
The design of an interactive computer system

for microelectronic mask making.

JDEades

Thesis presented for the Degree of Doctor of Philosophy of

the University of Edinburgh in the Faculty of Science, December 1976

I declare that the work described in this thesis

is entirely my own except where the appropriate

acknowledgements are given in the text. I also decla]

that the work has not previously been submitted as par

of a higher degree thesis.

J D Eades

30150 	004057045

Acknowledgements

The research work for this thesis was started in the Wolfson

Microelectronic Liaison Unit in the Department of Electrical Engineering

of the University of Edinburgh. 	It was continued in the Computer Aided

Design Project in the Department of Computer Science.

The initial computing facilities were provided by Systemshare Limited,

an Edinburgh based time-sharing company, and were financed by the

Wolfson Unit. Subsequent computer facilities were financed by the

Science Research Council with grant number B/SR_ 8874.

My thanks are due to my supervisors for their source of constant

encouragement and for their useful advice and constructive criticism.

My thanks also go to the other members of both the Wolfson Unit and the

CAD project for useful discussions on the projects objectives and

requirements.

CONTENTS

I!

Summary:

Acknowledgements

Chapter 1: Introduction
1.1 The •reason for GAELIC
1.2 The design and manufacture of integrated circuits.
1.3 Possible coiv'uter aids to integrated cicuit design
1.4 Guide to theFis.

Chapter 2: Flask design -
2.1 Methods of producing mask masters
2.2 Mask design methods
2.3 Possible computer aids to mask design

2.3.1 Automatic methods
2. 3.2 Batch methods
2. 3.3 Interactive methods

2.4 Computer programs available
2. 4.1 REI)AC system
2. 4.2 CAMP system
2. 4.3 MARCONI system
2.4,4 Subsequent systems API'LICON and CALNA

2.5 Requirements of a mask design system

Chapter 3: The use of GAELIC in mask design
3.1 Data input

3.1. 1 Digitiser input
3.1.2 Manual input

3.2 Plotting and modification
3.3 Post processing

Chapter 4: Data structures
4.1 The need for a data structure
4.2 Possible data structures
4.3 CAMP data structure
4.4 MARCONI data structure
4.5 Later data structures

Chapter 5: GAELIC data structures
5.1 Original sequential data structure
5.2 Initial ring data structure
5.3 Final ring data structure
5.4 Paging the data structure

Chapter 6: Graphical input/output
6.1 Refresh C.R.T.
6.2 Storage C.R.T.
6.3 Plotters

Contents

6.4 Light pen
6.5 Tracker ball
6.6 Rand or Sylvania tablet
6.7 Tektronix 4010 terminal
6.8 Graphics software

Chapter 7: Program description
7.1 General philosophy
7.2 Digitiser program
7.3 Syntax checker
7.4 Compiler
7.5 Interactive program
7.6 Plotter program
7.7 Post processors

Chapter 8: Performance
8.1 Initial sequential data structure
8.2 Initial ring data structure
8.3 Final ring data structure

Chapter 9: Future work
9.1 Constraints
9.2 Layout Rule Checking
9.3 Mask Function Checking
9.4 Stand-Alone Computers
9.5 Automatic Layout
9.6 Refresh Graphics
9.7 Layout Design with Automatic Rule Checking
9.8 Thin Film Circuit Design
9.9 Timber Framed House Design

Chapter 10: Conclusions
10.1 Were requirements sound.
10.2 Were requirements met.

References

Appendix 1: Effect of integrated circuit size on yield
and cost

Appendix 2: The insertion of beads into the group
definition ring

Appendix 3: Newton's digitiser coordinate transformation

Appendix 4: Simple digitiser coordinate transformation

S U N 1A RY

This thesis describes the develpment of a suite of

computer programs that assist in the design and production

of integrated circuit layouts. The suite is called GAELIC

which is an acronym for Graphic Aided Engineering Layout

of Integrated Circuits.

The purpose of the suite is to provide an efficient

interactive facility for designing integrated circuit

layouts that can run on a variety of computers and

requires the minimum of capital expenditure. GAELIC,

consequently, is the first integrated circuit design

facility to work ona time-shared computer and in order to

do this efficiently, the data is stored on disc using

several novel features.

The first chapter introduces the problems of mask

design and manufacture and why computer aids are required.

The second expands on the possible computer aids and

describes the presently available programs. Chapter 3

describes how GAELIC can be used to design masks and

Chapter 8 evaluates its performance. Chapters 9 describes

: the future work that is possible using GAELIC and Chapter

10 contains the conclusions. The internal details of the

program are given in Chapters 4, 5 and 7 and the factors

involving the choice of graphics hardware is discussed in

Chapter 6.

Chapter 1: Introduction

1.1 The reason for GAELIC

In 1.969 the Department of Electrical Engineering at

the University of Edinburgh were awarded a grant by the

Wolfson Foundation to set up the Wolfson Microelectronics

Liaison Unit. The main aim of the Wolfson Unit, as it is

usually called, was to encourage industry to use the new

microelectronic technologies to build their equipment

instead of descrete components. In order to do this

efficiently, 	it was essential 	that the unit staff were

experienced in these new technologies. The Unit

consequently set up a small pilot production facility for

the manufacture of hin film and hybrid circuits enabling

the staff to get the required experience. However,

obtaining the necessary experience 	of 	the 	various

integrated 	technologies 	was more difficult for two

reasons. 	Firstly, it was not economic to -set up a 	pilot

production facility: 	secondly integrated circuits are an

order of magnitude more complex than film or hybrid

circuits. 	It was therefore decided to concentrate on the

circuit and layout design and 	use 	the 	production

facilities of existing semiconductor manufacturers to

fabricate any integrated circuits designed. 	As it was

intended 	to aignorz1y; 	one or two circuits each year,

special staff could not be employed to produce the artwork

etc. 	and so the layout design had to be done by the

3

Chapter 1

existing staff in addition to their normal duties. 	It was

therefore essential to have as many computer aids-as

possible to speed up the design cycle. The author was

employed initially by the Wolfson Unit to provide these

aids and this thesis is a description of the research work

involved in the development of the resultant suite of

programs. The programs are known collectively as GAELIC,

the name being an acronym for Graphic Aided Engineering

Layout of Integrated Circuits.

1.2 The Design and Manufacture of Integrated Circuits

The starting point for the design of an 	integrated

circuit 	is 	the specification of the system to be

implemented as one or more integrated circuits 	and

proceeds through several stages until the tested cicuits

are supplied to the customer. 	The flow diagram for a

logic system is shown in fig. 	1.1 	and this will be

discussed in detail. 	A similar flow diagram exists for

linear systems.

Chapter 1

Decide on I/C technology _ -

Do system design

Partition logic 	into 	chips

Perform 	logic 	design

Generate 	test 	sequence

Design layout 	of 	individual

logic 	components

Design layout 	of 	complete 	chip

Produce masks 	for 	chip

[:Ec:teT
integrated

Test integrated circuits

Deliver 	to customer - -

FA

Fig. 1.1 Flow diagram for integrated circuit manufacture

Chapter 1

The first problem is to decide on the technology to

be used. Factors that have to be taken into consideration

at this stage includ.e the maximum power consumption and

the speed of operation. Low power, consumption will

require an M.O. S. technology whereas ultra high operating

speed requires a bipolar emitter coupled logic technology.

A system design is then done to decide on the number

of counters and 	the sizes of the registers etc. before

partitioning the system into subsystems. 	Each subsystem

must 	be 	capable of being implemented on a single

integrated circuit. This partitioning is a complex

operation as it involves ensuring that there is a minimum

number of interconnections between subsystems and that

each subsystem can be tested when implemented as an

integrated circuit.- ' -

Each individual subsystem is then designed in terms

simpler logic elements such as gates and flip-flops and at

the same time it is often convenient to design the

sequence of tests to be applied to the subsystem that will

ensure that it will function correctly.

The layout of each individual logic component is
I

designed 	unless 	there are suitable designs already

existing in a library. During this stage the designer

must 	bear 	in 	mind how the components are to be

interconnected and their operating speeds. 	These points

are discussed in more detail in Chapter 2.

Chapter 1

The layout of the complete integrated circuit is then

designed by placing the components and routing all the

interconnections. When a satisfactory layout has been

obtained, the integrated circuit masks are produced.

The first samples of the integrated circuits are then

produced and tested and if necessary modifications made to

either the circuit or the layout design. These

modification can mean a change of technology if, for

instance, the power dissipation is too high.

1.3 Possible computer aids

The processes shown with a solid border in fig 	1.1

can be helped by the use of the computer. 	Most of the

computer aids are concerned with checking and simulation

rather than with the actual design process. There are two

reasons for this: firstly it is difficult to write

computer programs that can simulate the creative activity

of the human brain and secondly the reluctance of the

designer to use any program that threatens to make him

redundant.

J

The system design can be speeded up by using a high

level logic simulator to check that the design will

perform the required functions. This type of simulator

does not work with individual gates but rather works with

Counters and registers as its basic components. They

often use a register transfer language [ref 1.1] or use a

7

Chapter 1

similar technique which avoids the detailed specification

of the system.

The partitioning into subsystems 	that 	can 	be

implemented as individual integrated circuits is usually

done by hand. However, the algorithms of Kerninghar and

Ling [ref 1.21 used by Hope [ref 1.31 to partition

components for printed circuit boards could well be useful

at this stage.

The logic design for a single chip can be checked by

means of a gate level logic simulator such as those of

Stevenson [ref 1.41 and Kaposi [ref 1.51. These

simulators work with components cc the. complexity of gates

and flip-flops: consequently any registers etc. must be

constructed 	from 	these 	simpler 	components. 	The

simulators, however, can usually predict the delays

through the gates with sufficient accuracy for race

hazards to be detected. The test sequence that is

generated to test the finished circuit can also be checked

by modifying the logic simulation program so that it

simulates faults on each gate in turn and checks that the

test sequence detects them. This technique can be taken a

stage further by programming the computer to try all

possible input sequences and noting those that shown up

the faults i.e. automatically create the test sequence.

This could take a long time for combinatorial circuits and

even longer for sequential circuits.

i

Chapter 1

The layout design of the individual components can be

helped by transient analysis programs which predict the

speed. of the components for various geometries and can

0
simulate the efects of capacitive loading and of fan-in

and fan-out. Unfortunately this usually turnsout to be

expensive in computer time.

The computer driving an interactive graphics terminal

can be used as a drawing board to design the layout of all

the logic components. These components can be stored in

the computer and then called up, moved to the correct

position arid the interconnection added as the complete

layout is designed. The computer can also generate the

drive tapes for a tape controlled coordinatograph or any

other mask making machine.

Computer 	programs 	exist 	which 	attempt 	to

automatically place and route the logic components to

produce the final layout. These have not up to now been

very successful mainly due to the reasons given above but

will be discussed in more detail in chapter 2.

Once the desciption of the layout is stored in a

computer, it ispossible to use the computer to check the

design. Programs have been written that check that the

layout obeys the rules issued by the integrated circuit

manufacturer. This is known as layout rule checking and

typical of such programs is DINCHK [ref 1.61. more

difficult probrem to solve is en3i.tring the layout will

perform correctly, ie. whether the components have been

9

Chapter 1

correctly interconnected etc.

The computer can be used to control the 	test

equipment that checks the finished circuits using the test

sequence generated earlier and can do the obvious

commercial tasks of invoicing etc.

The part of the layout cycle that could benefit most

from computer aided design was the layout of the circuit

and at the time that the work started very little work had

been done and so it was decided to concentrate the effort

in this sector.

1.4 Guide to Thesis

The thesis will be of interest to two types of

reader; 	one who wishes to use the programs to design

integrated circuits, probably an electrical engineer, 	and

one 	who wishes to know more about the programming

techniques used i.e. a computer scientist. 	The reader

just wishing to use the programs need only read chapters

1, 2, 3, 8, 9 and 10 whereas the reader wishing to write

similar programs will also need to read chapters 4, 5, 6

and 7.

The next chapter (2) is devoted to integrated circuit

mask design and manufacture. It starts with a brief

description of the various methods that have been used to

make masks and explains why the tape controlled

coordinatographs and pattern generators have superceeded

Chapter 1

other methods. 	The actual layout design process is

discussed in some detail taking as an example the layout

design for an integrated circuitcorrelator. The various

possible ways in which the computer can help in the layout

design are then discussed and this is followed by

descriptions of the various programs that are available

and which provide these aids. The chapter ends with the

derivation of the requirements for an interactive design

system.

Chapter 3 is devoted to a description of the ways in

which the GAELIC programs can be used in the design of

integrated circuit layouts. 	It describes how the data is

prepared, 	how it is checked, how it is displayed on the

Tektronix screen and how it is modified. It also

describes how the tapes for the various mask making

machines are produced.

Chapter 4 is a general review of the data structures

used in interactive graphics. It starts with an

explanation of why a data structure is required, then

reviews the data structures and fin ishes with a detailed

description of the structures used in the CAMP programs

and on the Marconi Myriad computer.

The next chapter (5) 	is devoted to 	the 	data

structures used in the development of the GAELIC programs.

Three data structures are described: the first is a

sequential data structure which was designed for speed of

implementation rather than efficiency, the second was a

11

Chapter 1

'ring' 	data structure which held the data on disc memory

and the the third was another 'ring' data structure which

held the data on disc memory in a more efficient manner.

The final section in the chapter describes the way the

data is transfered to and from disc memory.

Chapter 6 describes the various graphic input/output

devices thac can ne used in an interactive program. The

various methods of producing pictures and interacting with

them are described with their advantages and

disadvantages. The choice of a storage tube terminal is

explained and the chapter ends with a discussion on the

software requirements to draw pictures and interact with

them on this type of terminal.

The programs in the GAELIC suite are described in

Chapter 7. It concentrates on the problems that were

encountered and how these were overcome rather than on a

detailed description of the subroutines. Chapter 8

discusses the performance of the programs. It contains

the results of the various measurements that were made on

the programs during the development of the program.

Chapter 9 contains a discussion of the various ways

in which GAELIC can be extended or used in future work.

The possibilities range from manual interaction on the

output from an automatic layout program to the design of

timber framed houses. The final chapter discusses whether

the requirements for the programs were sound and whether

they were met.

12

2000

1900

1 . 0 0

1700

1600

1500

3400

1300

3200

3100

1000

900

600

700

600

500

1.00

300

200

100

cost c.f. 100 thou sq. die

o
130 	140 	150 	150 	370 	160 	390 200 	230 	220 230 240 	250 260

width of die in thou

Fig 2. I. 	Grqh of comparative cost vs die size

13

CHAPTER 2: Mask Making

This chapter discusses the process of designing an

integrated circuit layout and then describes the

development of the actual methods used to produce the mask

masters and their respective advantages and disadvantages.

The input data requirements to drive a tape controlled

coordinatograph are then examined and ways in which the

computer can assist in the reduction of the volume of data

entered into the computer are discussed. Various computer

systems that exploit this reduction and also assist in the

actual design of the layout are described.

2.1 Manual Methods of Layout Design

The objective of the layout designer is to design a

series of integrated circuit masks that will define all

the components and interconnections of a circuit so that

the finished device will meet its specification but

nevertheless occupies the minimum area of silicon. The

cost of producing an integrated circuit increases

extremely rapidly with the size of the layout as can be

seen in the graph shown in fig. 2.1. This shows the cost

of producing a square integrated circuit die of a given

size compared with the costs of producing a die of lOOthou

square assuming various yields levels. Further details

about the graphs and the calculations on which they are

based are given in Appendix 1: it will suffice here to

note that the production costs double for a die that

14

Chapter 2

increase from 200thou to 220thou square assuming 	a

normalised probe yield of 30%. The effect of this increase

in production costs is not always realised and

consequently the main objective of the layout design is

often to design the series of masks in the shortest

possible time. This objective is undoubtedly extremely

desirable in view of the high cost of design effort, but

can obviously give a higher overall cost.

Designing an integrated circuit can be compared to

solving a jig-saw puzzle, in that the shapes are moved

about until all have been inserted and the total occupies

the minimum space. However, there is one important

difference: 	in a jig-saw, when the last shape has been

correctly entered, a complete recognisable picture is

obtained. 	In contrast, in an integrated circuit layout 	S

the designer can never be certain that he has the optimum

solution, as there are always changes that can be made

which could possibly improve the layout. 	On the other

hand changes may have the reverse effect, and in any case

may take weeks of work to put to the test.

• Manual layout design methods vary from semiconductor

manufacturer to manufacturer and even from designer to

designer and so any description of the method used can

only hope to be a concensus of the various methods. In

turn the concensus will inevitably be biased towards the

author's ideas on how the layout should be designed.

15

Chapter 2

The starting point for layout design is either a

schematic diagram containing details of the components

i.e. transistors, resistors etc. and their

interconnections or a logic diagram containing details of

the gates and other logical functions used, along with

their interconnections. The designer first calculates the

size of each component so that it will handle the required

current and operate at the appropriate voltage at the

required speed or frequency. If the circuit is to be made

using a bipolar technology then at this stage it is

advantageous to identify all components occupying the same

isolation region, Most designers also identify all the

shapes or components that are repeated in the circuit

either individually or on a matrix. The geometric shapes

that are required to form each component are then designed

by drawing a rough sketch of the outlines of each mask in

turn on' squared paper. Usually the outline for each and

every mask is superimposed onto the one sheet of paper and

the drawing is then known as a 'composite'. An initial

layout is then produced, sometimes on squared paper but

more usually on plain paper. The reason for this step is

to discover the positions and nature of the various

crossovers to give the most compact layout. Various

'tricks of the trade' are used to avoid using specially

designed crossovers. In a bipolar technology resistors

are used as far as possible as this avoids use of the

extra area of a specially designed crossover. It is also

possible to move the collector region of a bipolar

transistor away from its base, region to allow an

ir1

r

interconnection to go between. 	However this latter method

must be used with care, as the characteristics of the

transistor are obviously modified by this change in the

geometry. 	In the limit, 	this may adversly affect 	tile

performance of the circuit. With MOS technology

crossovers can again make use of resistors, and also can

occur over the 'P' diffusion which connects the source of

one transistor to the drain of a second.

The main composite drawing is then produced on an

accurately gridded paper or mylar, bearing in mind the

position Df the crossovers and the sizes of the

components. 	This may sound an easy task but in actual

fact it is extremely difficult, 	since when the shapes

describing a component are drawn to scale, it may not be

possible to place the crossover in the desired position.

Sometimes not enough space is left between components to

accoéñodate all metallisation tracks required.

There are certain criteria that need to be considered

when designing multiphase or multiclocked MOS circuits.

These and other more general criteria are best shown by

the following description of the statagy adopted by

Mr.R.Kelly of the Wolfson Microelectronics Liaison Unit

when he designed the layout of an integrated circuit

correlator.

When examining the system diagram of the correlator

it was noticed that the greater part of the system was

modular and involved a series of stages of the form shown

17

Chapter 2

in fig. 	2.2.

Fig. 2.2

It can be sce, that each individual stage was made up

of a counter 'C' preceded and followed by small sections

of logic, 'A' and 'B'. The sizes of the blocks shown were

roughly proportional to the estimated number of components

and hence to the area of silicon required. It was

therefore sensible to start the layout design by

concentrating on minimising the area of silicon occupied

by an individual counter.

With this aim in mind, various types of counter were

considered, for example, the toggle and the feed back

shift register counters, and more accurate estimates were

made of the area that each type required in order to to

meet the performance specification. The feed back shift

register counter apparently required less silicon and so

was the natural choice. The geometries of the various

transistors, which would give the required power-speed

tradeoff, were calculated giving an even better

approximation of the area required. 	From this it was

possible to tell that at least one stage i.e. 	shift

register and logic, could easily be placed acros the

width of the chip and there was an extremely. high

probability of two stages being placed side by side

18 	

unaprer L

without the width becoming excessive. 	As 	the latter

possibility was obviously extremely desirable, there was

considerable incentive to design the shift register, and

hence the individual bit, to have minimum width.

The layout of a previously designed shift register

bit was modified to include the required preset and decode

facilities and was compared with layouts designed from

scratch, it was found to be superior because it obeyed

certain features of good layout design. 	These were:

1) the various options for the bit layout were considered

and the Dest one chosen under the circumstances. The

factors affecting the choice can be understood by

considering the layout of the double inverter, whose

schematic diagram is shown in fig. 2.3. The principles

affecting the choice of layout are the same as for the

shift register bit but the schematic and layouts are

easier to understand.

load transistors

d riwr transistors

Fig. 2.3.

There are three possible layout options and these are

shown in fig. 	2.4.

Chapter 2

• 	 13

—W-

- W

1313

13 	f
13

- 	 drivr
I ran Sista5 	13

(a) 	 (b) 	 (c)

Fig 2.4

The first layout (a) 	basically follows the schematic

diagram and as the area required for the transistor loads

is the dominant parameter, this gives an extremely wide

short layout for the circuit. The second layout (b) uses

an extra supply rail so that the two halves of of the

circuit can be stacked on top of each other. 	This gives a

layout that is much narrower but is tall. 	The third

layout (c) also uses an extra supply rail and makes use of

the fact that the driver transistors are small, and can be

placed side by side to give the same minimum width as (b)

but a saving in height, and so (c) is obviously the option

to choose. --

2) The metallisation tracks were kept as straight as

possible and did not go round obstacles. The advantage of

this can be seen by comparing the two diagrams in fig.

2.5. 	The first layout (a) shows that a dominant obstacle

governs the width of an area of layout. 	However by taking

two metallisation tracks round the obstacle then the total

width is increased considerably.

20

Chapter 2

:

(a) 	 (b)

Fig. 2.5.

3) The amount of metallisation was kept to a minimum. An

example of how this can be done is shown in fig. 2.6

which shows two areas of layout with the clock and logic

lines running horizontally or vertically.

gate 5

(a)

Fig. 2.6.

The metal over a gate is obviously serving the essential

purpose of feeding signals to the gate. However the metal

either side of the gate just occupies silicon and adds

capacitance. 	The metallisation tracks should therefore be

as short as possible between gates and, in general, 	this

can be obtained by having metal running parallel to the

shortest'side as shown in fig.2.6.

- 	 21

Chapter 2

The actual shift hit was clocked and so the layout

required extra clock lines as well as the supply lines and

the design of the metal interconnections were particularly

important.

The layout of the actual shift register bit turned

out to be 18.3 thou by 2.4 thou. Two stages could,

therefore, be set side by side across a reasonable sized

chip providing care was exercised over the design of the

logic blocks A and B. The logic blocks at the end of the

counter, did not use the same clock lines as the counter

itself and so some of the constraints were removed.

However, 	the height of the logic became an important

parameter. 	This was because the complete system consisted

of several stages one above the other and the wasted area

was dependent on the maximum height in the stage see fig.

2.7.

waste sit icon area (shaded)

(a)

(b)

Fig.. 2.7

To minimise the waste silicon, 	therefore, 	it was as

important to get the height of the logic blocks to be as

near as possible to 18.3 thou as it was to use the minimum

area of silicon. . . .

22

Chapter 2

The design of the 	clock 	drivers 	brought 	an

interesting -fact to light. Because the clock driver

drives so many gates its output transistor has to be

bigger than the usual transistors used in the layout and

the necessary calculations showed it to require a gate

that was 2thou wide and 0.6thou high. The transistor also

had to have -a high gain and consequently low resistances.

To minimise this resistance, it was necessary to have

metal. tracks along the source and drain diffusions and so

the resultant design was that shown in fig. 2.8.

SOUFCP

-J

gate metal 	gate thrn oxide 2 X 06 thou.

drain met

Fig. 2.8.

Here the total height of the transistor.is 	3thou 	i.e.. 5

times the height of the gate. 	The effect of this size on

the gate and diffusion capaciatances is surprising. 	The

diffusion capacitance is 0.lpF per square thou for the MOS

process used and so the drain 	capacitance 	becomes

2.2*1.3*0. lpF 	0. 29pF 	. 	The thin oxide capacitance is

0.3pF per square thou i.e. 	three 	times the diffusion

23

)

Chapter 2

capacitance, 	however, 	because of its size the gate

capacitance is 0.6*2.0*0.3 	0.36pF 	assuming 	the

capacitance 	is as drawn i.e. 	ignoring the sideways

diffusion. In other words the drain and source

capacitance are comparable with the gate capacitance and

must be taken into account in performance calculations.

In the logic block B, 	there is an output 	shift

register which is clocked in the same way as the main

shift register used in the counter C, and which is

connected to the corresponding shift registers on the

other logic blocks. It is therefore sensible to place two

stages side by side so that the block B of one stage is

adjacent to the block B of the second stage 	thus

minimising the metal between them. 	However, if the four

clock lines are sent down one column of shift registers

and then up the next, then width for 8 clock lines must be

allowed. To avoid this problem, the shift register stages

were interdigitated and consequently only 4 clock lines

are required and this gave a considerable-saving in area

as shown in fig. 2.9.

- o 	0 o
C) U U U 	 u U 	 -. o -. - —
2 0 0 0 0 0 0 0 	 0 t) U

U U - 	U - U U

C l 	 C2 <
 J13 2 1 -- 	In 	 5

—W-

(b)

W-

(a)

Fig. 2.9

MEN

24

Chapter 2

This technique did, however, have some minor problems as

the sizes of the transistors had to be increased for shift

registers adjacent to the output driver stage and the

actual layout of the final shift register stages became

slightly cramped.

2.2 Methods of Producing Mask Masters

The early mask masters were produced on large sheets

of gridded blockboa rd, by drawing the outline of each

shape on each mask in turn on individual sheets of board

and then filling in the individual outlines with black

paint. 	These masters are finally photo-reduced to produce

t:he actual masks. 	This method was reasonably successful

for the early integrated circuits, which consisted of

perhaps a couple of transistors and a few resistors. The

method did however have several problems associated with

it. Each mask had to be designed in isolation, which is

not only a difficult task, but is also one that is very

prone to error. Integrated circuit components are formed

by the diffusion of specific substances into selected

areas of a slice of silicon: the selected areas defined

by one mask must align extremely accurately with the

corresponding areas defined by another. Accurate

alignment can best be achieved by designing all the masks

at one and the same time. The second problem was that it

was difficult to modify the designs, as the black paint

could not easily be removed. The last problem was one

25

Chapter 2

that we shall meet again and again; 	that is 	the

difficulty of obtaining accurate grids.

As integrated circuits became larger the designs

naturally became more complex and the limitations caused

the method to be superseded by new methods. The first of

these was known as 'taping' and basically consisted of

using black tapes of different widths to define the

shapes. Narrow tapes were used to define the outline of

the large shapes, and then the interiors were filled in

with wider tapes. This method had the advantage that the

narrow tapes could define shapes with curved outlines in

addition to the normal rectilinear outlines. The gridded

block board was originally used for the layout and this

new method had the major advantage that the tapes could be

moved after initial-placement. The designer, therefore,

had the ability to correct or modify the layout.

Unfortunately there remained the problem of designing the

individual masks in isolation as the mask masters still

had to be produced individually. There was also the

problem of obtaining accurate grids and as the size of the

layouts increased, there was the additional problem of

obtaining gridded blockboard in sufficiently large sheets.

There was a minor problem in moving or removing tapes as

they tended to remove the surface of the block-board at th-e

same time. .

2

Chapter 2

To overcome this last problem, gridded mylar sheets

were introduced instead of' blockboard. In addition to

being able to move the tapes easily, there were other less

obvious advantages. The mylar was more stable

dimensionally and so the grid was more accurate and the

mylar sheets could be obtained in either translucent or

transparent ford. The translucent mylar had a sandblasted

surface which cc:ld be drawn on using pencil or ink and

thus the outlines of all the shapes could be drawn on the

same sheet, different line textures or colours being used

to distinguish between the various masks. Thus it was

possible to design all the masks simultaneously, thus

overcoming one of the earlier problems. A sheet of

transparent gridded mylar was then placed on top of this

composite drawing and the shapes for one mask taped using

the grid on the transparent mylar to give the required

accuracy. This was repeated for each mask in turn and

gave an extremely fast and efficient method of producing

the 'mask masters' with an easy system for modifying the

designs. It also helped with the problem of checking the

masks as two mask masters could be superimposed and the

clearances and overlaps checked. Of course when it came

to checking overlaps the overlaping mask had to be placed

underneath and so a logical order of checking could not be

maintained. however, the only time this became

troublesome was when checking that the metallisation

correctly covered the contact holes. There were of course

certain disadvantages:

1) the width of the black tape tended to vary from roll -

27

Chapter 2

to roll,

the width of the tape varied with the amount by which

it was stretched, and

the tape tended to creep after placing on the mylar.

The last two disadvantages are somewhat related: 	to

obtain 	a 	long 	thin 	track 	for 	exaniple a metal

interconnection between two components, the tape is

stretched before placing on the mylar to ensure that it is

straight. Because of the elastic properties of the tape

its length is increased and its width is reduced slightly

and after placement the tape tries to return to its

original shape. The tape has the elastic properties

because it is designed to be laid in smooth curves as well

as in straight lines.

The method, with minor modifications is still used by

certain integrated circuit manufacturers who use only

paraxial shapes with an NOS technology. Instead of using

the black flexible tape, they use rigid mylar tapes that

can be obtained in a range of accurate widths and in a

range of colours. 	Different colours are used for the

different masks. 	Providing a suitable colour is used for

each mask they can be superimposed on the same sheet of

mylar. This gives an extremely flexible method of mask

design. 	For simple masks it is theoretically possible,

given the right choice of colours, 	to photograph the

composite 	directly 	again and again using different

coloured filters to produce the actual masks. As far as

is known this is not done in practice, and it is more

28

Chapter 2

usual to digitise directly from this composite. 	This

method is not suitable for bipolar circuits when nine or

more different masks are required as:

it is not possible to obtain such a large range of

colours, and

superimposition of nine or more layers gives parallax

errors and the composite becomes fragile, losing the top

layers of tape extremely easily. Most designers using the

coloured tapes regard the technique as a way of designing

layouts rather than as a method of producing the mask

themselves.

Before the more accurate mylar tapes were available,

there was a demand for a higher accuracy than the taping

method was capable of producing and attention turned to

manual coordinatographs. The manual coordinatograph

consists of a table, typically four feet square, on which

is mounted a gantry. This is constrained to move in one

direction only, say the y direction. On it is mounted a

tool holder, which is constrained to move along the gantry

axis, in. in the x direction. The tool holder can, of

course, be moved to any point on the active surface of the

table. By using the locks provided to prevent either the

gantry moving or the tool holder moving along it, the tool

holder can be constrained to move in only the x direction

or they direction. Movement can be accurately calibrated

by means of scales and vernier dials and so any tool in

the holder can be positioned to an accuracy of

approximately two thousandth of an inch (2 thou) . 	Two

29

Chapter 2

different methods of using the manual coordinatograpli have

been tried. 	Both start by producing an accurate composite

layout 	on gridded paper or mylar and both produce

photographic masters in 'cut-and-peel' material. The

cut-and-peel material, known by various trade names such

as 'Rubylith' and 'Stabiline', consists of a translucent

mylar base approximately 5thou thick on top of which is is

a thinner (approx. 2thou) layer of photographically

opaque mylar, usually red or orange. 	The top layer

adheres - to 	the 	translucent 	base 	and 	in 	normal

circumstances, the two layers do not separate. if

however, shapes are cut in the top surface, the top layer

can be easily removed, thus producing a series of shapes

that are translucent.

The first method of using the manual coordinatograph

consisted of counting increments from the origin of the

composite to each shape in turn on a given mask, moving a

knife in the tool holder so that the dials register the

required coordinates, and 	then lowering the knife and 	-

moving it to the corresponding next coordinates on the

shape. The pen was then lifted and moved to the start of

the next shape and 	the process repeated until all the

outlines of all the shapes on the one mask had been cut.

A new sheet of 'cut and peel' was put on the table and the

shapes on the next mask similarly cut. 	The method should

have 	produced 	extremely 	accurate mask masters but

unfortunately it relied on an operator counting squares on

the original composite drawing. 	Counting squares is an

30

naper L

extremely tedious process and is very error prone and so

it not only takes a long time to cut the masks but they

also contain errors that have to be found and corrected.

The second method, although 	theoretically 	less

accurate due to parallax, errors and inaccuracies in the

mylar grid was preferred and was known as 'overcutting'.

The composite drawing was fixed onto the table of the

•coordinatograph 'taking care to ensure that it was parallel

to the axes and that the origins were coincident. A sheet

of 'cut and peel' was then fixed on top of the composite

and the knife placed over the start of the first shape of

the first mask. The knife was then moved until the dials

indicated that it was on the nearest increment e.g. if the

smallest movement used on the drawing was 50thou then the

knife position was, adjusted until the dials read an exact

'number of 50thous. The knife was then lowered and a cut

made to almost the end of the first line segment of the

shape; again the knife was accurately positioned by means

of the - dials. 	This process was repeated for each line

• 	 segment in turn lifting the pen at, the end of each shape,

until the complete mask has been cut. 	The 'cut and peel'

material was then changed and all the shapes on the next

mask cut. This process was far more efficient and

appeared to have a fair amount of job., satisfaction

associated with it, which was obviously very important for

this type of work. It had two disadvantages, firstly the

size of the composite became so large that it could not

fit on the table, and secondly the accuracy of' the gridded

31

Chapter 2

mylar. - 	The first disadvantage should theoretically have

been overcome by either using coordinatographs with bigger

tables or drawing the composite at a smaller scale. The

first alternative was expensive as the camera used to

photographically reduce the mask master as well as the

coordinatograph would have to be replaced. A secondary

disadvantage was that the operator could no longer reach

the entire table-from the one side and so duplicate dials

would have been required and the operator would have had

to do more walking. The disadvantages of the second

alternative were a little more obscure as they were

concerned with accuracy of the grids and with 	job

satisfaction. 	The draughtsman when producing the drawing

would work very rapidly provided that he was working with

a grid of not less than a twentieth of an inch and the

girl operating the coordinatograph could easily work out

which grid line was intended when she was overcutting.

However, if the grid was reduced to less than a twentieth

of an inch, the draughtsman found it frustrating to draw

lines accurately enough to enable another person to

realise which grid line was intended. Any attempt to get

a higher accuracy resulted in a high error rate and a

constant stream of complaints about what was previously a

very satisfactory job. Again the comparative accuracy of

the grid on the mylar and the built in grid on the

coordinatograph gave troubles for, although near the

origin it was possible to tell which grid line was

intended, on the other side of the drawing the grid line

on the coordinatograph often appeared between two grid

32

Chapter 2 	 11

lines on the drawing. 	At this stage it also became

apparent that the effects of temperature and particularly

humidity had an appreciable effect on the acburacy and so

these had to be controlled.

The answer to the problems of producing the mask

masters was to use tape controlled coordinatographs and

most semiconductor manufacturers have •adopted this

solution. The tape controlled coordinatograph essentially

consists of an accurate flat table similar to that used on

the manual coordinatograph with a gantry and a tool

holder. The movements of the gantry and the tool holder

are performed by stepping or servo controlled motors. The

motors themselves are controlled by data fed to the tape

controlled coordinatographs by means of paper or magnetic

tape. This tape also contains information which controls

the solenoid which raises or lowers the knife and the

stepping motor which rotates the knife. There is

obviously some logic circuitry and sometimes even a small

computer built in t.o the coordinatograph to sort all this

data on the tape and route it to the appropriate motor.

Consequently the cost is far higher than for the manual

coordinatograph and is in the range 20,000 to 80,000

pounds. The basic input data required by these

coordinatographs consists of the coordinates of every

corner of every shape on each mask in turn. For a typical

integrated circuit, 	it requires of 200,000 pairs of

coordinates i.e. 400,000 numbers. 	Producing this type of

data by hand with an error rate 0.1% means 400 errors to

33

Chapter 2

be detected and corrected. 	This 	is 	virtually 	an

impossible task. 	It is therefore essential to find an

efficient way of producing the input data. The tape

controlled coordinatographs produce mask masters that arc

more accurate and at a smaller scale than thos.e that can

be produced on a manual coordinatograph.

	

The cut-and-peel masters are 	now 	unfortunately

approaching their limit as the size of the completed

integrated circuit chips approach 250thou (0.25 inches)

square. 	Work has been in progress for some time on

another 	method 	of 	producing 	masks 	known 	as 	a

photo-plotter. 	The input data requirements are, 	in

general, 	similar to those 	for 	a 	tape 	controlled

coordinatograph 	and 	so the same problems exist in

producing correct input data.

Fortunately there is a great deal of redundancy in

this input information and if this can be exploited by the

use of a computer then the amount of data required can be

considerably reduced. 	Most shapes used in integrated

circuit layouts are paraxial i.e. 	have all their sides

parallel to the axes of the drawing and therefore it is

only necessary to specify the alternate corners of these

shapes. 	This means that a paraxial rectangle is specified

by the coordinates of a pair of diagonal corners. 	This

simple expedient reduces the amount of data that needs to

be entered by approximately half. Another characteristic

feature of integrated circuit layouts is the number of

shapes or series of shapes that are to be found in more

3.,.

Chapter 2

than one place in the layout. 	This repetitive feature

appears in two forms, the first is where a series of

shapes are repeated on a matrix, for example a single bit

of a shift register is repeated many times to create a

large shift register. The second is where the same series

of shapes occurs in various random positions on the layout

sometimes with different orientations. It is, therefore,

desirable to derive a method of inputing the data for the

series of shapes once and then arranging for the series to

be.'repeated' or for an instance to be 'called' in various

positions at various orientations. This again makes a

substantial saving in the amount of input data, as can be

seen from the following example. Consider the piece of

integrated circuit layout shown in fig.2.10 which has a

large proportion of repeated and grouped shapes. Using a

group and repeat facility, the input data consists of 2000

words whereas just using the basic shapes where all the

corners are specified required 20000 words.

The input data to the computer can be arranged to

exploit all this redundancy and the computer can be

programmed to produce the input tape for the

coordinatograph. There are certain computer programs and

computer systems that perform this function and also

assist the layout design process in other ways and some of

these programs will now be discussed.

35

Chapter 2

2.3 Possible computer aids to mask design

There are several ways in which the computer can

assist in the design and production of integrated circuit

masters. These range from computer programs that simply

expand the condensed input data into the large volume of

output tape required to drive a tape controlled

coordinatograph to fully automatic programs that will

produce these drive tapes from a schematic diagram of the

circuit, This fully automatic method would appear to be

the ultimate objective as so is worth considering in

detail first of all.

2.3.1 Automatic Computer. Methods

The initial work in this area was carried out by an

unknown research organisation and was financed by the

American government. This was a placement and routing

program based on printed circuit board techniques and was

released to American government contractors in about 1967.

Bardsley (ref 2.1] claims this as the reason why Collins

Radio, Fairchild, Motorola and Texas Instruments all

announced similar systems for automatic integrated circuit

design siriultaneously. The programs take a series of

previously defined standard components or 'cells' and

places them side by side as 16 lead dual in line packages

are placed on a printed circuit board. 	They then route

all the interconnections between the packages. 	The

programs 	do 	actually produce drive tapes for tape

36

Chapter 2

controlled coordinatographs and would therefore appear to

be the answer. 	However the amount of silicon that was

required for the circuit was up to 300% more than a

corresponding manual design. 	There were three reasons for

this: 	firstly it relied on a set of previously designed

standard cells which were not necessarily optimum for the

circuit being produced, secondly the placement being

completed before the routing was started means that

silicon must be reserved for possible use by the

interconnections and thirdly the system followed the

schematic diagram too closely. A schematic diagram is

drawn with inputs on the left hand side and outputs on the

right and this usually creates a long thin drawing and

hence a long thin integrated circuit. It was realised

that integrated circuits should be square and so the the

strip was folded over to give the final integrated

circuit. This waisted a large amount of silicon on the

fold as shown in fig 2.10. The increase quoted for the

chip size [B.R. Kirk private correspondance] indicates

approximately a 70% increase in the side of the chip which

can have a disastrosI, effect on the yield. A similar

approach was tried by Fletcher [ref 2.2] using existing

printed circuit board programs and was found to suffer

from the same problems.

