.The design of an interactive computer system

for microelectronic mask making.

o J D Eades

Thesis presented for the Degree of Doctor of Philosophy of

the University of Edinburgh in the Faculty of Science, December 1876

I declare that the work described in this thesis
is entirely my own except where the appropriate
- acknowledgements are given in the text. I also declas
that the work has not previously been submitted as par

of a higher degree thesis.

J D Eades

O

30150 004057045

Acknowledgements

The research work for this thesis was started in the Wolfson
Microelectronic Liaison Unit in the Department of Electrical Engineering
of the University of Edinburgh. It was continued in *he Computer Aided

Design Project in the Department of Computer Science.

The initial computing facilities were provided by Systemshare Limited,
"an Edinburgh based fime-shari.ng company, and were financed by the
Wolfson Unit. Subsequent computer facilities were financed by the

Science Research Council with grant number B/SR-8874.

My thanks are due to my supervisors for their source of constant
encouragement and for their useful advice and constructive criticism.
My thanks also gb to the other members of both the Wolfson Unit and the
CAD project for useful discussions on the projects objectives and |

“.requirements.

CONTENTS

‘-

- Summary:

Acknowledgements

.Chapter 1: Introduction

1. The -reason for GAELIC

poet = =
N

Guide to theeis.

Ch er 2: Mask design
Methods of producing mask masters
Mask design methods
Possible computer aids to mask design
3. 1 Automatic methods
3.2 Batch methods
3. 3 Interactive methods
Computer programs available
4 1 REDAC systemn
.2 CAMP systen
4 3 MARCONI system
4.4 Subsequent systems APPLICON and CALMA
Requirements of a mask design systen

P

2.
2.
2.

t
1
2
3
2.
2.
2.
A
2.
2.
2.
2.
5

2.

Chapter 3: The use of GAELIC in mask design
3.1 Data input
3.1.1 Digitiser input
3.1.2 Manual input
3.2 Plotting and modification
3.3 Post processing

Chapter 4: Data structures

4 1 The need for a data structure
.2 Possible data structures
.3.CAMP data structure
.4 MARCONI data structure
.5 Later data structures

-L\-L\-L\

Chapter 5: GAELIC data structures
5.1 Original sequential data structure

5.2 Initial ring data structure
5.3 Final ring data structure
5.4 Paging the data structure

Chapter 6: Graphical input/output
6.1 Refresh C.R.T. .
6.2 Storage C.R.T.

6.3 Plotters

The design and manufacture of integrated circuits.
Possible corputer aids to integrated cicuit design

<

Centents

>

(o) 3o N« W @) Ne)}
» s -
R ~NO

Light pen

Tracker ball

Rand or Sylvania tablet
Tektronix 4010 terminal
Graphics software

Chapter 7: Program description

7.1

~N OV BN

NN N N
.

General philosophy
Digitiser program
Syntax checker
Compiler
Interactive progranm
Plotter program
Post processors

Chapter 8: Performance

8.1
8.2
8.3

Initial sequential data structure
Initial ring data structure
Final ring data structure

Chapter 9: TFTuture work

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Constraints

Layout Rule Checking

Mask Function Checking
Stand~Alone Computers

Automatic Layout

Refresh Graphics

Layout Design with Automatic Rule
Thin Film Circuit Design

Timber Framed House Design

Chapter 10: Conclusions

10.1

Were requirements sound.

10.2 Were requirements met.

References

Checking

Appendix 1: Effect of integréted circuit size on yield

. Append

Append

Append

.and cost

ix 2: The insertion of beads into the group

definition ring

ix

EXNY

Newton’s digitiser coordinate transformation

ix 4: Simple digitiser coordinate transformation

SUMMARY

This thesis describes the development of a suite of
computerlprograms that assist in the design aﬁd preduction
of integrated ciréuit layouts. The suite is calied GAELIC
which 1is an acrconym for Graphic Aided Engineering Layout

of Integrated Circuits.

~The purpose of the suite is to provide an efficient
interactive facility for designing integrated <circuit
layouts that can run on a variety df computers and
requires the minimum of cépital expenditure. GAELIC,
consequently, is the first integrated <circuit design
facility to work on a time-shared computer and in order‘to
do this efficiently, the data 1is stored on disc using

several novel features.

The first chapter introduces the préblems of mask
design and manufacture and why computer aids are required.
The second expands on the ‘possible computer aids and
describes the présently available prograns. Chapter 3
describes how GAELIC can be .used to design masks and
Chapter 8 evaluates its'performance. Chapters 9 describes
the future work that is possible using GAELIC and Chapter
10 contéins the conclusions. The internal details of the
program are given in Chapters 4, 5 and 7 and the factors

involving the choice of graphics hardware is discussed in

Chapter 6.

Chapter l: Introduction

1.1 The reason for GAELIC

in 1969 the Department of Electrical Engineering at
the University of Edinburgh were avarded a grant by the
Wolfson Foundation to set up the Wolfson Microelectronics
"Liaison Unit. The main aim of the Wolfson Unit, as it is
usually called, was to encourage indus;ry to use the new
microelectronic technologies 'to build their equipment
instead of descrete components. In order to do pﬁis
efficiently, it was essential that the unit staff were
experienced in these neQ technologies. The Unit
consequently set up a small pilot production facility for

the manufacture of thin film and hybrid circuits enabling

the staff to get the required experience. However,
obtaining the necessary experiencé of the various
integrated technologies was more difficult for two

reasons. Firstly, it was not economic toiset up a pilot
production facility: secondly integrated circuits are an
order of magnitude more complex than film or hybrid
circuits. It was therefore decided to coﬁcentrate on.thé
~circuit and . layout design and use the production
facilities of existing semiccenductor .manufacturers to
fabricate any integrated circuits designed. As it was
intended to - desjgnHAnﬂyz one or two circuits each year,
special étaff could not be employed to produce the artwork

etc. and so the layout design had to be done by the

Chapter 1

existiﬁg'staff in addition to their normgl duties. It was
therefore essential to have as many computer aids as
possible to speed up thevdesign cycle. The autho; was
employed initially by the Wolfson Unit to pfovide these
aids gnd this thesis is a description of the research work
involved in the development of the resultant suite of
programs. The programs are known collectively as GAELIC,
the name being an acronym for Graphic Aided Engineering

" Layout of Integrated Circuits.

1.2 The Design and Manufacture of Integrated Circuits

The starting point for the design of an integrated.
circuit is the specification of the system to be
implgmented, as one or more integrated. circuits and
‘proceeds through several stages until the tested cicuits
are supplied to the custonmer. The flow diagram for a
logic system 1is shown in fig. 1.1 éﬁd this will be
discussed in detaii. A similar flow diagram exists for

linear systems.

Chapter 1

Decide on I/C technology i

|
'
'
bt e e e s r s e m P e m mm - = =]

Do system design

Partition logic into chips

Perform logic design

Generate test sequence

Design layout of individual

logic components

Design layout of complete chip

Produce masks for chip

o o m e m e . - ————)

et e = - e e e e e e o -

Test integrated circuits

Fig.'l.l Flow diagram for integrated circuit manufacture

Chapter 1

The first problem is te decide on the techuology to
be used. Factors that havé to be taken into consideration
at this stage include the maximum power consumption and
the speed of operation. Low power . consumption will
require an M.O.S. tecﬁnology whereas ultra high operatiné

speed requires a bipolar emitter coupled logic technology.

A system design is then done to decide on the number

of counters and the sizes of the registers etc. before

partitioning the system into subsystems. Each subsystem
must be capable of being dimplemented on a single
integrated circuit. This partitioning is a complex

operation as it involves ensuring that there is a minimum
number of interconnections between subsystems and that
each subsystem can be tested when “implemented as an

integrated circuit.

Each individual subéystem is then designed in ﬁerms
"simpler logic elements such as gates and flip-flops and at
tﬁe same time it dis often convenient to design the
sequence of tests to be applied to the subsystem that will

ensure that it will function correctly.

The layout of 5ach individual logic component 1is
designed unless there are éuitable designs already
existing in a library. During this stage the designer
nust bear in mind how the components are to be

interconnected and their operating speeds. These points

are discussed in more detail in Chapter 2.

Chapter 1

The layout of the complete integrated circuit is then
designed by placing the components and routing all the
interconnections. When a satisfactory layout. has ‘been

obtained, the integrated circuit masks are produced.

The first samples of the integrated circuits are then
produced and tested and if necessary modifications made to
eithef the circuit or the layout » design. These
modification can mean a change of technology if, for

instance, the power dissipation is too high.

1.3 Possible computer aids

The processes shown with a solid border in fig 1.1
can be bhelped by the use of the computer. Most of. the
computer aids are concérned with checking and simulation
rather than witﬁ the actual design process. There are two
reasons for this: firstly it is difficult té write
computer programs that can simulate the creative activity
of the human brain and 'secondly the reiﬁétance of the
designer to wuse any program that threatens to make him

redundant.

S
The system design can be speeded up by using a high

 level logic simulator to check that the design,will
perform the required functions. This. type of simulator
does not work with individual gates'but rather works with
counters-and registérs as 1its basic cqmponents. They

often use a register transfer language [ref '1.1] or use a .

Chapter 1

similar technique which avoids the detailed specification

of the systemn.

The partitioning into subsystéms that can be
implemented as " individual integrated circuits is usually
done by hand. However, the algorithms of Kerninghan and
Ling [ref 1.2] used by Hope [ref 1.3]) to partition
components for printed circuit boérds could well be useful

at this stage.

The logic design for a single chip caﬁ be checked by
means of é géte level lbgic simulator such as those of
Stevenson [ref 1.4] and Kaposi . [ref 1.57. These
simulators work with components ﬁtkecomplexity of gates
and flip-flops: consequently any registers etc. mnust be
constructed fr0q“~ these simpler components, The
sinmulators, however, can usu;lly‘ predict the - delays
through the gates with sufficient accuracy for race
hazards to be detccted; The test sequence that 1is
generated to test the finished circuit can also be checked
by modifying the logié simulation progfam so that it
simulates faults on each gate .in turn and checks that the
test Sequence detects them. Tﬁis technique can be taken a
stage further by programming the computer to try all
possible input sequénées'and noting those that shown up
tﬁe faults i.e. automatically créate'thevtest seduence.
. This could take a leong time for combinatorial circuits and

even longer for sequential circuits.

Chapter 1.

The layout design of the individual components can be
hélped by transient analysis programs which predict the
speed. of the components for various geometries and can
simulate the efects of ca;;citive lpading and of fan-in

and fan-out. Unfortunately this usually turns out to be

expensive in computer time.

The computer driving an interactive graphics terminal
can bevuséd as a drawing Board to design the‘layout of all
the logic components. ‘These components can be stored in
the computer and then called wup, ﬁoved to the correct
position aud the interconnection added as thev complete
layout 4is designed. The computer can also generate the
drive tapes for a tape controlled coordinaﬁograph or any

other mask making machine.

CQmputer programs exist which attempt to
automatically place gnd route the logic components to
producé the final layout..vThese have not up to now been
§éry -successful mainly due to the reasons given above but

will be discussed in more detail in chaptér 2.

Once the desciption of the 1layout is stored in a
computer, it is possible to use the computer to check the
design; Programs have been written that check that the
layout obeys the rules issued by the integrated circuit
manufacturer. This is known as layout rule <checking and
typical of such programs is DIMCHK [ref 1.6].‘3A3 more
difficult problem to solve is ensuring the layout will

perform <correctly, ie. whether the components have been

Chapter 1
correctly interconnected etc.

The computer 'can be used to control the test
equipment that checks the finished circuits using the test
sequence generated earlier and can do the obvious

commercial tasks of invoicing etc.

The part of the layout cycle that could benefit most
from computer aided design was the layout of the circuit
and at the time that the work started Ver§ little work had
been dope and so it was decided to concentrate the effort

in this sector.

1.4 Guide to Thesis

The thesis will be of interest to two types of
feader; one who wishes to use the programs to design
integrated ciréuits, probably an electrical engineer, and
one who wishes to know more about the programming
techniques used i.e. a computer scientist. The reader
just wishing to use the programs need only read chapters
1, 2, 3, 8, 9 and 10 whereés the reader wishing to write
similaf_ programs will also need to read chapters 4, 5, 6

and 7.

The next chapter (2) 1is de&oted to integrated circuit
mask design and manufacture. It étarts with a brief
description of the various methods that have been used to
‘make masks and explains why the tape <controlled

coordinatographs and pattern generators have -superceeded

Chapter 1

other methods. The actual layout‘ design process 1is
discussed in some detail taking as an example the 1layout
design for an integrated circuit correlator. The various
possible ways in which the computer can help iﬁ the layout
design are then discussed and this is followed_ by'
descriptions of the various programs that are available
and which ©provide these aids. The chapter ends with the
derivation of the requirements for an interactive design

system.

Chapter 3 is devoted to a déscription_of the ways in
which the GAELIC programs can be used in the design of
integrated circuit layouts. It describes how the data is
prepared; how it is checked, how it is displayed on the
Tektronix screen and how it 1is modified. It also
describes . how the tapes for the various mask making

machines are produced.

Chapter 4 is a general review of the data structures
useq in interactive graphics. It starts with an
explanation of why a daté structure ‘isk‘fequired, then
reviews the data structufes and finishes with a detailéd
description of the structures used in tﬁe CAMP programs

and on the Marconi Myriad computer.

The next chapter (5) is devoted to the data
structures used in the development of the GAELIC programs.
Three data structures are -described:’ the first is a
sequentiél dapa structure which was designed for speed of

implementation rather than efficiency, the second was a

1

Chapter 1

“ring” data - structure which held the data on disc memory
and the the third was another “ring’ data structuré which
held the data on disc memory in a more efficient manner.
The final section in the chapter describes the way the

data is transfered to and from disc memory.

Chapter 6 describes the various graphic input/output
devices that can pe used in an interactive program. The
various methods of producing pictures and interacting with
them are . described with their adyantages and
disadvantages. The choice of a storage tube terminal is
explained and the chapter ends with a discussion on the
software requirements to draw pictures and interact with

them on this type of terminal.

The programs in the GAELIC ‘suitgA are deécribed in
Chapter 7. It <concentrates 6n the problems that were
encountered and how these were overcome rather than on a
detailed description of the subroutines. Chapter 8
discusses the performance of the programs. It contains
the results of the various measurements that were made on

the programs during the development of the program.

Chapter'9 contains-a discussion of the wvarious ways
in which GAELIC can be extended or used in future work.
The possibilities range from manual interaction on the
output from‘ an automatic layout program to the design of
timber framed houses. The final chapter discusses whether
the requirements for the programs were sound and Qhether

they were met.

cost cf 100 thou sq die
. 3

2000 ¢ normalised probe ;ie|d:10°/o {
1900 [i
1800
1700

1600

1500 ¢t

407,

1400

1300

1200 p active slice dia'=19 in,
1100
1000
900
800
700
600

500

200

100

_0 J o OL AT ot e by se (20T ; v - —p

130 140 50 O 170 .180 IS0 200 210 220 230 240 250 260

width of die in thou

Fig 2.1. Grgh of comparative cost vs die size

13

CHAPTER 2: Mask Making

This chapter discusses the process of deéigning an
integrated circuit layout and then describes the
development of the actual methods used to produce the mask
masters and their respective advantages and disadvantages.
The input data requirements to drive a tape controlled
coordinatograph are then examined and ways in which the
computer can assist in the reduction of the volume of data
entered into the computer are discussed.' Various computer
systems that exploit this reduction and also assist in the

actual design of the layout are described.

2.1 Manual Methods of Layout Design

The objective of the layout designer is to design a
series of- integrated circuit masks that will define all
the components and interconnections of a circuit so that
the finished device will meet its specification but
nevertheless occupies the minimum area of' silicon. The
cost of producing an iﬁtegrated circuit increases
ext;emely rapidly with the size of the layout as <can be
seen in the graph shown in fig. 2.1. This shows the cost
of producing a square integrated circuit die of a given
size compared with the costs of producing a die of lOOthou
square assuming various yields levels. Furfher details
about the graphs and the caléulations on which thgy are
based are given in Appendix l: it will suffice here to

note that the production - costs double for a die that

14

Chapter 2

increase from 200thou to 220thou square ‘assuming a
norﬁalised probe yield of 30%. The effect of this increase
in production. costs is not always realised and
consequently the main objective of the layout design is
often to design the series of masks in the shortest
possible time. This objective is undoubtedly éxtremely
desirabie in view of the high cost of design effort, but

canxobviously give a higher overall cost.

Designing an integrated circuit can bé compared to
solving a jig—séw puzzle, in that fhe shapes ére moved
about until all have been inserted and the total occupies
the minimum Sspace. Hdwever, there is one important
difference: in a jig-saw, when the last shape has been
correctly entered, a complete recognisable picture is
obtained. In contrast; in an integratea circuit layout
the designer can never be certain that he has the optimum
solution, as there are'aiways changes that can be made
which ‘could possibly improve the layout. On the other
hand changes may have the reverse effect, and in any case

may take weeks of work to put to the test.

Manual layout design methods vary from semiconductor
manufacturer to manufacturer and even from designer to
designeannd so any description of the method wused can
"only hope to be a concensus of t?e various methods. In

turn the concensus will inevitably be biased towards the

author’s ideas oﬁ how the layout should be designed.

15

Chapter 2

The starting point for layout 'design 1is either a
schematic diagram containihg details .of the components
i.e. transistors, resistors etc.- and their
interconnections or a logic diagram containing details of
the gates and other logical functions used, along with
theirvinterconnections. The designer first calculates the
size of each component so that it will handle the required
current and operate at the appropriate voltage at the
required speed or frequency. If the circuit is to be maﬁc
using a bipolar technology then at this stage it is
ddvantageous to identify all components occupying the same
isolation region. Most designers also identify all the
shapes or components that are .repeated in the «circuit
either individually or on a matrix. The geometric shapes
that are required to form each component'are then designed
by drawing a rougﬁ";ketch of fhe outlines 0of each mask in
turn on squared paper. Usually the outline for each and
every mask is superimposed onto the one shget of paper and
the drawing is then known as a ‘composite’. An initial
layout is then produced; sometimes on équared.paper'but
more qually on plain paper. The reason for this sﬁep is
to discover the positions and nature of tﬁe various
crossovers to give the most compact layout. Various
“tricks of the trade’ are used to avoid using specially
designed crbssovers. In a bipolar technology fesistors
are used as far as possible as this avoids use of the
extra area of a specially designed croésover. It is also
possible - to move thev collector region of a bipoiar

transistor away from its * base. region to allow ‘an

16

Dl S -

interconnection - to go between. _However this latter method
must be used with care, as the characteristics of the
transistor are obviously modified by this change in the
geometry. In the limit, .this may aéversly affect the
performance of the circuit. With. MOS. technology
crossovers can again make use of resistors, and also can
occur over the ‘P’ diffusion which connécts the source of

one transistor to the drain of a second.

3

The main composite drawing is then prodﬁced on an-
accurately _gridded paper or mylar, bearing in mind the
position of the crossovers and the sizes of the
components. This may‘ sound an easy task but in actual
fact it is extremely difficult, since when the shapes
describing a component are drawn to scale, it ﬁay not be
possible to place ;hg‘crossover in the. desired position.
Sometimes mnot enough space is left between components to

accoimodate all metallisation tracks required.

There are certain criteria that need to be considered
when designing multiphase or multiclocked MOS circuits.
These and other more general criteria are besL shown by
the following description of the statagy adopted by
Mr.R.Kelly of the Wolfson Microelectronics Liaison Unit
when he deéigned the layout of an integrated circuit

correlator. .

When examining the system diagram of the <correlator
it was noticed that the greater part of the system was

.modular and involved a series of stages of the form shown

17

Chapter 2

in fig. 2.2.

Logic Counter Logic
A (o B
Fig. 2.2

It can be secin that each individual stage was made up
of a counter “C° preceded and followed by small secfions
of logic, “A° and “B”. Thevsizes of the blocks shown were
roughly proportional to the estimated nﬁmber of components
and hence to the area of silicon required. It was
therefore sensible ﬁo start the layout dgsign' by
concentrating on minimising the area of silicon occupied

by an individual counter.

Wifh this aimmin mind, various types of counter were
éonéidered, for exanmple, the toggle and the féed back
shift register counters, and more accurate estimates were
made of fhe area that each type réquired in order to to
meet the performance sbecification. Tﬁe'feéd back shift-
register counter apparen&ly required less silicon and so
was the natural choice. The geometries of the various
transistors, which wouldv give the required power-speed
tradeoff, were éalculatéd giving an even better
approximation of the areg' required. From this it was
possible to tell that Aat least one .stage i.e. shift
register and logic, could easily be placed across the-
width ofi the éhip and there was an extremely- high

probability of two stages being placed side by side

18

LirtdpiLel 4

without the width Dbecoming excessive. As the latter
possibility = was obviously extremely desirable, there was
considerable incentive to design the shift register, and

hence the individual bit, to have minimum width.

The léyout of a previously designed shift register
bit was modified to include the required preset and deéode
facilities and was compared with Aléyouts designed from
scratch, it was found to be superior because it obeyed
certain features of good layéut design. These wefe:

1) the varioﬁs options for the bit layout were considered
and the hest one chosen ﬁnder the circumstances. The
factors affecting the <choice can bé understood by
considering the layout of the d0ublé inverter, wvhose
schematic diagram is. shown in fig. 2.3. The principles
affecting the 'chqicé of layout are the same as for the
shift register bit but the schematic and layouts are
ecasier to understand.

load transistors

driver transistors

There are three possible 1layout options and these are

shown in fig. 2.4,

19

Chapter 2

h h

—

Q_drivor

transistors

{a) (b) {e)
Fig 2.4

< \W -
- a
(]

The first layout (a) basically follows the schemafic
diaéram and as the‘area required for the transistor loads
is ﬁhe dominant parameter, this gives an extreﬁely wide
'short layout for the circuit. The second layout (b) uses
an extra supply rail so that the two halves of of the
circuit can be stacked on top of éaqh other. This gives a
layout that is much narrower but is tall. The third
layout (c¢) also usé;-aﬁ extra supply rail and makes use of
éhe fact that the driver transistors are small and can be
placed side by side to give the same minimum width as (b)

but a saving in height, and so (c¢) is obvibusly the option

to choose.

2) The metallisation tracks were kept as straight as
.possible and did not go round obstacles. The advantage of
this can be seen by comparing the two diégrams in fig.
2.5; The first layout (a) shows ‘that a dominant obstacle
governs the width of an area of layout.- However by taking
two metallisation tracks round the obstacle ‘then the total

~

width is increased considerably.

20

Chapter 2

PN

(a) A (b)

Fig. 2.5.

3) The amount of metallisation was kept to a minimum. An
example of how this can be done is shown in fig. 2.6
which shows two areas of layout with the clock and ;bgic

lines running horizontally or vertically.

1y

gates) .
(a) - (b)

Fig. 2.6.

The metal over a gate is obviously serving the -essential
purpose of feeding signZIS to the gate. 'However the metal
either side of the gate just_ gccupies .silicon and adds
éapacitance. The metéllisation tracks should therefore be
-as short as possiblé between gates and, in general, this
cén be obtained by having metal runﬁing parallel to the

shortest side as shown in fig.2.6.

21

Chapter 2

The actual shift bit was clocked and so the 1layout
required extra clock lines as well as the supply lines and
the design of the metal -interconnections were particularly

important..

The layout-of the actual shift régistér bit turned
out to be 18.3 thou by 2.4 thou. Two stages could,
therefore, b2 set side by side across a reasonable sized
chip- providing care was exercised over.the design of the
logic blocks A and B. The logiq blocks at the end of the
counter did mnot use the same clock lines as the counter
itself and so some of fhe constraints were _removed.
However, the height of the logic became an important
parameter. This was because the complete system consisted
of several stages one above the other and fhe wasted area
was dependent on the maximum Eeight in the stagé see 4fig.

2.7.

waste silicon area (shaded)

= c
- //////{///// s ‘;
’kq). ‘ | | '. 44 b}

To minimise the waste silicon, therefore, it was as
important to get the height of the logic blocks to be as
near as possible to 18.3 thou as it was to use the minimunm

area of silicon.

¢

22

Chapter 2

The design of the clock Ariveré brought an
interesting - fact to light. -Becausé the clock driver
'drives s0 many gates its output transistor has to be
bigger than the usgal transistors used in the layout and
the necessary calculatiops showed it to require a gate
that was 2thou wide aﬁd 076thou high. The transistor also
had to have-a high gain and consequently low resistances.
To minimise this resistance, it was necessary to have
metal tracks along the_source'and drain diffusions and so

the resultant design was that shown in fig. 2.8.

——— e e e e —— s ———— - — s ——— e

source metal| |1

, 1
1 A l
]

gate metal - gate thin oxide 2 X 06 thou. l

— e — - —
drain metal E _______________ -: l
L U U U U A .
—_— T 1]
Fig. 2.8.
Here the total height of the transistor is 3thou i.e.. 5

times the height of the gate. The effect of this size on
the‘gate and diffusion capaciatanées is surprising. The
diffusion capacitance is 0.1pF per squére thou for the MOS
process used and so the drain | capacitance beccmes
2.2*%1.,3%0.1pF = '0.29pF . The thin oxide capacitance is

0.3pF per square thou 1i.e. three times the diffusion

23

Chapter 2

capacitance, however, because of 1its size fhe gate
capacitancé is 0.6%2.0%0.3 = 0.36pF assuming the
capacitance isb as drawn 1i.e. ignoring the sideways
diffusion. In othef words the drain and source

capacitance are comparable with the gate capacitance and

must be taken into account in performance calculations.

In the logic block B, there is an. output shift
.register which is clocked"in the same way as the méin
shift register wused in the counter C, and which 1is
connected to the corresponding shift -registers on the
otﬁer logic blocks. It is therefore sensible to place two
stages side by side‘so that the block B of one stage is
adjagent to the block B of the second stage thus
minimising: the metal between then. However, if the four
clock lines are sent down one column of shift registers
aﬁd then up the next, then width-for 8 clock lines must be
allowed. :To avgid this problem, the shift registef stages
were intérdigi£ated and conséquently only 4 clock lines
are required and this gave a considerable.saving in area

as shown in fig. 2.9.

- N M
X o XX X x X X o © ©o o
v o v v 0 O O Q - =2 = =
2 o o © o © © o o v v o
o G0 © T o oo
8,
¢ 8 B, %) G C2
By
L —— 't . —— W
“ : . (b)
w P

Fig. 2.9

Chapter 2

This technique did, however, have some minor problems as
the sizes of the transistors had to be increased for shift
registers adjacent to the output driver stage and the
actual layout of the final shift register stages becanme

slightly cramped.

2.2 Methods of Producing Mask Masters

The early mask masters weré produced on large sheets
of gridded blockboérd, by drawing -the outline of each
shape on each mask in turn on individual sheets "of board
and then filling in - the individual outlines with black
paint. These masters are finally photo-reduced to produce
the actual masks. This method was reasonébly successful
for the early integfated circuits,‘ which~- consisted of
perhaps - a éouple of transistors and a few résistors.‘ The
method did however have several problems associated with
it. Each mask had to be designed in isolation, which is
not only a difficult task, but is also oﬁg_ that 1is very
prone to errof. Integrated circuit components are formed
by the diffusion of specific substances into selected
areas of a slice_of silicon: the selected areas defined
by one mask must align extremely accurately with-'the
Vcorresponding areas defined by another. Accurate
alignment can best be achieved by designing all the masks
at‘ one and'the same time. The second problem was that it
Qas difficult té modify the designs, as the black paint

could not easily be removed. .The last problem was one

25

‘Chapter 2

that ~ we shall meet again and again; that 1is the

difficulty of obtaining accurate grids.

As integrated «circuits became 1larger the designs
naturally became more complex and the limitations caused
the method to be superseded by new methods. The first of
these was known as “taping’ and basically consisted of
using black tapes of different widths to. define the
shapes. Narrow tapes were used to define the outline of
the large shapes, and then the interiors were filled in
with wider tapes. This method had the advantage that the
narrow tapes could define shapes with curved outlines in
éddition to the normal rectilinear outlines. The gridded
block board was originally used fdr the layout and this
new method had the major advantage that the tapes could be
moved after initial .placement. The designer, therefore,
had the ability to correct or modify thé 'léyout.
Unfortunately there remained the problem of designing the
individual masks in isolation as the mask masters still
had to be produéed individually. There.- was also the
pfoblem of obtaining gccuraté érids and asvthe size of the
layouts increased, there was the additional problem of
obtaining gridded blockboard in sufficiently large sheets.
There was a minor problem in moving or pemoving tapes as
they tended to remove thé surface of the blockboard at the

same time.

26

Chapter 2

To overcome this last problem, gridded mylar sheets
wéré introduced instead of ‘blockboéfd. fn addition to
being able to move the tapes easily, there were other less
obvious advantages. The mylar was more stable
dimensionally and so the grid waé more accurate and the
mylar sheets could be obtained in either &translucent or
tranéparent form. The translucent mylar had a sandblasted
surface which conld be drawnAon using pencil or ink and
thus the outlines of éll the shapes could be drawn on fhe
same sheet, different line textures or colours being used
to distinguish between the various masks. Thus it was
possible to design all the masks simultaneously, thus
overcoming one of the earlier problems. A shget of
transparent gridded mylar was then placed on top of this
composite drawing and the shapes for one mask taped' using
the gfid on the-'fransparent mylar to give the required
accuraéy. This was repeated for each mask in "turn and
gave an extremely fast and efficient method of producing
the ‘mask masters’ with an easy s&stem for modifying the
designs. It also helped with the problem of checking'the
masks as two mask masters could be superimposed and the
clearances and overlaps checked. Of course when it came
to checking overlaps the overlaping mask had to be placed
underneath and so a logical order of checkiné could not be
maintained. However, the only time - -this became
troublesome was when checking' that the metallisation
correctly covered the contact holes. There were of course
éertain disadvantages:

1) the width of the black tape tended to vary from -roll

27

Chapter 2

to roll,
2) the width of the tape varied with the amount by which
it was stretched, and

3) the tape tended to creep after placing on the mylar.

The last two disadvantages are somewhat related: to
obtain a long thin track forx example a metal
interconnection between two components, the tape is

stretched before placing on the mylar to ensure that it is
straight. Because of the elastic properties of the tépe
its 1length is increased and its width is reduced slightly
and after placement the tape tries to return to 1its
originalv shape. The tape has the elastic properties
Eecauée it is designed to be laid in smooth curves as well

as in straight lines.

The method, with minor modifications is still used by
certain - integrated circuiﬁ manufacturers who wuse only
paraiial shapes with an MOS technology. Instead of using
the black flexible tape, they use rigid'mylar tapes that
can be obtained in a range of accurate widths and in a
range of colours. Different <colours are used for the
different masks. Providing a suitable colour is used for
each mask they <can be superimbosed on the same sheet of
mylar. This gives an extremely flexible method of mask
design. For éimple masks it is theoretically possible,
given the right choice of <colours, to bhotograph the
composite directly again and again using different
coloured filters to produce the actual masks. As far as

is. known this is not done in practice, and it is more

28

Lhapter £

usual to digitise directly from this- cdmposite. 'This
method is not suitable for bipolar cifcuits when nine or
more different masks are required as:

1) it is not possible to obtain such a large range of
colours, aﬁd

2) superimposition of nine or more layers gives parallax
errors and the composite becomes fragile, losing the top
layers of tape extremely easily; Most designers using the
coloured tapes regard the technique as a way of designihg
layouts rather than as a method of producing the mask

themselves.
v

Before the more accurate mylar tapes were available,
there was a demand for a higher accuracy than the taping
method was capable of producing and attention turned to
manual coordinatographs. The manual coordinatograph
consists of a table, typically four feet square, on which
is mounted a gantry. This is constrained to move in one
direction only, say the y direction. On it is méunted a
tool holder, which is constrained to mové along'the gantry
axis, ie. in the x direction. The tool 'holder can, of
course, be moved to any point oﬁ the active éurface of the
tablew By using the locks provided to pngent either the
gantry moving‘or the tool holder moving along it, the tool
holder can be constrained to move in only the x direction
or the y direction. Movement can be accprately calibrated
by means of scales and vernier dials and so any tool in

the holder can be positioned to an - accuracy of

épproximately two thousandth of an inch (2 thou) . Two

29

Chapter 2

different methocds of using the manual coordinatograph have
been tried. Both start by producing an accurate composite
layout on gridded paper or mylar and both produce
photographic masters in “cut-and-peel’ material. The
cut-and-peel material, known by various trade names such
as “Rubylith’ and ‘Stabiline’, consists of a translucent

mylar base approximately 5thou thick on top of which is is

a thinner (approx. 2thou) layer of photographically
opaque mylar, wusually red or orange. The top layer
adhereé_ to the translucent base and in normal
circumstances, the two layers do not separate. If,

however, shapes are cut in the top surface, the top layer
can be easily removed, thus producing a series of shapes

that are translucent.

The first methéd of using the manuai coordinatograph
consisted of counting increments from the origin of the
compdsite to each shépe in turn on a given mask, moving a
knife in the tool holder so that the dials register the
required coordinates, and "~ then lowefing the knife and
mo¢ing' it to the corresponding next coordinates on the
shape. The pen was then lifted and moved to the start of
the next shape and the process repeated until all the
outlines of all the shapés on the one mask had been cut.
A new sheet of “cut and peel’ was put on the table and the
shapes on the next mask similarly cut. .The method should
have prqduced extremely accurate mask masters but

unfortunately it relied on an operator counting squares on

the original composite drawing. Counting squares is an

30

LitaplLCL

extremely tedious process and is very error prone and so
it not only takes a long time to cut the masks but they

also contain errors that have to be found and corrected.

