GEC COMPUTERS LIMITED DD 1195

User Hardware Handbook — Computer

CENTRAL PROCESSOR UNIT INSTRUCTION SET

@ GEC Computers Limited 1977

The information presented herein is, to the best of our knowledge, true
and accurate. No warranty or guarantee, expressed or implied, is made
regarding the accuracy of information supplied or capacity, perform-
ance or suitability of any product or service since the manner of use is
bevnnﬂ our control.

You are advised that you should ensure that the information contamed
herein has not been superseded.

All our products, materials and services are sold subject to our Condi-
tions of Sale, available on request.

GEC COMPUTERS LIMITED
Elstree Way, Borehamwood, Hertfordshire.
Telephone No. 01-953-2030

Holding Company — the General Electric Company Limited of England

December, 1977

.ab

o

TS 4463

CONTENTS

INTRODUCTION

1.1 Notation Used

PROGRAM ACCESSIBLE REGISTERS

OPERANDS
3.1 Operand Lengths ...

3.2 Operand Addresses

4.1 Format A

4.2 Format L

4.3 Format B
4.4 Format RR
MODES OF OPERATION

5.1 - Basic Test ...

52 Full Nucleus

5.3 Fixed Point Mode
5.4 Floating Point Mode

5.5 Mode Control

P e R T e e e T e T

FIAED FUIN T UFEHATIUNS

6.1 Number Representation

6.2 Mixed Length Operation

6.3 Condition Markers

6.4 Logical Operations

Page

oo

[+

11

11

1

1"

11

12

-
N

14

il

THE FIXED POINT INSTRUCTION SET: FORMATS A1-A5

7.1

7.2

7.3

7.4

7:5

7.6

Operations on the 32 Bit Accumulator
Operations on Operands in Store
Operations on the X Registgr
Operations on Y and Z Registers

Multiple Load and Store Instructions

Indirect Branches....

INSTRUCTIONS AVAILABLE IN FORMAT B

INSTRUCTIONS AVAILABLE IN FORMAT L

8.1

9.2

9.3

2.4

9.5

9.6

9.7

9.8

INSTRUCTIONS AVAILABLE IN FORMAT RR ...

Operations on the 32 Bit Accumulator

Literal Operations on the X Register

Literal Operations on the Y and Z Registers

Condition Branch Instructions in Format L

Bit Manipulation Instructions...

String Manipulation

Miscellaneous Instructions in Format L

FLOATING POINT OPERATION

1.1

11.2

11.3

Floating Point Number Representation
Floating Point Store Format ...
Floating Point Register Format
Normal Representation ...

Floating Point Zero

Mixed Precision Operation

Overflow and Underflow

Page

15

21

23

26

30

32

33

35

38

40

43

47

50

53

61

61

61

62

62

62

63

L

12.

13.

THE FLOATING POINT INSTRUCTION SET

121

12.2

12.3

124

Normal Length Operations
Extended Operations
Floating Point Conversion Instructions

Floating Point Instructions in Format L

Appendix 12A: Floating Point Arithmetic

CONTROL INSTRUCTIONS AVAILABLE IN BASIC MODE ...

SUPPLEMENT

Supplement 1: Summary of Instructions

Page

64
66
69
69

71

74

1 INTRODUCTION

This manual describes the instruction set of the GEC 4000 Series computers, except for
Nucleus instructions CALL, ICB, SEM and SEG described in detail in CPU NUCLEUS MANUAL.

Excluding the above Nucleus instructions the instruction repertoire of the computers
contains some 155 different instructions. Certain of these instructions may be specified in 1 of 5 operand addressing
formats.

The processor is capable of performing both integer and floating point arithmetic and instructions
are provided for both modes of operation.

1.1 NOTATION USED

In this manual, the following notation is used to describe the instruction set.
a denotes the content of the 32 bit Accumulator A.
da denotes the content of the 64 bit Extended Accumulator BA.
ha denotes the content of the least significant 16 bits of A.
ba denotes the content of the least significant 8 bits of A,
b denotes the content of the 32 bit Accumulator Extention B,
x denotes the content of the 16 bit Index register X.
y denotes the content of the 16 bit Y register,
z denotes the content of the 16 hit Z register,
s denotes the content of the 16 bit Sequence Register S.
| denotes the content of the 16 bit Local Workspace Register L.
fa denotes the short floating point number in the Floating Accumulator.
ea denotes the long floating point number in the Floating Accumulator.
Q denotes the operand address generated by an instruction.
wg denotes the fullword store operand of an instruction.
hq denotes the halfword store operand of an instruction.
bg denotes the byte store operand of an instruction.
fq denotes the short Floating Point operand of an instruction.
eq denotes the long Floating Point operand of an instruction.

2 PROGRAM ACCESSIBLE REGISTERS

The foliowing program accessibie registers are provided.

32 bit Accumulator, A

The accumulator is divided into two 16 bit registers AM and AL. This accumulator is used to hold
the result of fixed point arithmetic and logical operations. It is also used to hold the least significant 32 bits of the
mantissa in the case of iong floating point operations.

