -> male
-> age -> name -> destper -> consper;
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This defines and names five new functions, and the following shows how
they might be used. First consper can be used to construct a few
records
consperi=smith ", 31,1) ->PI;
consperi; "jones", 21, 0) ->P2,'
consperi "robinson It, 93, 1) ->P3;

pl,P2, and p3 are now records of type person, and can be interrogated
or updated by the doublets name, age, and sex.

name(p2) =>
**jones
function bi rthday Pi
age (P) + 1->age (P)
end;
birthday (P3);
age(p3) =>
**94
function marry boy girl;
if male (boy) and not(male (girl» then
name (boy) -> name (girl) else pr( "shame") .close
end;
marry (PI, p3);
shame
marry (PI, p2);
name(p2) =>
**smith
Sometimes we wish to test a record to see to which class it belongs.
The standard function dataword produces the word associated with the
class.
Thus
datauiordlp I) =>
**person

The record facility of POP-2 permits the user to define new compound
objects out of existing objects, thus extending the language to handle
quantities associated with a class of problems. The objects could be
represented instead by list structures, but·the appropriate record
structures usually take less storage space and the use of specially­
named functions (select-update doublets) to access the components
makes programming easier and clearer.

EXERCISES
1. A point can be represented by two real numbers. A triangle can
be represented by three points. Define classes of records to represent
points and triangles. Define a function equilateral which tests if a
given triangle has sides of equal length.
2. A flight hasa number, a starting place, a finishing place, a starting
time, and a finishing time. Given a list of flights, write a function to
get to a given place by a given time starting from a given place at a
given time.
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16. A N E X AMP "L E 0 F R E COR D
PROCESSING-DIFFERENTIATING
AN EXPRESSION

We nowpresent, as an example of record processing, a program for the
,formal differentiation of expressions. We consider expressions such
as x2 + 3x + 5 or (2x3 + 1) x (3x + 5), using one variable, x, and the
operations of addition, multiplication, and exponentiation to a positive
integer power. From this it should be easy to see howwe could deal
with expressions involving several variables and more operations. We
do not discuss this extension but we set up the program in a general
form which permits it. Formal differentiation takes an expression e
and differentiates it to produce another expression ~~,using the rules
explained in elementary books on calculus. We recall that if el and e2
are expressions in x and n is a constant:
d d d
dx (el + e2) =dx (el) + dx (e2)

d . d d
dx (e 1 x e2) = e2 dx (e1) + e 1 dx (e2)

dax (xn) = n xn-1

dTx(n) = 0

d
Tx(x) = 1

(1)

(2)

(3) .

(4)

(5)

For example

Ix ((;2x3 + 1) X (3x2 + 5))

= (3x2 + 5) x fx (2x3 + 1) + (2x3 + 1) x d~ (3x2 + 5)

= (3x2 + 5) X 6x2 + (2x3 + 1) x 6x

Here is a suitable POP-2 program (it is followedby explanatory notes).
vars sum1 sum2 destsum operation 4 ++;
r ecordfns ("sum", f0 0]) -> sum1 -> su*m2-> destsum -> nonop ++;
vars prod1 prod2 desttrrod operation 3 ";
r ecordfns ("prod", [00]) -> prod1 -> prod2 -> destprod -> nonop **;
vars expl exp2 destexp operation 2 iT;
recordfns ("expll, [00]) -> exp l -> exp2 -> destexp -> nonop iT "
function epr eicomment prints an expression;

if e. isnumber or e. isword then pr(e)
elsett e. dataword = "sum" then pr( "(,,); epr(sum1 (e)),'pr("++ II),.

. epr(sum2(e»; pr(") ")
elseif e. dataword = "prod" then epr(prodl (e),'pr("**");

ePr(prod2(e»
elseif e. dataword ="exp " then epr(exp1 (e)),·pr( "iT"),' epr(exfJ2(e»)

close
end;
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vars differror;
function diff e;

if e. isnumber then 0
elseif e. iswordthen if e = "x" then 1 else differror(e) close
elseif e. dataword = "sum" then diff{sum1 (e) ++ diff{sum2(e»
elseif e. dataword = "prod" then prod2(e) ** diff(prod1 (e) ++

prod1 (e) ** diff(prod2(e»
elseif e. dataword = "exp n then exp2(e) ** exp l (e) iT (exp2(e)-1)
else differror{e)

close
end;
function differror{e); nl(l); pr([diff error]); epr(e) end;

We start by introducing three kinds of records, sums i prods and exp s,

each with two components, to represent the three ways of building
symbolic expressions: by addttion, multiplication, and exponentiation.
For each we obtain two select/update function doublets, a destructor and
a constructor. We assign the constructor function not to an ordinary
variable but to one with an operation identifier with appropriate pre­
cedence. This enables us to construct symbolic expressions very
easily. For example,

vars e;
("x" ++ 1) ** ("x" ++ 3 ** "x " it 4) -> e:
constructs, and. assigns to 'e, an expression which may be pictured as

Thus, for example, dataword (e) is "prod" and sum1 (prod1 (e) is "x"
The function epr prints an expression

eprie):
(x ++ 1) ** (x ++ 3 ** x iT 4)

"
The function diff differentiates an expression, first testing what kind
of expression it is, and then, if it is complex, combining the components
in the appropriate way, differentiating them where necessary, using a
recursive application of diff.

eprint(diff(e »j
(1 ++ 0) ** (1 ++ (3 ** 4 ** Xii 3 ++ 0 ** xli 4»
This result is correct but cumbersome. It would be nice to have it
simplified. Also it would be a good idea if expressions, like xiix, which
cannot be handled by the program, were rejected. We can accomplish
both these aims by using more elaborate functions for ++, **, and l T
than the Simple record constructors. We could start allover again or
simply carryon assigning new values to these variables'. Let us do the
latter.
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vars conssum;nonop ++ -> conssum;
function make sum el e2;

if el = 0 then e2
elseif e2 = 0 then e1
else conssum iei, e2)

close
end;
makesum -> nonop ++;
The previous value of ++, that is, the function to construct a sum
record, has been saved in the variable conssum. The function makesum
checks for the zero case and only calls cons sum to construct a sum
record if neither argument is zero. The function makesum is assigned
as the new value of ++. To follow what is going on we must carefully
distinguish between variables and the functions which are their values.
Similarly
vars consprod consexp;nonop ** -> consprod;nonop it -> consexp;
function mahep rod el ez;

if el = 0 or e2 = 0 then 0
elseif e1 = 1 then e2
elseif .e2 = 1 then e1
else consprodiel , e2)

close
end;
maheprod -> nonop **;
function makeexb el e2;

if not(el = "x") or not(e2. isnumber) then dijferror(el ),.difterror(e2)
elseif e2 = 0 then 1
elseif e2 = 1 then el
else consexp(el, e2)
close

end;
maheexp -> nonop I T;
More simplification could be done, for example, replacing x+x by 2x,
but this is to some extent a matter of taste, and it is rather more
difficult if we want to do things like replacing x+3x2+x by 2x+3x2•
It is worth remarking in closing that there are other ways of repre­
senting these expressions in POP-2, for example, by using arrays (see
section 17) or lists, or by making a different use of records. They may
be more advantageous in some ways, for example, brevity of program,
speed of running, or economy of store space. For example, if we are
restricting ourselves to polynomials in x we could represent 1+6x+5x2
by an array a with a(1) = 1,a(2) = 6 and a(3) = 5.

EXERCISES
1. Extend the differentiation program so that it deals with expressions
in several var-iables and differentiates with respect to anyone of them.
Remember that differentiating vl by v2 gives 0 unless v1,and v2 are
the same variable.
2. Write a function eval such that eualie, n) is the value of the ex­
pression e when "x" has the numerical value n. The expression e is to
be restricted to the kind of expression accepted by the differentiation
program. Use it and the differentiation program to write a function to
differentiate a given expression k times, and tabulate the numerical
value of the result from a to b in intervals of de lta.
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3. Let us use 'simple sentence' to mean any sequence of English
words except 'not', 'and', 'or' or 'implies'. We define propositional
expressions as follows:
(a) A simple sentence is a propositional expression.
(b) If P is a propositional expression so is not(p).
(c) If Pl and P2 are propositional expressions, so are Pl and P2,
Pl or P2, and Pl implies P2'
Write a program which accepts a sequence of simple sentences and
negations of simple sentences, and is then able to produce an answer
true .false , or unknown when given any propositional expression.
(Remember that Pl or P2 is true if one-or both of P land P 2 are true,
and Pl implies P2 is true unless Pl is true and P2 isfalse.)

17. A R RAY S
An array is a table of items. It may be of one or more dimensions.
Whereas each of the components of a record is accessed by name, the
individual items of an array are indexed by number.
There is a standard function newarray which sets up an array with
specified dimensions and initiali.zes the items of the array. For example,
the statement
newarray ([1 5 1 5], nonop *) -> a
sets up a square array 5 by 5 and initializes each element a (i, j), to the
product of i and j. Thus a looks something like this:

j

1 2 3 4 5

1 1 2 3 4 5
2 2 4 6 8 10

i 3 3 6 9 12 15
4 4 8 12 16 20

5 5 10 15 20 25

The first parameter of newarray must be a list of integers which
alternately represent the lower and upper bounds of each dimension
of the array. The second parameter must be a function which requires
n arguments, wherex is the number of dimensions of the array, and
produces one result. The function is evaluated for every combination
of subscripts and the result is inserted in the generated array.
The elements of the array can be accessed and updated as follows:
a(3,4) >

prints the contents of row 3 column 4.
-1 -> a(1, 1);
replaces the contents of row 1 column 1 with -1. The array a is
actually a doublet-a function with an updater part.
There are a number of important advantages of removing the distinc­
tion between arrays and functions. First, all the POP-2 facilities for
handling functions can handle arrays equally well; secondly, it gives
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the user a free choice of representation by rule or by table. Thus it
is more economical to represent the matrix

1 0

o 1

o 0

o 0

o 0

o 0

1 0

o 1

bya function:
function d iag i j;
if i = j then 1 else 0 close
end

than by storage of the actual tables in the form of an array.
Consider the following function definition
function addmm1 m2 ni nj;
newarray ([% 1, ni, 1, nj %], lambda i j;'
m1(i, j) + m2(i, j) end)
end

The function addm adds two ni by nj matrices ml and m2 together by
adding their corresponding elements. It will work equally well with
two-parameter functions and with two-dimensional arrays. The func­
tion addm generates a new.array, each element of which contains the
sum of the corresponding elements of the original arrays or functions.