The second method, although theoretically less
accurate due to parallax errors and inaécuracieé in the
‘mylar grid was preferred and was known as ‘overcutting’.
The composite drawing was fixed onto the table of the
coordinatograph taking care to ensure that it wés parallel
to the axes and that the origins were coincgdent. A sheet
of “cut and peel’ was then-fixed on top of the <composite
and the gnife placed over the start of the first shape of
the first mask. The knife was then moved until the dials
indicated that it was on the nearest increment e.g. if the
smallest movement used on the drawing was 50thou then the
knife position was adjusted until the dials read an exact‘
‘number of SOthoué{ The knife was then lerred and a cut
made to almost the end of the first line segment of the
shape; again the knife was accurately positioned By means
of the dials. This ©process was repeated for each line
segment in turn lifting the pen at the ené of each shape,
until the complete mask has been cut. The “cut and peel’
material was then changed and all the shapes.op ﬁhe next
mask cut. This process was far more efficient and
appeared to Have a fair amount of job satisfaction
associated with it, which was obviously very important for
this type-of work. It had two disadvéntages, firstly the
size of the coéposite became so large that it couid not

fit on the table, and secondly the accuracy of the gridded

31

Chapter 2

nylar. The first disadvantage should theoreticaily have
been overcome by either using coordinatographs with bigger
tables or dréwing the composite at a smaller scale. The
first alternative was expensive as "the camera used to
photographicaliy reduce the mask master as well as the
coordinatograph would have to be replaced. A secondafy
disadvantage was that the operator coula no longer reach
the entire table -from the one side and so duplicate dials
would have been required and the operaéor would have ﬁaa
to do more walking. The disadvantages of the second
alternative were a iittlé more. obscure as they were
concerned with accuracy of the> grids and with job
satisfaction. The draughtsman when producing the drawing
would work very rapidly provided that he was working with
a grid of not less than a twentieth of an'inch and the
girl) operating thew;oordinatograph éould easily work out
vhich grid 1line was intended when she was'overcutting?
However, if the grid was reduced to less than a tweﬁtieth
‘'of an inch, the draughtsman found it frustrating to draw
liﬂes accurately enough to enable another person to
realise which grid line was intended. Any attempt to get
a higher accuracy resulted in a high error rate and a
constant stream of complaints about what was previously-a
very satisféctory job. Again the comparative accuraéy of
the grid on the mylar and the built in grid on the
coordinatograph gave troubles for, élthough near the
origin it was poésible to tell which grid 1line was
intended, on the other side of the drawing the grid line

on the coordinatograph often appeared between two grid

Chapter 2 .

lines on the drawing. At this stage it also Dbecame
apparent that the effects of temperature and particularly
humidity had an appreciable effect on the acturacy and so

these had to be controlled.

The answer to the problems of producing the mask
masters was to use tape controlled coordinatographs and
most semiconductor manufacturers have ~adopted this
solution. The tape controlled coordinatograph essentially
consists of an accurate'fiat téble similar to that used on
the manual <coordinatograph with a gantry and a ﬁool
holder. The movements of the gantiy and the tool holder
are performed by stepping or servo controlled motors. The
motors themseclves aré controlled by data fed to the ‘tape
controlled <coordinatographs by means of paper or magnetic
tape. This tape also contains information which controls
the solenoid which raises or lowers the knife and the
stépping motor which rotates the knife. There is
obviously some logic circuitry and sometimes even a small
computer built in to the codrdinatogréph to sort all this
data on the tape and route it to the appropriate motor.
Consequently the cost is far higher than for tﬂe manual
coordinatograph and is in the range 20,000 to 80,000
pounds. The basic input data required by these
coo;dinatographs consists of the coordinates of every
corner of every shape én eaéh mask in turn. For a typical
integrated circuit, it requires of 200,000 pairs of
coordinates i.e. 400,000 numbers. Producing this type of

data by hand with an error rate 0.1% means 400 errors to

33

hapter 2z

be detected and <corrected. This is virtually .an
impossible task. It is therefcre essential to find an
efficient way of producing the input data. The tape

controlled <coordinatogiraphs produce mask masters that are
more accurate and at a smaller scale than those that can

be produced on a manual coordinatograph.

.The cut-and-peel masters are now unfortunately
approaching their limit as the size of the completed

integrated circuit chips approach 250thou (0.25 inches)

square. Work has been in progresé for some time on
another method of producing masks known as a
photo-plotter. The input data requirements are, in
general, similar to those for a tépe controlled

coordinatograph and so the same problems exist in

producing correct input data.

Fortungtely there is a great deal of redundancy in
this input information and if this can be exploited by the
use of a computer then the amount of data requiréd can be
considerably reduced. Most Qhapes used in integrated
circuit layouts are pafaxial i.e. have ali their sides
parallel to the axes of the drawing and therefére it is
only necessary to specify the alternate corners of these
sbapes. This means that a paraxial rectangle is specified
by the coordinates of a pair of diagonal corners. This
simple expedient-reduces the.amount of data that needs to
be entered by approximately half. Another characteristic
feature of integrated «circuit layouts is the number of

shapes or series of shapes that are to be found in more

Chapter 2

than oné place in the layout. This repetitive feature
appears in two forms, the first 1is where a series of
shapes are repeated on a matrix, for example a Single bit
of a shift register is repeated many times to create a
large shift register. The second is where tﬁe same series
of shapes occurs in various random positions on the layout
sometimes with different orientations. It is, therefore,
desirable to derive a method of inputing the data for the
series of shapes 6nce and theﬁ arranging for the series to
be “repeated” or for an instance to be “called’ in various
positions at various orientations. This again makes a
substantial saving in the amqunt of input data, as éan be
seen from the following example. Consider the piece of
integrdted circuit layout shown in fig.2.10 which has a
large proportion qf repeated and grouped shapes. Using a
group.and repeat facility, the input data consists of 2000
words whereas just using the basic shapes where all the

corners are specified required 20000 words.

The input data to the computer can _ be afranged to
exploit all this redundancy and the computer can be
programmed to produqe the input tape for the
coordinatograph. There are certain computer programs and
computer systems that perform this function and also
assist the layout design process in other ways and some of

these programs will now be discussed.

35

Chapter 2
2.3 Possible computer aids to mask design

There are several ways in which the computer can
assist 1in the design and production of integrated circuit
masters. These range from computer programs that simply
expand the condensed input data into the large volume of
output tape required to drive a tape controlled
coordinatograph to fully automatic programs that will
produce these drive tapes from a schematic diagram of the
circuit., This fully automatic method would appear to be
Athe ultimate objective as so is worth considering in

detail first of all.

2.3.1 Automatic Computer Methods

The inditial wo;k in this area was carried ouf by an
unkno&n research organisation and was financed by the
American government. .This was a placement and routiné
program based on printed circuit board techniques and was

released to American government contractors in about 1967.

-

Bardsley ref 2.1] claims this as the reason why Collins
Rédio, Fairchild, Motorola and Texas Instruments all
announced similar systems for automatic integrated circuit
design simultaneously. The ©programs take a series of
previously defined standard Acomponents or ‘cells” and
places them side by side as 16 lead dual in line packages
are placed "on a printed circuit board. They then route

all the interconnections between the packages. The

programs do actually produce drive tapes for tape

36

Chapter 2

controlled coordinatographs and would therefore appear to
be the answer. However the amount of silicon that was
required for the circuit was up to 300% more than a
corresponding manual design. There were three reasons for
this: firstly it relied on a set of previously designed
standard cells which were not necessarily optimum for the
circuit being produced, secondly the placement being
compieted before the routing was started means that
éilicon must be reserved for possible uée by 4the
interconnections and thirdly the system followed the
schematic diagram too closeiy. A schematic diagram 1is
drawn with inputs on the left hand side and outputs on.the
right and this usually creates a long thin drawing and
hence a long thin 1integrated circuit. It was realised
that integrated circuits should be square and so the the
strip was folded‘mover to give the final integrated
circuit. This waisted a large amount of silicon on the
fold as shown in fig 2.10. The increase quoted for the
chip size [B.R. Kirk private correspondance] indicates
approximately a 707 increase in the side of the chip which
can have a disast{péﬁlﬁeffect on ;he yield. A similar
approach was tried by Fletcher [ref'2.2] using existing
printed circuit board programs and was found to suffer

from the same problems.

Radley [ref 2.3] has used a different approach to the
problem where he places components one at a time and then
does as much of the interconnection as possible. The

components are selected in an order that keeps the length

37

Fig. 2.10

3a

Chapter 2
2.3.2 Batch Methods

A batch program reads in a set of input data and

performs various —calculations on this data to produce a

/ o
set of results. It does not allow the user any
interaction with the program as all the steps are
specified in advance. Batch processing 1is therefore of

limited wuse 1in ifayout design but can be useful in the
actual production of masks. For example, it can be wused
to expand the compressed input data describing a layout

into the drive tapes for a coordinatograph.

2.3.3 Interactive Methods

An interactive program is one where the user controls
the steps pprforméaAby the computer. Once the program is
running the selection of the next step to be performed 1is
usually based on the results of the previous steps or
steps. It is the ideal type of program for desién work as
it allows the dgsigner to exercise that skili which can
never be programmed into the computer ie. his ability to
realise that something is different, to think out a new

course of action and to proceed on that course.

All the mask design programs except the automatic
ones allow interaction of one form or another and these

programs will be discussed in more detail..

39

Chapter 2

2.4 Available computer programs

At the start of the research work there were several
computef programs available in this country that assisted
in the design of integrated circuit layOuts and these are
. described in some detail below. Since the Qork started
other systems have appeared on the scene all of them
turn~key systems ie. a complete system of hardware and
software whidci could be just switched on and wused. These
are commercial systems and although it is relatively easy
to find out what they do, the techﬁiques used are a
closely guarded secret. They are described here briefly
and what technical information that can be obtained on

their operation is given in chapter 4.

2.4.1. CAMP System

The CAMP (Computer Aided Mask,Production) system for
assisting the production of dintegrated <circuit mask
masters was written at RRE Malvern by J. Wood, R. Newton,
D. Snell of RRE and M. Walmsley of Plessey [ref 2.5]. It
was developéd as part of the activities of the consortium
of British semiconduétor. manufacturers and RRE. It was
written in Algol to work on what was then an Elliot 4130

"with a refresh graphics display.

It was conceived as a method of producing the drive
tapes for coordinatographs rather than a design aid but

nevertheless did have certain facets that were useful as a

40

Chapter 2

design aid and feor this reason and the fact that it was
one of the first systems to be produced, it is worth

considering in detail.

The iunput déta for CAMP exploits the. redundancy
described earlier by allowing for paréxial shapes and by
providing a group and a repeat facility. The input data
consists of a series of order words, mask specifiers,
names, numbers and puncfuation marks. The'order words are
enclosed in double quotes ("); some describe the various
shapes uéed such as RECTANGLE, POLYGON, and LINE. There
are other words that allow the group and repeat'facilities
and these include GROUP, NEWGROUP, ENDGROUP, REPEAT and
ENDREPEAT and finally there are a series of order words
that reduce still further the amount of input data that
need to be eﬁtered;-‘these are words like DITTO and SCALE.
The mask specifier indicates the mask or masks on which
each individual shape occurs. The names are those given
to a series of shapes when they are defined as a group and
the numbers are used for the coordinates of the corners
etc. The punctuation is used to separate the wvarious
parts of the data.. The GAELIC manual.input language 1is
based on this language and consequently a full description
of the facilities of the language is given in the GAELIC

-Users Manual.

Because of the formal nathére of the input language,
it is ©possible to do “syntax’ checking on the input data

to make sure the data obeys the rules of the 1language.

Al

)

Chapter 2

This checking detects many of the errors present in the
input data and so reduces the number of errors. that can

possibly occur on the final masks.

'The data is then converted into a ring data structure
and then to a ‘coordinate file” which containé the
necessary information for the. ﬁape controlled
coordinatographs i.e. every coordinate of every corner of
évery shape on each mask in turn. This coordinate file

can be subsequently post-processed to give drive tapes for

various tape controlled coordinatographs, an incremental .

plotter or a display file for the refresh graphigs display
on the 4130. On the graphics display, a window of the
layout. can be plotted out and the light pen used to find
the coordinates of any errors. Unfortunately, it was nunot
possible to modify the layout at this stage:
modifications had to be made at an earlier stage either

the manual input language or the dump code file.

This lack of interaction was one of the major
drawbacks with the system; the other problem was the size
of the ring data structure. As it was core resident, it

restricted the size of circuits that could be handled.

The decision not to have any interactive facilities
was, one made by the consortium management committee who
felt that any interactive facilities would make the system

too dependant on a particular hardware configuration.

42

Chapfer 2
2.4.2. REDAC system

The REDAC system was also originally designed tc run
on an Elliott 4130 with refresh graphics system to help in
the design of MOS integrated .circuit layouts. fhe
original concept was that the designer sat in front of the
graphics terminal and with the aid.of the light pen called
up a series of paraxial rectangles and placed them on the
screen. 'The rectangles could be on oﬁe of six masks
controlled by -six function keys on the -"display and
rectangles on the_same mask that touched could be joined
together with the aid of the light pen to form paraxial
polygons. Facilities were available for modifying and
deletéﬁg;) shapes and for grouping a series of shapes
together in order to repeat them. This grouping facility
was nowhere near as~comprehenéive as the group and repeat
facilities.in the CAMP system. The user could also “zoonm
in”’ to a small window of the drawing and move the window

“round the drawing. - The original data structure was held

entirely in core.

This initial system had several disadvantages some of
which have been subsequently been remdve& thoughbofhers
for some reason are still present. The major disadvantage
was the restriction to six masks thch precluded its uée
fér bipolar integrated circuit design. The data structure
being held in core was a severe disaanntage as it
respricted the size of the drawing. Sitting a designer at
a graphics terminal costing 50 pounds an hour and felling

him to design was not ergonomic or econocmic sense. It 1is

43

Chapter 2

also difficult to design complex interconnection tracks

using rectangles.

.The subsequent system based on a PﬁPlS computer with
VT15 graphics display does not have the size restriction
as tﬁe data structure is disc based. An input -language
has. been added which allows the layout to be designed ép
the designers own speed and then entered into the. .computer
and stored in the data structure. The display terminal is
now used to check and correct the design and thus forms a

much better method of using the computer.

There is a precgram in fhe suite which checks if the
layout description stored in the data structure Breaks
certain of the “layout rules’” issued by the semiconductor
manufacturers and this is described in a paper by Treble
[ref 2.6].'The proé;ém although fulfilling an extremely

'imporfant function does appear to have two main
disadvantages in that it requires a large amount of
computer time to perform the checks (typically 3 houfs on
a PDP15) and that it gives a large numSer of possible

errors that have to be checked manually by the designer.

‘

The Redac system finally produces drive tapes for
several tape controlled <coordinatographs which produce

“cut and peel’ masters.

44

Chapter 2
2.4.3 Marconi System

The Marconi integrated circuit design system is based
on the general purpose drawing program that runs on their
Myriad computer with their X2000 graphics system written
by S Bird [ref 2.7]. It was originally uséd to design
layouts in the same way as the Redac >system where the
designerb sat 1in front of the screenrn and drew shapes. It
has, however, advantages over the Redac syétem because of
its general‘ drawing program origins, it has a far more
flexible drawing system using either a 1light pen or
tracker ball. Virtually everyone who wused the system
prefered the tracker ball to the light pen, usually
because the designer bad an uninterrupted view of the

screen and did not lose the tracking cross.

Shapes that had line segments at angles as well as
the normal paraxial segments could be drawn, modified and
moved with constraints to keep the. required lines

paraxial.

A series of shapes can be defined as a group at the
screen and 1instances of the definition called in many
places in other group definitions, in the main layout or

in any subsequent layouts.

The modifications méde to the general purpose drawing
program were to allow shapes to be allocated to specific
masks, to take input data in the CAMP manual input
language- and to produce drive tapes for various

coordinatographs.

LS

Chapter 2

It is an excellent design system but has certain
disadvantages due to its origins as certﬁin time consuming
features are provided that are not used in integrated
circuit design. Typical of these is the ability to join a
line onto thé middle of another line. It was also slow in
use as all ﬁhe layouts and groub definitfons ever created
were kept in the same data structure and all these layouts
and groups must be searched when a new definition is
created. Another major problem is the high capital cdst
of the hardware which was in excess of 100,000 pounds.
There are also minor problems with flicker when large

amounts of layout are displayed.

2.4.4 Subsequent Systems

Siﬁce the commencement of the work on GAELIC, further
systems to assist in the design of integrated circuit
layouts have come onto the commercial market from the
United States. The best known of these systems are
probably fhe Applicon, Calmé and Computervision. All
three are known as “turnkey’ systems which means that they
are complete hardware and -software 'systems which once
installed can be set into motion by just turning a key.
They are all bésed on the use of minicomputers with disc
storage and both the Applicon and Calma systems use a

storage tube terminal.

46

Chapter 2

The Applicon design assistant [ref 2.8] is based on a
PDP11/05 computer, a Tektronix 611 storage tube display
and a version of the Rand tablet. It has a small fixed
head disc to hold the program and data and uses cassette
tapes for the offline storage of designs. Again the use
of the system is based on the philosophy of the designer
sitting in front of the screen to design his layout from
scratch. In a similar way to thevRedéc system, it allows
the designer to build up the layout from rectangles but it
does not allow these rectangles -to be merged into
polygons. Recent modifications to the software do allow
the direct insertion of polygons with up to 127 cbrners.
The rectangles can be in three forms, fixed, stretchable
in one direction and stretchable in two directions. It
also has a basic grouping facility which includes the
ability to fix é&ﬁponents to certain points on other
components. This feature can be useful in a bipolar
technology where the one contact hole can be fixed to one
end of a “stretchable” resistpr and the other contact hole
fixed to the other and so as the resistor is stretched,
the contacf holes stay in their <correct positions. The
main feature of the system is the clever use of the tablet
where instead of typing commands; figures are drawn on the
tablet which are interpreted as comménds. The pattern
recognition system 1is eitremely impressive to see working
but does not appear to be any faster to use than other
mere conventional systems. There is a system for using a
digitiser to input a completed drawing and this-again

works with rectangles. The system provides drive tapes

47

Chapter 2

for a Gyrex pattern generator which flashes rectangles in
various positions on a photographic plate and this is the
main reason for the restriction on the types of shapes

available.

The Calma system consists of a Nova 1200 computer a
moving head _disc, a digitiser —connected on-line, a
Tektronix 611 tube, a tablet and keyboard. Data <can be
entered either via the digitiser or the screen and tablet.
The main emphasis is on .the digitiser which being
conneéted on line is capable of beiﬁg constrained to nmove

in first the x and then the y directions thus enéuring

shapes are ©paraxial. Non - paraxial line segments are

possible by over-riding the locks. The fact that a
polygon does not «c¢lose or that there are rounding error
problems can be brought to the users attention immediately

and cerrected.

The screen input ié similar to thaﬁ used in the
Marconi system in that polygons and rectangles can be
drawn. It uses a menu'on the tablet to sSelect commands.
It appears to be just as fast, if not faster than the

Applicon system to use.

The main disadvantage is that although it wuses a
standard Nova computer the design and interfaces are non
standard and so the standard HNova disc _ compilers <cannot

run and so the computer cannot be used for other purposes.

L8

Chapter 2

The Computervision system 1is very. similar to the
Calma system but does qot put so much emphasis on the use
of a storage tube for either data input of data
modification but rather relies on a digitiser plotter.
This,-as the name implies, is a digitiser and plotter
cbmbined. As data is entered via the digitiser, the shape
can be immediately plotted,.superimposed on the original
sketch to give an immediate check and thus ease the
problem of identifying and correcting .errors. However,
despite the extrémely fast plotting time available, it is
probably téo time consuming to replot large areas of an

integrated circuit layout.

2.5 Requirements for an Interactive C.A.D. system

As interactive graphic equipment is expensive, it 1is
not possible to allow every designer his own graphics
terminal. Eachv terminal must' therefore be shared by
several designers and consequently nust.only be used for
interactive work. The individual designer should not, for
instance, sit in front of the terminal and design from
scratch as he will spend most of his. time thinking and
only a small partb “drawing’. While he is thinking, the
terminal facilities are obviously\fﬁésted. The designer
muét therefore plan out exactly what he wants to do before

going to the terminal.

49

(S8

Chapter

\

It is therefore desirable to havé a way in which the
designer <can sit at his desk, Aesign part of -his layout
and code it up for the computér. He should then be able
go feed this data into -the computer'and then use the
interactive facijlities to check and modify hié design. To
do this it is essentialdto have a manual input language
that the designer can use at his desk to code up his rough
sketéh. Because this input language is to be used by a
layout designer rather than by a computef specialist, it
must be extremely easy to use. This in turn means that it
is easy to understand and should not entail remembering a
series of codes for the various shapes that he uses,
instead it should use words that are easily remembered and
‘recognised. The amount of data that he has to.prepare
must be‘kept to a minimum. Often a designer uses the same
set of shapes ov;;wand over again in a layout; . the input
language must take account of this and allow him to define

the set as a “group’ and then call up “instances” of the

group. in various positions and various orientations in his

layout.

One designer may be quite happy producing rough

sketches and working from them, whereas another designer-

may prefer to produce an accurate scaled drawing of part
of the layout before approaching the cbmpu;er. This
latter approach tends to produce a more. complex drawing
which takes 1longer to code up wusing the manual input

language. Alternatively it may be necessary to modify an

existing design that only exists as a large composite .

50

Chapter 2

drawing. For both these requirements it is essential tc
have a method of entering the datg directly from the
drawing into the computer withcut resorting to the manual
input language. This effectively means using a digitiser
or a similar device. It is therefore necessary to have a
hethod of wusing a digitiser to-extract the information
from the drawing. The digitisex lénguage like the manual
input language must minimise the amount of data that has

to be entered and must handle the group facility.

The integrated circuit designer, 1like any other
human, can make mistakes, especially when coding up data
for the computer if it is a new experience for hin. The
computer program that reads in the data, therefore, must
check it as thoroughly as possible and when errors are
detécted, the program must give meaningful messages that
tell the designer exactly what he has done wroﬁg. This
“syntax checking” as it is usually called will detect
shapes that have been incorrectly specified but will not
detect that a shape is in the wrong place. This is

usually done by visually checking the layout.

The interactive graphic terminal provides an
excellent method of visually checking the layout and for
correcting any mistakes found. The screen of the terminal
is not big enough to display all of a typical layout at a
~scale at whicH modifications can be made. Facilitieslmust
therefore beiprovided in the interactive program to allow
the user to “zoom’” in a@/plot out an area of the layout at

a much larger scale. There must also be facilities for

51

<

{

Chapter 2
plotting an adjacent area ie. ‘windowing’.

Having plotted out a suitable.’window’, the user will
need to interact with the drawing; he will need to
identify a shape containing an error and either correct it
or delete the shape. Correcting an error in;olves either
moving the whole shape or just a point on the shape; the
movement 1is generally required in a direction parallel to
one of the axes ie. orthogonal movemént but is

occasionally required at an angle.

Any group instance can be in the wrong position or
can be drawn at the wrong orientation. The user does not
wish to correct every individual shape in the instance and
so the gfoup structure must be kept in the data for the
interactive program. . Facilities should exist to allow the

user to identify one point in the instance, the origin,

and then move the instance or change its orientation.

There will obviously be times when mistakes are made
in the shapes of a group definition and so facilities must
be provided for correcting them. This must be done with

care, however, as instances can occur in several places on

the drawing and a shape that appears wrong in one instance

may appear correct in another. It is therefore essential
that the user kno&s that he is modifying a group
definition ie. he cannot modify the shapes in an instance
by mistake. ~ | . N

52

Chapter 2

Often shapes are missed from the layout and have to
be added interactively. Facilities must therefore exist
for adding rectgngles, polygoas, lines and even group
instances. These new shapes must be plotted on the screen

so that the user can check that they are in their correct

positions.

‘When the design is complete and free i errors, then
tapes to drive the coordinatograph are required. These
tapes can be used to produce extremely accurate large
scale <check plots. Unfortunately pfoducing these check
plots is expensive in both time and money. A rapid cheap
ploﬁ is required to <check the laycut design at the
‘designers leisure. This frees the graphic terminal for

more interactive work.

53

CHAPTER 3:The use of GAELIC in mask design

This phapter is intended to give an insight into the
use of GAELIC in the design of integrated circuit masks.
The first part is devoted to input to the GAELIC programs
describing the philosophy behiéd the two main methods of
inputting tﬁé layout description into the computer. This
is followed by a simple exgmple of how the manual input
language is used to enter data and how the syntax errors
are detected. . The next part describes the featufes of the
interactive program and using the same example, shows how
it 1is used to plot out all or part of the layout, how
errors are corrected and how missing shapes are added.
The final part briefly describes the .operation of the
other programs including the post-processors which produce.
the drive tapes for the tape controlled coofdinatographs

and mask making machines.

3.1 Input to the GAELIC suite of programs.

There are actually three different methods of
entering the description of all or part of an integrated
circuit layout into the GAELIC prograns. These methods
are:

1) by the use of a digitiser and the GAELIA program,

2) via the manual input language and GAEL2A and

3) by use of the crosshair cursor and the keyboard of

the Tektronix terminal using GAEL4A.

54

Chapter 3

The third method, which is described in detail in
section 3.2, is mainly wused vfor interactively adding
shapes inadvertently missed when‘ the original layout
description was entered. However, it does allow all or
part of the.layout to be designed on the screen. The
first two methods of input are usually used to enter the
6riginal layout description dinto the computer and the
obvious question that must be answered is why two methods
are required. Essentially the digitiser is used to enter
the large quantitiés of data required for a complete
integrated circuit design while the manual input language
is wused for entering the data for a small part of of a
large design or all the data for a small design. These

two methods will now be considered in more detail.

3.1.1 Using a digitiser

The digitiser‘method is ideally suited for entering
the description of a large fully desiéned layout. The
design must be drawn on an éccurately griddea mylar sheet
wHich is securely fastened to the digitiser. The
digitiser is used to accu¥ately and quickly record the
coordinatesv of the —corners of the shapes without the
manual counting of increments which we _shall see is a
feature of the manual input language. The method does,
however, have the obvious prerequisitiesm of a digitiser

and someone who can use it.

55

Chapter 3

The design and drawing of an integrated circuit

“layout is é creative function which 1is generally
enjoyable. It does have certain problemé wheﬁ it comes to
redrawing ' large - areas of the layout in a slightly
different position for gxahple to insert an extra

metallisation track, but this is not sufficient to detract
from the overall enjoyment. The actual digitising,
however, although requiring a continuous high degreerof
concentration, is extremely vrepetitive and tedious and
gives no job satisfaction to the layout designer. It is
conseduentially desirable to use a different ©person for
this task. The time required to.digitise a layout is mnuch
less then that required to design the layéut and so one
digitiser operator <can cope with designs from several
designers. For a iafge integrated circuit design team say
5 or 6 designers, the economics of buying a digitiser and
hiring an operator are favourable. However, with only one
or two .designers, the economics: - dictate tHat another

method of designing and/or entering data into the computer

is desirable.

Any method of using the digitiser must be.as easy and
straight forward as possible in order.to minimise the
number of errors that are made. Conéequently “certain
minor ’modifications were made to the keyboard of the
digitiser. The étandard Metrograph digitiser 1like many
others has a READ button which, when pressed, records .the
coordinates of the digiﬁiser cursor on the »oqtput tape;

it also has.a small keyboard which enables the characters

Chapter 3

marked to be added to the output tape when the respective
keys are pressed. It was therefore possible to devise a
system, using the digitiser, where pressing the wvarious’
characters on the keyboard indicated the start of a shape
and the READ button recorded its coordinateé. However,
remembering which character was used for which>shape
proved difficult so the labelling on the keys was changed
to give more meaningful abbreviations such as RECT, POLY
and LINE. Fach key, however, still only produced a'single
character on theée output tape and so the.standard digitiser’
could be used in an emergency to digitise a layout. The

modified keyboard is shown in fig. 3.1.1.

Often when digitising a léyout, an operator will
realise that a mistake has been made and will wish to
correct it. This mistake may well be that a éhape is on
the wrong mask or the wrong mname given for a group
definition. It is always'possiﬁle te write down notes
regarding these errors and to subsequently edit the tape
or edit thé data once it is entered int; the computer.
This in practise turns out to be very disruptive to the
operator and so a method of immediately adding corrections
to a tape is required. The best solution would be to have
~a series of keys that <can be pressed to correct the
various mistakes fhat can be madef Unfortunately,
however, the cost of extending the keyboard size to allow
for this was prohibitive and so only one ERROR key was
allowed. A method of correcting errors had Atherefore to

be designed in which the instant the error button was

57

4 Sl b
7 8 9
N
0

RECT DITTO ERROR

POLY LINE STRRT

GROUP NEWGH ENDGR

MASK

RERD

FIG 3 11 LAYOUT 0OF KEYBORRD

58

Chapter 3

pressed and the number of times that it was pressed
specified the =error to be corrected. For example if a
wrong point was digitised in a shape i.e. the cursor was
in the wrong position when the READ key was pressed then
the coordinates can be dignored by pressing the ERROR key
immediately afterwards. However 1if the whole shape is to
be ignored then the ERROR key is pressed twice. The use
of the ERROR key is described fully in thelGAELIC users

manual [ref.3.l].

Another problem that must be allowed for when
processing data from a digitiser is that of rounding.
There are actually two problems, “paper’ distortiom and
’paper; position. The word ‘“paper’ is used here to mean
the material on which the layout design is drawn. If a
large layout is to be digitised then it is essential to
use a stable material such as a4 translucent mylar sheet at
least 5 thou (0.005 inches) thick, whereas if a small part
of a la&out is to be digitised, actual gr;ph paper could
be wused. The “paper’ distortion is the distortion in the
éaper grid due to inaccuracies in the actual manufacturing.
process. Most grids on paper are printed from a roller
and, with slight variations in speed of the roller and
slip on the paper, a different scale is sometimes obtained
in the x direction to that in -the y. _There is also a
problem of «calibration ‘between the digitiser and paper
e.g. a line that is nominally 10 1inches exactly on the
paper, may have é length of 10.12’in§hes according to the

digitiser. The paper position problem exists because it

59

Chapter 3

is impossible to place the paper exactly horizontally on
the digitiser: éonsequently the paper axes are always at
a slight angle to the digitiser axes. The layout is drawn

with respect to the axes and grid scaling on the paper.

However the digitiser will obviously output digitiser-

coordinates so the computer program must do the necessary
coordinate transfcocrmations to give the corresponding paper
coordinates, allowing for the errors - due . to papér

distortion and paper position.

3.1.2 Using the manual input language

The manual input language 1is én extremely useful
method for entering the description of a small part of a
layout into the computer. A typical part of a layout
would be a single bit of a shift register.l The designer
can ﬁuickly code up his design wusing this manual inpuﬁ
language and enter this data into the GAELIC suite. The
part layout can be quickly plotfed on the% screen of the
Tektronix terminal and any mistakes discovered can be
interactively corrected. This part layout can be étored
in the computer while the designer works on another part.
The process can be repeated until he has designed ail the
component parts of his layéut, when_ he c¢can wuse the

interactive facilities to join them together to produce a

complete design.

60

Chapter 3

This is obviously a different method of deéign from
that wusing the digitiser and is one in which the designer
plays a much larger part. Some of the tedious fepetitive
work can be taken over by the computér, for exampie it is
ﬁossible to get the computer to redraw large sections of
the layout in slightly different positions. This is one
of the tediogs parts that has to be done manually when

producing the finished layout drawing prior to digitising.

In order that this new method of design can be fully
ekploited, the Amanual input language should have the
following characteristics.

a) it must be easy to use‘the language.

b) the language must minimise the amount of data that
has to be entered.

c¢) the language must be easily processed by the

computer.

There are wunfortunately conflicts .between these
requirements: for example, for the data to be processed
most easily by a program written in Fortran>the data must
be in a fixed predefined format. Fixed format input is
extremely difficult to produce, mainly because the user
cannot understand th the extra spaées are so critical.
Secondly it is far easier to handle a purely numeric input
data using Fortran so-that a2 number 1 is used to specify
that data for a rectangleée is about to be entered, number 2
to specify data for a polygon etc. Unfortunately there
are more to integrated <circuits then polygons and

rectangles so the user would have to make extensive use of

6!

Chapter 3

a crib sheet to decide which numbers to use. The use of
numbers also makes it extremely difficult for the computer
to check the input data for errors e.g. number 1 could be

the code word for a rectangle or a coordinate value.

The input language chosen therefore is a compromise
between the three requirements and 1is Dbased on the
language used in the CAMP programs fref 3.21. The input
language is fully described in the GAELIC users manual and

two examples of its use are shown below:

"RECT"™ (1) 10,5:20,10;
and

"POLY"™ (4) S,30,64:20,4,10,4,-12,~4,-18,-4;

These describé é rectangle, on mask 1 only, which has
its origin at x=10, y=5 and is 20 units long and 10 units
high and a polygon with all its sides parallel to the axes
which starts at x=30, y=64 and has a line gegment 20 units
long in the x direction followed by a segmeﬁt 4 units long.

in the y etc.

In order to code up a shape description from a
drawving on gridded. paper, the user must count the
increments from the origin of the dréwing_to the origin of
the shape and then count the increments along each line
segment. This counting is a potential source of error and

must be done very carefully.

62

Chapter 3

Certain modifications were made to. the CAMP input
language in order to make full wuse of the facilities
"available and to give a more flexible approach to layocut
design. Probably the mainvmodification was to omit the
commands concerned a) with-file storage and b) with the
running of the CAMP program. The former is automatically
handled by the operating system of a time-sharing computer

and the latter is controlled by the user 'in GAELIC.

