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ABSTRACT

The FORTRAN computer program "Pathfinder" is described. This program calculates the
electrostatic potential distribution for a defined translationally or rotationally symmetric
electrode configuration and determines the trajectories of charged particles through the
resultant electric field. A correlation with an analytic solution is made in order to demonstrate
the validity of the program; these results indicate that accuracies of less than 0.5% can be
achieved. The program is further checked by comparison with the best available experimental
data on electrostatic lenses.

'Pathfinder' is then applied to several systems used in ion optics with special reference to
aberrations, in particular:

(1) Various configurations of einzel lenses

(2) The cross-over or matching gap lens

(3.) The accelerator tube, for which results of special interest are derived
(4) Individual lens systems.
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1. Introduction

In the past, a wealth of information has been published on the properties of electrostatic
lenses [1]. Experimental: determinations of the potential distributions within lenses have been
made using electrolytic tank and resistance network techniques; theoretical determinations
have assumed simplified boundary conditions or have been by relaxation methods. The
optical properties have been found by various parallel beam and grid shadow experiments, or
by integration of the paraxial ray equation and graphical ray tracing methods.

There are many techniques which are helpful in the design of lenses to meet specific
requirements. However there is still no general method by which to exactly predict the
aberrations of a given system without recourse to at least numerical integration of the axial
potential distribution, itself frequently only an approximation. We decided to use the
computer from the beginning, to simulate practical cases and obtain readily usable results.

The program Pathfinder produces both numerical values of the potential distribution for an
extremely wide range of electrode-configurations, and the trajectories of charged particles
through these electrode systems. It may be used for ray tracing in plane two dimensional
systems and for those with axial symmetry; the latter case is applicable to rotationally
symmetric lenses. The program is at present neither relativistic nor does it take account of
space charge, or treat skew rays. In what follows, Section 2 discusses the "Pathfinder'
program and its modus operandi, and presents the analytic check and comparison with some
experimental results.

The choice of these comparisons themselves is no easy matter, since the reliability of most of
the experimental results is open to some question, as even with accurate measuring,
techniques, variation of the conditions within the vacuum chamber enclosing the apparatus
can cause not-insignificant changes in the optical properties of the lens under investigation,
e.g. a mono-layer of hydro-carbon from the vacuum pumps deposited on the electrodes can
cause charge to build up on them, with corresponding perturbations of the fields. The analytic
configuration checks make it apparent that the program is capable of considerable accuracy,
and the experimental comparisons, with one or two notable exceptions, show good
agreement.

Section 3 deals with various electrostatic systems, viz:-
The einzel lens (b) The gap lens (c) Accelerator tubes (d) The aperture lens.

Some of the ion-optical properties of these are given, with special reference to spherical
aberration. From the results obtained, it seems that from the point of view of aberrations, the
simple einzel lens is as effective as any of the much more complicated systems.

By way of an illustration, Section 4 deals with the optics of a complete system:- the Injector
System for the Oxford Electrostatic Generator.

2. The Program and Its Effectiveness

2.1 The Action of Pathfinder

The program is written in. FORTRAN and current versions are available for use with the
I.C.T. Atlas Computer and the IBM 360/75 at the Rutherford Laboratory. The program is in
two main parts. The first generates a suitable mesh based on the specified boundaries and



solves Laplace's equation to obtain the potential distribution. This part is based on a program
developed at CERN, and its detailed mode of operation is described elsewhere [3].

The second part determines the paths of particles through the electrostatic field by solving the
dynamical equations of motion; for systems with axial symmetry these are:

md*r/dt* = edV | or
md?*z/dt* = edV |0z

2.1

The method used to determine the particle trajectories is essentially that due to Goddard [4].
At each stage of the trajectory calculation, the values of the components of accelerations in
equation (2.1) are determined by numerical differentiation of the potential in the
neighbourhood of the particle coordinates. The next stage is then calculated by suitable
Lagrangian formulae using the gradients at the present stage and the co-ordinates and
gradients at several of the proceeding stages. The exact formulae used depend on the number
of previous stages available, viz:
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where z is the position coordinate after m+1/ steps,Z andZ are the associated velocity and
acceleration and T is the time interval. There is a similar set of equations for the radial co-
ordinates.

The values for the starting equation (2.2) are determined from the initial conditions; the time
interval between steps is set by the time taken to transit one potential mesh at the initial
velocity. At each stage of the calculation the energy of the particle is computed from the
velocity components and compared with the interpolated value of the potential. This enables
a check to be made on the accuracy and the time interval is automatically decreased until an
error criterion is satisfied. In the present version the time interval is halved until the error is
less than a specified amount.

In the print out of results the spatial coordinates, velocity components and accelerations are
tabulated. Also a graphical output may be obtained on which are depicted the potential
boundaries and the particle paths. When using the program for ion optical systems the print
out gives the optical constants. There is a third part of the program which calculates the
paraxial focal lengths of systems by direct integration of the axial potential.

2.2 Validity of Pathfinder

In order to assess the validity of the program it was necessary to find some configuration for
which an analytic solution exists, so that a comparison between results obtained by numerical
techniques and theory could be made.

Initially, the program was checked against Goddard’s [12] values for the focal lengths of two
cylinder lenses, in which he uses Bertram's formula for the axial potential distribution. No
detailed comparison of actual potentials was made however, as it was decided to use a
configuration with a mathematically simpler solution, and one for which relatively simple
trajectory equations could be found.

Neglecting as trivial the case of a uniform field in plane symmetry (e.g. two infinite parallel
plates with a uniform gradient between), it can be shown that with axial symmetry Laplace's
equation is completely solved by a certain family of hyperbolic equipotentials defined by:-

¢=%l(zz—%r2)+C 2.5

i.e. the set of hyperbolae whose common asymptote intersects the z axis at an angle given by

tan™’ (\/27). In 2.5,

A=20,-V)Nq, —4)
C=—(, _Vl)%z /(%2 _%2)

2.6

where V; and V> are the potentials at distances ¢; and ¢, from the origin along the z axis. Fig
2.2.1 shows the equipotentials appropriate to V'=V; and V=V, where V' is the potential at any
point in space. A complete derivation of equations 2.5 and 2.6 is given in Appendix L.

It may also be shown (see Appendix II) that in the above system for any plane through the
axis of symmetry the position co-ordinates of charged particles are defined by:-



r=cos'(k/~2+E)
z = C, exp(kt)+ C, exp(—kt)

where A=\ +27* k) , E=tan"' ({27 /kr,)

and C =(kzy+2))/ 2k, C,=(kzy—2))/2k ,k=ed/m

2.8

ro and zy define the initial position, 7, and Z, are the initial component velocities. Arbitrarily,

the following conditions were chosen:-

V=0, V,=10, q;=1, and g =11.

Pathfinder was given as its input configuration the area shown in Fig. 2.2.2 and a series of
particle trajectories were computed. These were then checked against the exact solutions
given by equations 2.8. Fig. 2.2.3 shows comparisons between the potential distribution
obtained from the program and that predicted theoretically. The comparisons shown in the
figures are for the potential distributions along lines ab, cd and ef in Fig. 2.2.2. It should be
noted that the potential distribution along ef in Fig. 2.2.3 is plotted to a different scale than
those along ab and ed; this diagram indicates that the potentials are accurate to better than
0.5%. Only the field (i. e. the rate of change of potential, the slope of the graph) is required to
calculate the trajectories however, and this follows the analytic solution even more closely.
All other potential and, field values considered compared at least as favourably as these. As
can be seen in Appendix II, the components of the acceleration are given by:-

2 2.9

The computed and analytic results for accelerations are shown in Fig. 2.2.4. The ultimate test
of the program is the comparison of actual trajectories. Fig, 2.2.5 shows three such
comparisons covering a wide range of particle initial conditions. In each of these almost exact
agreement between the computed and analytic results is demonstrated. Several other
trajectory comparisons were made with equally favourable results. From these results it is
estimated that the program produces trajectories which are accurate to at least one half per
cent.

