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ABSTRACT  
 
The FORTRAN computer program "Pathfinder" is described. This program calculates the 
electrostatic potential distribution for a defined translationally or rotationally symmetric 
electrode configuration and determines the trajectories of charged particles through the 
resultant electric field. A correlation with an analytic solution is made in order to demonstrate 
the validity of the program; these results indicate that accuracies of less than 0.5% can be 
achieved. The program is further checked by comparison with the best available experimental 
data on electrostatic lenses.  
 
'Pathfinder' is then applied to several systems used in ion optics with special reference to 
aberrations, in particular: 
 
(1) Various configurations of einzel lenses  
(2) The cross-over or matching gap lens  
(3.) The accelerator tube, for which results of special interest are derived  
(4) Individual lens systems.  
May 1968 
 
Note  
This version of the above paper has been transcribed into MS WORD by C W Trowbridge 
(Nov. 2002) now at Vector Fields Ltd, Oxford; contact E-Mail address 
bill@trowbridge.org.uk. The paper has some historical value as an early example of scientific 
computer based tool long since superseded but the results still have relevance today, 
particularly in the design of accelerator tubes as several citations in the literature show.   
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1. Introduction  
In the past, a wealth of information has been published on the properties of electrostatic 
lenses [1]. Experimental: determinations of the potential distributions within lenses have been 
made using electrolytic tank and resistance network techniques; theoretical determinations 
have assumed simplified boundary conditions or have been by relaxation methods. The 
optical properties have been found by various parallel beam and grid shadow experiments, or 
by integration of the paraxial ray equation and graphical ray tracing methods.  
There are many techniques which are helpful in the design of lenses to meet specific 
requirements. However there is still no general method by which to exactly predict the 
aberrations of a given system without recourse to at least numerical integration of the axial 
potential distribution, itself frequently only an approximation. We decided to use the 
computer from the beginning, to simulate practical cases and obtain readily usable results.  
The program Pathfinder produces both numerical values of the potential distribution for an 
extremely wide range of electrode-configurations, and the trajectories of charged particles 
through these electrode systems. It may be used for ray tracing in plane two dimensional 
systems and for those with axial symmetry; the latter case is applicable to rotationally 
symmetric lenses. The program is at present neither relativistic nor does it take account of 
space charge, or treat skew rays. In what follows, Section 2 discusses the "Pathfinder' 
program and its modus operandi, and presents the analytic check and comparison with some 
experimental results.  
The choice of these comparisons themselves is no easy matter, since the reliability of most of 
the experimental results is open to some question, as even with accurate measuring, 
techniques, variation of the conditions within the vacuum chamber enclosing the apparatus 
can cause not-insignificant changes in the optical properties of the lens under investigation, 
e.g. a mono-layer of hydro-carbon from the vacuum pumps deposited on the electrodes can 
cause charge to build up on them, with corresponding perturbations of the fields. The analytic 
configuration checks make it apparent that the program is capable of considerable accuracy, 
and the experimental comparisons, with one or two notable exceptions, show good 
agreement.  
Section 3 deals with various electrostatic systems, viz:-  
The einzel lens (b) The gap lens (c) Accelerator tubes (d) The aperture lens.  
Some of the ion-optical properties of these are given, with special reference to spherical 
aberration. From the results obtained, it seems that from the point of view of aberrations, the 
simple einzel 1ens is as effective as any of the much more complicated systems.  
By way of an illustration, Section 4 deals with the optics of a complete system:- the Injector 
System for the Oxford Electrostatic Generator.  
 

2. The Program and Its Effectiveness  

2.1 The Action of Pathfinder 

The program is written in. FORTRAN and current versions are available for use with the 
I.C.T. Atlas Computer and the IBM 360/75 at the Rutherford Laboratory. The program is in 
two main parts. The first generates a suitable mesh based on the specified boundaries and 

 
 

3



solves Laplace's equation to obtain the potential distribution. This part is based on a program 
developed at CERN, and its detailed mode of operation is described elsewhere [3].  
The second part determines the paths of particles through the electrostatic field by solving the 
dynamical equations of motion; for systems with axial symmetry these are:  
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The method used to determine the particle trajectories is essentially that due to Goddard [4]. 
At each stage of the trajectory calculation, the values of the components of accelerations in 
equation (2.1) are determined by numerical differentiation of the potential in the 
neighbourhood of the particle coordinates. The next stage is then calculated by suitable 
Lagrangian formulae using the gradients at the present stage and the co-ordinates and 
gradients at several of the proceeding stages. The exact formulae used depend on the number 
of previous stages available, viz:  
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where z is the position coordinate after m+1 steps,  and  are the associated velocity and 
acceleration and T is the time interval. There is a similar set of equations for the radial co-
ordinates.  