32 bit Accumulator Extension, B

This register is divided into two 16 bit registers BM and BL and is used to hold remainders in integer
divide instructions and the mantissa of the result in normal length floating point operations.

BM and BL may be used in conjunction with AM and AL to provide a 64 bit register and in this
case the most significant register is BM and the ieast significant is AL. This 64 bit register is used to hold products

in fixed point multiply instructions and to hold the mantissa of the result in extended-length, floating-point
operations.

16 bit X Register

The X register is used as an index register to address array elements in store. It may aiso be used as
a secondary accumulator and a comprehensive set of instructions is provided for this purpose.

16 bit Y and Z Registers

Both Y and Z registers are used to hold the base address of areas of data such as records. A restricted
instruction repertoire is provided for operations on Y and Z.

16 bit L Register

This is a iocal workspace pointer register and holds the base address of the area of stor
containing the {ocal workspace of a program. The L register is operated on by Nucleus branch instructions
and by instructions using data held in other registers.

16 bit S Register

This is the sequerice control register and normally contains the address of the next instruction in
sequence, All instructions are 16 bit halfwords and this register is incremented by 2 for each instruction executed.
The S register is operated on by branch instructions and by instructions using data held in other registers,

8 bit C Register

This is the control register and contains various flags that may be set by a program at any time.

These flags are refeived to as ‘Condition Markers’ and are fully described in section 8.
g

The register holds condition markers as follows:—
0

-

010 |0 PM|N {Z [OF|CA

FM - FLOATING MARKER

N - NEGATIVE CONDITION MARKER
z - ZERO CONDITION MARKER

OF - OVERFLOW CONDITION MARKER

CA e CARRY CONDITION MARKER

3. OPERANDS

3.1 OPERAND LENGTHS

Information is manipulated in multiples of eight bits. Each 8 bit unit of information is called a
Byte.

Bytes may be handled separately or grouped together as follows.
(a) Halfwords

A Halfword comprises two consecutive bytes. The low addressed byte of the item must be held
at a byte address divisible by two in main store. Instructions and single precision integer operands
are held as Halfwords.

(b) Fullword

A Fullword comprises 4 consecutive bytes. The low addressed byte of the item must be held at a
byte address divisible by 4 in main store. Double length integer operands and short Floating Point
operands are held as Fullwords.

{c) Double Word

A Double word comprises 8 consecutive bytes. The low addressed byte of the item must be held
at a byte address divisibie by 8 in main store. Long Floating Point operands are heid as Doubie
words.

3.2 OPERAND ADDRESSES

Each store reference instruction specifies directly or indirectly the required operand address and
che type of operand i.e. Byte, Halfword, Fuliword or Double Word. The operand addresses are formed as described
" in section 4 and the hardware ensures that an operand address of the correct form is presented to the main store
at every access. i.e. If a Halfword is requested from store the least significant bit will be forced to zero. Similarly,
for other store addresses:—

TYPE OF STORE ACCESS LEAST SIGNIFICANT
3 STORE ADDRESS BITS
Byte X X X
Halfword X X0
Fullword X000
Double Word 000

4. INSTRUCTION FORMATS

Eight instruction formats are provided, known as formats A1, A2, A3, A4, A5, B, RR
and L. The 16 bits of an instruction are divided into several fields which together specify the operation to be
performed and where necessary the operand address.

Formats A1 to A5 are referred to as format A instructions and have a common instruction set.

Each format provides a different method of forming the operand address. A separate set of instructions is available
in each of the formats B, RR and L.

4.1 FORMAT A

Instructions specified in this format are used for arithmetic, and logical operations. Some instructions
in this format may be performed in either integer mode or floating mode under control of the FM flag {section 6).

Format Al

MS o 5 6,17, 8 15 LS

R0 22T%

one of 64 possible instructions. The next 2 blts (€ and 7) specify the format and the fmal 8 blts are the displace-
ment field that defines the address.

In this format the displacement is used to form the operand store address, after scaling as described
below. D* denotes the scaled displacement.

[}

0

o* MAIN

STORE

MS BYTE
OF

12
RE%',SED——————- Q V77T I I T TIIIIIIT]

The displacement field is scaled according to operand length. If a byte operand is required
no scaling takes place and the eight bits of the displacement field are able to access any of the first 256 bytes
of virtual store. An instruction requiring a halfword operand may access 256 halfwords in the first 512 bytes of
virtual store. Similarly 2566 full words in the first 1024 bytes of virtual store or 256 double words in the first
2048 bytes of virtual store. This format is used for accessing globai simpie variables.

Format A2

F 1{ M D

The most significant 6 bits specify the function as in format A1. Bit 6 specifies the format whilst
bits 7 and 8 (M Field) define how the D Field is to be used, to define the operand address. In this format the scaled
displacement field is added to a base register specified by the M Field.

