
GEC COMPUTERS LIMITED

User Hardware Handbook - Computer

CENTRAL PROCESSOR UNIT INSTRUCTION SET

© GEC Computers Limited 1977

The information presented herein is, to the best of our knowledge, true
and accurate. No warranty or guarantee, expressed or implied, is made.
regarding the accuracy of information supplied or capacity, perform.
ance or suitability of any product or service since the manner of use is
beyond our control.
You are advised that you should ensure that the information contained
herein has not been superseded.
All our products, materials and services are sold subject to our Condi­
tions of Sale, available on request ..

GEC COMPUTERS LIMITED
Elstree Way, Borehamwood, Hertfordshire.

Telephone No. 01-953-2030

Holding Company - the GeneralElectric Company Limited of England

December, 1977

DD 1195

1.

2.

3.

4.

5.

6.

TS4463

CPU INSTRUCTION SET

INTRODUCTION

1.1 Notation Used

PROGRAMACCESSIBLEREGISTERS

OPERANDS

3.1 OperandLengths ••.

3.2 OperandAddresses

iNSTRUCTiON FORMATS

4.1 Format A

4.2 Format L

4.3 Format B

.. Format RR

MODESOF OPERATION

5.1 BasicTest ...

5.2 Full Nucleus

5.3 Fixed Point Mode

5.4 Floating Point Mode

5.5 ModeControl

FiXED POiNT OPERATiONS

6.1 Number Representation

6.2 Mixed Length Operation

6.3 Condition Markers

6.4 Logical Operations

CONTENTS

Page

2

3

3

4

8

8

9

11

11

11

11

11

12

12

i2

14

iii

I~

Page

THE FIXED POINT INSTRUCTION SET: FORMATS A1-A5

7.1 Operationson the 32 Bit Accumulator 15

7.2 Operationson Operandsin Store 21

7.3 Operationson the X Register .•. 23

7.4 Operationson Y andZ Registers 26

7.5 Multiple Load andStore Instructions 29

7.6 Indirect Branches... 30

INSTRUCTIONSAVAILABLE IN FORMAT B 32 !~.

INSTRUCTIONS AVAILABLE IN FORMAT L

9.1 Operationson the 32 Bit Accumulator 33

9.2 Literal Operationson the X Register ... 35

9.3 literal Operationson the Y and Z Registers 38

9.4 Condition Branch Instructions in Format L 40

9.5 Shift Instructions ... 43

9.6 Bit Manipulation Instructions ... 47

9.7 String Manipulation 50

9.8 MiscellaneousInstructions in Format L 53

INSTRUCTIONSAVAILABLE IN FORMAT RR 56

FLOATING POINT OPERATION

11.1 Floating Point Number Representation 61

11.2 Floating Point Store Format ... 61

11.3 Floating Point RegisterFormat 61

11.4 Normal Representation... 62

11.5 Floating Point Zero 62

11.6 Mixed PrecisionOperation 62

63
/~

11.7 Overflow and Underflow

Page

12. THE FLOATING POINT INSTRUCTION SET

12.1

12.2

12.3

12.4

Normal Length Operations

Extended Operations

Floating Point Conversion Instructions

Floating Point Instructions in Format L

64

66

69

69

71Appendix 12A: Floating Point Arithmetic ...

13. CONTROL INSTRUCTIONSAVAILABLE IN BASIC MODE .., 74

SUPPLEMENT·

Supplement 1: Summaryof Instructions

v

1. INTRODUCTION

This manual describes the instruction set of the GEe 4000 Series computers, except for
Nucleus instructions CALL, ICB, SEM and SEG described in detail in CPU NUCLEUS MANUAL.

Excluding the above Nucleus instructions the instruction repertoire of the computers
contains some 155 different instructions. Certain of these instructions may be specified in 1of 5 operand addressing
formats.

The processor is capable of performing both integer and floating point arithmetic and instructions
are provided for both modes of operation.

1.1 NOTATION USED

In this manual, the following notation is used to describe the instruction set.

a denotes the content of the 32 bit Accumulator A.
da denotes the content of the 64 bit Extended Accumulator BA.
ha denotes the content of the least significant 16 bits of A.
ba denotes the content of the least significant 8 bits of A.
b denotes the content of the 32 bit Accumulator Extention B.
x denotes the content of the 16 bit Index register X.
y denotes the content of the 16 bit Y register.
z denotes the content of the 16 bit Z register.
s denotes the content of the 16 bit Sequence Register S.

denotes the content of the 16 bit Local Workspace Register L.
fa denotes the short floating point number in the Floating Accumulator.
ea denotes the IclOgfloating point number in the Floatifl9 Accumulator.
Q denotes the operand address generated by an instruction.
wq denotes the fullword store operand of an instruction.
hq denotes the halfword store operand of an instruction.
bq denotes the byte store operand of an instruction.
fq denotes the short Floating Point operand of an instruction.
eq denotes the long Floating Point operand of an instruction.

2. PROGRAM ACCESSIBLE REGISTERS

The foliowing program accessible registers are provided.

32 bit Accumulator,A

The accumulator is divided into two 16 bit registers AM and Al. This accumulator is used to hold
the result of fixed point arithmetic and logical operations. It is also.used to held the least significant 32 bits of the
mantissa in the case of lonq floating point operations,

32 bit AccumulatorExtension, B

This register is divided into. two. 16 bit registers BMand BL and is used to. held remainders in integer
divide instructions and the mantissa of the result in nermallength floating point operations.

BMand BL may be used in conjunction with AM and AL to provide a 64 bit register and in this
case the most significant register is BMand the least significant is AL. This 64 bit register is used to hold products
in fixed point multiply instructions and to. held the mantissa of the result in extended-length, floating-point
operations.

16 bit X Register

The X register is used as an index register to. address array. elements in store. It may also.be used as
a secondary accumulator and a comprehensive set of instructions is providedfo.r this purpose.

16 bit Yand ZRegisters

Both Y and Z registers are used to. held the base address of areas of data such as records. A restricted
instruction repertoire is provided for operations on Y and Z.

16 bit L Register

This is a local workspace pointer register and holds the base address of the area of store
containing the local workspace of a program. The L register is operated on by Nucleus branch instructions
and by instructions using data held in ether registers.

16 bit S Register

This is the sequence control register and normally contains the address of the next instruction in
sequence. All instructions are 16 bit halfwords and this register is incremented by 2 for each Instruction executed.
The S register is operated on by branch instructions and by instructions using data held in ether registers.

8 bit C Register

This is the control register and contains varlous flags that may be set by a proqrarn at any time.

These flags are referred to. as 'Condition Markers' and are fully described in section 6.

The register holds condition markers as follews:-

FM
N
Z
OF
CA

FLOATING MARKER
NEGATIVE CONDITION MARKER
ZERO CONDITION MARKER
OVERFLOW CONDITION MARKER
CARRY CONDITION MARKER

2

3. OPERANDS

3.i OPERAND LENGTHS

Information is manipulated in multiples of eight bits. Each 8 bit unit of information is called a
Byte.

Bytes may be handled separately or grouped together as follows.

(a) Hal/words

A Halfword comprises two consecutive bytes. The low addressed byte of the item must be held
at a byte address divisible by two in main store. Instructions and single precision integer operands
are held as Halfwords.

(b) Fullword

A Fullword comprises 4 consecutive bytes. The low addressed byte of the item must be held at a
byte address divisible by 4 in main store. Double length integer operands and short Floating Point
operands are held as Fullwords.

(c) Double Word

A Double word comprises 8 consecutive bytes. The low addressed byte of the item must be held
at a byte address divisible by 8 in main store. Long Floating Point operands are held as Double
words.

3.2 OPERAND ADDRESSES

Each store reference instruction specifies directly or indirectly the required operand address and
(he type of operand i.e. Byte, Halfword, Fullword or Double Word. The operand addresses are formed as described

. in section 4 and the hardware ensures that an operand address of the correct form is presented to the main store
at every access. Le. If a Halfword is requested from store the least significant bit will be forced to zero. Similarly,
for other store addresses:-

TYPE OF STORE ACCESS LEAST SIGNIFICANT
3 STORE ADDRESS B!TS

Byte

Halfword

Fullword

Double Word

x X X

X X 0

XOO
000

3

4. INSTRUCTION FORMATS

Eight instruction formats are provided, known as formats A1, A2, A3, A4, A5, B, RA
and LThe 16 bits ofan instruction are divided into several fields which together specify th4iloperation to be
performed and where necessary the operand address.

Formats A1 to A5 are referred to as format A instructions and have a common instruction set.
Each format provides a different method of forming the operand address. A separate set of instructions is available
in each of the formats B, RR and l.

4.1 FORMAT A

Instructions specified in this format are used for arithmetic, and logical operations. Some instructions
in this format may be performed in either integer mode or floating mode under control of the FM flag (section 6).

Format Al

MSt-f -~-F---5 +10-6+-1-1:11-8-----0-------1151 LS

Of the 16bits used to define the instruction the most significant 6 bits (0-5) are used to specify
one of 64 possible instructions. The next 2 bits (6 and 7) specify the format and the final 8 bits are the displace­
ment field that defines the address.

In this format the displacement is used to form the operand store address, after scaling as described
below. 0" denotes the scaled displacement.

MS BYTE
OF

REQUIRED -----ill ••
ITEM

D"

STORE

MAIN

The displacement field is scaled according to operand length. If a byte operand is required
no scaling takes place and the eight bits of the displacement field are able to access any of the first 256 bytes
of virtual store. An instruction requiring a halfword operand may access 256 halfwords in the first 512 bytes of
virtual store. Similarly 256 full words in the first 1024 bytes of virtual store or 256 double words in the first
2048 bytes of virtual store. This format isused for accessing global simpie variables.

FormatA2

5 6 7 8

F o

The most significant 6 bits specify the function as in format A1. Bit 6 specifies the format whilst
bits 7 and 8 1M Field) define how the D Field is to be used, to define the operand address. In this format the scaled
displacement field is added to a base register specified by the M Field.

4

BASE ADDRESS

MS BYTE
OF

REQU!RED
ITEM

f •• START OF DATA

D*

t111717717777777777177111717~

I I
The displacement field is scaled as for format A1 and the 7 bits of this field may be used to access

one of 128 items (bvtes, halfwords, words, or double words) in the area defined by a base register.

S, Yor Z.
Operand addresses are formed as tabulated with the value of the M field selecting base registers L,

In the following table D* denotes the scaled displacement field.

M OPERANDADORESS

o 1+ D*
1 s + D*
2 y+ D*
3 z+ D*

The L register normally holds a pointer to the local data needed in a proqram chapter. Mode 0 is
thus used to access local simple variables.

Mode 1 is used to access constants held in the same area of store as the code for a particular
program chapter. These constants must be at a higher address in store than the instruction that accesses them.

Registers Y and Z normally hold pointers to records, and therefore modes 2 and 3 are used to
access general simple variables.

Format A3

DF

The most significant six bits are used to specify the function as in format A1. Bits 6,7,8 and 9
specify the format and the final 6 bits are the displacement field that defines the store address. In this format a
halfword in store is accessed and used to form the base address of an array. This base address is then indexed to
form the address of a selected array element. The index register x is scaled according to the length of
the element being accessed.

5

TO
l(scaled. for
, I".alf-",•.ord)1---_._--="".,.,=-===,--------1

--~--~~~~ _JP~O~IN~T~E~RL_~__ ===t----_.

START OF ARRAY

This format is used to access global arrays, the 6 bits of the displacement field allowing up to 64
array pointers to be used.

Format A4

F D

The most significant six bits are used to specify the function as in format A1. Bits 6,7 and 8
specify the format whilst 9 and 10 define the way in which the displacement field is to be used, to form the
operand address, In this format the displacement field is always scaled for a halfword and then added to a base
register specified by M. The address so formed is used to access a halfWord operand from store, which forms
the base address of an array. The operand is indexed with x to form the address otan individual array element.
The indelx}registe.rx is scaled according to the lengthofthe element being accessed.

s B
y
z

ASE ADDRESS•rD* START OF DATA

(scaled
• forhalfword)

t'OiN fl:R

ISTART OF ARRAY ••
4~

••ARRAY ELEMENT •

x * (1caledto length of
element being
accessed)

6

The 5 bit displacement field may be used to access one of 32 array pointers in an area of
store defined by a base register.

L,S, Yor Z.
Operand addresses are formed as tabulated with the value of the M field selecting base registers

In the following table D denotes the value of the displacement field in the instruction and x"
denotes the scaled value of the x register.

M OPERANDADDRESS

o (! + 2D) + x*
1 (s + 20) + x"
2 (y+ 20)+ x"
3 (z+20)+x*

~,,1ode0 is used to access local arrays of data.

Mode 1 is used to access arrays of constants that are held in the same area of store. as the code for
a particular program chapter, these constants being at higher store addresses than the instructions accessing them.

Modes 2 and 3 are used to access arrays of data held in records.

Format AS
o 5 6 7 8 9 10 1112

oF

15

The most significant six bits are used to specify the function as in format A1~Bits 6,7,8 and 9
specify the format whilst 10 and 11 define the way in which the operand address is formed. This format is
similar to the A2 format except that the scaled displacement field is added to a base register and then indexed,
before forming the operand address.

t
I
1

0*
(scaled)

•
START OF DATA

START OF ARRAY

Ix*(scaled)
, ~rI711777777777777777777777711~

1
(0 + x)*

The displacement field and x are scaled according to the length of the item to be accessed from store.
The four bits of displacement field enable 16 items (bytes halfwords, words or doublewords) to be accessed from
store in the area defined by a base register and the index register x.

z.
Operand addresses are formed as tabulated with the value of M field selecting base registers L, Y or

7

In the following table 0* denotes the scaled displacement field and x* denotes the scaled value of
the x register.

M OPERAND ADDRESS

0 1+ 0* + x"
1 0* + x"
2 y+ 0* + x"
3 z + 0* + x"

Mode 0 is used to access local arrays of data.

Mode 1 is used to access global arrays of data.

Modes 2 and 3 are used ,to access arrays of data such as records and vectors.

4.2 FORMAT L

The instructions specified in this format are literal instructions and generally do not require an
operand from store.

MS LS
7 II

F o

For this format the two mostsignificant bits (0-1) arealwavs zero. The next 6 bits (2-7) specify
the function and the remaining 8 bits are used as follows:-

(a) As an 8 bit unsigned literal operand. Any number between 0 and 255 can be represented.

(b) Some conditional branch instructions are specified in this format and here the displacement field
is treated as a signed integer, to specify a branch destination. This destination may be within 127
halfwords (i.e. instructions) forward or 128 halfwords backward relative to the next instruction
in sequence •

.Thus: Operand address = S ± 20

(c) Where a literal operand is not required and the instruction is not a conditional branch.bits 8-15 are
used in conjunction with the F bits to further define the instruction (e.g. shifts and control functions).

4.3 FORMATB

Two instructions only are specified in this format and both are unconditional branches ..

o 6 15

F o

The two instructions in this format are defined by the F bits, the most significant 4 bits (bits 0-3)
are always zero. The remaining 10 bits are used as a signed integer to specify the branch destination. This destin­
ation address may be within 511 halfwords (i.e. instructions) forwards or 612 halfwords backwards rel'ative to the
next instructlon in sequence.

Thus: Destination Address = S ± 20

8

Since lnstructions are alw"ys 16 bit,halfwords the displacement field ,intormat B. instrucnons is
alwaysmultiplied by 2. At the start of the execution of any instruction, the sequencecontrol register (5) always
points to the next instruction in sequence.Therefore all branchesare relativeto the next instruction in sequence
and not the current instruction.

EXAMPLE 1

INSTRUCTION =

STOREMAP

ADDRESS

n
n+2

n+4 •

11
HALFWGftO'
LOCATIONS

n+26 •

EXAMPLE 2

INSTRUCTION =

STORE MAP

ADDRESS

=

0000010000001011
BRANCH +11

CONTENTS
INSTRUCTION
BRANCH + 11
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION

BRANCH DESTINATION

n+2

11 '
HALFWORD
LOCAT!ONS

n+24

4.4 FORMATRR

n

0000011111110101
BRANCH -11

CONTENTS

INSTRUCTION
BRANCH DESTINATION

INSTRUCTION'
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
BRANCH -11
INSTRUCTION

The instructionsspecified in this format are registerto register instructions.

012:1456

F

9 10 12 13 IS,

The first 6 bits (0-5) are alwayszero. The next 4 bits (6-9) define 16 possibleinstructions,
which are further defined by bits 10-15.

9

Format RR instructions are used for operations between registers. The two registers taking part
in an operation are defined by G1 and G2. G1 specifies the destination register and G2 specifies the source
register as follows:-

G1.G2 REGISTER

0 o (see below)
1 A (32 bits)
2

I
B (32 bits)

I3 X (16 bits)
4 L (16 bits)
5 S (16 bits)
6 Y (16 bits) -
7 Z (16 bits)

Register 0 is a non-existent dummy register. 'If used as a source it appears to contain zero; if used
as a destination the result is lost but the condition markers record the result of the operation. .'