z z

The values for the starting equation (2.2) are determined from the initial conditions; the time 
interval between steps is set by the time taken to transit one potential mesh at the initial 
velocity. At each stage of the calculation the energy of the particle is computed from the 
velocity components and compared with the interpolated value of the potential. This enables 
a check to be made on the accuracy and the time interval is automatically decreased until an 
error criterion is satisfied. In the present version the time interval is halved until the error is 
less than a specified amount.  
In the print out of results the spatial coordinates, velocity components and accelerations are 
tabulated. Also a graphical output may be obtained on which are depicted the potential 
boundaries and the particle paths. When using the program for ion optical systems the print 
out gives the optical constants. There is a third part of the program which calculates the 
paraxial focal lengths of systems by direct integration of the axial potential.  
 

2.2 Validity of Pathfinder  
 In order to assess the validity of the program it was necessary to find some configuration for 
which an analytic solution exists, so that a comparison between results obtained by numerical 
techniques and theory could be made.  
Initially, the program was checked against Goddard’s [12] values for the focal lengths of two 
cylinder lenses, in which he uses Bertram's formula for the axial potential distribution. No 
detailed comparison of actual potentials was made however, as it was decided to use a 
configuration with a mathematically simpler solution, and one for which relatively simple 
trajectory equations could be found.  
Neglecting as trivial the case of a uniform field in plane symmetry (e.g. two infinite parallel 
plates with a uniform gradient between), it can be shown that with axial symmetry Laplace's 
equation is completely solved by a certain family of hyperbolic equipotentials defined by:-  
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i.e. the set of hyperbolae whose common asymptote intersects the z axis at an angle given by 
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where V1 and V2 are the potentials at distances q1 and q2 from the origin along the z axis. Fig 
2.2.1 shows the equipotentials appropriate to V=V1 and V=V2 where V is the potential at any 
point in space. A complete derivation of equations 2.5 and 2.6 is given in Appendix L.  
It may also be shown (see Appendix II) that in the above system for any plane through the 
axis of symmetry the position co-ordinates of charged particles are defined by:-  
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r0  and z0 define the initial position,   are the initial component velocities. Arbitrarily, 
the following conditions were chosen:- 

0 and r

 
V1 =0, V2 =10, q1=1, and q2 =11. 
 
Pathfinder was given as its input configuration the area shown in Fig. 2.2.2 and a series of 
particle trajectories were computed. These were then checked against the exact solutions 
given by equations 2.8. Fig. 2.2.3 shows comparisons between the potential distribution 
obtained from the program and that predicted theoretically. The comparisons shown in the 
figures are for the potential distributions along lines ab, cd and ef in Fig. 2.2.2. It should be 
noted that the potential distribution along ef in Fig. 2.2.3 is plotted to a different scale than 
those along ab and ed; this diagram indicates that the potentials are accurate to better than 
0.5%. Only the field (i. e. the rate of change of potential, the slope of the graph) is required to 
calculate the trajectories however, and this follows the analytic solution even more closely. 
All other potential and, field values considered compared at least as favourably as these. As 
can be seen in Appendix II, the components of the acceleration are given by:-  
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The computed and analytic results for accelerations are shown in Fig. 2.2.4. The ultimate test 
of the program is the comparison of actual trajectories. Fig, 2.2.5 shows three such 
comparisons covering a wide range of particle initial conditions. In each of these almost exact 
agreement between the computed and analytic results is demonstrated. Several other 
trajectory comparisons were made with equally favourable results. From these results it is 
estimated that the program produces trajectories which are accurate to at least one half per 
cent.  
 

2.3 The Measurement of Spherical Aberration using the Computer Program  

 
The Gaussian Theory of electron optics predicts a point focus for all rays emanating from an 
object and so a perfect image. This approaches the truth only under paraxial conditions 
however. With non-paraxial rays a wide variety of discrepancies from the ideal occur, and 
these are termed the aberrations. The mathematical theory of aberrations is already covered 
by an extensive literature and will pot be described here. Suffice it to say that to the next 
order of accuracy each of these radial deviations from the Gaussian Theory may be 
represented by a third order term. We are particularly concerned with the greatest of these,  
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Spherical Aberration, which is the departure from linearity of the deflection of the beam with 
the radial distance of the beam axis, it is represented here by the variation in focal distance 
with radius of a beam incident parallel to the axis of the lens. The theoretically determined 
values of the various aberrations are normally in a form which has no simple correlation with 
that data which may be obtained experimentally. It is therefore normal practice to represent 
the aberration disks of radius  (see Fig, 2.3.1) by relationships of the form:-  r∆
 