BASE ADDRESS :
[- START OF DATA
D.
MS BYTE
OF
REQUIRED 4
ITEM —® 77z

The displacement field is scaled as for format A1 and the 7 bits of this field may be used to access
one of 128 items (bytes, halfwords, words, or double words) in the area defined by a base register.

Operand addresses are formed as tabulated with the value of the M field selecting base registers L.,
S,YorZ. "

In the following table D* denotes the scaled displacement field.

M OPERAND ADDRESS
0 .1 +D*
1 s+D*
2 y+D*
3 2+ D*

The L register normally holds a pointer to the local data needed in a program chapter. Mode 0 is

thus used to access local simple variables.

Mode 1 is used to access constants held in the same area of store as the code for a particular
program chapter. These constants must be at a higher address in store than the instruction that accesses them.

Registers Y and Z normaily hold pointers to records, and therefore modes 2 and 3 are used to
access general simple variables. ’

Format A3

0 5 6 7 8 9 10 15

The most significant six bits are used to specify the function as in format A1. Bits 6,7,8 and 9
specify the format and the final 6 bits are the displacement field that defines the store address. In this format a
halfword in store is accessed and used to form the base address of an array. This base address is then indexed to

form the address of a selected array element. The index register x is scaled according to the length of
the element being accessed.

[«2]

— " POINTER

START OF ARRAY ﬂ-‘—

l x* (scaled todength of

element being
ARRAY T T T ITIIIT] ¥ ek

REQUIRED

This format is used to access global arrays, the 6 bits of the displacement field allowing up to 64
array pointers to be used.

Format A4

(4 §46..,7, 8 9.0 14 15

The most significant six bits are used to specify the function as in format A1. Bits 6,7 and 8
specify the format whilst 9 and 10 define the way in which the displacement field is to be used, to form the
operand address. In this format the displacement field is always scaled for a halfword and then added to a base
register specified by M. The address so formed is used to access a halfword operand from store, which forms
the base address of an array. The operand is indexed with x to form the address of an individual array element.
The index register x is scaled according to the length of the element being accessed.

|

$ BASE ADDRESS
y - - -
- D* START OF DATA

{scaled .

for
halfword)
POINTER ==
START OF ARRAY -

x* (scaled to length of
element being
accessed)

_ARRAY ELEMENT <

The 5 bit displacement field may be used to access one of 32 array pointers in an area of
store defined by a base register.

Operand addresses are formed as tabulated with the value of the M field selecting base registers
i,S Yor Z ;

in the following table D denotes the value of the displacement field in the instruction and x*
denotes the scaled value of the x register.

i OPERAND ADDRESS
0 {| +2D)+x"*
1 (s +2D) +x*
2 (y+2D)+ x*
3 (z+2D) + x*

Mode 0 is used to access local arrays of data.

Mode 1 is used to access arrays of constants that are held in the same area of store as the code for
a particular program chapter, these constants being at higher store addresses than theinstructions accessing them.

Modes 2 and 3 are used to access arrays of data held in records.

Format A5

<o
[
[
~3
[
w
-
-1
-
o
I
»
[
n

The most significant six bits are used to specify the function as in format A1l. Bits 6,7,8 and 9
specify the format whilst 10 and 11 define the way in which the operand address is formed. This format is

similar to the A2 format except that the scaled displacement field is added to a base register and then indexed,

befare forming the operand address.

? START OF DATA ’

D*
(scaled)

—t————-. START OF ARRAY
f (D + x)!

[y

*

X
(scaled)

1 L
XTI | ¢ —

The displacement field and x are scaled according to the length of the item to be accessed from store.
The four bits of displacement field enable 16 items (bytes halfwords, words or doublewords) to be accessed from

store in the area defined by a base register and the index register x.

Operand addresses are formed as tabulated with the value of M field selecting base registers L, Y or

In the following table D* denotes the scaled displacement field and x* denotes the scaled value of

the x register.

M OPERAND ADDRESS
0 1+ D*+x*
1 D* + x*
2 y+D* +x*
3 z+D"+x"

Mode O is used to access local arrays of data.

Mode 1 is used to access global arrays of data.

Modes 2 and 3 are used to access arrays of data such as records and vectors.
4.2 FORMAT L

The instructions specified in this format are literal instructions and generally do not require an
operand from store.
MmS ' LS

o 1 2 %iw 8 1§

For this format the two most significant bits (0—1) are always zero. The next 6 bits (2—7) specify
the function and the remaining 8 bits are used as follows:—

(a) As an 8 bit unsigned literal operand. Any number between 0 and 255 can be represented.

{b) Some conditional branch instructions are specified in this format and here the displacement field
is treated as a signed integer, to specify a branch destination. This destination may be within 127
halfwords (i.e. instructions) forward or 128 halfwords backward relative to the next instruction
in sequence.

"Thus: Operand address =S +2D

(c} Where a literal operand is not required and the instruction is not a conditional branch, bits 8—15 are
used in conjunction with the F bits to further define the instruction {e.g. shifts and control functions).