EXERCISES
1. Define a function to test for a winning position in noughts and
crosses (tic-tac-toe). Represent the board by an array whose elements
have as, values the words nought, cross,or blank.
Define a further function to place a piece in a square to achieve, if
possible, a winning position for that piece. If there is no winning posi­
tion; the other player should be blocked from winning if possible.
2. Define a function to multiply two P by P matrices M andN using .
the definition MXN= L where Lik = ~MijNjk.
3. Write a function to sort the elements of a one-dimensional array
into ascending order. This can be done by going through the array
looking at each pair of elements in turn and interchanging them if
they are in the wrong order. The process is then repeated until a whole
pass through the array produces no interchanges.

18. S T RIP S
Although for many purposes POP-2 arrays prove adequate, there are
situations where a more primitive system for storing information is
needed. The use of triangular arrays or arrays consisting entirely of
truth values are examples of situations where, although standard arrays
are adequate, they are inefficient or wasteful. Such special arrays can
be defined in terms of the more primitive data structures called strips.
A strip is a one-dimensional data-structure with a fixed number of
components. As we will explain, the method of accesstng the compo­
nents of a strip is different from that for an array. All the components
in a given strip must be the same size. For example, all the compo­
nents of a given strip might be full items capable of storing any POP-2

...,,
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value. By a component of size n we mean one ofn bits, that is, in the
, range 0 to2n-l. Conventionally size 0 means a whole machine word,
containing any integer, real, function, list, and so on. The length of a
strip is the number of components in the strip. The standard Pop- 2
arrays described in the previous section can be defined in terms of
strips of full items.
A strip class is a class of strips, each strip having the same component
size but not necessarily the same number of components. There are
two standard strip classes, knownas full strips and character strips.
Full strips have full items as components. The size of each component
of a character strip is six. The components of a character strtp can
have any integer value in the range 0 to 63, and can thus be used to
represent alphabetic or numeric characters in internal code.
There is a standard function init (initiate) such that init(n) is a new
full strip with elements numbered 1 to n, all Initially undefined,and a
standard function subscr (subscript) such that subscr(i, s) is the ith
element of the full strip s. For example
vars s: init(1 0) -> s;
13 ->, subscr{3, s); subscr(3, s) =>
**13

Compare the second line with the equivalent statements for an array a
13 -> a(3),.a(3) =>
The difference is that a is a function and s is a data structure. We
could define the array a thus:
function a i; subscrti, s) end;
lambda x i;x -> subscrii, s) end -> updateria);

In fact the standard function newarray produces arrays in this sort of
way,but it can do it more economically by using the device of partial
application described in the next section,
For character strips the standard initiating and subscripting functions
are initc and subscrc.
The standard class of character strips, also called 'strings', is provided
primarily to enable one to manipulate sequences of characters. We
can read in such a sequence by enclosing the characters in string
quotes, thus
lithe cat sat on the mat. \\_> s;
s =>
** "the cat sat on the mat. \\

The value of s is a character strip, and so if we write subscr(8, s)
we obtain the integer between 0 and 63 which represents the character
e. If nb is the integer representing the character b [see Appendix 1 of
the Reference Manual (Part 3)],we could say
nb -> subscrc(5, s); s =>
** "the bat sat on the mat. "
A new strip class can be defined using the standard function stripfns.
The statement
stripfnsirtstrip», 1) -> subscrt -> initt;
defines a new strip class with component size 1, that is, 1 bit, each
component being 0 or 1. The word associated with the strip class is
Iitstrip ". A function for constructing strips of this class is assigned
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to the variable initt (short for 'initialize t-strip') and a function for
accessing strips of the class is assigned to the variable subs crt. Thus
a strip of truth values can be constructed by the statement
initt(30) -> x;
which constructs a strip x of 30 truth values. The 30 truth values
are initially undefined. The subscrt function can be used to place truth
values in the strip. For example, the statements
1-> subscrt(4, x);
o -> subscrttz, x);

place the truth value 0 (false) in position 2 ofx and the truth value 1
(true) in position 4 of x ,

EXERCISES
1. Write a function to convert a list of characters to a string.
2. Write a function to concatenate two strings. Make it an operation
called <-> of precedence 2. (The standard function data length when
applied to a strip gives the number of components in it.)
3. If s is a strip defined for k = 1 to 100,create a select/update
doublet a to represent an array with elements a(i,j), i= 1 to 10, and
j =1 to 10. If a2(i,j) = a for all i<j, create an array a2 using a strip
of only 55 elements. .

19. PAR T I A LAP P LIe A T ION
When a function is executed, the values of the actual parameters are
assigned to the formal parameters and the body of the function definition
executed. Partial application enables one or more of the actual para­
meters to be assigned without executing the function. The result of
partially applying a function to one or more parameters is always a
function. This resulting function will be like the original function but
will have fewer formal parameters. This is best shown by an example,
as follows.
The function tab defined in an earlier section requires four parameters:
a function and three integers defining the range. If a more specific
version of tab which always tabulated up to 100 were required, we
could produce this new function by partially applying tab to 100 and
assigning the result to, say, tabI , Partial application is indicated by
using decorated parentheses (% and %) in place of the plain parentheses.
In addition, when the number of actual parameters is less than the
number of formal parameters, it is always the rightmost of the formal
parameters which are given values. Thus the statement
tab (% 100 %) -> tab1
.makes tab I a function of three parameters. The three parameters of
tab1 correspond to the first three parameters of tab. tab1 could then
be called by executing, say
tab1 (sqrt, 50, 10);
which would tabulate the values of .J50, .J60, and so on, up to .J100.

Thus partial application enables us to start off by defining a very
general function with many parameters and then specialize it to obtain
one or more less general functions. Another example would be a
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function distance, defined as
function distance x y u Vi

sqrtiix-su) * (x-u) + (Y-v) * (y-v»
end; ,

If we are particularly interested in distances from Edinburgh (coordi­
nates -50, (50), London (-20, 10),and Birmingham (-70,70), we define
vars disted distlo distbi;
distancei" -50, 350 %) ....:..>disted; distancei". -I!O, 10 0/0) -> distlo;
distance (0/0 -70, 70 0/0) -:> distbi ;
We can use these functions thus:
disted(50, -50) =>
**316.0
Since arrays are functions, partial application can be used on them. If
a is a two-dimensional array, a (0/0 3 0/0) is a one-dimensional array
consisting of the third column of a. Thus
a(2, 3) =>
**7
a(% 3 %) -> b ;
b(3) =>
**7
8 -> b(2);
We can now see how to create a one-dimensional array from a strip;
vars s a;
iniill O) -> s; suascrt: s %) -> a;
'33 -> a(3); a(3) =>
**33
How can we write a general function to produce a two-dimensional
array from a strip, indexed by i = 1to n , j '1 to n ?
Consider first
function array2 n => a; vars s;

init(n*n) -> s;
lambda ii: subscrtnrti=L) + j, s) end +-> a;
lambda x i j; X -> subscr(n*(i-1) + j, s) end -> updaterla)

end;
if we test this by
vars a,'array2(1 O} -> a,'
99 -> a(3, 4)'; a(3, 4) =>
we get an error message saying that n is undefined, so ts s. That is
because we have created a doublet a for the array and this doublet is
used outside the function array2, which has nand s as variables. As
soon as array2(10) has been evaluated these variables are no longer
in existence, that is, their values are not accessible any more. So
when we say 99 -> a(3, 4), causing the lambda expression
lambda x i j; x -> subscr(n*(i-l) + i,s) end

to be entered with x = 99, i = 3, and j = 4, the attempts to evaluate n
and s out of their proper context will cause an error.
How can we remedy this trouble? We would like to attach the values
of nand s to the lambda expression so that wherever the lambda
expression goes the values of n and s are sure to go too. We do this
by making n and s into formal parameters and then partially applying
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the lambda expression to the values we want them to have. What are
these values? They are the values of n: and s while array2 is being
executed. Thus we write

function array2 n => a; vars s;
init(n * n) -> s;
lambda i j n s; subscr(n* (i-I) + j, s) end (0/0 n, sOlo)

->:. a;
lambda x i j n s; x -> subscr{n * (i-I) + j, s) end (0/0 n, s 0/0)
-> updater (a)

end;
Whenwe test this it gives the correct answer.
vars a; array2(l a) -> a,'
99 -> a{3, 4); a{3, 4) =>
* *99

To sum up, the trouble occurs if a function mentions some variables
which are not formal parameters, output locals or locals (such
variables are called non-local variables), and is then called when
these variables are no longer in existence. It is remedied by making
these variables formal parameters and partially applying to their
values when the function is' created, thus instead of
lambda x y; ••.... a ..•• b .••• end
write
lambda x y a b; ..•.•• a.... b .... end (0/0 a, b 0/0)

Instead of
function / x y,' •••••• a.... b .••• end
write
function / x y a b; ...•.. a .... b •... end; /(0/0 a, b 0/0) -> /;

Similarly for any number of non-local variables.
It is important to take the precaution of 'freezing 'in' the non-local
variables of any function if there is any danger of the function being
used in a context where these variables are no longer available. If
you fail to do so the values taken may be those for some quite different
variables which happen to correspond to the same identifiers. Here is
another example:

function applyl ton n t.vars i;1 -> i;
loop: if i=< n then lei); i+1-> i;goto loop close

end;
vars it I Ot) -> i:
function g x; pr(x + i)
end;
applyl ton (3, g);

The function apply Itontn.f ) is intended to execute /(1),/(2), ... .f in),
We expect
101 102 103
but we get
2 4 6.

The reason is, of course, that we have used i as a non-local variable
in g, but wheng is called in applvl ton the i referred to will be the
most recent one, that is, the local variable i of applyl ton. Instead of
function g ... end;, we should have written vars g; lambda x i;pr(x+i)
end (0/0 ~ 0/0) -> g; . .
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Another, easier, way of avoiding this difficulty in many cases is given
in section 21 'Cancel and sections '.
Of course, sometimes we might intend a non-local to refer to the most
recent variable having that identifier, for example, if we had written
some functions and wanted to check them out by calling a function peep
every now and then to print out the values of selected variables:
function peep; if trace then [<Yo "peep", i.), k <Yo] => close end;
Similarly if we have a longish program with several functions calling
each other, the inner ones having as non-local variables some variables
which are local to functions further out, we can adopt the strategy of
nesting the function definitions inside each other thus
function f x; vars i:

function g y; i .
end;

... g(x+l) ...
end
Alternatively, since the non-local i will always r efer to the most
recently occurring i,we can write

function g y; i .
end;
function f x; vars i;

.... g(x+l) ...
end',
In the first case we cannot test g independently of I, because I is a
local to g and cannot be called outside; in the second we can, provided
we declare i and give it a value.

vars i;99 -> i;
g(1),g(2),g(3) =>

Readers familiar with ALGOL 60 will see that the POP-2 way of
handling non-local variables is in some ways less convenient than the
ALGOL one because, as in the applylton example, it can lead to mis­
takes if the proper precautions are neglected. On the other hand, it
gives greater flexibility and allows one to write programs less deeply
nested, which is particularly useful for on-line debugging. It also
allows functions to be produced as the results of other functions, which
is quite impracticable with the ALGOL 60 way of handling non-locals.
This adds greatly to the power of the language. The idea of a function
which had attached to it the values of its non-local variables was
suggested by Landin (1964) who called such a function a closure.
As another example consider the definition of a function called, say,
twice ~which takes as parameter any function and produces as result
the same function applied twice. Thus twice (sqrt) is a function which
computes the square root of the square root of a number, that is, the
fourth root:
The obvious but incorrect definition of twice is

function twice I;
lambda x;f(f(x)) end
end',
This will not work because the value ofI is local to twice and will
hence be available only during the execution of twice. Partial
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application enables us to 'freeze in' the value of f into the definition of
the lambda expression. To do this, the definition of twice becomes
function twice f;
lambda x f; f(f(x» end (0/0 f 0/0)
end;
vars root-t;
twice (sqrt) -> root4;root4(16) =>
**2.00 .
function addl x; x+1 end;
tuiiceiaddl ) -> add2;add2(5) =>
**7 .

