
-,,

A REVIEW OF PROGRAM PORT ABILITY AND

FORTRAN CONVENTIO.;:-..JS

by

D. T. Muxworthy

(University of Edinburgh)

-

PREFACE

This document was prepared unde r contract 625-76 -06 SISPE at
EUROCOPI, Euratom, Ispra , The author wishes to express his
thanks to H. J. Helms and G. Gaggero of Euratom for providing
all possible facilities and help and to Mrs. M.M. Barritt, Program
Library Unit, University of Edinburgh for making time available to
him. Thanks are also offered to members of ECSIR Working Group 4,
especially J. D. Bevari, B. Ford, G. Gaggero, O. Murro and M. Surid,
for supplying papers and suggesting areas of investigation, and to
Mrs. A. Dorperna of Euratom for her extraordinarily quick and
accurate typing of an indifferent manusc r ipt,

David T. Muxworthy
4 August, 1976

...

CONTENTS

INTRODUCTION

1. FORTRAN STANDARDS

1.1 Summary

1.2 Current Fortran Standards

1.3 Pre -standard Fortran

1. 4 Sc ope of the Standa rds

1.5 Interpretations of the Standards

1.6 Comparisons of Implementa.tion s and Standards

1.7 Discussion

1. 7. 1 Relating to the Scope

1.7.2 Folk-lore

1.7. 3 Observance of the Standard

1-1

1-1

1-2

1-3

1-3

1-4

1-5

1-5

1-7

1-7

1-7

1-9

1-9

1-9

1.8 The Draft Proposed Standard for Fortran (1976)

1.9 Discussion of the Draft Standard

1.9. 1 Development Phase

1• 9. 2 Cont ent

2. PORTABILITY

2.1 Surnrnary

2.2 Scope of Portable Software

2.3 The Trend Towards Fortran

2.4 Programming Practice in Fortran

2. 5 Literature. of Portability

2. 5. 1 Gene ra l Papers

2. 5.2 More Specialized Papers

2. 5.3 A Caution

2.6 Approaches to Portability

2.6. 1 Introduction

2.6.2 Improved Programming Practice

2 -1·

2-1

2 -1

2-2

2 -3

2-3

2-5

2 -6

2 -6

2 -6

2-7

. ..

-
Contents (contd,)

2.6.2. 1 Introduction

2.6.2.2 The Present Fortran Context

2.6.2.3 Structur ed Programming in Fortran

2.6. 3Defining the Environment

2. 6. 3. 1 Introduction

2. 6. 3.2 Environmental Enquiries

2.6. 3.3 Parallel Facilities

_-
2.6.4 Software Tools for Fortran Programs

2.6.4. 1 Introduction

2.6.4.2 Syntax and Other Checkers

2.6.4.3 Analyzers

2.6.4.4 Preprocessors

2. 6.4.4. 1 Introduction

2.6.4.4.2 Miscellaneous Preproces­
sors

2.6.4.4.3 Macroprocessors

2.6.4.4.4 Structured Fortran Pre­
processors

2.6.4. 5 Debugging Aids

2.6.4.6 Documentation Aids

2.6.4. 7 Extensions to Fortran

2.6.4.8 Translators

2.6.4.9 Compiler Testers

2. 7 Multimachine Software and Distribution

2.7. 1 Introduction

2.7.2 Software Distribution

2.7.3 Master Source Files

2.8 Discussion

2.9 Conclusion

2-7

2-8

2-10

2-12

2-12

2-13

2--13

2 -14

2-14

2 -14

2-15

2-16

2-16

2-16

2:"17

2-17

2:"19

2-19

2-21

2-22

2:"23

2-24

2:"24

2:"24

2-25

2-28

-
Contents (contd.)

3. PROGRAM DOCUMENTATION

Page

3. 1 Overview of Documentation Paradigms

3.2 D'is cu.s s ion

'3--1

3 -1

References

. Appendix A: Structured Fortran Preproces so r s

Appendix B: Software Tools

. -.~

INTRODUCTION

This report is intended to playa dual role. Firstly it is a review of
Fortran Standards and of publications and practices relating to por­
tability of programs and as such it is hoped that it will be of interest
in its own right. Secondly it is intended to act as a discussion docu­
ment for Working Group 4 of ECSIR (~uropean gonsortium for e,oft­
ware acces sand !_niormation transfe r in B-esearch and teaching),
whose remit is to investigate programming practices and conventions
to ease the exchange of programs.

The two main sections on Fortran Standards and portability each have
a short introduction outlining the areas they cover. A projected third
section, on docurnentation standards, was abandoned when it was found
that only a small proportio-n of the r e levant lite rature was to hand; a
summary of publications remains.

. ..

-
1-1

1. FORTRAN STANDARDS

1.1 Summary

This section relates the current Fortran Standards to the circumstances
in which they were drawn up. It reviews publications about the Standards,
both interpretations and comparisons with implementations, and des­
cribes those areas which have given particular problems. It also dis-
.cus ses observance of the Standards by impl.emento r s and by users.
Finally, the revised proposed Standard of 1976 is, outlined and discussed.,

I
A distinction is drawn between those who design and implement Fortran
compilers and those who use Fortran as a programming language, the
groups being designated by the terms llcornpiler w r iter s " and llprogram­
rner s " respectively.

These terms are used for convenience only and no pejorative implications
are intended.f

f

I
l

1.2 Current Fortran Standards

,
:i

A number of standards for Fortran exist; they follow an almost identical
pattern and differ mainly in the level of language facilities incorporated.
The most important one, and the one which is usually meant in the absence
of any further designation, is the American National Standard for Fortran
(ANSI, 1966a) as qualified by two sets of clarifications (USASIX3, 1969
and ANSI X3J3, 1971). A standard with fewer facilities, known as Basic
Fortran, was drawn up concurrently by the same c orn rni.ttee and was ap­
proved at the same time (ANSI, 1966b). Meanwhile the Fortran commit­
tee of the Eu r-opean Com.puter Manufacturers" Association, working in col­
laboration with the then Ame rican Standards As soc ia.ti.ori, devis ed a stan­
dard midway in facilities between the two American ones (ECMA, 1965).
Essentially thes e three standards, with insignificant word changes, were
adopted in 1972 by the Inte i-na tional Organization for Standardization as an
ISO Re corn rncnda.t.ionfor Fortran (ISO, 1972) with three levels numbered
simply 1, 2 and 3 corresponding respectively to ANSI Fortran, ECMA
Fortran and ANSI Basic Fortran. A note on the changes of name of the
American Standards body, from ASA to USASIto ANSI, and further refe­
rences are given by Muxworthy (1972a).

"I
I

I
I
I
I
I
'I
II
II

I

At the time of publication of the standards the compiler writers for several
computers, particula rly European ones, appeared to have diffi cul ty in ful­
filling their requi r ernents and a number of compilers for second generation
machines were issued which were markedly substandard. However, advan­
ces in hardware and software techniques have all but made the lower two
levels of standard redundant. In practice the ISO work was a mere formality
and the American Standards have been de£acto interna.tional ones since 1966,
or even since two years earlier when a draft was published in CACM (ASA,
1964).

, ..

1 -2

Under the rules of ANSI a standard, once approved, laps es afte r five
years, unless it is reaffirmed Or unles s notice is given that work is
in progress to revise it. The Fortran standard was thus due to lapse
in 1971 and work began in 1970 to prepare a revision with the expecta­
tion that it would take about two years. The draft proposed (revised)
Standard for Fortran appeared for public review only in March 1976 ,
(ANSISubcommittee X3 J3, 1976) and as yet has not been approved as
a standard. This document is considered in more detail below (section
1. 8).

1.3 Pre -Standard Fortran

It is us eful to cons ide r briefly the background against which the first
standards were drafted. A preliminary specification for Fortran was
issued by IBM in 1954, a manual appeared in 1956 and the first software
was released for the IBM 704 in 1957. This was succeeded in 1958 by
Fortran II which incorporated the subroutine concept together with the
common block. By 1961 IBM had 8 different compilers on various sys­
tems and already differences in dialects had become such a problem that
IBM'is sued a manual contrasting the facilities available in the 8 compile r s ,
The first Fortran system on a non-IBM machine had appeared in 1960;
this was ALTAC on the Philco 2000 which was an extended Fortran II.
The £irst system called Fortran on a non.-IBM rnachine was Fortran I on
the Univac SS 80 in 1961 and by 1963 all major manufacturers had either
implemented or announced Fortran for their computers. The following
year Oswald (1964) was able to state, in his overview of 16 Fortran sys­
tems' that 43 compilers existed in all.

Also during the early nineteen-sixties the SHARE organization and IBM
designed a revised Fortran, known as Fortran IV, which had significant­
ly more facilities than Fortran II and was similar in concept but which
VIasnot fully compatible with the earlier language;Fortran III existed
within IBM but was never released. Fortran IV software first appeared
on the IBM 7030 during the summer of 1962 and was followed within the'
year by systems for the IBM 7090/94 and the Univac 1107.

The ASA Fortran committee met for the first time in May 1.962with the
chief objective of producing a standard which would facilitate the machine­
to-machine transfer of 'programs; the standard was to be a reference do­
cument both for programme r s and implementors (Heis ing, 1964). The
bulk of their work was completed inside 18 months and, being concerned
with language growth, they standardized on Fortran IV rather than For­
tran II. Basic Fortran was designed to be comparable in power with
Fortran II but to be a subs et of full Fortran. Although it is often des cribed
as a proper subset of Fortran, it is not the case that a program written
in Basic Fortran will necessarily produce the same results when run on a
full Fortran processor; this is because of differences in the lists of sup­
plied functions. Experience with the Standards in practice is discussed

...

-
1-3

below (section 1. 7).

More detailed histories of language developments during these years
are given by Bemer (1969) and Sammett (1969). Bemer in tracing the
relative positions of Algol and Fortran in the USAand in Europe is es­
pecially inte resting. In 1960 for example it was thought in the US that
Fortran would shortly be eclipsed by Algol; in 1961 Bemer himself, then
with IBM, was quoted as saying that Fortran had served its purpose and
was to be deleted by IBM; as late as 1965 it was possible for the head of
a well-known European software house to state that as there was no vested
interest in Fortran in Europe, the superiority and availability of Algol
would ensure that Europe would favour that language. Sanders and Fitz­
patrick (1963), in an analysis which is still valid, show why they were
wrong. Both Berner and Samm.ett give a multitude of references.

1•4 Scope of the Standa rds

The Standards specify the syntax and semantics for a set of statements
and the form of input and output data. They do not attempt to be exhaus­
tive and they explicitly avoid defining the mechanism by which programs
are transformed for use on a data processing system, the method of trans­
c ription of programs and input and output data, the results when the rules
for interpretation fail, the maximum size Or complexity of a program and
the range and precision of numerical quantities. Further, they describe
themselves as permissive; that is that "prohibited" implies "undefined",
that it is open to any Fortran pro ces sor to define that which the standard
leaves undefined and for any Fortran proces~or to be described as stan­
dard-conforming provided it will process the standard language as a sub­
set.

The standard Iangua'ge is thus both a lower"limit for a compiler' writer and
an upper limit for a program writer.

1. 5 Inte rpretations of the Standard

It was a common co~plaint that the Algol Revised Report was incompre­
hensible to the average programmer and Rabinowitz (1962) was prompted
to reply with Fortran II in Backus Normal Form. The Fortran Standards,
although written in English with little symbolism, are also cryptic docu­
ments and may not easily be referenced by the uninitiated. Although some
compilers and a few manufacturers" manuals (the IBM rnanual is excellent
in this respect) indicate which facilities do Or do not syntactically conform
to the Standard, in general it is not easy for the average prograrnmc r to
determine exactly what the provisions of the Standard are. The (British)
National Computing Centre (1972a) therefore produced a manual which was
intended to fulfil this function. Despite a number of flaws (see reviews), it
has proved useful. Larmouth (1973) has given a less comprehensive but
more sympathetic interpretation of the Standard.

-..."...,...._.~-~_..,. tv" ••.......+ _~..,..,. __ ~_ .•"...,.....,••. ""..,_..,..,.,

1-4

A number of Fortran "standards" based on the wording and paragraph
numbering of the American standards have appeared, usually for pri­
vate use within commercial companies. Typically they describe the
common subset of Fortran dialects in use on computers owned by the
companies and are a superset of the Standard proper. A similar docu­
ment by Friedrich (1975) for the DVM(Datenverarbeitung in del' Medi­
zin) Project in Germany serves the dual purpose of providing a Ger­
man language version of the American standard and defining a recom­
mendation for use within the Project.

1.6 Comparisons of Implementations and Standards

'-I It was noted in section 1.3 that by 1961 IBM saw a need to publish a
tabular overview of the facilities offered by their 8 compilers. More
wide ranging comparisons were made by Oswald (1964; 16 compile rs),
McCracken (1965; 27 compilers and the draft Standards) and Wright
(1966; 5 compilers). As experience with the Standard and with compilers
grew and more subtle differences became apparent, these rather simplis­
tic comparisons were joined by papers which gave more detail than an
indication of the presence or absence of a facility. Schofield (1968) pu­
blished a comparison of 12 compilers with the Standard in tabular form
and the following year Stuart (1969) included as an appendix in a text
book a massive table covering over 70 compile r s , Berkowitz (197.0)com­
pared six compilers with the Standard in a reference list format and Mux­
worthy and Shearing (1970) also described six compilers in a form designed
to be readable. Similar work is still in progress at Euratom, Ispr a
(G. Prinzivalli) and at CSATA, Bari (0. Mur ro, for minicomputers).

I
I­
I
I1-,
I
I­
I! .__
i

It is an indication of the diversification of Fortran dialects that amongst
the 6 systems considered by Muxworthy and Shearing (CDC 6000, Honey­
well 200, IBM 360, ICL 1900, :!:CLSystem 4, Univac 1108), the only For­
tran statement found to be implemented without any extensions or contrac­
tions whatever vis -a-vis the Standard was the unconditional GOTO.
Not even the CONTINUEstatement qualified for this des cription. All the
systems were non-standard, some more seriously than others, in the
sense that it was possible to write a simple standard-conforming program
which would not be processed in the prescribed manner on that system.

I-
I
I

In general. new features had been implemented in a similar manner although
a single function sorn.et.irnes had been achieved with statements of quite
different syntax. A potentially much rnore troublesome matter for the
transfer of programs was that extensions had been made in which a par­
ticular syntax had a different meaning on different systems (e.g. ENTRY,
alternate RETURN).

Schofield"'s paper also showed that apparently trivial extensions, intro­
duced without care, can bring ambiguities into Fortran. For example in
one of the systems he conside r s, the statement

1"-
I

,'-- ...

-
1-5

10 FORMAT(X9H) = FMT(X9H)

~

I
could be a FORMAT stateme~t, a statement function definition, or an
assignment statement. Despite the ad-hoc nature of the Fortran Standard,
ambiguity has been succes sfully avoided.

1.7 Discussion

1.7. 1 ~~Ic:~i~.?_~~!~~_S_c_~I?e_
The publication of the Standard did much to remove some of the differen­
ces between the systems of the mid-sixties; in 1964-66 there was consi­
derable activity in upgrading existing systems (d. McCracken, 1965) and
many programmers were no doubt surprised that their supplier had gone
to the trouble of implementing, say the G format code and is suing manual
update pages when they had managed quite well without the feature and
could see no neces sity for it. But the Standard did give a firme r base, as
was intended, for writing machine independent Fortran programs.

r
I The Standard has frequently been criticized for its permissiveness but it

is difficult to see what other course the committee could have taken. This
was the first time that a language had been standardized and the commit­
tee were working at a time when a number of differing systems were al­
ready e-stablished and a larger number were still being developed. This
contrasts with the case of Algol where although some systems existed, on
the whole the design was published before the compilers were released
and there was no entrenched body of users to satisfy; even so Algol pro­
grams have proved to be no more transportable than Fortran ones, and
for similar reasons (cf. Brown et al., 1971). The Fortran Standards per­
missiveness" has deliberately allowed implementors to add completely new
statements, to extend existing ones and to provide interpretations for situa­
tions which are !!undefined!!or !!prohibited!! according to the Standard. In
general the programmer is given little indication by the compiler software
or documentation as to whether his program is standard-conforming and
the onus is usually on the programmer to ensure that it is. Most compilers
are concerned only to process their dialect of Fortran and often they make
few checks, if any, at execution time on whethe r the rules of the Standard
or even those of the dialect are being observed. For example it is the ex­
ception rather than the rule to be able to check if array bounds are exceed­
ed or if variables to which no values have been assigned are being used
for computation.