Radley [ref 2.31 has used a different approach to the

problem where he places components one at a time and then

does as much of the interconnection as possible. The

components are selected in an order that keeps the length

37

Fig. 2. 10

3 7.0

Chapter 2

2.3,2 Batch Methods

A batch program reads in a set of input data and

performs various calculations on this data to produce a

set of results. It does not allow the user any

interaction with the program as all the steps are

specified in advance. Batch processing is therefore of

limited use in layout design but can be useful in the

actual production of masks. For example, it can be used

to expand the compressed input data describing a layout

into the drive tapes for a coordinatograph.

2.3.3 Interactive Methods

An interactive program is one where the user controls

the steps p9rformed by the computer. Once the program is

running the selection of the next step to be performed is

usually based on the results of the previous steps or

steps. It is the ideal type of program for design work as

it allows the designer to exercise that skill which can

never be programmed into the computer ic. his ability to

realise that something is different, to think out a new

course of action and to proceed on that course.

All the mask design programs except the automatic

ones allow interaction of one form or. another and these

programs will be discussed in more detail..

39

Chapter 2

2.4 Available computer programs

At the start of the research work there were several

computer programs available in this country that assisted

in the design of integrated circuit layouts and these are

described in some detail below. Since the work started

other systems have appeared on the scene all of them

turn-key systems ie. 	a complete system of hardware and

software whida could be just switched on and used. 	These

are commercial systems and although it is relatively easy

to find out what they do, 	the techniques used are a

closely guarded secret. 	They are described here briefly

and what technical information that can be obtained on

their operation is given in chapter 4.

2.4.1. CAMP System

The CAMP (Computer Aided Mask-Production) system for

assisting the production of integrated circuit mask

masters was written at RRE Malvern by J. Wood, R. Newton,

D. Snell of RRE and H. Walmsley of Plessey [ref 2.5). It

was developed as part of the activities of the consortium

of British semiconductor manufacturers and RRE. It was

written in Algol to work on what was then an Elliot 4130

with a refresh graphics display.

It was conceived as a method of producing the drive

tapes for coordinatographs rather than a design aid but

nevertheless did have certain facets that were useful as a

40

Chapter 2

design aid and for this reason and the fact that it was

one of the first systems to be produced, it is worth

considering in detail.

The input data for CAMP exploits the. redundancy

described earlier by allowing for paraxial shapes and by

providing a group and a repeat facility. The input data

consists of a series of order words, mask specifiers,

names, numbers and punctuation marks. The order words are

enclosed in double quotes (t); some describe the various

shapes used such as RECTANGLE, POLYGON, and LINE. There

are other words that allow the group and repeat facilities

and these include GROUP, NEWGROUP, ENDGROUP, REPEAT and

ENI)REPEAT and finally there are a series of order words

that reduce still further the amount of input data that

need to be entered: these are words like DITTO and SCALE.

The mask specifier indicates the mask or masks on which

each individual shape occurs. The names are those given

to a series of shapes when they are defined as a group and

the numbers are used for the coordinates of the corners

etc. The punctuation is used to separate the various

parts of the data. The GAELIC manual input language is

based on this language and consequently a full description

of the facilities of the language is given in the GAELIC

Users Manual.

Because of the formal natre of the input language,

it is possible to do 'syntax' checking on the input data

to make sure the data obeys the rules of the language.

41

Chapter 2

This checking detects many of the errors present in the

input data and so reduces the number of errors that can

possibly occur on the final masks.

The data is then converted into a ring data structure

and then • to a 'coordinate file' 	which contains the

necessary information for the tape controlled

coordinatographs i.e. every coordinate of every corner of

every shape on each mask in turn. This coordinate file

can. be subsequently post-processed to give drive tapes for

various tape controlled coordinatographs, an incremental.

plotter or a display file for the refresh graphics display

on the 4130. On the graphics display, a window of the

layout. can be plotted out and the light pen used to find

the coordinates of any errors. Unfortunately, it was not

possible to modify the layout at this stage:

modifications had to be made at an earlier stage either

the manual input language or the dump code file.

This lack of interaction was one of the major

drawbacks with the system; 	the other problem was the size

of the ring data structure. 	As it was core resident, 	it

restricted the size of circuits that could be handled.

The decision not to have any interactive facilities

was. one made by the consortium management committee who

felt that any interactive facilities would make the system

too dependant on a particular hardware configuration.

42

Chapter 2

2.4.2. REDAC system

The REDAC system was also originally designed to run

on an Elliott 4130 with refresh graphics system to help in

the design of MOS integrated circuit layouts. The

original concept was that the designer sat in front of the

graphics terminal and with the aid of the light pen called

up a series of paraxial rectangles and placed them on the

screen. The rectangles could be on one of six masks

controlled by -six function keys on the display and

rectangles on the same mask that touched could be joined

together with the aid of the light pen to form paraxial

polygons. 	Facilities were available for modifying and

delet.Thg) shapes and 	for grouping- a series of shapes

together in order to repeat them. 	This grouping facility

was nowhere near as-comprehensive as the group and repeat

facilities in the CAMP system. The user could also 'zoom

in' to a small window of the drawing and move the window

round the drawing. -The original data structure was held

entirely in core.

This initial system had several disadvantages some of

which have been subsequently been removed though others

for some reason are still present. The major disadvantage

was the restriction to six masks which precluded its use.

for bipolar integrated circuit design. The data structure

being held in core was a severe disadvantage as it

restricted the size of the drawing. Sitting a designer at

a graphics terminal costing 50 pounds an hour and telling

him to design was not ergonomic or economic sense. It is

43

Chapter 2

also difficult to design complex interconnection tracks

using rectangles.

The subsequent system based on a PDP15 computer with

VTI5 graphics display does not have the size restriction

as the data structure is disc based. An input language

has been added which allows the layout to be designed at

the designers own speed and then entered into the..computer

and stored in the data structure. The display terminal is

now used to check and correct the design and thus forms a

much better method of using the computer.

There is a program in the suite which checks if the

layout description stored in the data structure breaks

certain of the 'layout rules' issued by the semiconductor

manufacturers and this is described in a paper by Treble

[ref 2.6]. The program although fulfilling an extremely

important function does appear to have two main

disadvantages in that it requires a large amount of

computer time to perform the checks (typically 3 hours on

a PDPI5) and that it gives a large number of possible

errors that have to be checked manually by the designer.

The Redac system finally produces drive tapes for

several tape controlled coordinatographs which produce

'cut and peel' masters.

44

Chapter 2

2.4.3 Marconi System

The Marconi integrated circuit design system is based

on the general purpose drawing program that runs on their

Myriad, computer with their X2000 graphics system written

by S Bird [ref 2.71. It was originally used to design

layouts in the same way as the Redac system where the

designer sat in front of the screen and drew shapes. It

has, however, advantages over the Redac system because of

its general drawing program origins, it has a far more

flexible drawing system using either a light pen or

tracker ball. Virtually everyone who used the system

prefered the tracker ball to the light pen, usually

because the designer had an uninterrupted view of the

screen and did not lose the tracking cross.

Shapes that had line segments at angles as well as

the normal paraxial segments could be drawn, modified and

moved with constraints to keep the. required lines

paraxial.

A series of shapes can be defined as a group at the

screen and instances of the definition called in many

places in other group definitions, in the main layout or

in any subsequent layouts.

The modifications made to the general purpose drawing

program were to allow shapes to be allocated to specific

masks, to take input data in the CAMP manual input

language and to produce drive tapes for various

co.ordinatographs.

45

Chapter 2

It is an excellent design system but has certain

disadvantages due to its origins as certain time consuming

features are provided that are not used in integrated

circuit design. Typical of these is the ability to join a

line onto the middle of another line. It was also slow in

use as all the layouts and group definitions ever created

were kept in the same data structure and all these layouts

and groups must be searched when a new definition is

created. Another major problem is the high capital cost

of the hardware which was in excess of 100,000 pounds.

There are also minor problems with flicker when large

amounts of layout are displayed.

2.4.4 Subsequent Systems

Since the commencement of the work on GAELIC, further

systems to assist in the design of integrated circuit

layouts have come onto the commercial market from the

United States. 	The best known of these systems are

probably the Applicon, Calma and Computervision. 	All

three are known as 'turnkey' systems which means that they

are complete hardware and software systems which once

installed can be set into motion by just turning a key.

They are all based on the use of minicomputers with disc

storage and both the Applicon and Calma systems use a

storage tube terminal.

46

Chapter 2

The Applicon design assistant [ref 2.8] is based on a

PDPI1/05 computer, 	a Tektronix 611 storage tube display

and a version of the Rand tablet. 	It has a small fixed

head disc to hold the program and data and uses cassette

tapes for the offline storage of designs. Again, the use

of the system is based on the philosophy of the designer

sitting in front of the screen to design his layout from

scratch. In a similar way to the Redac system, it allows

the designer to build up the layout from rectangles but it

does 	not allow these rectangles to he merged into'

polygons. 	Recent modifications to the software do allow

the direct insertion of polygons with up to 127 corners.

The rectangles can he in three forms, 	fixed, 	stretchable

in one direction and stretchable in two directions. It

also has a basic grouping facility which includes the

ability to fix components to certain points on other

components. This feature can be useful in a bipolar

technology where the one contact hole can he fixed to one

end of a 'stretchable' resistor and the other contact hole

fixed to the other and so as the resistor is stretched,

the contact holes stay in their correct positions. The

main feature of the system is the clever use of the tablet

where instead of typing commands, figures are drawn on the

tablet which are interpreted as commands. The pattern

recognition system is extremely impressive to see working

but does not appear to be any faster to use than other

more conventional systems. There is a system for using a

digitiser to input a completed drawing and this again

works with rectangles. The system provides drive tapes

147

Chapter 2

for a Gyrex pattern generator which flashes rectangles in

various positions on a photographic plate and this is the

main reason for the restriction on the types of shapes

available.

The Calma system consists of a Nova 1200 computer a

moving 	head disc, a digitiser connected on-line, a

Tektronix 611 tube, a tablet and keyboard. 	Data can be

entered either via the digitiser or the screen and tablet.

The main emphasis is on the digitiser which being

connected on line is capable of being constrained to move

in first the x and then the y directions thus ensuring

shapes are paraxial. Non-paraxial line segments are

possible by over-riding the locks. The fact that a

polygon does not close or that there are rounding error

problems can be brought to the users attention immediately

and corrected.

	

The screen input is similar to that used 	in the

Marconi system in that polygons and rectangles can be

drawn. It uses a menu on the tablet to select commands.

It appears to be just as fast, if not faster than the

Applicon system to use.

The main disadvantage is that although it uses a

standard Nova computer the design and interfaces are non

standard and so the standard Nova disc compilers cannot

run and so the computer cannot be used for other purposes.

48

Chapter 2

The Computervision system is very similar to the

Calma system but does not put so much emphasis on the use

of a storage tube for either data input of data

modification but rather relies on a digitiser plotter.

This, as the name implies, 	is a digitiser and plotter

combined. 	As data is entered via the digf.tiser , the shape

can be immediately plotted, superimposed on the original

sketch to give an immediate check and thus ease the

problem of identifying and correcting errors. However,

despite the extremely fast plotting time available, it is

probably too time consuming to rèplot large areas of an

integrated circuit layout.

2.5 Requirements for an Interactive C.A.D. system

As interactive graphic equipment is expensive, it is

not possible to allow every designer his own graphics

terminal. Each terminal must therefore be shared by

several designers and consequently must only be used for

interactive work. The individual designer should not, for

instance, sit in front of the terminal and design from

scratch as he will spend most of his time thinking and

only a small part 'drawing'. While he is thinking, the

terminal facilities are obviously (wästed. The designer

must therefore plan out exactly what he wants to do before

going to the terminal.

49

Chapter 2

It is therefore desirable to have a way in which the

designer can sit at his desk, design part of his layout

and code it up for the computer. He should then be able

to feed this data into the computer and then use the

interactive facilities to check and modify his designS.. To

do this it is essential to have a manual input language

that the designer can use at his desk to code up his . rough

sketch. Because this input language is to be used by a

layout designer rather than by a computer specialist, it

must be extremely easy to use. This in turn means that it

is easy to understand and should not entail remembering a

series of codes for the various shapes that he uses,

instead it should use words that are easily remembered and

recognised. The amount of data that he has to prepare

must be kept to a minimum. Often a designer uses the same

set of shapes over and over again in a layout; the input

language must take account of this and allow him to define

the set as .a 'group' and then call up 'instances' of the

group in various positions and various orientations in his

layout.

One designer may be quite happy producing rough

sketches and working from them, whereas another designer

may prefer to produce an accurate scaled drawing of part

of the layout before approaching the computer. This

latter approach tends to produce a more- complex drawing -

which takes longer to code up using the manual input

language. Alternatively it may be necessary to modify an

existing design that only exists as a large composite

50

Chapter 2

drawing. 	For both these requirements it is essential to

have a method of entering the data directly from the

drawing into the computer without resorting to the manual

input language. 	This effectively means using a digitiser

or a similar device. 	It is therefore necessary to have a

method of using a digitiser to extract the information

from the drawing. The digitiser language like the manual

input language must minimise the amount of data that has

to he entered and must handle the group facility.

The integrated circuit designer, like any other

human, can make mistakes, especially when coding up data

for the computer if it is a new experience for him. The

computer program that reads in the data, therefore, must

check it as thoroughly as possible and when errors are

detected, 	the program must give meaningful messages that

tell the designer exactly what he has done wrong. 	This

'syntax checking' 	as it is usually called will detect

shapes that have been incorrectly specified but will not

detect that a shape is in the wrong place. This is

usually done by visually checking the layout.

The interactive 	graphic 	terminal 	provides 	an

excellent method of visually checking the layout and for

correcting any mistakes found The screen of the terminal

is not big enough to display all of a typical layout at a

scale at which modifications can be made. Facilities must

therefore be provided in the interactive program to allow

the user to 'zoom' in ar,i plot out an area of the layout at

a much larger scale. There must also be facilities for

51

Chapter 2

plotting an adjacent area ie. 	'windowing'

Having plotted out a suitable- ' window', the user will

need to interact with the drawing; he will need to

identify a shape containing an error and either correct it

or delete the shape. 	Correcting an error involves either-

moving the whole shape or just a point on the shape; 	the

movement is generally required in a direction parallel to

one of the axes ie. orthogonal movement but is

occasionally required at an angle.

Any group instance can be in the wrong position or

can be drawn at the wrong orientation. The user does not

wish to correct every individual shape in the instance and

so the group structure must be kept in the data for the

interactive program. Facilities should exist to allow the

user to identify one point in the instance, the origin,

and then move the instance or change its orientation.

There will obviously be times when mistakes are made

in the shapes of a group definition and so facilities must

be provided for correcting them. This must be done with

care, however, as instances can occur in several places on

the drawing and a shape that appears wrong in one instance

may appear correct in another. 	It is therefore essential

that the user knows that he is modifying a 	group

definition ie. he cannot modify the shapes in an instance

by mistake. 	 C.

52

Chapter 2

Often shapes are missed from the layout and have to

be added interactively. 	Facilities must therefore exist

for adding rectangles, polygons, 	lines and even group

instances. These new shapes must be plotted on the screen

so that the user can check that they are in their correct

p 0 S i L i 0 n s.

When the design is complete and free of errors, 	then

tapes to drive the coordinatograph are required. These

tapes can be used to produce extremely accurate large

scale check plots. Unfortunately producing these check

plots is expensive in both time and money. A rapid cheap

plot is required to check the layout design at the

designers leisure. 	This frees the graphic 	terminal 	for

more interactive work.

53

CHAPTER 3: The use of GAELIC in mask design

This chapter is intended to give an insight into the

use of GAELIC in the design of integrated circuit masks.

The first part is devoted to input to the GAELIC programs

describing the philosophy behind the two main methods of

inputting the layout description into the computer. This

is followed by a simple example of how the manual input

language is used to enter data and how the syntax errors

are detected. The next part describes the features of the

interactive program and using the same example, shows how

it is used to plot out all or part of the layout, how

errors are corrected and how missing shapes are added.

The final part briefly describes the operation of the

other programs including the post-processors which produce

the drive tapes for the tape controlled coordinatographs

and mask making machines.

3.1 Input to the GAELIC suite of programs.

There are actually three different 	methods 	of

entering the description of all or part of an integrated

circuit layout into the GAELIC programs. These methods

are:

by the use of a digitiser and the GAELIA program,

via the manual input language and GAEL2A and

by use of the crosshair cursor and the keyboard of

the Tektronix terminal using GAEL4A.

54

Chapter 3

The third method, which is described in detail in

section 3.2, is mainly used for interactively adding

shapes inadvertently missed when the original layout

description was entered. 	However, it does allow all or

part of the layout to be designed on the screen. 	The

first two methods of input are usually used to enter the

original layout description into the computer and the

obvious question 'that must be' answered is why two methods

are required. Essentially the digitiser is used to enter

the large quantities of data required for a complete

integrated circuit design while the manual input language

is used for entering the data for a small part of of a

large design or all the data for a small design. These

two methods will now be considered in more detail.

3.1.1 Using a digitiser

The digitiser method is ideally suite.d 	for entering

the description of a large fully designed layout 	The

design must be drawn on an accurately gridded mylar sheet

which is securely fastened to the digitiser. The

digitiser is used to accurately and quickly record the

coordinates of the corners of the shapes without the

manual counting of increments which we , shall see is a

feature of the manual input language. The method does,

however, have the obvious prerequisities of a digitiser

and someone who can use it.

55

Chapter 3

The design and drawing of an integrated circuit

layout 	is 	a 	creative function which is generally

enjoyable. 	It does have certain problems when it comes to

redrawing 	large areas of the layout in a slightly

different position for example to insert an extra

metallisation track, but this is not sufficient to detract

from the overall enjoyment. The actual digitising,

however, although requiring a continuous high degree of

concentration, is extremely repetitive and tedious and

gives no job satisfaction to the layout designer. It is

consequentially desirable to use a different person for

this task. The time required to •digitise a layout is iuch

less then that required to design the layout and so one

digitiser operator can cope with 	designs from several

designers. 	For a large integrated circuit design team say

5 or 6 designers, the economics of buying a digitiser and

hiring an operator are favourable. 	However, with only one

or two designers, 	the economics dictate that another

method of designing and/or entering data into the computer

is desirable.

Any method of using the digitiser must be.as easy and

straight forward as possible in order to minimise the

number of errors that are made. Consequently certain

minor modifications were made to the keyboard of the

digitiser. The standard Metrograph digitiser like many

others has a READ button which, when pressed,' records ,the

coordinates of the digitiser cursor on the output tape;

it also has a small keyboard which enables the characters

56

Chapter 3

marked to be added to the output tape when the respective

keys are pressed. It was therefore possible to devise a

system, using the digitiser, where pressing the various

characters on the keyboard indicated the start of a shape

and the READ button recorded its coordinates. However,

remembering which character was used for which shape

proved difficult so the labelling on the keys was changed

to give more meaningful abbreviations such as RECT, POLY

and LINE. Each key, however, still only produced a single

character on the output tape and so the standard digitiser

could he used in an emergency to digitise a layout. The

modified keyboard is shown in fig. 	3.1.1.

Often when digitising a layout, 	an operator will

realise that a mistake has been made and will wish to

correct it. This mistake may well be that a shape is on

the wrong mask or the wrong name given for a group

definition. It is always possible to write down notes

regarding these errors and to subsequently edit the tape

or edit the data once it is entered into the computer.

This in practise turns out to be very disruptive to the

operator and so a method of immediately adding corrections

to a tape is required. The best solution would be to have

a series of keys that can be pressed to correct the

various mistakes that can be made. Unfortunately,

however, the cost of extending the keyboard size to allow

for this was prohibitive and so only one ERROR key was

allowed. A method of correcting errors had therefore to

be designed in which the instant the error button was

57

fi9 2U3

_ 	U

ftffEcT 	DITTO
	

ffRflOfl

OLYfl BLrNE U ETU
BGROUP 	NEWCRJ ENDCR 1J

UMR5 J1
[READ

FIG 3 LI LAYOUT OF KEYBOARD

58

Chapter 3

pressed and the number of times that it was pressed

specified the error to be corrected. For example if a

wrong point was digitised in a shape i.e. the cursor was

in the wrong position when the READ key was pressed then

the coordinates can be ;ignored by pressing the ERROR key

immediately afterwards. However if the whole shape is to

be ignored then the ERROR key is pressed twice. The use

of the ERROR key is described fully in the GAELIC users

manual [ref 3.1).

Another problem that must be allowed for 	when

processing data from a digitiser is that of rounding.

There are actually two problems, 	'paper' 	distortion and

'paper' 	position. 	The word 'paper' is used here to mean

the material on which the layout design is drawn. If a

large layout is to be digitised then it is essential to

use a stable material such as a translucent mylar sheet at

least 5 thou (0.005 inches) thick, whereas if a small part

of a layout is to be digitised, act:ual graph paper could

be used. The 'paper' distortion is the distortion in the

paper grid due to inaccuracies in the actual manufacturing.

process. Most grids on paper are printed from a roller

and, with slight variations in speed of the roller and

slip on the paper, a different scale is sometimes obtained

in the x direction to that in the y. There is also a

problem of calibration between the digitiser and paper

e.g. a line that is nominally 10 inches exactly on the

paper, may have a length of 10.12 inches according to the

digitiser. The paper position problem exists because it

59

Chapter 3

is impossible to place the paper exactly horizontally on

the digitiser: consequently the paper axes are always at

a slight angle to the digitiser axes. The layout is drawn

with respect to the axes and grid scaling on the paper.

However the digitiser will obviously output digitiser

coordinates so the computer program must do the necessary

coordinate transformations to give the corresponding paper

coordinates, allowing for the errors - due to paper

distortion and paper position.

3.1.2 Using the manual input language

The manual input language is an extremely useful

method for entering the description of a small part of a

layout into the computer. 	A typical part of a layout

would be a single bit of a shift register. 	The designer

can quickly code up his design using this manual input

language and enter this data into the GAELIC suite. The

part layout can be quickly plotted on the screen of the

Tektronix terminal and any mistakes discovered can be

interactively corrected. This part layout can be stored

in the computer while the designer works on another part.

The process can be repeated until he has designed all the

component parts of his layout, when he can use the

interactive facilities to join them together to produce a

complete design.

60 	 -

Chapter 3

This is obviously a different method of design from

that using the digitiser and is one in which the designer

plays a much larger part. Some of the tedious repetitive

work can be taken over by the computer, for example it is

possible to get the computer to redraw large sections of

the layout in slightly different positions. This is one

of the tedious parts that has to be done manually when

producing the finished layout drawing prior to •digitising.

In - order that this new method of design can be fully

exploited, the manual input language should have the

following characteristics.

it must be easy to use the language.

the language must minimise the amount of data that

has to be entered.

the language must be easily processed by the

computer.

There are unfortunately conflicts between 	these

requirements: 	for example, for the data to be processed

most easily by a program written in Fortran the data must

be in a fixed predefined format. 	Fixed format input is

extremely difficult to produce, mainly because 	the user

cannot understand why the extra spaces are so critical.

Secondly it is far easier to handle a purely numeric input

data using Fortran so that a number 1 is used to specify

that data for a rectangle is about to be entered, number 2

to specify data for a polygon etc. Unfortunately there

are more to integrated circuits then 	polygons 	and

rectangles so the user would have to make extensive use of

Chapter 3

a crib sheet to decide which numbers to use. The use of

numbers also makes it extremely difficult for the computer

to check the input data for errors e.g. number 1 could be

the code •word for a rectangle or a coordinate value.

The input language chosen therefore is a compromise

between the three requirements and is based on the

language used in the CAMP programs [ref 3.21. The input

language is fully described in the GAELIC users manual and

two examples of its use are shown below:

URECTr; (1) 10,5:20,10;

a nd

"POLY" (4) S,30,64:20,4,10,4,-12,--4,-18,-4;

These describe a rectangle, on mask 1 only, which has

its origin at x=10, y=5 and is 20 units long and 10 units

high and a polygon with all its sides parallel to the axes

which starts at x=30, y=64 and has a line segment 20 units

long in the x direction followed by a segment 4 units long

in the y etc.

In order to code up a shape description from a

drawing on gridded paper, the user must count the

increments from the origin of the drawing to the origin of

the shape and then count the increments along each line

segment. This counting is a potential source of error and

must be done very carefully.

62

Chapter 3

Certain modifications were made to the CAMP input

language in order to make Lull use of the facilities

available and to give a more flexible approach to layout

design. 	Probably the main modification was to omit the

commands concerned a) with-file storage and b) 	with the

running of the CAMP program. The former is automatically

handled by the operating system of a time-sharing computer

and the latter is controlled by the user in GAELIC.

Another major modification to the CAMP programs

involved the use of LINES. The basic philosophy behind

the choice of shapes in the CAMP language was based on the

idea that all shapes on an integrated circuit are closed

shapes. Most integrated circuit masks are still made

using a cut and peel material on, a tape controlled

coordinatograph. Here the knife cuts round the perimeter

of the shape and the material inside can subsequently be

peeled away. Obviously this is only possible if the line

segments defining the perimeter form a closed shape.

Consequently the LINE in CAMP describes a closed shape of

a fixed width and was intended for the fixed width

Aluminium interconnections. Unfortunately there are many

violations of the concept of a fixed width

interconnection; for example, when the interconnection

passes over a contact hole the width is temporarily

increased and so in practise the LINE was of limited use.

However it is extremely useful to have a mathematical line

(i.e. a line with finite length and zero thickness) as an

intermediate shape which can subsequently be joined with

63

Chapter 3

other mathematical lines to form closed shapes on the cut

and peel material. Consider the aluminium interconnection

of a single stage of a shift register defined in the CAMP

language as a GROUP using closed shapes as shown in fig.

3.1.2a. Several instances of the GROUP are called to form

the complete shift register as shown in fig. 	3.1.2b.

(a) 	 (b)

Fig. 	3.1.2 Interconnections using closed shapes

The alternative method used in GAELIC involves a LINE

with zero thickness and the single stage of a shift

register is as shown in fig. 3.1.3a.

10, 	 (b)

Fig. 	3.1.3 Interconnections using open shapes

The several stages of shift register are shown in

fig. 3.1.3b and it can be seen that the complete

metallisation tracks can be easily checked for continuity

and when the final cut and peel master is produced, the

number of pieces that must be hand peeled is minimised.

64

Chapter 3

Usually an instance of a group definition is required

to contain all the shapes on all the masks. However,

there are circumstances when only certain masks are

required. 	For example, consider a group definition of a

shift register stage; 	when ar instance is called to form

one bit in the middle of the stage then the shapes on all

the masks are required. However, the instances forming

the first and last bits may well requird different shapes

on the metallisation mask due to the interconnections

joining the bits to other circuit components. The method

used in CAMP was to define the first and last bits either,

as separate group definitions or as individual shapes in

the main layout definition. However, in GAELIC an

instance can be called so that only shapes on a specified

series of masks are produced. Hence the metallisation can

be ignored in the instances used for the first and last

bits of the shift register stage and the special

metallisation required to interconnect to the rest of the

circuitry can be' added to the main layout. The GROUP call

in GAELIC therefore comes in two forms:

"GROUP" ONE, 10,10,1;

and

"GROUP" ONE (1 2,3) 40,70,1;

The first call produces the shapes on all masks while

the second only produces the shapes on masks 1, 2 and 3,

any shapes on mask4 etc. are ignored.

65

Chapter 3

3.1.3 The inputting of data for a small example

For small layouts such as the one shown in fig 3.1.4

which is .a test chip to investigate the effects of changes

in the semiconductor processing, it is convenient to use

the GAELIC manual input language. The input language

necessary to describe this layout is shown in fig 3.1.5.

The input language contains several errors inserted to

show how the error diagnostic system works. Most of these

errors are trapped by GAEL2A the syntax checker as can be

seen in fig 3.1.6 which shows the teletype printout

obtained when running the program. The initial Dump code

file created does not contain the descriptions of the

shapes containing, the syntax errors, the corrected

descriptions of these shapes, however, can be typed in via

the keyboard immediately after the input file has been

processed and these corrections are then added to the Dump

code file. The teletype printout obtained, when doing this

is also shown in fig 3.1.6. The Dump code file is then

compiled into the Ring Data Structure using GAEL3A and

this data structure is used to store the description of

the layout throughout its design. Several programs -

interact with this ring data structure to allow for

modification and addition, to produce large-scale drawing

and to produce drive tapes for tape controlled

coordinatographs and mask making machines.

a

I1Q. ±

I.- t . :-
H

:r -- H, 1

- 1

HT
'°°h

40 	J — 77

• - t - 	--F--- 	•••-- 	 -

	

I 	• 	 I

:t 	tTtIIi ift±
• 	 - 	 •- 	

---:-

--T—• —'• i
•-i.

	

• 	H-- 	••-•-
it:Ht'i - 	T 	'H

	

All 	* 	to 	Co. 	To • 00

H

'JO 	•O3 	t0

IT -. 	-i----.--.r"--1_-.
.•[

-
1I• . 11:

• 	 I

1 	t- 	ii 	 I lAO 	140 	160 	160 	1 T 	100 	tic 	&oo 	$Io 	SAO

Fig.3.1.4 	Layout 	of 	sma(L 	test circuit

"POLY" (1:4) L, 75,150:2,0,3,3,3, -3,2,0,5,5,0,15,
-3,0,0,-14,-3,-3,-4,4,-4,- 4,
-3,3,0,14,-3,0,0,-15,5,-5;

"POLY" (1:4) L,95, 150:3,0,0, 15,5,-5,5,5,0,-15,3,
0,0,20,-3,0,-5,-5,-5,5,-3,
0 , 0 , -20;

"POLY" (1:4) S, 116,150:10, 3,-7, 17,-3,-20;
"POLY" (1:4) L, 134, 150. 9,0,3,3,0, 17,-3,0,0,,-15,

-2,-2,-5,0,-2,2,0,1.5 T -3,
0,0,-17,3,-3;

"POLY" (1) S, 74,64: 29,3,-3,3,3, 3,-3,3, 3, 3,-29,-3,
3,-3,-3,-3,3,-3,-3,-3;

"POLY" (1) S,91,85:21,-8,19,45,-4,-33,-9,13,-3,
-13,-9,13,-3,--13,-9,19,-3,-23;

"POLY" (1) S,97,32:3,13,9,-13,3,13,9,-13,3, 16,-i,
14,-42,4,-7,-3,3,-3,-3.,-3,3,-3,
-3,-3,7,4,18,-7,-2,-16;

"RECT" (1) 137,119:17,12;
"RECT" (1) 13U, 97: 17, 19;
"RECT" (1) 137,82:17,12;
1t RECT" (2) 72,62:7,19;
"RECT" (2) 93,88:35,18;
"RECT" (2) 72,109:7,19;
URECTI (2) 99,115:24,7;
"RECT" (2) 137,126:17,5;
"RECT" (2) 138,115:15,5;
RECT" (2) 137, 1,04: 17, 5;

urRECTI (2) 138,93:15,5;
"RECT" (2) 137,82:17,5;
"RECT" (2) 112,77:19,5;
"RE CV (2) 98,62:7,19;
"RECT" (2) 86,64:5,15;
"RECT" (3) 87,65:3,13;
"RECT" (3) 113,78:17,3;
"RECT" (3) 138,83:15,3;
"RECT" (3) 138,105:15,3;
"RECT" (3) 138,127:15,3;
"POLU" (4) S,10,15:40,33,42,39,37,5,26,7,-26,8,

-44,-52,-75,-40;
"POLY" (4) S,110,15:40,40,-18,28,-36,-23,11,16,

18,-21,-15,-40;
"POLY" (4) L,175,15:40,0,0,40,-35,0,-25,25,0,8,

-19,0,0,-7,8,0,31,-31,0,-35;
"POLY" (4) S,175,75:40,40,-40,-5,-39,-7,39,-28;
"POLY" (4) L, 136, 125: 19,0, 10, 10,50,0,0,40,-40,0,

0,-20,-23,-23,-16,0,0,-7;
"POLY" (4) S,10, 135:88,-21,57,7,-31,2,-19, 19,-55,

33,-40,-40;
"POLY" (4) L,10,75:45,0,15,-15,1.1,0,0,23,-11,0,

0,24,11,0,0,23,-11,0,-15,-15,
-45,0,0, -40;

"RE CT" (5) 11,16:38,38;
"RECT" (5) 111,16:38,38;
"RECT" '(5)176,16:38,38;
"RE CT" (5) 176,76:38,38;
"RE CT" (5) 176,136:38,38;
"REd" (5) 11,136:38,38;
"RECT" (5) 11,76:38,38;
"FINISH";

Fig 3.1.5 GAELIC input language

68

RUN GAEL2A

GAEL2A
PROGRAM TO CONVERT GAELIC LANGUAGE INTO DUMP CODE

DOES THE FILE HAVE LINE NUMBERS - YES OR NO
NO

ENTER NAME FOR NEW DUMP CODE FILE
TESTD

ENTER MASK NUMBERS USED IN LAYOUT
12345

"RECT" (1) 13U,97:'17,19;

<ERROR NUMBER 23 IN STATEMENT NUMBER 9>
ILLEGAL TERMINATOR PRIOR TO COLON - SHAPE IGNORED

UPOLUU (4) S,10,15:40,33,42,39,37, -J,26,7,-26,8,

<ERROR NUMBER 23 IN STATEMENT NUMBER 28>
ORDER WORD NOT RECOGNISED - SHAPE IGNORED

ENTER NAME OF NEXT GAELIC LANGUAGE FILE OR TTY FOR
KEYBOARD INPUT OR PRESS RETURN TO FINISH
TTY

KEYBOARD INPUT WITH NO LINE NUMBERS EXPECTED
ENTER INPUT DATA
"RECT" (1) 137, 97: 17, 19;
"POLY" (4) S,10,15:40,33,42,39,37,5,26,7,- , 26,8,
-44,-52,-75,-40;
FIN ISII"

ENTER NAME OF NEXT GAELIC LANGUAGE FILE OR TTY FOR
KEYBOARD INPUT OR PRESS RETURN TO FINISH

DUMP CODE FILE SAVED AS :- TESTD

END OF EXECUTION

Fig 3..16 Running GAEL2A the syntax checker

[1

Chapter 3

3.2 Interaction with the layout

The user can interact with the layout using CAEL4A.

This program uses one of the Tektronix 4010 series of

storage tube terminals to interactively modify and correct

an integrated circuit layout description held in a ring

data structure file. The user can select which ring data

structure file is to be processed and can select the part

of that layout to be plotted, i.e. a particular group

definition and window size. That part of the layout

within the window is then plotted Out on the storage tube

screen. The plot remains or is stored on the screen until

it is cleared. A non-storing cros-hair cursor can be

displayed on the screen and its position controlled by a

pair of thumb wheel potentiometers. 	Various character

keys 	can be pressed when the cross-hair cursor is

displayed which causes the terminal to not only send the

character pressed to the computer but also four other

characters which define the position of the cursor. This

information governs the running of the program e.g.

pressing 'R' indicates the starting coordinates of a

rectangle to be drawn on the screen and added to the data

structure whereas pressing 'F' finds the nearest point in

the layout to the cursor and prints out its coordinates

and whether it is in a group definition or a set of

repeated shapes.

70

Chapter 3

The storage tube screen is divided into two parts:

the right hand edge of the screen is used for messages and

is called the 'menu area'. It contains such information as

the list of masks plotted on the screen, the mask number

being modified and the name of a group when an origin is

identified. The remainder of the screen except for a

small area at the top which contains the window size, is

used for plotting and is known as the 'plotting area'.

The program operates in a hierarchical manner in that

it gives, the user a choice of options at one level and

when one of these is selected, the program drops down to a

lower level where the user has a different choice of

options. The first level is known as the 'program command

level' and the second as 'cursor command level'.

The program command level options are concerned with

selecting the group definition to be processed, the size

of the window, the mask numbers to be plotted, modifying

or drawing on an existing data structure etc. Two of

these options MODIFY and DRAW allow the cross-hair cursor

to be displayed and this can be used to identify existing

shapes plotted out on the screen, to indicate the

coordinates of new shapes to be added or to change the

window being plotted etc. Thisiower level is the 'cursor

command level'.

Whenever the cross-hair cursor is on the screen there

are certain options that are available mainly associated

with the window plotted, these are known as the 'permanent

71

Chapter 3

cursor commands' 	and are selected by pressing one of the

following character keys:

1, 2, 3, 4, 5, 6, 7, 8, 9, J, Q, U, V, W and Z.

The results of pressing these keys are describ.ed in detail

in the GAELIC users manual

When the cross-hair cursor is first set up by the

MODIFY or DRAW options there are certain options available

which can perform such functions as identifying the

nearest point in the definition, indicating where a

polygon should start etc and these are known as 'main

cursor commands' and are selected by pressing one of the

following character keys:

F, C, I, L, M, P, R, \ ,) , 	and SPACE

After several of the 'main cursor command' 	options

have been selected, further information is required. 	For

example, when a point on a shape has been identified, 	the

user needs to tell the program if the point or the shape

is to be moved and its new position. This is accomplished

by using options known as the 'subsequent cursor commands'

and are selected by pressing one of the following

character keys:

A, D, E, H, N, 0, S, X, Y, [, # and SPACE.

By using the cursor commands at the various levels,

shapes can be identified and modified, new shapes can be

added and the window changed. This process is illustrated

in the following example.

72

Chapter 3

3.2.1 Interactively modifying the example

•GAEL4A is used to plot out all of the layout on the

screen.. the plot is shown in fig 3.2.1; the different

line types are used to distinguish between the various

masks in the layout. There are two errors shown in the

plot, a contact hole on mask 3 is missing and part of the

thin oxide (mask 1) is in the wrong position.

These errors are corrected by first selecting the

MODIFY option and asking to modify mask 1. The cross hair

cursor is positioned over point A of the thin oxide shape

in the wrong position. 	By pressing the character 'I' the

coordinates of the cross hair cursor are sent to 	the

computer and a search is made for the nearest point in the

data structure, the point is illuminated briefly and then

the cross hair cursor is returned. The cursor is then

positioned at the correct position for the point on the

shape, ie. point B, and the character 'H' pressed. This

moves the whole of the shape into its correct position in

the data structure so that next time the drawing is

replotted, the shape will be in its correct position. The

cross hair cursor is then returned to the screen ready to

initiate further modifications. However, if the user

wishes to imm-ediately . check that the shape he has just

modified is in the correct position he can just replot the

particular shape by pressing the character 'D. When the

cross hair cursor is returned, it is positioned at point C

and 'Z' pressed. This causes the program to 'zoom in' and

replot the window at twice the original scale as shown in

73

	

UI4DOJ SIZE IS 	18 	15 	215 	220
MASKS PLOTTED

12345

MASK NUMBER

if

_

Contact cI
missing 	=.:.L,'

-
I------

- t
L...J. HL - i

I

	

•' 	•E,- 	_T. 	 I

pal ygon
wrong_position
	 I 	 1 	 IJAT NEXT

Ii 	 I 	 II 	 I.

ii 	 II 	 MODIFY

Fig. 	3. 2. 1.

Chapter 3

fig 3.2.2. 	Note 	that the thin oxide shape is now in its

correct position. Pressing the character 'M' when the

cross hair cursor is displayed allows the user to change

to operate on a different mask number and this is

obviously necessary to add the contact hole missing from

mask 3. The cross hair cursor can then be positioned at

point E, the bottom left hand corner of the rectangle and

'R' pressed. A dot will appear at the nearest grid point

to the cross hair cursor indicating the position for that

corner of the rectangle. The cross hair cursor is

returned and is positioned where the top right hand or

opposite corner is required, ie. point F, and 1 0'

pressed. 	Again a dot appears at the nearest grid point

and the cursor returned. Pressing 'D' causes the

rectangle to be drawn on the screen before the cursor is

returned. To check that all the modifications have been

made the user may wish to have a final look at the

complete layout, this can be done by pressing 'J' and the

result is the plot shown in fig 3.2.3. If space ' ' is

pressed 'WHAT NEXT' will appear at the bottom of the menu

area. Answering 'END' to this question will exit from the

program with the corrected data structure.

