GEC COMPUTERS LIMITED DD 1196

User Hardware Handbook — Computer

CENTRAL PROCESSOR UNIT NUCLEUS

@ GEC Computers Limited 1977

The information presented herein is, to the best of our knowledge, true
and accurate. No warranty or guarantee, expressed or implied, is made
regarding the accuracy of information supplied or capacity, perform-
ance or suitability of any product or service since the manner of use is
beyond our controi.

You are advised that you should ensure that the information contained
herein has not been superseded.

All our products, materials and services are sold subject to our Condi-
tions of Sale, available on request.

GEC COMPUTERS LIMITED
Elstree Way, Borehamwood, Hertfordshire.
Telephone No. 01-953-2030

Holding Company — the General Electric Company Limited of England

December, 1977

TS 3911

CPU NUCLEUS

CONTENTS .

INTRODUCTION TO NUCLEUS

1.1 Tasks of Nucleus ...
1.2 Process Capabilities

1.3 Nucleus Operations

SEGMENTATION SYSTEM

2.1 The System Segment Table

2.2 The Master Segment

2.3 Nucleus Segments

2.4 Hardware Segment Registers .

2.5 Segment Manipulation Instructions ...

INTER-PROCESS MESSAGES

3.1 Sending a Message
3.2 Receiving a Message
3.3 Message Transition

3.4 The Route Table ...

2.6 Inter-Chapter Branch Instructions

35 The CALL Instruction ...

3.6 The EXIT Instruction

3.7 Mechanism ...

THE INPUT OUTPUT SYSTEM

4.1 Peripheral Addressing

4.2 Programmed /O Instructions ...

4.3 Autonomous Input/Output

44 Autonomous I/0O Instructions
45 State Change Instruction
4.6 interrupts ..

Page

10

12

14

14
14

17
19
23

23

29
29

33

38
38

A7 lntarriint Manhamicm

hn OF 4 ICILCIIH'JL WiGLIiginotn
A0 Crnnainl Effanta

.0 wHTELIG TITLW
SEMAPHORE SYSTEM

5.1 Semaphore Structure
5.2 Semaphore Instructions
5.3 The Semaphore Cﬁain

THE PROCESS SELECTOR

noa
0.1

6.2

[<2]
o

o
o

Process Vector and SCAN bits
States of a Process

State Transfer

eiector Operation

[72]

The Process Change Miechanism

ERROR HANDLING

7.1

7.2

7.3

7.4

System Errors
Programming Errors
Segment Breaks

Continuation After Errors

NUCLEUS SUMMARY

The Systems Variabie Area
The System Segment Table
T;le Process Vector

The Systems Buffer Area
The Master Segment

The CST and PAST

The Route Table ...

Size Limitation of Nucieus

Instruction Summary

Page

[
«©

42

43

46

56

59

61

62

67

69

69

71

72

Figure i:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:.

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Figure 20:

iN-TEXT FIGURES
Nucleus Operations ...
An Example of Virtual to Actual Address Relationship
Relation Between PAST, CST, and SST
Address Mapping
Message Parameters ...
Route Pairs
The Freequeue
Incoming Message Queue {Process N}
Queued Message Transmission
Fixed Message Transmission
Programmed Transfer Device Addresses
Sending an interrupt Message
Semaphore Claim
Semaphore Release ...
Semaphore Claims
State Transitions
Process Selector Operation...
Process Change Mechanism
The SVA

The Master Segment ...

Page

19
24
24
26
28
31
40
44
45
47
50
52
55

64

L INTRODUCTION TO NUCLEUS

The muttiprogramming system is divided into two parts. One part, Nucleus, which is described
in this document, is responsible for such tasks as enforcing protection between program units, and short term
scheduling of the system, The other part, the Executive, is concerned with Ionger term operations such as control
of the system from the operators console.

Several operating systems can be used and all use the same Nucleus, but differ in the
facilities provided by the Executive. The Executives of the Operating Systems are implemented in software, and
are described in the appropriate Software Manuals.

Nucleus is implemented in hardware microprogram to reduce time overheads on frequently invoked
operations and to reduce space overheads for the system.

1.1 TASKS OF NUCLEUS

Both the Executive and the Applications programs are divided into a set of processes
each of which is protected from interference by other processes by Nucleus; the processes are allowed to communi-
cate in a safe manner by use of Nucleus facilities.

The main tasks of Nucleus are:—

(a) To enforce protection boundaries between processes to ensure that processes cannot interfere with
each other in an uncontrolled fashion.

{b) To provide safe channels of communication between different processes, and between processes
and /0 devices.

(c) To perform the short term scheduling for the system, by ensuring that at any time the most urgent
process which has useful work to do is in control of the central processor.

1.2 PROCESS CAPABILITIES

To carry out the protection and communication tasks Nucleus maintains systems tables which define
for every process a set of Capabilities each of which allows a process to perform some action or to access some data. .
Nucleus enforces protection by ensuring that a process is not allowed to perform an action unless it has the corres-
ponding capability.

Two kinds of capability are provided:—
(a) The capability to access an area (segment) of main store.

{(b) The capability to communicate with another process or an 1/0 device. This capability is known as a
route.

1.3 NUCLEUS OPERATIONS

The Nucleus performs operations either in response to Nucleus instructions being obeyed (pro{fided
the process issuing the instructions has the capabilities appropriate to the operation to be performed) or in response
to interrupts arising in the Input/Output subsystem.

The facilities of Nucleus, and the manner in which they are invoked are described in this manual.
The major groupings are illustrated in Figure 1 which indicates how Nucleus facilities are inter-related, and the sections
of this document in which they are described. They are:—

(a) Segment Manipulation instructions SEG and ICB, described in Section 2 of this document. These
permit a process to perform limited manipulations of its segment capabilities.

(b)

{c)

(d)

(e)

I

Inter-Process Message (IPM) instructions, CALL and its variants, described in Section 3 of this
document. These permit a process to communicate with any other process for which it has a
route capability by sending an IPM, and also allow the process to control reception of messages
sent to it by other processes.

Input Output. The CALL 1/0 instruction and its variants, and interrupts are described in Section 4
of this document. These permit a process to initiate 1/O transfers on peripheral devices for which it
has a route capability, and also allows a process to control reception of interrupt messages generated
by peripherat devices.

Semaphore instructions SEM and its variants, described in Section 6 of this document. These permit
a process to manipulate binary semaphores held in one of its segments.

Finally, Section 6 describes the Process Selector which is responsible for carrying out the short term
scheduling of the system, and Section 7 describes the action taken when an error condition arises
while the system is running. :

Section 8 of this manual summarises the system tables used by Nucleus, and the Nucleus instructions
described in Sections 2 t0 5. . ' .

SNOLLVYAdO SAATIINN :1 2msig

W

Manual Section 2 Manual Section 4 Manual Section 3 Manual Section 5 Manual Section 7
SEG, ICB INTERRUPT CALL 1/O CALL SEM ERRORS
‘ ‘ * No Release * Claim ‘
; — essage
Perform Send Perform Message Send L 2 v Send
Operation Gy . 1/0 Send Release Claim Error |
Mnesgage ¢ pergtlon Message Semaphore Semaphore Message
l Change
Ch.ang.e Destination
Destination State
State
(- Semaphore Successful? ™
State? : /
l Change
l Process
State Complex -
] Claimed
- *
No | Reschedule l - -
Needed? | I
- " ol #
Exit =
P_rocess
Selector
Change Yes' Swap
Manual Process? Processes

| Section 6

Actual Address Space
(Main Store) &

Segments of
Other Processes

/ -Segment 2
/
//
Segments of
'
// / ~ Other Processes
: ' Add
Virtual Address Space / / < Se] LGgts‘:art e
(One Process) . &= gaMang 4
Length Segment 1 A
2 -7
16K
Segment 2
Segments of
32K
Segment 3 N :
Other Processes

32K+D

Segment 4
64K-1 [Fd L L L L N
Start Address
. Segment 3
N\ Start Address +D
NN\
N\
\ A\ '
AR Segments of
A\ Other Processes
AN
\\ Segment 4

Segments of

Other Processes

256K-1

Figure 2: AN EXAMPLE OF VIRTUAL TO ACTUAL ADDRESS RELATIONSHIP

2. ' SEGMENTATION SYSTEM

The storage used by the CPU is divided into a number of segments. Each segment contains a
multiple of 64 bytes of storage, up to a maximum length of 16 Kbytes. -

Each segment may be held in main store, where it occupies contiguous store locations starting at an
address which is a multiple of 64. In an overlayed system, all segments need not be present in main store. Those
segments not in main store are held on backing store, and are allocated space in main store only when they are in
use.

Each process in a system may have at any time access to four segments, known as its current
segments. Items of storage are accessed by the process using.a 16 bit virtual address. The most significant 2 bits of
the virtual address define the segment in which the item to be accessed is located. The remaining 14 bits define the
displacement of the item from the start of the segment,

Before the item can be accessed from main store the virtual address must be converted into an 18 bit
actual address. This conversion is referred to as mapping. The relationship between the virtual and the actual address
is shown in Figure 2. As an example, if it is required to access the item whose virtual address is 32 K + D, the actual
address is determined by taking the start address of the third segment of the process and adding the displacement D
to it. It is also necessary to ensure that the actual address lies within the segment in question. This is done by com-
paring the displacement D with the segment length and signalling an error -if D is greater than the segment length.

2.1 THE SYSTEM SEGMENT TARLE
To control the segmentation system, Nucleus uses a table in main store, called the System Segment
Table {SST). Each segment in the system has an entry in this table, the entry defines whether the segment is currently

in main store or not, and if it is present defines its start address and length.

SST entries are all four bytes long, the entry for segment N starting at byte 4N of the table. Two
possible formats are used:

(a) Segment Absent

Wiz

The most significant bit of the second halfword of the entry in the presence bit, which is set to zero
to indicate that the segment is absent from main store. The shaded bits of the entry may be used as
required by system software, and are not changed by or used by Nucleus.

{b) Segment Present

-
=

%2277/
1900 ‘ ‘

i Rl S e o e i)

The presence bit is set to one to indicate that the segment is present in main store. The SB and SR
fields define the position and length of the segment as follows:—

The segment starts at actual byte address 64+SB
The length of the segment is 64«(SR + 1) bytes

SB is referred to as the segment base and SR is the segment range.

The shaded bits of the entry may be used as required by systems software, and are not changed
by or used by Nucleus,

2.2 THE MASTER SEGMENT

In addition to its four current segments, each process has a master segment which contains tables
defining the capabilities and status of the process. The master segment for process P is defined by entry P + 4 of the
SST.

To contro! the segmentation system each master segment contains two tables, the Current Segment

Table (CST) and the Process Accessible Segment Table (PAST).
The Current Segment Table

The CST contains four entries, defining the four segments which can be accessed by the process.
Each entry in the CST has the format:—

RWTS&% SEGNO
/ 14 o

SEGNO is an 11 bit field which is the number of the segment in the SST.
It points to the entry starting at byte 4*SEGNO of the SST.

The four one bit flags R, W, T, S define the access permissions for the segment

as follows:—
R - if set, reading from the segment is permitted for data or instructions.
w o - if set, writing to the segment is permitted.
T - if set, th_e segment may be used for autonomous 1/0O transfer.
See Section 4 for details.
S - if set, the segment may be transmitted with an inter-process message

See Section 3 for details.

The M bit may be used as necessary by system software, It is not used by Nucleus but
may be reset under some circumstances. See Section 3.5.

The Process Accessible Segment Table

A process may be allowed access to more than four segments, aithough only four can be in use
(i.e. occupy its virtual address space) at any time. The PAST contains entries defining the segments which may be
accessed; each PAST entry has the same format as a CST entry. The CST contains copies of the PAST entries for
the four current segments. The selection of PAST entries copied in the CST may be changed by hardware instructions.
See Section 2.4 for details. The number of entries in the PAST is defined by location PASTMAX of the Master
Segment, and the position of the PAST in the Master Segment is defined by location PASTPTR. Location CODESEG
of the Master Segment contains the number of the PAST entry which is currently copied into CST[3]. This segment
normally contains the code of the process currently being executed.

The relationship between the PAST, CST, and SST is illustrated in Figure 3.

MASTER SEGMENT I
PAST
1
COPIED INTO
CST
Defines ‘ !
Access Permission ACCESS: S_EGNO 7
! for segment T !
| / | !
|
|
[
* ey POINTSTO
64 + SB = =) SST !
| ' |
Segment in Segment | [
! ength r-byte 4+SEG NOJ
Store passRry| | i
Ll === T — -
: 1
|
e . e)
|
|

Figure 3: RELATION BETWEEN PAST, CST, AND SST

2.3 NUCLEUS SEGMENTS

To coniroi the operation of the system, Nucleus has access to four segments containing systems
information. These segments are accessible only to Nucleus and specially privileged systems processes. The segments
are.— ’ N

The System Variable Area {SVA)
The System Segment Table (SST)
The Process Vector (PV)

The System Buffer Area (SBA)

To enable systems software to access these segments, the first four locations of the SST are conven-
tionally allocated to them as follows:—

SST([0] defines the SVA. The Segment Base must be zero

SST[1] defines the SST. The entry must be identical to SSTBASE
SST[2] defines the PV. The entry must be identical to PVBASE
SST(3] defines the SBA. The entry must be identical to SBABASE

The SST has already been described. The PV, SBA, and SVA are described in later sections. The
SVA segment always starts at location 0 of main store. The other three segments are defined by three entries in
the SVA; each entry has the same format as an SST entry. The format of the entries is:—

SSTBASE defining the Base and Range of the System Segment Table

PVBASE defining the Base and Range of the Process Vector
SBABASE defining the Base and Range of the System Buffer Area

2.4 HARDWARE SEGMENT REGISTERS

The mapping of virtual in;o actual addresses is carried out by a hardware unit which uses eight
Hardware Segment Registers, each of 20 bits to define the position and length of segments in store. Each register
contains a segment base and segment range, defined as for SST entries.

The eight registers are used as follows :—

HSR [0-3] define the four current segments of a process

HSR [4] defines the Master Segment for a process

HSR [5—7] define the Process Vector, System Segment Table, and System
‘Buffer Area respectively.

Associated with the first four registers HSR [0—3] are four Hardware Protection Registers, each of
2 bits, which contain the access permissions for the four segments.

Address Mapping

The mapping procedure for a current segment is shown schematically in Figure 4. The 16 bit virtual
address is placed in the Virtual Address register. The SN field of the virtual address defines the segment in which
the address lies. This is used to access one of the four segment registers (HSR[SN]) which contains the segment
base SB and segment range SR. The segment base SB is added to the VP field of the virtual address to form the
most significant 12 bits AP of the actual address. The LN bits are then concatenated with AP to form the fuill 18
bitactual address. .

Simultaneously, the segment range SR is compared with VP. A ‘range error’ is indicated if VP>SR.
_Also the R and W bits from the Protection Register are matched against the mode of access requested (read or
write). A ‘protection error’ is indicated if the mode requested is not permitied (e.g. a write request with no write
permission).

The remaining four HSRs are used in a similar manner by Nucleus for access to the Master Segment,
PV, SST, and SBA. In these cases the register to be used is predefined by the Nucleus. There are no associated
protection registers; Read and Write access permission being assumed for all segments.