We have now used twice to produce two different functions. They are
quite independent, and the first one still works correctly.
root4(16) =>
**2.00

We cannot write twice(addl)(5) but we may write (twice(addl»(5).or
apply (5, twice (addl»,·using function apply xf;f(x) end.
If we want to examine the. values of any parameters which have been
frozen into a function by partial application we can do so using the
standard function froeual, for example,
f(% 8,9 0/0) -> fl ifrozualtl , fl) =>
**8
7 -> frozval(l .fl );frozval(l ,f1) =>
**7
If we want to do the same thing inside a function we can do it most
easily by making the frozen formal parameter into a reference.
References are a standard class of records with only one component;
compare pairs which have two, they are constructed by consrefand
accessed by cont. For example,
function counter r n; cont(r)+l -> contirt; cont(r)=< n end;
counterv, consref(O), 3 0/0) -> c;
.c, ..c,.c,.c,.c=>
** true, true, true.false.false
Again the reader acquainted with ALGOLwill recognize the analogy
with various concepts of own variable. We will see in the next section
that c is an example of a kind of function called a repeater, useful for
representing such things as input files or streams.

EXERCISES
1. Define a function sqrts to find the square roots of a list of
functions, e.g. sqrts([1 2 3])= [1. 00 1. 41 1. 73]. (Use maplist and
partial application.)
2. Ifmemberlx, s) is true just if x is a member of the set s (repre­
sented by a list), create a function of one argument which tests whether
the argument is a member of the set [2 3 5 7 11 13 17 19].
3. What is the effect of the following program?
vars a,'
function f x; x -> a end;
8 -> a;
.functiongx;vars a;88 -> a;f(x+90),'a => end;
g(9);
a =>
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4. (a) Write a function **, an operation of precedence 3 such that
j**g is a function h with h(x) =g(f(x». f**g is usually called the
composition of f andg.
(b) What is the value of maplist([% s, y, z 0/0], cos**sin)?
(c) Define & as an operation of precedence 5 and assign apply to it.
What is the value of [1 2 3]& twice (tl) **hd?
(d) What does the function hd**nonop= (~o "monkey" %) do?
(e) If p is a predicate, Le.,p(x) is a truth value, what is p**not?
5. Define a function mahetimebomb such that maketimebomb(n) is
a function of no arguments, which has no effect the first n-l times it
is called and prints "explode" the nth time. Write a function called
defuse which renders such a timebomb harmless.
6. Write a version of maplist whose result is a dynamic list.

20. I N PUT AND 0 U T PUT ·F A C I LIT I E S
Some of the basic input and output facilities for the console have
already been mentioned in previous sections. There are, however,
further facilities for dealing with devices other than the on-line console.
The whole range of input and output facilities are described in this
section. Output facilities are described first because they are some­
what simpler.

OUTPUT FACILITIES

nl(n)

Standard output functions are:
=> to print the entire contents of the stack on a new

line from bottom to top leaving it empty. (Only
the top value on the stack is printed if => is used
within a function body.)
to print the value of x,
to print the value of x and also leave it unchanged
on the stack as a result.
to cause further output to continue on a new line
leaving n-l blank lines.
to skip n spaces across the page.
to output the character whose internal code is n.
The character code is given as an appendix to the
reference manual.
to print a real quantity x in a format with n1 places
before the decimal point and n2 after.
, prints a string without printing the quotes.

sp(n)
charout (11 )

pr(x)
print(x)

prreal(x, nl, n~)

prstring(x)
Using these standard output functions, the POP-2 programmer can print
results on the console in a flexible manner. Normally programs and
data will be kept in some filing system, for example, on a disc store,
and the user should consult the description of the filing system for his
installation (see, for example, the' EASYFILE' system described in
Part 4 'Program Library'}. The remainder of this section describes
the basic facilities for handling devices. Many users will not need to
know these details, relying instead on the filing system which will itself
make use of these facilities.

INPUT FACILITIES
The following input functions are standard:
itemread 0 to read one word, number or symbol, such as comma or

colon.
charin 0 to read one character.
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The functions charin and itemread are the normal way a POP-2
program reads its data from the console keyboard. For example, a
Program to read a set of integers and print their total when the word
"end" is typed could be defined as follows:

function sum;
vars x total; kO: 0 -> total,'
kl: itemreadl) -> x;
if x = "end" then pr(total);goto kO close;
total + x -> total; goto kl
end
When the function sum is executed, it will read items typed on the key­
board. When an integer is typed it is added into the total. Whenthe
word end is typed the total is printed and the process starts over
again. If anything other than an integer or the word end is typed,
attempting to add it to total will result in an error message, and fur­
ther console input will be POP-2 text rather than data read by sum.
This is one way of terminating the otherwise infinite program. The
other way is to hit the key on the console which interrupts the POP-2
program and then type setpop (),which returns the system in readiness
for program input.

REPEATERS AND CONSUMERS
There are two kinds of function, which must be introduced, to explain
the input/output mechanism of POP-2. We call them a repeater (for
input) and a consumer (for output). They are complementary in the way
that select and update functions are complementary, and indeed they
can be regarded as special kinds of select and update functions
respectively.
To illustrate the idea in a familiar context consider the following
definitions:

vars inlist outlist;
function/romlist; vars x; in list. hd -> x; inlist. tl -> inlist; x end;
function tolist X,' outlist <> [0/0 x 0;0] -> outlist end;

Thus fromlistO produces the next item on the inlist, and tolist(x) appends
x to the end of outlist.

[1 2 3 4] -> inlist; nil -> outlist;
tolist(2*jromlistO);
tolist (2*/romlist 0);
tolist r;*jrom list 0);
outlist =>

** [24 6]
Compare this with

pr (2*itemread ();
pr(2*itemreadO);
pr(2*itemreadO);

If the input file is 1, 2, 3, the output file will be 2,4,6. The situations
are strictly analogous. jromlist and itemread are repeaters (they
repeatedly produce an item), whilst tolist and pr are consumers (they
consume items).
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To show how they can be viewed as select-update doublets we can say
vars list;fromlist -> list; tolist -> updatertlist);
(12 3]-> iniist; nil -> outlist;
2*list() -> list();
2*listO -> list();
2*listO -> list();
outlist =>
**[2 4 6J
Note. If we want to do the same with itemread and pr a slight diffi­
culty arises.
vars console; itemread -> console; pr -> updaterlconsole);
would be wrong because the value of itemread is a standard function
and the system protects it and will not allow its updater to be altered.

, However, if we partially apply no arguments into itemread we get a new
function whose updater can be assigned to.
vars console; itemreadi; %) -): console; pr -> updatericonsote);
console () -> console ().
1 (input)
1 (output)
2 (input)
2 (output)

CHANGING THE INPUT OR OUTPUT DEVICE
There are several kinds of repeaters and consumers for input and out­
put. First they may produce either a character or an item, such as a
word or unsigned number. Secondly the source or destination may vary,
for example, it might be the console, or paper tape, or disc.
One source, normally the console, and one destination, normally the
console, are taken as standard for any implementation of POP-2. When
the user starts to use the system it compiles his program and reads
data from the standard input device. He may later cause program to
be compiled or data to be read from other devices, but there must be
some means of communication specified a priori. Likewise his results
come out on the standard output device until he decides to use some
other device.
The standard variable cucharout has, as value, a consumer for output of
characters which enables the programmer to define his own output
routines for nonstandard output. In fact all the standard output func­
tions such as pr and nl use the variable cucharout. It normally has as
its value the standard function charout for output to the console. All
that is necessary, therefore, to cause a program to output its results
to some device other than the console is to replace the current value
of cucharout with an equivalent function for the device required. The
assignment "charout -> cucharout" can be used to restore output to the
console. This is done automatically if an error occurs.
There is a standard function popmess (short for 'pop message') which
produces as result character repeater and/or consumer functions for
devices other' than the console. To cause further output to be printed
on a line printer with the heading, say,
[xyz program results]
we have only to execute the assignment
poprnes s ([lp80 xyz program results]) -> cucharout;
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assuming lp80 is the appropriate device name for the line printer.
The available list of device names and the layout of the arguments of
popmess may differ from one installation to another. Because devices
other than the console may be shared among several users, popmess
must first check that the line printer is not already in use before
returning with the character output function for the line printer. The
device is returned to the pool when the output file is closed by out­
putting the item termin, This can be done by executing the statement

pr'(termin)
After this the device is again available for other users, and any attempt
to continue outputting to the line printer will result in an error.
To restore output to the console, it is not necessary to call popmess,
because the console is permanently allocated to the user. The charac­
ter output function for the console is eharout and it is only necessary
to execute the assignment
eharout -> eueharout
after which further output appears on the console.
Now consider how sum, defined earlier to read .items and add them up,
might have been defined to process information from any input such
as paper tape or cards. Clearly the input device must be made a
parameter of sum. The definition might be written thus:
function sum i;
vars x total,' kO: 0 -> total;
kl: .o -> x;
if x = "end" then prttotal): goto ko close
total + x total; goto kl
end

Nowwhen sum is called it must be given as a parameter a repeater
function to read items from the chosen device. To read from the key­
board just like the first verston, it is called by executing the statement
sum (itemread)
For any other device, a function corresponding to itemread is needed.
Just as popmes s gets character output functions for output devices,
it also gets character input functions for input devices. To obtain
a character input function for a paper tape
[aoe data]
the following must be executed
popmess ([ptin abc data]) -> x

which makes x a character input function. Successive calls of x pro­
duce the successive characters of the paper tape file. x is not, how- '
ever, a suitable argument for sum, which needs an item repeater, that
is, item-producing function, rather than a character repeater.
There is a standard function incharitem which takes a character
repeater and produces as result an item repeater. Thus the value of
incharitern (x)
is a function just like itemread, but which reads its data from a source
other than the 'console keyboard. In fact itemread could be defined as
incharitem (eharin) except that, as is explained below, itemread always
reads from the current source of POP-2,text and not just from the
console.
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Having thus opened a paper tape file for reading, the function sum can
be called to process it by executing the statement
sum (incharitem (x)

alter which the tape will be read and whenever the word "end." is
encountered, the accumulated total will be printed on the console.
Attempting to process beyond the end of the file will cause an error
message which terminates execution of sum.