The description of the layout in the Ring Data

Structure is now correct and can then be post-processed

using GAEL9F or any of the other post-processors, to

produce a series of files containing drive tapes for a

tape controlled coordinatograph or mask making machine.

75

WDDCU SIZE IS 	46 	41 	148 	143

-j

/ 	 .,I

H

MASKS PLOTTED

1:2 3 4 5

MASK NUMBER

13

- -

I

I , .

I - i
	

L
-

1

1

Fig. 	3. 2. 2.

I

MASKS PLOTTED

1 2 3 4

NASK NUMBER

WIP1tOJ SIZE IS 	iG 	15 	215 	220

---- I

-

r 	fj 7rfiL4-t.i
:j

IT i-
-

II
I:

I:

Fig. 	3. 2. 3.

Chapter 3

3.3 Extra features of GAELIC

Because the GAELIC system running on a time-sharing

computer is always available i.e., does not have to be

booked for a number of hours, say a fortnight in advance,

it is possible to use it for short periods at a time.

Good use can be made of such short periods to design

smaller sections like group of repeat definitions.

A definition can be roughly drawn on squared paper or

just a dimensioned sketch made which can in turn be coded

up in the GAELIC manual input language without the repeat

or group headers and entered into the computer. It can

then be converted into the ring data structure correcting

any syntax errors by either editing the input language

file or by adding the corrected shapes at a later stage.

The layout can then be plotted out, and any obvious

corrections made on-line. More obtuse corrections can be

made off-line and correcting tapes typed up before going

on line to the time-sharing computer to process the

correcting tapes and modify the data structure. When the

part layout has been corrected and checked thoroughly,

GAEL7A can be run to convert the ring data structure back

into GAELIC manual input language. Here the necessary

repeat or group headers and trailers can be inserted and

the design stored away for future use. This method builds

up a library of subpictures that can be used when required

to design the full circuit and can, if suitable, be used

in future circuits.

78

Chapter 3

Another useful technique is to produce on say mask

15, the outline of the group and then when it comes to

fitting the groups together to form the complete mask most

of the work can be done with just the outline,, which saves

a lot of drawing time. This technique of using the

outline can be taken further still by using the

REPLACEGROUP order word (see GAELIC users manual) . The

outline in this case can be defined as the group and used

in the main layout until the positioning of the groups and

interconnections have been completed and then just prior

to running GAEL9F etc. to produce drive tapes for the

Ferranti Masterplotter, a series of REPLACEGROIJP's can be

entered into the ring data structure replacing the

outlines with the full group definitions. This technique

saves not only plotting time but also computing and

storage costs.

3.4 Other GAELIC programs

There are several other programs in the GAELIC suite

that interact with the ring data structure. These

programs are briefly described below.

3.4.1 GAEL5A

79

Chapter 3

This program plots all or part of a layout on a

CALCOMP incremental plotter. This provides a permanent

hard copy drawing of the layout that can be studied at

leisure. The data to drive the plotter can also be

written to a disc file or to magnetic tape and plotted

later using a very small program which uses the minimum

computer resources.

3.4.2 GAEL6A

This program extracts allthe lines from a Ring Data

Structure, 	joins them together to form polygons and

returns these polygons to the Data Structure. This

provides a layout description that only contains closed

shapes and can subsequently be post-processed to produce

drive tapes for photo-plotters.

3.4.3 GAEL7A

This takes the contents of a corrected layout in its

Ring Data Structure and converts it back into the GAELIC

manual input language. This is an extremely useful

program as it provides a method of setting up a library of

frequently used components.

80 	 - -

Chapter 3

3.44 GAE1,8A

This program fulfils two functions, 	it removes all

the discarded sections of the ring data structure and

rearranges the data for most efficient processing.

3.4.5 GAEL9F

This program 	takes the 	data 	from the ring data

structure and 	converts it 	into 	drive tapes for the

Ferranti 1'Iaster-Plotter. These 	tapes are produced on 	a

high 	speed paper 	tape punch 	and 	can give either a

MICROFILM plot 	of 	the 	layout or 	a 	set 	of 'cut and peel'

masters.

3.4.6 Other post-processors

There are a number of post-processors that are very

similar to GAEL9F which take the data from the ring data

structure and convert it into drive tapes for various

other tape controlled coordinatographs and mask making

machines. Most of these have been written by students

during vacational employment at Edinburgh University.

81

CHAPTER 4: Data Structures

4.1 The need for a data structure.

It is possible to write computer programs that will

only process the one set of data built into the program

and examples of these programs are often written as

exercises during programming courses. A typical example

is a program that prints out all the prime numbers between

1 and 100. The finished program, however, is of limited

use. Most computer programs use a different set of data

each time they are run and this data is read in by the

program from a deck of cards, entered via on on-line

terminal or read from disc or magnetic tape. In our

simple example the program could be modified to read in

the range of prime numbers to be printed out and so on one

run the prime numbers between 100 and 200 could be

produced and on another the numbers between 1000 and 1800.

This data i.e. the range, must be entered into the

computer and stored in the correct order.

The data that is stored in computer memory usually

consists of numerical values e.g. the value of a resistor

or the number of hours that an employee has worked during

a week. It can, however, consist of strings of ASCII

characters forming names or text, or can consist of bit

patterns that form codes or symbols. Each item of data is

usually referred to as a 'data element'. Data elements are

stored in a computer memory in an organised way such that

82

CHAPTER 4

- 	the logical relationship between the elements is preserved

and this organisation is known as a 'data structure'.

Data structures can vary in complexity from the very

simple to the extremely complex depending on what the data

represents and what processes must be carried out on that

data.

Consider the data for a graph where the computer

memory contains a simple series of y coordinate values for

certain known x values. The word 'series' is used here

instead of the more usual word 'list' because 'list' is

used by the computer scientist to describe a particular

type of data structure that will be introduced later. The

correct graph will only be obtained from the data if the

coordinates that are stored in the computer are plotted in

their correct order: 	any other order would give a

different graph. 	Thus the data is structured in a

sequence of y coordinates and is usually stored in the

computer in an array. This forms what is probably the

simplest data structure. Programmers use arrays without

realising that they are actually data structures,

consequently the term data structure is often reserved for

the more complex structures that allow for more

flexibility when processing data. The processing of data

for the graph is simple and straightforward: data is read

into the computer in sequence, stored in the same sequence

in an array and then processed to produce the graph. It

is possible to change the values of certain coordinates

but coordinates cannot be added or deleted.

83

f
fl
t A

i
) 	 •' 	 /

'.,E 	i1L 	'4

However, the processing required on the data for

other applications can be far more complex, for example,

it may be necessary to preserve the hierarchical nature of

the data or to delete from or add to specific positions in

the structure. A simple array will not hold a structure

capable of handling these facilities and more complex

structures must be used. Any data structure that holds

the description of an integrated circuit layout must be

capable of efficiently plotting out the layout and of

modifying it by adding, deleting and changing shapes.

This must be done without making the data structure too

big and a compromise must be obtained between the size of

the data structure and the efficiency of the various

operations. The structure must also maintain the

heirarchical nature of the layout. The specific

requirements of an interactive system for the design of

integrated circuit layouts were described in Chapter 2 and

it will be realised that most-of these requirements are

common to many other interactive graphic systems except

that the amount of data required to describe an integrated

circuit layout is so large that it cannot normally be held

in the core memory of a computer. The various types of

data structure will now be described and it will become

obvious how well the requirements can be met.

4.2 Types of Data Structures

84

CHAPTER 4

Excellent introductions to the subject of general

data structures are given by Knuth in his book [ref 4.11

and in the paper by Dodd [ref 4.2]. These introductions

are for general data management and are too broad based to

be considered in detail here. However, there is a paper

by Williams [ref 4.3] which deals specifically with data

structures for computer graphics 	systems. 	As 	the

interactive design of integrated circuits is mainly

concerned with computer graphics, his paper is worth

discussing in greater depth. It is an-excellent review of

the types of data structures that exist, concentrating on

those used in computer graphics systems and of the various

computer languages that have been used to handle the

structures The various languages used are dealt with

later in this chapter and the present discussion

concentrates on the various types of data structures that

can be used.

Because of the differing terminologies used by the

various workers in the field, it is necessary to define

the terms that will be used. We have already met the

terms 'data element' and 'data structure' and their

meanings. However, when a data element occupies one word

of computer memory, it is often loosely referred to as a

'word' . If a word of computer memory is used to contain

more than one data element then the word is said to be

split into 'fields' , each field is therefore a data

element. A 'record' is used by Williams to describe a

collection of data elements that are stored in contiguous

CHAPTER 4

(consecutive) memory locations but the term is usually

used in data structures associated with input/output

processes and only occasionally in more general data

structures. The two terms used to describe a collection

of data elements in contiguous memory that are in more

general use are 'block' and 'bead'.

Dodd has postulated that all data structures can be

constructed from three basic types. These are the

sequential, random and list data structures and

consequently it is worth considering these three types in

detail.

4.2.1 Sequential Data Structure

This type of structure consists of a sequence of

records or data elements. Any particular record or

element is accessed by searching sequentially through the

structure until the appropriate information is found.

As Williams points out, present computer memories are

one dimensional in access, memory locations are

sequentially numbered and the computer hardware is

designed to access data serially (this last process is

obviously interrupted by software when necessary). This

means that processing data in a sequential data structure

is particularly efficient as the mechanisms to do it are

already built into the computer. However, there are

unfortunately some disadvantages. 	If all the records in

86

CHAPTER 4

the data structure need to be processed each time the

structure is accessed then this can be done, extremely

efficiently. If, however, certain records are to be

ignored when processing data then the efficiency of the

process will fall, depending on the number of ignored

records.

Probably the main feature of interactive graphic

systems is that of regularly adding or deleting records

from the data structure and any structure used must be

able to cope with this feature. This is again an area

where the sequentially data structure has problems. There

are two possible methods that can be used to efficiently

delete a record. The first is to change the initial data

element in the record to indicate that it is to be ignored

and the second is tore-create the structure without the

particular record. The first method has the pre-requisite

that there is a number that can be entered into the first

element of the record to indicate that the'record is to be

ignored. This number must be unique i.e. outside the

range of coordinates and other markers. The second method

is time consuming as the new data structure is created by

copying the original until the record is reached, ignoring

the record -and then copying the remainder of the

structure.

If a new record is required to be added then there

are again two possible approaches, namely to add the

record at the end of the structure or to re-create the

structure with the record in' the middle. The first method

87

CHAPTER 4

is an easy operation but the position may not be a

possible one for the record. It may for instance have to

be near other records sharing a common attribute. In this

case the second method must be used: this consists of

copying theoriginal structure until the required position

is reached, adding the record and then copying the

remainder of the data structure. This second method is

obviously time consuming.

The time taken for the methods 	requiring 	the

re-creation of the data structure may not be not critical

providing the two structures are held in core but the time

will be significant if secondary memory has to be used.

These problems with the deletion and addition of

records were sufficient for Williams to discount the

sequential data structure as one to use in an interactive

graphics system, however, as will be seen later there are

at least two integrated circuit design systems that use a

form of this structure.

4.2.2 Random Data Structure

In a random data structure, an address in core or on

disc is allocated to each block of data, and each block is

stored in memory starting at that address. The data can

be subsequently retrieved from that address.

M.

CHAPTER 4

The simplest way of assigning the address is for it

to be supplied by the programmer and specified by the

program each time that it is required. This method is not

practical for variable size data structures with variable

size blocks as the amount of memory allocated for each

block must be the maximum that any block could possibly

require and the maximum number of blocks must he

acomodated. 	The 	method 	is, 	therefore, extremely

extravagant in the amount of space required.

A more flexible system of assigning the address of

each block is r, equired. The usual system is to create a

table or array of block names and associated addresses.

Each time a particular block is required, the table is

referenced and the corresponding address is found. The

data for the block is then retrieved from that address.

In this system, the addresses are calculated by the

program as required and not specified initialiy,

Consequently the addresses are allocated so that they just

leave room for the data. The number of entries in the

table are the same as the number of blocks actually used.

This table is more formally known as the 'symbol table' or

'dictionary' and is the most general method of using --

random data structures.

Present day integrated circuits are very complex and

contain many components and consequently require very

large amounts of data to specify the layout. If a random

data structure is used to hold the data then the symbol

table becomes very big and considerable computing time is

CHAPTER 4

expended finding the address of any particular block from

the table.

Another problem with the random data structure using

a basic table is that it is not ideally suited for

interactive graphics beca use of the problems of up-dating

the structure. It is, however, easier to update than a

sequential data structure as only the symbol- table need to

be updated instead of the whole data structure.

There is another method of constructing the symbol

table which incorporates the storing of the positin of

the entry in the table for the following block as well as

the address of the present block. A given block can then

be found by following this chain of table positions and

their respective addresses. This speeds up the search

through the table as only table entries for blocks with a

common attribute need be on the same chain, other entries

for other blocks with differing attributes being held on

different chains. This method also has advantages with

updating, as the position of the next entry in the table

can be altered so that a particular block is bypassed or

included in the correct position. This method is

therefore far more flexible and results in shorter search

times than the sequentially ordered table. It has the

disadvantage that the table is bigger because of the extra

table positions stored.

90

CHAPTER 4

Another method of using random data structures is to

use a technique known as 'hash coding'. Here instead of

using a table to contain the name of a record and/or its

address, the program treats the name of the record as

either a number or series of numbers and performs some

arithmetic operation on these numbers to give a result.

This result is then used as the starting address at which

the block is stored. The arithmetic operation is known as

'hashing' and one of its problems is that two or more.

names can hash to the same address. This is called a

'collision' or 'conflict' and there are many methods of

dealing with these conflicts which are described by Morris

[ref 4.4) . The problems of conflicts and the sizes of the

blocks make this method of using random data structures

difficult to program in Fortran or Algol. There have been

users of hash coding in graphical applications reported by

Feldman and Rovner [ref 4.5] that use the language LEAP

which is based on ALGOL.

These random data structures do have limitations at

the moment like relying on software to associate names

with addresses. 	However, 	if computers are eventually.

built with large associative memories then thesedat'

structures will come into their own.

4.2.3 List and Ring Data StructUres

91

CHAPTER 4

These data structures 	are 	similar- 	to 	random

structures using symbol tables in that they built up using

a series of blocks of data which are located at specific

addresses and these addresses are stored elsewhere in

memory. However in list structures the address is kept in

a data element in the previous block and the address is

usually refered to as a 'pointer'. Hence blocks of data

having similar attributes are 'chained' or joined together

by means of pointers, the individual blocks, however, may

be randomly scattered throughout the memory. A series of

blocks chained together by means of pointers is known as a

'list'. A block of data can be on several lists and will

consequently have several pointer chains passing through

it- . This is using the term 'list' in its broader sense,

in 'list processing' using 'Lisp' 	[ref 4.5] 	where the

block is just one computer word long.

The main advantage of list data structures is the

speed in which they can be modified or updated. If a new

block is to be added in a specific position in a list, the

block itself can be added at any convenient place in

memory then the pointer in the previous block is changed

to point to the new block and the pointer in 'the'new block

set to point to the next block in the sequence. Similarly

if a block is to be deleted then the pointer in the

previous block is set to point to the block after the',- . -

redundantone. 	 -

92

CHAPTER 4

An example of a list data structure is shown in fig

4.1. which shows three separate lists combined together.

The first list •'A' can join together the data describing a

series of triangles, the second list 'B' may join together

a series of rectangles and the-third list 'C' may join

shapes whose area is greater than a given value. The

actual layout in memory may be fragmented as shown in fig

4.2. 	Deleting the block for triangle 'T2' requires the

simple process of changing the pointer in block 'Ti' 	to

point to block 'T3'.

A more difficult block to delete is one that is

situated on more than one list such as 'T3'. Herenot only

must the block be deleted from list 'A' by changing the

pointer in block 'T2' to point to block 'T4' but it must

also be deleted fromlist 'C' by changing the pointer in

block 'R2' to point to block 'R4'. This is difficult as it

means noting which block is deleted when traversing list

'A' 	and then checking each block in turn on list 'C' to

see if it is the deleted block. 	One list is obviously

being traversed when the block to be deleted is detected

and so by keeping the address of the previous block on

that list, the block can easily be removed by changing the

pointer values. The other list, however, will have to be

specially scanned from the beginning to find the block to

be deleted and this could be a time consuming process if

there are many blocks in the list. There are also

problems if the program does not know where the list

starts. In our example blocks could be on list 'C' or on

93

A

B

>...

A

S 	 I
I 	 I
I 	 S
I 	 I
I 	 I
I 	 S
I 	 I
I 	 I-

• 	 $
S 	 I

S 	 I

:::: 1 L:r:J
FIGURE 4.1 	oxampto of LIst s tructur

FIGURE 42 	Layout of structuro in memory

94

CHAPTER 4

other lists depending on the area of the shape and so it

is conceivable that the whole data structure would have to

be searched.

This problem can be overcome by use of 'forward' and

'backward' pointers between blocks so that not only does a

block have a pointer to the following block, it also has

one to the preceding block. This speeds up deletion but

does have the disadvantage that it requires bigger data

blocks to store all the pointers and hence requires a

bigger data structure.

A special type of list data structure can be formed

by arranging that the pointer in the last data block

points back to the first. Thus the pointers form.a 'ring'

or 'circular list' and structures using these are referred.

to as 'ring data structures'. Ring data structures have

been used in several different applications by different

people and consequently has acquired several different

terminologies to describe it. The term 'bead' is used

instead of 'block' by some people presumably because of

the similarity of a drawing of the blocks on a ring of

pointers to beads on a necklace. However terms like

'keys', 'chickens', 'hens', 'mothers' and 'daughters' have

been used for the same blocks. It is therefore essential

to define the terminology to be used before proceeding

further.

95 	 I 	 -

CHAPTER 4

A 'bead' is 	series of consecutive memory locations

that are joined by 'ring pointers' to form a ring. One of

beads has different attributes to the others and

corresponds to the first block on a list and is known as a

'head bead' or 'ringhead bead' and the pointer in the head

bead is known as the 'ring head pointer'. The first word

in a bead is called a 'bead head' or 'head word' and

usually contains data elements or 'fields', which identify

what the bead contains and how big it IS; Another type of

pointer is used which instead of pointing to the next bead

in the ring points to the head word of another bead, this

type of pointer is known as a 'direct pointer'. A simple

ring data structure is shown in fig 4.3 which illustrates

many of these terms.

Usually a bead is divided into three parts, the head

word itself, the ring pointers and the data. The head

word usually contains the number of pointers words and the

	

- 	4

number of data words used in the bead. The data words

only contain data such as numeric values and codes but it

will be shown later that under certain circumstances

direct pointers to other beads can be included thus

reducing the size of the 'data structure.

Just as in the standard list data structurei where

blocks can be on more than one list, beads in a ring data

structure can be on more than one ring. The fact that

rings are used rather than lists facilitates deletion of

beads without having to resort to forward and backward

pointers. Fig 4.5 shows the ring data structure to hold

96

HEAD BEAD

•1 	 vwl • I •V

d t
	

data

FIGURE 43 	simptc' ring data structure

97

HEAD BEAD

ringC fiend pointer

L _

L1 R 	h2 1 LR3 J _

J

FIGURE 4-5 	ring data structures for

rctong(esctndtriangles

gm

CHAPTER 4

the description of the triangles and rectangles used in

fig 4.1. Now if bead T3 is to be deleted and it is

detected by following ring A it can be deleted from ring C

by examining each. bead in turn i.e. R4, the head bead and

R2 until the pointer to T3 is found. This can then be

modified to point to R4 and the deletion is complete.

Only one ring had to be processed. The other advantage of

the ring data structure over the list is that it is

possible to find the head bead of a ring by following the

pointers round the ring until the fing head pointer is

reached.

An interesting psychological point arises with ring

data structures. Because of the varying terminology used

in describing them, there is an assumed air of mysticism

about them. This appears to affect programmers in one of

two ways, they will either fully accept ring data

structures and use them regularly even if their use is not

fully justified or they will avoid using them at all

costs. However, ring data structures are extremely

powerful under certain circumstances particularly for

interactive applications where data in continually added

or deleted. They also have advantages when it comes to

handling a large number of different types of data e.g.

the data for an electronic circuit analysis program

consists of resistors, 	capacitors, transistors, voltage

sources etc. 	Normally if these are held in Fortran

arrays, 	there is a limit on the number of resistors, a

limit on the number of capacitors etc. 	It is therefore

CHAPTER 4

possible to have a circuit that is too big to analyse just

because there are too many transistors even though the

space for capacitors is empty. Using a ring or, for that

matter, list data structures, the program can be written

so that it is the total data size that matters, not the

size of the individual components.

4.2.4 Complex Data Structures

The sequential, random and list data structures just

described can be used or combined to form more complex

structures. The best known of these complex structures

are the 'tree' and 'hierarchical' data structures, both of

which have been used in graphic applications.

Graph Theory describes a 'tree' as a graph which has

no circuits (or rings in our terminology). The computer

form of a tree consists of a series of blocks spread

randomly throughout the memory and a series of pointers

chaining them together and an example is shown in fig 4.6.

CHAPTER 4

block 	 t'vt1

block 	 block 	 block 	 level

block 	 block block 	block block 	block 	level 3

ci 	t ree structure

Fig 4.6

The structure starts with an identification block at

the top of the tree: this block contains certain

parameters describing the structure such as its name or

size and also pointers to shapes at a second level. These

second level blocks contain certain parameters describing

their function etc and also a series of pointers to blocks

at a third level and so on.

The data to describe a triangle could be held in the

basic tree structure shown in fig 4.7.

101

CHAPTER 4

cation blocks

levl1

Line blocks

Lovc'12

p01111 blocks

level 3

tree structure for triung le

Fig 4.7

The identification block would hold the name of the

triangle ABC and pointers to the blocks for the lines AB,

BC and CA. These line blocks in turn would contain the

name of the line e.g. AB and pointers to the coordinate

blocks A and B. The coordinate blocks contain the

coordinates of the appropriate point.

Probably the most important point to notice in fig

4.7 is that the coordinates of each point are recorded

twice. This is obviously wasteful of storage space and a

simple modification of the basic tree structure is made

that allows more than one block at a high level to point

to the same block at the lower level and the data

structure is changed to that shown in fig 4.8.

102

CHAPTER 4

IcatiOrl btock

Line blocks

point blocks

modified tree structure for triangle

Fig 4.8.

The flexibility with the pointers can be taken a

stage further where the pointers in a block at a given

level can point to blocks on the same level. They cannot

however point to blocks at a higher level or this would

give the possibility of forming rings.

The system of different levels provides a grouping or

subroutining facility so that the definition of subpicture

can be stored in the structure starting at a given level

and instances of the subpicture can be called by inserting

blocks at a higher level which contain pointers to the

definition and the coordinates of the origin of the

s ub p i c t u r e.

The basic version of the tree data structure is

difficult to modify particularly if blocks are to added or

deleted. If an extra block is to added at a given level,

then the block at the higher level must be replaced by a

10

CHAPTER 4

bigger one to accomodate the pointer to the new block.

This means that the value of the pointer in the block at

the next level above must be changed to point to the

replacement block and so the process of adding shapes

becomes extremely complex.

The tree data structure can be made more flexible by

using list structures rather than random structures as

shown in fig 4.9.

Fig 4.9 	Tree Structure using Lists.

Here the identification block contains only a pointer

to the first block on the second level, the first bead,

however, contains a pointer to the second bead on that

level and so on. Now all that is required to delete a

bead is to change the pointer in the previous bead.

No description of this version of the tree structure

has been found in the literature though it is obviously a

far more flexible system. This is probably because it is

104

CHAPTER 4

so similar to the 'hierarchical' data structure which uses

rings rather than lists and which consequently has certain

advantages.

The 'hierarchical' data structures like the 'tree'

data structures are created from beads or blocks on

different levels but in this case the beads are on rings.

The term 'hierarchical' is not often used and most

hierarchical data structures are simply refered to as

'ring data structures'. Consider the drawing shown in fig

4.10 which consists of a triangle BAC sharing two line

segments AB and BC with two other triangles

E

C

Fig 4.10.

ABD and BCE respectively. The hierarchical structure to

hold the data for this drawing could be as shown in fig

4.11.

105

CHAPTER 4 	 drawing

?V21 1

12

ovel 3

Fig 4.11.

Here the identification bead on the first level

contains the name of the drawing and perhaps its size. It

also contains the ringhead pointer to a ring of 'triangle'

beads at a second level. Each triangle bead could contain

the name of the triangle e.g. ABC, the ring pointer to the

next triangle bead and also the ringhead pointer to a ring

of 'line segment' beads that are used to create the

triangle. Each line segment bead contains the ring

pointer to the next line bead and the coordinates of the

line segment.

Certain line segment beads are common 	to 	two

triangles, for example AD occurs in triangles ABC and ABD

and so the line segment bead must be on both rings. In

order to access the coordinates of the line segment, it is

essential to know which ring is being traced or. rather

where the coordinate data is with respect to the ring

pdinter. To accomodate this feature the pointers are

CHAPTER 4

numbered and each pointer word is consequently divided

into two fields, the first field contains the pointer

number or offset from the headword, the second the address

of the next bead. This obviously restricts the number of

bits available for the address and hence the maximum size

of the data structure.

This numbering of the pointers was a feature of the

first ring data structure used by Sutherland [ref 4.61 in

the Sketchpad program and the feature was also used by

Evans and Katzenelson [ref 4.71 when they applied complex

ring data structures to electrical circuits and the

feature now appears as a matter of course in ring data

structures. One of the novel features of the GAELIC data

structure is that it is designed so that the pointers need

not be numbered. This has the advantages that either

larger data structures can be handled or else the same

size structure handled on a computer with a shorter word

length. This technique has subsequently been used by

McGuffin [ref 4.81 	in the automatic 	routing 	of P.C.

boards. Dr. P.F.A. Reilly did not use use numbered

pointers in some of his data structure design work [ref

4.12). Instead he arranged that all the pointers on a ring

were in the same position in their respective beads

regardless of the bead type. This was found to be

restrictive and made data structure design difficult.

107

CHAPTER 4

4.2.5 Other Data Structures

There are other data structures that have not yet

been considered for graphics applications and probably the

most imortant of these is the Set Theoretic Data Structure

(ST])S). 	This data structure was described by Childs [ref

4.9] and has been partially implemented. 	The data is

sorted into mutually disjoint sets which are known as

'generator sets'. Generator sets can be joined together to

form 'composite sets'. There are no explicit pointers used

between the various sets of data and so sets can be moved

about in memory independent of each other. This technique

of not having explicit pointers could be applied to other

data structures and is inherent in the sequential data

structures.

Certain set operations are used in the STDS to

retrieve the data and set theory questions can be answered

about the data. It appears to be a useful data structure

for such applications as statistics and personel

management. For example, if certain standard facts about

each person employed by a company are stored in the data

structure, say whether a person is married and how many

children he has: then it is possible to answer such

questions as 'how many men are 	married 	with 	two

children?'. However, the data stored must be amenable to

arrangement in set form and this restricts the range of

applications. It cannot, consequently, be easily used for

interactive graphics work.

108

.1 	I
indcx ring hQod
(c out ring hc'ad
ncarnQ
narn 2

L mci 5k

group bod

tQYO

new group poinir
rnov'mrit code
nhtiu 	>:
imliot V

now group bead

r grou p Layout ring
group namc 1
group- name 2
musk wordJ

shape bead

I 	 I

I CSk word

I 	a
d otu

oto

toyout hood bead

musk woro
[data

data
dci I. a

shape bead

layout ring

mask word
Idata

FIGURE 1.12 	CAMP data structure

CHAPTER 4

4.3 CAMP Data Structure

The CAMP data structure is mainly based on the work

of Evans and Katzenelson [ref 4.7] and was designed by

Wood [ref 4.10]. It is a hierarchical structure shown in

fig 4.12. The input data to the CAMP programs can be

descriptions of rectangles, polygons, circles and lines as

well as the group and repeat structures and is described

in detail in Chapter 3. The basic shapes are., however, all

converted into polygons when stored in the data structure.

A typical polygon bead is shown in fig 4.13.

2 	 1 	 - 	n

Shape Ring Pointer

Mask Word

Initial X Coordinate

Initial 'L Coordinate

I,

It

It

LII

Final. I Coordinate

Fig 4.13 	Typical 'CAMP' Polygon Bead

110

CH.APTJR 4

The first word in the bead is divided into three

fields, the first field contains a number to indicate that

it is a polygon rather than a group call or repeat bead.

The second field contains the number of pointers which for

a polygon is always 1 and the third field contains the

number of data words.

The next word contains the ring pointer to the next

shape on the ring. It again is divided into 3 fields, the

pointer number, the type of pointer and the actual

address.

The next word contains the 'maskword' which is a bit

pattern indicating on which masks the polygon appears.

The remaining words contain the actual coordinate

data describing the polygon.

The head bead for the complete layout shown in fig

4.12 has the bead pointers of two rings, an index ring and

a layout ring. The layout ring contains the beads for all

the shapes in the main layout. It also contains 'group'

beads which are calls to an instance of a group. This

contains a direct pointer to the definition of the group

and also contains the orientation of the group and the

coordinates of the origin of the instance. The ring also

can contain repeat beads, which contains the number of

patterns, 	the spacing between them, and a maskword

indicating which masks contain shapes to be repeated. 	It

also contains a head pointer to the ring of shapes to be

repeated.

CHAPTER 4

The index ring contains all the new group beads, one

bead for each group definition used in the layout. Each

head contains the name of the group and a maskword. This

time the maskword indicates which masks contain shapes in

the definition. It also contains the head pointer of a

ring containing all the shapes in the definition.

The process of plotting out the shapes on mask 1

consists of starting from the head pointer of the layout

ring and examining each bead in turn, by following the

layout ring pointers. When a bead is found, the contents

of the bead head are examined to check that it is a

polygon and to find the number of data words. The

rnaskword is then examined to check whether the polygon is

on the required mask i.e. mask 1: if it isn't, the shape

ring pointer is followed to the next bead. If it is on

mask 1, then the shape is plotted out. This process is

repeated until the shape ring pointer points back to the

ring head.

It should be noted here that every shape is processed

to an extent regardless of whether-it is on the required

mask or not. If we assume that an integrated circuit

consists of 5 masks and that the shapes are distributed

equally between the masks, then the time spent processing

80% of the shapes when plotting a given mask is

unproductive. This obviously is a waste but as the. CAMP

data structure was designed to be core resident, the

actual time taken to process the extra shapes is small.

However, if the data structure were disc based with only a

112

CHAPTER 4

few pages in core then the time required to do all the

extra disc reads would be appreciable.

The layout ring contains two other types of bead

besides polygons, these are the group call bead and the

repeat bead. If a group call bead is encountered when

plotting a mask, the direct pointer is followed to the

group definition. The maskword in the definition bead is

examined to see if 'the group contains any shapes on the

required mask. If there are no shapes present, the

program returns to process the layout ring. If there are

shapes, than the program examines each shape on the group

layout ring, plotting out those on mask 1 before returning

to the main layout ring.

When a repeat bead is found, the maskword in the

repeat bead is examined to see if any shapes on mask 1 are

repeated. If there are, then the number of repeats and

their spacing are obtained from the bead. The shapes on

the repeat layout ring are processed the required number

of times with the appropriate modifications to the

coordinates.

The data structure has three disadvantages:

the processing of redundant shapes as described

above.

The fact that all shapes are stored as polygons. 	It

only requires two pairs of coordinates to uniquely specify

a paraxial rectangle but requires at least three pairs of

coordinates to store the same shape as a polygon. An

113

CHAPTER 1

integrated circuit design is typically made up of 30% of

rectangles so this can cause an appreciable increase in

the size of the data structure.

3) As the structure is core resident, the size of the

layout that can be designed depends on the amount of core

available. The average computer, therefore, is not

capable of handling the large integrated circuits designs

that are now being manufactured.

4.4 Marconi Myriad Data Structure

	

A sophisticated hierarchical data structure 	was

implemented on a Marconi Myriad computer equipped with an

X2000 graphics system by S Bird [ref 4.11]. This data

structure was initially designed for a general purpose

drawing program and was later modified slightly for use in

integrated circuit layout. The structure is based on the

work done by Sullivan [ref 4.6] for the Sketchpad system

and includes Sullivans 'constraints' which ensure that

certain shapes in the layout maintain a certain

displacement from other shapes. The Myriad Data Structure

takes the hierarchical principal to its logical

conclusions. Instead of the line segments bead containing

the values of the end coordinate as shown in - fig 4.11, the

bead contains the ring pointers to two 'point' beads one

for each end of the line. These point beads in turn each

contain the ring pointers to two 'value' beads, one for

the x coordinate value and one for the y.

114

CHAPTER 4

All the point beads and all the value beads are also

on rings with their head pointers in the drawing head

bead.

It does, therefore, create rather a complicated data

structure for a simple drawing. For example consider the

drawing shown in fig 4.14 which shows a horizontal line

joined to a vertical line.

Xb,Yc

Xci,Ya
	

Xb Ya

Fig 4.14

The data structure for the two lines is shown in fig

4.15. It can be seen that the line AB is constrained to be

horizontal by making point A and point B share the same y

coordinate value. Line ABis constrained to be joined to

BC by making both line segments share the same point bead.

The initial Myriad Data Structure was modified by S.

Bird to cope with the different masks encountered in

integrated circuit layouts. This was accomplished by

adding an extra 'maskword' at the end of. a line bead. The

data structure for the rectangle on mask 1 shown in fig

4.16 is shown in fig 4.17.

115

valuJrino2pjnter L.. i 'El tu 	
Y

value ring pointer
va1ue instance ring E

'r_

I1
Ti 	 goine

vaiue in 	ingh
oipoin

2j____ b I 	vlu 	ring pointer e

 l Q

voiue instance ring riQc.o

.addinote at 	point C

31 	1
main drawing ring pointer
value rin1dd pointer

tine ring head poiner
nameof arowinq

re AB
	

tir 	BC

ne rino pointer 	 tine ring poin.er

	

first point instance ring pt'r 	 •-.----I frst point instance ring t—.--i
-•-• sewnpointinstoncerinopt ._.._._._/ 	 seccird pointti 	

.IIL..:.J.
point A 	 point B 	 point C

point ring poiter 	 point 1 ring poi nr 	 I 	 point ring pointer

Xvatue instance ring pointer 	 r—. --.-- -J X value instance rjointer . 	 X value instance rang Epointer
e
r 	

1..... 	usLoncin 	 YYuu 	sae 	W .

.................... 	 L---
value X 	 volue Y 	 I 	 value X 	 vc (UP Y 0

FIGURE 	15 	original myria.d data structure for two line segments

CHAPTER 4

D
Xa,Yc 	 XbYc

A 	 B
Xa,Ya 	 Xb) Ya

Fig 4.16 Rectangle on Mask 1

The structure does contain group facilities and so a

series of shapes that are used frequently need only be

defined once and then instances are called in the required

positions on the layout. The group structure is very

similar to that used in CAMP except that there is no

special main layout bead; everything is regarded as a

group including not only the main layout of the circuit

itself but also the main layouts of any other circuits

held on-disc. It does, however, have facilities for

deleting a group definition and all the instance or call

beads. This is done by having a group instance ring whose

ring head is in the group definition that joins all the

instances of the definition.

The data structure is disc based with certain 'pages'

of the data actually held in core at any one time and so

is therefore capable of handling very large circuits.

117

00

[Tco-ordlnot 	of A 	$
	

[Yco-oranutoorC

FIGURE 417 	modified myriad data structur 	for r?ctQrgtc' on maski

Chapter 4

The structure is extremely flexible but does suffer

from problems of having to number the pointers and of

having a high proportion of pointers to actual data,

requiring very large data structures.

4.5 Other Data Structures

The CAMP and MARCONI data structures were the only

ones that were known that had been applied to integrated

cicuit layout design when the initial GAELIC data

structure was designed. Since that time other integrated

circuit layout design systems have become commercially

avail-able but in general their data structures have not

been described in the literature. However, by talking to

the people using these systems a certain amount of

information has been obtained and this is given below.

The Rdac integrated circuit design program uses a

sequential file for its main data structure and apparently

the whole data structure is searched each time a new

display file is created.

The Calma system also uses a sequential file approach

but subdivides it into disc segments. The bounding

rectangle of the shapes in each segment is stored as a

segment header and is examined each, time a window is

plotted to see if shapes within the segment overlap the

window. It uses similar sequential structures for the

group definitions. 	This system 	can 	be 	reasonably

Chapter 4

efficient on disc transfers if the data is entered in the

correct order ic. all shapes for a particular area of the

layout entered one after another.

The Applicon system makes more effort by sorting

shapes according to their bottom left hand corner and

writing them to specific segments on disc. Again the

bounding rectangle of the shapes in the segment is stored

and examined to see if the segment need be processed. It

appears to have problems with large shapes i.e. large

rectangles and polygons. A large shape in a segment

causes the segment to have a large bounding rectangle and

hence it is processed for most window sizes. Because the

data is divided into fixed sized segments, on the Calma

and Applicon systems there are restrictions on the sizes

of polygons allowed.

The final GAELIC data structure described in the next

chapter makes extensive use of the area concept to

minimise the number of disc transfers. 	Since the work

started, 	two other organisations have been found to be

using area associations in their data structures. 	Bell

Telephone Laboratories have produced what is effectively

an area associated display file which at present is

restricted to rectangles. 	The rectangles are sorted into

areas depending on their size. 	There are, of course,

large rectangles that overlap more than one area and these

are catered for by entering them in each area. This

approach was considered for GAELIC when the final data

structure was being designed but was rejected as so many

120

Chapter 4

areas had to be accessed when a large shape was moved.

I.B.M. research laboratories at Hursley have taken a

similar approach JJ to GAELIC and B.T.L. in sorting

shapes into areas but have found another solution to the

problem of the large shapes. 	They are split up into a

series of smaller shapes by cutting the shapes along 	the

area' boundaries. 	This makes for efficient processing but

does give a layout that is difficult to check as it is

different to the layout actually entered.

121

CHAPTER 5: GAELIC Data Structure

This chapter is mainly devoted to the three data

structures that have been used during the development of

the GAELIC programs. It starts, however, by summarizing

the, requirements for the data structure that were

developed in Chapter 2.

To minimise the amount of data that is held in the

computer memory, all the redundancy that exists in the

input data for the tape controlled coordinatographs must

be eliminated. Rectangles must be described by the

coordinates of a pair of diagonal corners and other shapes

that are paraxial must he described by every other pair of

coordinates. Also there must be facilities for repeating

a series of defined shapes individually or on a matrix.

As the main feature of the GAELIC programs is the

interactive, phase, it is also essential to be able to

perform all the interactive operations as quickly as

possible, the interactive requirements, therefore, must be

born in mind during the design of the data structure. The

requirements were given in detail in Chapter 2 but are

briefly:

To plot out all or part of the layout.

To be able to identify a point on a shape and either

modify or delete the shape.

Identify the origin of the instance of a group and

either delete it or change its orientation.

Identify that a shape or series of shapes are

122

CHAPTER 5

repeated and be able to modify the number of patterns or

their spacing.

The Wolfson Microelectronics Liaison Unit received a

contract from General Instrument. Microelectronics Ltd. to

write a suite of computer programs to produce drive tapes

for a tape controlled coordinatograph from either data

tapes from a digitiser or from manually prepared data.

These programs were to run on a particular commercial time

sharing service. This service did not at the time have

any random access facilities for data files used in

Fortran programs and so it was not possible to use

sophisticated data structures. This restriction resulted

in a suite of computer programs known as PAELLA (Plotter

Aided Engineering Layout of Linear Artwork) which uses the

version of the sequential block data structure described

below.