Another major modification to the CAMP ’programs
involved the use of LINES. The basic philosophy behind
the choice of shapes in the CAMP language was based on the
idea that all shapes on an integfated circuit are clesed
shapes. Most integréted circuit masks are still made
using a cut and peel ﬁatérial on, a tape controlled
coordinatogfaph. Here the knife cuts round the perimeter
of the shape and the material inside can subsequently be
peeled away. Obviousl& this is only possible if the 1line
segments defining the perimeter form a closed shape.
Consequently the LINE in CAMP describes a closed shape of
a fixed width and was intended for the fixed wiath
Aluminium interconnections. Unfortunately there are many
violations of the concept of a fixed width
interconnection; for example, when the interconnection
passes over a contact hole the: widﬁh is temporarily
increased and so in practise the LINE was of limited use.
However it.is extremely useful to ﬁave a mathematical line
(i.e. a line with finite length and zero thicknéss) as an

intermediate shape which can subsequently be joined with

Chapter 3

other mathematical lines to form closed shapes on the cut
and peel material. Consider the aluminiﬁm interconnection -
of a single stage of a shift register defined in the CAMP
language as a GROUP using closed shapes as shown in fig.
3.1.Za..Several instances of the GRCUP are called to form

the complete shift register as shown in fig. 3.1.2b.

—C——/ L T I T I I]

O T O I [| 1 [}

] O J] oL 1 [—

1 C I I I I I]
(a) {b)

Fig. 3.1.2 Interconnections using closed shapes

The alternative method used in GAELIC involves a LINE

with zero thickness and - the single stage of a shift

-register is as shown in fig. 3.1.3a.

|
I

L]
|

l[.__jrlll:
;lj'1114-

{a) (b)

Fig. 3.1.3 Interconnections using open shapes

The several stages of shift register are shown in

cfig. 3.1.3b and it «can be seen that the complete

metallisation tracks can be easily checked for continuity
and when the final cut and peel master is produced, the

number of pieces that must be hand peeled is minimised.

(o)
i~

Chapter 3

Usually an instance of a group dafinition is required
to contain all the shapes on all the masks. "However,
there are circumstances when only certain masks are
required. For example, consider.a group definition of a
shift register stage; when an instance is c¢slled to form
one bit in the middle of the stage then the shapes on éll
the masks are required. However, the ins;ances forming
the first and last bits may well require different shaﬁes
.én the metallisation mask due to the interconnections
joining the bits to other circuit.components. The method
used in CAMP wés to define the first and last bits either
as separate group definitions or as individual shapes in
the main l;yout definition. However, in GAELIC an
instance can be called so that only shapes on a specified
series of masks aré"broduced. Henée the metaliisation can
be ignored in the instances used for the first and last
bits of the shift register stage and the | special
metallisation required to interconnect to the rest of the

circuitry can be added to the main layout. The GROUP call

in GAELIC therefore comes in two forms:

"GROUP" ONE,10,10,1;
and

"GROUP" ONE (1,2,3) 40,70,1;

The first call produces the shapes on all masks while
‘the second only produces the shapes on masks 1, 2 and 3,

any shapes on mask4 etc. are ignored.

65

Chapter 3
3.1.3 The inputting of data for a smallAexample

For small layouts such as the one shown in fig 3.1.4
which-is_a test chip to investigate the effects of changes
in the semiconductor proceséing, it is convenient to use
the GAELIC manual 1input language. The input language
necessary to describe this layout is shown in fig 3.1.5.
The input language - containé several errors inserted to
show how the error diagnostic systen works. Most of these
errors are trapped by GAEL2A the syntax checker as can be
seen in fig 3.1.6 which shows the teletype printout
obtained when running the program. The iﬁitial Dump code
file created does not contain the descriptions of the
shapes containing . the syntax errors, the corrected
descriptions of these shapes, however, can be typed in via
the keyﬂoard immediately after the input file has been
processed and these corrections are then édded to the Dump
code file. The teletype printout obtained. when doing this
is also shown in fig 3.1.6. 1he Dump code file 1is then
compiled into the Ri&g Data Structure‘using GAEL3A and
"this data structﬁre is used to store the description of
the layout throughout its design. Several programs
interact with this ring data structure to allow for
modification and addition, to produce large scale drawing
and to produce drive tapés fﬁr tape controlled

>
coordinatographs and mask making machines.

66

[

H P
! ' { i
B T

R

L e oo [S DUSR S

.

-+

e

3
1
i

t
Pl
1

LIS S

SSADONE SR U S

ey
g SN

P 2t e

]

i

PRI O S __‘

4
]

test circuitl

small

of

Layout

Fig. 3.1.4

"POLY"Y
"POLY"

"POLY"
"I)OLY"

”POLY"

"POLY"

"POLY"

V"RECT"

"RECT"Y
"RECT"
"RECT"
"RECT"
"RECT"
"RECT"
"RECT"
"RECT"
"RECT"
YRECT"
"RECT"
"RECT"
"RECT"
"RECT"
"RECT"
YRECT"
"RECT"
"RECT"
"RECT"
"pOLU"

"POLY" .

"I)OLY"

"pPOLY"
"POLY"

"POLY"

"poLY"

"RECT"
HRECT"
IIRECT"
HRECTH
"RECT"
HRECTH
"RECTII

(1:4) L,75,150:2,0,3,3,3,-3,2,0,5,5,0,15,

(l:4

_390)0,—14a-3’—3s_434$_49_4,
_3’3’0’14!-3y0707_15a5a—5:

) L,95,150:3,0,0,15,5,-5,5,5,0,-15,3,
ana20’-3’0s_5:‘5$—5,5,_3’
0,0,-20;

(1:4) s,116,150:10,3,-7,17,-3,-20;
(1:4) L,134,150:9,0,3,3,0,17,-3,0,0,~15,

(1)
(1)
(1)

(1)

(1)
(1)
(2)
(2)
(2)
(2)
(2)
(2)
(2)

(5)
(5)
(5)
(5)
(5)
(5) .
(5)

"FINISH";

‘2’-2’—530’_2’23011453"3,
0707-17)3)—3;
S,74,64:29,3,-3,3,3,3,-3,3,3,3,-29,-3,
3,-3,-3,-3,3,-3,-3,-3;
$,91,85:21,-8,19,45,-4,-33,~9,13,-3,
~-13,-9,13,-3,-13,-9,19,-~3,-23;
$,97,32:3,13,9,-13,3,13,9,-13,3,16,~-1,
14,-42,4,-7,-3,3,-3,-3,-3,3,-3,
-3,-3,7,4,18,-7,-2,-16;
137,119:17,12;
13U0,97:17,19;
137,82:17,12;
72,62:7,19;
93,88:35,18;
72,109:7,19;
99,115:24,7;
137,126:17,5;
138,115:15,5;
137,104:17,5;
138,93:15,53
137,82:17,5;
112,77:19,5;
98,62:7,19; : o -
86,64:5,15; ,
87,65:3,13;
113,78:17,3;
138,83:15,3;
138,105:15,3;
138,127:15,3; —_—
$,10,15:40,33,42,39,37,5,26,7,-26,38,
-44,-52,-75,-40;
s,110,15:40,40,-18,28,-36,-23,11,16,
: 18,-21,-15,-40;
L,175,15:40,0,0,40,-35,0,-25,25,0,8,
-19,0,0,-7,8,0,31,-31,0,-35; .
S,175,75:40,40,-40,-5,-39,-7,39,-28;
L,136,125:19,0,10,10,50,0,0,40,~40,0,
0,-20,-23,-23,-16,0,0,-7;
s,10,135:88,-21,57,7,-31,2,-19,19,-55,
33,-40,-40;
L,10,75:45,0,15,-15,11,0,0,23,-11,0,
0,24,11,0,0,23,-11,0,=-15,-15,
-45,0,0,-40;
11,16:38,38;
111,16:38,38;
176,16:38, 38;
176,76:38,38; .
176,136:38,38; : . : -
11,136:38,38;
11,76:38,38;

Fig 3.1.5 GAELIC input language . B —

68

RUN GAELZ2A

) "GAEL2A”
PROGRAM TO CONVERT CAELIC LANGUAGE INTO DUMP CODE

DOES THE FILE HAVE LINE NUMBERS - YES OR NO
NO

ENTER NAME FOR NEW DUMP CODE FILE
TESTD |

ENTER MASK NUMBERS USED IN LAYOUT
1 23 45

"RECT" (1) 13U,97:17,19;

<ERROR NUMBER 23 IN STATEMENT NUMBER 9>
ILLEGAL TERMINATOR PRIOR TO COLON - SHAPE IGHORED

"pOLU" (4) S$,10,15:40,33,42,39,37,5,26,7,-26,38,

<ERROR NUMBER 23 IN STATEMENT NUMBER 28>
ORDER WORD NOT RECOGNISED - SHAPE IGNORED

ENTER NAME OF NEXT GAELIC LANGCUAGE FILE OR TTY FOR
KEYBOARD INPUT OR PRESS RETURN TO FINISH

TTY

KEYBOARD INPUT WITH NO LINE NUMBERS EXPECTED

ENTER INPUT DATA ’

"RECT" (1) 137,97:17,19;

"POLY" (4) S,10,15:40,33,42,39,37,5,26,7,~26,8,
~44,-52,-75,-40; ' .
"FINISU";

ENTER NAME OF NEXT GAELIC LANGUAGE FILE OR TTY FOR
KEYBOARD INPUT OR PRESS RETURN TO FINISH
buUMP CODE FILE SAVED AS :- TESTD

END OF EXECUTION

Fig 3.1.6'Running'GAEL2A the syntax checker

‘v

69

Chapter 3
3.2 Interaction with the layout

The user can interact with the layout wusing CAEL4A.
This p;ogram‘ uses one of the Tektronix 4010 series of
storage tube terminals to interactively modify“and correct
an integrated circuit layout description held in a ring
data structure file. The user.can select which ring data
structure file is to be processed and éan select the part
of that layout to be plotted, i.e. a particular group
definition and window size. That part of the layout

within the window is then plotted out on the storage tube

screen. The plot remains or is stored on the screen until

it is cleared. A non—sto;ing cross~-hair cursor can be
displayed on the screen and its position controlled by a
pair of thumb wheel potentionmneters. Various character
keys can be pressed when the cross-hair cursor is
displayed which causes the tefminal to not only send the
chgracter pressed to the computer but-also four other
characters which define the position of the‘cursor. This
information governs the running of tAe program e.g.
pressing "R’ indicates the starting coordinates of a
rectanéle to be drawn on the screen and added to the data
structure whereas pressing “F° finds the nearest point in

the layout to the cursor and prints out its coordinates

and whether it is in a group definition or a set of

repeated shapes.

70

Chapter 3

The storage tube screen 1is divided into two parts:
the right hand edge of the screen is used for messages and
is called the “menu area'.'It contains such information as
the 1list of masks plotted on the screen, the'mask number
being modified and the name of a group when an origin 1is
identified. The remainder of the screen except for a
small area at the top which contains the window éize, is

used for plotting and is known as the “plotting area’.

The program operates in a hierarchical manner in that

it gives. the user a choice of options at one level and
when one of these is selected, the program drops down to a
lower level where the user has a different choiée of
options. The first level is known as the ‘program command

level’ and the second as “cursor command level’.

The program command level options are concerned with
selecting the group definition to be processed, the size
of the window, the mask numbers to be plo&ted, modifying
or drawing on an existing data structure etc. Two of
these options MODIFY and DRAW allow the cross-hair <cursor
to be displayed and this can be used to identify existing
shapes plotted out on the screen, to indicate the
coordinates of new -shapes to be added or to change the
window beiﬁg plotted eté. This lower level is the “cursor

command level’.

Whenever the cross-hair cursor is on the screen there
‘are certain options that are available mainly associated

with the window plotted, these are known as the ‘permanent

7.

Chapter 3

cursor commands’ and are selected by pressing one of the
following character keys:

1, 2, 3, 4, 5,v6, 7, 8, 9, J, Q, U,'V, W and Z.
The results of pressing these keys are described in detail

in the GAELIC users manual.

‘When the crbss—hair curscr is first set up by the
ﬂODIFY or DRAW options there are certain options available
which can perform such functions as identifying the
nearest point in the definition, indicaging where a
polygon should start etc and these are known as “mnain
cursor commands’ and aré selected by pressing one of the
following characfer keys:

F, G, I, L, M, P, R, \, 1, ~ and SPACE

After several of the "main cursor command® options
have been selected, further information is required. For
example, when a point on a shape has been identified, the
user neédS' to tell the program if the point or the shape
is to be moved and its new position. This is accomplished
by using options known as the “subsequent cursor commands’
and are selected by pressing one of the following
character keys:

A, D, E, H, N, O, S, X, Y, [, # and SPACE.

By using the cursor commands at the various levels,
shapes can be identified and modified, new shapes can be
added and the window changed. This process is illustrated

in the following example.

72

Chapter 3
3.2.1 Interactiveiy modifying the exampie

-GAEL4A is used to plot out all of the layout on the
screen. the plot 1is shown in fig 3.2.1; the different
line types are used to distinguish between the various
masks in the layout. There are two errors shown in the
plot, a contact hole on mask 3 is missing and part of the

thin oxide (mask 1) is in the wrong position.

These errors are corrected by first selecting the
"MODIFY option and asking to modify mask 1. The cross hair
cursor is positioned over point A of the thin oxide shape
in the wrong position. By prgssing the character ‘1’ the
coordinates of the cross hair cursor are sent to the
computer and a segrch is made for the nearest point -in the
data structure, thgiboint is i1lluminated briefly and then
the cross hair cursor 1is returned. The cursor is then
positioned at the correct position for the point on the
shape, ie. point B, énd the character 'H; pressed. This
moves the whole of the shape into its correct position 1in
the daté structure so that next time the drawing 1is
replotted, the shape will be in its correct position. The
cross hair cursor is then returned to the screen ready to
initiate further modifications. However, if the user
wishes to immediately. check that the shabe he has just
modified is in the correct position he can just replot the
barticular shape by pressing thé character “D’. When the
cross hair cursor is returned, it is positioned at point C
cand “Z° pressed. This causes the program to ‘zoom in’ and

replot the window at twice the original scale as shown in

73

7L

UINDOW SIZE IS

4 - s ——— o — - —

| Rolygon in
I wrong_position

18

15

215

229

Ry P e

MASKS PLOTTED -
123458

MASK NUMBER

1
Py

UHAT NEXT
BODIFY -

Chapter 3

fig 3.2.2. Note -~that the thin oxide chape is now in its
correct position. Pressing the character ‘M° when the
cross hair cursor is displayed allows the user to change

to operate on a different ™mask number and this is

obviously necessary to add the contact hole missing from

mask 3. The cross hair cursor can theﬁA be positipned at
point E, the gottcm left hand corner of thg rectangle and
‘R’ pressed. A dot will ﬁppear at the nearest grid point
fo the cross hair cursor indicating the posifion for that
corner of the rectangle. The «cross hair cufsor is

returned and is positioned where the top right hand or

opposite corner 'is required, ie. point F, and °0°
pressed. Again a dot appears at the nearest grid point
and the cursor returned. Pressing “D’ causes the

rectangle to be drawn on the screen before the cursor is
returned. To check that all the modifications .have been
made the user may wish to have a final look at the
complete layout, this can be done by preséing ‘J’ and the
result is the ©plot shown in fig 3.2.3. If space " * is
pressed “WHAT NEXT’ will appear at the bottom of the menu

area. Answering “END’ to this question will exit from the

program with the corrected data structure.

The description of the 1layout 1in the Ring Data
Structure 1is now <correct and can theq be post-processed
using GAEL9F or any of the other post-processors, to
produce a series of files containing drive tapes for a

tape controlled coordinatograph or mask making machine.

75

[=]
o
& M
T. @
3w x
2 9 5 A
ww o m ™ “_
LZ w g . | __
un T g ,
«d , [u_ po! ! , — |
T HEERH N __
I S R oo o i
A TR I ol |
' H N v o ; : H i
l _ _“_ _“ vl _n_ _"_ P ”“ _;L_ _“
1. Ty - | L cid HIRE Vi _ |
“ _ _"_ “” ““ “”~.L..w ! . [“ S L_—
b o : s I
“ _.l_“_ 1.7 \ — | “ lllllllllll Q
—] | |)
(—C j 1 i : 1= |
| | 1] r.ll.l._ o _ -
" _ COTTTL. L M byt ._
| | L}T 0o e H
1 T i o o i "
C,I 1 : ! _._ K __
. | b ” [| “ by -
| Bl : | ”.
|) Ly .Lm" HEE g
i o B H e il ;.Il.l..leluu.
“ i 0 —_————— n“ i ! I
: .. u _
{ ‘o b . _
i ! b o L)
i vy e | _ S m
. " B . .
]) V' 1 - . . “
] 0 (i i ' | 1
| “ l: ¥ . | _
ffffff i __"__ | . t I _ _ _~ i _
O e T . .rl._ M _...]
M- v‘_ "", i _ .
- : .. L e T
n ==F r G i
I i i g oo
. i o [y SR nTInInInT |
o, e I | _
4 | ik
-}] 4 _ |.I..\ll_ “
| | . Rty I _ | .r
_ o 1
{ t I = _ .
i _..lll..ll - _ _
z) e - _
<@ | I - I | _
- | | — ; " . — —
! : _ . o |
] - : . u
i - P Hinlnl 4 |
@ | 1 ;-4 (] ' ,.......... | |
%_ — | o _m | | |
i | f P _ \ _ _
“ [S ! R -
! e _
! L | | _
- g L
l N N | _ _
m_.._ “ N) “ _
o) i // \ ’ _
_ _ | ’] !
21 i N \ _ .
al ! . | . _ |
& 1 " _ _ .
U“ ' N ” “1..!:
| | “] a
- _ ST I
* U e e e
=t M i
==t £
l;

76 | o

LL

VINDOU SIZE 15

12

15

a1s

226

MASKS PLOTTED
2348

. MASK NUMBER

3

Chapter 3
. 3.3 Extra features of GAELIC

Because thg GAELIC system running on a time—shariﬁg
computer is always available i.e., does not have to be
booked for a number of hours, say a fortnight in advance,
it 1is possible to wuse it for short periods at a time.
GoodAuse can be made of such short periods to design

smaller sections like group or repeat definitions.

A definition can be roughly drawn on squared paper or
just a dimensioned sketch made whigh can in turn be coded
up in the GAELIC manual input language without the repeat
or group headers and entered into the computer. It can
then be converted into the ring data structure correcting
any syntax errors by either editing the input language
file or by adding gﬂe corrected shapes at a later stage.
The iayout can . then Dbe plotfed out, and any obvious
corrections made on-1line. More .obtuse corrections can be
made ‘off~lineA and correctiﬁg tapes typed up before going
on line to the time-sharing computer .to process the
correcting tapes and modify the data structure. When the
part layout has been corrected and checked thoroughly,
GAEL?A cah be run to convert the ring data structure back
into GAELIC manual input language. nge the necessary
repeat or group headers and trailers can be inserted and
the design stored away for future use. This method builds
up a library of subpictures that can be used when required
to design the full circuit and can, if suitable, be used

in future circuits.

73

Chapter 3

Another useful technique is to produce on say mask
15, the outline of the group and then when it comesAto
fitting the groups together to form the complete-mask most
of the work can be done with just‘the outline,. which saves
a lot of drawing time. This technique of using the
outline can be taken further still by using . the
REPLACEGROUP order word (see GAELIC users manual). The
outline in this case can be defined as thé group and used
in the main layout until the positioning of the éroups and
interconnections have been completed and then just prior
to running GAELY9F etc. to produce drive tapesb for the
Ferranti Masterplotter, a series of REPLACEGROUP s can be
entered into the ring data structure replacing the
outlines with the full group definitions. This technique
saves not only piofting time Vbut also coméuting and

storage costs.

3.4 Other GAELIC prograﬁs

There are several other programs in the GAELIC suite
that interact with the ring data structure. These

programs are briefly described below.

3.4.1 GAELSA

79

Chapter 3

This program plots all or part of a layout on a
CALCOMP incremental plotter. This provides a permanent
hard copy drawing of the layout that «can be studied at
leisure. The data td drive the plotter can also be
written to a disc file or to magnetic tape and plotted
later wusing a very small program which uses the minimun

computer resourcecg.

3.4.2 GAEL6A

This program extracts all the lines from a Ring Data
Structure, joins them together to form polygons and
returns these polygons to the Data Structure. This
provides a layout = description that only contains closed
shapes and can subsequently be post-processed td prdduce

drive tapes for photo-plotters.

3.4.3 GAEL7A

.This takes the contents of a corrected layout in its
Ring Data Structure and converts it back into the GAELIC
manual input language. This 1is an extrenely useful
program as it provides a method of sétting up a library of

frequently used components.

80

Chapter 3
3.4.4 GAELSA

This program fulfils two functions, it removes all
the discarded sections of the ring data structure and

rearranges the data for most efficient processing.

3.4.5 GAEL9F

This program takes the data from the 1ring data
structure and converts it into drive tapes for the
Ferranti Master-Plotter. These tapes. are produced on a
high ‘speed paper tape punch and <can give either a
MICROFILM plot of the layout or a set of “cut and peel’

masters.

3.4.6 Other post-processors

There are a number éf post-processors that are very
similar to GAEL9F which take the data from the ring data
structure and convert it dinto drive tapes for various
other tape controlled coofdinatographs and mask making
machines. Most of these have been written by students

during vacational employment at Edinburgh University.

81

CHAPTER 4: Data Structures

4.1 The need for a data structure.

It is possible to write computér programs that will
only process the one set of data built into the program
and examples of these programs are often written as
exercises during 'progrgmming:courses. A typical example
is a program that prints out all the prime numbers between
1 and 100. The fipished program, however, is of limitéd
use. Most computer programs use a different set of data
each time they are run and this data is read in by the
program from a deck of cards, entered via on on-line
terminal or read from disc or magnetic tape. In our
simple example the program could be modified to read in
the range of prime numgers to be printed out and so on one
run the prime numbers between 100 and 200 could be
produced and on another the numbérs between 1000 and 1?00,
This data i.ef the range, must be eptered into the

computer and stored in the correct order.

The data that is stored in computer memory usually
consists of numerical values e.g. the value of a resistor
or the number of hours that an employee has worked during
a week. It can, however, consist of sﬁrings of ASCI1I
characters forming names or text, or can consist of bit
patterns that form codes or symbols. Eégh item of data is
usually referred to as a “data element’. Data elements are

stored in a computer memory in an organised way such that

CHAPTER 4

the logical relationship between the elements is preserved

and this organisation is known as a “data structure’.

Data structures can vary in complexity from the very
simple to the extremely complex depending on what the data
represents and what processes must be carried out on that

data.

Consider the data for a graph where the computer

memory contains a simple series of y coordinate values for

certain known x valués. The word “series’” is wused here
instead of the more usual word “list’ because “list” is
used by the computer scientist to describe a particular
type of data structure that will be introduced later. The
correct graph will only be obtained from the data if the
coordinates that are stored in the computer are plotted in
their corréct ordé?: any other order would give a
different graph. Thus the data 1is structured in a
sequence of y coordinates and is wusually stored in the
computer 1in an array. This forms what is probably the
simplest data structure. Programmers use arrays without
realising that they are actually data structures,
consequently the term data structure is often reserved for
the more éomplex structures that allow for more
flexibility when processing daté. The processing of data
‘for the graph is simple and straightforward: data is read
into the computer in sequence, stored,in-the same sequence
in an array and then processed to produce the graph. It
is possible to change the values of certain coordinates

but coordinates cannot be added or deleted.

83

CHAPTER 4

However, the processing required on the data for
other applications <can be far more complex, for example,
it may be necessary to preserve the hierarchical nature of
the data or to delete from or add to specific positions in
the structure. A simple array will not hold a structure
capable o¢f handling these facilities and more complex
structures must be used. Any data structure that holds
the description of an integrated circuit layout must be
capabie of efficiéhtly plotting out the layout and of
modifying it by adding,' deleting and changing shapes.
This must be done without making the data structure too
big and a compromise must be obtained between the size of
the data structure and the efficiency of the wvarious
operations. The structure must also maintain the
heirarchical nature of the layout. The specific
reduirements of aﬁ‘ interactive system for the design of
integrgted circuit layouts were described in Chapter 2 and
it will be realised that most-of these ;equirements are
common to many other interactive graphic systems except
that the amount of data required to describe an integrated
circuit layout is so large that it cannot normally be held
in the core memory df a computer. The various types éf
data structure will now be described and it will become

_obvious how well the requirements can be met.

4,2 Types of Data Structures

CHAPTER 4

Excellent introductions to the subject of general
data structures are given by Knuth in his book [ref 4.1]
and in the paper by Dodd [ref 4.2). These dintroductions
are for general data management and are too broad based to
be considereq in detail here. However, there is a paper
by Williams [ref 4.3)] which deals specifically wifh data
étructures for computer graphics systems. As the
interactive design of integrated «circuits is mainly
conéerned with computer graphics, his paper is wortﬁ
discussing in greater depth. It is an excellent review of
the types of data structures that exist, concentrating on
those used in computer graphics systems and of the various
compuiter languages that have been wused to handle the
structures. The various 1languages used are dealt with
later in this chapterl and the present discussion
concentrates on thé-variqus types of data structures that

can be used.

Because of the differing terminologies wused by the
various -workers in the field, it is necessary to define
the terms that will be used. We have already met the
terms ‘data element” and ’déta structure” and their
meanings. However, when a data element occupies one word
of computer memcry, it is often loosely referred to as a
‘“word”. If a word of computer memory is wused to contain
more than' one data element then the word is said to be
split into “fields’, each field is therefore a data
element. A “record’” is used by Williams to describe a

collection of data elements that are stored in contiguous

85

CHAPTER 4

(consecutive) memory locations but the term is usually
used in data structures associated with input/output
processes and only occasionally in more geﬁeral data
structures. The two terms used to describe a colléction
of data elements in contiguous memory that are in more

general use are ‘block’ and “bead’.

Dodd has postulated that all data structures can be
constructed from ﬁhree basic types. These are the
sequential, random and list data structures and
consequently it is worth considering these three tybes in

detail.

4.,2,1 Sequential Data Structure

This type of structure consists of a sequence of
records or data elements. Any particular record or
element is accessed by searching sequentially through the

structure until the appropriate information is found.

As Williams points out, present computer memories are
one dimensional in access, memory locations are
sequentiaily numbered and the computer hardware is
designed to access data serially (this last process is
obviously interrupted by software when neceséary). This
means that processing data in a séquential data sgructure
is particularly efficient as the mechanisms to do it are

already built into the computer. However, there are

unfortunately some disadvantages. If all the records 1in

86

CHAPTER 4

the data structure need to be processed each time the
structure is accessed then this can bé done . extremely
efficiently. If, However, certain records are to be
igﬁored when processing data then the efficiency of the
process will fall, depending on the number of ignored

records.,

Probably the main feature of interactive graphic
systems is that of regplarly adding or‘deleting records
from the data structure aﬁd any structure used must lbe
_able to cope with this feature. This is again an area
where the sequentially data structure has problems. There
are two possible methods that can be used to efficiently
delete a fecord. The first is to change the initial data
element in the record to indicate that it is to be ignored
and the second is to.re-create the structure without the
particular record. The first method has the pre-fequi;ite
that there is a number that can be entered into the first
element of the record to indicate that the record is to be
ignored. This number must be wunique i.e. outside the
range of coordinates and other markers. The second method
is time consuming és the new data structure is created by
copying the original until the record is reached, ignoring
the record .and then copying the remainder of the

structure.

If a new record is required to be added then there
are again two possible approaches, namely to add the
record at the end of the structure or to re-create the

structure with the record in the middle. The first method

87

CHAPTER 4

-is an easy operation but the position may not be‘ a
possible one for the record. It may for instance have to
be near other records sharing a common-attribute. In this
case the second method must be used: thié consists of
copying the'original structure until the required position
is reached, adding the record and‘ then copying the
remainder of the data structure. Thié second methoa_ is

"obviously time consuming.

The time taken for the methods requiring the
re-creation of the data structure may not be not critical
providing the two structures are held in core but the time

will be significant if secondary memory has to be used.

) These problems with tﬁe deletion and addiﬁion of
records were sufficient for Williams to discount.the
sequential data stg;éture as one to use in an interactive
graphics system, however, as will be seen later there are

at least two integrated circuit design systems that use a

form of this structure.

4.2,.2 Random Data Structure

In a random data structure, an address in core or on
disc is allocated to each block of data, and each block is
stored in memory starting at that address. The data can

be subsequently retrieved from that address.

88

CHAPTER 4

The simplest way of assigning the address is for it
to be supplied by the programmer ana specified by the
program each time that it is required. This method is not
practical for variable size data structures with variable
size blocks as Lthe amount of memory allocated for each
block must be the maximum that any block could possibly
require and the maximum number "of blocks mﬁst be
aécomodatéd. The ' method is, therefore, extremely

extravagant in the amount of space required.

A more flexible system of assigning the address of
each block 1is fequired. The usual system is to create a
table or array of block names and associated addresses.
Each time a particular block is required, the table is
referenced and the corresponding address 1is found. The
data for the block is then retrieved from that address.
In this system, the addresses are céléulated‘ by the
program as required and not specified dinitially.
Consequently the addresses are allocated so that they just
leave room for the data. The number of entries in the
table are the same as the number of blocks actually wused.
This table is more formally known as the ‘symbol table’ or
“dictionary’ and is the most general method .of using

random data structures.

Present day integrated circuits are very complex and
. contain many components and consequehtly require very
large amounts of data to‘specify the layout. If a random
dgta structure is used to hold the data then the symbol

table becomes very big and considerable computing time is

89

CHAPTER 4

expended finding the address of any particular block from

the table.

Another problem with the random data structure using
a basic table 1is that it is not ideally suited for
interactive graphics becaﬁse of the problems of wup-dating
the structure. It is, however, easier to update than a
sequential data structure as only the symbol table need to

"be updated instead of the whole data structure.

There is another method of constructiﬁg the symbol
‘table which incorporates the'storing of the position of
the entry in the table for the following block as well as
the address of the present block. A éiven block can then
be found by following this chain of table positions and
their respective addresses. This speeds up the search
through the table é;-only table entries for blocks with a
common attribute need be oﬁ the same chain, other entries
for other Dlocks with differing éttributes‘being held on
different chains. This method also has advantages with
updating, as the position of the next entiy in the table
can be altered sé that a particular block is bypassed or
included in the correct posiéion. This method is
therefore far more flexible and resuits in shorter search
times than the sequentially ordered table. It has the
‘"disadvantage that the table is bigger because of the extra

table positions stored.

S0

CHAPTER 4

‘Another method of using random data structures is to
use .a technique known as “hash céding'} Here instead of
using a table to contain the ﬁame of a record énd/or3 its
address, the progrém treats fhe .name of the record as
either a number.or series of numbers and performs some
arithmetic operation on these numbers to give a result.
This result is then used as the'starting addréss ét which
the block is stored. The arithmetié operation is known ‘as
‘hashing’ and one of its problems is that two or - more
names can hash to the same address. This is called a
‘collision’ or 'confliét' and there are - many methods 'of
dealing with these conflicts which are described by Morris
[ref 4.4). The pgoblems of conflicts and the sizes of t he
blocks make this method of using random data étructures

difficult to program in Fortran or Algol. There have been

users of hash coding in graphical applications reported by

Feldman and Rovner [ref 4.5] that use the language LEAP-

which is based on ALGOL.

These random data structures do have - limitations at

the moment like relying on software to associate names

with addresses. However, if computers are eventually

built with large associative memories then these‘datéf

structures will come into their own.

4.2.3 List and Ring Data Structtres

91

CHAPTER 4

These data st;uctures are simila% to random
‘structures using symbol tables in that they built up usiﬁg
a series of blocks of data which are_located 'ai specific -
addresses and these addresses are stored elsewhere in
mémory. Héwever in list structures the address is kept in
a data element in the previous block and the éddress is
‘usually refered to as a “pointer’. Hence biocks of data
having similar attributes are “chained’ ér joined together
by means of pointers, the individual blocks, however, may
Be randomly scattergd throughout the memory. A series of
blocks chained together by means of pointers is known as a
“list’. ,A block of data can be on several lists and will
consequently have several pointer chains passing through
it. This is using the term “list” in its broader sense,
in “list precessing” using ‘Lisp’ [ref- 4.5) where the

block is just one computer word long.

The main advantage of list data structures 1is the
speed in which they can‘be modified or updated. If a new
block is to be added in a specific position in a list, thé.
block itself cén be added at any coﬁvenient place in
memory then the pointer in the previous block is changed
to point to the new block and the pointer in the{new block
set to point to the next block in the sequence. Si;ilarly
if a block is to be deleted then the pointer in thé

previous block is set to point to the block after the-.

redundant one.

92

CHAPTER 4

An example of a list data structure is shown in fig
4,1, which shows three separate lists éombined,together.
The first list “A° can join together the data describing a
seriés of triangles, the second list “B” may join together
a series of rectangles and the-third 1Iist “C° may join
shapes whose area is greater than a given value. The
-actual layout in meﬁory may be fragmented as shown in fig
4,2. Deleting the biock for triangle ‘T2° requires the
simple pfocess of changing the pointer in- block “TL° to

point to block “T37.

A more difficult block to delete‘ is one that is
situated on more than one list such as “T3°. Here.not only
must the block be deleted from list “A° by changing the
pointer in block “T2" to poiht to block “T4" but it must
also be deleted from.list “C” by changing the pointer in
block “R2° to point to block °R4°. This is difficult as it
ﬁeans noting which block is deleted when traversing 1list
“A” and then checking cach block in turn on list “C” to
see if it is the deleted block. One 1list is obviously
being traversed when the block to be deieted is detected.
and so by keeping the address of the previous block on
that list, the block can easily be removed by changing the
pointer values. The other list, however, will haye to be
specially scannéd from the beginning to find the block to
be deleted and this could be a time consuming process if
there are many Elocks, in the 1list. Therer afe aléo
problems if the program does_ not. know where the 1list

starts. In our‘example blocks could be on list “C’ or on

FIGURE 4-1

COrmmmemmmmmamaay

of list structure

example

el

Tl.