2.3 The Measurement of Spherical Aberration using the Computer Program

The Gaussian Theory of electron optics predicts a point focus for all rays emanating from an
object and so a perfect image. This approaches the truth only under paraxial conditions
however. With non-paraxial rays a wide variety of discrepancies from the ideal occur, and
these are termed the aberrations. The mathematical theory of aberrations is already covered
by an extensive literature and will pot be described here. Suffice it to say that to the next
order of accuracy each of these radial deviations from the Gaussian Theory may be
represented by a third order term. We are particularly concerned with the greatest of these,
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Spherical Aberration, which is the departure from linearity of the deflection of the beam with
the radial distance of the beam axis, it is represented here by the variation in focal distance
with radius of a beam incident parallel to the axis of the lens. The theoretically determined
values of the various aberrations are normally in a form which has no simple correlation with
that data which may be obtained experimentally. It is therefore normal practice to represent
the aberration disks of radius Ar (see Fig, 2.3.1) by relationships of the form:-

Ar =ka;’

for third order aberrations. For third order spherical aberration this becomes:-

Ar=Ca;
using the notation of the diagram, since:
Af =a,Ar
C. =N /a’

The normal procedure for the determination of spherical aberration in the computer
experiment was to determine the focal length of the lens for each of a series of rays incident
parallel with and at varying distances from the axis. The graphs presented are normally
referenced with respect to some physical boundary within the lens to present a practical
picture of the ray deviations to be expected. For the appropriate cases however, the value of
the spherical aberration coefficient Cs was calculated and is shown. For consistency this was
based on the deviation from the paraxial case of the ray incident at half the lens radius.

2.4 Some Computer Comparisons

In order to demonstrate further the effectiveness of the program, and indeed to provide
further confirmation of results previously obtained, computations were made on
configurations investigated theoretically or experimentally by other workers. Three direct
comparisons of computed results with those obtained by the original workers are shown
below; viz. results obtained by Ramberg [4], Liebmann [6] and Septier [7]. Comparisons with
graphs from Terman [11] were also made, but are not given here, though the agreement was
in fact very good.

(a) Three Configurations analysed by Ramberg [4]

Ramberg determines the variation of refractive power and spherical aberration with lens
strength for four systems, three of which are considered here. His results are determined by
integration of the ray equation using theoretical (Systems A, C and D) and experimental
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(System B) potential distributions. System A (Fig. 2.4.1) is the minimum aberration einzel
lens [5]; system B (Fig. 2.4.1) is a typical equipotential lens for high voltage work, and
system D (Fig. 2.4.1) is an immersion lens, again with minimum aberration [5]. For systems
A and B, the centre electrode is considered to be negative with respect to the outer electrodes
and the focal length is given in terms of the diameter of the centre electrode. For system D,
the focal lengths are calculated in terms of the mean diameter of the system.

(b) Three configurations investigated by Liebmann [6]

These three experimental configurations are all cylindrical einzel lenses whose centre
electrode is held at the potential of the emitting cathode. They are lenses 1, 4 and 6 of the
original paper [6] and are shown in Fig. 2.4.2. These configurations were chosen since they
cover the whole range of strengths obtained by Liebmann for this type of lens. The principle
difference between lens 4 and lens 6 is the change in inter-electrode spacing, the change
between the first two lenses being only the length of the centre electrode. Both these changes
increase the effective length of the lens; in fact the region of change-over from lens action to
mirror action is being approached. Fig. 2.4.4 shows some particle trajectories through Lens 6.
In Fig. 2.4.3, direct comparisons with the practical results, which were obtained by the
Hartman method, are shown. For lenses 1 and 4 close agreement was found, but for lens 6
there is a considerable anomaly. All the computed results were for rays incident parallel to
the axis, and the appropriate Liebmann coordinates ( ’q*”/D the relative focal distance and
“1/2d”/D) are compared. The disagreement in case 3 may be due to uncertainty in
extrapolating experimental rays back into the lens, or change in the vacuum chamber
conditions as already explained.

The values of the spherical aberration coefficient C (as calculated from the computed results)
are respectively 134.3; 36.2; and 47.3, the units being in diameters. These results are in
qualitative agreement with Liebmann’s conclusions.

N.B. C; for the third lens considered was calculated from a ray incident at 0.4 the entrance
radius.

(c) Some Septier Configurations

These are three of the lenses discussed in a report by A. Septier [7]; all are three electrode
unipotential lenses. In Fig. 2.4.5 (a), h, is the distance between the image - side principal
plane - and A, the intersection of the plane the lens support with the axis, and hy is the
distance of the object side principal plane from this point. The image - side and object - side
focal lengths fell within the area designated by Septier, and in virtually identical spots for the
computed results. In 2.4.5 (a) and 2.4.5 (c) f is the object side focal length; u is a measure of
the strength of the lenses and is defined as

where ¢ is the potential of the centre electrode and ¢, is the potential of the source. The

maximum diameter of lens L3 was 124 mm. and for L1 was 64 mm. Fig. 2.4.5 (c) shows
curves for a simply shaped system devised by Septier as being easily constructed and suitable
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for normal practical use. This was one of the configurations which led to an optimum lens,
which is shown in Section , 3.1 (a). The maximum diameter of the lens was 150 mm. All
computations were for parallel incident rays.

Septier's results were obtained by photographing, at various positions after the lens, the
shadow on a screen of a beam which was incident parallel to the axis of symmetry, and from
these photographs at known positions calculating the actual trajectories. He claimed an
accuracy of; 5% in positioning. The computed results for his lens L3 agree to within this
accuracy, as do the results over certain strength values for lens L1. For lens L5 and for lens
L1 at lower strength however, agreement is at best only within 10%. Again, there several
possible explanations for the discrepancies.

3 The Ion-optical Properties of some Electrostatic Systems
3.1 Einzel Lenses

(a) The shape_of the electrodes

The geometry for the three electrode lens with minimum spherical aberration has been
derived theoretically by Plass [5] and analysed by Ramberg [4]. The computed results for the
variation of the focal length with lens strength have already been presented in Section 2.4 (a).
In order to try and determine the practical importance of shaping the electrodes as specified,
the spherical aberration curves for this lens and two simpler variations thereof (Fig. 3.1.1)
were computed, and are shown in Fig. 3.1.2. In all cases, the cross-sectional area of the
electrodes was constant. As can be seen, large quantitative changes in focal length occur, but
little change in the percentage variation of focal length with beam radius. For a true
comparison of the aberration coefficient of the three lenses, the aberration coefficient C; must
again be considered. Using this criterion, the geometric change into rectangular cross-section
seems to provide an improvement, as indeed it does, but to evaluate the comparative merits of
the lenses, the magnification should also be considered. (See Reference [7]). From the
general trend of the results, which are as would be expected, it would seem that for ,'the
"changes in focal length, it would seem that for a given focal length there is little need for
specific complex shaping. Fig. 3.1.3 shows the spherical aberration curve for Septier's
experimentally optimised asymmetric three electrode lens [7]. A simpler geometry is again
compared, with a similar result. All computations were performed for rays incident parallel to
the axis.

(b) The Cylindrical Einzel Lens

A systematic study of the cylindrical einzel lens with constant diameter was made to
determine the effect of the variation in length of the centre electrode. The inter-electrode
spacing was held constant at D/4, and computations made for various strengths. In the first
place the centre electrode was made positive with respect to the outer electrodes, producing
an accelerating, decelerating action. Rays incident parallel to the axis were considered. The
basic configuration is shown in Fig. 3.1.4.