5.1 The Sequential Block Data Structure:

The sequential block is about the simplest data

structure that can be used for this type of work. The

structure is simply created by sequentially writing the

blocks of data to arrays or disc files. In our case each

block contains the data describing a shape and is written

to an array or file in the order in which it appears in

the input data. The blocks vary in length for different

shapes e.g. a rectangle requires 6 elements and a 6 sided

paraxial polygon requires 10 elements. An example of the -

123

CHAPTER 5

data for several shapes in a sequential block structure is

shown in fig.5.1.

The basic sequential block data structure is not very

efficient Ufl1CSS all the data can be held in an array in

core. This is because the whole of the data must be

searched sequentially to find a particular item rather

than searching through the series of items having similar

attributes. For example, if a particular shape on mask 1

is required then it is desirable to sort through the

shapes on mask 1 and ignore the shapes on masks 2, 3 and

4. The main advantage of the data structure is that it is

compact and so can often be held entirely in core when a

more sophisticated data structure would have to be held on

backing store. To search the sophisticated structure will

therefore require data transfers to and from the backing

store and this obviously takes time. With integrated

circuit layout designs, the amount of data is so large

that it cannot possibly be held in core and so must be

held on disc or other backing store. Any use of the basic

sequential block data structure for integrated circuit

layout design must, therefore, be inefficient. 	There are

two other problems with the basic data structure: 	firstly

the data must be processed in the order in which It is

entered and this is not necessarily the best order for

subsequent processing. Secondly it is difficult to handle -

the group and repeat facilities. 	If these facilities are

to be used then a count must be made of the number of data

elements processed In the file when a group instance is

124

x4, y4

X3, y3

x2, y2

x5. y5

xl,yl

I

2

3

1.

5

rectangle 	marker

mask 	number

xl 	value

yl

x3

6

7

y3

polygon 	marker (s)

8

9

10

11

12

13

IL.

15

16

17

18

19

20

mask 	number

xl 	value

yl

x2

y3

x4

y5

x6

y

polygon 	marker 	(I)

mask 	number

x 	value

yl

21

22

23

24

25

26

27

Th

x2

y2

0

y3

xt.

y4

x5

YS

29

30

31

xl

yl

rectangle 	marker

xL., 4 	 x3,y3

xl,yl. 	 x2, y2

x6, y6 	 xS, YS

y4

xl, yl 	x2 y2

Fig 5.1 	Sequential block data structure

125

CHAPTER 5

encountered. The file must be rewound and searched from

the beginning for the appropriate definition. When this

is found, then the shapes contained are processed after

being suitably modified to account forposition and

orientation of the instance. -'The program must then return

to the beginning of the data structure and all the

elements skipped until the count is reached and the main

processing continued. This., necessity to return to the

beginning of the file whenever group instances or repeats

are met is extremely inefficient and not a practical.

proposition for large amounts of data.

Certain of these disadvantages can be overcome by the

use of extra sequential block data files and the methods

by which this can be done are discussed below. However it

must be remembered that in the commercial time service

used aL rnaxiiu.m: 'ó.oniy:. four disc channels i.e. four disc

files were allowed to be open at any one time and this

necessitated the restriction that repeats cannot he nested

i.e • a series of shapes to be repeated cannot contain

another series of repeated shapes..

To enable each mask in turn to be plotted out

quickly, it is desirable to have the shapes for each mask

on a different file. Unfortunately the number of masks

can vary between 4 for a simple MOS process and 16 for a

complex Bipolar process. The maximum number of masks must

be catered for even though on average less than half will

actually be used. This results in a requirement for 16

disc files and, preferably 16 disc channels. This is

126

CHAPTER 5

impractical and so all data for the shapes in the main

layout definition have to go into the one file to be

scanned in toto for each mask in turn.

The group definitions, however, need to be separated

from the main definition, and again each definition should

theoretically go into a separate array or file to enable

it to be found and processed quickly. Again because of

the variation in the number and size of the group

definitions it is impractical to use separate arrays and

the number of disc channels available limits the number of

files allowed. Consequently all the group definitions

must also go into one file.

This restricts the system to the one whose block

diagram is shown in fig. 5.2. Here the order of entering

the data is flexible i.e. the shapes on mask 3 can be

entered before the shapes on mask 2 or a shape on mask 2

can be preceeded by a shape on mask 4 and can be followed

by another shape on mask 4. Also group definitions can be

entered in any order. The process of converting input

data into drive tapes for tape controlled coordinatographs

is as follows. After checking the data for syntax, it is

converted into the purely numeric form known as the 'dump

code file' . (This is a basic sequential block data

structure) This file, is subsequently sorted into two

separate sequential data files, the first contains all the

main shapes and main repeats and the second contains all

the group definitions. The program now returns to the

beginning of the main file and each shape is looked at in

127

oI
jI

IiiiIIIIiiiiij 	
t 	w
\ 	CLI

'

ILI

\ 	o—I
-

oi
\o-iI

28

E

-J
-J

LU

CL
4

0

E
0

U
C,

-o

C-)

0

rt

w

0

LA-

CHAPTER 5

turn to see if it is on the required mask. If the shape

is required, then it is written to a new file, if not, it

is ignored. This new file is called the 'coordinate file'

and contains the basic information required by most tape

controlled coordinatographs, that is the coordinates of

every corner of every shape of each mask in turn. This

co-ordinate file is subsequently post-processed to either

drive an on-line plotter or to give the drive tapes for a

particular coordinatograph.

When a group call is encountered then the group

definition file is searched from the beginning for the

appropriate definition. When the definition has been

found, the shapes that are on the required mask are

written to the coordinate file, taking into account the.

position and orientation of the call. The program then

returns to continue reading from the main file.

When a repeat header is found, all the shapes to be

repeated are first written to a separate 'repeat' file.

The repeat file is then rewound and the shapes written to

the coordinate file the required number of times with the

appropriate increments on the co-ordinates.

As stated earlier the system is capable of providing

check drawings from the co-ordinate file and can

conceivably be modified to alter the position of shapes

but it does have problems when it comes to deleting shapes

and drawing new ones. This can only be done by copying

the file up to the header of the shape to be deleted,

129

CHAPTER 5

skipping the marker and coordinates of the shape and then

copying the remainder of the file. Adding new shapes at

the end of the file may be feasible on certain computer

instalations that allow extra data to be subsequently

appended to a file, but adding a shape to a group

definition again requires copying the file, and this is

obviously time consuming. 	Corrections on the system

implemented are, 	therefore, always made to the manual

input language.

When additional facilities were 	added 	to 	the

commercial time sharing service which enabled the user to

start reading from the sequential file at some point other

than the beginning of the file, the process was speeded

up. This was done by the program storing the starting

address of each particular group definition as it was

written in the group definition file and then going

directly to that position on the file when the definition

was required. It was a system with this facility that was

used in the comparative tests discussed in Chapter 8.

5.2 The Initial Ring Data Structure:

A ring data structure provides a more versatile

method of storing or handling the data for a layout. It

does not have the restrictions on the repeat nesting nor

the problems of processing unnecessary information that

are present in the the sequential block structure. The

block diagram of the system using a ring data structure is

130

CHAPTER 5

shown in fig.5.3 and the actual data structure used is

shown in fig.5.4.

It is a hierarchical structure in that it has beads

which hold the head pointers of rings of beads of the next

hierarchical level e.g. the main definition bead' contains

the head pointers to the rings of the group definition,

the repeat definition and the main mask beads. These

beads in turn have rings of beads of the next level. The

program works at one level going round a ring checking

each bead in turn until the required bead is found and

then descends to the lower level and goes round the next

ring, it does not need to descend to this lower level

unless it requires data e.g. the program will go round a

mask ring, (the ring containing the mask beads) until it

finds the required mask number and then will descend to

the lower level and process the shapes on that mask. It

does not have to process shapes on any mask other than the

one required.

The full data structure at first sight appears to be

complicated but can be understood by considering first of

all the main definition on its own as shown in fig 5.5.

The whole of the ring data structure is built up on a main

definition bead which is shown in fig 5.6.

!31

CALCOMP i3

Frc 5 3 	BLOCK OIRCRM OF INITIRL CRELIC SYSTEM

132

ma In
def initian

Fjaurq 	5.4

L)
L)

main

dfini Lion

L)

mask
	

m ask

rectangle 	polyço n 	 I 	I 	rectangle 	polygon

Eigur e 	55

CILAPTER 5

1 	 5 	 4

Garbage Ring Head Pointer

Spare Ring Head Pointer

Group DefinitionR. H. Pointer

Repeat Definition R. H. Pointer

Main Area Ring Head Pointer

Minimum X Coordinate

Minimum Y Coordinate

Maximum X Coordinate

Maximum Y Coordinate

Fig 5.6 	Main Definition Bead

The bead contains the head • pointers of several other

rings that are used in the data structure and their. use

will become clear as the structure is developed. The last

of these ring head pointers is the start of the mask ring

and fig 5.5 shows how this ring contains a series of mask

beads, one for each mask used in the layout. Each mask

bead is similar to the one shown in fig 5.7 and contains

the pointer to the next mask bead, the head pointer of the

appropriate shape ring and the number of the mask.

135

CHAPTER 5

n 	 2 	 1

Mask Ring Pointer

Shape Ring Head Pointer

Mask Number

Fig 5.7 	Mask Bead

The shape ring contains the shape beads holding the

description of shapes on the particular mask. There are

three basic shapes that can be described these are the

RECTANGLE, POLYGON and LINE. An example of a polygon bead

is shown in fig 5.8.-

136

CHAPTER 5

2 	 1

Shape Ring Pointer

Minimum X Coordinate

Minimum Y Coordinate

Maximum X Coordinate

Maximum Y Coordinate

Format

Initial X Coordinate

Initial Y Coordinate

It

Er

Final X Coordinate

Fig 5.8 	Polygon Bead

The head word is as usual split into three fields,

the first field contains the 'type' of shape bead in our

case the number is 2 for a polygon (number 1 indicates a

rectangle and number 7 indicates a line). The second field

contains the number of pointers in the bead and the third

field contains the number of data words. The data of the

polygon bead consists of. the coordinates of the bounding

rectangle of the polygon, the format number (8388527 for a

short format, and 8388526 for a long) followed by the

actual coordinates of the polygon.. 	 .

137 	 .-. -.

CHAPTER 5

A polygon or ° line can have up to 1000 corners and so

it can take a long time to go through the data of the

shape only to find that none of the shape appears within

the window. For this reason the bounding rectangle of

every polygon or line is computed as the data is entered

and the co-ordinates of this rectangle are stored in the

the first four data words of the bead. Each time a shape

is processed, an initial check is made to see whether any

of the shape appears within the window, before processing

the actual co-ordinate data.

The data structure is built up by initially creating

the main definition bead and setting all the ring pointers

to point to themselves. As the first shape is read in,

the appropriate mask bead is created and added to the main

mask ring. The appropriate shape bead is then set up and

added to the shape ring of the new mask bead. When

subsequent shapes are read in, the mask ring is searched

each time for the appropriate mask bead. if the bead is

found then the new shape bead is created and added at the

beginning of the shape ring. However, if the mask bead

does not exist a new bead is created and inserted at the

beginning of the mask ring. The shape bead is then

created and added to the shape ring. The shapes and masks

are added at the start of the rings for speed, as the

value in the head pointer is simply transfered to the

pointer in the new bead and the address of that pointer

entered into the ring head.

M.

CHAPTER 5

The process of plotting out a main data structure

consists of going round the mask ring until the

appropriate mask bead is found. The area ring of the mask

bead is then processed, plotting out each mask in turn.

If a window is to be plotted, the bounding rectangle of

each shape is checked against the window and shapes

outside the window are ignored and the next 	shape

.processed. 	This has very little saving for a rectangle

where the bounding rectangle consists of the actual

coordinates, but has considerable savings with polygons

and lines, where there can be up to 2000 coordinates.

Identifying the nearest point in the layout is very

similar to plotting, the mask ring is again searched for

the appropriate mask and then the shape ring is processed

shape by shape checking each pair of coordinates within

the window in turn.

The above description applies to the main part of the

layout and does not use any of the group and repeat

facilities. The methods of handling the group and the

repeat structures are basically the same and consequently

only the group structure will be dealt with in detail. A

group call or instance bead is shown in fig 5.10.

139

CHAPTER 5

6 	 2 	 5

Shape Ring Pointer

Instance Ring Pointer

D. P. to Group Definition

D. P. to Group Value Bead

Ma s kwo rd

Name 1

Name 2

Fig 5.10 	Group Call Bead

	

Group call beads appear as a 'shapes' 	on the shape

rings of the various masks used in the definition e.g. if

a group definition contains shapes on masks 1, 2 and 3 and

there are instances of the group called in the main

definition, then there are group call beads on the shape

rings of masks 1, 2 and 3 of the main definition as shown

in fig. 5.9.

When a group call is processed the appropriate group

definition is found by means of a direct pointer and the

the shapes on the appropriate mask of the definition are

then processed. The use of the direct pointer may appear

redundant as there is a group instance ring joining all

the group calls to a particular definition and whose head

pointer is in the definition. The program could obviously

lieU

ma i n
dauiniton

F i guru 	5.g

CHAPTER 5

trace its way round this ring to the definition. 	It must

be remembered, however, that there can be of the order of

100 group calls on certain layouts and on these layouts

the program would, on average have to pass through 50

group calls before reaching the definition and the process

is therefore time consuming. The group instance ring is

actually present so that individual group calls or group

definitions can be deleted. The position of the group

call and its orientation could be stored in the group call

bead as shown in fig 5.9. This has the severe disadvantage

that if the position of the call or its orientation are

modified on say mask 1, then the same modification must be

made on all the other masks that contains a group call

head. The designer can very easily forget to do this

especially if many modifications are performed on mask 1

before modifying the other masks This would create

errors in the layout which are not easy to detect. This

problem is overcome by setting up 3 'value' beads which

are inserted onto a. special value ring. These beads

contain the values of the x and y coordinates of the group

origin and its orientation. The group call bead as shown

in fig 5.10 contains direct pointers to the value bead

heads instead of the actual values and this gives the data

structure that will handle the group facility shown in fig

5.11.

The way in which the group facility is built up in

the data structure is a little complicated in order that

the input data can have calls to a group before the group

142

main
definition

mask
	

mask

rectangle 	polygon
	

group call
	

rQctQngl
	

Ii n2
	

group call

value 	 value 	\ 	IQU

pdfiniti-on

L
I 	mask 	 mask 	I

rctang 	 rectangle 	rectangle 	rectangle
-

Fiaur o511

CHAPTER 5

is defined and vica versa.

When a 	group 	definition is 	encountered 	first 	in 	the

input 	data, 	the 	appropriately named 	group definition bead

is 	created 	and 	added 	to 	the group 	definition 	ring. This

group 	definition 	bead 	is very 	similar 	to 	the main

definition bead 	shown 	in 	fig 5.6 	except 	that:

The 	first 	field 	in 	the head 	of 	the 	bead, 	the type,

contains 	the 	number 	2.

The 	group 	definitiion ring 	pointer 	is 	the first

pointer 	in 	the 	bead

The group 	instance 	ring head 	pointer 	is 	the second

pointer 	and

Two 	extra words 	appear 	at 	the 	end 	of 	the 	data words

and 	these 	contain a 	numeric representation 	of 	the 	name of

the 	group. 	 -

The various mask and shape beads are then added to

the group definition bead in exactly the same way as they

are added to the main definition bead until the end of the

group is reached. -

When a call to a particular group is entered before

its definition, then the group definition bead is again

set up but this time there will be no shapes to be added.

Three value beads are set up and added to the value ring.

Each value bead consists of 3 elements: the bead head

which contains the usual 3 fields, the type, the number of

pointers 'and the number of data words, 	the value ring

pointer and the actual value. 	In this case the first ring

144

CHAPTER

has the value of the x origin of the group instance, the

second has the value of the y origin and the third has the

orientation. The group call beads are then set up and

added to the shape rings of the appropriate masks and

direct pointers to the head of the group definition, the x

origin, y origin and orientation beads are added as shown

in fig. 5.11.

The way the program discovers whether the group

definition or group instance have already been encountered

is to search the group definition ring for the appropriate

definition bead. If the definition bead is present then

the address of the bead head is noted and the group call

or group definition processed as described above. If a

definition for a particular group is encountered a second

time, an error message to that effect is printed out and

the initial definition is overwritten. More than one

group call to the same definitionare of course legal and

so are added to the data structure, each new call having

its own value beads and group call beads. Group calls to

one definition can occur in another group definition, or

in a repeat definition, as well as in the main definition.

These are processed in the same way except that the value

beads and group call beads are added to the appropriate

definition. The 'type' of the value bead also reflects

the type of calling definition and is set to 1 for a call

from the main definition, 2 for a call from another group

• definition and 3 from a repeat definition. This is not

essential for the program operation but makes debugging

145

CHAPTER 5

the program a lot easier.

When processing the data structure to produce a plot

or identify an actual point, 	the group call bead is

obviously encountered. As explained in Chapter 3, 	the

user is not allowed to modify shapes in the instance of a

group but can modify the position or orientation of the

instance. When the origin of an instance is identified,

the direct pointers to the value beads are then followed

and the values of the x and y origin compared with the

coordinates of the cross hair cursor and then the next

shape is processed. If plotting then as well as following

the direct pointers to find the position of the call and

its orientation, the direct pointer to the definition is

followed. All the shapes in the definition are then

processed, transforming all the coordinates to account for

the position and orientation of the instance. When all

the shapes have been processed the program returns to the

next shape bead after the group call bead.

The method of handling the repeat facility is very

similar and the data structure with repeated shapes is

shown in fig. 5.11 The value beads in this case contain

the number of patterns and the spacing between theme

The repeat call is contained implicitly in the repeat

definition and so we have a simpler system for building up

the data structure, the only slight complexity is the fact

that 'repeats' can occur in the main definition, in group

definitions or even nested in other repeat definitions.

146

CHAPTER 5

This means that when the repeat definition is encountered

in the input data the program must assertain which value

ring and repeat definition ring must be used.

Processing the repeat calls is again similar to

processing group calls, the first pattern only is

processed during modification but all the patterns being

processed during plotting.

This bounding rectangle concept that is used on the

polygon and line beads is taken a stage further by

calculating the bounding rectangle of each definition as

the shapes are entered, and storing the co-ordinates of

this rectangle in the definition bead. 	This has two

advantages: 	when a group or repeat call is processed the

bounding rectangle of the definition, modified by the

position and orientation of the call, is checked against

the window and if outside, the definition is ignored. The

other advantage is that when a definition, main, group or

repeat, is being plotted the user can be given the minimum

window size that will allow a plot of the whole

definition.

Beads that are deleted are put onto a 'garbage' 	ring

ready for re-use if required and the pointer in the

previous bead changed to point to the following bead and

so once deleted the bead is not processed again.

1 47

CHAPTER 5

5.3 Problems with the Initial Data Structure

The information held in the initial ring 	data

structure is not necessarily in the most efficient form

for subsequent processing because the information can be

fragmented over the disc. The effect of this inefficient

storage of data is not normally noticed on the

Decsystem 10 because of the low data 'rate (1200 baud)

available to the Tektronix storage tube terminal and the

fact that the users program is being continually swapped

in and out of core by the time sharing executive. However

when designing large integrated circuit layouts, say above

150thou square, delays can be noticed, usually during

modification, that are due to the number of disc transfers

required.

The reason for the large number-of disc transfers can

be 	understood by considering the following example.

Assume that a plot of a window on mask 1 is required. 	To

do this the mask ring is searched, examining each mask in

turn until the appropriate mask bead is found: the shape

or contents ring of the required mask bead is then

traversed examining each shape in turn and plotting those

within the required window. Assume that the program can

only have three pages of the data structure in core at any

one time and that initially these are 'pages 1, 2 and 3. If

the first page containing a shape on the required mask is

page 27 then one of the pages presently in core say page 1

must be overwritten by page 27. The shape on page 27 can

then be processed. The next shape could well be on page

148

CHAPTER 5

28 and so page 2 must be overwritten by page 28 and that

shape processed. The next shape may be on page 1 which

will have to be brought back into core again, this time

overwriting page 3. If the data is awkwardly fragmented,

the next shape may be on page 3. i.e. the one that has

just been overwritten, and so page 3 must be brought back

in again this time overwritting page 27. This arrangement

is obviously extremely inefficient and occurs when each

shape is in virtual isolatiion i.e. is apparantly on a

separate page. If therefore, all the shapes on a given

mask were arranged to he on the same page then once this

page was brought into core then no other disc transfers

would be required to plot or modify that mask.

The obvious solution is therefore to arrange that all

the shapes on a given mask are on the same or consecutive

pages and this raises the obvious question 'why isn't it

done?' This is a question that is much easier to ask than

it is to answer. Chapter 2 shows that the average

designer will produce the layout of all the masks of a

given section simultaneously. His natural reaction is

therefore to specify the input data for the section as

soon as he has designed it, and then, after checking and

modifying the layout, will proceed to design the next

section. The pages of the ring data structure are written

consecutively i.e. page 1 is filled before page 2 is

started. Thus the data for one section of the layout will

go on the same page or consecutive pages i.e. the shapes

on mask 1 for the section will he near the shapes on mask

149

CHAPTER 5

2 for the same section. 	However shapes on mask 1 for

another section will probably be on another page.

If the designer designs and draws the complete layout

and then and only then passes it over to a tracer or

similar grade of staff to be digitised, then the data can

be entered into the computer mask at a time. All the data

for mask 1 will therefore be entered onto adjacent pages

of the data structure. This appears at first to be the

obvious solution to the problem but does assume that the

designer is prepared to design the complete layout before

the data is entered into the computer. This method also

means that the full facilities of the GAELIC system, for

example the group and repeat facilities, cannot be

exploited and therefore involves the designer in a lot of

unnecessary work. Exactly the same argument applies to

coding the completed layout using the manual input

language and so this is not a viable alternative.

it is therefore inevitable that 	the 	data 	is

fragmented onto different pages if the designer is to be

allowed to design in the way that is most natural to him.

A designer always works best when as few constraints as

possible are put upon his method of working and it is

essential that those constraints that are absolutely

necssary are easily understood.

There is another reason why the data is fragmented on

the disc which is concerned with adding shapes directly by

means of the cross hair cursor on the Tektronix screen.

150

CHAPTER 5

All shapes that are added during the interactive •phase are

placed on the last page of the data structure -regardless

of where other shapes on the same mask are situated. If

the complete layout is designed on line, then the

resultant layout can be fragmented througheut the disc.

however, the occasional shape that was missed from the

input data can be added without any noticeable

deterioration in response.

In order to allow the designer to have the necessary

flexibility in the input data and to cope with large

numbers of shapes added interactively, it is essential to

be able to order the information in the data structure

after it has been initially created rather than ordering

it on input. There are three ways in which this ordering

can be accomplished. Firstly a new ring data can be

constructed from the old fragmented structure. Secondly a

new dump code file can be created from the old ring data

structure and thirdly a new manual input language file can

be created from the ring data structure.

The first option is perhaps the most elegant but does

have core store and programming problems as two ring data

structures must be handled simultaneously. The second

option requires only one ring data structure and one

sequential file and is therefore easier to program and

requires less core store. This approach was programmed

successfully for the early GAELIC software but was not

used in practice by integrated circuit designers. The

designers had no confidence in the method as they could

151

CHAPTER 5

not manually check the binary dump code file before it was

'recompiled' back into the new ring data structure. This

is a difficulty that is not always realised by the

applications programmer: the designer has to undergo a

traumatic change in his design technique when he starts

using a CAD facility and is naturally very sceptical. He

is having to put his design into the hands of a computer

and a computer as far as he is concerned is the cause of

mistakes in his gas bill and is the reason why his

queries about car insurance take so long. If he can be

reassured at intervals that everything is alright and

completely under his control, then he will settle down to

• 	the new technique that much quicker. 	The ability to

•

	

	quickly plot out part of his design is one reassuring

feature and the ability to do spot checks on the manual

input language is another. 	People using the programs

therefore, 	preferred the third alternative method of

creating a new ring data structure i.e. converting the

fragmented data structure back into the manual input

language, even though this required an extra stage of

processing (converting the manual input language into a

dump code file) . This third alternative has the additional

advantage that it allows the use of 'library' components.

The designer designs a section of a layout that performs a

specific function e.g. an R.S flip-flop, enters the

description into the computer and interactively checks and

corrects his design. He then produces a corrected version

of the input language file which is stored on disc or

magnetic tape and is called up whenever the component is

152

CHAPTER 5

required. There is yet another advantage in the ability

to create a manual input language file from a ring data

structure. As the input language file consists of ASCII

characters the file can easily be transfered from computer

to computer.

The program (GAEL7) 	that converts the ring data

structure back into the manual input language is arranged

so that it processes all the shapes on one mask before it

processes the shapes on the next. Hence the manual input

language has the shapes in this same order. When

recompiled back into a new ring data structure, the shapes

on one mask are put on the same •page or consecutive pages.

Thus this new data structure will plot out all the shapes

on one mask with the minimum number of disc transfers.

When designing large integrated circuit layouts, it

is not practical to plot the whole of a mask on the

Tektronix 4010 terminal because of its limited screen size

and resolution. This does not detract from the use of the

terminal as most the designer requires to look in detail

and modify small sections of the layout otherwise known as

windows. The user not only requires to plot or modify one

mask at a time but also requires to examine several masks

superimposed on the same plot. The time taken to plot out

a window for a given mask can be appreciable as the data

for all the shapes on the mask must be processed to find

those within the window. Certain features of the data

structure described earlier in 	this 	chapter 	allow

instances of group or repeat definitions to be ignored if

153

CHAPTER 5

the are outside the window. These features do reduce the

amount of processing but neverthiess a lot of unnecessary

data will have to be processed especially if there are not

many grouped or repeated shapes.

There is therefore, a requirement to modify the data

structure so that the amount of information that must be

processed for a given window is reduced to a minimum.

There are four possible approaches to solving this problem

that were considered, these were:

Shapes within a window are placed on a fixed size

page.

Shapes within a window are placed on a variable size

page.

Shapes within a window are placed on a fixed size

page until it is full and then the remaining shapes are

placed on consecutive pages.

Shapes within a given area are placed on special

rings associated with that area and are periodically

arranged to be on consecutive pages on the disc.

Let us now consider these four approaches in a little more

detail.

The first approach is extremely rigid and has the

following features:

1) A page on the disc must be provided for every

possible window of the maximim size of chip. used i.e.

regardless of the size of chip being designed. This means

1514

CHAPTER 5

the data structure must always be the same size and must

always be maximum size.

Each page must be big enough to contain the maximum

number of shapes that are possible within the window

regardless of the fact that the window only, contains on.y

one shape.

The window size is related to the page size and need

not be related to the window size that user would wish to

use.

When a shape is moved from one window to the next,

the shape description must immediately be added to the new

page and then deleted from the old and this can cause

problems.

There are always shapes in an integrated circuit that

start in one window and finish in another and these cannot

be accommodated with this approach.

There must be the appropriate mechanism in the

program to select the appropriate page and bring it into

core. This is a fundamental problem associated with all

three appproaches and is added mainly for completion.

The must be a garbage collection and re-use system

operating on each page to re-use the space freed by

deleting shapes.

The second approach is more flexible because of the

variable size of page. 	A lot of work has been done by

Hubbald [ref 5.11 on the variable page data structure. 	It

has the following features:

1) the pages need only be provided on the disc when they

155

CHAPTER 5

are required and so the data structure size is kept to a

minimum.

There must be a mechanism in the program to expand or

contract the page as shapes are added or deleted.

The window size is again fixed by the maximum size of

page allowed and the number of shapes that it can contain.

There is still a problem with moving shapes from one

window to 'the next and with shapes that start in one

window and finish in another.

Them must be a mechanism to sort out which page to

bring into core and which page or pages to write back to

disc to make room for it. For a variable length of page

this is an extremely complicated algorithm.

The third approach is more flexible still and has the

following features:

Pages are again only used when required and so for a

small layout only a small data structure is required.

The pages can be made a convenient size for the

computer and do not depend on the window size required.

The window size is still predetermined and cannot 'be

changed by the user.

There are still problems with moving shapes from one

window to another and with shapes that start in one window

and finish in another..

The fourth approach has a fundamental difference from

the other approaches in associating the shapes with areas

of the layout and not with windows and has the following

features:

"I 	
156

CHAPTER 5

The window size 	is 	determined by the user without any

constraints 	from 	data 	structure 	size 	or page 	size.

The •size 	of 	the 	data 	structure 	is dependent 	on the

size 	of 	the 	layout. 	i.e. 	pages 	for windows need not be

created 	unless 	they are 	required.

The mechanism 	for 	swapping 	pages can be 	the 	same as

that 	already 	used 	in 	the 	initial 	data structure.

When 	shapes are moved 	from one area to 	another, only

the 	pointer values need 	be changed 	to associate 	it 	with a

new 	area. 	 -

The 	problem 	of 	shapes 	that 	start in 	one 	area and

finish 	in 	another 	is 	still 	present.

There must 	be a mechanism 	for 	reordering 	the data

structure 	on 	the 	disc 	so 	that 	shapes in a 	given area are

on 	the 	same 	page or 	adjacent 	pages.

This last approach is extremely flexible and is

therefore the one implemented. As described, it still has

several problems associated with it that have to be

solved. 	Probably the most important of these is how to

decide with which areas shapes are to be associated. 	Fig

5.12 shows a section of integrated circuit layout with a

gridsuperimposed which divides it up into areas. It can

be seen that there are two main classes of shapes, those

that lie entirely within an area and those that do not.

The problem is what to do with the latter. There are

three options:

1) Treat these shapes the same way as those lying

entirely within the area and associate each shape with the

157

CHAPTER 5

area in which it starts. This is a non-starter as this

means that every area must be processed for even the

smallest of window just in case it contains a shape that

extends into the window.

Associate shapes that are entirely within an area

with that area and treat all the remaining shapes as

special cases. When plotting or modifying only the area

or areas within the window and the special shapes need be

processed. This is a far more practical approach but has

the fâ-isadvantage that there are an awful lot.-of special

shapes that must be processed for each window.

A closer look at fig 5.12 shows that these specials

can be split into two subdivisions, those that start in

one area and extend only to an adjacent area and those

bigger 	shapes 	that extend further. 	This allows a

modification of the second option so that shapes entirely

within an area and shapes that only extended into adjacent

areas are associated with that area and only shapes

extended beyond the adjacent areas could be treated as

specials. This modified option was chosen as it meant

that there were only a few special shapes to be processed

for all windows and the only areas that needed to

processed were those contained within and adjacent to the

window.

The numbering of the areas is also an interesting

problem. The obvious solution is to number the areas on a

raster as shown if fig 5.13.

P 	 158

C

F IGURE 512 	LGyouL showing relationship between shapes and areas

159

CHAPTER 5

25 26 27 28 2930 31 32

1718 19 20 21 22 23 24

9 10 11 12 13 14 15 16

1 	2345 	6 	78

Fig 5.13

The actual area number can be quickly evaluated. However,

on giving the - problem a little more thought, it can be

realised that by modifying this numbering order, it is-

possible to overcome one of the common problems met when

plotting large composite drawings and when actually

cutting the cut and peel material. This problem is to

minimise the distance traveled and hence the time spent

with the pen or knife up. Only when the pen is down and

drawing is it doing useful work. It is very difficult and

time consuming to sort the information in the data

structure so that it can produce a drive tape for the

coordinatograph that has the data in the optimum order.

It can be done whilst entering input data into the

computer but that is contrary to the policy of putting as

few constraints as possible on the input data preparation.

If the method of numbering area beads as shown if fig

5.6 is used and the areas are plotted out in sequence,

then there is a distinct improvement over any random

method. There is obviously very little distance between

shapes in each area and very little distance between - -

160

CHAPTER 5

adjacent areas so travel with the pen up is minimised.

The main travel is during, the 'flyback' e.g. when

travelling from area 8 at the end of the first row to area

9 at the beginning of the second.

The optimum solution would be appear to be to arrange

the area beads in a spiral starting in the middle of the

layout as shown in fig 5.14.

17 16 15 14 13

18 5 	4 	3 12

19 	6 	1 	2 11

20 	7 	8 	9 10

21 22 23 24 25

Fig 5.14

This method does present certain implementation problems

such as finding the middle of the circuit to start the

counting when circuit sizes obviously vary and evaluating

which areas are required for a given window.

A modification to the basic spiral can be made so

that it starts at the bottom left hand corner of the

layout as shown in fig 5.15.

161

CHAPTER 5

17 18 19 20 21

16 15 14 13 22

5 	6 	7 12 23

4 	3 	8 11 24

1 	2 	9 10 25

Fig 5.15

Plotting from this type of numbering system is excellent

for a full layout or a full mask. However, the algorithms

required to evaluate the correct area for a shape as it is

entered and to evaluate the correct areas to plot a window

are extremely complicated.

Complication for its own sake is never worth while

and the numbering sequence finally chosen is shown in fig

5.16.

32 31 30 29 28 27 26 25

17 18 19 20 21 22 23 24

16 15 14 13 12 11 10 	9

12345678

Fig 5.16

It has the beauty of being a simple system to implement

1 	 162

CHAPTER 5

using a fast algorithm to calculate with which area a

shape should be associated and which areas should be

plotted and yet minimises the travel with the pen up. The

problems of further optimisation of plotting files are

discussed in Chapter 7.

In this section we have discussed methods of speeding

up the plotting of windows and indentificationsof points

in the data structure. Some of these require additional

programs to rebuild the the original data structure and

these programs are available in system using this

structure. Others i.e. those involving the use of areas

required a new data structure and this new structure is

now dealt with in more detail.

5.4. The Final Data Structure.

There are two ways in which the area concept can be

incorporated into the data structure and these are shown

in figs 5.17 and 5.18. The first method (fig 5.17) has

mask beads that instead of containing the head pointer of

the shape ring contain the head pointer to a ring of area

beads, usually known as the area ring. There is an area

bead for each area occupied on the mask. Each area bead

contains the area number and the •head pointer of the

appropriate shape ring. Once constructed the data

structure can be reorganised to arrange all the contents

of the area ring to be on one page or on consecutive

pages. In this case all the shapes on the given mask will

163

:N DE FDTrIR4 9ED

MSY UP-1

Cl
Ef AD 	 IMP LE-U

EC) 	LINE MR) 	j I PECT;rC,E EC3 	C.1':U tEJ

-
	5 17 	5T1.Jt7 	D VKCH T 	 CQYT 	TrE FffR ?UCS

CHAPTER 5

be on the same page but not shapes on another mask.

However shapes on the given jiask that are in the next area

are placed immediately after those for the first area and

so will be on the same page or consecutive pages. This

makes this particular system of implementing the area

concept ideally suited for operations that involve one

mask at a time and require consecutive areas.

Modification immediately comes to mind in this context.

It is not so well suited to operations that involve shapes

on more than one mask in the same area as shapes on

another mask will probably be on another page.

The second option (fig 5.18) has the main definition

bead modified so that instead of having the head pointer

of the mask ring, contains the head pointer of the area

ring. Each area bead contains the area number but instead

of the head pointer of the shape ring, contains the head

pointer of the mask ring. Each mask bead is the same as

in the initial data structure, i.e. contains the mask

number and the head pointer of the shape ring: the shapes

on this ring however contain only shapes within the

appropriate area. This arrangement is preferable for

operations that involve shapes on more than one mask

within a given area and plotting is the first operation to

come to mind. This is because when the data structure is

reorganised, the contents of an area are put on the same

page or consecutive pages i.e. the mask beads and all the

shapes.

165

i;i,4 3Err2rI't

W11 LEAD

I I 	iE V EFU 	PECTRIC7LE EEPU

THE

CHAPTER 5

The choice of which sytem to implement depends on

which is more likely to be required , operations involving

one mask and consecutive areas or those involving shapes

on several masks in the same area. The user spends most

of his time working on a window of the layout and only

certain areas are required. These are by definition not

always consecutive as can be seen in fig 5.19.

33 34 35 36 3738 39 40

32 31 30 r87i 26 25
window

1718 19i20121122'23 24
areas examined

	

16 15 14:13 12 11:10 	9 	 -•

L --------- --

1 	2 	3 	4 	5 	6 	7 	8

Fig 5.19

The areas required for the window are 11, 12, 13, 20, 	21,

22, 	27, 	28, 29 which are some consecutive areas and some

nonconsecutive. There are many area beads between

the consecutive triplets that are not required for the

window and so on balance the second option is the one to

choose. There is another reason that substantiates this

choice and this is discussed in detail in Chapter 7 in

section 4 when the organisation of the data structure on

disc is discussed. It is shown there that in order to

process unwanted area beads quickly, all area beads should

be on the same page. The fewer area beads the easier it

167

CHAPTER 5

is to reach this objective.

The size of the grid that divides -the layout 	into

areas can obviously be varied giving different area sizes.

The size of the area can have an effect on the program

performance and it is necessary to find the optimum size.

The reason for the variation in performance with size can

be understood by considering the extreme cases. If the

area is too big then most areas will have to be processed

regardless of the size of the window used. This is shown

in fig 5.20 which shows the complete layout divided into 9

areas, and shows a small window in the centre area.

Shapes in the adjacent areas can extend into the centre

area and hence into the window and so all 9 areas must be

processed each time the contents of the window are plotted

or modified.

The other extreme is to have so small an area that

all shapes extend beyond their adjacent areas and so are

placed in area 0 which is reserved for the special shapes.

The shapes in area 0 are processed regardless of the size

of the window and so the same data is processed for every

window. There is also another problem in that the smaller

the area the more area beads are required. The larger the

number of area beads the larger the number of mask beads

that must b.e in the data structure. The programs handling

the data structure have to check each area bead in turn to

check if it possibly contains shapes within the window.

(the reason for this is discussed in chapter- 7 section 5)

There is therefore a large overhead in data structure size

(C

Fig 5, 20 	SmaLl layout divided 	into 9 	areas

CHAPTER 5

and in CPU time to proce ss all these beads. The optimum

size must therefore lie somewhere between these two

extremes and a theoretical value for this optimum .size - can

be obtained by considering the problem from a different

/

angle.

Let us consider the size of window that will be used

most frequently and the effect of that size on the size of

the area beads. (Occasionally the' user requires an

overview of a large * portion of the layout to identify

sections that require closer examination or to check the

interconnecting metallisation. However, most of the time

he will require much smaller windows that will enable him

to visually check the distance between two shapes and

enable him to position a shape so that it a given distance

from another shape. This means that the users requires a

resolution of one increment. To enable this resolution to

be obtained on Tëkronix 4010 terminal this means a minimum

of two scren units to one layout unit. The screen

resolutio'n is ' 760 by 1024 screen units and as the right

hand side of the screen is used for messages this gives an

active window area of 700 by 700 screen units. The window

size is therefore 350 by 350 layout increments. Let us

now examine the effects of various area sizes on this

window.

If the area size is made the same as the window size

i.e. 350 by 350 layout increments then the number of areas

that have to be processed varies between 9 and 16 as can

be seen in fig 5.21. Any smaller area size would require

170

tn~j =i_:- --- -•±: :: :i: 	9i'r

_L—

it
r I

7r,y-/._

4I21 7 I 	•-±' :-

'
A I:ijir 111J: L _ 	L J"

1' : : I ; tt 	;:: 'i!L4• ii iLJf

EUL LI
I t 	i '

- —

. 	

I
—' ' --- - 	

I ----•:: 	 .1
ir

?illrJ
Ir I l r 	—

8 '-___ •-:
 ._,_

•_'I 	
'ri

i—' q - i

¶T;j- 7T L

fi T.

&h
1 P1T X c j 7 {;_________

_ _____________ _ 	L1i:r.:I:/i •; ::.1:ii
I 	it 	I 	ii

' 'I 	LEI

tt
it

//arQas procQssd)./ windows 	 -.

Fig. 5.21 	Layout divided 	into areas 350 x 350 incrrnntS

171

CHAPTER 5

more areas to be processed for example fig 5.22 shows an

area size of 175 increments square and this requires

between 16 and 25 areas to be processed for the window.