4.3 FORMAT B
Two instructions only are specified in this format and both are unconditional branches.

0 § 6 15

The two instructions in this format are defined by the F bits, the most significant 4 bits {bits 0—3)
are always zero. The remaining 10 bits are used as a signed integer to specify the branch destination. This destin-
ation address may be within 511 halfwords (i.e, instructions) forwards or 612 halfwords backwards relative to the
next instruction in sequence.

Thus: Destination Address =S 2D

Since instructions are always 16 bit halfwords the displacement field in format B instructions is
always multiplied by 2. At the start of the execution of any instruction, the sequence control register (S) always
points to the next instruction in sequence. Therefore all branches are relative to the next instruction in sequence

and not the current instruction.

EXAMPLE 1)
INSTRUCTION = 000001/0000001011
= BRANCH +N
STORE MAP
ADDRESS CONTENTS
n INSTRUCTION
n+2 BRANCH + 11 —_—
n+d — INSTRUCTION
& INSTRUCTION
INSTRUCTION
1" INSTRUCTION
HALFWORD INSTRUCTION
S CEATTORE INSTRUCTION Y
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
v INSTRUCTION
n+26 — BRANCH DESTINATION -
EXAMPLE 2
INSTRUCTION = 000001/1111110101
= BRANCH -1
STORE MAP
ADDRESS CONTENTS
n INSTRUCTION
n+2 —p» BRANCH DESTINATION -
[1 INSTRUCTION °
INSTRUCTION
INSTRUCTION
1 INSTRUCTION
HALFWORD INSTRUCTION 4
TION INSTRUCTION
LBERTIONS INSTRUCTION
INSTRUCTION
INSTRUCTION
] BRANCH - 11
nt+24 —p INSTRUCTION —
4.4 FORMAT RR

The instructions specified in this format are register to register instructions.

3 4 5 6 9. 10

12

13

185,

G1

G2

The first 6 bits (0—5) are always zero. The next 4 bits {6—9) define 16 possible instructions,

which are further defined by bits 10—15.

Format RR instructions are used for operations between registers, The two registers taking part

in an operation are defined by G1 and G2. G1 specifies the destination register and G2 specifies the source
register as follows:—

G1,G2 REGISTER

0 (see below)
A (32 bits)

B (Q‘) hiss

P WL

X (16 bits)
L (1€ bits)
S (16 bits)
Y (16 bits)
Z (16 bits)

NOOHAWN -0

Register 0 is a non-existent dummy register. If used as a source it appears to contain zero; if used

as a destination the result is lost but the condition markers record the result of the operation.

10

5. MODES OF OPERATION

The CPU has two different modes of operation, basic test and full nucleus. Within these two
modes of operation, two further modes are provided, integer mode and floating point mode.

5.1 BASIC TEST

This mode of operation is provided in order to more easily test the central processor basic instruction
set. Most of the microprogram controlling the nucleus is disenabled and the computer * becomes a machine capable
of running only 2 programs simultaneously. One is the normal operating program, the other being entered on receipt
of an interrupt as described in section 13. All addresses are 16 bit absolute addresses and thus 64kBytes of store
may be accessed. Certain additional instructions are provided in this mode to facilitate input/output and interrupt
handling. These instructions are described in section 13.

Should these instructions be specified when the machine is in full nucleus mode they are treated as
undefined inst_ructions (refgr to CPU Nucleus Manual).

Further modifications to the functioning of the CPU are:
(1) The action taken when an Input Output Processor or Error interrupt occurs (refer to section 13).

(2) The action taken as a result of depressing certain switches on the front pane! {IPL1, IPL2, START/
STOP). This is described in CPU Controls and Monitor Unit Manual.

(3) The ‘TRIG C.P: facility becomes available enabling a program to be restarted at a selected point
(see CPU Controls and Monitor Unit Manual).

5.2 FULL NUCLEUS
In this mode, addresses generated by the program are 16 bit virtual addresses and are mapped into

absolute addresses by the mechanism described in the CPU Nucleus Manual. Control instructions in this mode are:
CALL, SEMAPHORE INTER-CHAPTER BRANCH and SEGMENT and these are fully described in the CPU Nucleus man

5.3 FIXED POINT MODE
In this mode of operati_on the fixed point instruction set described in sections 7 — 10 is provided.

5.4 FLOATING POINT MODE

1n this mode of operation certain instructions are treated as floating point instructions as
described in section 11.

5.5 MODE CONTROL

“Fhe modes of operation described in 5.1 and 5.2 above are controlled by a switch on the CMU
front panel (see CMU Document) and under certain conditions by the SFN instruction (see section9).

The modes of operation described in 5.3 and 5.4 are controlled by the FM flag .in the control
register which can be manipulated by the program as described in section 6.

11

6. FIXED POINT OPERATIONS

The fixed point instruction set performs binary arithmetic on operands serving as addresses and
index quantities as well as fixed point data. Operands may be 18 bits or 32 bits long and may be held in one of
the program accessible registers or in the main store. Both operands are signed 16 or 32 bits long, negative
quantities being held in two's complement form. Condition markers are set as a result of most arithmetic and
logical operations. Addresses are sometimes treated as positive 16 bit integers.