While it is relatively easy to check the syntax of a program for standard­
conformity at compilation time, it may however be impractical to check
a program throughout its execution. The kind of checks mentioned above
increase program sizes and running times dramatically and more subtle
violations, such as the use of functions with side-effects, require the kind
of scrutiny that incurs unacceptably high overheads in production systems.

. ..

1-6

I~ The separable compilation of subroutines is One of Fortran"'s great
strengths but it makes for .difficulties in checking for consistency be­
tween subroutines. It would appear to be impractical to ensure mecha­
nically that a given program, whatever data are supplied, will always
conform to the standard. Even such a basic statement as A :::B + C is
non-standard if it causes overflow and even A :::B can overflow if B is
unnormalized and normalizing it causes overflow.

The standards committee excluded the range and precision of numerical
quantities from the scope of the standard and implementors have natu­
rally used the values which are most suitable for their hardware. No
language has yet solved the problems of defining numerical range and pre­
cision satisfactorily and the problems of the various types of floating-point
arithmetic available have hardly been discussed in the context of highl­
level programming languages. Again, the onus is on the programmer to
ensure that the system on which an algorithm is processed is adequate for
its needs. In practice surprisingly little use is rna.de of environmental
constants (Naur, 1967) or of self-checking programming techniques.

Nevertheless Fortran is put to many uses other than numerical computa­
tion and in a considerable proportion of Fortran routines this is not a pro­
blem. Possibly a greater hindrance to the transferability of programs be­
tween systems is the variation in the number of alphanumeric characters
stored in a storage unit and the different v.•·ays in which characters are
handled in Fortran. This applies particularly to more modern programs
with user-oriented control statements. Given the lack of character-string
handling in the Standard, programmers have developed different conven­
tions for coping with characters and two es sentially machine -dependent

. .
attributes, the number of characters per word and the internal value of
the characters,are often assumed and their use may be deeply' embedded
in the coding.

,
.A further omission from the scope was the rules for interpretation when
a condition was violated , In some circumstances, such as- the index of a
computed GOTO being out of range, it could be argued that a program
should be terminated but such a rule would clearly be inappropriate to
the evaluation of a mixed-mode expression which a compiler supported
but which was invalid according to the Standard. Again, the Standards
Committee took the most sensible, and most general course, but it is one
which has not satisfied everyone.

I
1-

Finally, the ornission of size limits for a program is inevitable and Is
common to most languages because so many factors relating to the pro­
cessor and the operating environment are involved. Since it is not good
practice to write massive subprograms few difficulties occur at compila­
tion time but there are inevitably some problems at execution time with
systems with small storage areas or with poor overlay systems.

1
I
1"-':

. '-- ...

-
1-7

1.7.2 Folk-lore

I
Il

At a time when the IBM 7090 implementation was dominant, a number
of conventions which were outside the Standard and were rarely documen­
ted, came to be implemented and assumed by programmers, both on IBM
and on other systems. These included such things as the retention of local
values in subroutines on execution of a RETURN statement, the use of 1
for the right-most dimension of an array passed as an argument to a sub­
routine, the ability to distinguish a blank and a punched ze ro data input,
. field by using the SIGNfunction and the copying and comparison of charac-
ters in arithmatic and logical variables. Many of these are still assumed
by most programs and programmers and Bock (1975) makes the excellent
point that compiler writers who observe the letter of the Standard, but
who are unaware of common practice may produce cornpi.ler s of no use
whatever for portability purposes.

1.7.3 Observance of the Standard

As discussed in section 1.6, observance of the Standard nowadays by com­
piler writers is on the whole good. The author is not aware of any com­
piler which complies fully with the Standard but usually the differences
are so small it is difficult to understand why they should exist. The compi­
lers which cause problems are not those which deliberately ignore the Stan­
dard, if. indeed there are any such, but those which adhere to the written,
but not to the unwritten rules of Fortran.

Observance of the Standard by programmers is unusual for the reasons
given above. There is even an unfortunate tendency for programrners to
think that because they are using a compiler which is stated to be stan­
dard-conforming that they are r.ecessarily writing in standard code.
It may be argued that it is good discipline to keep to standards but it is
only necessary when a program is required to be run on more than one
processor and even then, if the prograulmer knows which processors are
involved he may be able to use the common subset of statements which
are available on most large systems. These include such things as mixed
mode expressions, ENTRY,. IMPLICIT and direct-access input and output.
A surnrnary of common extensions is given by Muxworthy (1970). Most of
these extensions are to be found in the draft proposed Standard of 1976
which implies that they were considered to have met the needs of users
and to be in the Fortran style.

I
I
I

1

I
1.8 The Draft Proposed Standard for Fortran (1976)

In revising the Fortran Standard the Fortran Committee of ANSI, X3J3,
have used the following criteria in deciding on changes:

- interchangeability of programs between processors,
- compatibility with existing practice and with existing standards,
- consistency and simplicity for users,

-
- .

i -_~

1-

- efficiency of operation,
- allowance for future growth._

They have again produced two lan_gu.~gqlevels , a..f.~~~~and C:\:. subset Ievel ,
The latter was originally intended t.~b.~ cornpana hle i.I!. P9\Y~~ to. the ISO
intermediate level, but it coritains ~~g~~fic:aD:~addit.ions; ~t~x.~§t~59 that
smaller computers may irrrplement rriuch of the new Standar.d with,g1-1t

• -.. - - • ",. - - - - -- ~ - _,,_ •••• '_., ••.••• • _ ••••• __ ••• '" I,. ••.•_ .' •••

carrying the overhead necessary ~()<2()p~.w it.h all ~h:~§~"l:t~~el?:t~~'I'he
following description refers mainly tp the highe r; !ey-e~.

. _.J __ .. t.,.;:: .•• 1,.-., I'_,!.,

The committee"s insistence on maint<a:~n~~gve!=¥high C:0~~p9::EI?i.Htywit.h
the 1966 Standard in the sense that ~ pr()gra~ v:-l:~~l:c:<.?r:~8~~§to th§ gld
Standard should conform to the I1~w 9~@r -ha§ ~!8n.~ a~~~e.¥~9:~§ ~!3th@ com­
mittee"'s work and means that the essentials of Fortran are retained,'- In

• • •••. - •• - - •• - •• - - •. - - '- - •. - - __ _.,; •••• .' - OJ ,_, .~

particular the re is no change to the ~~Y911!of ~!~!~~~n.!§ t !9 ~h~aHggg,tion
of data storage or to the st ruc tu r ing 9~ ~o~el ~!~?9ugl~t?~!~ ~.;;a: PQ§§:i,bility
that the selection mechanism (Jf:-T~l?~:-~~~§) !?~/ia:PP~~t~!tth~ firral
Standard. . _.

I
I
-I

r

The most notable incompatibility with 1966 Standa r.d i$ the ornis st9!'}©f
.. _.... _ t_ _..... _ .. _ _ _, __ - ~~ -

type Hollerith (characters s to r ed ~_~!.9,~}.s?~_~~~~!~" ~~E:) §.Hh9~~h it
seems likely that processors wi ll corrti.nue to _~.<?C::-~P~~9~~~!~!h-§i a ¥.~~9m­
rnenda tion for the form of their ~_r:np_I~~~~1:~a~9p.~§ ~_J?-!_l;.~~p~.ft:Qth~Hin­
compatibilities are relatively trivial and are listed in sec.td.on19 9! th.§ do-• .~ .•• _. • _ " __ .:> t,.. ••••••.••••~ • __ oJ •••.••••\.. .••_ -'__ ,

,
I
I

I !~I
I
!
"

cument.

I I
I-I

I

I
I

'-.,,1
1,
,

The draft incorporates many of ~h~ cornrnoril.y .~_l~!.?~.l?-~~.~~.~t~nsigg.§ such
as 7-dimensional: arrays, rnixe d= rnode expr es s.ioris g~p~.r~J~~~d~'lf!;>§<;;r ipts ,
direct-access file-handling, f r eevforrna.t ·inp~:t_-.outpu~,.<:tl..t~.:r_n~teF~t'l4¥fiS,
ENTRY and IMPLICIT, but not necessarjly with ~x..i$ting synta.x, It 9-!§O
includes some well-established ext e.n.sions whi.ch a_re not ?:n .~1?-~maj,§lrity
of systems, such.a s the PARAM_ET~_Rst?-te~.;~~lt~~,-d_~J:l~"~.~.:r9.,.t¥ipDO­
loop", and some exte ns i.oris which a_r_enotin_g_~ne_~?-_l_lya.vai.Ia.ble sy stems ,
such as the SAVE statement, giv~n_g-A~ lI;OW!l~v-f-_~~.?-?tF~'~~~d1':9\:V_:r:t ,~,9fflm{m
block" facility and several new ~n-p~t-;-9~tp.llt~~_d.::f_p:~:.~t:~~,-c:.~l~iH~.§,'fh§ prin­
cipal single extension is type C~A~~.9_T-~Rwl:~c:?',;s_,o.~_r .{l]> iEl10~i§9-Uy
possible, has all the att r ibute s pf_il.?"~~~~r~?_<ia.:!;_av~Y'p::e.. J:hF .:.sY_IlJ:§._:l:Cj§ new
and has been designed by the st~nci!'\~.4s=c'0n:1.nl.~~~~~,_'.~~s-;e_fl:9:Il'~h_~t 9f §~i8t­
ing implementations. Cha ra ct er s a roe.sto.red in "_c?-.aract;;e_r.sto ra ge '®.it~"
and arithmetic and logical entit ie s In I~~~o.rag_e~~~sJl 'Cl:~l~' .to ~~lJ.:lP~·0-Y,~
machine independence, great c.a:r_eha s .b8:en take,n to kee.pthe s e separe.te ,
For example common blocks may _c:.o._~~_~~!l:Ch~l~~<:!e_.r-v?-_x.~?-.:.~l~..sor arHbme­
tic and logical variables but not both, cha ra cte.r s .!??-y be _eq-qivale_ns:~d.only
to characters and so on. Unfo r tunat eIy .fhis sepa.xarion ~~P ~b_ro.k~!fQ.9Wl'). in
one place in that the length of an unfo ernat ted :?~J;:,~~t_-ca_c=s~s.:;s_~~l~:r~<;:91'dis
measured in non •.character storage units and charactcrs may be written
to such a record. In this case it may be necessary .for thc program_mer to

I..__

-
1-9

know how many character storage units correspond to one non-charac­
ter storage unit.

In general the language has been made more regular. Where before a
variable was required an expres sion is now allowed and where an arith­
metic entity of a particular type was required, an integer, real or double
precision is allowed. The only major available extensions which are not
in the propo sa.Pa r e varying length data types (INTEGER±2 etc.), NAME­
LIST and DOUBLE FRECISIONCOMPLEX.

A fuller summary of the draft Standard is given by Muxworthy (1976) and
a more comprehensive one by Meissner (1976a).

1. 9 Discussion of the Draft Standard

1.9.1 Development Phase

It was as surned at first, that is in 1970, that -the revision of the standard
would simply formalize Some of then existing extensions. This cautious
approach is reflected in the recommendations of a Working Party of the
British Computing Society Fortran Specialist Group (197la) to the Ameri­
can Standard Fortran Committee. When it was found that X3J3 had already
approved in principle uncommon extensions like type CHARACTER and
multiple assignment statements and was considering such unlikely propo­
sals as dynamic storage allocation and a negative logical unit numbe r im­
plying backwards input-output, the reaction was one of pleasant surprise
and the subsequent BCS report (1971b) was much more libe ral. The latter
two proposals were of course rejected and multiple assignment statements
were subsequently removed. During the course of the revision a number
of proposals were accepted which were later rejected, one of the rnost
notable being array cross -sections and array arithmetic. Substantial
changes, in some cases on several occasions, were rnade to the syntax
of other new statements, especially the CHARACTER statements.

Throughout the development phase close contact was maintained between
X3J3 and the Fortran Committee of ECMA and the BCS Fortran Group.
Apart from the Boston Fortran Group there does not appear to have been
a similar interest group in North Arnerica, despite attempts to gene rate
discussion like those of Thorlin (1972) and Engel (1974), until the forma­
tion in 1975 of the Ad-Hoc Committee on Fortran Development which later
came under the aegis of ACM-SIGPLAN. This committee"'s bimonthly news­
letter FOR~'W,;()RDhas carried a continuing discussion of X3J3 develop­
ments as has that of the BCS Group throughout the six years.

1.9.2 Content

The scope of attributes defined by the draft Standard is unchanged from
that of the 1966 Standard. Neve rthe1es s the proposals should have a bene-

. .•

I I1- I
I .
I :I ':1-,, II~I

I '
1- iI !
I i
I
1-

,-
I

I,
J'--
I

I!
i ,,-­
·1l~.

1-10

ficial effect on the transferability of programs firstly because the
increase of regularity, the general easing of restrictions and the various
new facilities will make programs easier to write and should eliminate
some of the present diffe rences between implementations, arid secondly
because one of the main obstacles to transferability, the difference in the
numbers of characters per word, may be made irrelevant in the rnajority .
of programs by the use of type CHARACTER.

Some transferability problems may remain with type CHARACTER be­
cause no minimum upper limit on the length of strings has been defined,
leaving it possible for implementors to allow only single character strings,
but it is more likely that problems could arise because no complete colla­
ting sequence has been defined. The characters A to Z are defined to be in
ascending order as are 0 to 9, and blank is less than A and less than 0 but
no other relationships are specified. ASCII code is recommended but is
not mandatory so that 'A'. LT. 'I' may be true as in EBCDIC or false as
in ISO/ASCII and still be standard-conforming. Good programming tech­
niques should be able to resolve portability problems in this area.

The committee did not accept proposals to include environmental enquiry
functions in the language which would have facilitated the writing and in­
terchange of numerical programs. It is of course possible for program­
mers to define such variables as are necessary in DATA statements but
their provision as intrinsic functions would make authors more aware of
them and inc rease their usage.

The committee also resisted proposed changes to the form of a Fortran
source statement, considering it the function of a preprocessor, not a
compiler, to accept free -format source. They took a similar attitude to­
wards macros and accepted only the PARAMETER statement which is
equivalent to EQU in most Assemblers and hence supplies a small but
useful macro facility. The provision of the .IMPLICIT statement and of
generic functions removes the need for one of the uses to which macro­
processors are put.

The major possible change which the committee resisted was the intro­
duction of structured coding. It see_ms likely that it was. rejected because
of fears that it would necessarily involve the dynamic allocation of data
storage but during the time the committee has been working it has been
overtaken by a flood of over 60 structured Fortran preprocessors (see
section 2.6.2.3 and Appendix A) which have demonstrated not only that
structured code and static storage may of course coexist but that struc­
tured Fortran is accepted by and appears to be beneficial for Fortran
programmers. It is possible that the selection mechanism may yet ap­
pear in the next Standard due to a late change of opinion by the commit­
tee.

--_._. ---------

-
1-11

On the positive side, the addition of only two characte rs to the Fortran
characte r set, apostrophe and colon, should aid portability and keep
Fortran clear of some of the problems which have beset other languages.
The greater than and less than characters were in the working' proposals
at one stage but not in the final document. Such trivial extensions as the
ability to put comment lines immediately before 'continuation lines, the
ability to specify an array name alone in DATAand EQUIVALENCE state­
ments and the ability to have constants in output lists, all make for code
which is more easily written and read.

The introduction of the zero-trip DO-loop, that is. when the number of
iterations of a loop as defined by the parameters in the DO-statement is
less than one the body of the loop is not executed at all, may cause some
problems at first, especially for those who incorrectly assume that the \
body of a DO-llop is always executed at least once, but this facility to­
gether with the fact that the DO-parameters may be expressions of type
integer, real Or double precision taking any value (positive, negative or
zero) should make unnecessary the dummy assignment and IF statements
which often clutter the entry to a loop. Similarly the introduction of non­
unity lower bounds for arrays should eliminate the need for some of the
artificial devices now used.

Another area which could cause minor problems at first is the reclassi­
fication of the basic exte rnal functions as intrinsic functions, the addi­
tion of new intrinsic functions and the repl.acernent of the EXTERNAL by
the INTRINSIC statement for these functions.

The SAVE statement is to be welcomed as it allows the old problem of the
retention of local values in subprograms to be resolved by statements
within the Fortran language. It also allows an overlay structure to be de­
fined implicitly from within Fortran and although overlay might be thought
by some to be obsolescent, it will be required for some years yet.