Fig. 3.1.5 shows a typical aberration curve for the lens in this mode. These were similar for
all strengths, so the results presented hereafter are for the axial focal lengths, i.e. the position
in which a ray incident parallel to, and at an infinitesimal distance from the axis, would focus.
Fig. 3.1.6 shows the variation in focus with the length of the centre electrode, for various
values of the ratio V. : V,, the voltages defined in Fig. 3.1.4. It can be seen that for the
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medium strength lenses (Ve : Vo = 3:1 to 6:1), elongation of the centre electrode beyond D/2
produces little variation in focus. Fig. 3.1.7 shows plots of focal length against V../V, for
various centre electrode lengths, and includes results for lens strengths not shown in Fig.
3.1.6.

Secondly, the centre electrode was made negative w.r.t. the outer electrodes, producing a
decelerating - accelerating action. The geometries of the configurations considered were
identical to those of the first case, as were the position parameters of the input rays, and the
corresponding results are shown in Figs. 3.1.8, 3.1.9 and 3.1.10. The strength parameter
considered is V./V,, represented as a decimal. The spherical aberration curve (Fig. 3.1.8)
shown is typical of those obtained for all the decelerating - accelerating cases. The value of
Cs was 60.2. No direct comparison of aberration coefficients could be made since no
computations over the appropriate range were available for lenses of similar focal lengths.

For the medium strength lenses, elongation of the centre electrode beyond D produces little
change in focal length (Fig. 3.1.9); in the case of the accelerating - decelerating lens, this
critical value was rather less - about D/2. It is the decelerating - accelerating lens results
which are of greater interest since these are the type more generally encountered in practice.

3.2 The Gap Lens

(a) The Practical Performance of the Gap Lens

As there was considerable local interest in the performance of gap lenses used for 'matching'
in accelerator-tubes, an effort was made to gauge the performance of a typical example. For
this purpose, a simplified version of the gap lens used in the injector system of the Oxford
Electrostatic Generator (Section 4) was taken as the basic configuration (Fig. 3.2.1). The
relative dimensions were the same (D = O.2R), but the aperture was eliminated. The waist
formed by the paths of H - ions emerging from the Oxford ion source lens was used as the
reference, to better approximate to practical usage. This waist was made to occur at various
object positions within the lens (hereafter referred to as the 'drift-space focus positions'), and
the effect on the image of varying, the lens strength was determined for each of these; (See
Fig. 3.2.3).

In Fig. 3.2.2 the ‘actual’ beam width at the drift-space focus positions is shown for various
lens-strengths. This seems predictable - before the gap a beam has received little acceleration
or focussing, whereas after it has undergone strength dependent acceleration and focussing
action. Fig. 3.2.4 shows the ‘apparent’ variation in beam width against drift-space focus
position for various lens strengths. Fig. 3.2.5 is an alternative representation of this. These
results were obtained by linear extrapolation of the rays emerging from the lens. Fig. 3.2.6
shows the ‘apparent’ variation in both the width of the waist and its position as a function of
the two variable parameters. For all the graphs, as the changes which occur must be
continuous with variation of the parameters, it must be possible to interpolate between the
specific points obtained.

After this study had been performed, another computer program (similar to that written by
P.P. Starling - see Reference [13]) was devised which traced beam envelopes through
electrostatic fields. This was the numerical integration of equations given by Walsh [8]..
Although no direct comparison of results could be made, the results, obtained showed
qualitative agreement with those presented. The basic conclusions which can be drawn are as
follows:-
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(1) If a beam is initially focussed in the region 3R/2 to + R/2 about the mid-plane of a gap
lens, then, over a wide range of lens strengths, there is no detrimental effect on the emerging
beam.

(i1) For very weak lenses, this region is considerably extended, so that the focus position is
almost immaterial.

(ii1)) For medium and strong lenses, an initial focus outside this region results in a
considerably enlarged emerging beam.

As any aperture inserted in the first half of the lens will have a focussing effect, it is possible
from Fig. 3.2.2 to deduce the smallest aperture and its appropriate position through which all
the incident beam would pass. This optimum position would appear to be between -R/2 and
the mid-plane. It must be stressed however, that this takes no account of the effect which the
aperture would have on the beam actually emerging from the complete lens.

In the Oxford injector system, the aperture in the gap lens is placed at approximately 2R in
front of the gap, and the beam would, with no lens action, focus here. This is outside the
optimum region, but as the lens is relatively weak (1:2), little would be gained by any
alteration of this position.

(b) The Shape of the Electrodes

As in the case of the einzel lens (section 5), the effect of electrode shaping was considered.
In Fig. 3.2.8, a comparison of the minimum aberration lens geometry [5] (Fig. 3.2.7) with a
plain cylindrical geometry is shown. Again the simple case is shown to be adequate, at least
as far as spherical aberrations are concerned.

(c) Comparison with a Graduated Potential Lens

Fig. 3.2.10 shows a comparison of the spherical aberration curves for a simple gap lens (Fig.
3.2.7) with its equivalent graduated potential lens (Fig 3.2.9). In both cases, the total
accelerating voltage is the same, but with the graduated potential lens it is received in a series
of small steps. For the graphs, an energy increase by a factor 5 was considered, As is to be
expected, the graduated potential lens has a larger basic focal length since the potential
changes are less rapid. Consideration of the percentage change of focal length with aperture
radius shows the graduated potential lens to be superior. Consideration of the aberration
coefficient Cs however, shows a far greater reduction for the simple gap lens than can be
explained in terms of the reduced focal length alone, and thus the simple gap lens is the better
of the two. This is in agreement with the general prediction that Cs decreases as the region of
divergent field outside the lens decreases, i.e. in this case as the length of the divergent field
is decreased (see Reference [1]).

3. 3 Accelerator Tubes

The effect on the focussing properties of varying the size of the initial aperture of a typical
accelerator tube was determined. In practice, this is between Dg/2 and Dg in front of the first
of the actual accelerating electrodes (See Fig. 3.1.1), but the results show that even at this
position, where it might more properly be referred to as an aperture between the matching
lens and the accelerator tube, rather than the initial aperture to the tube itself, its diameter is
significant. A slightly modified form of the configuration used in the Oxford project (section
4) was considered (Fig. 3.3.1); for this particular system the aperture was 0.65Dg from the
first electrode of the accelerating section of the tube, which was itself at the same potential as
the aperture.
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Rays originating from an axial point source 6 inches from the aperture were used for all the
tests. The field inside the tube was nominally 3 KV/inch. The results are given in terms of'
the diameter of the accelerating electrodes (Dg ), which in fact was 4".

Fig. 3.3.2 shows the foci of various rays from the point source against aperture size. The
figures beside the graphs indicate tan of the initial divergent angle. (These results and,
those shown after, all assume a constant accelerating field over the whole region of focus.
Neglecting the effects of the exit aperture, passage out from the accelerating field into a drift
space would merely reduce the actual distance of focus, the qualitative picture remaining the
same). Fig. 3.3.3 shows the variation of focus against initial angle for each of the apertures
used. With the smaller apertures, the most divergent rays were lost to the boundaries.

Taking as our measure of spherical aberration the difference in focus between the most and
least divergent rays, it is obvious from Fig. 3.3.2 that for the particular conditions chosen
there exists an aperture diameter between O.25Dg and O.5Dg for which this is a minimum
(naturally dependent to some extent on the most divergent ray if none of the beam is to be
lost). For a beam diverging at a maximum angle of tan™ 0.1, this is O.5Dg; for tan™ 0.08 and
all lesser angles it is approximately O.4Dg. Computations with a different position of the
point source produced similar results. Thus it is suggested that for this configuration
generalisation is possible, i.e. for minimum spherical aberration the diameter of the initial
aperture should be about a half that of the accelerating electrodes.

3.4 The Aperture Lens

An approximation to the focal length of an aperture lens (a single circular aperture in a plane
electrode separating two regions of different field is given by the formula

where f is the focal length, ¢, is the potential on the electrode (with respect to zero energy
particles), and E; and E, are the fields preceding and following the aperture.

More accurately,

where ¢, is the potential at the centre of the aperture.