EXECUTING POP-2 TEXT FROM DEVICES OTHER
THAN THE CONSOLE.
The POP-2 system normally reads and executes POP-2 text from the
console keyboard. It is convenient to be able to input and execute text
from faster devices in order to input established function definitions
and data structures. Some knowledge of the mechanism involved in
reading POP -2 text helps in the understanding of how other devices can
be used.
The standard function compile takes a character repeater as argument
and executes the sequence of characters as POP-2 text. Using compile,
all that is necessary to execute POP-2 text punched on a paper tape
file called, say, [xyz prog] would be the two statements
popmess (rptin xyz prog] -> Xi
compile (x);

The POP-2 system takes its input from a list called proglist . Because
items are normally typed in at the console, proglist is normally defined
to be a dynamic list in which the rule for getting the next item is
actually an item-producing function such as incharitem (charin). A
simple demonstration of this mechanism can be obtained by typing
[2 + 2 ->] <>proglist -> proglist;
which joins the list of four items [2 + 2 =>] onto the beginning of
proglist. When the assignment has been executed, the system returns
to getting its input from proglist, thus executing the statement

2 + 2 =>
and printing the result
**4
on the console.
All that is necessary to make the system accept POP-2 text from any
source is to turn the source into a list (probably a dynamic list) and
[oin it onto the beginning of proglist. It was shown that incharitem
(x), where x is a character input function obtained from popmess , is an
item-reading function. The standard function fntotist can therefore be
used to turn it into a list ready for joining onto proglist. The standard
function compile which facilitates this could be defined as follows:
function compile x;
fntolistiincharitemix) <>proglist -> proglist
end
The function item read actually removes items from the head of proglist.
It follows that while a program tape is being compiled, execution of
itemread causes items to be read from the paper tape file. The paper
tape file can therefore consist of exactly the same information as
would by typed directly on the keyboard.
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The input mechanism described above may appear rather complex. It
does, however, provide the user with access to information being pro­
cessed by the POP-2 system. For example, it would be very easy to
execute a POP-2 program on paper tape in which occurrences of the
word function had been abbreviated by the word fn . The following would
suffice:
popmess([ptin xyz prog]) -> x;
function edit i;
vars k; iO -> k;
if k == "fn" then ''function'' else k close
end;
fntolist(edit(o~ incharitem (x) 0.6» <>proglist -> proglist;
Having opened the paper tape file and assigned the appropriate
character input function to x, an auxiliary function edit could be defined.
The function edit takes an item-reading function and produces, as
resuit, an item. By partially applying edit to the item-reading function
for the appropriate input device, a function results which,when called
successively, yields the successive items of the file, with editing where
appropriate. This is then in a form which can be turned into a dynamic
list by fntolist and joined to the start of proglist. A somewhat different
way of editing input is given in the program 'POPEDIT' described in
the Program Library (see Part 4). It edits character repeaters rather
than item repeaters.

EXERCISES
1. Write a function to print a neat table of sqrt (x*x+y *y) for x and y
from 0 to 8 in steps of 1with 3 places of decimals.
2. Write an integer repeater to produce the even integers
0,2,4,6,8, ...
3. Write a function which takes an integer repeater and produces a
real repeater, giving the square roots of the integers.
Write onewhtch produces an integer repeater being the sums of
successive pairs of integers.
4. Write a function printprog to enable one to print out a program on
any device while it is being compiled. Thus typing
compile (printprog(r. c)

reads text using the character repeater r for input and also prints it
on an output device which has the character consumer c.

21. CAN eEL AND SEe T ION S
There are times when we wish to get rid of an identifier, perhaps
because we wish to use the same identifier for some other purpose.
We may do this by writing
cancel x ;
We must distinguish between the identifier x which is cancelled and
the variable associated with this identifier, that is, the actual pigeon­
hole in the machine used to hold the value. This pigeonhole is not
destroyed and indeed any functions already compiled which refer to
it go on doing so, but we may no longer refer to it by including the
symbol x in our program. If we declare x again by.vars x; a new
pigeonhole (variable) will be created quite separate from the old one.
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Thus one use of cancelling is to ensure that functions already compiled
which use x cannot be interfered with by using x for any other purpose.
For example,

function sigma f n =>Sjvars i; 0 -> s; 0 -> i;
loop: if ie-cn then f(i) + S -> s ti + 1-> i; goto loop;

end;
cancel fin s;
vars n; 3 -> n;
sigma(lambda x ;xin end, 10) =>

gives the expected sum of cubes but would have gone wrong (giving a
sum of tenth powers) if we had not cancelled n . As explained in the
section on partial application, instead of cancelling n we could have
bound in the value of n by writing

sigma(lambda xin; x n end (0/0 nOlo), 10) =>

It may be that we just want to get rid of such an identifier (or, more
precisely, break its association with certain variables) temporarily
and revive it later. W.e can do this by writing part of the program as
a section.
Any identifiers declared in this section of the program then have no
connection with those used outside it, as if their names had all been
systematically changed so as to be distinct from identifiers outside.
Thus

vars x y; 1 -> x; 2 -> v;
section;

vars x y;100 -> x;200 -> y
X +v =>

**300
endsection;
x + y =>
**3

just as if it had been written

section;
vars x999 y999; 100 -> x999; 200 -> y999;

x999 + y999 =>
**300

endsection;

A section may have a name, and we could have written
section addi ti on;
Of course we may wish to use some functions or other data defined
in the section later on outside, that is, we might want to declare some
identifiers inside the section and then have them usable afterwards
outside. Such identifiers are called 'external identifiers '. Here is an
example
function t: end;
vars x y;l -> x: 2 -> v ;
section first =>gjV3XS y;3 -> y;

function h ; .•...•. end;
function g z ; ... x ... y .•• f ... k ... end

endsection;
g(x+y) =>
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g is an external identifier declared in the section named first for use
afterwards outside. Note that the function h defined in the section could
not be used outside, nor could the y in the section have any connection
with the y outside, but the x and the f used in g are the same as the
ones outside since they have not been redeclared. We can get rid of
the identifiers produced by a section such as first by just typing cancel
first.
If one is writing functions for inclusion in a program library so that
they may be incorporated in other people's programs, it is wise to
enclose them in a section so as to avoid any unintentional clash of
identifier s .
Sections can also be used to solve the problem associated with using
a function with non-local variables as a parameter of another function
(this problem was discussed in section 19 'Partial application'). We
simply make the definition of the function which has a function para- .
meter into a separate section. Then its local identifiers cannot clash
accidentally with those used outside. Using the same example as
before, we write
section => apply1 ton;

function apply1 ton n f; vars i; 1.-'-> i; .
loop: if i =< n thenf(i);i:+1-> i;goto loop close

end' .,
endsection;
vars i; 100 -> i;
function g x; pr(x+1)
end; ,
apply1 ton(3, g);
101 102 103
The global i which receives the value 100 is now quite distinct from
the i declared in apply1ton and we get the desired results.

22. MAC R 0 SAN D POP V A L
Sometimes a particular piece of program has to be written over and
over again with only minor changes. UsuaUy one can define a function
to effect this piece of program, making the changeable parts para­
meters. Sometimes this is undesirable, for example, if the time taken
to enter the function and exit from it would slow the program down
considerably, or it is impossible, for example, becaus.e the changeable
parts are not suitable for making into function parameters. For
example,
i1 dataword(x) = "complex" then
might occur frequently and although we could define
function dcomplex x; dataword{x) = "complex" end
speed might be too important to allow this. An example where it is
impossible to define a function would be if the following statement
occurred frequently:
0-> i ;
loop: if i = n then .... ; i + 1 -> i ;goto loop close
We cannot make the statements represented by .... into a parameter
(unless, clumsily, we make them a lambda expression with no argu­
ments).



Macros and Popual (55

This difficulty can be overcome by defining a macro, a means of
generating a piece of POP-2 text during compilation, possibly with
some variations. A simple example with no variation.
macro zeroxyz; macresults([O -> x;O -> y;O -> z;]) end;
From here on, whenever the identifier zeroxyz appears in the program
it is as if 0 -> x; 0 -> y ;0 -> z; had been written instead. Note that
the text is enclosed in list brackets and made the argument of the
standard function macresulis,
In fact a macro is just a function with the curious property that it is
executed during compilation. To get some variety we may make the
macro read the word or words which follow it and, for example, place
them somewhere in the output list.
macro initxyz; vars a; .itemr ead -> a

macresuUs([o/ a ,,-> II "z" "," a "_>" "y" n,1o, ", . , ., '"
" a "- >" IIz" fl." 01])" , " 10end;

initxye 3;
x,y, z =>
**3,3,3

Our fir st example above could be handled by
macro dcomplex; vars x; . itemread -> x;
\ macresultsiidataword (] < > [0/0 x 0/0] < > [) = "complex'''1)

\: if dcornplex y then •.

Note the limitations of macros, this one would not enable us to write
if dcomplex hd(y) then
The reader may like to define a macro cycle and a macro repeat so
that we can write
cycle i = n;

repeat i
instead of
0-> i;
loop: if i < n then ... ;i+ 1-> i;goto loop 'close
or, better, instead of '
loopif i < n then ... ; i + 1 - > i close
Just as one may occasionally want to execute program at compile
time, using a macro, one may occasionally want to compile program
at execute time. A standard function popuai is provided for this
purpose. It takes a piece of program in the form of a list, and compiles
and executes it. The list should have the special word goon (go on) as
its last item and when this is reached pop val exits and the computation
continues normally. The items in the list are words, numbers, and
strings, for example,

popval([x + y => goon]);
popval([ ISO far so good' _> status;goon}};
popval([function f x; x*x end;f(9) => goon]);

Although popual can be used inside a function the program text is to
be thought of as if it had occurred at the outer level of the program,
not in the body of any function (but still in the current section). Any



56) Part 2: A Primer 0/ Programming

variables mentioned take their most recent values however, so that
in the first example x and y might refer to local variables of the
function in which pop val "is applied.
Naturally if we know in advance the piece of program to which popual
is to be applied we might as well just write in that piece of program,
so that popual is most useful when this is not knownuntil execute time,
for example, a program which asks its user to type in any arithmetic
expression as data and then compiles it as a function and numerically
integrates it for him.
If the operating system of the particular implementation allows it, a
means of interrupting program execution may be provided, for example,
by depressing a special key on the console. Any text typed in up to
the word goonwill then be executed, just as if it had been the argument
of a popual statement inserted at that point in the,program. This
enables us to examine the state of a program and perhaps change the
values of some variables, and then let it continue.

