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S U N 1A RY 

This thesis describes the develpment of a suite of 

computer programs that assist in the design and production 

of integrated circuit layouts. The suite is called GAELIC 

which is an acronym for Graphic Aided Engineering Layout 

of Integrated Circuits. 

The purpose of the suite is to provide an efficient 

interactive facility for designing integrated circuit 

layouts that can run on a variety of computers and 

requires the minimum of capital expenditure. GAELIC, 

consequently, is the first integrated circuit design 

facility to work on ....a time-shared computer and in order to 

do this efficiently, the data is stored on disc using 

several novel features. 

The first chapter introduces the problems of mask 

design and manufacture and why computer aids are required. 

The second expands on the possible computer aids and 

describes the presently available programs. Chapter 3 

describes how GAELIC can be used to design masks and 

Chapter 8 evaluates its performance. Chapters 9 describes 

: the future work that is possible using GAELIC and Chapter 

10 contains the conclusions. The internal details of the 

program are given in Chapters 4, 5 and 7 and the factors 

involving the choice of graphics hardware is discussed in 

Chapter 6. 



Chapter 1: Introduction 

1.1 The reason for GAELIC 

In 1.969 the Department of Electrical Engineering at 

the University of Edinburgh were awarded a grant by the 

Wolfson Foundation to set up the Wolfson Microelectronics 

Liaison Unit. The main aim of the Wolfson Unit, as it is 

usually called, was to encourage industry to use the new 

microelectronic technologies to build their equipment 

instead of descrete components. In order to do this 

efficiently, 	it was essential 	that the unit staff were 

experienced in these new technologies. The Unit 

consequently set up a small pilot production facility for 

the manufacture of hin film and hybrid circuits enabling 

the staff to get the required experience. However, 

obtaining the necessary experience 	of 	the 	various 

integrated 	technologies 	was more difficult for two 

reasons. 	Firstly, it was not economic to -set up a 	pilot 

production facility: 	secondly integrated circuits are an 

order of magnitude more complex than film or hybrid 

circuits. 	It was therefore decided to concentrate on the 

circuit and layout design and 	use 	the 	production 

facilities of existing semiconductor manufacturers to 

fabricate any integrated circuits designed. 	As it was 

intended 	to aignorz1y; 	one or two circuits each year, 

special staff could not be employed to produce the artwork 

etc. 	and so the layout design had to be done by the 
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Chapter 1 

existing staff in addition to their normal duties. 	It was 

therefore essential to have as many computer aids-as 

possible to speed up the design cycle. The author was 

employed initially by the Wolfson Unit to provide these 

aids and this thesis is a description of the research work 

involved in the development of the resultant suite of 

programs. The programs are known collectively as GAELIC, 

the name being an acronym for Graphic Aided Engineering 

Layout of Integrated Circuits. 

1.2 The Design and Manufacture of Integrated Circuits 

The starting point for the design of an 	integrated 

circuit 	is 	the specification of the system to be 

implemented as one or more integrated circuits 	and 

proceeds through several stages until the tested cicuits 

are supplied to the customer. 	The flow diagram for a 

logic system is shown in fig. 	1.1 	and this will be 

discussed in detail. 	A similar flow diagram exists for 

linear systems. 
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Decide on I/C technology _ - 

Do system design 

Partition logic 	into 	chips 

Perform 	logic 	design 

Generate 	test 	sequence 

Design layout 	of 	individual 

logic 	components 

Design layout 	of 	complete 	chip 

Produce masks 	for 	chip 

[:Ec:teT 
integrated  

Test integrated circuits 

Deliver 	to customer - - 

FA 

Fig. 1.1 Flow diagram for integrated circuit manufacture 



Chapter 1 

The first problem is to decide on the technology to 

be used. Factors that have to be taken into consideration 

at this stage includ.e the maximum power consumption and 

the speed of operation. Low power, consumption will 

require an M.O. S. technology whereas ultra high operating 

speed requires a bipolar emitter coupled logic technology. 

A system design is then done to decide on the number 

of counters and 	the sizes of the registers etc. before 

partitioning the system into subsystems. 	Each subsystem 

must 	be 	capable of being implemented on a single 

integrated circuit. This partitioning is a complex 

operation as it involves ensuring that there is a minimum 

number of interconnections between subsystems and that 

each subsystem can be tested when implemented as an 

integrated circuit.- ' - 

Each individual subsystem is then designed in terms 

simpler logic elements such as gates and flip-flops and at 

the same time it is often convenient to design the 

sequence of tests to be applied to the subsystem that will 

ensure that it will function correctly. 

The layout of each individual logic component is 
I 

designed 	unless 	there are suitable designs already 

existing in a library. During this stage the designer 

must 	bear 	in 	mind how the components are to be 

interconnected and their operating speeds. 	These points 

are discussed in more detail in Chapter 2. 
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The layout of the complete integrated circuit is then 

designed by placing the components and routing all the 

interconnections. When a satisfactory layout has been 

obtained, the integrated circuit masks are produced. 

The first samples of the integrated circuits are then 

produced and tested and if necessary modifications made to 

either the circuit or the layout design. These 

modification can mean a change of technology if, for 

instance, the power dissipation is too high. 

1.3 Possible computer aids 

The processes shown with a solid border in fig 	1.1 

can be helped by the use of the computer. 	Most of the 

computer aids are concerned with checking and simulation 

rather than with the actual design process. There are two 

reasons for this: firstly it is difficult to write 

computer programs that can simulate the creative activity 

of the human brain and secondly the reluctance of the 

designer to use any program that threatens to make him 

redundant. 

J 

The system design can be speeded up by using a high 

level logic simulator to check that the design will 

perform the required functions. This type of simulator 

does not work with individual gates but rather works with 

Counters and registers as its basic components. They 

often use a register transfer language [ref 1.1] or use a 

7 



Chapter 1 

similar technique which avoids the detailed specification 

of the system. 

The partitioning into subsystems 	that 	can 	be 

implemented as individual integrated circuits is usually 

done by hand. However, the algorithms of Kerninghar and 

Ling [ref 1.21 used by Hope [ref 1.31 to partition 

components for printed circuit boards could well be useful 

at this stage. 

The logic design for a single chip can be checked by 

means of a gate level logic simulator such as those of 

Stevenson [ref 1.41 and Kaposi [ref 1.51. These 

simulators work with components cc the. complexity of gates 

and flip-flops: consequently any registers etc. must be 

constructed 	from 	these 	simpler 	components. 	The 

simulators, however, can usually predict the delays 

through the gates with sufficient accuracy for race 

hazards to be detected. The test sequence that is 

generated to test the finished circuit can also be checked 

by modifying the logic simulation program so that it 

simulates faults on each gate in turn and checks that the 

test sequence detects them. This technique can be taken a 

stage further by programming the computer to try all 

possible input sequences and noting those that shown up 

the faults i.e. automatically create the test sequence. 

This could take a long time for combinatorial circuits and 

even longer for sequential circuits. 

i 
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The layout design of the individual components can be 

helped by transient analysis programs which predict the 

speed. of the components for various geometries and can 

0 
simulate the efects of capacitive loading and of fan-in 

and fan-out. Unfortunately this usually turnsout to be 

expensive in computer time. 

The computer driving an interactive graphics terminal 

can be used as a drawing board to design the layout of all 

the logic components. These components can be stored in 

the computer and then called up, moved to the correct 

position arid the interconnection added as the complete 

layout is designed. The computer can also generate the 

drive tapes for a tape controlled coordinatograph or any 

other mask making machine. 

Computer 	programs 	exist 	which 	attempt 	to 

automatically place and route the logic components to 

produce the final layout. These have not up to now been 

very successful mainly due to the reasons given above but 

will be discussed in more detail in chapter 2. 

Once the desciption of the layout is stored in a 

computer, it ispossible to use the computer to check the 

design. Programs have been written that check that the 

layout obeys the rules issued by the integrated circuit 

manufacturer. This is known as layout rule checking and 

typical of such programs is DINCHK [ref 1.61. more 

difficult probrem to solve is en3i.tring the layout will 

perform correctly, ie. whether the components have been 

9 
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correctly interconnected etc. 

The computer can be used to control the 	test 

equipment that checks the finished circuits using the test 

sequence generated earlier and can do the obvious 

commercial tasks of invoicing etc. 

The part of the layout cycle that could benefit most 

from computer aided design was the layout of the circuit 

and at the time that the work started very little work had 

been done and so it was decided to concentrate the effort 

in this sector. 

1.4 Guide to Thesis 

The thesis will be of interest to two types of 

reader; 	one who wishes to use the programs to design 

integrated circuits, probably an electrical engineer, 	and 

one 	who wishes to know more about the programming 

techniques used i.e. a computer scientist. 	The reader 

just wishing to use the programs need only read chapters 

1, 2, 3, 8, 9 and 10 whereas the reader wishing to write 

similar programs will also need to read chapters 4, 5, 6 

and 7. 

The next chapter (2) is devoted to integrated circuit 

mask design and manufacture. It starts with a brief 

description of the various methods that have been used to 

make masks and explains why the tape controlled 

coordinatographs and pattern generators have superceeded 
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other methods. 	The actual layout design process is 

discussed in some detail taking as an example the layout 

design for an integrated circuitcorrelator. The various 

possible ways in which the computer can help in the layout 

design are then discussed and this is followed by 

descriptions of the various programs that are available 

and which provide these aids. The chapter ends with the 

derivation of the requirements for an interactive design 

system. 

Chapter 3 is devoted to a description of the ways in 

which the GAELIC programs can be used in the design of 

integrated circuit layouts. 	It describes how the data is 

prepared, 	how it is checked, how it is displayed on the 

Tektronix screen and how it is modified. It also 

describes how the tapes for the various mask making 

machines are produced. 

Chapter 4 is a general review of the data structures 

used in interactive graphics. It starts with an 

explanation of why a data structure is required, then 

reviews the data structures and fin ishes with a detailed 

description of the structures used in the CAMP programs 

and on the Marconi Myriad computer. 

The next chapter (5) 	is devoted to 	the 	data 

structures used in the development of the GAELIC programs. 

Three data structures are described: the first is a 

sequential data structure which was designed for speed of 

implementation rather than efficiency, the second was a 

11 
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'ring' 	data structure which held the data on disc memory 

and the the third was another 'ring' data structure which 

held the data on disc memory in a more efficient manner. 

The final section in the chapter describes the way the 

data is transfered to and from disc memory. 

Chapter 6 describes the various graphic input/output 

devices thac can ne used in an interactive program. The 

various methods of producing pictures and interacting with 

them are described with their advantages and 

disadvantages. The choice of a storage tube terminal is 

explained and the chapter ends with a discussion on the 

software requirements to draw pictures and interact with 

them on this type of terminal. 

The programs in the GAELIC suite are described in 

Chapter 7. It concentrates on the problems that were 

encountered and how these were overcome rather than on a 

detailed description of the subroutines. Chapter 8 

discusses the performance of the programs. It contains 

the results of the various measurements that were made on 

the programs during the development of the program. 

Chapter 9 contains a discussion of the various ways 

in which GAELIC can be extended or used in future work. 

The possibilities range from manual interaction on the 

output from an automatic layout program to the design of 

timber framed houses. The final chapter discusses whether 

the requirements for the programs were sound and whether 

they were met. 

12 
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CHAPTER 2: Mask Making 

This chapter discusses the process of designing an 

integrated circuit layout and then describes the 

development of the actual methods used to produce the mask 

masters and their respective advantages and disadvantages. 

The input data requirements to drive a tape controlled 

coordinatograph are then examined and ways in which the 

computer can assist in the reduction of the volume of data 

entered into the computer are discussed. Various computer 

systems that exploit this reduction and also assist in the 

actual design of the layout are described. 

2.1 Manual Methods of Layout Design 

The objective of the layout designer is to design a 

series of integrated circuit masks that will define all 

the components and interconnections of a circuit so that 

the finished device will meet its specification but 

nevertheless occupies the minimum area of silicon. The 

cost of producing an integrated circuit increases 

extremely rapidly with the size of the layout as can be 

seen in the graph shown in fig. 2.1. This shows the cost 

of producing a square integrated circuit die of a given 

size compared with the costs of producing a die of lOOthou 

square assuming various yields levels. Further details 

about the graphs and the calculations on which they are 

based are given in Appendix 1: it will suffice here to 

note that the production costs double for a die that 
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increase from 200thou to 220thou square assuming 	a 

normalised probe yield of 30%. The effect of this increase 

in production costs is not always realised and 

consequently the main objective of the layout design is 

often to design the series of masks in the shortest 

possible time. This objective is undoubtedly extremely 

desirable in view of the high cost of design effort, but 

can obviously give a higher overall cost. 

Designing an integrated circuit can be compared to 

solving a jig-saw puzzle, in that the shapes are moved 

about until all have been inserted and the total occupies 

the minimum space. However, there is one important 

difference: 	in a jig-saw, when the last shape has been 

correctly entered, a complete recognisable picture is 

obtained. 	In contrast, in an integrated circuit layout 	S  

the designer can never be certain that he has the optimum 

solution, as there are always changes that can be made 

which could possibly improve the layout. 	On the other 

hand changes may have the reverse effect, and in any case 

may take weeks of work to put to the test. 

• Manual layout design methods vary from semiconductor 

manufacturer to manufacturer and even from designer to 

designer and so any description of the method used can 

only hope to be a concensus of the various methods. In 

turn the concensus will inevitably be biased towards the 

author's ideas on how the layout should be designed. 

15 



Chapter 2 

The starting point for layout design is either a 

schematic diagram containing details of the components 

i.e. transistors, resistors etc. and their 

interconnections or a logic diagram containing details of 

the gates and other logical functions used, along with 

their interconnections. The designer first calculates the 

size of each component so that it will handle the required 

current and operate at the appropriate voltage at the 

required speed or frequency. If the circuit is to be made 

using a bipolar technology then at this stage it is 

advantageous to identify all components occupying the same 

isolation region, Most designers also identify all the 

shapes or components that are repeated in the circuit 

either individually or on a matrix. The geometric shapes 

that are required to form each component are then designed 

by drawing a rough sketch of the outlines of each mask in 

turn on' squared paper. Usually the outline for each and 

every mask is superimposed onto the one sheet of paper and 

the drawing is then known as a 'composite'. An initial 

layout is then produced, sometimes on squared paper but 

more usually on plain paper. The reason for this step is 

to discover the positions and nature of the various 

crossovers to give the most compact layout. Various 

'tricks of the trade' are used to avoid using specially 

designed crossovers. In a bipolar technology resistors 

are used as far as possible as this avoids use of the 

extra area of a specially designed crossover. It is also 

possible to move the collector region of a bipolar 

transistor away from its base, region to allow an 

ir1 
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interconnection to go between. 	However this latter method 

must be used with care, as the characteristics of the 

transistor are obviously modified by this change in the 

geometry. 	In the limit, 	this may adversly affect 	tile 

performance of the circuit. With MOS technology 

crossovers can again make use of resistors, and also can 

occur over the 'P' diffusion which connects the source of 

one transistor to the drain of a second. 

The main composite drawing is then produced on an 

accurately gridded paper or mylar, bearing in mind the 

position Df the crossovers and the sizes of the 

components. 	This may sound an easy task but in actual 

fact it is extremely difficult, 	since when the shapes 

describing a component are drawn to scale, it may not be 

possible to place the crossover in the desired position. 

Sometimes not enough space is left between components to 

accoéñodate all metallisation tracks required. 

There are certain criteria that need to be considered 

when designing multiphase or multiclocked MOS circuits. 

These and other more general criteria are best shown by 

the following description of the statagy adopted by 

Mr.R.Kelly of the Wolfson Microelectronics Liaison Unit 

when he designed the layout of an integrated circuit 

correlator. 

When examining the system diagram of the correlator 

it was noticed that the greater part of the system was 

modular and involved a series of stages of the form shown 

17 
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in fig. 	2.2. 

Fig. 2.2 

It can be sce, that each individual stage was made up 

of a counter 'C' preceded and followed by small sections 

of logic, 'A' and 'B'. The sizes of the blocks shown were 

roughly proportional to the estimated number of components 

and hence to the area of silicon required. It was 

therefore sensible to start the layout design by 

concentrating on minimising the area of silicon occupied 

by an individual counter. 

With this aim in mind, various types of counter were 

considered, for example, the toggle and the feed back 

shift register counters, and more accurate estimates were 

made of the area that each type required in order to to 

meet the performance specification. The feed back shift 

register counter apparently required less silicon and so 

was the natural choice. The geometries of the various 

transistors, which would give the required power-speed 

tradeoff, were calculated giving an even better 

approximation of the area required. 	From this it was 

possible to tell that at least one stage i.e. 	shift 

register and logic, could easily be placed acros the 

width of the chip and there was an extremely. high 

probability of two stages being placed side by side 

18 	 .. .. 
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without the width becoming excessive. 	As 	the latter 

possibility was obviously extremely desirable, there was 

considerable incentive to design the shift register, and 

hence the individual bit, to have minimum width. 

The layout of a previously designed shift register 

bit was modified to include the required preset and decode 

facilities and was compared with layouts designed from 

scratch, it was found to be superior because it obeyed 

certain features of good layout design. 	These were: 

1) the various options for the bit layout were considered 

and the Dest one chosen under the circumstances. The 

factors affecting the choice can be understood by 

considering the layout of the double inverter, whose 

schematic diagram is shown in fig. 2.3. The principles 

affecting the choice of layout are the same as for the 

shift register bit but the schematic and layouts are 

easier to understand. 

load transistors 

d riwr transistors 

Fig. 2.3. 

There are three possible layout options and these are 

shown in fig. 	2.4. 
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• 	 13 
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Fig 2.4 

The first layout (a) 	basically follows the schematic 

diagram and as the area required for the transistor loads 

is the dominant parameter, this gives an extremely wide 

short layout for the circuit. The second layout (b) uses 

an extra supply rail so that the two halves of of the 

circuit can be stacked on top of each other. 	This gives a 

layout that is much narrower but is tall. 	The third 

layout (c) also uses an extra supply rail and makes use of 

the fact that the driver transistors are small, and can be 

placed side by side to give the same minimum width as (b) 

but a saving in height, and so (c) is obviously the option 

to choose. -- 

2) The metallisation tracks were kept as straight as 

possible and did not go round obstacles. The advantage of 

this can be seen by comparing the two diagrams in fig. 

2.5. 	The first layout (a) shows that a dominant obstacle 

governs the width of an area of layout. 	However by taking 

two metallisation tracks round the obstacle then the total 

width is increased considerably. 

20 
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: 

(a) 	 (b) 

Fig. 2.5. 

3) The amount of metallisation was kept to a minimum. An 

example of how this can be done is shown in fig. 2.6 

which shows two areas of layout with the clock and logic 

lines running horizontally or vertically. 

gate 5 

(a) 

Fig. 2.6. 

The metal over a gate is obviously serving the essential 

purpose of feeding signals to the gate. However the metal 

either side of the gate just occupies silicon and adds 

capacitance. 	The metallisation tracks should therefore be 

as short as possible between gates and, in general, 	this 

can be obtained by having metal running parallel to the 

shortest'side as shown in fig.2.6. 
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The actual shift hit was clocked and so the layout 

required extra clock lines as well as the supply lines and 

the design of the metal interconnections were particularly 

important. 

The layout of the actual shift register bit turned 

out to be 18.3 thou by 2.4 thou. Two stages could, 

therefore, be set side by side across a reasonable sized 

chip providing care was exercised over the design of the 

logic blocks A and B. The logic blocks at the end of the 

counter, did not use the same clock lines as the counter 

itself and so some of the constraints were removed. 

However, 	the height of the logic became an important 

parameter. 	This was because the complete system consisted 

of several stages one above the other and the wasted area 

was dependent on the maximum height in the stage see fig. 

2.7. 

waste sit icon area (shaded) 

 

(a) 

 

(b) 

Fig.. 2.7 

To minimise the waste silicon, 	therefore, 	it was as 

important to get the height of the logic blocks to be as 

near as possible to 18.3 thou as it was to use the minimum 

area of silicon. . . . 
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The design of the 	clock 	drivers 	brought 	an 

interesting -fact to light. Because the clock driver 

drives so many gates its output transistor has to be 

bigger than the usual transistors used in the layout and 

the necessary calculations showed it to require a gate 

that was 2thou wide and 0.6thou high. The transistor also 

had to have -a high gain and consequently low resistances. 

To minimise this resistance, it was necessary to have 

metal. tracks along the source and drain diffusions and so 

the resultant design was that shown in fig. 2.8. 

SOUFCP 

-J 

gate metal 	gate thrn oxide 2 X 06 thou. 

drain met 

Fig. 2.8. 

Here the total height of the transistor.is 	3thou 	i.e.. 5 

times the height of the gate. 	The effect of this size on 

the gate and diffusion capaciatances is surprising. 	The 

diffusion capacitance is 0.lpF per square thou for the MOS 

process used and so the drain 	capacitance 	becomes 

2.2*1.3*0. lpF 	0. 29pF 	. 	The thin oxide capacitance is 

0.3pF per square thou i.e. 	three 	times the diffusion 
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capacitance, 	however, 	because of its size the gate 

capacitance is 0.6*2.0*0.3 	0.36pF 	assuming 	the 

capacitance 	is as drawn i.e. 	ignoring the sideways 

diffusion. In other words the drain and source 

capacitance are comparable with the gate capacitance and 

must be taken into account in performance calculations. 

In the logic block B, 	there is an output 	shift 

register which is clocked in the same way as the main 

shift register used in the counter C, and which is 

connected to the corresponding shift registers on the 

other logic blocks. It is therefore sensible to place two 

stages side by side so that the block B of one stage is 

adjacent to the block B of the second stage 	thus 

minimising the metal between them. 	However, if the four 

clock lines are sent down one column of shift registers 

and then up the next, then width for 8 clock lines must be 

allowed. To avoid this problem, the shift register stages 

were interdigitated and consequently only 4 clock lines 

are required and this gave a considerable-saving in area 

as shown in fig. 2.9. 

- o 	0 o 
C) U U U 	 u U 	 -. o -. - — 
2 0 0 0 0 0 0 0 	 0 t) U 

U U - 	U - U U 

C l 	 C2 < 
 J13 2  1  --  	In 	 5 

—W- 

( b) 

W- 

(a) 

Fig. 2.9 

MEN 
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This technique did, however, have some minor problems as 

the sizes of the transistors had to be increased for shift 

registers adjacent to the output driver stage and the 

actual layout of the final shift register stages became 

slightly cramped. 

2.2 Methods of Producing Mask Masters 

The early mask masters were produced on large sheets 

of gridded blockboa rd, by drawing the outline of each 

shape on each mask in turn on individual sheets of board 

and then filling in the individual outlines with black 

paint. 	These masters are finally photo-reduced to produce 

t:he actual masks. 	This method was reasonably successful 

for the early integrated circuits, which consisted of 

perhaps a couple of transistors and a few resistors. The 

method did however have several problems associated with 

it. Each mask had to be designed in isolation, which is 

not only a difficult task, but is also one that is very 

prone to error. Integrated circuit components are formed 

by the diffusion of specific substances into selected 

areas of a slice of silicon: the selected areas defined 

by one mask must align extremely accurately with the 

corresponding areas defined by another. Accurate 

alignment can best be achieved by designing all the masks 

at one and the same time. The second problem was that it 

was difficult to modify the designs, as the black paint 

could not easily be removed. The last problem was one 
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that we shall meet again and again; 	that is 	the 

difficulty of obtaining accurate grids. 

As integrated circuits became larger the designs 

naturally became more complex and the limitations caused 

the method to be superseded by new methods. The first of 

these was known as 'taping' and basically consisted of 

using black tapes of different widths to define the 

shapes. Narrow tapes were used to define the outline of 

the large shapes, and then the interiors were filled in 

with wider tapes. This method had the advantage that the 

narrow tapes could define shapes with curved outlines in 

addition to the normal rectilinear outlines. The gridded 

block board was originally used for the layout and this 

new method had the major advantage that the tapes could be 

moved after initial-placement. The designer, therefore, 

had the ability to correct or modify the layout. 

Unfortunately there remained the problem of designing the 

individual masks in isolation as the mask masters still 

had to be produced individually. There was also the 

problem of obtaining accurate grids and as the size of the 

layouts increased, there was the additional problem of 

obtaining gridded blockboard in sufficiently large sheets. 

There was a minor problem in moving or removing tapes as 

they tended to remove the surface of the block-board at th-e 

same time. . 
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To overcome this last problem, gridded mylar sheets 

were introduced instead of' blockboard. In addition to 

being able to move the tapes easily, there were other less 

obvious advantages. The mylar was more stable 

dimensionally and so the grid was more accurate and the 

mylar sheets could be obtained in either translucent or 

transparent ford. The translucent mylar had a sandblasted 

surface which cc:ld be drawn on using pencil or ink and 

thus the outlines of all the shapes could be drawn on the 

same sheet, different line textures or colours being used 

to distinguish between the various masks. Thus it was 

possible to design all the masks simultaneously, thus 

overcoming one of the earlier problems. A sheet of 

transparent gridded mylar was then placed on top of this 

composite drawing and the shapes for one mask taped using 

the grid on the transparent mylar to give the required 

accuracy. This was repeated for each mask in turn and 

gave an extremely fast and efficient method of producing 

the 'mask masters' with an easy system for modifying the 

designs. It also helped with the problem of checking the 

masks as two mask masters could be superimposed and the 

clearances and overlaps checked. Of course when it came 

to checking overlaps the overlaping mask had to be placed 

underneath and so a logical order of checking could not be 

maintained. however, the only time this became 

troublesome was when checking that the metallisation 

correctly covered the contact holes. There were of course 

certain disadvantages: 

1) the width of the black tape tended to vary from roll - 
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to roll, 

the width of the tape varied with the amount by which 

it was stretched, and 

the tape tended to creep after placing on the mylar. 

The last two disadvantages are somewhat related: 	to 

obtain 	a 	long 	thin 	track 	for 	exaniple a metal 

interconnection between two components, the tape is 

stretched before placing on the mylar to ensure that it is 

straight. Because of the elastic properties of the tape 

its length is increased and its width is reduced slightly 

and after placement the tape tries to return to its 

original shape. The tape has the elastic properties 

because it is designed to be laid in smooth curves as well 

as in straight lines. 

The method, with minor modifications is still used by 

certain integrated circuit manufacturers who use only 

paraxial shapes with an NOS technology. Instead of using 

the black flexible tape, they use rigid mylar tapes that 

can be obtained in a range of accurate widths and in a 

range of colours. 	Different colours are used for the 

different masks. 	Providing a suitable colour is used for 

each mask they can be superimposed on the same sheet of 

mylar. This gives an extremely flexible method of mask 

design. 	For simple masks it is theoretically possible, 

given the right choice of colours, 	to photograph the 

composite 	directly 	again and again using different 

coloured filters to produce the actual masks. As far as 

is known this is not done in practice, and it is more 
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usual to digitise directly from this composite. 	This 

method is not suitable for bipolar circuits when nine or 

more different masks are required as: 

it is not possible to obtain such a large range of 

colours, and 

superimposition of nine or more layers gives parallax 

errors and the composite becomes fragile, losing the top 

layers of tape extremely easily. Most designers using the 

coloured tapes regard the technique as a way of designing 

layouts rather than as a method of producing the mask 

themselves. 

Before the more accurate mylar tapes were available, 

there was a demand for a higher accuracy than the taping 

method was capable of producing and attention turned to 

manual coordinatographs. The manual coordinatograph 

consists of a table, typically four feet square, on which 

is mounted a gantry. This is constrained to move in one 

direction only, say the y direction. On it is mounted a 

tool holder, which is constrained to move along the gantry 

axis, in. in the x direction. The tool holder can, of 

course, be moved to any point on the active surface of the 

table. By using the locks provided to prevent either the 

gantry moving or the tool holder moving along it, the tool 

holder can be constrained to move in only the x direction 

or they direction. Movement can be accurately calibrated 

by means of scales and vernier dials and so any tool in 

the holder can be positioned to an accuracy of 

approximately two thousandth of an inch (2 thou) . 	Two 
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different methods of using the manual coordinatograpli have 

been tried. 	Both start by producing an accurate composite 

layout 	on gridded paper or mylar and both produce 

photographic masters in 'cut-and-peel' material. The 

cut-and-peel material, known by various trade names such 

as 'Rubylith' and 'Stabiline', consists of a translucent 

mylar base approximately 5thou thick on top of which is is 

a thinner (approx. 2thou) layer of photographically 

opaque mylar, usually red or orange. 	The top layer 

adheres -  to 	the 	translucent 	base 	and 	in 	normal 

circumstances, the two layers do not separate. if 

however, shapes are cut in the top surface, the top layer 

can be easily removed, thus producing a series of shapes 

that are translucent. 

The first method of using the manual coordinatograph 

consisted of counting increments from the origin of the 

composite to each shape in turn on a given mask, moving a 

knife in the tool holder so that the dials register the 

required coordinates, and 	then lowering the knife and 	- 

moving it to the corresponding next coordinates on the 

shape. The pen was then lifted and moved to the start of 

the next shape and 	the process repeated until all the 

outlines of all the shapes on the one mask had been cut. 

A new sheet of 'cut and peel' was put on the table and the 

shapes on the next mask similarly cut. 	The method should 

have 	produced 	extremely 	accurate mask masters but 

unfortunately it relied on an operator counting squares on 

the original composite drawing. 	Counting squares is an 
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extremely tedious process and is very error prone and so 

it not only takes a long time to cut the masks but they 

also contain errors that have to be found and corrected. 

The second method, although 	theoretically 	less 

accurate due to parallax, errors and inaccuracies in the 

mylar grid was preferred and was known as 'overcutting'. 

The composite drawing was fixed onto the table of the 

•coordinatograph 'taking care to ensure that it was parallel 

to the axes and that the origins were coincident. A sheet 

of 'cut and peel' was then fixed on top of the composite 

and the knife placed over the start of the first shape of 

the first mask. The knife was then moved until the dials 

indicated that it was on the nearest increment e.g. if the 

smallest movement used on the drawing was 50thou then the 

knife position was, adjusted until the dials read an exact 

'number of 50thous. The knife was then lowered and a cut 

made to almost the end of the first line segment of the 

shape; again the knife was accurately positioned by means 

of the -  dials. 	This process was repeated for each line 

• 	 segment in turn lifting the pen at, the end of each shape, 

until the complete mask has been cut. 	The 'cut and peel' 

material was then changed and all the shapes on the next 

mask cut. This process was far more efficient and 

appeared to have a fair amount of job., satisfaction 

associated with it, which was obviously very important for 

this type of work. It had two disadvantages, firstly the 

size of the composite became so large that it could not 

fit on the table, and secondly the accuracy of' the gridded 
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mylar.  - 	The first disadvantage should theoretically have 

been overcome by either using coordinatographs with bigger 

tables or drawing the composite at a smaller scale. The 

first alternative was expensive as the camera used to 

photographically reduce the mask master as well as the 

coordinatograph would have to be replaced. A secondary 

disadvantage was that the operator could no longer reach 

the entire table-from the one side and so duplicate dials 

would have been required and the operator would have had  

to do more walking. The disadvantages of the second 

alternative were a little more obscure as they were 

concerned with accuracy of the grids and with 	job 

satisfaction. 	The draughtsman when producing the drawing 

would work very rapidly provided that he was working with 

a grid of not less than a twentieth of an inch and the 

girl operating the coordinatograph could easily work out 

which grid line was intended when she was overcutting. 

However, if the grid was reduced to less than a twentieth 

of an inch, the draughtsman found it frustrating to draw 

lines accurately enough to enable another person to 

realise which grid line was intended. Any attempt to get 

a higher accuracy resulted in a high error rate and a 

constant stream of complaints about what was previously a 

very satisfactory job. Again the comparative accuracy of 

the grid on the mylar and the built in grid on the 

coordinatograph gave troubles for, although near the 

origin it was possible to tell which grid line was 

intended, on the other side of the drawing the grid line 

on the coordinatograph often appeared between two grid 
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lines on the drawing. 	At this stage it also became 

apparent that the effects of temperature and particularly 

humidity had an appreciable effect on the acburacy and so 

these had to be controlled. 

The answer to the problems of producing the mask 

masters was to use tape controlled coordinatographs and 

most semiconductor manufacturers have •adopted this 

solution. The tape controlled coordinatograph essentially 

consists of an accurate flat table similar to that used on 

the manual coordinatograph with a gantry and a tool 

holder. The movements of the gantry and the tool holder 

are performed by stepping or servo controlled motors. The 

motors themselves are controlled by data fed to the tape 

controlled coordinatographs by means of paper or magnetic 

tape. This tape also contains information which controls 

the solenoid which raises or lowers the knife and the 

stepping motor which rotates the knife. There is 

obviously some logic circuitry and sometimes even a small 

computer built in t.o the coordinatograph to sort all this 

data on the tape and route it to the appropriate motor. 

Consequently the cost is far higher than for the manual 

coordinatograph and is in the range 20,000 to 80,000 

pounds. The basic input data required by these 

coordinatographs consists of the coordinates of every 

corner of every shape on each mask in turn. For a typical 

integrated circuit, 	it requires of 200,000 pairs of 

coordinates i.e. 400,000 numbers. 	Producing this type of 

data by hand with an error rate 0.1% means 400 errors to 
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be detected and corrected. 	This 	is 	virtually 	an 

impossible task. 	It is therefore essential to find an 

efficient way of producing the input data. The tape 

controlled coordinatographs produce mask masters that arc 

more accurate and at a smaller scale than thos.e that can 

be produced on a manual coordinatograph. 

	

The cut-and-peel masters are 	now 	unfortunately 

approaching their limit as the size of the completed 

integrated circuit chips approach 250thou (0.25 inches) 

square. 	Work has been in progress for some time on 

another 	method 	of 	producing 	masks 	known 	as 	a 

photo-plotter. 	The input data requirements are, 	in 

general, 	similar to those 	for 	a 	tape 	controlled 

coordinatograph 	and 	so the same problems exist in 

producing correct input data. 

Fortunately there is a great deal of redundancy in 

this input information and if this can be exploited by the 

use of a computer then the amount of data required can be 

considerably reduced. 	Most shapes used in integrated 

circuit layouts are paraxial i.e. 	have all their sides 

parallel to the axes of the drawing and therefore it is 

only necessary to specify the alternate corners of these 

shapes. 	This means that a paraxial rectangle is specified 

by the coordinates of a pair of diagonal corners. 	This 

simple expedient reduces the amount of data that needs to 

be entered by approximately half. Another characteristic 

feature of integrated circuit layouts is the number of 

shapes or series of shapes that are to be found in more 
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than one place in the layout. 	This repetitive feature 

appears in two forms, the first is where a series of 

shapes are repeated on a matrix, for example a single bit 

of a shift register is repeated many times to create a 

large shift register. The second is where the same series 

of shapes occurs in various random positions on the layout 

sometimes with different orientations. It is, therefore, 

desirable to derive a method of inputing the data for the 

series of shapes once and then arranging for the series to 

be.'repeated' or for an instance to be 'called' in various 

positions at various orientations. This again makes a 

substantial saving in the amount of input data, as can be 

seen from the following example. Consider the piece of 

integrated circuit layout shown in fig.2.10 which has a 

large proportion of repeated and grouped shapes. Using a 

group and repeat facility, the input data consists of 2000 

words whereas just using the basic shapes where all the 

corners are specified required 20000 words. 

The input data to the computer can be arranged to 

exploit all this redundancy and the computer can be 

programmed to produce the input tape for the 

coordinatograph. There are certain computer programs and 

computer systems that perform this function and also 

assist the layout design process in other ways and some of 

these programs will now be discussed. 
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2.3 Possible computer aids to mask design 

There are several ways in which the computer can 

assist in the design and production of integrated circuit 

masters. These range from computer programs that simply 

expand the condensed input data into the large volume of 

output tape required to drive a tape controlled 

coordinatograph to fully automatic programs that will 

produce these drive tapes from a schematic diagram of the 

circuit, This fully automatic method would appear to be 

the ultimate objective as so is worth considering in 

detail first of all. 

2.3.1 Automatic Computer. Methods 

The initial work in this area was carried out by an 

unknown research organisation and was financed by the 

American government. This was a placement and routing 

program based on printed circuit board techniques and was 

released to American government contractors in about 1967. 

Bardsley (ref 2.1] claims this as the reason why Collins 

Radio, Fairchild, Motorola and Texas Instruments all 

announced similar systems for automatic integrated circuit 

design siriultaneously. The programs take a series of 

previously defined standard components or 'cells' and 

places them side by side as 16 lead dual in line packages 

are placed on a printed circuit board. 	They then route 

all the interconnections between the packages. 	The 

programs 	do 	actually produce drive tapes for tape 
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controlled coordinatographs and would therefore appear to 

be the answer. 	However the amount of silicon that was 

required for the circuit was up to 300% more than a 

corresponding manual design. 	There were three reasons for 

this: 	firstly it relied on a set of previously designed 

standard cells which were not necessarily optimum for the 

circuit being produced, secondly the placement being 

completed before the routing was started means that 

silicon must be reserved for possible use by the 

interconnections and thirdly the system followed the 

schematic diagram too closely. A schematic diagram is 

drawn with inputs on the left hand side and outputs on the 

right and this usually creates a long thin drawing and 

hence a long thin integrated circuit. It was realised 

that integrated circuits should be square and so the the 

strip was folded over to give the final integrated 

circuit. This waisted a large amount of silicon on the 

fold as shown in fig 2.10. The increase quoted for the 

chip size [B.R. Kirk private correspondance] indicates 

approximately a 70% increase in the side of the chip which 

can have a disastrosI, effect on the yield. A similar 

approach was tried by Fletcher [ref 2.2] using existing 

printed circuit board programs and was found to suffer 

from the same problems. 

Radley [ref 2.31 has used a different approach to the 

problem where he places components one at a time and then 

does as much of the interconnection as possible. The 

components are selected in an order that keeps the length 
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2.3,2 Batch Methods 

A batch program reads in a set of input data and 

performs various calculations on this data to produce a 

set of results. It does not allow the user any 

interaction with the program as all the steps are 

specified in advance. Batch processing is therefore of 

limited use in layout design but can be useful in the 

actual production of masks. For example, it can be used 

to expand the compressed input data describing a layout 

into the drive tapes for a coordinatograph. 