8

VIRTUAL ADDRESS

SN VP LN

HPR HSR

SR SB
ACCESS i) -

MODE

L L] !

l RANGE ‘ l
ERROR i
I [i [
PROTN. AP LN
ERROR
ACTUAL ADDRESS

Figure 4: ADDRESS MAPPING

VIRTUAL
ADDRESS
REGISTER

If either a range error or protection error is indicated during address mapping, access to main store
is not performed, and an error trap occurs. Error traps are described in more detail in Section 7.

Loading Segment Registers

Segment registersHSR [5~7] are loaded from PVBASE, SSTBASE, and SBABASE respectively
when the system is first set running, for example following Initial Program Load (IPL).

Whenever a new process is selected to run, HSR [0—4] are loaded to define the four currentsegments
of the process, and the Master Segment as follows: —

HSR[4] is loaded from SST [P + 4] where P is the number of the process. If the presence

bit of the segment is zero, indicating that the segment is absent, the process cannot be run,
A special error trap, known as a master segment break occurs and is dealt with as described
in section 7.3.

HSR[0-3] are loaded using the four CST entries CST [0—3]. The R and W access
permission bits from the CST are copied into the corresponding hardware protection register
{HPR). The SEGNO field of the CST is used to access an SST entry, $ST [SEGNO].

If the presence bit of the SST entry is zero, the process cannot be run and an error

trap, known as a segment break occurs as described in Section 7.3. Otherwise the corres-
ponding HSR is loaded from the SST entry.

Note the consequence of the above is that a process can be run only if its Master Segment and all
four current segments are present in store, -

2.5 SEGMENT MANIPULATION INSTRUCTIONS

The Segment Manipulation instructions permit a process to control the allocation of segments in its
virtual address space. A single format L instruction is used, the D:splacement ﬂeld specifyingthe operation to be per-
formed.

LCST

The Load CST instruction loads a specified PAST entry into a specified CST entry, thus giving the
process access to the segment in question.

FORMAT:

©
o
-
(=]
o
-
-
=]
o
(=]
o
(=]
(=}
(@]

REGISTERS: Initially Register X contains the number of a segment in the PAST. No registers
are changed by the instruction.

EFFECT: The PAST entry defined by register X is copied into the CST entry defined by Q.
The Access bits R and W are loaded into the appropriate HPR. The SEGNO field
defines an SST entry which is loaded into the appropriate HSR, If Q = 3, then
the content of register X is stored also in the CODESEG location of the Master
Segment.

TRAPS: An error trap occurs if the content of register X is greater than or equal to
PASTMAX (Code P4).
If the presence bit of the SST entry is zero, a segment break occurs. (Code B9).

NOTE: Although LCST can be used to change CST[3] as noted above, such usage is
discouraged if CST[3] contains the code being executed at the time, since an
uncontrolled Branch is taken to the code in the new segment. Controlled Branches
between different segments can be effected by the ICBR and ICBL instructions

10 described later.

CLCS

The Conditional Load CLCS instruction is used instead of LCST when it is necessary to verify the
presence, length, or access permission of the segment before attempting to use it. If the segment is absent, then
the instructions has no effect save the setting of conditions bit CZ to 1. f the segment is present, action is as
for LCST and in addition CZ is made zero, the length of the segment in bytes is placed in RX and the PAST
entry is copied into Register AL.

o 1 2 F 7 8 D 15

FORMAT: |ololo 1 001 1/l001000]| Q
1 i L 1 1 3 1
T L)

2 Q

o

-t
L

REGISTERS: Initially Register X contaihs the number of a segment in the PAST. CN, CA, COF
are all reset to zero by the instruction. If the segment is absent, CZ is set to 1. No
other registers are affected.

If the segment is present, CZ is reset to zero, register X is loaded with the length
of the segment in bytes, and the PAST entry defined by register X is loaded into
register AL. No other registers are affected.

EFFECT: If the segment involved is-absent from store, then CZ is set to one. No other
action takes place.

If the segment is present, operation is as described for LCST. In addition, CZ is
reset to zero, register X is loaded with the length in bytes (=64x(SR+1))using the SR
field of the SST entry involved, and the PAST entry is copied into Register AL.

TRAPS: An error trap occurs if the content of register X is greater than or equal to
PASTMAX. (Code P4).

SCST

The Store CST instruction stores a specified CST entry in a specified PAST entry. The Hardware
Segment and Protection registers are not affected.

12 F 7 8 D 15
FORMAT: [ololo 10 01 1l0 100 00] Q
3+ B 0 ¥ . L kL _ 2 &

1 3 4 Q

REGISTERS: Initially Register X contains the number of a segment in the PAST. No registers
are changed by the instruction.

EFFECT: The CST entry defined by Q is copied into the PAST entry defined by Register X.

TRAPS: An error trap occurs if the content of register X is greater than or equal to PASTMAX
{Code P4).

11

LHSR

The Load Hardware Segment Registers instruction is used to load HSR [56—7] from PVBASE, SSTBASE,
and SBABASE. A Nucleus Reschedule operation is performed, using the new settings. The instruction normally should
be used, only during system initiation, by a privileged system process. Note however that use. of the instruction by a
non-privileged process has no effect, since it reloads the HSRs with their existing contents.

0 1 2 F 7 8 D 15
FORMAT: 0/0{0 1 001 1/0 1100000
.] T 3 6' 4 0

REGISTERS: No registers are affected.
EFFECT: HSR[56—7] are loaded from PVBASE, SSTBASE, and SBABASE respectively.

TRAPS: No trap conditions.

2.6 INTER-CHAPTER BRANCH INSTRUCTIONS

Each process comprises code and data chapters, grouped together to form code segments and
data segments. Code segments normally are used as current segment 3, and are normally only given read access
permission. Each code chapter has an associated Local Workspace area, which is pointed to by register L when the
code chapter is being executed. Normally the local workspace area is held in current segment 0.

The Inter-Chapter Branch instructions are used to transfer control from one chapter to another.
They are intended to be used with the code of the two chapters in either the same or different segment in the
PAST, but with both executed from current segment 3. If the code of the destination chapter is in a different
segment in the PAST from that of the calling chapter, Nucleus loads that PAST segment into CST{3] before
executing the destination chapter.

Branch Descriptors

The destination chapter is specified in terms of a chapter descriptor held in main store. This
comprises three halfwords, used as follows:—

T T T T ¥ T L) T T T 1] L T T T

LOC
4 I I 1 (1 1 'y [y 1 |3 { 1 1 [1
¥ T ¥ T] LI v LI 1 L] 1 T ¥ 1

SEQ
1 i I /] I } I Y I 1 i (] i 3 1
T T) L) T L4) T T 1] 1 T L] L]]

PASTNO
) [] I3 1 L 1 1] i 1] 1 1 1
LOC - defines the virtual address of the local workspace area of the destinationchapter.

LOC is loaded into register L before the destination chapter is executed.

SEQ - defines the entry address within the code of the destination chapter. SEQ is loaded
into the sequence register S before the destination chapter is executed. Note that
SEQ normally should be a virtual address in current segment 3.

PASTNO — defines the PAST entry of the segment containing the code for the destination

chapter. If it differs from the PAST number of the calling chapter’s code (which
is held in location CODESEG) then the PAST entry is loaded into CST([3].

12

ICBR

The Inter-Ch_apter BRanch instruction uses a chapter descriptor pointed to by register Z to enter
the destination chapter.

0 1 2 F 7 8 D 15

FORMAT: ololo 1:0f0l0l1 olololorolo 1010
i $ i 1] 1 L Il : i i '

1 1 0 0

REGISTERS: initially Register Z contains a pointer to the destination chapter description.
Register L is loaded from the LOC of the descriptor.
Register S is loaded from the SEQ of the descriptor.
No other registers are affected.

EFFECT: Register L is loaded from the LOC field of a chapter descriptor pointed to by Z.
Register S is loaded from the SEQ field of the descriptor. If the PASTNO field is
the same as CODESEG, then the calling and called code are in the same segment, and
no further action is necessary. Otherwise the segment is loaded into CST {3] as des-
cribed for the LCST instruction.

TRAPS: An error trap occurs if the PASTNO field of the descriptor is greater than or equal to
PASTMAX, (Code P4).
If CST {3] is changed by the instruction, a segment break occurs if the segment loaded
is absent from main store, (Code B9).

ICBL

The Inter-Chapter Branch and Link instruction is similar in operation to the ICBR instruction, except
that a link descriptor is formed and stored in the first three haifwords of the local workspace of the destination
chapter. This link may be used subsequently to return to the calling chapter by means of an ICBR instruction.

0o 1 2 F 7 8 D s
. Ll 1 T T] ¥ T p
FORMAT: lglofo1 000 1/0 0 1 0{0 00 O
1 4 I L L __q | f |
1 1 2 0

REGISTERS: As for ICBR
EFFECT: The LOC field of the descriptor pointed to by Register Z defines the start of the local
workspace of the destination chapter. A link descriptor is formed and stored in the
first three halfword of this area as follows:—
LOC contains the content of register L
SEQ contains the content of register S
PASTNO contains CODESEG

Operation is then as described for the ICBR instruction.

TRAPS: As for ICBR

13

3. INTER-PROCESS MESSAGES

Processes in a system may communicate with each other by means of Inter-Process Messages
(IPMs). An IPM is a packet of information which is transmitted from one process (the sender) to another (the
destination). Normally the purpose of an IPM is to inform the destination process that the sending process wishes
it to perform some task; the information in the message may be used to define the task to be performed and the
data to be operated on. .

31 SENDING A MESSAGE

To send a message, a process must first place the information parameters of the message in registers A,
X, and Y, and must load register Z with a route number defining the destination, and then obey a variant of the CALL
instruction which causes message transmission to take place.

The route number in register Z selects an entry from a table in the Master Segiment of the sender,
known as the Route Table. The route table entry defines the destination of the message and contains Flags which are
used to further define the operation to be performed

In particular the Flag bits define the message transmission system to beused, and whether or not
a segment reference is to be included as a parameter of the message. This latter feature may be used to give the
destination process temporary access to one of the Current segments of the sending process which may for instance
contain a table of data to be operated on. If a segment is sent with the message, the most significant two bits of the
parameter in register Y are used to select one of the four Current segments of the sender. Then the CST entry corres-
ponding to this segment is included as one of the parameters of the message and the parameter in register Y is mod-
ified by replacing its most significant 2 bits by zeros.

3.2 RECEIVING A MESSAGE

A process in a system which has useful work to do is said to be in the RUN state. In this state,
the process cannot receive messages. Other broi:esses' may send messages to it; but these will be stored in the System
Buffer Area (SBA) by Nucleus until the process is ready to receive a message.

A process may voluntarily leave the RUN state by obeying a variant of the CALL instruction which
causes the state of the process to change. 1t may by this means choose to make itseif FREE to receive messages
from any source, or it may choose to WAIT for a message from one particular source. When the wanted message
arrives the process is moved to a special state, the READY state, indicating that there is work to be done but
processing has not yet started. The transition to the READY state is immediate if the message has been transmitted
previously and is held already in the SBA. Otherwise transition to the READY state takes place as soon as the
wanted message is sent.

When the process is next given controt of the processor, the parameters of the message are loaded
into its registers and it is placed once more in the RUN state. At the same time an entry number is placed in
register Z to identify to the process the source of the message it has just received.

L MESSAGE TRANSMISSION

The task of the message transmission part of Nucleus is to mechanise the transmission of messages
from sending to destination processes,and to arrange for their storage in the System Buffer Area (SBA) until their
destination processes are willing to receive them.

Two largely independent systems are provided, the Queued message system and the Fixed message

system. In the first system, messages are stored in the SBA in dynamically allocated buffers, whilst in the second
system the buffers used for storing messages are pre-allocated when the system is set up.

14

SYALANVYUV OVSSAW *C omaig

Sl

CST [0] e PAST (0]
1 1
.]
e = '
| I
I |
| |
| |
[|
| L
|
|
|
|
| MESSAGE BUFFER
|
| CONTROL
i INFORMATION
' -
' > SEGMENT
: | REGISTER A —» PARAMETER A » REGISTER A
| X » PARAMETER X e X
1 4
| SN .| i » PARAMETERY > Y
z 9 ROUTE NUMBER: ENTRY NUMBER 7

DEFINES ' DEFINES

DESTINATION SENDING

PROCESS PROCESS

SENDER | > DESTINATION

Message Buffers

For both transmission systems, messages are stored in the SBA in 16 byte message buffers of
identical format:—

BYTE 0 POINTER
CONTROL
2 SENDER : INFORMATION
4 DESTINATION
6 SEGMENT \
8 | __ PARAMETERA __ __
10 L MESSAGE
_ PARAMETERS
12 PARAMETER X
TR PARAMETER Y y

POINTER — Is only used in the Queued message system. For a fixed buffer, POINTER
is zero.

SENDER — Is the number of the sending process {i.e. the process which generated the
message).

DESTINATION — Defines the process number of the destination process, and the entry number
which will be used to identify the sender to the destination process.

SEGMENT - Is the segment reference if a segment is being sent with the message. In this
case it has the same format as a CST entry. ’
If no segment is sent with the message, SEGMENT will be zer

PARAMETER — A, X, Y are the parameters of the message copied from registers A, X, and Y

of the sending process.

Figure 5 shows the relationship between the registers of the sending process, the message in a buffer,
and the message as received by the destination process.

Queued Buffer System

in the queued buffer system, buffers are allocated by Nucleus from a list of unused buffers (kriown as
the free queue) as they are required. Message parameters and control information are stored in the buffer and the
buffer is added to a queue of messages awaiting processing by the destination process. Note that each process in the
system has its own independent queue of incoming messages.

When a message is received by a process, the message parameters are loaded into registers and the
~ln

buffer is removed from the incoming message queue and added to the free queue by Nucleus. Both the free queue
and the incoming message queues for each process are maintained on a first in — first out basis.

For further details of the queued buffer system, see section 3.7

Fixed Buffer System

I n the fixed buffer system, the buffers to be used for messages on particular routes are pre-allocated
at system generation. The address of the buffer to be used for a message, relative to the start of the SBA, is defined

by the route table entry for the route over which the messages is to be sent. The control information s preset in the
buffer {(so that POINTER is zero, and SENDER and DESTINATION are constant) In the case of fixed routes, the
ENTRY part of the DESTINATION must be less than 16, ’

16

Notes on Usage

As far as the sending and destination processes are concerned, there is no difference visible within
the process between the queued and fixed message system. Each system, however, has particular advantages which
should be considered before deciding which transmission method to use for any particular route, namely:—

(a) The Fixed message system is faster in operation than the queued message system, and therefore
imposes lower time overheads on the running of the system.

(b) With the Queued hwessége sy§tem it is possible that at some stage all buffers in the SBA are in use
{i.e. the free queue is empty) so that no queued message can be handled. This problem does not
arise with the Fixed message system, since buffers are preallocated at system generation.

{c) With the Fixed message system, it is possible that if a number of messages are sent on the same
route (therefore using the same buffer) in rapid succession, a later message may be generated before
an earlier message has been received by the destination process. In such circumstances the later
message simply overwrites the earlier message in the buffer which is lost without trace. If there is
a possibility of this situation arising, the queued system is to be preferred since each message is
ailocated its own buffer and is processed by the destination in time seqguence.

(d) Queued messages are accepted by a destination process in time sequence — that is, the earliest
message generated is processed first. Fixed messages are processed at a higher priority than queued
messages — that is, all outstanding fixed messages are processed before outstanding queued messages
are dealt with. Thus use of the fixed message system allows urgent messages to be dealt with (as
fixed messages) before less urgent {queued) messages which might have been generated at an earlier
time.