10

5. MODESOF OPERATION

The CPU has two different modes Of operation, basic test and full nucleus. Within these two
modes of operation, two further modes are provided, integer mode and floating point mode.

5.1 BASIC TEST

This mode of operation is provided in order to more easily test the central processor basic instruction
set. Most of the microprogram controlling the nucleus is disenabled and the computer ' becomes a machine capable
of running only 2 programs simultaneously. One is the normal operating program, the other being entered on receipt
of an interrupt as described in Section 13. All addresses are 16 bit absolute addresses and thus 64kBytes of store
may be accessed. Certain additional instructions are provided in this mode to facilitate input/output and interrupt
handling. These instructions are described in section 13.

Should these instructions be specified when the machine is in full nucleus mode they are treated as
undefined instructions (ref!r to CPU Nucleus Manual).

Further modifications to the fUrlc1ioninqof the CPU are:

(1) The action taken when an Input Output Processor or Error interrupt occurs (refer to section 13).

(2) The action taken as a result of depressing certain switches on the front panel (IPL1, IPL2, START/
STOP). This is described in CPU Controls and Monitor Unit Manual.

(3) The 'TR IG C.P: facility becomes avairable enabling a 'program to be restarted at a selected point
(see CPU Controls and Monitor Unit Manual).

5.2 FULL NUCLEUS

IA'this mode, addresses generated by the program are 16 bit virtr.ialaddresses and are mapped into
absolute addresses by the mechanism described in the CPU Nucleus Manual. Control instructions in this mode are:
CALL, SEMAflHORE INTER-CHAPTER BRANCH and SEGMENT and these are fully described intheCPU Nucleus man

5.3 FIXED POINT MODE

In this mode of operation the fixed point instruction set described in sections 7 -10 isprovided.

5.4 FLOATING POINT MODE

In this mode of operation certain instructions are treated as floating point instructions as
described in section 11.

5.5 MODECONTROL

The modes of operation described in 5.1 and 5.2 above are controlled by a switch on the CMU
front panel (see CMUDocument) and under certain conditions by the SFN instruction (see section 9).

The modes of operation described in 5.3 and 5.4 are controlled by the FM flag in the control
register which can be manipulat-ed by the program as described in section 6.

11

6. FIXE£) POINT OPERATIONS

The fixed point instruction set performs binary arithmetic on operands serving as addresses and
index quantities aswe:':as fixed point data. Operands jj'"",aybe 16 bits or 32 bits long and may be held in one of
the program accessible registers or in the main store. Both operands are signed 16 or 32 bits long, negative
quantities being held in two's complement form. Condition markers are set as a result of most arithmetic and
logical operations. Addresses are sometimes treated as positive 16bit integers.

6.1 NUMBER REPRESENTATION

Fixed point operands are treated as 16 or 32 bit signed binary integers.

Positive integers in the range 0: 215• 1 (16 bit) or231 ·1 (32 bit) are represented directly. The
most significant bit of an operand representing a positive integer will therefore.be zero.

Negative integers in the range _215 : - 1 (16 bit) or - 231 : - 1 (32 bit) are represented by subtracting
the magnitude of the number from 21~ (16 bit) or ~2 (32 bit). The most significant bit of a negative operand will
therefore be a one.

Since the most significant operand bit can be used to distinguish the sign of an operand, it is referred
to as the sign bit. this representation is known as 2s complement notation, The range of numbers which can be.
represented is therefore

• 21S ~ N or;; 215 • 1 (half-••••ord operands)
or _231 .;; N ~ .~1 - 1 (fullword operands).

6.2 MIXED LENGTH OPERATIONS

A 16 bit 2s complement integer can be converted into the equivalent 32 bit representation.as follows:­
the least significant 16 bits of the 32 bit integer are the same .as the original 16 bit integer, and the sign bit of the 16
bit integer is .replicated throughout the most significant 16 bits of the 32 bit integer.

Ibo bl.~"""""" .blsl

+""---~l J J 1 1
16 bit integer

I bo bo ~bo bt~" •.......... b151 Equivalent 32 bit integer

This process is referred to as 'sign extending'. It is therefore possible to perform operations between
32 bit and 16 bit integers provided 16 bit operands are sign extended to 32 bits before the operation is performed.

6.3 CONDITION MARKERS

TlIere are four condition markers N, Z, OF and CA which are used to recQrd information about an
operation. This information may subsequently be tested with a conditional branch instruction, in considering the
information conveyed by these markers it is necessarv to distinguish between two results that an operation may
produce. The first is the TRUE result, obtained by applying the rules of binary arithmetic to the operation, the
second is the APPARENT result obtained by taking the least significant n bits of the true result, where n is the
number of bits available for recording the result.

The meanings of the condition markers are as follows:-

The Nesotive' Condition Marker (N)

This is a single bit set to the sign of the true result of the last operation performed. Thus, it Is set
to a logical 1 if the true result is negative and to a logical 0 if the true result is positive.

12

The Zero Condition Marker (Z)

This is a single bit set to a logical 1 if the apparent result of the last operation performed is zero,
and is reset to logical 0 if the apparent result of the last operation performed is non-zero.

The Overflow Condition Marker (OF)

This is a single bit set to a logical 1 if an operation produced overflow since the flag was last reset
i.e, the apparent result is different from the true result. This flag is reset by obeying the instruction 'Branch on
Overflow~

The Carry ConditionMarker (CA)

This is a single bit which, following an add operation is set to logic 1 If the operation produced a carry
out of the most significant bit position, and is otherwise reset to 0, and following a subtract operation is set to logic 1

.:;.

if the operation produced a borrow out of the most significant bit position, and is otherwise r~t to zero.

Floating Marker

This is a single bit that controls the floating point feature of the computer. When this flag is reset
to a logical 0 certain instructions operating on the accumulator are interpreted as Integer Operations. When this
flag is set to a logical 1 these instructions are interpreted as Floating Point OPerations and a small set of additional
instructions are made available.

The 1iagmay be set or cleared by control instructio~s in format Lisee section 9; or by use of the
Load Multiple Instruction. A further way to clear the FM flag is by use of one variant of the Call instruction
(described in CPU Nucleus Manual).

During input/output these flags are used for special purposes.

Examples of negative, zero and overflow and carry conditions are given below assuming eight bits
are available to hold the result of the calculation. The carry out bit is also shown, in parentheses:-

Addition

(a) +57 00111001 } Negative reset
+35 00100011 Zero reset

+92 (0)01011100 Overflow not set
Carry reset

(b) +57 00111001 } Negative reset
-35 11011101 Zero reset

+22 (1)0001011 0 Overflow not set
Carry set

(c) -57 11000111 } Negative set
-92 :; 10100100 Zero reset

-149 (1)01101011 Overflow set (Out of range.Resuit <-128).
Carry set

(d) +57 00111001 } Negative reset.
+92 01011100 Zero reset

+149 = (0) 1001 0101 Overflow set (neg.result)
Carry reset

13

Multiplication (Carry Not Affected)

(a) +35 = 00100011 } Negative reset
+3 = 00000011 Zero reset

+105 = 01101001 Overflow not set

(b) +35 = 00100011 } Negative set
~ = 11111101 Zero reset

-105 = 10010111 Overflow not set

(c) +35 = 00100011 } Negative reset
+ 4 = 00000100 Zero reset

+140 = 10001100 Overflow set

(d) +32 00100000 } Negative reset
+16 = 00010000' Zero set

+512 1000000000 Overflow set

6.4 LOGICALOPERATIONS

The condition markers are used in the same way as for integer arithmetic operations, except that
carry and overflow stats are unaffected by logical operations. .

14

7. THE FIXED POINT INSTRUCTION SET: FORMATSAI-As

Tne followingdescribesthe basicfixed point instruction set of the computer, i.e. those
instructions providedwhen FMisset to logicO. The Floatingpoint instructions in section 12 are not available.

rO ~ 16 ADDR

LOAD BYTE: a .:=bq. The byte is loaded into the A registerfrom store and is extended to 32 bits by most
significantzeros before the operation. This instruction therefore loadsthe least significantbyte of the accumulator
and clears the most significant24 bits. The final valuein Awill lie in the range0 to 255.

Condition Markers

N
Z
CA
OF -

is cleared by the instruction
is set if the 32 Bit accumulator is zero otherwise it is cleared
not affected .
not affected

LD

o 5 6

A.DDR (FM= 0 only)

LOAD: a:= hq, The halfwordoperand is loaded from store and is signextended to 32 bits before the operation.
The instruction therefore loads the least significant16 bits (AL)of the accumulator with the operand and loads the
most significant16 bits (AM)with the operand extension.

15

Condition Marken

N is let to the lign of the 32 bit accumulatorafter the load
Z is set if the accumulatoris zero after the operationotherwiseit is cleared
CA not affected
OF not affected

LDW

056 15

ADDR (FM = 0 only)

LOADWORD: a :=wq. The 32 bit operand is loaded from store.

ConditionMarker.

N is set to thelign of the 32 bitaccumulator after the load
Z is set if the accumulatoris zero after the operationotherwise it is cleared
CA not affected
OF not affected

STB

ADDR

STOR E BYTE: bq := ba. The least significant byte of the 32 bit accumulator is stored.

ConditionMarkers

N is clearedby the irutruction
Z is set if the byte to be stored is zero otherwise it is cleared
CA not affected
OF not affected

ST

11- 0 0 1 1
o ~ 16

15

ADDR (FM=Oonly)

STORE: hq;;oha. The least significant 16 bits of the accumulator (Al' are stored.

ConditionMarkers

N isset to the most significantbit of the luzlfwordstored
Z is set if the halfwordstored is zero otherwise it is cleared
CA not affected
OF is set if the 16 bit luzlfwordstored is not equal in value to the original32bit

content of A.

16

STW

5 6 15

I 0 1 1 ADDR (FM = 0 only)

STOREWORD:Wq :=a. The 32 bit accumulator (AM and AL) isstored.

Condition Markers

N is set to the ,ign of the 32 bit accumulator
Z is set if the 32 bit accumulator is zero otherwise it is cleared
CA not affected
OF not affected

AD

o 5 16
ADDR (FM = 0 only)

ADD: a := a+ hq. The halfword operandfrom store is signextenc;ledto 32 bits before beingaddedto the
contents of the accumulator. Arithmetic is performed over32 bits.

Condition Markers

N is set if the true result is negative
Z is set if the result in the 32 bit accumulator is zero, otherwise it is cleared
CA is set if there is a carry out of the most significant bit of the 32 bit accumulator

otherwise it II cleared
OF is set if arithmetic overflow occurs otherwise it remain' unchanged.

SB

o ~16
ADDR (FM = 0 only)

SUBTRACT: a := a - hq. The halfword operandfrom store issignextended to 32 bits before beingsubtracted
from the contents of the accumulator. Arithmetic is performed over 32 bits.

Condition Markers

N is let if the true resuit is negative
Z is set if the result in the 32 bit accumulator is zero, otherwise it is cleared
CA is let if there is a borrouiout ofthe most significant bit of the 32 bit accumulator

otherwise it is cleared.
OF is set if arithmetic overflow occurs otherwise it remains unchanged.

17

ADW

(1 0 1 0 0 : 16 ADDR (FM =Oonly)

ADD WORD: a := a+ wq. The 32 bit operandfrom store is addedto to contents of the 32 bitaccumulator.

Condition Markers

N is set if the true result is negative
Z is set if the result in the.32 bit accumulator is zero, otherwile it is cleared
CA is set if there is a carry out of the mod significant bit of the 32 bit accumulator

otherwise it is cleared.
OF is set if arithmetic overflow occurs otherwile it remains unchanged.

SBW

11 0 1 0 1
o ;,6

ADDR (FM = 0 only)

SUBTRACT WORD: a:= a - wq. The 32 bit operandfrom store issubtracted.from the contents of the 32 bit
accumulator.

Condition Marken

N is set if the true result is negative
Z is set if the relult in the 32 bit accumulator iI zero, otherwise it iI cleared
CA it let if there it a borrouioutof.the most 'igni/icant bit of the 32 bit accumulatoF

otherwise it is cleared
OF is set if arithmetic overflow occurs otherwise it remains unchanged.

ePB

o

10 1 0 0 ADDR

COMPAREBYTE: form ba - bq. The byte from store is extended to 32 bits by most significant zerosbefore
beingcomparedwith the contents of the 32 bit accumulator. The contents of the accumulator are unaffected
by this instruction.

Condition Markers

N is set if the 32 bit accumulator is leu than the zero extended byte from store,
otherwise it is cleared.

Z iI ,et if the 32 bit accumulator is equal to the zero extended byte from store,
otheruiise it is cleared.

CA not affected
OF not affected

18

CP

ADDR (FM = 0 only)

COMPARE: form a ~hq, The halfword operandfrom store is signextended to 32 bits before beingcomparedwith
the contents of the 32 bit accumulator. The contents of the accumulator areunaffected by this instruction.

Condition Markers

N is set if the 32 bit accumulator is less than the sign extended halfword operand
from store, otherwise it is cleared.

Z is set if the 32 bit accumulator equals the sign extended operand from store,
otherwise it is cleared.

CA is set if there is (J borrow out of the most significant bit of the function unit as a
result of the comparison otherwise it is cleared.

OF is set if arithmetic overflow occurs otherwise it remains unchanged.

CPW

o 5 6 15

1~1__0__1__0__1__ ~ A_D_D_R =J (FM = 0 only)

COMPAREWORD: form a - wq. A 32 bit operandfrom store iscomparedwith the contents of the 32 bit
accumulator.

Condition Markers

N is set if the 32 bit accumulator is less than the 32 bit operand from store.
Z is set if the 32 bit accumulator is eqrud to the 32 bit operand from store,

otherwise it iI cleared.
CA is set if there isaborrouroutof the most significant bit of the function unit as a

result of the comparison otherwise it is cleared.
OF is set if arithmetic overflow occurs otherwise it remains unchanged.

N

I~0 0 1 0 ~.r ADDR (FM = 0 only)

AND: a := a 1\ hq, The halfword operandfrom store is $ignextended to 32 bits before beingusedto form the
logical AND function with the contents of 32 bit accumulator. The result is placed in the accumulator.

Condition Markers

N is set to the sign of the 32 bit accumulator after the operation.
Z is set if the 32 bit accumulator is zero after the operation, otherwise it is cleared.
CA not affected.
OF not affected.

19

NW

11 0 1 1'0 0
o 516

ADDR (FM = 0 only)

AND WORD: a:= a 1\ wq. The 32 bit operand from store is used to perform the logical AND function with the
contents of the 32 bit accumulator. The result is placed in the accumulator.

ConditionMarkers

N is let to the lign of the 32 bit accumulatorafter the operation.
Z is let if the 32 bit accumulatoris zero after the operation,otherwise it is cleared.
CA not affected.
OF not affected.

M

o 1516
ADDR (FM = 0 only)

MULTIPLY: a := a * hq. The halfword operand from store (Multiplier) and the :contents of the 32 bit accumulator
(multiplicand) are multiplied together to form a 48 bit product. The result (in the accumulator) is the least significant
32 bits of the true product.

ConditionMarkers

N islet if the trueproduct in A is negative.
Z is set if the leastsignificant32 bits (i:e, the re!l.tJtin the accumulator) is zero;

otherwise it Ucleared.
CA not affected.
OF is iet if lignificant bitl are 100t by truncatingthe product from 48 to 32 biu.

MW

15

ADOR (FM ""0 only)

MULTIPLY WORD: da:= a * wq. The 32 bit operand from store (Multiplier) and the contents of the 32 bit
accumulator (multiplicand) are multiplied together to form a 64 bit product. The result is held in the 64 bit
extended accumulator (SAI with the most significant bits in B and the least significant 32 bits in A.

ConditionMarkers

N ulet ilthe true ruult in A is negative.
Z is let if the ruult in BA Uzero, otherwise it is cleared.
CA not affected.
OF cannot occur,ince the re,ult in BA is the true 64 bit integerproduct.

20

D

ADDR (FM = o only)

DIVIDE: a:= a+ hq b := remainder. The contents of the 32 bit accumulator (dividend) aredivided by a halfword
from store (divisor) and the result in the accumulator is the 32 bit integerquotient. The'32 bit remainder is held in
B. The signof the remainder is alwaysequal to the signof the dividend.

For example:-

DIVIDEND DIVISOR QUOTIENT REMAINDER

+5 +2 +2 +1
-5 +2 -2 -1
+5 ·2 -2 +"1
-5 -2 +2 -1

ConditionMarkers

N is set if the quotient in A is negative.
Z is set if the 32 bit result iszero, otherwiseit is cleared.
CA not affected
OF is set if the divisoris zero or if the divisoris -1 and the dividendis 231.

Underthese circumstancesA, B, Nand Z areundefined.

ow

(l 5 6 15

1~1__0__1_1__1_0~1__ ~~_A_D_DR J (FM = 0 only)

DIVIDE WORD: a := da+ wq b := remainder. The contents of the 64 bit extendedaccumulator BA (dividend)
aredivided by the 32 bit operandfrom store (divisor). The result, in the accumulator, is the leastsignificant 32 bits
of the quotient and the 32 bit remainder is held in B. As in DIVIDE the signof the remainder is alwaysequal to the
signof the dividend.