It will obviously take longer to process the increased

number of area beads and will mean more shapes in area 0.

Any larger area size than the window will still

require between 9 and 16 areas to be processed as can be

seen in fig 5.22. .It is probable that the most commonly

used window size will also contain a large number of

shapes completely within the window: if many shapes

extend beyond the window the user would use a larger

window to see what is happening. It therefore appears to

give a very strong argument for having the areas size

exactly the same size as the most commonly used window and

that window size is approximately 350 by 350 increments.

Observing a colleague using the programs in anger to

actually design an integrated circuit showed that his most

frequenly used window was approx 250 by 250 increments

which considering variations in human preferences showed a

large measure of agreement.

The programs were written to handle a range of area

bead sizes and the same program and same data were

compared for differing sizes The results are given in

Chapter 8.

The above discussion assumed that plotting was the

most important process in layout design and this is not

really the case. The user is reasonably patient when the

172

::z :tf lJ:L -j:r:r:: T::.:_ _:_ 	::-_::-.=.- I. 	t; i t.• -

t1Jt}h1 Iill1 I l_ _

V 	
: 	- • 	Lu. •-- - . 	 V V. 	V __VV 	•_ __• ••__ 	: L :_. : 	 V

- -: - -- --
- 	------

IL I

t:
ij: tTTTE iTff1iL TITI ETI' T

I1ri
;ft

LJ
YJ -:Ii :

y

44_. 4 '
V {f • r ::

_VjU•
I 	' 	L ---i •.. 	' :-- it1 i 	 ' 	

.: • r I tT ' i E:t 	V ITt

jVI Ii h H

V j1
[1V

jtLl
_

f.l) j
_V

_I iI1 '_V' Il _VV_ IIT'
••-1---r---i•1

VV V

--Vt •••:' . -

-: -''
•'iJ

Lj
.77
.. :Lt:t ,-.

•V 	.r-:.

I :;

(- 1jlI j ir ifijlil I 	L
Ii

•-'1-:----- ---- - -i----- rr4--- :V.V •V__VVVV

•__ __ __ __ __ __ __

areas processed
	 windows

Fig. 5.22 	Layout
	

d i v iciod 	into 	areas 	175 x 175 	increments

173

CHAPTER 5

terminal is plotting out a window of his layout as he can

check the layout as it is being plotted. However, when

waiting for the computer to find the nearest point in the

data structure to the cross hair cursor during

modification there is very little that the user can do and

so he requires a virtually instantaneous response. It is

therefore clear that the modification process is the more

important. The cross hair cursor can be positioned within

two or three increments of the point to be identified and

so it is only necessary to check the shapes that pass

within two or three increments of the cross hair cursor

position. In other words the effective window is

extremely small. It could therefore be argued that the

area size should be made equal to the smallest window size

when we were discussing plotting and at first it would

seem logical therefore to have the area equal to the small

window required during modification. Unfortunately as

explained earlier, the number of shapes that would extend

beyond the adjacent area would be astronomic and so the

area beads would be wasted. Also the overheads in terms

of data structure size and CPU time to process all the

area beads would be excessive. An area bead would be

required for every part of the layout of say 10 increments

by 10 increments. As the maximum size of circuit is 32000

by 32000 increments this will mean 3200*3200 area beads

i.e. approx. 10 million beads for a maximum size circuit.

The situation is bad enough for an area size of say 320 by

320 increments when a maximum of 10000 area beads would be

required plus the appropriate mask beads. An area bead

174

CHAPTER 5

requires Swords of storage and each mask bead requires 4

words. Assuming therefore, that the MOS process to be

used for the circuit, required 4 masks and that there is

at least one shape in each area on each mask, then there

is a requirement for 5+4*4 = 21 words per area and a total

of approx. 210000 words of storage are required for the

area and mask beads.

From the above discussion it appears as if the area

bead concept is a non starter because of the high storage

requirements. However, there are several mitigating

reasons why it is an extremely attractive concept.

Area beads and the corresponding mask beads are not

entered into the data structure until there are actually

required.

Most integrated circuit 	layouts 	use 	repeated

components and grouped components and this reduces the

number of area beads that are required.

The integrated circuit comparator designed by the

Wolfson unit is approx 180 thou by 180 thou and only

requires a coordinate range of 1760 by 2200 increments

i.e. nowhere near the full coordinate range. The largest

layouts presently being designed are approx. 	250 thou -

square and assuming the increment is unchanged, require

2500 by 2500 increment (the maximum you will remember is

32000 by 32000). Photographic and semiconductor processing

will doubtlessly improve so that finer geometry lines will

be used. 	Assuming the increment size is halved in the

future and the size of the layout increase to 350 thou_

175

CHAPTER 5

square, even then the coordinate range is only 7000 by

7000 increments.

The improvement in times to plot and modify windows

due to the reduction in disc reads as discussed in Chapter

8 are extremely important for an efficient design system.

As circuits get bigger the time taken to process the

whole of the data for each mask will increase and will

therefore increase the need for a method of reducing the

ammount of data processed.

There are the savings in plotting time .due to. the

area beads as discussed earlier fn this chapter.

There are tremendous advantages to be gained from the

area bead concept when it comes to checking the layout

design which will be discussed in Chapter 9.

Finally the increase in data structure size is

nowhere near as large as expected for a typical layout.

The layout shown in fig 8.24 required 40 pages with only

47 words on the last page for the initial data structure

i.e. without area beads a total of 19859 words while the

data structure with area beads for areas of 512 by 512

increments required 41 pages with 217 words on the last

page giving a total of 20537 words. This is an increase

of approx. 3 percent, which is a small price to pay for

the advantages described above.

176

CHAPTER 5

5.5 	PAGING THE DATA STRUCTURE

THE GAELIC dat. a structure is so large that it cannot

be held entirely In the core memory of the computer and

consequently has to be held on disc. The structure is

divided into a number of parts known as pages, each page

containing an equal number of words (at present 508). In

order to interact with the data structure, copies of

certain pages are held in core and information is-

transferred to and from the data structure via these core

pages. In other words, if information is to be read from

a particular location in the data structure, then a copy

of the page containing the location is read into core from

disc and the contents of the location read from core.

Similarly if information is to be written to a given

location, then again the page containing that location is

read into core and the data written to it and at some time

in the future a copy of the updated page is written back

to the disc. .

The process of reading pages to core and writing

pages back to disc is known as 'paging' and the main

problem that any 'paging' algorithm has to solve is how to

arrange which pages are to be in core at any one time and

which pages should be written back to disc to make room

for the next page.

The simplest algorithm to do this uses the following

strata g y:

1) read in a copy of a page containing the location

177

CHAPTER 5

to be changed or examined,

change or examine the location and then

immediately write a copy of the page back to disc.

This stratagy has the advantage of only requiring space

for a single page to be held in core but has the distinct

disadvantage that there are many unnecessary disc reads

and writes. 	For example, 	if data is to be read from 4

consecutive locations on the same page, this simple

stratagy dictates that the same page must be consecutively

read in four times and written out four times.

There are certain modifications that can be made to

this simple algorithm that will improve its performance:

it is worth checking if the contents of a location

are only examined and not changed. In which case there is

no need to write the page back to disc.

it is also worth checking whether the next

location to be examined or modified is on the same page as

the previous location. 	In this case there is no need 	to

read in the same page from disc again.

However, if the pages containing locations 	are

continually alternating, then there is still a large

number of disc reads and it is worth considering a more

complex system involving more than one page in core.

A more complex system of this type reduces the number_.

of disc reads and writes because of the higher probability

that the required page will be in core. However, it does

raise the problem of what action must be taken if the

178

CHAPTER 5

required page is not in core. Obviously one of the pages

in core must be copied back to disc if it has been

modified and then the required page copied from disc

overwriting the previous core page. The problem is

deciding which page to overwrite. The simplest system is

to use a first in, first out algorithm known alternatively

as FIFO or Round Robin. An alternative system that is

often used is to count the number of times each page in

core is accessed and then overwrite the least used page.

This is known as a Frequency algorithm and was at one time

considered for GAELIC. It was rejected because it was riot

efficient for the particular way that the layout

description was arranged on the disc. The area beads for

a layout are placed at the start of the data structure and

for a medium size layout may well be all on page 1. The

mask and shape beads for area Oare then written next

followed by the mask and shape beads for area 1 etc. Let

us assume they are on pages 2-4 and 5-6 respectively.

When plotting out a window of the layout for say mask 1,

each area bead in turn must be examined to see if shapes

associated with that particular area could lie within the.

window. When this is the case then the mask ring must be

examined for the appropriate mask bead and the shapes on

the shape ring examined in turn and plotted if necessary.

The page containing the area beads i.e. page 1 is accessed

to establish whether the shapes within an area could be in

the required window and if so the page . is not accessed

again until all the shapes on the required mask have been

processed. The processing of the shapes can require a

179

CHAPTER 5

given page to be accessed many times in rapid succession,

for example page 2, followed by page 3, followed by page

4, and only when all the shapes within the area have been

processed does the program return to investigate the next

area bead in the first page. Using a 'frequency'

algorithm the first page would probably have been swapped

Out because it had not been accessed for so long and would

have to have been brought back to cote. The pages

containing the shapes would remain in core for a long time

as they had been accessed so many times but may not be

required again as the shapes for the next area, i.e. area

1, may be on different pages i.e. pages 5 and 6. To avoid

this problem a more complicated 'algorithm would be

required and it was felt that the time spent computing

which page to change would be prohibitive. The simple

Round Robin system was therefore implemented in which the

pages in core were written out in turn.

The Round Robin system could possibly overwrite the

area bead page just before it was required and it.appeared

worth considering a more complex system to avoid this.

The system consisted of two round robins superimposed on

each other. This was implemented in a special version of

GAEL4A and compared with the simple round robin. The

method was as follows, each call in the program to the

routines that examine or modify the data structure was

given an extra parameter which indicated whether it was

concerned with either the area beads or the masks and

shapes. If the routine call contained a parameter value

Bull

CHAPTER 5

from a shape setting then the routine would also only

overwrite pages that were in the part of core reserved for

the pages containing shape information. If on the other

hand the call had the parameter setting for areas then

only pages containing area information would be

overwritten. Whenever a location was required then all

the core pages were checked to see if they contained the

appropriate disc page regardless of whether the particular

core page was called in for area information or shape

information, and so the pages are not restricted to having

area information only or shape information only. [The

results given in Chapter 8 show that it had no appreciable

reduction in the number of disc reads and in fact used

more CPU Time]

Another interesting facit in the handling of the data

structure is the method of checking whether a copy of the

required page is in core or not. Two different methods

are in use in different programs of the suite. The

methods rely on keeping either a list of the contents of

each core page or a list of where each disc page is

situated i.e. in core but not written to, in core and

written to or not in core.

The first method requires a one dimensional array of

length equal to the number of pages in core i.e. if there

is room for 5 pages in core then the array is 5 words

long. The array contains the number of disc page that is

in the corresponding core page i.e. the first word in the

array is the number of the disc page that is held in the

181

CHAPTER 5

first core page etc. The number is negated if the page

has been written to. When a given disc page is to be

examined or modified, each word of the array is examined

in turn to see if the corresponding core page contains the

required disc page, and if not arranges for one of the

core pages to he overwritten.

The second method requires an array of length equal

to the number of posible pages that can be held on disc

i.e. a much larger array. The number stored in each

element indicates whether there is a copy of that page in

core and which core page it occupies and whether it hs

been modified since it was brought into core. Each time a

specific page is required only the one element in the

array need he examined. The second method is, therefore,

a faster system as it requires only one array access

rather than the possibility of 5 array access where 5 is

the number of pages in core. However the second method

does require a larger array and the original versions of

the program working on the Systemshare time sharing

service were severely restricted on the core available for

the program and the first method with the smaller array

had to be used. The restriction was so severe that

certain of the programs used all the available core except

for one or two words.

More core was available on the Dec system 10 and a

special version of the second algorithm was written by Dr.

W.D.Hay in Macro 10 where use was made of the

sophisticated indirect addressing features of the machine

182

CHAPTER 5

code to automatically write out and call in the required

disc page.

183

CHAPTER 6: Graphic Output and Input

The main forte of the GAELIC system is the ability to

interactively modify a layout design. The ease with which

this can be done depends to a large extent on the choice

of data structure and this choice was described in

Chapters 4 and 5. To a lesser extent, it also depends on

the choice of hardware used for the graphical output and

input. In addition the choice of the hardware has a

distinct effect on the cost of the overall system. The

various options that were considered are discussed in this

chapter.

6.1 Graphical Output Devices

The types of device capable of producing graphical

output vary from a sophisticated refreshed cathode ray

tube terminal through to a simple X-Y recorder. Each type

has its own advantages and disadvantages and these will be

discussed below.

6.1.1 Refreshed CRT Graphic Terminals

This is without doubt the most well known graphics

terminal in use and is the one that immediately springs to

mind when the term 'interactive graphics' is muted.

Essentially it consists of a hig h quality CRT tube with

the necessary Dto A converters, video amplifiers and

drivers to convert the digital signals into either

184

CHAPTER 6

movements of the electron beam or into various beam

intensity levels. Usually it also has a display processor

which takes instructions stored as bit pattern in the

computer memory and converts them into the necessary input

signals. This set of instructions is referred to as a

'display file'. Although the cathode ray tube has a

relatively high persistence phosphor on its screen it is.

essential to refresh the picture approximately 50 times

per second. The actual speed at which the picture can be

redrawn or 'refreshed' depends on two factors: firstly

the speed of the electronics, how quickly data in core can

be converted into movements of the electron beam and

secondly the size of the display file i.e. how much data

there is to be displayed. If the electronics are too slow

or there is too much data, then the picture cannot be

redrawn quickly enough to give the impression of a

continuous picture and a phenomenon known as 'flicker' 	is

observed. 	This is when the drawing appears to flash on

and off. This flicker is generally extremely disturbing

to the user causing him to become tired and to lose

concentration. The 'speed' of a refreshed graphics

terminal is defined as the number of characters or the

number of vector inches that can be displayed without

appreciable flicker and typical values are 2000 characters

or 3000 vector inches.

There are several ways of producing a picture on the

screen, the best known is probably the raster scan which

is used in television sets but in general is too slow for

185

CHAPTER 6

many applications as the complete screen must be scanned

regardless of how much of the screen is dark. Also

complex scan conversion equipment is required to convert

the data into a raster. The more usual method is to use a

steered beam or. vector generator when the only dark lines

or vectors that are drawn re those between the light

vectors. Thus the minimum amount of beam movement is is

required to produce the picture.

The main advantage of the refreshed graphics CRT is

the ease of interaction. It is comparatively easy to note

the position in the display file when a shape is detected

by a light pen (The light pen and its use will be

described in detail later in this chapter) . A shape or

series of shapes can be moved across the screen

dynamically so that the shapes follow the cursor or

tracking cross. The tracking cross may be attached to the

top right hand corner of the shapes but the positioning of

the bottom left hand corner may be critical. With a

refreshed graphics CRT the bottom left hand corner will

always be on display at all the intermediate positions and

so can be continuously moved until its correct position is

reached when it can be fixed. This dynamic movement of

shapes is not possible on other graphic output systems.

The main disadvantage of the refreshed CRT is the

cost of the hardware which is typically of the order of

10,000 pounds (cheaper systems costing 5-6000 pounds are

just starting to appear on the market). There are

additional disadvantages when using a refreshed CRT for

186

CHAPTER 6

integrated circuit layout because the display file is so

large that an extremely large memory is required in the

host computer to drive the terminal. Admittedly the full

layout of an integrated circuit is not often displayed as

even with the largest refreshed CRT, available, the

resulting picture is at too small a scale for interaction.

Nevertheless, it is occasionally required to identify

areas of the layout that require attention. Usually a

small area of the layout or window is drawn on the screen

requiring only a small display file but of course, as soon

as the window is changed a new display file is required.

The time taken to produce this new file can be significant

and the user has either a blank screen or a jumbled

mixture of old and new pictures during that period.

Certain modern CRT terminals, for example the Vector

General 21)3 do have hardware windowing which allows only

part of the display file to be plotted on the screen.

This hardware windowing does allev.ate the problem to an

extent as often the data for the next window is in the

display file but there will obviously be times when that

is not the case and so the file must be recreated.

The refreshed graphics terminal cannot be used on its

own with a time sharing computer because of the necessity

to continuously refresh the picture. Even with the.

highest transmission speeds used in time sharing computer

systems, the amount of data required to redraw a picture

thirty times a second is prohibitive. There is also.the

additional problem that the user will have his job swapped

187

CHAPTER 6

in and out of core at intervals giving pauses when

redrawing the picture. The only way refreshed graphic

terminals can be used is to use a satellite computer as is

done on the J)ecsystem-10 at Edinburgh University [ref 6.11

and the system at the CAD centre at Cambridge [ref 6.21

The satellite is faced with similar problems to a

dedicated computer in that it must be able to hold the

complete display file in core and must be possible to

redraw the picture at least 30 times per second. This

means-that the satellite must be fast and have a large

memory and is therefore getting very near to the

specification of a stand alone computer system.

There are some minor advantages of the refreshed

graphic terminal:

the line texture i.e. 	intensity and/or mark space

ratio can be varied,

a shape can be flashed to indicate that it has been

identified and

it is also possible to delete or selectively erase

components without recreating the display file.

6.1.2 Storage C.R.T. Terminal

The main feature of this type of terminal is the

storage cathode ray tube. This is similar in many ways to

the conventional CRT but has an extra layer of a special

proprietry material on the screen in addition to the

conventional phosphor. Each individual molecule of this

material can exist in one of two stable 'states: the first

388 	 -.

CHAPTER 6

will radiate light when exposed to low velocity electrons

and the second will not. To provide a source of these

electrons ihere is a flood gun assembly in addition to the

standard assembly which 'floods' the whole of the screen

with low velocity electrons. The material can be changed

to the emitting state by means of the conventional-

electron beam and as the low velocity electrons are always

present the parts of the material changed by this electron

beam will immediately emit light and will hence store the

picture. The material can only be returned to the non

emitting state by a flash of high velocity electrons all

over the screen. There is no mechanism for selective

erasure of parts of the screen and so individual deletions

are not possible. The picture can be built slowly and

there can be pauses as the picture is built up and so it

is an ideal terminal for direct connection to a -

time-sharing service. 	It does have the disadvantage that

the interaction is slightly restricted. It is not

possible to tow a shape or series of shapes across the

screen as they will leave an permanent image at each

position they are drawn. The new Tektronix 4014 Terminal

which is just coming into production does have a 'write

through mode' which will allow for non storing pictures

but this will require a fast uninterupted data rate from

the computer to allow the shape or shapes to be drawn

instantaneously.

6.1.3 Incremental Plotters

CHAPTER 6

These produce permanent drawings usually in ink on

paper. The paper is fed from a roll over a drum which is

controlled by a stepping motor. Over the top of the drum

is a gantry containing a tool holder which can be moved up

and down the axis of the drum by means of a second

stepping motor. The'-tool holder normally contains a pen

but can contain a knife or scriber. In effect therefore

the pen can be moved in X and Y direction across the

paper. There is also a solenoid built into the tool

holder which lifts or lowers the pen to the paper. There

is a small amount of logic associated with the plotter

which converts the characters sent to the plotter into

actual stepson the stepping motors or lifts and lowers

the pen.

Because of the characteristics of the 	stepping

motors, the incremental plotter although more accurate

than the both cathode ray tube terminals is an order of

magnitude slower. It can, however, produce large

reasonably accurate drawings with different colours and

different line thicknesses to distinguish between parts.

This is a permanent hard copy that a designer or engineer

can take away and study at leisure. It can be connected

to a time—sharing service either as a common shared

peripheral like the card reader or magnetic tape unit or

by using a special controller via the time sharing

teletype inputs.

190 	 -*

CHAPTER 6

The direct connection to the computer means that

interaction with the drawing is impossible. A hard copy

drawing can be produced and that is all. However by using

the special hardware controller a restricted amount of

interaction is possible. A drawing can be produced and

the pen can be moved to a point on a shape in the drawing

requiring modifiction. This cannot be done by moving the

tool holder by hand as there is no way the plotter can

send the new coordinates to the computer. Therefore the

user must enter the necessary dat into the computer and

the computer must move the tool holder. This produces a

'chicken and egg' problem as the user has to type in the

coordinates to which the tool holder is to be moved, in

order for the program to identify the coordinates of the

nearest points in the data structure to the tool holder.

It is possible to enter incremental moves which does make

it possible to move the pen to the correct place without

having to calculate the absolute coordinates and this

method of interaction although slow is feasible.

6.1.4 Tape Controlled Coordinatographs

Tape Controlled Coordinatographs are similar 	to

incremental plotters in that they are capable of producing

large hard copy drawings. The paper, however, is fixed to

a large flat table and is capable of producing larger more

accurate drawings.. The tool holder is again held on a

gantry and is normally controlled by a stepping motor

though certain models do use other techniques. The gantry

191

CHAPTER 6

usually moves across the table or the table moves under

the gantry. The table size is usually of the order of 4

feet by 3 feet though very large tables are available.

The accuracy is usually of the order of 1 thou with

repeatability of 0.5 thou. There is always a requirement

for hardware to read the data from the input tape and

convert it into pulses to the stepping motors or

instructions to lift and lower the tool. The main

differences apart from the size and accuracy of the

drawing is the ability to take other tools such as a

scriber knife or photographic projector. The latter two

require extra facilities from the hardware in that extra

information must be read from the tape that controls the

angle of the knife or controls which apperture is used on

the photographic projector. In order to reduce the amount

of data on the type or to make the data on the tape

readable th.e hardware can consist of a small computer.

The tape controlled coordinatograph is not usually

thought of as a graphics output terminal but is capable of

producing hard copy drawings just as the incremental -

plotter. 	Its more usual use in integrated circuit

production is for producing mask masters but a mask making

system with a tape controlled coordinatograph would not

require an incremental plotter. The main advantage of the

tape 	controlled coordinatograph is the accuracy and
	
--

repeatability of the drawing, cutting or photo exposing.

It is, however, expensive (between 20 - 80,000 pounds) and

slow.

192

CHAPTER 6

6.2 Graphic Input Devices

Any graphic input device must fulfill the two basic

functions of identifying an object already displayed on

the output device' and pointing to a specific position.

These are completely separate functions and are often

refered to as 'picking' and 'pointing'. Some input devices

are ideal for picking but difficult for pointing while the

reverse istrue for others.

6.2.1 Light Pen

The light pen is without doubt the most common

graphic input device. It is a hand held light detector

with a limited field of view which is usually pen shaped

and is connected to the computer by means of an electronic

cable. It usually contains a shutter with which the user

may control whether light enters the pen or not. The

'pen' can be pointed at the screen and when it sees light,

a signal or interrupt is sent to the computer and the

process of plotting is interrupted. It 'will be evident

that if the computer has already finished plotting when

the light pen is pointed at the screen then there will be

no int erupt generated. Consequently, the light pen will

not operate on a storage tube except during the actual

plotting time. This effectively prohibits the use of a

light pen on a storage tube as it is too slow and too

inconvenient to replot every time an object is to be

identified. The light pen is is therefore restricted to

refreshed graphic systems. The displayfile is modified

193

CHAPTER 6

slightly to contain an identification, of each object

displayed and as the display file is processed the

identification of the present object is stored in a buffer

or accumulator and is updated as each new object is

processed. When an interrupt is generated by the light

pen, the identification of the object being processed can

be retrieved and the data describing the object itself

which is stored in the main data structure can be

modified. It is therefore an excellent method for

'picking' on a refreshed graphic system as it requires

very little modification of the normal plotting facility

and is extremely fast. Its main disadvantage is the

increase in size of the display file required to store the

identification of each object.

The light pen cannot, however, be used on its own for

'pointing' as an interrupt cannot be generated unless

light is detected and in general there will be no light

emanating from the point where a new object is to be

inserted. The usual way of solving this 'pointing' is to

use a tracking cross which is described in the next

section.

There are ergonomic problems when using the light

pen. The pen must be held in the hand and moved across

the screen to the designed position. To avoid the

possibility of detecting the wrong object, the pen must be

held perpendicular to the screen and this results in, the

picture being probably obscured by the pen and the users

hand. The pen is also held at an unnatural position

194

CHAPTER 6

similar to writing on a wall and this can be very tiring

if used for long periods.

6.2.2 Tracking Cross

This is usually a small cross.that is displayed on

the cathode ray tube which can be moved round the screen

by a light pen, tiacker ball, joystick etc. It can be

used for both 'picking' or 'pointing'. It can also take

the form of a crosshair cursor consisting of a pair of

fine lines, one going from side to side of the screen and

the other from top to bottom. They are normally found on

refreshed tube terminals and on storage tube terminals but

on the latter they have to be specially designed so that

they are non-storing i.e. the beam intensity must be so

low that it cannot change the extra layer on to the back

of the storage tube screen.

When used with a light pen moving the cross is

difficult.. The light from the tracking cross mist be

detected and the fact that the pen is not central to the

cross noted and the cross then repositioned. If the

tracking cross and field of vi ew of the pen are as shown

in fig 6.2.1.

195

CHAPTER 6

ctd of view of Light pen

Fig 6.2.1 Detecting the Tracking Cross

The basic way of ensuring that the tracking cross follows

the light pen is to reposition the cross at (xl+x2)/2,

(yl±y2)/2. 	This simple scheme and more sophisticated

interruption schemes that include the distance moved since

the last interrupt all have problems with losing tracking

e.g. the light pen has been moved so quickly that it does

not detect any light from the tracking cross during a

replot of the drawing. This means another mechanism must

be used to find the position of the tracking cross. 	Two

such 	mechanisms consist of spiral or raster search

patterns such as those shown in figs 6.2..2 and 6.2.3.

- - 	- Lost position of

- track jncj cross

/
prcsnt position of tracking cross

Fig 6.2.2 Spiral Search Pattern

196

CHAPTER 6

present position of tight pen 	 previous position of tight
pen and tracking cross

Fig 6.2.3 Raster Scan Search Pattern

This tracking of the cross inflicts a heavy overhead

on the picture processing especially the spiral searching

and it is common to loose the picture instantaneously as

the controller relinquishes its refreshing duty to control

the tracking. cross.

The position of a tracking cross can be controlled by

other input devices in addition to the light pen for

example a tracker ball, joystick, a pair of thumb wheel

potentiometers or a tablet. In these cases, the position

of the cross is directly related to the x and y coordinate

positions given by the ball etc. There are none of the

problems of loosing 'tracking' and so the system using a

tracking cross this way are pleasanter to use than systems

using a light pen. There are, however, problems with

these 	systems 	when 	it comes to 'picking' as the

beautifully simple system involving light pen 'hits' 	is

not available. 	The data structuremust be searched for

the object with the nearest coordinates to the coordinates

of the tracking cross. Theoretically this data structure

search could be through the display file with the same

object indications as when using a light pen but usually

197

CHAPTER 6

it consists of searching the main data structure. 	This

can obviously be a time consuming operation and one of the

novel features of the GAELIC system is the way in which

this search time is reduced. The various methods of

controlling the tracking cross will now be d-iscussed in

more detail.

6.2.3 Tracker Ball

This is a ball approx 3 inches in diameter which is

recessed into a horizontal surface or table so that only

approx the top third can be contacted. The ball can be

turned by hand and the rotation in x and y direction is

detected by optical shift encoders or potentiometers and

translated into the x and y coordinates of a tracking

cross. 	It is usually arranged so that several revolutions

of the ball are required to move the cross from one side *

of the screen to the other. This makes the tracker ball

an extremely accurate method of positioning the cross

compared wth say the light pen but it does mean that

moving the cross over large d.istances can be relatively

slow. The ball can, however, be released and the cross

will stay in the same position.

6.2.4 Joystick

The joystick as the name implies is functionally

similar to an aircraft joystick, in that the movement of

the stick in any direction is converted to movement of

some other object in the same direction. In our case

196

CHAPTER 6

movement, of the stick forward causes the tracking cross to

move up the screen. It is not quite as accurate as the

tracker ball but is much quicker to use, as a much shorter

movement of the stick is required' to move the cross from

one side to another. It is not always possible to release

the stick and leave the tracking cross in position.

6.2.5 Thumb Wheel Potentiometers

There are usually two potentiometers, one controlling

the x coordinate and one controlling the y coordinate of

the tracking cross. The potentiometers may be single turn

or multi turn: the former is capable of moving the cross

faster but less accurately than the later. The system is

ideal when all the movement required is in either the x

direction only or the y direction only but are not as

convenient when movement at an angle is required. Like

the tracker ball, the potentiometers can be released

without moving the tracking cross making any interactive

graphics system ergonomically easy to use.

6.2.6 Tablet

This consists of a flat-surface usually of the order

of 12 inches square which has a grid of fine wires

embedded in its surface and a scriber or pen that is

capable of emitting signals. These signals are detected

by the grid and the accurate x-y position computed. This

system is ergonomically excellent as the user is virtually

using what hehas been trained to use since childhood, a

199

CHAPTER 6

pen and paper. 	The pen can be quickly moved from one

corner of the screen to another and so a menu of useful

commands can be put on the tablet and pointed to when

required i.e. 'menu picking'.

6.2.7 Digitiser

The digitiser is virtually the s a m c as a tablet

except that the working surface is bigger and that the

coordinate position is only sent to the computer when a

button is pressed. The working surface is usually about 3

feet long by 4 feet and can be at an angle or flat. It is

extremely useful for extracting dimensional information

from a scale drawing but is expensive as a graphical input

device.

6.2.8 Other input devices.

There are other possible graphic input 	devices

capable of driving a tracking cross or cursor. Probably

the most well know, although not necessarily as an input

device is the teletype when the user can type in the

coordinate required. This sounds at first like a chicken

and egg problem - to move the cursor it is necessary to

type in the coordinates of the point to be identified and

the point is being identified in order to find its

coordinates. However, by using incremental coordinates,

it is a possible system albeit slow and has been used to

control the tool holder on a CALCOMP plotter.

200

ClIAPTER 6

Another system that was originally used on the ARDS

storage tube terminal is called a 'MOUSE', this is a

device that is moved over a flat smooth surface to

indicate x or y coordintes. Underneath are two wheels at

right angles, both are connected, to shaft encoders or

potentiometers, one indicating the x and the' other

indicating the y coordinates.

Other systems that are being developed are touch

sensitive screens and ultrasonic transduces but these are

not yet in production.

6.3 Tektronix 4010 Series Terminal

The decision to base the interactive part of the

GAELIC suite of programs on the Tektronix 4010 terminal

was due to the requirement of a minimum capital cost

system.

The Tektronix 4010 series terminal consists of a

storage cathode ray tube mounted on a stand, with a

keyboard and two thumb wheel potentiometers. The stand

contains 	all 	the 	control logic and the necessary

interfaces to connect the terminal to the computer. The

basic 4010 terminal has a screen size of approximately 8"

by 6" and costs approx. 2500 pounds with the necessary

interface to connect it to the computer in place, of a

standard Teletype.

201 '

- 	CHAPTER 6

The terminal can work in either alphanumeric mode

when it will print lines of alphanumiç characters and the

graphic mode where it will draw vectors on the screen.

There is also a graphic input mode when anon-storing

cross hair cursor is displayed on the screen which enable

existing items, i.e. text or, vector to be identified and

also allows the position of addition text or vectors to be

indicated.

The alphanumic characters are produced by means of a

hardware character generator employing read only memories.

Once in alphanumeric mode, the codes or bit patterns for

the characters are sent down the line to the terminal.

The codes for carriage return and line feed do exactly as

expected by ensuring the next character appears at the

left hand edge of the screen or on the next line below

respectively. 	Most other non printing characters are

ignored: the main exception being the character usually

known as 'CS' the receipt of which converts the terminal

into graphics mOde. Subsequent characters sent down the

line are converted into vectors, the first vector after

the 'GS' always being a 'dark' or hidden vector. 	Usually

four characters are required to specify a vector and they

are known as high y, low y, high x, low x characters.

There are 1024 by 1024 addressable points on the screen

with 1024 x 780 actually viewable i.e. it is possible to

address points off the screen in the y direction. Vectors

are drawn from the present beam position to the position

defined by the four characters. 	The. screen is divided

202

CHAPTER 6

into a coarse grids of 32 addressable points in each

direction; 	the high 'y and high x characters select the

position on these coarse grids. Each coarse grid

increment is divided into a fine grid of 32 points and the

low y and low x characters then select the incremental

moves on this fine grid to give the final absolute

position. The number range for each character is

therefore 0-31 oaly and so for the standard byte (8 bit)

characters, there are 2 redundant bits plus the parity

bit. These redundent bits are used to define which of the

characters are being transmitted and so the various bit

patterns are shown in fig 6.3.1.

Bits 7 6 	5 	4 	3 	2 	1

Low X 1 0 	? 	 ? 	 7 	? 	 ? Byte 	4

High X 0 1 	? 	 ? 	 ? 	 7 	? Byte 3

Low Y 1 1 	? 	 ? 	 ? 	 ? 	 ? Byte 2

High Y 0 1 	? 	 ? 	 ? 	 7 	? Byte 	1

Identification Bits

Bit patterns transmitted to terminal

to draw line

Fig 6.3.1

203

CHAPTER 6

The identification bits • allow for less than 	4

characters to he sent under certain circumstances. The

low x character must always be sent as this character is

used to initiate the drawing of the vector. However, if

the high y or high x character is not change.d from the

previous vector, then the character need not be sent. If

the low y character is not changed then it need not be

sent unless the high y is changed and th:i because there

is no difference between the identification for the high x

and high y bits the low y bit must be sent. The minimum

number of characters that must be sent is therefore one,

the low x character. This reduction on the number of

characters is extremely important when connecting the

terminal to the computer by means of a low speed line.

Certain pairs of characters when sent to the terminal

have special effects, 	the most important is the

pair which convert the terminal into graphic input mode.

In this mode a non storing cross hair cursor is displayed,

the x position of the vertical line is controlled by one

thumb wheel potentiometer and the y position of the

horizontal line controlled by another. 	The non-storing

feature is obtained by rapidly switching on and off the

beam. The cursor can be therefore moved to any position

on the screen and one of the keys pressed, the terminal

then transmits the character requested by the key, plus 4

characters that represent the coordinates of the cursor,

followed by carriage return and or the end of tape

character (EOT). The characters use the same method of

204.

CHAPTER 6

denoting coordinates i.e. high x, low x, high y, low y but

all four characters have the same identification bits set.

Other pairs of characters clear the screen and

arrange the next alphanumeric characters to be written at

the top left corner of the screen.

There are two larger versions of the Tektronix

terminal now available and these are known as the 4014 and

4015. Here the screen size is 15 inches by 11 inches and

has a resolution of 4096 by 3120 increments. To address

this in full an additional characters is sent to the

terminal. 	The terminal also has additional facilities

such as 'write through' 	or non storing mode and the

capability of producing dashed lines by hardware. This

terminal would give considerable increase in performance

but unfortunately costs approximately 4,500 pounds.

The Tektronix 4010 series can be connected to a

computer using a teletype driver interface with the clock

rate increased from 110 baud to 9.6k baud, and so can be

easily connected to most computers whether stand alone or

time sharing.

The choice of the Tektronix terminal and Fortran as a

programming language means that the software can quickly

be implemented into different existing computers and thus

provides an inexpensive method of obtaining a design

system.

205

CHAPTER 6

6.4 Graphics Software

This section is devoted to the basic 	software

required to drive the Tektronix 4010 series of storage

tube terminals. It will be remembered that there are

three modes of operation - of the terminal: alphanumeric,

graphics output and graphics input and any basic software

system must cater ior all three.

When used in alphanumeric mode, the 'terminal behaves

in virtually the same way as the ASR33 Teletype in that it

receives the bit pattern for the various ASCii printing

characters plus carriage return <CR> and line feed<LF>

and displays the characters on the screen or moves to the

beginning of the line or next line. The terminal also

transmits the bit patterns, corresponding to the keys

pressed, to the computer. If the Tektronix is connected

to the computer via a standard Teletype interface, then no

special software is required to drive the terminal in

alphanumeric mode.

In graphics output mode, however, the terminal must

obviously behave in a different way in order to draw the

vectors. 	In this mode each character transmitted is

interpreted by the terminal as part of the description of

a vector. There are two main types of vector that are

required in any graphics system: the dark vector where an --

invisible line is drawn from the present beam position to

a new specified position and a light vector where a

visible line is drawn. The light vector can be subdivided

206

CHAPTER 6

into vectors of differing intensity or into dotted or

dashed vectors. The storage tube terminals cannot display

vectors of differing intensities because of the

fundamental characteristics of the storage tube and so

there is no need to cater for them. The Tektronix 4010

and 4012 terminals do not have any hardware facilities for

producing dotted and dashed vectors and so these can only

be obtained by drawing alternate light and dark component

vectors. The 4014 and 4015 terminals do have hardware

facilities for dotted and dashed vectors and the type of

light vector to be drawn is set by transmitting a special

character to the terminal. The Tektronix terminals

distinguish between the light and dark vectors in an

unusual way by arranging that the hardware treats the

first vector after turning the terminal into graphics mode

as a dark vector and treats all other vectors as bright.

The terminal is turned into graphics mode on receipt of

the character usually known as 'GS'. This method of

defining whether a vector is bright or dark appears at

first to be extremely restrictive until it is realised

that:

most shapes to be drawn are made up of a

consecutive series of bright vectors preceeded by a dark

vector e.g. when drawing a rectangle, a dark vector is

drawn to the one corner and then four consecutive bright

vectors, one for each side, and

another dark vector can be specified by sending

another 'GS' although the terminal is already in graphics

mode. Vectors are always drawn from the present beam

207

CHAPTER 6

position which is at the end of the previous vector or at

the position for the next character to be printed.

The end of the vector is specified by sending four

characters to the terminal, two of these characters

specify the absolute screen coordinates in terms of a

coarse grid. The other two characters specify the

incremental coordinates from the coarse grid position.

The coarse grid is every 32 increments and as the

addressable range is 0-1023 increments in the x and y

direction, the lnaximum,range for the coarse grid is 0-31.

i.e. 5 bits. The two coordinates specifying the coarse

grid position are known as the high x and high y

coordinates; the coordinates specifying the incremental

position from the coarse grid are known as low x and low y

coordinates and again are in the range 0-31. Only 5 bits

are required to specify the value and so with the 7 bit

characters used there are two bits available to identify

the character i.e. high x, low y etc. The actual bits

that are sent for each character are shown in fig 6.4.1.

208

CHAPTER 6

Bits 	 7 6 5 4 3 2 1

Low X 	 1 0 ? ? ? ? ? 	Byte 4

High X 	 0 1 ? ? ? ? ? 	Byte 3

Low Y 	 1 1 ? ? ? ? ? 	Byte 2

High Y 	 0 1 7 ? ? ? ? 	Byte 1

Identification Bits

Bit patterns transmitted to terminal

to draw line

Fig 6.4.1

It will be noticed that the identification bits for

the high x and high y coordinates are the same. The order

of transmission of these characters must be high y, low y,

high x and finally low x coordinates and it is the receipt

of the low x coordinate that initiates the actual vector

drawing process.

The setting of the identification bits allows the

characters sent to switch the terminal into another mode

to be detected and also allows one or more characters to

be omitted under certain circumstances when specifying

vectors. For example, as the low y coordinate can be

uniquely identified then if the high y coordinate is not

changed for the vector then it may be omitted. Similarly

the high x coordinate may be omitted if it has not changed

0

CHAPTER 6

as the low x coordinate can be uniquely identified.

However, the low y coordinate cannot be omitted if either

a high x or high y coordinate has to be sent as they both

have the same identification bit settings. The minimum

number of coordinates that need to be transmitted is one

and that is the low x coordinate. This is the character

that initiates the drawing process and so must always be

sent even if none of the coordinates have been changed.

This situation does occur when plotting points on the

screen. To enable the terminal to draw vectors as fast as

possible at low data transmission speeds, the basic

software must send the minimum number of characters for

each vector.