R1

T4

T2

R2

T3

BO— — — = — e — -

v

cCo---

....4__.____.|_<_.

layout of structure in memory

FIGURE 4-2

CHAPTER 4

other lists depending on the area of the shape and so it
is conceivable that the whole data structure would have to

be searched.

This problem can be overcome by use of “forward’ and .
"backward’ pointers between blocks so thﬁt not only does a
block have a pointer to the following block, it also has
one to the preceding block. This speeds up deletion bﬁt
does have the disadvantage that it requifes bigger data
blocks to store all the pointers'and heﬁce requires a

bigger data structure.

A sbecial type of list data structure can be formeg
by arranging that the pointer in the l;st data block
points back to the first. Thus the pointers form.a “ring’
or “circular list’ and structures using these are referred
to as “ring data sféﬁctures'. Ring data structures have
been used in several different applications by differeng
people and consequently has acquired several different
terminologies to describé it. The term “bead’” is used
instead of “block” by some people presumably because of
the similarity of a drawing of the blocks on a ring of
‘pointers to beads on a necklace. However terms 1like
“keys’, “chickens’, “hens’, “mothers’ and 'daughtefs’ have
béen used for the same blocks. It is therefore essential

to define the terminology to be used before proceeding

further.

CHAPTER 4

A ‘bead’ is a series of consecutive memory ‘locations
that are joined by “ring pointers’ to fo?m a ring. One of
beads has different attributes to tﬁe others and
corresponds to the first block on a list and ié known as a
"head bead” or “ringhead bead’ and the pointer in the head
bead .is known as the “ring head pointer’ . The first word
in a béad is called a ‘bead head” or ‘head word’ and
usually contains data elements or “fields’, which identify
what the bead contains and how big it is;' Another type éf
pointer is used which instead of poinﬁing to the next bead
in the ring points to the head word of another bead, this
type of pointer is known as a “direct pointer’. A simplé
ring'data structure is shown in fig 4.3 which illustrates

many of these terms.

Usually a bead is divided into three parts, the head
word ditself, the ring pointers and the data. The head
word usually contains the number of pointers words and the

-
number of data words used in the bead. The data words
only contain data such as numeric values and codes but it
will be shown later that wunder <certain circumstanées

direct pointers to other beads can be included thus

reducing the size of the 'data structure.

Just as in the standard list data strqcturei_ where
blocks can be on more than one list, beads in a ring data
structure can be on more than one ring.' The fact ‘that
rings are used rather éhan lists facilitates deletion of
beads without having to resort to forward and backward

pointers. Fig 4.5 shows the ring data structure to hold

96

HEAD BEAD

fieldi[field2| field3] headword
/ . - - bead ™ head
e j ring head pointer
data
BEAD BEAD
[ticta 1 [tieta2]fictas field1| field 2] field3
] ring pointer ring pointer
direct pointer E——/ direct pointer [

data

" FIGURE 4-3

data

simple ring data structure

T4
R4

T3
R3

HEAD BEAD

head pointer
head pointer

T2
R2

rings
ringC

ringpj head pointer

D R

ceewee e

P L L R T R

e e ceom

Ti
Rl

e e e

D L R LR R T R R
\

ring data structures for
rectangles and triangles

98

FIGURE &4°5

CHAPTER 4

the description of the triangles and rectangles - used in

fig 4.1, Now if ©bead T3 1is to be deleted and it is
detected by following ring A it can be deleted from ring C

by examining each bead in turn i.e. R4, the head bead and

R2 until the pointer to T3 is found. This «can then be’

modified to ©point to R& and the deletion is complete.
Only one ring had to be processed. The other advantage of
the ring data ‘'structure over thé list 1is that it is
possible to find the head bead of a ring b; following the
pointers round the ring wuntil the ring head pointer is

reached.

An interesting psychological point arises with ring
data structures. Because of the varying terminology used
in describing them, there is an assumed air of mysticism
about them. This apbears to affect programmers in one of
two ways, they will =either fully accept ring data
structures and use them regularly even if their use is not
fully justified or they will avoid wusing them at all
costs, However, ring data stfuctureﬁ are extremely
powefful under certain circumstances particularly for
interactive‘ applications 'where data in continually added
or deieted. They also have advantages when it comes to

handling a " large number of different types of data e.g.

the data for an electronic circuit analysis program

consists of resistors, capacitors, transistors, voltage
sources etc. Normally if these are held in Fortran
~arrays, there is a limit on the number of resistors, a

a

limit on the number of capacitors etc.. It is therefore

99

CHAPTER 4

pessible to have a circuit that is too big to analyse just
because there are too many transistors even though the
space for capacitors 1is eméty. Using ; ring or, for that
mattéf, list data structures, the program can be written
so that it 1is the total data size that matters, not the

size of the individual components.

4,2.4 Complex Data.Strugtures

The sequential, random and list data structures just
described <c¢can be used or combined to form more ‘complex
structures. The best known of these ‘complex structures
are the “tree’ and 'hierarchical; data structures, both of

which have been used in graphic applications.

Graph Theory d;scribes a “tree’ as a graph which has
no circuits (or rings in our terminology). The computer
form of a tree consists of a series of blocks spread
randomly throughout the memory and a series of pointers

chaining them together and an example is shown in fig 4.6.

100

CHAPTER 4

block lovelt

: block ' block ‘ block level 2
Hlock bltock block ~ block block block level 3

a tree structure

Fig 4.6

The structure starts with an idehtification block at
the top of the tree: this block contains certain
parameters describing the structure such as its name or
size and also poinfers to shapes at a second level. These
second level bloéks contain certain parameters describing
their function etc and also a sefies of pointers to blocks

at a third level and so on.

- The data to describe a triangle could be held in the

basic tree structure shown in fig 4.7.

101

CHAPTER 4

identification blocks

levell

line blocks

point blocks
A

B 7 7 B C C A level 3

tree structure for triangle
Fig 4.7
The identification block would hold the name of the
triangle ABC and pointers to the plocks for the lines AB,
BC and CA. These line blocks in turn would contain the
name of the line.e;g. AB and pointers to the coordinate
blocks A and B. The coordinate blocks contain the

coordinates of the appropriate point.

Probably the most important point to notice in fig
4,7 is that the ‘coordinates of each point are recorded
twice. This is obviously wasteful of storage space and a
simple modification of the basic tree structure is made
that allows more than one block at a high level to point
to the same block at. the 1lower level and the data

"structure is changed to that shown in fig 4.8.

AB BC CA . lovel 2 -

CHAPTER 4

identificalion block
ABC

BC | cA tine blocks

A ' B : c point blocks

modified tree structure for triangle

Fig 4.8.

The flexibility with the pointers can be taken a
‘stage further where 'the pointers in a block at a given
level can point to blocks on the same level. They cannot
however poiﬁt to . blocks at a higher level or this would

give the possibility of forming rings.

The system of different levels provides a grouping or
subroufining facility so fﬁat the definition of subpicture
can be stored in the structure starting ag a given leQel
and instances of the subpicture can be called by inserting
blocks at a higher level which contain - pointers to the
definition and the coordinatés of the origin of the

subpicture.

The basic version of the tree data structure 1is
difficult to modify particularly if blocks are to added or
deleted. If an extra block is to added at a given level,

then the block at the higher level must be replaced by a

103

CHAPTER 4

bigger one tb accomodate the pointer to the new block.
This means that the value of the pointer in the block at
the next level above must be changed to point to the
replacement block and so the. process of adding sﬁapes

becomes extremely complex.

The tree data structure can be made more flexible by
using list structures rather than random structures as

shown in fig 4.9.

)

<

Fig 4.9 Tree Structure using Lists.

Here‘the identification block contains 6nly é pointer
to the first block on the second level, the first bead,
however, contains a pointer to the second bead on that
‘level and so on. Now all that is required to delete a

"bead is to change the.pointer in the previous bead.

No description of this version of the tree structure
has been found in the literature though it is obviously a

far more flexible system. This is probably because it 1is

' 104

CHAPTER 4

so similar to the “hierarchical’ data structure which uses
rings rather than lists and which consequently has certain

advantages.

The “hierarchical’ data structures 1like the ‘tree’
data structures. are created from beads or blocks on
different levels but in this case the beads are on rings.
The term ‘hierarchical’ is '‘not often used and most
hierarchical data structures are simply refered to as
‘“ring data structures’. Consider the drawing shown in fig
4.10 which consists of a triangle BAC sharing two 1line

segments AB and BC with two other triangles

Fig 4.10.

ABD and BCE respectively. Thé hierarchical structure to
hold the data for this drawing could be as shown in fig

4.11.

105

CHAPTER 4 drawing

leval 1
triongle triangle triangle
ABD ABC BCE |

1 ~_ - \\\\\\ tovel 2

line line line line line line line
- 7]
DA 80 AB AC BC CE EB tovel 3
Fig 4.11.

Here the identification bead on the first level
'contaiﬁs the name Qf the drawing and perhaps 'its size. It
also contains the ringhead pointer to a ring of “triangle’
beads at a second levél. Each triangle bead could contain
the name of the triangle e.g. ABC, the vring pointer to the
nextvtriangle bead and also the ringhead pointer tc a ring
of “line seghent' beads that are wused ~to <create the
triangle. Each line segment bead céntains the ring
pointer to the next line bead and the coordinates of the

line segment.

Certain line segment beads are common to two
triangles, for example AD occurs in triangles ABC and ABD
"and so the line segment bead must be on both rings. In
order to access the'coordinates of the iine segment, it is
essentia; to know which ring is being traced or. rather
where the coordinate data 1is with respect to the ring

pointer. To accomodate this feature the pointers are

106

CHAPTER 4

numbered and each pointer word is consequently divided
into tﬁo fields, the first field contains the ‘pointer
number or offset from the headword, the second the address
of the next bead. This obviodsly restricts the number of
bits available fecr the address and hence the maXimum size

of the data structure.

This numbering of the pointers was a foature of the

first ring data structure used by Sutherland [ref 4.6] in
the Sketchpad program and the feature was also wused by

Evans and Katzenelson [ref 4.7] when_ﬁhey applied complex

ring data structures to electrical circuits and the-

feature now appears as a matter of course in ring data
structures. One of the novel features of the-GAELIC data
strucﬁure is that it-is designed 50 that the pointefs need
not be numbered. This has the advantages that either
larger data structures can be handied or else the same
size structure handled on a computer with a shorter word
length. This technique has subsequéntly been used by
McGuffin [ref 4.8] in the automatic _routing of P.C.
boards. Dr. P.F.A. Reilly did not \use use numbered
pointers in some of his data strucfure design work [ref
4.12). Instead he arranged that all the pointers on a ring
were in the same position in their respective beads
regardless of the bead type. This was found Vto be

restrictive and made data structure design difficult.

CHAPTER 4
4.2.5 Other Data Structures

There are.other data structﬁres ‘that have not Yet
been considered for graphics applications and probably the
most imortant of these is the Set Theoretic Data Structure
(STDSj. This data structure was described by.Childs [ref
4.9] and has been partially implemented. The data 1is
sorted into mutually disjoint sets which are known as
'genefator sets’. Generator sets can be joined together to
form ‘composite sets”. There are no explicit pointers used
between the various sets of data and sé sets can be moved
about in memory independent of each other. This technidue
of not having explicit pointers could be applied to other
data structures gnd is inherent in the sequential data

structures,

Certain set operations are used in the STDS to
retrieve the datavand set theory questions can be answered
about the data. It appears to be a useful'data structure
for such applications as statistics and personel
management. For example, if certain standard facts about
each person employed by a company are stored in the data
structure, séy whether a person is married and how many
children he has: then it 1is possible to answer such

’

Questions as how many men are married with two
"children?’. However, the data stored must be amenable to
arrangement in set form and this restricts the range of

‘applications. It cannot, consequently, be easily used for

interactive graphics work.

108

layout head bead

[

Tndex ring head

layout ring hea
name !
name 2

- mask word

601

shape bead group bead ; repeat bead
! [I | " layout ring 1 I
mask word —1__New group poinier ' repeal’ ring head
data movement code number of repeats
dala inrtial X spacing
cata imitial Y mask word
shape bead shape bead
layout
mask word mask wora
_ data data
bead : data data
Jew group ¢ data data

I |

group 1ayoct Tihg
group name 1
group name 2
mask word

shape bead shape bead
[| layout ring i)
mask word : mask wofd
data . data :
data data :
dcta , daTta ' FIGURE 4-12 CAMP data structure

CHAPTER 4

4.3 CAMP Data Structure

N

The CAMP data structure is mainly based on the ~work
of Evans and thzenelson [ref 4.7)] aund was desigﬁed by
Wood [ref 4.10)]. It is a hierarchical structure shown ih
fig 4.12. The input data to the‘CAMP programs can be
descriptions of rectangles, polygons, circles and lines as
well as the group and repeat structures and is described
in detail in Chapter 3. The basic shapes are, howevér, all
con&erted into polygons when stored in the data structure.

A typical polygon bead is shown in fig 4.13.

Mask Word
Initial X Coordinéte

Initial Y Coordinate

Final Y Codrdinate

- - em e - - - " ATh = - - — e o e -

Fig 4.13 Typical ‘CAMP’ Polygon Bead

110

CHAPTER 4

The first word in the bead is divided into three

fields, the first field contains a number to indicate that

it is a polygon rather than a group call or repeat bead.

The second field contains the number of pointers which for
a polygon is always 1 and the third field contains the

number of data words.

The next word contains the ring pointer to the next
shape on the ring. It again is divided into 3 fields, the
pointer number, the type of pointer and the actual

address.

The next word contains the “maskword’ which is a bit

pattern indicating on which masks the polygon appears.

The remaining words «contain the actual —coordinate

data describing the polygon.

The head bead for the complete léyout éhown in fig
4.i2 has the bead pointers of two rings, an index ring and
a layout ring. The iayout ring contains the beads for all
the shapes in the main layout. It also contains “group’
beads which are calls to an instance of a group. This
contains a direct pointer to theAdefinition of the group
and also contains the orieﬁtation of the group and the
coordinates of the origin of the instance. The ring also
"can contain repeat beads, which _contains the "number of
patterns, the spacing Dbetween them,- and a maskword
indicating which masks contain shapes to be repeated. It
also contains a head pointer to the ring of shapes to be

repeated.

il

CHAPTER 4

The index ring contains all the new group beads, one

bead for each group definition used in the layocut. Each

bead contains the name of the group and a maskword. This
time the maskword indicates which masks contain shapes in
the definition. It also contains the head pointer of a

ring containing all the shapes in the definition.

The process of plotting out the shapes on mask 1
consists of starting from the head pointer of the layout
ring and examining each bead in turn, by following the
layout ring pointers. When a bead is found, the contents
‘of the bead head are examined to check that it .is a
polygon and to find the number of data words. The
maskword is then examined to check whether the polygon is
on the required mask i.e. mask 1: if it isn’t, the shape
ring pointer is followed to the ne#t bead. If it 1is on
mask 1, then the shapé is plotted out. This{érocess is
repeatéd until the shape ring pointer.points back to the

ringhead.

It should be noted here that every shape‘is processed
to an extent regardless of whethér~it is on the required
mask or not. If we assumé that an integrated circuit
consists of 5 masks and that the shapes are distributed
equally between the masks, then the time spent processing
80% of the shapes when plotting a given mask 1is
unproductive. This obviously is a waste but as the. CAMP
data structure was désigned to be‘ core resident, the
actual time taken to process the ektra shapes is small.

However, if the data structuire were disc based with only a

CHAPTER 4

few pages in core then the time required to do all ¢the

extra disc reads would be appreciabie.

The layout ring contains two other typés bof bead
besides polygons, these are the group call bead.and the
repeat bead. If a group call bead ié encountered when
plotting a mask, the direct pointer is followed to the
group definition. The maskword in the defiﬁition bead 1is
examined to see if ‘the group contains any shapes on the
required mask. If there are no shapes present, the
program returns to process the layout.ring° If there are
shapes, then the program examines each shape on the group
layout ring, plotting out those on maék 1 before returning

to the main layout ring.

When a repeat bead is found, the maskword in the
repeat bead is exaﬁiﬁed to see if any shapes on maék 1 are
repeated. If there are, then the number of ©repeats and
their spacing are obtained from the bead. The shapes on
the repeat layout ring are processed the required number
of times with the appropriate modifications -to the

coordinates.

The data structure has three disadvantages:
1) the processing of redundant ~shapes as described
above,
2) The fact that all shapes are stored as pqugons. It
only requires two pairs of coordiqates to uniquely specify
a paraxial rectangle but requires at least three pairs of

s

coordinates to store the Same shape as a polygon. An

113

CHAPTER 4

integrated circuit design is typically made up of 30% of
rectangles so this «can cause an appréciable increase in
the size of the data structure.

3) As the structure is core resident, the size of the
layout that can be designed depends on the amount of éore
available. The average computer, therefore, is not
capable of handling the large integrated circuits designs

that are now being manufactured.

4.4 Marconi Myriad Data Structure

A sophisticated hierarchical data structure was
implemented on a Marconi Myriad computer equipped with an
X2000 graphics system by S Bird [fef 4.11). This data
structure was initially designed for a general purpose
drawing program and was later modified slightly for use iﬁ
integrated circuit layout. The structure is based on the
work done by Sullivan [ref 4.6] for the Sketchpad system
and includes Sullivans ‘constraints’® which ensure that

certain shapes in the layout maintain a certain

displacement from other shapes. The Myriad Data Structure

takes the hierarchical principal to its logical

conclusions.,. Instead of the line segments bead containing
the values of the énd coordinate as shown in-fig 4.11, the
bead contains the ring pointers to two ‘point’ beads one
for each end of the line. These point beads in turm each
contain the ring poiﬁters to two ‘“value’ beads, one for

the x coordinate value and one for the y.

114

CHAPTER 4

All the point beads and all the value beads are also
on rings with their head pointers in the drawing head

bead.

It does, therefore, create rather a complicated data
structure for a simple drawing. For example consider the
drawing shown in fig 4.14 which shows a horizontal 1line

joined to a vertical line.

Cy xb,vc

Xa,Ya Xb, Ya

Fig 4.14

5

The data structure for the two lines is shown in fig
4,15, It can be éeen that the line AB is cpnstrained.to be
horizontal by making point A and point B share the same 'y
coordinate value. Line AB is constrained to be joined to

BC by making both line segments share the same point bead.

The initi#l Myriad Data Structure was modified by S.
Bird to cope with the dgfferent masks encountered in
integrated circuit layouts. This was accomplished by
adding an extra “maskword” at the end of a line Bead. The
data structure for the rectangle on mask 1 shown in fig

4.16 is shown in figA4.l7.

115

gll

| 3| 1

main drawing fing pointer

vailue ring hecd pointer

v._._:._l

_j .

point C

4] 0

poinlring hecd potnier
line ring head poinfer
name of drawing
line AB tine BC
1 3 0 | 3] 0
line ring pointer line ring pointer
first potnt instance ring ptT im . First potnt instance ring pifp--
r-—-15econd point instance ring plf-—. — - —. L secord polnt 1nstance ring pirk...
i
o
i |
b o — — — . — — —-‘—‘ 'r-.—-.—.'—._._.—.—.—.
i t
point A : point B !
7] 0 !] v !
5oINt ring poinier | L poTAt Fing PoOTrALer ! POTAT
— Xvalue instence ring pointer | r——-~i—- —-4 X value instance ring pointerk—-— -~ — i — —.
"""""" Y vaiue instance ring peinter Sleetpete sl Y_value jnstance ring pointer Y value
501N LA IRSIaNCe ring hedd pur I L.—. fooint BinSWANCe r1ng NeQGRT— — — @ feeeefoennd
|
: L_____'_'”“—T
: ! j—
value X, vaiue Y, i value Xy i
] 2] i I T 7]] i L 2] i i
{ _valuering poinfer > value ring pojnter : value rinda pornter -
value Tnsiance 7ing head p{'r»———i LB value instance ring head plig---- L. _Bwwe nslance T1NQ heQd PUig..-l
X @-omindle o poinl A ™Y coordinate of point A X co-crdingte of point B

ring poinier

X valUe Instarce ring poinier f--—:-

instance ring polnter

poINt C Instance ring head pg--

value Y¢

Bttt e

h

L l 21
i value ring pointer
vOTue Thslance ring necd plil
Y co-crdifiate of point)C

_FIGURE 4-15 original myriad data structure for two {ine segments

CHAPTER 4

D Cc
Xa,Yc] Xb,Yc
A B
Xa,Ya Xb,Ya
% Fig 4.16 Rectangle on Mask 1

The structure does contain group facilities and so a
series of shapes that are used frequently need only be
defined once and then instances are called in the required
positions on the layout.v The group structure is very
similar to that used in CAMP- except that there is no
special main layoutv bead; everything is regarded as a
group including not only the main layout of the circuit
itself ‘but also the main layouts of any other circuits
held on -disc. It does, however, have facilities for
deleting a group definition and all thexinsfance or call
beads. This is done by having a group instance ring whose
ring head 1is in the group definition that joins all the

instances of the definition.

The data structure is disc based with certain “pages”
"of the data actually held in core at any one time and so

-is therefore capable of handling very large circuits.

"7

81l

et e

T] 37 i

main drawing nng pointer

volue ring head pointer

point ring head poinler

line AB

TT 7] T

line ring pointer

line Tring nead pointer
name Of plciure
line BC line CD
1 3] Ty il 3] i
line ring pointer . Line ring pointer

line DA

first point instadnce ring

first point Tnsldhce ring

second poinl insidnceringd

first point instancering 1/-——-

second point insiGnce ring

second pant insiane ring

1] 3] 1

Line ring pointer

tirst poinl instarce ring

second pont Insidnce ring

=]

-
mask word = | Mmask word =1 MCSK WCrd = | mask wordsj -_l
{
==
. J
point A point C point D
1] 4 5 ' il 0 1T 4] 0} 1] L [§]
poinl ring pornter point ring pointer poinl ring pointer Ppoint Tiag pointer
X value ring pointer - + X value r1ng poinater | ! X value ring pointer AN ! Xvalue Fing pointer |
Y valye ring pointer Y value ring pointer i—m L vvels ring pointer SR Yvclue ring pointer f..
poin(_fos@nce head pur DOINT INSIORCs head prTy l_g TOTRT TRITARCe RoT BT 'l_‘ BoInt TNsSente [Roag prTi—.
1] Z |] 1] 2] 7 1] 2] 1 T] 7] T
value ring poinfer value ring pointer value ring pointer value ring pornter
value Tnstance fead purf] vatue instance head ptri— LT vcive Tnstance head prri— value (nstance head prrg—

X co-ordinale of A

Y co-ordinaie of A

X co-ordinate of B

FIGURE 4-17

Y co-ordinate of C

modified myriad data structure for rectangle on mask!

Chapter 4

The structure is extremely flexible but does suffer
from problems of having to number the pointers and of
having a high proportion of pointers to actual data,

requiring very large data structures.

4.5 Other Data Structures

The CAMP and MARCONI data structures ~were the only
ones that were known that had been applied to'integrated
cicuit layout design when the iniﬁial GAELIC data
structure was designed. Since that time other integrated
circuit léyogt design systems have become commefcially
available but in general.their data structures have not
been described in the literature. However, by talking to
the .people using~-these systems a certain amount of

informaticon has been obtained and. this is given below.

The Redac integrated circuit design program -uses a
sequential file for its main data structure and appareatly
the whole data structure is searched each time a new

display file is created.

The Calma systém also uses a sequential file approach
but subdivides it into disc segments. The bounding
rectangle of thevéhapes in each segment 1is stored as a
segment header and is examined each time a window is
plotted to see if shapes within.the éegment overlap. the
window. It uses similar sequential structures for the

group definitions. This system can be reasonably

Chapter 4

efficient on disc transfers if the data is entered in the
correct order ie. all shapes for a particular area of the

layout entered one after another.

Tﬁe Applicon systen mékes more effort by sorting
éhapes according to their bott;m left hand corner and
writing them to specific segments on disc. Again the
bounding rectangle of the shapes in the segment is stored
and examined to see if the segment neced bé processed. It
appears to have problems with large shapes i.e. large

rectangles and polygons. A large shape 1in a segment

causes the segment to have a large bounding rectangle and

hence it is processed for most window sizes. Because the
data 1is divided into fixed sized segments, on the Calma
and Applicon systems there are restrictions on the sizes

of polygons allowed.

The final GAELIC data structure described in the next
chapter makes extensive usce of the area concept to
minimise the number of disc transfers. Since the work
Lstarted, two' other organisations have been found to be
using area associations in their data structures. Bell
Telephone Laboratories ' have produced what is effectively
an area associated display file which at present is
restricted to rectangles. The rectangles are sorted into
areas depending on their size. There are, of course,
large rectangles that overlap more than bne area and these
are catered for by =entering them in each area. This
approach was considered for GAELIC when the final daté

structure was being designed but was rejected as so many

120

Chapter 4
areas had to be accessed when a2 large shape was moved.,

I.B.M. research labhoratories at Hursley have taken a

similar approach & 7 S to GAFELIC and B.T.L. in sorting

shapes into areas but have found another solutionA to Athe
problem of the‘ large shapes. They are split up into a
series of smaller shapes by cutting the shapes aldng the
area - boundaries. This makes for efficient processing But
does give a layout that is difficult to check as it is

different to the layout actually entered.

121

CHAPTER 5: GAELIC Data Structure

Thié chapter is mainly devoted to the fhree data
structures that have been used during the development of
the GAELIC programs. It starts, however, Sy summarizing
the requirements for the daté structure that were

develéped in Chapter 2.

To minimise tiie amount of data that is held in the
computer memory, all the redundancy ﬁhét exists in the
input data for the tape controllgd coordinatographs must
be eliminated. Rectangles must be described by the
coordinates of a pair of diagonal corners and other shapes
that are paraxial must be described by every other pair of
coordinates. Also there must be facilities for repeating

a series of defined shapes individually or on a matrix.

As the main feature of the‘ GAELIC programé is the
‘interactive , phase, it is also essential to be able to
perform all the interactive operations as quickly as
possible, the interactive requirements, tyerefore, must be
born in mind during the design of the data structure. The
requirements were given in detail ip Chapter 2 but are
briefly:

1) To plot out all or part of the layout.

2) Tq be able to identify a point on a shape and either
modify or delete the shape.

3)vIdentify the origin of the instance of a group and

either delete it or change its orientation.

4) Identify that a shape or series of shapes are .

122

CHAPTER 5

repeated and be able to modify the number of patterns or

their spacing.

The Wolfson Microelectronics Liaison Unit feceived a
contract from General Instrument. Microelectronics Ltd. to
‘write a éuite of computer programs to produce drive fapes
for a tape <controlled <coordinatograph from either data
tapes from a digitisef or from manually prepared data.
These programs were to run on a particular commercial time
sharing service. This service did not at the time have
any random access facilities for Aata files used in
Fortran programs and so it .was not possible to wuse
sophisticated data structures. This restriction resulted
in a suite of éomputer programs known as PAELLA (Plotte?
Aided Engineering Layout of Linear Artwork) which uses the
version of the sequeﬂtial block data structure described

below.

5.1 The Sequenfial Block Data Structure:

The sequential block 1is about the simplest "data
structure 4that can be used for this type of work. The
structure is simply c;eated by sequentially writing the
blocks of data to arrays or disc files. In our case each
"block contains the data describing a shape and is written
to an array or file in the order in thch it appears in
the input_data. .The blocks vary in length for different

shapes e.g. a rectangle requires 6 elements and a 6 sided

paraxial polygon requires 10 elements. An example of the-

H

123

CHAPTER 5

data for several shapes in a sequential block structure is

shown in fig.5.1.

The basic sequential block data structure is not very
efficient wunless all the data can be held in an array in
core. This is because the whole of the data must be
searched sequentially to find a pafticular item rapher
than searching through the series of items having similar
attributes. For example, if a particulqr shape on mask 1
is required then it is desirable to sorf through the
shapes on mask } and ignore‘the shapes on masks 2, 3 and
4, The main advantage of the data structure is that it 1is
compact and so can often be held entirely in core when a
more sophisticated data structure would have to be held oﬁ
backing store. To search the sophisticated structure will
therefére require data transfers to and from the backing
store and this obviously takes time. With integrated
circuit layout designs, the amount of 'data is so large
that it «cannot possibly be held in core and so must be
held on disc or other backing store. Any use of the basic
sequential block data structure for integrated circuit
layout design must, therefore, be inefficient. There are
two other problems with the basic data structure: firstly
the data must bevprocessed in the ofder in which' it is
entered and this is not necessarily the best order for
. subsequent processing. Secondly it is difficult to handle
the group and repeat facilities. If these facilities are
to be used then a count must be made of the number of data

elements processed 1in the file when a group instance is

it -

Q w oy OY W N

LWWwW NN NN N NN N = = e -,

Fig 5.1

rectangle marker

mask number

x1 value

'yl

x3

y3 .

polygon marker {s)

mask number

x1 value

yl "

x2

y3 .

x4

yS .

Xs »

y‘ "

polygon marker ()

mask number

x1 value

yl “

x2

y2 .

x3

y3 .

x4,

Y4 “

x5

y5S

x1

yl

rectangle marker

—

Sequential block

data

x4, yb %3, y3
x1, yh. x2,¥2
x8,y6 x5, y5
x3,y3 XL, yh,
x1, yl x2,y2
x5, yS x4, y&
*3, y3

x1,yl

structure

125

X2, y2

CHAPTER 5

encountered. The file must be rewound and searched from

the beginning for ‘the approbriéte definition. . When this

is found, then the shdpes contained are processed after
¢

being suitably modified to account for position and

orientation of the instance. *Ihé program must then return

to the beginning "~ of the data ~"structure and all the’

elements skipped until the count is reached and ‘the "~ main
processing continued. This,,nétessityi.to return to the
beginning of the file wheneVer‘grQup,instances or repeats

are met 1is extremely inefficient and not a practical

proposition for large amounts of data.

Certain of these disadvantages can be overcome by the
use of extra-seqﬁential block data files and the methodé
by whichvthis can be done are discussed below. However it
must be remembered that in the commercial time service
used; a;mwdmum“§£uomyﬂffour disc channels i.e. four disc
files were allowed to be open at any one time and this
necessitated the restriction that repeats'cannot.be nested
i.e. a series of shapes to be repeatgd cannot contain

another series of repeated shapes.

To enable each mask in turn to be plotted out
quickly, it is desirable to have the shapes for each mask
on a different file. Unfortunately thé number of masks
.can vary between 4 for a simple MOS process and 16 for a
complex Bipolar process. The maximum n@mber of masks mﬁst
be catered for even though on average less than half will
actuélly be used. This resultg in a requirement for 16

disc files and preferably 16 disc channels. This is

126

CBAPTER 5

impractical and so all data for the shapes in the main
layout definition have to go into the one file to be

scanned in toto for each mask in turn.

The group definitions, however, need to be separated
from the main definition, and again each definition should
theoretically go into a separate array or file to enable
it to be found and processed quickly. Again because ofA
the variation in the number and size of thé group
definitions it 1is impractical to use separate arrays and
the number of disc channels available limits the number of
files allowed. Consequently all the group definitions

must also go into one file.

This res£ricts the system to the one whose Dblock
diagram is shown in fig. 5.2. Here the order of entering
the data is flexibig i.e. the shapes on mask 3 can be
enfered before the shapes on mask 2 or a shape on maskv2
can be preceeded by a shape on mask 4 and can be followed
by another shape on mask 4. Also groﬁp definitions can be
entered in any order. The process of 'éonverting input
data into drive tapes for tape controlled coordinatogfaphs
is as follows. After checking the data for syntax, it is
converted into the purely numeric form known as the “dump
code file”. (This is a basic sequential- block data
structure) This file is subsequently sorted into two
separate sequential data files, the first contains all the
main shapes and main repeats and the second contains all
thevgroup definitions. Tﬁe program now returns to the

beginning of the main file and each shape is looked at in

127

woysds yi1713vd 40 woiboip %3019 - Z-5 3¥N914d

=° rDu .lw
) - WD
o p 22 lindut ~
¥311017d o o, ge 2dDy
10109 TR : . S~ 12dpd
-— j01dwoo a Py) - -
MOPUIM, S 2 =35
N O - .OId
2. 3 c
0 - -~
o s
o E E
o) - —- L
o - = M
o ~ —
= ® o ks
| s K
¥31101d z -
o
LOdNOD m 1od sod o~
Josseso.d y50d z 3 L3 i) .
- »S%Eoo doytdwod o
JNOADY m
m
- -
m r =
H > m
b8
Uh
a =
1ndino w So| Indu)
2d o} 3 &=l odoy
- 97| Jodod
= 1a%5042 ®
) p XD1UAS —~ -
E 125171D1p =
- 5
- he}
— [=
LM -~

CHAPTER 5

turn to see if it is on the required mask. If the shape
is required, then it is written to a new file, if ﬁot, it
is ignored. This new file is called the 'coordiﬁate file”
and contains the basic information required by most tape
controlled coordinatographs, that is the coordinates of
every corner of every shape of each mask in turn. This
co~ordinate file is subsequently post-processed to either
drive an on-line plotter or to give the drive tapes for a

particular coordinatograph.

When a group call 1is encountered then the ‘group
definition file is searched - from the beginning for the
appropriate definition. When the definition has been
found, the shapes that are on the required mask are
written to the coordinate file, taking dinto account the,
position vand orientation of the call. The program then

returns to continue reading from the main file.

When a repeat header is found, all the shapes té be
repeated are first writtenm to a sepérate ‘repeat’ file.
The repeat file is then rewound and the shapes written to
the coordinate file the required number of times with the

appropriate increments on the co-ordinates.