It is the area of input-output which has been developed the most. There
are free -format (stream) and direct-acces s files and a new concept,
character' files. A character file is simply a character variable or array
within a program which may be read Or written under format control, thus
giving character-internal representation conversion and vice versa. The
possible forms in the format position of an input-output statement are
extended to include a character expression, including a constant,and an
integer variable to which a format label has been assigned. There are
additions to the format codes themselves and OPEN and CLOSE statements
for files are introduced. These statements have an optional reference to
a file-name and are therefore potentially system-dependent; attention is
drawn to this in the draft. Much criticism has been made of the INQUIRE
statement which returns information on various attributes of a file and
which uses a syntax which goes against Fortran, and most other language,
conventions. A detailed criticism of INQUIRE is included in the review of

I
J

1-12

the draft Standard by Day et al , (1976).

The X3J3 committee have shown concern for compatibility by listing
all known conflicts with the 1966 standard (section 19. 1 of the draft
Standard) and for portability by listing standard items which could in­
hibit portability (s ection 19.2). The latter concerns non-Fortran proce­
dures, characte r collating sequence, non-standard characte r s , file
names and input-output unit numbers and capabilities. The committee
also suggest that producers of processors should provide sorne means
of identifying the nonstandard syntax supported by their processors.~I

I

I

.-

In summary, the X3J3 committee have shown the right priorities (com­
patibility, portability. acceptability, efficiency) throughout their work;
some of their proposals are arguable and one or two are almost univet­
sally disliked, but the vast majority are to be welcomed. It is to be
hoped that suppliers implement them in the same spirit •

.... -:

1_

\

1'-:
I

I'It
I'I..,,_
!
I

._. . ..
. .- --------~------

-
2 -1

2. PORTABILITY

2.1 Summary

This section is conce rned with the portability of applications software
in the scientific and technical areas. After discussing some aspects of
Fortran, including the use of Fortran for portable programs, there is
an overview of publications on portability and of software tools directly
and indirectly used to aid portability.
After a brief consideration of multi-machine programming, there is a
discussion and a conclusion.

2.2 Scope of Portable Software ..

The term "portable soItwar e" takes quite different meanings in different
contexts. For example in "Mac ropro cessor s and techniques for portable
software" (Brown, 1974a) the author is conce rned mainly with the trans­
ferability between computer systems of assemblers, or assembly lan­
guage processors; in "H'ints on distributing portable software!' (Waite,
1975) the main conce rn is the mechanics (mecia, character sets, etc ,]
of moving software between computers without paying attention to the
content of the programs themselves. Here the term is taken to mean pro­
grams, typically application programs, written in a higher-level language,
which may without change be processed by different computer systems.
The main discussion involves the design and production of such software
although some mention is made of the transfe::.-ability problems in the sense
of Waite. Although the concepts are valid for most fields of application
and for most computer languages, the discussion concentrates on the so­
called scientific and technical fields.

2.3 The Trend towards Fortran

Rosen (1961) mentions that the ability of the Philco 2000 ALTAC compiler
to process IBM 704 Fortran II program.3 provided a compiler,. for the
first time, with the power to assume the major burden of transition from
one computer to another. At about the same time COBOL programs be­
ga-nto be run, with only minor changes, on tw o or more systems. As men­
tione-d in section 1.3, the main concern of the American Standards Com­
mittee for Fortran, meeting for the first time in 1962, was to promote a
high degree of interchangeability of Fortran programs for use on a varie­
ty of systems. Thus the concept of Fortran as a language for writing por­
table softwar e was established in the early 196-0"s ,

The need to move large numbers of Fortran II programs to Fortran IV
systems led to the development of a number of source-to-source transla­
tion programs, the best known of which was SIFT - the SHARE lnte rnal
Fortran Translator (Allen et al., 1963). This was itself written largely
in Fortran and demonstrated not only the viability of such trans Ia.tor s , but

. ..

-
I
I
I

, I
2 -2

the viability of writing them in Fortran. Another translator from this
period ALTRAN (Olsen, 1965) converted programs from ALTAC (an ex­
tended Fortran II) to IBM Fortran II.

'-.!

On the third generation of computers Fortran has become established as
the principal language us ed for scientific and technical computing and vir-'
tually the only such language used for writing programs intended to be run
on rnor e than one computer. Its only serious rival has been Algol 60 which,
notwithstanding its power and elegance and its machine independent design, .
has in practice suffered from the same hindrances to portability as Fortran
and in addition has had its notorious problems with character sets and in­
put-output conventions.
The only other potential rival, PL/I, despite its original informal name

\

Fortran VI and des pite its vigorous promotion by IBM in the late 1960"s
and early 1970"s, has failed to supplant both Fortran and Cobol on IBM
systems, as it was intended to do, and, in contrast to Fortran, it has been
taken up only slowly by other manufacturers.

I I

1-·
I

I .

'-- ,!

l-

Thus Fortran, which was not intended to be"a machine -independent language,
has attained a position which its designers could hardly have imagined rnore
than 20 years ago. It is not the intention here to discuss in more detail why
this situation has arisen or whether a more widely accepted position could
have been reached. Bock (1975) states the pragmatist"'s view, Bemer (1969)
records the decline and fall of Algol 60 in the U. S., Hoare (1973) discusses
some aspects of the main three (or four) languages and Ralston (1973) and
McCracken (1973a) discuss trends in the teaching of languages.'

I
I

The literature of portable software almost invariably assumes that Fortran
is the language being used and this also is assumed below.

2.4 Programming Practice in Fortran

Although a number of studies have been made of the speed and facility with
which programmers design, write and test out programs under certain ex­
perimental conditions, e. g. on-line/ off-line, structured/unstructured etc. ,
the chief conclusions of which appear to be that programmers are differ­
ent from each other (d. Sackma.n et a1., 1968), surprisingly little had been
published about statement usage in real Fortran programs until the classic
paper of Knuth (1971), (Wichmann (1973) did similar work on Algol at about
the same time). Moulton and Muller (1967) had included some Fortran
statement statistics as a minor feature of their paper on a diagnostic com­
piler but it would appear fe r instance that much of the work on optimizing
object code from compilers had gone on without any knowledge of the con­
structions programmers actually used and hence without sufficient infor­
mation to decide whether a particular optimization was economically justi­
fiable.

I ._.
!

II~
I
1"-- . .. -""'---~,

-
2 -3

Knuth and his team of helpers made static and dynamic analyses of a
large numbe r of Fortran programs gathered from various SOurces at
Stanford and from the Lockheed Missiles and Space Corporation; they
also made a detailed study of seventeen of the programs. One of the most
striking facts to emerge was that almost 5010 (statically) of stat ernents
were assignment statements and of these no fewer than 6810 were simple
replacements, with no arithmetic operators, and a further 1810contained
only a + or - sign. The paper makes a strong case for the use of state­
ment frequency counts as a tool for irnproving the performance of pro­
grams and, even rnore basically, as a tool to allow the programmer to
understand more fully what he has written. Knuths paper had a number
of indirect effects too: it gave impetus to the analysis of Fortran programs
and hence to inte rest in pro gramming aids and it turned attention to the \
practical needs of users of higher-level languages. All these have implica­
tions for portability; the better understood a program, the more likely it
is to be transferable.

Robinson and Torsun (1976) repeated Knuths -s ta tic analysis for a smaller
sample of programs and obtained broadly similar res ults and Kuls rud (1974)
compiled sorne statistics on the various classes of problem for which com­
pilers were used. Another observational study of programs which was car­
ried out at NAG(Numerical Algorithms Group, Oxford) is discussed below
(section 2.7.3).

2. 5 Lite rature of Portability

2.5.1 General Papers

The literature of portability in the sense assumed here is small and recent
but is growing. Past neglect and current interest are due to the rising cost
of software relative to the cost of hardware. In 1967 Naur reviewed some
of the problems but he was concerned with such things as data formats,
data capacity and types of backing storage, items of lesser interest today.
Naur also made a case for environmental enquiry functions (cf. section
2.6.3.2).

Of the general review papers Muxworthy (1972b) identifies some of the main
problems and Bock (1975) makes a case for Fortran, warns that portability
usually implies inefficiency and tilts very effectively at several windmills.
Not having had the opportunity to see the work of Brown (1969) or Fries
(1975), by far the most comprehensive document the author has read is
that by Dahlstrand (1976) which is itself only an interim report.

Dahlstrand has been carrying out a preliminary investigation on the possi­
bilities of running programs in an unchanged state on mutnally different
systems. Should the feasibility study prove positive, it is intended to un­
dertake a larger project to design and implement a complete portable lan­
guage system. The SOurces of imcompatibility, some of which are outside

...

',-
Z-4

the immediate s cope of this report, are identified as:

(a) differences in memory structure and capacity (disks, drums, etc.),­

(b) diffe rences in the form of input-output (characte r sets, symbol re-
presentation in Algol),

(c) differences in wordlength,

(d) diffe rences in the implementation of languages (dialects),

(e) differences in operating systems and command languages.

These differences are said to have caused the following problems, some
of which we re inevitable but many of which have been b r ought on needles sly:

__.I ,
I

(a) the unnecessary writing of programs which a l r eady exist at oth e r in­
stallations,

(b) the work of transferring programs when an installation changes its
machine,

(c) difficulties with evening out the load in a conc e rrr with several Installa­
tions,

(d) serious hindrances to network development •.

-- These incompatibilities are estimated to cost, In Sweden, a minimum of
3-4 million Kronor pe r year.
The difficulties of incompatibility may be ove rrcorn.e in two ways: to define
a truly independent programming language or to Hrrri.t orrea eIf to those parts
of existing languages which are rnac hi.ne e i.ndepe nd.errt., The latter is rejec­
ted because it does not solve the basic problem. and. has a rriaj o r weakness:
in using what is common to all machines ne ith.er ha rdwa re rior software is
us ed to full advantage.

Dahlstrand thus proposes a logical solution. He cites the ALMO project
in the Soviet Union which has produced Algol corrrpi.Ler's for the three dif­
ferent machines at Novosibirsk University which- ar-e said to appear to be
so similar that the user does not need to know on-which machine a job will
be run. ALMO (Kamynin and Lyub irn skiy , 1967;: Luc hovt.tska.ya., 1974;
Yershov, 1971,describes related work in. a m·b-r-e a.cces s i.bLe reference)
uses the UNCOL (machine -independent inte nrn.ed.ia.te Iarigua.ge) concepts of
the late 1950 "s; ALMO has also produced. compiler's for' Fortran and
ALPHA. Dahlstrand proposes adding precision. sta.te rn ent.s, bit-handling
and characte r-handling statements to Fortran and. bu.i.ld.in.gthese into a
complete subsystem which will have its own corrtrria nd language and its
own Algol compiler, also compiled to an UNCOL e- Basic and. APL would
be added later but Cobol and PL/I would require less attention because
they are already defined in a machine -independent manne r , With such a
system installed on major machines in Sweden, it would be possible to
transfe r programs with a minimum of effort. Rathe r surprisingly Dahl-

1
1-
I

i
1,--
I
I

I
1'-

2-5

strand allows that local compilers could still be used for locaI running.

The goal for full portability is summarized thus: a complete language
system, i,e. a system containing both programming language and com­
mand language should be defined. Properties which are important for an
algorithm, e. g. precision, should be defined in the framewo rk of the
language. A program written solely within these language rules should,
on execution, either give the correct result within the latitude accepted
because of the defined precision etc , , or be cancelled because the pro­
gram reaches some implementation limit. A program which breaks one
of the language system rules should be cancelled when an attempt is made
to us e it. The diagnostics ought in both cas es to be given if possible at
compilation time.

Dahlstrand would go so far as having error actions for this subsystem
identical across machines, implying that additional interrupts would be
needed in some cases. He says that if the stage is ever reached where a
program can be run Onabsolutely any machine, no one will suggest chan­
ging that situation. This might be true for users but it is not so certain
that manufacturers would agree.

2. 5.2 More Specialized Papers

It is interesting that Dahlstrand devotes considerable space to problems
of character sets. In English-speaking countries the attitude is often
that these cause little difficulty provided a one-to-one correspondence
exists. In some European languages however, extra letters (five in Swe­
dish) are needed to he able to print per sonal names and addres ses cor- .
rectly and these have to be taken from the special characters often al­
ready used for specific purposes by the manufacturer. A fur th.er- compli­
cation arises when different manufacturers ignore standards and allocate
national characters to varying special characters. Zeckendorf (1973) also
gives a comprehensive description of the problems involved.

i

Distribution of software is described by Mongini-Tama.gnini and Gaggero
(1974) and Waite (1975) and the many recent papers which describe some
aspect of the maste r source or composite file concept include Krogh (1972)
and Ford et ale (1974); other master source references are in section
2.7.3.

Papers describing particular software tools are referenced in their pro­
per place below but the one on PFORT (Ryder, 1974), a standard Fortran
syntax checker, caused such interest that it should be mentioned in an
overview. PFortran (Whitten and deMaine, 1975) - an unfortunate clash
of names - is an attempt at defining an extended, portable Fortran which
works by trans lation to ordinary Fortran and us es run-time utility func­
tions. Papers advocating particular programming practices are also des­
cribed at the appropriate section below.

..•

2-6

Traub (1971) in a relatively early paper expounds the benefits of writing
in "intersect F'o r t ran" but curiously, in the context of numerical soft­
ware, does not mention precision differences. Intermachine comparisons
for Algol 60 have tended to concentrate on implementation techniques and
benchwork speeds (v. Wichmann (1973) and the numerous references given
therein). Brown et aI, (1971) make some remarks on the portability of
Algol programs and van de Riet (1973) des cribes a portable Algol compi­
ler which appears to satisfy some of the demands of Dahlstrand at the ex­
pens e of run -time efficiency.

Portability is here considered to be an essentially practical problem and
those papers discussing it in terms of abstract machines, advocating trans­
lation at the assembler language level, and other chimera are omitted.

2. 5.3 A Caution

The 1966 Arnerican Fortran Standard ve ry carefully refrains from using
the word "cornpile r!' and always uses the word !!processor!!. This leaves
the way open for implementors to employ such hardware and software tech­
niques, e. g. compiling, interpreting, etc , , as they wish (section B 1 of
the Standard). The 1976 proposed Standard retains the same emphasis and
suggests that a processor could also be a human with paper and pencil
(section 20. 1 of the proposal). Fortran for interchange is defined only at
the level of the coding form; no mechanical representation of a program
is defined.

Similarly the 1966 Standard (section 4) puts little restriction on represen­
tation of arithmetic quantities. Integers must be exact representations,
real data are approximations to a real numbe r and double precision data
are approximations with a greater degree of approximation than reals ,
These concepts are retained in the 1976 draft (section 4). At no point is
a binary digit mentioned. Yet many papers discussing Fortran assume
aspects of implementations with which their authors are familiar, for in-:
stance that positive integers are stored as a right-justified string of bits
representing digits in a binary number. This is not justified: ICL and
Telefunken machines have stored Fortran integers as floating point num­
bers and Fortran has been implemented on several machines with deci­
mal arithmetic.

It. is helpful when considering some aspects of Fortran to remember that
a human with a calculator is a valid Fortran processor, Just as it is help­
ful when considering transferring programs to remember that incompati­
bilities between different compilers on the same computing system can
cause as much difficulty as differences between computers.

2.6 Approaches to Portability
I
I~
I
j

2.6. 1 Introduction

Since the simplest of programming language statements, while standard-

2-7

conforming syntactically, cannot be guaranteed to be standard-conform­
ing on execution (d. section 1.7.1). it is impossible to state unequivo­
cally that a particular program, per se, is portable. Given a program,
its data, the environment in which they will run and the history of any
similar runs, it is possible to make a reasonable prediction as to whether
the run will be "successful" but the demands made by a program Onits en­
vironment, the support provided by the environment and their inte raction
are so complex that it is not possible, or practicable, to document them
in such a way that a certain prediction can be made. Indeed at the present
state of knowledge of program validation and program proving few would
attempt to make certain predictions about the running of any given pro­
gram with all possible data within a single environment. In the domain
of real machines and real programs therefore rigorous portability, that
is universal guaranteed portability, is unachievable.