At high data rates i.e. in excess of 4.8K baud, 	the

minimum number of characters will cause trouble when the

terminal is connected via a teletype interface. This is

caused by the time required to draw a vector. On receipt

of the low x coordinate, the terminal takes 2.6 mSec to

set up the D to A convertors and to draw the vector, most

of the time being spent setting up the convertors. at

9.6K Baud, a character is received approximately every 1.5

mSec i.e. at least two characters can be received while---

the previous vector is being drawn. Therefore any vectors

requiring two characters or less i.e. vectors requiring

low y and low x, high x and low x or just low x will be

initiated before the previous vector has been completed.

The result of this is to change the D to A convertors as

the vector is being drawn which will give curved vectors

210

CHAPTER 6

on the screen at apparent random spacing. 	If the software

is to be used at varying data transmission speeds, it is

essential to either send at least 3 coordinates or else to

send null characters when the data rate is 9.6K Baud, and

to send the minimum number of characters at lo-wer speeds.

If the terminal is connected to the computer by means

of a link involving a busy signal, the software need only

send the minimum number of characters.

The conversion of normal coordinate data into the

required characters is common to all applications that

require graphic output and conversion routines must form

part of the basic software. However, very rarely does the

coordinate range used in the application program map

exactly with the coordinate range of the terminal i.e.

1-1024 in x and 1-780 in y. This creates two additional

requirements for the basic software: firstly routines are

required that will scale the application programs

coordinates so that they will appear on the terminal

screen. Secondly 'clipping' routines are. required that

will only display the part of the drawn or design that

lies within a specified 'window'. This routines will take

each vector in turn and clip it so only the part of the

vector that appears on the screen is drawn.

Because of the fundamental modus operandi of the

storage tube, it is not possible to vary the intensity of

a vector nor is it usually possible to blink or flash

vectors. The only way of distinguishing vectors,

211

CHAPTER 6

therefore, is to have dotted or dashed vectors with

different mark space ratios. This can be done by hardware

on the Tektronix 4014 and 4015 and in this case all the

basic software need do is ensure that the appropriate

characters are sent whenever the vector characteristics

are to be changed. The smaller Tektronix, the 4010 and

4012, however, do not have the hardware facility and so it

must be done by software and so in this case thebasic

software must contain routines to break a long vector down

into alternate light and dark vectors of appropriate

length.

The terminal is switched into graphics input mode by

sending it two characters known as 'esc' and 'sub'. This

causes the cross hair cursor to be displayed on the screen

and the cursor position can be controlled by the two thumb

wheel - potentiometers. Pressing any key will cause a

series of characters to be transmitted to the computer.

The characters include that of the key pressed and four

characters to define the position of' th cross hair

cursor. The characters transmitted are shown in fig

6.4.2.

212

CHAPTER 6

Bits 	 8 7 6 5 4 3 2 1

EOT 1 0 0 0 0 1 0 0 Byte 7

CR 1 0 0 0 1 1 0 1 Byte 6

Low .Y 1 0 1 ? ? ? ? ? Byte 5

High 	'1 1 0 1 ? ? ? ? ? Byte 4

Low X 1 - 0 1 ? ? ? ? ? Byte 3

High X 1 0 1 ? ? ? ? ? Byte 2

Char 1 0 ? ? ? ? ? ? Byte 1

Bit patterns transmitted from terminal

in Graphic Input Mode

Fig 6.4.2

The last two characters sent i.e. bytes 6 and 7, 	are

strappable options, 	the terminal can be set to transmit

neither character, carriage return only or carriage return

and end of tape. 	Any basic software system should

therefore contain routines to set up the cross hair cursor -

and read the characters transmitted and convert them into

coordinates either in Tektronix increments or scaled into

the user coordinates.

It is essential to send certain 	non 	printing

characters to the terminal to perform such functions as

switching from one mode to another. Often these

characters cannot be transmitted directly from a Fortran

program because of the computer used. However, most

computers can output these required. characters using

23.

CHAPTER 6

routines written in machine code or assembler and callable

from Fortran. This is the approach used in GAELIC on the

Dec system 10 where the output to the terminal in graphics

output mode and input form it in graphics input mode are

controlled by MACRO 10 routines written by Dr .W.D. Hay.

The original version of the GAELIC 	interactive

program that uses the Tektronix 4010 trminal used the

author's routines for drawing vectors-and for handling the

cross hair cursor and used a set of routines written by

Dr. P.F.A. Reilly to do the vector clipping. As the

original version was to work at low data transmission i.e.

110 or 300 Baud dotted and dashed vectors were not

practical as they, took so long to draw.

However, when the program was implemented on the

Decsystem 10 using a data transmission speed of 1200 Baud,

dotted and dashed lines became ergonomically possible and

therefore desirable. A package of Fortran routines

written by Tektronix was available on the Decsystem 10 and

this package, known as the Terminal Control System or TCS,

not only contained routines to plot vectors and to handle

the cross hair cursor but also had its own clipping

routines and routines to produce dotted and dashed lines.

The TCS routines use the same technique as the

original GAELIC program i.e. routines o do the characters

handling written in MACROIO but callable from Fortran.

All other routines are written in a subset of Fortran IV

to enable them to be installed on as many computers as

21

CHAPTER 6

possible. 	It was therefore decided to use these routines

as a) there was no point in reinventing the wheel and b)

the TCS software was already implemented on many computers

and so using it would ease the transportability of the

program.

The TCS system does have some minor disadvantages as

it is a general purpose package. To give the user a large

range of increments on a computer with a small word size

e.g. a PDP8 with its 12 bit word, the user coordinates are

stored as real values and each value therefore requires

two words of storage. The scaling to the Tektronix

increments is therefore done using real arithmetic i.e.

requires the floating point arithmetic package to be in

core. This system is therefore slower than it need be and

requires more store. This is not noticeable on the

Decsystem 10 as: a) it stores real values in one 36 bit

word and b) it uses a hardware floating point unit.

However, if the GAELIC programs are mounted on smaller

machines some modification to the TCS software.will be

necessary to obtain maximum efficiency.

Only one major software modification was required to

the TCS software and that was to allow for use at a data

transmission rate of 9.6K baud. The original software

minimised the number of characters transmitted to the

terminal to draw a vector. On an asynchronous

transmission system, this causes apparently random curved

vectors due to the arrival of the one or two characters to

specify the next vector before the previous vector has

215

CRAPTER 6

been drawn. This was cured by transmitting the necessary

null characters at 9.6K baud, to ensure the previous

vector was drawn before the next vector was specified.

The 'clipping' routines written by Dr P.F.A. R.Uiy

have been used in other programs in the GAELIC suite,

notably the program that plots all or part of a layout on

the Calcomp incremental plotter.

216

Chapter 7 : Program Descriptions

This chapter is mainly devoted to a description of

the various programs comprising the GAELIC suite,

concentrating on their general requirements and how these

are met. 	The detailed descriptions of the subroutines

appear in the GAELIC Systems Manual. 	The chapter starts,

however, 	with a discussion of the languages available for

programming and why FORTRAN was chosen as this choice did

affect the program requirements.

7.1 Choice of Programming Language

The objectives of the GAELIC programs were discUssed

in Chapter 2 and resulted in the requirement for a minimum

capital cost system that was, as far as possible, hardware

independent so that it could be easily transferred from one

computer to another.

The most efficient 	CAD 	system 	for 	designing

integrated circuit layouts, can theoretically be obtained

by selecting or building the best hardware for each part

of the system and programming at the lowest possible

level, to get the fastest operation. This approach,

however, has a lot of disadvantages.

The best hardware may come from a series of

different 	manufactuers and may well require special

interfaces to interconnect them.

The problems encountered when servicing this mixed

2 17

.#LLCXJJLCL 	 I

hardware are quite formidable (the fault is always in the

other manufacturers product)

Any special purpose 	hardware 	is 	extremely

expensive to design, build and test.

Programming and debugging in a low level language

is slower and more difficult than in a high level one.

It is not possible to write extremely long low

level' programs and maintain maximum efficiency. however,

the higher level language requires much less code to be

written and so can be written efficiently.

Programs written in the low level language for one

computer cannot be transfered to another. 	Instead the

programs must be rewritten in the low level language for

the new machine.

These disadvantages, therefore, preclude the use of

special purpose hardware. They also discourage the use of

low level languages for a system that is to be as portable

as possible.

The use of a high level language has the following

advantages:

The amount of code that has to be written is much

less than when using a low level language.

The widespread use of high level languages has

justified the writing of extremely efficient compilers.

The high level languages are to quite a large

extent self documenting and so only a small amount of

extra documentation is required.

Although it would be foolish to claim that there

218 	 ,

L11apLeL- I

are no problems in transfer-Lag a high level language

program from one computer to another, the original

programmer's intention is always clear and so the only

problems are those of obtaining equivalent facilities on

the new computer.

5) Once a system is working in a high level language,

it is possible to speed it up by rewriting the critical

parts in a low level language.

There are many high level languages that are used

nowadays. Unfortunately most of them are not available or

a wide range of computers and this precludes the use of

some very good languages such as Algol-68 even though it

contains facilities for handling the complex data

structures There are other languages that have facilities

for handling data structures but these are comparatively

new and do not have all the other required features such

as floating point arithmetic.

This leaves four main contenders for the programming

language BASIC, IMP, ALGOL and FORTRAN. These languages

will be now considered in more detail.

BASIC

This is probably the simplest of the 'high level

languages' in general use. It was originally written by

Dartmouth College and is implemented on most commercial

time-sharing computers. Because of its simplicity, it is

219

very easy to use and so is an ideal language for

beginners. However, it does have certain disadvantages..

Firstly the array and variable names are restricted to

either a single letter or a letter followed by a digit.

This means that it is extremely difficult to have mnemonic

variable names i.e. names that convey the function of the

variable to the reader. 	For example it is extremely

useful 	to store Lie base emitter voltage of transistor 1

in a variable called VBE1 whereas in BASIC it would have

to be called Vi or Bi. Another disadvantage that is common

to all the other languages is that the computer

manufacturers have extended the language to provide extra

facilities but each manufacturer has done so in 	a

different way. 	In general BASIC compilers are extremely

fast but do not produce optimum code.

IMP

This is a high level language based on ATLAS AUTOCODE

and is in extensive use on various computers at Edinburgh

University. There was considerable pressure therefore to

use this language. It has a lot of attractive features in

the language such as the ability to read in a character at

a time from the input channel and the ability to read the

next number from the input channel regardless of how many

digits it contains. It also contains facilities for bit

manipulation which are required in GAELIC. However, it is

not a generally available program outside the Edinburgh

220

IIa[LE I

University community and as it was hoped that the GAELIC

programs would be used outside, the language was not used.

Since the decision was taken to use. FORTRAN IMP has been

extended to contain RECORDS which facilitate the setting

up of complex data structures.

ALGOL-60

This is a high level language which 	is 	used

extensively 	in 	Europe 	especially 	by 	educational

establishments. 	It is the international language which

most conforms to a standard. Unfortunately the standard

does not cover all the facilities available: 	the nbable 	-

exception is the input and output routines (There is now a

version of ALGOL available which was invented by Worth

which does define the input and output and is known as

ALGOL-W). 	In 	general, 	however, 	these 	input-output

facilities are implemented in differing ways by the

different computer manufacturers and so again the program

is not completely transportable. 	Algol is not used as

much in the United States and consequently most American

computer manufactuers have not put as much effort into

their Algol as they have into their FORTRAN compilers.

221

'_ILLLL1J L.\._L 	 I

FORTRAN

This is the most widely know and widely used high

level language for scientific applications. It was

originally invented by I.B.M. for use with the data and

program on cards and the output on a line printer. It has

been considerably extended since then but still shows

signs of its humble beginning by having an extremely rigid

input-output system. It now exists in a standard form

known as the ANSI Standard FORTRAN which is fairly rigidly

defined but almost inevitably has been extended beyond

this standard by the individual computer manufacturers.

Again programs are therefore not directly transportable

between computers. However virtually every computer of a

reasonable size has its own FORTRAN compiler and the

compilers are often extremely efficient because of the

interest in them. Therefore, although parts of programs

are. not always directly transportable, a programmer can

always understand what was intended and what modifications

are required to get the program to work on a new machine. -

FORTRAN was chosen as the programming 	language

despite certain short-comings because of its universal

availability.

222

Chapter 7

7.2 GAEL1A Digitiser Program

This program takes the output data generated by a

specially modified Metrograph digitiser and converts it

into the GAELIC manual input language and the GAELIC dump

code. 	The output is in these two forms to allow for the

correction of any errors made when digitising. 	If no

syntax errors are detected then the dump code file is

processed to give the ring data structure of the layout:

this saves considerable computer time by not having to run

GAEL2A. However, 	if errors are detected when running

GAELIA they must be corrected. 	Correcting the digitiser

output or the dump code file is extremely difficult

whereas editing the manual input language is relatively

easy. If the manual input language is corrected then it

is then converted into dump code by means of GAEL2A.

The output from the digitiser consists of records of

the form shown in Fig. 	7.2.1.

12340%2X%±00100%Y%±00200 	 where % indicates a

12350%X%+001 50%Y%+00300 	 space.

12360%X%+00600%Y%+00800

Fig 7.2.1 Typical output from Metrograph Digitiser

which can be generalised as a record of the form shown in

Fig. 	7.2.2.

223

Chapter 7

1.2340%1. 1234X-:-1 23L,5%y%-f]. 234

Sequence numberj 	 1
Shape code

Extra codc ----

Coordinates --------

Fig 7.2.2. General form of input record

Fig 7.2.2 also shows how the general record can be

subdivided into four sections, two of which are not

necessarily present in any particular record.

The sequence number is always present and is always a

five digit number which specifies each record. It can be

followed by a single digit shape code which is used to

indicate the start of a new shape and its type.

Consequently the shape code is only present in the record

under these circumstances. The four digit extra code is

only present when it has information to convey and is used

for the name of a group or the radius of a fillet. The

final section is always present and contains the

coordinates of the digitiser cursor when the READ button

was pressed. These coordinates are always in fixed format

i.e., the letters, spaces, digits etc. are always in the

same position relative to the end of the record though the

actual digits present will vary.

The coordinates and sequence number are automatically

produced when the READ button is pressed and will always

give the same number of digits in the same position. The

224

L,

shape code or extra code, on the other hand; are entered

by the operator, a digit at a time, via the digitiser

keyboard and can be a source of errors. Such input cannot

be handled by the standard Fortran input/output routines

and so another method had to be found.

There are many versions of Fortran that have a

non-standard facility which allows the next number to be

read regardless of bow many digits or their position in

the record. This 'free format read'-as it is usually

called, appears at first sight to be the answer to reading

the input records. Unfortunately this facility cannot be

used for three reasons:

The facility is implemented in different ways on

different computers.

Invariably the numbers read in under this free

format have to be delimited by a standard terminator e.g.

a comma or a space. It should consequently be noted that

is not the case in an input record.

This free format facility will not cope with the

correction of digitising errors by means of the ERROR key.

The ERROR key on the digitiser inserts the character 'If'

in the record: 	this non-numeric character can occur in

several places in the record.

The program therefore reads the whole record into the

array, 	each 	character, 	be it a letter, 	digit or

punctuation mark is put into one word of the array. 	A

simple arithmetic or logical operation on each word

converts it into a number that uniquely specifies the

225

L1ltpLeL 1

character. 	In most computers including the Decsystem-10,

this is the ASCII number for the character. 	For example,

the ASCII number for the letter 'A' is 65 and for the

digit '1' is 49. By doing various checks and various

arithmetic operations on these ASCII numbers, the actual

integer numbers in the record can be calculated or the

fact that a '1/' is present can be detected. There are a

series of routines in the program that read in the

records, convert the characters to their corresponding

ASCII numbers and calculate the integer numbers entered

and evaluate their terminating characters.

Two algorithms have been used for the transformation

from digitiser coordinates to GAELIC increments. The

first was written by R. Newton of R.R.E. for use with the

CAMP programs [ref 7.1 and the second by the author. The

first algorithm is designed to cope with linear paper

distortion in all directions as shown in Fig. 7.2.3. The

derivation of the algorithm is given in Appendix 3 where

it is shown that it involves the solution of quadratic

equations. The roots chosen are those which cause the

transformed point to lie on the paper. There is a

considerable amount of computation required for each pair

of coordinates and there is always a slight doubt as to

whether the other roots would also produce a point that

'lies on the paper. In practice the transformation

appeared extremely sensitive to the 	'initialisation'

digitising and this had to be done with great care.

226

DIGITISER CRlf)

ISTORTE

FIG 7 2 3 	PIlFER DISTOftIION RLLO%JED IN NEWTONS RLGORITHM

227

unapcer I

The paper distortion that is allowed by the algorithm

is generally more than is required. The grid is usually

printed on the paper by means of a roller which ensures

that the grid lines are perpendicular but does have a high

probability of the scaling being slightly different in the

x and y directions. It is also always possible to put the

paper on the digitiser at a slight angle to the digitiser

axes. This resuit:s in a paper distortion shown in Fig.

7.2.4.

	

By restricting the paper distortion allowed to that 	-

shown in Fig. 	7.2.4 the simpler algorithm derived in

Appendix 4 can be used. This involves the solution of

simple linear equations requiring only a small ajnount of

computation and only giving one pair of coordinates. 	In

practice 	this simpler algorithm appears to be less

sensitive to the accuracy 	of 	the 	'initialisation'

digitising. This simpler algorithm is therefore used in

GAELIA to transform all the digitiser coordinates into

their corresponding paper coordinates which in turn are

specified in terms of GAELIC increments. The output from

the program i.e. the manual input language and dump code

files are therefore in terms of these increments.

The 	production 	of 	the 	dump 	code 	file 	is

straightforward as it is a standard binary file consisting

of numbers only; this can be written directly from a --

Fortran program on almost all computers. To reduce the

number of disc writes on the Decsystem-10, a subroutine is

used to add the individual numbers to a buffer and then

22

DIGITISER CRrO

PAPER

FIG 7 2 4 PAPER DISTORTION ALLOWED BY SECOND ALGORITHM

229

napter I

write the contents of the buffer to disc when necessary.

The production of the manual input language, however,

is far more complex as it cannot be done using standard.

Fortran. Standard Fortran output is similar to the

standard input in that the number of data items to be

transfered and the number of characters in each item must

be known. The manual input language produced by GAEL1A is

slightly more rigidly defined than that described in the

GAELIC Users Manual in that the order words are always a

fixed length, e.g. "RECT .." and "POLY" are always used

instead of "REC" or "RECTANGLE", "P" or "POLYGON" etc.

and the group names are always 5 characters long, e.g.

G1234 etc. 	However the number of digits in a coordinate

will vary with its value. 	It could be argued that as

leading zeros or spaces are acceptable in GAEL2A, the

program that processes the input language, and so they

should be allowed in the output from GAEL1A. however the

main purpose of producing the manual input file is in

order to modify it to correct errors. This can only be

done efficiently if the input language itself is easy to

understand: once the user is accustomed to seeing the

description of a polygon as:-

"POLY" (1) S,5,20: 20,2, 20,2,-22,-2,-18,-2;

then it is very difficult to recognise:-

"POLY"

2i

Chapter I

(01)

S,

00005, 00020:

00020, 00002,

00020, 00002,

-00022,-00002 9

-00018,-00002;

as the same polygon. The later description is typical of

that obtained using standard Fortran output. For this

reason the conventional form of the manual input language

was chosen for the output from GAEL1A. To obtain this

output, characters are loaded into a buffer and the buffer

is written out to disc when necessary. One subroutine

adds the characters that make up an order word or group

name to the output buffer, another adds the characters

that make up the significant digits of integer numbers and

a third adds the punctuation marks.

The simplified flow diagram of the GAELIA program is

shown 	in 	Fig. 	7.2.5. Itdoes not show the sophisticated

error correcting system associated with the '#' 	character

nor 	does it show in detail the processing of any

particular type of shape. After defining and opening the

input file and 	the 	two output files, the input file is

processed until the first sequence number is found. The

shape code and possible extra code are then read in

followed by the coordinates of the shape. The coordinates

are stored in an array until the next shape code is

231

Fig. 7. 2. 5 	Simplified Row diagram of GAEL1A

231a

LIJcIp L(L 	I

detected indicating the end of the present shape. 	This

shape is then written out as both GAELIC manual input

language and GAELIC dump code after suitable tranformation

of the coordinates to allow for paper distortion.

Some interesting features affect the running of the

program. When someone first starts using any program, he

or she requires a great deal of help and so instructions

given by the progrim must be clear and unambiguous and any

errors detected must be explained in full. Both these

requirements result in long verbose messages being written -

on the terminal. If a teletype or any other terminal

running at 10 characters'per second is being used, these

messages will take an appreciable time to be written.

However, once the user is familiar with the system then

these messages are superfluous and time waisting.. All the

user requires are short criptic aide memoires. The

program provides the user with both types of message and

the user selects which is used by answering "YES" or "NO"

to the question 'DO YOU WANT EXTENDED PRINTOUT'. The

extended printout produces long explicit messages of the

form 'ENTER NAME OF FILE TO CONTAIN GAELIC LANGUAGE'

rather than the criptic 'GAELIC FILE'. The extended

printout also controls the length of any error messages.

232

1udpLeL I

7.3 GAEL2A Manual Input Language Processor

This program takes the description of all or part of

an integrated circuit layout coded in the GAELIC manual

input language and after extensive syntactic checks

converts it into the numeric form of the language known as

the dump code.

The syntactic checking attempts to detect and produce

a meaningful error message for every error in the input.

data. 	Unfortunately although the first error in every

shape is detected, 	it 	is. not 	possible 	to detect all

subsequent errors in the same shape. 	This is because data

containing other errors may have been processed before the

first error was detected. 	As the dump code is stored in a

sequential file, 	it is difficult to modify the data once

it has been written.. It is therefore easier to ignore

data, for shapes containing errors rather than write the

incorrect shape descriptions to a file. The user is given

facilities for adding the corrected shape description at a

later stage when again the description will be checked for

syntax. This means that if the user corrects the first

mistake but repeats the second, it is detected and the

user is consequently stopped from entering any illegal

data into the dump code file.

The GAELIC manual input language is fully described

in the GAELIC users manual [ref 7.21 and so it will be

sufficient here to give only the two examples shown below.

233

Chapter 7

"RECTANGLE" (1) 5,5: 2480,5860;

"REC" (1:4) 1050,2486: 10,5;

Here the respective order words, mask specifiers and

coordinates contain a different number of characters -and

cannot therefore be read using the standard Fortran input

routines. A similar technique to that used in GAELIA is

employed to read this input data. A complete record is

read into an array, one character to one word, a logical

operation is performed on each word in turn to give the

ASCII number for the character and these numbers are

processed to give the order words, the group names, the

mask specifiers and the coordinates. The actual routines 	-

used are detailed in the GAELIC system manual. Errors are

also detected by these routines, suitable messages are

then produced messages and, in general, 	the 	shape

containing the error is ignored.

The simplified flow diagram of the program is shown

in Fig. 7.3.1 where it can be seen that after setting up

the input and output files the input data is scanned for

the double quote forming the start of the first order

work. 	The routine that identifies the order-word is then

called. 	This routine first of all checks that the order

word is valid and if so returns an integer number which

uniquely identifies the word found; otherwise it writes

out an error message and sets a flag. The program is

directed to various blocks of code depending on the

integer number when the rest of the data for the order

234 	 -

FIG 7 3 1 IMi'LIFIEQ FLOW DIAGRAM FOR GREL2R

235

ciapter I

word is processed. 	The order words for the basic shapes

i.e. rectangles, polygons and lines are processed in 	the

same block of code, 	this is a relic from the original

version of. the program running on the Systemshare

time-sharing service where core was at a premium and there

was heavy overhead on subroutine calls. Here the rest

of the data describing the shape is checked and if

correct, the appropriate dump code is writLen out. The

program then either returns to look for the next order

word or to look for more coordinates if the DITTO flag is

set. The use of the "DITTO" order word is described in

the GAELIC users manual and is a facility for reducing the

amount of data required for a series of rectangles etc.

If errors are detected then the program returns to one of

three different places depending on where the error was

found. This feature of the program can be best understood

by reference to the flow diagram for the processing of a

rectangle shown in Fig 7.3.2. Here the point A is the

point in the main flow diagram (Fig 7.3.1) where the start

of the next order word is being sorted . : point B is where

the starting quote has been found and point C is where the

coordinates are read and is the point returned to after

the completion of a shape if the DITTO flag is set.

The processing of a polygon is very similar to that

of the rectangle and the flow diagram is shown in Fig

7.3.3. It will be seen that there are three main

differences: 	there is an undefined number of coordinates

in a polygon and the polygon must be checked for closure.

236

[__REJJ J.M f5K SPECIFIER

ANY ERRORS

FIG 7 3 2 	FLOW DRCfU1 FOR PROCE55ING P fiECTLE

2 337

F1i 1 3 3 	FilM DW.RN FLR P I3ThC A 1UtU1I

238

Utiapter I

The processing of the line is very similar to that of

a polygon except that it has an optional width inserted

before the format letter and there is no need for the

closure check.

Most other words are simple to process involving the

setting of flags or parameters and is easily understood

from the listings.

The writing of the dump code is exactly the same as

in GAELIA where numbers are loaded into a buffer and

written Out when necessary.

7.4 GAEL3A Compiler into Ring Data Structure

This program takes the description of all or part of

an integrated circuit layout coded in the dump code file

and converts it into the ring data structure.

This is the first program of the GAELIC suite that

handles the ring data structure. The ring data structure

for a large integrated circuit is so big that it is held

on disc with only copies of a few pages held in core. All

interaction takes place with the data that is held in

core. 	The data must be transferred from disc to core and

vicaversa. 	This 'paging' as it is called is described in

Chapter 5. The main data structure handling routines are -

built up using calls to two basic routines: 	one reads

from and the other writes to the data structure. The main

routines include one that allocates the required amount of

239

Chapter 7

space for a bead and enters the contents of the head word

into the data structure, one that sets up a null ring,

i.e. enters the negative of the address at the address,.

another that adds a ring pointer of a bead onto a ring

starting at a given address and also include more

specialised routines like the one that searches the area

or mask ring for a bead for a given area or mask number

and if not found creates a new bead. These routines are

described in detail in the GAELIC system manual [ref 7.31.

The flow diagram of the GAEL3A is shown in Fig.

7.4.1. 	It 	essentially consists of reading in data from a

dump code file and adding it to the ring data structure

file. 	The ring data structure file can either be a new 	-

file or an existing one and the selection of which

structure illustrates an important point in the design of

interactive programs.

One of the important features of 	any 	program

operating in a time-sharing mode is its interaction with

the user; 	the program must ask the right questions and

must correctly interpret the users answers. 	The number of

questions asked has to be carefully balanced against the

information required. 	If there are a large number of

questions asked that just require a short 'YES' 	or 'NO'

answer then the user can find although his answer is

unambiguous, that he spend a lot of time waiting while the -

program asks questions. The frustration can be h\ghtened

by knowing that his answer will lead to an obvious . next

question. 	This can be understood by considering the

210

FIG 7 4 1 $ThIFUFIED FLOW DIRRM OF GL3

241

Chapter 7

question:

DO YOU WANT TO USE A NEW OR EXISTING DATA STRUCTURE?

This: 	question is ambiguous does the user answer 'YES' or

'NO 	or should he answer 'NEW' or 'OLD'? Obviously this

type of question should not be asked. 	However if the

question askcd:

DO YOU WANT TO CREATE A NEW DATA STRUCTURE?

Here the answer is obviously 'YES' 	or 'NO' 	but if the

answer is 'YES' the equally obvious next instruction will

be of the form:

ENTER NAME FOR NEW RING DATA STRUCTURE FILE

It 	is better therefore to obtain 	both 	pieces 	of

information with the same question or instruction e.g.

ENTER NAME FOR NEW DATA STRUCTURE OR PRESS RETURN

This approach is used in GAEL3A and other programs in the

GAELIC suite. The exact choice of question is governed by

the usual requirement. In the case under discussion, the

user usually requires a new data structure and so on the

odd occasi0n;: when an existing structure is to be updated,

he will press RETURN and will then be asked for the name

of the existing file.

242

Chapter 7

When the appropriate ring data structure file has

been 	opened, 	certain initial conditions are set up

including the main definition bead, as 'shapes' are read

in from the dump code file they are converted to the

appropriate beads and these are added to the main

definition bead. When the marker integer for "FINISH" is

found i.e. the end of the dump code file, the complete

data structure is written back to disc.

The processing of a basic shape is shown in more

detail in Fig. 	7.4.2. After reading the numbers of the

masks containing the shape, 	the actual coordinates are

read into an array and their minimum and maximum values

found. 	This 'bounding rectangle' 	is 	then 	used 	to 	-

calculate the number of the area associated with the

shape. 	The area ring starting 	in 	the 	appropriate

definition is then searched to find the area bead for that

number, 	if it is not present, a new area bead is created

and added in the appropriate position on the ring. 	The

mask ring on the area bead is then searched 	in turn for

the appropriate mask bead for each mask containing the

shape in turn and a new bead is created if necessary. A

shape bead is created for each mask in turn and is added

to the shape ring on the appropriate mask bead.

When a group call is found in the input data, a

similar process to that just described takes place and is

shown in Fig. 7.4.3. The bounding rectangle of the group

instance is calculated from the coordinates of the origin

of the group call, the movement code and the bounding

243

START

READ IN 	SHAPE MASK NUMBERS

RRRAl READ COORDINATES INTO

FIND MIN AND MAX VALUES

FIND AREA CONTAINING SHAPE

FIND DR CREATE AREA DEAD

FIND NEXT MASK NUMBER 	I

FIND OR CREATE MASK BEAD

- SET UP SHAPE BEAD

ROD DEAD TO MASK SHAPE RING J
ROD COORDINATES TO SHAPE DEAD

ANY MORE MASKS _-

EXIT

FIG 7 4 2 	FLOW DIAGRAM OF RECTANCLE PROCESS

244

I 	P IN CR01? NAME 	1
OR CREATE GROUP OE . FIND 	BEAD

__11
[READ IN - NUMBERS OF MASKS USED

READ IN

ORIENTATION AND ORIG IN]

SET UP GROUP VALUE BEAD I]
F114D RECT OF L1

L FIND NUMBER - OF AREA

r FIND OR CREATE AREA BEAD

ACiD VALUE BEAD TO VALUE RING 1

FIND NEXT MASK NUMBER

[_FIND OR CREATE MASK BEA

SET UP GROUP I;-1STANCE BEAD j

[

L_ADD BEAD TO SHAPE RING

FRDD BEAD TO GROUP INST REJ

ADD 0 f(5 TO DEF AND VALUE BEADS]

17 	ANY MORE MASK

FIG 7 + 3 	FLOW DIAGRAM FOR PROCESSING GROUP CALL 	 -

245

Chapter 7

rectangle of the group definition.A Oro6lem Fhat arises if

the group definition has not been specified when the group

call is processed, as the bounding rectangle of the

definition is not defined. It is assumed to be zero and

the area allocated to the instance is therefore governed

by the coordinates of the group origin alone. Another

problem that arises if the group definition has not been

specified is concerned with the pointers. Chapter 5

showed how the group instance bead is not only connected

to the shape ring but is also connected to the group

instance ring and also has a direct pointer to the group

definition bead. The head pointer of the instance ring is

in the group definition bead, consequently without the

group definition bead neither the group instance ring

pointer nor the direct pointer can be set up. 	Therefore,

if not already present, 	the definition bead must be

created and added to the group definition ring when the

call is processed. 	This is done automatically by a

special routine. 	The routine is extremely complex as it

not only has to check if the definition bead exists and

create one if not, but also has to ensure that the

definition is in the correct position on the group

definition ring. The operation of the routine is

described in detail in Appendix 2 but it will suffice here

to explain the problem that it has to solve.

The bounding rectangles of shapes and group instances

are used in many of the GAELIC programs to minimise the

amount of data that has to be processed when plotting out

24,6

Chapter 7

a window or when identifying the nearest point to the

cross hair cursor. 	The bounding rectangle of a group

instance 	cannot 	be correctly calculated unless the

complete group definition is already in the data structure

and its bounding rectangle correctly computed. Unless the

group definitions are entered before the group calls, 	the

bounding rectangles will not be correct. 	This situation

is normally corrected by running GAEL8A immediately after

GAEL3A. GAEL8A, however, will still not give the correct

bounding rectangles unless the group definitions are in

the correct order. 	If an instance of group A is called in

the definition of group B then it is essential 	that the

definition of A preceeds that of B on the group definition

ring. The bounding rectangle of A will therefore have

been correctly computed before the bounding rectangle of B

is evaluated. As there is no restriction in the input

language on the ordering of the data, the ordering of the

definitions on the group definition ring must be done

dynamically in GAEL3A by the routine. The same routine is

used when the definition of a group appears in the dump

code where again it finds or creates the group definition

bead.

While the shapes in the definition are being entered

from the dump code file, the appropriate area beads are

added to the area ring starting in the group definition

bead 	instead of to the ring starting in the main

definition. 	The rest of the process of finding or

creating the mask beads and adding the actual shape beads

247

is identical. 	At the end of the definition area beads and

hence shapes are once more added to the main definition.

A similar process is used for repeat definitions when it

is arranged that subsequent area beads are added to the

ring starting in the repeat definition bead.

7.5 GAEL4A Interactive Program

This program plots out all or part of an integrated

circuit layout on a Tektronix storage tube terminal. The

user can interact with the plot and modify existing shapes

or add new ones. This is the main program of the GAELIC

suite and is the most demanding from a programming point

of view. It is absolutely essential that the program

performs its various functions quickly to avoid user

frustration and the design of the data structure has been

done mainly with this requirement in mind.

One of the problems with using interactive graphics

is that it is always compared with pencil and paper. A

designer has been using a pencil and piper for years and

so is completely familiar with the techniques and forgets

that it took him the first five years of his life to

become reasonably proficient with them. 	lie sits in front

of an interactive graphics terminal with its -input device

and becomes extremely dissoluioned if he cannot master -

the techniques required to use it within an 	hour.

Consequently the ergonomics of any interactive graphics

system have to be extremely good or the user will become

248

Chapter I

dissatisfied. 	One of the most critical 	features is

response time i.e. how long it will take to draw a window

or how long it will take to identify a point. Using

GAELIC in a time-sharing environment makes this problem

even more severe as there are time-sharing delays in

addition to the other delays. The program can do nothing

about the time-sharing delays and therefore concentrates

on minimising the other delays. 	These other delays are

due to two factors: 	the first is the time taken to write

to and read from disc and the second is the amount of CPU

time required to process the data.. The data structure has

been designed to minimise the numbar of disc transfers

required to plot and modify a layout and the CPU time has

been minimised by working as far as possible using integer

arithmetic and doing preliminary sorts to avoid processing

every shape.

The simplified flow diagram for GAEL4A is shown in

Fig 7.5.1 where it can be seen-that after setting up the

initial conditions, the program allows the user to select

one of a series of options, these are known as program

command level options'. The selected option is then

processed and can either automatically call in another

option or return to the part of the program where the user

selects the next option. The options allow the user to do

such things as select which group definition is to be

modified, select the masks to be plotted, select whether

grid axes are produced or close the ring data structure

file and exit from the program. The initial conditions

249

NJ
Cr'

FZC 7 5 1 51MJFIED FLOW ci1f11 OF 	L4A

Chapter 7

that are set up include the selection of an existing ring

data structure file or the creation of a new one. The

flow diagram for this is shown in Fig. 7.5.2 where it can

be seen that the philosophy of minimising the number of

questions that have to be answered is used again. Instead

of asking if an existing or new file is required the user

is asked to name the existing file which is his normal

requirement. When he wants to create a new file then he

presses RETURN in answer to the first question, and then

the program asks for the name of the new file.

The various command level options are shown below

with a brief description of their functions.

AXES 	- Plot grid axes on the screen

DASH 	- Select line specification

DEPTH - Change depth of grouping to be plotted

DRAW 	- Draw additional shapes on screen

END 	- Close files and exit from the program

GROUP - Plot or modify a specific group definition

HELP 	- Clear the screen and print this list

LIST 	- List the names of all the group definitions

MODIFY - Modify shapes within window

ORIGIN - Plot triangles at group origins

PLOT 	- Set up mask list and plot window

REPLOT - Replot window for previous mask list

ROUND - Round cursor coordinates to nearest grid

point

SAVE 	- Take backup copy of data structure

251

START

READ TERMINRL TYPE AND SPEED]

[sE -r DELAY AFTER CLEARING SCRCENJ

F SET DEFAULT CONOS FOR TERMINAL]

READ NAME OF EXISTINC RAS FILE

N
.
RNE ENTERED

IN
FILE EXIST

I 	OPEN EXISTING 005 FILE 	I

READ NAME FOR NEW RDS FILE

FILE EXIST

OVERWRITE

OPEN NEW R 0 5 FILE

EXIT

FIG 7 5 2 	FLOW DIAGRAM OF INITIAL coNDrrJoNs

252

START

READ MASKS TO BE PLOTTED

Y 	 ERRORS
DETECTED

N

PLOT SHAPES ON EACH MASK IN TURN

EXIT

FIG 7 5 3 FLOW DIRAM OF OPTION 	PLOT

253

Chapter I

TEAR 	- Tear layout along defined line

TRACK - Modify track width

WINDOW - Change dimensions of window

Many of the options are just concerned with setting values

or flags for example WINDOW allows the user to type in the

bottom left hand and top right hand coordinates of the

window to be plotted and ORIGIN allows the user to set a

flag that governs whether the origins of the groups are

marked with a triangle when the layout is plotted. Other

options are more powerful and versatile. PLOT for example

allows the user to specify a list of masks and then plots

out all the shapes on each of the masks specified in turn

while REPLOT plots out the shapes on the previous mask

list. 	Thus the REPLOT option is a subset of the PLOT

option. 	The flow diagram for these options are shown in

Figs. 7.5.4 and 7.5.5. When running the REPLOT option,

the area beads are examined in turn to see if any shapes

in the area could lie within the window to be plotted. If

so, the mask ring is searched for the appropriate mask

number. As mask beads are arranged on the ring in numeric

order then the beads need only be examined until the

required mask number or higher number is found. If the

required mask bead is found, then shapes on the shape ring

are examined. The bounding rectangle of each shape is

compared with the window to be plotted and if completely

outside the window, the shape is ignored. If any of the

bounding rectangle overlaps the window, then all the line

segments that lie within the window are plotted. When all

254

FrC 7 S £ 	3WL71r,3 FLOW. IThT!1 FR PCeIOT

255

unapter I

the shapes on a mask have been plotted then the next area

bead is examined and the process continued until the end

of the area ring is reached. All area beads are examined

but if the area cannot contain shapes that lie within the

window, the mask and shape beads are ignored. By

arranging that all the area beads are on the same page,

while the mask and shape beads for each area are on other

pages, then the area beads can be examined with a minimum

number of disc transfers and it is only necessary to bring

in new pages when the area can possibly contain shapes

within the window. Thus the number of disc reads required

is considerably reduced as is shown by the results in

Chapter 8.

MODIFY, DRAW and TRACK are program command level

options that allow the user to interact with the layout.

By suitable positioning of the cross hair cursor and by

pressing suitable character keys the user can identify

points on shapes, define lines etc. The choice of

character key to press gives the user another level of

options which are known as 'cursor command level options'

These different levels of option therefore form a

tree structure. The tree starts with the main option

which is to select the ring data structure to be modified,

at the second level are the program command level options,

the third level contains the main cursor command level

options and it will be seen later that there is a fourth

level consisting of secondary cursor command level

0 p t i 0 fl S.

256

Chapter 7

The simplified flow diagram of MODIFY is shown in

Fig. 7.5.5 where it can be seen that by choosing the

character to press when the cross hair cursor is in the

screen the user can select the cursor command level option

required. The option is then processed and the progream

returns to the cursor command level i.e. the cross hair

cursor is set up.