ConditionMarkers

N is set if the quotient in A is negative.
Z is set if the 32 bit aecumulatoris zero otherwise it is cleared
CA not affected
OF is set if the quotient is out of rangei.e. if more than 32 bits are required to

hold the resultingquotient.An example isall numbersgreaterthan 231 divided
by +1. If overflow occursA, B, IVand Z aTe undefined.

7.2 OPERATIONS ON OPERANDS IN STORE

The following instructions areavailable:-

NBS
OBS
XBS
DECS
INCS

AND BYTE IN STORE
OR BYTE IN STORE
EXCLUSIVE OR BYTE IN STORE
DECREME~T STORE
INCREMENT STORE

21

NBS

ADDR

AND BYTE IN STORE: bq:= bq IIba. A byte operand from store is used to perform the logical AND function
with the least significant byte of the accumulator (Le. bits 8-15 of AJ. The result is returned to store and the aceurn­
ulator is unchanged.

Conditionl'rfarkers

N is clearedby the instruction.
Z is set if the result of the operation (that is returned to store} is zero,

otherwise it is cleared.
CA not affected.
OF not affected.

OBS

o : 16 ADDR
15 I

OR BYTE IN STORE: bq := bq V ba. A byte operand from store is used to perform the logical OR function with
the least Significant byte of the accumulator (i.e. bits 8-15 of ALl. The result is returned to store and the aceum­
ulator is unchanged.

ConditionMarken

N isclearedby the instruction.
Z is let if the result of the operation (that;' returned to store) is zero,

otherunseit is cleared.
CA not affected.
OF not affected.

XBS

I~ 15

1 0 1 ADDR

EXCLUSIVE OR BYTE IN STORE: bq := bq :$ ba. A byte operand from store is used to perform the logical
EXCLUSIVE OR function with the least significant byte of the accumulator [i.e, bits 8-15of ALl. The result
is returned to store and the accumulator is unchanged.

ConditionMarken

N is clearedby the instruction
Z is set if the result of the operation (that is returned to store) iszero,

otherwise it is cleared.
CA not affected.
OF not affected.

DECS

ADDR

DECREMENT STORE: hq:= hq -1. The halfword operand from store is decremented by 1 and returned
to the store. None of the registers in the central processor are affected.

Condition Markers

N is set to the true sign of the decremented operand
Z is set if the decremented operand is zero, otherwise it is cleared.
CA --is set if the subtraction carues·aborrow out of the most significant bit of

the halfword operand.
OF ,- is set if the subtraction causes arithmetic overflow.

INCS

ADDR

INCREMENT STORE: hq := hq + 1. The halfword operand from store is incremented by 1 and returned to the
store, None of the registers in the central processor are affected.

Condition Markers

N is let to the true sign of the incremented operand.
Z is set if the incremented operand is zero, otherwise it is cleared.
CA is set if the addition causes a carry out of the most significant bit of

the halfword operand.
OF is set if the addition causes arithmetic overflow.

7.3 OPE,RATIONSONTHE X REGISTER

The following instructions are provided:-

LOX
LBX
STX
ADX
SBX
MX
OX
NX
CPX

LDX

LOAD X REGISTER
LOAD BYTE TO X REGISTER
STORE X REGISTER
ADD X REGISTER
SUBTRACT X REGISTER
MULTIPLY X REGISTER
DIVIDE X REGISTER
AND X REGISTER
COMPARE X REGISTER

o 5 6 15I, 1 0 0 0 01 ADDR

LOAD X REGISTER: x :=hq. The 16 bit X register is loaded with a halfword operand from store.

23

Condition Marker$

N is set to the .ign of the 16 bit X register after the operation.
Z is set if X is zero after the operation otherwise it is cleared.
CA not affected.
OF not affected.

LBX

o 0 0 I I ADDA

LOAD BYTE TO X REGISTER: x := bq. A byte operand from store is loaded into the least significant byte of the
X register. The operand byte is expanded to 16 bits by most significant zeros before being loaded into the X register.

Condition Markers

N is cleared by the instruction.
Z is set if the X register is zero after the operation, otherwise it is cleared.
CA not affected.
OF not affected.

STX

1 °1 1 0 1 1 ~16 ADDR

STORE X REGISTER: hq ;=X. The 16 bit iegistGi is stored at a halfwordeddress.

Condition Jfarken

N is set to the sign of the stored operand.
Z iI set if the stored operand is zero, otherwise it.is cleared.
CA not affec~ed.
OF not affected.

ADX
o 5116
[1 1 0 0 0 . ADDR

ADD TO X REGISTER: x := x + hq, The halfword operand from store is added to the contents of the 16 bit
X register.

Condition Markers

N is set to the true sign of the X register after the operation.
Z is set if the X register is zero after the operation otherwise it is cleared.
CA is set if there is a carry out of the most significant bit of the X register,

otherwise it is cleared.
OF is set if arithmetic overflow occurs due to the operation on X.

24

SBX

056 15

1"00'01 ADDR

SUBTRACT FROM X REGISTER: x := x - hq, The halfword operand from store is subtracted from the
contents of the f6 bit X register.

ConditionMarkers

N is set to the true signof the X reguterafter the operation.
Z is let if the X registeris zero after the operation,otherunseit is cleared.

. CA is set if there isaborrowout of themost significantbit of the X register,
otherwiseit is cleared.

OF is set if arithmetic overflow occursdue to the operation on X

CPX

15

001 ADDR

COMPARE X REGISTER: form x - hq, Thehalfword operand from store is compared with the contents of
the 16 bit X register. The X register is unaffected by this instruction.

ConditionMarkers

N isset if theX registeris less than the 16 bit operandfrom store
Z isset if the 16 bit operandfrom store is equal to the X register,otherwiseit is

cleared.
CA is set if thereisaborrowout of themost significantbit of the function unit as a result

of the comparison,otherwiseit is cleared. .
OF is set if arithmetic overflow occursasa re.sultof the comparison.

NX

I~
15

1 0 1 0 ADDR

AND X REGISTER: x := x A hq. The halfword operand from store is used to form the logical AND function
with the contents of the X register. The result is replaced in the X register.

ConditionMarkers

N ill set to the signof the 16 bitX registerafter the operation.
Z isset if X is zero after the operationotherunseit.i»cleared.
CA not affected.
OF not affected.

25

MX

ADDR

MULTIPLY X: x := x * hq. The halfword operandfrom store (multiplier) and the contents of the 16 bit X register
(multiplicand) aremultiplied together to form a 32 bit product. The result (in theX register) is the leastsignificant
16 bits of the true product.

ConditionMarkers

N
Z
CA
OF -

is set to the signof the trueproduct
is set if the result in theX registeris zero, otherwiseit is cleared.
not affected'
isset if significantbits are lost asa result of truncatingthe product from 32 to 16 bits.

DX

I~ .1 0 1 ADDR

DIVIDE X REGISTER: x :=x+ hq. The contents of the 16 bit X register (Dividend) aredivided by a halfword
operandfrom store (divisor) and the result in X is the integerquotient. All remaindersarediscarded.the result
being rounded towards zero.

ConditionMarkers

N isset to the sign of the quotient in X
Z is set i/the quotient inX is zero otherwi6eit is cleared.
CA not affected.
OF is only set if the operandfrom store i6zero or if the divident = _215 and the

dioisor=-1. In this caseN, Z andX areundefined.

7.4 OPERATIONS ON Y AND Z REGISTERS

The following instructions areavailable:-

lDY LOAD Y REGISTER
STY STORE Y REGISTER
ADY ADD Y REGISTER
SBY SUBTRACT Y REGISTER
HAY LOAD ADDRESS INTO Y REGISTER

LDZ LOAD Z REGISTER
STZ STORE Z REGISTER
ADZ ADD Z REGISTER .
SBZ SUBTRACT Z REG':·TER
HAZ LOAD ADDRESS no Z REGISTER

26

LDY
o 5 I 6 15

1.1 1 1 00 01 ADDR

LOAD Y REGISTER: y := hq, The 16 bit register Y is loaded with a halfword operand from Store.

Condition Markers

Not affected.

STY

ADDR

STORE Y REGISTER: hq:= v- The content of the 16 bit Y register Is stored at a halfword address.

Condition Markers

Not affected.

ADY

5 6

ADDR

ADD Y REGISTER: y := y + hq. The halfword operand from store is added to the contents of the 16 bit
Y register.

Condition Markers

Not affected

SBY

ADDR
is,

11 1 1 0 1 01
o s 6

SUBTRACT Y REGISTER: y := y - hq. The halfword operand from store is subtracted from the contents of the
16 bit Y register.

Condition Markers

Not affected 27

HAY

15

·ADDR

LOAD HALFWORD ADDRESS INTO Y REGISTER; y ;= Q. The halfword operand address specified by the
instruction is loaded into Y.

Condition Markers

Not affected

LDZ

I~11 1 o~(ADDR

LOAD Z REGISTER: z r= hq. The 16 bit register Z is loaded with a halfword operand from store.

Condition Markers

Not affected

STZ

15

ADDR

STORE Z REGISTER: hq:= z. The content of the 16 bit Z register is stored at ahalfword address.

Condition Markers

Not affected

ADZ

ADDR

ADD Z REGISTER: z .= z + hq. The halfword operand from store is added to the contents of the 16 bit Z
register.

Condition Markers

Not affected

28

8BZ

. ,..,.u 15

ADDR

SUBTRACTZ REGISTER:z := z - hq. The halfwordoperand from store is subtracted from the contents of the
16 bit Z register.

Condition Markers

Not affected

HAZ

ADDR

LOADHALFWORDADDRESSINTOZ REGISTER:z := Q. The halfwordoperand addressspecifiedby the
instruction is loaded into Z.

Condition Markers

Not affected

7.5 MULTIPLE LOAD AND STORE INSTRUCTIONS

Two instructionsare avaiiabie:-

STM STOREMULTIPLE
LDM LOADMULTIPLE

9 registerstake part ineach of these instructions and the store layout is as below.

FUlLWORD
~------------------------------------,~ ADDRESS ,/0,1BMr--------------------------Blr-----------------------------~~,~Q+4

AMr--------------------------ALI-----------------------------------+II_.-,__- 0 +8
X

r---------------y----------------+r-·~~-Q+l0~.----------------------------------~~e--- 0+12

~14------E-H-A--lF-W-o-Zr-RD-=-1-6-B-IT-S-C--~~~~.~-l'I"·t--- 0 + 14

29

STM

15

ADDR

STORE MULTIPLE: The displacement field of the instruction is scaled to provide a fullword address. The address
formed by instructions in formats Al-A5 will bE! truncated to a fullword address. Register BM is stored at this
fullword location followed by the registers shown above in successive halfword locations.

All registers are unaffected by the STORE MULTIPLE instruction.

Condition Markers

Not affected.

LDM

o 5 6 15

10 1 t 0 0 11 ADDR

LOAD MULTIPLE: The displacement field of the instruction is scaled to provide a fullword address. The address
formed by instructions in formats A1-A5 will be truncated to a fullword address. ,Register BM is loaded from this
fullword location followed by the registers shown above in successive halfword locations.

Condition Markers

The Condition Markers.•including 1M,are loaded from the Q + 15 store location during LDM.

7.6 INDIRECT BRANCHES

Two instructions are available:-

BI BRANCH INDIRECT
au BRAN,CHAND LINK INDIRECT

BI

ADDR

BRANCH INDIRECT: ~ r=hq, A halfword address is formed as specified by the instruction. This is an operand
address formed in the same way as for any format A1-A5 instruction. The contents of this location is the branch
destination, and is loaded into the sequence control register (S).

Condition Markers

Not affected.

30

BLI

D 15

10 1 1 1 1 ADDR

BRANCH AND LINK INDIRECT: z i=s s :=hq. A halfword addressis formed exactly as in BI above.The
contents of the sequencecontrol registerS is transferred to Z beforeS is loadedwith the branchdestination
address.

Condition Markers

This instruction is usedfor subroutine entry with the return link stored in Z.

Not affected.

31

8 INSTRUCTIONS AVAJLABLE IN FORMAT B

Two unconditional branch instructions only areavailablein this format:-

B BRANCH
BL BRANCH AND LINK

B

o 5 6 15 Destination ADDress=S:t2D

I I 1
511 Halfwords Forwards

LO__O_O~_O_O~l--, D -, 512 Halfwords Backwards
(Signedinteger -10 bits)

BRANCH: s := Q. The sequencecontrol register is incrementedor decrementedaccordingto the displacementfield
specified by the instruction. As explained in section4 (b) the instruction providesunconditional branchesrelative
to the next instruction in sequence.The rangeof the branch is limited to 511 halfwords forwards and 512 halfwords
backwardsby the 10 bits of instruction displacementfield.

Condition Markers

Not affected.

BL

D

BRANCH AND LINK: z := s. This instruction performs the samefunction asB above,ai'li:t 11150 the original value
otthe sequencecontrol register is placed in Z. This providesfor subroutine entry and return.

Condition Markers

Not affected.

32

9 INSTRUCTIONS AVAILABLE IN FORMAT L

These instructions are called literal instructions since where an operand is required it is specified
exactly by the instruction displacement field. Some instructions depend on their displacement fields to further
define their function.

9.1 OPERATIONS ON THE 32 BIT ACCUMULATOR

The following instructions are available:-

LDL LOAD LITERAL
ADl ADD LITERAL
SBL SUBTRACT LITERAL
ML MULTIPLY LITERAL
DL DIVIDE LITERAL
NL AND LITERAL
CPL COMPARE LITERAL

LDL

o 0 0 0 D

LOAD LITERAL: a:= D. The operand formed by the 8-bit displacement field is loaded into the least significant
byte of the accumulator. The most significant 3 bytes of the accumulator are cleared. As described in section 4.2 it
is thus possible to load numbers in the range 0-255 into the 32 bit accumulator.

Condition Marken

N
Z
CA
OF -'-

is cleared by the operatiolL
is set if the result in the 32 bit accumulator is zero; otherwise it is cleared.
not affected.
not affected.

ADL

,01,2 7,8
o 011 0 0 0 0 11 D

ADD LITERAL: a :=a + D. The operand specified by the g·bit displacement field is extended to 32 bits by most
significant zeros before the operation. This operand is then added to the contents of the 32 bit accumulator.

Condition Markers

N . is let to the true sign of the result.
Z is set if the result in the 32.bit accumulator is zero, otherwise it is cleared.
CA Ulef if there is a carry out of the molt significant bit of the 32 bit accumulator,

otherwise it is cleared.
OF is set if arithrmJtic overflow occurs, otherwise it remains unchanged.

33

SBL

o 0 0 D

SUBTRACTLITERAL: a :=a-D. The operand specifiedby the a-bit d.ispl!lcementfieldis extended to 32 bits
by most significantzeros before the operation. Thisoperand is then subtracted from the contents of the 32 bit
accumulator.

Condition Markers

N is set to the true sign of the result:
Z is set if the result in the 32 bit aceumulato: is zero, otherwise it is cleared.
CA is set if there isaborrow outof the most significant bit of the 32 bit accumulator,

otherwise it is cleared. . .
OF is set if arithmetic overflow QCcurs;otherwise it remains unchanged.

CPL

o 0 0 1 o

COMPARELITERAL: form a- D. The operand specifiedby the Instruction displacementfield is extended to 32
bits by most significantzeros.This operand is then comparedwith the contents of the 32 bit accumulator. The
accumulator isunaffected by the instruction.

Condition Markers

N is set if the 32 bit accumulator is less than the 32 bit literal operand, otherwue it is
cleared.

Z is set if the 32 bit accumulator equals the 32 bit literal operand, otherwise it is
cleared.

CA is set if there is a borrow outofthe most significant bit of the function unit as a result of
the eomparison, otherwise it is cleared.

OF is set if arithmetic overflow occurs, otherwise it remains unchanged.

NL

o 1 2 7 8 15

D

At"D LITERAL:a := a I\D. The operand specifiedby the displacementfield of the instruction isextended to 32 bits
by most significantzeros. This 32 bit operand is used to perform the logicalANDfunction with the contents of the
32 bit accumulator. The result is placed in the accumulator.

Condition Markers

N is cleared by the instruction.
Z is set if the result in the accumulator is zero, otherwise it is cleared.
CA not affected .
.OF ' not affected.

34

ML .

o 1 2

10 0 11 0 0 1·· 0
:U

MULTIPLY LITERAL: a := a * D. The B-bit operand specified by the displacement field of the instruction and
the contents of the 32 bit accumulator are multiplied together to form a 40 bit product. The result, in the accum­
ulator, is the least si!11ificant 32 bits of the true product.

Condition Markers

N
Z
CA
OF -

DL

is set to the sign of the true 40 bit result.
j& set if the result in the 32 bit accumulator is zero, otherwise it is cleared.
not affected.
overflow is set if significant bits are lost in the truncation of the product.

o 1 2 7. 8 15

10 011 0 0 1

DIVIDE LITERAL: a:= a +D b:= remainder. The contents of the 32 bit accumulator (dividend) are divided
by the S-bit operand specified by the instruction displacement field. This B-bit operand is extended to 16 bits
before the operation by most significant zeros. The result, in the accumulator, is the 32 bit integer quotient.
The result in B is the 16 bit remainder, sign extended to 32 bits. The sign of the remainder is always equal to
the sign of the dividend (see section 7.1).