 3
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for third order aberrations.  For third order spherical aberration this becomes:- 
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The normal procedure for the determination of spherical aberration in the computer 
experiment was to determine the focal length of the lens for each of a series of rays incident 
parallel with and at varying distances from the axis. The graphs presented are normally 
referenced with respect to some physical boundary within the lens to present a practical 
picture of the ray deviations to be expected. For the appropriate cases however, the value of 
the spherical aberration coefficient Cs was calculated and is shown. For consistency this was 
based on the deviation from the paraxial case of the ray incident at half the lens radius.  
 

2.4 Some Computer Comparisons 

  
In order to demonstrate further the effectiveness of the program, and indeed to provide 
further confirmation of results previously obtained, computations were made on 
configurations investigated theoretically or experimentally by other workers. Three direct 
comparisons of computed results with those obtained by the original workers are shown 
below; viz. results obtained by Ramberg [4], Liebmann [6] and Septier [7]. Comparisons with 
graphs from Terman [11] were also made, but are not given here, though the agreement was 
in fact very good.  

(a) Three Configurations analysed by Ramberg [4] 

Ramberg determines the variation of refractive power and spherical aberration with lens 
strength for four systems, three of which are considered here. His results are determined by 
integration of the ray equation using theoretical (Systems A, C and D) and experimental 
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(System B) potential distributions. System A (Fig. 2.4.1) is the minimum aberration einzel 
lens [5]; system B (Fig. 2.4.1) is a typical equipotential lens for high voltage work, and 
system D (Fig. 2.4.1) is an immersion lens, again with minimum aberration [5]. For systems 
A and B, the centre electrode is considered to be negative with respect to the outer electrodes 
and the focal length is given in terms of the diameter of the centre electrode. For system D, 
the focal lengths are calculated in terms of the mean diameter of the system.  
       
(b) Three configurations investigated by Liebmann [6]  
 
These three experimental configurations are all cylindrical einzel lenses whose centre 
electrode is held at the potential of the emitting cathode. They are lenses 1, 4 and 6 of the 
original paper [6] and are shown in Fig. 2.4.2. These configurations were chosen since they 
cover the whole range of strengths obtained by Liebmann for this type of lens. The principle 
difference between lens 4 and lens 6 is the change in inter-electrode spacing, the change 
between the first two lenses being only the length of the centre electrode. Both these changes 
increase the effective length of the lens; in fact the region of change-over from lens action to 
mirror action is being approached. Fig. 2.4.4 shows some particle trajectories through Lens 6.  
In Fig. 2.4.3, direct comparisons with the practical results, which were obtained by the 
Hartman method, are shown. For lenses 1 and 4 close agreement was found, but for lens 6 
there is a considerable anomaly. All the computed results were for rays incident parallel to 
the axis, and the appropriate Liebmann coordinates ( ”q*”/D the relative focal distance and 
“1/2d”/D) are compared. The disagreement in case 3 may be due to uncertainty in 
extrapolating experimental rays back into the lens, or change in the vacuum chamber 
conditions as already explained.  
The values of the spherical aberration coefficient C (as calculated from the computed results) 
are respectively 134.3; 36.2; and 47.3, the units being in diameters. These results are in 
qualitative agreement with Liebmann’s conclusions. 
N.B. Cs for the third lens considered was calculated from a ray incident at 0.4 the entrance 
radius. 
 

(c) Some Septier Configurations  

These are three of the lenses discussed in a report by A. Septier [7]; all are three electrode 
unipotential lenses. In Fig. 2.4.5 (a), ha is the distance between the image - side principal 
plane - and A, the intersection of the plane the lens support with the axis, and hb is the 
distance of the object side principal plane from this point. The image - side and object - side 
focal lengths fell within the area designated by Septier, and in virtually identical spots for the 
computed results. In 2.4.5 (a) and 2.4.5 (c) f is the object side focal length; u is a measure of 
the strength of the lenses and is defined as  
 

 1c

c

u φ φ
φ
−
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where 1φ  is the potential of the centre electrode and cφ  is the potential of the source. The 
maximum diameter of lens L3 was 124 mm. and for L1 was 64 mm. Fig. 2.4.5 (c) shows 
curves for a simply shaped system devised by Septier as being easily constructed and suitable 
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for normal practical use. This was one of the configurations which led to an optimum lens, 
which is shown in Section , 3.1 (a). The maximum diameter of the lens was 150 mm. All 
computations were for parallel incident rays.  
 