Dahlstrand (section 2.5.1) sees the solution as the standardization of lan­
guage processors and the standardization of environments. This is at best
a long term solution and is subject to the usual criticism of standardiza-
tion, especially over such a large area - that it is the enemy of progress. '-
Most workers have taken the opposite course and have endeavoured to pro-
duce programs which will be processed in as similar manner as possible
on different systems. Effort has been concentrated on methods of ensuring
this, of investigating the nature of the programs and of documenting them
so that their external needs (processors, run-time systems, numerical
precision, etc.) are known as fully as possible. In a perfect world much
of this would not be necessary, but in practice it is common for programs
to go undocurnented, for programs to be maintained by others than their
authors, for programs written for one computer to be pressed into service
on another, and so on. In any case Knuth (1971) made clear that even as
. programmers were writing, they were ignorant of some most important
aspects of their programs such as the relative efficiency of various se­
quences.

The following three sub-sections discuss some of the ways advocated for
the individual programmer to improve portability, directly or indirectly,
(a) improved programming practice, (b) defining the environment of the
program, and (c) software tools. Documentation standards are so far as
possible separated from programming conventions and are covered in
section 3.1. The centralized viewpoint, that of the software distributor,
is dealt with in section 2. 7.

2.6.2.1 Introduction

Advocates of improved programming practice tend to concentrate on one
aspect of coding. One of the major divisions is between those discussing
programming in the present Fortran context and those proposing struc-

-
2-8

, .

1- I
I,

tured programming techniques; the latter is considered in section
2.6.2.3. Within the present context there are many different emphases;
most have some concern with transferability but one of them argues that
legibility should be paramount and specifically recommends the use of
statements such as

DO 12 x-i , 2, G+9. 1, B/2. 0

I'- 'I
,-I

I
i
i

if available.

2.6.2.2 The Present Fortran Context

'-

Apart from their advocacy of legibility at the expense of portability and
their unusual but useful suggestion that the last digit of a label be a count
of the number of GO TO"'s referencing that label, McCracken and Wein­
berg (1972) give a list of suggestions on what is now generally accepted
to be good coding practice, e. g. liberal comment cards, few GO TO"'s,
DO-loops end on CONTINUE"s , indentation, liberal parentheses espe­
cially in relational expressions, meaningful names, variables not used
in different contexts, increasing order of labels and so on. This paper is
typical of most such sets of guidelines and many installations make simi­
lar recommendations to their programmers; they have the advantage that
if followed they make for more easily read, and hence maintained, pro­
grams without placing any serious restrictions on the author"'s style.

I :1'- I

1- ,I
\

_I

The same corice rn for legibility without restricting style is expres sed by
Banks, Percival and Wilson (1972a) in their set of documentation conven­
tions called FORDOC1; thes e are not s imply documentation conventions
as they affect the form of the program. They are in effect a long check­
list of what items should be commented and in what order and what man­
ner and they lay down detailed conventions for orders of subprograms
within a program, orders of statements within a subprogram, indenta­
tion and spacing within a comment and within a statement, classes of va­
riable name, statement numbering etc. .etc, They were conceived in the
context of the need to communicate subroutine packages between physicists
and, as demonstrated by the authors (Banks et al., 1972b) they make for
a very readable program; a program consisting of 9010 comments should
be readable. The whole has been done with admirable thoroughness and it
is unfortunate that so much work has gone into something which flits around
the problems of machine -dependence without attempting to attack them.
More attention is paid to whether an equals sign should have spaces around
it than to whether the nume rical precision used by a routine should be de­
c1ared in a comment and variations in language dialects are covered in
two sentences. Most important, the conventions require more motivation
for their use than is possessed by most programmers.

The work of Banks et a.l, was stimulated by that of Roberts (1969). Roberts
a rgued for the establishment of an inte rnational lite rature of published
scientific programs so that information on programs could be published

II...
I

-
2-9

as quickly and efficiently as that on other res earch projects. To this end
he suggested a few coding conventions and mentioned without giving de­
tailed references that some aspects of program documentation could be
automated. The coding conventions include a numbe r of eminently sen-
sible suggestions (use variabl.e s for logical units and limits, segregate
input-output, do not use internal character values, provide a Fortran
equivalent of any non-Fortran routine, etc.) and only the suggestion for
variable naming conventions could be regarded as inhibiting. Thes e prin­
ciples were built into OLYMPUS(Roberts, 1974; Christiansen and Roberts,
1974; Hughes, Roberts and Roberts, 1975; Hughes, Roberts and Lister,
1975) which is a partially automated system for writing, storing and run­
ning programs. This interesting system was developed for codes to solve
partial-diffe rential equations of a particular form but was found to have
wider applicability; it consists of a set of utilities and standard subpro­
grams and even has a fixed skeleton of subroutines for a program. It is
claimed that once a programmer has learned all the rules, he can develop
programs rnore quickly partly because he is relieved from the need to make
ad-hoc decisions and partly because the code is so formalized it is easier
to understand other peoples" programming. It remains to be seen to what
extent a typical Fortran program can be forced into a rigid subprogram
framework and to what extent programmers can accept the discipline in­
volved.

Publication of programs can be a strong motivating force for adopting
particular conventions (cf. Hill et a l,.; 1975) and the rules laid down for
algorithms printed in journals can offer good guidelines for coding. When
thes e are backed up by strong editing and refe reeing, as for example in
the case of Applied Statistics (Working Party OnStatistical Computing,
1975), the resulting algorithms achieve a high degree of portability.

The conventions above aim at transferability, primarily through increased
legibility and documentation of the code. McCormick (1974) reviews and
evaluates the literatur e on detailed coding suggestions for making programs,
more portable. Some,of the published suggestions have been -fa r too res-
trictive (e. g. avoidance of DATA, labelled COMMON, LOGICAL) and
McCormick says so, but he advocates large machine common subset, so­
called'lntersect Fortran" programming rather than strict Standard-adhe­
rence. His paper contains a detailed, but not exhaustive, list of good coding
advice. He also makes the point that efficient coding techniques for non­
virtual systems may be inefficient on virtual systems and vice versa.

The sentiment is often expressed in the literature that the American, or
sometimes the ISO, Standard should be followed by programmers (and
occasionally that it should not be). This ignores the fact that the Standard
is a cryptic document which deliberately left certain sections open to dif­
ferent interpretation and other passages which were thought to be sufficiently
explicit were found not to be. It has been described as more a document for

••

~. I
I
I
I
I
I
I

'-I
t

2-10

a lawyer than for a programmer. As the experience with the Standard
and with implementations has grown, and following the 'publication of
two sets of clarifications not often referenced when the Standard is men­
tioned, the scope for theological debates on the interpretation of a parti­
cular text have been reduced but not yet eliminated. A manual intended
to show tlprogrammers how to write Standard Fortran programs and to
bridge the gap between the few who understand Standard Fortran and the
many who do not" was published but was flawed by typographic errors.
Even the second edition (Nee, 1972a) still contained some printing errors
and a few errors of fact and insufficient distinction was made between fact
and opinion. Programmers following the advice in this manual would pro­
duce programs not far from Standard-conforming but they would gain little
insight into why they were writing as they were. For this they would have
to read Larmouth (1973). Larmouth"'s excellent paper discusses both pro­
grams conforming to the Standard and the use of non-standard features.

It is noticeable that both these major works of inte rpretation of the Ame­
rican Standard emanated from Europe and it is interesting, but profitless,
to speculate why this should be. As noted above, compiler manuals gene­
rally give little help to the programmer to decide whether a program is
standard-conforming; they usually claim that the compiler is standard­
conforming and give in an appendix a list of extensions, and, less often,
restrictions. At about the same time as the Nee manual first appeared
IBM redesigned their Fortran language manual to indicate clearly exactly
which of their facilities are non-standard at the place they are described.
This is an excellent system and it is unfortunate both that it is not more
widely adopted and that the IBM software itself does not have a correspond­
ing feature.

Lastly on dialects there exist a humber of in-house standards which re­
commend programming conventions within companies (e. g. Shell Standard
Fortran of 1971 -:-the content of which was confidential) or within othe r
installations (e. g. Friedrich, 1975).,

Differences in wordlength have received relatively little attention in dis­
cussions of portability. The modification of programs which assume a par­
ticular number of Hollerith characters per word seems to be accepted as a
tedious but inevitable chore if efficiency is to be maintained. The question
of numerical precision commonly devolves, possibly after a serious ana­
lysis, onto a simple choice between single and double precision arithmetic.
Actively programming for a particular precision is mentioned in section
2.6.3.2; Schonfelder (1976) gives a review of the problems involved.

2.6.2.3 Structured Programming in Fortran

I
1 ••..

i
!

~ I
I

,~I

Interest in structured programming in Fortran has grown tremendously
in the past two years. Although Algol 60 had structured programming faci­
lities it was not until 1966 that Brrhrn and Jacopini proved that it was possible

'-~~.-----------

2 -11

to expres s any required program with only three control-structures:
sequence, selection (IF-THEN-ELSE) and iteration (DO-WHILE or DO­
UNTIL), and that given these the GO TO was unnecessary. Other mecha­
nisms, especially SELECT-CASE, have since been shown to be desirable
to improve efficiency and ease of expression. In-1968 Dijks t ra in a letter
given the title "GO TO statement considered ha rrnful." caused considerable
debate and not a little puzzlement but on the whole programmers did not
allow it to affect their coding styles. Then stories began to leak out about
IBM"'s project for the New York Times in which they used both their chief
programmer team system - a formalized scheme of inter-programmer
communication for designing, writing and debugging programs (Baker,
1972; Baker and Mills, 1973) and structured programming, the whole being
known as IPT - Improved Programming Techniques -, which had been com= .
pleted ahead of schedule and which had achieved unheard-of programming
error rates; one error per 10 000 lines of code was mentioned. Flnally,
'Datamation gave special attention to structured programming with five
expository articles in its issue of December 1973 (McCracken, Donaldson,
Miller and Lindamood, Baker and Mills, and Clark, the last having a dif­
ferent emphasis from the others). Now that IBM had been seen to have em­
braced structured programming it became a topic for general discussion,
just as virtual operating systems had done 18 months earlier. The journal
Computing Surveys followed up with a special issue on programming (De­
cember 1974) which was largely devoted to structured programming.

There were immediate demands that structured facilities be incorporated
in the revised American Standard for Fortran and from 1975 onward there
have been nurnerous articles and letters discussing whether and how For­
tran should be structured in the pages of Computer, Datamation, FOR­
WORD, SIGPLAN Notices etc. (inter alia: Meissner 1975, 1976b; Horowitz,
1975; Reifel', 1976). So far the Standards Committee has refuse d to accept
structured Fortran but many individuals have gone ahead and produced
structured Fortran preprocessors which translate a program written in a
structured Fortran' (possibly an extended subset rather than an extended
Fortran) to a form iprocessable by their normal Fortran compiler. FOR­
WORD(August 1975) listed 51 such preprocessors and Appendix A to this
report lists thes e and a furthe l' 16; Horowitz (1975) contrasts the facilities
of six of them.

It appears that not a few of these preprocessors were written as experi-
rnents rather than as real working tools and little experience on their use
has been described. Fortunately two of the few European preprocessors,
SHELTRAN (Croes and Deckers, 1975; Croes, 1975) and STRUFORT
(Cardetta et al., 1975; Cardetta et al., 1976) have been used and reported.

SHELTRAN has taken a drastic attitude to GO TO-less programming: it
does not allow any form of GO TO, or any statement labels other than
those on format statements and it has also done away with the usual F'or=

. ..

-
2 -12

I~
I

tran IF -statements, the DO, the ASSIGNand the alte rnate RETURN.
The constructs IF -THEN -ELSE, SELECT-CASE, WHILE-Lo op, loop-
UNTIL and FOR-loop replace them, and a COBOL-like PERFORM­
PROCEDURE has been added. Other Fortran statements ar'e' unchanged.
SHELTRAN has been in production use within, the Shell company since
1974 and has apparently met with great success. Writing in Fortran has
virtually been eliminated and programmer productivity has gone up by
5010. Although SHELTRAN Or similar preprocessors do not of themselves
make for increased portability, their use does open up possibilities to in- ,
corporate standard-conformity checking into the preprocessors as an option.
Another possibility being explored in Shell ts case is to be able to vary the
processor output, from a fixed input, according to the target computer for
the Fortran.

To the user STRUFORT appears very similar to SHELTRAN, but the syn­
tax is not identical. STRUFORT too has removed the need for using GO TO
statements but still allows them.

-- Further aspects of preproces sors are discussed below (section 2.6.4.4.4).
Structured Fortran usage is established in a few areas and it remains to
be seen whether there will be any harmonization of syntaxes so that struc­
tured Fortran pro grams thems elves become portable. At pres ent the For­
tran output from preprocessors is often as opaque to human eyes as the
worst of direct Fortran pro gramming and its transfe r between installations
should be avoided ..

J,
I

I
It would make an interesting study to investigate why Fortran programmers
apparently take readily to structured Fortran when they have resisted other
structured languages. Essential points must be that little new has to be
learned, that none of the facilities and advantages of Fortran are, lost and
that some facilities are gained. In particular the structuring pertains only
to the code, not to the data storage, so that programs with individual sub­
programs originally written in either structured or ordinary Fortran are
possible.

I
I

I
"'- :

It is not the intention here to attempt to review the literature of structured
programming, which is very large, but attention should be drawn to the
following: Dahl, Dijkstra and Hoare (1972), Knuth (1974), Wirth (1974),
Rogers (1975) and Neely (1976). Knuth gives over a hundred references.

2.6. 3 Defining the Environment

~

I
1

2.6.3. 1 Introduction

Rather than standardizing the environment of a program (section 2. 5. 1),
an alte rnative approach would be to define the environment to the program,
or to allow the program to request such information on the environment as
it needs. Another alternative would be to select those areas of Fortran
which are not consistent between machines and to provide parallel facilities
by for example supplying utility functions which are tailored to the compute l'

.,

-
2 -13

but which present a standard interface to the program. This latter course
is often taken for handling non-standard input-output devices, such as
graph plotters, but only rarely for manipulative processing and the former
is not used as much as would be expected.

2.6. 3.2 Environmental Enquiries

Naur (1967) suggested using environmental constants as an aid to machine­
independent programming. A rather limited number of environmental con­
stants are recommended in the Algol 68 report (section 10.1 of van Wijn­
gaarden et al., 1969); they include the values of maximum integer, maxi­
mum real, relative precision and allow for character-integer conversions.
The Working Party on Fortran extensions (1971b) suggested also that the
number of characters per word, the decimal accuracy of real numbers,
and constants such as pi be provided by calls to a standard function.

A more comprehensive list is that by Ford (1976) which specifies several
more values for arithmetic limits than the Algol 68 set and attempts to
parameterize the representation of integer and real numbers and the type
of arithmetic used. Further it seeks to specify the page size for virtual
systems, the standard Fortran input-output units and other device attri­
butes such as characters per line.

As mentioned above, such a set of values may easily be incorporated in a
program in a DATA statement, or in a more uniform way for several pro­
grams by putting them in a common block defined in a BLOCK DATA sub­
program, but their provision as standard functions with a description in a
compiler manual would tend to increase awareness and usage.

2.6. 3. 3 Parallel Facilities

Algorithms to perform basic arithmetic to arbitrary preci s ion are well
described in the literature (d. Hill, 1968; Dekker, 1971) but guarantee­
ing precision to programs by using external functions simply in order to
make them portable, is usually considered to be inefficient and is not used
J.lthough it is proposed by Whitten and deMaine (1975).

A mOre obvious field for this technique is characte r string handling.
Allhough several string handling packages exist (e. g. Hertweck, 1970;
-lacleod, 1970) only a few (e. g. Reynolds, 1976) have been delibe rately
written for and successfully used on several different computers. In gene­
ral it would appear that programmers are content to write within the con­
.ines of environments provided for their programs and not to be concerned
with other possible environments their programs might encounter; even the
n mes of such unive rsally provided functions as those to find the date and
t imc are not fixed.

. ..

-
2-14

2.6.4. 1 Introduction

I

I
I
I

'-I
I
I~I
I

I

Tools which increase knowledge of a Fortran program are an aid to por­
tability either directly or indirectly. This section describes software tools
in the following classes: syntax and other checkers, analyzers, prepro­
ces sor s , debugging aids, documentation aids, extensions to Fortran,
translators, compiler testers. A checklist is shown in Appendix B. The
groups are used for convenience only and some programs could have been
allotted to one of several classes. Corresponding aids exist for other lan­
guages.

It should be noted that some of the individual programs mentioned ma'y be
limited to processing one dialect of Fortran; this of COurse does not affect
the principle involved.