{e) Fixed messages impose a constant space overhead on the system, since the buffers are preallocated
in the SBA while the system is running, whether the processes using them are activated or not.In a
well designed system queued messages make significantly lower space demands since statistically
the number of buffers in use at any time is smaller than the number of different routes in the system.
To conserve space, it is desirable to limit the number of fixed buffers as much as is possible.

In view of the above, the use of queued routes is to be preferred in all cnrcumstances except those in
which the features of the fixed route system are advantageous and the dlsadvantaaes of using fixed routes can be
tolerated.

3.4 THE ROUTE TABLE

As stated earlier, the message transmission system is controlled by a table held in the Master Segment
of a process, known as the Route Table, This table really consists of two independent tables interieaved, one con-
trolling the sending of messages from a process, the other controlling reception of messages by that process.

The general format of a 4 byte route table entry is:—

] T T v T T: ¥ v 7 Ll
FLAGS INCOMING
i 1 i } I I l I;l !

OUTGOING

N= A I 1 [l Il 1 1 1 1 1 1 i [| 3

b
e

The FLAGS are used to define:—

. The system (queued or fixed) of transmission of outgoing messages.
The system (queued or fixed) of reception of incoming messages.
Whether a segment is to be sent with outgoing messages,

The INCOMING field is used if necessary to control the reception of incoming messages. Its format
depends on whether fixed or queued messages are to be received.

17

The OUTGOING field is used to control the transmission of outgoing messages. Its format is
dependent on whether fixed or queued messages are to be sent.

There are, therefore, four possible formats for route table entries: —

Queued Out — Queued In

1] i ¥,
oololvoooooooooooo
\ DESTINATION st

-+

Cueued Out — Fixed In

001V| INBUFFER
oy PG SER e ST T
_ DESTINATION

i L 1 i]] ' 1 L 1 1 A ; ASv I A

Fixed Out — Queued In

¥ ¥ T T ¥ ¥ L T L T L) T T
0 140 Vv 00 0 0 0 0 0 0 I0 000
T ¥ L7

1 []
T I ¥ ¥

-t

OUTBUF FE R

L /] A L 1 1 1 1 1 1 L 1 [1 [}
Fixed Out — Fixed In

 § T L]] L] T L) i) L] L] 1] 1 [|

o011V INBUFFER

1 L LT} [} 1L (] [1 L L 1 ry 1 1

L LI | ¥ ¥ ¥ v L} 1 1 T] ¥ ¥

3 L t 1 L qUTlBUlFFlER ' i L (1]
Where in the above:—

\" - is the Segment Send bit. Set to 1 if a segment is to accompany

the message, 0 otherwise.

DESTINATION -— defines the destination process number and entry number; it
has the format:—

o 7 8B 15
] | T L] T L 1 L]) LE L]
ENTRY PROCESS
L i i 1 L 1)8 3 ¢ L 1 'l [} 1
INBUFFER — is the address of a fixed message buffer relative to the start of

the SBA, right shifted 4 places.

OUTBUFFER - is the address of a fixed message buffer relative to the start of the
SBA. The least significant 4 bits of this address must be zero.

Pairing of Routes

It is advised that routes should be set up in pairs. That is, if route X of process A points to entry Y
of process B, then route Y of process B should also point to entry X of process A. This convention is not enforced
by Nucleus, but has the advantage to the user that the same number is used as the route number for outgoing messages
to B and as the entry number for incoming messages from B.

18

The resulting situation for a pair of queued routes is shown in Figure 6.-

PROCESS A PROCESS B
ROUTE TABLE ROUTE TABLE
0o0V|O 0
i B
000V|0 0
%
X A
Figure 6: ROUTE PAIRS
3.5 THE CALL INSTRUCTIONS

" The sending and reception of IPMs is controlled by a single format L instruction whose D field is
used to further define the operation to be performed and the state in which the process should be placed at the
completion of the instruction. Variants of the instruction allow a process to either:—

Send a message SEND
Change its state STAT

Send a message and then change its state RSEN

The format of the instruction is:—

2

F

7

=3
010

1 i

i B

T |
0 0O

-

0

M determines whether a message is to be sent
Q determines t'he next state of the process.
In all cases register Z must contain a valid route number when the instruction is obeyed.
The effect of the CALL instruction for defined values of M and N is described in the foliowing
sections. Where M indicates that a message is to be sent and N indicates that a change of process state is to occur,

the result is exactly as if a ‘send message’ followed immediately by a ‘change state’ instruction is obeyed.

Message Sending

The M field controls the sending of messages in conjunction with the route table entry defined by
register Z as foliows:—

19

M=2: No Message

if M = 2 no message is sent. The effect of the instruction is only to chanae the state of the process
as defined by Q.

M=6: Send Message

If M =6 a message is sent to the process defined by the route table entry indicated by register Z.
If the V bit of the route table entry is zero, the parameters of the message are:—

SEGMENT
PARAMETER A Content of A register
PARAMETER X = Content of X register
PARAMETER Y Content of Y register

|
w—

O {Zorn)
U \Lerg)

If the V bit of the route table entry is a 1, the parameters are: —

SEGMENT

CST entry defined by the m.s. 2 bits of Y. The M bit of the CST
entry is always transmitted as a zero.
Content of A register

PARAMETER A

PARAMETER X = Content of X register
PARAMETERY = Content of Y register with the m.s. 2 bits transmitted as
zero.
M =4 : Send Message (Restricted Access)

1f M =4 the effect is exactly as for M =6, except that if a segmnnf is sent (\/ = 1 in the route table
entry) the W and T bits of the CST entry are transmitted as zero. This has the effect of prohibiting the destination
process from either writing to or initiating 1/0 transfers upon the segment sent.

State Change

The Q field of the instruction determines the next state of the process as follows:—

0 =0: Go Free

The process is placed in the FREE state, its message queue and incoming fixed buffers are
examined. |f there are any messages awaiting processing, the process is placed immediately in the READY state
and in due course enters the RUN state when a message is loaded into registers. If there are any messages in
fixed buffers, the message with the lowest ENTRY number is loaded. If there are no messages in fixed buffers,

the message at the head of the message queue is loaded.

The Registers which are loaded from the message buffer are shown in the table below:—

REGISTER CONTENTS
E, B Undefined
A PARAMETER A
X PARAMETER X
Y PARAMETER Y
Z ENTRY
Cc ZERO

PAST [0} SEGMENT

If no messages await processing, the process remains in the FREE state until some other process
generates a message for it, when the process is placed in the READY state as described above.

20

Q =1: Continue Running

N1

if the G fieid is equal to 1, the process continues in the RUN state, and is not given a new message
to process.

Q = 2: Wait (Pass priority)

The process stays in the WAIT state until a message arrives with an ENTRY number equal to the
content of register Z. If a message with the required ENTRY number has arrived, the process is placed immediately
in the READY state. Otherwise the process remains in the WAIT state until a message arrives with the required
ENTRY number. 5

While in the WAIT state the priority of the process is passed to the process from which the awaited
message is to be sent. This modifies the process selection algorithm in such a way that the awaited process
runs at a higher priority in order to expedite the sending of the awaited message. See Section 6 for details.

Q= 3: Wait (No Pass)
The effect is exactly as for Q = 2, except that the priority of the process is not passed.
Q =4: Conditional Free

If any messages are outstanding for the process, the effect is as described for ‘Go Free’ (Q =0).
If no messages are outstanding the process remains in the RUN state, but the Conditions bit CZisset toa 1.

Q = 7: Conditional Wait

if the awaited message has arrived, the effect is exactly as described for ‘Wait’ {Q = 2). If the awaited
message hasnot arrived the process remains in the RUN state, but conditions bit CZ is set to a 1.

Notes on Usage

(a) From within the process, there is no substantiai difference between the use of a CALL instruction
with Q = 2 (Wait, Pass priority) and Q = 3 {Wait, no priority pass). Each mode has particufar
advantages and disadvantages which should be considered before the decision is made whether to
pass priority or not in any particular circumstance.

If priority is passed, and the message awaited has not yet arrived, then the process that eventually

generates the message is run, until it has sent the message, at whichever priority is the greater of its
own priority and the priority passed to it. Thus if process 10 is waiting for a message from process
20, and it has passed priority, process 20 is scheduled temporarily as if its priority is that of process

10. It is run in preference to processes 11, 12 and so on, and is encouraged to complete its
processing and generate the awaited message as rapidly as possible, so that process 10 can resume
operation.

Passing priority to a higher priority process has no useful effect on the scheduler. Each instance of
priority passing increases the time taken for the reschedule operation to be completed. Unnecessary
priority passing serves no useful purpose but may increase the time overhead for the Reschedule
operation. This effect only becomes significant if no high priority processes are in a runnable state.

In view of the above, it is recommended that mode Q = 2 (Pass priority) is empioyed uniess it is obvious
that under no circumstances does it have a useful effect. If this is so mode Q = 3 (No pass) should
be employed. i

(b) Modes Q = 4 and Q = 7 (Conditional Free and Conditional Wait) may be used as follows: —

Mode Q = 4 can be used to test whether there is any more work for a process to do (i.e. whether any
messages are awaiting processing). After completion of the instruction conditions bit CZ can be tested
{with a Branch if Zero or Branch if Non Zero instruction). If CZ is set, no further messages await pro-
cessing, if CZ is not set at least one message is present. In the latter case the first outstanding message
will have been loaded into registers and register Z loaded with the ENTRY number as usual. This

21

mode should be used only in those few cases where a process has a long processing task to
perform, and it is desirable to test periodically whether an urgent message has arrived before
that task is completed..

Mode Q = 7 is used similarly to Mode Q = 4, but this time to detect the presence or otherwise of a
message with a particular entry number. Again a Branch if Zero or Non-Zero instruction can be
used after the CALL to determine whether a message with the correct ENTRY number is outstand-
ing. The mode can be used in a similar way to test whether an urgent message from some specified
source has arrived before the processing of a low priority message is complete.

{c) CALL instructions with M = 2 and Q = 3 can be issued where the route number in Z defines an
Autonomous Input/Output route. This may be used to control the reception of interrupts, as

UL uL/u L rouf LRI REOHITLAD. =100 P, 22

detailed in section 4.5.
Error Traps
The following error traps may occur when a CALL instruction is obeyed.

(a) The route number in Z is greater than the number of routes of the process. The instruction is
abandoned and the sending process is placed in the STOPPED state (Code P3).

(b) For M =4 or 6 only. The Route Entry defined by Z is not an inter-process route entry. Action
taken as above. (Code P3 or P10). :

(c) For M = 4 or 6, Queued Route. If the sending of this message causes location QCOUNT of the
process vector to become negative, the instruction is abandoned and the process placed in the
STOPPED state (Code P2).

(d) M =4 or 6, Segment Send. If a segment is to be sent with the message but the S bit of the CST
entry selected is zero, the SEGMENT parameter of the message is set to zero. The message is
sent as usual, but the sending process is placed in the STOPPED state. (Code P3).

(e) Q # 1. The route entry defined by Z is not an inter-process or Autonomous /O route entry.
Action is to abandon the instruction and place the process in the STOPPED state {(Code P3).

L0 a0 FalE LNIE DTOCESS LW lale

Instruction Summary

The following tables summarise the operation of the CALL instruction for the defined values of
M and Q in terms of the parameters of any outgoing message and the final contents of the

programme accessible rnnicfn.rS.

O GLLTSSIUIE TOHNS

22

M=1 M=46,V=0 M=4;V=1 M=6;V=1
PARAMETER A No Register A Register A Register A
X Message Register X Register X Register X
Y is Register Y Bits 2:15 of Bits 2:15 of
Register Y Register Y
Trans-
SEGMENT . Zero CSTentry Yy:4 CST entry Y1
mitted with M bit set to with MW,T bits
Zero set to Zero

where V is the Segment Send bit in the Route Table entry.

Final Register Contents

Q=1 Q=0,2,3 Q=4,7
or 4,7 and Message and No Message

S Unchanged Unchanged Unchanged

L Unchanged Unchanged Unchanged
E,B Undefined Undefined Undefined
A Unchanged PARAMETER A Unchanged
X Unchanged PARAMETER X Unchanged
Y Unchanged PARAMETER Y Unchanged
4 Unchanged ENTRY Unchanged

C Zero Zero Zero, except CZ = 1
PAST (0] Unchanged SEGMENT Unchanged
3.6 THE EXIT INSTRUCTION

The EXIT instruction is a special case of the CALL in.struction with fieid M = 0. its format

F

1] T 2 7 8
olojo 1000 0looooloooo
1 i 1 1 i i [l L 1

D 15

3
T

1 0 0 0

Its effect is:—

The process is placed in the STOPPED state, and a message is formed and sent to its OWNER in a
similar manner to that used for dealing with error traps and status breaks. See Section 7 for details.

3.7 MECHANISATION

This sub-section describes the detailed mechanisation of the message transmission system over
Queued and Fixed routes. The processes involved in sending and receiving messages of both types is described
in detail, as is the structure of both the free buffer queue and incoming message queue for each process.

The details given here are invisible from within both sender and destination processes. They are
presented as an aid to understanding the operation of Nucleus and to facilitate interpretation of Post Mortem dumps
of system tables following catastrophic errors.

The Free Queue

Figure 7 illustrates the organisation of the free queue. Location QFREE in the SVA points to the
head of the queue and location QFREND paints to the tail. The POINTER fields of the buffers in the queue are
used as chain pointers as shown. Buffers are removed for use from the head of the queue and are returned after use
to the tail. Location QC of the SVA contains a count of the number of useable buffers in the freequeue. It is incre-
mented by 1 whenever a buffer is returned to the queue and decremented by 1 whenever a buffer is removed. If
while the system is running QC becomes negative, indicating that the freequeue is exhausted, a system error trap
occurs.

23

44

68

70

72

8N

SVA

SBA

SBA BASE [e

POINTER

HEAD

QFREE

QFREND —

. _/

Figure 7: THE FREEQUEUE

TAIL

The Incoming Message Queue

Figure 8 illustrates the organisation of the incoming message queue for each process. The QEND
field of the Process Vector Entry for the process points to the tail of the queue. The POINTER fields in the buffers
are used as chain pointers; note that the tail element of the queue points to the head of the queue as shown. If the
queue is empty, QEND will be set to zero.

Messages are removed for processing from the head of the queue. New messages are added to the tail
of the queue unless the receiving process is in the WAIT state, waiting for this particular message, when the message
is added to the head of the queue.

SBA
RV
|_—® POINTER —\
TAIL
QEND HEAD

Figure 8: INCOMING MESSAGE QUEUE (PROCESS N)

24

Queued Message Transmission

Figure 9 illustrates the way in which the control information in the message buffer is related to

the registers and tables of the sending and receiving process. The detailed procedures involved in the sending and
reception of a queued messages are as follows:—

Sending a Queued Message

When a CALL instruction with the appropriate Mode is obeyed, the following steps are perfarmed

to send a queued message:— :

(1

(2)

(3)

(4)

(5)

(6)

{7)

The Route number in Z is used to select a Route Table entry. For a queued message this defines the
number of the destination process and the ENTRY number which is used to identify the sender to
the destination process.

The QCOUNT location of the PV entry of the sending process is decremented by 1. If it becomes
negative, an error trap occurs and the operation is abandoned.

A message buffer is dechained from the freequeue using the freequeue pointer in the SVA. At this
time location QC of the SVA is decremented by 1. If, as a result, QC becomes negative a system
error message is generated but the IPM is sent to its destination.