Condition Markers

N
Z
CA
OF -

is set to the sign of the 32 bit quotient in the accumulator.
is set if the quotient is zero, otherwise it is cleared.
not affected.
overflow is set if the. divisor is zero. The content of A, B,·N and Z are then
undefined.

9.2 LITERAL OPERATIONS ON THE X REGISTER

The following instructions are available:-

LDXl
ADXl
SBXL
MXl
DXl
NXL
CPXl

LDXL

LOAD X .LITERAL
ADD X LITERAL
SUBTRACT X LITERAL
MULTIPLY X LITERAL
DIVIDE X LITERAL
AND X LITERAL
COMPARE X LITERAL

o 1 2 7 8 15

D

35

LOAD X LITERAL: x :=O. The operand specified by the 8-bit displacement field is extended to halfword length
(16 bits) by most significant zeros. This 16 bit operand is loaded into the 16 bit X register.

Condition Markers

N is cleared by the instruction.
Z is set if the X register is made zero by the operation, otherwise it is cleared.
CA not affected.
OF not affected.

ADXL

o 2 7 8 15

10 011 1 0 0 0 11 o

ADD X LITERAL: X := x + D. The operand specified by the 8~bit displacement field is extended to 16 bits by
most significant zeros. This 16 bit operand is then added to the contents of the 16 bit X register.

Condition Markers

N is set to the true sign of the result.
Z is set if the result in the X register is zero, otherw~e it is cleared.
CA is set if there is a carry out of the most significant bit of the X register,

otherwise it is cleared.
OF is'set if arithmetic overflow occurs due to the operation in X.

SBXL

15

1 0 0 1 D

SUBTRACT X LITERAL: x ;= x-D. The operand specified by the 8 bit displacement field is extended to
16bits by most significant zeros. This 16 bit operand is then subtracted from the contents of the 16 bit X
register.

Condition Markers

N
Z
CA

OF -

is set to the true sign of the result.
is set if the result in the X register is zero, otherwise it is cleared.
is set if there is a borrow outofthe most significant bit of the X register, otherwise it is
cleared.
is set if arithmetic overflow occurs clue .to the operation in X

MXL
o 1 2 7 8 15

10 011 1 0 1 0 '0

MULTIPLY X LITERAL: x .= x * o. The operand specified by the displacement field of the instruction and the
contents of the 16 bit X register are multiplied together to form a 24 bit product. The result, in X, is the least
significant 16 bits of th is 24 bit product.

36

Condition Marker

N a let to the sign of the true 24 bit product,
Z js'setifJhU~~ldt. inJhe Xregis.ter is.zero, othel'wise it is cleared.
CA not affected.
OF a set ifsignificant bits are lost in· the truncation from 24 to 16 bits•.

DXL

o I 2 7 8 15

1 0 1 101 D

DIVIDE X LlTERAL:,x :.= x + D.The contents of the 16 bit X register (dividend) are divided by the 8 bit operand
(divisor) specified by the instruction displacement field, This 8 bit operand Is extended to 16 bits before the operation
by most significant zeros. The result, in X, is the true integer,quotient. Remainders are discarded, the result being
rounded towards zero.

Condition Markers

N is set to the sign of the 16 bit quotie~t in ~heXregister.
Z is set if the result in the X register is zero, otherwise it is cleared.
CA not affected.
OF a set if the divisor a zero. The contents ofN, Z andX are then undefined.

NXL

o 1 2 7 8 15

1 0 1 0 01 D

AND X LITERAL: x := x,A, D.The operand specified by the 8 bit displacement field is extended to 16 bits by
most significentzeros. This 16 bit operand is used to form the logical AND function with the contents of the
16 bit X register. The result is placed in the X register.

Condition Markers

1\1' is cleared by the operation.
Z is set if the result in the X register is zero, otherwise it is cleared.
CA not affected
OF not affected.

CPXL

15

D

COMPARE X LITERAL: form x-D. The operand specified by the 8 bit displacement field is extended to 16 bits by
most significant zeros. This 16 bit operand is then compared with the 16 bit content ofthe X register. The X
register is unaffected by the operation.

Condition Markers

N is set if the 16 bit X regater is less thnn the 16 bit literal operand, otherwise it is cleared.
Z is set if the 16 bit X register equals the 16 bit literal operand, otherwise it is cleared.
CA is set if thereisaborrouiout ofthe most significant bit of the function unit as a result of

the. comparison, otherwise it a cleared.
OF is set ifarithmatic overflow occurs.

37

9.3 LITERAL OPERATIONS ON THE Y AND Z REGISTERS

The following instructions are available:-

LDYl
ADYL.
SBYl
CPYl
lDZl
ADZl
SBZl
CPZl

LOADYLiTERAL
ADD Y LITERAL
SUBTRACT Y LITERAL
COMPARE Y LITERAL
LOAD Z LITERAL
ADD Z LITERAL
SUBTRACT Z LITERAL
COMPARE Z LITERAL

N.B. Before all thefollowlnq operations the 8 bit displacement field of the instruction is extend to
16 bits by most significant zeros. It is then used as a 16 bit literal operand.

LDYL

7 8 IS

1 1 0 0 01 o

LOAD Y LITERAL: y := D. The literal operand is loaded into the 16 bit Y register.

ConditionMarken

Not affected.

ADYL

1 1 0 0

15o 1 2

o

ADD Y LITERAL: y := y + D. The literal operand is added to the contents of the 16 Y register.

ConditionMarkers

Not affected.

SBYL

o 1 2 7 8 15

1 0 1 0 1 o

SUBTRACT Y LITERAL: y:= y - D. The literal operand is subtracted from the contents of the 16 bit Y
register.

ConditionMarkers

Not affected.

38

CPYL

o 1 1 "1 S IS

100101101 I D

COMPARE Y LITERAL: form y- D. The literal operand is compared with the contents of the Y register.
Y is unaffected by this operation.

Condition iUarkers

N is set if Y is less than the literal operand.
Z is set if the result of the operation is zero, otherwise it is cleared.
CA is set if there isa borrow out of the most significant bit of the function unit as a

result of the comparison, otherwise it is cleared.
OF is set if arithmetic overflow occurs.

LDZL
o 1 2 7 8 15

10 011 '1 1 1 1 I D

LOAD Z LITERAL: z := D. The literal operand is loaded into the 16 bit Z register.

Condition Markers

Not affected.

ADLiL

o 1 2 7 8 15

10 .01 1 1 1 0 11 D

ADD Z LITERAL: .z :•• z + D. The literal operand is added to the contents of the 16 bit Z register.

Condition Markers

Not affected.

SBZL

o 1 2

1 1 1 D

SUBTRACT Z LITERAL: z := z - D. The literal operand is subtracted from the contents of the 16 bit Z
register.

Condition Markers

Not affected.

39

CPZL

15

1 1 1 1 o

COMPARE Z LITERAL: form z - O. The literal operand is compared with the contents of the Z register;
Z is unaffected by this operation.

ConditionMarkers

N is set if Z is less than the literaloperand.
Z ' is set if the result of the operationis zero, otherwise it is cleared.
CA is let if thereisa borrowoatof the most significantbit of the function unit asa

result of thecomparison;otherwiseit is cleared.
OF isset ijarithmetic overflow occurs.

9.4 CONDITION BRANCH INSTRUCTIONS IN FORMAT L

The following instructions are available:-

BN
BNN
BZ
BNZ
BP
BNP
BOF
BNCA
BPAR

BRANCH IF NEGATIVE
BRANCH IF NONNEGATIVE
BRANCH IF ZERO
BRANCH IF NON ZERO
BRANCH POSITIVE
BRANCH IF NON POSITIVE
BRANCH IF OVERFLOW
BRANCH IF NO CARRY
BRANCH ON 000 PARITY

For these instructions the branch destination is formed by scaling the literal displacement (D) for
halfword (i.e. left shifting it one place). sign extending it to 16 bits and then adding it to the current contents of
the sequence control register (S).

Branches of 127instructions ahead or 128instructions behind the next instruction in sequence
may be performed (see section 4.3).

If a branch is taken then

S=S+20 where 0= +127 -128

BN

otherwise for a branch not taken the next instruction in sequence is obeyed.

Oil 7 8 15

o 0 0 I 0= +127 ... -128o 8 bits

BRANCH IF NEGATIVE: J! N then s := Q. If the negative condition marker is true the branch is taken.

ConditionMarkers

Not affected.

40

BNN

o 1 2 7 8 15

D

BRANCH IF NON NEGATIVE:!! N then s :==Q If the negative condition marker is false the branch is taken.

Condition Markers

Not affected.

BZ

o 1 0 1 D

BRANCH IF ZERO:.!! Z then s:==Q. If the zero condition marker is true the branch is taken.

Condition Markers

Not affected.

BNZ

o 1 2 7 8

tn"}11 010111 D

15

I
BRANCH IF NONZERO: .!!Z then s :==Q. If the zero condition marker is false the branch is taken:

Condition Markers

Not 'affected.

BP

o 1 1 0 D

151

BRANCH !F POSITIVE:!! N /\ Z then s :==Q. If the zero condition marker AND the negative marker are false
the branch is taken.

Condition Markers

Not affected.

41

BNP

15

o

BRANCH If NON POSITIVE: !!N v Z then s:= Q. If the zero condition markerOR the negative marker are
true then the branch is taken.

Condition Markers

Not affected.

BOF

10011 0 111o 1 2 :18 15

o

BRANCH IF OVERFLOW: if OF then -< OF :;.,0 s:= Q >. If the overflow condition marker (OF) is true
then the branch is taken.

Condition Markers

N
Z
CA
OF -

not affected.
not affected.
not affected.
resets to zero.

BNCA

o 1 2 7 8 15

o

BRANCH IF NO CARRY: .!.f CA then s := a. If the carry condition marker (CA) is false then the branch is
taken.

Condition Markers

Not affected.

BPAR

01278 15

10 010 1 1 0 0 01 o

BRANCH ON 000 PARITY: The least significant byte of the accumulator is examined and if it has odd parity
the branch is taken. The parity of the least significant byte of A isdefined as odd, if the number of bits which are set to 1
are odd.

Condition Markers

Not affected.
42

9.5 SHIFT INSTRUCTIONS

The following instructions are available:-

SHIFT LITERAL
SHIFT INDEXED

SHIFT UTERAL

IS

1 1 0 0 D

SHIFT LITERAL: D Defines Shift. The type, direction and number of places to be shifted are further defined by
the displacement field of the instruction. The 8 bit literal operand directly controls the shift operation.

SHIFT INDEXED

012 7 8 . IS

10011 ~ 1 o 1 1 I D

SHiFT INDEXED:D + x Defines Shift. The type, direction and number of places to be shifted are further defined by
the displacement field of the instruction added to the contents of the X register. The least significant byte of the result
controis the shift operation.

The 8 bit field controlling the shift instruction is structured as follows:-

8 10 11 15

I M I N

The 3 bit field Mdefines eight possible types of shift operation, and the 5 bit field N defines the
number of places to be shifted. '

In the case of the indexed shifts (SHX instruction) both the number and type of shift may be
modified by the vaiue in the X register. An effective subtraction of X may be achieved if the value of X is nega~ive
since the indexing involves a full 16 bit addition. .

43

The Toiiowing types of shift are avaiiabie:-

M MNEMONIC NAME

000 SBAR,SBRXI SHIFTEXTENDED ACCUMULATOR (8 AND A) RIGHT ARITHMETICAL
001 SBAL,SBLX SHIFT EXTENDED ACCUMULATOR LEFT ARITHMETICAL .
010 SR, SRX, SHIFT 32 BIT ACCUMULATOR (A) RIGHT ARITHMET!CAL
011 SL, SLX I SHIFT 32 BIT ACCUMULATOR (A) LEFT ARITHMETICAL
100 SRL, ,SRLX, SH!FT 32 BIT ACCUMULATOR (A) RIGHT LOGICAL
101 SLC, SLCX SHIFT 32 BIT ACCUMULATOR (A) LEFT CIRCULAR
110 SXR, SXRX SHIFT X REGISTER RIGHT ARITHMETICAL
111 SXL, SXLX SHIFT X REGISTER LEFT

LEVEN = RIGHT SHIFT
ODD = LEFT SHIFT

SBAR,SBRX

o 7 8 10 I!

NSHlISHX

SHIFT BA RIGHT ARITHMETICAL: The 64 bit accumulator is shifted arithmetically right a number of places
defined by the N field. N may havethe value 1...:.31and the number of placesshifted will be 32-N. If the value
of N=Ois usedthe effect will be to set the condition markersNand Z asbelow leavingthe accumulator unchanged.
The most significant bit of the extendedaccumulator (signbit) is replicated asthe shift is performed.

. ConditionMarkers

N
Z

CA
OF -

SBAL,SBLX

is set to the signof the 64 bit extended accumulatorafter the shift
is set if asa result of the shift the 64 bit accumulatorbecomeszero, otherwise it ill
cleared.
not affected.
not affected.

o 7 8 10 11 15

10 0 ,1 NSHL/SHX

SHIFT BA LEFT AR!THMET!CAL: The 64 bit accumulator is shifted left a number of placesdefined by the
N field. N may havethe value0-31 and the number of placedshifted will equal N. Zerosare input at the least
significant bit of the extendedaccumulator as it is shifted. !f a valueof N=Ois usedthe effect will be to set the
condition markersNand Z asbelow leavingall other registersunchanged.

ConditionMarkers

IV
Z

CA
OF -

44

is set to the signof the 64 bit extended accumulatorafter the shift.
is set if as a result of the shift the 64bit accumulatorbecomeszero,
otherwise it ill cleared.
not affected.
is set if in the courseof the shift the signof the extended accumulatorchanges.

S~RX

o 7 8 10 11 is

SHL/SHX 10 0 I N

SHIFT A,RI.GHTARITHMETICAL: The 32 bit accumulator is shifted right arithmetically a humber of places
defined bY the N,fieid. Nmay have the value 1-31 and the number of places shifted will be 32'-N. If a value of
N=Ois used the effect is to set condition markers Nand Z as below leaving the accumulator unchanged. The most
significant bit of the accumuiator is replicated as the shift is performed.

ConditionMarkers

N i3 set to the signof the 32 bitaccumulatorafter the shift.
Z isset if asa result of the shift the 32 bit accumulatoris zero, otherwise it is cleared.
CA not affected.
OF not affected.

SL,SLX

o 7 8 10 11 15

SHLlSHX " 1 I N

SHIFT A LEFT ARITHMETICAL: The 32 bit accumulator is shifted left a number of places defined by the
N field. N may have the value 0-31 and the number of places shifted will equal N. Zeros are input at the least
significant bit of the accumulator.as it is shifted.

If the value N=Ois used the effect will be to set the condition markers as below leaving the
accumulator unchanged.

ConditionMarkers

N isset to the signof the 32 bit accumulatorafter the shift.
Z isset if asa result orthe shift the 32 bit accumulatorbecomeszero,

otherwise it is cleared.
CA not affected.
OF is set if in the courseof the shift the sign of the extended accumulatorchanges.

SRL,SRLX'

o ,7 8 1011 15

~ SH_L_I_SH_X ~ __o__o~I N__ ~1 /
SHIF'T RIGHT LOGICAL: The'32 bit accumulator is shifted logiCally a number of places defined by the N field.
N may have the value 1-31 and the number of places shifted will be 32-N. If the value N=Ois used the effect is to
set the condition markers as below leaving all other registers unchanged; Zeros are input at the most significant bit
of the 32 bit accumulator as it is shifted.

ConditionMarkers

N is set to the signof the 32 bit accumulatorafter the shift.
Z uset if the 32 bit accumulatorbecomeszero as a result of the shift. otherwise it iscleared.
OF not affected.
CA not affected.

45

SLG,SLGX

o 7 8 10 11 15

! SHLlSHX N

SHIFT A LEFT CIRCULAR: The 32 bit accumulator is shifted left circular a number of places defined by the
N field, Nmay have the value 0-31 and the. number of places shifted will equal N.Bits shifted out from the
most significant bit of the 32 bit accumulator are input atthe least significant bit as the shift proceeds as shown

BEFORE
SHIFT

o

SHIFT 6
PLACES

AFTER
SHIFT

31

-------15 '6,17,'B,'9,a>,2'.22.-----

----,.-------,21 _,_---- 31,0,1,2,3,4,522

If the value of N=O is used the effect is to Set the condition markers Nand Z as below leaving all
other registers unchanged.

Condition Markers

N
Z
OF -
CA

SXR,SXRX

is set to the sign of the 32 bit accumulator after the shift (bit 6 in the example).
is set ifafter the shift the accumulator is zero.
not affected.
not affected.

o 7 8 10 11 15

I SHL/SHX N

SHIFT X RIGHT ARITHMETIC (16:EO;; N :EO;;31). The 16 bit X register is shifted right arithmetically a number of
places defined by the N field. N may have the value 16-31 and the number of places shifted will equal 32-N.
Use of a value of N in the range 0-15 will lead to an undefined instruction trap. In this case all registers are
unchanged. The most significant bit of the X register is replicated as the shift is performed.