2.3.3 Interactive Methods 

An interactive program is one where the user controls 

the steps p9rformed by the computer. Once the program is 

running the selection of the next step to be performed is 

usually based on the results of the previous steps or 

steps. It is the ideal type of program for design work as 

it allows the designer to exercise that skill which can 

never be programmed into the computer ic. his ability to 

realise that something is different, to think out a new 

course of action and to proceed on that course. 

All the mask design programs except the automatic 

ones allow interaction of one form or. another and these 

programs will be discussed in more detail.. 
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2.4 Available computer programs 

At the start of the research work there were several 

computer programs available in this country that assisted 

in the design of integrated circuit layouts and these are 

described in some detail below. Since the work started 

other systems have appeared on the scene all of them 

turn-key systems ie. 	a complete system of hardware and 

software whida could be just switched on and used. 	These 

are commercial systems and although it is relatively easy 

to find out what they do, 	the techniques used are a 

closely guarded secret. 	They are described here briefly 

and what technical information that can be obtained on 

their operation is given in chapter 4. 

2.4.1. CAMP System 

The CAMP (Computer Aided Mask-Production) system for 

assisting the production of integrated circuit mask 

masters was written at RRE Malvern by J. Wood, R. Newton, 

D. Snell of RRE and H. Walmsley of Plessey [ref 2.5). It 

was developed as part of the activities of the consortium 

of British semiconductor manufacturers and RRE. It was 

written in Algol to work on what was then an Elliot 4130 

with a refresh graphics display. 

It was conceived as a method of producing the drive 

tapes for coordinatographs rather than a design aid but 

nevertheless did have certain facets that were useful as a 
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design aid and for this reason and the fact that it was 

one of the first systems to be produced, it is worth 

considering in detail. 

The input data for CAMP exploits the. redundancy 

described earlier by allowing for paraxial shapes and by 

providing a group and a repeat facility. The input data 

consists of a series of order words, mask specifiers, 

names, numbers and punctuation marks. The order words are 

enclosed in double quotes (t);  some describe the various 

shapes used such as RECTANGLE, POLYGON, and LINE. There 

are other words that allow the group and repeat facilities 

and these include GROUP, NEWGROUP, ENDGROUP, REPEAT and 

ENI)REPEAT and finally there are a series of order words 

that reduce still further the amount of input data that 

need to be entered: these are words like DITTO and SCALE. 

The mask specifier indicates the mask or masks on which 

each individual shape occurs. The names are those given 

to a series of shapes when they are defined as a group and 

the numbers are used for the coordinates of the corners 

etc. The punctuation is used to separate the various 

parts of the data. The GAELIC manual input language is 

based on this language and consequently a full description 

of the facilities of the language is given in the GAELIC 

Users Manual. 

Because of the formal natre of the input language, 

it is possible to do 'syntax' checking on the input data 

to make sure the data obeys the rules of the language. 
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This checking detects many of the errors present in the 

input data and so reduces the number of errors that can 

possibly occur on the final masks. 

The data is then converted into a ring data structure 

and then • to a 'coordinate file' 	which contains the 

necessary information for the tape controlled 

coordinatographs i.e. every coordinate of every corner of 

every shape on each mask in turn. This coordinate file 

can. be  subsequently post-processed to give drive tapes for 

various tape controlled coordinatographs, an incremental. 

plotter or a display file for the refresh graphics display 

on the 4130. On the graphics display, a window of the 

layout. can be plotted out and the light pen used to find 

the coordinates of any errors. Unfortunately, it was not 

possible to modify the layout at this stage: 

modifications had to be made at an earlier stage either 

the manual input language or the dump code file. 

This lack of interaction was one of the major 

drawbacks with the system; 	the other problem was the size 

of the ring data structure. 	As it was core resident, 	it 

restricted the size of circuits that could be handled. 

The decision not to have any interactive facilities 

was. one made by the consortium management committee who 

felt that any interactive facilities would make the system 

too dependant on a particular hardware configuration. 
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2.4.2. REDAC system 

The REDAC system was also originally designed to run 

on an Elliott 4130 with refresh graphics system to help in 

the design of MOS integrated circuit layouts. The 

original concept was that the designer sat in front of the 

graphics terminal and with the aid of the light pen called 

up a series of paraxial rectangles and placed them on the 

screen. The rectangles could be on one of six masks 

controlled by -six function keys on the display and 

rectangles on the same mask that touched could be joined 

together with the aid of the light pen to form paraxial 

polygons. 	Facilities were available for modifying and 

delet.Thg) shapes and 	for grouping- a series of shapes 

together in order to repeat them. 	This grouping facility 

was nowhere near as-comprehensive as the group and repeat 

facilities in the CAMP system. The user could also 'zoom 

in' to a small window of the drawing and move the window 

round the drawing. -The original data structure was held 

entirely in core. 

This initial system had several disadvantages some of 

which have been subsequently been removed though others 

for some reason are still present. The major disadvantage 

was the restriction to six masks which precluded its use. 

for bipolar integrated circuit design. The data structure 

being held in core was a severe disadvantage as it 

restricted the size of the drawing. Sitting a designer at 

a graphics terminal costing 50 pounds an hour and telling 

him to design was not ergonomic or economic sense. It is 
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also difficult to design complex interconnection tracks 

using rectangles. 

The subsequent system based on a PDP15 computer with 

VTI5 graphics display does not have the size restriction 

as the data structure is disc based. An input language 

has been added which allows the layout to be designed at 

the designers own speed and then entered into the..computer 

and stored in the data structure. The display terminal is 

now used to check and correct the design and thus forms a 

much better method of using the computer. 

There is a program in the suite which checks if the 

layout description stored in the data structure breaks 

certain of the 'layout rules' issued by the semiconductor 

manufacturers and this is described in a paper by Treble 

[ref 2.6]. The program although fulfilling an extremely 

important function does appear to have two main 

disadvantages in that it requires a large amount of 

computer time to perform the checks (typically 3 hours on 

a PDPI5) and that it gives a large number of possible 

errors that have to be checked manually by the designer. 

The Redac system finally produces drive tapes for 

several tape controlled coordinatographs which produce 

'cut and peel' masters. 
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2.4.3 Marconi System 

The Marconi integrated circuit design system is based 

on the general purpose drawing program that runs on their 

Myriad, computer with their X2000 graphics system written 

by S Bird [ref 2.71. It was originally used to design 

layouts in the same way as the Redac system where the 

designer sat in front of the screen and drew shapes. It 

has, however, advantages over the Redac system because of 

its general drawing program origins, it has a far more 

flexible drawing system using either a light pen or 

tracker ball. Virtually everyone who used the system 

prefered the tracker ball to the light pen, usually 

because the designer had an uninterrupted view of the 

screen and did not lose the tracking cross. 

Shapes that had line segments at angles as well as 

the normal paraxial segments could be drawn, modified and 

moved with constraints to keep the. required lines 

paraxial. 

A series of shapes can be defined as a group at the 

screen and instances of the definition called in many 

places in other group definitions, in the main layout or 

in any subsequent layouts. 

The modifications made to the general purpose drawing 

program were to allow shapes to be allocated to specific 

masks, to take input data in the CAMP manual input 

language and to produce drive tapes for various 

co.ordinatographs. 
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It is an excellent design system but has certain 

disadvantages due to its origins as certain time consuming 

features are provided that are not used in integrated 

circuit design. Typical of these is the ability to join a 

line onto the middle of another line. It was also slow in 

use as all the layouts and group definitions ever created 

were kept in the same data structure and all these layouts 

and groups must be searched when a new definition is 

created. Another major problem is the high capital cost 

of the hardware which was in excess of 100,000 pounds. 

There are also minor problems with flicker when large 

amounts of layout are displayed. 

2.4.4 Subsequent Systems 

Since the commencement of the work on GAELIC, further 

systems to assist in the design of integrated circuit 

layouts have come onto the commercial market from the 

United States. 	The best known of these systems are 

probably the Applicon, Calma and Computervision. 	All 

three are known as 'turnkey' systems which means that they 

are complete hardware and software systems which once 

installed can be set into motion by just turning a key. 

They are all based on the use of minicomputers with disc 

storage and both the Applicon and Calma systems use a 

storage tube terminal. 
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The Applicon design assistant [ref 2.8] is based on a 

PDPI1/05 computer, 	a Tektronix 611 storage tube display 

and a version of the Rand tablet. 	It has a small fixed 

head disc to hold the program and data and uses cassette 

tapes for the offline storage of designs. Again, the use 

of the system is based on the philosophy of the designer 

sitting in front of the screen to design his layout from 

scratch. In a similar way to the Redac system, it allows 

the designer to build up the layout from rectangles but it 

does 	not allow these rectangles to he merged into' 

polygons. 	Recent modifications to the software do allow 

the direct insertion of polygons with up to 127 corners. 

The rectangles can he in three forms, 	fixed, 	stretchable 

in one direction and stretchable in two directions. It 

also has a basic grouping facility which includes the 

ability to fix components to certain points on other 

components. This feature can be useful in a bipolar 

technology where the one contact hole can he fixed to one 

end of a 'stretchable' resistor and the other contact hole 

fixed to the other and so as the resistor is stretched, 

the contact holes stay in their correct positions. The 

main feature of the system is the clever use of the tablet 

where instead of typing commands, figures are drawn on the 

tablet which are interpreted as commands. The pattern 

recognition system is extremely impressive to see working 

but does not appear to be any faster to use than other 

more conventional systems. There is a system for using a 

digitiser to input a completed drawing and this again 

works with rectangles. The system provides drive tapes 
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for a Gyrex pattern generator which flashes rectangles in 

various positions on a photographic plate and this is the 

main reason for the restriction on the types of shapes 

available. 

The Calma system consists of a Nova 1200 computer a 

moving 	head disc, a digitiser connected on-line, a 

Tektronix 611 tube, a tablet and keyboard. 	Data can be 

entered either via the digitiser or the screen and tablet. 

The main emphasis is on the digitiser which being 

connected on line is capable of being constrained to move 

in first the x and then the y directions thus ensuring 

shapes are paraxial. Non-paraxial line segments are 

possible by over-riding the locks. The fact that a 

polygon does not close or that there are rounding error 

problems can be brought to the users attention immediately 

and corrected. 

	

The screen input is similar to that used 	in the 

Marconi system in that polygons and rectangles can be 

drawn. It uses a menu on the tablet to select commands. 

It appears to be just as fast, if not faster than the 

Applicon system to use. 

The main disadvantage is that although it uses a 

standard Nova computer the design and interfaces are non 

standard and so the standard Nova disc compilers cannot 

run and so the computer cannot be used for other purposes. 
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The Computervision system is very similar to the 

Calma system but does not put so much emphasis on the use 

of a storage tube for either data input of data 

modification but rather relies on a digitiser plotter. 

This, as the name implies, 	is a digitiser and plotter 

combined. 	As data is entered via the digf.tiser , the shape 

can be immediately plotted, superimposed on the original 

sketch to give an immediate check and thus ease the 

problem of identifying and correcting errors. However, 

despite the extremely fast plotting time available, it is 

probably too time consuming to rèplot large areas of an 

integrated circuit layout. 

2.5 Requirements for an Interactive C.A.D. system 

As interactive graphic equipment is expensive, it is 

not possible to allow every designer his own graphics 

terminal. Each terminal must therefore be shared by 

several designers and consequently must only be used for 

interactive work. The individual designer should not, for 

instance, sit in front of the terminal and design from 

scratch as he will spend most of his time thinking and 

only a small part 'drawing'. While he is thinking, the 

terminal facilities are obviously (wästed. The designer 

must therefore plan out exactly what he wants to do before 

going to the terminal. 
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It is therefore desirable to have a way in which the 

designer can sit at his desk, design part of his layout 

and code it up for the computer. He should then be able 

to feed this data into the computer and then use the 

interactive facilities to check and modify his designS.. To 

do this it is essential to have a manual input language 

that the designer can use at his desk to code up his . rough 

sketch. Because this input language is to be used by a 

layout designer rather than by a computer specialist, it 

must be extremely easy to use. This in turn means that it 

is easy to understand and should not entail remembering a 

series of codes for the various shapes that he uses, 

instead it should use words that are easily remembered and 

recognised. The amount of data that he has to prepare 

must be kept to a minimum. Often a designer uses the same 

set of shapes over and over again in a layout; the input 

language must take account of this and allow him to define 

the set as .a 'group' and then call up 'instances' of the 

group in various positions and various orientations in his 

layout. 

One designer may be quite happy producing rough 

sketches and working from them, whereas another designer 

may prefer to produce an accurate scaled drawing of part 

of the layout before approaching the computer. This 

latter approach tends to produce a more- complex drawing - 

which takes longer to code up using the manual input 

language. Alternatively it may be necessary to modify an 

existing design that only exists as a large composite 
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drawing. 	For both these requirements it is essential to 

have a method of entering the data directly from the 

drawing into the computer without resorting to the manual 

input language. 	This effectively means using a digitiser 

or a similar device. 	It is therefore necessary to have a 

method of using a digitiser to extract the information 

from the drawing. The digitiser language like the manual 

input language must minimise the amount of data that has 

to he entered and must handle the group facility. 

The integrated circuit designer, like any other 

human, can make mistakes, especially when coding up data 

for the computer if it is a new experience for him. The 

computer program that reads in the data, therefore, must 

check it as thoroughly as possible and when errors are 

detected, 	the program must give meaningful messages that 

tell the designer exactly what he has done wrong. 	This 

'syntax checking' 	as it is usually called will detect 

shapes that have been incorrectly specified but will not 

detect that a shape is in the wrong place. This is 

usually done by visually checking the layout. 

The interactive 	graphic 	terminal 	provides 	an 

excellent method of visually checking the layout and for 

correcting any mistakes found The screen of the terminal 

is not big enough to display all of a typical layout at a 

scale at which modifications can be made. Facilities must 

therefore be provided in the interactive program to allow 

the user to 'zoom' in ar,i plot out an area of the layout at 

a much larger scale. There must also be facilities for 
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plotting an adjacent area ie. 	'windowing' 

Having plotted out a suitable- ' window', the user will 

need to interact with the drawing; he will need to 

identify a shape containing an error and either correct it 

or delete the shape. 	Correcting an error involves either- 

moving the whole shape or just a point on the shape; 	the 

movement is generally required in a direction parallel to 

one of the axes ie. orthogonal movement but is 

occasionally required at an angle. 

Any group instance can be in the wrong position or 

can be drawn at the wrong orientation. The user does not 

wish to correct every individual shape in the instance and 

so the group structure must be kept in the data for the 

interactive program. Facilities should exist to allow the 

user to identify one point in the instance, the origin, 

and then move the instance or change its orientation. 

There will obviously be times when mistakes are made 

in the shapes of a group definition and so facilities must 

be provided for correcting them. This must be done with 

care, however, as instances can occur in several places on 

the drawing and a shape that appears wrong in one instance 

may appear correct in another. 	It is therefore essential 

that the user knows that he is modifying a 	group 

definition ie. he cannot modify the shapes in an instance 

by mistake. 	 C. 
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Often shapes are missed from the layout and have to 

be added interactively. 	Facilities must therefore exist 

for adding rectangles, polygons, 	lines and even group 

instances. These new shapes must be plotted on the screen 

so that the user can check that they are in their correct 

p 0 S i L i 0 n s. 

When the design is complete and free of errors, 	then 

tapes to drive the coordinatograph are required. These 

tapes can be used to produce extremely accurate large 

scale check plots. Unfortunately producing these check 

plots is expensive in both time and money. A rapid cheap 

plot is required to check the layout design at the 

designers leisure. 	This frees the graphic 	terminal 	for 

more interactive work. 
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CHAPTER 3: The use of GAELIC in mask design 

This chapter is intended to give an insight into the 

use of GAELIC in the design of integrated circuit masks. 

The first part is devoted to input to the GAELIC programs 

describing the philosophy behind the two main methods of 

inputting the layout description into the computer. This 

is followed by a simple example of how the manual input 

language is used to enter data and how the syntax errors 

are detected. The next part describes the features of the 

interactive program and using the same example, shows how 

it is used to plot out all or part of the layout, how 

errors are corrected and how missing shapes are added. 

The final part briefly describes the operation of the 

other programs including the post-processors which produce 

the drive tapes for the tape controlled coordinatographs 

and mask making machines. 

3.1 Input to the GAELIC suite of programs. 

There are actually three different 	methods 	of 

entering the description of all or part of an integrated 

circuit layout into the GAELIC programs. These methods 

are: 

by the use of a digitiser and the GAELIA program, 

via the manual input language and GAEL2A and 

by use of the crosshair cursor and the keyboard of 

the Tektronix terminal using GAEL4A. 
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The third method, which is described in detail in 

section 3.2, is mainly used for interactively adding 

shapes inadvertently missed when the original layout 

description was entered. 	However, it does allow all or 

part of the layout to be designed on the screen. 	The 

first two methods of input are usually used to enter the 

original layout description into the computer and the 

obvious question 'that must be' answered is why two methods 

are required. Essentially the digitiser is used to enter 

the large quantities of data required for a complete 

integrated circuit design while the manual input language 

is used for entering the data for a small part of of a 

large design or all the data for a small design. These 

two methods will now be considered in more detail. 

3.1.1 Using a digitiser 

The digitiser method is ideally suite.d 	for entering 

the description of a large fully designed layout 	The 

design must be drawn on an accurately gridded mylar sheet 

which is securely fastened to the digitiser. The 

digitiser is used to accurately and quickly record the 

coordinates of the corners of the shapes without the 

manual counting of increments which we , shall see is a 

feature of the manual input language. The method does, 

however, have the obvious prerequisities of a digitiser 

and someone who can use it. 
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The design and drawing of an integrated circuit 

layout 	is 	a 	creative function which is generally 

enjoyable. 	It does have certain problems when it comes to 

redrawing 	large areas of the layout in a slightly 

different position for example to insert an extra 

metallisation track, but this is not sufficient to detract 

from the overall enjoyment. The actual digitising, 

however, although requiring a continuous high degree of 

concentration, is extremely repetitive and tedious and 

gives no job satisfaction to the layout designer. It is 

consequentially desirable to use a different person for 

this task. The time required to •digitise a layout is iuch 

less then that required to design the layout and so one 

digitiser operator can cope with 	designs from several 

designers. 	For a large integrated circuit design team say 

5 or 6 designers, the economics of buying a digitiser and 

hiring an operator are favourable. 	However, with only one 

or two designers, 	the economics dictate that another 

method of designing and/or entering data into the computer 

is desirable. 

Any method of using the digitiser must be.as  easy and 

straight forward as possible in order to minimise the 

number of errors that are made. Consequently certain 

minor modifications were made to the keyboard of the 

digitiser. The standard Metrograph digitiser like many 

others has a READ button which, when pressed,' records ,the 

coordinates of the digitiser cursor on the output tape; 

it also has a small keyboard which enables the characters 
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marked to be added to the output tape when the respective 

keys are pressed. It was therefore possible to devise a 

system, using the digitiser, where pressing the various 

characters on the keyboard indicated the start of a shape 

and the READ button recorded its coordinates. However, 

remembering which character was used for which shape 

proved difficult so the labelling on the keys was changed 

to give more meaningful abbreviations such as RECT, POLY 

and LINE. Each key, however, still only produced a single 

character on the output tape and so the standard digitiser 

could he used in an emergency to digitise a layout. The 

modified keyboard is shown in fig. 	3.1.1. 

Often when digitising a layout, 	an operator will 

realise that a mistake has been made and will wish to 

correct it. This mistake may well be that a shape is on 

the wrong mask or the wrong name given for a group 

definition. It is always possible to write down notes 

regarding these errors and to subsequently edit the tape 

or edit the data once it is entered into the computer. 

This in practise turns out to be very disruptive to the 

operator and so a method of immediately adding corrections 

to a tape is required. The best solution would be to have 

a series of keys that can be pressed to correct the 

various mistakes that can be made. Unfortunately, 

however, the cost of extending the keyboard size to allow 

for this was prohibitive and so only one ERROR key was 

allowed. A method of correcting errors had therefore to 

be designed in which the instant the error button was 
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pressed and the number of times that it was pressed 

specified the error to be corrected. For example if a 

wrong point was digitised in a shape i.e. the cursor was 

in the wrong position when the READ key was pressed then 

the coordinates can be ;ignored by pressing the ERROR key 

immediately afterwards. However if the whole shape is to 

be ignored then the ERROR key is pressed twice. The use 

of the ERROR key is described fully in the GAELIC users 

manual [ref 3.1). 

Another problem that must be allowed for 	when 

processing data from a digitiser is that of rounding. 

There are actually two problems, 	'paper' 	distortion and 

'paper' 	position. 	The word 'paper' is used here to mean 

the material on which the layout design is drawn. If a 

large layout is to be digitised then it is essential to 

use a stable material such as a translucent mylar sheet at 

least 5 thou (0.005 inches) thick, whereas if a small part 

of a layout is to be digitised, act:ual graph paper could 

be used. The 'paper' distortion is the distortion in the 

paper grid due to inaccuracies in the actual manufacturing.  

process. Most grids on paper are printed from a roller 

and, with slight variations in speed of the roller and 

slip on the paper, a different scale is sometimes obtained 

in the x direction to that in the y. There is also a 

problem of calibration between the digitiser and paper 

e.g. a line that is nominally 10 inches exactly on the 

paper, may have a length of 10.12 inches according to the 

digitiser. The paper position problem exists because it 
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is impossible to place the paper exactly horizontally on 

the digitiser: consequently the paper axes are always at 

a slight angle to the digitiser axes. The layout is drawn 

with respect to the axes and grid scaling on the paper. 

However the digitiser will obviously output digitiser 

coordinates so the computer program must do the necessary 

coordinate transformations to give the corresponding paper 

coordinates, allowing for the errors - due to paper 

distortion and paper position. 

3.1.2 Using the manual input language 

The manual input language is an extremely useful 

method for entering the description of a small part of a 

layout into the computer. 	A typical part of a layout 

would be a single bit of a shift register. 	The designer 

can quickly code up his design using this manual input 

language and enter this data into the GAELIC suite. The 

part layout can be quickly plotted on the screen of the 

Tektronix terminal and any mistakes discovered can be 

interactively corrected. This part layout can be stored 

in the computer while the designer works on another part. 

The process can be repeated until he has designed all the 

component parts of his layout, when he can use the 

interactive facilities to join them together to produce a 

complete design. 
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This is obviously a different method of design from 

that using the digitiser and is one in which the designer 

plays a much larger part. Some of the tedious repetitive 

work can be taken over by the computer, for example it is 

possible to get the computer to redraw large sections of 

the layout in slightly different positions. This is one 

of the tedious parts that has to be done manually when 

producing the finished layout drawing prior to •digitising. 

In - order that this new method of design can be fully 

exploited, the manual input language should have the 

following characteristics. 

it must be easy to use the language. 

the language must minimise the amount of data that 

has to be entered. 

the language must be easily processed by the 

computer. 

There are unfortunately conflicts between 	these 

requirements: 	for example, for the data to be processed 

most easily by a program written in Fortran the data must 

be in a fixed predefined format. 	Fixed format input is 

extremely difficult to produce, mainly because 	the user 

cannot understand why the extra spaces are so critical. 

Secondly it is far easier to handle a purely numeric input 

data using Fortran so that a number 1 is used to specify 

that data for a rectangle is about to be entered, number 2 

to specify data for a polygon etc. Unfortunately there 

are more to integrated circuits then 	polygons 	and 

rectangles so the user would have to make extensive use of 
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a crib sheet to decide which numbers to use. The use of 

numbers also makes it extremely difficult for the computer 

to check the input data for errors e.g. number 1 could be 

the code •word for a rectangle or a coordinate value. 

The input language chosen therefore is a compromise 

between the three requirements and is based on the 

language used in the CAMP programs [ref 3.21. The input 

language is fully described in the GAELIC users manual and 

two examples of its use are shown below: 

URECTr; (1) 10,5:20,10; 

a nd 

"POLY" (4) S,30,64:20,4,10,4,-12,--4,-18,-4; 

These describe a rectangle, on mask 1 only, which has 

its origin at x=10, y=5 and is 20 units long and 10 units 

high and a polygon with all its sides parallel to the axes 

which starts at x=30, y=64 and has a line segment 20 units 

long in the x direction followed by a segment 4 units long 

in the y etc. 

In order to code up a shape description from a 

drawing on gridded paper, the user must count the 

increments from the origin of the drawing to the origin of 

the shape and then count the increments along each line 

segment. This counting is a potential source of error and 

must be done very carefully. 
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Certain modifications were made to the CAMP input 

language in order to make Lull use of the facilities 

available and to give a more flexible approach to layout 

design. 	Probably the main modification was to omit the 

commands concerned a) with-file storage and b) 	with the 

running of the CAMP program. The former is automatically 

handled by the operating system of a time-sharing computer 

and the latter is controlled by the user in GAELIC. 

Another major modification to the CAMP programs 

involved the use of LINES. The basic philosophy behind 

the choice of shapes in the CAMP language was based on the 

idea that all shapes on an integrated circuit are closed 

shapes. Most integrated circuit masks are still made 

using a cut and peel material on, a tape controlled 

coordinatograph. Here the knife cuts round the perimeter 

of the shape and the material inside can subsequently be 

peeled away. Obviously this is only possible if the line 

segments defining the perimeter form a closed shape. 

Consequently the LINE in CAMP describes a closed shape of 

a fixed width and was intended for the fixed width 

Aluminium interconnections. Unfortunately there are many 

violations of the concept of a fixed width 

interconnection; for example, when the interconnection 

passes over a contact hole the width is temporarily 

increased and so in practise the LINE was of limited use. 

However it is extremely useful to have a mathematical line 

(i.e. a line with finite length and zero thickness) as an 

intermediate shape which can subsequently be joined with 
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other mathematical lines to form closed shapes on the cut 

and peel material. Consider the aluminium interconnection 

of a single stage of a shift register defined in the CAMP 

language as a GROUP using closed shapes as shown in fig. 

3.1.2a. Several instances of the GROUP are called to form 

the complete shift register as shown in fig. 	3.1.2b. 

(a) 	 (b) 

Fig. 	3.1.2 Interconnections using closed shapes 

The alternative method used in GAELIC involves a LINE 

with zero thickness and the single stage of a shift 

register is as shown in fig. 3.1.3a. 

10, 	 (b) 

Fig. 	3.1.3 Interconnections using open shapes 

The several stages of shift register are shown in 

fig. 3.1.3b and it can be seen that the complete 

metallisation tracks can be easily checked for continuity 

and when the final cut and peel master is produced, the 

number of pieces that must be hand peeled is minimised. 

64 



Chapter 3 

Usually an instance of a group definition is required 

to contain all the shapes on all the masks. However, 

there are circumstances when only certain masks are 

required. 	For example, consider a group definition of a 

shift register stage; 	when ar instance is called to form 

one bit in the middle of the stage then the shapes on all 

the masks are required. However, the instances forming 

the first and last bits may well requird different shapes 

on the metallisation mask due to the interconnections 

joining the bits to other circuit components. The method 

used in CAMP was to define the first and last bits either, 

as separate group definitions or as individual shapes in 

the main layout definition. However, in GAELIC an 

instance can be called so that only shapes on a specified 

series of masks are produced. Hence the metallisation can 

be ignored in the instances used for the first and last 

bits of the shift register stage and the special 

metallisation required to interconnect to the rest of the 

circuitry can be' added to the main layout. The GROUP call 

in GAELIC therefore comes in two forms: 

"GROUP" ONE, 10,10,1; 

and 

"GROUP" ONE (1 2,3) 40,70,1; 

The first call produces the shapes on all masks while 

the second only produces the shapes on masks 1, 2 and 3, 

any shapes on mask4 etc. are ignored. 
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3.1.3 The inputting of data for a small example 

For small layouts such as the one shown in fig 3.1.4 

which is .a test chip to investigate the effects of changes 

in the semiconductor processing, it is convenient to use 

the GAELIC manual input language. The input language 

necessary to describe this layout is shown in fig 3.1.5. 

The input language contains several errors inserted to 

show how the error diagnostic system works. Most of these 

errors are trapped by GAEL2A the syntax checker as can be 

seen in fig 3.1.6 which shows the teletype printout 

obtained when running the program. The initial Dump code 

file created does not contain the descriptions of the 

shapes containing, the syntax errors, the corrected 

descriptions of these shapes, however, can be typed in via 

the keyboard immediately after the input file has been 

processed and these corrections are then added to the Dump 

code file. The teletype printout obtained, when doing this 

is also shown in fig 3.1.6. The Dump code file is then 

compiled into the Ring Data Structure using GAEL3A and 

this data structure is used to store the description of 

the layout throughout its design. Several programs - 

interact with this ring data structure to allow for 

modification and addition, to produce large-scale drawing 

and to produce drive tapes for tape controlled 

coordinatographs and mask making machines. 
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"POLY" (1:4) L, 75,150:2,0,3,3,3, -3,2,0,5,5,0,15, 
-3,0,0,-14,-3,-3,-4,4,-4,- 4, 
-3,3,0,14,-3,0,0,-15,5,-5; 

"POLY" (1:4) L,95, 150:3,0,0, 15,5,-5,5,5,0,-15,3, 
0,0,20,-3,0,-5,-5,-5,5,-3, 
0 , 0 , -20; 

"POLY" (1:4) S, 116,150:10, 3,-7, 17,-3,-20; 
"POLY" (1:4) L, 134, 150. 9,0,3,3,0, 17,-3,0,0,,-15, 

-2,-2,-5,0,-2,2,0,1.5 T -3, 
0,0,-17,3,-3; 

"POLY" (1) S, 74,64: 29,3,-3,3,3, 3,-3,3, 3, 3,-29,-3, 
3,-3,-3,-3,3,-3,-3,-3; 

"POLY" (1) S,91,85:21,-8,19,45,-4,-33,-9,13,-3, 
-13,-9,13,-3,--13,-9,19,-3,-23; 

"POLY" (1) S,97,32:3,13,9,-13,3,13,9,-13,3, 16,-i, 
14,-42,4,-7,-3,3,-3,-3.,-3,3,-3, 
-3,-3,7,4,18,-7,-2,-16; 

"RECT" (1) 137,119:17,12; 
"RECT" (1) 13U, 97: 17, 19; 
"RECT" (1) 137,82:17,12; 
1t RECT" (2) 72,62:7,19; 
"RECT" (2) 93,88:35,18; 
"RECT" (2) 72,109:7,19; 
URECTI (2) 99,115:24,7; 
"RECT" (2) 137,126:17,5; 
"RECT" (2) 138,115:15,5; 
RECT" (2) 137, 1,04: 17, 5; 

urRECTI (2) 138,93:15,5; 
"RECT" (2) 137,82:17,5; 
"RECT" (2) 112,77:19,5; 
"RE CV (2) 98,62:7,19; 
"RECT" (2) 86,64:5,15; 
"RECT" (3) 87,65:3,13; 
"RECT" (3) 113,78:17,3; 
"RECT" (3) 138,83:15,3; 
"RECT" (3) 138,105:15,3; 
"RECT" (3) 138,127:15,3; 
"POLU" (4) S,10,15:40,33,42,39,37,5,26,7,-26,8, 

-44,-52,-75,-40; 
"POLY" (4) S,110,15:40,40,-18,28,-36,-23,11,16, 

18,-21,-15,-40; 
"POLY" (4) L,175,15:40,0,0,40,-35,0,-25,25,0,8, 

-19,0,0,-7,8,0,31,-31,0,-35; 
"POLY" (4) S,175,75:40,40,-40,-5,-39,-7,39,-28; 
"POLY" (4) L, 136, 125: 19,0, 10, 10,50,0,0,40,-40,0, 

0,-20,-23,-23,-16,0,0,-7; 
"POLY" (4) S,10, 135:88,-21,57,7,-31,2,-19, 19,-55, 

33,-40,-40; 
"POLY" (4) L,10,75:45,0,15,-15,1.1,0,0,23,-11,0, 

0,24,11,0,0,23,-11,0,-15,-15, 
-45,0,0, -40; 

"RE CT" (5) 11,16:38,38; 
"RECT" (5) 111,16:38,38; 
"RECT" '(5)176,16:38,38; 
"RE CT" (5) 176,76:38,38; 
"RE CT" (5) 176,136:38,38; 
"REd" (5) 11,136:38,38; 
"RECT" (5) 11,76:38,38; 
"FINISH"; 

Fig 3.1.5 GAELIC input language 
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RUN GAEL2A 

GAEL2A 
PROGRAM TO CONVERT GAELIC LANGUAGE INTO DUMP CODE 

DOES THE FILE HAVE LINE NUMBERS - YES OR NO 
NO 

ENTER NAME FOR NEW DUMP CODE FILE 
TESTD 

ENTER MASK NUMBERS USED IN LAYOUT 
12345 

"RECT" (1) 13U,97:'17,19; 

<ERROR NUMBER 23 IN STATEMENT NUMBER 9> 
ILLEGAL TERMINATOR PRIOR TO COLON - SHAPE IGNORED 

UPOLUU (4) S,10,15:40,33,42,39,37, -J,26,7,-26,8, 

<ERROR NUMBER 23 IN STATEMENT NUMBER 28> 
ORDER WORD NOT RECOGNISED - SHAPE IGNORED 

ENTER NAME OF NEXT GAELIC LANGUAGE FILE OR TTY FOR 
KEYBOARD INPUT OR PRESS RETURN TO FINISH 
TTY 

KEYBOARD INPUT WITH NO LINE NUMBERS EXPECTED 
ENTER INPUT DATA 
"RECT" (1) 137, 97: 17, 19; 
"POLY" (4) S,10,15:40,33,42,39,37,5,26,7,- , 26,8, 
-44,-52,-75,-40; 
FIN ISII" 

ENTER NAME OF NEXT GAELIC LANGUAGE FILE OR TTY FOR 
KEYBOARD INPUT OR PRESS RETURN TO FINISH 

DUMP CODE FILE SAVED AS :- TESTD 

END OF EXECUTION 

Fig 3..16 Running GAEL2A the syntax checker 
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Chapter 3 

3.2 Interaction with the layout 

The user can interact with the layout using CAEL4A. 

This program uses one of the Tektronix 4010 series of 

storage tube terminals to interactively modify and correct 

an integrated circuit layout description held in a ring 

data structure file. The user can select which ring data 

structure file is to be processed and can select the part 

of that layout to be plotted, i.e. a particular group 

definition and window size. That part of the layout 

within the window is then plotted Out on the storage tube 

screen. The plot remains or is stored on the screen until 

it is cleared. A non-storing cros-hair cursor can be 

displayed on the screen and its position controlled by a 

pair of thumb wheel potentiometers. 	Various character 

keys 	can be pressed when the cross-hair cursor is 

displayed which causes the terminal to not only send the 

character pressed to the computer but also four other 

characters which define the position of the cursor. This 

information governs the running of the program e.g. 

pressing 'R' indicates the starting coordinates of a 

rectangle to be drawn on the screen and added to the data 

structure whereas pressing 'F' finds the nearest point in 

the layout to the cursor and prints out its coordinates 

and whether it is in a group definition or a set of 

repeated shapes. 
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The storage tube screen is divided into two parts: 

the right hand edge of the screen is used for messages and 

is called the 'menu area'. It contains such information as 

the list of masks plotted on the screen, the mask number 

being modified and the name of a group when an origin is 

identified. The remainder of the screen except for a 

small area at the top which contains the window size, is 

used for plotting and is known as the 'plotting area'. 

The program operates in a hierarchical manner in that 

it gives, the user a choice of options at one level and 

when one of these is selected, the program drops down to a 

lower level where the user has a different choice of 

options. The first level is known as the 'program command 

level' and the second as 'cursor command level'. 

The program command level options are concerned with 

selecting the group definition to be processed, the size 

of the window, the mask numbers to be plotted, modifying 

or drawing on an existing data structure etc. Two of 

these options MODIFY and DRAW allow the cross-hair cursor 

to be displayed and this can be used to identify existing 

shapes plotted out on the screen, to indicate the 

coordinates of new shapes to be added or to change the 

window being plotted etc. Thisiower level is the 'cursor 

command level'. 

Whenever the cross-hair cursor is on the screen there 

are certain options that are available mainly associated 

with the window plotted, these are known as the 'permanent 
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cursor commands' 	and are selected by pressing one of the 

following character keys: 

1, 2, 3, 4, 5, 6, 7, 8, 9, J, Q, U, V, W and Z. 

The results of pressing these keys are describ.ed in detail 

in the GAELIC users manual 

When the cross-hair cursor is first set up by the 

MODIFY or DRAW options there are certain options available 

which can perform such functions as identifying the 

nearest point in the definition, indicating where a 

polygon should start etc and these are known as 'main 

cursor commands' and are selected by pressing one of the 

following character keys: 

F, C, I, L, M, P, R, \ , ) , 	and SPACE 

After several of the 'main cursor command' 	options 

have been selected, further information is required. 	For 

example, when a point on a shape has been identified, 	the 

user needs to tell the program if the point or the shape 

is to be moved and its new position. This is accomplished 

by using options known as the 'subsequent cursor commands' 

and are selected by pressing one of the following 

character keys: 

A, D, E, H, N, 0, S, X, Y, [, # and SPACE. 

By using the cursor commands at the various levels, 

shapes can be identified and modified, new shapes can be 

added and the window changed. This process is illustrated 

in the following example. 
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3.2.1 Interactively modifying the example 

•GAEL4A is used to plot out all of the layout on the 

screen.. the plot is shown in fig 3.2.1; the different 

line types are used to distinguish between the various 

masks in the layout. There are two errors shown in the 

plot, a contact hole on mask 3 is missing and part of the 

thin oxide (mask 1) is in the wrong position. 