The focal length so defined is the axial distance between the intersection of the tangent to the
particle path at ¢ +E,z=¢, (Fig. 3.4.1) with the parallel incident ray, and with the axis.

This definition is normally adopted since as constant fields (rather than constant potentials)
are being considered, particle paths are parabolic before and after the lens action, and so the
equations from which the lens parameters (as normally defined) may be calculated are
complex, and in consequence rarely used. The equations are only valid if the fields on either
side of the aperture are small compared to the ratio of the aperture potential to aperture
diameter. (For a more detailed discussion on this topic, and the appropriate derivations see
Reference [9]}
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If the field on the image side of the lens is zero, subject to the aforementioned condition, the
appropriate formula becomes valid for the focus as normally defined (the cross over point of
the rays). For this case, Zworykin [9] has deduced, by numerical integration of the ray
equation, the variation of refractive power with lens strength, normalising his results against
diameter. In a practical case, the entrance and exit segments of the lens do not possess the
infinite radius required if these results are to be independent of diameter. Computations were
made for aperture diameters of 1, 2 and 3 inches whilst, the exit and entrance diameters were
both held constant at 5 inches. E; was set at 1 KV/inch, and ¢, was varied. Fig. 3.4.2 shows

all the results, and compares them with Zworykin's. The field was decelerating which
accounts for the negative abscissa. It can be seen that the refractive power decreases slightly
with lens diameter. (All computations were made with rays incident parallel at 0.1 ins from
the axis - in all cases, at this distance the effects of spherical aberration were negligible.)

Now, following Elkind [10] and considering (z - f) (see Fig. 3.4.1) as negligible, we will
express the focal length as

_ 4o

f_El_Ez

=/, 3.3

where ¢ is a function of ¢, /(E, —E,) and D, and f, is the focal length as given by 3.1.
Further, let us consider the variation of ¢ with D/f. From equation 3.3 = f, ./ f and

actual
from the computed results, the values of { were calculated, and these were plotted against
D/f, i.e.

C=a+b(D/f) say,

where a and b are constants; then equation 3.3 becomes

fe (a+b(D/ [))Ag,
B El _Ez
ie.
f= 2a¢0 +2\/ a2¢02 4 bD¢O 34
(El _Ez) (El _Ez) (El _Ez)

4 : .
N.B.asD —0anda— 1 f—)A as in equation 3.1.
(E] _Ez)

The computed results indicate that for constant entrance and exit diameters, a is aperture
diameter dependent, whereas b is virtually aperture diameter independent. Taking from the
graphs approximate general values of a = 1.0 and b = 0.57, and putting E, = 0, for this was so
the cases considered, equation 3.4 becomes

2
po2h |4, 2284, 35
E \E E

1 1
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Using this formula, it was possible to predict over a wide range the focal lengths of other
decelerating systems with field free image spaces, with an accuracy of better than 10% in all
cases. Although the values @ and b taken were approximate, the results predicted were far
more accurate than those predicted by the simple formula (equations 3.2 and 3.1). An
example is shown Fig.3.4.4 and Table 3.4.1. These results were for E; = 2.0 KV /inch and D
=2.01n.

Equation 3.5 is thus presented as an empirical formula with which to predict the focal lengths
of aperture lenses separating regions of constant decelerating field from field free image
spaces to a greater accuracy than is possible by the lens formula alone.

4 Application to a Complete System

Computations were made on the injector system of the Oxford Electrostatic Generator. [8,9].
A schematic of this is shown in Fig. 4.1. The configuration was considered in three sections:-

a) The Ion Source Lens
b) The Gap Lens
c¢) The Accelerator Tube.

4. The Ion Source Lens

The fourth electrode of the ion source lens was held at the same potential as the third, so its
focussing effect was negligible and thus only the first three were considered. The system was
used to inject beams of both negative and positive ions, and there were thus two individual
voltage configurations. Fig. 4.1.1 shows spherical aberration curves for the lens for these two
conditions. The corresponding voltage configurations are shown in Fig. 4.1.2. The emittance
of the ion source (assumed the same regardless of the type of ions) was known to
approximate to a right ellipse with ry.x = 1/16" and r'y,x = 1/40 radian. Several boundary rays
were selected from this and an effective drift space assumed between the ion source and the
first lens. In Fig. 4.1.2 the passage of these rays through the lens is shown for the two
configurations. It was assumed that all other rays would lie within the envelope formed by
these rays and their exact opposites (i.e.7, =—7, and r'=—r )

4.2 The Gap Lens

The purpose of the gap lens was to match the potential of the particles emerging from the ion
source lens with that at the beginning of the accelerator tube. In Fig. 4.2.1, the trajectories of
the particles of the negative beam are shown, with the corresponding voltage configuration. A
drift space was assumed between the lenses (Fig. 4.1). A more detailed investigation of gap
lenses was performed, and has already been included. The beam was intended to focus in the
aperture, which it does.

4.3 The Accelerator Tube

In Fig. 4.3.1, the trajectories of the same negative beam particles at the entrance to the
accelerator tube are shown. This section continues straight on after the gap lens. Assuming
that after the initial field disturbance at the entrance the particles are merely accelerated by a
linear field (in fact, this was 24 KV/inch), then using the simple parabolic equations of
motion their positions at any point thereafter can be calculated. In Fig. 4.1, the beam
envelope through the initial focussing stages is shown. Again, further results on accelerator
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tubes are shown later. These results show merely the performance of the actual configuration
and experimentally optimised focussing potential in use.

5. Conclusion

General consideration of the results indicates that, although many geometrically complicated
systems have been designed, for a given lens strength (i.e. focal length), with regard to
spherical aberration, these have little advantage over the simpler, more easily constructed
systems. So long as the basic problem of inter-electrode breakdown is solved, then complex
shaping of the electrodes is not worth the time and effort involved. The plain cylindrical
einzel lens seems as adequate as any. A table of the collected results for the aberration
coefficients determined is appended (Table 5.1). As stated previously, it is difficult to make
any real comparisons between different types of lens, since to compare Cs in true fashion, the
magnification of the lens must be taken into account. Even with lenses of the same type, in
particular einzel lenses, it is difficult since there is a dependence on the focal length which
Liebmanns [6] work suggests is not in fact linear; thus even the last column of the table is not
a real comparison. In general however it may be said that the results follow the expected
trends as indicated the individual sections.

The program has shown its applicability to the analysis of particular lenses and some new
results on the einzel, gap and aperture lenses have been presented. Further investigation of the
last of these three lenses might be of use.

Results of particular interest to accelerator tube designers have been obtained, and the
properties of a complete system have also been computed, and it would seem that here, i.e. in
predicting the action of a particular configuration, rather than in more generalised
investigations, lies the most probable future application of the program..

In fact the program has already contributed to several specific projects, amongst these being
the design of a novel configuration of electron gun for the Wantage Research Laboratory; to
be used for paint curing purposes, and an analysis of the injector system of the Rutherford
Laboratory's Proton Linear Accelerator. Present uses includes its exploitations a tool to
investigate the effect of field emission on voltage breakdown in vacuum, and the prediction
of the performance of an accelerator tube to be used at Tokio University.
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Appendix I

A Cylindrically Symmetric Electrode Configuration with an Analytic Solution for the
Potential Distribution

For any potential distribution, in the absence of space charge, Laplace’s equation must hold
i.e V’¢ =0, in cylindrical symmetry, this becomes

oV 10 rov _,

+—— 1
oz* ror or M
Consider a solution of the form
V =R(r)+Z(z) (2)
2
Then 0 g = _Lorok = A where A is a separation constant. Integrating
0z ror or
Z(2) =%izz +Cz+C, 3)
and
R(r)= —%M +C,logr+C, (4)
Now, we require R(7) to be finite when » — 0, thus C; must be zero.
From (2)
Vzl/122+Clz—l/1r2+C (5)
2 4
27
Consider equipotentials defined by ——— =1, i.e. a potential V' is defined by
qg nq
-
—=1 (6a)
q12 n%z
and a potential V; by
227
—--—=1 (6b)
9, nq,
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These are represented in Fig. 1.1