The buffer so obtained is chained onto the incoming message queue for the destination process.
Normally the buffer is added to the tail of the queue, using the QEND location of the PV entry of
the destination process. {f, however, the destination process is in the WAIT state, with WAITROUTE
equal to the ENTRY number of the message, the buffer is added to the head of the queue.

The SENDER location of the buffer is loaded with the process number of the sending process, and
DESTINATION is loaded with a copy of the outgoing part of the route table entry.

The message parameters are loaded into the buffer as described earlier.
Now the state of the destination process may be changed. Specifically if it was FREE or in the
WAIT state, waiting for a message with this ENTRY number, it is put into the READY state. In all

other cases its state is unchanged.

Finally, the state of the sending process may be changed depending on the value of the Q field of
the CALL instruction.

If this procedure changes the state of either sender or destination process,a Reschedule operation
is performed.

Receiving a Queued Message

in due course a queued message reaches the head of the incoming message queue of the destination

process, which is made READY to receive it. When the process is next given control of the processor, the following
operations are performed:—

(1)

(2)

(3)

(4)

(5)

The QEND pointer is used to locate the buffer in the SBA. The buffer is dechained from the queue.

PARAMETERS A, X and Y ‘are transferred into registers and SEGMENT is loaded into PAST entry
0. The ENTRY part of the DESTINATION location of the buffer is loaded into register Z.

The QCOUNT location of the PV entry of the sending process is incremented by 1.

The buffer is returned to the freequeue using the QF REND location of the SVA.Location QC of the
SVA is incremented by 1.

The destination process is run to deal with the message.

25

9C

|
!
[
- |

NOISSINSNVHL AOVSSAN adndnod :6 amdig

="

PV ENTRY
l OTHER OTHER |
I MESSAGES MESSAGES @€ — —l —————— QEND
| ! !
| | l
| L POINTER <« |
PNOl OF SENDER TR
—
>
ENTRY & procEss
REGISTERS »! PARAMETERS »| REGISTERS
REGISTER Z »| REGISTERZ
ROUTE TABLE
FLAGS| 0——— ¢
DESTINATION

— emenees e — cwmmm me——

SENDER ey IN TRANSIT e DESTINATION

STIM Bits

In the fixed message transmission system the presence or absence of a message with a given ENTRY
number awaiting processing is recorded by one of the STIM bits of the destination process. Sixteen STiM bits are
provided, held as the first halfword of the PV entry for the process. If a message is awaiting processing with ENTRY
number i, then STIM bit i of the process is reset to zero. If STIM bit i is set to a 1, it implies that there is no

message outstanding with ENTRY number i.

The STIM bits are numbered in the standard way (bit O is the most significant bit, bit 15 the least

significant). A process with no fixed messages outstanding has ali 16 STiM bits set to 1. Ciearly the ENTRY
number of a fixed message must be less than 16, in consequence of the above.

Fixed Message Transmission

Figure 10 illustrates the relationship between the control information in the message buffer and
the registers and tables of the sending and receiving process. The detailed procedures involved in sending and
receiving a fixed message are as follows:—

Sending a Fixed Message

When a CALL instruction with the appropriate Mode is obeyed, the following steps are performed
in order to send a Fixed message:—

(1) The route number in Z is used to select a route table entry. For a fixed message this defines the
address of the first byte of the buffer in the SBA. The DESTINATION location of the buffer
is set up already to define the destination of the message, and the SENDER location is set up
already to define the sending process.

(2) The message parameters are loaded into the buffer exactly as for a queued message.

(3) The ENTRY part of the DESTINATION word of the buffer is used to reset to zero one of the
16 STIM bits held in the PV entry for the destination process.

(4) The state of the destination process may be changed exactly as for queued messages.

(5) The state of the sending process may be changed as determined by the Q field of the CALL
instruction.

(6) If the state of either sending or destination process changes, a Rescheduling operation may be
performed.

Receiving a Fixed Message

In due course the fixed message is the highest priority outstanding message, and the destination
process is READY to receive it. When the processis next given contro! of the processor; the following operations
are performed :— g

(1) The ENTRY number of the message is determined by examination of the STIM bits. The bit number
of the leftmost STIM bit which is set determines the ENTRY number.

(2) The STIM bit involved is set to 1.

(3) The Route Table entry defined by this ENTRY number is accessed. It contains the address of the
first byte of the incoming message buffer.

(4) PARAMETERS A, X, and Y are transferred into registers and SEGMENT is loaded into PAST
entry 0. The ENTRY part of the DESTINATION location is loaded into register 2.

(5) The destination process is run to deal with the message.

27

8z

NOISSTWSNVYHI AOVSSTW AAXId 01 2ndig

PV ENTRY

l 0 STIMS

/ N
— . — — — —— — — a— ——— —— Y \-——i-———
| - _
| | |
| l
— ———o FONTER=0 le —— —|-—, |
' I | SENDER I |
I $ o7 | I
= I ENTRY | PNO I |
[} |
REGISTERS { 1 | PARAMETERS i »{ REGISTERS |
| | |
' I
| " |
REGISTER Z I Ly o] REGISTERZ l
I
| | I
| | |
RHOUTETABLE | : ROUTE TABLE |
| . |
—_—— T
| cs| INBUFF |, |
FLAGS |
OUTBUFF EESS

SENDER —— IN TRANSIT > DESTINATION

4. THE INPUT OUTPUT SYSTEM

input Qutput operations in a system are performed by input Qutput.Processors (IOPs} which
operate autonomously. A number of IOPs may be present in a system, but one must always be present to provide
the basic Input Output (1/0) for the system. This is the Basic Multiplexor Channel {(BMC).

The CPU cannot perform any 1/0 operations itself, but is capable of stimulating IOPs to carry
out 1/0O Transfers for it. For this purpose the CPU is connected to all |OPs by a special interface, the Command
interface. in conjunction with dedicated iocations in main store, this aliows the CPU to initiate /O transfers and
also to receive interrupts back from the 10Ps.

4.1 PERIPHERAL ADDRESSING

In order to uniquely specify a peripheral device, it is necessary to define:—

(a) The CHANnRel number. This is the number of the |IOP to which the peripheral is connected. CHAN=0
specifies a device connected to the BMC. CHAN is in the range 0 to 7.

{b) The DEVice ADdress. This is a 16 bit address which defines the peripheral on the selected |OP. DEVAD
is treated as two bytes; its format is:—

0) 18

= | L 1 T T T
SUBADD
A} 1

i}) 1 3 1 1 [} 1 1

WAYNO — is normally sufficient to define a particular peripheral device. A peripheral may however
be associated with a group of (normally consecutive) WAYNO's. For peripheral devices
which are completely specified by WAYNO, the SUBADD field is unused, and may take
any vaiue.

A device which performs Autonomous i/0 transfers must be completeiy specified by
WAYNO.

SUBADD—is a SUB ADDress which may be used to specify an address or function within a
selected peripheral. Itis used only by devices which perform only Programmed /0
Transfers.

4.2 PROGRAMMED I/0 INSTRUCTIONS

Programmed 1/0 Instructions are used to perform Programmed /O operations. A single halfword
of data is transferred between register AL in the CPU and a peripheral device connected to one of the 10Ps in the
system. A single format L instruction is provided, the displacement field being used to determine whether data is
to be input from or output to the 1OP. '

In both cases register Z contains a Route number, defining one of the entries in the Route Table
of the Master Segment. The Route Table Entry indicates a Programmed /0 Route; the various fields of the entry
define the CHANnel number and a group of one or more peripherals with consecutive Addresses. A SELECT
parameter held in register X is used to select which device of the group the Programmed {/0 instruction refers to.

Programmed 1/0 Route

The format of a Programmed [/O Route Table Entry is as follows:—

110 0o |cHAN WAYB
——t ——
00000000 WAYR
] . i i [} I]

-+

29

CHAN — defines the |IOP involved in the transfer.

WAYB and WAYR are used to define the Device Address, in conjunction with the SELECT para-
meter in register X as follows:—

The Is byte of X (X) is checked against WAYR. An error trap occurs if X > WAYR.

The Is byte of X is then added to WAYB to produce the WAYNO byte of the Device
Address. Any carryout is ignored.

The ms byte of X is used direcly as the SUBADD byte of the Device Address.

It can be seen that WAYB and WAY R define a group of devices with consecutive WAYNOs. The
address formation process is shown in Figure 11. The X register is used to select one of the devices from the group
to be used for the transfer,

PIN

The Programmed INput instruction is used to input a single byte or halfword of data from a peripheral
device on one of the 10Ps in the system to the registers of the CPU. At the completion of the instruction, the C
register is set with a SIGNAL code indicating whether the instruction was successfully completed or not, as described
later,

. 2 F 7 8 D 15
T § ¥ T ¥ T il
FORMAT: [0l0{0 1 00 001 0000000
1 L1 | - | 1 L A 1 1 1 i
1 0 bl 0

REGISTERS: Initially Register Z contains a route number and register X a SELECT parameter.
Finally, registers are set as shown in the table below.

EFFECT: The specified |OP is caused to cease operation by use of the Command Interface.
The device address formed from the WAY field of the route table entry and register X
is sent to the IOP.

The IOP takes the necessary action and returns a halfword of Data, and a SIGNAL
code to the CPU. The data is placed in the AL register and the SIGNAL code in the
C register.)

Finally, the IOP is released to resume operation.

TRAPS: Error traps occur if the route number in Z is greater than or equal to the number of
routes in the route table of the process, or if the route is not an 1/0 route, or if the
least significant byte of register X is greater than RANGE (Code P5).

NOTE: If the route defined by register Z is an autonomous {/O route, the instruction is
interpreted as an RN instruction.

REGISTER TABLE:

REGISTER INITIALLY FINALLY
AM - Zero
AL - Data input®
X SELECT N.A.
Y - N.A.
Z Route N.A.
C - SIGNAL
B,E — Undefined

* If the transfer is unsuccessful (SIGNAL # 0) then register A is undefined.

ROUTE TABLE
ENTRY

REGISTER
X

DEVICE
ADDRESS

00000000

' WAYR

I I [|

L LR Ui F 1 v 1
11 0 o]olcHAN WAYB
1 1 1 g .1 ! I N T |
| L L | L
Xm XL

| T 1 1 | |IllJ
L._+...u

'l LI

DD "'WAYNO

1 !

-

-—]

'

ERROR
IF X >WAYR

Figure 11: PROGRAMMED TRANSFER DEVICE ADDRESSES

31

POUT

The ProgrammedOUTput instruction is used to output a single halfword of data from the registers
of the CPLJ to one of the |OPs in the system, At the completion of the instruction, the C register is set with a

SIGNAL code indicating whether the instruction was successfully completed or not.

o 1 2 F 7 8 D 15
Y T % =

FORMAT: ofojo 10 0011000000

1 o c1 0

REGISTERS: Initially Register Z contains a route number, register X a select parameter, and
register AL the Data to be output. Finally, registers are as shown in the table
below.

EFFECT: The specified IOP is caused to cease operation, by use of the Command Interface.

The device address formed from the WAY field of the route table entry and
register X, and the Data held in register AL, are sent to the 0P, The [OP then
takes the necessary action and returns a SIGNAL code to the CPU, The IOP also
may return a halfword of Data at this time. The SIGNAL code is placed in the

C register and if Data was returned it is placed in register AL. Otherwise AL is
left unchanged. .

Finally, the I0P is released to resume operafion.
TRAPS: As for PIN

NOTE: If the route defined by register Z is an autonomous /O route, the instruction is
interpreted as a CT instruction (see sub-section 4.3).

REGISTER TABLE:

REGISTER | INITIALLY FINALLY
AM - Zero
AL Data May Change
X SELECT N.A.
Y - N.A.
Z Route N.A.
C - SIGNAL
B,E — Undefined

The SIGNAL Code

On completion of Programmed 1/0 operations, and some Autonomous 1/O operations (see later
sections), a SIGNAL code is written into the CA, COF, CN, and CZ bits of the C register, and the FM bit is reset
to zero. The meaning of the possible codes is dependent on the 1OP. For the BMC the codes used are:—

CN | CZ|COF| CA MEANING CN | CZ |[COF| CA MEANING

0jo0 |0 0 | Transfer accepted 0 0 1 0 Device timeout
0|0 |1 1 Unspecified device rejection 1 1 1 0 | Store parity failure
o1t |1 1 Invalid Function 1 1 1 1 | Store timeout
110 1 1 Device busy 0 1 1 0 | Overall timeout

A PIN or POUT instruction which is not successful may leave register A in an undefined state.

[25]
N

43 AUTONOMOUS INPUT/OUTPUT

Autonomous Input/Output operations involve the transfer of bytes or halfwords of information
between peripherai devices connecied to the |OPs in the system, and buffer areas in main store. Such transfers
are carried out entirely by the 10Ps, and do not involve use of the CPU.

Each 1OP is provided with up to 256 WAYs for autonomous transfers. Each peripheral device connected
to an IOP which may perform autonomous |/O transfers is allocated one or more WAY NUMBERS (WAYNOs). As
described earlier (section 4.1) the 8 bit WAYNO forms the Is 8 bits of the DEVAD for the device.

Associated with each WAY is an eight byte item of main storage, which contains parameters which
controi autonomous i/0 transfers on that WAY, This item is known as the Way Controi Block {WCB). The WCBs
for an |OP occupy contiguous locations in main storage, starting at an address which is preset for each IOP individ-

ually. This address is known as the WAYBASE for the IOP. The WCB for WAY N on an {OP starts at actual byte
address:—) :

WAYBASE + 8«N

Note that all WCBs for all 1OPs must be located in the first 64 Kbyte of main store. For the BMC,
WAYBASE is 128. .

Format of the WCB

The WCR has the format:—

o'o:o'o EINfRY" " PROCESS . DESTINATION
T DEVSTAT | | ERRSTAT STATUS
AD | ;i{COU=N'f:==={=
SESSIECIBEBENS

The first four bytes are used for handling interrupts from the device which uses the WCB. The
second four bytes define the area of main store to be used as a buffer for the transfer.

The fields of the WCB are as follows:—

COUNT - Defines the size of the buffer area in bytes. As a transfer progresses, COUNT is
normally decremented by 1 for each byte that is transferred. At any time during
a transfer, COUNT defines the number of bytes of the buffer that have not
been transferred.

XAD,ADDR - Together form an 18 bit actual address, XAD forming the ms 2 bits and ADDR
the Is 16 bits of the address. This is the address of the last byte in the buffer.
It is known as BUFFAD.

Note that COUNT, XAD, ADDR between them define a buffer in store, where
First address in buffer = BUFFAD — COUNT + 1

Last address in buffer = BUFFAD

Number of bytes in buffer = COUNT

If COUNT = 0, the buffer is said to be exhausted and no further transfer may
take place. :

ENTRY,

PROCESS — Form the DESTINATION halfword of the WCB. This is used to route interrupts
arising on the WAY to the process which should be run to deal with the interrupt
condition. For further details see Section 4.6.

33

DEVSTAT, _

ERRSTAT— Form the STATUS halfword of the WCR. This is used to carry status information
in the event of an interrupt. For further details see Section 4.6.

Autonomous Transfer Operation

Autonomous Transfers generally are carried out in 4 phases: —

(1) Initialisation — During this phase, the WCB for the WAY .in question is initialised to define the
buffer area to be used in the transfer.

{2) Initiation —~ During this phase a Command is issued to the 10OP to cause the periphera! device
involved to commence the transfer.