EXERCISES
1. (a) Write a macro pl function so that writing

plfunction / x ;

for any / and x is equivalent to writing
funcfion / x; x =>

so long as a variable pfun is set to true, otherwise equivalent
to function / x;
(Youcould use this as an aid to finding mistakes in a program.)
(b) Elaborate pIfunciitm to deal with functions with any number of
arguments. Call it pjunction.
2. Write a macro -» so that
e-»x,Y,z;
is equivalent to
e'-> x; x -> Y,; Y -> z;
3. Use popual to write a function to read in an arithmetic expression
in the variable x from the console and print its values for integers x
between 1 and 10.

23. J U M P 0 U T

The following piece of POP-2program is illegal.

function / x;
if x=O then goto error close;
(x + I)/x

end;
function g Y;

j(y) + f(yj 3) =>
goto last;

error: 'zero error' =>
last:
end

This mistake is that a goto statement cannot refer to a label outside
the function 'body in which it occurs. In this case we can obtain the
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desired effect by using a special standard function jumpout . Wewrite,
for example,

vars error;
function f x;

if x=o then error( ) close;
(x + 1)/x

end;
function g y; jumpout(lambda; 'eero error' => end, 0) -> error;

f(y) + f(yj 3) =.>
end',
Thus instead of a label error we have a function error of no arguments
and no results produced by jumpout from the function lambda;
'zero error> => end. In fact, error is identical to this latter function
except that, as soon as it has been executed, execution of g is termi­
nated instead of execution of f being resumed as one would normally
expect. Thus instead of the normal exit mechanism error has a
special 'fire-escape' which enables it to climb out of g when it is
called (g is the function where error was created by jumpoui).
The second parameter, 0, of jumpout, indicates that the function
produces no results. A case where [umpout would be applied to a
function with a result would be the successful conclusion of a search
process. For example, given a binary tree represented by a list
structure with numbers at the tips we might want to find some number
greater than n on it.

function search t n; vars answer;
jumpout(lambda x ;x end, 1) -> answer;
function test t;

if notiatomit) then test(t. hd)_;test(t. tl) close;
if t > n then answer(t) close

end;
. test(t); undef

end;
vars tree;
(1::6)::(1::4) ->. tree;
search (tree, 3) =>
**6
search(tree, 10) =>
**undef

The note on page 279 describes a more general jump facility.

24. S 0 M E USE F U L S TAN D A R D
FUNCTIONS

There are a few facilities which logically would have been introduced
in earlier chapters but were omitted in order not to burden the descrip­
tion with too much detail.

BIT MANIPULATION
One sometimes wants to perform operations on patterns of bits
(binary digits 0 or 1) such as taking the logical and of two patterns,
for example, logical and (0011,0110) = 0010,or the logical or, for
example, logical or (0011,0110) = 0111.
Integers may be regarded as such bit-strings, the number of binary
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digits allowed depending on the largest integer allowed by the imple­
mentation. Standard functions logand, logor , and lognot are provided.
Thus
logandll B, lognot(logand(3, 6)) =>
**13

The integers may also be written in binary or octal by prefixing 2: or
8:, thus
2:0011 =>
**3
8: 77=>
**63

The standard function logshijt allows shifting the pattern to the left
direction by plus or minus n binary places
logshijt(2:D011, 3) =;>
**24
logshijt(8:77, -2) =>
**15

BOOLEAN FUNCTIONS
The symbols and and or used in conditional expressions are not
functions because they do not evaluate both their arguments. They are
better regarded as abbreviations for certain kinds of conditional
expressions. The corresponding functions are provided, as standard,
called booland and boolor. Thus, for example,
boolanditrue , boolorlfalse, true))
has value true.

FNPROPS, M'EANING AND _IDEN TPROPS
It is sometimes useful to attach some arbitrary piece of information
to a function or a word, for example, one might attach to a function the
number of parameters it requires. Standard doublets fnprops and
meaning are provided for this purpose.
3 -> fnprops (j);
fnprops (j) =>
**3
"noun" -> meaning("house"); "verb" -> meaning("lives");
There is also a standard function to find properties of an identifier or
syntax word, for example
vars operation 6 i;
ideniirrops ("l") =>
**6
identprops ("then ")
**syntax

DATALENGTH AND DATALIST
Standard functions are provided to find the number of components in
a strip or record and to produce a list of these components. Thus
vars characters; initc(l 0) -> characters;
datalength( characters) =>
**10
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If consper constructs a record
datalist(consper( "smith II, 31, 0») =>
**[smith 31 0]

APPENDIX TO PRIMER

ANSWERS TO EXERCISES
Note. The function next appears occasionally instead of dest. This is
a mistake since next is not a standard function in revised POP-2 (it
was previously a synonym for dest).
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1~.19H~S. 14 MAR 1970.

:DRA BIGSHOOT]

COHMf:NT
THIS IS THE FIRST or A SET or rILES or POP-2 TEXT WHICH ARE
THE ANSWERS TO THE E~AMPLES IN THE PRIMER. ALL THF.FilES
CAN BE COMPILED: WHERE THE QUESTION ASKS YOU TO WRITE A
FUNCTION THIS FUNCTION WILL THEN BE READY TO USE: OTHER
ANSWERS ARE GIVEN AS COMMENTS.
THE ANSWERS ARF. or COURse, NOT UNIQUE: WE HAVE TRIEO TO
~AKE THEM STRAIGHTFO~WARD RATHER THAN ELF.GANT OR EFFICIENT.
~H~Y HAVE ALL'REEN TESTED ON THE POP-2 SYSTEM AT MACHINE
INTELLIGENCE EDINBURGH, BUT NOTlrlCATION or ANY ERRORS OR
O~ISSIONS WOULD BE WElCOME.
TAPES OF THESE rilES WilL BE HADE AVAILABLE wiTH THE pOP-2
SOFTWARE SYSTEM.

.- DB.

~RUCE ANOERSON EDINBURGH JULY 1969 :
COMMENT
NO EXERCISES IN SEcTION 1}

CO~MENT
2.1 (A) (2.5.2)/(-1.5-4)=>

(8) 1+2-(5-3)=>
(C) SQRT(3t2 + 4'2)=>
CD) (SIN(0.13»t2 + (COS(0.13»t2 =>
(E) ARCTAN(1.5)=>

2.2 CA) ~4.0
(8) 1.16
(C) 42.0

2.3 (A) ) MISSING
(B) SHOULD BE () AROUND THE 0.5
(C) THE EXPONENT MUST ~E AN AN INTEGER
(0) 6. IS NOT ALLowED
;
COMMENT

3.1 VARS Z; X->Z. y->x: z->v:

3.2 CA) .-11
(R) .-6,78,1~

3.3 VA~S TRIG:
SQRT(SIN(X+A»->TRIGJ
TRIG-TRIG=>,.,
CO~MENT

4.1 14

4.2 CA) SWAPS THE VALUES OF X AND Y
(8) SWAPS THE VALUES OF THE TOP TWO ITEMS ON THE

STACK, THOUGH IF THERE ARE LESS THAN TWO ITEMS ON THE STACK A
ERROR WILL RESULT - IT IS CAL~ED STACK UNDFRFLOW

4.3 VARS ARC:
->A ->B ->CI
A,R,C:

COI4HENT

5.1 HE~E ARE TWO FUNCTIO~S TO DO QUADRATIC EQUATIONS, TH~ SECOND
ONE AVOIDING DOING THF SAME CALCULATION TWICE :

rUNCTION ROOTS A 8 c;
(-8 + SORTCBt2 - 4*A*C))/(2.A"
(-8 - SQRTCBt2 - 4.A.C»/(2-A)

END:
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rU~CTION ROOTS2 ABC:
VARS 1I VJ
-R/(2.A)->U:
CSQRT(Bt2 - 4.A.C»/(2.A). -)Y:
U+Y.U-V

ENDJ

CO"1MENT
S.2 ."144

5.3 TY~E APPLY1TONC31,PRNEWEXPR~ AFTER DEFINING THE FOLLOWING
F'U'4CTIONS.;

F'UNeT I ON F."XPRX:
1 + X + O.5.Xt2 + (1/6).X'3

END;

F'U~CTION PRNEWEXPR v:
E~PRC(V-l)/l0)=)

ENO:

CO •••MENT
5.1; F'U~CT'ON ROOTS3 ABC:

VARS lJ v:
IF A=O THEN -e/R,O,-C/B,O EXIT:
8'2 - 4.A.C ->V: -B/(?A)-)U:
IF' V)=o THEN SQRT(V)/(2.A)->V: lI+V,o,u-v,o

ELSE SQRT(-V)/(2.A)->V: U,y,U,-y
CLOSE

END:

CO"1MEI\IT
5.2: F'UNCTION ISOK N:

IF 1\1(100 AND ERASECNI13)=0 OR ERASE(NI14)=O OR ERASF.( NI15)=0
THEN TRUE
ELSE FALSE

CLOSE
ENO:

CO"lMENT
F'U~CTION TAX I;

IF 1 =< 150
ELSF.IF' I =< 400
ELSEIF J =< 600

TH~N
THEN
THEN
ELSF.

o
(1-150)110
?5 + (1-400)/4
75 + (1-600)/3

CLOSE
END:

COlotMENT
5.4: F'U~CTION OROER3 X Y l;

IF X)Y THEN y,X->V ->X CLOSE;
IF l(X THEN l,X,Y

ELSF.IF l)Y THEN X,Y.l
ELSE X.l,Y

CLOSE
END:
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CO"lMEtH

7.1; ~~~CT'ON TAR2 rUN XLO ox XHI YlO OY YHI:
VARS '< Y VALUE;
Xl.O-)Xi YlO-)Y:

COL: IF X)XHI THEN RETURN ELSE NL<l) CLOSE:
~ow: IF Y)YHI THEN YLO->Y: X+OX->XI GOTO COL ClOSF:

FUN(X,Y)->V~LUE;
IF VAlUE<10'THF.N SP(2) ElSEIr VALUE<100 THFN SP(l) CLOSE;
PR(VAlIJE)J SP(?):
Y+DY->Y:
GOTO ROW

rU~CTION TIMtS x Y: X.V END:

CO~MENT TO IlSF.HtF FUNCTION AS ASKED IN THE QUESTION, TYPF.
TAB?(TIMES,t,1,jO.1,1.10):

7.2; FU~CTION ASS Xi
IF X(O THEN -x F.lSE X CLOSE

ENO:

~U~CTION TE~MS N EPSILON:
VARS K XK SQRTNI
O-)~: 1-)XK: SQRT(N)-)SQRTNI

LOOP: It ARS (SQRTN-XK) =<EPS IlON THEN 1(; RETURN CLOSE;
O.S.(XK + N/XK)-)XK:
K+1-)I<;
GOTO lOOP

ENO:

CO'1MEtH
7.3: F'U~CTION APPlY1TON N Fi

VARS INT: l-)INT:
LOOP: r<INl>:

INT+l-)INT:
It INT=<N THEN GOlO lOOP CLOSE

END:

COMMENT
~o EXERCISES IN SEcTION 8:

CO~MENT
?1 (A) OUT(20,"POUNOS"):

~o POUNDS,PlFASE OUT(~O,"nOlLARS");
40 DOllARS,PlEASE

(9) ••TRUE

}.~·:rU~CTION rlRSTlFTTfR WORD,
VARS N:
C~AqWORn(WORD): -)N:

LOOP: IF N=1 THEN ExiT:
ERASE(); N-j->N;
GOTn lOOP

EIIJD:

tU~CT'ON ORDER WORD1 WOR02~
F'IRSTLETTER(WORnl)->WDR01:
F'JRSTLF.TTF.R(WORD2)->WOR02:

IF WORU1>WORU2 THEN "AFTER"
ElSFJr WORD1=WORD? THFN "SAME"

F.lSE "BEFORE"
CLOSE

E"JD:



Some Useful Standard Functions (63

CO~MFNT
10.1; FUNCTION E~ISTS XL P:

LOOP: IF NULL<XL) THE~ FALSE EXITJ
IF PCHnCXL» THEN THUE: RETURN

ELSE TLCXL)-)XL: GOTO LOOP
CLOSE

E~I):

COMMFNT
lO.2: FUNCTION APPEND X XL:

XL<)(X: :Nll)
E~n:

FUNCTION DFLETE X XL=)RESULT:
NIL->RESIJLT;

LOOP: IF NlILL(XL) THEN EXIT:
IF NOTCHO(XL)=X) THEN APPENDCHD(XL),RESULT)-)RESULT:CLOSE
TL (Xl) -)XL;
QOTO LOOP

COMMENT
10.3: FUNCTION ASSOC X XYl =) Vi

VARS Xl:
LOOP: IF NIILL(XYL) THEN UNDEf'-)Y

ELSE HO(XYL)-)X1J TL(XYL)-)XYL:
IF X1=X THEN HD(XYL)-)Y

ELSE TL(XYL)-)XYL:
GOTO LOOP

CLOSE

CLOSE

FUNCTION MAKEASSOC X Y XYl =) X.Yl1:
X::(V::XYL)-)XYLI

E~IJ:

VARS PfnCE:
[~AGS 50 MILK 11 SUGAR 15 BEER 28 CARROTS 401-)PRICE:

FUNCTION COST LIST =) TOTAL:
O->TOTAL:

lOOP: IF NtlLL<LIST) THEN EXIT:
AssoceHOCLIST),PRICE)+TOTAL-)TOTAL:
LIST.TL-)LIST:
r,OTO LOOP

EN!):

COMM~NT
10.4: FUNCTION SAME XLi XL?:

LOOP: IF NULL(XLt) OR NULL(XL~) THEN XL1=XL2: RETURN CLOSE:
IF HO(XL1)=HO(XL2) THEN TLeXL1)-)XL1:

TL(XL2)-)XL2: GOTO LOOP
ELSE FALSE

CLOSE
E~O:

FUNCTION WANTED CRIMLIST DESCRtP:
VARS SUSPECTS THISONF.: NIL-)SUSPECTS:

lOOP: IF NUlLeCRIMLIST) THEN SUSPECTS EXIT:
HU(CRIMLIST)->THISONE: TL(CRIMLIST)->CRIMLJST:
IF SAME(TLCTL(THISONE»,OESCRIP)

THEN eHDCTL(THISONE»)::SUSPECTS-)SUSPECTS
CLOSE=
GOlO LOOP
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VM~S CRIMINALS;
[(NAME JONES HAIR SANOY EYFS BROWN HEIGHT 65J
(NAME CRIPPEN HAIR NONE EYES GREEN HEIGHT 61J
(~AME POP HAIR vERY EyES TWO HEIGHl 69]
(NAME DIZ7Y HAIR SANOY EYES BLUE HEIGHT 66]
(NA~E B~RT HAIR NONE EYES GREEN HEIGHT 61Jl-)CRIHINALS:

C:JMMENT
10.5: r~NCtiON MFMRER XX XXL:

LOOP: -IF XXL.NULl THEN FALSE
FlSEIF XX=XXL.HO THEN TRue

ELSE XXL.TL-)XXL: GOTO LOOP
CLOSE

E~f):

FUNCTION RIGUNION XLL:
VARS ANSWER: NtL-)ANswER:

LOOP: IF XLL.NULL THEN ANSWER fXTTJ
ANSWFR(>XLL.HO-)ANS~ERJ
XLL.TL-)XLL:
Goro LOOP

FUNCTION PRUNE XXL;
VARS XXL?: NIL-)XXL2:

LOOP: IF XXL.NlJLL THEN XXL2: RETURN
ELSEIF NOTCMEMREReXXL.HD.XXL.TL»

THENCXXL.HO)::XXL2-)XXL2:
CLOSE:

XXL.TL-)XXl:
GOTO LOOP

VARS rLlGHTLJ~T:
[Enll\l-[LIV) LIV fLOND MANCHJ MANCH (LOND EOIN]
LOND (RRIST TRURO) BRIST (TRUROJ TRURO (PARIS llVJ
PARIS rLONOJJ->FLIAHTLIST:

FUNCTION ASSOCFLIGHTS Xi
ASSOC()( ,FLIGHTI_ 1ST)

END:

FJNCTION REACHABLE PLACE CHANGES:
VARS CURRENT;
PLACF.::NIL-)CURRFNT:

LOOP: PRUNI:=«BIGlJNIOI\I(MAPLtST(CURRENT.ASSOCFLIGHTS»)(>CIJRRENTl
->C~RRENT:

IF CHANGES= 0 THEN CURRENT
ELSE CHANGES-l-)CHANGES:

GOTO LOOP
CLOSE

"
CJMMI-:NT

11.1 TARClAMROA X: X.X - ?x - 1 END,O.I,10n):

C()~MENT
J2.1; FJNCTION HCF N1 N2:

IF N1(N2 THEN ~CF,(N2.Nl)
ELSEIF ERASE(N111~?)=O THEN N2

ELSE HCF(N2.ERASE(Nl/IN2»
CLOSF

F"O;
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FJNCTtON HCF? Nl N?;
VARS KF.M:
IF Nl<N2 TH~N Nl,N2 -)Nl-)N2; CLOSE;

LOOP: FRASF.(NlIIN2)-)RFM:
IF REM=O THEN N2 ELSE N2-)Nl; REM·)N2; GOTO LOOP CLOSE:

F.~D:

CJMMi;=NT
l2.2: FJNCTION MAPLlST1 LIST FUN;

IF LIST.NULL THEN Nil
ELSE F"UN(LIST.HD)::MAPLIST1CLIST.TL,FIlN)

CLOSE
E~n;

COMMENT
12.3 ••10,(4 3 2 1]

\

12.4: FUNCTION EXISTS XL P;
IF NULL(XL) THEN FALSE

ELSEIF P(HO(XL» THEN TRUE
ELSE EXISTS(TL(XL),P)

CLOSE

FUNCTION DELETE X XL;
IF XL.NULL THEN NIL

ELSEIF" XL.HO=X THEN DELETE(x.XL.TL)
ELS~ (XL.HD)::DELETE(X,XL.TL)

CLOSF

CO"tMENT
13.1: V~RS OPERATION 7 1= ; .

LAMBDA LEFT RIGHT: NOT(LEFT=RIGHT) ENO-)NONOP 1=

COMMENT
14.1: F~NCTION MAKEASSOC X Y XYL => XYL1:

VARS XYLP; XYL·>XYLP;
LOOP: IF tYLP.NULL THEN X::(Y::XYL)·>XYL1:

ELSEIF XYLP.HD=X THEN Y-)XYLP.TL.H01 XYL·)XYL1:
ELSE XYlP.TL.TL-)XYLP; GOTO LOOP

CLOSE
E~[l;

CO"1MENT
14.2 •• 1,~,1,2

14.3: FUNCTION EQFRONT XLI XL2:
CO"1MENT 'TRUE IF XL2=XL1<>XL';

J F NULL< XL1) THEN XL2, TRUE
ELSErF NIJLL(XL2) THEN FALSF
ELSEIF Hn(XL1)=Hn(XL?) THEN EQFRONT(TL(XLI),TL(XL2»

ELSE FAl.SE
CLOS.E;

E~n:

F~NCTION EDIT XL OLD NEW;
VARS RFM'AINS:

IF NULL(XL) THEN NIL
FLSEIF tnFRONT(OLO,XL) THEN -)REMAINS;

NEW~>EnIT(REMAINS,OLn.NEW)
ELSE (XL.HO)::EDIT(XL.Tl,OLn.NEW)

CLOSE
ENn:
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COMMf-NT
14.4: FuNCTION ISPRIME N:

VAQS OIV: 1->01'1:
LOOP: nlv+1-)DIV:

IF ERASECNI/DIV)=O THEN FALSE
ELSEIF 61V.OtV)N THEN TRUE

ELSE GOTO LOOP
CLOSF.

VARS LASTNIJM LIMIT:

FUNCTION N~XTPRIME:
LOOP: LASTNUH+l-)LASTNUM;

IF LASTNUM)LIMIT THEN TERMIN
FLSElr lASTNlIM.ISPRIHE THEN LASTNUM

ELSE GOTO LOOP
CLOSE

FUNCTION MAKFPRLJST N;
O-)LASTNlIM:
N-)LIMIT;
FNTOLIST(NEXTPRIME)

E~O;

COMMFNT
15.1: VARS VOF XOF UF.STPOINT CONSPOINT V30F V20F V10F nESTTRJANGLE

CONSTRIANGLE:

RECOROFNS("POINT",[O O])-)VOF -)XOF -)DESTPOINT -)CONSPOINT:
RECOROFNS("JRIANGLE",[O 0 OJ>-)V30F -)V20F -)VI0F .