2.6.4.2 Syntax and Other Checkers

Syntax checker in this context is taken to imply checking that the syntax of
a program conforms to a particular set of language statements. Baron,
Schiffman and Fenves (1974) give an overview of some software tools in
use at the University of Colorado and mention an ANSIFortran syntax
checker without giving any details. They state that this "unit of software"
will flag non-ANSI code but that future versions would alter the input pro­
gram to ANSI text. This is an extraordinary claim: if this could be done
without altering the semantics of a program, all difficulties with dialects
would vanish immediately.

-

A better known syntax checker, and the only other one found by the author,
is PFORT (Ryder, 1974) which checks a program for conformity with a sub­
set of ANSIStandard Fortran. Both individual program units and inter-unit
communication, including use of common blocks, are checked. The lan­
guage subset is sub-Standard only in a few areas: a common block may be
initialized in at most one BLOCK DATA subprogram, a function may not
change its arguments, the order of statements within a subprogram and the
order of variables within a common block are rnore restricted, at most one
character may be stored in a storage unit and characters may be stored
only in integers, a common block name may not be also a variable name
and extended ranges of DO-loops are not allowed. The pr?gram is itself
written in this subset and hence is easily transferable. Ryder quotes a pro­
cessing time of 20 lines per second, presumably on a 370/165, so the pro­
gram is not particularly fast.

A number of compilers, often as an option, flag statements which do not
syntactically conform to the Standard but few make the neces sary checks
at run time. One compiler (Rohl et al., 1975) claims to implement the Stan-

.,

-
2-15

dard language only.

2.6.4.3 Analyzers

This section includes a number of different programs for analyzing For­
tran programs either statically or dynamically or both. The most basic
is the algorithm of Sale (1971) for identifying Fortran statements -. The
most common aids in this group are those which ultimately produce fre­
quency counts for statements as a program is executed; refe rences in­
clude Fosdick (1974), Paige and Bens on (1974).' Lyon and Stillman (1975)
and frequency counts are one of the facilities offered by programs FUS,
RXVP-l and TAP (rc P Software Directory, July, 1975).
These aids typically involve the Fortran program to be.measured having
count statements inserted into it by means of a preprocessor which is often
itself in Fortran. Shaw (1972) has shown that when the preproces SOl' is in
SNOBOL it need be no longer than 200 statements. A variant on frequency
counting is program sequence timing, provided for example by FUS.

Both RXVP-l and STAN (rc r-, 1975) claim to perform extensive (struc­
tural, syntactical and semantic) static analyses oriented to improving the
quality and reliability of Fortran programs. From its summary description
it is impossible to tell what RXVP-l does. STAN makes a number of inter­
subprogram checks which a compiler cannot do and it reports on possible
use of a variable before it has been assigned; a number of intra-subprogram
tests and reports are also made. Neither program summary mentions the
ANSI Standard.

I

II
!I
·1
I'I
I

One of the most basic analyses that is required is a cros s - refe rence list­
ing of variables, showing in which statements they are used, and of labels,
showing where they are defined and where referenced. Some compilers
provide this information as an option and seve ral utilities are available to
perform the same function, e. g. FORTREF, STAN, XREFIV (rc r-, 1975);
see also section 2. 6.4.6. This type of information is especially useful for
independent validation or maintenance as well as for debugging a program.
The same qualification could be made for path analysis, which involves the
static analysis of all possible paths through a program and examines vari­
able usage along each path. It is immediately seen for example if a variable
is defined and never used or if one is defined and then redefined before use -
both instances possibly indicating logical weaknesses. A program for path
analysis, DAVE, is des cribed by Fosdick and Oste rweil (1976); sorne pre­
liminary work is in Fosdick and Osterweil (1974).

The intra-subprogram structure of a program is analyzed by the Fortran­
to-Fortran optimizing compiler of Schneck and Angel (1973). The analysis
is of course an essential preliminary to code optimization. This feature
too could be a useful aid to validation or rnairrte nance but the prime objec­
tive of the program puts it more logically in section 2.6.4.4.2 where it is
discussed in more detail.

. .•

2-16

I

J !r- i
I,

I I
I
I

"- I
I- I
I
I

i

The inter-subprogram structure of a program is analyzed by a program
of Murison (1974) which, knowing the calls made by each subprogram
and the subprograms -'lengths, can produce a variety of possible overlay
structures to meet cz-i.te ria specified by the user. The anaiysis part is
an independent program with input in character form. The user will typi­
cally wish to use a preliminary program to extract subprogram calls and
lengths from an existing load module; such a program exists for the
IBM 360/370. There is of course no restriction on the language in which
the various subprograms are written.

Attention is also drawn to the work of Reifer (1975) which describes twen­
ty automated tools for reliability and that of Ramamoorthy and Ho (1974)
and Ramamoorthy, Cheung and Kim (1974). These are samples of the grow­
ing number of papers on the related subject of program' reliability. \

2.6.4.4 Preprocessors

2.6.4.4.1 Introduction

Two groups of general purpose preprocessors are readily identifiable -
macroprocessors and structured Fortran preprocessors; the rema.inder
defy classification. There exist a number of well-known packages, for
example in the fields of simulation and of civil enginee ring, which involve
the translation of an extended Fortran to Fortran as part of their operation
but as they are oriented towards a particular application and the Fortran
they produce is rarely the concern of the user,they are not considered fur­
ther.

2.6.4.4.2 Miscellaneous Preprocessors

I

I I
I I'_I

I
I
I
I
I

I,

The Fortran-to-Fortran optimizing compiler of Schneck and Angel (1973)
makes optimizations which are familiar in the context of conventional For­
tran compilation such as elimination of dead variables, of corrirrion sub­
expressions and of redundant variable definitions, removal from DO-loops
of fixed expres sions , replacement of division by rnultipl.icat.ion and so on.
It thus provides certain automatic optimization facilities independent of any
system-bound compiler, but more importantly it analyzes the structure and
flow within each program unit and it can rearrange the statements to match
this; this can be a powerful tool for investigating a program. Inevitably the
new variables generated by the program have meaningless names and if
the output is to be retained it may be preferable to replace them for ex­
ample by using a context editor Or by using one of the utilities described
in section 2.6.4.6.

,
I '-- I

I
I
!
I
I '--
I

Two preprocessors in the literature are concerned with the layout of va­
riables in large programs. Winske (1975) des cribes a preprocessor to
dimension arrays and Ghan (1971) discusses CEE (Common Equivalence
Builder) which will pack variables nominated in command statements into

..•

-_
2-17

common blocks and produce the appropriate equivalence and dimension
statements and a variable dictionary. Papakonstantinou (1975) discusses
a preprocessor for recursive Fortran.

Warburton (1976) has a preproces SOl' SHORTRAN, intended for use at
keyboard te rminals, which accepts free form input with all Fortran key­
words replaced by one or two letters and which sets up Fortran statements
in the standard form.

A preprocessor specifically intended to aid portability is that which will
form part of the PFortran system; the distinguishing characteristic of
this system is the use of run-time utility functions and it is therefore des­
cribed in section 2.6.4.7.

2.6.4.4.3 Macroprocessors

The use of macros "is well established in assembler languages but macro­
processors for Fortran, while well used in certain areas such as tailoring
a program for a particular environment, seem not to have attracted the
attention of the average Fortran programmer.

There are now also available completely language-independent macropro­
cessors and those intended for other languages, e. g. the IBM 370 PL/I
preprocessor, have been used for Fortran. Macr oprocessor s have obvious
applications for portability as a suitably written macro program can, with­
in limits, be designed to generate a required numerical precision for a
given computer, a required number of characters per word, given siz es
for array lengths and even appropriate machine -dependent statements.
This is tending towards the master source/composite file concepts which
are described below (section 2.7.3). Some of the potential uses have been
eroded by the introduction of such Fortran facilities as PARAMETER,
IMPLICIT and generic functions, the introduction of simple macro facili­
ties in compilers (e. g. INCLUDE on the Univac 1100) and the rnore general
availability of context edito r s ,

Fortran macroprocessors include those by Macleod (1970,1971), Day (1971)­
and Dasenbrock (1974).

2.6.4.4.4 Structured Fortran Preprocessors

The form of this report demonstrates one of the disadvantages of structured
programming viz, that the level at which an item is described is not rela­
ted to its importance. Another disadvantage, at least at present, is that the
Fortran output from preproces sor s is crude and opaque. This is remarked
by Kernighan (1975) and is the author"s own experience with SHELTRAN.
For example SHELTRAN produced the following not untypical sequence at
the start of a main program:

. ..

2-18

15000 CONTINUE
IF(. NOT. (

- • TRUE.
-)) GO TO 15001
GO TO 10003

10002 STOP
10003 CONTINUE

••••.. 1

It is understandable that to tidy up such code would not in general be
worthwhile but if such programs ever need to be read by humans the
tidying should be possible as an option. (It may be remarked that a well-

\
known optimizing compiler did not optirnize the .NOT •• TRUE. but it did
optimize a subsequent. NOT.• NOT. generated by SHELTRAN and it did
reconstruct a WHILE-loop which had been demolished by the preprocessor).
Some advocates of top-down programming have argued that unstructured
coding is logical spaghetti and seem to imply that even computer hardware
finds this more inefficient to process. If this is indeed so it will have a
hard time with structured Fortran. Another remark of Kernighan"'s, that
it is difficult to relate input to output does not apply to SHELTRAN whose
authors have been to some trouble to define the vagaries of statement
numbering of certain compilers. Of course, if the output statements are
rearranged in any way identification becomes much more difficult.I,-I

1

I
I
I

"'-lI

A further disadvantage and one unfamiliar to Fortran programmers is
that a single syntactic error, such as the rnispunching of an ENDIF or
equivalent, often stops the useful production of diagnostics and starts a
sequence of spurious error messages. There is no unanimity on the ques­
tion of whether the preprocessor should detect "pu re" Fortran errors. This
is clearly desirable from the programmer"'s point of view, especially where
the output is not easily related to the input, but it puts an extra burden on
the preprocessor and given the changing status of some compilers it would
be impossible to giaa r-ante e error-free output without withdrawing some of
the facilities in the Fortran. Further, the translation of structured to or­
dinary Fortran is in principle machine -independent and a number of pre­
processors have been implemented on several different systems (cf. Ker­
nighan).

It remains to be seen how the above disadvantages and the most obvious
one of requiring an extra stage in processing, moreover a stage which des­
troys information useful to a compiler, balance with the potential advan­
tages in designing, writing, debugging, validating and maintaining programs.
That these preprocessors are attracting much attention is shown by the list
in Appendix A. It is to be hoped that the syntaxes of the new control state­
ments, at least for the production preprocessors, converge rather than di­
verge but it is still possible that many of them may be made redundant by

I .•.•..

...

-
2-19

the incorporation of structured control statements into the new Standard,
or failing that, into the compilers which implement the new Standard.

2.6.4. 5 Debugging Aids

The most striking feature about most commercially available debugging
aids, and some of those described in publications, is that most or all of
their features have been available for years in commonly implemented sys­
tems, especially in universities. Some do not even m.eet the basic require­
ment that a prograrnrner be addressed at the level at which he addressed
the compute r; there is no excus e, no need at least on a large system, for
a Fortran pr ograrnrne r to be given an octal or a hexadecimal dump to
decipher. \

..
For Fortran work in batch mode general requirements appear to be:
selective trace of variable assignments, branches and subroutine calls
and, at a normal Or abnormal termination or whenever requested, a dump
of variable names and values at that level and at intermediate levels back
to the main program. Further, checks need to be made on the use of un­
assigned variables. From here it is a short step to having frequency counts
of the execution of all statements (section 2.6.4.3).

In interactive mode the above facilities are needed but there are further
pos sibilities for setting breakpoints and for alte ring the values of variables
and for altering code when control reaches a breakpoint or an abnormal
termination. The ability to change code in this way does not necessarily
lead to a well-structured program.

In view of the tenuous connection between portability and debuggi;ngaids
and of the very wide variation in the details of the facilities offered as
standard by manufacturers and by independent suppliers it is not proposed
to dis cus s them here; the only tool offering significantly different features
from those already outlined is the reversible execution in PLil of Zelko­
witz (1973). Poole (1973) and Satterthwaite (1972) have produced general
papers and Brown and Sampson (1973) devote a chapter to the subject.

2.6.4. 6 Documentation Aids

Utilities which are offered as documentation aids fall into two groups -
those concerned with locating and reporting on usage of variables, labels
etc. and those which draw flowcharts, possibly printing variable cross
reference lists as well. Both groups have two further subgroups according
as the utility is passive, i. e. it accepts the program as given, or active,
i. e. it alters the program to make it more readable.

The first group contains programs such as COMFORT, DOCUM, FORDOC,
FORTREDIT, FORTREF, FXREF, XREFIV (rcr-, 1975), DCE 263 (NEA
Program Library no. 327), that described by Merrill (1974) and numerous

'. ..•

-
2-20

programs named RENUMBER Or RENBR, one of which is in the SHARE
Program Library (no. 360D-99. 0.009). The principal concern is with
statement numbers: the passive prograrns report where labels are defined
and referenced and the active programs renumber the labels into ascend­
ing order. Otherwise the functions vary but include SOmeof the following:

- rename variables

'-I
I

~I
I
(

- report where variables are used, including type of usage

- rename subprograms and subprogram references

renumber continuation card numbers

- report location of STOP, RETURN, CALL or other nominated state\­
ments
report on logical units used

- move all FORMAT statements to the bottom of a program unit

- move all declaration statements to the top of a program unit

- tidy array declarations between DIMENSION, COMMONand type state­
ments

- delete unused labels, FORMAT statements and variable declarations

-, - reform statements by putting blanks around operators, etc.

- insert comment statements

- indent DO-loops

sequence lines in columns 73-80

- make some syntax checks

Both active and passive programs produce reports on the actions they
have taken and report on the form of the final program.

The flowcharting programs produce a flowchart of a Fortran program on
a line printer Or on a graph plotter or similar device and often produce
some of the reports mentioned above. Programs in this class include
AUTOFLOW, FLOWGEN/F, FORFLO, FORTPAK and QUICKDRAW
(ICP, 1975) and FFL (Hirose et al., 1974).

It may be remarked that one of the most notorious programming aids ever
to appear in Britain was a flowcharting program for Fortran: it deleted
any statement in the input program which it deemed to be non-standard and
proceeded to draw a chart of the remainder. Often more than half the pro­
gram was lost. It was quickly withdrawn from the market.

It
I
·1r,I

-
2-21

2.6.4. 7 Extensions to Fortran

Extensions to Fortran is taken in this context to mean uriLity programs
which duplicate facilities already in some manufacturers" Fortrans, such
as free -format input-output, or which provide facilities which may be
considered natural language extensions, such as string handling. In as
much as some of these programs enable facilities to be matched across
different systems, it may be said that they aid transferability but as the
statement syntax is likely to be different from machine to machine, it
could not be recommended that, say, free format input-output be inclu­
ded in a program intended to be portable. It is' more useful to consider the
utility programs which are offered in program libraries and described in
the lite rature simply as an indication of the deficiencies of Fortran. This. \
section also includes a summary of an integrated run-time package expli-
citly aimed at portability.

It appears that free -format input-output, the ability to reread an input
record with a different format and the ability to use a format for binary­
character conversion and vice versa, within a program, are three of the
most-felt wants. All of these facilities are proposed for inclusion in the
new Standard although the rereading would have to be done by first copying
a record from an input file to a character file. Other popular utilities in-
clude allowing Fortran programs to acces s file -handling functions normally
available only at the assembler language level. These, of course, can in­
crease the efficiency of a program at the expense of portability.

There are a number of character and string handling routines available.
Again, many of these utilities will be made obsolescent by the new standard
but variable-length string handling will not be directly catered for.
References to some of these packages are given in section 2.6.3; 3 and re­
ferences to commercially available ones are in rep (1975); that of Reynolds
attracts special attention as a package successfully implemented on several
different computers. Multilength arithmetic is also mentioned in section
2.6.3.3; there are no proposaIs in the new standard to change Fortran in
this area.

Other commonly supplied subroutines, such as those for sorting, are less
likely to be thought a natural extension of a language and others allowing a
Fortran program to access operating system functions are inimical to por­
tability. There are even functions to allow a Fortran program to access a
single hardware instruction, such as those to copyOr compare arrays;
these indicate scope for compiler optimization.