These errors are corrected by first selecting the 

MODIFY option and asking to modify mask 1. The cross hair 

cursor is positioned over point A of the thin oxide shape 

in the wrong position. 	By pressing the character 'I' the 

coordinates of the cross hair cursor are sent to 	the 

computer and a search is made for the nearest point in the 

data structure, the point is illuminated briefly and then 

the cross hair cursor is returned. The cursor is then 

positioned at the correct position for the point on the 

shape, ie. point B, and the character 'H' pressed. This 

moves the whole of the shape into its correct position in 

the data structure so that next time the drawing is 

replotted, the shape will be in its correct position. The 

cross hair cursor is then returned to the screen ready to 

initiate further modifications. However, if the user 

wishes to imm-ediately .  check that the shape he has just 

modified is in the correct position he can just replot the 

particular shape by pressing the character 'D. When the 

cross hair cursor is returned, it is positioned at point C 

and 'Z' pressed. This causes the program to 'zoom in' and 

replot the window at twice the original scale as shown in 
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fig 3.2.2. 	Note 	that the thin oxide shape is now in its 

correct position. Pressing the character 'M' when the 

cross hair cursor is displayed allows the user to change 

to operate on a different mask number and this is 

obviously necessary to add the contact hole missing from 

mask 3. The cross hair cursor can then be positioned at 

point E, the bottom left hand corner of the rectangle and 

'R' pressed. A dot will appear at the nearest grid point 

to the cross hair cursor indicating the position for that 

corner of the rectangle. The cross hair cursor is 

returned and is positioned where the top right hand or 

opposite corner is required, ie. point F, and 1 0' 

pressed. 	Again a dot appears at the nearest grid point 

and the cursor returned. Pressing 'D' causes the 

rectangle to be drawn on the screen before the cursor is 

returned. To check that all the modifications have been 

made the user may wish to have a final look at the 

complete layout, this can be done by pressing 'J' and the 

result is the plot shown in fig 3.2.3. If space ' ' is 

pressed 'WHAT NEXT' will appear at the bottom of the menu 

area. Answering 'END' to this question will exit from the 

program with the corrected data structure. 

The description of the layout in the Ring Data 

Structure is now correct and can then be post-processed 

using GAEL9F or any of the other post-processors, to 

produce a series of files containing drive tapes for a 

tape controlled coordinatograph or mask making machine. 
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3.3 Extra features of GAELIC 

Because the GAELIC system running on a time-sharing 

computer is always available i.e., does not have to be 

booked for a number of hours, say a fortnight in advance, 

it is possible to use it for short periods at a time. 

Good use can be made of such short periods to design 

smaller sections like group of repeat definitions. 

A definition can be roughly drawn on squared paper or 

just a dimensioned sketch made which can in turn be coded 

up in the GAELIC manual input language without the repeat 

or group headers and entered into the computer. It can 

then be converted into the ring data structure correcting 

any syntax errors by either editing the input language 

file or by adding the corrected shapes at a later stage. 

The layout can then be plotted out, and any obvious 

corrections made on-line. More obtuse corrections can be 

made off-line and correcting tapes typed up before going 

on line to the time-sharing computer to process the 

correcting tapes and modify the data structure. When the 

part layout has been corrected and checked thoroughly, 

GAEL7A can be run to convert the ring data structure back 

into GAELIC manual input language. Here the necessary 

repeat or group headers and trailers can be inserted and 

the design stored away for future use. This method builds 

up a library of subpictures that can be used when required 

to design the full circuit and can, if suitable, be used 

in future circuits. 
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Another useful technique is to produce on say mask 

15, the outline of the group and then when it comes to 

fitting the groups together to form the complete mask most 

of the work can be done with just the outline,, which saves 

a lot of drawing time. This technique of using the 

outline can be taken further still by using the 

REPLACEGROUP order word (see GAELIC users manual) . The 

outline in this case can be defined as the group and used 

in the main layout until the positioning of the groups and 

interconnections have been completed and then just prior 

to running GAEL9F etc. to produce drive tapes for the 

Ferranti Masterplotter, a series of REPLACEGROIJP's can be 

entered into the ring data structure replacing the 

outlines with the full group definitions. This technique 

saves not only plotting time but also computing and 

storage costs. 

3.4 Other GAELIC programs 

There are several other programs in the GAELIC suite 

that interact with the ring data structure. These 

programs are briefly described below. 

3.4.1 GAEL5A 
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This program plots all or part of a layout on a 

CALCOMP incremental plotter. This provides a permanent 

hard copy drawing of the layout that can be studied at 

leisure. The data to drive the plotter can also be 

written to a disc file or to magnetic tape and plotted 

later using a very small program which uses the minimum  

computer resources. 

3.4.2 GAEL6A 

This program extracts allthe lines from a Ring Data 

Structure, 	joins them together to form polygons and 

returns these polygons to the Data Structure. This 

provides a layout description that only contains closed 

shapes and can subsequently be post-processed to produce 

drive tapes for photo-plotters. 

3.4.3 GAEL7A 

This takes the contents of a corrected layout in its 

Ring Data Structure and converts it back into the GAELIC 

manual input language. This is an extremely useful 

program as it provides a method of setting up a library of 

frequently used components. 
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3.44 GAE1,8A 

This program fulfils two functions, 	it removes all 

the discarded sections of the ring data structure and 

rearranges the data for most efficient processing. 

3.4.5 GAEL9F 

This program 	takes the 	data 	from the ring data 

structure and 	converts it 	into 	drive tapes for the 

Ferranti 1'Iaster-Plotter. These 	tapes are produced on 	a 

high 	speed paper 	tape punch 	and 	can give either a 

MICROFILM plot 	of 	the 	layout or 	a 	set 	of 'cut and peel' 

masters. 

3.4.6 Other post-processors 

There are a number of post-processors that are very 

similar to GAEL9F which take the data from the ring data 

structure and convert it into drive tapes for various 

other tape controlled coordinatographs and mask making 

machines. Most of these have been written by students 

during vacational employment at Edinburgh University. 
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CHAPTER 4: Data Structures 

4.1 The need for a data structure. 

It is possible to write computer programs that will 

only process the one set of data built into the program 

and examples of these programs are often written as 

exercises during programming courses. A typical example 

is a program that prints out all the prime numbers between 

1 and 100. The finished program, however, is of limited 

use. Most computer programs use a different set of data 

each time they are run and this data is read in by the 

program from a deck of cards, entered via on on-line 

terminal or read from disc or magnetic tape. In our 

simple example the program could be modified to read in 

the range of prime numbers to be printed out and so on one 

run the prime numbers between 100 and 200 could be 

produced and on another the numbers between 1000 and 1800. 

This data i.e. the range, must be entered into the 

computer and stored in the correct order. 

The data that is stored in computer memory usually 

consists of numerical values e.g. the value of a resistor 

or the number of hours that an employee has worked during 

a week. It can, however, consist of strings of ASCII 

characters forming names or text, or can consist of bit 

patterns that form codes or symbols. Each item of data is 

usually referred to as a 'data element'. Data elements are 

stored in a computer memory in an organised way such that 
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- 	the logical relationship between the elements is preserved 

and this organisation is known as a 'data structure'. 

Data structures can vary in complexity from the very 

simple to the extremely complex depending on what the data 

represents and what processes must be carried out on that 

data. 

Consider the data for a graph where the computer 

memory contains a simple series of y coordinate values for 

certain known x values. The word 'series' is used here 

instead of the more usual word 'list' because 'list' is 

used by the computer scientist to describe a particular 

type of data structure that will be introduced later. The 

correct graph will only be obtained from the data if the 

coordinates that are stored in the computer are plotted in 

their correct order: 	any other order would give a 

different graph. 	Thus the data is structured in a 

sequence of y coordinates and is usually stored in the 

computer in an array. This forms what is probably the 

simplest data structure. Programmers use arrays without 

realising that they are actually data structures, 

consequently the term data structure is often reserved for 

the more complex structures that allow for more 

flexibility when processing data. The processing of data 

for the graph is simple and straightforward: data is read 

into the computer in sequence, stored in the same sequence 

in an array and then processed to produce the graph. It 

is possible to change the values of certain coordinates 

but coordinates cannot be added or deleted. 
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However, the processing required on the data for 

other applications can be far more complex, for example, 

it may be necessary to preserve the hierarchical nature of 

the data or to delete from or add to specific positions in 

the structure. A simple array will not hold a structure 

capable of handling these facilities and more complex 

structures must be used. Any data structure that holds 

the description of an integrated circuit layout must be 

capable of efficiently plotting out the layout and of 

modifying it by adding, deleting and changing shapes. 

This must be done without making the data structure too 

big and a compromise must be obtained between the size of 

the data structure and the efficiency of the various 

operations. The structure must also maintain the 

heirarchical nature of the layout. The specific 

requirements of an interactive system for the design of 

integrated circuit layouts were described in Chapter 2 and 

it will be realised that most-of these requirements are 

common to many other interactive graphic systems except 

that the amount of data required to describe an integrated 

circuit layout is so large that it cannot normally be held 

in the core memory of a computer. The various types of 

data structure will now be described and it will become 

obvious how well the requirements can be met. 

4.2 Types of Data Structures 
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Excellent introductions to the subject of general 

data structures are given by Knuth in his book [ref 4.11 

and in the paper by Dodd [ref 4.2].  These introductions 

are for general data management and are too broad based to 

be considered in detail here. However, there is a paper 

by Williams [ref 4.3] which deals specifically with data 

structures for computer graphics 	systems. 	As 	the 

interactive design of integrated circuits is mainly 

concerned with computer graphics, his paper is worth 

discussing in greater depth. It is an-excellent review of 

the types of data structures that exist, concentrating on 

those used in computer graphics systems and of the various 

computer languages that have been used to handle the 

structures The various languages used are dealt with 

later in this chapter and the present discussion 

concentrates on the various types of data structures that 

can be used. 

Because of the differing terminologies used by the 

various workers in the field, it is necessary to define 

the terms that will be used. We have already met the 

terms 'data element' and 'data structure'  and their 

meanings. However, when a data element occupies one word 

of computer memory, it is often loosely referred to as a 

'word' . If a word of computer memory is used to contain 

more than one data element then the word is said to be 

split into 'fields' , each field is therefore a data 

element. A 'record' is used by Williams to describe a 

collection of data elements that are stored in contiguous 
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(consecutive) memory locations but the term is usually 

used in data structures associated with input/output 

processes and only occasionally in more general data 

structures. The two terms used to describe a collection 

of data elements in contiguous memory that are in more 

general use are 'block' and 'bead'. 

Dodd has postulated that all data structures can be 

constructed from three basic types. These are the 

sequential, random and list data structures and 

consequently it is worth considering these three types in 

detail. 

4.2.1 Sequential Data Structure 

This type of structure consists of a sequence of 

records or data elements. Any particular record or 

element is accessed by searching sequentially through the 

structure until the appropriate information is found. 

As Williams points out, present computer memories are 

one dimensional in access, memory locations are 

sequentially numbered and the computer hardware is 

designed to access data serially (this last process is 

obviously interrupted by software when necessary). This 

means that processing data in a sequential data structure 

is particularly efficient as the mechanisms to do it are 

already built into the computer. However, there are 

unfortunately some disadvantages. 	If all the records in 
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the data structure need to be processed each time the 

structure is accessed then this can be done, extremely 

efficiently. If, however, certain records are to be 

ignored when processing data then the efficiency of the 

process will fall, depending on the number of ignored 

records. 

Probably the main feature of interactive graphic 

systems is that of regularly adding or deleting records 

from the data structure and any structure used must be 

able to cope with this feature. This is again an area 

where the sequentially data structure has problems. There 

are two possible methods that can be used to efficiently 

delete a record. The first is to change the initial data 

element in the record to indicate that it is to be ignored 

and the second is tore-create the structure without the 

particular record. The first method has the pre-requisite 

that there is a number that can be entered into the first 

element of the record to indicate that the'record is to be 

ignored. This number must be unique i.e. outside the 

range of coordinates and other markers. The second method 

is time consuming as the new data structure is created by 

copying the original until the record is reached, ignoring 

the record -and then copying the remainder of the 

structure. 

If a new record is required to be added then there 

are again two possible approaches, namely to add the 

record at the end of the structure or to re-create the 

structure with the record in' the middle. The first method 
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is an easy operation but the position may not be a 

possible one for the record. It may for instance have to 

be near other records sharing a common attribute. In this 

case the second method must be used: this consists of 

copying theoriginal structure until the required position 

is reached, adding the record and then copying the 

remainder of the data structure. This second method is 

obviously time consuming. 

The time taken for the methods 	requiring 	the 

re-creation of the data structure may not be not critical 

providing the two structures are held in core but the time 

will be significant if secondary memory has to be used. 

These problems with the deletion and addition of 

records were sufficient for Williams to discount the 

sequential data structure as one to use in an interactive 

graphics system, however, as will be seen later there are 

at least two integrated circuit design systems that use a 

form of this structure. 

4.2.2 Random Data Structure 

In a random data structure, an address in core or on 

disc is allocated to each block of data, and each block is 

stored in memory starting at that address. The data can 

be subsequently retrieved from that address. 
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The simplest way of assigning the address is for it 

to be supplied by the programmer and specified by the 

program each time that it is required. This method is not 

practical for variable size data structures with variable 

size blocks as the amount of memory allocated for each 

block must be the maximum that any block could possibly 

require and the maximum number of blocks must he 

acomodated. 	The 	method 	is, 	therefore, extremely 

extravagant in the amount of space required. 

A more flexible system of assigning the address of 

each block is r, equired. The usual system is to create a 

table or array of block names and associated addresses. 

Each time a particular block is required, the table is 

referenced and the corresponding address is found. The 

data for the block is then retrieved from that address. 

In this system, the addresses are calculated by the 

program as required and not specified initialiy,  

Consequently the addresses are allocated so that they just 

leave room for the data. The number of entries in the 

table are the same as the number of blocks actually used. 

This table is more formally known as the 'symbol table' or 

'dictionary' and is the most general method of using --

random data structures. 

Present day integrated circuits are very complex and 

contain many components and consequently require very 

large amounts of data to specify the layout. If a random 

data structure is used to hold the data then the symbol 

table becomes very big and considerable computing time is 
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expended finding the address of any particular block from 

the table. 

Another problem with the random data structure using 

a basic table is that it is not ideally suited for 

interactive graphics beca use of the problems of up-dating 

the structure. It is, however, easier to update than a 

sequential data structure as only the symbol- table need to 

be updated instead of the whole data structure. 

There is another method of constructing the symbol 

table which incorporates the storing of the positin of 

the entry in the table for the following block as well as 

the address of the present block. A given block can then 

be found by following this chain of table positions and 

their respective addresses. This speeds up the search 

through the table as only table entries for blocks with a 

common attribute need be on the same chain, other entries 

for other blocks with differing attributes being held on 

different chains. This method also has advantages with 

updating, as the position of the next entry in the table 

can be altered so that a particular block is bypassed or 

included in the correct position. This method is 

therefore far more flexible and results in shorter search 

times than the sequentially ordered table. It has the 

disadvantage that the table is bigger because of the extra 

table positions stored. 
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Another method of using random data structures is to 

use a technique known as 'hash coding'. Here instead of 

using a table to contain the name of a record and/or its 

address, the program treats the name of the record as 

either a number or series of numbers and performs some 

arithmetic operation on these numbers to give a result. 

This result is then used as the starting address at which 

the block is stored. The arithmetic operation is known as 

'hashing' and one of its problems is that two or more. 

names can hash to the same address. This is called a 

'collision' or 'conflict' and there are many methods of 

dealing with these conflicts which are described by Morris 

[ref 4.4) . The problems of conflicts and the sizes of the 

blocks make this method of using random data structures 

difficult to program in Fortran or Algol. There have been 

users of hash coding in graphical applications reported by 

Feldman and Rovner [ref 4.5] that use the language LEAP 

which is based on ALGOL. 

These random data structures do have limitations at 

the moment like relying on software to associate names 

with addresses. 	However, 	if computers are eventually. 

built with large associative memories then thesedat' 

structures will come into their own. 

4.2.3 List and Ring Data StructUres 
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These data structures 	are 	similar- 	to 	random 

structures using symbol tables in that they built up using 

a series of blocks of data which are located at specific 

addresses and these addresses are stored elsewhere in 

memory. However in list structures the address is kept in 

a data element in the previous block and the address is 

usually refered to as a 'pointer'. Hence blocks of data 

having similar attributes are 'chained' or joined together 

by means of pointers, the individual blocks, however, may 

be randomly scattered throughout the memory. A series of 

blocks chained together by means of pointers is known as a 

'list'. A block of data can be on several lists and will 

consequently have several pointer chains passing through 

it- . This is using the term 'list' in its broader sense, 

in 'list processing' using 'Lisp' 	[ref 4.5] 	where the 

block is just one computer word long. 

The main advantage of list data structures is the 

speed in which they can be modified or updated. If a new 

block is to be added in a specific position in a list, the 

block itself can be added at any convenient place in 

memory then the pointer in the previous block is changed 

to point to the new block and the pointer in 'the'new block 

set to point to the next block in the sequence. Similarly 

if a block is to be deleted then the pointer in the 

previous block is set to point to the block after the',- . - 

redundantone. 	 - 
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An example of a list data structure is shown in fig 

4.1. which shows three separate lists combined together. 

The first list •'A' can join together the data describing a 

series of triangles, the second list 'B' may join together 

a series of rectangles and the-third list 'C' may join 

shapes whose area is greater than a given value. The 

actual layout in memory may be fragmented as shown in fig 

4.2. 	Deleting the block for triangle 'T2' requires the 

simple process of changing the pointer in block 'Ti' 	to 

point to block 'T3'. 

A more difficult block to delete is one that is 

situated on more than one list such as 'T3'. Herenot only 

must the block be deleted from list 'A' by changing the 

pointer in block 'T2' to point to block 'T4' but it must 

also be deleted fromlist 'C' by changing the pointer in 

block 'R2' to point to block 'R4'. This is difficult as it 

means noting which block is deleted when traversing list 

'A' 	and then checking each block in turn on list 'C' to 

see if it is the deleted block. 	One list is obviously 

being traversed when the block to be deleted is detected 

and so by keeping the address of the previous block on 

that list, the block can easily be removed by changing the 

pointer values. The other list, however, will have to be 

specially scanned from the beginning to find the block to 

be deleted and this could be a time consuming process if 

there are many blocks in the list. There are also 

problems if the program does not know where the list 

starts. In our example blocks could be on list 'C' or on 
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other lists depending on the area of the shape and so it 

is conceivable that the whole data structure would have to 

be searched. 

This problem can be overcome by use of 'forward' and 

'backward' pointers between blocks so that not only does a 

block have a pointer to the following block, it also has 

one to the preceding block. This speeds up deletion but 

does have the disadvantage that it requires bigger data 

blocks to store all the pointers and hence requires a 

bigger data structure. 

A special type of list data structure can be formed 

by arranging that the pointer in the last data block 

points back to the first. Thus the pointers form.a 'ring' 

or 'circular list' and structures using these are referred. 

to as 'ring data structures'. Ring data structures have 

been used in several different applications by different 

people and consequently has acquired several different 

terminologies to describe it. The term 'bead' is used 

instead of 'block' by some people presumably because of 

the similarity of a drawing of the blocks on a ring of 

pointers to beads on a necklace. However terms like 

'keys', 'chickens', 'hens', 'mothers' and 'daughters' have 

been used for the same blocks. It is therefore essential 

to define the terminology to be used before proceeding 

further. 
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A 'bead' is 	series of consecutive memory locations 

that are joined by 'ring pointers' to form a ring. One of 

beads has different attributes to the others and 

corresponds to the first block on a list and is known as a 

'head bead' or 'ringhead bead' and the pointer in the head 

bead is known as the 'ring head pointer'. The first word 

in a bead is called a 'bead head' or 'head word' and 

usually contains data elements or 'fields', which identify 

what the bead contains and how big it IS; Another type of 

pointer is used which instead of pointing to the next bead 

in the ring points to the head word of another bead, this 

type of pointer is known as a 'direct pointer'. A simple 

ring data structure is shown in fig 4.3 which illustrates 

many of these terms. 

Usually a bead is divided into three parts, the head 

word itself, the ring pointers and the data. The head 

word usually contains the number of pointers words and the 
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number of data words used in the bead. The data words 

only contain data such as numeric values and codes but it 

will be shown later that under certain circumstances 

direct pointers to other beads can be included thus 

reducing the size of the 'data structure. 

Just as in the standard list data structurei where 

blocks can be on more than one list, beads in a ring data 

structure can be on more than one ring. The fact that 

rings are used rather than lists facilitates deletion of 

beads without having to resort to forward and backward 

pointers. Fig 4.5 shows the ring data structure to hold 
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the description of the triangles and rectangles used in 

fig 4.1. Now if bead T3 is to be deleted and it is 

detected by following ring A it can be deleted from ring C 

by examining each. bead in turn i.e. R4, the head bead and 

R2 until the pointer to T3 is found. This can then be 

modified to point to R4 and the deletion is complete. 

Only one ring had to be processed. The other advantage of 

the ring data structure over the list is that it is 

possible to find the head bead of a ring by following the 

pointers round the ring until the fing head pointer is 

reached. 

An interesting psychological point arises with ring 

data structures. Because of the varying terminology used 

in describing them, there is an assumed air of mysticism 

about them. This appears to affect programmers in one of 

two ways, they will either fully accept ring data 

structures and use them regularly even if their use is not 

fully justified or they will avoid using them at all 

costs. However, ring data structures are extremely 

powerful under certain circumstances particularly for 

interactive applications where data in continually added 

or deleted. They also have advantages when it comes to 

handling a large number of different types of data e.g. 

the data for an electronic circuit analysis program 

consists of resistors, 	capacitors, transistors, voltage 

sources etc. 	Normally if these are held in Fortran 

arrays, 	there is a limit on the number of resistors, a 

limit on the number of capacitors etc. 	It is therefore 
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possible to have a circuit that is too big to analyse just 

because there are too many transistors even though the 

space for capacitors is empty. Using a ring or, for that 

matter, list data structures, the program can be written 

so that it is the total data size that matters, not the 

size of the individual components. 

4.2.4 Complex Data Structures 

The sequential, random and list data structures just 

described can be used or combined to form more complex 

structures. The best known of these complex structures 

are the 'tree' and 'hierarchical' data structures, both of 

which have been used in graphic applications. 

Graph Theory describes a 'tree' as a graph which has 

no circuits (or rings in our terminology). The computer 

form of a tree consists of a series of blocks spread 

randomly throughout the memory and a series of pointers 

chaining them together and an example is shown in fig 4.6. 
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block 	 t'vt1 

block 	 block 	 block 	 level  

block 	 block block 	block block 	block 	level 3 

ci 	t ree structure 

Fig 4.6 

The structure starts with an identification block at 

the top of the tree: this block contains certain 

parameters describing the structure such as its name or 

size and also pointers to shapes at a second level. These 

second level blocks contain certain parameters describing 

their function etc and also a series of pointers to blocks 

at a third level and so on. 

The data to describe a triangle could be held in the 

basic tree structure shown in fig 4.7. 
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Fig 4.7 

The identification block would hold the name of the 

triangle ABC and pointers to the blocks for the lines AB, 

BC and CA. These line blocks in turn would contain the 

name of the line e.g. AB and pointers to the coordinate 

blocks A and B. The coordinate blocks contain the 

coordinates of the appropriate point. 

Probably the most important point to notice in fig 

4.7 is that the coordinates of each point are recorded 

twice. This is obviously wasteful of storage space and a 

simple modification of the basic tree structure is made 

that allows more than one block at a high level to point 

to the same block at the lower level and the data 

structure is changed to that shown in fig 4.8. 
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IcatiOrl btock 

Line blocks 

point blocks 

modified tree structure for triangle 

Fig 4.8. 

The flexibility with the pointers can be taken a 

stage further where the pointers in a block at a given 

level can point to blocks on the same level. They cannot 

however point to blocks at a higher level or this would 

give the possibility of forming rings. 

The system of different levels provides a grouping or 

subroutining facility so that the definition of subpicture 

can be stored in the structure starting at a given level 

and instances of the subpicture can be called by inserting 

blocks at a higher level which contain pointers to the 

definition and the coordinates of the origin of the 

s ub p i c t u r e. 

The basic version of the tree data structure is 

difficult to modify particularly if blocks are to added or 

deleted. If an extra block is to added at a given level, 

then the block at the higher level must be replaced by a 

10 



CHAPTER 4 

bigger one to accomodate the pointer to the new block. 

This means that the value of the pointer in the block at 

the next level above must be changed to point to the 

replacement block and so the process of adding shapes 

becomes extremely complex. 

The tree data structure can be made more flexible by 

using list structures rather than random structures as 

shown in fig 4.9. 

Fig 4.9 	Tree Structure using Lists. 

Here the identification block contains only a pointer 

to the first block on the second level, the first bead, 

however, contains a pointer to the second bead on that 

level and so on. Now all that is required to delete a 

bead is to change the pointer in the previous bead. 

No description of this version of the tree structure 

has been found in the literature though it is obviously a 

far more flexible system. This is probably because it is 
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so similar to the 'hierarchical' data structure which uses 

rings rather than lists and which consequently has certain 

advantages. 

The 'hierarchical' data structures like the 'tree' 

data structures are created from beads or blocks on 

different levels but in this case the beads are on rings. 

The term 'hierarchical' is not often used and most 

hierarchical data structures are simply refered to as 

'ring data structures'. Consider the drawing shown in fig 

4.10 which consists of a triangle BAC sharing two line 

segments AB and BC with two other triangles 

E 

C 

Fig 4.10. 

ABD and BCE respectively. The hierarchical structure to 

hold the data for this drawing could be as shown in fig 

4.11. 
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Fig 4.11. 

Here the identification bead on the first level 

contains the name of the drawing and perhaps its size. It 

also contains the ringhead pointer to a ring of 'triangle' 

beads at a second level. Each triangle bead could contain 

the name of the triangle e.g. ABC, the ring pointer to the 

next triangle bead and also the ringhead pointer to a ring 

of 'line segment' beads that are used to create the 

triangle. Each line segment bead contains the ring 

pointer to the next line bead and the coordinates of the 

line segment. 

Certain line segment beads are common 	to 	two 

triangles, for example AD occurs in triangles ABC and ABD 

and so the line segment bead must be on both rings. In 

order to access the coordinates of the line segment, it is 

essential to know which ring is being traced or. rather 

where the coordinate data is with respect to the ring 

pdinter. To accomodate this feature the pointers are 
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numbered and each pointer word is consequently divided 

into two fields, the first field contains the pointer 

number or offset from the headword, the second the address 

of the next bead. This obviously restricts the number of 

bits available for the address and hence the maximum size 

of the data structure. 

This numbering of the pointers was a feature of the 

first ring data structure used by Sutherland [ref 4.61 in 

the Sketchpad program and the feature was also used by 

Evans and Katzenelson [ref 4.71 when they applied complex 

ring data structures to electrical circuits and the 

feature now appears as a matter of course in ring data 

structures. One of the novel features of the GAELIC data 

structure is that it is designed so that the pointers need 

not be numbered. This has the advantages that either 

larger data structures can be handled or else the same 

size structure handled on a computer with a shorter word 

length. This technique has subsequently been used by 

McGuffin [ref 4.81 	in the automatic 	routing 	of P.C. 

boards. Dr. P.F.A. Reilly did not use use numbered 

pointers in some of his data structure design work [ref 

4.12). Instead he arranged that all the pointers on a ring 

were in the same position in their respective beads 

regardless of the bead type. This was found to be 

restrictive and made data structure design difficult. 
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4.2.5 Other Data Structures 

There are other data structures that have not yet 

been considered for graphics applications and probably the 

most imortant of these is the Set Theoretic Data Structure 

(ST])S). 	This data structure was described by Childs [ref 

4.9] and has been partially implemented. 	The data is 

sorted into mutually disjoint sets which are known as 

'generator sets'. Generator sets can be joined together to 

form 'composite sets'. There are no explicit pointers used 

between the various sets of data and so sets can be moved 

about in memory independent of each other. This technique 

of not having explicit pointers could be applied to other 

data structures and is inherent in the sequential data 

structures. 

Certain set operations are used in the STDS to 

retrieve the data and set theory questions can be answered 

about the data. It appears to be a useful data structure 

for such applications as statistics and personel 

management. For example, if certain standard facts about 

each person employed by a company are stored in the data 

structure, say whether a person is married and how many 

children he has: then it is possible to answer such 

questions as 'how many men are 	married 	with 	two 

children?'. However, the data stored must be amenable to 

arrangement in set form and this restricts the range of 

applications. It cannot, consequently, be easily used for 

interactive graphics work. 
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4.3 CAMP Data Structure 

The CAMP data structure is mainly based on the work 

of Evans and Katzenelson [ref 4.7] and was designed by 

Wood [ref 4.10]. It is a hierarchical structure shown in 

fig 4.12. The input data to the CAMP programs can be 

descriptions of rectangles, polygons, circles and lines as 

well as the group and repeat structures and is described 

in detail in Chapter 3. The basic shapes are., however, all 

converted into polygons when stored in the data structure. 

A typical polygon bead is shown in fig 4.13. 

2 	 1 	 - 	n 

Shape Ring Pointer 

Mask Word 

Initial X Coordinate 

Initial 'L Coordinate 

I, 

It 

It 

LII 

Final. I Coordinate 

Fig 4.13 	Typical 'CAMP' Polygon Bead 
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The first word in the bead is divided into three 

fields, the first field contains a number to indicate that 

it is a polygon rather than a group call or repeat bead. 

The second field contains the number of pointers which for 

a polygon is always 1 and the third field contains the 

number of data words. 

The next word contains the ring pointer to the next 

shape on the ring. It again is divided into 3 fields, the 

pointer number, the type of pointer and the actual 

address. 

The next word contains the 'maskword' which is a bit 

pattern indicating on which masks the polygon appears. 

The remaining words contain the actual coordinate 

data describing the polygon. 

The head bead for the complete layout shown in fig 

4.12 has the bead pointers of two rings, an index ring and 

a layout ring. The layout ring contains the beads for all 

the shapes in the main layout. It also contains 'group' 

beads which are calls to an instance of a group. This 

contains a direct pointer to the definition of the group 

and also contains the orientation of the group and the 

coordinates of the origin of the instance. The ring also 

can contain repeat beads, which contains the number of 

patterns, 	the spacing between them, and a maskword 

indicating which masks contain shapes to be repeated. 	It 

also contains a head pointer to the ring of shapes to be 

repeated. 
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The index ring contains all the new group beads, one 

bead for each group definition used in the layout. Each 

head contains the name of the group and a maskword. This 

time the maskword indicates which masks contain shapes in 

the definition. It also contains the head pointer of a 

ring containing all the shapes in the definition. 

The process of plotting out the shapes on mask 1 

consists of starting from the head pointer of the layout 

ring and examining each bead in turn, by following the 

layout ring pointers. When a bead is found, the contents 

of the bead head are examined to check that it is a 

polygon and to find the number of data words. The 

rnaskword is then examined to check whether the polygon is 

on the required mask i.e. mask 1: if it isn't, the shape 

ring pointer is followed to the next bead. If it is on 

mask 1, then the shape is plotted out. This process is 

repeated until the shape ring pointer points back to the 

ring head. 

It should be noted here that every shape is processed 

to an extent regardless of whether-it is on the required 

mask or not. If we assume that an integrated circuit 

consists of 5 masks and that the shapes are distributed 

equally between the masks, then the time spent processing 

80% of the shapes when plotting a given mask is 

unproductive. This obviously is a waste but as the. CAMP 

data structure was designed to be core resident, the 

actual time taken to process the extra shapes is small. 

However, if the data structure were disc based with only a 
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few pages in core then the time required to do all the 

extra disc reads would be appreciable. 

The layout ring contains two other types of bead 

besides polygons, these are the group call bead and the 

repeat bead. If a group call bead is encountered when 

plotting a mask, the direct pointer is followed to the 

group definition. The maskword in the definition bead is 

examined to see if 'the group contains any shapes on the 

required mask. If there are no shapes present, the 

program returns to process the layout ring. If there are 

shapes, than the program examines each shape on the group 

layout ring, plotting out those on mask 1 before returning 

to the main layout ring. 

When a repeat bead is found, the maskword in the 

repeat bead is examined to see if any shapes on mask 1 are 

repeated. If there are, then the number of repeats and 

their spacing are obtained from the bead. The shapes on 

the repeat layout ring are processed the required number 

of times with the appropriate modifications to the 

coordinates. 

The data structure has three disadvantages: 

the processing of redundant shapes as described 

above. 

The fact that all shapes are stored as polygons. 	It 

only requires two pairs of coordinates to uniquely specify 

a paraxial rectangle but requires at least three pairs of 

coordinates to store the same shape as a polygon. An 
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integrated circuit design is typically made up of 30% of 

rectangles so this can cause an appreciable increase in 

the size of the data structure. 

3) As the structure is core resident, the size of the 

layout that can be designed depends on the amount of core 

available. The average computer, therefore, is not 

capable of handling the large integrated circuits designs 

that are now being manufactured. 

4.4 Marconi Myriad Data Structure 

	

A sophisticated hierarchical data structure 	was 

implemented on a Marconi Myriad computer equipped with an 

X2000 graphics system by S Bird [ref 4.11]. This data 

structure was initially designed for a general purpose 

drawing program and was later modified slightly for use in 

integrated circuit layout. The structure is based on the 

work done by Sullivan [ref 4.6] for the Sketchpad system 

and includes Sullivans 'constraints' which ensure that 

certain shapes in the layout maintain a certain 

displacement from other shapes. The Myriad Data Structure 

takes the hierarchical principal to its logical 

conclusions. Instead of the line segments bead containing 

the values of the end coordinate as shown in - fig 4.11, the 

bead contains the ring pointers to two 'point' beads one 

for each end of the line. These point beads in turn each 

contain the ring pointers to two 'value' beads, one for 

the x coordinate value and one for the y. 
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All the point beads and all the value beads are also 

on rings with their head pointers in the drawing head 

bead. 

It does, therefore, create rather a complicated data 

structure for a simple drawing. For example consider the 

drawing shown in fig 4.14 which shows a horizontal line 

joined to a vertical line. 

Xb,Yc 

Xci,Ya 
	

Xb Ya 

Fig 4.14 

The data structure for the two lines is shown in fig 

4.15. It can be seen that the line AB is constrained to be 

horizontal by making point A and point B share the same y 

coordinate value. Line ABis constrained to be joined to 

BC by making both line segments share the same point bead. 

The initial Myriad Data Structure was modified by S. 

Bird to cope with the different masks encountered in 

integrated circuit layouts. This was accomplished by 

adding an extra 'maskword' at the end of. a line bead. The 

data structure for the rectangle on mask 1 shown in fig 

4.16 is shown in fig 4.17. 
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D 
Xa,Yc 	 XbYc 

A 	 B 
Xa,Ya 	 Xb ) Ya 

Fig 4.16 Rectangle on Mask 1 

The structure does contain group facilities and so a 

series of shapes that are used frequently need only be 

defined once and then instances are called in the required 

positions on the layout. The group structure is very 

similar to that used in CAMP except that there is no 

special main layout bead; everything is regarded as a 

group including not only the main layout of the circuit 

itself but also the main layouts of any other circuits 

held on-disc. It does, however, have facilities for 

deleting a group definition and all the instance or call 

beads. This is done by having a group instance ring whose 

ring head is in the group definition that joins all the 

instances of the definition. 

The data structure is disc based with certain 'pages' 

of the data actually held in core at any one time and so 

is therefore capable of handling very large circuits. 
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The structure is extremely flexible but does suffer 

from problems of having to number the pointers and of 

having a high proportion of pointers to actual data, 

requiring very large data structures. 

4.5 Other Data Structures 

The CAMP and MARCONI data structures were the only 

ones that were known that had been applied to integrated 

cicuit layout design when the initial GAELIC data 

structure was designed. Since that time other integrated 

circuit layout design systems have become commercially 

avail-able but in general their data structures have not 

been described in the literature. However, by talking to 

the people using these systems a certain amount of 

information has been obtained and this is given below. 

The Rdac integrated circuit design program uses a 

sequential file for its main data structure and apparently 

the whole data structure is searched each time a new 

display file is created. 

The Calma system also uses a sequential file approach 

but subdivides it into disc segments. The bounding 

rectangle of the shapes in each segment is stored as a 

segment header and is examined each, time a window is 

plotted to see if shapes within the segment overlap the 

window. It uses similar sequential structures for the 

group definitions. 	This system 	can 	be 	reasonably 
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efficient on disc transfers if the data is entered in the 

correct order ic. all shapes for a particular area of the 

layout entered one after another. 

The Applicon system makes more effort by sorting 

shapes according to their bottom left hand corner and 

writing them to specific segments on disc. Again the 

bounding rectangle of the shapes in the segment is stored 

and examined to see if the segment need be processed. It 

appears to have problems with large shapes i.e. large 

rectangles and polygons. A large shape in a segment 

causes the segment to have a large bounding rectangle and 

hence it is processed for most window sizes. Because the 

data is divided into fixed sized segments, on the Calma 

and Applicon systems there are restrictions on the sizes 

of polygons allowed. 

The final GAELIC data structure described in the next 

chapter makes extensive use of the area concept to 

minimise the number of disc transfers. 	Since the work 

started, 	two other organisations have been found to be 

using area associations in their data structures. 	Bell 

Telephone Laboratories have produced what is effectively 

an area associated display file which at present is 

restricted to rectangles. 	The rectangles are sorted into 

areas depending on their size. 	There are, of course, 

large rectangles that overlap more than one area and these 

are catered for by entering them in each area. This 

approach was considered for GAELIC when the final data 

structure was being designed but was rejected as so many 

120 



Chapter 4 

areas had to be accessed when a large shape was moved. 

I.B.M. research laboratories at Hursley have taken a 

similar approach JJ to GAELIC and B.T.L. in sorting 

shapes into areas but have found another solution to the 

problem of the large shapes. 	They are split up into a 

series of smaller shapes by cutting the shapes along 	the 

area' boundaries. 	This makes for efficient processing but 

does give a layout that is difficult to check as it is 

different to the layout actually entered. 
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CHAPTER 5: GAELIC Data Structure 

This chapter is mainly devoted to the three data 

structures that have been used during the development of 

the GAELIC programs. It starts, however, by summarizing 

the, requirements for the data structure that were 

developed in Chapter 2. 

To minimise the amount of data that is held in the 

computer memory, all the redundancy that exists in the 

input data for the tape controlled coordinatographs must 

be eliminated. Rectangles must be described by the 

coordinates of a pair of diagonal corners and other shapes 

that are paraxial must he described by every other pair of 

coordinates. Also there must be facilities for repeating 

a series of defined shapes individually or on a matrix. 