As stated earlier the system is capable of providing
check drawings from the co—ordinafe file and can
conceivably be modified to alter the position of shapes
but it does have problems when it comes to deleting shapes
‘and drawing new ones. This can only be done by copying

the file wup .to the header of the shape to be deleted,

129

CHAPTER 5

skipping the marker and coordinates of the shape and then
copying the remainder of the file. Adding new shapes at
thé end of the file may be feasible on certain computer
instalations that allow extra data to be subsequently
appeﬁded to a file, but adding a shape ‘to a group
definition again requires copying the file, and this is
obviously time consuming. Corrections on the system
implemented are, therefore, always made to the manual

input language.

When additional facilities were added to the
commercial time sharing service whiéh enabled the user to
start reading from the sequential file at some point other
than the beginning of the file, the process was speeded
up. This was done by the program storing the starting
address of each ‘pérticular group definition as it was
written in the group definition file and then going
directly o that position on the file when the definition
was required. It was a system with this facility that was

used in the comparative tests discussed in Chapter 8.

5.2 The Initial Ring Data Structure:

A ring data structure provides a more versatile
"method of storing or handling the data for a layout. It
does not have the restrictions on the repeat ﬁesting nor
the. problems of processing unnecessary information that
are present in the the‘sequential block structure. The

block diagram of the system using a ring data structure is

130

CHAPTER 5

shown in fig.5.3 and the actual data structure wused is

shown in fig;5.4.

It is a hierarchical structure in that it has beads
which hold the head pointers of rings of beads of the next
hierarchical level e.g. the main definition bead contains
the head pointers to the rings of the group definition,
the repeat definition and the main mask beads. These
beads in turn have rings of beads of the next level. The
program works at one lével éoing round a ring checking
each bead in turn until the required bead is found and
then deécends to the lower level and goes round the next
ring, it does not need to descend to this lower level
unless it requires. data e.g. the program will go round a
mask . ring, (the ring containing the mask beads) until it
finds the required mask number and then will descend to
the lower level and process the shapes on that mask. It
does not have to process shapes.on any mask other than‘the

one required.

The full daté structure at first sight appears to be
complicated but can be understood by considering first of
all the main definitipn on its own as shown in fig 5.5.
The whole of the ring data structure is built up on a main

definition bead which is shown in fig 5.6.

131

34 10410
12 ICTHeD

N5 LAdLne
X3HAD

1

2 2 2
T 4 o
- E 2 .
T T I
2 - : X
. / & nMUu
34 3LBNIQYCeD ﬂ e g
- o i o
- 3
[%g] %]
[Se] <
| = i
o o
| € a
G G
34 3HNL3NYLS H1id0 INIY
%] [%a)
~ ™~
o pos]
it i
8N ong
O O

3714 3003

dWina

1

GAELYS {

Les

CRE

Y351L10I0 wWoY4

IS 3080ONS
LAdNT IEANE

374 1N4in0

L _

/AA

BLOCK OIRCRAM OF INITIAL CRELIC SYSTEM

3

S

FIG

132

cel

main
gefinition

.
=

mask
rectanale polygon group call repect call rectangle line group call repeat call
: —
n '5 T
j— |
—]
l |
! -
Ll , !
value value f_‘ value) \ value \ﬂ value I |
-3 — 3 b -]
¥ i | 3! - { i { 3
Ll 1 L . | [3 I l & 3 = 3 [] J
_ ‘ : |
. i l]
| | '
group definiion ! | \rjpect Fetinition
[[-
S |
mask mask l mask
f::i— 1
—d ———d
rectangie rectangle rectangle rectangle rectangle rectangle rectangie rectangte
Figure 5.4

7€1

main
definjtion

mask

mask

rectangle

polygon

rectangtle polygon

Figure 5°5

CHAPTER 5

-y =~ - = M CeP in e i s T MR S S e = = S A e e m mw o ——

Garbage Ring Head Pointer

Spare Ring Head Pointer

Group Definition:R. H. Pointer
Repeat Definition R. H. Pointer
Main Area Ring Head Pointer
Minimum X Coordinate

Minimum Y Coordinate

Maximum X Coordinate

Maximum Y Coordinate

Fig 5.6 Main Definition Bead

Ihe bead contains the head'pointers of several other
rings that are used in the dapé structure and their use
will become clear as the structure is developed. The last
of these ring head pointers is the start of the mask ring
and fig 5.5 shows th this ring contains a series of mask
beads, one for each mask used in the layout. Each mask
bead is similar to the one shown in fig 5.7 and contains
the pointer to the next mask bead, the head pointer of the

appropriate shape ring and the number of the mask.

135

CHAPTER 5

Mask Ring Pointer

Shape Ring Head Pointer

e e e At o - - ot e - - —— e o e WY W A e ——— —

Fig 5.7 Mask Bead

The shape ring contains the shape beads holding the‘
description of shapes on the particular mask. There are
three basic shapes that can be described these are the
RECTARGLE, POLYGON and LINE. An example of a polygon bead

is shown in fig 5.8..

136

CHAPTER 5

- S - - - . -~ — T " - - ———— e N S M B = - Y > - = . -

Minimum X Coordinate
Minimum Y Coordinate
Maximum X Coordinate
Maximum Y Coordinate
Format

Initial X Coordinate

Initial Y Coordinate

"

Final X Coordinate

Fig 5.8 Polygon Bead

The head word is as usual split ingg three fields,
the first field contains the “type’ of shape bead in our
case the number is 2 for a polygon (number 1 indicates a
rectangle and number 7 indicates a line). The éecond field
éontains the number of pointers in the bead and the third
field contains the number of data words. The data of thé
polygon bead consists of the coordinates of the Dbounding
rectangle of the polygon, the format number (8388527 for a
short format, and 8388526 for a long) followed by the

actual coordinates of the polygon. .

137

CHAPTER 5

A polygon or’line can have up to 1000 corners and so
it can take a long time to go through the data of the
shape only to find that none of the shape éppears within
the window. For this reason the bounding rectangle of
every polygon or'line is computed as the data 1is ‘entered
and the co-ordinates of this rectangle are stored in the
the first four data words of the bead. Each time a shape
is processed, an initial check is made to see whether any

of the shape appears within the window, before processing

the actual co-ordinate data.

The.data structure is built up by initially creating
the main definition bead and setting all the ring éointers
to point to themselves. As the first shape is read in,
the appropriate mask bead is created and added to the main
mask ring. The appropriate shape bead is then set up and
added- to the shape ring of ~the new mask.bead. When
subsequent shapes are read in, the mask ring 1is searched
each time for the appropriate‘mask bead. if'the bead 1is
found then the new shape bead is created‘and added at the
beginning of the shape ring. However, if the mask bead
does not exist a new bead is created and inserted at the
beginning of the mask ring. i The shape bead is then
created and added to the shape ring. The shapes and masks
are added at the staft of the rings for speed, as the
value in the head pointer 1is simply transfered to' the

pointer in the new bead and the address of that pointer

entered into the ring head.

CHAPTER 5

The process of plotting out =@ main data structure
consists of going round the mask‘ ring until the
- appropriate m;sk bead is found. The area ring of the mask
bead 1is then processed, plotting out each mask iﬁrturn.
If a window is to be plotted, the bounding rectangle "~ of
each shape 1is checked against the window and‘shapes

outside the window are ignored and the next shape

processed. This has very little saving for a rectangle

where the bounding rectangle consists of the actual
coordinates, but has considerable savings with pdiygons

and lines, where there can be up to 2000 coordinates.

Identifying the nearest point in the layout 1is very
similar to plotting, the mask ring is again searched for
the appropriate mask and then the shape ring is processed
shape by shape checking each pair of coordinates within

the window in turn.

The above description applies to the’main part of the
layout and does not use any of the group and repeat
facilities. The methods of handling the group and the
repeat structures are basically the same and consequently
only the group structure will be dealt with in detail. | A

group call or instance bead is shown in fig 5.10.

139

CHAPTER 5

- s . e - e - — — S - . S e L ————— D - . . - —— s o —

Shape Ring Pointer
Instance Ring FPointer

D. P. to Group Definition
D. P. to Group Value Bead
Maskword

Name 1

Name 2

e s o A - WS MM S W Chv i e e > v Men ey AP e L . —— - — — -

Fig 5.10 Group Call Bead

Group call beads appear as a “shapes” on the shape
rings of the various masks used in the definitidn e.g. if
.a group definition contains shapes on masks 1, 2 and 3 and
there are instances of the group called in the main
definition, then there are group call begds on the shape
rings of masks 1, 2 and 3 of the main definition as shown

in fig. 5.9.

When a group éall is processed the appropriate group
definition is found by means of a direct pointer and the
the shapes on the appropriate mask of the definition are
then processed. The use of the direct pointer may appear
redundant as there is a group instance ring joining all
the group cails to a particular aefinition and whose head

pointer is in the definition. The program could obviously

140

71

main

definition
| ot it a2
mask mask
TSR RO TR ST
rectangle polygon group call rectangle line group call
\g—roup definition
 hpsarte nosend 4
mask mask
f
. I
rectangle rectangle !-roctunglo rectangle

— :

Figqure 5-9

CHAPTER 5

trace its way round this ring to the definition. It must
be remembered, however, that there can be of the order of
100 group <calls on certain layouts and on these layouts
the program would, on average have to pass through SO
group calls before reaching the definition and the process
is therefore time consuming. The group instance ring 1is
actually present so that individual group calls or group
definitions can be deleted. The position of the group
call and.its orieﬁtatiqn could be stored in the group call
bead as shown in fig 5.9. This has the severe disadvantage
that if the position of the call or iﬁs orientation are
modified on say mask 1, then the same modification must be
made on all the other masks that contains a grodp call
bead. The designer can very easily forget to do this
esbecially if many modifications are performed on mask 1
before modifying the other masks. This would <create
errors 1in -the layout which are not easy to detect. This
problem is overcome by setting up 3 “value’ beads which
are inserted onto a special value ring. These beads
contain the values of the x and y ccordinates 6f the group
origin and its orientation. The group call bead as shown
‘in fig 5.10 contains direct pointers to the value bead
heéds instead of the actual values and this gives the data
structure that will handle the group faqility shown in fig

5.11. ' s

The way in which the group facility is built up in
the data 'structure is a little complicated in order that

the input data can have calls to a group before the group

142

£7!

e e,

main -
definition

mask mask
‘m{:mzz‘
rectangle polygon group call . rectangle tine group catl
Y L
value value Value

e o

group definition

mask ’ mask

rectangle rectcngleJ rectangle

rectangle
——r

Figure 5-

11

CHAPTER 5
is defined and vica versa.

When a groupvdefinitidn is encountered first imn the
input data, the appropriately named group definition bead
is created and added to the group definition ring. This
group definition bead is very similar to the main
definition bead shown in fig 5.6 except that:

1) The first field in the head of the bead, the type,
contains the number 2.

2) The group definitiion ring pointer is the first
pointer in the bead

3) The group instance ring head pointer is the second
pointer and

4) Two extra words appear at the end of the data words
and these contain a numeric representation of the name of

the group. e -

The variocus mask and shape beads are then added to
the group definition bead in exactly the same way as they
are added to the main definition bead until the end of the

group 1is reached.

When a call to a particular group is entered before
its definition, then the group definition bead is again
set up but this time there will be no shapes to be added.
Three value beads are set.up and added to the value ring.
Each valuye bead consists of 3 elements: the bead head
which contains the usual 3 fields, thé type, the number of
pointers ‘and the number of data words, the wvalue ring

pointer and the actual value. In this case the first ring

CHAPTER 5

has the value of thg x origin of the group instance, the
second has the value of the y origin and the third has the
orientation; The group call beads are then set up énd
added to the shape rings of the appropriate masks and
direct pointers to the head of the group definition, the x
origin, y origin and orientation beads are added as shown

in fig. 5.11.

The way the program discovers whether the group
definition or group instance have already been encountered
is to search»the group definition ring for the appropriate
Qefinition bead. If the definition bead is present then

the address of the bead head is noted and the group call

or group definition processed as described above. If a

definition for a particular group is encountered a second
time, an error message to that effect is printed out and
the initial definition is overwritten. 'More than one
group call to the same definition ' are of course legal and
so are added to the data sStructure, each new call having
its own value.beads and group call beads. Group calls to
one definition can occur in another group definition, or
in a repeat definition, as well as in the main definition.
These are processed in the same way except that the value
beads "and group <call beads are added to the appropriate
definition. 'The “type” of the value bead also reflects
the type of calling definition and is set to 1l for a call
from the main definition, 2 for a cali from another group

definition and 3 from a repeat definition. This is not

essential for ‘the program operation but makes debugging .

145

CHAPTER 5
the program a lot easier.

"When processing the data structure to produce a plot
or iddentify an actual point, the group «call bead is
obviously encountered. As explained in Chapter 3, the
user 1is not allowed to modify shapes in the instance of a
group but can modify the position or érientation §f the
instance. When the origin of én instance is identified,
the direct pointers to the value beads are then followed
and the values of the x and y origiﬁ compared with the
éoordinates of the cross hair cursor énd then the next
shape is processed. va plotting then as well as following

‘the direct pointers to find the position of the «call and

} e

ts orientation, the direct pointer to the definition is
followed. All the shapes in the definition are then
processed, transforming all the coordinates to account for
the position and orientation of the instance. When ail
the shapes have been processed the program returns to the

next shape bead after the group call bead.

The method of handling the repeat facility is very
similar and the data structure with repeated shapes is
shown in fig. 5.11 The value beads in this case contain

the number of patterns and the spacing between them.

The repeat call is contained implicitly in the repeat
definition and so we have a simpler system‘for building up
the data structure, the only slight complexity is the fact
that ‘repeats’ can occur in the main definition, in group

definitions or even nested in other repeat definitions.

146

CHAPTER 5

This means that when the repeat definition is encountered
in the input data the program must assertain which value

ring and repeat definition ring must be used.

Processing the repeat calls is again similar to
processing group calls, the first patterh only 1is
processed during modification but all the patterns being

processed during plotting.

This bounding rectangle éoncept that is used on the
polygon and line beads 1is taken a stage further by
calculating the bounding rectangle of ecach definition as
the shapes are entered, and storing the co-ordinates of
this rectangle in the definition bead. This has two
advantages: when a group or repeat call is processed the
bounding rectangle of the definition, modified by the
position and oriéﬁtation of the call, is checked against
the window and if outside, the definition is ignored. The
other advantage is‘that when a'definitioq; main, group or
repeat, is being plotted the user can be given the minimum
window size that will allow a plot of the whole

definition.

Beads that are deleted are put onto a “garbage’ ring
ready for re-use if required and the pointer in the
previous bead changed to point to the following bead and

so once deleted the bead is not processed égain.

147

CHAPTER 5
5.3 Problems with the Initial Data Structure

The informationm held in the initial ring data
structure 1s not necessarily in the most efficient form
for subsequent p;ocessing because the information can be
fragmented over the disc. The effect of-this inefficient
storage of data is not . normally noticed on the
Decsystem 10 because of the 1low data rate (1200 baud)
available to the Tektronix storage tube terminal and the
fact that the users program is being continually swapped
in and out of core by the time sharing'executive. However
when designing large integrated circuit layouts, say above
150thou square, delays <can be noticed, wusually vduring
modification, that are due to the number of disc transfers

required.

The reason fo;”the large number-of disc ﬁransfers can
be understood by considering the following example.
Assume that a plot of a windoonn mask 1 is required. To
do this the mask ring is searched, examining each mask in
turn until the appropriate mask bead is found: the shape
or contents ring of the .required mask bead 1is tﬁen
traversed examining each shape in turn and plotting those
within the required window. Assume that.the program can
only have.three pages of the data.structure in core at any
"one time and that initially these are ‘pages 1, 2 and 3. If
the first pége containing a shape on the required mask is
page 27 then one of the pages presently in core say page 1

must be overwritten by page 27. The shape on page 27 can

then be processed. The next shape could well be on page

148

CHAPTER 5

28 and so page 2 must be overvwritten by page'28 and that
shape processed. The next shape may be on page 1 which
will have to be brought back into core Vagain, this time
overwriting page 3. If the data ig awkwardly fragmented,
the next shape may be dn page 3. i.e. the one that has

‘just been overwritten, and so page 3 must be brought back

in again this time overwritting page 27. This arrangement

is obviously extremely inefficieﬁt and occurs when each
shape is in virtual isqlatiioh i.e. 1s apparantly on a
separate ©page. If therefore, all the shapes on a given
mask were arranged to be on the same page then once this
page was brought into core then no other disc transfers

would be required to plot or modify that mask.

The obvious solution is therefore to arrange that all
the shapes on a given mask are on the same or consecutive
pages and this raises the obvious question “why isn’t it
done?’ This is a question that is much easier to ask than
it is to answer. Chapter 2 shows that the average
designer will prbduce the 1layout of all the masks of a
given section simultaneously. His mnatural reaction 1is
therefore to specify the input data for the section as
sobn_as he has.designed it, and then, after checking and
modifying thé layout, will ©proceed to design thé next
section. The pages of the ring data structure are written
consecutively i.e. page 1 is filled beforevpage 2 is
started. Thus the data for one section of the layout will
go on the same page or consecutive ﬁages i.e. the sh&pes

on mask 1 fer the section will be near the shapes on mask

149

CHAPTER 5
2 for the same section, However shapes on mask 1 for

another section will probably be on another page.

If the designef dgsigns and.draws the complete layout
and then and only then pasées it over to a tracer or
similar grade of staff to be digitised, then the data can
be entered into the computer ﬁask at a time. -All the data
for mask 1 will therefore be entered onto adjacent pages
of "the data structure. This appears at first to be the
obvious solution to the problem but does assume that the
designer 1is prepared to design the complete layout before
the data is entered into the computer. This method also
means that the full faciiities of the GAELIC'system, for
example the group and repeat facilities, cannot be
exploited and therefore involves the designer in a lot of
unnecessary work. .Exactly the same argument applies to
éoding the completed layout using the manual input

language and so this is not a viable alternative.

It is therefore inevitable that the data is
fragmented onto different pages if theAAesigner is to be
allowed to design in the way that is most natural to hin.
A designer always works best when as few constraints as
poss;ble are put upon his method of working and it is

essential that those constraints that are absolutely

necssary are easily understood.

There is another reason why the data is fragmented on
the disc which is concerned with adding shapes directly by

means of the cross hair cursor on the Tektronix screen.

150

CHAPTER 5

All shapes that are added during the interactive phase are

placed on the last page of the data structure ._regardless
of where other shapes on the same mask are situated. If
the complete layout 1is designed on line, then the

resultant layout . can be fragmented throughaut the disc.
however, the ocecasional shape that was missed £from the
input data can be added without any noticeable

deterioration in response. S 8

In order.to allow the designer to have the necessary
flexibility in the input data and to cope with largé
numbers of shapes added intéractiveiy,‘it is essential to
be able to order the information in the data structure
after it Has been'ihitially created rather than ‘ordering
it on input. There are three ways in which this ordering
can be aCCOmplished.v ?irstly a new ring data can be
constructed from tﬁe old fragmented stfuctqre. Secondly.a
néw dump code file .can be created from the old ring data
structure and thirdly a new manual‘input languagé file ﬁan

be created from the ring data structure.

The first option is perhaps the most elegant but does
have <core store and programmihg problems as two ring data
structures must be handled simultaneously. The second
option requires only one ring data structure and oﬁe
sequential file and is therefore easier to program and
reqﬁi;es' less <core store. This approaéh_was programmed
successfully for the early GAELIC software buf was not
ﬁsed in practice by dintegrated circuit designers. The

desighers had no confidence in the method as they could

151

CHAPTER 5

ﬁot manually check the binary aump code file before it was
‘recompiled” back into the new ring dat% structure. This
is a difficulty that 1is mnot always realised by the
.applications programmer: the designer has to undergo a
traumatic change in his desién technique when he starts
using a CAD facility and is naturally very sceptical. He
is having to put his design into the hands of a computer
and a computer as far as he 1is concerned is the cause of
mistakes in his gas bill and is the reason why his
“gueries abéut car insurance take so long. If he <can be
reassured at intervals that everything is alright and
completely under his control, then he will settle down to
the néw technique that much quicker. The ability to
quickly plot out part of his design 1is one reassuring
feature and the abilityAto do spot checks on the manual
input language is m;nother. People wusing the programs
therefore, vprefemed the third alternative method of
creating a new ring data strhcture i.e. converting the
fragmented data structure back dinto the manual input
language, even though this required an‘:extra stage of
précessing (converting the manual input language into a
dump code file). This third alternative has the additional
advantage that it allows the use of “library’ components.
The designer designs a section of a layout that performs a
specific function e.g. an R.S flip-flop, enters the
description into the computer and interactively checks and
corrects’his deéign. He then produces'a corrected version
of the inpqt language file which 1is stored on + disc or

magnetic tape and is called up whenever the component is

152

CHAPTER 5 : T

required. There is yet another advaptage in the ability
to create a .manual input language file from a ring data
struéture. As ‘the input language file consists of ASCII
characters the file can easily be tfansfered from computer

to computer.

The program (GAEL7) that converts the ring .data
structure ‘back into the manual input language is arranged
so that it processes all the shapes on one mask before it
processes the shapes on the next. Hence the manual'input
language has the shapes in this éame order. When
recompiléd back into a new ring data structure, the shapes
on one mask are but on the same page or consecutive pages.
Thus this new data structure will plot out all the shapes

on one mask with the minimum number of disc transfers.

When designiné“iarge integrated circuit layouts, it
is not praqtical to plot the whole of a mask on the
Tektronix 4010 terminal because of its limited screen size
and resolution. This doesrnot detract from the ﬁse of the
terminal as most the designer requires to‘lopk in detail
and modify small sections of the layout otherwise known as
windows. The user not only requires to plot or modify one
mask -at a time but also fequires to examine several masks
supefimposed on the same plot. The timé taken to plot out
a window for a given mask can be appreciable as the data
for all the shapes on the mask must be processed to find
those within the Window. Certain features of the data
structure ‘'described earlier in this chapter allow

instances of group or repeat definitions to be ignored if

153

~

CHAPTER 5

the are outside the window. These features do reduce the
amount of processing but neverthless a lot of unnecessary
data will have to be processed especially if there are not

many grouped or repeated shapes.

There is therefore, a requirément to modify the data
structure so that the amount of information ﬁhat must be
processed for a given window 1is reduced to a minimum.
There are four possible approaches to solving this problem
that were considered, these were:

1) Shapes within a window are placed on a fixed size
page.

2) Shapes within a window aré placed on a variable size
page.

3) Shapes within a window are placed on a fixed size
page until it is full and then the remaining shapes are
placed on consecutive pageé.

4) Shapes within a given area are placed on special
rings associated with that area and are periodically

arranged to be on consecutive pages on thé disc.

Let us now consider these four approaches in a little more

detail.

The first approach is extremely rigid and has the
following features:

1) A page on the disc must be provided for every

possible window of the maximim size of chip used i.e.

regardless of the size of chip being designed. This means

CHAPTER 5

the data structure must always be'the same size and must
always be maximum size.

2) Each page must be big enough to contain the maximum
" number of shapes that are possible within the window
regardless of the fact that the window only. contains only
one shape.

3) The window size is related to the page size and need
not be related to the window size that usar(would wish to
use.

4) When a shape is moved from one window to the next,
the shape description must immediately be added to the new
page and then deleted from the o0ld and this can cause
problenms.

5) There are always shapes in an integfated circuit that
start in one window and finish iﬁ another and these cannot
be accommodated with.this approach.

6) There must be the appropriate mechanism in the
program to select the appropriate page and bring it into
core. This is a fundamental problem associated with all
three appproaches and is added mainly for\completion.

7) The must be a garbage collection and re-use system
operating on each page to re—-use the space freed by

deleting shapes.

The sécond approéch is more flexible because of the
variable size of ©page. A lot of work has been done by
Hubbald [ref 5.1] on the variable page data structure. It
has the following features:

1) the pages need only be provided on the disc when they

CHAPTER 5

are required and so the data structure size’is kept to a
minimum.

2) There must be a mechanism in the program to expand or
contract the page as shapes are added or deleted.

3) The window size is again fixed by the maximum size of
page allowed and the number of shapes that it can contain.

4) There is still a problem with moving shapes from one
window to ‘the next and with shapes that start in one
window and finish in another.

5) There must be a mechanism to.sort out which page to
bring into core and which page or pages to write back to
disc to make room for it. For a variable length of page

this is an extremely complicated algorithm.

The third approach is more flexible still and has the

following features:

1) Pages are again only used when required and so for a
small layout only a small data structure is required.

2) The pages can be made a convenient size for the
computer and do not depend on the window size required.

'3) The window size is still predetermined and cannot be
changed by the user.

4) There are still problems with moving shépes from one
window to.another and with shapes thatvstért in one window

and finish in another.

The fourth approach has a fundamental difference from
the other approaches in associating the shapes with areas
of the layout and not with windows and has the ~ following

features:

156

CHAPTER 5

1) The window size is determined by the user without any
coﬁstraints from data structure size or page size.

2) The size of the data structure is dependent on the
size of the layout. i.e. pages for windows neced not be
created unless they are required.

3) The mechanism for swapping pages can be the same as
that already used in the initial data structure.

4) When shapes are méved from one area to another, only
the pointer values need be cﬁanged to associate it with a
new area.

5) The problem of shapes that start in one area and
finish in another is still present.

6) There nmust be a mechanism for reordering the data
structure on the disc so that shapes in a given area are

on the same page or adjacent pages.

This last approach is extremely flexible and 1is
therefore the one implemented. As described, it still has
several problems associated with it that have to be
solved. Probably the most important of these is how to
dgcide with which'éreas shapes are to be associated. Fig
5.12 shows a section of integrated circuit layout with a
grid‘superimposed which divides it up'into areas. It can
be seen .that there are two main élasses of shapes, those
that lie entirely within an area and those - that do not.
The problem 1is what to do with the latter. There are
three options:

1) Treat these shapes the same way as those lying

entirely within the area and associate each shape with the

157

CHAPTER 5

area in which it starts. This is a non~starter as this

means that every area must be processed for even the

smallest of window just in case it contains a shape that
extends into the window. |

2) Associate‘shapes that are entirely within an area
with that area and treaﬁ all the remaining shapes as
special céses. Wﬁen plotting or modifying only the area
or areés within the window and the special shapes need be

processed. This is a far more practical‘approach but has

the < disadvantage that there are an awful lot of special-

shapes that must be processed for each window.

3) A closer look at fig 5.12 shows that these specials
can be split 1into two subdivisions, those that start in
one area and extend only to an adjacent area and those
bigger shapes that extend further, This allows a
modification of the second option so that shapes entirely
within an area and shapes.that only extended into adjacent
areas are associated with that area "and only shapes
extended beyond the adjacent areas could be treated as
specials. This modified option was chosen as it meant
that there were only a few special shapes to be processed
for all windows and the only areas fhat needed to
processed were those contained within and adjacent to the

window.

The numbering of the areas 1is also an interesting
problem. The obvious solution is to number the areas on a

raster as shown if fig 5.13.

,o 158

- C

0
i

FICURE 512

layout showing

relationship belween shapes and areas

159

CHAPTER 5

25 26 27 28 29 30 31 32
17 18 19 20 21 22 23 24
9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

Fig 5.13

The actual area number can be quickly evaluated. However,

on giving the - problem a little more thought, it can be

recalised that by modifying this numbering‘vqrder, it is

possible to overcome one of the common problems met when
'plotting large composite drawings and when actually
cutting the cut and peel material., This problem is to
minimise the distance traveled and hence the time spent
with the pen or knife up. Only when the pen is down and
drawing is it doing useful work. It is very difficult and
time consuming to sort the information in the data
structure so that it can produce a drive tape for the
coordinatograph that has the data in the optimum order.
It can be done whilst entering input data into the
computer but that is contrary to the policy of putting as

few constraints as possible on the input data preparation.

If the method of numbering area beads as shown if fig
5.6 1is used and the areas areiplotted out in sequence,

then there is a distinct improvement over any random

method. There 1is obviously very little distance between

shapes in each area and very little distance betwveen —. -

160

CHAPTER 5

adjacent areas so travel with the pen up is minimised.
The main travel 1is during the “flyback’ e.g. when
travelling from area 8 at the end of the first row to area

9 at the beginning of the second.

The optimum solution would be appear to be to arrange
the area beads in a spiral starting in the middle of the

layout as shown in fig 5.14.

17 16 15 14 13
18 5 4 312
19 6 1 211
20 7 8 9 10

21 22 23 24 25

Fig 5.14

This method does present certain implementation problems

such as finding the middle of the circuit to start the
counting when circuit sizes obviously vary and evaluating

which areas are required for a given window.

A modification to the basic spiral can be made so
"that it starts at the bottom left hand corner of the

layout as shown in fig 5.15.

161

CHAPTER 5

17 18 19 20 21

16 15 14 13 22

4 3 8 11 24

1 2 910 25

Fig 5.15

Plotting from this type of numbering system is excellent
for a full layout or a full mask, However, the algorithms
required to evaluate the correct area for a shape as it is
entered and to evaluate the correct areas to plot a window

are extremely complicated.

Complication for its own sake is "never worth while
and the numbering sequence finally chosen is shown in fig

5.16.

32 31 30 29 28 27 26 25
17 18 19 20 21 22 23 24
16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

It has the beauty of being a simple system to implement

R ’ 162

CHAPTER 5.

using a fast aigorithm to calculate with which area a
shape should be associated and whichl areas .should be
plotted and yet minimises the trgvel with the pen up. The
problems of further optimisation of plotting files are

discussed in Chapter 7.

In this section we have discussed methods of speeding
up the plotting of windows and indentifications of points
in the data structure. Some of theée require additional
programs to rebuild ‘the the original data structure and
these programs are évailable in system using this
structure. Others i.e. those involving the use of areas
required a new data structure and this new structure 1is

now dealt with in more detail.

5.4. The Final Data Structure.

There are two ways in which the area concept can be
incorporated int; the data structure and these are shown
in figs 5.17 and 5.18. The first method ~ (fig 5.17) has
mask beads that instead of containing the head pointer of
the shape ring,contain the head pointer to a_ring'of area
"beads, wusually known as the area ring. There is an area
-bead for each area occupiéd on the mask. Each area beéd
" contains &he area number and the -head pointer of the
appropriate shape ring. Once constructed the data
structure <can be reorganised to arrange all the contents

of the 'area ring to be on one page or on consecutive

pages. In this case all the shapes on the given mask will

791

MAN DEFDNTIN 26D

MY BERD

MRS

2R

AR A

PER LAY A3 BERD

MERA EERS

RECTANCLE EERD LINE

ECRD

PECTANCLE BERD RETTRUOL EBERD FRYCTN 3EXD LN EEXD

TAL DERD

RECTANGLE CE€AD

FIZ 5 17 DATA STRUCTWRE IN WMICH THE MAK BEAXS CONTAN THE ARER APMCS

CHAPTER 5

be on the same page but not shapes on another mask.
However shapes on the given mask that are in the next area
are placed immediately after those for the first area and

so will be on the same page or consecutive pages. This

makes this particular system of implementing the area

concept ideally suited -for operations that involve one
mask. at a time and require consecutive areas.
" Modification immediateiy comes .to mind in this context.
If is not so well suited to operations that involye shaﬁes
on more than one mask in the same area as shapes on

another mask will probably be on another page.

The second option (fig 5.18) has the main definition
bead modified so that instead of having the head pointer
of the mask ring, contains the head pointer of the area
ring. Each area bead contains the area number but instead

of the head pointer of the shape ring, contains the head

pointer of .the mask ring. Each mask bead is the same as

in the initial data structure, i.e. contains the mask
number and the head pointer of the shape ring: the shapes
on this ring however contain only shapes within the
appropriate area. This arrangement is preferable for
operations that involve -shapes on more than one mask
within a given area and plotting is the first operation to
come to mind. This is because when the data structure 1is
reorgénised, the contents of an area are put on the same
page or consecutive pages i.e. the mask beads and all the

shapes.

991

MAIN DEFDITIMM 2ER2

MmER

BERD

a

CERC

MY BERD

MR PERD

RECTAILE BERD.

UNT EERI

RECTANLE REFRD RECTAMAE EIFD PRYCTY SERQ LpE

BLAD

TAIRCA DERD RECTANGLE TERD

FIC S 18 9TA STRLTUE N WHICH THE RIER BEAYS CONTRIN THE MISK ADCS

i . ‘

CHAPTER 5

The choice of which sytem. to implement depends on
which is more likely to be required , operations involving
one mask and consecutive areas or those invoiving shapes
on several masks in the same area. The user spends most
of his time working on a window ofl the layout and only

certain areas are required. These are by definition not

always consecutive as can be seen in fig 5.19.

33 34 35 36 37 38 39 40

= — . — e m

32 31 30'29 28 27126 25
1

window

23 24

17 18 19.20]21]22

areds examined —
16 15 14313 12 11

10 9

The areas required for the window are 11, 12, 13, 20, 21,
22, 27, 28, 29 which are some consecutive areas and some
.. % nonconsecutive. There are many area beads between
the consecutive triplets that are not required for the
window and so on balance the second option is the one to
choose. There 1is another reason that substantiates this
choice and this is discussed in detail in Chapter 7 in
section 4 when the organisation of the data structure on
disc is discussed. It is shown there that in order to
process unwanted area beads quickly, all area beads should

be on the same page. The féwer area beads the easier it

167

CHAPTER 5

.

"is to reach this objective.

The éize of the grid that divides +the layout into
areas can obviously be véried giving different area sizes.
The size of the area can have an effect on the progran
performance and it is necessary to find the optimum size.
The reason for the variation in performance with size can
be understood by coﬁsidering the extreme cases. If the
area is too big then most areas will have to be processed
regardless of the size of the window used. This is shown
in fig 5.20 which shows the complete layout divided into 9
aféas, and shows a small winduw in the centre area.
_Shapes in the adjacent areas can extend into the centre

area and hence into the window and so all 9 areas must be

processed ecach time the contents of the window are plotted

or modified.