Septier's results were obtained by photographing, at various positions after the lens, the 
shadow on a screen of a beam which was incident parallel to the axis of symmetry, and from 
these photographs at known positions calculating the actual trajectories. He claimed an 
accuracy of; 5% in positioning. The computed results for his lens L3 agree to within this 
accuracy, as do the results over certain strength values for lens L1. For lens L5 and for lens 
L1 at lower strength however, agreement is at best only within 10%.  Again, there several 
possible explanations for the discrepancies.  
 

3 The Ion-optical Properties of some Electrostatic Systems 

3.1 Einzel Lenses  

(a) The shape of the electrodes  

The geometry for the three electrode lens with minimum spherical aberration has been 
derived theoretically by Plass [5] and analysed by Ramberg [4]. The computed results for the 
variation of the focal length with lens strength have already been presented in Section 2.4 (a). 
In order to try and determine the practical importance of shaping the electrodes as specified, 
the spherical aberration curves for this  lens and two simpler variations thereof (Fig. 3.1.1) 
were computed, and are shown in Fig. 3.1.2. In all cases, the cross-sectional area of the 
electrodes was constant. As can be seen, large quantitative changes in focal length occur, but 
little change in the percentage variation of focal length with beam radius. For a true 
comparison of the aberration coefficient of the three lenses, the aberration coefficient Cs must 
again be considered. Using this criterion, the geometric change into rectangular cross-section 
seems to provide an improvement, as indeed it does, but to evaluate the comparative merits of 
the lenses, the magnification should also be considered. (See Reference [7]). From the 
general trend of the results, which are as would be expected, it would seem that for ,'the 
"changes in focal length, it would seem that for a given focal length there is little need for 
specific complex shaping. Fig. 3.1.3 shows the spherical aberration curve for Septier's 
experimentally optimised asymmetric three electrode lens [7]. A simpler geometry is again 
compared, with a similar result. All computations were performed for rays incident parallel to 
the axis.  

(b) The Cylindrical Einzel Lens  

   A systematic study of the cylindrical einzel lens with constant diameter was made to 
determine the effect of the variation in length of the centre electrode. The inter-electrode 
spacing was held constant at D/4, and computations made for various strengths. In the first 
place the centre electrode was made positive with respect to the outer electrodes, producing 
an accelerating, decelerating action. Rays incident parallel to the axis were considered. The 
basic configuration is shown in Fig. 3.1.4.  
 Fig. 3.1.5 shows a typical aberration curve for the lens in this mode. These were similar for 
all strengths, so the results presented hereafter are for the axial focal lengths, i.e. the position 
in which a ray incident parallel to, and at an infinitesimal distance from the axis, would focus. 
Fig. 3.1.6 shows the variation in focus with the length of the centre electrode, for various 
values of the ratio Vce : Va, the voltages defined in Fig. 3.1.4. It can be seen that for the 
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medium strength lenses (Vce : Va = 3:1 to 6:1), elongation of the centre electrode beyond D/2 
produces little variation in focus. Fig. 3.1.7 shows plots of focal length against Vce/Va for 
various centre electrode lengths, and includes results for lens strengths not shown in Fig. 
3.1.6. 
Secondly, the centre electrode was made negative w.r.t. the outer electrodes, producing a 
decelerating - accelerating action. The geometries of the configurations considered were 
identical to those of the first case, as were the position parameters of the input rays, and the 
corresponding results are shown in Figs. 3.1.8, 3.1.9 and 3.1.10. The strength parameter 
considered is Vce/Va, represented as a decimal. The spherical aberration curve (Fig. 3.1.8) 
shown is typical of those obtained for all the decelerating - accelerating cases. The value of 
Cs was 60.2. No direct comparison of aberration coefficients could be made since no 
computations over the appropriate range were available for lenses of similar focal lengths.        
For the medium strength lenses, elongation of the centre electrode beyond D produces little 
change in focal length (Fig. 3.1.9); in the case of the accelerating - decelerating lens, this 
critical value was rather less - about D/2. It is the decelerating - accelerating lens results 
which are of greater interest since these are the type more generally encountered in practice.  