6.1 NUMBER REPRESENTATION

Fixed point operands are treated as 16 or 32 bit signed binary integers.

Positive integers in the range 0 : 2!5- 1 (16 bit) or 23! - 1 (32 bit) are represented directly. The
most significant bit of an operand representing a positive integer will therefore be zero.

Negative integers in the range -2'5 : - 1 (16 bit) or - 23! : - 1 (32 bit) are represented by subtracting
the magnitude of the number from 2'¢ (16 bit) or 232 (32 bit). The most significant bit of a negative operand will
therefore be a one.

Since the most significant operand bit can be used to distinguish the sign of an operand, it is referred
to as the sign bit. This representation is known as 2s complement notation. The range of numbers which can be
represented is therefore

-2 KN 2'% - 1 (halfword operands)

or 28! <N <.2°! -1 (fullword operands)
6.2 MIXED LENGTH OPERATIONS

A 16 bit 2s complement integer can be converted into the equivalent 32 bit representation as follows: —
the least significant 16 bits of the 32 bit integer are the same as the original 16 bit integer, and the sign bit of the 16
bit integer is replicated throughout the most significant 16 bits of the 32 bit integer.

bbbyl By & sxetssersiaiepere ¢ b];J 18 bit integer
; — 1 l
bo) s o s idiEmsinva o be E boby by coinialll bys Equivalent 32 bit integer

This process is referred to as ‘sign extending’. It is therefore possible to perform operations between
32 bit and 16 bit integers provided 16 bit operands are sign extended to 32 bits before the operation is performed.

6.3 CONDITION MARKERS

There are four condition markers N, Z, OF and CA which are used to record information about an
operation. This information may subsequently be tested with a conditional branch instruction, in considering th_e

produce. The first is the TRUE result, obtained by applying the rules of binary arithmetic to the operation, the
second is the APPARENT result obtained by taking the least significant n bits of the true result, where n is the
number of bits available for recording the result.

The meanings of the condition markers are as follows:—

The Negative Condition Marker (N)

This is a single bit set to the sign of the true result of the last operation performed. Thus, it is set
to a logical 1 if the true result is negative and to a logical O if the true resuit is positive.

The Zero Condition Marker (Z)
This is a single bit set to a logical 1 if the apparent result of the last operation performed & zero,
and is reset to logical O if the apparent result of the last operation performed is non-zero.

The Overflow Condition Marker (OF)

This is a single bit set ta a logical 1 if an operation produced overflow since the flag was last reset
i.e, the apparent result is different from the trie result. This flag is reset by obsying the instruction ‘Branch on
Overflow"

The Carry Condition Marker (CA)

This is a single bit which, following an add operation is set to logic 1 if the operation produced acarry
out of the most significant bit position, and is otherwise reset to 0, and following a subtract operation is set to logic 1
if the operation produced a borrow out of the most significant bit position, and is otherwise réset to zero.

Floating Marker

This is a single bit that controls the floating point feature of the computer. When this flag is reset
to a logical 0 certain instructions operating on the accumulator are interpreted as integer Operations. When this
flag is set to a logical 1 these instructions are interpreted as Floating Point Operations and a small set of additional
instructions are made availabie. ‘

The fiag may be set or cieared by controi instructions in format L {see section 8 or by use of the
Load Multiple Instruction. A further way to clear the FM flag is by use of one variant of the Call instruction
(described in CPU Nucleus Manual).

During input/output these flags are used for special purposes.

Exampies of negative, zero and overflow and carry conditions are given below assuiming sight bits
are available to hold the result of the calculation. The carry out bit is also shown, in parentheses:—

Addition
(a) +67 = 00111001 Negative reset
+35 = 00100011 Zero reset
+92 = (0)01011100 Overflow not set
J Carry reset
(b +7 = 00111001) Negative reset
-35 = 1101101 Zero reset
+22 = (1)00010110 ’ Overflow not set
) Carry set
e/ 57 = 11000111 Negative set
92 = 10100100 Zero reset
-149 = (1)01101011 Overfiow set {Out of range.Resuit < -128}.
J Carry set '
(d) +7 = 00111001) Negative reset.
+92 = 01011100 L Zero reset
+149 = (0)10010101 Overflow set (neg.result)
J Carry reset

13

Multiplication (Carry Not Affected)

(a) +35 = 00100011 Negative reset
243 TR 00000011 Zero reset
+105 = 01101001 Overfliow not set
(b) 435 = 00100011 Negative set
-3 = 11111101 ~ Zero reset
-106 = 10010111 Overflow not set
{c) +36 = 00100011 Negative reset
+4 = 00000100 Zero reset
+140 = 10001100 Overflow set
(d) +32 = 00100000 Negative reset
+16 = 00010000 Zero set
+512 = 10 00000000 Overflow set

6.4 LOGICAL OPERATIONS

The condition markers are used in the same way as for integer arithmetic operations, except that
carry and overflow stats are unaffected by logical operations.