(3) Transfer — During this phase the IOP transfers data between the buffer area and the peripheral

device.
{4} Interrupt — At the end of the transfer, or in the event of an error condition(s) arising, the 10P

signals an interrupt to the CPU, so that the appropriate process can take the necessary action.

The Transfer phase is carried out by the I0P, and does not involve the CPU at all. It is not considered
further here. For details refer to the description of the appropriate {OP.

The Interrupt phase is described in detail in Section 4.6.

The Initialisation and Initiation phases are performed by Autonomous 1/0 Instructions, which are
described in the following section.

4.4 AUTONOMOUS I/0 INSTRUCTIONS

Autonomous I/0 Instructions are used to perform the Initialisation and Initiation phases of Autono-
mous i/0 Transfers. Also an instruction is provided to allow a process to monitor the progress of an ongoing transfer.
A single format L instruction is provided, the Displacement field being used to further define the operation to be
performed.

in all cases, register Z contains a Route Number, defining one of the entries in the Route Table of the
Master Segment. The Route Table Entry must indicate an Autonomous I/0O Route; the various fields of the entry
defining the CHANRel number of the IOP and the WAYNO of the device to be used for the transfer.

Autonomnious I/0 Route

The Format of an Autonomous 1/O Route Table Entry is as follows:—

111 0]0|cHAN | = wAaYnO
1 T ¥ 'WCBAD" L T L] T il L
1 2 2 i & 1z 1] . 1 1 1] 1 A 1
CHAN — defines the IOP involved in the transfer.

WAYNO - defines the device address. The SUBAD field of the Device Address used is set to
zero.

WCBAD — defines the actual address of the first byte of the WCB for the WAY in question.

LWCB

T he Load Way Control Block instruction is used to initialise a WCB in preparation for an Autono-
mous Transfer. The instruction does not cause the transfer to be initiated. The number of bytes in the transfer
and the position of the data buffer in virtual store are defined by the content of registers X and Y. These registers
are used to initialise the WCB appropriately.

-

i

FORM

REGISTERS:

EFFECT:

TRAPS:

0o 1 2 F. 7.8 D 15
0(0/010000(10 100000
1 L 1 ¥ .) i1 1

4 1 A i
v

1 0 A 0

Initially Register Z defines a route number, Register X defines a transfer length
(in bytes) and Register Y the virtual address of the start of a data buffer in store.
Finally, registers are set as indicated in the table below.

The 10P specified by the CHAN field of the route table entry is caused to cease
operation, by use of the Command Interface. .

The WCB defined by the route table entry is set up as follows:—

The least significant 14 bits of register X are loaded into the COUNT field of the
WCB.

The virtual address given by Y + X -1 is computed, and mapped by Nucleus into

the corresponding 18 bit actual address. The two most significant bits of this address
are loaded into the XAD field of the WCB, the remaining 16 bits are loaded into the
ADDR field. Finally, the |OP is released to continue operation.

Error traps occur if:—

Register Z contains a route number greater than or equal to the number of routes of
the process. :

The route defined by Z is not an Autonomous 1/0 route.

The most significant 2 bits of register X are non-zero initially.

Virtual addresses Y and Y + X - 1 are not valid.

The virtual addresses Y and Y + X~ 1are in different segments.

The segment involved does not have Transfers permitted {e.g. the T bit is not

set in its CST entry (Code P5).

REGISTER TABLE:

REGISTER BEFORE AFTER

AM = N.A.

At A
= N

Al

X Transfer Length N.A.

Y Buffer Address N.A.

Z Route Number N.A.

(& - Zero

B,E - - Undefined

35

TRIP

The Transfer Input/Output instruction is used to initiate an autonomous 1/0 transfer in circumstances
where it is unnecessary to initialise the WCB, It causes a Command halfword to be sent to the 1OP, for subsequent
output to the peripheral device it is required to initiate. At the completion of the instruction, the C register is set
with a SIGNAL code indicating whether the transfer was successfully initiated or not, as described in Section 4.2,

F 7 .8 D 15

¥

o 1 2

T T T T L] T ¥ T ¥ T
FORMAT: 19 |o 0100001 1000000

1 (0] Cc o

REGISTERS: Initially Register Z contains a route number and Register Al a halfword Command.
Finally, registers are set according to-the table below.

EFFECT: The specified 10P is caused to cease operation by use of the-Command interface.
The 10P is sent the Command from register AL, and the device address given by
the WAY field of the route table.

The IOP then takes the necessary action, and returns a SIGNAL code to Nucleus,
The SIGNAL code is loaded into the C register.

Finally, the 10P is released to resume operation.

TRAPS: An error trap occurs if the route number in Z is greater than or equal to the number
of routes of the process, or if the route is not an /O route. (Code P5).

NOTE: If the route specified is a programmed 1/O route, the instruction is interpreted as a
POUT instruction.

REGISTER TABLE:

REGISTER BEFORE AFTER
AM - Zero
AL Command May Change
X — N.A.
Y- - N.A.
Z Route N.A.
Cc - SIGNAL
B,E - Undefined

LWT

The Load Way control block, command Transfer instruction combines the functions of a LWCB
instruction followed by a TRIP instruction. The effect of the instruction is to Initialise a WCB in preparation for
an autonomous transfer, and to send a Command halfword to the 10P involved to initiate the transfer.

o1 2 F 7 8 D 15

¥ ¥ T

| g v T T T ¥ T
FORMAT: 1519 0100 00(1 1100000

0 E 0

36

REGISTERS:

EFFECT:

TRAPS:

Initially Register Z defines a route, Register X and Register Y a buffer area in store
(as for LWCB) and Register AL a Command (as for TRIP)

Finally, registers are set as indicated in the table below.

The 10OP involved is caused to cease operation by use of the Command Interface

The relevant WCB is loaded using registers X and Y as described for the LWCB instruction.
Finally a Command halfword and device address are sent to the |OP which takes action

as described for the TRIP instruction. The |0P is released to resume operation.

As for LWCB

REGISTER TABLE:

RW CB

REGISTER BEFORE AFTER
AM - Zero
AL Command May Change
X Transfer Length N.A,
Y Buffer Address N.A.
Zz Route Number N.A.
C - SIGNAL
B,E - Undefined

The Read Way control block instruction is used to determine the status of a specified peripheral
transfer. It causes the DEV STATUS, ERROR STATUS, and COUNT fields of the WCB to be loaded into registers.
The COUNT determines how far a transfer has progressed by indicating the number of bytes of data remaining to be
transferred, while the STATUS information is placed in the WCB as a result of interrupts, as described in Section 4.6.

FORMAT:

REGISTERS:

EFFECT:

TRAPS:

NOTE:

0 1 2 F 7 8 D
T 1] T 1] L] ¥ 1 L] H ¥]
0i{0]0 1|0 010 0|10 OLO 0.0.040

1 0 8 0

Initially Register Z defines a route number. The route must be an Autonomous I/0
route,

Finally, registers are set as indicated in the table below.

The 1OP specified by the CHAN field of the route table entry is caused to cease
operation, by use of the Command Interface.

The DEV aryd ERROR STATUS bytes are copied from the relevant WCB into
register AL. Then these bytes of the WCB are cleared.

The COUNT field of the WCB is copied into register C. Finally the |OP is released

An error trap occurs if register Z is greater than or equal to the number of routes of
the process.

An error trap occurs if the route is not an 1/0 route. (Code P5).
If the route involved is a Programmed 1/O route the instruction is interpreted as a

PIN instruction.
37

REGISTER TABLE:

REGISTER BEFORE AFTER
AM - Zero
AL - STATUS
X — COUNT
Y = N.A.
z ROUTE N.A.
C _ Zero
B,E - Undefined

4.5 STATE CHANGE INSTRUCTION

As already described, the CALL instruction with M = 2 can be used to change the state of a
process. The CALL instruction is used in conjunction with a route number held in register Z. The effect of the
instruction has been defined where the route defined by Z is an inter-process route, but also it can be used in
conjunction with /O routes as defined below:— '

Q=0 (GO FREE) can be used with any valid route number in registe} Z. The type of route is
irrelevant.)

‘Q=1 (Continue to RUN) can be used with any valid route number in Z.

Q=2 (WAIT, PASS priority) is meaningful for inter-process routes only. It can be used for
Autonomous {/O routes, when it has the same effect as Q = 3. It must not be used with
a Programmed 1/0 route. An error trap occurs if this is attempted.

Q=3 (WAIT) can be used in conjunction with an Autonomous /O route, when it causes the

process to WAIT unti! a specific 1/0 interrupt arrives.

Q=4 {(Conditional FREE). Comments as for Q= 0.
Q=7 (Conditional WAIT}. Comments as for Q = 3.

4.6 INTERRUPTS

Interrupts are used to inform a process that a condition has arisen in the 1/0 subsystem that requires
its attention. The usual condition is either that a peripheral device has completed an operation previously initiated
by that process, or that some error condition {such as a parity error on the peripheral’s recording media) has arisen
which the process should be aware of. -

Interrupts are handled in three distinct phases which may be separated in time from each other.
Interrupt Generation Phase

When an IOP is made aware that one of the devices it controls wishes to generate an interrupt, it
writes a status byte into DEV STAT iocation of the WCB for ihe device in question. This byte normally defines the
reason for which an interrupt has been generated, and normally is input to the IOP from the device. The IOP also
records the address of the WCB in a store location reserved for this purpose, called the INTADDR location, and
then uses the Command interface to signal an interrupt to the CPU. The IOP now continues operations while
waiting for the CPU to respond, but must not generate any further interrupts until it has done so.

38

Interrupt Recording Phase

At the next interruptable point, normally when the IOP has completed the instruction or Nucleus
operation it was performing when the interrupt was signalled to it, Nucleus is entered to deal with the interrupt.

Nucleus uses the INTADDR location previously set up by the 10P to locate the WCB, and uses the
DESTINATION halfword of the WCB to determine the destinationlprocess andthe ENTRY number of the interrupt
message. From this point, operation is much the same as it some other process had generated a fixed message for
the destination process. The STIM bit corresponding to the ENTRY number is reset'to zero, and ‘the state of the
destination process is changed to READY if it was previously FREE or in the WAIT state waiting for this interrupt
message. If the state of the destination process changes, a Nucleus reschedule operation is performed. Otherwise
control reverts to the previously operating process. {n any case, the CPU signals acceptance of the interrupt to the
I0P, which may now generate further interrupts if necessary.

Interrupt Completion

Either immediately or some time later the destination process is selected to run to process the
interrupt message. The process of loading an interrupt message is very much the same as the process of loading a
fixed message. Immediately after the RUN state has been entered, the program accessible registers are set as
follows:—

REGISTER CONTENTS

Unchanged

Unchanged

Undefined

AM =0, AL = STATUS halfword from WCB

bits 0 : 1 = Zero, bits 2 : 15 = COUNT field from WCB
Undefined

ENTRY

Zero

™

ON<LXD>DMmr W

No other registers or Master Segment entries are changed. Note in particular that unlike
reception of a fixed message, PAST entry 0 is unaffected.

After the message parameters have been loaded into registers, the STATUS halfword of the
WCB is cteared by Nucleus.

4.7 INTERRUPT MECHANISATION

The interrupt process is illustrated in Figure 12 which should be compared with the similar
figure (Figure 10) for Fixed Message transmission.

To summarise, the operation is as follows:—
Generating an Interrupt
(1) The 10P writes a status byte to the WCB.

(2) The IOP places the address of the WCB in the INTADDR location, and signals an interrupt to
the CPU.

(3) The CPU locates the WCB using the INTADDR pointer.

39

(014

(=

AIVSSHAN LANYYALNI NV ONIANTS T sy

PV ENTRY
0 STIVMS
=
INTADDR b e e —y e T T s A R
| |
I |
I |
I 1
| |
I | wcB
] DESTINATION
L_
STATUS FROM ENTRY _PROCESS l@ — — ——
PERIPHERAL > |
DEVICE PARAMETERS | »| REGISTERS
|
I
: L REGISTER Z
|
I
I
I
I
|
|
I
] FLAGS
I
(3 S S — — WCB ADDR
0P ::$ WCB :—_—-—> . DESTINATION

{4) The ENTRY part of thé DESTINATION word of the buffer is used to reset to zero one of the
16 STIM bhits of the destination process,

{5} The state of the destination process may be changed exactly as for fixed or queued inter-process
messages. S : ' ’)
(6) If the state of the destination process changes, a Reschedule operation is performed.

Receiving an Interrupt

In due course the interrupt message becomes the highest priority outstanding message, and the
destination process is READY to receive it. When the process is next given\contro! of the processor the following
operations are carried out:— ' '

(1) The ENTRY number of the message is determined by examination of STIM bits. The bit number
of the leftmost STIM which is set determines the ENTRY.

{2} The STIM bit involved is set to 1.

(3) The Route Table Entry defined by this ENTRY number is accessed. It contains the address of the
first byte of the interrupt WCB. '

4) The STATUS halfword and COUNT field are transferred from the WCB into registers. The ENTRY
part of the DESTINATION location is ioaded into register Z.

(5) The destination process is run to deal with the message.
4.8 SPECIAL EFFECTS

Whilst the majority of Input Output operations conform to the pattern laid down in Section 4.3.
" (Initialisation — Initiation — Transfer — Interrupt), variations on this pattern are possible and may be used as
noted in this section.

{a) It is possible to re-initialise a WCB for a WAY on which a Transfer is already in progress. This has
the effect of instantaneously changing either the position or the size {or both) of the buffer in
main store used for the transfer. Interlocks are provided to ensure that no data items are {ost or
corrupted under such a circumstance. This feature may be used, for instance, to ensure that a
continuously running input device never runs out of buffer area in main store.

{b) It is possibie to Initiate a transfer on a peripheral which is’ busy on a transfer. The effect of doing
this depends on the |OP and the peripheral device. In many cases the effect is to cause the
peripheral to stop the transfer it was engaged on. This feature can be used to stop a transfer
under program control with an appropriately designed peripheral.

(c) Finally, it is possible that a device may generate Interrupts before it has completed a transfer.
Arrangements must be made to intercept such interrupts and ensure that all earlier interrupts
have been received before later interrupts are generated.

(d) The 10P, in the course of its operation, reads from and writes to the WCB, and sometimes holds
fields from the WCB in its registers. Nucleus causes the 1OP to cease operations at the earliest
convenient moment, and restore all WCB’s, before Nucleus makes any access to a WCB. Access to
a WCB using other than Nucleus instructions is possible but can give unexpected results if the
10P is operating also on the same WCB.

41

F-y

5. SEMAPHORE SYSTEM

Nucleus provides for the operation of bmary semaphores. Normally semaphores are used to prevent
two or more processes from performing critical operations, such as accessing a shared data segment, at the same
time.

A semaphore is a halfword data item held in any segment shared by all the processes which use it.
A segment containing a semaphore must have both Read and Write access permission. The semaphore can be in
one of two states; in the released state, it indicates that no process is performing a critical operation, whilst in the
claimed state, it indicates that one of the processes is so engaged.

Two operations can be performed on semaphores by a brocess, a claim operation and a release
operation. If a semaphore is in the released state and a process performs a claim operation on it, then the semapho
is put in the claimed state and the process continues to run. The semaphore remains in the claimed state until a
corresponding release operation is performed, normally (but not necessanly) by the process which made the
original claim.

| a process attempts to claim a semaphore which is already in the claimed state, the claim operatio
does not succeed. The process is put into a special state, the HELD state,and it is notallowed to run until the
semaphore has been returned to the released state. At this time the unsuccessful process is returned to the RUN
state, and may again attempt to claim the semaphore.