Condition MarkeTl

N
Z

CA
OF -

46

is set to the sign of the X register after the shift.
is set if as a result of the shift the X register becomes zero, otherwise it remains
unchanged ..
not affected.
not affected.

SXL,SXLX

o 7 8 10 11 IS

SHL/SHX N

SHIFT X LEFT ARITHMETIC (0'" N '" 15): The 16 bit X register is shifted left a number of places defined by
the N field. N may have the value 0-15 and the number of places shifted will be equal to N: Use of a value of N in
the range 16-31 will lead to undefined instruction trap. lnthis case all registers are unchanged. If a value of N=O ,
is used the effect will be to set condition markers as below leaving all other registers unchanged.

Condition Markers

N is set to the sign of the X register after the shift.
Z is set if as a result of the shift the X register becomes zero, otherwise it remains

unchanged.
CA not affected.
OF not affected.

9.6 BIT MANIPULATION INSTRUCTIONS

The following instruction types are available:

BITL BIT OPERATION LITERAL
BITX BIT OPERATION INDEXED

These instructions perform operations on a selected bit of the accumulator. The least significant
16 bits (ALl of the 32 bit accumulator only are affected by these instructions.

BITL

7 '8 15

1 0' 1 D

BIT OPERATION LITERAL: D defines OP. The operation to be performed and the bit selected are defined by the
displacement field of the instruction. The 8 bit Iiteral operand specifies the operation to be performed.

~

BITX

o 1 2 7 8 15

10 0 10 1 0 1 0 I D

BIT OPERATION INDEXED: D + x defines OP. The operation to be performed and the bit selected are defined
by the displacement field of the instruction added to the contents of the X register. The least significant byte of the
result controls the operation. The operation type and the selected bit nurnber may be modified by the value in the
X register. If the OP field is modified, undefined operation may result. The indexing with X should therefore only be
used to modify the bit number N.

The 8 bit field controlling the bit manipulation operation is structured as follows:-
8

NI OP

The 4 bitOP field defines the operation to be performed.

47

The 4 bit N field defines the bit of the accumulator (AL) that is selected for the operation. The
bits of AL are numberedO at the most significant end to 15 at-the least significant end.

The following bit manipulation instructions are specified:-

OP MNEMON1C NAME

0 TSTB,TSTX TEST BIT
9 TGLB,TGLX TOGGLE BIT
10 PLCB,PLCX PLACE BIT
11 SETB,SETX SET BIT
14 CLRB,CLRX CLEAR BIT

TSTB,TSTX

BITL/BITX

7 8 11 12

10 0 0 01 "N

15

TEST BIT: The bit of the accumulator (AL) specified by the Nfield is tested.

Condition Markers

N
Z
CA
OF -

not affected.
is let if the bit tested is zero, otherwise it is cleared.
not affected.
not affected.

TGLB,TGLX

o 7 8 11 12 15

BITL/BITX N

TOGGLE BIT: The bit of the accumulator (AL) specified by the N field is toggled, i.e. if the initial value was 0
the new value is 1 and if the initial value was 1 the new value is O.

Condition Matkers

N
Z

not affected.
is set if the least significant 16 bits of the accumulator (Ad become zero as a result
of the operation otherwise it is cleared.
not affected.
not affected.

CA
OF -

PLCB,PLCX

o 7 8 11 12 15

BITLlBITX I 0 1 01 N

PLACE BIT: The accumulator (ALl is loaded with a single bit specified bV the N field. The specified bit is
set to a 1 whilst the remaining bits are set to zero. .

48

e.g.

0 7 8 11 12 15

!NSTRUCT!ON I B!T L I OP I N I
CODE 10 0 0 1 o 1 011 0 1 011 1 0 01

N=12

RESULT IN
ACCUMULATOR UNCHANGED 1000 0 0 0 000 000 1 0001

Condition Markers

IV not affected.
Z will be cleared by this instruction since the result can never be zero.
CA not affected.
OF not affected.

SETB,SETX

o 7 8 11 12 15

BITL!BITX

SET BIT: The bit of the accumulator (ALl specified by the N field is set to a 1 whilst the remaining bits are
unchanged.

Condition Markers

N not affected.
Z is cleared as a result of the operation since the result in AL can never be zero.
CA not affected.
OF not affected.

CLRB,CLRX

o 7 8 15

BITL/BITX 1 1 N

CLEAR BIT: The bit of the accumuiator AL specified by the N fieid is set to 0 whiist the remaining bits are
unchanged.

Condition Markers

N not affected.
Z is set if as a result of the operation the least significant 16 bits of the accumulator

become zero, otherwise it is cleared.
CA not affected.
OF not affected.

49

9.7 STRING MANIPULATION INSTRUCTIONS

These instructions operate on strings of bytes or halfwords in store. One string of bytes/halfwords
has it position defined by the Y register and its length defined by the X register. The second string isdefined by .
Z and its length is either defined by X or is fixed at 256 bytes depending on the instruction.

In general X is counted towards zero as each byte/halfword is operated on. When X = 0 the
instruction terminates. At the end of each operation a test is made to determine the presence of any interrupt
that may require attention; When the instruction is restarted (possibly after servicing an interrupt) the next
operation in sequence is performed until X = O.

50

A general flow chart for string manipulation instruction is shown below.

END

INstRUCTION

x<o

X:= X-1
X:= X + 1

PERFORM

OPERATION

NO YES SERVICE

INTERRUPT

MBS

i 8 15

b (y+X) :=b (z+x)

MOVE BYTE STRING: The string of bytes defined by register Z is copied into the string defined by register Y.
The X register specifies the number of bytes to be moved. If X is positive Yand Z must contain the address of the
first byte in each string and the first byte moved is the last byte in each string. If X is initially negative Y and Z
must contain the address of the last byte in each string and the first byte moved is the first byte in each string.
Thus the final position of the string may in either case overlap its original position.

If for example X = +8
Y = address p
Z = address n

REGISTER Z I
L--I -__'~. T

II
n n+1

n+2 n+3

n+4 n+5

n+6 n+7

MOVED
LAST

II II MOVED

REGISTER Y
I

I FIRST

• p p+1

p+2 p+3

p+4 0+5

p+6 p+7

CONTENTS OF ADDRESSES
n - n + 7 COPIED INTO
ADDRESSES p - p + 7

Initially when X = 8 a byte from address n + 7 will be moved into address p + 7 and so on until,
after moving the byte from address n to address p , X becomes equal to zero and the instruction terminates.

ConditionMarkers

N is cleared.
Z is set.
CA not affected.
OF not affected.

51

CPBS

o 1 2 7 8 15

1-00110011 11010'000'001

Form b (z+x) - b (y+x) Term. ifF
COMPARE BYTE STRINGS: The bytes to be operated on are defined by Y, Z and X as in the instruction MBS.
In this case the two strings of bytes are compared with each other. The comparison forms the byte defined by
z + x minus the byte defined by y + .x. The instruction terminates when X=O or When two bytes are compared
and found to be not equal.

Condition Markers

N is cleared by the instruction if it runs to completion (i.e. X=O) otherwise it wiU
be set to the sign of the result of the last comparison:

Z is set by tM instruction if it runs to completion (i.e. X=O) otherwise it is cleared.
CA not affected.
OF not affected.

TRBS

7 8 - 1$o 1 2

111000000'0110 011 0 0 1

b (y+x) := b (z+b [y+xJ)

TRANSLATE BYTE STRING: There is a 256 byte translation table b!tginning at address Z. The string of X bytes,
beginning at address Y is examined one bvte.at a time. Each byte examined isused as an index to select one of the
256 entries in the translation table, so giving the translation for the byte examined. The translation is now written
into the place ofthe byte just examined, so that by the completion ofthe instruction, every byte in the string has
been replaced by its translation.

BYTES TO BE TRANSLATION
TRANSLATED TABLE

y z

y+l 8 z+1

y+2
z+B U

z+ C V

y+x 8

C

Condition Markers

N is cleared.
Z is set.
CA not affected.
OF not affected.

52

RESULT

Y

y+1 U

y+2

y+x U

V

SCBS

o 1 2 7 8 15

10 011 0 0 1 1 11 . 0000001

Forrnb (z+b [y+xl J" ts byte of AL Term. when Result = 'O'or when x = '0'
SCAN BYTE STRING: Then~ is a 256 Qvte table ~ginning at address Z.The.string of X bytes beginning at
address Y is examined one byte at a time. Each byte examined is used as an index to select one of the 266
entries in the table, just as for TRBS. The logical A~D of the byte from the table and the least significant
byte of the accumulator is formed. If the result of this operation is non-zero, the instruction terminates at
once, otherwise the instruction continues until the whole string of X bytes has been examined.

<'" .
This instruction is usually employed to scan a string of characters looking for. characters from a

specified subset - e.g. any digit. The AND function with the accumulator enables 8 essentially independent
sets to be specified using different bit positions within a single 256 byte table. The ,':cumulator usually contains
only a single bit.

Condition Markers

N is cleared.
Z is set by the instru-ction if it runs to completion, otherwise it is cleared.
CA not affected.
OF not affected.

MHS

7 8 15

1 0 1 1 1100000 0 0 01

h (y+2x) := h (z+2x)

MOVE HALFWORD STRING: The displacement field of this instruction must be zero.

The operation is as for the instruction MBSexcept that halfwords are moved.

The X register specifies the number of halfwords to be moved and will be scaled to produce
halfword addresses.

Condition Markers

N is cleared.
Z is set.
GA not affected.
OF not affected.

9.8 MISCELLANEOUS INSTRUCTIONS IN FORMAT L

The following instructions come into this. group:-

RK
HRK
SFN
PEC
SEXT

READ KEYS
HALT READ KEYS
SET FULL NUCLEUS
PRIORITY ENCODE
SIGN EXTEND

63

RK

o 1 2 7 8 15

~ 010 1 001 010 0 0 0 0 0001

READ KEYS: Information set on the data keys of the CMUfront panel is loaded into the least significant 16 bits
of the accumulator (AL). The result in AL will be sign extended into the most significant 16 bits of the accumulator
(AM)' If the CMU is in 'AUTO' mode the 32 bit accumulator will be cleared regardless of the setting of the keys.

Condition Markers

N is set to the sign of the 32 bit accumulator after the operation.
Z is set if the 32 bit accumulator becomes zero as a result' ofthe operation, otherunse

it is cleared.
CA not affected.
OF not affected.

HRK

o 1 2 7 8 15

100'1010000000 I
HALT READ KEYS: If the machine is in TEST or NORMAL mode it will halt before obeying this instruction.'
Subsequent operation of the START/STOP key on the eMU causes the Read Keys instruction to be obeyed.

With the CMU in 'AUTO' mode the effect of this instruction is as Read Keys.

Condition Markers

N L'set to the sign.of the 32 bit occumulator after the operation.
Z iI set if the 32 bit accumulator becomes zero es a result of the operation, otherwile

it is cleared.
CA not affected.
OF not affected. .

SFN

o 1 2

10 0 I0 1 0 0 010000001
7 8 ~ I

SET FULL NUCLEUS: This instruction switches the computer from Basic Test Mode to Full Nucleus
Modes under certain circumstances. It is used to facilitate the loading of programs which will eventually run under
full nucleus operation. For the instruction to operate as described the central processor must be in basic test mode
with the basic test switch on thefront panel.in the UP position or Key Switch set to Normal. Under all other
conditions the SFN instruction has the same effect as Read Keys.

Condition Markers

N is set to the sign.of the 32 bit accumulator after the operation.
Z is set if the 32 bit accumulator becomes zero tu a result of the operation, otherunse

it is cleared.
CA not affected.
OF not affected.

54

PEe

0 :. 7 8 is

In nln nln 0 0 0 0 0 0 0I~ ~I~ ~I~

PRIORITY ENCODE: The least significant 16 bits of the accumulator (ALl are scanned from the most significant
bit position to the least significant bit position until the first bit reset to 0 is found. The number of the bit thus
found is placed in the X register. The bits of AL are numbered 0 at the most significant end to 15at the least
significant end. If AL contains all ones then the number 15 is placed in X as it would be if bit 15 only were set to
zero.

ConditionMarkers

Not affected.

SEXT

o 1 2 7 8 15

1 1 1 0 00000001

SIGN EXTEND: The sign of the 32 bit accumulator (i.e. the most significant bit) is copied throughout the
accumuiator extension (B],

ConditionMarkers

N is set to the signof the extended accumulator.
Z is set if the extended accumulatorbecomeszero asa result of the operation,

otherwise it is cleared.
CA not affected.
OF not affected.

55

10. INSTRUCTIONS AVAILABLE IN FORMAT RR

These instructions do not require an operand from store, all operations taking place between
registers. The operations are defined by the instruction and take place between a source register (G2) and a
destination register (G1) both specified by the instruction. These registers may be any two of the following:-

0, A, B, X, L, 5, V, Z,

where 0 is a non-existent 16 bit register containing zeros. If 0 is used as a destination register the result of the
operation is not recorded but the condition markers are affected. The same registeT may be both SOUice and
destination.

If both Gland G2 are 16 bit registers then 16 bit operations are performed.

If both Gl and G2 are 32 bit registers then 32 bit operations are performed.

If Gl is a 16 bit register and G2 a 32 bit register then 16 bit operations are performed between
G1 and the least significant .16 bits of G2.

If Gl is a 32 bit register and G2 isa 16bit register then G2 is sign extended to 32 bits and 32
bit operations are performed.

Where G1=5 these instructions are effectively branches and with the exception of the load
instructions aie relative to the next instruction in sequence as for normal branches.

Where G2=5 the value of S used for the operation will be that pointing to the next instruction
in sequence.

The following instructions are available:-

RLD REGISTER LOAD
RAD REGISTERADD
RSB
RN
RCP
RNA
RO

REGISTER SUBTRACT
REGISTER AND
REGISTER COMPARE
REGISTER NEGATE AND ADD
REGISTER OR

RX REGISTER EXCLUSIVE OR
RADC REGISTER ADD PLUS CARRY
RSBC REGISTERSUBTRACT rv'IJ~USCARRY
RADI
RSBI
RI

REGISTER ADD PLUS 1
REGISTER SUBTRACT MINUS 1
REGISTER INVERT

RLD

o 5 6 9 10 12 13 15

100000 o 11 o 0 Gl 1 G2

REGISTER LOAD: gl :=g2. The source register specified is loaded into the destination register.

Condition Markers

N
Z

is set to the sign of the destination register after the operation.
is set if the destination register becomes zero as a result of the operation,
otherwise it is cleared.
not affected.
not affected.56

CA
OF

RAD

15

I
REGISTER ADD: 91 :=91 + g2. The source register specified is added to the destination register and the result
placed in the destination register.

ConditionMarkers

N is set to the signof the result.
Z isset if the destinationregisterbecomeszero asa result of the operation, otherwise

it is cleared.
CA isset if there isa carryout of the most significantbit of the result.
OF is set if arithmetic overflow occurs.

RSB

5 6 9 10 12 13 IS

a 11 a o I G1 I G2 I
REGISTER SUBTRACT: 91 r= 91 - 92. The source register specified is subtracted from the destination register
and the result placed in the destination register.

ConditionMarkers

N is set to the signof the result.
Z is set if the destination registerbecomeszero asa result of the operation, otherwise

it is cleared.
CA is set ij thereisa bomou:out o[themost significantbit of the result.
OF isset if arithmetic overflow occurs.

RN

I: 0 0 0 0

9 10 12 13 15

01 G1 I G2

REGISTER AND: 91 := g1 A g2. The source and destination registers specified perform the logical AND function
the result placed in the destination register.

ConditionMarkers

N is set to the signof the destinationregister.
Z is set if the destinationregisterbecomeszero asa result of the operation, otherwise

it is cleared.
CA not affected.
OF not affected.

57

RO

0 5 6 9 10 12 13 15

I _
0 0 0 0 - I 1 0

I
G1

I
G2

I
1° °1 I 1 I

REGISTER OR: gl := g1 "g2. The source and destination registers specified perform the logical OR function
the result placed in the destination register.

Condition Markers

]V is set to the sign of the destination register.
Z is set if the destination register becomes zero as a result of the operation, otherwise

it is cleared.
CA not affected.
OF not affected.

Rep

056 9 10 12 13 15

o 1too 0 0 0 01

REGISTER CO~l!PARE: form 91 - 92. The source register specified i'scompared \AJith the destination register
leaving all registers unchanged.

Condition Markers

N is set if the destination register is less than the source register.
Z is set if the two registers being compared are equal; otherwise. it is cleared.
CA is set if the result of the comparison producesaborroui outofthe most significant

bit of the function unit, otherw-ise-it is c!eareti
OF is set if arithmetic overflow occurs as a result of the comparison.

RNA

o 5 6 9 10 12 13 15

o 0 0 0 0 01 0 1 0 01 G1 G2

REGISTER NEGATE AND ADD: g1 r= g2 - g1. The destination register specified is subtracted from the source
register and the result placed in the destination register.