14

7. THE FIXED POINT INSTRUCTION SET: FORMATS A1-A5

The foliowing describes the basic fixed point instruction set of the computer, i.e. those
instructions provided when FM is set to logic 0. The Floating point instructions in section 12 are not available.

7.1 OPERATIONS ON THE 32 BIT ACCUMULATOR

The following instructions are available:—

LDB
LD
LDW
STB
ST
STW
AD
ADW
SB
SBW
cPB
cpP
cPW
N
NW
M
Mw
D
Dw

. LOAD BYTE

LOAD HALFWORD
LOAD WORD
STOREBYTE

STORE HALFWORD
STORE WORD

ADD HALFWORD

ADD WORD

SUBTRACT HALFWORD
SUBTRACT WORD
COMPARE BYTE
COMPARE HALFWORD
COMPARE WORD

AND HALFWCRD

AND WORD

MULTIPLY HALFWORD
MULTIPLY WORD
DIVIDE HALFWORD

DIVIDE WORD
0 5,6 1§
010000 ADDR

LOAD BYTE: a:=ba. The byte is loaded into the A register from store and is extended to 32 bits by most
significant zeros before the operation. This instruction therefore loads the least significant byte of the accumuiator

and clears the most significant 24 bits. The final value in A will lie in the range O to 255.

Condition Markers
N is cleared by the instruction
Z is set if the 32 Bit accumulator is zero otherwise it is cleared
cA not affected
OF not affected
LD
0 5,6 ‘ 15
100000 ADDR

(FM =0 only)

LOAD: a:=hq. The halfword operand is loaded from store and is sign extended to 32 bits before the operation.
The instruction therefore loads the least significant 16 bits (AL) of the accumulator with the operand and loads the

most significant 16 bits (Ay,) with the operand extension.

15

LDW

Condition Markers

N
Z
CA
OF

is set to the sign of the 32 bit accumulator after the load
is set if the accumulator is zero after the operation otherwise it is cleared

not affected '
not affected
0 5,6 1§
101000 ADDR (FM = O only)

LOAD WORD: a :=wq. The 32 bit operand is loaded from store.

STB

Condition Markers
N is set to the sign of the 32 bit accumulator after the load
Z is set if the accumulator is zero after the operation otherwise it is cleared
CA not affected
OF not affected
0 5 .6 15
010111 ADDR

STORE BYTE: bq :=ba. The least significant byte of the 32 bit accumulator is stored.

w
]

Condition Markers
N is cleared by the instruction _
VA is set if the byte to be stored is zero otherwise it is cleared
CA not affected
OF not affected
0 5,6 15
100111 ADDR {FM =0 only)

STORE: hq:=ha. The least significant 16 bits of the accumulator (AL) are stored.

16

Condition Markers

N is set to the most significant bit of the halfword stored
Zz is set if the halfword stored is zero otherwise it is cleared
cA not affected

OF

is set if the 16 bit halfword stored is not equal in value to the original 32 bit
content of A. :

STW

1011 11 ADDR (FM = 0 only)

STORE WORD: Wg := a, The 32 bit accumulator (AM and AL) is stored.

Condition Markers
N — isset to the sign of the 32 bit accumulator
Z —~ issetif the 32 bit accumulator is zero otherwise it is cleared
CA - notaffected
OF - not affected
AD
0 5 .6 15
1000 01 ADDR (FM =0 only)

ADD: a := a + hqg. The halfword operand from store is sign extended to 32 bits before being added to the
contents of the accumulator. Arithmetic is performed over 32 bits.

Condition Markers
N — s setif the true result is negative
Z —~ issetif the result in the 32 bit accumulator is zero, otherwise it is cleared
CA ~ issetif there is a carry out of the most significant bit of the 32 bit accumulator
otherwise it is cleared
OF — issetif arithmetic overflow occurs otherwise it remains unchanged.
SB
0 5.6 15
1 00010 ADDR (FM = 0 only)

SUBTRACT: a := a - hq. The halfword operand from store is sign extended to 32 bits before being subtracted
from the contents of the accumulator. Arithmetic is performed over 32 bits.

Condition Markers

N -~ issetif the irue result is negative

zZ - is set if the result in the 32 bit accumulator is zero, otherwise it is cleared

CA — isset if thereisa borrowoui of the most significant bit of the 32 bit accumulator

otherwise it is cleared.
OF — isset if arithmetic overflow occurs otherwise it remains unchanged.

ADW

101 00 1 ADDR (FM =0 only)

ADD WORD: a :=a + wq. The 32 bit operand from store is added to to contents of the 32 bit accumulator.