As the main feature of the GAELIC programs is the 

interactive, phase, it is also essential to be able to 

perform all the interactive operations as quickly as 

possible, the interactive requirements, therefore, must be 

born in mind during the design of the data structure. The 

requirements were given in detail in Chapter 2 but are 

briefly: 

To plot out all or part of the layout. 

To be able to identify a point on a shape and either 

modify or delete the shape. 

Identify the origin of the instance of a group and 

either delete it or change its orientation. 

Identify that a shape or series of shapes are 
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repeated and be able to modify the number of patterns or 

their spacing. 

The Wolfson Microelectronics Liaison Unit received a 

contract from General Instrument. Microelectronics Ltd. to 

write a suite of computer programs to produce drive tapes 

for a tape controlled coordinatograph from either data 

tapes from a digitiser or from manually prepared data. 

These programs were to run on a particular commercial time 

sharing service. This service did not at the time have 

any random access facilities for data files used in 

Fortran programs and so it was not possible to use 

sophisticated data structures. This restriction resulted 

in a suite of computer programs known as PAELLA (Plotter 

Aided Engineering Layout of Linear Artwork) which uses the 

version of the sequential block data structure described 

below. 

5.1 The Sequential Block Data Structure: 

The sequential block is about the simplest data 

structure that can be used for this type of work. The 

structure is simply created by sequentially writing the 

blocks of data to arrays or disc files. In our case each 

block contains the data describing a shape and is written 

to an array or file in the order in which it appears in 

the input data. The blocks vary in length for different 

shapes e.g. a rectangle requires 6 elements and a 6 sided 

paraxial polygon requires 10 elements. An example of the - 
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data for several shapes in a sequential block structure is 

shown in fig.5.1. 

The basic sequential block data structure is not very 

efficient Ufl1CSS all the data can be held in an array in 

core. This is because the whole of the data must be 

searched sequentially to find a particular item rather 

than searching through the series of items having similar 

attributes. For example, if a particular shape on mask 1 

is required then it is desirable to sort through the 

shapes on mask 1 and ignore the shapes on masks 2, 3 and 

4. The main advantage of the data structure is that it is 

compact and so can often be held entirely in core when a 

more sophisticated data structure would have to be held on 

backing store. To search the sophisticated structure will 

therefore require data transfers to and from the backing 

store and this obviously takes time. With integrated 

circuit layout designs, the amount of data is so large 

that it cannot possibly be held in core and so must be 

held on disc or other backing store. Any use of the basic 

sequential block data structure for integrated circuit 

layout design must, therefore, be inefficient. 	There are 

two other problems with the basic data structure: 	firstly 

the data must be processed in the order in which It is 

entered and this is not necessarily the best order for 

subsequent processing. Secondly it is difficult to handle - 

the group and repeat facilities. 	If these facilities are 

to be used then a count must be made of the number of data 

elements processed In the file when a group instance is 

124 



x4, y4 

X3, y3 

x2, y2 

x5. y5 

xl,yl 

I 

2 

3 

1. 

5 

rectangle 	marker 

mask 	number 

xl 	value 

yl 

x3 

6 

7 

y3 

polygon 	marker (s) 

8 

9 

10 

11 

12 

13 

IL. 

15 

16 

17 

18 

19 

20 

mask 	number 

xl 	value 

yl 

x2 

y3 

x4 

y5 

x6 

y  

polygon 	marker 	(I) 

mask 	number 

x 	value 

yl 

21 

22 

23 

24 

25 

26 

27 

Th 

x2 

y2 

0 

y3 

xt. 

y4 

x5 

YS 

29 

30 

31 

xl 

yl 

rectangle 	marker 

xL., 4 	 x3,y3 

xl,yl. 	 x2, y2 

x6, y6 	 xS, YS 

y4 

xl, yl 	x2 y2 

Fig 5.1 	Sequential block data structure 

125 



CHAPTER 5 

encountered. The file must be rewound and searched from 

the beginning for the appropriate definition. When this 

is found, then the shapes contained are processed after 

being suitably modified to account forposition and 

orientation of the instance. -'The program must then return 

to the beginning of the data structure and all the 

elements skipped until the count is reached and the main 

processing continued. This., necessity to return to the 

beginning of the file whenever group instances or repeats 

are met is extremely inefficient and not a practical. 

proposition for large amounts of data. 

Certain of these disadvantages can be overcome by the 

use of extra sequential block data files and the methods 

by which this can be done are discussed below. However it 

must be remembered that in the commercial time service 

used aL rnaxiiu.m: 'ó.oniy:. four disc channels i.e. four disc 

files were allowed to be open at any one time and this 

necessitated the restriction that repeats cannot he nested 

i.e • a series of shapes to be repeated cannot contain 

another series of repeated shapes.. 

To enable each mask in turn to be plotted out 

quickly, it is desirable to have the shapes for each mask 

on a different file. Unfortunately the number of masks 

can vary between 4 for a simple MOS process and 16 for a 

complex Bipolar process. The maximum number of masks must 

be catered for even though on average less than half will 

actually be used. This results in a requirement for 16 

disc files and, preferably 16 disc channels. This is 
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impractical and so all data for the shapes in the main 

layout definition have to go into the one file to be 

scanned in toto for each mask in turn. 

The group definitions, however, need to be separated 

from the main definition, and again each definition should 

theoretically go into a separate array or file to enable 

it to be found and processed quickly. Again because of 

the variation in the number and size of the group 

definitions it is impractical to use separate arrays and 

the number of disc channels available limits the number of 

files allowed. Consequently all the group definitions 

must also go into one file. 

This restricts the system to the one whose block 

diagram is shown in fig. 5.2. Here the order of entering 

the data is flexible i.e. the shapes on mask 3 can be 

entered before the shapes on mask 2 or a shape on mask 2 

can be preceeded by a shape on mask 4 and can be followed 

by another shape on mask 4. Also group definitions can be 

entered in any order. The process of converting input 

data into drive tapes for tape controlled coordinatographs 

is as follows. After checking the data for syntax, it is 

converted into the purely numeric form known as the 'dump 

code file' . (This is a basic sequential block data 

structure) This file, is subsequently sorted into two 

separate sequential data files, the first contains all the 

main shapes and main repeats and the second contains all 

the group definitions. The program now returns to the 

beginning of the main file and each shape is looked at in 
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turn to see if it is on the required mask. If the shape 

is required, then it is written to a new file, if not, it 

is ignored. This new file is called the 'coordinate file' 

and contains the basic information required by most tape 

controlled coordinatographs, that is the coordinates of 

every corner of every shape of each mask in turn. This 

co-ordinate file is subsequently post-processed to either 

drive an on-line plotter or to give the drive tapes for a 

particular coordinatograph. 

When a group call is encountered then the group 

definition file is searched from the beginning for the 

appropriate definition. When the definition has been 

found, the shapes that are on the required mask are 

written to the coordinate file, taking into account the. 

position and orientation of the call. The program then 

returns to continue reading from the main file. 

When a repeat header is found, all the shapes to be 

repeated are first written to a separate 'repeat' file. 

The repeat file is then rewound and the shapes written to 

the coordinate file the required number of times with the 

appropriate increments on the co-ordinates. 

As stated earlier the system is capable of providing 

check drawings from the co-ordinate file and can 

conceivably be modified to alter the position of shapes 

but it does have problems when it comes to deleting shapes 

and drawing new ones. This can only be done by copying 

the file up to the header of the shape to be deleted, 
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skipping the marker and coordinates of the shape and then 

copying the remainder of the file. Adding new shapes at 

the end of the file may be feasible on certain computer 

instalations that allow extra data to be subsequently 

appended to a file, but adding a shape to a group 

definition again requires copying the file, and this is 

obviously time consuming. 	Corrections on the system 

implemented are, 	therefore, always made to the manual 

input language. 

When additional facilities were 	added 	to 	the 

commercial time sharing service which enabled the user to 

start reading from the sequential file at some point other 

than the beginning of the file, the process was speeded 

up. This was done by the program storing the starting 

address of each particular group definition as it was 

written in the group definition file and then going 

directly to that position on the file when the definition 

was required. It was a system with this facility that was 

used in the comparative tests discussed in Chapter 8. 

5.2 The Initial Ring Data Structure: 

A ring data structure provides a more versatile 

method of storing or handling the data for a layout. It 

does not have the restrictions on the repeat nesting nor 

the problems of processing unnecessary information that 

are present in the the sequential block structure. The 

block diagram of the system using a ring data structure is 
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shown in fig.5.3 and the actual data structure used is 

shown in fig.5.4. 

It is a hierarchical structure in that it has beads 

which hold the head pointers of rings of beads of the next 

hierarchical level e.g. the main definition bead' contains 

the head pointers to the rings of the group definition, 

the repeat definition and the main mask beads. These 

beads in turn have rings of beads of the next level. The 

program works at one level going round a ring checking 

each bead in turn until the required bead is found and 

then descends to the lower level and goes round the next 

ring, it does not need to descend to this lower level 

unless it requires data e.g. the program will go round a 

mask ring, (the ring containing the mask beads) until it 

finds the required mask number and then will descend to 

the lower level and process the shapes on that mask. It 

does not have to process shapes on any mask other than the 

one required. 

The full data structure at first sight appears to be 

complicated but can be understood by considering first of 

all the main definition on its own as shown in fig 5.5. 

The whole of the ring data structure is built up on a main 

definition bead which is shown in fig 5.6. 
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1 	 5 	 4 
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Spare Ring Head Pointer 

Group DefinitionR. H. Pointer 

Repeat Definition R. H. Pointer 

Main Area Ring Head Pointer 

Minimum X Coordinate 

Minimum Y Coordinate 

Maximum X Coordinate 

Maximum Y Coordinate 

Fig 5.6 	Main Definition Bead 

The bead contains the head • pointers of several other 

rings that are used in the data structure and their. use 

will become clear as the structure is developed. The last 

of these ring head pointers is the start of the mask ring 

and fig 5.5 shows how this ring contains a series of mask 

beads, one for each mask used in the layout. Each mask 

bead is similar to the one shown in fig 5.7 and contains 

the pointer to the next mask bead, the head pointer of the 

appropriate shape ring and the number of the mask. 
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n 	 2 	 1 

Mask Ring Pointer 

Shape Ring Head Pointer 

Mask Number 

Fig 5.7 	Mask Bead 

The shape ring contains the shape beads holding the 

description of shapes on the particular mask. There are 

three basic shapes that can be described these are the 

RECTANGLE, POLYGON and LINE. An example of a polygon bead 

is shown in fig 5.8.- 
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Initial Y Coordinate 

It 

Er 

Final X Coordinate 

Fig 5.8 	Polygon Bead 

The head word is as usual split into three fields, 

the first field contains the 'type' of shape bead in our 

case the number is 2 for a polygon (number 1 indicates a 

rectangle and number 7 indicates a line). The second field 

contains the number of pointers in the bead and the third 

field contains the number of data words. The data of the 

polygon bead consists of. the coordinates of the bounding 

rectangle of the polygon, the format number (8388527 for a 

short format, and 8388526 for a long) followed by the 

actual coordinates of the polygon.. 	 . 
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A polygon or ° line can have up to 1000 corners and so 

it can take a long time to go through the data of the 

shape only to find that none of the shape appears within 

the window. For this reason the bounding rectangle of 

every polygon or line is computed as the data is entered 

and the co-ordinates of this rectangle are stored in the 

the first four data words of the bead. Each time a shape 

is processed, an initial check is made to see whether any 

of the shape appears within the window, before processing 

the actual co-ordinate data. 

The data structure is built up by initially creating 

the main definition bead and setting all the ring pointers 

to point to themselves. As the first shape is read in, 

the appropriate mask bead is created and added to the main 

mask ring. The appropriate shape bead is then set up and 

added to the shape ring of the new mask bead. When 

subsequent shapes are read in, the mask ring is searched 

each time for the appropriate mask bead. if the bead is 

found then the new shape bead is created and added at the 

beginning of the shape ring. However, if the mask bead 

does not exist a new bead is created and inserted at the 

beginning of the mask ring. The shape bead is then 

created and added to the shape ring. The shapes and masks 

are added at the start of the rings for speed, as the 

value in the head pointer is simply transfered to the 

pointer in the new bead and the address of that pointer 

entered into the ring head. 
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The process of plotting out a main data structure 

consists of going round the mask ring until the 

appropriate mask bead is found. The area ring of the mask 

bead is then processed, plotting out each mask in turn. 

If a window is to be plotted, the bounding rectangle of 

each shape is checked against the window and shapes 

outside the window are ignored and the next 	shape 

.processed. 	This has very little saving for a rectangle 

where the bounding rectangle consists of the actual 

coordinates, but has considerable savings with polygons 

and lines, where there can be up to 2000 coordinates. 

Identifying the nearest point in the layout is very 

similar to plotting, the mask ring is again searched for 

the appropriate mask and then the shape ring is processed 

shape by shape checking each pair of coordinates within 

the window in turn. 

The above description applies to the main part of the 

layout and does not use any of the group and repeat 

facilities. The methods of handling the group and the 

repeat structures are basically the same and consequently 

only the group structure will be dealt with in detail. A 

group call or instance bead is shown in fig 5.10. 
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6 	 2 	 5 

Shape Ring Pointer 

Instance Ring Pointer 

D. P. to Group Definition 

D. P. to Group Value Bead 

Ma s kwo rd 

Name 1 

Name 2 

Fig 5.10 	Group Call Bead 

	

Group call beads appear as a 'shapes' 	on the shape 

rings of the various masks used in the definition e.g. if 

a group definition contains shapes on masks 1, 2 and 3 and 

there are instances of the group called in the main 

definition, then there are group call beads on the shape 

rings of masks 1, 2 and 3 of the main definition as shown 

in fig. 5.9. 

When a group call is processed the appropriate group 

definition is found by means of a direct pointer and the 

the shapes on the appropriate mask of the definition are 

then processed. The use of the direct pointer may appear 

redundant as there is a group instance ring joining all 

the group calls to a particular definition and whose head 

pointer is in the definition. The program could obviously 

lieU 



ma i n 
dauiniton 

F i guru 	5.g 



CHAPTER 5 

trace its way round this ring to the definition. 	It must 

be remembered, however, that there can be of the order of 

100 group calls on certain layouts and on these layouts 

the program would, on average have to pass through 50 

group calls before reaching the definition and the process 

is therefore time consuming. The group instance ring is 

actually present so that individual group calls or group 

definitions can be deleted. The position of the group 

call and its orientation could be stored in the group call 

bead as shown in fig 5.9. This has the severe disadvantage 

that if the position of the call or its orientation are 

modified on say mask 1, then the same modification must be 

made on all the other masks that contains a group call 

head. The designer can very easily forget to do this 

especially if many modifications are performed on mask 1 

before modifying the other masks This would create 

errors in the layout which are not easy to detect. This 

problem is overcome by setting up 3 'value' beads which 

are inserted onto a. special value ring. These beads 

contain the values of the x and y coordinates of the group 

origin and its orientation. The group call bead as shown 

in fig 5.10 contains direct pointers to the value bead 

heads instead of the actual values and this gives the data 

structure that will handle the group facility shown in fig 

5.11. 

The way in which the group facility is built up in 

the data structure is a little complicated in order that 

the input data can have calls to a group before the group 
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is defined and vica versa. 

When a 	group 	definition is 	encountered 	first 	in 	the 

input 	data, 	the 	appropriately named 	group definition bead 

is 	created 	and 	added 	to 	the group 	definition 	ring. This 

group 	definition 	bead 	is very 	similar 	to 	the main 

definition bead 	shown 	in 	fig 5.6 	except 	that: 

The 	first 	field 	in 	the head 	of 	the 	bead, 	the type, 

contains 	the 	number 	2. 

The 	group 	definitiion ring 	pointer 	is 	the first 

pointer 	in 	the 	bead 

The group 	instance 	ring head 	pointer 	is 	the second 

pointer 	and 

Two 	extra words 	appear 	at 	the 	end 	of 	the 	data words 

and 	these 	contain a 	numeric representation 	of 	the 	name of 

the 	group. 	 - 

The various mask and shape beads are then added to 

the group definition bead in exactly the same way as they 

are added to the main definition bead until the end of the 

group is reached. - 

When a call to a particular group is entered before 

its definition, then the group definition bead is again 

set up but this time there will be no shapes to be added. 

Three value beads are set up and added to the value ring. 

Each value bead consists of 3 elements: the bead head 

which contains the usual 3 fields, the type, the number of 

pointers 'and the number of data words, 	the value ring 

pointer and the actual value. 	In this case the first ring 
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has the value of the x origin of the group instance, the 

second has the value of the y origin and the third has the 

orientation. The group call beads are then set up and 

added to the shape rings of the appropriate masks and 

direct pointers to the head of the group definition, the x 

origin, y origin and orientation beads are added as shown 

in fig. 5.11. 

The way the program discovers whether the group 

definition or group instance have already been encountered 

is to search the group definition ring for the appropriate 

definition bead. If the definition bead is present then 

the address of the bead head is noted and the group call 

or group definition processed as described above. If a 

definition for a particular group is encountered a second 

time, an error message to that effect is printed out and 

the initial definition is overwritten. More than one 

group call to the same definitionare of course legal and 

so are added to the data structure, each new call having 

its own value beads and group call beads. Group calls to 

one definition can occur in another group definition, or 

in a repeat definition, as well as in the main definition. 

These are processed in the same way except that the value 

beads and group call beads are added to the appropriate 

definition. The 'type' of the value bead also reflects 

the type of calling definition and is set to 1 for a call 

from the main definition, 2 for a call from another group 

• definition and 3 from a repeat definition. This is not 

essential for the program operation but makes debugging 
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the program a lot easier. 

When processing the data structure to produce a plot 

or identify an actual point, 	the group call bead is 

obviously encountered. As explained in Chapter 3, 	the 

user is not allowed to modify shapes in the instance of a 

group but can modify the position or orientation of the 

instance. When the origin of an instance is identified, 

the direct pointers to the value beads are then followed 

and the values of the x and y origin compared with the 

coordinates of the cross hair cursor and then the next 

shape is processed. If plotting then as well as following 

the direct pointers to find the position of the call and 

its orientation, the direct pointer to the definition is 

followed. All the shapes in the definition are then 

processed, transforming all the coordinates to account for 

the position and orientation of the instance. When all 

the shapes have been processed the program returns to the 

next shape bead after the group call bead. 

The method of handling the repeat facility is very 

similar and the data structure with repeated shapes is 

shown in fig. 5.11 The value beads in this case contain 

the number of patterns and the spacing between theme 

The repeat call is contained implicitly in the repeat 

definition and so we have a simpler system for building up 

the data structure, the only slight complexity is the fact 

that 'repeats' can occur in the main definition, in group 

definitions or even nested in other repeat definitions. 
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This means that when the repeat definition is encountered 

in the input data the program must assertain which value 

ring and repeat definition ring must be used. 

Processing the repeat calls is again similar to 

processing group calls, the first pattern only is 

processed during modification but all the patterns being 

processed during plotting. 

This bounding rectangle concept that is used on the 

polygon and line beads is taken a stage further by 

calculating the bounding rectangle of each definition as 

the shapes are entered, and storing the co-ordinates of 

this rectangle in the definition bead. 	This has two 

advantages: 	when a group or repeat call is processed the 

bounding rectangle of the definition, modified by the 

position and orientation of the call, is checked against 

the window and if outside, the definition is ignored. The 

other advantage is that when a definition, main, group or 

repeat, is being plotted the user can be given the minimum 

window size that will allow a plot of the whole 

definition. 

Beads that are deleted are put onto a 'garbage' 	ring 

ready for re-use if required and the pointer in the 

previous bead changed to point to the following bead and 

so once deleted the bead is not processed again. 
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5.3 Problems with the Initial Data Structure 

The information held in the initial ring 	data 

structure is not necessarily in the most efficient form 

for subsequent processing because the information can be 

fragmented over the disc. The effect of this inefficient 

storage of data is not normally noticed on the 

Decsystem 10 because of the low data 'rate (1200 baud) 

available to the Tektronix storage tube terminal and the 

fact that the users program is being continually swapped 

in and out of core by the time sharing executive. However 

when designing large integrated circuit layouts, say above 

150thou square, delays can be noticed, usually during 

modification, that are due to the number of disc transfers 

required. 

The reason for the large number-of disc transfers can 

be 	understood by considering the following example. 

Assume that a plot of a window on mask 1 is required. 	To 

do this the mask ring is searched, examining each mask in 

turn until the appropriate mask bead is found: the shape 

or contents ring of the required mask bead is then 

traversed examining each shape in turn and plotting those 

within the required window. Assume that the program can 

only have three pages of the data structure in core at any 

one time and that initially these are 'pages 1, 2 and 3. If 

the first page containing a shape on the required mask is 

page 27 then one of the pages presently in core say page 1 

must be overwritten by page 27. The shape on page 27 can 

then be processed. The next shape could well be on page 
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28 and so page 2 must be overwritten by page 28 and that 

shape processed. The next shape may be on page 1 which 

will have to be brought back into core again, this time 

overwriting page 3. If the data is awkwardly fragmented, 

the next shape may be on page 3. i.e. the one that has 

just been overwritten, and so page 3 must be brought back 

in again this time overwritting page 27. This arrangement 

is obviously extremely inefficient and occurs when each 

shape is in virtual isolatiion i.e. is apparantly on a 

separate page. If therefore, all the shapes on a given 

mask were arranged to he on the same page then once this 

page was brought into core then no other disc transfers 

would be required to plot or modify that mask. 

The obvious solution is therefore to arrange that all 

the shapes on a given mask are on the same or consecutive 

pages and this raises the obvious question 'why isn't it 

done?' This is a question that is much easier to ask than 

it is to answer. Chapter 2 shows that the average 

designer will produce the layout of all the masks of a 

given section simultaneously. His natural reaction is 

therefore to specify the input data for the section as 

soon as he has designed it, and then, after checking and 

modifying the layout, will proceed to design the next 

section. The pages of the ring data structure are written 

consecutively i.e. page 1 is filled before page 2 is 

started. Thus the data for one section of the layout will 

go on the same page or consecutive pages i.e. the shapes 

on mask 1 for the section will he near the shapes on mask 
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2 for the same section. 	However shapes on mask 1 for 

another section will probably be on another page. 

If the designer designs and draws the complete layout 

and then and only then passes it over to a tracer or 

similar grade of staff to be digitised, then the data can 

be entered into the computer mask at a time. All the data 

for mask 1 will therefore be entered onto adjacent pages 

of the data structure. This appears at first to be the 

obvious solution to the problem but does assume that the 

designer is prepared to design the complete layout before 

the data is entered into the computer. This method also 

means that the full facilities of the GAELIC system, for 

example the group and repeat facilities, cannot be 

exploited and therefore involves the designer in a lot of 

unnecessary work. Exactly the same argument applies to 

coding the completed layout using the manual input 

language and so this is not a viable alternative. 

it is therefore inevitable that 	the 	data 	is 

fragmented onto different pages if the designer is to be 

allowed to design in the way that is most natural to him. 

A designer always works best when as few constraints as 

possible are put upon his method of working and it is 

essential that those constraints that are absolutely 

necssary are easily understood. 

There is another reason why the data is fragmented on 

the disc which is concerned with adding shapes directly by 

means of the cross hair cursor on the Tektronix screen. 
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All shapes that are added during the interactive •phase are 

placed on the last page of the data structure -regardless 

of where other shapes on the same mask are situated. If 

the complete layout is designed on line, then the 

resultant layout can be fragmented througheut the disc. 

however, the occasional shape that was missed from the 

input data can be added without any noticeable 

deterioration in response. 

In order to allow the designer to have the necessary 

flexibility in the input data and to cope with large 

numbers of shapes added interactively, it is essential to 

be able to order the information in the data structure 

after it has been initially created rather than ordering 

it on input. There are three ways in which this ordering 

can be accomplished. Firstly a new ring data can be 

constructed from the old fragmented structure. Secondly a 

new dump code file can be created from the old ring data 

structure and thirdly a new manual input language file can 

be created from the ring data structure. 

The first option is perhaps the most elegant but does 

have core store and programming problems as two ring data 

structures must be handled simultaneously. The second 

option requires only one ring data structure and one 

sequential file and is therefore easier to program and 

requires less core store. This approach was programmed 

successfully for the early GAELIC software but was not 

used in practice by integrated circuit designers. The 

designers had no confidence in the method as they could 
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not manually check the binary dump code file before it was 

'recompiled' back into the new ring data structure. This 

is a difficulty that is not always realised by the 

applications programmer: the designer has to undergo a 

traumatic change in his design technique when he starts 

using a CAD facility and is naturally very sceptical. He 

is having to put his design into the hands of a computer 

and a computer as far as he is concerned is the cause of 

mistakes in his gas bill and is the reason why his 

queries about car insurance take so long. If he can be 

reassured at intervals that everything is alright and 

completely under his control, then he will settle down to 

• 	the new technique that much quicker. 	The ability to 

• 

	

	quickly plot out part of his design is one reassuring 

feature and the ability to do spot checks on the manual 

input language is another. 	People using the programs 

therefore, 	preferred the third alternative method of 

creating a new ring data structure i.e. converting the 

fragmented data structure back into the manual input 

language, even though this required an extra stage of 

processing (converting the manual input language into a 

dump code file) . This third alternative has the additional 

advantage that it allows the use of 'library' components. 

The designer designs a section of a layout that performs a 

specific function e.g. an R.S flip-flop, enters the 

description into the computer and interactively checks and 

corrects his design. He then produces a corrected version 

of the input language file which is stored on disc or 

magnetic tape and is called up whenever the component is 
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required. There is yet another advantage in the ability 

to create a manual input language file from a ring data 

structure. As the input language file consists of ASCII 

characters the file can easily be transfered from computer 

to computer. 

The program (GAEL7) 	that converts the ring data 

structure back into the manual input language is arranged 

so that it processes all the shapes on one mask before it 

processes the shapes on the next. Hence the manual input 

language has the shapes in this same order. When 

recompiled back into a new ring data structure, the shapes 

on one mask are put on the same •page or consecutive pages. 

Thus this new data structure will plot out all the shapes 

on one mask with the minimum number of disc transfers. 

When designing large integrated circuit layouts, it 

is not practical to plot the whole of a mask on the 

Tektronix 4010 terminal because of its limited screen size 

and resolution. This does not detract from the use of the 

terminal as most the designer requires to look in detail 

and modify small sections of the layout otherwise known as 

windows. The user not only requires to plot or modify one 

mask at a time but also requires to examine several masks 

superimposed on the same plot. The time taken to plot out 

a window for a given mask can be appreciable as the data 

for all the shapes on the mask must be processed to find 

those within the window. Certain features of the data 

structure described earlier in 	this 	chapter 	allow 

instances of group or repeat definitions to be ignored if 
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the are outside the window. These features do reduce the 

amount of processing but neverthiess a lot of unnecessary 

data will have to be processed especially if there are not 

many grouped or repeated shapes. 

There is therefore, a requirement to modify the data 

structure so that the amount of information that must be 

processed for a given window is reduced to a minimum. 

There are four possible approaches to solving this problem 

that were considered, these were: 

Shapes within a window are placed on a fixed size 

page. 

Shapes within a window are placed on a variable size 

page. 

Shapes within a window are placed on a fixed size 

page until it is full and then the remaining shapes are 

placed on consecutive pages. 

Shapes within a given area are placed on special 

rings associated with that area and are periodically 

arranged to be on consecutive pages on the disc. 

Let us now consider these four approaches in a little more 

detail. 

The first approach is extremely rigid and has the 

following features: 

1) A page on the disc must be provided for every 

possible window of the maximim size of chip. used i.e. 

regardless of the size of chip being designed. This means 
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the data structure must always be the same size and must 

always be maximum size. 

Each page must be big enough to contain the maximum 

number of shapes that are possible within the window 

regardless of the fact that the window only, contains on.y 

one shape. 

The window size is related to the page size and need 

not be related to the window size that user would wish to 

use. 

When a shape is moved from one window to the next, 

the shape description must immediately be added to the new 

page and then deleted from the old and this can cause 

problems. 

There are always shapes in an integrated circuit that 

start in one window and finish in another and these cannot 

be accommodated with this approach. 

There must be the appropriate mechanism in the 

program to select the appropriate page and bring it into 

core. This is a fundamental problem associated with all 

three appproaches and is added mainly for completion. 

The must be a garbage collection and re-use system 

operating on each page to re-use the space freed by 

deleting shapes. 

The second approach is more flexible because of the 

variable size of page. 	A lot of work has been done by 

Hubbald [ref 5.11 on the variable page data structure. 	It 

has the following features: 

1) the pages need only be provided on the disc when they 
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are required and so the data structure size is kept to a 

minimum. 

There must be a mechanism in the program to expand or 

contract the page as shapes are added or deleted. 

The window size is again fixed by the maximum size of 

page allowed and the number of shapes that it can contain. 

There is still a problem with moving shapes from one 

window to 'the next and with shapes that start in one 

window and finish in another. 

Them must be a mechanism to sort out which page to 

bring into core and which page or pages to write back to 

disc to make room for it. For a variable length of page 

this is an extremely complicated algorithm. 

The third approach is more flexible still and has the 

following features: 

Pages are again only used when required and so for a 

small layout only a small data structure is required. 

The pages can be made a convenient size for the 

computer and do not depend on the window size required. 

The window size is still predetermined and cannot 'be 

changed by the user. 

There are still problems with moving shapes from one 

window to another and with shapes that start in one window 

and finish in another.. 

The fourth approach has a fundamental difference from 

the other approaches in associating the shapes with areas 

of the layout and not with windows and has the following 

features: 

"I 	
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The window size 	is 	determined by the user without any 

constraints 	from 	data 	structure 	size 	or page 	size. 

The •size 	of 	the 	data 	structure 	is dependent 	on the 

size 	of 	the 	layout. 	i.e. 	pages 	for windows need not be 

created 	unless 	they are 	required. 

The mechanism 	for 	swapping 	pages can be 	the 	same as 

that 	already 	used 	in 	the 	initial 	data structure. 

When 	shapes are moved 	from one area to 	another, only 

the 	pointer values need 	be changed 	to associate 	it 	with a 

new 	area. 	 - 

The 	problem 	of 	shapes 	that 	start in 	one 	area and 

finish 	in 	another 	is 	still 	present. 

There must 	be a mechanism 	for 	reordering 	the data 

structure 	on 	the 	disc 	so 	that 	shapes in a 	given area are 

on 	the 	same 	page or 	adjacent 	pages. 

This last approach is extremely flexible and is 

therefore the one implemented. As described, it still has 

several problems associated with it that have to be 

solved. 	Probably the most important of these is how to 

decide with which areas shapes are to be associated. 	Fig 

5.12 shows a section of integrated circuit layout with a 

gridsuperimposed which divides it up into areas. It can 

be seen that there are two main classes of shapes, those 

that lie entirely within an area and those that do not. 

The problem is what to do with the latter. There are 

three options: 

1) Treat these shapes the same way as those lying 

entirely within the area and associate each shape with the 
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area in which it starts. This is a non-starter as this 

means that every area must be processed for even the 

smallest of window just in case it contains a shape that 

extends into the window. 

Associate shapes that are entirely within an area 

with that area and treat all the remaining shapes as 

special cases. When plotting or modifying only the area 

or areas within the window and the special shapes need be 

processed. This is a far more practical approach but has 

the fâ-isadvantage that there are an awful lot.-of special 

shapes that must be processed for each window. 

A closer look at fig 5.12 shows that these specials 

can be split into two subdivisions, those that start in 

one area and extend only to an adjacent area and those 

bigger 	shapes 	that extend further. 	This allows a 

modification of the second option so that shapes entirely 

within an area and shapes that only extended into adjacent 

areas are associated with that area and only shapes 

extended beyond the adjacent areas could be treated as 

specials. This modified option was chosen as it meant 

that there were only a few special shapes to be processed 

for all windows and the only areas that needed to 

processed were those contained within and adjacent to the 

window. 

The numbering of the areas is also an interesting 

problem. The obvious solution is to number the areas on a 

raster as shown if fig 5.13. 
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25 26 27 28 2930 31 32 

1718 19 20 21 22 23 24 

9 10 11 12 13 14 15 16 

1 	2345 	6 	78 

Fig 5.13 

The actual area number can be quickly evaluated. However, 

on giving the - problem a little more thought, it can be 

realised that by modifying this numbering order, it is-

possible to overcome one of the common problems met when 

plotting large composite drawings and when actually 

cutting the cut and peel material. This problem is to 

minimise the distance traveled and hence the time spent 

with the pen or knife up. Only when the pen is down and 

drawing is it doing useful work. It is very difficult and 

time consuming to sort the information in the data 

structure so that it can produce a drive tape for the 

coordinatograph that has the data in the optimum order. 

It can be done whilst entering input data into the 

computer but that is contrary to the policy of putting as 

few constraints as possible on the input data preparation. 

If the method of numbering area beads as shown if fig 

5.6 is used and the areas are plotted out in sequence, 

then there is a distinct improvement over any random 

method. There is obviously very little distance between 

shapes in each area and very little distance between - - 
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adjacent areas so travel with the pen up is minimised. 

The main travel is during, the 'flyback' e.g. when 

travelling from area 8 at the end of the first row to area 

9 at the beginning of the second. 

The optimum solution would be appear to be to arrange 

the area beads in a spiral starting in the middle of the 

layout as shown in fig 5.14. 

17 16 15 14 13 

18 5 	4 	3 12 

19 	6 	1 	2 11 

20 	7 	8 	9 10 

21 22 23 24 25 

Fig 5.14 

This method does present certain implementation problems 

such as finding the middle of the circuit to start the 

counting when circuit sizes obviously vary and evaluating 

which areas are required for a given window. 

A modification to the basic spiral can be made so 

that it starts at the bottom left hand corner of the 

layout as shown in fig 5.15. 
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17 18 19 20 21 

16 15 14 13 22 

5 	6 	7 12 23 

4 	3 	8 11 24 

1 	2 	9 10 25 

Fig 5.15 

Plotting from this type of numbering system is excellent 

for a full layout or a full mask. However, the algorithms 

required to evaluate the correct area for a shape as it is 

entered and to evaluate the correct areas to plot a window 

are extremely complicated. 

Complication for its own sake is never worth while 

and the numbering sequence finally chosen is shown in fig 

5.16. 

32 31 30 29 28 27 26 25 

17 18 19 20 21 22 23 24 

16 15 14 13 12 11 10 	9 

12345678 

Fig 5.16 

It has the beauty of being a simple system to implement 

1 	 162 



CHAPTER 5 

using a fast algorithm to calculate with which area a 

shape should be associated and which areas should be 

plotted and yet minimises the travel with the pen up. The 

problems of further optimisation of plotting files are 

discussed in Chapter 7. 

In this section we have discussed methods of speeding 

up the plotting of windows and indentificationsof points 

in the data structure. Some of these require additional 

programs to rebuild the the original data structure and 

these programs are available in system using this 

structure. Others i.e. those involving the use of areas 

required a new data structure and this new structure is 

now dealt with in more detail. 

5.4. The Final Data Structure. 

There are two ways in which the area concept can be 

incorporated into the data structure and these are shown 

in figs 5.17 and 5.18. The first method (fig 5.17) has 

mask beads that instead of containing the head pointer of 

the shape ring contain the head pointer to a ring of area 

beads, usually known as the area ring. There is an area 

bead for each area occupied on the mask. Each area bead 

contains the area number and the •head pointer of the 

appropriate shape ring. Once constructed the data 

structure can be reorganised to arrange all the contents 

of the area ring to be on one page or on consecutive 

pages. In this case all the shapes on the given mask will 
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be on the same page but not shapes on another mask. 

However shapes on the given jiask that are in the next area 

are placed immediately after those for the first area and 

so will be on the same page or consecutive pages. This 

makes this particular system of implementing the area 

concept ideally suited for operations that involve one 

mask at a time and require consecutive areas. 

Modification immediately comes to mind in this context. 

It is not so well suited to operations that involve shapes 

on more than one mask in the same area as shapes on 

another mask will probably be on another page. 

The second option (fig 5.18) has the main definition 

bead modified so that instead of having the head pointer 

of the mask ring, contains the head pointer of the area 

ring. Each area bead contains the area number but instead 

of the head pointer of the shape ring, contains the head 

pointer of the mask ring. Each mask bead is the same as 

in the initial data structure, i.e. contains the mask 

number and the head pointer of the shape ring: the shapes 

on this ring however contain only shapes within the 

appropriate area. This arrangement is preferable for 

operations that involve shapes on more than one mask 

within a given area and plotting is the first operation to 

come to mind. This is because when the data structure is 

reorganised, the contents of an area are put on the same 

page or consecutive pages i.e. the mask beads and all the 

shapes. 
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The choice of which sytem to implement depends on 

which is more likely to be required , operations involving 

one mask and consecutive areas or those involving shapes 

on several masks in the same area. The user spends most 

of his time working on a window of the layout and only 

certain areas are required. These are by definition not 

always consecutive as can be seen in fig 5.19. 

33 34 35 36 3738 39 40 

32 31 30 r87i 26 25 
window 

1718 19i20121122'23  24 
areas examined 

	

16 15 14:13 12 11:10 	9 	 -• 

L --------- -- 

1 	2 	3 	4 	5 	6 	7 	8 

Fig 5.19 

The areas required for the window are 11, 12, 13, 20, 	21, 

22, 	27, 	28, 29 which are some consecutive areas and some 

nonconsecutive. There are many area beads between 

the consecutive triplets that are not required for the 

window and so on balance the second option is the one to 

choose. There is another reason that substantiates this 

choice and this is discussed in detail in Chapter 7 in 

section 4 when the organisation of the data structure on 

disc is discussed. It is shown there that in order to 

process unwanted area beads quickly, all area beads should 

be on the same page. The fewer area beads the easier it 
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is to reach this objective. 

The size of the grid that divides -the layout 	into 

areas can obviously be varied giving different area sizes. 

The size of the area can have an effect on the program 

performance and it is necessary to find the optimum size. 

The reason for the variation in performance with size can 

be understood by considering the extreme cases. If the 

area is too big then most areas will have to be processed 

regardless of the size of the window used. This is shown 

in fig 5.20 which shows the complete layout divided into 9 

areas, and shows a small window in the centre area. 