From (5) z° —%rz + 2312 __AC)

n=z,C,=0,C-V,=-1/22¢ and C—V, =-1/21q,>, s0

, and this is satisfied by(6a) and (6b) where

_204,-1)

N=--=o 17
(‘122 _912)

(7)

and 2C-(V,+V,)=-1/2A(q," +q,°), which on substituting for 1, gives

c Ve Ve’

(%2 - %2)

Thus if we consider the equipotentials of Fig. I.1 as the boundaries to a cylindrically
symmetric region, then the potential within this region is exactly defined by the equation

®)

V=—%/1(22—r2/2)+C

where A and C are defined by equations (7) and (8). If as for the specific case considered
V=0, V>=Vf say then

2
AZL and C = Ved,

(Q22 _%2) (‘bz _qlz)

Appendix 11

The Analytic Solution for the Trajectories

The motion of a charged particle in a potential field is governed by the equations

2=—7788—Z=7Mz (1)

i;:—n%—l::nﬂr/Z (2)

Where 771s the charge to mass ration for the particle (non-relativistic) and the field gradients
are derived from Appendix I.

These have solutions of the form

18



Kk

rzAcos(\/Et—i-E) 3)
z=Ce"+C,e™ 4)
where k=nA.
These are subject to the conditions thatat t =0, r=r,7=7,,z=2,,2=%,
Thus
7y =Acos E %)
iy =—Ak /2 SinE (6)
and
z,=C +C, (7)
z, = kC, —kC, ®)

From II.5 and II.6,

A= r} +277 11 9)

and
E=—tan” (N2i, / k) (10)
From II.7 and 11.8,
kz, +z2
C =—90 -0 11
b2k (1
kz,—Z
C =—"° 12
| % (12)

If the initial potential of a particle is ¥, thenl/2v,* —1/2(3,* +z,") =nV , so

z,=V,cosa =/2nV cosa (13)
Fy =Vysina =+/2nV sina (14)

where « is the initial inclination of the trajectory.

II.13 and II14 define the initial velocities, which are necessary for the evaluation of the
trajectories, in terms of initial energy, a parameter included in the input data for the computer
program.

19



Figures

Equigotential
V=V2

tane:c = 2

Fig. 2.2.1.

undary used as the )
ut for_the programme Boundary coincides
| . with eqipotential

V=10Kv

20



Polentiol (K lovolts)

Fotentrial [ Kilovalts )

Potential {Kilovalts )

F
’,f"‘
8- N
'r-r*
§ - ws
o
& - *xn"'r!
a5 ——— Analytic solution
2= " 1,.“*""" % Pathfinder Recults
p-#“'**ﬂ‘-
""‘"""""hT i T T T T H T T 1

1

2 3 L & £ 7 B 94 [V
Distance fram analytic arigin {inches)

o] POTENTIAL CROSS-SECTION A B.

10 ¥
e
Ea.-
.ﬂﬂ!‘,

€ ,/”"f
4 e

ﬂ_fﬂ"‘ ——=— Apalytic Solulton
2 - % Pothfinder Resulis

g "‘H‘
ey T T T T T T ]

; |
4 3 (A B B 7 8 g 10 il 12
Chstance from onalytic origin {inches)

by POTENTIAL CROSS-SECTION CL

el S i N
e ——— Analytic Soiution
[ 20
38 S w Prathfinder Results
S,
36 TRy
6] P
e
:H;*-».
3- 4 ‘M:‘-\
f %
3.2+  MOTE' Gifferent Scole. ™
x :\R

10 . | | r “x

0 10 0 3-0 £ a0

Distance from R=0 {inches]

¢) POTENTIAL CROSS-SECTION EF

Fig. .2.3.

21




1T 1H,--
L]
2 15+ e
-

k1 ’.J‘

1] x>

= 1-3 1 -

5 !/L

E 1.1 o —— — Analytic Resyit

E d x Cormputed Result

= 03 r’}

E :r"

o

£ ord

i d

4Ll

< 5 T T T T f T T T Lt _

3 A 5 + 7 8 9 10 11 Z Co-ordinate
a] ACCELERATION IN THE # DIRECTIOM
70 P
-

_ 60 )_n-"]'(
= ,./L

® 0 "

a 50 -

= o~

o 40- *

%

E 304

_E 2.0 *,J-‘} ——— Analylic Resuit

= v

T x Computed Result

& 10

bt

~f f.-""‘

[} ] H | | | [ T ] | | .
0-m o022 002 004 005 O0F 007 008 000 030 R Co-ordinate

bl RADGAL ACCELERATION TOWARDS THE AXIS OF SYMMETRY

These graphs are for a particke of initial emergy 0-05 Kv starking from [3,0)
at an inital angle of tan-'0-1

Fig. 2.2.4.

22




{inches)

{inches)

[inches)

010 . ——= Analytic Trajectary i
b
] *  Some Computed Points e
008 ,,t-*"‘" A
K - -
006 3 ,«“'ﬁ :
y ’ p
0.g44  y ELECTRODE e ELECTRODE [
J FOSITION 7 POSITHON ’
oeq 3 £ 4
b 3
; / ﬁ
. T T 1 T T T T ; ! =7
0 1 2 3 [/ 5 & 7 a 44 N
{ inches)
a] TRAJECTORY OF 0-05Ky PARTICLE WITH INITIAL ANGLE OF TAH’1D~1
4 ———Analytic Trajeclary
¥ Some Comnputed Paints
i 0 mhm“**
-H-'““ﬂ.‘-*-
3-0 ‘-""'-#
20+
ELECTROOE ELECTRODE
FOSITION POSITION
10+
| | 1 F I I T | T I 1 Fi
a 1 2 3 4 ] & 7 & 9 e on
{ nches) 1
b TRAJECTORY OF 5Ky PARTICLE WITH INITLAL ANGLE OF TAHN 02
R} ——— Analytic Trajectory
¥ Some Compuied Pants
20— “ﬁ-..__m #
14.__“-“ ;‘
160 S ’
"1-\.___* I
1-0- ELECTRODE -
POSITION ELECTRODE |
050 POSITION %
”
\I | 1 | | I | il 1 | : '_z
0 1 2 3 4 & B 7 8 ¢ T N

(inches)
) TRAJECTORY OF ZERD EMERGY PARTICLE

Fin 2.2.5.

23




1°¢2 bid

) ‘ydoub pajodosso 43Dz uo paunzp 2un P2sn S|OQWAS [ROPIAIPUL 343 pUD
Padwayn st LOIDIOU UOWWOD ON JOWIND ) J0 LOIPURY D S UOIIDION Y3 ‘MOp ey yaiym swoiboip ayl uj

. Z ¥
P s
i

aup|4
[p964l
upDISSNDG |

sual

24



05
Y % :‘%
e
I '
o~ ¥y Configuration 4 e
e -3 -~
§ e
B f/ !
= 02 e -—- Rumberg's Results
e *® Compuisd Results
15 i
0 M
- 2
¥
003 “A*"‘L)

Ll I 1 | I I I
g0 91 02 3 o0& 085 06 QY 08 ( Wy
a] RAMBERG'™S SYSTEM A

| 4 | ,,
-
04 W m—m—m———eeme ’
it . . "
- Y4  Configuration B -
T, | -
£ 03 )V'
§= -
2 0-2-1 > w=- Ramberg's Results
|
_‘_,--’f ¥ Computed Resulis
01 l
x"'x z
-
at =
a0 T T T T T T 1 ] (II'I:I!\ vl.)
a0 01 92 Q3 04 OB OE 07 06 Ya
by RAMBERG'S SYSTEM B
PR
S0 v g
1 b 4 .
ditirdend teedice /.H' Accelerating
98 == !
— ) . Y
. Wy Configuration D ,
— kY
1. 05— _..'/ .
E p ——— Ramberg's Resulis
- ’
E 0o R ~ % Conputad Results
b =
.-Fi ____.«""Ef | i
024 J,{ Pty scelefating
o D 2
-0 T T T T T T T 1 (“I - uz
¢0 o1 o0 03 04 5 GE 07 A48 Yy e Yy