Condition Markers

N — s setif the true result is negative
Z — issetif the result in the 32 bit accumulator is zero, otherwise it is cleared
CA — issetif there is a carry out of the most significant bit of the 32 bit accumulator
otherwise it is cleared. '
OF — s set if arithmetic overflow occurs otherwise it remains unchanged.
SBW
0 s 6 15
101010 ADDR (FM =0 only)

SUBTRACT WORD: a :=a - wq. The 32 bit operand from store is subtracted from the contents of the 32 bit
accumulator,

Condition Markers
N~ issetif the true result is negative
Z ~ issetif the result in the 32 bit accumulator is zero, otherwise it is cleared
CA — issetif thereisa borrowoutofthe most significant bit of the 32 bit accumulator
otherwise it is cleared
OF — s set if arithmetic overflow occurs otherwise it remains unchanged.
CPB
0 5 6 15
0100 11 ADDR

COMPARE BYTE: form ba - bq. The byte from store is extended to 32 bits by most significant zeros before
being compared with the contents of the 32 bit accumulator. The contents of the accumulator are unaffected
by this instruction.

Condition Markers
N~ isset if the 32 bit accumulator is less than the zero extended byte from store,
otherwise it is cleared.
Z — issetif the 32 bit accumulator is equal to the zero extended byte from store,
‘ otherwise it is cleared.
CA - notaffected
OF - notaffected

18

0 5 6 15
10001 1 ADDR (FM =0 only)
COMPARE: form a - hq. The halfword operand from store is sign extended to 32 bits before being compared with

the contents of the 32 bit accumulator. The contents of the accumulator are unaffected by this instruction.

Condition Markers

N is set if the 32 bit accumulator is less than the sign extended halfword operand
from store, otherwise it is cleared.

Z is set if the 32 bit accumulator equals the sign extended operand from store,
otherwise it is cleared. 3

CA is set if thereis aborrow out of the most significant bit of the function unit as a
result of the comparison otherwise it is cleared.

OF is set if arithmetic overflow occurs otherwise it remains unchanged.

CPW

1010 1 1 ADDR (FM = Q only)

COMPARE WORD: form a - wq. A 32 bit operand from store is compared with the contents of the 32 bit

accumulator.
Condition Markers
N is set if the 32 bit accumulator is less than the 32 bit operand from store.
z is set if the 32 bit accumulator is equal to the 32 bit operand from store,
otherwise it is cleared.
CA " is set if thereis aborrow outof the most significant bit of the function unit as a
. result of the comparison otherwise it is cleared.
OF is set if arithmetic overflow occurs otherwise it remains unchanged.
N

0 ; 5.6 15
11MToo010 0 ADDR ' (FM =0 only)

AND: a := a A hq. The halfword operand from store is sign extended to 32 bits before being used to form the
logical AND function with the contents of 32 bit accumulator. The result is placed in the accumulator.

Condition Markers

N is set to the sign of the 32 bit accumulator after the operation.

Zz is set if the 32 bit accumulator is zero after the operation, otherwise it is cleared.
CA not affected.

OF not affected.

19

[1] 5,6 15
101100 ADDR (FM = 0 only)

AND WORD: a := a A wq. The 32 bit operand from store is used to perform the logical AND function with the
contents of the 32 bit accumulator. The result is placed in the accumulator. '

Condition Markers
N — s set to the sign of the 32 bit accumulator after the operation.
Z - issetif the 32 bit accumulator is zero after the operation, otherwise it is cleared.
CA — notaffected. '
OF — not gffected..
M
° 5.6 15
100101 ADDR (FM =0 only)

MULTIPLY: 2 := a » hq. The halfword operand from store (Multiplier) and the contents of the 32 bit accumulator
{muitiplicand) are multiplied together to form a 48 bit product. The result {in the accumulator) is the least significant
32 bits of the true product.

Condition Markers
N -~ issetif the true product in A is negative.
Z — i set if the least significant 32 bits (i.e. the result in the accumulator) is zero,
otherwise it is cleared.
CA -~ notaffected.
OF — s skt if significant bits are lost by truncating the product from 48 to 32 bits.
MW
0 5 6 15
101101 ADODR {FM = 0 only)

MULTIPLY WORD: da :=a « wq. The 32 bit operand from store {Multiplier) and the contents of the 32 bit
accumulator (multiplicand) are multiplied together to form a 64 bit product. The result is held in the 64 bit
extended accumulator {BA) with the most significant bits in B and the least significant 32 bhits in A,

Condition Markers

N — issetif the true result in A is negative.

Z — issetif the result in BA is zero, otherwise it is cleared.
CA - not dffected.
OF — cannot occur since the result in BA is the true 64 bit integer product.

=)

0 § 6 15

100110 ADDR (FM = 0.oniy)

DIVIDE : ai=a+ hg b := remainder. The contents of the 32 bit accumulator (dividend) are divided by a halfword
from store (divisor) and the result in the accumulator is the 32 bit integer quotient. The 32 bit remainder is held in
B. The sign of the remainder is always equal to the sign of the dividend.

For example: —
DIVIDEND | DIVISOR | QUOTIENT | REMAINDER
+5 +2 +2 +1
-5 +2 -2 -1
+5 -2 -2 1
-5 -2 +2 -1
Condition Markers
N~ issetif the quotient in A is negative.
Z — issetif the 32 bit result is zero, otherwise it is cleared.
CA - notaffected
OF ~ s set if the divisor is zero or if the divisor is -1 and the dividend is 2°*.