Shapes in the adjacent areas can extend into the centre 

area and hence into the window and so all 9 areas must be 

processed each time the contents of the window are plotted 

or modified. 

The other extreme is to have so small an area that 

all shapes extend beyond their adjacent areas and so are 

placed in area 0 which is reserved for the special shapes. 

The shapes in area 0 are processed regardless of the size 

of the window and so the same data is processed for every 

window. There is also another problem in that the smaller 

the area the more area beads are required. The larger the 

number of area beads the larger the number of mask beads 

that must b.e in the data structure. The programs handling 

the data structure have to check each area bead in turn to 

check if it possibly contains shapes within the window. 

(the reason for this is discussed in chapter- 7 section 5) 

There is therefore a large overhead in data structure size 
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and in CPU time to proce ss all these beads. The optimum 

size must therefore lie somewhere between these two 

extremes and a theoretical value for this optimum .size -  can 

be obtained by considering the problem from a different 

/ 

angle. 

Let us consider the size of window that will be used 

most frequently and the effect of that size on the size of 

the area beads. (Occasionally the' user requires an 

overview of a large *  portion of the layout to identify 

sections that require closer examination or to check the 

interconnecting metallisation. However, most of the time 

he will require much smaller windows that will enable him 

to visually check the distance between two shapes and 

enable him to position a shape so that it a given distance 

from another shape. This means that the users requires a 

resolution of one increment. To enable this resolution to 

be obtained on Tëkronix 4010 terminal this means a minimum 

of two scren units to one layout unit. The screen 

resolutio'n is ' 760 by 1024 screen units and as the right 

hand side of the screen is used for messages this gives an 

active window area of 700 by 700 screen units. The window 

size is therefore 350 by 350 layout increments. Let us 

now examine the effects of various area sizes on this 

window. 

If the area size is made the same as the window size 

i.e. 350 by 350 layout increments then the number of areas 

that have to be processed varies between 9 and 16 as can 

be seen in fig 5.21. Any smaller area size would require 
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more areas to be processed for example fig 5.22 shows an 

area size of 175 increments square and this requires 

between 16 and 25 areas to be processed for the window. 

It will obviously take longer to process the increased 

number of area beads and will mean more shapes in area 0. 

Any larger area size than the window will still 

require between 9 and 16 areas to be processed as can be 

seen in fig 5.22. .It is probable that the most commonly 

used window size will also contain a large number of 

shapes completely within the window: if many shapes 

extend beyond the window the user would use a larger 

window to see what is happening. It therefore appears to 

give a very strong argument for having the areas size 

exactly the same size as the most commonly used window and 

that window size is approximately 350 by 350 increments. 

Observing a colleague using the programs in anger to 

actually design an integrated circuit showed that his most 

frequenly used window was approx 250 by 250 increments 

which considering variations in human preferences showed a 

large measure of agreement. 

The programs were written to handle a range of area 

bead sizes and the same program and same data were 

compared for differing sizes The results are given in 

Chapter 8. 

The above discussion assumed that plotting was the 

most important process in layout design and this is not 

really the case. The user is reasonably patient when the 
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terminal is plotting out a window of his layout as he can 

check the layout as it is being plotted. However, when 

waiting for the computer to find the nearest point in the 

data structure to the cross hair cursor during 

modification there is very little that the user can do and 

so he requires a virtually instantaneous response. It is 

therefore clear that the modification process is the more 

important. The cross hair cursor can be positioned within 

two or three increments of the point to be identified and 

so it is only necessary to check the shapes that pass 

within two or three increments of the cross hair cursor 

position. In other words the effective window is 

extremely small. It could therefore be argued that the 

area size should be made equal to the smallest window size 

when we were discussing plotting and at first it would 

seem logical therefore to have the area equal to the small 

window required during modification. Unfortunately as 

explained earlier, the number of shapes that would extend 

beyond the adjacent area would be astronomic and so the 

area beads would be wasted. Also the overheads in terms 

of data structure size and CPU time to process all the 

area beads would be excessive. An area bead would be 

required for every part of the layout of say 10 increments 

by 10 increments. As the maximum size of circuit is 32000 

by 32000 increments this will mean 3200*3200 area beads 

i.e. approx. 10 million beads for a maximum size circuit. 

The situation is bad enough for an area size of say 320 by 

320 increments when a maximum of 10000 area beads would be 

required plus the appropriate mask beads. An area bead 
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requires Swords of storage and each mask bead requires 4 

words. Assuming therefore, that the MOS process to be 

used for the circuit, required 4 masks and that there is 

at least one shape in each area on each mask, then there 

is a requirement for 5+4*4 = 21 words per area and a total 

of approx. 210000 words of storage are required for the 

area and mask beads. 

From the above discussion it appears as if the area 

bead concept is a non starter because of the high storage 

requirements. However, there are several mitigating 

reasons why it is an extremely attractive concept. 

Area beads and the corresponding mask beads are not 

entered into the data structure until there are actually 

required. 

Most integrated circuit 	layouts 	use 	repeated 

components and grouped components and this reduces the 

number of area beads that are required. 

The integrated circuit comparator designed by the 

Wolfson unit is approx 180 thou by 180 thou and only 

requires a coordinate range of 1760 by 2200 increments 

i.e. nowhere near the full coordinate range. The largest 

layouts presently being designed are approx. 	250 thou - 

square and assuming the increment is unchanged, require 

2500 by 2500 increment (the maximum you will remember is 

32000 by 32000). Photographic and semiconductor processing 

will doubtlessly improve so that finer geometry lines will 

be used. 	Assuming the increment size is halved in the 

future and the size of the layout increase to 350 thou_ 
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square, even then the coordinate range is only 7000 by 

7000 increments. 

The improvement in times to plot and modify windows 

due to the reduction in disc reads as discussed in Chapter 

8 are extremely important for an efficient design system. 

As circuits get bigger the time taken to process the 

whole of the data for each mask will increase and will 

therefore increase the need for a method of reducing the 

ammount of data processed. 

There are the savings in plotting time .due to. the 

area beads as discussed earlier fn this chapter. 

There are tremendous advantages to be gained from the 

area bead concept when it comes to checking the layout 

design which will be discussed in Chapter 9. 

Finally the increase in data structure size is 

nowhere near as large as expected for a typical layout. 

The layout shown in fig 8.24 required 40 pages with only 

47 words on the last page for the initial data structure 

i.e. without area beads a total of 19859 words while the 

data structure with area beads for areas of 512 by 512 

increments required 41 pages with 217 words on the last 

page giving a total of 20537 words. This is an increase 

of approx. 3 percent, which is a small price to pay for 

the advantages described above. 
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5.5 	PAGING THE DATA STRUCTURE 

THE GAELIC dat. a structure is so large that it cannot 

be held entirely In the core memory of the computer and 

consequently has to be held on disc. The structure is 

divided into a number of parts known as pages, each page 

containing an equal number of words (at present 508). In 

order to interact with the data structure, copies of 

certain pages are held in core and information is-  

transferred to and from the data structure via these core 

pages. In other words, if information is to be read from 

a particular location in the data structure, then a copy 

of the page containing the location is read into core from 

disc and the contents of the location read from core. 

Similarly if information is to be written to a given 

location, then again the page containing that location is 

read into core and the data written to it and at some time 

in the future a copy of the updated page is written back 

to the disc. . 

The process of reading pages to core and writing 

pages back to disc is known as 'paging' and the main 

problem that any 'paging' algorithm has to solve is how to 

arrange which pages are to be in core at any one time and 

which pages should be written back to disc to make room 

for the next page. 

The simplest algorithm to do this uses the following 

strata g y: 

1) read in a copy of a page containing the location 
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to be changed or examined, 

change or examine the location and then 

immediately write a copy of the page back to disc. 

This stratagy has the advantage of only requiring space 

for a single page to be held in core but has the distinct 

disadvantage that there are many unnecessary disc reads 

and writes. 	For example, 	if data is to be read from 4 

consecutive locations on the same page, this simple 

stratagy dictates that the same page must be consecutively 

read in four times and written out four times. 

There are certain modifications that can be made to 

this simple algorithm that will improve its performance: 

it is worth checking if the contents of a location 

are only examined and not changed. In which case there is 

no need to write the page back to disc. 

it is also worth checking whether the next 

location to be examined or modified is on the same page as 

the previous location. 	In this case there is no need 	to 

read in the same page from disc again. 

However, if the pages containing locations 	are 

continually alternating, then there is still a large 

number of disc reads and it is worth considering a more 

complex system involving more than one page in core. 

A more complex system of this type reduces the number_. 

of disc reads and writes because of the higher probability 

that the required page will be in core. However, it does 

raise the problem of what action must be taken if the 
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required page is not in core. Obviously one of the pages 

in core must be copied back to disc if it has been 

modified and then the required page copied from disc 

overwriting the previous core page. The problem is 

deciding which page to overwrite. The simplest system is 

to use a first in, first out algorithm known alternatively 

as FIFO or Round Robin. An alternative system that is 

often used is to count the number of times each page in 

core is accessed and then overwrite the least used page. 

This is known as a Frequency algorithm and was at one time 

considered for GAELIC. It was rejected because it was riot 

efficient for the particular way that the layout 

description was arranged on the disc. The area beads for 

a layout are placed at the start of the data structure and 

for a medium size layout may well be all on page 1. The 

mask and shape beads for area Oare then written next 

followed by the mask and shape beads for area 1 etc. Let 

us assume they are on pages 2-4 and 5-6 respectively. 

When plotting out a window of the layout for say mask 1, 

each area bead in turn must be examined to see if shapes 

associated with that particular area could lie within the. 

window. When this is the case then the mask ring must be 

examined for the appropriate mask bead and the shapes on 

the shape ring examined in turn and plotted if necessary. 

The page containing the area beads i.e. page 1 is accessed 

to establish whether the shapes within an area could be in 

the required window and if so the page . is not accessed 

again until all the shapes on the required mask have been 

processed. The processing of the shapes can require a 
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given page to be accessed many times in rapid succession, 

for example page 2, followed by page 3, followed by page 

4, and only when all the shapes within the area have been 

processed does the program return to investigate the next 

area bead in the first page. Using a 'frequency' 

algorithm the first page would probably have been swapped 

Out because it had not been accessed for so long and would 

have to have been brought back to cote. The pages 

containing the shapes would remain in core for a long time 

as they had been accessed so many times but may not be 

required again as the shapes for the next area, i.e. area 

1, may be on different pages i.e. pages 5 and 6. To avoid 

this problem a more complicated 'algorithm would be 

required and it was felt that the time spent computing 

which page to change would be prohibitive. The simple 

Round Robin system was therefore implemented in which the 

pages in core were written out in turn. 

The Round Robin system could possibly overwrite the 

area bead page just before it was required and it.appeared 

worth considering a more complex system to avoid this. 

The system consisted of two round robins superimposed on 

each other. This was implemented in a special version of 

GAEL4A and compared with the simple round robin. The 

method was as follows, each call in the program to the 

routines that examine or modify the data structure was 

given an extra parameter which indicated whether it was 

concerned with either the area beads or the masks and 

shapes. If the routine call contained a parameter value 
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from a shape setting then the routine would also only 

overwrite pages that were in the part of core reserved for 

the pages containing shape information. If on the other 

hand the call had the parameter setting for areas then 

only pages containing area information would be 

overwritten. Whenever a location was required then all 

the core pages were checked to see if they contained the 

appropriate disc page regardless of whether the particular 

core page was called in for area information or shape 

information, and so the pages are not restricted to having 

area information only or shape information only. [The 

results given in Chapter 8 show that it had no appreciable 

reduction in the number of disc reads and in fact used 

more CPU Time] 

Another interesting facit in the handling of the data 

structure is the method of checking whether a copy of the 

required page is in core or not. Two different methods 

are in use in different programs of the suite. The 

methods rely on keeping either a list of the contents of 

each core page or a list of where each disc page is 

situated i.e. in core but not written to, in core and 

written to or not in core. 

The first method requires a one dimensional array of 

length equal to the number of pages in core i.e. if there 

is room for 5 pages in core then the array is 5 words 

long. The array contains the number of disc page that is 

in the corresponding core page i.e. the first word in the 

array is the number of the disc page that is held in the 
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first core page etc. The number is negated if the page 

has been written to. When a given disc page is to be 

examined or modified, each word of the array is examined 

in turn to see if the corresponding core page contains the 

required disc page, and if not arranges for one of the 

core pages to he overwritten. 

The second method requires an array of length equal 

to the number of posible pages that can be held on disc 

i.e. a much larger array. The number stored in each 

element indicates whether there is a copy of that page in 

core and which core page it occupies and whether it hs 

been modified since it was brought into core. Each time a 

specific page is required only the one element in the 

array need he examined. The second method is, therefore, 

a faster system as it requires only one array access 

rather than the possibility of 5 array access where 5 is 

the number of pages in core. However the second method 

does require a larger array and the original versions of 

the program working on the Systemshare time sharing 

service were severely restricted on the core available for 

the program and the first method with the smaller array 

had to be used. The restriction was so severe that 

certain of the programs used all the available core except 

for one or two words. 

More core was available on the Dec system 10 and a 

special version of the second algorithm was written by Dr. 

W.D.Hay in Macro 10 where use was made of the 

sophisticated indirect addressing features of the machine 
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code to automatically write out and call in the required 

disc page. 
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CHAPTER 6: Graphic Output and Input 

The main forte of the GAELIC system is the ability to 

interactively modify a layout design. The ease with which 

this can be done depends to a large extent on the choice 

of data structure and this choice was described in 

Chapters 4 and 5. To a lesser extent, it also depends on 

the choice of hardware used for the graphical output and 

input. In addition the choice of the hardware has a 

distinct effect on the cost of the overall system. The 

various options that were considered are discussed in this 

chapter. 

6.1 Graphical Output Devices 

The types of device capable of producing graphical 

output vary from a sophisticated refreshed cathode ray 

tube terminal through to a simple X-Y recorder. Each type 

has its own advantages and disadvantages and these will be 

discussed below. 

6.1.1 Refreshed CRT Graphic Terminals 

This is without doubt the most well known graphics 

terminal in use and is the one that immediately springs to 

mind when the term 'interactive graphics' is muted. 

Essentially it consists of a hig h quality CRT tube with 

the necessary Dto A converters, video amplifiers and 

drivers to convert the digital signals into either 
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movements of the electron beam or into various beam 

intensity levels. Usually it also has a display processor 

which takes instructions stored as bit pattern in the 

computer memory and converts them into the necessary input 

signals. This set of instructions is referred to as a 

'display file'. Although the cathode ray tube has a 

relatively high persistence phosphor on its screen it is. 

essential to refresh the picture approximately 50 times 

per second. The actual speed at which the picture can be 

redrawn or 'refreshed' depends on two factors: firstly 

the speed of the electronics, how quickly data in core can 

be converted into movements of the electron beam and 

secondly the size of the display file i.e. how much data 

there is to be displayed. If the electronics are too slow 

or there is too much data, then the picture cannot be 

redrawn quickly enough to give the impression of a 

continuous picture and a phenomenon known as 'flicker' 	is 

observed. 	This is when the drawing appears to flash on 

and off. This flicker is generally extremely disturbing 

to the user causing him to become tired and to lose 

concentration. The 'speed' of a refreshed graphics 

terminal is defined as the number of characters or the 

number of vector inches that can be displayed without 

appreciable flicker and typical values are 2000 characters 

or 3000 vector inches. 

There are several ways of producing a picture on the 

screen, the best known is probably the raster scan which 

is used in television sets but in general is too slow for 
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many applications as the complete screen must be scanned 

regardless of how much of the screen is dark. Also 

complex scan conversion equipment is required to convert 

the data into a raster. The more usual method is to use a 

steered beam or. vector generator when the only dark lines 

or vectors that are drawn re those between the light 

vectors. Thus the minimum amount of beam movement is is 

required to produce the picture. 

The main advantage of the refreshed graphics CRT is 

the ease of interaction. It is comparatively easy to note 

the position in the display file when a shape is detected 

by a light pen (The light pen and its use will be 

described in detail later in this chapter) . A shape or 

series of shapes can be moved across the screen 

dynamically so that the shapes follow the cursor or 

tracking cross. The tracking cross may be attached to the 

top right hand corner of the shapes but the positioning of 

the bottom left hand corner may be critical. With a 

refreshed graphics CRT the bottom left hand corner will 

always be on display at all the intermediate positions and 

so can be continuously moved until its correct position is 

reached when it can be fixed. This dynamic movement of 

shapes is not possible on other graphic output systems. 

The main disadvantage of the refreshed CRT is the 

cost of the hardware which is typically of the order of 

10,000 pounds (cheaper systems costing 5-6000 pounds are 

just starting to appear on the market). There are 

additional disadvantages when using a refreshed CRT for 
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integrated circuit layout because the display file is so 

large that an extremely large memory is required in the 

host computer to drive the terminal. Admittedly the full 

layout of an integrated circuit is not often displayed as 

even with the largest refreshed CRT, available, the 

resulting picture is at too small a scale for interaction. 

Nevertheless, it is occasionally required to identify 

areas of the layout that require attention. Usually a 

small area of the layout or window is drawn on the screen 

requiring only a small display file but of course, as soon 

as the window is changed a new display file is required. 

The time taken to produce this new file can be significant 

and the user has either a blank screen or a jumbled 

mixture of old and new pictures during that period. 

Certain modern CRT terminals, for example the Vector 

General 21)3 do have hardware windowing which allows only 

part of the display file to be plotted on the screen. 

This hardware windowing does allev.ate the problem to an 

extent as often the data for the next window is in the 

display file but there will obviously be times when that 

is not the case and so the file must be recreated. 

The refreshed graphics terminal cannot be used on its 

own with a time sharing computer because of the necessity 

to continuously refresh the picture. Even with the. 

highest transmission speeds used in time sharing computer 

systems, the amount of data required to redraw a picture 

thirty times a second is prohibitive. There is also.the 

additional problem that the user will have his job swapped 
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in and out of core at intervals giving pauses when 

redrawing the picture. The only way refreshed graphic 

terminals can be used is to use a satellite computer as is 

done on the J)ecsystem-10 at Edinburgh University [ref 6.11 

and the system at the CAD centre at Cambridge [ref 6.21 

The satellite is faced with similar problems to a 

dedicated computer in that it must be able to hold the 

complete display file in core and must be possible to 

redraw the picture at least 30 times per second. This 

means-that the satellite must be fast and have a large 

memory and is therefore getting very near to the 

specification of a stand alone computer system. 

There are some minor advantages of the refreshed 

graphic terminal: 

the line texture i.e. 	intensity and/or mark space 

ratio can be varied, 

a shape can be flashed to indicate that it has been 

identified and 

it is also possible to delete or selectively erase 

components without recreating the display file. 

6.1.2 Storage C.R.T. Terminal 

The main feature of this type of terminal is the 

storage cathode ray tube. This is similar in many ways to 

the conventional CRT but has an extra layer of a special 

proprietry material on the screen in addition to the 

conventional phosphor. Each individual molecule of this 

material can exist in one of two stable 'states: the first 
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will radiate light when exposed to low velocity electrons 

and the second will not. To provide a source of these 

electrons ihere is a flood gun assembly in addition to the 

standard assembly which 'floods' the whole of the screen 

with low velocity electrons. The material can be changed 

to the emitting state by means of the conventional-

electron beam and as the low velocity electrons are always 

present the parts of the material changed by this electron 

beam will immediately emit light and will hence store the 

picture. The material can only be returned to the non 

emitting state by a flash of high velocity electrons all 

over the screen. There is no mechanism for selective 

erasure of parts of the screen and so individual deletions 

are not possible. The picture can be built slowly and 

there can be pauses as the picture is built up and so it 

is an ideal terminal for direct connection to a - 

time-sharing service. 	It does have the disadvantage that 

the interaction is slightly restricted. It is not 

possible to tow a shape or series of shapes across the 

screen as they will leave an permanent image at each 

position they are drawn. The new Tektronix 4014 Terminal 

which is just coming into production does have a 'write 

through mode' which will allow for non storing pictures 

but this will require a fast uninterupted data rate from 

the computer to allow the shape or shapes to be drawn 

instantaneously. 

6.1.3 Incremental Plotters 
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These produce permanent drawings usually in ink on 

paper. The paper is fed from a roll over a drum which is 

controlled by a stepping motor. Over the top of the drum 

is a gantry containing a tool holder which can be moved up 

and down the axis of the drum by means of a second 

stepping motor. The'-tool holder normally contains a pen 

but can contain a knife or scriber. In effect therefore 

the pen can be moved in X and Y direction across the 

paper. There is also a solenoid built into the tool 

holder which lifts or lowers the pen to the paper. There 

is a small amount of logic associated with the plotter 

which converts the characters sent to the plotter into 

actual stepson the stepping motors or lifts and lowers 

the pen. 

Because of the characteristics of the 	stepping 

motors, the incremental plotter although more accurate 

than the both cathode ray tube terminals is an order of 

magnitude slower. It can, however, produce large 

reasonably accurate drawings with different colours and 

different line thicknesses to distinguish between parts. 

This is a permanent hard copy that a designer or engineer 

can take away and study at leisure. It can be connected 

to a time—sharing service either as a common shared 

peripheral like the card reader or magnetic tape unit or 

by using a special controller via the time sharing 

teletype inputs. 
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The direct connection to the computer means that 

interaction with the drawing is impossible. A hard copy 

drawing can be produced and that is all. However by using 

the special hardware controller a restricted amount of 

interaction is possible. A drawing can be produced and 

the pen can be moved to a point on a shape in the drawing 

requiring modifiction. This cannot be done by moving the 

tool holder by hand as there is no way the plotter can 

send the new coordinates to the computer. Therefore the 

user must enter the necessary dat into the computer and 

the computer must move the tool holder. This produces a 

'chicken and egg' problem as the user has to type in the 

coordinates to which the tool holder is to be moved, in 

order for the program to identify the coordinates of the 

nearest points in the data structure to the tool holder. 

It is possible to enter incremental moves which does make 

it possible to move the pen to the correct place without 

having to calculate the absolute coordinates and this 

method of interaction although slow is feasible. 

6.1.4 Tape Controlled Coordinatographs 

Tape Controlled Coordinatographs are similar 	to 

incremental plotters in that they are capable of producing 

large hard copy drawings. The paper, however, is fixed to 

a large flat table and is capable of producing larger more 

accurate drawings.. The tool holder is again held on a 

gantry and is normally controlled by a stepping motor 

though certain models do use other techniques. The gantry 
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usually moves across the table or the table moves under 

the gantry. The table size is usually of the order of 4 

feet by 3 feet though very large tables are available. 

The accuracy is usually of the order of 1 thou with 

repeatability of 0.5 thou. There is always a requirement 

for hardware to read the data from the input tape and 

convert it into pulses to the stepping motors or 

instructions to lift and lower the tool. The main 

differences apart from the size and accuracy of the 

drawing is the ability to take other tools such as a 

scriber knife or photographic projector. The latter two 

require extra facilities from the hardware in that extra 

information must be read from the tape that controls the 

angle of the knife or controls which apperture is used on 

the photographic projector. In order to reduce the amount 

of data on the type or to make the data on the tape 

readable th.e hardware can consist of a small computer. 

The tape controlled coordinatograph is not usually 

thought of as a graphics output terminal but is capable of 

producing hard copy drawings just as the incremental - 

plotter. 	Its more usual use in integrated circuit 

production is for producing mask masters but a mask making 

system with a tape controlled coordinatograph would not 

require an incremental plotter. The main advantage of the 

tape 	controlled coordinatograph is the accuracy and 
	
-- 

repeatability of the drawing, cutting or photo exposing. 

It is, however, expensive (between 20 - 80,000 pounds) and 

slow. 
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6.2 Graphic Input Devices 

Any graphic input device must fulfill the two basic 

functions of identifying an object already displayed on 

the output device' and pointing to a specific position. 

These are completely separate functions and are often 

refered to as 'picking' and 'pointing'. Some input devices 

are ideal for picking but difficult for pointing while the 

reverse istrue for others. 

6.2.1 Light Pen 

The light pen is without doubt the most common 

graphic input device. It is a hand held light detector 

with a limited field of view which is usually pen shaped 

and is connected to the computer by means of an electronic 

cable. It usually contains a shutter with which the user 

may control whether light enters the pen or not. The 

'pen' can be pointed at the screen and when it sees light, 

a signal or interrupt is sent to the computer and the 

process of plotting is interrupted. It 'will be evident 

that if the computer has already finished plotting when 

the light pen is pointed at the screen then there will be 

no int erupt generated. Consequently, the light pen will 

not operate on a storage tube except during the actual 

plotting time. This effectively prohibits the use of a 

light pen on a storage tube as it is too slow and too 

inconvenient to replot every time an object is to be 

identified. The light pen is is therefore restricted to 

refreshed graphic systems. The displayfile is modified 
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slightly to contain an identification, of each object 

displayed and as the display file is processed the 

identification of the present object is stored in a buffer 

or accumulator and is updated as each new object is 

processed. When an interrupt is generated by the light 

pen, the identification of the object being processed can 

be retrieved and the data describing the object itself 

which is stored in the main data structure can be 

modified. It is therefore an excellent method for 

'picking' on a refreshed graphic system as it requires 

very little modification of the normal plotting facility 

and is extremely fast. Its main disadvantage is the 

increase in size of the display file required to store the 

identification of each object. 

The light pen cannot, however, be used on its own for 

'pointing' as an interrupt cannot be generated unless 

light is detected and in general there will be no light 

emanating from the point where a new object is to be 

inserted. The usual way of solving this 'pointing' is to 

use a tracking cross which is described in the next 

section. 

There are ergonomic problems when using the light 

pen. The pen must be held in the hand and moved across 

the screen to the designed position. To avoid the 

possibility of detecting the wrong object, the pen must be 

held perpendicular to the screen and this results in, the 

picture being probably obscured by the pen and the users 

hand. The pen is also held at an unnatural position 
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similar to writing on a wall and this can be very tiring 

if used for long periods. 

6.2.2 Tracking Cross 

This is usually a small cross.that is displayed on 

the cathode ray tube which can be moved round the screen 

by a light pen, tiacker ball, joystick etc. It can be 

used for both 'picking' or 'pointing'. It can also take 

the form of a crosshair cursor consisting of a pair of 

fine lines, one going from side to side of the screen and 

the other from top to bottom. They are normally found on 

refreshed tube terminals and on storage tube terminals but 

on the latter they have to be specially designed so that 

they are non-storing i.e. the beam intensity must be so 

low that it cannot change the extra layer on to the back 

of the storage tube screen. 

When used with a light pen moving the cross is 

difficult.. The light from the tracking cross mist be 

detected and the fact that the pen is not central to the 

cross noted and the cross then repositioned. If the 

tracking cross and field of vi ew of the pen are as shown 

in fig 6.2.1. 
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ctd of view of Light pen 

Fig 6.2.1 Detecting the Tracking Cross 

The basic way of ensuring that the tracking cross follows 

the light pen is to reposition the cross at (xl+x2)/2, 

(yl±y2)/2. 	This simple scheme and more sophisticated 

interruption schemes that include the distance moved since 

the last interrupt all have problems with losing tracking 

e.g. the light pen has been moved so quickly that it does 

not detect any light from the tracking cross during a 

replot of the drawing. This means another mechanism must 

be used to find the position of the tracking cross. 	Two 

such 	mechanisms consist of spiral or raster search 

patterns such as those shown in figs 6.2..2 and 6.2.3. 

- - 	- Lost position of 

- track jncj cross 

/ 
prcsnt position of tracking cross 

Fig 6.2.2 Spiral Search Pattern 
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present position of tight pen 	 previous position of tight 
pen and tracking cross 

Fig 6.2.3 Raster Scan Search Pattern 

This tracking of the cross inflicts a heavy overhead 

on the picture processing especially the spiral searching 

and it is common to loose the picture instantaneously as 

the controller relinquishes its refreshing duty to control 

the tracking. cross. 

The position of a tracking cross can be controlled by 

other input devices in addition to the light pen for 

example a tracker ball, joystick, a pair of thumb wheel 

potentiometers or a tablet. In these cases, the position 

of the cross is directly related to the x and y coordinate 

positions given by the ball etc. There are none of the 

problems of loosing 'tracking' and so the system using a 

tracking cross this way are pleasanter to use than systems 

using a light pen. There are, however, problems with 

these 	systems 	when 	it comes to 'picking' as the 

beautifully simple system involving light pen 'hits' 	is 

not available. 	The data structuremust be searched for 

the object with the nearest coordinates to the coordinates 

of the tracking cross. Theoretically this data structure 

search could be through the display file with the same 

object indications as when using a light pen but usually 
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it consists of searching the main data structure. 	This 

can obviously be a time consuming operation and one of the 

novel features of the GAELIC system is the way in which 

this search time is reduced. The various methods of 

controlling the tracking cross will now be d-iscussed in 

more detail. 

6.2.3 Tracker Ball 

This is a ball approx 3 inches in diameter which is 

recessed into a horizontal surface or table so that only 

approx the top third can be contacted. The ball can be 

turned by hand and the rotation in x and y direction is 

detected by optical shift encoders or potentiometers and 

translated into the x and y coordinates of a tracking 

cross. 	It is usually arranged so that several revolutions 

of the ball are required to move the cross from one side * 

of the screen to the other. This makes the tracker ball 

an extremely accurate method of positioning the cross 

compared wth say the light pen but it does mean that 

moving the cross over large d.istances can be relatively 

slow. The ball can, however, be released and the cross 

will stay in the same position. 

6.2.4 Joystick 

The joystick as the name implies is functionally 

similar to an aircraft joystick, in that the movement of 

the stick in any direction is converted to movement of 

some other object in the same direction. In our case 
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movement, of the stick forward causes the tracking cross to 

move up the screen. It is not quite as accurate as the 

tracker ball but is much quicker to use, as a much shorter 

movement of the stick is required' to move the cross from 

one side to another. It is not always possible to release 

the stick and leave the tracking cross in position. 

6.2.5 Thumb Wheel Potentiometers 

There are usually two potentiometers, one controlling 

the x coordinate and one controlling the y coordinate of 

the tracking cross. The potentiometers may be single turn 

or multi turn: the former is capable of moving the cross 

faster but less accurately than the later. The system is 

ideal when all the movement required is in either the x 

direction only or the y direction only but are not as 

convenient when movement at an angle is required. Like 

the tracker ball, the potentiometers can be released 

without moving the tracking cross making any interactive 

graphics system ergonomically easy to use. 

6.2.6 Tablet 

This consists of a flat-surface usually of the order 

of 12 inches square which has a grid of fine wires 

embedded in its surface and a scriber or pen that is 

capable of emitting signals. These signals are detected 

by the grid and the accurate x-y position computed. This 

system is ergonomically excellent as the user is virtually 

using what hehas been trained to use since childhood, a 
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pen and paper. 	The pen can be quickly moved from one 

corner of the screen to another and so a menu of useful 

commands can be put on the tablet and pointed to when 

required i.e. 'menu picking'. 

6.2.7 Digitiser 

The digitiser is virtually the s a m c as a tablet 

except that the working surface is bigger and that the 

coordinate position is only sent to the computer when a 

button is pressed. The working surface is usually about 3 

feet long by 4 feet and can be at an angle or flat. It is 

extremely useful for extracting dimensional information 

from a scale drawing but is expensive as a graphical input 

device. 

6.2.8 Other input devices. 

There are other possible graphic input 	devices 

capable of driving a tracking cross or cursor. Probably 

the most well know, although not necessarily as an input 

device is the teletype when the user can type in the 

coordinate required. This sounds at first like a chicken 

and egg problem - to move the cursor it is necessary to 

type in the coordinates of the point to be identified and 

the point is being identified in order to find its 

coordinates. However, by using incremental coordinates, 

it is a possible system albeit slow and has been used to 

control the tool holder on a CALCOMP plotter. 
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Another system that was originally used on the ARDS 

storage tube terminal is called a 'MOUSE', this is a 

device that is moved over a flat smooth surface to 

indicate x or y coordintes. Underneath are two wheels at 

right angles, both are connected, to shaft encoders or 

potentiometers, one indicating the x and the' other 

indicating the y coordinates. 

Other systems that are being developed are touch 

sensitive screens and ultrasonic transduces but these are 

not yet in production. 

6.3 Tektronix 4010 Series Terminal 

The decision to base the interactive part of the 

GAELIC suite of programs on the Tektronix 4010 terminal 

was due to the requirement of a minimum capital cost 

system. 

The Tektronix 4010 series terminal consists of a 

storage cathode ray tube mounted on a stand, with a 

keyboard and two thumb wheel potentiometers. The stand 

contains 	all 	the 	control logic and the necessary 

interfaces to connect the terminal to the computer. The 

basic 4010 terminal has a screen size of approximately 8" 

by 6" and costs approx. 2500 pounds with the necessary 

interface to connect it to the computer in place, of a 

standard Teletype. 
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The terminal can work in either alphanumeric mode 

when it will print lines of alphanumiç characters and the 

graphic mode where it will draw vectors on the screen. 

There is also a graphic input mode when anon-storing 

cross hair cursor is displayed on the screen which enable 

existing items, i.e. text or, vector to be identified and 

also allows the position of addition text or vectors to be 

indicated. 

The alphanumic characters are produced by means of a 

hardware character generator employing read only memories. 

Once in alphanumeric mode, the codes or bit patterns for 

the characters are sent down the line to the terminal. 

The codes for carriage return and line feed do exactly as 

expected by ensuring the next character appears at the 

left hand edge of the screen or on the next line below 

respectively. 	Most other non printing characters are 

ignored: the main exception being the character usually 

known as 'CS' the receipt of which converts the terminal 

into graphics mOde. Subsequent characters sent down the 

line are converted into vectors, the first vector after 

the 'GS' always being a 'dark' or hidden vector. 	Usually 

four characters are required to specify a vector and they 

are known as high y, low y, high x, low x characters. 

There are 1024 by 1024 addressable points on the screen 

with 1024 x 780 actually viewable i.e. it is possible to 

address points off the screen in the y direction. Vectors 

are drawn from the present beam position to the position 

defined by the four characters. 	The. screen is divided 
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into a coarse grids of 32 addressable points in each 

direction; 	the high 'y and high x characters select the 

position on these coarse grids. Each coarse grid 

increment is divided into a fine grid of 32 points and the 

low y and low x characters then select the incremental 

moves on this fine grid to give the final absolute 

position. The number range for each character is 

therefore 0-31 oaly and so for the standard byte (8 bit) 

characters, there are 2 redundant bits plus the parity 

bit. These redundent bits are used to define which of the 

characters are being transmitted and so the various bit 

patterns are shown in fig 6.3.1. 

Bits 7 6 	5 	4 	3 	2 	1 

Low X 1 0 	? 	 ? 	 7 	? 	 ? Byte 	4 

High X 0 1 	? 	 ? 	 ? 	 7 	? Byte 3 

Low Y 1 1 	? 	 ? 	 ? 	 ? 	 ? Byte 2 

High Y 0 1 	? 	 ? 	 ? 	 7 	? Byte 	1 

Identification Bits 

Bit patterns transmitted to terminal 

to draw line 

Fig 6.3.1 
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The identification bits • allow for less than 	4 

characters to he sent under certain circumstances. The 

low x character must always be sent as this character is 

used to initiate the drawing of the vector. However, if 

the high y or high x character is not change.d from the 

previous vector, then the character need not be sent. If 

the low y character is not changed then it need not be 

sent unless the high y is changed and th:i because there 

is no difference between the identification for the high x 

and high y bits the low y bit must be sent. The minimum 

number of characters that must be sent is therefore one, 

the low x character. This reduction on the number of 

characters is extremely important when connecting the 

terminal to the computer by means of a low speed line. 

Certain pairs of characters when sent to the terminal 

have special effects, 	the most important is the 

pair which convert the terminal into graphic input mode. 

In this mode a non storing cross hair cursor is displayed, 

the x position of the vertical line is controlled by one 

thumb wheel potentiometer and the y position of the 

horizontal line controlled by another. 	The non-storing 

feature is obtained by rapidly switching on and off the 

beam. The cursor can be therefore moved to any position 

on the screen and one of the keys pressed, the terminal 

then transmits the character requested by the key, plus 4 

characters that represent the coordinates of the cursor, 

followed by carriage return and or the end of tape 

character (EOT). The characters use the same method of 
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denoting coordinates i.e. high x, low x, high y, low y but 

all four characters have the same identification bits set. 

Other pairs of characters clear the screen and 

arrange the next alphanumeric characters to be written at 

the top left corner of the screen. 

There are two larger versions of the Tektronix 

terminal now available and these are known as the 4014 and 

4015. Here the screen size is 15 inches by 11 inches and 

has a resolution of 4096 by 3120 increments. To address 

this in full an additional characters is sent to the 

terminal. 	The terminal also has additional facilities 

such as 'write through' 	or non storing mode and the 

capability of producing dashed lines by hardware. This 

terminal would give considerable increase in performance 

but unfortunately costs approximately 4,500 pounds. 

The Tektronix 4010 series can be connected to a 

computer using a teletype driver interface with the clock 

rate increased from 110 baud to 9.6k baud, and so can be 

easily connected to most computers whether stand alone or 

time sharing. 

The choice of the Tektronix terminal and Fortran as a 

programming language means that the software can quickly 

be implemented into different existing computers and thus 

provides an inexpensive method of obtaining a design 

system. 
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6.4 Graphics Software 

This section is devoted to the basic 	software 

required to drive the Tektronix 4010 series of storage 

tube terminals. It will be remembered that there are 

three modes of operation - of the terminal: alphanumeric, 

graphics output and graphics input and any basic software 

system must cater ior all three. 

When used in alphanumeric mode, the 'terminal behaves 

in virtually the same way as the ASR33 Teletype in that it 

receives the bit pattern for the various ASCii printing 

characters plus carriage return <CR> and line feed<LF> 

and displays the characters on the screen or moves to the 

beginning of the line or next line. The terminal also 

transmits the bit patterns, corresponding to the keys 

pressed, to the computer. If the Tektronix is connected 

to the computer via a standard Teletype interface, then no 

special software is required to drive the terminal in 

alphanumeric mode. 