Condition Markers

N is set to the sign of the result.
Z is set if the destination leifeSter becomes zero as a result of the opeiatioii; otherwise

it is cleared.
CA is set if there isaborrow outofthe most significant bit of the result.
OF is set if arithmetic overflow occurs.

58

RX

0 5 6 9 10 12 13 15

10 0 0 0 0 011 01 Gl 1 G2 I
REGISTER EXCLUSIYE OR: gl:= g1*' g2. The source register specified and the destination register perform
the logical 'EXCLUSIVE OR' function the result being placed in the destination register.

Condition l'l-larkers

N is set to the sig-nof the destinationregister.
Z is set i/the destirUltionregisterbecomeszero asa result 01 the operation,otherwise

it is cleared.
CA not affected.
OF not affected.

RADC

,: 0 0 0 0

5 6 9 10 12 13 15

010 o 0 G2

REGISTER ADD PLUS CARRY: gl := gl + g2 + CA. The source register specified is added to the destination registel
together with the contents ofthe CARRY condition marker.

ConditionMarkers

N is set tothe signof the result.
Z isset if the destinationregisterbecomeszero asa result of the operation, otheruiise

it is cleared.
CA is set il there is a carryout of the most significantbit o/the result.
OF is set if arithmetic overflowoccurs.

RSBe

o 5 6 9 10 12 13 15

10 0 O. 0 0 0 I0 0 1 0 I G1 G2

REGISTER SUBTRACT MINUS CARRY; gl :i,; gl - g2 - CA. The source register is subtracted from the destination
register. The contents of the CARRY condition marker is also subtracted from the destination register.

ConditionMarkers

N is set to the signof the result.
Z is set if the destinationregisterbecomeszero asa result of the operation, otherwise

it is cleared.
CA is set if there is aborrowout of themost significantbit of the result.
OF is set if arithmetic overflow occurs.

59

RADI

0 5 6 9 10 12 13 15

10 0 0 0 0 "010 i 0 I Gf I G2 I
REGISTER ADD PLUS ONE: 91 :=gl+92+ 1. The $ourcespeCifiedis added to the destination register. The
integer 1 is also added to the destination register.

ConditionMarkers

N isset to the signof the telult.
Z is set if the destination registerbecomeszero asa result of the operation,otherwise

it is cleared.
CA is set if there isa carryout of the most significantbit of the result.
OF isset if arithmetic overflowoccurs.

RSBI

5 6 9 10 1213 15

o I.' Gl

REGISTER SUBTRACT MINUS ONE: 91 := 91 - g2- 1. The source registerspecified is subtracted from the
destination register. The integer 1 is also subtracted from the destination register.

ConditionMarkers

N is set to the siB"of the result.
Z is set if the destinationregisterbecomeszero asa result of the operation, otherwise

it is cleared. .
CA is set if thereisaborrowoutofthe most signifiCantbit of the result.
OF is set if arithmetic overflow occurs.

RI

o S 6 ,9 10 G1 12f G2 151I0 0 O·0 0 0 10 1 1 1 I . .
REGISTER INVERT: 91 :=g2 : The contents of the source register specified is logically inverted and loaded into
the destination register. An alternative equivalent definition is that the integer -1is placed in the detination register
and the content of the source register is subtracted therefrom.' .

ConditionMarkers

N isset to the signof the result. .
Z is set if the destination registerbecomeszero asa result of the operation,

otherwise it is cleared.
CA not affected.
OF not affected.

60

11. FLOATING POINT OPERATION

The following sections describe the Floating Point features of the computer. Floating Point
operations. may only be performed jf the. FM conditions marker is set to a one, when a number of Format A
instructions are reinterpreted as Floating Point operations, and a number of additional Format L instructions
become available.

11.1 . FLOATING POINT NUMBERREPRESENTATION

Two Floating Point number formats are available, differing in the degree of precision they
provide. Short precision floating point operands provide 24 bits of mantissa, whilst Long precision operands
provide 56 bits of mantissa. In both cases the number is completed by a single bit giving the sign of the mantissa,
and a 7 bit exponent.

Short operands therefore occupy 1 (sign) + 7 (exponent) + 24 (mantissa) = 32 bits
and Long operands occupy 1 + 7 + 56 '"'64 bits

In what follows, we define:

M= the arithmetic value of the mantissa of the number, treated as an unsigned fraction.

E.= the value of the exponent of the number.

The value of a floating point number is then given by:-

if S = 0, value is M*16tE
if S = 1, va.lue is - M*16tE

Note that a hexadecimal radix is used; increasing E by 1 is equivalent to multiplying M by 16
(i.e. left shifting M four places).

11.2 FLOATING POINT STORE FORMAT

Short floating point numbers are held as fullwords in store, and Long floating point numbers as
doublewords in the formats shown:-

Short:_IL:_·~1_1 E_X_P 7~1_8 ~ M_A_N__T_IS_S_A_· 3~11

o 1 7 8 31

Long:-
EXP MANTISSA (MS 24 Bits)

MANTISSA (LS 32 Bits)

Where S is the sign bit, which determines the sign of the Mantissa as shown above, EXP defines the exponent,
whose value is given by E = EXP-64, and MANTISSA is the mantissa, occupying 6 hex digits (24 bits) in short
precision or 14hex digits i56 bits) in iong precision formats.

11.3 FLOATING POINT REGISTER FORMAT

When a floating point operation is performed which leavesa result in registers, the number is held as
follows:-

The Sign is heldin a hardware staticisor (SAC) which is not directly accessible to the programmer.

61

The Exponent is held in the 7 bit exponent (E) register.

The Mantissa is held in the combined 8 and A register, the most significant part in the B and the
leastsignificantpart(if any) inA

Short mantissae are held as shown:-

100001

'8

MANTISSA

t
Binary Point

The Mantissa is held in S, shifted 4 places. The most significant (MS) and least significant (LS)
4 bits of 8.are called guard digits, and after any operation will be set to zero. The A register is cleared.

Long mantlssae are held as shown:-

100001
B A

100001
t

Binary Point

The mantissa is held in BA, right shifted 4 places. The MS4 bits of B and the LS 4 bits of A are
the guard digits, and after any operation will be setto zero.

In both cases, the binary point is located immediately before the first hex digit of the Mantissa.

Unpacking of numbers from store to register format and loading and packing of numbers from
register to Store format on st~ring are performed automatically.

This structure is referred to as the Floating Accumulator.

11.4 NORMALREPRESENTATION

A floating point number is said to be normalised if the MS hex digit of the Mantissa is non zero.
Thus for a norrnalised number;M is in the range.

1 >M;;;;.2 ...•

Floating point arithmetic instructions only have defined effects if both operands of the instruction
arenormalised. Similarly, all arithmetic operations produce results which are normalised.

11.5 FLOATING POINT ZERO

Evidently. any operand with a Mantissa of zero has value zero. The normal representation of
zero is an operand with sign bit Sand EXP also equal to zero. Thus floating point zero is identical to fixed point
zero.

11.6 MIXEDPRECISION OPERATION

Short and long floating point operations can be mixed indiscriminately. Thus short floating pOint
operations can be performed with long floating point operands in the accumulator and long operations with short
operands in the accumulator. In the firstcase, the long accumulator operand will be truncated to short precision
(by zeroing the least significant 8 hex digits of the mantissa) before the operation, whilst in the second case the
short accumulator operand is extended to long precision by appending least significant zero hex digits, before
the operation is performed.

11.7 OVERFLOW AND UNDERFLOW

If the result of a fioating Point operation has an exponent E greater than 63, it cannot be expressed
in the normal representation and floating point overflow is said to have occurred. Under these circumstances the
OF conditions bit is set, but the result of the operation is not defined.

If the result of a floating point operation has an exponent E less than -64, or if the mantissa of 8
result is zero, underflow is said to have occurred. This is not an error: the result is replaced by floating point zero
in standard form.

83

12. THE FLOATING POINT INSTRUCTION SET

The following instructions changetheir definition when the FM condition marker is set:-

FM=O FM = 1

LD FLD FLOATING LOAD
AD FAD FLOATING ADD
SB FSB FLOATING SUBTRACT
CP FCP FLOATING COMPARE
N FLT FLOAT
M FM FLOATING MULTIPLY
0 FD FLOATING DIVIDE
ST FST FLOATING STORE
LOW ELD EXTENDED FLOATING LOAD
ADW EAD' EXTENDED FLOATING ADD
SBW ESB EXTENDED FLOAT!NG SUBTRACT
CPW ECP EXTENDED FLOATING COMPARE
NW FIX FIX
MW EM EXTENDED FLOATING MULTIPLY
OW ED EXTENDED FLOATING DIVIDE
STW EST EXTENDED FLOATING STORE

12.1 NORMALLENGTH OPERATIONS

Theseoperationsall useshort Floating Point operands.

FLD

o 5 6 15

11000001 ·ADDR (FM=lonly)

FLOATING LOAD: fa := fq. The short floating point operandfrom store is loaded into the floating accumulator.

No normalisation checksareperformedduring this instruction; thus it is possibleto load an
unnormalisednumber into the registers.If the mantissaof sucha number is zero, the Z condition bit is seteven
if Sand EXP are not zero. .

ConditionMarkers

N
Z
CA
OF -

is set to the signof the floating point number loaded.
is let if thefloating point number loaded is zero, otherwise it is cleared.
not affected.
not affected.

FAD

o 5 6 15

ADDR I (FM = 1 only)11000011
FLOAtiNG ADD: fa := fa + fq. The short floating point operand from store is addedto the short floating point
number held in the Floating Accumulator and the short result appearsin the Floating Accumulator. Details of
rounding etc. aregiven in Appendix 12A

64

Condition Markers

N
Z
CA
OF

FSB

set if the result is negative.
set if the result is zero, or if exponent underJiow occurs.
not affected.
iiidtiiJiTeffiqne,ni Qf;eijlijw'(~XP>1,21roc~IJ,"$:

'C '; ., ' i.

.: " ,0 ;.' "."

lft.Q,·O 0 (FM == 1 o~IYi',.. ,.,.,:'--,_ ,' ,_ -,',,:.,-:-,

.'IS. '
"'. , : '. ,

I

FLOA!nNG SU'BtRAC'T'i'fa :=fa ...fq)The short floating point operand from store is subtracted from the short
floating point number held in the Floating Accumulatorand the short result appearS in the Floating Accumulator.
Details of rounding etc. are given in Appendix 12A.

Condition Jfarkers

Z
.GA
'OF

Fep

. ' ,

~~tif.th~ resul~ ~ n~~tiv~.... . .
'~et if th~resUlt IS zero, or if exponent und.erfik,w occurs.
no~(}.ff~.~!ed. ..'.... '. ' ' .s: .., .;; ..

.' 'set to 1if ~xpon~nt ov~rflo;V'(EXP>127) occurs,

15

I (FM = 1 only),ADDR'

FLOATING COMPARE: form fa - fq. The short floating point number held in the Floating Accumulator is
compared with the Short floating point operand from store. The condition markers indicate the result.

Condition Markers
, .

is set i/thefloaitng point number held in the Floating Accumulator is less than the
floating point operand from store, otherwise it is cleared.

Z, is set if the floating point number held in the Floating Accumulator is equal to the
floating point operand from store, ptherwise it is cleared.

CA not affected.
OF not affected.

FM

o : 16
15

ADDR iFM = 1 oniyj

FLOATING MULTIPLY: ea := fa * fq. The short floating point number held in the registers (the multiplicand)
'is multtpl;iedj by,the shorHloating point eperend from store.;(the multiplier). The 48 bit product is eKtended to

,. ,,1j6:bitswith ,least significant.zeros to produce a long.floating point result which is normalised and placed in the
H"fHoatiog.'Aecumulator. Details of .the:6peration are given in Appendix12A ..

Condition Markers

N

CA
OF

·Is·set to the sign of the floating poiiit re$ult;
is ~et if the /loating point result is zero or ifunderjlow occurs as above. If neither
of these conditions apply Z is cleared.
not affected
is set if exponent overflow occurs in which case the result, Nand Z are undefine,d.

65

FO

ADDR (FM = 1 only)

FLOATING DIVIDE: fa := fa -:-fq. The shortfloating point number held in the Floating Accumulator
(the dividend). is.divided by thE! short floating point operand from store (divisor). The short result appears in the
Floating·Accumulator. Details of the operation are given in Appendix 12A.

If an attempt is made to divide with a zero or unnormalised divisor the operation is abandoned.
The OF condition marker is set and the result is undefined. The least significant 32 bits of the extended

.., , accumulator (AM and AL) will not be cleared in this case.

Condipon Markers.

N is set to the signof the floatingpoint result.
Z is set if the mantissaof the floating point result is zero or if undeflow occursas

above. If neither of these conditionsapply Z is cleared.
CA not affected.
OF is set if exponent overflow occurs in which CM~ the result,N an.dZ are undefined.

FST

(1 00 ; 1 ADDR (FM = 1 only)

FLOATING STORE: fq := fa. The short floating point operand in the Floating Accumulator registers are stored
in the format show" in 8.2.

ConditionMarkers

N is set to the sign of the storedfloating point number.
Z is set if the floating point number is zero, otherwise it is cleared.
CA not affected.
OF not affected.

12.2 EXTENOEOOPERATIONS

These operations all use long floating point operands.

ELO

o

ADDR (FM" 1 only)

6 15

1,·01·00
EXTENDED LOAD: ea r= eq. The long floating point operand from store is loaded into the Floating Accumulator.
:Normalisation Checks are NOT carried out during this instruction. H.is.thus possible to load unnormalised operands
into the registers. If the mantissa of such 8:number is zero; the -Z''Condition bit is .set even if Sand EXP are non zero.

ConditionMarkers

N is set to the signof the,extended point number-loaded;
Z isset if the floating point number 'oaded is zero, otherwiseit is cleared.
CA not affected. .;. . .
OF not affected.

66

EAD

o 6 .

ADDR (FM = 1 only)11 ° 1 ° 0

EXTENDED ADD: ea := ea + eq. The long floating point operand from store is added to the long floating point
number held in the Floating Accumulator and the result appears in the Floating Accumulator. '

ConditionMarkers

N set if the result is negative.
Z set if the result is zero, or if exponent underflow occurs.
CA not affected.
OF set to 1 if exponent overflow (EXP> '127) occurs.

ESB

.1...1 :_O_-1-O-1-O-s..i..I-6---A-D-D_,R-- 1.....J51 (FM = 1 only)

EXTENDED SUBTRACT: ea := ea - eq. The long floating point operand from store is subtracted from the
long floating point number held in the Floating Accumulator and the result appears in the Floating Accumulator.

ConditionMarkers

N set if the result is negative.
Z set if the result is zero, or if exponent underflow occurs.
CA not affected.
OF set to 1 if exponent overflow (EXP> 127) occurs.

ECP

o

11 ° 1 ° ADDR (FM == 1 only)

EXTENDED COMPARE: form ea - eq. The long floating point number held in the Floating Accumulator
compared with the long floating pointoperand from store. The condition markers indicate the result.

ConditionMarkers

N is set if the floating point number held in theFloatingAccumulator is less than the
floating point operandfrom store, otherwiseit is cleared.

Z is set if the floating point number held in the FloatingAccumulator is equal to the
floating point operandfrom store, otherwiseit is cleared.

CA not affected.
OF not affected.

67

EM

IS

ADDR (FM = 1 onlv)

EXTENDED MULTIPLY: ea := ea * eq. The long floating point number held in the Floating Accumulator
(the multiplicand) is multiplied by long floating point operandfrom store (the multiplier). The long floCiting
point result is placedin the FioatingAccumulator.

ConditionMarkers

N is set to the signof the floating point result.
Z is set if the floating point result is zero or if underflow occursQ3above. If neither

of these conditionsapply Z is cleared. .
CA not affected.
OF isset if exponent overflow occursin whichCQ3ethe result,Nand Z areundefined.

ED

ADDR (FM = 1only)

EXTEND DIVIDE: ea := ea+ eq. The long floating point number in the Floating Accumulator (the dividend)
isdivided by the long floating point operandfrom store (the divisor). The long result is placedin the Floating
Accumulator.

ConditionMarkers

N is set to the signof the floating point result.
Z is set if the mantissaof the floating point result iszero or if underflow occursas

above. If neither of these conditionsapply Z is cleared.
CA not affected
OF isset if exponent overflow occursin which case the result,Nand Z are undefined.

EST·
o 5 6

11 0 1 1 11 ADDR (FM = 1 only)

EXTENDED STORE: eq :=ea The extended fJoatingpoint operand in the Floating Accumulator is stored in
the format shown in B.2.

ConditionsMarkers

N is set to the signof the stored floating point number.
Z is set if the floating point number is zero, otherwise it is cleared.
CA not affected.
OF not affected.

68

12.3 FLOATING POINT CONVERSION INSTRUCTIONS

.FLT

15

ADDR (FM = 1 only)

FLOAT AND LOAD: A32 bit integer from store is converted into the equivalent long floating Point number
and loaded into the Floating Accumulator. The operation is described in detail in Appendix 12A.