3.2 The Gap Lens  

(a) The Practical Performance of the Gap Lens 

 As there was considerable local interest in the performance of gap lenses used for 'matching' 
in accelerator-tubes, an effort was made to gauge the performance of a typical example. For 
this purpose, a simplified version of the gap lens used in the injector system of the Oxford 
Electrostatic Generator (Section 4) was taken as the basic configuration (Fig. 3.2.1). The 
relative dimensions were the same (D = O.2R), but the aperture was eliminated. The waist 
formed by the paths of H - ions emerging from the Oxford ion source lens was used as the 
reference, to better approximate to practical usage. This waist was made to occur at various 
object positions within the lens (hereafter referred to as the 'drift-space focus positions'), and 
the effect on the image of varying, the lens strength was determined for each of these; (See 
Fig. 3.2.3).  
 In Fig. 3.2.2 the ‘actual’ beam width at the drift-space focus positions is shown for various 
lens-strengths. This seems predictable - before the gap a beam has received little acceleration 
or focussing, whereas after it has undergone strength dependent acceleration and focussing 
action. Fig. 3.2.4 shows the ‘apparent’ variation in beam width against drift-space focus 
position for various lens strengths. Fig. 3.2.5 is an alternative representation of this. These 
results were obtained by linear extrapolation of the rays emerging from the lens. Fig. 3.2.6 
shows the ‘apparent’ variation in both the width of the waist and its position as a function of 
the two variable parameters. For all the graphs, as the changes which occur must be 
continuous with variation of the parameters, it must be possible to interpolate between the 
specific points obtained.  
After this study had been performed, another computer program (similar to that written by 
P.P. Starling - see Reference [13]) was devised which traced beam envelopes through 
electrostatic fields. This was the numerical integration of equations given by Walsh [8].. 
Although no direct comparison of results could be made, the results, obtained showed 
qualitative agreement with those presented. The basic conclusions which can be drawn are as 
follows:-  
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(i) If a beam is initially focussed in the region 3R/2 to + R/2 about the mid-plane of a gap 
lens, then, over a wide range of lens strengths, there is no detrimental effect on the emerging 
beam.  
(ii) For very weak lenses, this region is considerably extended, so that the focus position is 
almost immaterial.  
(iii) For medium and strong lenses, an initial focus outside this region results in a 
considerably enlarged emerging beam.  
 
 As any aperture inserted in the first half of the lens will have a focussing effect, it is possible 
from Fig. 3.2.2 to deduce the smallest aperture and its appropriate position through which all 
the incident beam would pass. This optimum position would appear to be between -R/2 and 
the mid-plane. It must be stressed however, that this takes no account of the effect which the 
aperture would have on the beam actually emerging from the complete lens.  
 In the Oxford injector system, the aperture in the gap lens is placed at approximately 2R in 
front of the gap, and the beam would, with no lens action, focus here. This is outside the 
optimum region, but as the lens is relatively weak (1:2), little would be gained by any 
alteration of this position.  

(b) The Shape of the Electrodes  

   As in the case of the einzel lens (section 5), the effect of electrode shaping was considered. 
In Fig. 3.2.8, a comparison of the minimum aberration lens geometry [5] (Fig. 3.2.7) with a 
plain cylindrical geometry is shown. Again the simple case is shown to be adequate, at least 
as far as spherical aberrations are concerned.  

(c) Comparison with a Graduated Potential Lens  

Fig. 3.2.10 shows a comparison of the spherical aberration curves for a simple gap lens (Fig. 
3.2.7) with its equivalent graduated potential lens (Fig 3.2.9). In both cases, the total 
accelerating voltage is the same, but with the graduated potential lens it is received in a series 
of small steps. For the graphs, an energy increase by a factor 5 was considered, As is to be 
expected, the graduated potential lens has a larger basic focal length since the potential 
changes are less rapid. Consideration of the percentage change of focal length with aperture 
radius shows the graduated potential lens to be superior. Consideration of the aberration 
coefficient Cs however, shows a far greater reduction for the simple gap lens than can be 
explained in terms of the reduced focal length alone, and thus the simple gap lens is the better 
of the two. This is in agreement with the general prediction that Cs decreases as the region of 
divergent field outside the lens decreases, i.e. in this case as the length of the divergent field 
is decreased (see Reference [1]). 