In graphics output mode, however, the terminal must 

obviously behave in a different way in order to draw the 

vectors. 	In this mode each character transmitted is 

interpreted by the terminal as part of the description of 

a vector. There are two main types of vector that are 

required in any graphics system: the dark vector where an --

invisible line is drawn from the present beam position to 

a new specified position and a light vector where a 

visible line is drawn. The light vector can be subdivided 
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into vectors of differing intensity or into dotted or 

dashed vectors. The storage tube terminals cannot display 

vectors of differing intensities because of the 

fundamental characteristics of the storage tube and so 

there is no need to cater for them. The Tektronix 4010 

and 4012 terminals do not have any hardware facilities for 

producing dotted and dashed vectors and so these can only 

be obtained by drawing alternate light and dark component 

vectors. The 4014 and 4015 terminals do have hardware 

facilities for dotted and dashed vectors and the type of 

light vector to be drawn is set by transmitting a special 

character to the terminal. The Tektronix terminals 

distinguish between the light and dark vectors in an 

unusual way by arranging that the hardware treats the 

first vector after turning the terminal into graphics mode 

as a dark vector and treats all other vectors as bright. 

The terminal is turned into graphics mode on receipt of 

the character usually known as 'GS'. This method of 

defining whether a vector is bright or dark appears at 

first to be extremely restrictive until it is realised 

that: 

most shapes to be drawn are made up of a 

consecutive series of bright vectors preceeded by a dark 

vector e.g. when drawing a rectangle, a dark vector is 

drawn to the one corner and then four consecutive bright 

vectors, one for each side, and 

another dark vector can be specified by sending 

another 'GS' although the terminal is already in graphics 

mode. Vectors are always drawn from the present beam 
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position which is at the end of the previous vector or at 

the position for the next character to be printed. 

The end of the vector is specified by sending four 

characters to the terminal, two of these characters 

specify the absolute screen coordinates in terms of a 

coarse grid. The other two characters specify the 

incremental coordinates from the coarse grid position. 

The coarse grid is every 32 increments and as the 

addressable range is 0-1023 increments in the x and y 

direction, the lnaximum,range for the coarse grid is 0-31. 

i.e. 5 bits. The two coordinates specifying the coarse 

grid position are known as the high x and high y 

coordinates; the coordinates specifying the incremental 

position from the coarse grid are known as low x and low y 

coordinates and again are in the range 0-31. Only 5 bits 

are required to specify the value and so with the 7 bit 

characters used there are two bits available to identify 

the character i.e. high x, low y etc. The actual bits 

that are sent for each character are shown in fig 6.4.1. 
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Bits 	 7 6 5 4 3 2 1 

Low X 	 1 0 ? ? ? ? ? 	Byte 4 

High X 	 0 1 ? ? ? ? ? 	Byte 3 

Low Y 	 1 1 ? ? ? ? ? 	Byte 2 

High Y 	 0 1 7 ? ? ? ? 	Byte 1 

Identification Bits 

Bit patterns transmitted to terminal 

to draw line 

Fig 6.4.1 

It will be noticed that the identification bits for 

the high x and high y coordinates are the same. The order 

of transmission of these characters must be high y, low y, 

high x and finally low x coordinates and it is the receipt 

of the low x coordinate that initiates the actual vector 

drawing process. 

The setting of the identification bits allows the 

characters sent to switch the terminal into another mode 

to be detected and also allows one or more characters to 

be omitted under certain circumstances when specifying 

vectors. For example, as the low y coordinate can be 

uniquely identified then if the high y coordinate is not 

changed for the vector then it may be omitted. Similarly 

the high x coordinate may be omitted if it has not changed 
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as the low x coordinate can be uniquely identified. 

However, the low y coordinate cannot be omitted if either 

a high x or high y coordinate has to be sent as they both 

have the same identification bit settings. The minimum 

number of coordinates that need to be transmitted is one 

and that is the low x coordinate. This is the character 

that initiates the drawing process and so must always be 

sent even if none of the coordinates have been changed. 

This situation does occur when plotting points on the 

screen. To enable the terminal to draw vectors as fast as 

possible at low data transmission speeds, the basic 

software must send the minimum number of characters for 

each vector. 

At high data rates i.e. in excess of 4.8K baud, 	the 

minimum number of characters will cause trouble when the 

terminal is connected via a teletype interface. This is 

caused by the time required to draw a vector. On receipt 

of the low x coordinate, the terminal takes 2.6 mSec to 

set up the D to A convertors and to draw the vector, most 

of the time being spent setting up the convertors. at 

9.6K Baud, a character is received approximately every 1.5 

mSec i.e. at least two characters can be received while---

the previous vector is being drawn. Therefore any vectors 

requiring two characters or less i.e. vectors requiring 

low y and low x, high x and low x or just low x will be 

initiated before the previous vector has been completed. 

The result of this is to change the D to A convertors as 

the vector is being drawn which will give curved vectors 
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on the screen at apparent random spacing. 	If the software 

is to be used at varying data transmission speeds, it is 

essential to either send at least 3 coordinates or else to 

send null characters when the data rate is 9.6K Baud, and 

to send the minimum number of characters at lo-wer speeds. 

If the terminal is connected to the computer by means 

of a link involving a busy signal, the software need only 

send the minimum number of characters. 

The conversion of normal coordinate data into the 

required characters is common to all applications that 

require graphic output and conversion routines must form 

part of the basic software. However, very rarely does the 

coordinate range used in the application program map 

exactly with the coordinate range of the terminal i.e. 

1-1024 in x and 1-780 in y. This creates two additional 

requirements for the basic software: firstly routines are 

required that will scale the application programs 

coordinates so that they will appear on the terminal 

screen. Secondly 'clipping' routines are. required that 

will only display the part of the drawn or design that 

lies within a specified 'window'. This routines will take 

each vector in turn and clip it so only the part of the 

vector that appears on the screen is drawn. 

Because of the fundamental modus operandi of the 

storage tube, it is not possible to vary the intensity of 

a vector nor is it usually possible to blink or flash 

vectors. The only way of distinguishing vectors, 
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therefore, is to have dotted or dashed vectors with 

different mark space ratios. This can be done by hardware 

on the Tektronix 4014 and 4015 and in this case all the 

basic software need do is ensure that the appropriate 

characters are sent whenever the vector characteristics 

are to be changed. The smaller Tektronix, the 4010 and 

4012, however, do not have the hardware facility and so it 

must be done by software and so in this case thebasic 

software must contain routines to break a long vector down 

into alternate light and dark vectors of appropriate 

length. 

The terminal is switched into graphics input mode by 

sending it two characters known as 'esc' and 'sub'. This 

causes the cross hair cursor to be displayed on the screen 

and the cursor position can be controlled by the two thumb 

wheel - potentiometers. Pressing any key will cause a 

series of characters to be transmitted to the computer. 

The characters include that of the key pressed and four 

characters to define the position of' th cross hair 

cursor. The characters transmitted are shown in fig 

6.4.2. 
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Bits 	 8 7 6 5 4 3 2 1 

EOT 1 0 0 0 0 1 0 0 Byte 7 

CR 1 0 0 0 1 1 0 1 Byte 6 

Low .Y 1 0 1 ? ? ? ? ? Byte 5 

High 	'1 1 0 1 ? ? ? ? ? Byte 4 

Low X 1 -  0 1 ? ? ? ? ? Byte 3 

High X 1 0 1 ? ? ? ? ? Byte 2 

Char 1 0 ? ? ? ? ? ? Byte 1 

Bit patterns transmitted from terminal 

in Graphic Input Mode 

Fig 6.4.2 

The last two characters sent i.e. bytes 6 and 7, 	are 

strappable options, 	the terminal can be set to transmit 

neither character, carriage return only or carriage return 

and end of tape. 	Any basic software system should 

therefore contain routines to set up the cross hair cursor - 

and read the characters transmitted and convert them into 

coordinates either in Tektronix increments or scaled into 

the user coordinates. 

It is essential to send certain 	non 	printing 

characters to the terminal to perform such functions as 

switching from one mode to another. Often these 

characters cannot be transmitted directly from a Fortran 

program because of the computer used. However, most 

computers can output these required. characters using 
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routines written in machine code or assembler and callable 

from Fortran. This is the approach used in GAELIC on the 

Dec system 10 where the output to the terminal in graphics 

output mode and input form it in graphics input mode are 

controlled by MACRO 10 routines written by Dr .W.D. Hay. 

The original version of the GAELIC 	interactive 

program that uses the Tektronix 4010 trminal used the 

author's routines for drawing vectors-and for handling the 

cross hair cursor and used a set of routines written by 

Dr. P.F.A. Reilly to do the vector clipping. As the 

original version was to work at low data transmission i.e. 

110 or 300 Baud dotted and dashed vectors were not 

practical as they, took so long to draw. 

However, when the program was implemented on the 

Decsystem 10 using a data transmission speed of 1200 Baud, 

dotted and dashed lines became ergonomically possible and 

therefore desirable. A package of Fortran routines 

written by Tektronix was available on the Decsystem 10 and 

this package, known as the Terminal Control System or TCS, 

not only contained routines to plot vectors and to handle 

the cross hair cursor but also had its own clipping 

routines and routines to produce dotted and dashed lines. 

The TCS routines use the same technique as the 

original GAELIC program i.e. routines o do the characters 

handling written in MACROIO but callable from Fortran. 

All other routines are written in a subset of Fortran IV 

to enable them to be installed on as many computers as 
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possible. 	It was therefore decided to use these routines 

as a) there was no point in reinventing the wheel and b) 

the TCS software was already implemented on many computers 

and so using it would ease the transportability of the 

program. 

The TCS system does have some minor disadvantages as 

it is a general purpose package. To give the user a large 

range of increments on a computer with a small word size 

e.g. a PDP8 with its 12 bit word, the user coordinates are 

stored as real values and each value therefore requires 

two words of storage. The scaling to the Tektronix 

increments is therefore done using real arithmetic i.e. 

requires the floating point arithmetic package to be in 

core. This system is therefore slower than it need be and 

requires more store. This is not noticeable on the 

Decsystem 10 as: a) it stores real values in one 36 bit 

word and b) it uses a hardware floating point unit. 

However, if the GAELIC programs are mounted on smaller 

machines some modification to the TCS software.will be 

necessary to obtain maximum efficiency. 

Only one major software modification was required to 

the TCS software and that was to allow for use at a data 

transmission rate of 9.6K baud. The original software 

minimised the number of characters transmitted to the 

terminal to draw a vector. On an asynchronous 

transmission system, this causes apparently random curved 

vectors due to the arrival of the one or two characters to 

specify the next vector before the previous vector has 
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been drawn. This was cured by transmitting the necessary 

null characters at 9.6K baud, to ensure the previous 

vector was drawn before the next vector was specified. 

The 'clipping' routines written by Dr P.F.A. R.Uiy 

have been used in other programs in the GAELIC suite, 

notably the program that plots all or part of a layout on 

the Calcomp incremental plotter. 
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Chapter 7 : Program Descriptions 

This chapter is mainly devoted to a description of 

the various programs comprising the GAELIC suite, 

concentrating on their general requirements and how these 

are met. 	The detailed descriptions of the subroutines 

appear in the GAELIC Systems Manual. 	The chapter starts, 

however, 	with a discussion of the languages available for 

programming and why FORTRAN was chosen as this choice did 

affect the program requirements. 

7.1 Choice of Programming Language 

The objectives of the GAELIC programs were discUssed 

in Chapter 2 and resulted in the requirement for a minimum 

capital cost system that was, as far as possible, hardware 

independent so that it could be easily transferred from one 

computer to another. 

The most efficient 	CAD 	system 	for 	designing 

integrated circuit layouts, can theoretically be obtained 

by selecting or building the best hardware for each part 

of the system and programming at the lowest possible 

level, to get the fastest operation. This approach, 

however, has a lot of disadvantages. 

The best hardware may come from a series of 

different 	manufactuers and may well require special 

interfaces to interconnect them. 

The problems encountered when servicing this mixed 
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hardware are quite formidable (the fault is always in the 

other manufacturers product) 

Any special purpose 	hardware 	is 	extremely 

expensive to design, build and test. 

Programming and debugging in a low level language 

is slower and more difficult than in a high level one. 

It is not possible to write extremely long low 

level' programs and maintain maximum efficiency. however, 

the higher level language requires much less code to be 

written and so can be written efficiently. 

Programs written in the low level language for one 

computer cannot be transfered to another. 	Instead the 

programs must be rewritten in the low level language for 

the new machine. 

These disadvantages, therefore, preclude the use of 

special purpose hardware. They also discourage the use of 

low level languages for a system that is to be as portable 

as possible. 

The use of a high level language has the following 

advantages: 

The amount of code that has to be written is much 

less than when using a low level language. 

The widespread use of high level languages has 

justified the writing of extremely efficient compilers. 

The high level languages are to quite a large 

extent self documenting and so only a small amount of 

extra documentation is required. 

Although it would be foolish to claim that there 

218 	 , 



L11apLeL-  I 

are no problems in transfer-Lag a high level language 

program from one computer to another, the original 

programmer's intention is always clear and so the only 

problems are those of obtaining equivalent facilities on 

the new computer. 

5) Once a system is working in a high level language, 

it is possible to speed it up by rewriting the critical 

parts in a low level language. 

There are many high level languages that are used 

nowadays. Unfortunately most of them are not available or 

a wide range of computers and this precludes the use of 

some very good languages such as Algol-68 even though it 

contains facilities for handling the complex data 

structures There are other languages that have facilities 

for handling data structures but these are comparatively 

new and do not have all the other required features such 

as floating point arithmetic. 

This leaves four main contenders for the programming 

language BASIC, IMP, ALGOL and FORTRAN. These languages 

will be now considered in more detail. 

BASIC 

This is probably the simplest of the 'high level 

languages' in general use. It was originally written by 

Dartmouth College and is implemented on most commercial 

time-sharing computers. Because of its simplicity, it is 
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very easy to use and so is an ideal language for 

beginners. However, it does have certain disadvantages.. 

Firstly the array and variable names are restricted to 

either a single letter or a letter followed by a digit. 

This means that it is extremely difficult to have mnemonic 

variable names i.e. names that convey the function of the 

variable to the reader. 	For example it is extremely 

useful 	to store Lie base emitter voltage of transistor 1 

in a variable called VBE1 whereas in BASIC it would have 

to be called Vi or Bi. Another disadvantage that is common 

to all the other languages is that the computer 

manufacturers have extended the language to provide extra 

facilities but each manufacturer has done so in 	a 

different way. 	In general BASIC compilers are extremely 

fast but do not produce optimum code. 

IMP 

This is a high level language based on ATLAS AUTOCODE 

and is in extensive use on various computers at Edinburgh 

University. There was considerable pressure therefore to 

use this language. It has a lot of attractive features in 

the language such as the ability to read in a character at 

a time from the input channel and the ability to read the 

next number from the input channel regardless of how many 

digits it contains. It also contains facilities for bit 

manipulation which are required in GAELIC. However, it is 

not a generally available program outside the Edinburgh 
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University community and as it was hoped that the GAELIC 

programs would be used outside, the language was not used. 

Since the decision was taken to use. FORTRAN IMP has been 

extended to contain RECORDS which facilitate the setting 

up of complex data structures. 

ALGOL-60 

This is a high level language which 	is 	used 

extensively 	in 	Europe 	especially 	by 	educational 

establishments. 	It is the international language which 

most conforms to a standard. Unfortunately the standard 

does not cover all the facilities available: 	the nbable 	- 

exception is the input and output routines (There is now a 

version of ALGOL available which was invented by Worth 

which does define the input and output and is known as 

ALGOL-W). 	In 	general, 	however, 	these 	input-output 

facilities are implemented in differing ways by the 

different computer manufacturers and so again the program 

is not completely transportable. 	Algol is not used as 

much in the United States and consequently most American 

computer manufactuers have not put as much effort into 

their Algol as they have into their FORTRAN compilers. 
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FORTRAN 

This is the most widely know and widely used high 

level language for scientific applications. It was 

originally invented by I.B.M. for use with the data and 

program on cards and the output on a line printer. It has 

been considerably extended since then but still shows 

signs of its humble beginning by having an extremely rigid 

input-output system. It now exists in a standard form 

known as the ANSI Standard FORTRAN which is fairly rigidly 

defined but almost inevitably has been extended beyond 

this standard by the individual computer manufacturers. 

Again programs are therefore not directly transportable 

between computers. However virtually every computer of a 

reasonable size has its own FORTRAN compiler and the 

compilers are often extremely efficient because of the 

interest in them. Therefore, although parts of programs 

are. not always directly transportable, a programmer can 

always understand what was intended and what modifications 

are required to get the program to work on a new machine. - 

FORTRAN was chosen as the programming 	language 

despite certain short-comings because of its universal 

availability. 
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7.2 GAEL1A Digitiser Program 

This program takes the output data generated by a 

specially modified Metrograph digitiser and converts it 

into the GAELIC manual input language and the GAELIC dump 

code. 	The output is in these two forms to allow for the 

correction of any errors made when digitising. 	If no 

syntax errors are detected then the dump code file is 

processed to give the ring data structure of the layout: 

this saves considerable computer time by not having to run 

GAEL2A. However, 	if errors are detected when running 

GAELIA they must be corrected. 	Correcting the digitiser 

output or the dump code file is extremely difficult 

whereas editing the manual input language is relatively 

easy. If the manual input language is corrected then it 

is then converted into dump code by means of GAEL2A. 

The output from the digitiser consists of records of 

the form shown in Fig. 	7.2.1. 

12340%2X%±00100%Y%±00200 	 where % indicates a 

12350%X%+001 50%Y%+00300 	 space. 

12360%X%+00600%Y%+00800 

Fig 7.2.1 Typical output from Metrograph Digitiser 

which can be generalised as a record of the form shown in 

Fig. 	7.2.2. 
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1.2340%1. 1234X-:-1 23L,5%y%-f]. 234 

Sequence numberj 	 1 
Shape code 

Extra codc ---- 

Coordinates -------- 

Fig 7.2.2. General form of input record 

Fig 7.2.2 also shows how the general record can be 

subdivided into four sections, two of which are not 

necessarily present in any particular record. 

The sequence number is always present and is always a 

five digit number which specifies each record. It can be 

followed by a single digit shape code which is used to 

indicate the start of a new shape and its type. 

Consequently the shape code is only present in the record 

under these circumstances. The four digit extra code is 

only present when it has information to convey and is used 

for the name of a group or the radius of a fillet. The 

final section is always present and contains the 

coordinates of the digitiser cursor when the READ button 

was pressed. These coordinates are always in fixed format 

i.e., the letters, spaces, digits etc. are always in the 

same position relative to the end of the record though the 

actual digits present will vary. 

The coordinates and sequence number are automatically 

produced when the READ button is pressed and will always 

give the same number of digits in the same position. The 
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shape code or extra code, on the other hand; are entered 

by the operator, a digit at a time, via the digitiser 

keyboard and can be a source of errors. Such input cannot 

be handled by the standard Fortran input/output routines 

and so another method had to be found. 

There are many versions of Fortran that have a 

non-standard facility which allows the next number to be 

read regardless of bow many digits or their position in 

the record. This 'free format read'-as it is usually 

called, appears at first sight to be the answer to reading 

the input records. Unfortunately this facility cannot be 

used for three reasons: 

The facility is implemented in different ways on 

different computers. 

Invariably the numbers read in under this free 

format have to be delimited by a standard terminator e.g. 

a comma or a space. It should consequently be noted that 

is not the case in an input record. 

This free format facility will not cope with the 

correction of digitising errors by means of the ERROR key. 

The ERROR key on the digitiser inserts the character 'If' 

in the record: 	this non-numeric character can occur in 

several places in the record. 

The program therefore reads the whole record into the 

array, 	each 	character, 	be it a letter, 	digit or 

punctuation mark is put into one word of the array. 	A 

simple arithmetic or logical operation on each word 

converts it into a number that uniquely specifies the 
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character. 	In most computers including the Decsystem-10, 

this is the ASCII number for the character. 	For example, 

the ASCII number for the letter 'A' is 65 and for the 

digit '1' is 49. By doing various checks and various 

arithmetic operations on these ASCII numbers, the actual 

integer numbers in the record can be calculated or the 

fact that a '1/' is present can be detected. There are a 

series of routines in the program that read in the 

records, convert the characters to their corresponding 

ASCII numbers and calculate the integer numbers entered 

and evaluate their terminating characters. 

Two algorithms have been used for the transformation 

from digitiser coordinates to GAELIC increments. The 

first was written by R. Newton of R.R.E. for use with the 

CAMP programs [ref 7.1 and the second by the author. The 

first algorithm is designed to cope with linear paper 

distortion in all directions as shown in Fig. 7.2.3. The 

derivation of the algorithm is given in Appendix 3 where 

it is shown that it involves the solution of quadratic 

equations. The roots chosen are those which cause the 

transformed point to lie on the paper. There is a 

considerable amount of computation required for each pair 

of coordinates and there is always a slight doubt as to 

whether the other roots would also produce a point that 

'lies on the paper. In practice the transformation 

appeared extremely sensitive to the 	'initialisation' 

digitising and this had to be done with great care. 
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FIG 7 2 3 	PIlFER DISTOftIION RLLO%JED IN NEWTONS RLGORITHM 
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The paper distortion that is allowed by the algorithm 

is generally more than is required. The grid is usually 

printed on the paper by means of a roller which ensures 

that the grid lines are perpendicular but does have a high 

probability of the scaling being slightly different in the 

x and y directions. It is also always possible to put the 

paper on the digitiser at a slight angle to the digitiser 

axes. This resuit:s in a paper distortion shown in Fig. 

7.2.4. 

	

By restricting the paper distortion allowed to that 	- 

shown in Fig. 	7.2.4 the simpler algorithm derived in 

Appendix 4 can be used. This involves the solution of 

simple linear equations requiring only a small ajnount of 

computation and only giving one pair of coordinates. 	In 

practice 	this simpler algorithm appears to be less 

sensitive to the accuracy 	of 	the 	'initialisation' 

digitising. This simpler algorithm is therefore used in 

GAELIA to transform all the digitiser coordinates into 

their corresponding paper coordinates which in turn are 

specified in terms of GAELIC increments. The output from 

the program i.e. the manual input language and dump code 

files are therefore in terms of these increments. 

The 	production 	of 	the 	dump 	code 	file 	is 

straightforward as it is a standard binary file consisting 

of numbers only; this can be written directly from a --

Fortran program on almost all computers. To reduce the 

number of disc writes on the Decsystem-10, a subroutine is 

used to add the individual numbers to a buffer and then 
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FIG 7 2 4 PAPER DISTORTION ALLOWED BY SECOND ALGORITHM 
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write the contents of the buffer to disc when necessary. 

The production of the manual input language, however, 

is far more complex as it cannot be done using standard. 

Fortran. Standard Fortran output is similar to the 

standard input in that the number of data items to be 

transfered and the number of characters in each item must 

be known. The manual input language produced by GAEL1A is 

slightly more rigidly defined than that described in the 

GAELIC Users Manual in that the order words are always a 

fixed length, e.g. "RECT .." and "POLY" are always used 

instead of "REC" or "RECTANGLE", "P" or "POLYGON" etc. 

and the group names are always 5 characters long, e.g. 

G1234 etc. 	However the number of digits in a coordinate 

will vary with its value. 	It could be argued that as 

leading zeros or spaces are acceptable in GAEL2A, the 

program that processes the input language, and so they 

should be allowed in the output from GAEL1A. however the 

main purpose of producing the manual input file is in 

order to modify it to correct errors. This can only be 

done efficiently if the input language itself is easy to 

understand: once the user is accustomed to seeing the 

description of a polygon as:- 

"POLY" (1) S,5,20: 20,2, 20,2,-22,-2,-18,-2; 

then it is very difficult to recognise:- 

"POLY" 
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(01) 

S, 

00005, 00020: 

00020, 00002, 

00020, 00002, 

-00022,-00002 9  

-00018,-00002; 

as the same polygon. The later description is typical of 

that obtained using standard Fortran output. For this 

reason the conventional form of the manual input language 

was chosen for the output from GAEL1A. To obtain this 

output, characters are loaded into a buffer and the buffer 

is written out to disc when necessary. One subroutine 

adds the characters that make up an order word or group 

name to the output buffer, another adds the characters 

that make up the significant digits of integer numbers and 

a third adds the punctuation marks. 

The simplified flow diagram of the GAELIA program is 

shown 	in 	Fig. 	7.2.5. Itdoes not show the sophisticated 

error correcting system associated with the '#' 	character 

nor 	does it show in detail the processing of any 

particular type of shape. After defining and opening the 

input file and 	the 	two output files, the input file is 

processed until the first sequence number is found. The 

shape code and possible extra code are then read in 

followed by the coordinates of the shape. The coordinates 

are stored in an array until the next shape code is 
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detected indicating the end of the present shape. 	This 

shape is then written out as both GAELIC manual input 

language and GAELIC dump code after suitable tranformation 

of the coordinates to allow for paper distortion. 

Some interesting features affect the running of the 

program. When someone first starts using any program, he 

or she requires a great deal of help and so instructions 

given by the progrim must be clear and unambiguous and any 

errors detected must be explained in full. Both these 

requirements result in long verbose messages being written - 

on the terminal. If a teletype or any other terminal 

running at 10 characters'per second is being used, these 

messages will take an appreciable time to be written. 

However, once the user is familiar with the system then 

these messages are superfluous and time waisting.. All the 

user requires are short criptic aide memoires. The 

program provides the user with both types of message and 

the user selects which is used by answering "YES" or "NO" 

to the question 'DO YOU WANT EXTENDED PRINTOUT'. The 

extended printout produces long explicit messages of the 

form 'ENTER NAME OF FILE TO CONTAIN GAELIC LANGUAGE' 

rather than the criptic 'GAELIC FILE'. The extended 

printout also controls the length of any error messages. 
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7.3 GAEL2A Manual Input Language Processor 

This program takes the description of all or part of 

an integrated circuit layout coded in the GAELIC manual 

input language and after extensive syntactic checks 

converts it into the numeric form of the language known as 

the dump code. 

The syntactic checking attempts to detect and produce 

a meaningful error message for every error in the input. 

data. 	Unfortunately although the first error in every 

shape is detected, 	it 	is. not 	possible 	to detect all 

subsequent errors in the same shape. 	This is because data 

containing other errors may have been processed before the 

first error was detected. 	As the dump code is stored in a 

sequential file, 	it is difficult to modify the data once 

it has been written.. It is therefore easier to ignore 

data, for shapes containing errors rather than write the 

incorrect shape descriptions to a file. The user is given 

facilities for adding the corrected shape description at a 

later stage when again the description will be checked for 

syntax. This means that if the user corrects the first 

mistake but repeats the second, it is detected and the 

user is consequently stopped from entering any illegal 

data into the dump code file. 

The GAELIC manual input language is fully described 

in the GAELIC users manual [ref 7.21 and so it will be 

sufficient here to give only the two examples shown below. 
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"RECTANGLE" (1) 5,5: 2480,5860; 

"REC" (1:4) 1050,2486: 10,5; 

Here the respective order words, mask specifiers and 

coordinates contain a different number of characters -and 

cannot therefore be read using the standard Fortran input 

routines. A similar technique to that used in GAELIA is 

employed to read this input data. A complete record is 

read into an array, one character to one word, a logical 

operation is performed on each word in turn to give the 

ASCII number for the character and these numbers are 

processed to give the order words, the group names, the 

mask specifiers and the coordinates. The actual routines 	- 

used are detailed in the GAELIC system manual. Errors are 

also detected by these routines, suitable messages are 

then produced messages and, in general, 	the 	shape 

containing the error is ignored. 

The simplified flow diagram of the program is shown 

in Fig. 7.3.1 where it can be seen that after setting up 

the input and output files the input data is scanned for 

the double quote forming the start of the first order 

work. 	The routine that identifies the order-word is then 

called. 	This routine first of all checks that the order 

word is valid and if so returns an integer number which 

uniquely identifies the word found; otherwise it writes 

out an error message and sets a flag. The program is 

directed to various blocks of code depending on the 

integer number when the rest of the data for the order 
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word is processed. 	The order words for the basic shapes 

i.e. rectangles, polygons and lines are processed in 	the 

same block of code, 	this is a relic from the original 

version of. the program running on the Systemshare 

time-sharing service where core was at a premium and there 

was  heavy overhead on subroutine calls. Here the rest 

of the data describing the shape is checked and if 

correct, the appropriate dump code is writLen out. The 

program then either returns to look for the next order 

word or to look for more coordinates if the DITTO flag is 

set. The use of the "DITTO" order word is described in 

the GAELIC users manual and is a facility for reducing the 

amount of data required for a series of rectangles etc. 

If errors are detected then the program returns to one of 

three different places depending on where the error was 

found. This feature of the program can be best understood 

by reference to the flow diagram for the processing of a 

rectangle shown in Fig 7.3.2. Here the point A is the 

point in the main flow diagram (Fig 7.3.1) where the start 

of the next order word is being sorted . : point B is where 

the starting quote has been found and point C is where the 

coordinates are read and is the point returned to after 

the completion of a shape if the DITTO flag is set. 

The processing of a polygon is very similar to that 

of the rectangle and the flow diagram is shown in Fig 

7.3.3. It will be seen that there are three main 

differences: 	there is an undefined number of coordinates 

in a polygon and the polygon must be checked for closure. 
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The processing of the line is very similar to that of 

a polygon except that it has an optional width inserted 

before the format letter and there is no need for the 

closure check. 

Most other words are simple to process involving the 

setting of flags or parameters and is easily understood 

from the listings. 

The writing of the dump code is exactly the same as 

in GAELIA where numbers are loaded into a buffer and 

written Out when necessary. 

7.4 GAEL3A Compiler into Ring Data Structure 

This program takes the description of all or part of 

an integrated circuit layout coded in the dump code file 

and converts it into the ring data structure. 

This is the first program of the GAELIC suite that 

handles the ring data structure. The ring data structure 

for a large integrated circuit is so big that it is held 

on disc with only copies of a few pages held in core. All 

interaction takes place with the data that is held in 

core. 	The data must be transferred from disc to core and 

vicaversa. 	This 'paging' as it is called is described in 

Chapter 5. The main data structure handling routines are - 

built up using calls to two basic routines: 	one reads 

from and the other writes to the data structure. The main 

routines include one that allocates the required amount of 
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space for a bead and enters the contents of the head word 

into the data structure, one that sets up a null ring, 

i.e. enters the negative of the address at the address,. 

another that adds a ring pointer of a bead onto a ring 

starting at a given address and also include more 

specialised routines like the one that searches the area 

or mask ring for a bead for a given area or mask number 

and if not found creates a new bead. These routines are 

described in detail in the GAELIC system manual [ref 7.31. 

The flow diagram of the GAEL3A is shown in Fig. 

7.4.1. 	It 	essentially consists of reading in data from a 

dump code file and adding it to the ring data structure 

file. 	The ring data structure file can either be a new 	- 

file or an existing one and the selection of which 

structure illustrates an important point in the design of 

interactive programs. 

One of the important features of 	any 	program 

operating in a time-sharing mode is its interaction with 

the user; 	the program must ask the right questions and 

must correctly interpret the users answers. 	The number of 

questions asked has to be carefully balanced against the 

information required. 	If there are a large number of 

questions asked that just require a short 'YES' 	or 'NO' 

answer then the user can find although his answer is 

unambiguous, that he spend a lot of time waiting while the - 

program asks questions. The frustration can be h\ghtened 

by knowing that his answer will lead to an obvious . next 

question. 	This can be understood by considering the 
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question: 

DO YOU WANT TO USE A NEW OR EXISTING DATA STRUCTURE? 

This: 	question is ambiguous does the user answer 'YES' or 

'NO 	or should he answer 'NEW' or 'OLD'? Obviously this 

type of question should not be asked. 	However if the 

question askcd: 

DO YOU WANT TO CREATE A NEW DATA STRUCTURE? 

Here the answer is obviously 'YES' 	or 'NO' 	but if the 

answer is 'YES' the equally obvious next instruction will 

be of the form: 

ENTER NAME FOR NEW RING DATA STRUCTURE FILE 

It 	is better therefore to obtain 	both 	pieces 	of 

information with the same question or instruction e.g. 

ENTER NAME FOR NEW DATA STRUCTURE OR PRESS RETURN 

This approach is used in GAEL3A and other programs in the 

GAELIC suite. The exact choice of question is governed by 

the usual requirement. In the case under discussion, the 

user usually requires a new data structure and so on the 

odd occasi0n;: when an existing structure is to be updated, 

he will press RETURN and will then be asked for the name 

of the existing file. 
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When the appropriate ring data structure file has 

been 	opened, 	certain initial conditions are set up 

including the main definition bead, as 'shapes' are read 

in from the dump code file they are converted to the 

appropriate beads and these are added to the main 

definition bead. When the marker integer for "FINISH" is 

found i.e. the end of the dump code file, the complete 

data structure is written back to disc. 

The processing of a basic shape is shown in more 

detail in Fig. 	7.4.2. After reading the numbers of the 

masks containing the shape, 	the actual coordinates are 

read into an array and their minimum and maximum values 

found. 	This 'bounding rectangle' 	is 	then 	used 	to 	- 

calculate the number of the area associated with the 

shape. 	The area ring starting 	in 	the 	appropriate 

definition is then searched to find the area bead for that 

number, 	if it is not present, a new area bead is created 

and added in the appropriate position on the ring. 	The 

mask ring on the area bead is then searched 	in turn for 

the appropriate mask bead for each mask containing the 

shape in turn and a new bead is created if necessary. A 

shape bead is created for each mask in turn and is added 

to the shape ring on the appropriate mask bead. 

When a group call is found in the input data, a 

similar process to that just described takes place and is 

shown in Fig. 7.4.3. The bounding rectangle of the group 

instance is calculated from the coordinates of the origin 

of the group call, the movement code and the bounding 
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rectangle of the group definition.A Oro6lem Fhat arises if 

the group definition has not been specified when the group 

call is processed, as the bounding rectangle of the 

definition is not defined. It is assumed to be zero and 

the area allocated to the instance is therefore governed 

by the coordinates of the group origin alone. Another 

problem that arises if the group definition has not been 

specified is concerned with the pointers. Chapter 5 

showed how the group instance bead is not only connected 

to the shape ring but is also connected to the group 

instance ring and also has a direct pointer to the group 

definition bead. The head pointer of the instance ring is 

in the group definition bead, consequently without the 

group definition bead neither the group instance ring 

pointer nor the direct pointer can be set up. 	Therefore, 

if not already present, 	the definition bead must be 

created and added to the group definition ring when the 

call is processed. 	This is done automatically by a 

special routine. 	The routine is extremely complex as it 

not only has to check if the definition bead exists and 

create one if not, but also has to ensure that the 

definition is in the correct position on the group 

definition ring. The operation of the routine is 

described in detail in Appendix 2 but it will suffice here 

to explain the problem that it has to solve. 

The bounding rectangles of shapes and group instances 

are used in many of the GAELIC programs to minimise the 

amount of data that has to be processed when plotting out 
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a window or when identifying the nearest point to the 

cross hair cursor. 	The bounding rectangle of a group 

instance 	cannot 	be correctly calculated unless the 

complete group definition is already in the data structure 

and its bounding rectangle correctly computed. Unless the 

group definitions are entered before the group calls, 	the 

bounding rectangles will not be correct. 	This situation 

is normally corrected by running GAEL8A immediately after 

GAEL3A. GAEL8A, however, will still not give the correct 

bounding rectangles unless the group definitions are in 

the correct order. 	If an instance of group A is called in 

the definition of group B then it is essential 	that the 

definition of A preceeds that of B on the group definition 

ring. The bounding rectangle of A will therefore have 

been correctly computed before the bounding rectangle of B 

is evaluated. As there is no restriction in the input 

language on the ordering of the data, the ordering of the 

definitions on the group definition ring must be done 

dynamically in GAEL3A by the routine. The same routine is 

used when the definition of a group appears in the dump 

code where again it finds or creates the group definition 

bead. 

While the shapes in the definition are being entered 

from the dump code file, the appropriate area beads are 

added to the area ring starting in the group definition 

bead 	instead of to the ring starting in the main 

definition. 	The rest of the process of finding or 

creating the mask beads and adding the actual shape beads 
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is identical. 	At the end of the definition area beads and 

hence shapes are once more added to the main definition. 

A similar process is used for repeat definitions when it 

is arranged that subsequent area beads are added to the 

ring starting in the repeat definition bead. 

7.5 GAEL4A Interactive Program 

This program plots out all or part of an integrated 

circuit layout on a Tektronix storage tube terminal. The 

user can interact with the plot and modify existing shapes 

or add new ones. This is the main program of the GAELIC 

suite and is the most demanding from a programming point 

of view. It is absolutely essential that the program 

performs its various functions quickly to avoid user 

frustration and the design of the data structure has been 

done mainly with this requirement in mind. 

One of the problems with using interactive graphics 

is that it is always compared with pencil and paper. A 

designer has been using a pencil and piper for years and 

so is completely familiar with the techniques and forgets 

that it took him the first five years of his life to 

become reasonably proficient with them. 	lie sits in front 

of an interactive graphics terminal with its -input device 

and becomes extremely dissoluioned if he cannot master - 

the techniques required to use it within an 	hour. 

Consequently the ergonomics of any interactive graphics 

system have to be extremely good or the user will become 
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dissatisfied. 	One of the most critical 	features is 

response time i.e. how long it will take to draw a window 

or how long it will take to identify a point. Using 

GAELIC in a time-sharing environment makes this problem 

even more severe as there are time-sharing delays in 

addition to the other delays. The program can do nothing 

about the time-sharing delays and therefore concentrates 

on minimising the other delays. 	These other delays are 

due to two factors: 	the first is the time taken to write 

to and read from disc and the second is the amount of CPU 

time required to process the data.. The data structure has 

been designed to minimise the numbar of disc transfers 

required to plot and modify a layout and the CPU time has 

been minimised by working as far as possible using integer 

arithmetic and doing preliminary sorts to avoid processing 

every shape. 