ConditionMarkers

N is set to the signof the floatingpoint number.
Z isset if the floating point numbergenerotedis zero, otherwiseit is cleared.
CA not affected.
OF not affected.

FIX

o 5 6 ISI, 0 1 1 o a I ADDR (FM = 1 only)

FIX AND STORE: The long floating point number in the Floating Accumulator converted into an equivalent
integer and stored. A fractional floating point remainder is left in the Floating Accumulator.

If the original Floating point number is in the range -l<Number < + 1, the result is zero, and
the Floating Accumulator is unchanged. If the number is outside the range _231 ~ Number ~ 231 - 1, overflow
will occur. Details of the operation are given in Appendix 12A.

ConditionMarkers

N isset to the signof the integerthat is stored.
Z is set if the int~er formed is zero, otherwiseit is cleared.
CA not affected. .
OF is set if significantbits are lost when truncatingthe integerformed to 32 bits, i.e.

if the floating point number to befixed is unable to be representedasa 32 bit integer
andfractionalfloating point remainder.

12.4 FLOATING POINT INSTRUCTIONS IN FORMAT L

There are.3 such instructionsr-.

SFM
SIM
FNEG

SET FLOATING MODE
SET INTEGER MODE
NEGATE FLOATING POINT NUMBER

As described in section 5 the CPU has an integer mode of operation and a floating point
mode of operation. The instructions SFM and SIM provide the facility for switching between these two modes of
operation.

If the instruction FNEG is used with the central processor in integer mode the effect is undefined.

,69

SFM

1 0 1

15

000000

SET FLOATING MODE: FM := 1. When executedthis instruction causesthe floating marker flag (FM) to beset.
This flag is part of the register that holds the condition markers and is treated inthe same way as N, Z, OF and CA.

!f this instruction is executed with the FM flag already set then it has no effect.

ConditionMarkers

Not affected.

SIM

o 1 2

o 1 1 000000

SET INTEGER MODE: FM = O.Whenexecutedthis instruction causesthe floating marker flag (FM) to be cleared.

If the instruction isexecutedwith FM alreadyclearedthen it hasno effect.

ConditionMarkers

Not affected.

FNEG

o 1 2 7 8

10 010 1 0 1 1 110000001 (FM = 1 only)

FLOATING NEGATE: ea:=-ea.Whenexecutedthis instruction changesthe signof the floating point number
held in the Floating Accumulator. If the instruction isexecutedwith FM=O,it will affect the A registerin anundefined
manner.

If the floating point number held in the FloatingAccumulator is not normalisedthe instruction
will causeit to be replacedwith floating point zero.

ConditionMarkers

N i! set to the new sign of the floating point number held in the register.
Z is set if the result is zero, otherwiseit is cleared.
CA not affected.
OF not affected.

70

APPENDIX 12A: FLOATING POINT ARITHMETIC

1.1 INTRODUCTION

The following sections describe the operations of Floating Point Addition, Subtraction, Multiplication,
and Division. They are provided for the benefit of those who require to know details of accuracy, rounding etc. It
should be noted that the algorithms presented are idealised, and have the same effect as but are not necessarily the
same as the algorithms implemented by the hardware. For instance the hardware does not perform the arbitrarily
long shifts implied in some places.

1.2 FLOATING POINT ADDITION AND SUBTRACTION

Floating Point Addition is carried out as described in this section. Floating Point Subtraction is carried
out by negating the subtrahend (by logically inverting its sign bit if it is non zero) and then performing an addition.

(a) . The exponents of the two operands are compared. If they differ, the operand with the smaller
exponent is aligned by shifting its Mantissa right four places at a time, incrementing its exponent
by 1 for each four places shifted, until the two exponents are equal. After each shift, the four bits
just shifted out of the mantissa are retained in the Guard Digit~ If the number of places of shift
required is greater than 28 (short precision) or 60 (long precision), then the operand will be shifted
completelyoutof the accumulator. Inthis case the result is equal to the larger of the two operands.

(b) An intermediate result is now formed whose exponent is equal to the larger of the two operand
exponents, and whose sign and (positive) mantissa are found by adding or subtracting the two
mantissae having regard for their signs and magnitudes.

If the signs of the operands are the same, the mantissae are added, and the sign of the result is the
same as the sign of the operands.

If the signs differ, the smaller mantissa is subtracted from the larger mantissa, and the sign of the
result is the same as the sign of the larger operand.

In all cases the mantissa of the intermediate result consists of 32 bits (short precision) or 64 bits
(long precision) and is in the range 0 ~ mantissa < 2.

(c) The final result is now formed by normalising the intermediate result if necessary as follows:-

(i) If the mantissa is already normalised, no further operations are necessary, and the final
result equals the intermediate result with its guard digit reset to zero.

(ii) !f the intermediate result mantissa is zero, then a clean zero result is generated by setting
the sign and exponent to zero.

(iii) If the. intermediate result mantissa is greater than or equal to 1, it is normalised by right
shifting four places and adding one to the exponent. The guard digit is then reset to zero.
If after the shitt the exponent is greater than 63, overflow has occurred. 0 F is set and the
result is undefined.

(iv) If the mantissa is less than lh6' it is left shifted four places at a time until it is norrnalised,
subtracting 1 from the exponent for each four places shifted. The guard digit is then reset
to zero. If after the shifts, the exponent is less than - 64, underflow has occurred; In this
case the result is replaced by clean zero.

App.12A 71

1.3 FLOATING POINT MULTIPLICATION

Floating Point Multiplication is carried out as follows:

(a) An intermediate result is formed by adding the exponents of the operands and multipiying their
mantissae. The sign of the result is positive if the signs of the operands are the same, and is negative
otherwise. The mantissa is in the range

1
ill "mantissa < 1

and for long operation is the most significant 60 bits of the 112 bit product, whilst for short operations
the 48 bit product is extended to 60 .bits by appending low order zeroes. The exponent of the inter­
mediate result is held to 8 bits, and no overflow can occur at this stage.

(b) The final result is now formed by normalising the intermediate result if necessary as foJlows:-

(i) If the mantissa is already normalised, no further operations are necessary. The result is
truncated to 56 bits. by zeroing the guard digit.

(ii) If the intermediate result mantissa is zero, then a clean zero result is generated.

(iii) If the mantissa is less than 1/16. it is normalised by left shifting four places and subtracting
1 from the exponent. Note that only onenormalising shift is necessary. The result is then
truncated to 56 bits as described above.

(c) If after normalisation, the exponent is greater than 63, overfl~w has occurred. OF is set and the
result is undefined. If after normalisation the exponent is less than -64, underflow has occurred.
The result is replaced by clean zero.

(d) Note that the result of a short Floating Point multiply will be a long FI.oating Point number, and
will not be truncated to 24 bits.

1.4 FLOATING POINT DIVISION

Floating Point Division is carried out as follows:

(a) If the divisor (store operand) is zero, the operation cannot be performed. OF is set to record
overflow, and the result is undefined.

(b) Otherwise, an intermediate result is formed by subtracting the exponent of the divisor from tile
exponent of the dividend (accumulator operand) and dividing the mantissa of the dividend by the
mantissa of the divisor. The sign of the result is positive if the sign of the operands is the same, and
is negative otherwise. The mantissa is in the range

l~ <mantissa < 16

. and comprises the ms 28 bits of the quotient (short precision) or 60 bits (long precision). The
exponent is held to 8bits and no overflow can occur at this stage.

(c) The final result is now formed by normalising the intermediate result if necessary as follows:-

(i) If the mantissa is already normalised, no further operations are necessary. The result is
truncated to 24 bits (short operations) or 56 bits (long operations) by zeroing the guard
digit.

(ii) If the intermediate result mantissa is zero (this can only occur if the dividend was zero)
then a clean zero result is generated.

72 App.12A

(iii) If the mantissa is greater than or equal to 1, it is normallsed by right shifting four places
and adding 1 to the exponent. Note that only one normalising shift is necessary. The result
is then truncated to 24. bits (short; or 56 bits (iong; as described .above.

(d) If, after normalisation, the exponent is greater than 63, overfiow has occurred, OF is set and the
result is undefined.

If after normalisation the exponent is less than -64., underflow has occurred. The result is replaced by
clean zero.

1.5 THE FLT INSTRUCTION

.:The Float operation is carried out a~ followsr-

A long floating point number is formed with E = +8, MANTISSA = magnitude of the integer operand,
and S = 0 if the integer is positive or zero, and S = 1 if the integer is negative. This long floating point number is now
normalised if necessary and placed in the Floating Accumulator. If its mantissa is zero, a clean Zero result is entered.

1.6 THE FIX INSTRUCTION

The Fix operation is carried out as fottows:-

First the exponent E of the number in the Floating Accumulator is tested. If E ";;·0, the number
has no integer part. In this case a zero integer is placed in store and the Floating Point accumulator is unchanged;
th;s completes the operation.

If E ~ i, the number can be expressed as either + (I + F) if it is positive, or - (I + F) if it is negative,
where in both cases I is a noh zero integer and F is a (possibly zero) fraction. The 2s complement integer result in
store is formed by taking I, negating it if it was negative, and truncating to 32 bits. If significant bits are lost in the
truncation, Overflow has occurred, and the result placed in store will be the LS 32 bits of the true integer result.

Whether overflow occurs or not, the fractional remainder F is found by left shifting the mantissa of
the original number four piaces at a time, decremerrtinq E by 1fOr each place of shift, until E becomes zero. The
rll$ulting number is now normalised if necessary and placed in the Floating Accumulator. If its mantissa is zero, a
clean zero result is recorded.

Note that the fractional remainder will always be correct, even if the integer result overflows.

App.12A 73

13. CONTROL INSTRUCTIONS AVAILABLE IN BASIC MODE

Chann~lInterrupt

Eight interrupt lines are provided on the Command Interface (see CPU Basic Multiplexer Channel
Manual) and anyone of eight Input Output Processors (including the Basic Multiplexer Channel) may interrupt
over this interface.

When in basic test mode the central processor takes the following action if interrupt by any input
output processor:-

[i] The number of the highest priority channel interrupting the processor is written into the
halfword location at address zero.

(ii) The contents of the program accessible registers S. L. B. A. X. Y. z. E/C are written into
locations 2 onwards of store.

STORE LAYOUT

0 INT CODE (ERROR CODE)

2 S Register

4 L Register

6 8M Register

8 BL Register

10 AM Register

12 AL Register

14 X Register

16 y R~nistAr

18 Z Register

20 E/C Register

22 INTERRUPT VALUE OF S

24 INTERRUPT VALUE OF L

(iii) The S register is loaded from location 22 of store and the L register from location 24.

(iv) Interrupts are inhibited.

Error Interrupts

If an error condition arises whilst a program is running the following sequence of events is
performed:-

(i) An integer value is placed in location 0 of store to identify the cause of the interrupt.

(ii) The interrupt sequence in the previous paragraph is performed.

74

ERROR CODES

INT CODE ERROR CODE

Store Parity 8
Power Fail 9
Store Time Out 12
Start Up 13
Illegal Instruction 14
Command InterfaceTime Out 16

NOTE: Whenstarting from.the RESETcondition the Sand L registersare ioadedfrom locations22and24 respectively
and code 13 is placed in location O.

The following instructions are provided in Format L for the control of input/output and interrupt
handling in BasicTestMode:-

INT INTERRUPT CONTROL
I/O INPUT/OUTPUT CONTROL

13.1 INT - INTERRUPT CONTROL

Five variantsof this instruction areprovided and theseare further defined by the displacement
field of the instruction asfollows:-

M INSTRUCTION

000
001
010
011
100

AINT
PERM
INH
TERM
SINT

ACKNOWLEDGE INTERRUPT
PERMIT INTERRUPT
INHIBIT INTERRUPT
TERMINATE INTERRUPT PROGRAM
SOFTWARE INTERRUPT

.Interrupt Instructions

AINT

7 8 15

110010'00000"001

ACKNOWLEDGE INTERRUPT: This instruction allows anacknowledgeinterrupt cycle to take placeover the
command interface causingthe selectedlOP to reset its interrupt line.

The number ofthe lOP involved is held in.location zero of store.

Condition Markers

Not affected.

75.

PERM

o 1 2 7 8 15

10010111001000000011

PERMIT INTERRUPTS: This instruction allows the central processor to take the action described in Channel
Interrupt on receipt of an interrupt.

Condition Markers

Not affected.

INH

o I' 2 7 8 15

10 0 10 1 0 0 10 0' 0 0 0 0 1 0 I
INHIBIT INTERRUPTS: This instruction prevents the central processor from taking the action described in
Channel Interrupt until after a PERM or TERM instruction has been executed.

Condition Markers

Not affected.

TERM

o 1 2 7 8 15

10 010 1 1 1 0 010 0 a 0 a a 1 I
TERMINATE INTERRUPT PROGRAM: This instruction causes the program accesible registers S, L, 8, A, X,
Y, Z, E/C to be loaded from location 2 onwards of store. Having loaded the registers interrupts are then permitted.

Condition Markers

The Condition Markers are loaded from byte 21 of store.

SINT
012 7 8 15

11001000001001

GENERATE SOFTWARE INTERRUPT: The effect of this instruction is to store register AL in location zero of
store and then force the central processor to take action as if it had received an interrupt (i.e. that described in
Channel interrupt). This instruction takes effect whether interrupts are inhibited or not.

Condition Markers

Not affected.

76

13.1 I/O - INPUT/OUTPUT CON:I'ROL

Two variantsof this instruction areprovided and theseare further defined by the displacement
field of the instruction asfollows:-

The N field of the instruction definesthe channelnumber overwhich input/output is to be
carried out, i.e. channels 0-7.

The M field defineswhether input or output is to take place.

~v1 ACTIO~':

o IN - INPUT OVER CHANNEL DEFINED BY N
OUT - OUTPUT OVER CHANNEL DEFINED BY N

IN

1 1 0

INPUT FROM CHANNEL N: The way number of the selecteddevice is defined by the contents of the Z register.

Data from the selecteddevice is placedin AL with AM beingcleared.The condition markersare
set to indicate the result of the operation asfollows:-

N z OF CA MEANING

x x
o Operation Successfullo o o

x Operation Failed

'vAJhenan error is indicated by OF being set to 1, N,Z and CA may be used to indicate the cause of
failure by the lOP.

OUT

o 1 2 7 8 12 13 15

10 010 1110110 o 0 0 I N I
OUTPUT TO CHANNEL N: The way number of the selecteddevice is defined by the contents of registerZ as it is
for input.

77

Data from AL is output to the selected device at the same time AM is cleared. Data from the lOP
may be input to AL at this time, however, the BMCdoes not make use of this feat~re and thus Al is left with
the original data that has been output to the lOP.

The condition markers are set to indicate the result of the operation as for input.

78

Supplement 1: SUMMARYOF INSTRUCTIONS

SUMMARYOF INSTRt}cTION FORMATS

This Supplement provides a quick tabular reference to the instructions available in the computer
instruction set. A full description of each instruction. and the formats in Which they are available. is given
earlier in this manual.

FORMATB

F

15o

o

Q=S ± 20 (0 treated as a Signed Integer)

FORMAT Al

F o

Q= 0*

FORMATA2

o

F o

M=0 Q= 1.+0*·
= 1 = s + 0*
= 2 = y + 0*
= 3 = z + 0*

FORMATA3

Supp.1

FORMAT AS

F D

o

M= 0 Q = I+ 0* + x"
= 1 D* + x"
=2 =y+O*+x*
= 3 = Z +0" + x"

FORMATL

F D

Arithmetic Operations - D is unsigned literal operand
Conditional Branches - D is signed Integer Displacement
Control Operations ~ D defines operation
Shifts, Bit Operations - See below.