It can be seen that if several processes attempt to claim the same semaphore, the first is successful,
and is allowed to continue running, whilst the others are HELD by the semaphore, and so are not allowed to run.

5.1 - SEMAPHORE STRUCTURE

Thus far, two states of a semaphore have been distinguished, the released state and the claimed
state. To mechanise the semaphore system it is necessary to further subdivide the claimed state into two substates
claimed-simple and claimed-complex. In the simple substate, the semaphore has been claimed, but no further
attempts have been made to claim it. In the complex substate, the semaphore is claimed and other processes have
attempted to claim it unsuccessfully and, therefore, are in the HELD state.

The format of a semaphore is as follows:—

0‘1 2 7 8 15
FLG|0 O 000 0 PNO

3 1 L A 1 1 L 1 i " ' N 1

FLG — is atwo bit field defining the state of the semaphore. FLG = 0 is not a permitted

combination.

L1t

PNO - is an eight bit field used to hold a Process Number. Its usage is defined below.

Note that bits 2 to 7 must all be zero.

The three semaphore states are:—
1) Qosrmmbhane RET BAQKE
\aj aJer, LA P AN AR B3 D5 LUPe RS 5 g

This is denoted by FLG = 1.

In this state the PNO field is unused and normally contains zero.

g
&
<
§
=,
g
a
£
B
=
8
S
=
I
u
e
i~
I~
Iy

This is denoted by FLG = 3.

In this state, the PNO field of the semaphore contains the number of the process which has
claimed it successfully. This process is said to be holding the semaphere.

N

{c) Semaphore CLAIMED - COMPLEX
This is denoted by FLG = 2

In this state, the PNO field of the semaphore contains the number of the process which last
attempted (unsuccessfully) to claim it. As will be seen later, this points to a chain of HELD processes,
ending with the process holding the semaphore,

Semaphore Corrupt

Before any semaphore operation is performed, the location to be used as a semaphore is checked to
determine whether it has the structure of a semaphore. The semaphore is said to be corrupt if either the FLG field
is zero, the PNO field contains a number greater than the total number of processesin the Process Vector, or bits 2 to
7 are non-zero. ;)

5.2 SEMAPHORE INSTRUCTIONS

The Semaphore Instructions permit a process to operate semaphores as described above. A single
format L instruction is used, the Displacement field being used to specify the operation to be performed.

CLM

The semaphore CLM instruction is used to attempt to claim a semaphore. If the claim is
unsuccessful, the process is placed in the HELD state and is not allowed to run until the semaphore has been

released,

0,1,2 F al .48 D 15
L) T T T] T T 1 4 L) ¥ ¥ v
FORMAT: 0|j0j]0 1 0 1 00|0 10 OOO0DOCQCO

L] — ¥

1 4 4 0 -

REGISTERS: Initially Register Z contains the virtuai address of a semaphore.
No registers are affected by the instruction.

EFFECT: The semaphore pointed to by Register Z is examined. If it is in the released state,
it is put into the claimed-simple state, and the PNO field is set to the number of

the process issuing the instruction.

If it is in the claimed (simple or complex) state, it is put into the claimed-
complex state. The process is put into tne HELD state, and is added to the list

of HELD processes associated with the semaphore as described later. If the CLAIM
is unsuccessful, the register S is decremented by two, so that when the process is
next run, the CLM instruction is obeyed again in a further attempt to claim the
same semaphore. Figure 13 illustrates the procedure.

TRAPS: An error trap occurs if the content of Register Z is not a valid virtual address, or if the

segment containing the semaphore does not have Read and Write access permission.
(Code PQ). An error trap occurs if the semaphore is corrupt.{Code P7).

43

CLAIM

|

MARK
SEMAPHORE
MARK ‘CLAIMED-
SEMAPHORE SIMPLE’
‘CLAIMED-
COMPLEX' l
EXIT
PLACE PROCESS
IN THE
HELD STATE
DECREMENT S
RESCHEDULE

Figure 13: SEMAPHORE CLAIM

CCLM

The CLM Conditionally instruction is used instead of CLM where it is important not to hold

up the process if the claim is unsuccessful. If the claim is successful, operation is as for the CLM instruction.
If the CCLM s unsuccessful, the semaphore is not changed, but conditions bit CZ is set to a one.

44

0 1 2 F 7 8 D 15

T T T T T T T T T T T T

FORMAT: 0010

Iy 1 I 2 A i n 4 L 1 Iy

-
S
N
(=]

REGISTERS: Initially Register Z contains the address of a semaphore. CN, CA, COF are all reset
to zero by the instruction. If the semaphore is in the released state, CZ is reset to
zero. If the semaphore is in either claimed state, CZ is set to one. No other registers
are affected.

EFFECT: The semaphore pointed to by Register Z is examined. If it is in the released state,
the effect is as for CLM, and also the conditions bits CZ, CN, CA, COF are all
reset to zero.

If the semaphore is in either claimed state, then conditions bits CN, CA, COF are
reset to zero, and bit CZ is set to one. The state of the semaphore is not changed.

TRAPS: As for CLM.

REL

The semaphore RELease instruction is used to return a claimed semaphore to the released state.

s HEL D on the semaphore are allowed to run again.

Any processe
0.1 2 : 7 8 15
T ¥ T T T 3 [V | T T T ® J
FORMAT: 1000 101 00/0000O0O0TO O
1 i] 1 1 1 | i 1 1 Il 1
1 4 o 0

REGISTERS: Initially Register Z contains the address of a semaphore. No registers are
affected by the instruction.

EFFECT: The semaphore pointed to by Register Z is examined. If it is released already, or is
claimed-simple then the semaphore is placed in the reléased state with bits 2 to 15
zeroed.

If it is claimed-complex then it is placed again in the released state, but also the
associated list of HELD processes is used to return these processes to the RUN state,

Figure 14 illustrates the above procedure.

‘TRAPS: As for CLM.

REL

l

MARK
T SEMAPHORE
MABTERN L ‘RELEASED’
PROCESSES IN
SEMAPHORE CHAIN T
TO THE ‘RUN’ STATE l
EXIT
MARK
SEMAPHORE
‘RELEASED’
RESCHEDULE

Figure 14: SEMAPHORE RELEASE

45

5.3 THE SEMAPHORE CHAIN

Consider a semaphore, originally in the released state, |f a process (say process A) CLAIMS it, the
semaphore is set to the claimed-simple state (FLG = 3} with the PNO field set to the number of the holding
process (A).

If a second process, process B, now attempts to CLAIM the semaphore, its claim is unsuccessful.
The semaphore is set to the claimed-complex state (FLG = 2) with the PNO field set to (B). Also, process B is
put into the HELD state, and the TRANSFER field of its Process Vector entry is set to point to the process
holding the semaphore (A). This is shown in figure 15.

Any subsequent process {say process C) attempting to CLAIM the semaphare is dealt with in the
same way, that is:—

(1) The semaphore is set to the claimed-complex state with the PNO field set to the number of the
process (C).

(2) Process C is put into the HELD state, and the TRANSFER field of its process vector entry is set
to the number originally contained in the PNO field of the semaphore,

(3) The process vector entry for the first unsuccessful claimant, B, is distinguished by a marker bit
from the entries for C and subsequent claimants. This bit is called the “Last’’ marker, L.

This chain of processes, starting with the process defined by the PNO field of the semaphore and
ending with the process holding the semaphore, is called the semaphore chain, shown in Figure 15,

The chain is used for two purposes:—

(1) During scheduling, the process selector uses the TRANSFER fields of the PV entries to follow
the chain and so pass priority from the HELD processes to the holding process. This is important,
since the HELD processes are normally of higher priority than the holding process. See Section 6

for details,
(2) When the semaphore is released {by the holding process, normally) the chain is used to discover 2!l

processes which were HELD on the semaphore. All the processes are returned to the RUN state so
that they may again attempt to CLAIM the semaphore.

46

PROCESS VECTOR

B
0 1 {HELD A \
—'——_’_,/

A
< ANY

Semaphore after unsuccessful
claim by B

C

0 0 |HELD B
10 (O p

7 e, e

B
0 1 [HELD A
54

marker bit L. d

<«—— ANY —»

Semaphore after further unsuccessful

claim by C

Figure 15: SEMAPHORE CHAINS

47

6. THE PROCESS SELECTOR

The function of the Process Selector part of Nucleus is to ensure that at any time the most urgent
process which has useful work to do (i.e. is ‘active’) is in control of the processor.

The Process Selector is invoked to carry out a reschedule operation whenever an event occurs which
either makes a previously inactive process active or an active process inactive. The result of a Process Selector
operation is to select a new process to have control of the processor. This new process may be the same as that
previously operating, in whichcase it continues in control of the processor; more usually, a different process is chosen
to run, and the process change mechanism is used to save the working registers of the previousiy operating process
and foad working registers for the newly selected process.

The main circumstances under which the process selector is invoked are: —
(n The currently operating process obeys a CALL instruction which results in it becoming inactive.

(2) A process other than the current process becomes active. This may happen as a result of a message
being sent to it by the current process, or an 1/O interrupt arising for it.

6.1 PROCESS VECTOR AND SCAN BITS

The Process Vector is a table in main store held in a single segment. Each process in the system has an
entry in the process vector. All entries are 8 bytes long, and the entry for process N starts at byte 8«N of the PV,

The PV contains information defining the state of all processes in the system. This information is
used by the Process Selector inchoosing the correct process to operate. The format of a PV entry is:—

L4 T T ¥ ¥ [T L T L] 1 H ¥ L]
STIMS
e e e e B e
STATE TRANSFER
£ W i I P ==}
QCOUNT WAITROUTE
L) T 1 T ¥ T IQENDI 1 1 T T T

Only the STATE, TRANSFER, and QEND fields of the PV entry are of concern to the Process
Selector and the process change mechanism.

In addition to the Process Vector, a set of SCAN bits are maintained in the first few bytes of actual

stbrage. SCAN bit i of byte j corresponds to process 8xj+i, The SCAN bits duplicate in summary form the state
information in the process vector, and are used by the Process Selector to speed up its operation.

6.2 STATES OF A PROCESS

The STATE field of the PV entry for a process defines the state of the process as described below.

g LW/ .A?

The shaded field is unused by and unaffected by Nucleus operation. The remaining fieids define
the process state as follows:—

48

S L A |TRANSFER PROCESS STATE WAITROUTE | SCAN |NQOTES

0 0 0 - FREE 2556 1 1

0 o i - RUN - 0

0 |0 2 0 WAIT | ENO 1 2

0 0 2 PNO WAIT/PASS ENO 0 23

0 0 3 PNO HELD - 0 3

0 1 3 PNO HELD/LAST - 0 34

0 0 4 - READY ENO 0 5

1 X X X STOPPED X 1 6
NOTES:

1 For a process in the FREE state, the STIMS consist of 16 ones and QEND is zero.

2 For a process in the WAIT or WAIT/PASS state, WAITROUTE contains the ENTRY number
(ENQ) of the awaited message. .

3 For a process in the WAIT/PASS, HELD or HELD/LAST states, TRANSFER contains the
Process Number (PNO) of the process to which priority is to be passed.

4 The L bit is only used to distinguish the last process in a Semaphore chain. It is of no importance
to the Process Selector.

5 In the READY state, the ENO in WAITROUTE determines the message to be picked up on entry
to the RUN state. |f ENO=255, entry is from the FREE state. Hence the first message to hand
should be processed next. If ENO#255, entry is from the WAIT state, in which case the message
with that ENTRY number should be processed next.

6 I1f S=1 the process is in the STOPPED state. Normally the L,A, TRANSFER and WAITROUTE
fields of a STOPPED process conform to one of the entries given above.

Non Standard SCAN Values
The SCAN bits can be changed by software to assume different values from those given. The effect
of this is:— }
(a) I SCAN is zero and its table value is one, the Process Selector takes longer to operate but its operation
is not changed.
(b) I1f SCAN is forced to a one and its table value is zero, the Process Selector does not select that process
to run (whatever its state) unless priority is passed to it.
6.3 STATE TRANSITION

Figure 16 illustrates the various states of a process and the state transitions that may be affected by
Nucleus. It should be noted that the WAIT and WAIT/PASS states, and HELD and HELD/LAST states have both
been amalgamated to simplify the diagram.

The letters against the transitions indicate the cause of the transition as follows:—

A RUN to FREE or WAIT. The process obeys a CALL. instruction indicating that the next state of the
process is to be FREE or WAIT.

B FREE or WAIT to READY. A message arrives for the process. In the FREE state the arrival of any

message causes the transition, while in the WAIT state the arrival of a message with a correct ENTRY
number is required.

49

SOFTWAREI

G SOFTWARE |

\

\

STOPPED:
HELD

STOPPED:
RUN

STOPPED:
READY

STOPPED:
FREE

STOPPED:
WAIT

Figure 16: STATE TRANSITIONS

C READY to RUN. The process in the READY is selected to run by the Process Selector.

D RUN to HELD. The process attempts unsuccessfully to CLAIM a semaphore.

E HELD to RUN. The semaphore which the process tried earlier to claim is released by the process
holding it.

E RUN to STOPPED: RUN. The process commits some violation as a result of which an error trap

occurs, or attempts to reference anabsent segment, so that a segment break occurs.

G READY to STOPPED: READY. An absent segment is encountered when Nucleus attempts to
move the process into the RUN state, so that a segment break occurs,

Other Transistions

Systems software with access to the Process Vector may change the state of any process between
the UNSTOPPED and STOPPED variants of any state simply by changing the S bit of the PV entry. While in the
STOPPED state, transitions can occur legally between states as shown in the diagram.

More drastic state changes can be carried out by software intervention, It is evident that any such
changes must be performed with extreme caution if unpredictable effects are to be avoided.

6.4 SELECTOR OPERATION
Figure 17 illustrates in simplified form the operation of the Process Selector. The process is as follows:—

(1) The SCAN bits are examined in process number order, until a zero scan bit is found.

(2) The state of the corresponding process is examined. If it is READY or RUN, select this process
to operate, and exit to the process change mechanism. If it is WAIT/PASS or HELD, the '
TRANSFER field contains the number of the process to which priority is to be transferred, and
the state of this process is examined next. Otherwise, return to examination of the SCAN bits
from the point previously reached. '

It is seen from the above that the effect of the SCAN bits is to allow the Proceés Selector to rapidly
‘skip over’ processes which are neither runnable nor passing priority. '

Limits on Priority Passing

tis t
passes priority to B, which ({directly or indirectly) passes priority back to A
AY 1

ind the priority pass loop.

Ly pass

possible by poor system design for ‘deadly embrace’ situations to arise, in which process A
. In such a circumstance the Process

Selector loops endlessly aro

cieliO O © y al

To prevent this situation, location PASSMAX in the SVA defines the maximum number of
TRANSFER operations which can occur consecutively. If this limit is exceded, control reverts to step (1)
of the selector operation. :

I
Termination

Note that there is no test in the selection procedure to terminate the procedure when none of the
processes in the system are in a runnable state. Nucleus eventually attempts to access a Process Vector entry beyond
the end of the PV segment.Then an error message is generated to system software and the Process Selector is

reactivated.

To prevent this situation occurring, it is recommended that every syste

e
g s . -
rocess a dummy ‘idler’ process which is always in the BUN state, If there is no useful work fo

3
-
o
o
=S
Q
=
e
c
o

ority
to do, this process is selected preventing the scheduler error condition occurrring.