The simplified flow diagram for GAEL4A is shown in 

Fig 7.5.1 where it can be seen-that after setting up the 

initial conditions, the program allows the user to select 

one of a series of options, these are known as program 

command level options'. The selected option is then 

processed and can either automatically call in another 

option or return to the part of the program where the user 

selects the next option. The options allow the user to do 

such things as select which group definition is to be 

modified, select the masks to be plotted, select whether 

grid axes are produced or close the ring data structure 

file and exit from the program. The initial conditions 
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that are set up include the selection of an existing ring 

data structure file or the creation of a new one. The 

flow diagram for this is shown in Fig. 7.5.2 where it can 

be seen that the philosophy of minimising the number of 

questions that have to be answered is used again. Instead 

of asking if an existing or new file is required the user 

is asked to name the existing file which is his normal 

requirement. When he wants to create a new file then he 

presses RETURN in answer to the first question, and then 

the program asks for the name of the new file. 

The various command level options are shown below 

with a brief description of their functions. 

AXES 	- Plot grid axes on the screen 

DASH 	- Select line specification 

DEPTH - Change depth of grouping to be plotted 

DRAW 	- Draw additional shapes on screen 

END 	- Close files and exit from the program 

GROUP - Plot or modify a specific group definition 

HELP 	- Clear the screen and print this list 

LIST 	- List the names of all the group definitions 

MODIFY - Modify shapes within window 

ORIGIN - Plot triangles at group origins 

PLOT 	- Set up mask list and plot window 

REPLOT - Replot window for previous mask list 

ROUND - Round cursor coordinates to nearest grid 

point 

SAVE 	- Take backup copy of data structure 
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TEAR 	- Tear layout along defined line 

TRACK - Modify track width 

WINDOW - Change dimensions of window 

Many of the options are just concerned with setting values 

or flags for example WINDOW allows the user to type in the 

bottom left hand and top right hand coordinates of the 

window to be plotted and ORIGIN allows the user to set a 

flag that governs whether the origins of the groups are 

marked with a triangle when the layout is plotted. Other 

options are more powerful and versatile. PLOT for example 

allows the user to specify a list of masks and then plots 

out all the shapes on each of the masks specified in turn 

while REPLOT plots out the shapes on the previous mask 

list. 	Thus the REPLOT option is a subset of the PLOT 

option. 	The flow diagram for these options are shown in 

Figs. 7.5.4 and 7.5.5. When running the REPLOT option, 

the area beads are examined in turn to see if any shapes 

in the area could lie within the window to be plotted. If 

so, the mask ring is searched for the appropriate mask 

number. As mask beads are arranged on the ring in numeric 

order then the beads need only be examined until the 

required mask number or higher number is found. If the 

required mask bead is found, then shapes on the shape ring 

are examined. The bounding rectangle of each shape is 

compared with the window to be plotted and if completely 

outside the window, the shape is ignored. If any of the 

bounding rectangle overlaps the window, then all the line 

segments that lie within the window are plotted. When all 
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the shapes on a mask have been plotted then the next area 

bead is examined and the process continued until the end 

of the area ring is reached. All area beads are examined 

but if the area cannot contain shapes that lie within the 

window, the mask and shape beads are ignored. By 

arranging that all the area beads are on the same page, 

while the mask and shape beads for each area are on other 

pages, then the area beads can be examined with a minimum 

number of disc transfers and it is only necessary to bring 

in new pages when the area can possibly contain shapes 

within the window. Thus the number of disc reads required 

is considerably reduced as is shown by the results in 

Chapter 8. 

MODIFY, DRAW and TRACK are program command level 

options that allow the user to interact with the layout. 

By suitable positioning of the cross hair cursor and by 

pressing suitable character keys the user can identify 

points on shapes, define lines etc. The choice of 

character key to press gives the user another level of 

options which are known as 'cursor command level options' 

These different levels of option therefore form a 

tree structure. The tree starts with the main option 

which is to select the ring data structure to be modified, 

at the second level are the program command level options, 

the third level contains the main cursor command level 

options and it will be seen later that there is a fourth 

level consisting of secondary cursor command level 

0 p t i 0 fl S. 
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The simplified flow diagram of MODIFY is shown in 

Fig. 7.5.5 where it can be seen that by choosing the 

character to press when the cross hair cursor is in the 

screen the user can select the cursor command level option 

required. The option is then processed and the progream 

returns to the cursor command level i.e. the cross hair 

cursor is set up. 

Certain of the cursor command level options initiate 

processes involving other cursor command level options: 

these are known as main cursor command level and secondary 

cursor command level options respectively. For example in 

MODIFY the letter I is used at main cursor command level 

option to identify the nearest point in the data structure 

to the cross hair cursor, the secondary cursor command 

options A, II, 0, Y and [ then dictate whether the shape is 

moved, modified or deleted. The flow diagram for this is 

shown in Fig. 7.5.6 where it has been seen that as well 

as modifying the basic shapes itcan also, modify repeat 

parameters. 

TEAR is the option that allows the user to define a 

line through his layout or then move all the shapes to the 

one side of the line by a distance. It was written by J. 

Phillips of the CAD Project and is called as a subroutine 

in the program. 

DRAW was at 	one 	time a completely 	separate 	option to 

MODIFY 	in the 	first version of 	the 	program 	running 	on the 

Systemshare time-sharing service 	when 	it 	formed a 
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convenient overlay segment. 	However since that time it 

has now been amalgamated with MODIFY and so requests to 

DRAW are treated in exactly the same way as requests to 

MODIFY. 

The data structure handling techniques are the same 

as those used in GAEL3A apart from the paging routines 

described earlier. 

Another of the interesting parts of GAEL4A 	is 

concerned with processing group and repeat instances where 

there are two problems to be solved. The first is due to 

the fact that the group and repeat instances can be nested 

and is in the determination of which areas to process in 

the group or repeat definition. The nesting of groups 

means that the absolute movement code applied to the 

shapes in a definition must be computed from the 

individual movement codes of the group instances. The 

previous absolute movement codes must also be kept to 

avoid recalculating them then when a group instance has 

been processed. It is also essential to keep the 

addresses of the previous area and shape ring pointers 

that were being processed when the group call was detected 

in order to process the remainder of the shapes. 

The second.problen is concerned with the area beads. 

The main savings in computer time come from the fact that 

only the shapes in areas that can overlap the window are 

processed, masks and shapes in all other areas are 

ignored. The group definitions are built up in exactly 
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the same way as the main definition i.e. with area beads, 

mask beads and shape beads, the areas. being allocated in 

exactly the same way. However, if a group instance is 

rotated about the x axis, then the areas that are required 

to be plotted in the group definition are different from 

those that are required to be plotted in the main 

definition but are related to them by the movement code. 

The transformation involves mapping the window onto the 

group definition which is a different operation to that 

performed on the shape coordinates in a definition when 

they are mapped onto the main layout. 

The flow diagram for handling the group call is shown 

in Fig. 7.5.6 where the coordinates of the origin and the 

movement code are read from the value bead. The 

coordinates of the origin are then transposed to take 

account of the case where the group instance is called 

from another group definition. They are transposed 

according to the previous movement 	code. 	If 	the 

transposed origin lies within the window and ORIGINS are 

requested, a triangle is plotted 	at the origin or if 

modifying, 	the 	coordinates are compared with cursor 

coordinates. When normal modification takes place the 

program 	does not search the contents of the group 

definitions and so can exit at this point. However, if 

plotting or using the special routines that find the 

nearest point in the complete layout, then conditions are 

set up to process the contents of the actual definition. 

The depth of grouping is incremented and the new 
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displacements for the coordinates are calculated from the 

old displacement and the transposed coordinates of the 

origin. The new absolute movement code is also evaluated 

from the previous absolute code and the movement code of 

the instance. This in turn enables the area coordinates 

for the part of the definition within the window to be 

found. The bounding rectangle of the instance can then be 

calculated from the bounding rectangle of ti1e definition, 

the new absolute movement code and the displacements. If 

it is outside the required window the shapes are ignored. 

If the bounding rectangle is inside the window then the 

necessary initial conditions are set up which keep details 

of the previous definition and set up to examine shapes in 

the present definition. 

At the end of the area ring, ie. 	when all the shapes 

in the definition have been processed then the reverse 

process takes place where conditions are reset for the 

previous definition and the depth of grouping is 

decremented. 

A similar process has to be followed for repeat 

instances with the exception of the movement code which 

does not have to be updated. - 
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7.6 GAEL5A/B Plotting programs' 

The GAEL5A program takes a GAELIC ring data structure 

and plots all or part of ' it out on a Ca'lcomp 563 

incremental plotter. GAEL5B is a similar program that 

plots the layout on a Calcomp 563 plotter via a Calcomp 

DP21 2 controller. 

The plotting program is very similar to that used in 

GAEL4A to plot on the Tektronix screen i.e. has a flow 

diagram similar to Fig. 	7.5.5 and handles groups in a 

similar way to Fig. 	7.5.6. The main difference is that as 

the program is usually used to plot the' complete layout: 

in this case all areas are processed and there is no point 

in checking to see if each individual area is required. 

The checks for the' individual shape however are left in 

just in case only a.-part of the layout is required. In 

which case the processing is not quite as efficient as it 

is in GAEL4A. The plotting however is very much limited by 

the speed of the plotter rather than the time taken for 

disc reads so the inefficiency has negligible effect as 

far as the user is concerned. The program ,uses standard 

Calcomp driver routines which are part of the Decsystem 10 

basic software library. . These basic routines take the 

real number coordinates created by the program and convert 

these into the necessary increments for the'plotter. The 

actual plotter requires 3 bits of a character for each 

increment. 	The increment can be in one of 8 different 

directions. 	The increment for the 563 plotter is either 5 

or 10 thou, 	and can handle up to 300 increments per 
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second i.e. 1.5 or 3 inches/per second. 

The driver routines written for GAEL5B to drive the 

563 plotter via the DP212 controller send characters that 

specify the number of increments a well as the 

direction. This allows the plotter to work at near full 

speed despite using a 110 Baud line as the DP212 converts 

each character into the required number of characters that 

specify one increment in a given direction. Angled lines 

other than 45 degrees are slow because they do not take 

many consecutive steps in any one direction and so if the 

pen is up, it is moved as far as possible at 45 degrees 

and then horizontally or vertically to the final 

destination as shown in Fig. 7.6.1. on the other hand if --

the pen is down then the best possible straight line is 

drawn as shown in Fig. 7.6.2. 

The algorithm used for the line with the pen down is 

a modification of an algorithm written by Dr. 	J.V. 

Oldfield for driving the 563 directly. It transposes the 

line so that it has a major axis AC as shown and a minor 

axes AD as shown in Fig. 7.6.3. 

A calculation is made at each major axis increment to 

see where straight line AB cuts the vertical line, if it 

is less than half a minor axis increment then the pen is 

moved one increment along the major axis, if it is greater 

than half an increment then the pen is moved at 45 degrees 

to the major axis. 	The process continues at each major 

axis increment until the end of the line is reached. 	The 
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characters are only sent to the plotter when the direction 

of the increment changes or the end of the line is 

reached. 	For example, for the line shown in Fig. 	7.6.3, 

one character is sent to the plotter for the two 

increments along the major axis, one character for the one 

character at 45 degrees and then one increment for the 3 

increments along the major axis. 

7.7 GAEL6A Joins lines together to form closed polygons 

The line with zero thickness is an extremely useful 

shape for defining metallisation tracks in groups as shown 

in Chapter 3. However, when photo-plotters are used to 

produce the masks, it is impossible to tell which side of 

a line has to be exposed. The lines must, therefore, be 

joined together to form polygons. This was the main 

reason for writing GAEL6A although using it gives two 

other advantages that are not quite so obvious. 

Firstly when using a knife on cut and peel material 

for a series of short lines, the coordinatograph will no 

sooner have accelerated to full speed than it will have to 

decelerate again to enable it to stop at the end of the 

line. however if all the short line segments are joined 

together to give a large polygon then the coordinatograph 

can cut for a comparatively long period at full speed. 

The movement with the pen up is also reduced giving a 

substantial saving in time on the tape controlled 

coordinatograph. 
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Secondly when using the 	lines 	in 	the 	group 

definitions, 	it is possible to forget to add the lines at 

the end of the group instances to connect, for example, 	a 

24 bit shift register stage to the rest of the circuitry. 

Errors of this nature are not easy to detect visually but 

are automatically detected as part of the process to join 

up lines to form polygons. The problem of detecting the 

missing lines may appear to be a good reason for using 

closed shapes instead of.lines. However if the closed 

shape that connected the shift register to the outside 

world were omitted, it is even more difficult to detect 

visually and cannot be detected by present computer 

programs. (it will be possible to detect such errors with 

'Mask Function Checking' when this program is finished). 

The flow diagram for the process is shown in Fig. 

7.7.1 where it can be seen that after setting the initial 

conditions, copies are taken of all the lines in the 

layout. 	This is not as easy as it first appears, as a 

copy of a line in a group definition has to be taken for - 

each group instance. 	Each copy must naturally have the 

appropriate coordinate transformations. 	The 	program 

therefore behaves as if it were plotting i.e. follows the 

flow diagrams shown in Fig. 	7.5.5 and Fig 7.5.6 but 

instead of plotting each shape, the rectangles and 

•polygons are ignored and the lines are copied into a 

temporary ring data structure. This temporary data 

structure has area beads but no mask beads as the program 

only operates on one mask at a time. 
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When copies of all the lines have been added to this 

temporary data structure the original structure is then 

processed to remove all the lines. This time, however, it 

is only necessary to detect the line in a group definition 

once. Each shape ring for the required mask is examined 

in turn and all the line beads deleted: all other beads 

including group instances are ignored. The flow diagram 

for this process is similar to Fig. 7.8.1 which describes 

the operation of GAEL7A. GAEL7A is the program that 

produces the manual input language from the ring data 

structure. 

The lines on the temporary ring data structure are 

then joined together to form polygons which are added to 

the original layout. The data for the first line in the 

first area is entered into an array and the line deleted 

from the temporary data structure: all subsequent lines 

in that area and all lines in other possible areas are 

then examined to find the line with either the same 

starting or finishing coordinates. The data for this 

second line is then added to the array and its bead 

deleted from the data structure. The process continues 

until the composite line in the array forms a closed 

polygon which is then added to the original data structure 

in the appropriate area. The program then returns to what 

is now the first line in the data structure and repeats 

the process until all the lines have been joined up to 

form polygons and all the polygons have been added to the 

original data structure. 
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If the lines do not join up two possible courses of 

action are taken. If another line has the same end 

coordinates within a given limit then the coordinates of 

the second line are changed and a message printed to that 

effect. If no lines have the same end coordinates then 

the line in the array is written back to the original 

layout and an error message printed. The user will then 

run GAEL4A to correct the errors. 

7.8 GAEL7A Ring data structure to manual input language. 

This program takes the definition of a layout in the 

ring data structure and writes it to a file as the manual 	- 

input language. It is used to obtain a copy of the layout 

description that can be read by a user and which is 

independent of the computer running the GAELIC programs. 

It is also useful for taking the description of part of a 

layout and redefining it as a group definition. 

The simplified flow diagram of the program is shown 

in Fig. 	7.8.1 where the general aim is to first write out 

the descriptions of the group definitions followed by the 

description of the main layout definition. Unfortunately 

both group and main definitions may contain 	repeat 

definitions and to make things even worse the repeat 

definitions themselves 	may 	contain 	further 	repeat 	- 

definitions. 
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After setting up the initial conditions i.e. 	reading 

in the names and opening the necessary files, the program 

finds the address of the first group definition. If the 

address is that of the ring head pointer then there are no 

group definitions present and the program starts to 

process the main definition. If a definition is present 

then the group name is found and is written out to the 

output file. 	Th group definition bead is then examined 

to find if any repeat definitions are present. 	If one is 

present then the repeat parameters are read from the value 

bead and the repeat specifier is written to the output 

file. 	The repeat definition is then checked to see if it 

contains, any repeat definitions and if so 	the depth of 

repeat is incremented and the process repeated. When the 

present definition does not contain any further repeat 

definitions then the shapes in the definition are written 

out. A sort is then made on the type of definition 

processed. If it was a repeat definition then the end 

repeat order word is written out, the depth of repeat is 

reduced and the address of the next repeat definition 

found. The process is repeated until all the repeat 

definitions have been processed, the program then writes 

out the shapes in the group definition and after writing 

out the endgroup order word finds the address of the next 

group definition. This processing of' the group 

definitions continues until all the group definitions have 

been written out. The main definition is then processed 

but again must first go through the process of writing out 

all the nested repeat definitions before actually writing 
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Out the shapes in the main definition. The finish order 

word is then written out and the files closed. 

The actual writing out of the manual input language 

requires an identical 	technique to 	that 'described in 

section 7.2 for the digitiser program. The reading of the 

ring data structure requires the data structure handling 

routines used in most of the other programs. 

7.9 GAEL8A Data structure reorganiser. 

This program reorganises the data structure on disc 

so that it is in an optimum order for interaction. The 

program also removes all unused area and mask beads and 

recalculates all the bounding rectangles. 

The data is sorted so that the definition beads and 

area beads are on the same page or on consecutive pages so 

that the area beads can be checked to see if they can 

contain shapes within the window using the minimum number 

page changes. However once an area bead has been found to 

be capable of containing shapes within the window then all 

the shapes must be processed, hence all the mask and shape 

beads for a particular area bead must be on either the 

same page or on consecutive pages so that again the number 

of page transfers required to process the shapes is 

minimised. The simplified flow diagram to perform the 

reordering of the data is shown in Fig. 7.9.1. The 

initial conditions consist of reading, in the names and 
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opening the necessary files. The main layout head bead is 

then set up in the new data structure which is followed by 

beads for every area that is used in the old layout. A 

group definition bead is then set up in the new data 

structure for each group definition in the original 

structure. These are followed by repeat definition beads 

for all the main repeat definitions present in the 

original structure. 	The actual group definitions i.e. any 

repeat definitions, 	the area beads, mask beads and shape 

beads, are then copied onto the new structure. The repeat 

definitions may well be nested and if so all the necessary 

definition contents 	i.e.. area, —mask, value and 	shape 

beads, must be set up. The same process applies to the 

main repeat definitions which again can contain nested 

repeats. Finally the main definition mask and shape beads 

are, set up. 

The techniques used to handle the data structures are 

virtually identical to those used in other programs except 

that provision is made for the two data structures that 

must be handled. The task is simplified as theri is a 

requirement to read from the original data structure but 

no requirement to write to it. The new data structure 

however has to be both written to and read from. 
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7.10 GAEL9A etc. 	Post Processors. 

These programs convert the ring data structure into 

the drive tapes for a range of mask making machines 

ranging from the Coradi tape controlled coordinatograph to 

the Gyrex Pattern Generator. 

All these programs work the same way as GAEL5A i.e. 

the flow diagrams are those shown in Fig. 7.5.5 and Fig. 

7.5.6.. The actual output varies from program to program 

but usually uses the buffered output techniques described 

in section 7.2. 
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CHAPTER 8: Performance 

This chapter is devoted to the subjective assessments 

and objective measurements that were carried out on the 

programs in order to evaluate their performance at various 

stages during their development. The chapter starts with 

a subjective assesstent of the PAELLA suite of programs 

running on the Systemshare time.-sharing service and is 

followed, by a comparison between the performance of the 

sequential block data structure used in PAELLA with the 

initial ring data structure used in the first version of 

GAELIC. The results of the various improvements made to 

the ring data structure culminating 	in the 	final data 

structure using area beads, are 	then described and the 

chapter closes with a subjective assessment of 	the 

interactive facilities available in the GAELIC. suite. 

8.1 PAELLA Performance 

The PAELLA programs were written, 	mainly by the 

author,c&r&eneral Instruments Nicroelectronics Ltd (GIN) for 

use on the Systemshare time-sharing service. Most of the 

programs belong to *GIN and are not generally available. 

However, the Wolfson Unit retained rights to the two input 

programs and these are used in the GAELIC suite. Most of 

the integrated circuit masks produced by GIN were of a 

proprietar nature and no objective measurements were 

made. 	It 	is 	nevertheless 	worth 	discussing 	their 

subjective assessment of the PAELLA programs. 
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The programs are designed to take the output from a 

Metrograph digitiser or a manual input language 

description of the layout, and convert it initially into 

check drawings on an on-line incteNental plotter and 

finally into drive tapes for tpe controlled 

coordinatographs to produce the mask masters. 	It was 

realised that without any interactive correction 

facilities, the programs would have limited facilities but 

it was necessary to produce a working system in the 

minimum time. GIM found the correction of errors by 

either modifying the digitiser output or the anual input 

language was extremely tedious and most of the time was 

Spent looking for and 	correcting errors rather than 

digitising the layout. 	The method of providing the input 

data was found to be successful provided 	that either an 

accurately gridded mylar was used for the drawing or only 

small parts of a layout were drawn on normal griddeci 

paper. The major problem that appeared if these 

requirements were not met, was that many polygons had one 

or more sides at a small angle rather than all the sides 

paraxial. Finding which point is in error and correcting 

it by examining the input language is far too slow and 

cumbersome. 
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8.2 PAELLA and GAELIC Comparison 

As most of the designs processed by CIM were of a 

proprietary nature, the completed designs were not 

available and so no timing or costing data was possible. 

However, permission was obtained from GIM to use the 

PAELLA programs to do some comparative tests on three 

circuits that were available for publication. The 

circuits are shown in figs 8.1, 	8.2 and 8,3 and the 

results of the measurements are shown in table 8.1. 

I I Layout 11 Layout 21 Layout 31 
II --------------------------------- I 
I I I I I 
I 	PAELLA CPU Time I 20.4 I 29.6 1 724.8 I 
I 	Sequential 	Block Secs I I I I 
I 	D. 	S. Connect I 3 I 3 I 24 I 
I Mins I I I I 
1 1 I I I 

I I I I 
I 	GAELIC CPU Time I 17.6 •I 14.2 I 584.0 I 
I 	Original 	Ring Sec. I I I I 
I 	D. 	S. Connect I 3 I 3 I 9 I 
I Hins I I I I 
I I I I I 

Comparison of Sequential Block and Ring 
Data Structures 

Table 8.1 

The object of the test was to compare the performance 

of the PAELLA programs and the original version of GAELIC, 

both of which ran on the Systemshare time—sharing service. 

The digitiser input and manual input language programs 

both of which can produce dump code files are common to 
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both systems as are the post-processors converting the 

coordinate file into drive tapes for tape controlled 

coordinatographs. However, the method of producing the 

coordinate file from the dump code file is different in 

each system using different data structures as discussed 

in Chapter 4. The tests are therefore a comparison of the 

sequential Block Data Structure used in PAELLA with the 

Ring Data Structure used in GAELIC. Errors are detected 

in PAELLA either by the syntax checkers or by plotting all 

or part of the drawing on an incremental plotter. They 

are corrected, however, by modifying the input language 

file. GAELIC, in addition can detect errors by plotting 

part of the layout on the Tektronix and the errors can be 

corrected interactively. This means that the only valid 

comparison between the two systems is the time to convert 

the Dump Code file into the Coordinate file. 

The first layout shown in fig 8.1 is a small MOS test 

circuit designed by : the Wolfso.n .Un4t to evaivate an t•IOS 

process It does not contain any group- definitions or 

repeats and because it is small is entirely core resident 

in GAELIC. The second circuit is a small test example 

used during the development of the CAMP system [ref I and 

contains both group and repeat facilities But again is 

core resident in GAELIC. The third circuit is part ofthe 

correlator layout designed by the Wolfson Unit and uses 

both group and repeat facilities and is large enough to 

use the paging facilities in GAELIC. 
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Fig 	8, 1 	Layout of 	rnoL1 circuit 	with 	no grouped and repeated shapes 
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Fig 8.2 Layout of.srnall circuit with grouped and repeated shapes 
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The results show that for a small, circuit without 

group definitions etc there is a slight but significant 

saving in CPU time when using the ring data structure, 

though there is, no variation in the connect time used. 

This slight variation is probably due to the fact that 

using the ring data structure, the data is always in core 

while using the sequental block data structure requires 

the files to be rewound for each mask. The small layout 

using group and repeat facilities shows a considerable 

reduction in the CPU requirements to process the data 

using the ring data structure because of the way the group 

and repeat facilities are handled. The data for the ring 

data structure is again held entirely in core. 

The CPU time to process the large section of layout 

[fig 8.31 shows a 20% saving using the ring data structure 

but there is an even more dramatic saving in connect time. 

Normally the connect time required to run a program on a 

timesharing service varies with the number of users on the 

system and so in general is not a meaningful measurement. 

However, these particular measurements were made late in 

the evening when the system was very lightly loaded and so 

there was a significant variation in the connect time. 

This variation is almost certainly greater than the 

variation in CPU even after allowing for the 'effects of 

loading and an, explanation must be found for it A 

significant point to note is that 584 seconds of CPU time 

will require 9 mins 44 seconds of connect time. The 

connect time is only measured to the nearest minute so the 
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9 min measurement indicates that there was only one user 

on the system and that the time taken for random access 

disc transfers was included in the CPU time mesurements. 

If the time for the sequential file handling was charged 

to the connect time and not to CPU time then this would 

explain the fact that the connect time was correspondingly 

longer for the sequential block data structure. 

8.3 Minor Improvements to GAELIC 

The GAELIC programs were transferred from the GE430 

computer used for the Systemshare time-sharing service to 

the Decsystem 10 of the CAD project. The programs were 

then 	modified 	to calculate and store the bounding 

rectangle of each defihition in the data structure and to 

make. use of these bounding rectangles when plotting or 

modifying the layout. Certain other minor improvements 

were made to the code at the same time to speed up the 

operation. The original programs required each shape to 

be checked against the window to be plotted regardless of 

the fact that it is in the instance of a group definition 

and the whole instance is outside the window. The new 

programs check the bounding rectangle of an instance of a 

group against the window by making the necessary 

transformations of the bounding rectangle of the 

definition and the instance is ignore if completely 

outside the window. These two versions of the program 

were compared for processing the same layouts as before 

i.e. figs 8.1, 8.2 and 8.3 and the results are shown in 
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table 8.2. 

These results show that the ve,rsion with the bounding 

rectangles and other minor improvements requires less CPU 

time to create the ring data structure than the original 

version. This was due to certain of the minor 

modifications. The time to plot the complete layouts 

showed no appreciable difference between th two versions; 

the bounding rectangle version would of course have taken 

longer without the minor modifications. The CPU time 

required to plot a window of the large circuit was 

appreciably reduced from 63 sec to 18 sec. 

The bounding rectangle concept was therefore well 

worth implementing into the GAELIC system. This new 

version of the GAELIC programs known as the - S' version 

was used by Hr R. Kelly of the Wolfson Unit to design the 

layout of an integrated circui-t correlator. His 

experience of using the programs are summarised in a joint 

paper [ref 8.1 11  presented at the CAD Conference at 

Southampton April 1974. His comments on the ergonomics of 

the system were extremely useful and they enabled an order 

of priority to be obtained for the various modifications 

and improvements that were desired. His main criticism of 

the system was the time taken to plot out a different 

window of the layout as the coordinates of the window had 

to be typed in. Other ergonomic problems were those 

involving shapes 	within 	definitions. 	For 	reasons 

described in earlier chapters, 	it was only possible to 

identify and modify shapes in the particular definition 
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being processed at the time. 	One can identify  and modify 

the origin of the instance of a group definition but one 

cannot modify shapes within the definition. However, it 

is always possible to discover an error in a definition 

when viewing an instance of it in another definition. A 

designer will often know the name of a definition 

containing •i shape but on the occassions when he cannot 

remember, he has the difficult task of plotting each 

definition in turn. In general the facilities provided 

were performing the required functions but not necessarily 

in the most efficient way. 

8.5 Effect of Area Beads. 

Chapter 5 describes the reasons why the size of the 

areas into which the layout is divided should effect the 

performance of the data structure. 	Measurements were made 

of 	various aspects of the performance of the. data 

structure. The main aspects of the performance are the 

time to create the data structure, the - time to plot the 

whole layout, the time to plot a window and the time to 

identify a point in the definition. The effect of the 

area beads will not be noticed on small circuits and will 

be most noticeable on 'layouts with a minimum of group and 

repeat definitions. It is extremely difficult to obtain 

large integrated circuit designs that can be published and 

unless' the compexity of the design can be shown with the 

results, the results loose much of their value. Part of a 

MOS shift register design was obtained from ICL with 

11 
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permission to publish at a scale shown in fig 8.4. This 

can be seen as having a large number of group and repeat 

definitions, but the data was processed to remove all 

these definitions and just produce rectangles and 

polygons. It was the data for one layer, the 

metallisation, that was used for the first set of tests, 

the results of which are shown in tables 8.3 and 8.4 and 

figs 8.5 and 8.6. The tests are of the CPU time to compile 

the dump code file into the data structure, to plot the 

full layout on the Tektronix and to plot a window for a 

range of area sizes. 

The first measurements are of the CPU time required 

to create the rig data structure file from a dump code 

file for various area size with the comparative time to 

produce the previous ring data structure without the area 

concept as comparison. The 'area' program also monitors 

the number of 'disc reads and writes' that were required 

to create the data structure and these measurements are 

shown with the others in table 8.3. The term 'disc reads 

and writes' refers to the number of times that the 

required page of the data structure was not in core and 

had to be read in, after writing out another page to disc 

if its contents had been changed, it does not refer to the 

actual number of disc transfers required. The results 

show a rapid increase in the number of 'disc reads and 

writes' as the size of the area is reduced with a 

proportionate increase in the CPU time. This is to be 

expected as the number of area beads must be increased as 

267 



• ,j-i I_it 	II II OwJ ii 
_: •1!L,i 1 

II! III  Li 

LI- - 
I1 	I 	1 1 i1 L__1 	II•ij i t 

1 j1CJb I i,jj  

I 
TJ L3 11 	it 

tit piit- II 

[JJDIj 
• _j;' 	L 	j I-' 	iti• 

[ii! 	IiI'I 

Li-:  

j-I l 
I 	J11" 	•i 

I 
.i-J I11I 

C]JJ • 	_ 
iij 	[i•Li I 
j-U Lij il 1I  
L r1Vi I1 

hI I 
LpII?L 
£JL.i IiI 
I r.JijI 	IlL (-•i 	IIr 

- L_1 otJ ii 	III 
I 1h1 
1I 	

it1! 

{_I1I •i) -ii 	• 	I- ii •Jç'-• 	hut) 

1 i ••i:•,.,__I 	i'I 

• 	I 	( •JJ•,J•, 

.ij 	[.Jj 
rf] II hIL L] 

L 	fJrIJi 
I1 f•  

• 	-• 	o tJJbL I I 
II rtl 	Wji II 

Li 

L1 

E3 

Li 
11 

H 

• • 	ici 	;t(flcl ::;• I 
f) 	 iU 

• 	Lft_Jv' pd J: 

• 	J ) 1)I Ji5III 	i]dfl:I Fi.I 
• 	_0:t 	H H: 

• 
L5  J5'i 	iftI itiIi 

Li p 	tJ 
- 

L,-i  
rJ OH 

1. 
i
filp C4 

[J 	Jr 

Lc 
g iI 

_fj'J 	Jl 1  
• 	 li 	ft 	 - 

• 	• 	iI 	JII1LI 	13 

it  

H 	Id 

•Eiii_i 	•1I! 	-- 	i 
1 

ci 
ki L 

UUULJLiU i1jiL 

• 	 T 	n' 

It 

J I 

u Li Li 

uiIII 	 •. 

L 1T( 

U 
I 	I••i 	II 	I 	Irl 	J 

IL 
I 	H. ULLJ iP 

rLII lI 

• 	I 	i 	Lf] 

L 
ii ii I I[ iI i;flFrid LTA 

t'J. 	
L 

• •-.L' 	l: j 	J 1 
cI:III! 

17 	
2L 

 

L 	'Hh::io s 

±ç it L 	cii 
it 	JJjli; IL 	iq 	1_i 

	

a: 	j  
rj1 h 

• 	:Uq 

CJ 
Li:: 't?1iki 

• jtI1 	1;j 	I 
Il 

j1r! 	I 

JJr 	1;liL 
r'j' 	'h Cl 

h it I: 	![Icli 

	

i h 	H t 	I•-il • 	• 	r 
I 	 t 11 

IcidJ 
HP' 	• 

	

•' 	i 

L= 	iI 1 	q d 

	

(J 	L 

	

i1 	' j 	H i 

	

it 	I 

rJ LL 
HI 	,ç 
1. 

i_••t1 	LtL LI 	III 	1 JI 

k 	H
ir ji  

1-iL] I hp II IL 
L=HLi- 	IjUL1o 1  
•rt1 IJ 1i'jth 
L_J Dc •q I 	,. , 	, H 

IIi!;i 	1 h1  1ci.  
,-r--' 	-.I .-i,i• 	iI1 	I' 

• 	•i 	• 	•II•-i 	•1_, 	- JI 'j 	_ 	•• 	• - 
[ 

	

L 	it 

It 
ri 	rj -c nh1IJiIHrh)!i 	i 

Fig 	S. 4 	ICL layout 

288 



Chapter 8 

the area size is reduced. As each new shape is entered 

its area bead is calculated, and each area bead already 

present must be checked to see the required bead is 

present and if missing must be added to the 	data 

structure. 	The first version of the program • created the 

area bead only when required and this meant that the area 

beads were fragmented throughout the data structure and so 

many pages had to be read just to examine the area beads. 

The version actually used in the test required the 

bounding rectangle of the layout to be entered via the 

keyboard and the program then sets up all possible area 

beads before actually reading the data from the dump code 

file. This means that all the area beads are on the sane 

page or on consecutive pages in the data structure and so 

the number of pages that need to be read in are minimised 

This for areas of 1024 increments reduced the number of 

disc reads from 4650 to 20, the number of disc writes from 

1008 to 52 and the CPU time from 23 mins 14 seconds to 55 

seconds. The increased CPU time for the largest area size 

over the other large size areas is more difficult to 

explain - the reason is probably due to an optimising 

feature of the Fortran Operating System where the system 

detects that division by a power of 2 is taking place and 

does bit shifting on the number, division by any other 

number requires a normal division process which takes 

longer. The largest area size required a division by 

unity whereas all others requires a division by a factor 

of two. 1t therefore appears that unity is not processed 

as a power of 2. 

289 	 - 



Chapter 8 

The second set of measurements were of the CPU time 

and disc reads required to plot out all or part of the 

layout for various area sizes from the initial ring data 

structure created from the dump code file. The part of 

the layout plotted was a window whose bottom left hand 

corner was 1000, 1000 increments and whose top right hand 

corner was 1200,1200 whereas the bounding rectangle of the 

complete layout was 348,287, and 6678,3270. The results 

are shown in a tabular form in table 8.4 and the CPU time 

and disc reads in graphical form in figs 8.5 and 8.6 

respectively. For comparison, similar measurements for 

the original data structure without the use of areas are 

also shown in each figure. 

When plotting a full layout, the CPU time required is 

always greater than that required for the original data 

structure. This is due to the time required to process 

the area heads, 	the time taken to check if each bead is 

within the plotting window. 	However, as the size of the 

area is decreased there is a substantial increase in the 

CPU time required. This increase is due to the fact that 

the data is' fragmented, shapes within a given area are 

almost certainly not all on the same , page and so the 

respective pages must be brought into core to enable the 

data to be extracted. The shapes for another area may be 

on. the same pages but in a different order and the pages 

must be brought back in again when the next area is 

plotted. This would mean that a large number of page 

reads would be required and a corresponding increase in 
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CPU time to set up the necessary page transfers. The 

actual page reads were monitored, at the same time as the 

CPU time was measured and the number of reads substantiate 

the hypothesis. 

Plotting out a small window requires only certain 

areas to be processed. The actual areas required are the 

area 0 which contains all the large shapes and any areas 

that can contain shapes that could appear within the 

window, i.e. areas within the window and those immediately 

adjacent as described in Chapter 5. The results show that 

there is an optimum size of area for the window plotted 

that' minimises both the CPU time and the disc reads to 

plot out the window. This is due to the varying number of 

shapes within each area: if the area is large, processing 

the areas within the window and all adjacent areas can 

result in processing most of the data structure. At the 

other extreme, however, if the area is too small, most 

shapes will be too big to be associated with the normal 

area beads and must therefore be classified as large 

shapes and associated with area number 0. When plotting a 

window, area number 0 must always be processed and so for 

any window mos-t of the shapes must be processed and so 

again the CPU time and number of disc reads must again be 

high. The area size that requires the minimum of CPU time 

and disc reads must therefore lie between these two limits 

and for plotting a window of this circuit this optimum 

size is shown to be approx 512 increments square. At this 

size there is a saving of approximately 30% in the CPU 
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time and the number of disc reads compared with the 

original ring data structure. 

If most. of the interactive design time was spent 

plotting the full layout rath-er than a small window, then 

the area concept would not have been justified. 

Fortunately, most of the design time is spent plotting 

small windows and a reasonsable estimate is 90% of the 

plots are of small windows and only 104' of them are of the 

full layout. The area concept is therefore more than 

justified even on this initial area ring data structure. 

This initial data structure is arranged on the disc 

in the order in which the data was entered. This is 

almost certainly not the best order for subsequent 

processing and sothe program, GAEL8A is used to rewrite 

the data structure onto disc in a more optimum order. The 

measurements made on the initial data structure were 

repeat on this 'clean' data structure and the results are 

shown in a tabular form in table 8.5 and 'in a graphical 

form in figs 8.7 and 8.8. 

The CPU time and number of disc reads required to 

plot the full layout is considerably reduced and compares 

far more favourably with the original data structure. 