Certain of the cursor command level options initiate

processes involving other cursor command level options:

these are known as main cursor command level and secondary

cursor command level options respectively. For example in

MODIFY the letter I is used at main cursor command level

option to identify the nearest point in the data structure

to the cross hair cursor, the secondary cursor command

options A, II, 0, Y and [then dictate whether the shape is

moved, modified or deleted. The flow diagram for this is

shown in Fig. 7.5.6 where it has been seen that as well

as modifying the basic shapes itcan also, modify repeat

parameters.

TEAR is the option that allows the user to define a

line through his layout or then move all the shapes to the

one side of the line by a distance. It was written by J.

Phillips of the CAD Project and is called as a subroutine

in the program.

DRAW was at 	one 	time a completely 	separate 	option to

MODIFY 	in the 	first version of 	the 	program 	running 	on the

Systemshare time-sharing service 	when 	it 	formed a

257

PlC 7 S 5 SIMPLIFIED FLOW OIRCRM OF MODM5K

r..J
U,
0'

G 3PTLIFIED FLOW rilfirAli OF h%flF

259

Chapter 7

convenient overlay segment. 	However since that time it

has now been amalgamated with MODIFY and so requests to

DRAW are treated in exactly the same way as requests to

MODIFY.

The data structure handling techniques are the same

as those used in GAEL3A apart from the paging routines

described earlier.

Another of the interesting parts of GAEL4A 	is

concerned with processing group and repeat instances where

there are two problems to be solved. The first is due to

the fact that the group and repeat instances can be nested

and is in the determination of which areas to process in

the group or repeat definition. The nesting of groups

means that the absolute movement code applied to the

shapes in a definition must be computed from the

individual movement codes of the group instances. The

previous absolute movement codes must also be kept to

avoid recalculating them then when a group instance has

been processed. It is also essential to keep the

addresses of the previous area and shape ring pointers

that were being processed when the group call was detected

in order to process the remainder of the shapes.

The second.problen is concerned with the area beads.

The main savings in computer time come from the fact that

only the shapes in areas that can overlap the window are

processed, masks and shapes in all other areas are

ignored. The group definitions are built up in exactly

260

unaper I

the same way as the main definition i.e. with area beads,

mask beads and shape beads, the areas. being allocated in

exactly the same way. However, if a group instance is

rotated about the x axis, then the areas that are required

to be plotted in the group definition are different from

those that are required to be plotted in the main

definition but are related to them by the movement code.

The transformation involves mapping the window onto the

group definition which is a different operation to that

performed on the shape coordinates in a definition when

they are mapped onto the main layout.

The flow diagram for handling the group call is shown

in Fig. 7.5.6 where the coordinates of the origin and the

movement code are read from the value bead. The

coordinates of the origin are then transposed to take

account of the case where the group instance is called

from another group definition. They are transposed

according to the previous movement 	code. 	If 	the

transposed origin lies within the window and ORIGINS are

requested, a triangle is plotted 	at the origin or if

modifying, 	the 	coordinates are compared with cursor

coordinates. When normal modification takes place the

program 	does not search the contents of the group

definitions and so can exit at this point. However, if

plotting or using the special routines that find the

nearest point in the complete layout, then conditions are

set up to process the contents of the actual definition.

The depth of grouping is incremented and the new

261

Chapter 7

displacements for the coordinates are calculated from the

old displacement and the transposed coordinates of the

origin. The new absolute movement code is also evaluated

from the previous absolute code and the movement code of

the instance. This in turn enables the area coordinates

for the part of the definition within the window to be

found. The bounding rectangle of the instance can then be

calculated from the bounding rectangle of ti1e definition,

the new absolute movement code and the displacements. If

it is outside the required window the shapes are ignored.

If the bounding rectangle is inside the window then the

necessary initial conditions are set up which keep details

of the previous definition and set up to examine shapes in

the present definition.

At the end of the area ring, ie. 	when all the shapes

in the definition have been processed then the reverse

process takes place where conditions are reset for the

previous definition and the depth of grouping is

decremented.

A similar process has to be followed for repeat

instances with the exception of the movement code which

does not have to be updated. -

262

Chapter 7 	..,

7.6 GAEL5A/B Plotting programs'

The GAEL5A program takes a GAELIC ring data structure

and plots all or part of ' it out on a Ca'lcomp 563

incremental plotter. GAEL5B is a similar program that

plots the layout on a Calcomp 563 plotter via a Calcomp

DP21 2 controller.

The plotting program is very similar to that used in

GAEL4A to plot on the Tektronix screen i.e. has a flow

diagram similar to Fig. 	7.5.5 and handles groups in a

similar way to Fig. 	7.5.6. The main difference is that as

the program is usually used to plot the' complete layout:

in this case all areas are processed and there is no point

in checking to see if each individual area is required.

The checks for the' individual shape however are left in

just in case only a.-part of the layout is required. In

which case the processing is not quite as efficient as it

is in GAEL4A. The plotting however is very much limited by

the speed of the plotter rather than the time taken for

disc reads so the inefficiency has negligible effect as

far as the user is concerned. The program ,uses standard

Calcomp driver routines which are part of the Decsystem 10

basic software library. . These basic routines take the

real number coordinates created by the program and convert

these into the necessary increments for the'plotter. The

actual plotter requires 3 bits of a character for each

increment. 	The increment can be in one of 8 different

directions. 	The increment for the 563 plotter is either 5

or 10 thou, 	and can handle up to 300 increments per

263 	 ' 	. 	'

Chapter 7

second i.e. 1.5 or 3 inches/per second.

The driver routines written for GAEL5B to drive the

563 plotter via the DP212 controller send characters that

specify the number of increments a well as the

direction. This allows the plotter to work at near full

speed despite using a 110 Baud line as the DP212 converts

each character into the required number of characters that

specify one increment in a given direction. Angled lines

other than 45 degrees are slow because they do not take

many consecutive steps in any one direction and so if the

pen is up, it is moved as far as possible at 45 degrees

and then horizontally or vertically to the final

destination as shown in Fig. 7.6.1. on the other hand if --

the pen is down then the best possible straight line is

drawn as shown in Fig. 7.6.2.

The algorithm used for the line with the pen down is

a modification of an algorithm written by Dr. 	J.V.

Oldfield for driving the 563 directly. It transposes the

line so that it has a major axis AC as shown and a minor

axes AD as shown in Fig. 7.6.3.

A calculation is made at each major axis increment to

see where straight line AB cuts the vertical line, if it

is less than half a minor axis increment then the pen is

moved one increment along the major axis, if it is greater

than half an increment then the pen is moved at 45 degrees

to the major axis. 	The process continues at each major

axis increment until the end of the line is reached. 	The

264

Fig 7. 6. 1 Pen movement when raised

A

Fig 7.6.2 Pen movement when towered

FBI
	

B

A-
	 c

F 1g.?. 6.3 Simple angled tine with pen towered

[1

B

264 a

Chapter 7

characters are only sent to the plotter when the direction

of the increment changes or the end of the line is

reached. 	For example, for the line shown in Fig. 	7.6.3,

one character is sent to the plotter for the two

increments along the major axis, one character for the one

character at 45 degrees and then one increment for the 3

increments along the major axis.

7.7 GAEL6A Joins lines together to form closed polygons

The line with zero thickness is an extremely useful

shape for defining metallisation tracks in groups as shown

in Chapter 3. However, when photo-plotters are used to

produce the masks, it is impossible to tell which side of

a line has to be exposed. The lines must, therefore, be

joined together to form polygons. This was the main

reason for writing GAEL6A although using it gives two

other advantages that are not quite so obvious.

Firstly when using a knife on cut and peel material

for a series of short lines, the coordinatograph will no

sooner have accelerated to full speed than it will have to

decelerate again to enable it to stop at the end of the

line. however if all the short line segments are joined

together to give a large polygon then the coordinatograph

can cut for a comparatively long period at full speed.

The movement with the pen up is also reduced giving a

substantial saving in time on the tape controlled

coordinatograph.

265

Chapter 7

Secondly when using the 	lines 	in 	the 	group

definitions, 	it is possible to forget to add the lines at

the end of the group instances to connect, for example, 	a

24 bit shift register stage to the rest of the circuitry.

Errors of this nature are not easy to detect visually but

are automatically detected as part of the process to join

up lines to form polygons. The problem of detecting the

missing lines may appear to be a good reason for using

closed shapes instead of.lines. However if the closed

shape that connected the shift register to the outside

world were omitted, it is even more difficult to detect

visually and cannot be detected by present computer

programs. (it will be possible to detect such errors with

'Mask Function Checking' when this program is finished).

The flow diagram for the process is shown in Fig.

7.7.1 where it can be seen that after setting the initial

conditions, copies are taken of all the lines in the

layout. 	This is not as easy as it first appears, as a

copy of a line in a group definition has to be taken for -

each group instance. 	Each copy must naturally have the

appropriate coordinate transformations. 	The 	program

therefore behaves as if it were plotting i.e. follows the

flow diagrams shown in Fig. 	7.5.5 and Fig 7.5.6 but

instead of plotting each shape, the rectangles and

•polygons are ignored and the lines are copied into a

temporary ring data structure. This temporary data

structure has area beads but no mask beads as the program

only operates on one mask at a time.

266

ST RT

[

SET 	UP 	INITIRL 	CONO[T[ONS 	1
TAKE 	COPIES 	OF 	ALL 	LINES

DELETE 	LINES 	FROM 	LAYOUT

JOIN 	LINES 	TO 	FORM 	POLYGONS 	1
ADD 	POLYGONS 	TO 	LAYOUT

(:EXI

FIG 7 7 1 SIMPLIFIED FLOW DIAGRAM OF GAEL6R

267

Chapter 7

When copies of all the lines have been added to this

temporary data structure the original structure is then

processed to remove all the lines. This time, however, it

is only necessary to detect the line in a group definition

once. Each shape ring for the required mask is examined

in turn and all the line beads deleted: all other beads

including group instances are ignored. The flow diagram

for this process is similar to Fig. 7.8.1 which describes

the operation of GAEL7A. GAEL7A is the program that

produces the manual input language from the ring data

structure.

The lines on the temporary ring data structure are

then joined together to form polygons which are added to

the original layout. The data for the first line in the

first area is entered into an array and the line deleted

from the temporary data structure: all subsequent lines

in that area and all lines in other possible areas are

then examined to find the line with either the same

starting or finishing coordinates. The data for this

second line is then added to the array and its bead

deleted from the data structure. The process continues

until the composite line in the array forms a closed

polygon which is then added to the original data structure

in the appropriate area. The program then returns to what

is now the first line in the data structure and repeats

the process until all the lines have been joined up to

form polygons and all the polygons have been added to the

original data structure.

268

Chapter 7

If the lines do not join up two possible courses of

action are taken. If another line has the same end

coordinates within a given limit then the coordinates of

the second line are changed and a message printed to that

effect. If no lines have the same end coordinates then

the line in the array is written back to the original

layout and an error message printed. The user will then

run GAEL4A to correct the errors.

7.8 GAEL7A Ring data structure to manual input language.

This program takes the definition of a layout in the

ring data structure and writes it to a file as the manual 	-

input language. It is used to obtain a copy of the layout

description that can be read by a user and which is

independent of the computer running the GAELIC programs.

It is also useful for taking the description of part of a

layout and redefining it as a group definition.

The simplified flow diagram of the program is shown

in Fig. 	7.8.1 where the general aim is to first write out

the descriptions of the group definitions followed by the

description of the main layout definition. Unfortunately

both group and main definitions may contain 	repeat

definitions and to make things even worse the repeat

definitions themselves 	may 	contain 	further 	repeat 	-

definitions.

269

sEr ur itimpL co)rrios

FJD ADDRESS OF FIRS r cotr O€F

(_SET (JP FDA CAlL? DEFIUFr!ON

I 	WRITE OUT NEWC9A3'

FIND IUIRESS OF 1ST REPEAT OFF

N

- - 	 SET U' FOR REPEAT oEnNrrioN

WRITE OUT REPEAT

f IHCREA$E E1"TH OF REPEAT

WRITE UJr 5H ipcs Ii ZF1N111OU

—,—r,4T fl--, y

WRITE OUT ENDREPEAT

y 	13 rn 	 I DEFINI ri 	
(EJ'TH OF REPEAT

FIflD ADDRESS OF IXT REPEAT OFF

OF 	 xr FIND R1DRE

END OF 	y
RlNC INSTEAD

WRITE OUT FIUSH

EYJT

FIG ' 13 5 SUIJ'LIFIED FLOW DIACAAM OF CAELJA

270

Chapter 7

After setting up the initial conditions i.e. 	reading

in the names and opening the necessary files, the program

finds the address of the first group definition. If the

address is that of the ring head pointer then there are no

group definitions present and the program starts to

process the main definition. If a definition is present

then the group name is found and is written out to the

output file. 	Th group definition bead is then examined

to find if any repeat definitions are present. 	If one is

present then the repeat parameters are read from the value

bead and the repeat specifier is written to the output

file. 	The repeat definition is then checked to see if it

contains, any repeat definitions and if so 	the depth of

repeat is incremented and the process repeated. When the

present definition does not contain any further repeat

definitions then the shapes in the definition are written

out. A sort is then made on the type of definition

processed. If it was a repeat definition then the end

repeat order word is written out, the depth of repeat is

reduced and the address of the next repeat definition

found. The process is repeated until all the repeat

definitions have been processed, the program then writes

out the shapes in the group definition and after writing

out the endgroup order word finds the address of the next

group definition. This processing of' the group

definitions continues until all the group definitions have

been written out. The main definition is then processed

but again must first go through the process of writing out

all the nested repeat definitions before actually writing

271 	 . 	 .

Chapter 7

Out the shapes in the main definition. The finish order

word is then written out and the files closed.

The actual writing out of the manual input language

requires an identical 	technique to 	that 'described in

section 7.2 for the digitiser program. The reading of the

ring data structure requires the data structure handling

routines used in most of the other programs.

7.9 GAEL8A Data structure reorganiser.

This program reorganises the data structure on disc

so that it is in an optimum order for interaction. The

program also removes all unused area and mask beads and

recalculates all the bounding rectangles.

The data is sorted so that the definition beads and

area beads are on the same page or on consecutive pages so

that the area beads can be checked to see if they can

contain shapes within the window using the minimum number

page changes. However once an area bead has been found to

be capable of containing shapes within the window then all

the shapes must be processed, hence all the mask and shape

beads for a particular area bead must be on either the

same page or on consecutive pages so that again the number

of page transfers required to process the shapes is

minimised. The simplified flow diagram to perform the

reordering of the data is shown in Fig. 7.9.1. The

initial conditions consist of reading, in the names and

272

ST RT

SET 	UP 	INITIAL 	CONDITIONS 	1
SET 	UP 	MAIN 	DEFINITION 	BERJ

SET 	UP 	MAIN 	AREA 	BEADS

SET 	UP 	CROUP 	DEFINITION 	BEADS 1
SET 	UP MAIN REPEAT 	DEF 	BEADS

SETUP 	CROUP 	DEFINITIONS

SET 	UP MAIN REPEAT 	DEFINITIONS 1
.7

[SET UP MAIN MASK AND SHAPE BEADS

CLOSE 	FILES 	ETC

(

EXIT :4ffD.o

FIG 7 9 1 SIMPLIFIED FLOW DIAGRAM OF GAELBA -

273

UIaptcr I

opening the necessary files. The main layout head bead is

then set up in the new data structure which is followed by

beads for every area that is used in the old layout. A

group definition bead is then set up in the new data

structure for each group definition in the original

structure. These are followed by repeat definition beads

for all the main repeat definitions present in the

original structure. 	The actual group definitions i.e. any

repeat definitions, 	the area beads, mask beads and shape

beads, are then copied onto the new structure. The repeat

definitions may well be nested and if so all the necessary

definition contents 	i.e.. area, —mask, value and 	shape

beads, must be set up. The same process applies to the

main repeat definitions which again can contain nested

repeats. Finally the main definition mask and shape beads

are, set up.

The techniques used to handle the data structures are

virtually identical to those used in other programs except

that provision is made for the two data structures that

must be handled. The task is simplified as theri is a

requirement to read from the original data structure but

no requirement to write to it. The new data structure

however has to be both written to and read from.

274

..u.pLer I

7.10 GAEL9A etc. 	Post Processors.

These programs convert the ring data structure into

the drive tapes for a range of mask making machines

ranging from the Coradi tape controlled coordinatograph to

the Gyrex Pattern Generator.

All these programs work the same way as GAEL5A i.e.

the flow diagrams are those shown in Fig. 7.5.5 and Fig.

7.5.6.. The actual output varies from program to program

but usually uses the buffered output techniques described

in section 7.2.

275

CHAPTER 8: Performance

This chapter is devoted to the subjective assessments

and objective measurements that were carried out on the

programs in order to evaluate their performance at various

stages during their development. The chapter starts with

a subjective assesstent of the PAELLA suite of programs

running on the Systemshare time.-sharing service and is

followed, by a comparison between the performance of the

sequential block data structure used in PAELLA with the

initial ring data structure used in the first version of

GAELIC. The results of the various improvements made to

the ring data structure culminating 	in the 	final data

structure using area beads, are 	then described and the

chapter closes with a subjective assessment of 	the

interactive facilities available in the GAELIC. suite.

8.1 PAELLA Performance

The PAELLA programs were written, 	mainly by the

author,c&r&eneral Instruments Nicroelectronics Ltd (GIN) for

use on the Systemshare time-sharing service. Most of the

programs belong to *GIN and are not generally available.

However, the Wolfson Unit retained rights to the two input

programs and these are used in the GAELIC suite. Most of

the integrated circuit masks produced by GIN were of a

proprietar nature and no objective measurements were

made. 	It 	is 	nevertheless 	worth 	discussing 	their

subjective assessment of the PAELLA programs.

276

Chanter 8

The programs are designed to take the output from a

Metrograph digitiser or a manual input language

description of the layout, and convert it initially into

check drawings on an on-line incteNental plotter and

finally into drive tapes for tpe controlled

coordinatographs to produce the mask masters. 	It was

realised that without any interactive correction

facilities, the programs would have limited facilities but

it was necessary to produce a working system in the

minimum time. GIM found the correction of errors by

either modifying the digitiser output or the anual input

language was extremely tedious and most of the time was

Spent looking for and 	correcting errors rather than

digitising the layout. 	The method of providing the input

data was found to be successful provided 	that either an

accurately gridded mylar was used for the drawing or only

small parts of a layout were drawn on normal griddeci

paper. The major problem that appeared if these

requirements were not met, was that many polygons had one

or more sides at a small angle rather than all the sides

paraxial. Finding which point is in error and correcting

it by examining the input language is far too slow and

cumbersome.

277

Chapter 8

8.2 PAELLA and GAELIC Comparison

As most of the designs processed by CIM were of a

proprietary nature, the completed designs were not

available and so no timing or costing data was possible.

However, permission was obtained from GIM to use the

PAELLA programs to do some comparative tests on three

circuits that were available for publication. The

circuits are shown in figs 8.1, 	8.2 and 8,3 and the

results of the measurements are shown in table 8.1.

I I Layout 11 Layout 21 Layout 31
II --------------------------------- I
I I I I I
I 	PAELLA CPU Time I 20.4 I 29.6 1 724.8 I
I 	Sequential 	Block Secs I I I I
I 	D. 	S. Connect I 3 I 3 I 24 I
I Mins I I I I
1 1 I I I

I I I I
I 	GAELIC CPU Time I 17.6 •I 14.2 I 584.0 I
I 	Original 	Ring Sec. I I I I
I 	D. 	S. Connect I 3 I 3 I 9 I
I Hins I I I I
I I I I I

Comparison of Sequential Block and Ring
Data Structures

Table 8.1

The object of the test was to compare the performance

of the PAELLA programs and the original version of GAELIC,

both of which ran on the Systemshare time—sharing service.

The digitiser input and manual input language programs

both of which can produce dump code files are common to

27B

Chapter 8

both systems as are the post-processors converting the

coordinate file into drive tapes for tape controlled

coordinatographs. However, the method of producing the

coordinate file from the dump code file is different in

each system using different data structures as discussed

in Chapter 4. The tests are therefore a comparison of the

sequential Block Data Structure used in PAELLA with the

Ring Data Structure used in GAELIC. Errors are detected

in PAELLA either by the syntax checkers or by plotting all

or part of the drawing on an incremental plotter. They

are corrected, however, by modifying the input language

file. GAELIC, in addition can detect errors by plotting

part of the layout on the Tektronix and the errors can be

corrected interactively. This means that the only valid

comparison between the two systems is the time to convert

the Dump Code file into the Coordinate file.

The first layout shown in fig 8.1 is a small MOS test

circuit designed by : the Wolfso.n .Un4t to evaivate an t•IOS

process It does not contain any group- definitions or

repeats and because it is small is entirely core resident

in GAELIC. The second circuit is a small test example

used during the development of the CAMP system [ref I and

contains both group and repeat facilities But again is

core resident in GAELIC. The third circuit is part ofthe

correlator layout designed by the Wolfson Unit and uses

both group and repeat facilities and is large enough to

use the paging facilities in GAELIC.

279

I")
CO

Fig 	8, 1 	Layout of 	rnoL1 circuit 	with 	no grouped and repeated shapes

rlj

Fig 8.2 Layout of.srnall circuit with grouped and repeated shapes

Chapter 8

The results show that for a small, circuit without

group definitions etc there is a slight but significant

saving in CPU time when using the ring data structure,

though there is, no variation in the connect time used.

This slight variation is probably due to the fact that

using the ring data structure, the data is always in core

while using the sequental block data structure requires

the files to be rewound for each mask. The small layout

using group and repeat facilities shows a considerable

reduction in the CPU requirements to process the data

using the ring data structure because of the way the group

and repeat facilities are handled. The data for the ring

data structure is again held entirely in core.

The CPU time to process the large section of layout

[fig 8.31 shows a 20% saving using the ring data structure

but there is an even more dramatic saving in connect time.

Normally the connect time required to run a program on a

timesharing service varies with the number of users on the

system and so in general is not a meaningful measurement.

However, these particular measurements were made late in

the evening when the system was very lightly loaded and so

there was a significant variation in the connect time.

This variation is almost certainly greater than the

variation in CPU even after allowing for the 'effects of

loading and an, explanation must be found for it A

significant point to note is that 584 seconds of CPU time

will require 9 mins 44 seconds of connect time. The

connect time is only measured to the nearest minute so the

282

:ti 	 _ i1 	ifL 	cr

— 	 --= 	— 	- 	— 	--I= 	 -- ----- -- -

jj f7
::- 	[, 	: " 	• 	-: 	 1t1 	- 	- 	- 	I 	'i r- 	'i 	- -

:
_4—_____ — 	— = — 	— 	 — = -- 4 ---------------- : 	-

	

::=: LZ—T-- • 	 --.' 	
::=:==::T:==:__ - ..

--: 	 — -

rt___ 	; t_.._.__ -------. j-... --•:, —.------ 	! 	------------- , 	. 	 ! " t_.L.__........

T-ii1 j 1 	r 	 IT'irftcE
I n 	r 	ciL 	 - 	

S 	
ii'i 	• 	.1 	— 	-r p 	I 1i - I 	1-' 	1

fl i !1h L

!il±
I 	r 	 Iy 14%

j 1 1' 	I:hii 	 I 	— 	
;1i

I

	

- 	 1]1T 	 1I! h tJ 	 I 	{i
I f

____,_. 	. 	 ' 	 !I------------- 	 •-.r--.---

i f

tf- Ln--- - ------------
H 	Li 	

L—

fl 	j 	 I ifi 	!J

	

r- 	 1 	 L 	:r_1iL 	1 -
MT 1~1 I 	- 	 fi 	1fl I II 	i - 	II 	I' ' "

	

- 	 iL 	 r-_ - r 	Li 	 s-'.-..

mi 1r,' E' 	IL 	 j 	L 	Li

jlhJI;r, 	r--rnJtLrHLtH, 	 jt1T1 	H
'1 	 1j 	

1 	H' JLi' 	r 	i

IIif I 	I 	uirftH 	': 	
! if

,—'-------- - 	-I=f;L1 	[t-- 	J1Jif 	111 	 iT[I

if

it

171 1;

	

i:-H 	 EJ

—

Fig 8. 3 	Part of large layout with grouped and repeated shapes

283

Chapter 8

9 min measurement indicates that there was only one user

on the system and that the time taken for random access

disc transfers was included in the CPU time mesurements.

If the time for the sequential file handling was charged

to the connect time and not to CPU time then this would

explain the fact that the connect time was correspondingly

longer for the sequential block data structure.

8.3 Minor Improvements to GAELIC

The GAELIC programs were transferred from the GE430

computer used for the Systemshare time-sharing service to

the Decsystem 10 of the CAD project. The programs were

then 	modified 	to calculate and store the bounding

rectangle of each defihition in the data structure and to

make. use of these bounding rectangles when plotting or

modifying the layout. Certain other minor improvements

were made to the code at the same time to speed up the

operation. The original programs required each shape to

be checked against the window to be plotted regardless of

the fact that it is in the instance of a group definition

and the whole instance is outside the window. The new

programs check the bounding rectangle of an instance of a

group against the window by making the necessary

transformations of the bounding rectangle of the

definition and the instance is ignore if completely

outside the window. These two versions of the program

were compared for processing the same layouts as before

i.e. figs 8.1, 8.2 and 8.3 and the results are shown in

2 8

Chanter 8

table 8.2.

These results show that the ve,rsion with the bounding

rectangles and other minor improvements requires less CPU

time to create the ring data structure than the original

version. This was due to certain of the minor

modifications. The time to plot the complete layouts

showed no appreciable difference between th two versions;

the bounding rectangle version would of course have taken

longer without the minor modifications. The CPU time

required to plot a window of the large circuit was

appreciably reduced from 63 sec to 18 sec.

The bounding rectangle concept was therefore well

worth implementing into the GAELIC system. This new

version of the GAELIC programs known as the - S' version

was used by Hr R. Kelly of the Wolfson Unit to design the

layout of an integrated circui-t correlator. His

experience of using the programs are summarised in a joint

paper [ref 8.1 11 presented at the CAD Conference at

Southampton April 1974. His comments on the ergonomics of

the system were extremely useful and they enabled an order

of priority to be obtained for the various modifications

and improvements that were desired. His main criticism of

the system was the time taken to plot out a different

window of the layout as the coordinates of the window had

to be typed in. Other ergonomic problems were those

involving shapes 	within 	definitions. 	For 	reasons

described in earlier chapters, 	it was only possible to

identify and modify shapes in the particular definition

5

Chapter 8

being processed at the time. 	One can identify and modify

the origin of the instance of a group definition but one

cannot modify shapes within the definition. However, it

is always possible to discover an error in a definition

when viewing an instance of it in another definition. A

designer will often know the name of a definition

containing •i shape but on the occassions when he cannot

remember, he has the difficult task of plotting each

definition in turn. In general the facilities provided

were performing the required functions but not necessarily

in the most efficient way.

8.5 Effect of Area Beads.

Chapter 5 describes the reasons why the size of the

areas into which the layout is divided should effect the

performance of the data structure. 	Measurements were made

of 	various aspects of the performance of the. data

structure. The main aspects of the performance are the

time to create the data structure, the - time to plot the

whole layout, the time to plot a window and the time to

identify a point in the definition. The effect of the

area beads will not be noticed on small circuits and will

be most noticeable on 'layouts with a minimum of group and

repeat definitions. It is extremely difficult to obtain

large integrated circuit designs that can be published and

unless' the compexity of the design can be shown with the

results, the results loose much of their value. Part of a

MOS shift register design was obtained from ICL with

11

285

Chapter 8

permission to publish at a scale shown in fig 8.4. This

can be seen as having a large number of group and repeat

definitions, but the data was processed to remove all

these definitions and just produce rectangles and

polygons. It was the data for one layer, the

metallisation, that was used for the first set of tests,

the results of which are shown in tables 8.3 and 8.4 and

figs 8.5 and 8.6. The tests are of the CPU time to compile

the dump code file into the data structure, to plot the

full layout on the Tektronix and to plot a window for a

range of area sizes.

The first measurements are of the CPU time required

to create the rig data structure file from a dump code

file for various area size with the comparative time to

produce the previous ring data structure without the area

concept as comparison. The 'area' program also monitors

the number of 'disc reads and writes' that were required

to create the data structure and these measurements are

shown with the others in table 8.3. The term 'disc reads

and writes' refers to the number of times that the

required page of the data structure was not in core and

had to be read in, after writing out another page to disc

if its contents had been changed, it does not refer to the

actual number of disc transfers required. The results

show a rapid increase in the number of 'disc reads and

writes' as the size of the area is reduced with a

proportionate increase in the CPU time. This is to be

expected as the number of area beads must be increased as

267

• ,j-i I_it 	II II OwJ ii
_: •1!L,i 1

II! III Li

LI- -
I1 	I 	1 1 i1 L__1 	II•ij i t

1 j1CJb I i,jj

I
TJ L3 11 	it

tit piit- II

[JJDIj
• _j;' 	L 	j I-' 	iti•

[ii! 	IiI'I

Li-:

j-I l
I 	J11" 	•i

I
.i-J I11I

C]JJ • 	_
iij 	[i•Li I
j-U Lij il 1I
L r1Vi I1

hI I
LpII?L
£JL.i IiI
I r.JijI 	IlL (-•i 	IIr

- L_1 otJ ii 	III
I 1h1
1I 	

it1!

{_I1I •i) -ii 	• 	I- ii •Jç'-• 	hut)

1 i ••i:•,.,__I 	i'I

• 	I 	(•JJ•,J•,

.ij 	[.Jj
rf] II hIL L]

L 	fJrIJi
I1 f•

• 	-• 	o tJJbL I I
II rtl 	Wji II

Li

L1

E3

Li
11

H

• • 	ici 	;t(flcl ::;• I
f) 	 iU

• 	Lft_Jv' pd J:

• 	J) 1)I Ji5III 	i]dfl:I Fi.I
• 	_0:t 	H H:

•
L5 J5'i 	iftI itiIi

Li p 	tJ
-

L,-i
rJ OH

1.
i
filp C4

[J 	Jr

Lc
g iI

_fj'J 	Jl 1
• 	 li 	ft 	 -

• 	• 	iI 	JII1LI 	13

it

H 	Id

•Eiii_i 	•1I! 	-- 	i
1

ci
ki L

UUULJLiU i1jiL

• 	 T 	n'

It

J I

u Li Li

uiIII 	 •.

L 1T(

U
I 	I••i 	II 	I 	Irl 	J

IL
I 	H. ULLJ iP

rLII lI

• 	I 	i 	Lf]

L
ii ii I I[iI i;flFrid LTA

t'J. 	
L

• •-.L' 	l: j 	J 1
cI:III!

17 	
2L

L 	'Hh::io s

±ç it L 	cii
it 	JJjli; IL 	iq 	1_i

	

a: 	j
rj1 h

• 	:Uq

CJ
Li:: 't?1iki

• jtI1 	1;j 	I
Il

j1r! 	I

JJr 	1;liL
r'j' 	'h Cl

h it I: 	![Icli

	

i h 	H t 	I•-il • 	• 	r
I 	 t 11

IcidJ
HP' 	•

	

•' 	i

L= 	iI 1 	q d

	

(J 	L

	

i1 	' j 	H i

	

it 	I

rJ LL
HI 	,ç
1.

i_••t1 	LtL LI 	III 	1 JI

k 	H
ir ji

1-iL] I hp II IL
L=HLi- 	IjUL1o 1
•rt1 IJ 1i'jth
L_J Dc •q I 	,. , 	, H

IIi!;i 	1 h1 1ci.
,-r--' 	-.I .-i,i• 	iI1 	I'

• 	•i 	• 	•II•-i 	•1_, 	- JI 'j 	_ 	•• 	• -
[

	

L 	it

It
ri 	rj -c nh1IJiIHrh)!i 	i

Fig 	S. 4 	ICL layout

288

Chapter 8

the area size is reduced. As each new shape is entered

its area bead is calculated, and each area bead already

present must be checked to see the required bead is

present and if missing must be added to the 	data

structure. 	The first version of the program • created the

area bead only when required and this meant that the area

beads were fragmented throughout the data structure and so

many pages had to be read just to examine the area beads.

The version actually used in the test required the

bounding rectangle of the layout to be entered via the

keyboard and the program then sets up all possible area

beads before actually reading the data from the dump code

file. This means that all the area beads are on the sane

page or on consecutive pages in the data structure and so

the number of pages that need to be read in are minimised

This for areas of 1024 increments reduced the number of

disc reads from 4650 to 20, the number of disc writes from

1008 to 52 and the CPU time from 23 mins 14 seconds to 55

seconds. The increased CPU time for the largest area size

over the other large size areas is more difficult to

explain - the reason is probably due to an optimising

feature of the Fortran Operating System where the system

detects that division by a power of 2 is taking place and

does bit shifting on the number, division by any other

number requires a normal division process which takes

longer. The largest area size required a division by

unity whereas all others requires a division by a factor

of two. 1t therefore appears that unity is not processed

as a power of 2.

289 	 -

Chapter 8

The second set of measurements were of the CPU time

and disc reads required to plot out all or part of the

layout for various area sizes from the initial ring data

structure created from the dump code file. The part of

the layout plotted was a window whose bottom left hand

corner was 1000, 1000 increments and whose top right hand

corner was 1200,1200 whereas the bounding rectangle of the

complete layout was 348,287, and 6678,3270. The results

are shown in a tabular form in table 8.4 and the CPU time

and disc reads in graphical form in figs 8.5 and 8.6

respectively. For comparison, similar measurements for

the original data structure without the use of areas are

also shown in each figure.

When plotting a full layout, the CPU time required is

always greater than that required for the original data

structure. This is due to the time required to process

the area heads, 	the time taken to check if each bead is

within the plotting window. 	However, as the size of the

area is decreased there is a substantial increase in the

CPU time required. This increase is due to the fact that

the data is' fragmented, shapes within a given area are

almost certainly not all on the same , page and so the

respective pages must be brought into core to enable the

data to be extracted. The shapes for another area may be

on. the same pages but in a different order and the pages

must be brought back in again when the next area is

plotted. This would mean that a large number of page

reads would be required and a corresponding increase in

290

Chapter 8

CPU time to set up the necessary page transfers. The

actual page reads were monitored, at the same time as the

CPU time was measured and the number of reads substantiate

the hypothesis.

Plotting out a small window requires only certain

areas to be processed. The actual areas required are the

area 0 which contains all the large shapes and any areas

that can contain shapes that could appear within the

window, i.e. areas within the window and those immediately

adjacent as described in Chapter 5. The results show that

there is an optimum size of area for the window plotted

that' minimises both the CPU time and the disc reads to

plot out the window. This is due to the varying number of

shapes within each area: if the area is large, processing

the areas within the window and all adjacent areas can

result in processing most of the data structure. At the

other extreme, however, if the area is too small, most

shapes will be too big to be associated with the normal

area beads and must therefore be classified as large

shapes and associated with area number 0. When plotting a

window, area number 0 must always be processed and so for

any window mos-t of the shapes must be processed and so

again the CPU time and number of disc reads must again be

high. The area size that requires the minimum of CPU time

and disc reads must therefore lie between these two limits

and for plotting a window of this circuit this optimum

size is shown to be approx 512 increments square. At this

size there is a saving of approximately 30% in the CPU

291

Chapter 8

time and the number of disc reads compared with the

original ring data structure.

If most. of the interactive design time was spent

plotting the full layout rath-er than a small window, then

the area concept would not have been justified.

Fortunately, most of the design time is spent plotting

small windows and a reasonsable estimate is 90% of the

plots are of small windows and only 104' of them are of the

full layout. The area concept is therefore more than

justified even on this initial area ring data structure.

This initial data structure is arranged on the disc

in the order in which the data was entered. This is

almost certainly not the best order for subsequent

processing and sothe program, GAEL8A is used to rewrite

the data structure onto disc in a more optimum order. The

measurements made on the initial data structure were

repeat on this 'clean' data structure and the results are

shown in a tabular form in table 8.5 and 'in a graphical

form in figs 8.7 and 8.8.

The CPU time and number of disc reads required to

plot the full layout is considerably reduced and compares

far more favourably with the original data structure.

This is because the 'clean up' process ensures that all

the shapes within a given area are written consecutively

on the disc i.e. on the same page or consecutive pages and

so once a page of data is brought into core the maximum

amount of data is obtained from it.

292

Chapter 8

I I Layout II Layout 21 Layout 31
II ------------------------------ I
I 	GAELIC length I 4 I 2 I 75 I
Ilnput Language blocks I I I I

I I I I. I
I 	GAEL2 CPU Time I 5 I 3 I 84 I
I. Syntax 	Checker Sacs I I I I

I 	Dump length I 4 I 2 I 74 I
I 	Code 	File blocks I 1 I I

I 	GAEL3 CPU Time I 2 I 1 I 86 I
I 	Compiler 	to 	RDS Secs I I I I

I 	Ring Data length I 8 I 4 I 100 I
I 	Structure 	File blocks I I I I

I 	GAEL4 CPU Time I 3 I 4 I 154 I
I 	Full Layout Secs I I I I

I 	GAEL4 CPU Time I - I - I 63 I
I 	Small 	Window Secs I I I I

I I I I I
I 	GAEL2A CPU Time I 6 I 3 I 65 I
I 	Syntax 	Checker Sacs I I I I

I 	Dump length I 4 I 2 I 74 I
I 	Code 	File blocks I I I I

I 	CAEL3A CPU Time I 1.5 I 1 I 74 1
I 	Compiler 	to 	RDS Secs I I I I

I 	Ring 	Data length I 8 I 4 1 100 I
I 	Structure 	File blocks I I I I

I 	GAEL4A CPU Time I 3.5 I 5 I 151 I
I 	Full 	Layout Secs I I I I

I 	CAEL4 CPU Time I - I - I 18 I
I 	Small Window Sacs I I I I

Comparison of Original GAELIC with version
using Bounding Rectangle

Table 8.2

293

Chapter 8

I 	Area I CPU Time I Number of I Number oft Length ofl
I 	Length I I Disc I Disc I D.S. I
Iincrementsl rnin:secs I Reads I Writes I Blocks I

I I I I I I
I 	128 I 27:52 I 3574 I 1151 I 55 I

I I I • I I I

I I I I •1 I-.

I 	256 1 3:42 1 53 I 88 I 44 I

I I I I I I

I 	
.

I I I I I
1 	512 I 1:35 I 30 I 63 I 41 .1

I I I I I I

I I I - :i: I I
I 	1024 I :56 I 20 I 52 I 40 I
I I I I I I

I I f I I I I
I 	2048 I :43 I 5 I 37 I 40 I
I. I I I I I

I I I .1 I I
I 	4096 1 :37 I 0 I 32 I 40 I

I I I I. I -I

I I I •1 I I
I 	8122 I :37 I 0. I 32 I 40 I

I I I I I I

I I I
.

I I I

I 	16384 I :38 I 0 I 32 I 40 I
I • I I I I I

I. I I I - I I
I 	32768 1 :39 I 0 I 32. I 40 I

I I I I I I

I I I I I I
I 	Original I :30 I - I - I 40 I

I 	D. 	S. I I I I I

Results creating 'Initial' Data Structure

Table 8.3

294

Chapter 8

I 	Area I Plotting Full 	Layout I Plotting Small Window!
ILength I---
Iincrementsl CPU Time I Number of I CPU Time I Number of 	I
I I Secs I Disc 	Readsl Secs I Disc 	Readsl

I I I I I I
I 	128 I 118 I 195 I 19 I 54 I
I I

1. I I I I I
I 	256 I 100 I 198 I 14 I 41. I
I I I I I I

I I I I I I
I 	512 I 71 I 125 I 9 I 27 I
I I I I I .1

I I I .1 I I
I 	1024 I 80 I 137 1 17 I 57 I
I I I I I I

I I I I I I
I 	2048 I 64 I 91 I 16 I 51 I
I I I I I I

I . I I I I I
I 	4096 I 56 I 50 I 19 I 50 I
I I I I I I

I I I I I I
I 	8192 I 51 I 40 I 15 I 40 I
I I I I I I

I I I • I ..I . ..• I
I 	16384 I 52 I 40 I 16 40 I
I I I I I I

I I I I - I I
I 	32768 I 52 I 40 I 16 I 40 I
I I I I I .I

I I I I I I
I 	Original I 50 I 40 I 14 I 40 I
1 	D. 	S. I I I I I

Results using 'Initial' Data Structure

Table 8.4

295

4.