51

ENTER

— - ; -
Ji=J+1
pP:=
YES !
PASSMAX \NO
EXCEEDED? —> A
. WAIT, HELD /\ OTHER
< STATE {P]
P :=TRANSFER [P]
RUN
READY
CHANGE TO
PROCESS P

Figure 17: PROCESS SELECTOR OPERATION

52

6.5 THE PROCESS CHANGE MECHANISM ‘

When the Process Selector has chosen a process to control the processor, the Process Change
mechanism is invoked to save the registers of the previously operating process if necessary, and to load the
registers of the newly selected process.

Figure 18 illustrates the Process Change mechanism. In this figure and in what follows the ‘old’
process is that previously in control of the processor and the ‘new’ process in that newly selected by the Process
Selector,

First the process numbers of the old and new process are compared. If they are equal, the
same process remains invcontrol of the machine. Otherwise the process is changed by a swap operation.

Same Process

If the new process is the same as the old, the next step is to test the state of the process. If it is in
the RUN state, no further action is necessary, and Nucleus operation is terminated and execution of the process
coninued. If it is in the READY state, a message is ioaded into its registers by the ‘i.oad Message” operation
described later.

Swap Operation
If the process is to be changed, a swap obe_ration is performed as follows:—

(1) - The working registers of the old process are saved in.the Register Save area of its Master Segment.
if the oid process is in the RUN or HELD state all its registers (S,L,B,A.X,Y,Z,E,C) are saved.
Otherwise only the S and L registers are saved.

(2) The hardware segment registers for the new process are loaded as described in sub-section 2.4.
If any segment is absent from store, a segment break occurs, and the process is placed in the
STOPPED state. The S and L registers are now loaded from the Save area of the process’ Master
Segment.

(3) The state of the new process is tested. If it is READY, a message is loaded by the ‘Load Message’
operation. Otherwise, if it is in the RUN state, its remaining registers (B,A,X,Y,Z E,C) are loaded
from the Save Area of its Master Segment. Nucleus operation is terminated and execution of the
new process COnimences.

Load Message Operation
If the new process is in the READY state, the required message is loaded into registers as follows:—
(1) WAITROUTE is tested to determine whether the new process was either FREE or in the WAIT
state before being made READY. {f WAITROUTE=255 the process was originally in the FREE state,
otherwise it was in the WAIT state.
(2) If the new process was in the FREE state, the appropriate message is selected by first examining the
STIM bits. If any of these are zero, the message to be processed is the fixed message with ENTRY
number equal to the lowest zero STIM bit. Otherwise the message is taken from the head of the

incoming message queue.

(3) If the new process was in the WAIT state, WAITROUTE defines the ENTRY number of the appro-
priate message. Note that if the message is a queued message it is at the head of the message queue.

(4) In both cases (2) and (3} above, if the selected message is on a Fixed route, the corresponding STIM
bit is now set to one,

53

54

(5)

(6)

Finally the parameters of the message are loaded into registers A, X, and Y, PAST entry 0 is loaded
with the SEGMENT parameter, and register Z is loaded with the ENTRY number. Note that as a
result of the operation registers E and B are undefined, and the C register is reset to zero. See Section

3 for details.

The process is now placed in the RUN state, Nucleus operation is terminated, and execution of the
new process commences.

RESCHEDULE

YES EW=0LD NO

PROCESS
?

SAVE REGISTERS |
OF

OLD PROCESS
LOAD SEGMENT
REGISTERS, AND

S, L REGISTERS OF
NEW PROCESS

STATE OF READY READY STATE OF
PROCESS > % PROCESS
? ?
* ”
LOAD MESSAGE L OAD REMAINING
PROCESS REGISTERS OF
STATE := RUN PROCESS
\ v | 4
RUN RUN RUN

PROCESS) ; " PROCESS PROCESS

Figure 18: PROCESS CHANGE MECHANISM

55

A ERROR HANDLING

The genera! philosophy of error handling is first to take any immediate action which may be
necessary to prevent the effects of the error propagating through the system (e.g. by placing an erring process in
the STOPPED state), and secondly to form an error message and send it to a process which may take further
action.

The process to which the error message is sent depends on the category of the error. Three main
categories are distinguished:—

{a) System Errors. This category includes all errors which may be attributed to hardware malfunctions
or erroneous entries in Systems Tables used by Nucleus.

(b) Programming Errors. This category includes all errors which may be attributed to programme faults
in a single process in the system.

{c) Segment Breaks. Not strictly error conditions; caused by the attempted use of a segment which is
flagged as out of main store’.

7.1 SYSTEM ERRORS

The following conditions give rise to system error traps:—

(a) Store Parity Failure: Detected following a Store Read operation.
{b) Store Timeout: No response was received from store when it was last accessed.
{c) Command Interface Timeout: No response was received from an |OP when the Command

Interface was last used.

{d} Power Failure: Failure of the power supply of the CPU or a vital independently powered module
was detected.
(e) Protection Violation of the Master Segment, SST, PV, or SBA: An attempt was made to access

beyond the permitted range of one of these Segments.

(f) QC Error: Indicated if when a message buffer is removed from Free queue, QC becomes negative
after being decremented,

(9) STIM Error: Indicated if an attempt is made to reset a STIM bit using an ENTRY number greater
than 15.)

Error Action

For all system errors an error message is formed by Nucleus and sent to the System Error Process,
Process 0 on Entry 0 via Fixed buffer 0 of the SBA. For all errors other than Power Failure (see below) action is also
taken as follows.

if at the time the error occurred, the central processor was not exectting a Nucleus operation {i.e.
was running a Process) then the Process which was running at the time is placed in the STOPPED state. If Process 0
was itself running at the time the error occurred, a dynamic microprogram stop occurs.

After the message has been sent to Process 0 and, if appropriate, Process O has been made READY
to receive it, a Reschedule operation is performed.

56

Power Failure

Action on Power Failure is slightly different. Whatever Process or Nucleus operation was being
performed, action is always the same. An error message is formed and sent to Process 0 which is forced into
the READY state to receive it, regardless of its original state. The processor is now halted.

When power is resumed, and the processor restarted (automatically if in AUTO, otherwise by

manual operation), the standard startup procedure is followed. This results in Process 0 being selected to run to
process the message planted before power failed.

The Error Message

The parameters of the error message are:—

PARAMETER A AM - Undefined
AL - Location Code (See Table below)
PARAMETER X Error Code (See Table below)
PARAMETER Y Process Number
SEGMENT Master Segment of Process in Y, with full access permission.

(a) Location Code

The location code defines the operation taking place at the time the error occurred. The location
codes used and their meanings are:—

CODE MEANING

Within a Process (i.e. Not in Nucleus)

First part of CALL, SEG, ICB instruction handling
First part of SEM instruction handling

Nucleus reschedule or process change mechanism
i.oading a message into registers

in the System Error handlingsection of Nucleus

in the Process Error handling section of Nucieus
First part of Interrupt Handling

NOoOgmbEWwNN = O

Location codes 1,2, and 7 cover Nucleus operations up to the start of the reschedule operation,
when the code becomes 3 in all cases.

Note that location code 5 is never received in a message, since if a system error occurs when the
Nucleus is in the System Error handling phase, a dynamic halt occurs.

(b) The Error Code

The error code determines the cause of the error trap as defined overleaf:—

57

CODE CAUSE NOTES
0 Protection Violation of the Master Segment.
1 Protection Violation of the PV
2 Protection Violation of the SST
3 Protection Violation of the SBA
4 Store Parity Failure — Module 0 A
5 Store Parity Failure — Module 1 A
6 Store Parity Failure — Moduie 2 A
7 Store Parity Failure — Module 3 A
8 Store Time QOut A
9 STIM Error B
10 QC Error B
11 Power Failure C
12 Command Interface Timeout B
NOTES:
A In these cases, if the Location Code = O, the process running at the time of the error is placed in
the STOPPED state.
B The location code is never O in these cases.
C The location code may be 0, but no process is STOPPED.

{c) The Process Number

The significance of the Process Number in Y depends on the value of the location code. In some
cases it is undefined. It is interpreted according to the tahle below:

LOCATION CODE PROCESS NUMBER NOTES
0 Current Process A
1 Current Process B
2 Current Process B
3 either Oid Process or New Process or -1 C
4 New Process C
6 either Process which caused error c
or -1 (Segment break error)
7 Undefined
NOTES:

A The process running at the time of error.

B The process which issued the Nucleus instruction

C Old Process = process previously running on the processor.

New Process = process newly selected to run.

58

7.2 PROGRAMMING ERRORS

These are the errors which arise as a result of illegal operations being attempted by a process. The
possible error conditions are as follows:—

(a) Protection Violation: Either the process has attempted to access a segment using a virtual address
which lies beyond the epd of the segment or the process has attempted to access the segment in an
unauthorised manner (e.g. a write attempted to a Read only segment).

{b} Undefined Instruction: The process attempted to issue an illegal (undefined) instruction.

{c) Route Trap: A CALL instruction was used to attempt to send a message over a route whose flag
bits were set to ‘10XX’ (Break to Owner).

(d) EXIT Instruction: The process issued an EXIT instruction. This is not strictly an error condition.

(e) QCOUNT Error: The process attempted to send more queued messages than was permitted by the
value of QCOUNT.

(f) CALL instruction Error: A CALL instruction was issued with incorrectly specuf:ed Route or Para-

meters. See later for details of possible error conditions.

{(g) SEG Instruction Error: A SEG instruction was issued which specified a PAST entry number greater
than the number of PAST entries.

(h) CALL 1/O Instruction Error: A CALL instruction for either Programmed or Autonomous 1/0 was
issued with an incorrectly specified Route or parameters. See later for details of possible error
conditions.

(i) SEM Instruction Error: A SEM instruction was issued which used a corrupt semaphore. See later

for details of possible error conditions.

(k) Process Counter Trap: The process’ PPCOUNT location was decremented past zero. See later
for details.

Error ‘Action

For all errors an error message is formed and sent to the owner of the process via a queued buffer.
The erring process is placed in the STOPPED state.

If Process 0 is the erring process, Nucleus enters a dynamic halt, and no message is generated.

The Message Parameters are:—

PARAMETER A AM — Undefined
AL — See *below
PARAMETER X Error Code (see overleaf)
PARAMETER Y Process Number
SEGMENT Master Seg of Process, with full Access

* For Error Code 0, AL contains the CST number of the Segment to which erroneous access was attempted.
For all other cases, AL is undefined.

59

60

(a)
(b)

{c)

(a)
(b)
(c)

(d)

(e)

{f)

(a)
{b)

{c)

The error code defines the type of error:—

CODE CALISE

0 Protection Violation

1 Undefined Instruction
2 QCOUNT error ;

3 CALL instruction Error
4 SEG Instruction Error
5 CALL 1/0 instruction Error
6 EXIT Instruction

7 SEM Instruction Error
8 Process Counter Trap

10 Route Trap

CALL Errors

The following conditions result in CALL error traps:—

Route Number in Register Z greater than number of routes of the process.

Route entry defined by Register Z is of an incorrect type.’

Segment send attempted using a segment without send permission (S bit of CST entry zero).
CALL 1/0 Errors

The following conditions result in a CALL /O error trap:—

Route number in Register Z greater than number of routes of the process.

Route entry defined by Register Z is of an incorrect type.

(Programmed 1/O only) register X content is greater than the permitted RANGE of Way Number
specified by the Route table entry.

(Autonomous 1/0 Only) the COUNT parameter in register X has its ms two bits non-zero.

{Autonomous I/0 Only). The address of the start and end of the data buffer are in different segments,
or either {or both) are not valid virtual addresses.

(Autonomous 1/0 Only). The segment containing a data buffer does not have Transfer permitted
{T bit of CST entry zero).

SEM Errors
The virtual address of a semaphore is illegal.
A segment containing a semaphore does not have Read and Write access permission.

A semaphore is Corrupt.

The Process Counter

T he process counter is a halfword location of the Master Segment of a process called PPCOUNT.
It can be in one of three states:— ol S :

(a) Counting

] COUNT

In this state it contains a positive integer (COUNT)_which defines the number of instructions the

process can execute while remaining in the RUN state. If PPCOUNT contains the integer N, N+1

instructions may be obeyed. COUNT is decremented by one after each instruction is obeyed.

(b} Error

0717717171711
ITTTHITELITH AR AT

-
-

An attempt to access instructions when PPCOUNT is in the error state causes an immediate error
trap with Code 8. if a process is in the RUN-state when PPCOUNT is zero (in the Counting state)
it is decremented to-1. Therefore the next attempt instruction access causes an Error trap.

(c) Disabled

o VT

In this state, PPCOUNT is not decremented when instructions are obeyed and never generates an
Error interrupt. E

73 SEGMENT BREAKS

A segment break arises if, when Nucleus selects a process to run it finds that either the Master
Segment or one of the four current segments of that Process is absent from main store, or if during a LCST or ICB
instruction it is found that the segment involved is absent.

in both cases, the process is placed in the STOPPED state, and a message is formed and sent to a
process to deal with the condition, via a queued buffer. The destination of the message is MSBREAKER if the
Master Seament is absent, or is the BREAKER of the process if one of the Current Segments is absent.

The parameters of the message are:—

PARAMETER A AM — Undefined
AL — SST Number of missing segment
PARAMETER X Break Code
ARAMETER Y rocess Number
. SEGMENT {Current Segments Only) ms of Process, with full Access.

The Break code determines the type of segment involved:—

CODE | TYPE OF SEGMENT

-1 Master Segment Break
9 Current Segment Break

61

7.4 CONTINUATION AFTER ERRORS

" In a number of cases where errors occur, one of the processes in the system is placed in the
STOPPED state. The question arises, can the process in question be meaningfully continued by removing it
from the STOPPED state. The answer depends on whether theRegister Save Area in the Master Segment of the
process contains a consistent record of the resuit of the last instruction obeyed by the process.

Three categories of ‘continuability’ are recognised:—

{a) ‘Directly Continuable’. A process is said to be directly continuable if the instruction being obeyed
at the time of the error trap was completed normally, and the first instruction which would be
obeyed after leaving the STOPPED state would be the instruction foilowing that.

{b) ‘Continuation Possible’. Continuation is possible if the instruction being obeyed at the time of the
trap was aborted before any program registers were changed, but with the S register incremented to
point to the following instruction. It maybe necessary to decrement the S register of the process by 2
before the process is unstopped,so that the erring instruction can be retried.

(c) ‘Not Continuable’. A process is said to be not continuable if its program registers are inconsistent,or
if thic final state of the S register is not simply established.

System Errors

Store Parity Failures (Error Code = 4-7) and Store Timeout errors (Error Code = 8) can occur while
a process is running in all cases; the process is Not Continuable.

Programming Error

The Continuability debends on the error, as defined by the following table:—

CODE MEANING CONTINUABILITY
0 Protection Violation Not Continuable
1 Undefined Instruction Continuation Possible
2 QCOUNT Error Continuation Possible
3 CALL Instruction Error Continuation Possible
4 SEG Instruction Error Continuation Possible
5 CALL I/0 Instruction Error | Continuation Possible
6 EXIT Instruction Directly Continuable
7 SEM Instruction Error Continuation Possible
8 Process Counter Trap Directly Continuable
10 Route Trap Continuation Possible
Segment Breaks

Under all circumstances, a segment break ieaves the process in a directly continuable state.