-)OESTTRI4NGLE -)CONSTRIANGlE:

rU~CTION OIST PI P2:
SQRTC(XOrCP1)-XOF(P2»t2 + (YOF(P1)-VOF(P2»t2)

E~n;

FuNCTION ARS X:
IF X<O THEN -X ELSE X CLOSE

E~n;

VARS OPERATION 7 == :
LAMBDA A BJ ABS(?(A-B)/(A+S» =<0.001 ENO -)NONOP --

FUNCTION EOUtLATFRAL TRIANGLEi
VARS V1 '12 '13;
VI0F(TRI4NGLE)-)Vl: V20fCTRIANGLE)-)V2: VJOFCTRIANr.LF)-)VJ:
800LANOCOISTCV1,V2)==OIST(V2,V3),OIST(Vl,V?)==DISTeVl,V3»

E·\Hl:

VARS PPl PP2 PP3 PP4 fRl TR2:
CO~SPOINT(O,O)-)PPIJ CONSPOINTC2,0)->PP2:
CONSPOIN~(l,SQRTC3»-)PPJ; CONSPOINTC3,3)-)PP4:
CONSTRIANGLECPP1,PP3,PP2)-)TR1:
CDNSTRIANGLECPP3,PP4.PP2)-)TR2:

COMME=NT
15.2: VARS ARR TO DEP FROM CODE DESTFLIGHT CONSFLIGHT FLIGHTS r,;

REr,ORDFNS("FlIGHTs".ro 0 0 0 0 J)-)ARR -)TO -)OEP -)FROM -)CODE
-)OESTFLIGHT -)CONSFLIGHT:

CONSF'LJGHT-)C,
(~ CC1,~EDIN".0100,"LONO",0200),

C(2."LOND",0210,"PRIS",0310),
C(3,~LOND",0210,"RERL·,0310),
CC4.·EOIN",0030,"BERL",015~),
CC5."RERL",0300."MOSC",0500) "l->FLIGHTS:
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FUNCTION GETFROH PI Tl P2 T2 FLIGHTLIST:
VARS FLIST GF rHO: FLIGHTLIST->FL1ST.
IF P1=P2 AND T1(T2 THEN NIL EXiT;

LOOP: IF FLlST.NUlL THEN "FAIL" EXIT.
flIST.NEXT->FLIST ->FHDI
IF FHD.FROM=Pl AND FHD.OEP>Tl

THEN GETFROM(FHD.TO,FHD.ARR,P2,T~,FlIGHTLIST)->Gf:
IF NOTCGF="FAILM.) THEN (FHD.CODE)::Gfs RETURN
CLOSE

CLose
GOTO LOOP

E!'4D:

COMMENT
16.1: FUNCTION MEMBER XX XXL:

IF XXl.NUlL THEN FALSE
ELSEIF XX=XXL.HD THEN TRUE

ELSE MEMBER(XX,XXL.TL)
CLOSE

END:

YARS VARLIST: rx Y Z)-)YARLIST;

fUNCTION PDIFF E ~AR;
IF E.ISNUMRER THEN 0

ELSElr E.ISWORO THEN IF E=VAR THEN 1
ELSEIr MEMBER(E,VARLIST)

THEN 0
ELSE DIFFERROR(E)

CLOSE
ELSElr E.DATAWORD="SUM~

THEN P.DIFF(SUM1(E),VAR)++POlfr(SUM2(E),VAR)
ELSEIF E.DATAWORO="PROO"

THFN PROD2(E) ••PDlfr(PR001(E),VAR)
++ PROD1(F) ••PDlfF(PR002(E),YAR)

ELSEIF E.DATAWORO="EXP"
THEN EXP2(E) ••EXP1(E)tt(EXP2(E)-1) ••PDIFf(F.XP1~E),VAR)

CLOSE
END;

fUNCTION MAKEEXP2 El E2J
~F NOT(E2.ISNUMBER) THEN DlrFERROR(E2)

ELS~lr E~=O THEN 1
F.L~FIF F.2=1 THFN Et

ELSE CONSEXP(El,E2)
CLOSE

Er-4D:

MA~EEXP2->NONOP tt;

C~MMfNT
16.2: FUNC.TION EVAl. E N:

If' E.lSNlJMBER THEN E
ELSEIF E·:"X" THEN N
FLSElf E.DATAWORD="SUM"

THEN EVAL(SUM1(E),N)+EVAL(SUH2(E),N)
FLSEIF E.DATA~ORO="PROD"

THEN EVAL(PROD1(E),N).EVAL(PROD2(E),N)
ElSEIF E.UATAWORD="EXP"

THEN EVAL(EXP1(E),N)tE~P2(E)
CLOSE

ENO:
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FUNCTION T~BKDIFF E K A 8 DELTA;
LOOP1: IF K)O THFN DtFFCE)-)EJ

1(-1-)1(:
GOTO LOOPt

CLOSE:
lOOP2: IF A=<8 THEN NL(l):, PR(A):

SP(5): PR(EVAL(E,A»f
A+I1ELfA-)AJ
GOTD LOOP2

CLOSE
E~O:

COMMENT
16.3: VARS SENTLJST; NIL-)SENTLJST:

FUNCTION NOTT SENT:
"F4678LSE"::SENT

END:

FUNCTION ADDSENT SENT:
IF SENT.HD="FA67ALSE"

THEN (SENT. TL: :FALS'e)::SENTLl ST-)SENTLI ST:
~LSE (SENr::TRUE)::SENTLIST-)SENTLIST

CLOSE
E~n;

FUNCTION LOOKUP SENT LIST EarN;
IF LIST.NULL THEN UNDEr

ELSEIF EQFN(SENT.LJST.HD.FRONT) THEN LIST.HD.BACK
ELSE LOOKUP(SENT,LfST.TL,EOFN)

CLOSE

FUNCTION LISTEQ L1 L2:
IF L1.NULL AND L?NULL THEN TRUE

ELSEJF L1.NULL OR L2.NULL THEN FALSE
ELSEIF Ll.HD=L2.HD TWEN LISTEQ(Ll.TL,L2.TL)

ELSE FALSE
CLOSE

E~O:

FUNCTION TVALOF SENT;
LOOKUP(SENT,SENTLIST,LISTEQ)

E~IlJ

VARS p20R Pl0R DES TOR OPERATION 2 ORr;
RECOROFNS("ORN,(O O)-)P20R -)Pl0R -)DESTOR -)NONOP ORr:
VAQS P~ANO P1ANO DESTAND OPERATION 2 ANOF;
RECORDrNS("AND",[O O])-)P2AND -)P1ANO -)DESTANO -)NONOP ANora
VARS P21~P PllMP DESTIMP)OPERATION 1 IMPF;
RECORDFNSC"IMP",(O Ol)-)P2IMP -)PlIMP -)DESTfHP -)NONOP IHPF;
VARS PtNOT DESTNOT, OPERATION 3 NOTF}
RECORDFNS("NOT",[O])-)P1NOT -)DESTNOT -)NONOP NOTF:

FUNCTION ORFUN Pl p2:
IF Pl=TRUE OR P2=TRUE THEN TRUE

ELSEIF Pl:FALSF. ANn P2=FALSE THEN FALSE
ELSE UNDeF

CLOSE

FUNCTION ANDFUN Pl P2:
IF P1.=TRlJEAND Pi?=TRUE THEN TRUE

fLSEIF P1=rALSE OR P2=FALSE THEN FALSE
ELSE UNDEF

CLOSE
E~O:
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fUNCTION NOTFUN P1:
TF Pl=UNOEF THEN UNDEF

ELSE NOT(Pl)
CLOSE

E:~n:

FUNCTION IMPFUN PI P2;
ORF(NOTF(Pl),P2)

E1Ijn;

F'JNCTION TVAL P:
IF P.DATAWORn="PAIR" THEN TVALOFCP)

FLSEtF P.DATAWORD="NOTM
THEN NOTFUNCTVAL(P1NOT(P»)

FlSEtF P.DATAWORD="OR"
THEN ORFUN(TVAL(Pl0RCP»,~VAL(P20RC~»)

EL SEt r P.nA T A'W0R 0 = IIAND"
THEN ANbFUN(TVAL(P1ANDCP».TV~L(P2AND(P»)

ELSElF P.DATAWORn="IMP"
THFN IMPFUNCTVALCP1IMPCP».TVALCP2tMP(P»)

CLOSF
E'JO:

CDMMFNT
17.1 T~E FUNCTIONS ASKED FOR ARE ISWIN ANn PLAY:

FUNCTION LINE , 01 J OJ 80ARn FUN:
VARS S1 52 S~:
R04RD( I•.J)->51:
~OARD(I+nl,J+DJ)->S2'
ROAROCI+~.01,J+2.DJ)->53J
F'UN(Sl,S?,S3):

E-'JO:

FUNCTION APPLINE5 ROARD F'UN:
VARS ROW COL x:
l->ROW:

~OWS: IF L'N~(HOW,O.l,l,aOARO,FUN) THEN -)~:
(XROW,X~) RETU~N

ELSEtF ROW<3 THEN ROW+1~)ROW: r,OTO ROWS
CLOSE::

l->COl;
COLS: JF l[NF(1,t,COL,O,40ARD,FUN) THEN -)X:

[XX,COl~J RETURN
~lSETF COl<3 THEN COl+'-)COL: GOTO COlS

CLOSE:
DrAGS,: IF'LlNE(1,1.1,1,i30ARD,FUN) THFN -)X: (%X,XXl RETURN

ELSEIF' LINE(3,-1.1,t,80ARD,FUN) THEN -)X: [% 4-X.X %] RETURN
ELSE FALSE

CLOSE
E'IO:

FUNCTION wIN 51 S2 53:
IF S1=S2 AND S?=S3 AND NOT(S1="BLANK") THEN Sl,TRUE

ELSE FALSE
CLOSE

E~D:

FJNCTION GOOD 51 S? 53 CHAR;
IF Sl=CHAR AND S2=CHAR AND S~="8LANK" THEN J,TRUF

ElSEIr Sl=r.HAR AND S2:"BLANK" AND S3=CHAR lHEN 2,TRUE
FlSElr S1="BLANK" AND S2=CHAR AND S3=CHAR THEN 1,TRUE

ELSE rALSE
CLOSF

E 'J n ;

F~NCTION GOOOU S1 S2 53:
r,UOO(St,S2,S3,"NOUGHT"):

E~O:
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FLlNGTION GOOUX S1 S2 53·:

MOOO(51,S2,S3,"CROSSIt):
E~O:

F~~CTION OAOOo BOARD:
APPLINE5(BOARO,GOOOO)

E"O:

FUNCTION XAOOD BOARO;
APPLrNF.S(ROARO,GOODX)

E"O;

FuNCTION BLINE 51 S2 53:
IF Sl=ltBLANK" THEN I,TRUE
ELSEtF 5~="HLANK" THEN 2,TRUF
~LSETF 53="BlANK" THEN 3,TRUE

ELSE FAL5E
CLOSE

e"n;

FUNCTION BLANK BOARD:
APPLINF5(BOARO,BLINE)

END;

FUNCTION ISWIN BOARO:
VAI~5 ANSWER;
APPLINE5(BPARO,WIN)->AN5WERJ
IF NOT(AN5WER=FALSF) THEN IF AN5WER.HD.ISNUHBER

THFN AN5WER.TL.HD
ELSE AN5WER.HD

CLOSE:
ELSE FALSE

CLOSE
E"OJ

·r~~CTION PRN SOUARE:
IF SQUARF="CROSS" THEN PR("X")

ELSEtF SOUAHE="BLANK" THEN PR(".·)
ELSEIF SQUARE="NOUGHT" THEN PR("O·)