The use of run-time utilities is an essential part of the PFortran system
proposed by Whitten and deMaine (1975). This consists of an extended
Fortran dialect, PFortran, in which it will be possible to write programs
which are machine and configuration independent. A program written in
the extended language will be first trans 1ated to a Fortran dialect which is

-I
I
I
I
I

,-[
I
\

2-22

~I
I

the common subset of the Fortrans on seven major corrrput e r-s, (The paper
us es the word PFortran to des cribe both the input and output for this trans­
lation proces s as well as to des cribe the run-time system, which is rathe r
confusing, and it claims incorrectly that the ccrnrnon subs.et is a proper
superset of the ANSI standard.) It is proposed to allow not only the normal
Fortran storage unit but also a generalized data unit, the kernel, which
may be an arbitrary numbe r of words Or bytes long, or alte rnatively may
be shorter than a byte or word. Bit types would also be supported within
kernels. As well as ordinary arrays of words and kernels the system WOUld.
support extended arrays, possibly larger than the primary storage avail­
able to the program, which would be paged in and out by the PFortran sys­
tern. Using these facilities, it would be possible for the programmer to
nominate the numerical precision desired for each variable and constant
separately. Data manipulation and arithmetic that could not be handled by
ordinary Fortran language facilities would be performed by the utility rOu­
tines.

The run-time support package would need to be informed of the available
storage and peripheral devices and various other environmental matters at
the start of execution of a program. It is propos ed that all input and output
be performed by utility functions rather than by Fortran itself. An error
recovery facility is proposed but it is not clear whether PFortran would at­
tempt to capture control after an interrupt normally processed by the For­
tran run-time system or by the operating system.

The preliminary run-times quoted by the authors are quite encouraging; it
will be inte resting to see if the whole system is viable. It will also be inte­
resting to see if. the input-output control package can "be used to assign
space in ••••. a box, shelf, room or building" (p. ~19), a tas k which has
defeated many computing centre managements.

2.6.4.8 Translators

-I

Source translatqrs have had a long and honourable history in processing
Fortran code since the days of SIFT -Fortran II to IV - (Allen et a l,.; 1963).
There have been translators into Fortran, for example from ALTAC, itself
really a Fortran dialect (Olsen, 1965), from BASIC (Bevan, 1975) and from
EMA (Aitken, 1970) and there have been translators from Fortran, for ex­
ample to Algol 60 (Pullin, 1964) and to PL/I (IBM). The re has even been
a Fortran IV to II translator. The Schneck-Angel optimizer could be ter­
med a translator. Source translators have also been found useful in other
languages (e. g. McEwan, 1967; Hopgood and Bell, 1967; Bommas, 1968;
ICP, 1975, pp 119-126).II~

I

Current inte rest is in programs which conve rt code between dialects of
Fortran or between a dialect and the ANSI Standard language. Such pro­
gram$ have obvious uses for portability but tend to be actually acquired

I '--I ,. . ..

-
2-23

and us ed more when an installation is about to change its machine.
Beckman (1976) describes a CDC to IBM_translator and IBM themselves
have a program product which is claimed to convert many dialects of
other manufacturers to IBM 360/370 converrti.oris , Jones and Taylor (1973)
describe a program which converts certain Univac lIDO-dependent state­
ments to ANSI form and the ASA Fortra_n Translator of Becker (rc r-, 1975)
conve rts non-standard statements of "vi,rtually-all Fortran II through
Fortran V compilers II to ANSI F'or t r ari;

II
I

Translators have generally worked by aiming to. convert the bulk of the
code accurately and drawing the pro gra.mrne r s " attention to items they
could not cope with. It is impossible, at the present state of the art, to
believe that a translator could successfully convert every program in a
dialect to standard form. Apart from concepts not in the Standard, such
as direct-access files and assignment to an arbitrary subfield of arwo r d
on the Univac 1100, and problems with syntactically identical extensions
having different semantics on different systems (v. Muxworthy, 1970), even
the use of quite simple extensions m.ay require non-trivial conversion, e. g.
some uses of ENTRY, or a statement such as: WRITE(3) (X(L(I)),I=l,N)
especially if N is large.

Translators tend to be expensive to w r ite , to rent or to buy and it is not
likely that an installation will have th em available for occasional use for
sending or receiving programs from other ,machines. This is unfortunate
as translators offer a good short term solution to the dialect aspects of the
portability problem.

2.6.4.9 Compiler Teste rs

Compiler testers are not in the same class of Fortran software tciol as the
above and are included only for completeness. The U. S. Navy set, subse­
quently taken over by the U. S. Federal COBOL Testing Service, consisted
of some 90 short Fortran programs with data, and running them demon­
strated whether a system compiled and executed cor r e ct ly in the sense of
the 1966 American standard. While such a test can not be a complete one,
it can show up odd errors 'in compilers. For example on one system a
statement which fortunately is unlikely to Occur in practice, 1=1.6, was
found to be compiled as 1=2, and some abstruse errors were found even
in systems which had been in service for several years.

These programs have now been superseded by a set of 116 programs from
the U. S. National Bureau of Standards (Holberton and Parker, 1974); the
same set is also available in the form of 14 programs for use on larger
systems.

2-24
I
l

I
~ I
1- I
I I~I

I'-I

2. 7 Multi-Machine Software and Distribution

2.7.1 Introduction

This section discusses portability from the point of view of the software
distributor or the program library. Most libraries act 'as a depository
for programs. The programs may be maintained on a nurnbe r of nomi­
nated computer systems but, if the library is large, the ability to supply
any program adapted ready for any computer would require more human
and computer resources than could be cconorrii ca lly justifiable. This is
of course why most of the programs for sale Or rent in the Iep Software
Directory (19,75) specify a list of systems on which they will work. In
recent years the idea of multi-machine software based on a single master
source file, has gained ground as a tool particularly for distributors of
subroutine packages and this is discussed in section 2.7.3. Program libra­
ries per se are outside the scope of this report and section 2.7.2 draws
attention to references.

2.7.2 Software Distribution

The SHARE program library has been well known for over 15 years and
there are now a large number of libraries maintained by computer manu­
facturers and their user groups, industry, universities, disciplinary user
groups, research institutes, government departments and professional
societies. Schiffman (1974) gives an ove rvi ew of libraries and program
distribution in North America and Mongini-Tamagnini and Gaggero (1974)
desc ribe corresponding activities in Europe. Langenhede r (1976) des c ribes
available libraries from the point of view of the user. The shipping and
subsequent maintenance of software are covered in some detail by Waite
(1975) and the paper by Zeckendorf (1973) on character s e ts t acts as a re­
minder of additional problems in Europe.

2.7.3 Master Source Files

I- I
'I
I~ I
I- I,
I
I
i
I

I
I

The basic concept of the master source or composite file is that Fortran
code explicitly tailored for a number of different systems is held in a single
file and that a program for a particular computer may be selected from the
master file by a preprocessor. This system has the advantage that main­
tenance of multiple versions is much simplified and also, when many ve r >

sions are held together, it is relatively easy to identify and eliminate dif­
ferences which are not essential, thereby tending towards more portable
software.

This system tends to have been used most in the context of subroutine pack­
ages for numerical mathematics, where the main problems are to do with
numerical precision and dialect variation, but it has also been used for
single very large programs such as P-STAT (Buhler. 1975). thus also

-
2-25

coping successfully with variations in num.ber of characters per word,
file -handling facilities and primary storage sizes. Buhle r gives examples
of statements which caused particular problems on particular computers
and also describes how other differences such as those in overlay systems
were deaIt with.

The actual form of composite file varies from implementation to i.mple­
mentation. Some systems use command statements intermingled with
lines of code so that the whole file looks rather like a Fortran program
with additional lines which are not compiIable, Othe rs embed the com­
mand statements and variant statements as Fortran comments so that the
master file is compilable , Others again use replacement techniques so
that for example &SINmay be expanded to SIN or to DSIN.

Baron, Schiffman and Fenves (1974) describe a whole set of software
designed to enable programs to be submitted, checked for Standard-con­
formity, put in a master file and subsequently extracted and "customized".
Other recent papers discussing some aspects of master files are Krogh
(1972), Boyle and Dritz (1974), Ford et al. (1974), Taylor (1974), Hague
and Ford (1976) and Schonfelder (1976).

An interesting study has been conducted by NAG (Numerical Algorithms
Group) at Oxford who use a master source system for mathematical soft­
ware on a large number of different computers (cf. Ford et al,.; 1974).
They have supplied Fortran source code to 'programmers using the various
computers, have noted the changes to the software made on implementation
and have attempted to classify the reasons for the changes. A surprisingly
large number of different reasons occur, as do a disturbingly large num­
ber of changes for no apparent reason. Changes made for reasons of effi­
ciency were generally made without balancing the gain received against
the cost of .ma.ki.ngthe change. The results of this study have not yet been
published.

2.8 Discussion

The conventions and software tools outlined above are only aids to the pro­
grammer. Each of them addresses only a part of the portability whole and
it is the responsibility of the programmer to use the aids intelligently and
to write the final program. The overriding need in the production of a pro­
gram intended to be portable is the desire of the programmer that it be so.

Although legibility and portability of programs are independent attributes
legibility is generally considered to be a desirable characteristic of a por­
table program and is the lowest level of condition mentioned above (sec­
tion 2.6.2.2). Legibility should not simply imply cosmetic treatment of
statements but should imply a well-designed, logically structured program
using good, efficient coding techniques. There is remarkable unanimity in

2-26

the various published sets of conventions and advice 011 techniques arid
the differences between thc m tend to be complcrncntu ry ra th c r than con­
tradictory. P'ro gr-arns written in accordance with thes e rules are erni­
nently readable; SOl1.1.eof the best cxampl c s are published iLl.lhe algorithm.s
section of jour na ls or in journals such as COD1.putCrPhysics COl11.D1.unica­
tions. The main c r i.ticisms that ca.n he made of the published conventions
are firstly that SOI1.1.eof them do not go far enough and a irn a t a supc r Ii cia l
legibility with little regard for structure Or fo lO portability, and secondly
that some of them seek to restrict unduly the pro grn mmor rs style. The
latte l' may have Iim itcd validity but l1.1.UStbe doomed to failure gene rally.
There are a variety of good programming s ty Ic s just as there are a variety
of good literary styles and the imposition of arbitrary restrictions on crea­
tive programmers is likely to be counter-productive.

I
I

It should be emphasized that these convc nt io ns are simply conventions:
they cannot be enforced mechanically and need the active cognizance and
cooperation of pro grarnrrie r s to be obeyed. Apart from SOIne cornpanies .
where coders are very strictly supervised the nearest approach to enfor­
cement would be in the context of IBM"'s chief prograrnme l' team where a
group of people "walk through" a sequence of code. In Europe at least to
criticize s orneone Js coding is analogous to criticizing his driving and is not
done; indirect criticism by editors and referees of journals is acceptable.

The next level of advice published relates to the dialects of Fortran. Some
authors advocate the use of the common sub s ot of generally available For­
trans for writing portable progranls and a few have gone so far as to docu­
ment a version of this. This subset is often used in practice with fair suc­
cess. It does however suffer from the disadva.ntage that it is ill-defined
(and may even vary with new software releases) so that there is no sure
way of checking that a program conforms to the subset. More authors sug­
gest adherence to the ANSI Standard which is relatively well defined, docu­
mented and described and gives a much firmer foundation on which to build
a portable program. Moreover it is possible to check mechanically that a
program conforms syntactically to the Standard. Third in this progression,
it is possible to use a subset of the ANSI Standard language such as that
defined for PFORT. PFORT is the most comprehensive software tool
available to overcome differences in dialect and in wordlength so far as the
number of characters per word is concerned. Moreover it is a tool which
is not associated with a particular computer and is generally available.
However, the portability is gained at the expense of a slight loss of lan­
guage facility and a potentially significant increase in run-time space re­
quirement and execution time if there is much characte r handling.

I~

1_.
I
I

The problems of wordlength so far as numerical precision is concerned
are common to all compute r languages and the analysis of floating-point
a rithmetic forms a well defined subbranch of mathematics. Pos sibly for
these reasons this topic is not so widely discussed as it could be in the
context of portability in general but it naturally occurs in the lite rature

I
I"" ...

.._---_ -------

-I
"

2-27

of numerical software .•,

Other spheres such as differences in input-output unit capabilities are
of lesser import with most modern operating systems and there is little
that can be usefully said in detailed terms over such a wide field. Pro­
grammers writing portable programs should read at least one of the gene-
1'0,1 review papers> one of the Fortran dialect comparisons and some di­
rect implementation experience (such as Buhler) to get a better under­
standing of the gross and the subtle variations between computer systems
and thus to appreciate what is machine independent and what is not.

Apart from the syntax checker the other main tool of direct relevance to
portability is the translator which offers a quick and accurate solution to

\

dialect problems; its disadvantage is usually the cost. Translators tend to
be expensive and a heavy throughput. which is usually ovel' a limited pe­
r-iod of time, is necessary to justify their acquisition. Their use for occa=
sional inter-machine transfer is therefore not common and there could be
advantages in the setting up of central translation services.

The final direct tool, strictly for multi-machine rather than for portable
software, is the master SOurce & macroprocessor system which tends to
be used by cooperative groups, although there is no reason why an indivi­
dual should not use it.

The bulk of the software aids discussed in section 2.6.4 are not directly
related to portability but help the programmer to gain a better understand­
ing of a program. The rnor e important of the static a.naIyses are the cross­
reference listing, some of the tidying facilities, the structural analysis
(e. g. Schneck-Angel) and the path analysis (e. g. DAVE). The more impor­
tant dynamic analyses are frequency counts and the run-time tests made
by some checking corripile r s such as WATFIV. All these help to indicate
structure, flow of control or observance of the standard. Some of the other
software tools may be useful in limited applications: those which generate
Fortran programs often produce code which is ugly and obscure and a few
of the others are of dubious utility.

The two current major developments in Fortran, the new draft Standard
and structured programming, are more recent than most of the portability.
literature and may make some of it obsolescent. The new Standard and the
corresponding compilers will give a new aspect to the dialect problem;
hopefully variations will not be so strong as in the past. Even if they are
the new Standard marks a significant advance in facilities and programluers
should have less cause to stray outside its limits.

Structured Fortran offers another significant advance in facilities which
mayor may not be included in the new Standard. If they are, Fortran will
be strengthened in its current position; if they are not, there seems likely
to be a period of increasing use of structured Fortran preprocessors which
could aid portability at the Fortran level through incorporation of syntax

-
2-28

checke rs into the preproces sor s , but which would be chaotic at the level
of structure command syntax.

Two current developments in portability which it will be interesting to
follow are those of Whitten and deMaine, and Dahlst rarid, To use the rail­
way analogy so often applied to standards, most wor ker s are content if
trains run throughout most of Europe on one gauge (4 feet 8 1/2 inches,
1435 mm) and have to have bogies changed for Russia (5 feet, 1524 mm) or
Spain (5 feet 6 inches, 1676 rnrn}; Whitten and deMaine would have all trains
equipped v-i.th multiple wheels to run on any track, Dahlstrand would have
all countries adopt the same gauge and would widen tunnels and clearances
as neces sary. (Rus sia ts railways were delibe rately made diffe rent for de­
fence reasons)

2.9 Conclusions

There is a widespread desire for programs to be portable for reasons of
cost and general efficiency and there has been increased awareness of
. this particularly in the past three years •. With real systems, portability
in all aspects is something to be approached rathe r than achieved and this
possibly explains the paucity of r elevarrt software tools. A literature has
grown in recent years but this too, while it contains much useful advice,
can offer no guarantee of succes s. Given the wide range of environments
in which a program may have to operate, portability is more a skill than
a science. Its best exponent is an intelligent informed programmer.

--
1-

'--..•.-~-~..,..-_.__

3 -1

I
I

II
Ii
II
I

I
I
I

3. PROGRAM DOCUMENTATION

3. 1 Ove rview of Documentation Paradigms

The literature of program docurnentation is remarkable, fir s'tly because
it contains an Arrie r ica.n Standard which cannot possibly be enforced.and
secondly because published reviews have almost invariably been censo-
r i.ous , Publications on documentation are relatively recent, first appear­
ing not long before those on portability; Gray an.d London (1969) was des-
c ribed as the first book cornrn e rcially published devoted to documentation.
Gray and London gave a full set of guidelines, with examples, for analytic,
system, program, operational, user and management documentation. \
This work was followed by Walsh (1969), Kuehne et ale (1972), van Duyn
(1972), NCC (1972 and 1973) and Robinson and Graviss (1973). The Ameri­
can Standard (sponsored by the American Nuclear Society) appeared in 1974.
It addresses itself to the program abstract, user manual, problem defini­
tion and pr ograrnrne r manual but it is only a five page checklist of headings,
some of v:hich are cryptic in the extreme, e. g. discuss any man-machine
inte ractions, so that while it provides useful guidelines, most junior pro­
grammers would have to be referred to one of the more complete guides,
perhaps the NCC ones, Or to one of the many local standards in us e at in­
stallations, or to the semi-public models of program libraries or journals
which publish programs.

r,I
I
I

Ove rview pape rs include those by Flores (1972), Goos (1973), Brown (1974b)
Sheaks (1974) and Harper (1975); that of Goos is highly recommended. Case
study papers include Katzenelson (1971) and Henrywood (1973).