¢} RAMBERG'S SYSTEM [
Fig. 2.4 4,

25




Mid-plane of lens
L
IEI:I

Mid-plane of lens

|
13III 130 | 43D
el el
{
|
! H
I {
| I
Ly | ‘7‘9"7 I T ra T
S I O
AL -850
al Lighmann'sLens _No 1 b] Liebmonns Lang No. &
Mu:l plane of Iens
““| __{ o0 ln each cose, L'l'.l'u: nuttér electrodes were
|-— — at a potential vy and the centre
cdecesri  sackecs wsriig electrode was at a potential Ve e,
I where Y is the cathode potential,
: Fig. 2.4.2.
|
TS i, g
_._l D' |..._
chliebmann's Lens MNo.B
MID-PLANE
OF LEMNS
CE o 1}
" SR Positian t "".\
= of Principal | W, Retotive Focal Distonce
= 020 Plare ( N
E_. 1
Ew i
EE 015 I x Computed Results
= 2 1 — —u= Ligbrmarnn's Results
s 0104 b
W= ! i
g | |
E 005 ' 1
. : |
]
| !
| | I | | 1
=20 -10 i 1 20 33 40 80

Distance from mid-plane of lens
{Diameters)

al LIEBMANN'S LENS Mol

Fig. Z.4.3,

26



Distance of ray from axis

Distonce of ray from axis

[ Dameter)

{Dicmeier)

028

020+

015

010

0 05

MID - PLANE

0-25-

Q- 20

0-15+

0107

0-057

QF i..ElNS.
f
v |
! | \
( y Relative Focal Distance
'... {
Position 1\ : ¥ Computed Results
of Principad ——— Litbmann's Results
Plane |
|
|
|
|
]
re— T ] T ] T 1
-1-0 -0F§ Q o8 10 1185 20
Distance frem mid-plane of lens
(Diameters)
B} LIEBMANNS LENS No. &
MID-PLANE
oF LEJ:IE.
|
\ N
Y .
i \“ Relative Focal Distance
5 ..
\ Posibion x Computed Results
v of Principat .
\ Plane. ——=— Lisbmann's Resulis

|| 1
(| i"l
1! !
1| I

T 1 T ] f ! |
1-0 0-R 1] IR 10 18 2-0
Distarnce from mid-plane of lens

{ Diameters]

c] LIEBMANN'S LENS MNo.§

Fig. £.4.3, (cant)

27




LSS s e v e v v v sl VAN AN

Alrl.||I|||l|lI||II|.|Il|||lI||||l|||
| e

\\\\\\\\\_ 7F 777 774 P\\\H\\\\

LER V=V
¥=Y¥¢ the potentia| of the cathode

This diagram shews the trajectories of rays incident at various aperture radif through lens confiquiation & as considered
by Liebmann® For the larger aperture rays, the action is opproaching that of a mirror

Fig. 2.4.4,

28



e ‘b4

spaainazg sylbuzy jpag) apis-308ige pun 2prs-afows ayj ydigm wiugim 3buna 2y3 S| {oAD PayoInY) 4
¥ oweuy aupid jodiswad apis-i2afae ayl jo 2dupisip ayy s Uy
¥ woay aupjd |pdiouiad apis-abinw) ayy jo 3oumisip ayi st Oy

17 SMNAT 4311435 {9 £ 1 SN3T SHIL4ISID
n L
0Z40 mf_ 0 E,_.a m_u“_.n__ _uw_n mn_m E.,..c mcﬁ_u
1
Ieflrllll...’rlllll
@ ﬁ__r_ lxrli.rl!-..#..a...r.r.r
|||||||||| - r0e L. . .. [%
——— LI o
.Y K Tl N
Z I Y
o @ T} Py x
- up1ypunBiyuos Hsog 09 v —-— R wl
o —_ "
d og 2 a _ m 1og
s1Nsy pandwog  x - - % B
glnsay 5J31jda | - b
RS o0 2 A 001
-
o
i__um_,.m mpirAl
A
-0y~ -0yl
09l -081
g \\ Synsay papnduxy x - o8l
ooz & Synsay ssendas —— - 007

29

WITRN




Focal Lengthim.m.}

¥ Compuled Results

100 \“'-..__h______..--"" — —— Septiers Results
EG U= ﬂﬂ-gl
ge
60 4 Basic configuration -
na Ko

40 .
20 Be

D H I L] I T

G-05 010 015 0-20 0-25
o

¢l SEPTIERS LENS LG

Fig.24.5. (cont)

30




% \ 7] vih Y YW

al Origirl Geometry b} First varigtion - Reclangular
Cross-sectians,

c} Second yariation=- Triangular
Cross-sectians.

Fig. 3.L1.

07
05— 8
-

O Bl ﬂj\

33

024

Distance of ray from Lhe axis
{intlerms ot the total entrance radius)

014

#
Rf-
’5

a-0 T T T 1

1 p 3 &
Focal length from mid-plane of Lens

{in terms of the diameter af the centre glectrnde)

Fig. 3.1.2.

31




SHNAT 54311435 40 INITAINGT Y INONVLI3H @

{(RPwoe aJniade 1oiul o swas) w
w weouy ibuay josog

H el gl H a 4 7 A 0

| | 1 i L L ] i

I
ul
L)

.I._“:.

-Gl-

| |
U [ }
- o

Rt

[
=
[4r )

FRRIE!

SN37 54311435 (0

[Jalawnip alngdadn (BIHUT 0 sWEsy Ul Y
W wolp Bua) paay
! ch 18 2 a K 4 0

m. [ | H | L | l Iﬂl
5e

U - 600
G

cmw - 04 -0

omrm h GL-0
oo

053 - 026
=5

D=2 g - S0
nooe
(=l

f - 00
g—.

»

Q-0 =432WDI(] A2UTUIUT=SaYIuL Ul

SN0 SU Woy AT 40 AIURSIg

"

32



MID TL.&NE
~4D 1 D

|
L/ — D i
I
¥a Vee Va
Fig. 5.1.4.
04 —I

0-3

o1

Cistance of my from the axis
iOiameters)
]
[ %]
1

T T I T
05 10 15 20 25 30
Mid-Plane Focal Length
tDiarmeters}

Fig.3.15 TYPICAL ABERRATION CURVE FOR A
CYLINDRICAL EINZEL LENS

33




g1-g By

[ s3932WD10])
U132 aAus] o yibua)

o n_._—

b2

"po1i0|d aJam saaing
IDNPLAIBUL ay] yaiym 1o e ¢ Dig azs)ya o 3ap onpod
) Jo anjoa Yy} 210a1pul sydotb ayy apisag sainbip 2yl

-0

- 51

[ SJ832AWBI0) FUTIH - Pl W0dy SPSOH 40 SIUTTSIG

34



L£1E B

Jml
0 =2p0aizaid 23033 Jo wbuaip
|q| M
Z- 5
La w8 8 7 .
MU.}. [l | | mw
2
IN_ mw-
[
Lh__ f..ﬂ
@
e
-3
01
e
Liqzaponan3 anua) jo ybuaig
I.“_.n
P
W o o o2 9 r 2 5
M.U} 1 | i 1 L 1 WMW
w
2 3
TB
1ﬂ1 ..—h_..-”
by &
o
-8
=
21

e

oal
. |
13,

q._._uu apoJlsa)g apuag] o yibus (o

L

= apaay3a1g anuad po ykivag (2

[

T

=

.INl

1 1
=] a
-

r
™
=

[Sla) S Raf)
y1Buat 10504 SuDId-PlN

[SI=alTIp|
WbuaT U3 FOE-PIW

35



[ydea) £ B
-9
rQI
|N| H
L N T g
2, . + . Hw]
L
2 Ba
w___.:
» 53
S
Im 1
K]
e 7

0% =apoainay anuad jo wbua [y |y

]
Z = [
i = 2PAN2213 Aliva] 4o ybua {4

Lo
IN.I
LS4 a 5 7 I z
W.Uh__.F l | i | ._n___D.
53
3
by 2 g
" e
r9 .._.h_l
o
.
L@ L.W
[l
-zl