The other extreme is to have so small an area that
all shapes extend beyond their adjacent areas and so are
placed in area 0 which is reserved for the special shapes.
Thé shapes in area 0 are processed regarﬁless of the size
of the window and so the same data is processed for évery

window. There is also another problem in that the smaller

the area the more area beads are required. The larger the:

number of area beads the larger the numbér of mask beads
"that must be in the data structure. The programs handling
the data structure have to check each area bead in turn to
check if it possibly contains shapes within the window.
(the reason for this is discussed in chapter 7 section 5)

There is therefore a large overhead in data structure size

i68

691

1*1:1-]
T
]
[
] L

1

S——

r
L
\
=
b=
HIN
1IN
\.:Qv—

window ~.{. |

I
.

o
o
(L]
T
et
Y
j\;i
li N
G

Fig 5.20 Small layout divided into 9 areas

CHAPTER 5

and in CPU time to process all these beads. The optimum
size must therefore lie somewhere between these two
extremes and a thecretical value for this optimum .size can

be obtained by considering the problem from a different

angle.

Let us consider the size of window that will be used
most frequently and - the effect of that size on the size of
the area beads.‘- LOccasionally the ' user requires an
overview of a large ©portion of the layout to identify
sections that'require closer examination or to check the
interconnecting metallisation. Hcwever, most of the time
he will require much smaller windows that will enable him
to visually check the distance between two shapes and
enable him to position a shapé so that it a given distance
from another shape. This means that the users requires a
resolution of one increment. To enable this resolution%to
be obtained on Tekronix 4010 terminal this means a minimum
of two screen units to one iayout unit. The screen
resolution dis ' 760 by 1024 screenvunitsnand as the right
hand side of the screen is used fof messages this gives an
éctive window area of 700 by 700 screen units. The window
size is therefore 350 by 350 layout increments. Let us
now examine the effects of various area sizes on this

window.

If the area size is made the same as the window size
i.e. 350 by 350 layout increments then the number of areas
that have to be processed varies between 9 and 16 as can

be seen in fig 5.21. Any smaller area .size would require

170

windows

areas processed

4

increments

into areas 350 x 350

‘divided

N
3

Layou

5.21

ig.

171

. CHAPTER 5

-

more areas to be processed for example fig 5.22 shows an
area size of 175 increments square and this requires
between 16 and 25 areas to be processed for the window.
It will obviously take longer to process the increased

number of area beads and will mean more shapes in area 0.

Any larger area size than the windoQ will still
require between 9 and 16 areas to be processed as can be
seen in fig 5.22. It is probable that the most commonly
used window size will also contain a large numBer of
éhapes completely within the window: if many éhapes
extend beyond the 'window the user would use a larger
window to see what is happening. It therefore appeafs to
give a very strong argument for haQing the areés size
exactly the same size as the most commonly used window and

that window size “is approximately 350 by 350 increments.

Obsefving a colleague using the programs in anger to

actually design an integrated circuit showed that his most
frequenly used window was approx 250 by 250 increments
which considering variations in human preferences showed a

large measure of agreement.

The programs were written to handle a range of area
bead sizes and the same program and same data were
compared for differing sizes The results are given in

Chapter 8.

The above discussion assumed that plotting was the
most dimportant process in layout design and this is not

really the case. The user is reasonably patient when the

172

increments

75

1

175 x

. e o

R N

windows
areas

to

in

173

ivided

d

Layoul

22

areas processed
5.

o _.J.L_

R
oz O

CHAPTER 5

terminal is plotting éut a window of his layout as he can
check the layout as it is being plotted. However, when
waiting for the computer to find the nearést point in the
data structure to the cross hair cursor -during
modification there is vefy little that the user éan do and
so he requires a virtually instantaneous response. It s
therefore <clear that the modification process is the mofe
important. The cross hair cursor can be positioned within
two or three incfemenps of the point to be identified and
so it is only necessary to check the shapes that pass
within two or three increments of the cross hair cursor
position. In other words the effective window is
extremely small. It could therefore be argued that the
area size should be made equal to-phe smallest window size
when we were discussing plotting and at first it would
seem logical therefére to have the area equal to the smalil
windoQ required during modification. Unfortunately as
explained earlier, the number of shapes that would extend
beyond the adjacent area would be astronomic and so the
area beads woﬁld be wasted. Also the ove?heads in terms
of data structure size and CPU time to process all the
area beads would be excessive. An area bead would be
required for.every part of the layout of say 10 increments
by 10 increments. "As the maximum size of circuit is 32000
by 32000 1increments this will mean 3200%3200 area beads
i}e. approx. 10 million beads for a maximum size circuit.
The situation is bad ehough for an area size of say 320 by
320 increments when a maximum of 10000 area beads would be

required plus the appropriate mask beads. An area bead

174

CHAPTER 5

requires 5 words of storage and each mask bead requires 4

words. Assuming therefore, that the MOS process to be

used for the circuit, required 4 masks and that there 1is

at least one shape in each area on each mask, then there
is a requirement for 5+4*4 = 21 words per area and a total
of 4approx. 210000 words of storage are required for the

area and mask beads.

From the above discussion it appears as if the area
bead concept is a non starter bécause of the high storage
requirements. However, ﬁhefe are several mitigating
reasons why it is an extremely attractive concept.

1) Area beads and thelcorresponding mask beads are not
entered into the data structure until there are actually
required.

2) Most idntegrated circuit layouts use repeated

components and grouped components and this reduces the:

number of area beads that are required.

3) The integrated circuit comparator 'designed by the
Wolfson wunit is approx 180 thou by_}80 thou.and only
require% a coordinate range of 1760 by 2200 incrementg
i.e. nowhere near the full coordinate range. The largest
layouts presently being designed are approx. 250"thou
square and assuming the increment is unchanged, require

2500 by 2500 increment (the maximum you will remember 1is

32000 by 32000). Photographic and semiconductor processing ...

will doubtlessly improve so that finer geometry lines will
be used. Assuming the increment size is halved in the

future and the size of the layout increase to 350 thou

175

CHAPTER 5

square, even .then the coérdinate_range is only 7000 by
7000 increments. |

4) The improvement in times to‘plot and modify windows
due to the reduction in disc reads as discussed in Chapter
8 are extremely important for an efficient design system,

5) As circuits get bigger the time taken to process the
whole of the data for each mask_will increase and will
therefore increase the need for a method of reducing the
ammount of data pfocessed.

6) There are the savings in plotting time .due to . the
area beads as discussed earlier~fn this chaéter.

7) There are tremendous advantages to be gained from the
area bead concept when it comes to checking the layout
design which will be discussed in Chapter 9.

8) Finally the increase in data structure size 1is
nowhere near as large as expected for a typical layout.

The layout shown in fig 8.24 required 40 pages with only
47 words on the last page for the initial data structure
i.e. without area beads a total of 19859 words while the
data structure with area beads for areas of 512 by 512
increments required 41 pages with 217 words on the last
page giving a total of 20537 words. This is an increase
oanpprox. "3 percent, which is a small price to pay for

the advantages described above.

176

CHAPTER 5
5.5 PAGING THE DATA STRUCTURE

THE GAELIC data structure is so large that it cannot
be held entifely in the'core memory of the cbmputer and
consequently ﬁas to be held on disc. The structure 1is
divided into a.number of parts known as.pages, each page
containing an equal number of words (at present 508). In

order to interact with the data structure, copies of

certain pages are -held in <core and information is -

transfemed to and from the data structure via these core
pages. In other words, if informationAis to be read from
"a particular 1location in the data structure, then a copy
of the page containing the loéation is read into core from
disc and the contents of the location read from cbre.
Similarly if information is to be writtem to a given
location, then agéin the page containing that location is
Tead into core and the data written té it and at some time
in the future a copy of the updated page is written back

to the disc.

The process of reading pages to core and writing
pages back to disc is known as 'paging'Aand the main
problem that any “paging’ algorithm has to solve is how to
arrange which pages are to be in core at any one time and
thch pages should be written back to disc to make room

"for the next page.

The simplest algorithm to do this uses the following
stratagy:

1) read in a copy of a page containing the location

177

CHAPTER 5

tovbe changed or examineq,

2) cﬁange'or examine the location and then

.3) immediately write a copy -of the page back to disc.
This'stratagy has the advantage of only requiring space
for a single page to be held in core but has the distinct
disadvantage that there are many unnecessary disc reads
gnd writes. For example, if data is to be read from &
consecutive locations on the same page; this simple
stratagy dictates that the same page must be consecutively

read in four times and written out four times.

There are certain modifications that can be made to

this simple algorithm that will improve its performance:
1) it is worth checking if the contents'of a location
are only examined and not changed. In which case there is
no need to write thelpage back to disc.
2) it dis also worth checking whether the next
location to be examined or modified is on the same page aé
the previoué location. In this case there is no mneed to

read in the same page from disc again.

However, 1if the pages containing locations are
continually alternating, then there is still a large
number of disc reads and it is worth <considering a more

complex system involving more than one page in core.

A more complex system of this type reduces the number
of disc reads and writes because of the higher probability
that the required page will be in core. However, it does

raise the problem of what action must be taken if the

178

CHAPTER 5

required pagé is not in core. "Obviously one of the pages

in core must be copied back

modified and then the regquired

overwriting the ' previous core

deciding which page to overwrite.

to disc 1if it has
page .copied from
page. The problem

The simplest. system

been

disc

is

is-

to use a first in, first out algorithm known alternatively

as FIFO or Round Robin. An

often wused is

core is accessed

alternative

and then overwrite the least

system that

used P

- is

to count the number of times each page in

age.

This is known as a Frequency algorithm and was at one time

considered for GAELIC.

efficient for the

description was arranged on the disc.

particular

way that the 1la

The area beads

It was rejected because it was not

yout

for

a layout are placed at the start of the data structure and

for a medium size layout may well

mask and shape beads for

be all on 1.

page

followed by the mask and shape beads for area 1 etc.

us assume they are on

When plotting out a window of the
each area
associated with

window.

‘examined for the appropriate mask bead and the

the

The page containing the area beads i.e.

that particular area could lie

layout for say

within

shapes

page 1 is acce

mask

The

area O are then written next

Let

pages 2~4 and 5-6 respectively.

L,

bead in turn must be examined to see if shapes

the.

When this is the case then the mask ring must be

on

shape ring examined in turn and plotted if necessary.

ssed

to establish whether the shapes within an area could be in

the required window and if so the

again until all the shapes on the

processed.

179

The processing of the

page . is not acce

required mask have
shapes

can requir

ssed

been

e a

—o

g =

CHAPTER 5

given page to be accessed many times in rapid succession,
for example page 2, followed by page 3, followed by page
4, and only when all the shapes within the area have been
processed does the program return to investigate the next

area bead in the first page. Using a - “frequency’

algorithm the first page would probably have been swapped

out because it had not been accessed for éo long and would
have to have been brought back to core. The p;ges
containing the shapes would remain in core for a iong time
as they had been accessed so many times but may not be
required agéin as the shapes for the négt area, i.e. area
1, may be on different pages i.e. pages 5 and 6. To avoid
thi; problem a more -complicated \algorithm would be
required and it was felt that the time spent computing
whiéh page to .change would be prohibitive. The simple

Round Robin system was therefore implemented in which the

pages in core were written out in turn.

The Round Robin syétem could possibly overwrite the
area bead page just before it was requireﬁ and it. appeared
worth coﬁsidering a more complex system to avoid this,
The system consisted of two round robins superimposed on
cach other. This was implemented in a special version of
GAEL4A and compared with the simple round robin. The
method was as follows, eéch call in the program to the
routines that examine or modify the data structure was
given an extra parameter which indicated Qhether it was
concerned with either the area beads or the masks and

shapes. If the routine call contained a parameter value

180

CHAPTER 5

from a shape setting then the routine wculd also only
overwrite bages that were in the part of core reserved for
the pages containing shape information. If on the other
hand the call had the parameter setting for areas then
only pages containing area information’ would be
overwritten. Whenever a location was required then all
the core pages were checked to see if fhey contained the
appropriate disc page regardless of whethe; the particular
core page was called in for area information or shape
information, and so the pages are not festricted to having
area information only or shapg information only. [The
résults given in Chapter 8 show that it had no appreciable
reduction‘ in the number of disc reads and in fact used

more CPU Timel.

Another interesting facit in the handling of the data
structure 1is the method of checking whether a copy of the
required page is in core or not. Two different methods
are in use in different progranms of the suite. The
methods rely on keeping either a list of éhe contents of
each core page or a 1list of where each disc page is
situated i.e. in core but not written to, in core and

written to or not in core.

The first method requires a one dimensional array of
'lengﬁh equal to the number of pages in core i.e. if there
is room fpr 5 pages in core then the array is 5 words
long. The array contains the number of disc page that is
in the corresponding core page i.e. the first word.in the

array 1is the number of the disc page that is held in the

181

CHAPTER 5

first core page etc. The number is negated 1if the page
has been written to. When a given disc page is to be
examined or modified, each word 6f the arfay is examined
in turn to see if the corresponding core page contains the
required disc page, and if not arranges for one of the

core pages to be overwritten.

The second method requires an array of length equal
to the number of posible pages that can be held on disc
i.e. a much larger array. The number stored in each
element indicates whether there is a copy of that page in
~core and which core page it occupies and whether it hs
been modified since it was brought into core. Each time a
specific page is required only the one element in the
array need be examined. The second method is, therefore,
a faster system as~ ‘it requiFes only one array access
rathér than the possibility of 5 array access where 5 is
the number of pages in core. However the second method
does require a larger array and the original versions of
the program working on the Systemshare time sharing
service were severely restricted on the core aQailable for
fhe program and the first method with the smaller array
had to be used. The restriction was so severe that
certain of the programs used all the available core except

for one or two words.

More core was available on the ' Decsystem 10 and a
special version of the second algorithm was written by Dr.

. W.D.Hay in Macro 10 where use was made of the

sophisticated indirect addressing features of the machine

182

CHAPTER 5

code to automatically write out and call in the required

disc page.

183

CHAPTER 6: Graphic Output and Input

The main forte of the GAELIC system is.the ability to
interactively modify a layout design. The ease with which
this can be done depends to a large extent on the choice
of _déta structure and this choice was described in
Chapters 4 and 5. To a lesser extent, it also depends on
the choice of hardware used for the graphicai output and
inpuf. In addition the choice of the»ihardwarel has a

.distinct effect on the cost of'the overall system. The
various options that were considered are discussed‘in this

chapter.

6.1 Graphical Output Devices

The types of device capable éf producing 'graphical
output vary from a sophisticated refreshed cathode ray
tube terminal through to a simple X-Y recorder. Each type
has its own advantages and disadvantages and these will be

discussed below.

6.1.1 Refreshed CRT Graphic Terminals

This is without doubf the most well known graphics
terminal in use and is the one that immediately springs to
mind when the term “interactive graphics” is muted.
Essentially it consists of a high quality CRT tube with
the necessary D to A converters, video anmplifiers and

drivers to’ convert the "digital signals into either

184

CHAPTER 6

movementé of the electroh beam or into vafious beam
intensity levels. Usually it also has a display processor
which takes instructions stored as bit patﬁern in the
computer memory and converts them.into the necessary input
signals. This set of instructions_ is referred to as a

“display file”. Although the <cathode ray tube has a

relatively high persistence phosphor on its screen it 1is

essential to refresh the picture approximately 50 times
per second. The actual speed at which the picture can be
redrawvn or ‘refreshed” depends on two factors: firstly
the speed of the electronics, how quickly data in core can
be converted into- movements- of the electron beam and
seéondly the size of the displaylfile i.e. how much data
there is to be displayed. 1If the electronics are too slow
or there is too much data, then the pi&ture cannot be
redrawn quickly enough to give the impression of a
continuous picture and a phenomenon known as “flicker’ is
observed. This is when the drawing appears to flash on
and off. This flicker is generally thremely disturbing
to the user causing him to become Afired and to lose
concentration. The‘ “speed” of a refreshed graphics
terminal is defined as the number of chafacters or the
number of vector inches that can be displayed withouﬁ
appreciable flicker and typical values are 2000 characters

or 3000 vector inches.

There are several ways of producing a picture on the
screen, " the best known is probably the raster scan which

is used in television sets but in general is too slow for

185

CHAPTER 6

many applications as the complete screen must be scanned

regardless of how much of the screen is dark. Also

complex scan conversion equipment is required.to convert
the data into alrastere The more usual method is to. use a
steered beam or vector generator when the only dark lines
or vectors that are drawn re those between the 1light
vectors. Thus the minimum amount of beam movement is is

required to produce the picture.

The main advantage of the refreshed graphics CRT 1is
the ease of interaction. It is comparétively easy to note
the position in the display.file when a shape is detected
by a 1light pén (The 1light pen and its use will be

described in detail later in this <chapter). A shape or

‘

series of shapes can be moved across the screen.

dynamically so that the shapes follow the cursor or
tracking cross. The trackiﬁg cross may be attached to the
top right hand corner of the shapes but the positioning of
the bottom left hand corner may be critical. With a
refreshed graphics CRT fhe bottom left hand corner will
élways be on display at all the intermediate'positions and
SO0 can bé continuously moved until itsvcorreét position 1is
reached when it can be fixed. This dynamic movement of

shapes is not possible on other graphic output systems.

The main disadvantage of the refreshed CRT is the
cost of the hardware which is typically of the order of
10,000 pounds (cheaper systems costing 5-6000 pounds are
just starting to appear on the market). fhere are

additional disadvantages when using a refreshed CRT for

[——

CHAPTER 6

integrated «circuit layout because the display file is so
large that an extremely large memoxry is required in the
host computer to drive the terminal. Admittédly the full
layout of an integrated circuit is not often displayed as
even with the largest refreshed CRT, available, the
resulting picture is at too small-a scale for interaction.
Nevertheless, it 1is occasionally required -to identify
areas of the layout that require atténtion. Usually a
small area of the layqut or window is drawn on the screen
requiring only a small display file but of course, as soon
as the window is changed a new display file is required.
The time taken to produce this new file can be significant
and the user has either a blank screen or a jumbled
mixture of o0ld and new pictures during that period.
Certain modern CRT terminals, for example the Vector
General 2D3 do havé-hardware windowing which allows only
“part .of the display file to be plotted on the screeﬁ.
This hardware windowing does alleviate thg pfoblem to an
extent as often the data for the next window is in the
display file but there will obviously be fimes when that

is not the case and so the file must be recreated.

The refreshed graphics terminal cannot be used on its
own with a time sharing computer because of the necessity
"to continuously refresh the picture. Even with the.
highest transmission speeds used in time sharing computer
systemé, the émount of data required to redraw a picture
thirty times a second is prohibitive. There is also.the

additional problem that the user will have his job swapped

187

CHAPTER 6

in and out of core at dintervals giving pauses when
redrawing the picture,. The only way refreshed graphic
terminals can be-used is to use a satellite computer as is
done on the Decsystem-10 at Edinburgh University [ref 6.1]
and the system at the CAD centre at Cambfidge [ref 6.2].
The satellite is faced with similar problems to a
dedicated computer in that it must be able to ﬁold the
complete display file in core and must be possible to
redraw the ,pictdre at least 30 times per second. This
means- that the satellite must be fast and have é large
memory and . is therefore getting very near to the

specification of a stand alone computer system.

There are some minor advantages of the refreshed
graphic terminal:
1) the line tekture i.e. intensity and/or mark space
ratio- can bé varied,
2) a shape can be flashed to indicate that it has been
identified and |
3) it is also possible to delete or sélectively erase

components without recreating the display file.

6.1.2 Storage C.R.T. Terminal

fhe main feature of this type of terminal 1is the
storage cathode ray tube. This is similar in many ways to
the conventional CRT but has an extra layer of a special
proprietry material on the screen in addition to the
conventional phésphor. Fach individual molecule of this

material can exist in one of two stable ‘states: the first

188

CHAPTER 6

will radiate light when exposed to low velocity electrons
and the second will not. To provide a source of these
electrons there is a flood gun assembly in addition to.the
standard assembly which ‘floods’ the whole of the screen
Qith low velocity electrons. The material can be changed
to the emitting state by means of the conventional
electron beam and as the low velocity electrons are always
present the parts of the material changed by thié electron
beam will immediately emit light and will hence store the
picture; The material «can only be returned to the non
.emitting state by a flash of high velocity electrons all
over the screen., There 1is no mechanism for selective
erasure of parts of the screen and so individual deletions
are not possible. The picture can be built slowly and

there can be pauses as the picture is built up and so it

is an ideal terminal for direct connection to a

time-sharing service. It does have the disadvantage that
the interaction 1is slightly restricted. It 1is not
possible to tow a shape or series of shapes across the
screen as they will 1leave an permanent image at each
position they are drawn. Tﬁe new Téktronix 4014 Terminal
which 1is just coming into production does have a “write
through mode” which will allow for non storing 'pictures
but this will require a fast uninterupted data rate from
the computer to allow the shape or shapes_ to be drawn

instantaneously.

6.1.3 Incremental Plotters

189

CHAPTER 6

These produce permanent drawings usually in ink on
paper. The paper is fed from a roll over a drum which 1is
controlled by a stepping motor. Over the top of the ‘drum
is a gantry containing a tool holder which can be moved up
and down the axis pf the drum by means of a second
stepping motor. The\tdol holder normally containé a pen
but can contain a knife or scriber. 1In effect therefore
the pen <can be moved 1in X and Y direction across the
paper. There is also a solenoid builﬁ into the tool
holder which lifts or lowers the pen to the paper. There
is a small amount of logic associated wifﬁ the - plbtter
which converts the <characters sent to the plotter into
actual steps on the stepping motors or lifts and lowers

. the pen.

Because of the characteristics of the stepping
motors, the incremental plotter although more accurate
than the both cathode ray tube términals is an order of
magnitude slower. It can, however; produce large
reasonably accurate drawings with different colours and
different 1line thicknesses to distinguish between parts.
This is a permanent hard copy that a designer ér engineer
can take away and study at leisure. It can be connected
to a time-sharing service either as a common shared
peripheral 1like the card reader or magnetié tape unit or
by wusing a special controiler via the time sharing

teletype inputs.

190

-~

s s

v

CHAPTER 6

The direct‘COnnection to the cohputer means that
interaction with the drawing is imposéible._ A hard copy
drawing can be produced and that is all. However by using
the special hardware controller a restricted amount of
intgraction is possible. A drawing cén be produced and
the pen can be moved to a point on a shape in the drawing
requiring modifiction. This cannot be done’by moving the
tool holder by hand és there is no way the plotter can
send the new coordinatqs to the computer. Therefore the
user must enter the necessary dat into ﬁhe computer and
the computer must move the tool holder. This producesA,a
“chicken and egg’” problem as the user has to type in the
.coordinates to which the tool holder is to be moved, in =
order for the progra@ to identify the coordinates of the
nearest points in the data structure to the tool holdef.
It is possible.to”énter incremental moves which does make ..
it possible to move the pen to the correct place without
ha?ing to calculate the absolute coordinates and this
ﬁethod of interaction although slow is feasible.

6.1.4 Tape Controlled Coordinatographs

Tape Controlled Coordinatographs are similar to
incremental plotters in that they are capaBlevof producing
large hard copy drawings. The paper, however, is fixed to
a large flat table and is capable of producing larger more —-
accurate drawings.. The tool holder is again held on a
gantry and .is normally controlled by a'stepping métor

though certain models do use other techniques. The gantry _..

CHAPTER 6

usually moves across the ﬁable or the table moves under
the gantry. The table size is usually of the order of 4
feet by 3 feet though very large tables are available.
The accuracy is usually of the order- of 1 thou with
repeatability of 0.5 thou. There is always-a requirement
for hardware to read the data from the input tape and
convert it into pulsesA to the stepping motors or
instructions to 1lift and lower the tool. The main
differences aparf from the size and accuracy of the
drawing is the ability to take other toolé such as a
scriber knife or photographic projector. The latter two
require e*tra facilities from the hardware in that extra
information must be read from the tape that controls the
angle of the knife or controls which apperture is used on
the photdgraphic projector. In order to reduce the amount
of data on the typ;Wor to make the data on the tape

readable the hardware can consist of a small computer.

The tape controlled coordinatograph is not usually

thought of as a graphics output terminal but is capable of

producing hard copy drawings just as the incremental

plotter. Its more usuélA use 1in integrated circuit
production is for producing mask masters but a mask making
system with a tapé controlled coordinatograph would not
require an incremental plotter. The main advantage of the
tape controlled coordinatograph .is the aécuracy and
repeatability of the drawing, cutting or photo exposing.
It is, however, expensive (between 20 - 80,00Q pounds) and

slow.

[

CHAPTER 6
6.2 Graphic Input Devices

Any graphic input device must fulfill the two basic

functions of identifying an object already displayed on

the output device and pointing to a specific position.

These are completely separate functions and are often
refered to as “picking” and “pointing’. Some input devices
are ideal for picking but difficult for pointing while the

reverse is.true for others.

6.2.1 Light Pen

"The light pen is without doubt the most common
. graphic input device. It is a hand held light detector
with a limited field of view which is usually pen shaped
and is connected to the computer by means of an electronic
cable. It usually”éontains a shutter with which the user
may control whether 1light enters the pen or not. Thg
“pen’ can be pointed at the screen and when it sees light,
a signal or interrupt 1is sent to the computer and the
process of plotting is interrupted. It 'will be evident
that if the <computer has already finished plotting when

the light pen is pointed at the screen then there will be

no intérupt generated. - Consequently, the light pen will

not operate on a storage tube except during the actual’

plotting time. This effectively prohibits the use of a
light pen on a storage tube as it is too slow and too
inconvenient to replot every time an object is to bé
identified. The light pen is is therefore restricted to

refreshed graphic systems. The displayfile is modified

193

CHAPTER 6

slightly to contain an identification of each object
_displayed and as the display file is ©processed the
identification -of the presenﬁ object is stored in a buffer
or accumulator and is wupdated as each new object is
processed. When an interrupt is generated by the 1light
pen, the identification of the object being processed can
be retrieved and the data describing the object itself
which is stored in the main data structure can be
modified. It ‘ié thgrefore' an excellent method for
“picking” on a refreshed graphic system as it requires
very little modification of the normal plotting fécility
and 1is extremely fast. Its main disadvantage is the
increase in size of the display file required to store the

identification of each object.

The light pen cannot, however, be used on its own fof
“pointing” as an interrupt cannot be generated unless
light is detected and in general there will be no 1light
emanating from the point where a new object is to be
inserted. Thebusual way of solving this fpointing' is to
use a tracking <cross which 1is described. in the next

section.

There are ergonomic problems when using the 1light
pen. The peﬂ must be held in the hand and moved across
the screen to the designed position. To avoid the
stsibility of detecting the wrong object, the pen must be

held perpendicular to the screen and this results 1in the

picture being probably obscured by the pen and the users

hand. The pen is also held at an unnatural position

CHAPTER 6

similar to writing on a wall and this can be very tiring

if used for long periods.

6.2.2 Tracking Cross

This is usually absmall cross that 1is displayed on
the cathode ray tube which can be moved round the screen
.by a light pen, tiacker ball, joystick etc. It can be
used for both ’picking’ or “pointing”. It can also take
the form of a crosshair cursor consisting of a pair of
fine lines,'one going from side to side of the screen and
the other from top to bottom. They are normally found ©on
refreshed tube terminals and on storage tube terminals but
on the latter tﬁey have to be specially designed so ﬁhat
they are non-storing 1i.e. the beam intensity must be so
low that it cannot change the extra layer on to the back

of the storage tube screen.

When used with a light pen moving the <cross 1is
difficult.. The light from _the tracking cross must be
detected and the fact that the pen is not central to the
cross noted and the <cross then repositioned. If the
tracking cross and field of view of the pen are as shown

in fig 6.2.1.

CHAPTER 6

y2

xlr\xz

field of view of light pen

Fig 6.2.1 Detecting the Tracking Cross
The basic way of ensuring that the tracking cross follows
the liéht pen 1is to reposition the cross at (x1+x2)/2,
(yl+y2)/2. This simple sqheme - and more sophisticated
interruption schemes that include the distance moved since
the last interrupt all have problems with losing tracking
e.g. the light pen has been moved so quickly thét-it does
not detect any light from the tracking cross during a
replot of the draQing. This means another mechanism must
be used to find the position of the tracking cross. Two
such mechanismé consist of spiral or raster search

patterns such as those shown in figs 6.2.2 and 6.2.3.

_ —-last position of
_ -

- tracking cross

2

present position of tracking cross

Fig 6.2.2 Spiral Search Pattern

196

CHAPTER 6

—= : \
-7 ’ \
e . \
s . A
present position of light pen previous position of light

pen and tracking cross

Fig 6.2.3 Raster- Scan Search Pattern

This tracking of the cross inflicts a heavy overhead
on the picture processing especially the spiral searching
and it is common to loose the picture instantaneously as
the controller relinquishes its refreshing duty to control

the tracking. cross.

The position of a tracking cross can be controlled by
other input devices 1in addition to the light pen fof
example a tracker Qéli; joysfick, a pair of thumb wheel
poten&iometers or a tablet. In these cases, the position
of the cross is directly related to-the x'gpd y coordinate
positions given by - the ball etc. There are none of the
problems of loosing ‘tracking’ and so theisystem using a
tracking cross this way are pleasanter to use than systems
using a light pen. There are, however, - problems with
tﬁesé systems when :it comes to “picking’ as the

beautifully simple system involving light pen “hits” is

not available. The data structure-must be searched for

the object with the nearest coordinates to the coordinates
of the tracking cross. Theoretically this data structure
search could be through the display file with the ‘same

object indications as when using a light pen but usually

197

CHAPTER G

it consists of searchiﬁg the main data structure. This
can obviously be a time consuming operation and one of the
novel features of the GAELIC system is fhe way 1in which
this search time 1is reduced. The wvariocus methods of
controlling the tracking cross Qill now be diécussed in

more detail.

6.2.3 Tracker Ball

This is a ball approx 3 inches in diameter . which is

recessed into a horizontal surface of table so that only
approx the top third can be contacted. The ball can be
turned by hand and the rotation in x and y direction is
detected by optical shift encoders or potentiometers and
translated into the x and y coordinates of a tracking
cross. It is usually arranged so that several revolutions
of the ball are required to move the crqés from‘one side
of the screen to the other. This makes the tracker ball
an extremely accurate method of positioning the cross
comparéd wth say the light pen but it»Adoes mean that
moving the cress over large distances cén be relatively
slow. The ball can, however, be released and the cross

will stay in the same position.

6.2.4 Joystick

The joystick as the name implies is functionally
similar to an aircraft joystick, in that the movement of
the stick in any direction is converted to movement of

some other object in the 'same direction. In our case

198

CHAPTER 6

movement of the stick forward causes the tracking cross to
move up the screen. It is not quite as aécurate as the
tracker ball but is much quicker to use, as a much shorter
movement of the stick is required to move the cross from
one side to another. It is not always possible to release

the stick and leave the tracking cross in position.

6.2.5 Thumb Wheel Potentiometers

There are usually two potentiometers, one controlling
the x coordinate and one controlling‘the y coordinate of
the tracking cross. The potentiometers may be single turn
or multi turn: the former is capable of moving the cross
faster but less accurately than the later. The system 1is
ideal when all the movement required is in either the x
direction only or the.y direction only but are not as
convenient when movement at an angle is required. Like
the tracker ball, the potentiometers <can be released
without moving the tracking cross making any interactive

.

graphics system ergonomically easy to use.

6.2.6 Tablet

This c§nsists of a flat-surface usually of the order
of 12 inches square which -has a grid of fine wires
"embedded in its sufface and a scriber or pen that 1is
capable of emitting signals. These signals are detected
by the grid and the accurate x-y position computed. This
system is érgonomically excellent as the user is virtually

using what he has been trained to use since childhood, a

199

.

CHAPTER 6

pen and paper. The pen can be quickly moved from one
corner of the screen to another and so a menu of wuseful
commands can be put on the tablet and pointed to when

. * ’ 3 3 ’
required i.e. “menu picking’.

6.2.7 Digitiser

‘The digitiser is virtually the samz as a tablet
except that ‘the working surface is bigger and that the
coordinate position is only sent to the computer when a
butt;n is pressed. The working surfacé is usually about 3
feet long by 4 feet and can be at an angle or flat. It is
extremely useful for extracting dimensional information
from a scale drawing but is expensive as a graphical input

A

device.

6.2.8 Other input devices.

There are other possible graphic. input devices
capable of driving a tracking cross or cursor. Probably
the most well know, although not necessarily as an input
device 1is the teletype when the user can type in the
coordinate required. This sounds at first like a chicken
and egg problem -~ to move the cursor it is necessary to
type in the coordinates of the point to be identified and
the point is being identified in order to find‘its
cocordinates. However, by using ipcremental coordinates,
it 1is a'possible system albeit slow and has been used to

control the tool holder on a CALCOMP plotter.

200

maetcnrnn

CHAPTER 6

Another system that was originally used on the ARDS
storage tube terminal is called a “MOUSE’, this is a

device that is moved over a flat smooth surface to

indicate x or y coordintes. Underneath are two wheels at

right angles, both are connected to shaft encoders or
potentiometers; one indicating the x and the other

indicating the y coordinates.

Other systems that are being developed are touch
sensitive screens and ultrasonic transduces but these are

not yet in production.

6.3 Tektronix 4010 Series Terminal

The decision to base the interactive part of the

GAELIC suite of programs on the Tektronix 4010 terminal

was due to the requirement of a minimum capital cost

system.