3. 3 Accelerator Tubes  

The effect on the focussing properties of varying the size of the initial aperture of a typical 
accelerator tube was determined. In practice, this is between DE/2 and DE in front of the first 
of the actual accelerating electrodes (See Fig. 3.1.1), but the results show that even at this 
position, where it might more properly be referred to as an aperture between the matching 
lens and the accelerator tube, rather than the initial aperture to the tube itself, its diameter is 
significant. A slightly modified form of the configuration used in the Oxford project (section 
4) was considered (Fig. 3.3.1); for this particular system the aperture was 0.65DE  from the 
first electrode of the accelerating section of the tube, which was itself at the same potential as 
the aperture.  
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 Rays originating from an axial point source 6 inches from the aperture were used for all the 
tests. The field inside the tube was nominally 3 KV/inch. The results are given in terms of' 
the diameter of the accelerating electrodes (DE ), which in fact was 4".  
Fig. 3.3.2 shows the foci of various rays from the point source against aperture size. The 
figures beside the graphs indicate tan-1 of the initial   divergent angle. (These results and, 
those shown after, all assume a constant accelerating field over the whole region of focus. 
Neglecting the effects of the exit aperture, passage out from the accelerating field into a drift 
space would merely reduce the actual distance of focus, the qualitative picture remaining the 
same). Fig. 3.3.3 shows the variation of focus against initial angle for each of the apertures 
used. With the smaller apertures, the most divergent rays were lost to the boundaries.  
Taking as our measure of spherical aberration the difference in focus between the most and 
least divergent rays, it is obvious from Fig. 3.3.2 that for the particular conditions chosen 
there exists an aperture diameter between O.25DE and O.5DE for which this is a minimum 
(naturally dependent to some extent on the most divergent ray if none of the beam is to be 
lost). For a beam diverging at a maximum angle of tan-1 0.1, this is O.5DE; for tan-1 0.08 and 
all lesser angles it is approximately O.4DE. Computations with a different position of the 
point source produced similar results. Thus it is suggested that for this configuration 
generalisation is possible, i.e. for minimum spherical aberration the diameter of the initial 
aperture should be about a half that of the accelerating electrodes.  

3. 4 The Aperture Lens  

An approximation to the focal length of an aperture lens (a single circular aperture in a plane 
electrode separating two regions of different field is given by the formula  
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where f is the focal length, 0φ  is the potential on the electrode (with respect to zero energy 
particles), and E1 and E2 are the fields preceding and following the aperture.  
More accurately,  
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where cφ  is the potential at the centre of the aperture.  

The focal length so defined is the axial distance between the intersection of the tangent to the 
particle path at  0 2 cE zφ φ+ =  (Fig. 3.4.1) with the parallel incident ray, and with the axis. 
This definition is normally adopted since as constant fields (rather than constant potentials) 
are being considered, particle paths are parabolic before and after the lens action, and so the 
equations from which the lens parameters (as normally defined) may be calculated are 
complex, and in consequence rarely used. The equations are only valid if the fields on either 
side of the aperture are small compared to the ratio of the aperture potential to aperture 
diameter. (For a more detailed discussion on this topic, and the appropriate derivations see 
Reference [9]}  
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If the field on the image side of the lens is zero, subject to the aforementioned condition, the 
appropriate formula becomes valid for the focus as normally defined (the cross over point of 
the rays). For this case, Zworykin [9] has deduced, by numerical integration of the ray 
equation, the variation of refractive power with lens strength, normalising his results against 
diameter. In a practical case, the entrance and exit segments of the lens do not possess the 
infinite radius required if these results are to be independent of diameter. Computations were 
made for aperture diameters of 1, 2 and 3 inches whilst, the exit and entrance diameters were 
both held constant at 5 inches. E1 was set at 1 KV/inch, and 0φ was varied. Fig. 3.4.2 shows 
all the results, and compares them with Zworykin's. The field was decelerating which 
accounts for the negative abscissa. It can be seen that the refractive power decreases slightly 
with lens diameter. (All computations were made with rays incident parallel at 0.1 ins from 
the axis - in all cases, at this distance the effects of spherical aberration were negligible.)  
Now, following Elkind [10] and considering (z - f) (see Fig. 3.4.1) as negligible, we will 
express the focal length as  
 

 0

1 2

4
tf f

E E
ζφ ζ= =
−

                                                   3.3 

where ζ  is a function of 0 1 2/( )E Eφ −  and D, and ft is the focal length as given by 3.1. 
Further, let us consider the variation of  ζ  with D/f. From equation 3.3 /actual tf fζ = and 
from the computed results, the values of ζ  were calculated, and these were plotted against 
D/f, i.e.  
 
 ( / )  saya b D f ,ζ = +  

where a and b are constants; then equation 3.3 becomes 
 

 0

1 2

( ( / ))4a b D ff
E E

φ+
=

−
 

i.e.  

 
2 2

0 0
2

1 2 1 2 1 2

2 2
( ) ( ) ( )

a a bDf
E E E E E E

0φ φ
= + +

− −
φ
−

                     3.4 

N.B. as D → 0 and a → 1 0

1 2

4
( )

f
E E

φ
→

−
 as in equation 3.1. 