3

Yzl
| —
3a,

7
s

q___nm zapodisa1d alwas o ybua e

= ap0aL2a|3 anuad o yibua (6

g, 0l

E MY

e |

]

-

BSETE IR T )]
Lfua 1ox 4 aumis-poy

[elajawmp]
637 10204 auD)d- By

36



g'1¢ 'bi4

D1 80 = VA:TIA
xn = 3p0IH3|3 211Ua2 3o y1bua

[ £/ $0 shun up) ysbuay |paoy aup|d piiy
Sovb 8o o6 8 L 09 5 b & 2

1. 1 1 1 1 1 1 L__1

L]

10
20
Lc0
0
o
-0
L0

<
o

37

!Z/ﬂ 40 SUN Ul snippd ndul wbag




B Big
L
parojd aliam s2A0n3 a2yl Uiy o) ,___\.\u.f__, 40 sanoa Byl a1p 5aALNI Y] dpseq saanbiy ayl

[s1atdwni)
#oajaaf3 J1Ua] jo yibua

ol
1

FOI

90

-4l

[S1318WR1G)
2uB)d-Pi W WO} SNa04 J0 3Ly

38



‘ovig chld

d="323 0 REwa {p w\mmu.u.u o yibual (3
YA 0 L0 90 SA PO ED 201D O 1-0- ' 8¢ 40 990 S0 w0 €0 20 1D -0 -
i — S | 1 1 i heo. Lo 1 I [P T I "
‘AIAN T
o, o1 -
= 3
g | =4
az W_ [1F) MW
0 = LA-]
m ~
FOF 2 T -
:
FOS s =
g g
oo 3 L0y B
o 3
LR Log ¢
O -0E
w\m._u.u.u 4o yibua (o m.\_w =17 40 yibuz] fo
va B0 £0 90 S0 ¥0 T0 20 KO O 1O ypo 80 £0 90 50 #0 €0 20 10 O 10-
— . 1 P I TSNS N TEaa | | I —_t A 1 L 1 [ 1 e o1 1
I7IA E =
a1 il
- -
0l 3 0 3
s a
FOT © FOE =
] =)
L0 A -0y R
= =
Q¢ m___r -0G a
Loy 5 09§
-3 -
LoL B 0L =

-08 - {8

39




wasd g) g By

0z =31 4o pbual (y 4, =3930 wbuat (8
vA 8040 90 $090 020 Lo 0 I0- vA 902000 50 %0 €020 10 O I~
W o o A

oL 0] -
L0z 3 0z 2
a -
Lot o oL =
| 3 o
roy = L0 =
Log 5 Hos o
- a
il & ne W
Loz = 04 3
2 _ 4

. ; Log Lop

Ce ™37 40 ibuad 4 PHg =7 4o wibuan fa

yao €0 L090CO ¥D €20 10 O ID- vA 80 L0 90 S0 Y0 £0 20 10 O 10-

I 1 1 1, 1 1 1 E A L 1 L - 1 1 —_—

AVA ‘TIA m

al ol o
oz 3. foz 2
B ! e
L ¥
or 2 Log :
or = or 2
05 2 105 e
09 5 w% 3
.- -
-4 2 2

-08 08

40



St e o e : £
R !
L |
i i 1 | T T T
-3k -ZH ~-R : R 2R 3R
Ty | e o
|
|
1
MID-FLAME
OF LENS
Fig. 3.2.1.
07
1:20
&
=2 182
=
a
o«
£ £
E —
=%
E ;]
E
%5
=

— — Beam width
before |_ens applied

T T T T ; T T T 1
-=2R -3RfZ -R -R/Z O RiZ2 R 3rR{z 2R

Oistance from Mid -Flane of Lens

Fig. 3.2.2.

41




L L L

3y} WOt} I5)0M JO 3IUDIS|()

t-2°¢ by

ISIDA 34T JO YIPIM Ayl 51 Y

sU3] Y3 Lo aup|d-pw

&

V. LAV A

_ LY ad

VA SR S A A S A

il s 7S A

_\\\-.\\\ s

suaj Joaup|d-piK

42



Beam Width

~ 008

Figureg on graphs
indicate the Lens strength

Beam wWidth
{in terms of Lens Radius)

- Beam width

before lens applied

I
-2R -3RZ R -RM2 WRIZ 4R

| 1
+3RfE *IR

Figures beside the
grophs indicate the

"Orift Space Feeus Position”
wrt. an origin ot - 4R

0
Distance from mid-plane of Lens.
Fig. 3.2.4.
008+
— 0 07+
2
T
=) . NO LEMS ACTION
o 0084 | AppLIEG
- :
&
=~ 005
B
£ 0.04-
E
£ o008
G- 02—
Q- Ol
FAls]
T T T T
115 1.5 110 115
Vollage Rolio on Lens.
Fig 3.2.5.

43




9°¢E By

{ SRPDY JO SUIS) W)
ol L S S N S S L
.\\.\..\.\.
.\\1.._...._.. H
A J ¥ 0104 ]
4 ¥ ] ! r
4 / ! H H i
; a__ “ “ __- n.\
__.qxr 5.1 — ¥ _ # —— .
T f ! I ! 1
¥ 1
f H 1 L 1
: A _._ \ i ) 1A 1S10M,
1 L K
B PN ——— Wemmee b SO0% 5y MPAISoM
12uIBg
INYIL | I
0200
uoljlsod BuiD)s SWBS ay) Jo sauw—
WiBuais sua) JDIIWIS 0 Saui]— [SNIPDY JO SWIS) ' _
H

44



s W

aj Minimum Aberration Lens

Fig, 3.2.7.

b Simple Cylindrical Geametry

(Diameter= Mean Dia. of a))

D85
w
207
=
2
.;'_"53 06
o c
=
st 054
:d}
g8 04
= 2
g\a—
85 0.3
[l |
==
L5 02+
=
01
| |

45




_ Distance of ray from axis
(in terms of total entrance radius}

crdimpiaiiydiid BHUBYBERE

— — — R Bk — — — — — U f— — — —— —

0-9 -

0-8 -

0-7 4

0-5 1

J-%

04 ~

0-3 1

02

T, ARBABRRARARE

'Graduated Fotentiat’ Lens

Fig. 3.2.9.

X

1

¥'u
a

; Simple gap lens

—_

e e it e o e —

‘Graduated Potential lens

| | | T

1 2 3 &

5

B

Mid - Plane Fecal |ength { Diameters)

Fig 3.2.10.

46




O
APERTURE )

SCALE 1:4

Frre s f////El?L?z7J7?1?J??L7H7JL7]17E?JL7-

D oGS maten
o ooSog BRg
=

=
= Soa OSSO0
10 [

0 002

D 7B

Digmeter of Aperture
{in terms of DE}
o
P
[

0-254

I 1 T | T T T
ra: 50 75 100 125 134 175 200

Oistance of Focus from Initial Aperiure
{in terms of Dg 1l

Fig. 3.2.2.

47




_i:l

Angle of Divergence
[tan

-])

Argle of Divergence
{tan

ftan~1}

Angle of Divergence

Q- 10+

Q- 06

005 -

0-04

0.02

Q10

Q- 08—

0. 0g-

G 0

.02+

T
20

1 1

T j T T
40 BD 80 100 120 14D 160 180 200
Distance of Focus from Aperture (Ogig)

4] Aperture Qiameter = 0-25 O

Q.0

008

0-08 -

- 04+

Q- 02

0

T T T T T T T 1
&0 EII.‘J B 102G 140 160 180 200
Distance of Focus from Aperture {Dp.]

t) Apertyre Diameter = 0373 Dg

0

" T T T | ] T T 1

&40 &0 B0 Q0 120 k0 160 180 200
Distance of Focus from Aperture { D)
clAperture Diameter = 950 Dg

Fig. 3.53.3.