The Tektronix 4010 series terminal consists of a

storage cathode ray tube mounted on a stand, with a

keyboard and two thumb wheel potehtiometers. The stand
contains all the -control logic and the necessary
interfaces to connect the terminal to the computer. The

basic 4010 terminal has a screen size of approximately 8"
by 6" and costs approx. 2500 pounds with the necessary
interface to connect it to the computer in place of a

standard Teletype.

201

ome st

kT s

CHAFTER 6

The terminal can work in either alphanumeric mode
when it will print lines of alphanumic characters and the
graphic mode where it will draw vectors on the screen.
There is’ also a graphic input mode when a»non;storing
cross hair cursor is displayed on the screem which enable
existing items, i.e. text or: vector to be identified and
also allows the position of addition text or véctors to be

indicated.

The alphanumic characters are produced by means of a
hardware character generator employing read only memories.
Once in alphanumeric mode, the codes or bit patterns .for

the characters are sent down the line to the terminal.

The codes for carriage return and line feed do exactly as

expected by ensuring the next character appears at the
left hand edge of fhé screen or on the next liﬁe below
respectively. Most other non printing characters are
ignored: the main exception being the character 'usually
known as ‘GS’ the receipt of which converts the termingl
into grapﬂics mdédde. Subsequent characte{s sent down the
line are converted into vectors, the first vector after

the ‘GS’ always being a “dark’ or hidden vector. Usually

four <characters atre required to specify a vector and they

are known as high y, low y, high x, 1low x <characters.

There are 1024 by 1024 addressable poiﬁts on the screen
with 1024 x 780 actually viewable i.e. it is ©possible to
address points off the screen in the y direction. Vectors
~are drawn from the present beam position to the position

defined by the four characters. The screen is divided

202

CHAPTER 6

into a coarse grids of 32 addressable points in each
directionj; the high & and high x chérécters,seleét the
position on these coarse grids. Each coarse grid
increment is divided into a fine grid of 32 pqints and the
low y and low x characters then select the incremental
moves on this fine grid td give the final absolute
position. The number range for each character is
therefore O—3L oaly and-so for the standard byte (8 bit)
characters, there are 2 redundant bits 'plus the parity
bit. These redundent bits are used to define which of the
characters are being transmitted and so the wvarious bit

patterns are shown in fig 6.3.1.

Bits 76 5 43 21

Low X ' 10?2?77 17?7°7? . Byte 4
High X o1 1?2?7772 Byte 3
Low Y 11?7?7727 Byte 2
High Y o1 1?7?7227 Byte 1

Identification Bits

Bit patterns transmitted to terminal

to draw line

Fig 6.3.1

203

CHAPTER 6

Thé identification- bits allow for less than 4
characters to be sent under certain circumstances. The
low x character must always be sent as this character is
used to initiate the drawing of the vector. However, if
the high y or high x character is not changed from the
previous vector, then the character need not be sent. If
the low y character is not changed then it need not be
sent- unless the high y is changed and th2ua because there
is no difference between the identification for the high x
“and high y bits the low y bit must be sent. The.minimum
number of characters that must be sent is therefore one,
the low x character. This reduction on fhe number of
charzcters is extremely important when connecting the

terminal to the computer by means of a low speed line.

Certain pairs.of characters when sent to the terminal
have special effects, the most important is the
pair which convert the terminal into graphic input mode .
In this mode a non storing cross hair‘cursor is displayed,
the x position of the vertical line is controlled by one
thumb wheel potentiometef and the y position of the
horizontal line controlled by another. The non-storing
feature is obtained by rapidly switching on and off the

beam. The cursor can be therefore moved to any position

on the screen and one of the keys pressed, the terminal

then transmits the character requested by the key, plus 4 __

characters that represent the coordinates of the cursor,
followed by carriage return and or the end of tape

character (EOT) . The characters use the same method of

204 .

CHAPTER 6

denoting coordinates i.e. high x, low x, high y, low y but

all four characters have the same identification bits set.

~

Other - pairs of characters clear the screen and
arrange the next alphanumeric characters to be written at

the top left corner of the screen.

There are two larger versions of the Tektronix
terminal now available and these are known as the 4014 and
4015. Here the screen size is 15 inches by 11 inches and
has a resolution of 4096 By 3120 increments. To address
this in full an additional <characters is‘ sent to the
terminé;. The terminél also has additional facilities
such as ‘write through’ or non storing mode and the
capability of producing dashed lines by hardware. This
terminal would give considerable increase in performance

but unfortunately costs approximately 4,500 pounds.

The Tektronix 4010 series <can be connected to a
computer wusing a teletype driver interface with the clock
rate increased from 110 baud to 9.6k baud) and sa can be
easily connected to most computers whether stand alone or

time sharing.

The choice of the Tektronix terminal and Fortran as a
programming language ﬁeans that the software can quick;y
be implemented into different existing computers and thus
provides an inexpensive method of obtaining a design

system.,

205

CHAPTER 6

6.4 Graphics Software

o

This section is devoted to the basic- software
required bto drive the Tektronix 4010 series of storage
tube terminals. It will be remembered that there are
three modes of operation- of the terminal: alphanumeric,
graphics output and graphics -input and any basic software

system must cater ior all three.

When used in alphanumeric mode, the terminal behaQes
in virtually the same-way as the ASR33 Teletype in that it
receives the bit pattern for the various ASCii printing
characters plus carriage return <CR> and line feed <LF>
and displays the characters on the screen or moves to the
beginning of the 1line or next line. The terminal also
transmits the bit patterns, corresponding to the keys
pressed, to the computer. If the Tektronix is connected
to the computer via a standard Teletype interface, then no
special software is required to drivg the terminal in

alphanumeric mode.

In graphics output mode, however, the terminal must
obviously behave in a different way in order to draw the
vectors. In this mode each character transmitted 1is
interpreted by the tgrminal as part of the description of
a vector. There are two main types of wvector that are
required in any graphics system: the dark vector where an
invisible line is drawn from the present beam position to
a new specified position and a light vectdr where a

visible line is drawn. The light vector can be subdivided

206

CHAPTER 6

into vectors of differing intensity or into dotted or

dashed vectors. The storage tube terminals cannot display

vectors oﬁ differing intensities because of the
fundamental characteristics of the storage tube and so
there 1is no need to cater for ‘them. The Tektfonix 4010
and 4012 terminals do not have any hardware facilities for
producing dotted and dashed vectors énd so these can only
be obtained by drawing alternate light and dark component
vectors. The 4014 and 4015 terminals do have hardwafe
facilities for dotted and dashed vectors and the type of
light vector to be drawn is set by transmitting a special
character to the terminal. The Tektronix terminals
distinguish between fhe light -and dark vectors in an
unusuél way by arranging that the hardware treats the
first vector after turning the terminal into graphics mode
as a dark vector agd'treats all other vectors . as bright.
The terminal is turned into graphics mode on receipt of
the character wusually known as ‘GS”. ‘This method of
defining whether a vector is bright or dark appears at
first to be extremely restrictive until it is realised
that:

a) most shapes to be drawn are made wup of a
consecutive series of bright vectors preceeded by a dafk
vector e.g. when drawing a rectangle, a dark vector is
drawn to the one corner and then four consecutive bright
vectors, one for each side, and

b) another dark veﬁfor can be specified by sending
another ‘GS’ although the terminal is already in graphics

mode. Vectors are always drawn from the present beam

207 A T

CHAPTER 6

position which is at the end of the previous vector or at

the position for the next character to be printed.

The end of the vector is specified by sending four
characters to the terminal, t wo of these characteré
specify the absolute screen coordinates in terms of a
coarse grid. The otﬁer two characters spécify the
incremental coordinates from the <coarse grid' position.
The coarse grid 1is every 32 increments and as the
addresséble range is 0-1023 increments in the x and vy
direction, the maximum range for the‘coarse grid is (0-31
i.e. 5 bits. The two coordinates specifying the coarse
-grid position are known as the high x and high 'y
coordinates; the coordinates specifying the incremental
position from the coarse grid are known as low x and low y
coordinates and agaiﬁ are in the range 0-31. Only 5 bits
are required to specify the value and so with the 7 bit
characters used there are two bits available to identify

the character i.e. high x, low y etc. The actual bits

that are sent for each character are shown in fig 6.4.1.

. 208

CHAPTER 6

Bits 76 5 4 3 21

Low X lLo? 7?2772 Byte 4
High X c 1?7?7277 Byte 3
Low Y ' | O A S O A Byte 2

High Y o1r? 7?77?7272 _ Byte 1

Identification Bits

Bit patterns transmitted to terminal

to draw line

Fig 6.4.1

It will be noticed that the identification bits for
the high x and high y coordinates are the same. The order
of transmission of these characters must be high y, low y,
high x and finally low x coordiﬂates.and it is the receipt
of the low x coordinate that initiates the actual vector

drawing process.

The setting of the identification bits allows the
characters sent to switch the terminal into another mode
go be detected and also allows one or more characters to
be omitted wunder certain circumstances when specifying
vectors. For example, as the 1low y coordinate can be
uniquely identified then if the high y coordinate is not
changed for the vector then it may be’omitted. Similarly

the high x coordinate may be omitted if it has not changed

CHAPTER 6

as the 1low x coordinate can be uniquely identified.
Howevér, the low y coordinate cannot be omitted.if either
a high x or high y coordinate has to be sent as they bLoth
have the same identification bit settings. The minimunm
number of coordinates that need to be transmitted is one
and -that 1is ﬁhe low x coordinate. This is the character
that initiates the drawing process and so must aiways be
sent even if none of the codrdinates have been changed.
This situation does occur when plotting Apoints on the
screen. To enable the terminal to draw vectors as fast as

possible at low data transmission speeds, the Dbasic

software must send the minimum number of characters for

each vector.

At high data rates i.e. in excess of 4.8K baud, the
minimum number of,dharacters will cause trouble when the
terminal is connected via a teletype interface. This 1is
caused by the time required to draw a vector. On receipt
of the low x coordinate, the terﬁinal takes 2.6 mSec to
set uﬁ the D to A convertors and to draw the vector, most

of the time being spent setting wup the convertors. at

9.6K Baud, a character is received approximétely evefy 1.5

mSec i.e. at least two characters can be received while - .

the previous vector is being drawn. Therefore any vectors
requiring two characters or less i.e. vectors requiring
low y and low x, high x and low x or just low x will be
initiated before the previous vector has been completed.
The resqlt of this is to change the D to A convertors as

the vector is being drawn which will give curved vectors

210

CHAPTER 6 .

on the screen at apparent random spacing. If the software
is to be used at varying data transmission speeds, it 1is
essential to eithef sénd at least 3 coordinates or else to
send null characters when the data rate is 9.6K Baud, and

to send the minimum number of characters at lower speeds.

If the terminal is connected to the computer by means
of a link involving a busy signal, the software need only

send the minimum number of characters.

The conversion of normal coordinate data into the
required characters is common to all applications thét
require graphic output and conversion routines must form
part of the basic software. However, very rarely does the
coordinate range used in the - application program map
exactly with the coordinate range of the terminal i.e.
1-1024 in x and l—%éO in y. This <creates two additional
requirements for the basic software: firstly routines are
required that will scale the application programs
coordinates so that they will appear on the terminal
screen. Sécondly “clipping” routines are. required that
will only display the- pért of the drawn or design that
lies within a specified “window’. This routines will take
each Veétor in turn and clip it so only the part of the

vector that appears on the screen is drawn.

N

Because of the fundamental modus operandi of the
"storage tube, it is not possible to -vary the intensity of
a vector nor is it usually possible to blink or flash

vectors. The only way of distinguishing vectors,

2N

CHAPTER 6

ttherefore, is to have dotted or dashed vectors with

different mark space ratios. This can be done by hardware

on the Tektronix 4014 and 4015'and in this case all the.

basic software need do 1is ensure that the appropriate
characters are sent whene§er the vector characteristics
are to be chénged. ~The smaller Téktronix, the 4010 and
4012, however, do not-have the hardware facility and so it
must be done by software and so in this case the basic
software must contain poutineé to break a long vector down
‘into alternate 1light and dark vectors of appropriate

.length. ‘ -

The terminal is switched into graphics input mode by

’,-

sending it two characters known as “esc’ and

’

sub’ ., This
causes the cross hair cursor to be displayed on the screen
and the cursor position can be controlled by the two thumb
wheel potentiometers. Pressing any key -will —cause a

series’ of <characters to be transmitted to the computer.

The characters include that of the key pressed and four

characters to define the ©position of- thé cross hair

cursor. The <characters transmitted are shown in fig

6.4.2.

212

CHAPTER 6

Bits 87654321
BOT 10000100 Byte 7
CR - -1 0001101 Byte 6
Lowa- 101t 1?2?7277 Byte 5
High Y 10127272727 Byte &
Low X 1°01 27222 2 Byte 3
High X 101727272722 Byte 2
Char ‘L0 7?7?27 ?2 17 7? Byte 1

Bit patterns transmitted from terminal

in Graphic Input Mode

Fig 6.4.2

The last two characters sent i.e. bytes 6 and 7, are
strappable options, the terminal can be sét to transmit
neither character, carriage return only or carriage return
and eﬁd of tape. Any basié software system should
therefore contain routines to set up the cross hair cursor
and read the characters transmitted and convert them into
coordinates'either in Tektronix increments or scaled into

the user coordinates.

It 1is essential to send certain non printing
characters to the terminal to perform such functions as
switching from one mode to another. Often - these
characters cannot‘ be transmitted directly from a Fortran
program becauée of the computer used. However, most

computers can output these required . characters using

213

CHAPTER 6

routines written in machine code or assembler and caliable
from Fortran. This is the approach used in GAELIC on the
Decsystem 10 where the output to the terminal in graphics
output mode and input form it in graphics input mode are

controlled by MACRO 10 foutines written by Dr W.D. Hay.

The original version of the GAELIC interactive

progfam that uses the Tektronix 4010 tcrminal used the

author’s routines for drawing vectors -and for handling the

cross hair cursor and used a set of routines written by

Dr. P.F.A. Reilly to do the wvector -clipping. As the
original version was to work at low data transmission i.e.
110 or 300 Baud dotted and dashed vectors were not

practical as they took so long to draw.

However, when the program was implemented on the
Decsystem 10 usingmé data transmission speéd of 1200 Baud,
détted and dashed lines became ergonomically possible and
therefore desirable. A package of Fortran ‘routines
written by Tektronix was available on the Decsystem 10 and
this package, known as the Terminal Control System or TCS,
not only contained routines to plot vectors and to haﬁdle
the <cross hair cursor but also had its own clipping

routines and routines to produce dotted and dashed lines.

The TCS routines wuse the same technique as the
original GAELIC program i.e. routines to do the .characters
handling written in MACRO!lQ bu£ callable from Fortran.
All other routines are written in a subset'oleortran IV

to enable them to be installed on as many computers as

214

ww

e -

——re

P

CHAPTER 6

possible. It was therefore decided to use these routines
as a) there was no point in reinvenﬁing the wheel and b)
the TCS software was already implemented on many computers
and so using it would ease the transportability of the

program.

The TCS system does have some minor disadvantages as
it is a general purpose package. To give the user a large
range of increments on a computer with a small word size
e.g. a PDP8 with its 12 bit word, the user coordinates are
stored as real values and each value- therefore requires
two words of storage. The scaling to the Tektronix
increments is therefore done using real arithmetic i.e.
reqdires the floating point arithmetic package to be in
core, This system is therefore slower than it need be and
requires more storé. This is not noticeable on the
Decsystem iO as: a) it stores real values in one 36 bit
word and b) it uses a hardware floating point unit.
However, if the GAELIC programs are mounted on smaller
machines some modification to ﬁhe TCS éoftware_will be

necessary to obtain maximum efficiency.

Only one major software modification was required to

the TCS software.and that was to allow for'use.at a data
transmission rate of 9.6K baud. The original software
‘minimised the number of characters ﬁransmitted to the
terminal to draw a vector. On an asynchronous
transmission system, this causes abparently fgndom curved
vectors due to the arrival of the one'or two characters to

specify the next . vector before the previous vector has

215

e

CHAPTLR 6

been drawn. This was cured by transmitting the necessary
null characters at 9.6K baud, - to ensure the previous

vector was drawn before the next vector was specified.

The ‘clipping’ routines writtem by Dr P.F.A. Reilley
have been used in other programs in the GAELIC suite,
notably the program that plots all or part of a layout on

the Calcomp incremental plotter.

216

Chapter 7 : Program Descriptions

This chapter is mainly devoted to a description of
the various programs comprising the GAELIC suite,
concentrating on their general requirements and how these
are met. The detailed descriptions of the subroutines

appear in the GAELIC Systems Manual. The chapter starts,

however, with a discussion of the languages available for

programming and why FORTRAN was chosen as this choice did

affect the program requirements.

7.1 Choice of Programming Language

The objectives of the GAELIC programs were discussed

in Chapter 2 and resulted in the requirement for a minimum

capital cost system that was, as far as possible, hardware
independent so that it could be easily transferred from one

computer to another.

The most efficient CAD systen for designing
integrated <circuit layouts, can theoretically be obtained
by selecting or building the besﬁ hardware for each part
of the system and programming at the lowest possible
level. to get “the fastesﬁ operation. This approach,
. however, has a lot of disadvantages.

1) The best hardware may come from a- series of
different manufactuers and may well require speciél
interfaces to interconnéét them.

2) The problems encountered when servicing this mixed

217

hed il S i s

haéﬁware are quite formidablel(the fault is always in the
other manufacturers product).

3) Any special purpose hardware is extremely
expensive to design, build énd test.

4) Programming and debugging in a low level 1language
is slower and more difficult than in a high.level one.

5) It is not possible to write extremely long 1low
level programs and maintain maximum efficiency. However,
the higher level language requires much less code to be
written and so can bé written efficiently.

6) Programs written in the low leQel language for one
computer cannot be transfered to another. Instead the
programs must be rewritten in the low level language for

the new machine.

These disadvantages, therefore, preclude the use of
special purpose hardware. They also discourage the use of
low level languages for a system that is to be as portable

as possible.

The use of a high levelilanguage has the following
advantages:

1) The amount of code that has to be written is mnuch
less than when using a low ievel language.

2) The widespread use of high lével languages has
justified the writing of extremely efficient compilers.

3) The high level languages are to quite a large
extent self documenting and so only a small amount of
extra documentation is required.

4) Although it would be foolish to claim that there

218

Liicp L

are no problems in transferring a high level language
program from one computer to another, ’the original
progrémmer's intention 1is always cléar and so the only
problems‘are those of obtaining equivalent facilities on
the new computer.

5) Once a system is working in é high level languaée,
it 1is possible to speed it up by rewriting the critical

parts in a low level language.

There are many high level languages that are used

nowadays. Unfortunately most of them are not available on,

a wide range of computers and this precludes the wuse of
some very good languages such as Algol-68 even though it
contains facilities for handling the complex data
structures There are other languages that have facilities
for handling data structures but these are comparatively

new and do not have all the other required features such

as floating point arithmetic.

This leaves four main contenders for the programming
language BASIC, IMP, ALGOL and FORTRAN._'These languages

will be now considered in more detail.

BASIC

This is probably the simplest of the “high level
languages’ in general use. It was originally written by
Dartmouth College and is implemented on most commercial

time-sharing computers. Because of its simplicity, it is

218

MEE L

very easy to use and so is an ideal language for

beginners. However, it does have certain disadvantages..

Firstly the array and variable names are restficted to
either a single letter or a letter followed by a digit.
This means that it is extremely difficult to have mnemonic
variable names i.e. names that convey the function of the
variable to the reader. For example it is extremely
useful to store Lhe base emitter voltage of transistor 1
in a variable called VBEl whereas in BASIQ it would have
to be called V1l or Bl. Another disadvantage that is common
to all the other langﬁages is that the computer
manufacturers have.extended thé language to provide extra
facilities but each manufacturer has done so in a
different way. In general BASIC compilers are extremely

fast but do not produce optimum code.

IMP

This is a high level language based on ATLAS AUTOCODE
and 1is in extensive use on various computers at Edinburgh
University. There was considerable pressure therefore to
use this language. It has a lot of attractive features in
the language such as the ability to read in a character at
a time from the input channel and the ability to read the
next number from the input channel regardless of how many
digits it contains. It also contains facilities for bit

manipulation which are required in GAELIC. However, it is

not a generally available program outside the Edinburgh’

220

B

wvilap el

University community and as it was hoped that the GAELIC
programs would be used outside, the language was not used.
Since the decision was taken to use. FORTRAN IMP 4has been
extended to contain RECORDS whiéh facilitaté the setting-

up of complex data structures.

ALGOL-60
This is a high 1level language which is used
extensively in Europe especially by educational .

establishments. It is the interﬁational language whiph
most conforms to a standard. Unfortunately the standard
does not cover aLl the facilities available: the nnb&able -
exception is the input and output routines (There is now a
version of ALGOL available which was invented by Worth
which does definemnthe input and oﬁtput and is known as -
ALGOL-W) . In general, however, these input-output
facilifies are implemented in differing ways by the
different computer manufacturers and so again the program
is not <completely transportable. Algdl is not used as
much in the United States and consequently most American
computer manufactuers have not put as much effort into

their Algol as they have into their FORTRAN compilers.

\JLIul—lL—'\—L L
FORTRARN

This is the most widely know and widely wused high
level language for scientific épplications. It was
originally invented by I.B.M. for use with the data and
program on cards and the output on a line printer. it hes
beeh considerably extended since then but still shows
signs of its humble beginning By having an thremely rigid
input-output system. It now exists in a standard form
known as the ANSI Sténdqrd FORTRAN which is fairly rigidly
defined but.almost inevitably has Dbeen extended‘ Beyond
this standard by the individual computer manufacturers.
Again programs are therefore not directly transportable
between gdmputers. However virtually every computer of a
reasonable size has its own FORTRAN compiler and the
compilers are often extremely efficient because of the
interest in them. .&gerefore, although parts of programs
are not _always directly transportable, a programmer can
always understand what was intended and wh%t modifications

are required to get the program to work on a new machine.

FORTRAN was chosen as the programming language
despite <certain short-comings because of its universal

availability.

ot

Chapter
7.2 GAELIA Digitiser Program

This program takes the output data generated by a
specially modified Metrograph digitiser and converts it
into the GAELIC manual input language and the CAELIC dump
code. The 'output is in these two forms to allow for the

correction of any errors made when digitising. If no

syntax errors are detected then the dump code file is

processed to give the ring data structure of the layout:
this saves considerable computer time by‘not having to run
GAELZ2A. However, if errors are detected when running
GAELl1A they must be corrected. Correcting the digitiser
output or the dump code file 1is extremely difficult
whereas editing the manual input language is relatively
ecasy. If the manual input language is corrected then it

is then converted into dump code by means of GALEL2A.

The output from the digitiser consists of records of

the form shown in Fig. 7.2.1.

12340%2X%+00100%ZY%+00200 where % indicates a
12350%X%2+00150%4Y%+00300 space.

12360%ZX7%+00600%2Y%Z+00800

Fig 7.2.1 Typical output from Metrograph Digitiser

which can be generalised as a record of the form shown in

Fig. 7.2.2.

223

Chapter 7/

J2340%1 1234X%+123453Y%+12345

Sequence number._J

Shape code

Extra code — J

Coordinates J

Fig 7.2.2. General form of input record

Fig 7.2.2 also shows how the general record can be
subdivided into four sections, t wo of which are not

necessarily present in any particular record.

The sequence number is always present and is always a
five digit number which specifies each record. ft can be
followed by a single digit shape code ‘which is wused to .
indicate the start of a Vnew sﬁape and its type.
"Consequently the shape code is only present in the recoFd
under these circumstances. The four digit extra code is
only present when'it has information to convey and is used
fo; the name of a group or the radius of a fillet. The
final section is always present and contains the
coordinates of the digitiser cursor when tﬁe READ button
was pressed. These coordinates are always in fixed format
i.e. the lettérs, spaces, digits eté. are always in the

same position relative to the end of the record though the

actual digits present will vary.

The coordinates and sequence number are autdmatically
produced when the READ button is pressed and will always

give the same number of digits in the same position. = The

224

shape code or extra code, on the other hand, are entered
by the operator, a digit at a time, via the digitiser
keyboard énd can be a source of errors. Such inﬁut cannot
be handled by the sfandard Fortran input/output routines

and so another method had to be found.

There are many vefsioné of Fortraan that have a
non-standard facility which allows the next number to be
read regardless of how many digits or thgir position in
the record. This ‘free format read’ as it is.usually
éalled, appears at first sighf ﬁo be the answer té reading
the input records. Unfortunately this facility éannot be
used for three reasons:

1) The facility is implemented in different ways on
different computers. |

2) Invariably the numbers read in under this free
format have to be éélimited by a standard terminator e.g.
a comma or a space. Lt should consequently be noted that
is not the case in an input record.

3) This free format facility will not cope -with the
correction of digitising errors by means of the ERROR key.
The ERROR key on the digitiser inserts the character “#°
in the record: this non-numeric character can occur 1in

several places in the record.

The program therefore reads the whole record into the
array, ,each character, be- it a letter, digit or
punctﬁation mark is put iﬂto one word of the array. A
simple arithmetic or logical' operation on each word

converts it into a number that uniquely specifies the

225

wvirtap oL J/

character. In most computers including the Decsystem-10,
this is the ASCII number for the character. For example,
the ASCI1 number for the 1letter “A° is 65 and for the
digit 17 is 49. By doing various checks and various
arithmetic operations én these ASCII numbers, the actual

integer numbers in the record can be calculated or the

fact that a “#° is present can be detected. There are a’

series of routines in the program that read in the
records, convert the <characters to their corresponding
ASCII numbers and calculate the integer numbers entered

and evaluate their terminating characters.

Two aigorithms have been used for the transfbrmation
from digitiser coordinates to GALELIC increments. The
first was written by R. Newton of R.R.E. for use with the
CAMP programs [ref 7.1] and fhe second by the author. The
first algorithm is éésigned to cope with linear paper
distortion in all directions as shown in Fig. 7.2.3. The
derivation of the algorithm is given in Appendix 3 where
it 1is shown that it involves the solution of guadratic
equations. The roots chosen are those which cause the
transformed point to lie on the paper. There is a
considerable amount of computation required for each pair
of coordinates and there is always a slight doubt as to
whether the o;her roots would also produce a point that
‘lies on the paper. In practice the transformation
appeared éxt;emely_ sensitive to the “initialisation’

digitising and this had to be done with great care.

2%

——

—— s

DIGITISER GRID

DISTORTERN PAPEN

1!

| ‘
| BB
=

L

FIG 7 2 3 " PAPER DISTORTION ALLOWED IN NEWTONS ALGORITHM

227

Litdapirel

-The baper distortion that is allowed by the algorithm
is generally more than is required. The grid is usually
printed on the paper by means of a roller whicﬁ ensures
that the grid lines are perpendicular but does have a high
probability of the scaling beiﬁg slightly different in the
x and vy directioné. It is also always possible to put the
paper on the digitiser at a slight angle to the digitiser
axes. This resulvs 1in a péper distortion sﬁown in Fig.

7.2.4.

[

By restricting the paper distortion allowed to that
shown in Fig. 7.2.4 the simpler algorithm derived in
Appendix 4 can be used. This involves the solution of

simple . linear equations requiring only a small amount of

computation and only giving one pdir of coordinates. In
pracpice this simpler algorithm appears to be less
senéitive to’lthé accuracy of the “initialisation’
digitising. This simpler algorithm is therefore used in

GAEL1A to transform all the digitiser cqordinates into
tﬁeir' corresponding paper coordinates which in turn are
specified in terms of GAELIC increments. "The output from
the program i.e. the manual input language and dump code

files are therefore in terms of these increments.

The production of the dump code file is

straightforward as it is a standard binary file consisting

of numbers only; this can be written directly from a

Fortran program on almost all computers. To reduce the

number of disc writes on the Decsystem-10, a subroutine is

used to add the individual numbers to a buffer and then

228

DIGITISER GRID

]

OISTORTEQ PRPER
//—.4
r/
|
/’/f)

FIG 7 2 4 PRPER DISTORTION RLLOWED BY SECOND RLGOURITHM

229

LvitaplLel
write the contents of the buffer to disc when necessary.

The production of the manual input language, however,

is far more complex as it cannot be done using standard

Fortran. Standard Fortran output 1is similar to the
standard input in that the number of data items to be
transfered and the number of characters in each item must
be known. The manual input languagé produced by GAELlA is
slightly more rigidly defined than that described in the
GAELIC Users Manual in that the order words are always-a
fixed lengfh, e.g. "RECT" and "POLY" are always used
instead of 'REC" or "RECTANGLE", "P" or "POL&GON" etc.
and the group names are always 5 characters long, e.g.
G1234 etc. However the number of digits in a coordinate
will véry with its value. It could be argued that as
leading zeros or spaces are acceptable in GAEL2A, the
program that proceséés the input language, and so they
should be allowed in the output from GAELlA. However the
main purpose of producing the manual dinput file is in
order to modify it to correct errors. This can only be
done efficiently if the input language itself is easy to

understand: once the user is accustomed to seeing the

description of a polygon as:-
"pOLY" (1) $,5,20:20,2,20,2,-22,-2,-18,-2;
then it is very difficult to recognise:-

IIPOLYII

230

——

v itn

Lhapter

(ol)

S,

00005, 00020:
00020, 00002,
00020, 00002,

~00022,-00002,

-00018,~00002;

as the same polygon. The later descriptiqn is typical of
that obtained wusing standard Fortran output. For this
reason the conventional form of the manual input language
was chosen for the output from GAELIA. To obtain this
oﬁtput, characters are loaded into a buffer and the buffer
is writtenm out to disc when necessary. One subroutine
adds the characters»fhat make up an order word or group
name to the output _buffef, another adds the characters
that make up the significant digits of integer nuﬁbers and

a third adds the punctuation marks.

The simplified flow diagram of the GAELLIA program 1is
shown in Fig. 7.2.5. It does not show the sophisticated
error correcting system associated with the “#° «character
nor does it show in detail the processing of any
barticular type of shape. After defining and opening the
input file and the two output files, the input file is
processed until the first sequence number is found. The
shape code and possible extra <code are then read in
followed by the coordinates of the shape. The coordinates

are stored in an array until = the next shape code is

231

start

set up initial conditions

read next input record

@

enler coords into array

read next input record

any errors

print error message

errors in

rGV|w§smy . -

print error message

write out previous sha;ﬂ

end of data

exil

Fig. 7.2.5 Simpliied fow diagram of GAELIA

231a

Wwildp b

detected indicating the end of the present shape. This
shape 1is then written out as both GAELIC manual input
language and GAELIC dump code after_suitable traﬁformation

of the coordinates to allow for paper distortion.

Some interesting features affect the running of the
program. When someone first starts using any program, he
or she requires a great deal of help and ‘so instructions
given by the progrem must be clear and ;nambiguous and any
errors detected must be explained in full.. Both, theée
requirements result in long verbose messaées being written

on the terminal, If a teletype or any other terminal

running at 10 characters per second is being used, these

messages will take an appreciable time to be written.
However, once the user is familiar with the system then
these‘messages are superfluous and time waisting.. All the
user requires arew'short criptic6 aide memoires. The
program provides the user with both types of message and
the wuser selects which is used by answering "YES" or "NO"
to the question ‘DO YOU WANT EXTENDED PRINTOUT®. The
extended printout produces long expiicit messages of the
form “ENTER NAME OF FILE TO CONTAIN GAELIC LANGUAGE’
rather than the <criptic “GAELIC FILE’. The extended

printout also controls the length of any error messages.

232

-

wilapicel

’

7.3 GAEL2A Manual Input Language Processor

Thié program takes the description of all or part of
an idintegrated circuit layout coded in the GAELIC manual
input language and after extensive syntactic | checks
converts it into the numeric form of the language known as

the dump code.

The syntactic checking attempts to detect and produce

a meaningful error message for every error in the input .

data. Unfortunately althoﬁgh the first error in _every
shape is detected, 1t 1is not poséible to detect all
subsequent errors in the same shape. This is because data
contqining other errors.may have been processed before the
first error was detected. ‘As the dump code is stored in a
sequential file, it is difficult to modify the data once
it has been written.‘>It'is therefore easier to ignore
data for shapes containing errors rather than write the
incﬁrrect shape descriptions to a file. The user is given
facilities for-adding the corrected shape descfiption at a
later stage when again the description wi{l be checked for
syntax. This means that if the user corrects the first
mistake but repeats the second, it 1is detected ahd the
user is ;pnsequently stopped from entering any illegal

data into the dump code file.

The GAELIC manual input language is fully described
in the GAELIC wusers manual [ref 7.2] and so it will be

sufficient here to give only the two examples shown below.

233

v

Chapter /
"RECTANGLE" (1) 5,5: 2480,5860;

"REC" (l:4) 1050,2486: 10,5;

Here the respective Aérder words, mask specifiers and
coordinates <contain a different number of chéracéerS'and
cannot therefore be read using the standard Fortran input
routines. A similar technique to that used in GAELIlA is
employed to read this input data. A complete record is
read into an array, one character to one word, a logicél
operation is performed on each word in turm to give the
ASCII number for the <character and these numbers are
processed to give the order words, the group names, the
mask 'specifiers and the coordinates. The actual_routines
used are detailed in the GAELIC system manual. Errors are
also detected by these routines, suitable messages are
then produced mes;éges and, 'in general, the shape

containing the error is ignored.