CLOSE
E~O;

FUNCTION DISPLAY BOARD;
VARS ROW COLi l->ROWJ l->COL:
NL< 1) :

LOOP: PRN(ROARO(ROW,COL»:
If COL<3 THEN COL+l->COLJ GOTO LOOP

ELSEIF ROW=3 THEN NL(l)
ELSE l->COLJ ROW+l->ROWJ

NL~l): GOTO LOOP
CLOSE:

E"D:

FJNCTION NFwROARO:
NEWARRAY([l l 1 3],LAMeDA I J: ItRLANK" END):

E~n:
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F~NCTION PLAY ROARDi

VARS IS OG xc, BL,
ISWIN(AOARD)->ISJ
IF NOTCIS=FAlSE) THEN (lS::[HAS WON)=> EXIT:
OGOOOCBOARD)-)OG:
IF NnTCOG=FALSf) THEN "NOUGHT"->ijOAROCOG.HD,OG.TL.HD):

DISPLAYCBOARD):
( I HAVE WON]:> EXIT:

~GOODCBOARO)->XG:
IF NOTCXG=FALSF) THEN "NOUGHT"->~OAROCXG.HD,XG.TL.HD):

nISPLAYCROARI,):
[ YOUR TURN)=> eXIT:

QLANK(ROARO)->~L:
IF NOT(BL=FALSE) THEN "NOUGHT"->BOARDCBL.Hn,BL.TL.HD):

nlSPLAYCROARO):
(YOUR TURN)=> EXIT:

r ITS A DRAW)=)
E'iO:

C::lMMt:=NT
17.2: F~NCTION ELEMENT I K M N P:

VARS SUM J: O-)SUM: j->J:
LOOP: M(I,J)*N(J,K) + SUM ->SUM:

IF J=P THEN SUM
ELS~ J+t->J: GOTO LOOP

CLOSF.
ENO:

F~NCTION MULTARR M N P:
NEWARRAYC(% 1,P,1,P %],LAMADA

ENO:

COMMENT
17.3: FUNCTION ORDER INrARR SIZ~:

VARS CHA~GES N;
PASS: O->CHANGES: l-)N:
THRU: IF INTARn(N»lNTARRCN+l)

THFN INTARR(~),INTARRCN+l)-)INTARRCN) -)INTARR(N+l)'
CHANGES+l->CHANGES:

CLOSE:
N+l->N:

IF N<SJZ~ THEN GOTO THRU
F.L5EJF CHANGES)O THEN GO TO PASS

CLOSE

CO"1"1'=NT
t8.1: FUNCTION CHLSTRJNG CHLS:

VARS N STRING:
lNITC(LE~GTH(CHLS»->STRJNG:
t->N:

LOOP: IF NULLCCHLS) THEN STRING EXIT
CHLS.NEXT-)CHLS-)SUBSCRC(N,STRING):
~I+t->N:
GOTO LOOP

E~O:

COMMENT
18.2: FJNCTInN COPYS S1 s2 Nr

VARS J L1.J
QATALENGTH(Sl)-)Ll:

-t->J;
LOOP: 5URSCRC(.I,Sl) .•.> SUBSCRCC J+N.S~) J

If J = L1 THEN ExiT
J+t->J;
nOTO LOOP

E\lO:
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fUNCTION JOIN S1 52:
VARS 512:
INITC(OATALENGTH(Sl)+OATALENGTH(~2»->S12J
COPYS(Sl.S12.0):
COPYS(S2.S12.0ATALENGTH(Sl»:
S1?

E:~O :

VARS OPERATION 2 (-):
J01N-)NONOP (-):

COMMENT
18.3: VARS S .S?;

I~tT(100)-)S:

fUNCTION A I J:
SUijSCR(I+IO.(J-l),S)

E~O

LAMBDA X I J:
X->SUBSCR(I+I0.(J-1),S)

END-)UPDATER(A):

INIT(55)-)S2:

VARS OPERAT10N 5 1111
LAMBDA AN BN; ANIIRN->AN-)BN; ANJ END->NONOP III:

FUNCTION A2 t Ji
If I(J THEN 0

ELSE SURSCR(I+l0.(J-t)-J.(J-l)1112,S2):
CLOSE

E~D:

LAMBOA X I J:
If I<J THEN NERROR"=> RETURN

ELSE X->SUBSCR(I+10.(J-l)-J.(J-1)1112,S2):
CLOSE

E~O -)UPOATER(A2):

COMMENT
19.1: VARS SORTS;

~~PLlST(~SQRT%)->SQRTS:

COMMF:NT
19.2; FUNCTION MEM8ER xx XXL:

If XXL.NULL THEN fALSE
ELSElf XX=XXL.HD THEN TRUE

ELSE MEHBER(XX,XXL.TL)
CLOSF

E1t40:

VARS MEMLOOD:
MEMBER(X( 2 3 5 7 11 13 11 19]X)-)MEHLODO:

COMMENT
19.3 •••99

•• 8

COMMF.NT
19.4A:FUNCTIO~ FUNPROD F GI

L~MBDA ~ Fl Gl1 Gl(Fl(X» ENO(%F,GX)
ENn:
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VARS OPERATION 3 •• :
FUNPROO-)NONOP •• ;

COMM'=NT
19.48 (¥ SIN(COS(S»,SINCCOS(Y»,SIN(COS(Z» ~]

COMM~NT
19.4C T~E ANSWER IS HO(TL(TLe[1 2 3]») t.E. 3,

V4RS OPERATION 4 &:
APPLY-)NONOP &:

FUNCTION TWICE F;
LAMBDA X Fr FCF(X» ENO(XFX)

E\~[l :

COMMF.NT
19.40 YIELOS TRUE IF THE HEAD OF ITS ARGUMENT IS NMONKFY"

COMMJ:NT
19.4E A~OTHER PREDICATE:

COMMF:NT
19.,; FUNCTION MAKETIMEBOM~ N:

VARS BOMR:
LAMBDA ZF.RO Tlr-1EFllSE SELF;

IF TIME=lERO A'NO FllSE=tlSET"
THFN NL(6); pR(tlFXPLOOF:tI):~L(6)

CLOSF.J
TIME+l-)FROZVALC2.SELr)

FNn(~N,1,"SETtI,UNOEF%)->ROM8:
ROMB-)FROZVAL(4.ROMB);
BOMB

E~o:

FUNCTION DEFUSE A80MB:
tlUNSETtI->FR01VAL(J,A~OMB)

E~D:

COMMENT
L9.6; FUNCTION ~APLIST2 liST FN:

VARS BILL:
LAMBDA llSTl FNI SELF:

IF NULL(LIST1) THEN TERMIN
ELSE rNl(LIST1.HO):

LIST1.TL->FROlVAL(1,SELF)
CLOSF

ENO(%LIST,FN,UNDEFX)->8ILL:
AILL-)FROlVAL(3,BILL):
FNTOL 1ST( IHLL )

E~n:

COMMENT
20.1; VARS PRL: PRtNTRL(~2,3%)-)PRL:

FUNCTION PLINE X EXPR;
V~RS Y;
Sp(1); PR()(): Sp(2);

LOOP: PRL(FXPR(X.Y»:
IF Y<8 THEN Y+1-)Y; GOTO LOOP

ELSE NL (1) J
CLOSJ;
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F~~CTION PR08 FXPR:

VARS X: l-)X:
NL(4); SP(2); PR("."); PR("Y"): SP(2): PR(n);

L~OPt: SP(~): PR(X);
IF X(R THFN X+l->~; GOlO LOOP1

ELSE NL(l): SP(2); PR("X")J NL(1);
CLOSE:

O-)x:
LOOP2: PLINE(X,EXPR):

IF X(B THFN X+l->X; GOlO lOOP2
FLSE NL(4):

CLOSE;
E~n;

COMM~NT
20.2; VARS EVF.NREP:

L4MBOA N:
N+2->FR07.VAL(1,EvENREP);
~

E~n(~O%)->F.VFNREP;

COMMFNT
~O.3; r~NCTION SORTHEP INTREP;

L.AMBflAINTREP1;
SQRT (1"tTRf:Pl(» ;

F.NO(%INTREP%)
f.~n:

rJNCTYON StJMREp INTREPJ
LAMBDA INTREP1:

t NTREP1 () + INTREP1 ()
ENO(%INTr?Ef>%)

E~n:

COMMF:NT
~.O.4; FiJNCTION ·PRINTPROG ~ C:

·LAMfWA Rl Cl:
VARS HELLOJIM;
Rl( )->HF-.LLOJ' M:
C1(HFLI.O.III'I):
I-IELLOJIM

ENn(%R.c~)
E'lD:

COMM!=NT
NJ EXERCISES IN SEcTION 21:

CO~M~NT
2?.1; VARS prUN: TRUF-)PFUN:

~Ar.RO P1FUNCTIONJ
VARS FNN4M~ VARNAME:
IF PFUN. r"0T THF.N MAC HE SUL TS (r rI)N C TI 0 'J ]) F.X IT:
IT~MREAD()->FNNAME:
rTEMRF.AO~)->VARNAMF.;
F.RASF(ITFMREAO(»:
MACRES.ULTS
<[X "FUNCTION",FNNAME,VARNAHE,"J",VARNAME,"=>" S);

E~O;
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MACRO PFUNCTION;
VARS FNNAME THIS FIRST SECOND;
IF PFUN.NOT THFN HACRESULTS([FUNCTIONl) EXIT:
NIL->SECflND;
rx "FUNCTION",lT~MREAD() %J-)FIRST;

LOOP: ITFMPEAD()->THIS;
If THIS=II:"

THEN MACRESULTS(FIRST<)(;J<>SECOND) RETURN
CLOSF.:
FIRST<>[X THIS %J->FIRST;
SECOND<)[~ THIS,"=>" %J->SECOND:
GOTO LOOP

E~I):

CO~MENT
22.2: "1ACRO -»J

VARS x Y Z:
ITF.MREAD()-)XI
F.R ASF ( I T·EMREA U ( ) ) :
ITEMREAD( )-)Y:
~RASE(ITF.MREAD(»;
ITF.MREAD()-)l;
MACRESULTS([X "_)II,X,II;",X."~)",Y,";",Y,"->",Z Xl)

E~O:

COMMF.NT
22.3; FuNCTION EVALUATE;

VARS EX x;
LlSTPEAO( )-)E)(;
EX<>r; GOONJ->F.X;
NL(l): SP(l), PR("X"): SP(5): PR("EXPRII): NL(l):
1-)X;

LOOP: PR(X); SP(5);PR(POPVAL(EX»: NL(l);
IF X<10 THEN )(+l-)X: GOIO lOOP CLOSE

COMMENT
NO EXERCISES IN SECTION 23:

CO"'fMFNT
NO EVERCIS~S IN SECTION 241