48




Angle of Divergence

Angle of Divergence
(tan-t }

(tan- 1}

Q10

b=

=]

[~
]

-}

=]

o
|

o

=)

F3
]

a-o1

010

0-08-

0- 06—

0- 041

0-02

T T ¥ T T T T |
0 40 €0 80 100 120 140 18D 18D

Distonce of Focus from Aperture [Dpig)

d} Aperture Diometer = O-75 O

1
200

T T ] T T i T T T
2040 BO &0 100 1200 140 60 180

Distance of Facus from Aperture {DE,SJ

e} Aperture Diameter =1-0) Ce

Fig.3.3.3. ( cont.}

|
200

49




%3 =pjorg

REE 2R T F

VA A R RN

jpruajod !

| _
o

jDiTU2304

'3 = pjais

50



=1

EAL BN IF!

ioa\uv

o o ﬁ.ml ﬁ..._..m.u o_.vu Dhml ._..._._c! c_.hl n___.ml _u_.ai c,,ﬂ__u __u..:.. n__mm_u. O-01-0l- 51 -

017

R

13

09

\g _Q-g =J33un1Q 4]
-o.ml.,H__uEuEV\ ,V.. o Z
rd _G-1=Jayawnig R
) N =
L0 \Mn e sjnsay s urjliomz
ra
/.
50 4
f
o3 vr/r
___\ J//

80 ﬂ\w//
...._U._.l._mqu._u__ﬁ_ f.ﬁ/.

-mo\ //
o - V/ syrsay
R 0Z2=1a33wp1] /// A5 L1ykiomg
F1d //,V/ <
PN
o S-gesanuog” N
T ™~ 4
.// ]

4l

51



—_— 4

o C By

_0 =1a12unig

FiE-0

- L1

52




&0
35+
5-0
4.5-
4-0
Fecal
Length 3-31

R
in diameters

g5

b

Computed
Focal
LergLh

e
J A

7
4@ g e g4
E,-E / /
A-‘_‘“‘-nf. 4 7y
E,-Ez

P _/L——~ focal Length

given by equotion 3-4

e
/

02 04 06 0B 10

T T g T T T | |
-2 14 106 '8 20 22 24 24

&, FPotenticl [ Kvi

Lens [Didmetsr = 2-0'}

Elm‘z'ﬂ H\"/iﬂﬂh} EZ- 0,

Fig., 3.4.4.

53




A #,
Fotaniinl Fotantial at Fooal r -4 Error in fo, £, = 4 P) Errorinfe ‘|r . o Error in fe
on ApeTtuze | oentrs of Length 5 £ E pompared with e - conpared with | 2 m|o cempared with
Aperture 5 gemputed - MR oonputed 1 r8 socputed
raaults regulte Tesulis
{Computad) { Computad)
{&,) ._unﬂ”_ (inchea) |  (inobes) [inchesa) |
{ |
g 0= 65 1+000. | e 4 &0 0 1.38 380 0904 G i
0= 4 085 1+472 oebi 45 65 178 20 ok 1044 2174
T3 1:09 1.2 1e3 a7 2. 18 TrE5E 1814 [l 4
0B 129 2 365 1 1z 2o 58 7168 B 365 o7l
10 1049 2755 2:0 285 258 X 2810 e 563
s 193 j-86 30 22- 7% K- RAREL ¢ 1875 0 3ag
2-0 2g 4+ 525 40 1674 458 1-128 4922 0006
2.5 2.5 595 5.0 159% 5-58 0° 558 595 a-008 |

54



L'y Ty

H

o N

o - ,
=l .

7 7 mzmeseeees a2 Y,

v _Hcﬂﬂ[iﬂ

gl

——

SO L

1

=
U1

=l ]

I .4u

JENl HOLYHITI20Y GN3T JYD

-
3G Larkg

J
|__

55



Distance of roy from the axis {inches)

[inches)

3

Disiance of ray fram the gxis

Initial aperture digmeter

=3

[nitial aperture diameter

a-#4

L]
L=
]

0~

024

H™ BEAM

U.S_

06~

0 4

0-24

I | I T I I I I I ]
2 4 & B 1w 12 wo1|E 1@ 2
Facal length from mid -plane of lens [inches)

He BEAM

E

g

T T . :
2 4 8 =) m 12 14 16 18 20
Focal length from mid-ptane of lens {inches)

41 SPHERICAL ABERRATION CURVES FOR THE FIRST
ION SOURCE LENS

56




W¥3IH_H — JINVUIND 38MNL YOLlv¥31320% 1Y S3M0L030wdl Q3Lndmos 18t Big

|

WY3E _H §0d SNIT 4vd HINOHHL SINOLZ3Irvdl QIalndwos T2t By

3TI¥IS 0L LON

AA0-79 .. f AMEE

57



SHIT JA2HNDS HOI HINOHHL WY3E 40 SIIEOLI3resl a31N4dW0D &+ by

m bk LA

58

\ ARYG-Z -
AN 52
_ Wvig oM
b o |l|||l|||l|l|
———— |.|.I|.|r.|.lj|.11i1rx}|rrr!1ﬂ:irrrr.r|..||.|i!||
{ Ay 0B
]
{ M
NG5
Ay 0-FE

HY3dE _H




IABLE 5.1

Foeal [ [
fendipuration Dageription Hefarence Langkh - B
(Diemetess) (Diamatera)
e Cyrlindrioal Eingel Len Liebmenn's Lens 1
TR W rrerre Bpetion 2.4 b} 3.0 1343 44,8
ARMAS Sclebici Cylindérical Einzel Lens Lisbmsna's Lena 4
T Beetion 2.4 b} Q.72 36,2 503
e Cylindrienl Einzel Lena Liebmann's Lena &
Section 2,4 b) 0,18 47,53 26%,0
L T Einzel Lens Ramberg's sonfiguretion A
ey B Section 2,4 &) .45 05,5 27,8
diatl wa  bites Einzel Lene (Cwlindrical) Variation on Hamberg's confimuration &
wm Sactlen 2,4 a) 2.70 40,0 15.0
et gy Einzel Lans | Varietion ¢n Ramberg's configuration A
Ty A | Section a.4 a) 3,70 1077 28,9
§ flleield e Assypetrie Einzel lans Septiers "Practical' Lens
LY P Section 3.1 a) 12,5 227.0 18,2
B gpiesecss bed Assymatric Binzel Lena Variation on Septisre 'prastical' Lans
B Prrerrrrn v Seation J.1 &) 1d.3 290,0 0.3
e Avzelerating-decelerating | Arbitrary Lens
— Cylindrieal Einzel Lane Zeotion 3,1 b} 2.05 10,26 5.0
dip Lidasels ddoteted Deaslerating-aocelerating | Arbitrery Lans
e Cylindrical Einsel Lens Section 3,1 b} 141 G0, 2 4,2
SRS Gep Lens Ramberg's eonfiguration D
T G Bectiona 2,4 a} and 3.2 b) 10,9 5744 5425
i Wl Grp Lens Variation ¢n Remberg's configuration O
7 Secticn 3,2 b) 1,2 59,1 5,28
S 'Gradusted Potentisl' Lens | Theoretical Lens
— Saction %.2 o) E.0 B0 D 51.0
e R — 5
Aspyretrie Einsel Lons Oxford Injector Lens
= === Seotion 4.1 13.8 54,0 .2
Efitheees = Aasymetric Einsel Lans oxfard Injestor Lens
Saction 4.1 13,5 198, 5% 14,7
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