 
The computed results indicate that for constant entrance and exit diameters, a is aperture 
diameter dependent, whereas b is virtually aperture diameter independent. Taking from the 
graphs approximate general values of a = 1.0 and b = 0.57, and putting E2 = 0, for this was so 
the cases considered, equation 3.4 becomes  
 

 
2

0 0
2

1 1 1

2 4 2.28Df
E E E

0φ φ
= + +

φ                     3.5 
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Using this formula, it was possible to predict over a wide range the focal lengths of other 
decelerating systems with field free image spaces, with an accuracy of better than 10% in all 
cases. Although the values a and b taken were approximate, the results predicted were far 
more accurate than those predicted by the simple formula (equations 3.2 and 3.1). An 
example is shown Fig.3.4.4 and Table 3.4.1. These results were for E1 = 2.0 KV /inch and D 
= 2.0 in. 
Equation 3.5 is thus presented as an empirical formula with which to predict the focal lengths 
of aperture lenses separating regions of constant decelerating field from field free image 
spaces to a greater accuracy than is possible by the lens formula alone.  
 

4 Application to a Complete System  
Computations were made on the injector system of the Oxford Electrostatic Generator. [8,9]. 
A schematic of this is shown in Fig. 4.1. The configuration was considered in three sections:-  
a) The Ion Source Lens 
 b) The Gap Lens 
 c) The Accelerator Tube.  

4. The Ion Source Lens  

The fourth electrode of the ion source lens was held at the same potential as the third, so its 
focussing effect was negligible and thus only the first three were considered. The system was 
used to inject beams of both negative and positive ions, and there were thus two individual 
voltage configurations. Fig. 4.1.1 shows spherical aberration curves for the lens for these two 
conditions. The corresponding voltage configurations are shown in Fig. 4.1.2. The emittance 
of the ion source (assumed the same regardless of the type of ions) was known to 
approximate to a right ellipse with rmax = 1/16" and r'max = 1/40 radian. Several boundary rays 
were selected from this and an effective drift space assumed between the ion source and the 
first lens. In Fig. 4.1.2 the passage of these rays through the lens is shown for the two 
configurations. It was assumed that all other rays would lie within the envelope formed by 
these rays and their exact opposites (i.e.  and i i ir r r ir′ ′= − = −  )  

4.2 The Gap Lens  

The purpose of the gap lens was to match the potential of the particles emerging from the ion 
source lens with that at the beginning of the accelerator tube. In Fig. 4.2.1, the trajectories of 
the particles of the negative beam are shown, with the corresponding voltage configuration. A 
drift space was assumed between the lenses (Fig. 4.1). A more detailed investigation of gap 
lenses was performed, and has already been included. The beam was intended to focus in the 
aperture, which it does.  

4.3 The Accelerator Tube  

In Fig. 4.3.1, the trajectories of the same negative beam particles at the entrance to the 
accelerator tube are shown. This section continues straight on after the gap lens. Assuming 
that after the initial field disturbance at the entrance the particles are merely accelerated by a 
linear field (in fact, this was 24 KV/inch), then using the simple parabolic equations of 
motion their positions at any point thereafter can be calculated. In Fig. 4.1, the beam 
envelope through the initial focussing stages is shown. Again, further results on accelerator 
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tubes are shown later. These results show merely the performance of the actual configuration 
and experimentally optimised focussing potential in use.  

5. Conclusion  
General consideration of the results indicates that, although many geometrically complicated 
systems have been designed, for a given lens strength (i.e. focal length), with regard to 
spherical aberration, these have little advantage over the simpler, more easily constructed 
systems. So long as the basic problem of inter-electrode breakdown is solved, then complex 
shaping of the electrodes is not worth the time and effort involved. The plain cylindrical 
einzel lens seems as adequate as any. A table of the collected results for the aberration 
coefficients determined is appended (Table 5.1). As stated previously, it is difficult to make 
any real comparisons between different types of lens, since to compare Cs in true fashion, the 
magnification of the lens must be taken into account. Even with lenses of the same type, in 
particular einzel lenses, it is difficult since there is a dependence on the focal length which 
Liebmanns [6] work suggests is not in fact linear; thus even the last column of the table is not 
a real comparison. In general however it may be said that the results follow the expected 
trends as indicated the individual sections.  
The program has shown its applicability to the analysis of particular lenses and some new 
results on the einzel, gap and aperture lenses have been presented. Further investigation of the 
last of these three lenses might be of use.  
 Results of particular interest to accelerator tube designers have been obtained, and the 
properties of a complete system have also been computed, and it would seem that here, i.e. in 
predicting the action of a particular configuration, rather than in more generalised 
investigations, lies the most probable future application of the program..  
In fact the program has already contributed to several specific projects, amongst these being 
the design of a novel configuration of electron gun for the Wantage Research Laboratory; to 
be used for paint curing purposes, and an analysis of the injector system of the Rutherford 
Laboratory's Proton Linear Accelerator. Present uses includes its exploitations a tool to 
investigate the effect of field emission on voltage breakdown in vacuum, and the prediction 
of the performance of an accelerator tube to be used at Tokio University.  
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Appendix I 
 