All the above papers tend to concentrate on documentation about the pro­
gram without necessarily affecting the program. Robe r ts (1969) and Banks
e t a1. (1972a) begin from comments in the program building up to separate
user documents. Roberts outlines possibilities of automatic documentation
of programs; while some of the program documentation aids (section
2.6.4.6) have proved useful, a software tool cannot get more information
out of a source program than the programmer put in and for this reason
experience with them has been generally disappointing.

3.2 Discussion

Cri tic i.sm of the published guidelines has not been because they are mis­
leading, Or offer contradictory or controversial advice, but more because
they omit some fields, e. g. fail to recognize the introductory guide/ refe­
rcnce manual distinction for users, because they are biased to particular
applications, because they are too obvious and underestimate the reader
Or simply because they are too verbose. Without making a detailed compa­
rison it is not possible to come to any conclusion; the American Standard
is at least succinct and reasonably comprehensive.

1

-I,

_ J
I
I

R-1

REFERENCES

Aitken, L. D. (1970); An EMA to Fortran Translator. Program Library
Unit, Unive rsity of Ed inbu r gh

Allan, J. J., D. P. Moore and H. P. Rogaway (1963); SIFT -SHARE Inter­
nal Fortran Translator. Datamation, vol. 9 (March).
pp 43-46

American National Standards Institute (1966a); American National Standard
FORTRAN (ANS X3. 9-1966). ANSI, New York

American National Standards Institute (1966b); American National Standard
Basic FORTRAN (ANS X3.10-1966). ANSI, New York

\
American National Standards Institute Subcommittee X3J3 (1971); Clarifica­

tion of Fortran Standards - Second Report. CACM, vol,
14, pp 628-642'- I

Arne rican National Standards Institute Subcommittee X3J3 (1976); Draft Pro­
posed ANS FORTRAN. ACM SIGPLAN Notices, vol, II,
no. 3 (March)

American Nuclear Society (1974); American National Standard Guidelines
for the Documentation of Digital Computer Programs,
ANSI N4l3 -1974. ANS, Hinsdale, Illinois

American Standards Association X3 Committee (1964); Fortran vs , Basic
Fortran. CACM, vol. 7, pp 591-625

Baker, F. T. (1972); Chief programmer team management of production
programming. IBM Systems Journal, vol , 11, pp 56-73

Baker, F. T. and H. D. Mills (1973); Chief programmer teams. Datamation
vol. 19 (Dec.) pp 58-61

Banks, D., I.C. Percival and J. M. Wilson (1972a); Stirling Fordoc 01 : A
~et of documentation conventions for Fortran packages
and routines. Computer Physics Communications, voI, 3,
pp 180-196

Percival and J. M. Wilson (1972b); Classical relative
motion of 2 particles (EVAR edition 02). Cornpute r Physics
Communications, voI, 3, pp 197-220

Banks, D., 1.C.

I-
I

1'-

Baron, M. L., R. L. Schiffman and S. J. Fenves (1974); A national software
.center for engineering. pp 615-631 in Pilkey et ale (q. ,,)

Beckman, A (1976); Automatic translation between programming language
dialects (submitted to Software Practice and Experience)

Berner, R. W. (1969); A politico-social history of Algol. Annual Review in
Automatic Programming, pp 151-237. Pergamon Press,
Oxford

I\,_.

...

R-2

Berkowitz, R. L. (1970); A comparison of some Fortran languages. U. S.
Naval Research Laboratory Memorandum Report 2191,
October 1970

Bevan, J. D. (1975); BASIC to Fortran automatic translation. Mimeographed
note, August 1975. National Development Programme in
Computer Assisted Learning, London

Bock, R. K. (1975); Program Portability in High-Energy Physics. Compu­
ter Physics Communications, vol. 9, pp 221-229

Bohrn , C. and Jacopini (1966); Flow diagrams," Turing machines and lan­
guages with only two formation rules. CACM, vo l, 9,
pp 366- 371

Bommas, W. (1968); An Algal 60 to PL/l translator. Proc. SEAS XIII Con­
ference, Scheveningen. SEAS, Nijmegen

Boyle, J. and K. Dritz (1974); An automated programming system to faci­
litate the development of quality mathematical software.
lFlP 74 Proc., pp 542-546

Brown, A. R. and W.A. Sampson (1973); Program debugging. Macdonald,
London

Brown, F. D., V. J. Calderbank and M. D. Poole (1971); Some comments
on the portability of a large Algol program. Software
Practice and Experience: vol, 1, pp 367-371

Brown, P. J. (1974a); Macroprocessor s and techniques for portable soft­
ware. Wiley, London

Brown, P.J. (1974b); Programming and documenting software projects.
Computing Surveys, vol. 6, pp 213-220

Brown, W.S. (1969); Software Portability. Proc. NATO Conf. Techn. Soft­
ware Eng., Rome

Buhler, R. (1975); P-STAT Portability. Proe. Computer Science and Sta­
tistics, 8th Annual Symposium on the Interface, UCLA,
February, 1975

Ca rdetta, L., O. Mur ro, F. Stea and E. Uva (1976); Un precompilatore
per Ia codifica strutturata in ambiente Fortran. CSATA
lnte rna1 Report, April 1976, Bari

Cardetta, L., O. Murro and E. Uva (1975); Una esperienza di implemen­
tazione ed utilizzo di un precompilatore Fortran per la
diffusione di tecniche di pro grammazione strutturata.
Congresso AlCA 1975, Genova, October 1975

Christiansen, J. P. and K. V. Roberts (1974); OLYMPUS - A Standard con­
trol and utility package for initial value Fortran programs.
Computer Physics Communications, vol. 7, pp 245-270

...

-
R-3

Clark, R. L. (1973); A linguistic contribution to GO TO-les s programming.
Datamation, voI, 19 (Dec.), pp 62-63

Croes, G.A. (1975); A us er ts conce rn with programming methodology.
Froc. SEAS Spring Technical Meeting, Aalborg, Den­
mark, April 1975, pp 31-48. SEAS, Nijmegen

Croes, G.A. and F. Deckers (1975); Aspects of structured programming·
in Fortran. Informatie, voI, 17, pp 121-131

Dahl, O. J., E. W. Dijkstra and C. A. R. Hoare (1972); Structured program:­
mingo Academic Pres s, London

Dahls t ra nd, I. (1976); Portabilitet inom teknisk-vetenskaplig ADB. STU­
rapport 74-4022. Lunds Datacentral, Lund

Dasenb rock, R. R. (1974); An editing routine for Fortran programs. Naval
Research Laboratory report AD-779841/6

Day, A.C. (1971); FORMAPRO - Fortran Macroprocessor. University Col­
lege London Computing Centre, Technical Report no. 2

Day, A. C., J? A. Clarke, D. Hill and J. K. Reid (1976); An Examination
of Fortrev (to be published in the Computer Journal)

Dekker, T. J. (1971); A floating point technique for extending the available
precision. Numerische Mathematik, vol, 18, pp 224-242

Dijkstra, E. W. (1968); GO TO statement considered harmful. CACM, vol.,
11, pp 147-148

Donaldson, J. R. (1973); Structured programming. Datamation, vol. 19
(December), pp 52-54

Engel, F. (1974); Revise Standard Fortran? Datamation, voI, ·19 (May),
pp 164-169

l~

European Computer Manufacturers Association (1965); ECMA Standard on
Fortran (ECMA-9), ECMA, Geneva

Flores, 1.(1972); Intraprogram documentation. Software Practice and Ex­
perience, voI, 2, pp 353-358

Ford. B. (1976); Machine characteristics and their parameterisation in
numerical software. Mimeographed note. 22 January,
1976, NAG, Oxford

Ford, B., S. J. Hague, J. A. Prentice and D. B. Taylor (1974); The deve­
loprnent and maintenance of multi-machine software in
the NAG project, in D. J. Evans (editor) Software for
Numerical Mathematics, Academic Press, London

FOR- WORD, Fortran Development Newsletter. Edited by L. P. Meissner,
50-B 3239 Lawrence Berkeley Laboratory, Berkeley,
California 94720I '-­

I
I

1'--

!
[
I'I

,_

-
R-4

Fosdick, L. D. (1974); BRNANL - A Fortran program to identify basic
blocks in Fortran programs. University of Colorado
report PB-235 294/6, March 1974

Fosdick, L. D•. and L. J. Osterweil (1974); Automated input-output variable
classification as an aid to va.Iidat ion of Fortran programs.
University of Colorado report PB-235293/8

Fosdick, L. D. and L. J. Osterweil (1976); DAVE - A valuation, er ro r
detection and documentation system for Fortran programs.
(Submitted to Software Practice and Experience)

Friedrich, H. J. (1975); Fortran Standards - Empfehlungen Iur die standar­
disierte Anwendung von Fortran fur Programme zur Aus­
wertung medizinischer Datenbesta nde, Beiheft zum Sta­
tistical Software Newsletter B 1, February 1975, Univer­
sity of Giessen, Germany

Fries, G. (1975); The problem of compatibility - an introduction. Report
LU/CS 75:07,1975. Department of Computer Science,
Lund University

Ghan, L. (1971); Better techniques for developing large scale Fortran pro­
grams. P'roc, ACM 1971 Annual Conference, New York,
pp 520-537

Goos, G. (1973); Documentation. pp 385-394 in F. L. Bauer (editor) Advan­
ced Course in Software Engineering, Springer, New York

Gray, M. and K. R. Loudon (1969); Documentation Standards. Brandon/Sys­
. tem Press, Princeton, New Jersey

Hague, S. J. and B. Ford (1976); Portability - prediction and correction.
Software Practice and Experience, vol. 6, pp 61-69

Harper, W. L. (1975); Building EDP success by standing on shoulders.
Computer, vol, 8, pp 50-56

Heising, W. P. (1964); History and summary of Fortran standardization
development for the ASA. CACM, voI, 7, p 590

Henrywood, R. K. (1973); The design, development, documentation and sup­
port of a major finite element system. Computer aided
design, vol. 5, pp 160-165

Hertweck, F. (1970); String Handling in Fortran. Proc. SEAS XV Confe­
rence, Munich. SEAS, Nijmegen

Hill, 1.D. (1968); Procedures for the basic arithmetical operations in multi­
length working. Computer Journal, vol, 11, pp 232-235

Hill, I. D., R. S. Scowen and B. A. Wichmann (1975); Writing algorithms in
Algol 60. Software Practice and Expe rience, vol. 5, pp
229-244

Hirose, K., K. Utsunowiya, M. Sakakura and F. Hamrna (1974); Design of
Fortran-oriented Flowchart program FFL and its imple­
mentation. Information processing in Japan, vol, ·14,
pp 20-25

..

I

I
-

R-5

Hoare, C. A. R. (1973); High level programming languages - the way
behind. pp 17-26, in "High level programming langua­
ges - the way ahead", KCC publications, Manchester

Holbe rt on, F. E. and E. G. Parker (1974); NBS Fortran test programs,
vols , 1-3. NBS Reports COM-75-50138/7, 50139/5,
50140/3, Washington, D. C.· .

Hopgood, F. R. A. and A. G. Bell (1967); The Atlas Algol preprocessor
for non-standard dialects. Computer Journal, vol. 9,
pp 360-364

Horowitz, E. (1975); Fortran - Can it be structured - should it be.
Computer, vol. 8 (June), pp 30-37

Hughes, M.H. ,
\

K. V. Roberts and G. G. Lister (1975); OLYMPUS and
utility package for the CDC 6500. Computer Physics
Communications, vol, 10, pp 167-181 .

Hughes, M.H., K. V. Robe rts and P. D. Robe rts (1975); OLYMPUS and
utility package for an IBM 370/165. Computer Physics
Communications, vol , 9, pp 51-58

International Computer Programs (1975); ICP Software Directory, voI, 1,
July 1975. ICP, Carmel, Indiana

International Organization for Standardiza.tion (1972); Programming Lan­
guage Fortran ISO Recommendation no. 1539. ISO,
Geneva

'­!
I

I~
i
I

Jones, R. A. and D. P. Taylor (1973); FR II 08 - A program to transfer
certain machine dependent Univac 1108 statements to
ANSI Fortran. University of Colorado Computing Cen­
ter Report 73":25

Kamynin, S. S. and E. Z. Lyubimskiy (1967); Algoritmicheskiy mashino­
orientirovannyy yazyk ALMO. no. 1 in the series Algo-

I ritmy i algoritmicheskie yazyki. Akademia Nauk, Moscow

Katzenelson, J. '(1971); Documentation and the management of a software
project. Software Practice and Expe rience, voI, 1,
pp 147-157

Kernighan, B•.W. (1975); RATFOR: A preprocessor for rational Fortran.
Software Practice and Experience, voI, 5, pp 395-406

Knuth, D.E. (1971); An empirical study of Fortran programs. Software
Practice and Experience, voI, I, pp 105-133

Knuth, D. E. (1974); Structured programming with GO TO statements.
Computing Surveys, vol. 6, pp 261-302

Krogh, F. T. (1972); A method for simplifying the maintenance of software
which consists of many versions. S 914 Technical Memo­
randum 314. Jet Propulsion Laboratory, Pasadena, Cali­
fornia, 15 September 1972

. ..

-
. R-6

Kuehne, R. S., H. W. Lindberg and W.F. Baron (1972); Manual of com­
puter documentation standards with forms. Prentice
Hall, Englewood Cliffs, New Jersey

Kuls rud, H. G. (1974); Some statistics on the reasons for compiler use.
Software Practice and Experience, vol, 4, pp 241-249

Langenheder, W. (1976); The present state in Europe of software access
and information transfer in the field of research and
teaching. pp 14-22 in W. Langenheder and H. Zullighoven·
(editors) Proceedings of the 1. ECSIR Workshop, Febru­
ary, 1976. GMD, Bonn

Larmouth, J. (1973); Serious Fortran. Software Practice and Experience,
voI, 3, pp 87-107 and pp 197-225 \

Luchovitskaya, E. S. (1974); Analiz kachestvo translatorov, razrabotannykh
na baze ALMO (Analysis of the quality of compilers deve­
loped using ALMO). Akademia Nauk, Moscow

Lyon, G. and R. B. Stillman (1975); Simple transforms for instrumenting
Fortran decks. Software Practice and Experience, vol, 5,
pp 347-358

Macleod, I. A. (1970); SP/l - A Fortran integrated string processor.
Computer Journal, vol, 13, pp 255-260

Macleod, 1.A. (1971); MP/1 - A Fortran mac roproces sor , Computer Jour­
nal, vol, 14, pp 229-231

McCormick, J. M. (1974); Programming for effective interchange. pp 651-
667 in Pilkey et al. (q. v.)

McCracken, D.D. (1965); How to tell if it"s Fortran IV. Datamation, voI, 11
(October), pp 38-41

McCracken, D. D. (1973a); Is there a Fortran in your future? Datamation,
voI, 19 (May), pp 236-237

McCracken, D. D. (1973b); Revolution in programming: an overview.
Datamation, vol. 19 (Decembe r), pp 50- 52

McCracken, D. D. and G. M. Weinberg (1972); How to write a readable
Fortran program. Datamation, vol, 18 (October), pp 73-77,

McEwan, A. T. (1967); An Atlas Autocode to Algol 60 translator. Computer
Journal, vol, 9, pp 353-359

Meissner, L. P. (1975); On preprocessors. ACM SIGPLAN Notices, vol,
10 (December) p. 39

Meissner, L. P. (1976a); Proposed ANS X3. 9 Fortran language revision.
F'orword , voI, 1, no. 6 (January, 1976)

Meissner, L. P. (1976b); A compatible structured extension to Fortran.
ACM SIGPLAN Notices, vol. 11, no. 2

Merrill, R. G. (1974); Fortran concordance program. National Oceanic and
Atmospheric Administration report COM-74-11187/3

...