FORMATRR

o 0 0 0 0 F
I 0

Gl, Gl = 0 Register = 0
=1 =A
=2 = 8
=3 =X
=4 = L
= 5 =5
=6 = y
= 7 = Z

FORMAT L ~.SHIFTS

o 7 8 10 11 15

SHL/5HX M I N

Mdefines shift type
N defines piaces of shift = N (left shifts;

•• 32-N (right shifts)

FORMAT L ~ BIT OPS

BITL/BITX Mr
Mdefines operation
N defines bit number of 1.5. 16 bits of A involved

2 Supp.l

SUMMARY OF INSTRUCTIONS

MNEMONIC EFFECT CONDITIONS HEX FORMAT CLASS
N Z OF CA

LO* a ;= hq a<O a=O - - 8000 A H
AO* a := a + hq r<O a=O r r ' 8400 A H
SB· a := a - hq r<O a=O' r r 18800, A H
Cp* form a - hq and set N,Z,CA,OF I a<hq a=hq r

I
r

ISCOO

A H

IN* a := a!\ hq a<O a=O - - 9000 A H
M* a:= a * hq -co a=O r - 9400 A H
0* a := a -:-hq: b := remainder a<O a=D r - 9800 A H
ST* hq:= ha hq<O hq=O hq*a - 9COO A H

LOW· a :=wq s-c o 'a-O - - AOOO A W

AOW* a:=a+wq r<O 11=0 r

I
r A400 A W

"

SBW* a :=a- wq -co a=O r r AaOO A W

CPW* form a- wq and set N,Z,CA,OF a<wq a =wq r r ACOO A W

NW· a := a Awq a<O a=0 I - - BOOO A W

MW* da := a * wq r<O da=O - - B400 A W

OW· a := da -:-wq; b := remainder r<O e=O - - B800 A W

STW* wq :=a wQ<Oi wq=O - - BCOO A W

LOX x :=hq x<O x=O - - COOD A H
AOX x := x + hq -co x,:"O r r C400 A H
SBX x := x- hq -co x=O r r caoo A H
CPX form x - hq and set N,Z,CA,OF x<hq x=hq r r CCOO A H
NX x := x!\ hq x<O x=O - - 0000 A H
MX x := x* hq -co x=O r I - I 0400 A H IOX x':= x -:-hq x<O x=0 r ',- D800 A H
STX hq:= x hq<O hq=O - - DCOO A H

LDY y:= hq - - - - EOOO A H
ADY y:= y + hq - - - - E400 A H
SBY y:= y - hq - - - - E800 A H
STY hq := y

I
- - -

I -
ECOO A H

ILDZ z := hq - - - - FOOD A H
ADZ z := z + hq - - - - F400 A H
SBZ z := z - hq - - - - F800 A H
STZ hq:= z - FCOO A H- - - -

"

LOB a:= bq 0 a=O - - 4000 A B

LBX

I
x := bq I 0 x=O -

I
- 4400 A B

ICPB form a - bq and set N,Z,CA,OF a<bq a=bq - - 4COO A B

NBS bq .= bq!\ ba 0 bq=O - - 5000 A B

CBS bq := bq V ba " 0 bq=O - - 5400 A B

XBS bq:= bq$ ba 0 bq=O - - 5800 A B

STB bq := ba 0 bq=O - - 5COO A B

* Instructions available if FM = 0 only.

Supp.1 3

MNEMONIC EFFECT
CONDITIONS

HEX FORMAT CLASSN I Z 01: r.A
!

4800 Ioecs hq:= hq-1 r<O I hq=O r 'r A H
INCS hq:=hq+l r<O hq=O r r 7COO A- H
HAY y:=hQ - - - - 6000 A H
HAZ z:= hQ - - - - 7000 A H
LOM load B,A,X,Y,Z,e,C fromWQ:WQ+14 C * <;;* Cs* C * 6400 A W4 7
STM store B,A,X,Y,Z,E,Cin WQ:WQ+14 - - - - 6800 A W

LOL a:= 0 0 I a=O - - 2000 I ~ LB
ADL 8;= 8 + 0 r<O 8=0 r r 2100 L LB
SBL a:=8-0 r<O a=O r r 2200 L LB
CPL form a- 0 and set N,Z,CA,OF a<O 8=D r r 2300 L LB
NL a :=al\ D 0 a=O - - 2400 L LB
ML . a:= a * 0 r<O a=O r - 2500 L LB
DL a := a + D; b := remainder '__'n 8=0 2600 L LBa.......u r - -
LDXL x:= 0 0 x=O - - 3000 L LB
AOXL x:= x + 0 r<O x=O r r 3100 L LB
SBXL x := x - 0 -co x=O r r 3200 L LB
CPXL form x - D and set N,Z,CA,OF ----'" I x=D r r .,.,nn L LB"....•..• ;~~ I INXL x := x 1\ 0 0 x=O - - - L LB
MXL x:= x *0 -co x=O r - 3500 L LB
OXL x := x+ 0 x<O x=o r - 3600 L LB

LOYL y:= 0 - - - - 3800 L LB
AOYL y:= y + 0 - - - - 3900 L LB
SBYL y:= y - 0 - I - - - 3Aoo L LB
CPYl form y - D and set N,Z,CA,OF y<D y=D r r 1800 L LB
LOZl z :=0 - - - - 3Foo L LB
AOZl z:= z+ 0 - - - - 3000 l LB
SBZL z:= z- 0 - - - - 3Eoo L LB
CPZL form z - 0 and set N, Z,CA,OF y<O y=O r r iroo L LB

B s:= Q - I - - - 0400 I B
01 z := s; s:= Q - - - - nonn BgL uuuu

BI s :=hq - - - - 7400 A H
BLI z :- s ; S : •• hq - - - - 7800 A H
BN s := s ±0 if N = 1 - - - - 2800 L BR

BNN s := 5 ;h 0 if N = 0 - - - - 2900 L- BR
....., s := s ± D if Z = 1 - - - - "Ann L BRDL

I ;;;1BNZ S := 5 ± 0 if Z = 0 - - - - L BR
BP 5 := 5 ± D if N = 0 & Z =·0 - - - - 2COO L BR
BNP 5 := s ± D if N = 1 or Z = 1 - - - - 2000 L BR
BOF s := s ± 0 if OF = 1 ; OF = 0 - - 0 - 2EOO L BR

BNCA s:=s±DifCA=O - - - - 2Foo L BR
BPAR s := s ± 0 if ba hasodd parity - - - - 1800 L BR

* C4,5,6,7 are the LS4 bits of byte WQ+14.

4 Supp.l

MNEMONIC EFFECT
CONDITIONS

N Z I OF CA HEX FORMAT CLASS

SHL Shift Literal: 0 defines type andPlaceS!

1
19XX L SH 1SHX Shift Indexed:0 + x definestype and .,places. L SH

(N is 1.5. 5 bits of 0 + x)
SBAR,SBRX Shift da right arithmetic 32-N places da<Oda=O - - XXOO l SH
SBAL,SBLX Shift da left arithmetic N places da<t>da=O r - XX20 L SH
SR, SRX Shift a right arithmetic 32-N places a<O a=O - - XX40· L SH
st. SLX Shift a left arithmetic N places 1 a<0 a=O I r - 1 XX60 L SH

Shift a right logical 32-N places
..

SRL, SRLX a<O a=O - - XX80 L SH
SLC, SLCX Shift a left circular N places a<O a=O - - XXAC L SH I
SXR, SXRX Shift x right arithmetic 32~N places x<O x=O - - XXDO L SH
SXL, SXlX Shift x left arithmetic N places x<O x= 0 - - XXEO L SH

BITL Bit operation Literal: 0 defines I 16XX L BIT
operation

I .'
BITX Bit operation Indexed:0 + x defines L BIT

operation . 15XX
(N is I.s. 4 bits of 0 + x] L BIT

TSTB,TSTX Set Z = 1 if bit N of ha is zero

I
bit=O - I -

I
XXOO L BIT

TGLB,TGLX Changethe state of bit N at ha ha=O - I - XX90 L. BIT
PLCB,PLCX Set bit N of ha to 1, resetall other bitl 0

-I
- - I XXA(] L BIT ISETB,SETX Set bit N of ha to 1 ha=O - - I XXBO L BIT

CLRB,CLRX Resetbit N of ha to 0 ha=O I - - XXEO L BIT I
I I I I

I

MBS Movebyte strings 0 1 - - 2100 L C
CPBS Comparebyte strings r<0 end - - 2740 L C
TRBS Transiatebyte strings

I
0 1 I - - 2780 L C

SCBS Scanbyte strings 0 end - - 27CO L C
MHS Movehalfword strings 0 1 - - 3700 L C

RK a := keys a<0 a=O - - 1200 . L C
HRK Halt processor;then a := keys a<0 a=O - - 1201 L C
PEC x := priority encodeof bits of ha - - - - 1EOO L C
SEXT da := a ~a<O da=O - - 3COO L C

RADC gl := gl + 92 + CA r<0 91=0 r r 0040 RR
RSBC gl := gl •.g2 - CA r<0 gll!1() r r 0080 RR
RNA gl := 92 - 91 r<0 ~1=0 r r 0100 RR
RADI gl := 91+ 92+ 1 r<0 ~1=O r' r 0140 RR
RSBI 91:= gl - g2 - 1 r<0 ~l=O r r 0180 RR
RI g1 := 92 191<0 91=0

1
- - 01CO RR IRlD 91 := 92 g1<O ~l=O - - 0200 RR

RAD 91 := g1 + 92 r<0 ~1=0 r r

10240

RR

RSB g1 := gl - 92 r<0 g1=0 r r 0280 RR
RCP form gl - g2 and setN,Z,CA,OF g1<g2191=g2 r r 02CO RR
RN gl := 911\g2 91<0 191=0 - - 0300 RR

RO g1 := gl Vg2 91<0 g1=0 - - 0340 RR

RX gl := 91 '*' 92 91<0 g1";0 - - 0380 RR

Supp.l 5

MNEMONIC EFFECT CONDITIONS HEX FORMAT CLASS
N Z CA OF

FLDt fa := fq fa<O fa=O - - 8000
1

A I F

FADt fa := fa + fq fa<O fa=O r - 8400 A f

FSBt fa:=fa-fq fa<O fa=O r - 8800 A F

FCPt form fa - fq and set N,Z,CA,OF fa<fq fa=O - - 8COO A F

FMt ea := fa * fq ea<O ea=O r - 9400 A F
FDt fa:= fa -:-fq fa<O fa=O r - 9800 A F

FSTt fq e= fa fa<O famO - - 9Coo A F

ELDt ea r= eq ea<O ea=O - - AOOO A E

EADt ea := ea + eq ea<O ea=O r - A400 A E

ESBt ea := ea - eq ea<O ea=O r .- A800 A E

ECPt form ea - eq and set N,Z,CA,OF ea<eq ea••eq - - ACOO A E

EMt ea := ea * eq' ea<O ea=O r - 6400 A E

EDt ea:= ea -:-eq ea<O ea=O r - B800 A E

ESTt eq := ea ea<O ea=O - - BCOQ A E

FIXt wq :'" integer part of ea ; q<O q=O r - sooo A W
ea .= remainder

FLTt

I
ea := floating representation of wq I ea<O e(I=O - -

19000 1
A I E

FNEG ea:= -aa ea<O ea=O - -'- 1702 L C

SIM, Set Integer Mode (FM :=0) I - - - - 1700 L C

SFM Set Floating.Mode (FM r= 1) - - - - 1701 L C

AINT Acknowledge Interrupt - - - - 1COO L C

PERM Permit Interrupts - - - - lCOl L C
INH Inhibit Interrupts - - - - 1C02 L C

TERM Terminate Interrupt Level - - - - lC03 L C

SINT Software Interrupt - - - - lC04 L C

IN Input from Channel N S4 S5 S6 S7 1000 L I/O

OUT Output to Channel N S4 Ss S6 s, 1040 L I/O

SFN 1'\ Switch to Full Nucleus - -
1
- 11202

L C

CALL

J
1000 L

ICBR Nucleus Instructions - See 1100 L

SEG CPU Nucleus Manual 1300 L

SEM 1400 L

t Instructions available if FM=l only.

6 Supp.1

Notes

(1) The classof a Format Aor Format L instruction determineshow its D field is used:-

FORMATA CLASS B Dusedto Form ByteOperandAddress
H Dusedto Form HalfwordOperandAddress
W Dused to Form Fullword IntegerOperandAddress
F D usedto Form Short FloatingPoint OperandAddress
E Dusedto Form LongFloatingPoint OperandAddress

FORMATL CLASS LB- Dusedas LiteralByteOperand
BR- Dusedas Signeddisplacement
SH ..,...0 used to define Shift operation
BIT- D usedto define Bitoperation
C - Dused to further define operation

(2) Condition Settings

In the tables. the followingsvmbolsare used

AllConditions :- indicatesthat the conditions bit is unaffected by the operation.

NCondition:- r<O indicatesthat the bit is"setto the ill!! signof the result.

a<Detc. indicatesthat the bit is set to the signof the result register.This may
differ from the true sign if overflowhas occurred.

a<hq etc. indicatesthat the bit is set to indicate the true result of the comparison.

CPBSonly r<O indicatesthat the bit is set to indicate the result of the last
byte comparisonperformed.

Z Condition:- a=Oetc. indicatesthat the result registerbecamezero as a result of the operation.

a=hq etc. indicatesthat the two operandswereequal.

TSTBonly bit = 0 indicatesthat the selected bit was zero.

CPBS.SCBSonly end indicatesthat the bit is set if the operation continued to
completion.

OF Condition:- r indicatesthat the bit is set if the result overflowed. In such casesthe true
result and the result placed in the result registerdiffer.

STonly hq'lt a indicatesthat the bit isset if the ,integerin a cannot be
represented in 16 bits. "

Note that once set. the OF bit can only be reset by the BOF instruction.

CACondition:- r indicatesthat for Add operations, Carryout was produced, and for
Subtract operations. a Borrowwas produced.

Supp.1 7

4

5

~ 6
~
t"" 7
.t_l!!!
~ 8

9

A

B

C

0

E

F

o 2 8 B E F 4--SECOND HEX
DIGIT

c o9 A3 6 6 74

o FORMAT RR@ .B-. +256 -512 ·256 BL-.... +256 -612 -256

CALL@ ICBG) KEY@ SEG@ SEM@ BITX@ BITLQ) MISC@) PBAR SHL@ // CPYl INT@ 10@ PEe· CPZl

lDl AOl SBl CPl NL Ml Ol BS@ BN BNN BZ BNZ BP BNP BOF BNCA

lDXl ADXl saxi, CPXl NXl MXL OXl MI-IS· lOYl AOYl SBYl SHX@ SEXT" AOZl seZl lO:Zl

2

3

Branch Branch and Link

FORMAT BAND l "FOR THESE INSTRUCTIONS,THIRD A.NDFOURTH HEX DIGITS a DO
OFOR THE,SEI~STRUCTIONS. REFER "0APPROPRIATE TA~llE
All onlER INSTRUCTIONS - THIRD AND FOURTH HEX DIGITS DEFINE DISPLACEMENT

FUNCTION

LOB lBX oses CPB

HBS OBS XBS .: '$T8
-

HAY .lQM STM

HAZ BI 811 INCS

lD/FlD AD/FAD sa/FSB cP/FCP FORMAtA TABLES DEFINE FUNCTIONAND ADDRESSINCfMODE.

NI/FIX M/FM Il/FD ST/FI!T
ADD FOUlnH HEX OIGIT TO FORM DISPLACEMENT.

~FCP
,

LOWiELD AOW/EAOSBWIESB

NW/FLT MW/EM !)If/lED STW/EST

lOX ADX sex CPX 'L = Base Reg.
.. I = Indirect

NX MX OX STX Base Re~l. X indexed X = Indexed
lOY ADY say STY

I I LSBZ STZ MODE
».

lDZ DAZ

lX I I I I I I ,. , I I '..

0 4 8 C GX YX ZX GI +16 +32 +48 UX +16 51 H6 YIX: +M ZI.lC +.18

1 5 9 0 GI +16 +32 +48 i64 +80 +96 +112 . +128 +144 +160 +176 +92 +208 +~ +2<10

2 6 A E l +16 +32 -t4I1 i64 +80 +96 +112 S +16 +32 +048 i64 +l1O +96 +112

,3 1 B F,/ Y +16 +32 +48 i64 +80 +96 +112 Z +16 +32 +48 +64 +lIO +96 +112

V
SECOND HEX

DIGIT
E FEI C [)6 8 A74 5ro

THIRD HEX
DIGIT

2

SECOND

DIGIT

FUNCTION

o / RADC RSBC L
RNA RADI RSBI RI

RLD RAD RSB RCP

RN RO RX t-: REGISTERGl

0 4 8 C 0 A

1 5 9 D B X

2 6 A E L S
.,

3 7 B F y Z -.REGISTER
\.

THIRD HEX 0 8 0
DIGIT

1 9 A

2 A B

3 B X

4 C L

FORMAT RR 5 D S

6 E y

7 F Z

2

3

HEX

'---v---'
FOURTH HEX

DIGIT

TABLE 2

G2

Supp.1 9

F

1
THIRD HEX

DIGIT

o

2

3

4

5

6

7

8

9

A

B

C

D

E

10 Supp.l '

1/0 (Basic Test)
.-----~~~.-----.-----.-----.-~--~----~--~SEM ICB

* *REL ICBR IN

SRL
SRX

+16

SLC

* FOR THESE I.NSTRUCTIONS,FOURTH HEX DIGIT =O.

FOR SHL/SHX, ADD 4TH HEX DIGIT TO FORM NUMBER OF PLACESOF SHIFT.

FOR BITL/BITX, 4TH HEKDIGIT IS BIT NUMBER.

FORSEG (EXCLUDING LHSR), 4TH HEX DIGIT DEFINES SEGMENT. MUST BE IN
THE RANGE 0 = 3.

FOR I/O, 4TH HEX DIGIT DEFINES CHANNEL.

FORCALL INSTRUCTIONS STAT~ RSEN, SEND. 4TH HEX DIGIT DEFINES NEXT STATE.

o FREE
1 RUN
2 WAIT/PASS
3 WAIT
4 FREE CONDITIONALLY

./ 7 WAIT CONDJTIONALLY

TABLE 3

INT KEY Mise

RK SIM

HRK SFM

SFN FNEG

o AINT

PERM

2 !NH

3

4

5 -F

f
FOURTH HEX

DIGIT
THI RD HEX DIGIT'" 0

TABLE 4
Supp.1 11