A Cylindrically Symmetric Electrode Configuration with an Analytic Solution for the 
Potential Distribution 
 
For any potential distribution, in the absence of space charge, Laplace’s equation must hold 
i.e , in cylindrical symmetry, this becomes 2 0φ∇ =

 
2

2

1 0V r V
z r r r

∂ ∂ ∂
+

∂ ∂ ∂
=                                           (1) 

 
Consider a solution of the form 
 
                                                 (2)  ( ) ( )V R r Z z= +

Then 
2

2

1Z r R
z r r r

λ∂ ∂ ∂
= − =

∂ ∂ ∂
 where λ  is a separation constant. Integrating 

 2
1

1( )
2 2Z z z C zλ= + +C                                    (3) 

and 

 2
3

1( ) log
4 4R r r C rλ= − + +C                            (4) 

Now, we require R(r) to be finite when r → 0, thus C3 must be zero. 
From (2) 

 2
1

1 1
2 4

V z C z rλ λ= + − +2 C                                (5) 

 

Consider equipotentials defined by
2 2

2 2 1z r
q nq

− = , i.e. a potential V1 is defined by 

 

 
2 2

2 2
1 1

1z r
q nq

− =                                                         (6a) 

  
and a potential V2 by 

                                     
2 2

2 2
2 2

1z r
q nq

− =                                                    (6b) 
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These are represented in Fig. I.1 
 

From (5) 2 2 121 2(
2

C z C Vz r
λ λ

−
− + = −

)

2

, and this is satisfied by(6a) and (6b) where 

2 2
1 1 1 2, 0, 1/ 2  and 1/ 2n z C C V q C V qλ λ= = − = − − = − ,  so 

 

 
( )

2 1
2 2

2 1

2( )V V
q q

λ −
=

−
                                                       (7) 

 

and    , which on substituting for2 2
2 1 2 12 ( ) 1/ 2 (C V V q qλ− + = − + ) λ , gives 

 

 
( )

2 2
1 2 2 1

2 2
2 1

V q V qC
q q

−
=

−
                                                   (8)      

Thus if we consider the equipotentials of Fig. I.1 as the boundaries to a cylindrically 
symmetric region, then the potential within this region is exactly defined by the equation 
  

                                 2 21 ( / 2)
2

rλV z C= − − +   

where    λ  and C are defined by equations (7) and (8). If as for the specific case considered 
V1=0, V2=VE say then 
                                  

 
( ) ( )

2
1

2 2 2 2
2 1 2 1

2   and  EV qE C
q q q q

λ −
= =

− −
 

Appendix II 
 
The Analytic Solution for the Trajectories 
The motion of a charged particle in a potential field is governed by the equations  
 

 
                       (1)

/ 2                    (2)

Vz z
z
Vr r
r

η ηλ

η ηλ

∂
= − =

∂
∂

= − =
∂

                                              

 
Where η is the charge to mass ration for the particle (non-relativistic) and the field gradients 
are derived from Appendix I. 
 
These have solutions of the form 
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 cos( )
2

kr A t E= +                      (3) 

 1 2
kt ktz C e C e−= +                           (4) 

where k ηλ= . 

These are subject to the conditions that at t r 0 0 00, , , ,r r r z z z 0z= = = = =   

Thus  

                                     (5) 0r Acos= E

 0 / 2r Ak Sin= − E

2

2

                        (6) 

and 

                                      (7)  0 1z C C= +

                                   (8) 0 1z kC kC= −

From II.5 and II.6, 
 

 2 2
0 02 / 2A r r k= +                           (9) 

and 

 ( )1
0 0tan 2 /E r−= − kr                        (10) 

From II.7 and II.8, 

 0 0
1 2

kz zC
k
+

=                                         (11) 

 0
1 2

kz zC
k
−

= 0

V

                                         (12) 

 

If the initial potential of a particle is V, then1/ 2 2 2
0 0 02 1/ 2( )v r z η− + = , so 

 0 0

0 0

cos 2 cos                    (13)

sin 2 sin                      (14)

z V V

r V V

α η α

α η α

= =

= =
 

 
where α  is the initial inclination of the trajectory. 
II.13 and II14 define the initial velocities, which are necessary for the evaluation of the 
trajectories, in terms of initial energy, a parameter included in the input data for the computer 
program. 
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