~~---- ----~

R-7

Miller, E. F. and G. E. Lindamood (1973); Structured programming: the
top-down approach. Datamation, vol, 19,(December)
pp 55-57

Mongin i= T'ama gni.ni., C. and G. Gaggero (1974); Software Exchange within
the European Community. pp 633-649 in Pilkey et aI,
(q. v,)

Moulton, P. G. and M. E. Muller (1967); DITRAN - A compiler emphasi­
zing diagnostics. CACM, voI, 10, pp 45-52

Murison, J. M. (1974); Program in internal use at Edinburgh Regional
Computing Centre. (not yet published)

Muxworthy, D. T. (1970); Dialects of Fortran. Proc. SEAS XV Conf~rence,
Munich, pp 235-244. SEAS, Nijmegen

Muxworthy, D. T. (1972a); Standard Fortran - a short history. Computer
Bulletin, voI, 16, pp 211-213

Muxworthy, D. T. (1972 b); On the portability of Fortran programs. Mana­
gement Informatics, voI, 1, pp 125-127

Muxworthy, D. T. (1976); The new standard Fortran. SEAS Newsletter,
June 1976. SEAS, Nijmegen

Muxworthy, D. T. and B. H. Shearing (1970); A review of some dialects
of Fortran. Alcock, Shearing and Partners, London

National Computing Centre (1972a); Standard Fortran Programming Manual
(Second Edition). NCC, Manchester. Reviewed in Com­
puter Journal (1974), vol, 17, p 123 and Computing Re- _
views (1974), vol. 15, p 19

National Computing Centre (1972b); Programming Standards: voI, 1 Docu­
mentation. NCC, Manchester

National Computing Centre (1973); Systems Documentation Manual (Third
Edition), NCC, Manchester

Naur , P. (1967); Machine dependent programming in common languages.
BIT, vol, 7, pp 123-131

Neely, P. (1976); The new programming discipline. Software Practice "
and Experience, voI, 6, pp 7-27

Olsen, T. M. (1965); Philco/IBM translation at problem-oriented, symbo­
lic and binary levels. CACM, vol. 12, pp 762-768

Oswald, H. (1964); The various Fortrans. Datamation, vol , 10 (August),
pp 25-29

Paige, M. R. and J. P. Benson (1974); The us e of software probes in test­
ing Fortran programs. Computer, voI, 7, pp 40-47

Papakonstantinou, P. (1975); A portable preprocessor for recursive For­
tran. Angewandte Informatik, vol, 17, pp 492-494

. ..

-
R-8

I
f

Pilkey, W., K. SaczaIsk.i and H. Schaeffer (editors) (1974); Structural
Mechanics Computer Programs. University Press of
Virginia, Charlottesville

Poole, P. C. (1973); Debugging and testing. pp 278-318 in F. L. Bauer
(editor) Advanced Course in Software Engineering,
Springer, New York

Pullin, D. (1964); A Fortran to Algol Translator. Computer Journal,
vo I, 7, pp 24-27

Rabinowitz, I. N. (1962); Report on the algorithmic language Fortran II.
CACM, vo l, 5, pp 327-337

Ralston, A. (1973); The future of highe r level languages (in teaching).
International Computing Symposium, pp 1-10

- -

Ramamoorthy, C. V., R.C. Cheung and K.H. Kim (1974); Reliability and
integrity of large computer programs. University of
California Berkeley, Report AD-779339/1. 12 March,
1974

Ramamoorthy, C. V. and S. F. Ho (1974); Fortran Automatic Code Eva­
luation System (FACES). University of California Ber­
keley. Report AD/ A-00416 8/1. 25 July,1974

Reifer, D. J. (1975); Automated aids for reliable software. Aerospace
Corporation Report AD-A014821/3. 26 August, 1975

Reifer, D. J. (1976); The structured Fortran dilemma. ACM SIGPLAN
Notices, vol, 11 (February) pp 30-32

Reynolds, R. A. (1976); String Manipulation in Fortran. (Submitted to
the Computer Journal)

Roberts, K. V. (1969); The publication of scientific Fortran programs.
Compute r Phys ics Communications, vol , 1, pp 1-9

Roberts, 'K. V. (1974); An introduction to the OLYMPUS system. Compu­
ter Physics Communcations, voI, 7, pp 237-243

Robinson, J. P. and J. D. Graviss (1973); Documentation Standards Manual
for Computer Systems. Associated Systems 1vlanagement,
Cleveland

Robinson, S. K. and I. J. Torsun (1976); An empirical analysis of Fortran
programs. Computer Journal, vol , 19, pp-56-62

Rogers, J. G. (1975); Structured programming for virtual storage systems.
IBM Systems Journal, voI, 14, pp 385-406

Rohl, J. S., H. D. Ellison and R. J. Collins (1975); An incore batching stan­
dard Fortran compiler for large 1900 machines. Software
Practice and Expe rience, vol, 5, pp 19-28

Rosen, S. (1961); ALTAC, Fortran and compatibility. ACM i'bth National
Conference Preprints, pp 2B-2(1)-(4) I. ~

. ..

R-9

v.,

Ryder, B. G. (1974); The PFORT Verifier. Software Practice and Expe­
rience, vol, 4, pp 359-377

Sackman, H., W. J. Eriksen and E. F. Grant (1968); Exploratory Experi­
mental Studies comparing on-line and off-line program­
ming performance. CACM, voI, 11, pp 3-11

Sale, A.H. J. (1971); The classification of Fortran Statements. Computer
Journal, vol. 14, pp 10-13

Sammett, J. (1969); Programming Languages: History and Fundamentals.
Prentice Hall, Englewood Cliffs, New Jersey

Sanders, N. and Fitzpatrick (1963); Algol and Fortran revisited. Datama-
tion, voI, 9 (January) pp 30-32 \

Satterthwaite, E. (1972); Debugging tools for high level languages. Soft­
ware Practice and Experience, voI, 2, pp 197 -21 7

Schiffman, R. L. (1974); Current software dis semination practices and
organizations. pp 591-614 in Pilkey et aI, (q. v.)

Schneck, P. B. and E. Angel (1973); A Fortran to Fortran optimizing com­
piler. Computer Journal, voI, 16, pp 322-330

Schofield, C. F. (1968); A study of Fortran Compatibility. University of
London, Atlas Computing Service

Schonfelder, J. L. (1976); The production of special function routines for
a multi-machine library. Software Practice and Expe­
rience, vol. 6, pp 71 -82

SHARE Program Library Agency Ueer Is Guide and Catalog of Programs.
Annual Publication. SHARE Inc , , Chicago

Shaw, A. (1972); Program in internal use at University College, London
Computing Centre

Sheaks, D. (1974); A blueprint for documentation standards. Data Pro­
cessing, vol, 16, pp 382-390

Stuart, F. (1969); Fortran Programming. Wiley, New York

Taylor, D. B. (1974); Management practices in the development and dis­
tribution of mathematical software with emphasis on com­
putational aids. pp 373-382 in D. J. Evans (editor) Soft­
ware for Numerical Mathematics, Academic Press,

'- London

Thorlin, F. (1972); What"s new with DO? Datamation, vol , 18 (December),
pp 142-144

Traub, J. F. (1971); High quality portable numerical mathematical soft­
ware. pp 131-139 in J. R. Rice (editor) Mathematical
Software, Academic Press, New York

;...

,-

-
R-10

United States of Ame rica Standards Institute X3 Committee (1969); C1ari­
fication of Fortran Standards - Initial progr es s, CACM
voI, 12, pp 289-294

van der Riet, R. P. (1973); ABC Algol - a portable language for formula
manipulation systems. Mathematisch Centrum, Amster­
dam. Tracts 46 and 47

van Duyn, J. (1972); Documentation Manual. Auerbach

van Wijngaarden, A, B. J. Mailloux, J. E. L. Peck, C. H. A. Koste r (1969);
Report on the algorithmic language Algol 68. (inter alia:)
Numerische Mathematik, vol. 14, pp 79-218

Warburton, B. (1976); SHORTRAN - program in internal use at the Lon~on
School of Pharmacy

Waite, W.M. (1975); Hints on distributing portable software. Software Prac­
tice and Experience, voI, 5, pp 295 - 308

Walsh, D. (1969); A guide for software docurnenta tion, Advanced Computer
Techniques Corporation and McGraw-Hill, New York

Whitten, D. E. and p. A. D. deMaine (1975); A machine and configuration
independent portable Fortran (PFortran). IEEE Transac­
tions on Software Engineering, vol , SE-l, pp 111-124

Wichmann, B. A. (1973); Algol 60: Compilation and Asses sment. Academic
Press, London

Winske, P. (1975); Variable Dimensionierung von Feldern in grossen Pro­
grammen. Angewandte Informatik, vol, 17, pp 479-482

.Wirth, N. (1974); On the composition of well-structured progra~s. Compu­
ting Survey, voI, 6, pp 247-259

Working Party on Fortran Extensions (1971a); The next Standard Fortran?
Computer Bulletin, vol. 14, pp 312-314

Working Party on Fortran Extensions (1971b); Some comments on extending
Fortran, 48 pp. Mimeographed note

Working Party on Statistical Computing (1975); The construction and des­
cription of algorithms. Applied Statistics, vol. 24, pp
366-373

Wright, D. C. (1966); A comparison of the Fortran language implementa­
tions for several computers. CACM, vol, 9, pp 77-79

Yer shov , A. P. (editor) (1971); The ALPHA Automatic Programming Sys­
tem. Academic Press, London

Zeckendorf, L. J. (1973); Character sets en codes. Informatie, vol. 15,
pp 653-661

Zelkowitz, M. V. (1973); Reversible Execution. CACM, vol. 16, p 566.

A-I

APPENDIX A

STRUCTURED FORTRAN PREPROCESSORS

There follows a list of structured Fortran preprocessors which have
been mentioned in the literature. It does not claim to be exhaustive.

Name

ATHENA-ML
B4TRAN

COM-SP
DAY-SMP
DEFT
DO-OD IF-FI

ELESSAR
ESFOR
FDP- 5798 -CDW
FLECS
FORTRAN-S
FORTRAN-4S
FORTSP
HIGGINS.•....- I

!
II-
I

1'- I
I
!
-'

'- I
I

'- ,..

IFP
IFTRAN-l

IFTRAN-2
IFTRAN-C
IFTRAN-LA

IFTRAN-W

IFTRAN-X

IPLFOR
LINUS
MELTRAN

1I~
I
I

MORTRAN-I
MORTRAN-2
MORTRAN-X

MTUFP
I
I
I I.._

NSF-TRAN

PMDS

Author or Contact

J. Pe rrine
L. P. Meissner

R.E. Jeffries
A. C. Day
T.E. Hull
J. L. Wagener

R. Bond
W.L. Bearley
G. McCool
T. Beyer
T.E. Hull
R. S. 0 "B ryant
T. Saisho
D. S. Higgins

R. E. Kottle r
R. O. Parker

R. O. Parker
W. R. Bezanson
M. Cohen

D. L. Dietmeye r

E.F. Miller

A. Schwartz
C. M. Bernstein
J. S. Miller

A. J. Cook
A. J. Cook
R. H. Ault

J. Lowther

F. Friedman

D.J. Reife r

...

Organization

Jet Propulsion Lab, Pa sadena
Lawrence Laboratory, Ber-

keley, CA
COMSHARE, Ann Arbor
University Colleg~, London­
Unive rsity of Toronto
State University of New York.•

Brockport
Essay Co r-p;, Oklahoma City
Citrus College, Azusa, CA
IBM, Glendale, CA
Unive rs ity of Oregon, Eugene.
University of Toronto
Texas Instruments, Dallas
(Tokyo)
Florida Power Corp., St.

Petersburg
lnte rmetrics, Cambridge, MA
General Research Corp.,

Santa Barbara
II " 11 II

Carleton University, Ottawa
University of Southern Cali­

fornia, Marina del Rey
University of Wisconsin,

Madison
General Research Corp.,

Santa Ba rba ra
Jet Propuls ion La.b, , Pasadena
Bowling Green State Uni v;., Ohir
Intermetrics Inc , , Cambridge,

Mass.
Stanford LAC, Stanford

11 11 11

University of Utah, Salt Lake
City

Michigan Tech. University,
Boughton

Temple University, Philadel­
phia

Aerospace Co rp; , Los Angeles

A-2

Name Author Or Contact

PREFOR
PREST4
PSST

W.M. Bradley
N. Kaffer
L. Stucki

RATFOR
SAFTE
SFOR
SFORTN
SFOR-LSI
SFP

B. Kernighan
J. M. Kamrad
D. O'Neill
L. L. Pooler
T. Mizoguchi
R. Rich

SFTRAN
SF-CHAT

J. Flynn
F. Foldvary

SF -CONCORDIA
SF-HENKE
SF-RIO

T. Radhakrishnan
W. L. Henke
R. N. Melo

SF -VISNAVICH F. Towster

SGOL
SHELTRAN

C. T. Zahn
G. A. Croes

SIXTRAN W.H. Burkhardt
SPA S. A. Steele
SPARKS E. Horowitz

SPDS D. Gormley
SPFORT B. Press
SPIFFY L. Carpenter

SPL A. Wilson
SPL&C A. Holgado
STAPLE S. L. Stewart

STRAN W. L. Johnson
STRUFO G. Maioli
STRUFORT O. Murro
SUGFOR A. Beckmann
S-FORTRAN G. de Balbine

S-WATFIV/WM N. E. Gibbs

TRANSFOR L. Carpenter

TR6B-TR7X L. Mossberg
WATFIV-S P. Dirksen
XFORT A. Gyarfas

ZCMP Z.C. Motteler

I
II

~
r.

I

-
Organization

IBM, Houston
Ohio State University, Columbus
McDonnell Douglas, Hunting-

ton Beach, CA
Bell La.bs , , Murray Hill, NJ
Sperry Univac, St. Paul
Bell Labs., Holmdel, NJ
Hughes Aircraft, Oceanside, CA
Mitsubishi, Tokyo
Johns Hopkins University,

Silver Spring, MD
Jet Propulsion La.b, , Pasadena
Lawrence Laboratory, Liver-

more, CA-
Concordia University, Montreal
MIT, Cambridge, MA
Pontificia Univ. Catolico,

Rio de Janeiro
University of Southwestern

Louisiana, Lafayette
Stanford LAC, Stanford
She11Inte rnational Petroleum,

London
Unive rs ity of Stuttgart
RCA, Moorestown, NJ
Unive rs ity of Southern Califor-

nia, Los Angeles
IBM, Westlake Village, CA
TRW, Redondo Beach, CA
Boeing Com.puter Services,

Renton, WA
On-line Systems Inc; , Pittsburgh
University of Michigan, Ann Arbc
National Bureau of Standards,

Washington
Ford Motor Co., Dearborn
C.N.E.N., Bologna
C.S. A. T. A., Bari
Uppsala Urii ve r s i.ty
Caine, Farber & Gordon Inc.,

Pasadena
College of William and Mary,

Williamsburg, VA
Boeing Computer Services,

Renton, WA
Volvo, 'Tr olIhat tan , Sweden
University of Waterloo, Ontario
Hungarian Academy of Science,

Budapest
Michigan Tech. Unive rsity,

Houghton. ..

A-3

The list contains 67 items.

The geographical distribution is:

USA51 (incl. California 21),
Canada 5,
Britain 2,
Italy 2,
Japan 2,
Sweden 2,
Brazil 1,
Germany 1,
Hungary 1•

. ~.

r

I
jL.
I

i '­I "
!

-

I
I
I

I

I
i
I

-
B-1

APPENDIX B

OVERVIEWOF SOFTWARE TOOLS MENTIONED

Section Function

2.6.4.2
2.6.4.3

2.6.4.4. 1
2.6.4.4.2

Syntax checkers
Statement identifier
Frequency counters
Structure analyser
Path ana1yser
Program linkage analyser
(plus several undefined checkers)
Special purpos e preprocessor s
Fortran-to-Fortran optimizer
Preprocessor to dimension arrays

II II allocate common blocks
II for recursive Fortran

to all abbr~viations of keywordsII

2.6.4.4.3
2~6.4.4.4
2.6.4.5
2.6.4.6

Ma c ro proc e s s o r.s
Structured Fortran preproces sor-s
Debugging aids
Source concordance programs
Source tidying programs
Flowcharting programs
Utilities
Character-handling routines
Fortran II to IV translators
Fortran dialect-to-dialect translators
Fortran dialect-to-standard translators
Fortran-to-other language trans lators
Other language-to-Fortran translators
Other language translators
Compiler testers

2.6.4.7

2.6.4.9

!I
I

I