62

NUCLEUS SUMMARY

This section contains a summary of Nucleus tables and Nucleus instructions referred to in other

sections of this manual.

(a)
(b)
(c)
(d)

(e}

8.1

0 upwards. It may be regarded as a Segment of informat
main store addresses.

Nucleus tables described are:

The System Variable Area (SVA)

The System Segment Table (SST)

The Process Vector (PV)

The Syster;\ Buffer Area (SBA)

The Master Segment for a process.

Three tables of the Master Segment are also described:—
(i) The Current Segment Table (CST)

{ii} The Process Accessible Segment Table (PAST)

(iii) The Route Table

{n addition the various groups of Nucleus instruction are also presented in summary form.

THE SYSTEMS VARIABLE AREA

The Systems Variable Area (SVA) is located at the low addressed end of actual store, from location

ion which unlike all other segments is fixed in absolute

The information in the SVA is accessed normally only by Nucleus, and comprises data items used by
Nucleus to control fundamental aspects of the system, and entries which enable all other information in the system
to be accessed by Nucleus.

Its layout is as given overleaf in Figure 19. The usage of the items in the SVA is described in detail
in other sections of this manual.

63

0
Used by the Process Selector
SCAN to speed up the Selection Process
B30 , See Note D
31
32
PASSMAX Vs See Note A
3 MSBREAKER o See Note B
36
PVBASE . Used to initialise
40 2
SSTBASE - HSR [5: 7] See Note C
a4
SBABASE pox
48
DEVADDR -
50
DATA 51 Input/Output Control Block
$2
INTADDR [0] (10CB)
|
I Used to communicate with
|
10Ps
INTADDR [7} 67
68
QFREE 56
i3 Used to control the
QFREND =
5 Free buffer queue
7
Qc 73
14 / /// ///// 'y 175777777
0 T
Unused
% 15Ty
128
Used to Control Autonomous
WAY 1/0O transfers. Each WCB is 8
CONTROL bytes long.
BLOCKS

Figure 19: THE SVA

NOTES ON FIGURE 19

A

8.2

PASSMAX defines the maximum length of a Priority pass chain. It is used by the Process Selector
to prevent ‘deadly embrace’ conditions stopping the entire system.

MSBREAKER has the format of a DESTINATION viz:—

U T T 1] T L U Y v T T

ENTRY PROCESS

and defines the Process to be alerted if a Segment Break occurs when a Master Segment is being
toaded.

PVBASE, SSTBASE, SBABASE are used to set up Hardware Segment registers which give access
to the PV, SST, and SBA respectively. All have the same format as SST entries (q.v.).

The SCAN bits provide a rapid accessible summary of the STATE information {q.v.). Biti of byte
j refers to process 8xj+i.

THE SYSTEM SEGMENT TABLE

The position and extent of the SST in store is defined by location SSTBASE of the SVA. It contains

one entry for each segment in the system; each entry is 4 bytes long, and the entry for segment N starts at location
4+«N of the SST. Conventionally entries 0, 1, 2, and 3 are used to define the SVA, SST, PV, and SBA respectively.

(a}

(b)

Format of an Entry

The two possible SST entry formats are:—

Segment Present in Main Store

-+ 4

ﬂ.
4

A " i i + 0l i

-GJT

-
-

Segiment starts at byte address 64+B
Size of segment in bytes is 64+(R+1)

Shaded fields may be used by systems software.

Segment Absent

Vit /i
Y777/,

Segment not present in Main Store. Shaded fields may be used by system software.

65

83

THE PROCESS VECTOR -

The Process Vector is a segment whose position and size are defined by location PVBASE of the

SVA. It contains one entry for each process in the system; each entry is 8 bytes iong, and the entry for process
N starts at byte 8+N of the PV,

Format of an Entry

The format of each entry is:—

il STIM '
— A+t
s L ///// A TRANSFER
g 57 B, +—
QCOUNT WAITROUTE
Al F | L4 [¥ QEND | 1 1 l l Al
The fields of the entry are:
STIM - A set of 16 independent bits used to record the presence of fixed messages and

interrupts awaiting processing by this process.
SLA -— Collectively define the STATE of a process, according to the table given below.

TRANSFER — The number of a process to which priority is passed if the process is in the
WAIT/PASS, HELD, or HELD/LAST state.

WAITROUTE — The ENTRY number of the awaited message if the process is in the WAIT state.
In the FREE state it is set to 256,

QCOUNT — At any time defines the number of queued messages that the process can generate.
Decremented by 1 whenever a message is generated by this process, and incremented
by 1 when the message is received by some other process. An error trap occurs if
QCOUNT ever becomes negative.

QEND - A pointer to the queue of incoming messages awaiting processing by this process.
Set to zero if the queue is empty.

States of the Process

The following table indicates how the S, L, A and TRANSFER fields are used to define the state of

the process and, for each state, the corresponding values of the SCAN bit for the process, and WAITROUTE.

66

g | L [=& TRANSFER STATE WAITROUTE| SCAN
of{o0] o = FREE 255 1
oo 1 — RUN = 0
o|lo0]| 2 0 WAIT ENO 1
o|lo]| 2 PNO WAIT/PASS ENO 0
o|l o] 3 PNO HELD - 0
of 1] 3 PNO HELD/LAST - 0
oo 4 READY ENO 0
1| x| x X STOPPED X 1

8.4 THE SYSTEMS BUFFER AREA

The SBA is a segment whose position in store,and size are defined by location SBABASE of the
SBA. The SBA contains a number of buffers which are used by Nucleus in the mechanisation of the Inter-Process
Message system.

Two types of buffer are provided, Fixed buffers and Queued buffers, Both have the same structure,
but are used in different ways. In general, Fixed buffers are located at the low addressed end of the SBA and
Queued buffers at the high addressed end of the SBA. In particular the first buffer {i.e. the buffer starting at location
0) must be a Fixed buffer,

Each buffer is 16 bytes long. Therefore a maximum of 1K buffers can be provided, in a maximum sized
segment.

The format of a buffer is:—

T 7 T i T U o e) A

POINTER

L) (S NI || S N S S S NS T ST T /1]
U e TEaa i e i R I e) o E

SENDER

n 3 § }) Il 4~
o ¥ T ¥

DESTINATION

4
— $ T 4 + ‘I v

SEGMENT

s 3 3 4 2 .
T T T T T T v T

-+

1

+
+
-+

L

+

- PARAMETER A —

-+

" PARAMETER X

PARAMETER Y

A N 1 " " " I 3 1 Il I 1 L

-
-
<

<+

4

The fields of the buffer are used as follows: —

POINTER - For a Fixed buffer it is always zero.
For a Queued buffer it is used as a chain pointer in a queue containing
an address relative to the start of the SBA.

SENDER - Process number of the originator of the message. it is fixed in a fixed
buffer,

DESTINATION — Defines the ENTRY and Process number of the destination of the message.
It is fixed in a fixed buffer.

SEGMENT - If a segment is sent with the message it contains a copy of a CST entry in
the same formatbut with the M (and possibly also the Wand T blts)
forced to zero. |f a segment is not sent, it contains zero. :

PARAMETERS A XY — Parameters of the message, copied from the registers of the originating
process.

8.5 THE MASTER SEGMENT

Each process in the system is provided with a special segment, called a Master Segment. The Master
Segment contains information to enable Nucleus to control the operation of the Process. The position and size of the

Master Segment for process N is determined by entry N + 4 of the SST.

The information in the Master Segment is accessed normally only by Nucleus while the process is in
control of the processor. It is necessary, however, for privileged systems processes to be able to access the Master
Segments of other processes on occasions. A process is not normally given access to its own Master Segment.

67

The layout of the Master Segment for a prbcess is given in Figure 20. The usage of the various items
in the Master Segment are described in detail in other sections of this Manual.

. CODESEG PNO 1 See Note A
: PPCOUNT s See Note B
4 CST(0]
T)
i CST. Contains 4
i two byte entries
"
CSTI[3] =
12 S
L
BM
BL Register Save Area.
Registers stored here whenever
AM Process is not in control of
AL the processor.
X
Y
V4
E C 31
- PASTPTR -
— Defines start and extent of the PAST
= PASTMAX s
o OWNER
37 Define processes which deal with errors
8 BREAKER 5o and segment breaks. See Note C.
40
Each entry occupies 4 bytes.
ROUTE See Note D. '
TABLE
PASTPTRA
PASTPTR
PAST. Each entry occupies 4 bytes
PAST See Note E.
PASTPTR+
. 2+PASTMAX~1
. PASTPTR |
o AUXILIARY AREA
SEGEND
Figure 20: THE MASTER SEGMENT

68

NOTES ON FIGURE 20

A CODESEG is the PAST number of the segment currently in use as CST[3]. It is used to mechanise
the Inter Chapter Branch instruction.
B PPCOUNT is a count of the number of instructions which may be obeyed by the process. Each time

an instruction is obeyed, PPCOUNT is decremented by 1. When it goes negative an error trap is taken
and the process placed in the stopped state. Facilities are available to disable the effect of this
mechanism.

C OWNER has the format of a DESTINATION. It defines the process to which a message shotld be
sent if a process error trap occurs. BREAKER also has the format of a DESTINATION, and defines
the process to which a message is sent if a Segment Break occurs.

PASTPTR

D The Route table is definedin detail later. The table contains -10 entries, each of 4 bytes.

E The PAST is described in detail later. It contains PASTMAX entries each of 2 bytes. The format of
PAST and CST entries is identical.

F The Auxiliary area extends from location PASTPTR +2+*PASTMAX to the end of the Master Segment.
It is available for use by system software,

=
=N

N A
The PAST contains one 2 byte eniry for each segment which may be accessed by a process. The CST
contains copies of the PAST entries of the four segments currently in use by a process. CODESEG contains the PAST

number of the segment currently in use on CST[3].

The formats of PAST and CST entries are identical:—

0 1 2 3 4 5§ 15
RWI|T s?nﬁi SEGNO
/24 g g A

R — Set if read permitted from segment
1YY} Sn-o. £ wldn iedndd o +
- - TL I Wil porinn eu v QG&IIICI!L

T — Set if 1/O transfers may be performed to segment

S — Set if Segment may be sent with an Inter-Process message

=<
|
=
o
-
A
@
=X
T
-
C.
173
@
=5
o
~!
v
~
v
-t
(_D
(743
<

SEGNO is the number of the segment in the SST.
8.7 THE ROUTE TABLE

The route table defines the possible destinations for inter-process and {/0 messages generated by the
process. One four byte entry is used for each possible destination.

Seven different types of route are provided, gach with a different format of route table entry. The
type (and therefore format) of the route are defined by Flag bits contained in the first byte of the entry.

69

70

(a)

(b)

{c)

(d)

Inter-Process Routes
Four types of inter-process route are provided:—
Queued Out — Queued In

FLAGS

ooolvfooooooooo0o000

Il
T T

DE__S iNATION
Queued Out — Fixed In
00 1}V INBUFF
o ' DESTINATION

Fixed Out — Queued In

0 10|]vVi00OOOO0OO0OO0COOOCGO
3 (UCST CPRPI IR S RS (O I [SO | PR

L] ¥ ¥ 1 v] ¥

OUTBUFF
Fixed Out — Fixed In
01 1|V INBUFF
OUTBUFF

Where in the above:—
V is 1 if a segment is to accompany the message, and is O otherwise.

INBUFF is the address of the fixed buffer holding an incoming message. It is a byte
address right shifted 4 places.

OUTBUFF is the address of a fixed buffer to be used to hold an outgoing message. It is
a byte address.

DESTINATION has the standard format of a destination, viz:—_

0 7 8 15

ENTRY PROCESS

Where PROCESS is the Number of the process to which a queued message is to be sent

ENTRY is the incoming entry number by means of which the destination process
recognises the source of the message.

Programmed 1/0 Route

FLAGS

—7 : :
1.1 0[/10| CHAN WAYBASE
00000O0O0O| WAYRANGE

The shaded bit can take either value, but is conventionally zero.
CHAN is the number of an 0P in the system.

WAYBASE is a Way number which may b_e indexed by register X.
WAYRANGE is the maximum value of the Is byte of X.
Autonomous 1/0 Route

The format of the entry is

T T V L) T L] v 1 ¥ T L) T
111 A 0 CHA!\I o !NAJY o
R

e
-

[ns
L >
o
S)

The shaded bit can take either value. Conventionally it is zero.
CHAN is defined as above.

WAY is the Way number of the autonomous device.

WCBADDR is the address of the WCB to be used for the transfer.
Break to Owner

An attempt to send a message over a route whose entry has the format below causes an error to be

sent to the OWNER of the process, and the process is placed in the STOPPED state.

8.8

IIYII T IRT T T] T]70 T AT T T 777 7 7 T

minniiinmiiimy
///

SIZE LIMITATION OF NUCLEUS

Maximum Number of Processes 256
Maximum Number of Segments {in total) 2K
Maximum Number of buffers 1K
Magimum Number of IOPs 8 (inc. BMC)
Maximum Number of Ways per 10P 256
Maximum Number of Segments/Process 255

71

8.9 INSTRUCTION SUMMARY

This section summarises Nucleus instructions which have been introduced in the previous sections.
in each case the hexadecimal code of the instruction is given together with a Mnemonic, a brief description of its
effect, and notes concerning relevant hardware registers.

Inter Process Message (Section 3)

HEX [MNEMONIC EFFECT _ REGISTERS
1000 EXIT Send Exit message to owner -

102Q STAT Change state as defined by Q Z = Route Number
104Q RSEN Send Message {Segment with Restricted Access) | Z = Route Number
106Q SEND Send Message {Segment with same Access) Z = Route Number

Where Z defines an Inter Process Route

Where Q=0 Next state:— FREE

RUN

WAIT/PASS

WAIT

FREE (Conditional)
WAIT (Conditional)

NAWN =

Programmed 1/0 (Section 4)

HEX | MNEMONIC EFFECT REGISTERS
1080 PIN Perform Programmed Input Z = Route Number
10C0O POUT Perform Programmed Output Z= Route Number

Where Z defines a Programmed 1/0 route.

Autonomous 1/0 (Section 4)

HEX | MNEMONIC EFFECT REGISTERS

1080 RWCB Read WCB Status Z = Route Number
10A0 LWCB Load WCB Z = Route Number
10C0 TRIP Command Transfer) Z = Route Number
10E0 LWT Load WCB, Command Transfer . Z = Route Number

Where Z defines an Autonomous {/O Route.

Inter Chapter Branches (Section 2)

HEX | MNEMONIC EFFECT REGISTERS

1100 ICBR Inter Chapter Branch Z = Ptr. to Chapter
Descriptor

1120 ICBL Inter Chapter Branch and Link Z = Ptr. to Chapter
Descriptor

Segment Manipulation (Sectioﬁ 2)

HEX | MNEMONIC EFFECT REGISTERS
130Q LCST Load CST from PAST X = PAST Number
132Q CLCS Load CST from PAST (Conditional) X = PAST Number
134Q SCST Store CST in PAST X = PAST Number
1360 LHSR { oad Hardware Segment Registers -

Where Q = 0:3 defines a CST entry.

Semaphore Manipulation(Section 5)
HEX | MNEMONIC EFFECT REGISTERS
1400 REL Release Semaphore Z = Ptr. to Semaphore
1420 CCLM Claim Semaphore (Conditionally) Z = Ptr. to Semaphore
1440 CLM Claim Semaphore Z = Ptr. to Semaphore

73