Under these circumstances A, B, N and Z are undefined.

DW

1011107 ADDR {FM = 0 only)

DIVIDE WORD: a :=da+wq b :=remainder. The contents of the 64 bit extended accumulator BA (dividend)

are divided by the 32 bit operand from store (divisor). The result, in the accumuiator, is the least significant 32 bits
of the quotient and the 32 bit remainder is held in B. As in DIVIDE the sign of the remainder is always equal to the
sign of the dividend.

Condition Markers
N — issetif the quotient in A is negative.
Z — s setif the 32 bit accumulator is zero otherwise it is cleared
CA — notaffected
F s seiif the quotient is out of range i.e. if more than 32 bits are required to

hold the resulting quotient. An example is all numbers greater than 2°' divided
A

by +1. If overflow occurs A, B, N and Z are undefined.

7.2 OPERATIONS ON OPERANDS IN STORE

The following instructions are available:—

NBS - ANDRYTE N STORE
OBS — ORBYTEINSTORE
XBS - EXCLUSIVE ORBYTE INSTORE
DECS — DECREMENT STORE
— INCREMENT STORE

INCS

21

NBS

0 § ,6 15

010100 ADDR

AND BYTE IN STORE: bq:= bg A ba. A byte operand from store is used to perform the logical AND function
with the least significant byte of the accumulator {i.e. bits 8—15 of AL). The result is returned to store and-the accum-
ulator is unchanged.

Condition Markers

N~ iscleared by the instruction.
Z — s setif the result of the operation (that is returned to store) is zera,
otherwise it is cleared.
CA — notaffected.
OF — not affected.
OBS
5,6 15
10101 ADDR

OR BYTE IN STORE: bg :=bg V ba. A byte operand from store is used to perform the logical OR function with
the least significant byte of the accumulator (i.e. bits 815 of AL). The result is returned to store and the accum-
ulator is unchanged.

Condition Markers
N - iscleared by the instruction.
Z - issetif the result of the operation (that is returned to store) is zero,
otherwise it is cleared.
CA —~ notaffected.
OF — not affected.
XBS
0 5 6 15
0101 10| ADDR

EXCLUSIVE OR BYTE IN STORE: bg := bq ¥ ba. A byte operand from store is used to perform the logical
EXCLUSIVE OR function with the least significant byte of the accumulator li.e. bits 8—15 of AL). The result
is returned to store and the accumulator is unchanged.

Condition Markers

N -~ iscleared by the instruction

Z — issetif the result of the operation (that is returned to store) is zero,
X otherwise it is cleared.

CA -~ notaffected.

OF — not affected.

DECS

010010 ADDR

DECREMENT STORE: hq :=hqg -1. The halfword operand from store is decremented by 1 and returned
to the store. None of the registers in the central processor. are affected.

Condition Markers

N — isset to the true sign of the decremented operand

Z — issetif the decremented operand is zero, otherwise it is cleared.

CA - s set if the subtraction causesa borrow out of the most significant bit of
the halfword operand. .

OF -

INCS

is set if the subtraction causes arithmetic overflow.

f1491 9 1 ADDR

INCREMENT STORE: hq := hg + 1. The halfword operand from store is incremented by 1 and returned to the
store. None of the registers in the central processor are affected. :

Condition Markers
N — s set to the true sign of the incremented operand.
Z — issetif the incremented operand is zero, otherwise it is cleared.
CA - issetif theaddition causes a carry out of the most significant bit of
the halfword operand.
OF — issetif the eddition causes arithmetic overflow.
7.3 OPERATIONS ON THE X REGISTER

The followiﬁg instructions are provided: —

LDX
LBX
§TX
ADX

SBX

MX
DX
NX
CPX

LDX

LOAD X REGISTER

LOAD BYTE TO X REGISTER
STORE X REGISTER

ADD X REGISTER
SUBTRACT X REGISTER
MULTIPLY X REGISTER
DIVIDE X REGISTER

AND X REGISTER

COMPARE X REGISTER

¢ 5§ % 15

110000 ADDR

LOAD X REGISTER: x := hq. The 16 bit X register is loaded with a halfword operand from store.

LBX

Condition Markers

N
Z
CA

OF

is set to the sign of the 16 bit X register after the operation.
is set if X is zero after the operation otherwise it is cleared.

not affected.

not affected.
0 5,6 15
0 1000 1 ADDR

LOAD BYTE TO X REGISTER: x := bq. A byte operand from store is loaded into the least significant byte of the
X register. The operand byte is expanded to 16 bits by most significant zeros before being loaded into the X register.

STX

ADX

Condition Markers

N
VA
CA
OF

is cleared by the instruction.
is set if the X register is zero after the operation, otherwise it is cleared.

not affected.
not affected.
0 5,6 15
110111 ADDR
hq :=x. The 18 bit register is stored at a halfword address.
AL
N2Grners

is set to the sign of the stored operand.
is set if the stored operand is zero, otherwise it is clear