Chapter 8

I Area 	I Plotting Full Layout I Plotting Small Windowl
ILength I--------- - ------------I ----------------------I
Iincrementsl CPU Time I Number, of I CPU Time I Number of I
I 	 I 	Secs 	I Disc Readsl 	Secs 	I Disc Readsl

I 	 I 	 I 	 I 	 I 	 I
I 	128 	I 	62 	I 	53 	I 	11 	I 	28 	I
I 	 I 	 I 	 I 	 I 	 I

I 	 I 	 I 	 I 	 I 	 I
I 	2561 	59 	1 	53 	I 	7 	I 	13 	I
I 	 I 	 I 	 I 	 I

I 	 I 	 I 	 I 	 I 	 I
I 	512 	I 	58 	I 	44 	I 	5 	I 	9 	I
I 	 I 	 I 	 :i 	 I 	 I

I 	 I 	 I 	 I 	 I 	 I
I 	1024 	I 	55 	I 	51 	I 	8 	I 	18 	I
I 	 I 	 I 	 T 	 I 	 I

I 	 I 	 I 	 I 	 I 	 I
1. 	2048 	1 	62 	I 	50 	I 	12 	I 	25 	I
I 	 I 	 I 	 I 	 I 	 I

I 	 I 	 I 	 I 	 I 	 I
I 	4096 	1 	52 	I 	43 	I 	17 	I 	43 	I
I 	 I 	 I 	 I. 	 I

I 	 I 	 I 	 I 	 I 	 I
I 	8192 	1 	52 	I 	40 	I 	16 	I 	40 	I
I 	 I 	 I 	 I 	 I 	 I

4. 	
I 	 I 	 I 	 I 	 I 	 I
I 	16384 	I 	51 	I 	40 	I 	16 	I 	40 	I
I 	 I 	 I 	 I 	 I 	 I

I 	 I 	 I 	 .I 	 I 	 I
I 	32768 	I 	53 	I 	40 	I 	16 	I 	40 	I
I 	 I 	 I. 	 I 	 I 	 I

I 	 I 	 I 	 I 	 I 	 I
I. Original I 	50 	I 	40 	I 	14 	I 	40 	I
I 	D. S. 	I 	 I 	 I 	 I 	 I

Results using 'Clean' Data Structure

Table 8.5

296

0 .1__
128

20}.

16384 	 32768 512, 	 1024 	 201.8 	 4096 	 bH2

1ngth 	of 	are

Figure 	8- 5

120

100 1

801

0

1
4 0 ç

C

area size

structure

•0

NJ

0 00
Ln

20r

C
128 256 512

SMALL WINDOW

1024
	

2048 	. 	6096 	 8192
	

638h
	

32758
Length 	of 	ara

Figur Q, 	8•6

120

100

variot .on o4 C.P.U. I imQ 	to plot layout

with area s-ze for 	INITIAL 	data structure

80

.r.)
3

E

a:
0

FULL LAYOUT

120

100

BO
	

number of 	discs rods 	Vs. uro s i z

for CLEAN ' data structurQ

r) 	U
LD

60

- 	 FULL LAYOUT

40

20

SMALL WINDOW

01

12B 	 25 	 512 	 1024 	 203 	 409

	

tength 	of 	oro

	

Figure, 	B7

8192 	 15384. 	 32768

120 1

1 00-

variation of C.P.U. Time to Plot 	Layout

with aroo 5i2 	for 'CLEAN S

Data Structure

FULL LAYOUT
60

Co

• 201 	 . 	 • 	 _____

NSMALL WINDOW

128 	 256 	 512 	 1024 	 2048 	 4095 	 8192 	 15384 	 32768
length of area

• 	 . 	 Figure 	8.8

CHAPTER 9: Future Work

The GAELIC programs have been successfully applied to

the 	design' of 	integrated circuit layouts and the

experience gained from this has indicated several

possibilities for future work. This work can be divided

into three main categories. Firstly there are direct

extensions to the GAELIC programs which enhance its

usefulness for integrated circuit design. Most of these

extensions such as merging two shapes containing a common

line segment are straightforward and are implemented when

required. 	There are some that are far more difficult to

implement such as the provision of constraints. 	Secondly

there are additional programs that are required which

extend the use of the system and layout rule checking and

mask function checking fall into this category. Finally

there are several applications in other disciplines that

can be met by the GAELIC software such as thin film layout

and timber framed house design.

9.1 Constraints

'Often when designing an 	integrated 	circuit 	a

situation occurs where one component or shape must be a

fixed distance from another component. A typical, example

is the rnetallisation over a contact hole. 	Here if the

contact hole is moved, 	the metallisation • should 	be,

constrained to move by exactly the same amount. The

contact hole and metallisation however do not share the

301

Chapter 9

same coordinates as the metal must overlap the hole by a

fixed distance. This type of constraint was a feature of

the original Sketchpad work and was present in the M.rconi

Myriad graphics system. It was not, however, inserted

into GAELIC as

it uses a large amount of. computing power to check

that the constraints are not being violated and

poses problems of how the constraints should be

satisfied. 	Take for an example the contact hole and

metallisation shown in fig. 	9.1.
E

u
B FT

Fig. 9.1 Movement of Netallisation with Constraints.

If the contact hole is moved from 'A' to 'B' then the

program is faced with the problem of whether the

metallisation should be stretched along line CD or along

line EF. The answer depends on the other components in

the circuit and writing computer programs to solve this

problem is a separate piec.e of research work.

302

Chapter 9

9.2 Layout Rule checking

The semiconductor manufacturers always produce a set

of 'layout rules' for each integrated circuit process..

These specify the minimum and maximum dimensions that are

allowed on the masks. For example, the rules will specify

that minimum width for a particlar diffusion track is so

many units or that one shape cannot be closer than a given

amount to another shape on the same diffusion. Returning

to our example with the contact hole and metallisation,

the metallisation must always overlap each contact hole by

a fixed quantity. These checks can obviously be done

• efficiently by the computer and the GAELIC ring data

structure is an ideal way of holding the necessary layout

description. Previous work on this problem has produced

• programs that require a great deal of computer time to run

because all the data must be searched over and over again.

The area association used in GAELIC means that only

certain areas and consequently only certain parts of the

data' structure need be examined. One of my colleagues at

the University of Edinburgh is at present working on a

program using the GAELIC ring data 'structure and the

results appear extremely promising.

303

Chapter 9

9.3 Mask Function Checking

The layout rule checking just discussed will tell the

designer that he has two shapes too close together or that

he hasa contact hole with no metallisation covering it.

Fiowever,it will not tell him that it is the wrong

metallisation over the contact hole and that the circuit

cannot possibly work. This requires another type of

program that is more concerned with the function of the

circuit produced by the masks and is consequently called

'mask function checking'

The problems associated with mask function checking

are quite complex. Attempts have been made to feed in the

electrical description o.f the shapes at the same time as

their topological description. Unfortunately this does

not necessarily mean that the electrical data is correct.

Mistakes could he made when entering the description that

are not detected and so although a program checking the

layout will predict that it will work,. the actual circuit

may not. It is therefore imperative that the electrical

description must be extracted automatically from the

layout description. There are so many different

integrated circuit components available that to search

through all the shapes trying to decide if they form

resistors, capacitors or transistors etc. would take far

too much computer time. A method must be found where the

user does not enter the electrical description per se, nor

does the computer have to work everything out for itself.

304

Chapter 9

A possible solution to this problep 	is to run an

interactive program where the user tells the computer wFat

component he thinks is formed by a series of shapes -and

the computer checks if it is true. The computer only

checks if the shapes form one particular components ie.

does not have to try all possible components nor does the

users data have to be perfect. It also has the advantage

that the user can restrict the range of data search by

specifying that thee component lies between certain

tological limits. 	For example he could indicate that

CFie emitter, base and collector terminals of a transistor

are at coordinates xl,yl 	x2,y2 etc. 	Again the area

association of the GAELIC data structure 	can 	save

considerable computer time.

Another problem that has to be solved is how does the

computer check that it is the correct circuit. At first

sight it would appear that the answer was to draw out a

circuit diagram and let the user check it against. his

original diagram. However, there are two objections to

this. There are stray components that would not have been

specified in the original diagram which would make the

circuit appear different. There is also the more

fundamental problem of programming the computer to draw

out the circuit diagram in the same style as the original

circuit diagram Flow many of us have looked at a circuit

in a book for several minutes before realising that it is

a common circuit just drawn to a different convention? A

possible solution to this problem is to derive the input

305

Chapter 9

data for a transient analysis orlogic simulation program

from the description of the layout -in the ring data

structure. The test sequence that will be used on the

final circuit is then applied to the appropriate input

terminals and if the response is identical with the

required response from the finished circuit, then the

layout is correct or an alternative layout has been

designed. This does obviously rely on the test sequence

being correct which is a problem in its,own right.

Another colleague at the University of Edinburgh is

now working on this problem of 'mask function checking'

9.4 Automatic Layout

For the reasons outlined in Chapters 1 and 2, 	it is

extremely 	difficult to write fully automatic layout

programs. For some time to come, therefore, it will be

essential for the designer to manually interact with any

attempted automatic layout design. This manual

interaction can obviously be carried out using GAELIC.

One approach to the automatic design problem that

merits further investigation is to use the approach of

Radley of placing the component and then placing all the

metallisation associated with that component. However,

the components should not be assmall as transistor 	or

resistors rather gates and flip-flops. 	These can be

predesigned (again using GAELIC) or just an estimate of

306

Chapter 9

the required area of silicon given. 	The program can then

allocate the required shape or the required area. 	The

required area can be some of the space between existing

components and the user can then use GAELIC to design the

actual component to fit in the alloted spaces

The other approach is to use entirely predefined

components and to use a centre of gravity algorithm to get

a placement. However, the routing is done first and so

the component sizes are increased to take account of the

space required by the interconnections.

Another feature that should be exploited in any

automatic design program is that certain interconnections

in the actual circuit must be extremely low impedance,

while others can be quite high impedance without upsetting

the performance. This information must be fed to the

computer in order to decide on where crossovers must be

placed.

Research work is being carried out using 	this

approach by the C.A.D. Project at Edinburgh University.

9.5 Stand Alone Computers

The GAELIC programs can be run on smaller stand alone

computers such as the PDP11, the Nova 1200 and the Modular

1. The computer must have a Fortran compiler, must have

discs and must be capable of handling the Tektronix

terminals. There should be at least 24k of core store,

307

Chapter 9

preferably 32k to avoid problems with overlaying, and it

is desirable to drive the Tektronix at 9.6KBaud or faster.

The advantages of using a standalone computer are

that the time-sharing delays while the computer

services other users are removed completely,

the Tektronix can be driven at its maximum speed

ie. 	9.6KBaud or above,

the discs can have fixed heads giving a much

faster transfer rate and

it may well be cheaper. 	If the program is to be

used to design more than six large integrated circuits a

year then the economics indicate that a 	standalone

computer is cheaper than using a commercial time-sharing

company.

There are disadvantages using a standalone computer.

There has to be a certain amount of reprogramming to allow

for the shorter word length. With the size of integrated

circuits being produced nowadays a 16 bit word is not

capable of holding the complete range of addresses

required 	for 	the data structure. 	Often there are

restrictions in the Fortran compilers where certain

standard functions are not implemented and the standard

disc handling routines supplied by the manufacturer are

far from optimum for this type of application.

The first version of 	GAELIC 	has 	been 	fully

implemented on a Modular 1 computer by Smith's Industries,

Cheltenham and been used to design integrated circuits for

308

Chapter 9

at least two years. The final version of GAELIC has been

implemented on a P.D.P.11/40 but has not been extended to

cater for double word addressing.

9.6 Refresh Graphics

There is no reason why the GAELIC programs cannot be

used with a refresh graphics terminal and a stand-alone

computer. There will be the problems of flicker described

in chapter 6 and this will put a limit on the size of

picture that can be displayed. Most of the wor-k on

integrated circuit design is done with a small window but

occassionally the whole layout is required and this

creates severe problems.

The area association in the GAELIC data structure

will considerably reduce the time required to regenerate

the display file although a lot of work will have to be

done if a light pen is to be used to feed back information

from the graphics terminal to the ring data structure when

components are moved etc. If a tracking cross controlled

by a tracker ball is used then the amount of new

programming is minimised. *

309

Chapter 9

9.7 Layout Design with Automatic Rule Checking

The minimisation of the search time brought about by

the area association of the data structure means that it

should be possible to write a version of GAELIC that

checks each component as it is entered or modified to

ensure that it does not violate the layout rules. Using a

data structure without area association would mean a

search through the compete layout each time that a shape

was moved or entered and could not he done in a reasonable

time. The time taken to interact would be so slow that

the system would not be usable.

The cost of using GAELIC on a commercial time-sharing

computer is relatively high at the moment. Increasing the

amount of computing done at each stage may make it too

expensive too use However, it is nevertheless a

practical possibility on a standalone machine.

9.8 Thin Film Circuit Design

The ability to move components around and to add

interconnections between them is obviously desirable when

doing thin film circuit layout design and there is

obviously a use for GAELIC here. There is also a problem

of designing accurate thin film that can be considerably

simplified by the use of. the computer. Designing a

resistor by hand to go into a given area involves a great

deal of drawing a meandering resistor and the counting

310

Chapter 9

squres to see if the value is correct. 	Realising this

problem, a student was employed during a summer vacation

to work on this problem and under the author's direction

wrote a program to automatically design a given value.

resistor on been given its value and bounding rectangle.

A typical design is shown in fig 9.2: the design is coded

up in the GAELIC manual input language and can then be

placed in the required position using the GAELIC programs.

The author is currently extending the work on thin

film layout design on an S.R.C. grant.

9.9 Timber Framed House Design

This work resulted from the author's desire to design

a house to be built on a plot of land he had purchased.

Timber framed houses are constructed from a selection of

mass produced timber frames. Certain standard designs are

produced by the timber frame manufacturers but there are

no substantial reasons why the frames cannot be used to

construct individually designed houses. The designer need

only know the types of frames available, the sizes of roof

trusses that can be used and the positions of any load

bearing walls and he is in a position to do his own

designs. The GAELIC suite can be used to advantage here

by setting up a library of standard frames and then

interactively calling them up and positioning them on the

Tektronix screen. The frames can be coded in the computer

so that the actual frame dimensions are stored on one

311 	 .

Resistor 	vatu 0 	150Ki.

RQsistivity 	/.00.afsq

Fig. 9.2 	RG'sistor 	design to fit in given area

312

Chapter 9

layer and the overall dimensions stored on another layer.

The timber frames are first drawn on the screen to ensure

that they fit together correctly and then the other layer

can be displayed to show the actual plan. The plan is

then be plotted out on the Calcomp 563 plotter at the

correct scale for submitting to the local 	planning

authority. 	A similar process is employed to obtain the

elevations. Examples of the plan and elevations of a

bungalow are shown in figs. 	9.3 and 9.4.

313

Fig. 9.3 	PLan of 	timber fromd house

()
Lu

~Ml n=~

Fig; 9.4 	EvQtion 	of ti mbr 	framQd 	hou5

CHAPTER 10: Conclusions

This final chapter contains a brief discussion on

whether the requirements for a computer aided mask design

system were sound and whether they were met by the GAELIC

programs. -

10.1 Were the requirements sound?

The overall objective of the work was to produce a

suite of computer programs that would assist in the

production of integrated circuit masks. 	There were two

possible methods of approach; 	the first was to write a

suite of programs that would remove as much of the tedious

repetitive work from the design cycle as possible, leaving

the designer free to concentrate on the actual process of

designing. The second was to write programs that

automatically designed a layout on being given a schematic

diagram of the circuit.

This second approach was rejected for four reasons:

The problems of writing such programs are severe and

any 	proposed
	

solution 	cannot be guaranteed to he

succesful.

The programs would not allow for any variations in

design technique as any new design ideas would take months

to implement. 	T he programs would therefore be continually

out of date.

The designer is not going to be responsive to a

316

Chapter 10

program that threatens to make him redundant.

4) The designer can always stop during his design process

when he realises that a new situation has occured and

think how to get round the problem. The computer, on the

other hand, will continue to work the way it has been

programmed, regardless of the consequences.

It was decided to adopt the first option where the

designer is still in charge of the design. Since that

decision all the British semiconductor manufacturers and

most of the equipment manufacturers use this approach.

None of them use fully automatic programs. The overall

requirement was therefore extremely sound.

The decision to write a portable set of programs

rather than a set of programs for a specific computer is

open to slight doubt. At present GAELIC is the only suite

of layout design programs that is running on a commercial

time-sharing service and so is unique in this respect. It

provides the opportunity for equipment manufacturers and

educational establishments to try designing their own

integrated circuits with a minimum capital cost. From a

commercial point of view, however, it can be argued that

this was not the correct decision as the integrated

circuit manufacturers have all chosen ' turn-key' systems

on mini-computers. However these systems were produced by

very large teams of hardware and software engineers. It

has been reported, for example, that Applicon have a team

of 80 programmers working on their software. It would

have been impossible to compete with that sort of backup.

317

Chapter 10

GAELIC can be mounted on mini-computers as discussed in

Chapter 9 and so can be used as a turn-key system.

The choice of the Tektronix storage tube terminal for

the interactive part of the program was sound as it has

enabled the software to remain extremely portable. It

also allows the largest of integrated circuits to be

displayed without flicker. Most of the successful

'turn-key' 	systems use the storage tube display, usually

with special interface hardware.

10.2 Were the requirements met?

The original GAELIC software has been in use at

Smith's Industries at Cheltenham for several years now and

produced a large number of successful integrated circuit

designs. The Wolfson Unit have used the original version

to design the correlator discussed in Chapter 2 and have

used the latest version to design another two large

integrated circuits. The correlator design was so

successful that working samples were obtaind from the

first batch of circuits produced and it has not been

necessary to make any changes to the masks. This

achievement is mainly due to the skill and patience of the

designer but is nevertheless partly due to the ease with

which the layout could be changed during the design phase.

The two remaining designs are complete and are awaiting.

mask making.

318

Chapter 10

The Post Office Research Establishment are currently

using the latest version of GAELIC to design a variety of

integrated circuits on a commercial time-sharing service

and the Royal Radar and Signals Establishment are also

using it for the design of charge coupled devices.

The overall requirements have without doubt been met

and GAELIC has proved itself a commercially viable system.

319

APPENDIX 1 The variation of overall yield with die size

There are, two main factors that effect the yield of

an integrated circuit slice. The first is the number of

complete die it is possible to get from the slice and the

second is the number of the die that are perfect. Let us

consider the effect of the yield on the number of perfect

die that can be obtained from a given process.

Assume that for a given process the yield of die

100thou by 100thou is 50%. The probality of any one

complete die being perfect is 0.5. If a 200thou by 200thou

die was made using the same process then the probability

of the top right hand quarter being perfect is 0.5, the

probability of the top left hand quarter being perfect is

0.5 etc. The probability of the total die being Perfect

is the product of the probabilities of the quarters being

perfect ie,

05 * 0.5 * 0.5 * 0.5 = 0.0675

This can be expressed more generally. 	If 	the

probability of a die of area A being correct is Pa, then

the probability of a die of area B being correct is Pb,

where Pb is given by:

Pb = Pa ** (B/A)

where ** represents raised to the power of.

The total number of perfect die is therefore the

maximum number of die possible times the probability that

each die is perfect. It therefore is essential to

calculate the maximum. number of die possible.

320

ME (b)

Appendix 1

Calculating the number of complete die that can be

obtained from a slice is relatively straightforward.

However it must be remembered that the number of die

possible not only depends on the size of th.e die and the

size of the slice, but also on the positioning of the

scribe lines between the die and the diameters of the

slice. Consider the three slices shown in fig. 1.

Figure 1 Possible complete die

The first slice (a) has the die positioned so that

the scribe lines are coincident with the diagonal in both

directions and results in four complete die. 	The second

slice (b) 	has the diagonal exactly half way between the

scribe lines in both directions and results in, five die.

The final slice has its diagonal coincident with the

scribe line in one direction and half way between the

scribe lines in the other direction and this results in

eight die.

Fig 1 shows the three possible combinations on a

square die, if the die is rectagular, there are four

possibilities as slice (c) can be in two forms with either

the long or the short gide being coincident with the

321

Appendix I.

diagonal.

A computer program was written by the author which

calculates the cost of producing an integrated circuit of

a given size compared with the cost of producing a circuit

lOOthou square for a given size of slice. The program

calculates the number of complete lOOthou square die from

the given size of slice and from the given yield finds the

number of good die per slice. The cost of producing a

slice can then be found assuming that it costs one unit to

produce one perfect lOOthou square circuit. The number of

complete die of the size entered can then be calculated

and hence the number of good die per slice. The cost of

producing a single die is then calculated from the cost of

producing a slice.

This work was done in conjunction of B.R. 	Kirk of

General Instruments, Glenrothes, 	Fife who checked the

results against the actual yields obtained for various die

sizes and found extremely good correlation.

322

APPENDIX 2: 	The insertion of beads into the 	group

definition ring

In order that the bounding rectangles of the group

definitions can be correctJyconiputed, it-essential that

the beads on the group defintion ring are in a specific

order. For example let us consider the definitions of two

groups A and B where the definition of B contains an

instance of A. It is necessary that the bounding rectangle

of A is calculated before the bounding rectangle of B.

This is simply done by ensuring that the definition bead

for A preceeds the bead for B on the group definition ring

and computing the bounding rectangles in order.

Unfortunately, one of the features of the GAELIC

language is that it does not restrict the order in which

the group definitions are entered. The defintion of B

could therefore easily preceed that of A. The program that

creates the ring data structure •th'refore must arrange the

definitions in the correct order and this is done by an

integer function called 'ISKGRP'.

Let us consider the problem in a little more detail

by taking as an example the definitions of groups A - I

which are structured as shown in fig. 1.

323

Appendix 2

A 	 C 	 I

/\• 	./\

B 	1) 	E 	C 	B 	G

E 	F 	1-I 	'E 	F

Fig. 1 GrOup structure for example 1.

Here the definition of group A contains calls to

groups B and D, the definition of B contains calls to E

and F etc. If we assume that these definitions are

entered into the computer in alphabetic order, then the

order of the group definition beads on the ring must be

continually changed as shown in fig 2.

-324

Appendix 2

Order of 	beads Notes Data 	entered

A Definition of A

BA Call 	to 	B in def of A

BDA or DBA Call 	to 	D in def of A

BDA Definition of B

EBDA Call 	to 	E in def of 	B

EFBDA Call 	to 	F in def of 	B

EFBDAC [3) Definition of C

EFBDAC Call 	to 	C in def of 	C

EFBDAGC Call 	to 	G in def of 	C

EFBDAGC Definiton of D

EFBDAGC Call 	to 	F in def of 	D

EFBIIDAGC Call 	to 	H in def of D

EFBFIDAGC Definition of E

EFBHDAGC Definition of F

EFBI1DAGC Definition of C

EF'BHDAGC Definition of H

EFBHDAGCI Definition of I

EFBRDACCI Call 	to 	B in def of 	I

EFBHDAGCI Call 	to 	G in def of 	I

Fig 2 Ordering of Definition Beads

Notes

[1) If a group call is encountered before the actual-

definition, the definition bead must be inserted into the

ring and it is sensible therefore to insert it before the

bead o.f the calling definition.

[2] A bead created for the second group call in a

325

Appendix 2

definition can be placed immediately before that of the

calling definition or at the beginning of the ring. As

the definition of the second group call can contain calls

to other groups, the former position ie. immediately

before the calling definition bead is prefered.

[31 A definition of a group that has not previously been

called can contain calls to other groups and so it is

better to insert it at the end of the ring rather than at

the beginning.

From fig 2 and the notes, several rules can be

derived for the insertion of definition beads into the

group definition ring.

Actual definitions cf groups must have the definition -

bead inserted at the end of the ring.

Group calls within another group definition must have

their definition bead inserted before the bead for the

definition containing the call.

3)' Group calls within the main definition must have their

definition head inserted at the end of the ring.

The last rule is open to discussion but there is a

greater probability of a definition called in the main

definition containing calls to other definitions than

there is of a definition called from another definition.

It would, perhaps, be better to insert it in the middle of

the ring between the definition beads set up because of

group calls appearing in the input data and those set up

because of the actual definitions appearing. This,

however, is extremely difficult to do and so. there only

326

Appendix 2

remained the choice between the beginning and the end of

the ring.

The above rules only apply when the definition bead

is to be added to the group definition ring. If the

actual definition or a call to the particular group has

already been entered, then the definition bead will

already be present on the ring. Wheu this is the case it

is sometimes necessary to move the definition beads on the

ring to ensure that they remain in the correct order. For

example consider the structure of groups shown in fig 3

which assuming that the definitions are again added in

alphabetic order, gives the order of beads shown in fig 4.

/\

D 	E

/\

A 	C

/

D

Fig. 3 Example of more complex group structure

327

Appendix 2

Order of beads Notes Data 	entered

A Defintion of A

DA Call 	to 	11 in def of A

DFA Call 	to 	F in def of A

J)FAB Definition of B

DFAB [1] Call 	to 	D 	in def of B

DFAEB Call, to 	E 	in def of B

DFAEBC Definition of C

DFAEBC [2] Definition 	of D

DFAEBC Definition 	of E

DFAEBC [3 Call 	to 	A in def of E

DFABCE Call 	to 	C in def of E

DFACEB Previous 	call to E in B

Fig. 4 	Ordering of group definition beads

Notes

Definition bead for D was already present and was

positioned before the bead for B so no reordering was -

necessary.

Definition bead for D was already present when actual

definition entered so again no reoredering was necessary.

Also the definition of D did not contain any calls to

other definitions so again no reordering was required.

The actual, defintion of E contained a call to A but

as the definition bead for A was already present on the

ring before the bead for E no reordering was necessary.

The call to C in the definition of E causes problems

as the bead for A is present but is after the bead for-E.

d

328

Appendix 2

The decision to move bead.E is discussed later.

[5] There is a call to E in the defintion of B and so the

bead for B must be moved to immediately after the bead for

E. The defini tion of B is not called from other

definitions and so the order is now correct..

When a call to a group with an existing definition

head is entered in a group definition whose bead also

exists, there is always the possibility of the beads being

in the' wrong ordereg'. note [4] in fig 4. There are two

possible ways of correcting the order of definition beads

on the ring. 	The first method is to move the calling

definition ie. 	the bead for E and the second is to move

the called definition bead ie. 	the bead for C. The latter

move would have the solved the problem immediately in our

case, 	as there would be no conflict in the positions of

the beads for B and E. However, there are often

circumstances when moving the called definition causes

problems with definitions that it calls and so checks must

be made. To check if a definition contains calls to other

groups, all the area beads, all the mask beads and all the

shape beads must be checked. However, to check if the

calling definition is called from other definitions only

the beads on the instance ring are examined, a much faster

operation. It is therefore preferable to move the calling

definition, in our case the bead for E.

329

Appendix 2

It should be noted that it is only when a group call

is entered as part of another group definition that the

problems occur. 	If the group call is part of the main

definition, 	it doesn't matter where the defintion bead is

situated. When the definition itself is being entered

then its position is not critical until the group calls

arrive.

This situatio.n with the beads already on the ring

gives a fourth rule to be added to the list:

4) If both definition beads are present when a call to

one definition is entered as part of the definition of a

second definition, then the bead for the second defintion

must he moved so that it is after the first definition.

Any definitions calling the second definition must also be

moved if necessary."

These rules are incorporated into 'ISKGRP'.

330

APPENDIX 3: Newton's digitiser coordinate transformation

Newton assumes that because of distortion the paper

will 	appear as an unequal sided quadrilateral when

measured with the digitiser. 	The result is shown in fig

1.

C.

I
R

B

Fig. 1 Distorted paper on digitiser

The digitiser coordinates of the corners of the paper

are xa, 	ya; 	xb, yb; 	xc, yc and xd, yd. 	The digitiser

coordinates of the point P are xp, yp. The object of the

algorithm is to calculate the paper coordinates of the

point P ie. Xp, Yp.

Method

Straight lines QS and TR are drawn on the paper so

that they pass through the point P and are parallel to the

paper axes ie. QS is always Nx of the paper width away

331

Appendix 3

from the left hand side and IR is always Ny of the paper

height away from the bottom of the paper.

Therefore, for point P 	the 	equations 	for 	Nx 	and 	NY

can 	be 	shown 	to be of 	the form:

A..Nx'2 + B.Nx ± C = 0

and 	 -

D.Ny'2 + E. NY + F = 0

Where A, B, C, D, E and F are functions of the point P.

These give two roots for Nx and two for NY; 	the

correct roots are. those which cause the point P to lie on

the paper.

The digitiser coordinates of Q are xa + Nx.(xb-xa),

ya ± Ny. (yb-ya) 	and those for S are xd + Nx. (xc-xd)

Yd + Ny.(yc-yd)

Now the equation for a line through two general point

xl, yl and x2, y2 is:

y.(x2-xl) = x.(y2-yl) + (x2.yl-xl.y2)

Therefore the equation of QS is:

y.(xq-xs) = x.(yq-ys) + (xq.ys-xs.yq)

i.e.

y.[xa+Nx.(xb--xa) - xd - Nx.(xc -- xd)J

x.[ya+Nx.(yb - ya) - yd - Nx.(yc - yd))

+[(xa+Nx.(xb-xa)).(yd+Nx.(yc--yd))

-(xd+Nx. (xc-xd)) . (ya±Nx. (yb-ya))J

332

Appendix 3

i.e.

y.[xa-xd+Nx.(xb-xa-xc+xd)I'

x.[ya- yd+Nx.(-- ya+yb.-- yc+yd)J

±[(xa+Nx. (xb-xa)) . (yd+Nx. (yc-yd))J

-[(xd+Nx.(xc-xd))(ya+Nx.(yb--yd))]

This line passes through the point P, therefore

yp.[xa-xd+Nx.(xh-xa-xc+xd)]

xp.[ya - yd+Nx.(- ya+yb - yc+yd)]

+[(xa±Nx.(xb-xa)) . (yd+Nx. (yc-yd))]

- [(xd+Nx. (xc-xd)) . (ya+Nx. (yb-yd))]

Rearranging in terms of Nx2, Nx, etc. 	we get

Nx 2 .[(xb - x) , (yc - yd) - (xc - xd).(yb - ya)J

+Nx. [-yp.(-xa+xb-xc+xd)+xp. (-ya±yh-yc+yd)

+xa.(yc-yd)+yd.(xb-xa)-xd.(yb--ya)-ya.(xc-xd)]

+[xp.(ya-yd)-yp.(xa-xd)+xa.yd-xd.ya] = 0

i.e. 	 A.Nx2 ± B.Nx + C = 0

where:

A = (xb-xa).(yc-yd)-(xc--xd).(yb--ya)

B = xp.(-ya+yb-yc±yd) + yp.(-xa+xb-xc+xd)

+ xa.(yc.-yd)+yd.(xb-xa)-xd.(yb-ya)-ya.(xc--xd)

C = xp.(ya-yd) + yp.(xa-xd) + xa.yd-xd.ya

This equation can be solved for given values of xp

and yp to give values for Nx. These values are used to

give values for Xp.

333

Appendix 3

A similar treatment, gives the equation for line TR

which can be solved to give an equation for Ny of the

form:

1LNy2 + E.Ny + F = 0

This can be solved to give values for Ny and hence values

for Yp. The values of Xp and Yp chosen are those which

cause point P to lie on the paper.

Note that the B, C, E and F have to be calculated for

each point digitised as. they depend onxp and yp.

334

APPENDIX 4: Simple digitiser coordinate transformation

The method assumes that the paper distortion, is

restricted to different scaling in the x and y directions

and the paper being fixed to the digitiser at an angle as

shown in fig 1

XP
Yo

Fig 1 Distorted paper on digitiser

The problem to be solved is the same as before.

Given the digitiser coordinates of the corners of the

paper ie. xa, ya; xb, yb; xc, yc etc. and the length L

and height H of the paper in pape r coordinates, find the

paper coordinates of a point 1?, ie. Xp, Yp, whose

digitiser coordinates are xp, yp.

335

Appendix 4

He thod

Draw horizontal and vertical lines through P to cut

the edges of the paper at Q, R, S and T as shown in fig 1.

The paper coordinates of Q, R, S and T, ie. Xq, Yq, Xr

etc., are found in terms of the digitiser coordinates of

the corners and the point P and the length and height of

the paper. The paper coordinates of the point are then

calculated from the intersection of the two lines QR and

TR.

By similar triangles:

(xp-x) /(xh-xa) = Xq/L

ic. Xq - L. [(xp-xa)/(xb-xa)J and Yq = 0

and

(yp-yb)/(yc-yb) = Yr/H

in. Xr = L and Yr = H. [(yp-yb)/(yc-yb)J

(xp-xd) /(xc-xd) = Xs/L

ie. Xs = L. [(xp-xd)/(xc-.xd)J and Ys = H

(yp-ya)/(yd-ya) = Yt/H

ie. Xt = 0 and Yt = H. E(yp-ya)/(yd-ya)}

Line QS -has the equation:

(X-Xq) /(Xs-Xq) = (Y-Yq) /(Ys-Yq)

but Yq = 0 and Ys = H, therefore

and

and

336

Appendix 6

(X.-Xq)/(Xs-Xq) = Y/H 	 -

or

Yp. = H. [(X-Xq)/(Xs--Xq)1 	 - (1)

Line TR has the equation:

(X-Xt)/(Xr-Xt) = (Y-Yt)/(Yr.-Yt)

but Xt = 0 and Xr = L, therefore

X/L = (Y--Yt) /-(Yr--Yt)

1ii

X = L. [(Y-Yt)/(Yr-Yt)J -- ------- (2)

Lines QS and TR intersect at point P and therefore

substituting (2) into (1) weget:

Yp.(Xs-Xq) = H. [L.(Yp-Yt)/(Yr-Yt)-Xq)

Yp.(Xs-Xq).(Yr-Yt) = H. [L.(Yp-Yt)-Xq.(Yr-Yt)J

Yp.[(Xs-Xq).(Yr - Yt) - H.L] 	-H.[L.Yt-Xq.(Yr - Yt))

Yr= [H.(L.Yt+Xq.(Yr-Yt)]/[H.L-(Xs-Xq).(Yr-Yt)]

Similarly substituting (1) into (2) we get:

Xp.(Yr-Yt) = L. [H. (Xp-Xq)/(Xs-Xq)-YtI

Xp.(Yr-Yt)..(Xs-Xq) = L.[Ei.(Xp-Xq)-Yt.(Xs-Xq)1

Xp.[(Yr-t).(Xs-Xq)-L.HJ = -L.[H.Xq+Yt.(Xs-Xq)]

Xp = [L.(H.Xq+Yt.(Xs-Xq)]/[H.L-(Xs-Xq).(Yr-Yt))

337

REFERENCES:

1.1 	Sciioor, H. 	'Computer-aided digital design and
analysis using a register transfer language'
IEEE Trans. 	Electronic Computers 1964 ECI3
pp 730-737

1.2 	Kerighan, BW. and Lin, S. 'An efficient heuristic
procedure for partitioning graphs' Bell Syst. 	Tech.

J. 1970 49 pp 291-307

1.3 	Hope, A.K. 'Application of interactive computer
techniques and graph theory to printed circuit board
design' Phi) Thesis University of Edinburgh 1973.

1.4 	Stevenson, F. 'design and simulation of digital
systems' Proc. 	Conf. 	on C.A.D. Sheffield
March 1968

1.5 	Kaposi, A. 'Logic resting by simulation' I.E.E.
Conf. 	Publication 511969

1.6 	Treble, D.P. 'Dimensional checking of NOS LSI
layouts' I.E.E. Conf. 	Publication 86 April 1972

2.1. 	Bardsley,C.W. 'Computer aids for artwork generation'
IEEE Spectrum Sept 1971 pp 64-79

2.2 	Fletcher, A. 'The automatic layout of integrated
circuit masks' I.E.E. Conf. 	Publication 51 1969

2.3 	Radley, P. 'The automatic layout of electronic
circuits by computer' I.E.E. Conf. 	Publication
86 April 1972

2.4 	Rose, N,A. 'computer aided design of printed circuit
boards' PhD Thesis University of Edinburgh 1970

2.5 	Wood, J. et al 'Computer aided production of masks
for silicon integrated circuits' I.E.E. Conf.
Publication 51 1969

2.6 	Atiya, J. 'The use of graphic display as an aid to
integrated circuit mask generation' I.E.E. Conf.
Publication 51 1969

338

Re f e r c cc s

	

2.7 	Bird, S 'Myriad Graphics Software' . The Marconi Co.
Gt. 	Baddow Essex 1970

	

2.8 	Richardson, F.K. et al An interactive graphical
system for the design of photomasks' Proc N.E.
Electron. 	Res. 	and Eng. 	Nov 1970 pp 182-183

	

3.1 	Eades, J.D. 'GAELIC user's manual' Wolfson
Microelectronics Liaison Unit, University of
Edinburgh 1974

	

3.2 	Wood, J. et al 'Computer aided production of - masks
for silicon integrated circuits' I.E.E. Conf.
Publication 51 1969 	 -

	

4.1 	Knuth, D.E. 'The art of computer programming in
information systems' Voll Addison Wesley 1968

	

4.2 	Dodd, G. 'Elements of data management systems' Comp.
Surv. 	1,2 June 1969 pp 115-135

	

4.3 	Williams, R. 'A survey of data structures for
computer graphic systems' Comp. 	Surv. 	3 March 1971
pp 1-22

	

4.4 	Morris, R. 'Scatter storage techniques' Comm. 	ACM
11 1 Jan 1968 pp 38-44

	

4.5 	Feldman, J.A. and Rovner, P.D. 'An Algol based
associative language' Comm. 	ACM 12 8 Aug 1969
pp 439-449

	

4.6 	Sutherland, I.E. 'SKETCHPAD' Tech Report 296 Lincoln
Labs M.I.T. Jan 1963

	

4.7 	Evans, D.S. and Katzenelson, J. 'Data structure and
man machine communication for network problems'
Proc IEEE 55 7 Jul 1967 pp 1135-1144

	

4.8 	McGuffin, R. et al 'Computer-aided placement and
routing of high density chip interconnection
systems.' AGARD Conf. 	Proc. 	130 May 1973

	

4.9 	Childs, D.L. 'Description of a set theoretic data
structure' Proc. 	AFIPS 1968 FJCC Vol 33 pp 557-564

339

I 	 References

4. 10 Wood, J. et al 'Computer aided production of masks
for silicon integrated circuits'. I.E. E. Conf.
Publication 51 1969

	

4.11 	Bird, S 'Myriad Graphics Software' The Marconi Co.
Ct. 	Baddow Essex 1970

eEtWf

	

4.12 	-r,-ey, P.F,. 'The automatic design of phtomasks'
PhD Thesis University of Edinburgh 1975

	

5.1 	Flubbold, R.J. 'Software paging of list data
structures for interactice engineering design'
I.E.E. Conf. 	Publication 86 April 1972

	

7.1 	Wood, J. et al 'Computer aided production of masks
for silicon integrated circuits' I.E.E. Conf.
Publication 51 1969

	

7.2 	Eades, J.D. 'GAELIC user's manual' Wolfson
Microelectronics Liaison Unit, University of
Edinburgh 1974

	

7.3 	Eades, J.D. 'GAELIC system manual' Wolfson
Microelectronics Liaison Unit, University of
Edinburgh 1976

	

8.1 	Eades, J.D. 'Application of GAELIC to the design of
a large scale integrated circuit' I. E. E. ConE.
Publication 111 April 1974

340