This is because the 'clean up' process ensures that all 

the shapes within a given area are written consecutively 

on the disc i.e. on the same page or consecutive pages and 

so once a page of data is brought into core the maximum 

amount of data is obtained from it. 
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I I Layout II Layout 21 Layout 31 
II ------------------------------ I 
I 	GAELIC length I 4 I 2 I 75 I 
Ilnput Language blocks I I I I 

I I I I. I 
I 	GAEL2 CPU Time I 5 I 3 I 84 I 
I. Syntax 	Checker Sacs I I I I 

I 	Dump length I 4 I 2 I 74 I 
I 	Code 	File blocks I 1 I I 

I 	GAEL3 CPU Time I 2 I 1 I 86 I 
I 	Compiler 	to 	RDS Secs I I I I 

I 	Ring Data length I 8 I 4 I 100 I 
I 	Structure 	File blocks I I I I 

I 	GAEL4 CPU Time I 3 I 4 I 154 I 
I 	Full Layout Secs I I I I 

I 	GAEL4 CPU Time I - I - I 63 I 
I 	Small 	Window Secs I I I I 

I I I I I 
I 	GAEL2A CPU Time I 6 I 3 I 65 I 
I 	Syntax 	Checker Sacs I I I I 

I 	Dump length I 4 I 2 I 74 I 
I 	Code 	File blocks I I I I 

I 	CAEL3A CPU Time I 1.5 I 1 I 74 1 
I 	Compiler 	to 	RDS Secs I I I I 

I 	Ring 	Data length I 8 I 4 1 100 I 
I 	Structure 	File blocks I I I I 

I 	GAEL4A CPU Time I 3.5 I 5 I 151 I 
I 	Full 	Layout Secs I I I I 

I 	CAEL4 CPU Time I - I - I 18 I 
I 	Small Window Sacs I I I I 

Comparison of Original GAELIC with version 
using Bounding Rectangle 

Table 8.2 

293 



Chapter 8 

I 	Area I CPU Time I Number of I Number oft Length ofl 
I 	Length I I Disc I Disc I D.S. I 
Iincrementsl rnin:secs I Reads I Writes I Blocks I 

I I I I I I 
I 	128 I 27:52 I 3574 I 1151 I 55 I 

I I I • I I I 

I I I I •1 I-. 

I 	256 1 3:42 1 53 I 88 I 44 I 

I I I I I I 

I 	
. 

I I I I I 
1 	512 I 1:35 I 30 I 63 I 41 .1 

I I I I I I 

I I I - :i: I I 
I 	1024 I :56 I 20 I 52 I 40 I 
I I I I I I 

I I f I I I I 
I 	2048 I :43 I 5 I 37 I 40 I 
I. I I I I I 

I I I .1 I I 
I 	4096 1 :37 I 0 I 32 I 40 I 

I I I I. I -I 

I I I •1 I I 
I 	8122 I :37 I 0. I 32 I 40 I 

I I I I I I 

I I I 
. 

I I I 

I 	16384 I :38 I 0 I 32 I 40 I 
I • I I I I I 

I. I I I - I I 
I 	32768 1 :39 I 0 I 32. I 40 I 

I I I I I I 

I I I I I I 
I 	Original I :30 I - I - I 40 I 

I 	D. 	S. I I I I I 

Results creating 'Initial' Data Structure 

Table 8.3 
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I 	Area I Plotting Full 	Layout I Plotting Small Window! 
ILength I--------------------------------------------- 
Iincrementsl CPU Time I Number of I CPU Time I Number of 	I 
I I Secs I Disc 	Readsl Secs I Disc 	Readsl 

I I I I I I 
I 	128 I 118 I 195 I 19 I 54 I 
I I 

1. I I I I I 
I 	256 I 100 I 198 I 14 I 41. I 
I I I I I I 

I I I I I I 
I 	512 I 71 I 125 I 9 I 27 I 
I I I I I .1 

I I I .1 I I 
I 	1024 I 80 I 137 1 17 I 57 I 
I I I I I I 

I I I I I I 
I 	2048 I 64 I 91 I 16 I 51 I 
I I I I I I 

I .  I I I I I 
I 	4096 I 56 I 50 I 19 I 50 I 
I I I I I I 

I I I I I I 
I 	8192 I 51 I 40 I 15 I 40 I 
I I I I I I 

I I I • I ..I .  ..• I 
I 	16384 I 52 I 40 I 16 40 I 
I I I I I I 

I I I I - I I 
I 	32768 I 52 I 40 I 16 I 40 I 
I I I I I .I 

I I I I I I 
I 	Original I 50 I 40 I 14 I 40 I 
1 	D. 	S. I I I I I 

Results using 'Initial' Data Structure 

Table 8.4 
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I Area 	I Plotting Full Layout I Plotting Small Windowl 
ILength I--------- - ------------I ----------------------I 
Iincrementsl CPU Time I Number, of I CPU Time I Number of I 
I 	 I 	Secs 	I Disc Readsl 	Secs 	I Disc Readsl 

I 	 I 	 I 	 I 	 I 	 I 
I 	128 	I 	62 	I 	53 	I 	11 	I 	28 	I 
I 	 I 	 I 	 I 	 I 	 I 

I 	 I 	 I 	 I 	 I 	 I 
I 	2561 	59 	1 	53 	I 	7 	I 	13 	I 
I 	 I 	 I 	 I 	 I 

I 	 I 	 I 	 I 	 I 	 I 
I 	512 	I 	58 	I 	44 	I 	5 	I 	9 	I 
I 	 I 	 I 	 :i 	 I 	 I 

I 	 I 	 I 	 I 	 I 	 I 
I 	1024 	I 	55 	I 	51 	I 	8 	I 	18 	I 
I 	 I 	 I 	 T 	 I 	 I 

I 	 I 	 I 	 I 	 I 	 I 
1. 	2048 	1 	62 	I 	50 	I 	12 	I 	25 	I 
I 	 I 	 I 	 I 	 I 	 I 

I 	 I 	 I 	 I 	 I 	 I 
I 	4096 	1 	52 	I 	43 	I 	17 	I 	43 	I 
I 	 I 	 I 	 I. 	 I 

I 	 I 	 I 	 I 	 I 	 I 
I 	8192 	1 	52 	I 	40 	I 	16 	I 	40 	I 
I 	 I 	 I 	 I 	 I 	 I 

4. 	
I 	 I 	 I 	 I 	 I 	 I 
I 	16384 	I 	51 	I 	40 	I 	16 	I 	40 	I 
I 	 I 	 I 	 I 	 I 	 I 

I 	 I 	 I 	 .I 	 I 	 I 
I 	32768 	I 	53 	I 	40 	I 	16 	I 	40 	I 
I 	 I 	 I. 	 I 	 I 	 I 

I 	 I 	 I 	 I 	 I 	 I 
I. Original I 	50 	I 	40 	I 	14 	I 	40 	I 
I 	D. S. 	I 	 I 	 I 	 I 	 I 

Results using 'Clean' Data Structure 

Table 8.5 
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CHAPTER 9: Future Work 

The GAELIC programs have been successfully applied to 

the 	design' of 	integrated circuit layouts and the 

experience gained from this has indicated several 

possibilities for future work. This work can be divided 

into three main categories. Firstly there are direct 

extensions to the GAELIC programs which enhance its 

usefulness for integrated circuit design. Most of these 

extensions such as merging two shapes containing a common 

line segment are straightforward and are implemented when 

required. 	There are some that are far more difficult to 

implement such as the provision of constraints. 	Secondly 

there are additional programs that are required which 

extend the use of the system and layout rule checking and 

mask function checking fall into this category. Finally 

there are several applications in other disciplines that 

can be met by the GAELIC software such as thin film layout 

and timber framed house design. 

9.1 Constraints 

'Often when designing an 	integrated 	circuit 	a 

situation occurs where one component or shape must be a 

fixed distance from another component. A typical, example 

is the rnetallisation over a contact hole. 	Here if the 

contact hole is moved, 	the metallisation • should 	be, 

constrained to move by exactly the same amount. The 

contact hole and metallisation however do not share the 
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same coordinates as the metal must overlap the hole by a 

fixed distance. This type of constraint was a feature of 

the original Sketchpad work and was present in the M.rconi 

Myriad graphics system. It was not, however, inserted 

into GAELIC as 

it uses a large amount of. computing power to check 

that the constraints are not being violated and 

poses problems of how the constraints should be 

satisfied. 	Take for an example the contact hole and 

metallisation shown in fig. 	9.1. 
E 

u 
B FT 

Fig. 9.1 Movement of Netallisation with Constraints. 

If the contact hole is moved from 'A' to 'B' then the 

program is faced with the problem of whether the 

metallisation should be stretched along line CD or along 

line EF. The answer depends on the other components in 

the circuit and writing computer programs to solve this 

problem is a separate piec.e of research work. 
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9.2 Layout Rule checking 

The semiconductor manufacturers always produce a set 

of 'layout rules' for each integrated circuit process.. 

These specify the minimum and maximum dimensions that are 

allowed on the masks. For example, the rules will specify 

that minimum width for a particlar diffusion track is so 

many units or that one shape cannot be closer than a given 

amount to another shape on the same diffusion. Returning 

to our example with the contact hole and metallisation, 

the metallisation must always overlap each contact hole by 

a fixed quantity. These checks can obviously be done 

• efficiently by the computer and the GAELIC ring data 

structure is an ideal way of holding the necessary layout 

description. Previous work on this problem has produced 

•  programs that require a great deal of computer time to run 

because all the data must be searched over and over again. 

The area association used in GAELIC means that only 

certain areas and consequently only certain parts of the 

data' structure need be examined. One of my colleagues at 

the University of Edinburgh is at present working on a 

program using the GAELIC ring data 'structure and the 

results appear extremely promising. 
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9.3 Mask Function Checking 

The layout rule checking just discussed will tell the 

designer that he has two shapes too close together or that 

he hasa contact hole with no metallisation covering it. 

Fiowever,it will not tell him that it is the wrong 

metallisation over the contact hole and that the circuit 

cannot possibly work. This requires another type of 

program that is more concerned with the function of the 

circuit produced by the masks and is consequently called 

'mask function checking' 

The problems associated with mask function checking 

are quite complex. Attempts have been made to feed in the 

electrical description o.f the shapes at the same time as 

their topological description. Unfortunately this does 

not necessarily mean that the electrical data is correct. 

Mistakes could he made when entering the description that 

are not detected and so although a program checking the 

layout will predict that it will work,. the actual circuit 

may not. It is therefore imperative that the electrical 

description must be extracted automatically from the 

layout description. There are so many different 

integrated circuit components available that to search 

through all the shapes trying to decide if they form 

resistors, capacitors or transistors etc. would take far 

too much computer time. A method must be found where the 

user does not enter the electrical description per se, nor 

does the computer have to work everything out for itself. 
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A possible solution to this problep 	is to run an 

interactive program where the user tells the computer wFat 

component he thinks is formed by a series of shapes -and 

the computer checks if it is true. The computer only 

checks if the shapes form one particular components ie. 

does not have to try all possible components nor does the 

users data have to be perfect. It also has the advantage 

that the user can restrict the range of data search by 

specifying that thee component lies between certain 

tological limits. 	For example he could indicate that 

CFie emitter, base and collector terminals of a transistor 

are at coordinates xl,yl 	x2,y2 etc. 	Again the area 

association of the GAELIC data structure 	can 	save 

considerable computer time. 

Another problem that has to be solved is how does the 

computer check that it is the correct circuit. At first 

sight it would appear that the answer was to draw out a 

circuit diagram and let the user check it against. his 

original diagram. However, there are two objections to 

this. There are stray components that would not have been 

specified in the original diagram which would make the 

circuit appear different. There is also the more 

fundamental problem of programming the computer to draw 

out the circuit diagram in the same style as the original 

circuit diagram Flow many of us have looked at a circuit 

in a book for several minutes before realising that it is 

a common circuit just drawn to a different convention? A 

possible solution to this problem is to derive the input 

305 



Chapter 9 

data for a transient analysis orlogic simulation program 

from the description of the layout -in the ring data 

structure. The test sequence that will be used on the 

final circuit is then applied to the appropriate input 

terminals and if the response is identical with the 

required response from the finished circuit, then the 

layout is correct or an alternative layout has been 

designed. This does obviously rely on the test sequence 

being correct which is a problem in its,own right. 

Another colleague at the University of Edinburgh is 

now working on this problem of 'mask function checking' 

9.4 Automatic Layout 

For the reasons outlined in Chapters 1 and 2, 	it is 

extremely 	difficult to write fully automatic layout 

programs. For some time to come, therefore, it will be 

essential for the designer to manually interact with any 

attempted automatic layout design. This manual 

interaction can obviously be carried out using GAELIC. 

One approach to the automatic design problem that 

merits further investigation is to use the approach of 

Radley of placing the component and then placing all the 

metallisation associated with that component. However, 

the components should not be assmall as transistor 	or 

resistors rather gates and flip-flops. 	These can be 

predesigned (again using GAELIC) or just an estimate of 
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the required area of silicon given. 	The program can then 

allocate the required shape or the required area. 	The 

required area can be some of the space between existing 

components and the user can then use GAELIC to design the 

actual component to fit in the alloted spaces 

The other approach is to use entirely predefined 

components and to use a centre of gravity algorithm to get 

a placement. However, the routing is done first and so 

the component sizes are increased to take account of the 

space required by the interconnections. 

Another feature that should be exploited in any 

automatic design program is that certain interconnections 

in the actual circuit must be extremely low impedance, 

while others can be quite high impedance without upsetting 

the performance. This information must be fed to the 

computer in order to decide on where crossovers must be 

placed. 

Research work is being carried out using 	this 

approach by the C.A.D. Project at Edinburgh University. 

9.5 Stand Alone Computers 

The GAELIC programs can be run on smaller stand alone 

computers such as the PDP11, the Nova 1200 and the Modular 

1. The computer must have a Fortran compiler, must have 

discs and must be capable of handling the Tektronix 

terminals. There should be at least 24k of core store, 
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preferably 32k to avoid problems with overlaying, and it 

is desirable to drive the Tektronix at 9.6KBaud or faster. 

The advantages of using a standalone computer are 

that the time-sharing delays while the computer 

services other users are removed completely, 

the Tektronix can be driven at its maximum speed 

ie. 	9.6KBaud or above, 

the discs can have fixed heads giving a much 

faster transfer rate and 

it may well be cheaper. 	If the program is to be 

used to design more than six large integrated circuits a 

year then the economics indicate that a 	standalone 

computer is cheaper than using a commercial time-sharing 

company. 

There are disadvantages using a standalone computer. 

There has to be a certain amount of reprogramming to allow 

for the shorter word length. With the size of integrated 

circuits being produced nowadays a 16 bit word is not 

capable of holding the complete range of addresses 

required 	for 	the data structure. 	Often there are 

restrictions in the Fortran compilers where certain 

standard functions are not implemented and the standard 

disc handling routines supplied by the manufacturer are 

far from optimum for this type of application. 

The first version of 	GAELIC 	has 	been 	fully 

implemented on a Modular 1 computer by Smith's Industries, 

Cheltenham and been used to design integrated circuits for 
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at least two years. The final version of GAELIC has been 

implemented on a P.D.P.11/40 but has not been extended to 

cater for double word addressing. 

9.6 Refresh Graphics 

There is no reason why the GAELIC programs cannot be 

used with a refresh graphics terminal and a stand-alone 

computer. There will be the problems of flicker described 

in chapter 6 and this will put a limit on the size of 

picture that can be displayed. Most of the wor-k on 

integrated circuit design is done with a small window but 

occassionally the whole layout is required and this 

creates severe problems. 

The area association in the GAELIC data structure 

will considerably reduce the time required to regenerate 

the display file although a lot of work will have to be 

done if a light pen is to be used to feed back information 

from the graphics terminal to the ring data structure when 

components are moved etc. If a tracking cross controlled 

by a tracker ball is used then the amount of new 

programming is minimised. * 
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9.7 Layout Design with Automatic Rule Checking 

The minimisation of the search time brought about by 

the area association of the data structure means that it 

should be possible to write a version of GAELIC that 

checks each component as it is entered or modified to 

ensure that it does not violate the layout rules. Using a 

data structure without area association would mean a 

search through the compete layout each time that a shape 

was moved or entered and could not he done in a reasonable 

time. The time taken to interact would be so slow that 

the system would not be usable. 

The cost of using GAELIC on a commercial time-sharing 

computer is relatively high at the moment. Increasing the 

amount of computing done at each stage may make it too 

expensive too use However, it is nevertheless a 

practical possibility on a standalone machine. 

9.8 Thin Film Circuit Design 

The ability to move components around and to add 

interconnections between them is obviously desirable when 

doing thin film circuit layout design and there is 

obviously a use for GAELIC here. There is also a problem 

of designing accurate thin film that can be considerably 

simplified by the use of. the computer. Designing a 

resistor by hand to go into a given area involves a great 

deal of drawing a meandering resistor and the counting 
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squres to see if the value is correct. 	Realising this 

problem, a student was employed during a summer vacation 

to work on this problem and under the author's direction 

wrote a program to automatically design a given value. 

resistor on been given its value and bounding rectangle. 

A typical design is shown in fig 9.2: the design is coded 

up in the GAELIC manual input language and can then be 

placed in the required position using the GAELIC programs. 

The author is currently extending the work on thin 

film layout design on an S.R.C. grant. 

9.9 Timber Framed House Design 

This work resulted from the author's desire to design 

a house to be built on a plot of land he had purchased. 

Timber framed houses are constructed from a selection of 

mass produced timber frames. Certain standard designs are 

produced by the timber frame manufacturers but there are 

no substantial reasons why the frames cannot be used to 

construct individually designed houses. The designer need 

only know the types of frames available, the sizes of roof 

trusses that can be used and the positions of any load 

bearing walls and he is in a position to do his own 

designs. The GAELIC suite can be used to advantage here 

by setting up a library of standard frames and then 

interactively calling them up and positioning them on the 

Tektronix screen. The frames can be coded in the computer 

so that the actual frame dimensions are stored on one 
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layer and the overall dimensions stored on another layer. 

The timber frames are first drawn on the screen to ensure 

that they fit together correctly and then the other layer 

can be displayed to show the actual plan. The plan is 

then be plotted out on the Calcomp 563 plotter at the 

correct scale for submitting to the local 	planning 

authority. 	A similar process is employed to obtain the 

elevations. Examples of the plan and elevations of a 

bungalow are shown in figs. 	9.3 and 9.4. 
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CHAPTER 10: Conclusions 

This final chapter contains a brief discussion on 

whether the requirements for a computer aided mask design 

system were sound and whether they were met by the GAELIC 

programs. - 

10.1 Were the requirements sound? 

The overall objective of the work was to produce a 

suite of computer programs that would assist in the 

production of integrated circuit masks. 	There were two 

possible methods of approach; 	the first was to write a 

suite of programs that would remove as much of the tedious 

repetitive work from the design cycle as possible, leaving 

the designer free to concentrate on the actual process of 

designing. The second was to write programs that 

automatically designed a layout on being given a schematic 

diagram of the circuit. 

This second approach was rejected for four reasons: 

The problems of writing such programs are severe and 

any 	proposed 
	

solution 	cannot be guaranteed to he 

succesful. 

The programs would not allow for any variations in 

design technique as any new design ideas would take months 

to implement. 	T he programs would therefore be continually 

out of date. 

The designer is not going to be responsive to a 
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program that threatens to make him redundant. 

4) The designer can always stop during his design process 

when he realises that a new situation has occured and 

think how to get round the problem. The computer, on the 

other hand, will continue to work the way it has been 

programmed, regardless of the consequences. 

It was decided to adopt the first option where the 

designer is still in charge of the design. Since that 

decision all the British semiconductor manufacturers and 

most of the equipment manufacturers use this approach. 

None of them use fully automatic programs. The overall 

requirement was therefore extremely sound. 

The decision to write a portable set of programs 

rather than a set of programs for a specific computer is 

open to slight doubt. At present GAELIC is the only suite 

of layout design programs that is running on a commercial 

time-sharing service and so is unique in this respect. It 

provides the opportunity for equipment manufacturers and 

educational establishments to try designing their own 

integrated circuits with a minimum capital cost. From a 

commercial point of view, however, it can be argued that 

this was not the correct decision as the integrated 

circuit manufacturers have all chosen ' turn-key' systems 

on mini-computers. However these systems were produced by 

very large teams of hardware and software engineers. It 

has been reported, for example, that Applicon have a team 

of 80 programmers working on their software. It would 

have been impossible to compete with that sort of backup. 
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GAELIC can be mounted on mini-computers as discussed in 

Chapter 9 and so can be used as a turn-key system. 

The choice of the Tektronix storage tube terminal for 

the interactive part of the program was sound as it has 

enabled the software to remain extremely portable. It 

also allows the largest of integrated circuits to be 

displayed without flicker. Most of the successful 

'turn-key' 	systems use the storage tube display, usually 

with special interface hardware. 

10.2 Were the requirements met? 

The original GAELIC software has been in use at 

Smith's Industries at Cheltenham for several years now and 

produced a large number of successful integrated circuit 

designs. The Wolfson Unit have used the original version 

to design the correlator discussed in Chapter 2 and have 

used the latest version to design another two large 

integrated circuits. The correlator design was so 

successful that working samples were obtaind from the 

first batch of circuits produced and it has not been 

necessary to make any changes to the masks. This 

achievement is mainly due to the skill and patience of the 

designer but is nevertheless partly due to the ease with 

which the layout could be changed during the design phase. 

The two remaining designs are complete and are awaiting. 

mask making. 
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The Post Office Research Establishment are currently 

using the latest version of GAELIC to design a variety of 

integrated circuits on a commercial time-sharing service 

and the Royal Radar and Signals Establishment are also 

using it for the design of charge coupled devices. 

The overall requirements have without doubt been met 

and GAELIC has proved itself a commercially viable system. 
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APPENDIX 1 The variation of overall yield with die size 

There are, two main factors that effect the yield of 

an integrated circuit slice. The first is the number of 

complete die it is possible to get from the slice and the 

second is the number of the die that are perfect. Let us 

consider the effect of the yield on the number of perfect 

die that can be obtained from a given process. 

Assume that for a given process the yield of die 

100thou by 100thou is 50%. The probality of any one 

complete die being perfect is 0.5. If a 200thou by 200thou 

die was made using the same process then the probability 

of the top right hand quarter being perfect is 0.5, the 

probability of the top left hand quarter being perfect is 

0.5 etc. The probability of the total die being Perfect 

is the product of the probabilities of the quarters being 

perfect ie, 

05 * 0.5 * 0.5 * 0.5 = 0.0675 

This can be expressed more generally. 	If 	the 

probability of a die of area A being correct is Pa, then 

the probability of a die of area B being correct is Pb, 

where Pb is given by: 

Pb = Pa ** (B/A) 

where ** represents raised to the power of. 

The total number of perfect die is therefore the 

maximum number of die possible times the probability that 

each die is perfect. It therefore is essential to 

calculate the maximum. number of die possible. 
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Appendix 1 

Calculating the number of complete die that can be 

obtained from a slice is relatively straightforward. 

However it must be remembered that the number of die 

possible not only depends on the size of th.e die and the 

size of the slice, but also on the positioning of the 

scribe lines between the die and the diameters of the 

slice. Consider the three slices shown in fig. 1. 

Figure 1 Possible complete die 

The first slice (a) has the die positioned so that 

the scribe lines are coincident with the diagonal in both 

directions and results in four complete die. 	The second 

slice (b) 	has the diagonal exactly half way between the 

scribe lines in both directions and results in, five die. 

The final slice has its diagonal coincident with the 

scribe line in one direction and half way between the 

scribe lines in the other direction and this results in 

eight die. 

Fig 1 shows the three possible combinations on a 

square die, if the die is rectagular, there are four 

possibilities as slice (c) can be in two forms with either 

the long or the short gide being coincident with the 
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diagonal. 

A computer program was written by the author which 

calculates the cost of producing an integrated circuit of 

a given size compared with the cost of producing a circuit 

lOOthou square for a given size of slice. The program 

calculates the number of complete lOOthou square die from 

the given size of slice and from the given yield finds the 

number of good die per slice. The cost of producing a 

slice can then be found assuming that it costs one unit to 

produce one perfect lOOthou square circuit. The number of 

complete die of the size entered can then be calculated 

and hence the number of good die per slice. The cost of 

producing a single die is then calculated from the cost of 

producing a slice. 

This work was done in conjunction of B.R. 	Kirk of 

General Instruments, Glenrothes, 	Fife who checked the 

results against the actual yields obtained for various die 

sizes and found extremely good correlation. 
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APPENDIX 2: 	The insertion of beads into the 	group 

definition ring 

In order that the bounding rectangles of the group 

definitions can be correctJyconiputed, it-essential that 

the beads on the group defintion ring are in a specific 

order. For example let us consider the definitions of two 

groups A and B where the definition of B contains an 

instance of A. It is necessary that the bounding rectangle 

of A is calculated before the bounding rectangle of B. 

This is simply done by ensuring that the definition bead 

for A preceeds the bead for B on the group definition ring 

and computing the bounding rectangles in order. 

Unfortunately, one of the features of the GAELIC 

language is that it does not restrict the order in which 

the group definitions are entered. The defintion of B 

could therefore easily preceed that of A. The program that 

creates the ring data structure •th'refore must arrange the 

definitions in the correct order and this is done by an 

integer function called 'ISKGRP'. 

Let us consider the problem in a little more detail 

by taking as an example the definitions of groups A - I 

which are structured as shown in fig. 1. 
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A 	 C 	 I 

/\• 	./\ 

B 	1) 	E 	C 	B 	G 

E 	F 	1-I 	'E 	F 

Fig. 1 GrOup structure for example 1. 

Here the definition of group A contains calls to 

groups B and D, the definition of B contains calls to E 

and F etc. If we assume that these definitions are 

entered into the computer in alphabetic order, then the 

order of the group definition beads on the ring must be 

continually changed as shown in fig 2. 
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Order of 	beads Notes Data 	entered 

A Definition of A 

BA  Call 	to 	B in def of A 

BDA or DBA  Call 	to 	D in def of A 

BDA Definition of B 

EBDA Call 	to 	E in def of 	B 

EFBDA Call 	to 	F in def of 	B 

EFBDAC [3) Definition of C 

EFBDAC Call 	to 	C in def of 	C 

EFBDAGC Call 	to 	G in def of 	C 

EFBDAGC Definiton of D 

EFBDAGC Call 	to 	F in def of 	D 

EFBIIDAGC Call 	to 	H in def of D 

EFBFIDAGC Definition of E 

EFBHDAGC Definition of F 

EFBI1DAGC Definition of C 

EF'BHDAGC Definition of H 

EFBHDAGCI Definition of I 

EFBRDACCI Call 	to 	B in def of 	I 

EFBHDAGCI Call 	to 	G in def of 	I 

Fig 2 Ordering of Definition Beads 

Notes 

[1) If a group call is encountered before the actual-

definition, the definition bead must be inserted into the 

ring and it is sensible therefore to insert it before the 

bead o.f the calling definition. 

[2] A bead created for the second group call in a 
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definition can be placed immediately before that of the 

calling definition or at the beginning of the ring. As 

the definition of the second group call can contain calls 

to other groups, the former position ie. immediately 

before the calling definition bead is prefered. 

[31 A definition of a group that has not previously been 

called can contain calls to other groups and so it is 

better to insert it at the end of the ring rather than at 

the beginning. 

From fig 2 and the notes, several rules can be 

derived for the insertion of definition beads into the 

group definition ring. 

Actual definitions cf groups must have the definition - 

bead inserted at the end of the ring. 

Group calls within another group definition must have 

their definition bead inserted before the bead for the 

definition containing the call. 

3)' Group calls within the main definition must have their 

definition head inserted at the end of the ring. 

The last rule is open to discussion but there is a 

greater probability of a definition called in the main 

definition containing calls to other definitions than 

there is of a definition called from another definition. 

It would, perhaps, be better to insert it in the middle of 

the ring between the definition beads set up because of 

group calls appearing in the input data and those set up 

because of the actual definitions appearing. This, 

however, is extremely difficult to do and so. there only 
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remained the choice between the beginning and the end of 

the ring. 

The above rules only apply when the definition bead 

is to be added to the group definition ring. If the 

actual definition or a call to the particular group has 

already been entered, then the definition bead will 

already be present on the ring. Wheu this is the case it 

is sometimes necessary to move the definition beads on the 

ring to ensure that they remain in the correct order. For 

example consider the structure of groups shown in fig 3 

which assuming that the definitions are again added in 

alphabetic order, gives the order of beads shown in fig 4. 

/\ 

D 	E 

/\ 

A 	C 

/ 

D 

Fig. 3 Example of more complex group structure 
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Order of beads Notes Data 	entered 

A Defintion of A 

DA Call 	to 	11 in def of A 

DFA Call 	to 	F in def of A 

J)FAB Definition of B 

DFAB [1] Call 	to 	D 	in def of B 

DFAEB Call, to 	E 	in def of B 

DFAEBC Definition of C 

DFAEBC [2] Definition 	of D 

DFAEBC Definition 	of E 

DFAEBC [3  Call 	to 	A in def of E 

DFABCE  Call 	to 	C in def of E 

DFACEB  Previous 	call to E in B 

Fig. 4 	Ordering of group definition beads 

Notes 

Definition bead for D was already present and was 

positioned before the bead for B so no reordering was - 

necessary. 

Definition bead for D was already present when actual 

definition entered so again no reoredering was necessary. 

Also the definition of D did not contain any calls to 

other definitions so again no reordering was required. 

The actual, defintion of E contained a call to A but 

as the definition bead for A was already present on the 

ring before the bead for E no reordering was necessary. 

The call to C in the definition of E causes problems 

as the bead for A is present but is after the bead for-E. 

d 
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The decision to move bead.E is discussed later. 

[5] There is a call to E in the defintion of B and so the 

bead for B must be moved to immediately after the bead for 

E. The defini tion of B is not called from other 

definitions and so the order is now correct.. 

When a call to a group with an existing definition 

head is entered in a group definition whose bead also 

exists, there is always the possibility of the beads being 

in the' wrong ordereg'. note [4] in fig 4. There are two 

possible ways of correcting the order of definition beads 

on the ring. 	The first method is to move the calling 

definition ie. 	the bead for E and the second is to move 

the called definition bead ie. 	the bead for C. The latter 

move would have the solved the problem immediately in our 

case, 	as there would be no conflict in the positions of 

the beads for B and E. However, there are often 

circumstances when moving the called definition causes 

problems with definitions that it calls and so checks must 

be made. To check if a definition contains calls to other 

groups, all the area beads, all the mask beads and all the 

shape beads must be checked. However, to check if the 

calling definition is called from other definitions only 

the beads on the instance ring are examined, a much faster 

operation. It is therefore preferable to move the calling 

definition, in our case the bead for E. 
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It should be noted that it is only when a group call 

is entered as part of another group definition that the 

problems occur. 	If the group call is part of the main 

definition, 	it doesn't matter where the defintion bead is 

situated. When the definition itself is being entered 

then its position is not critical until the group calls 

arrive. 

This situatio.n with the beads already on the ring 

gives a fourth rule to be added to the list: 

4) If both definition beads are present when a call to 

one definition is entered as part of the definition of a 

second definition, then the bead for the second defintion 

must he moved so that it is after the first definition. 

Any definitions calling the second definition must also be 

moved if necessary." 

These rules are incorporated into 'ISKGRP'. 
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APPENDIX 3: Newton's digitiser coordinate transformation 

Newton assumes that because of distortion the paper 

will 	appear as an unequal sided quadrilateral when 

measured with the digitiser. 	The result is shown in fig 

1. 

C. 

I 
R 

B 

Fig. 1 Distorted paper on digitiser 

The digitiser coordinates of the corners of the paper 

are xa, 	ya; 	xb, yb; 	xc, yc and xd, yd. 	The digitiser 

coordinates of the point P are xp, yp. The object of the 

algorithm is to calculate the paper coordinates of the 

point P ie. Xp, Yp. 

Method 

Straight lines QS and TR are drawn on the paper so 

that they pass through the point P and are parallel to the 

paper axes ie. QS is always Nx of the paper width away 
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from the left hand side and IR is always Ny of the paper 

height away from the bottom of the paper. 

Therefore, for point P 	the 	equations 	for 	Nx 	and 	NY 

can 	be 	shown 	to be of 	the form: 

A..Nx'2 + B.Nx ± C = 0 

and 	 - 

D.Ny'2 + E. NY + F = 0 

Where A, B, C, D, E and F are functions of the point P. 

These give two roots for Nx and two for NY; 	the 

correct roots are. those which cause the point P to lie on 

the paper.  

The digitiser coordinates of Q are xa + Nx.(xb-xa), 

ya ± Ny. (yb-ya) 	and those for S are xd + Nx. (xc-xd) 

Yd + Ny.(yc-yd) 

Now the equation for a line through two general point 

xl, yl and x2, y2 is: 

y.(x2-xl) = x.(y2-yl) + (x2.yl-xl.y2) 

Therefore the equation of QS is: 

y.(xq-xs) = x.(yq-ys) + (xq.ys-xs.yq) 

i.e. 

y.[xa+Nx.(xb--xa) - xd - Nx.(xc -- xd)J 

x.[ya+Nx.(yb - ya) - yd - Nx.(yc - yd)) 

+[(xa+Nx.(xb-xa)).(yd+Nx.(yc--yd)) 

-(xd+Nx. (xc-xd)) . (ya±Nx. (yb-ya))J 
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i.e. 

y.[xa-xd+Nx.(xb-xa-xc+xd)I' 

x.[ya- yd+Nx.( -- ya+yb.-- yc+yd)J 

±[(xa+Nx. (xb-xa)) . (yd+Nx. (yc-yd))J 

-[(xd+Nx.(xc-xd))(ya+Nx.(yb--yd))] 

This line passes through the point P, therefore 

yp.[xa-xd+Nx.(xh-xa-xc+xd)] 

xp.[ya - yd+Nx.( - ya+yb - yc+yd)] 

+[(xa±Nx.(xb-xa)) . (yd+Nx. (yc-yd))] 

- [(xd+Nx. (xc-xd) ) . (ya+Nx. (yb-yd))] 

Rearranging in terms of Nx2, Nx, etc. 	we get 

Nx 2 .[(xb - x) , (yc - yd) - (xc - xd).(yb - ya)J 

+Nx. [-yp.(-xa+xb-xc+xd)+xp. (-ya±yh-yc+yd) 

+xa.(yc-yd)+yd.(xb-xa)-xd.(yb--ya)-ya.(xc-xd)] 

+[xp.(ya-yd)-yp.(xa-xd)+xa.yd-xd.ya] = 0 

i.e. 	 A.Nx2 ± B.Nx + C = 0 

where: 

A = (xb-xa).(yc-yd)-(xc--xd).(yb--ya) 

B = xp.(-ya+yb-yc±yd) + yp.(-xa+xb-xc+xd) 

+ xa.(yc.-yd)+yd.(xb-xa)-xd.(yb-ya)-ya.(xc--xd) 

C = xp.(ya-yd) + yp.(xa-xd) + xa.yd-xd.ya 

This equation can be solved for given values of xp 

and yp to give values for Nx. These values are used to 

give values for Xp. 
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A similar treatment, gives the equation for line TR 

which can be solved to give an equation for Ny of the 

form: 

1LNy2 + E.Ny + F = 0 

This can be solved to give values for Ny and hence values 

for Yp. The values of Xp and Yp chosen are those which 

cause point P to lie on the paper. 

Note that the B, C, E and F have to be calculated for 

each point digitised as. they depend onxp and yp. 
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APPENDIX 4: Simple digitiser coordinate transformation 

The method assumes that the paper distortion, is 

restricted to different scaling in the x and y directions 

and the paper being fixed to the digitiser at an angle as 

shown in fig 1 

XP 
Yo 

Fig 1 Distorted paper on digitiser 

The problem to be solved is the same as before. 

Given the digitiser coordinates of the corners of the 

paper ie. xa, ya; xb, yb; xc, yc etc. and the length L 

and height H of the paper in pape r coordinates, find the 

paper coordinates of a point 1?, ie. Xp, Yp, whose 

digitiser coordinates are xp, yp. 
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He thod 

Draw horizontal and vertical lines through P to cut 

the edges of the paper at Q, R, S and T as shown in fig 1. 

The paper coordinates of Q, R, S and T, ie. Xq, Yq, Xr 

etc., are found in terms of the digitiser coordinates of 

the corners and the point P and the length and height of 

the paper. The paper coordinates of the point are then 

calculated from the intersection of the two lines QR and 

TR. 

By similar triangles: 

(xp-x) /(xh-xa) = Xq/L 

ic. Xq - L. [(xp-xa)/(xb-xa)J and Yq = 0 

and 

(yp-yb)/(yc-yb) = Yr/H 

in. Xr = L and Yr = H. [(yp-yb)/(yc-yb)J 

(xp-xd) /(xc-xd) = Xs/L 

ie. Xs = L. [(xp-xd)/(xc-.xd)J and Ys = H 

(yp-ya)/(yd-ya) = Yt/H 

ie. Xt = 0 and Yt = H. E(yp-ya)/(yd-ya)} 

Line QS -has the equation: 

(X-Xq) /(Xs-Xq) = (Y-Yq) /(Ys-Yq) 

but Yq = 0 and Ys = H, therefore 

and 

and 
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Appendix 6 

(X.-Xq)/(Xs-Xq) = Y/H 	 - 

or 

Yp. = H. [(X-Xq)/(Xs--Xq)1 	 - (1) 

Line TR has the equation: 

(X-Xt)/(Xr-Xt) = (Y-Yt)/(Yr.-Yt) 

but Xt = 0 and Xr = L, therefore 

X/L = (Y--Yt) /-(Yr--Yt) 

1ii 

X = L. [(Y-Yt)/(Yr-Yt)J -- ------- ( 2 ) 

Lines QS and TR intersect at point P and therefore 

substituting (2) into (1) weget: 

Yp.(Xs-Xq) = H. [L.(Yp-Yt)/(Yr-Yt)-Xq) 

Yp.(Xs-Xq).(Yr-Yt) = H. [L.(Yp-Yt)-Xq.(Yr-Yt)J 

Yp.[(Xs-Xq).(Yr - Yt) - H.L] 	-H.[L.Yt-Xq.(Yr - Yt)) 

Yr= [H.(L.Yt+Xq.(Yr-Yt)]/[H.L-(Xs-Xq).(Yr-Yt)] 

Similarly substituting (1) into (2) we get: 

Xp.(Yr-Yt) = L. [H. (Xp-Xq)/(Xs-Xq)-YtI 

Xp.(Yr-Yt)..(Xs-Xq) = L.[Ei.(Xp-Xq)-Yt.(Xs-Xq)1 

Xp.[(Yr-t).(Xs-Xq)-L.HJ = -L.[H.Xq+Yt.(Xs-Xq)] 

Xp = [L.(H.Xq+Yt.(Xs-Xq)]/[H.L-(Xs-Xq).(Yr-Yt)) 
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