The simplified flow diagram of the program is shown
in Fig.‘ 7.3.1 where it can be seen that after setting up
“the input and output files the input da;a is scanned for
the double quote forming the start of the first order
work;, The routine that identifies the order word is then
called. This routine first of all checks that the order
word is v#lid and if so returns an integer Tnumber which
uniquely identifies the word found; otherwise it writes
out an error message and sets a flag. The progran is
directed to various blocks of code depending on the

integer number when the rest of the data for the order

(STRRT)

[Rero v wArE oF IweuT FILE |

IREHD IN NAME OF CUTPUT FILEI

IOPEN INPUT AND QUTPUT FILES-I

I FIND NEXT DOUBLE QUOTE S : . —

I READ IN ORDER WORD

' Y
ANY ERRORS

N

(SORT ON ORGER WORD | | PRINT ERROR MESSRGE -

[RERD IN NAMES OR MASK ~umez~:asj ‘ CFB

[RERD IN COORDINATES ETC

ANY ERRORS

WRITE OUT OUMP CODE | [PRINT ERROR MESSACE

IS S O S

FIG 7 3 1 SIMPLIFIED FLOW DIAGRAM FOR GRELZAR

~ b e

235 : _ ' S

Lhapter /

word is processed. The order words for the basic shapes
i.e. recténgles, polygong and lines are processed in the
same block _of code, this is a relic from the original
version of. the program running on the Systemshare
time-sharing service where core was at a premium and there
was.-a heavy overhead on subroutine calls. Heré the rest
of the data describing the shape is checked and if
correct, the appropriate dump code is writtien ou;. The
program then either returns. to look for the next order
word or to look for mofe coordinates if the DITTO flag 1is
set. The wuse of the "DITTO" order Qord is de%éribed in
the GAELIC users manual and is a facility for reducing the
amount of data required for a series of rectangles,eté.
If errors are detected then the program returns to one of
thrée different places depending on whére the error was
found. This feature éf the program can be best understood
by reference to the flow diagran fér the processihg of a
rectangle shown in Fig 7.3.2. Here the point A 1is the
point in the main flow diagram (Fig 7.3.1) where the start
of the next order word is being sorted .: goint B ié where
the starting quote has been found and poinﬁ'C is where the
coordinates are read and is the point returned to after

the completion of a shape if the DITTO flag is set.

The processing of a polygon is very similar to that
‘'of the rectangle and the flow diagram is shown in Fig
7.3.3. It will be seen ‘ﬁhat there aré three main
differences: there is an undefined number of coordinates

in a polygon and the polygon must be checked for closure.

236

RERD IN (435K SPECIFIEN

@

[pamT ErroR rESSAGE]

[

[rero maITIAL x COORDINATE. |

FIO END OF RECTRIGLE |

[READ IN INITIAL Y COOROINATE]

@

READ IN X INCREMENT

@

RERD IN Y INCREMENT

.

PRINT ERROR MESSRGE J

“ Y
@ INSTERD (&)

N

FIND END OF RECTRNCLE |

FIC. 7 3 2 FLOW DIRCRAM FOR PROCESSING R "RECTRLE

237

{c)
o
[RER D FORAT LETTER | [PRINT _ERER MISSGE]
[Fro emo oF PaLrgor CESCRIPTIN |
‘
[seT cons ron wwmT FomrAT| [6T coms FoR FoRMAT ENTERD]
l
“lsev mamn x_ cwoep = sarea | [rmo R ¥ coopene |

A
@

]

[rer0 maToa ¥ coormate |
<|\ - -
FNY ERRORS = -
N

[o m wexT % mcrement |

] { PRINT. ERROR MESSRCE | -

[Fro £ o Povcw cescRPTIN |

PANT _ERROR MESOGE | [»RITE e cooe FR PoLveos |

v T ‘
- : FLRG T
N

Flc 72 3 3 FLUOW DIRGRAM FIR PROCESSING A FULYGOH

238

Lhaptexr /

The processing of the line is very similar to that of
a polygon except that it has an optional width inserted
before the format letter and there is no npneed for the

closure check.

Most other words are simple to process involving the
setting of flags or parameters and is easily understood

from the listings.

The writing of the dump code is exactly the same as
in GAELIA where numbers are loaded into a buffer and

written out when necessary.

7.4 GAEL3A Compiler into Ring Data Structure

- This program takes the description of all or part of
an integréted circuit layout coded in the dump code file

and converts it ‘into the ring data structure.

This is the first program of the GAELIC suite that
handles ;he ring data structure. The ring data structure
for a large integrated circuit is so big that it is held
on disc with only copies of a few pages held in core. ‘All
interaction takes place with the. data that is " held in
core. The data must be transferred from disc to core and

vica-versa. This “paging’ as it is called is described in

Chapter 5. The main data structure handling routines are
built up using calls to two Dbasic routines: one reads
from and the other writes to the data structure. The main

routines include one that allocates the required amount of

B o

Chapter 7/

space. for a bead and enters the contents of the head word
into the data structure, one thap sets up a null ring,
i.e. enters the negative of the address at thé address,
anothgr that adds a ring pointer of a bead onto a ring
starting ‘at a given address and also include more
specialised routines like the one that searche§ the area
or mask 1ring for a bead for a given area or mask number

and if not found creates a new bead. These routines are

described in detail in the GAELIC system manual [ref 7.3].

The flow diagram of the GAEL3A is shown in Fig.
7.4.1. It essentially consists of reading in data from a
dump code file and adding it to the ring data structure
file. The ring data structure file can either be a new
file or an existing one and the selection of which
structure illustrates an important point in the design of

interactive programs,

One of the important features of any program
operating in a time~sharing mode is its interaction with
the-user; the program must ask the right_ questions and
must correctly interpret the users answers. The number of
questions asked has to be carefully balanced égainst"the
information required. If there are a large number of
questions -asked that just require a short “YES’ or “NO’
answer then the wuser <can find although his answer is
unambiguous, that he spend a lot of time waiting while the
program asks questions. The frustration caﬁ be hﬁghtened
by knowing that his answer will lead to an .obvious . next

question. This can be understood by <considering the

240

START

[RErD N of DuMP CoDE FLE |

[OPEN DUMP CODE FLE . | ' - -

[rea wate For ew R 0 s |
NAME ENTERED
—_—

| READ HAME OF EXISTING R D 5

FILE EXIST

FILE EXIST

| oeenw v R0 s e | [oren ExisTie R 0 5 FnE
] I
l

[€T w maTiaL cooiTions |

|

[Foo FIRST shArE rARKER]

‘ [sort o .swepe memkER |
| PROCESS SHAPE ETC | [E 0 F - oo FiEs |
| S -

[ser0 wexT sAeE rerker | : : exaT

]

FIG 7 4 1 SIMPUFIED FLOW DIRGRAM OF GRELIA

241 . ' N

Chapter 7

question:
DO YOU WANT TO USE A NEW OR EXISTING DATA STRUCTURE?

This: question is ambiguous does the user answer “YES” or
“NO° or should he answer “NEW’ or “OLD’? Obviously this
type of question should not be asked. However if the

question askcd:
DO YOU WANT TO CREATE A NEW DATA STRUCTURE?

Here the answer is obviously “YES’ or ‘NO’ but if the
answer 1is “YES’ the equally obvious next instruction will

be of the form:
ENTER NAME FOR NEW RING DATA STRUCTURE FILE

It 1is better therefore to obtain both pieces of

information with the same question or instruction e.g.

ENTER NAME FOR NEW DATA STRUCTURE OR PRESS RETURN

Kl

This appfoach is used in GAEL3A and other programs in the ™

GAELIC suite. The exact choice of question is governed by
the usual requirement. In the case under discussion, the
user usually requires a new data structure and so on the -

odd occasjomn.: when an existing structure is to be updated,
he will- press RETURN and will then be asked for - the name

of the existing file. _ : ' ' ' —

N
B N
Ny

Chapter 7/

When the appropriate ring‘ data strﬁcture file has
been opened, <certain initial.'conditions are set up
inclﬁding the main definition bead, as “shapes’ are read
in from the dump code file they are converted to tﬁe
appropriate beads and these are added to the main
definition bead. When the marker integer for "FINISH" is
found i.e. the end of the dump code file, the complete

data structure is written back to disc.

The processing of a basic shape is shown in more
detail in Fig. 7.4.2., After reading the numbers of the
masks containing the shape, the actual coordinates are

read into an array and their minimum and maximum values

4

found. This “bounding rectangle is then used to-

calculate the number of the area associated with the
shape. The area ring . starting in the approbriate
definition is then géarched to find the area bead for that
number; If iﬁ is not present, a new area bead is created
and added in the appropriate position on the ring. The
mask ring on the area beaa is then searched:- in turn for
the appropriate mask bead for each mask containing the
shape in turn and a new bead is created if necessary. A
shape bead 1is created for each mask in turn and . is added

to the shape ring on the appropriate mask bead.

‘When a group call is found in the input data, a
similar process to that just described takes place and 1is
shown in Fig. 7.4.3. The bounding rectangle-bf the group
instance 4is calculated from the coordinates of the origin

of the group call, the movement code and the bounding

243

(START)

RERD IN SHAFE MASK NUMBERS

RERO COORDINATES INTO ARRAY

FIND MIN AND MAX VALUES

FINDO ARER CONTRINING SHAPE

FIND OR CRERTE AREA BERD

FIND NEXT M™MASK NUMBER

FIND OR CRERTE ™MASK BERD

SET UP .SHRPE BERD

RDD BEAD TO MASK SHAPE RING

ROO COORDINRTES TO SHRPE BERD

Y/l\
ANY MORE MASKS ==

N

Exﬁ)

FIG 7 4 2‘ FLOW DIAGRAM OF RECTANCLE

244

PROCESS

[- READ IN GROUP NAME - |

|

IFIND OR CREATE GROUP DEF asno}

|

| READ IN NUMBERS OF MASKS USED]

I

| READ IN ORIENTATION AND DRICINJ

'] SET UP CROUP VRLUE BERD J

I R
[FIND BOUNDING RECT OF CALL]
l)

[FIND NUMBER OF RRER J

[FIND OR CRERTE RRER BEARD]

FHDD VALUE BERD TO VALUE RING I

[Fmo pExT mAsK NUMBER |

l

r FIND OR CREATE MASK BEAD]

|

[SET P cROUP TiSTANCE BERD |

l

r ADD Béﬂo TO SHARPE RING |

]

rnan BERD TO CROUP INST RING]

[RDD DFs T DEF AND VALUE BEADS |

Y/ﬁ]\o

FIC 7 ¢ 3

NY MORE MASK

FLOW DIAGRAM FOR PROCESSING GROUP

245

‘CALL

Chapter 7

rectangle of the group definition.A‘prEW1ﬂwtarises if
the group definition has not been specified when the group
- call ~ is processed, as the bounding rectangie of the
definition is not defined. It is assumed to be =zero and
the area allocated to the instance is therefore governed
by the coordinates of the group origin alone. Another
problem that arises if the group definition has not been
sbecified is concerned with the pointers. Chapter 5
showed how the group instance bead 1is ﬁpt only connected
to the shape fing but is also connected: to the group
instance ring and also has a direct pointer to the group
'definitiop bead. Tﬁe head pointer of the instance ring ié
in the grouﬁ definition bead, consequently without the
group definition bead neither the group instance ring
pointer nor the direct pointer can be set up. Therefofe,
.if not already present, the definition bead must be
created and added to the groub definition ring'when the
call is Aprocessed; This is done automatically by a
special routine. Tﬁe routine is extremely complex as it
not only has to check if the definition bead exists and
create one if not, but also has to énsure that the

definition is in the correct position on the group

definition ring. The operation’ of the routine 1is

described in detail in Appendix 2 but it will suffice here

to explain the problem that it has to solve.

The bounding rectangles of shapes and group instances
are wused in many of the GAELIC programs to minimise the

amount of data that has to be processed when plotting out

245

Lhapter

a window. or when identifying the nearest point to the
cross hair cursor. . The bounding rectangle of a group
instance cannot -be correctly calculated wunless the
complete group definition 1is alréady in the data structure
and its bounding rectaﬁgle correctly coméuted‘ Unless the
group definitions are entered before the group calls, the
bounding rectangles will not be correct. This situafion
is normally corrected by running GAEL8A immediately after
GAEL3A. GAEL8A, however, will still not give the corfeét
bounding rectangles unless the gfoup definitions are in
the correct order. If an instance of group A is called in
the definition of group B then it is essential that the
definition of A preceeds that of B on the group definition
ring. The bounding rectangle of A will therefore have
been correctly computed before the bounding rectangle of B
is evaluated. As there is no restriction in the input
language on the ordering of the data, the ordering of the
definitions on the group definition ring mnust be done
dynamically in GAEL3A by the rougiﬁe.‘ Thé‘same routine 1is
used when the definition of a group appears in the dump
code where again it finds or creates the group definition

bead. -

While the shapes in the definition are being entered

from the dump <code file, the appropriate area beads are

added to the area ring starting in the group definition

bead instead of to the ring starting din . the main

definition. The rest of the process of finding or

creating the mask beads and adding the actual shape beads

247

o vt

Al S LE

is identical. At the end of the definition area beads and
hence shapes are once more added to the main definition.
A similar process is used for repeat definitions when it
is arrénged that subsequent area beads are added to the

ring starting in the repeat definition bead.

7.5 GAEL4A Interactive Program

This program plots out all or part of an integratéd
circuit layout on a Tektronix storage tube terminal. The
user can interact with the‘plot and modify existing shapes
or add new ones. This is the main program of the GAELIC
suite and is the most demanding from a programming 'point
of wview. It is absolutely essential that the program
performs its various functions quickly to avoid user
frustration and thé"design ofbthe data structure has been

done mainly with this requirement in mind.

One of the problems with using interacfive- graphics
is . that it is always compafed with pencil and paper. A
designer has been using a pencil and péper-fdri years and
so 1is conpletely familiar with tﬁe teqhniqués‘and forgeté
that it took him the first five years of his 1life to
become reasonably proficient with thém. ﬁé'sits in front
of an interactive graphics terminal‘withlits input device
and becomes extremel& dissolﬁsioned if he cannot master
the techniques 'required to wuse it within an hour.

Consequently the ergonomics of any interactive graphics

system have to be extremely good or the user will become

248

Chapter /

dissatisfied. One of the most critical features is
response time i.e. how long it will take to draw a window

or how long it will take to identify a point. Using

GAELIC in a time-sharing environment makes this problem

even more severe as there are time-sharing delays in
addition to the other delays. The program can do nothing

about the time-sharing delays and therefore concentrates

on minimising the other delays. These other delays are

due to two factors: the first is the time taken to write
to and reéd from disé and the second is the amount of CPU
time required to process the data.. The data structure has
been designed to minimise the numbaf of disc transfers
required to plot and modify a layout and the CPU time has
been minimised by working as far as possible using integer
arithmetic and doing preliminary sorts to avoid processing

every shape.

The simplified flow diagram for GAEL4A 1is shown in
Fig 7.5.1 where it can be seen-that afte; setting up the
initial conditions, the program allows the user to select
one of a series of options, these are kﬁown as “program
command level options’. The selected option is then
processed and can either automatically call in another
option or return to the part of the program where the user
selects the next option. The options allow the user to do
such things as select which group ~ definition 1is to be
modified, select thé masks to be plotted, select whether

grid axes are produced or close the ring data structure

file and exit from the program. The initial conditions

249

0S¢

[RERD IN COMMAND LEVEL OFTRN |

[SORT on CoMrmwD LEVEL OPTION |

PROCESS OPTION { PROCESS OPTION]

END

a0sE ROS FILE

QFTION CHANCED -

FIC 7 5 1 SIMPUFED FLOW QIRCRAM OF CGREL4A

Cnapter

that are set up inciude the selectioh of an existing ring
data structure file or the creation of a new one. The
flow diagfam for this is shown in Fig. 7.5.2 where it can
be seen that the philosophy of minimising the number of
questioné‘that have to be answered is used again. Instead
of asking if ;d existing or new file is required the user
is asked to name the existing file which is his normal
requirement. When: he wants to create a new file then he

presses RETURN in answer to the first question, and then

the program asks for the name of the new file.

The various command level options are shown below

with a brief description of their functions.

AXES - Plot grid axes on the screen

DASH - Select line specification

DEPTH - Chang;‘depth of grouping to be plotted

DRAW - Draw -additional shapes on screen

END - Close files and exit from thg program

GROUP =~ Plot or modify a specific group definition

HELP - Clear the screen and print this list

LIST - List the names of all the group definitions

MODIFY - Modify shapes within window

ORIGIN - Plot triangles at group origins

PLOT - Set up mask list and plot window

REPLOT - Replot window for previous mask list

ROUND - Round'cursor coordinates to néarest grid
point

SAVE - Take backup copy of data structure

251

(START

[rern TERMINAL TYPE AwD SPceD]

[SET DCLAY AFTER CLERRING SCREEN]

ISET DEFRULT CONDS FOR TERMINHL]_

IRERD NRME OF EXISTING RDS FILE—I

NRME ENTERED

el

/

IREFID NAME FOR NEW RDS FILE]

N
_4 EXIST

r OPEN EXISTING RDS FILE

OVERWRITE. -

OPEN-NEW R D S FILE |

(ExIT)

FIG 7 5 2 FLOW DIRCRAM OF INITIRL CONDITIONS

252

(START)

RERD MASKS TO BE PLOTTED

ERR

ORS

DETECTED

N

PLOT SHAPES ON EACH MASK IN TURN

CEXIT

FIG 7 S 3 FLOW DIFGRAM OF - OPTION

253

PLOT

Lhapter

TEAR - - Tear layout along defined line
TRACK - Modify track width
WINDOW - Change dimensions of window

Many of the options are just concerned with setting values
or flags for example WINDOW allows the user to type in the
bottom left hand and top right hand coordinéﬁes of the
window to be plotted and ORIGIN allows the user to set - a
flag that governs'whether the origins of the groups are
marked with a triangle when the layout is plotted. Other
options are more powérful and versatile. PLOT for example
allows the user to specify a list of masks andAthen plots
out all the shapes 6n each of the masks specified in turn
while REPLGT plots out the shapes on the previous mask
list. Thus the REPLOT option is a subset of the PLOT
option. The flow-diagram for these options are shown in
Figs. - 7.5.4 and 7.5.5. When running the REPLOT option,
the érea beads are examined in turn to see if any shapes
in the area could lie within the'window to be plotted. If
: P
so, the mask ring 1is searched for the\appropriate mask
number. As mask beads are arranged on the ring in numeric
~order then the ©beads need only be examined until the
required mask number or higher number. is found. If the
required mask bead is found, then shapes on the shape ring
are examined. The boundiﬁg rectangle of each shépe is
compared with the window to be plotted and if completely
oﬁtside the window, the shape is ignored. If any of the
bounding rectangle overlaps the window, then all the line

segments that lie within the window are plotted. When all

254

[Fivo woxx sno 10 50 maTTED]

[FEo mav or Frsr wven egno]

. :
SHPE ST N
WITHIN wYwr\y

[oo ok weroer]

LR
L3 NMAIK

[_soar o Tre oF swre |

PLOT RLCTALLE || . AOT__poLrCo 1 | mor_csor wstac |

FIG 7°5 4 STMPLIFIES FLOW . DIRCRRM FOR REPLOT

255 -

Lthapter

the shapes on a mask have been plotted then the next area
bead is examined and the process continued until the end
of the area ring is reached. All area beads are examined
but if the area cannot contain shapes that lie within the
window, the mask and shape beads- are idgnored. By
arranging that all the area beads are on the same page,
while the mask and shape beads for each area are on other
pages, then the area beads can be examined wi;h a minimum
number of disc transfers and ip is only necessary to bring
Ain new pages when the area can poésibly contain shapes
within the windoQ.. Thus the number of disc reads required
is considerably reduced as is shown by the results in

Chapter 8.

MODIFY, DRAW and VTRACK are program command level
options that alloh the user to.interact with the layout.
By suitable positio;ing of the cross hair cursor and by
pressiﬁg suitable character keys the user can identify
points on shapes, define lines etc. The choice of
character key to press gives the user another level of

options which are known as “cursor command level options’.

These different levels of option therefore lform a
tree sfructure. The tree starts with the main option
which is to select the riﬁg data structure to be modified,
at the second level are the program command level options,
the third level contains the main cursor command level
"options and it will be seen later that there is a fourth
level <consisting of secondary cursor command level

options,

256

Chapter 7

The simplified flow diagram of HMODIFY is shown in
Fig. 7.5.5 where it can be seen that by‘choosing the

character to press when the cross hair cursor is in the

screen the user can select the cursor command level option.

required. - The option is then processed and the progreanm
returns to the cursor command level i.e. the cross hair

cursor is set up.

Certain of the cursor command level options initiate
processes involviﬁg other cﬁrsor command level options:
these are known as main cursor command level and secondary
cursor command level options respectively. For examble in
MODIFY the letter I is used at main cursor command level
option to identiff the nearest point in the data structure
to the cross hair cursor, the secondary cursor command
options A, H, O, Y and [then dictate whether the shape is
moyed) modified or deleted. The flow diagram for this 1is
shown in Fig. 7.5.6 where it has been seen that as well
aé modifying the basic shapes it can also. modify repeat

parameters.

TEAR is the option that allows the user to define a

line through his layout or then move all the shapes to the

one side of the line by a distance. It was written by J.
Phillips of the CAD Project and is called as a subroutine

in the program.

DRAW was at one time a completely separate option to
MODIFY in the first version of the program running on the

Systemshare " time-sharing service when it formed a

257

YR

| RERD ~MASK N0 TD BE MODIFED |

8sZ

[SET P CROSS-HAIR CURSOR }

l

| READ CHRSACTER AND CODRDINATES |

[SORT ON CHRSACTER ENTERED —I

MIDIFY SHAPE ETC : . L : ORAW SHARPE ETC 7) PRICESS SPRCE CHARACTER

I

FIG 7 5 5 SIMPLIFIED FLOW DIRGRAM 0OF MODMSK

(s aT)

[et

WP INETIAL CONTTIONS

J

[

[Fro neanest eomer 1 otepgnisa)

<

Y

r \OATE REPEAT PROFMETERS]

N

= Pam

Y

[=7 v cuss-mam amm | ,

[remy cwracres mo coods |

Gasr ofich

T
EXTERED

[MIFY 3HVE]

| w1 v cacss-mam covm |

[Toern cwmncTes Ao coovos |

-

3

| eomor mowrEn sevr |

1

[M50 omentare: m oewere car|

[s v coss-vmn amm |

l

[mero cwractes Ro coons)

LPRIL :
ENTERED

[7 v cass-mm amm |

[read cweacren mo ooy |

N @
[e e AT ooy |

]

EXIT)

FIC 7 S & SPPUFIED FLOW DIAGAM OF LENTFY

259

I.“KDVE PRUTION GF ROP)IISTFW{E‘]

~

Chapter /

convenient overlay segment. However since that time it
has now been amalgamated with MNMODIFY and so requests to
DRAW are treated in exactly the same way as requests to

MODIFY.

The data structure handling techniques are the same
as those wused in GAEL3A apart from the paging routines

described earlier.

Another ©of ;he interes;ing parts of GAEL4A is
concerned with processing group and repeat instances where
there are two problems to be solved. The first is due to
the fact that the group and repéat instances can be nested
and is in the determination of which areas to process in
the group or repeat definition, The nesting of groups
means that the absolute movement code applied to the
shapes in a definition mnust be computed from the
individual movement codes of the group instances. The
previous absolute movement codes must also be kept to
avoid recélculating thém then whén a group.‘instance ~has
been processed. It is also essential to keep the
-addresses of the pfevious area and shape lring pointers
that were being processed when the group call was detected

in order to process the remainder of the shapes.

The second.problep is concerned with the area beads.
The main savings in computer time come from the fact that
only the shapes in areas that can overlap the window are
propessed, masks and shapes in all other areas are

ignored. The group definitions are built wup in exactly

260

Lvhaprer

the same way as the main definition i.e. with area beads,
mask beads and shape beads, the areas being allocated in
exactly ihe same way. However, if a group instance 1is
rotated about the x axis, then the areas that are_requifed
to be plotted in the group definition are different from
ﬁhose fhat are required to be plotted -ié the main
definition but are related to them by the movement code.
The transformation involves mapping the window onto the
group definition which is a different operation to that
performed on the shape coordinates in a definition when

they are mapped onto the main layout.

The flow diagram for handling the group call is shown
in Fig. 7;5.6 where the coordinates of fhe origin and the
movement code are read from the value bead. The
coordinates of the origin are then transposed tc take
account of ‘the caséuﬁhere the group instance 1is called
from another group définition. They are transposed
according to the ©previous movement code. If the
transposed origin lies within the window and ORIGI&S are
requested, a triangie is plotted at the origin or if
modifying, thé coordinates are compared with cursor
coordinates. When normal modification takes place the
progran does not search the contents of the group
definitions and so can exit at this point. However, if
.plotting or using the special roufines that find the
nearest point in the complete layout, then conditions are
set up to procéss the coﬁtents of the actual definition.

The depth o0f grouping is incremented and the new

261

Chapter 7

displacements for the coordinates aré calcﬁlated from the
0ld displacement and the transposed coordinates of the
origin. The new absolute movement code 1is also‘evaluated
from the previous absolute code and the movement <code of
the ipstance. This in turn enables the area coordinates
for the part of the definition withini the window to be
found. The bounding rectangle of the instance can then be
calculated from the bounding rectangle of tiie definition,
the new absolute movement code and the displacements. If
it is outside the required window the shapes are ignored.
If the Dbounding rectangle is inside.the window then the
necessary initial conditions are set up which keep details
of the previous definition and set up to examine shapes in

the present definition.

At the end of the area ring, ie. when all the shapes
in the definition have been processed then the reverse
"process takes place where conditions are reset for the

previous definition and the depth of grouping 1is

decremented. .

A similar process has to be followed for repeat
instances with the exception of the movement code which

does not have to be updated.

2672

s

Chapter 7.
7.6 GAELSA/B Plotting programs-

The GAELS5A program takes a GAELIC ring data structure
and plots all or part of it out on a Calcomp 563
incremental plotter. CGAEL5B is a similar program that
plots the layout on a Calcomp 563 plotter via a Calcomp

DP212 controller.

The plotting program is very similar to that used in

GAEL4A to plot on the Tektronix screen i.e. has a flow.

diagram similar to Fig. 7.5.5 and handles groups in a
similar way to Fig. 7.5.6. The main difference is that as
the program is usually used to plot the complete layout:
in this case all areas are processed and there is no point
in checking to see if each individual area is required.
The <checks fdr the individual shape however are left in
just in case only a-part of the layout is required. In
which case the processing is not quite as efficiént as it
is in GAEL4A. The plofting however is very much limited by
the speed of the plotter rather than the time taken for
disc reads so the inefficiency has negligible effect as
far as the user is concerned. The program uses standard
Calcomp driver routines which are part of the Decsystem 10
basic software. library. . These basic routines take the
real number coordinates created by the program and convert
these into the necessary increments for the plotter. The
actual plotter requires 3 bits of a character for each
increment. The increment can be in one of 8 different
directions. The increment for the 563 plotter is either 5

or 10 thou. and can handie up to 300 increments per

263

Chaﬁter 7
second i.e. 1.5 or 3 inches/per second.

The driver routines written for GAELSB to drive the
563 plotter via the DP212 controller send characters that
specify the ‘number of dincrements as:' well as the
direction. This allows the plotter to work at near full
speed despité using a 110 Baud line as the DP212 converts
~each character into the required numBer of characters.that
specify one increment in a given direction. Angled 1lines
other than 45 degrees are slow because they do not take
many consecutive steps in any one direction and so if the
pen is up, 1t is moved as far as possible at 45 degrees
and then horizon;ally or vertically to thé final
destination as shown in Fig. 7.6.1, On the other hand if
the pen is down then the best possible straight line is

drawn as shown in Fig. 7.6.2.

The algorithm used for the line with the pen down 1is
a modification of an algorithm writtemn by Dr. J.V.
Oldfield for driving the 563 directly.l It transposes the
line so that it has a major axis AC as shown and a minor

axes AD as shown in Fig. 7.6.3.

A calculation is made at each major axis increment to
see where straight line AB cuts the vertical line, if it
is less than half a minor axis increment then the pen 1is
'moved one increment along the major axis, if it is greater
than half an increment then the pen is movea at 45 degrees
to the major axis. The process continues.at each major

axis increment until the end of the line is reached. The

264

A
Fig 7. 6.1 Pen movement when raised
B
A
Fig 7.6.2 Pen movement when lowered
D = B
- n—/./
. /
e
A c

Fig.7.6.3 Simple angled line with pen lowered

264 a

Chapter 7

characters are only sent to the plotter when the direction
of fhe increment changes or the end "of the 1line is
.reached. For example, for the line shown in Fig. 7.6.3,
one character 1is sent to the plotter for the two
increments along the major axis, one charécter for the one
character at 45 degrees and then one increment for 'the 3

increments along the major axis.

7.7 GAEL6A Joins lines together to form closed polygons

The line with zero thickness is an extremely useful

shape for defining metallisation tracks in groups as shown

in Chapter 3. However, when photo-plotters are wused to

produce the masks, it is impossible to tell which side of

a line has to be exposed. The lines must, therefore, be

joined together to form polygons. This was the main

reason for writing GAEL6A although using it gives two

other advantages that are not quite so obvious.

Firstly when.using a knife on cut and .peel material
for a series of short lines, the coordingtograph will no
sooner have accelerated to full speed than it yill have to
decelerate agaih to enable it to stop at the end of the
line. However if all the short line segments are joined
together to give a . large polygon then the cdordinatograph
can cut for a comparatively long period at full speed.
The movement with the pen up is also reduced giving a
substantial saving in time on the tape controlled

coordinatograph.

265

s

Chapter 7

Secondly then using the lines in the ~group
definitions, it is possible to forget to add the lines at
the end of the group instances to connect, for example, a
24 bit shift register stage to the rest of the circuitry.
Errors of this nature are not easy to detect visually but
are automatically detected as part of the process to join
up lines to form polygons. The problem of detecting the
missing lines may appear to be a good reason for using
closed shapes instead of lines. However 1if the closed
shape that connected the shift register to the outside
world were omitted, it is even more difficult to detect
visually and cannot be detected by present computer
programs. (it will be possible to detect such errors with

"Mask Function Checking® when this program is finished).

The flow diagram for the procesé is shown in- Fig.
7.7.1 where it canuge seen that after setting the initial
conditions, copies are taken of all the 1lines in the
layout. This is .not as easy as it firgt appears, as a
copy of a line in a group definition has to be taken for
each\ group 1instance. Each copy must naturally have the
appropriate coordinate transformations. The progran
therefore behaves as if it were plotting i.e. folloﬁs the
flow diagrams shown in Fig. 7.5.5 and Fig 7.5.6. but
instead | of plotting each shape, the rectangles and
'pélygons are ignored and the 1lines are copied into a
temporary ring data structure. This temporary data

structure has area beads but no mask beads as the program

only operates on one mask at a time.

266

(START)

SET UP INITIAL CONDITIONS

TRKE COPIES

OF RLL LINES

DELETE - LINES

FROM LAYOUT

JOIN LINES TO

FORM POLYGONS

S TO LAYOUT

ADD POLYGON

FIG 7 7 1 SIMPLIFIED FLOW‘ DIARGRAM OF

267

EXIT) T

GRELGBR

Chapter 7

When copies of ail the lines have been added to this
temporary data structure the original structure is then
processed to remove all the lines. This time, however, it
is'only necessary to detect the line in a group definition

once. Each shape ring for the required mask is examined

in turn and all the line beads deleted: all other beads-

including group instances are ignored. The flow diagram
for this process is similar to Fig. 7.8.1 which describes
the operation of GAEL7A. GAEL7A is the program that
produces the manual input language from the ring data

structure.

The lines on the temporary ring data structure are
then joined together to form polygons which are added to
the original layout. The data for thé first line in the
first area 1is entered int% an array and the line deleted
from the temporary Q;ta structure: all subsequent lines
in that area and all lines in.other possible areas are
then examined to find the line with either the same
starting or finishing coordinates. The data for this
second line is then added to the array and its bead
deleted from the data structure. The process continues
until the composite line in the array forms a closed
polygon which.is then added to the original data structure
in the appropriate area. The program then returns to what
‘is now the first line in the data structure and repeats
the process until all the lines have been joined wup to

form polygons and all the polygons have been added to the

original data structure.

268

Chapter 7

If the lines do not join up two possible coursés of
action are taken. If another line -has the same end
- coordinates within a given limit then the coordinates of
the second line are changed and a message printed to that
effect. If no iines have the same end coordinates then
the line. in‘ the array 1is written back to the original

layout and an error message printed. The user will then

run GAEL4A to correct the errors.

7.8 GAEL7A Ring data structure to manual input language.

This program takes the definition of a layout in the
ring data structure and writes it to a file as the manual
input language. It is used to obtain_a copy of the layout
description that can be reéd by a user and which is
independent of thevéémputer running the GAELIC programs.
It 1is aléo useful for taking the description of ﬁart of a

layout and redefining it as a group definition.

The simplified flow diagram of the program is shown
in Fig. 7.8.1 wheré the general aim is to first write out
the descriptions of the group definitions followed by the

description of the main layout definition. Unfortunately

both group and main definitions may contain repeat

definitions and to make things even worse the repeat
definitions themselves may contain further repeat

definitions.

269

et —_—

(sTAaT }

[ser v mrma_ cowornies |

l

[F HD - RODRESS OF FIAsT GROuP DEF} .

r

[sET _ur For chowe DEFIMTION |

I

{ URITE OUT _ NEWGRRP]

l

'FJ:!D AOORESS OF IST REPEAT DEF] ’

£:0 ?’F
RING INSTERD

| .

- [seT_» For repERT DEFINTION |

[WRITE OGT REFERT |

I INCRENSE DEPTH OF REPERT I

I WRITE WJf SHARPES IN DEFINJTI'JN]

I3 IT__ A
PEAT DEFINITION

l

l WRITE OUT _ENDREPEAT |
Y |
l [reouce oeptH oF nepenT]
[VRITE OUT ENICROWP | T] v
l | - |Fmo sooness oF exT nepEAT DEF

l FLEO AINNRESS OF NEXT ChRe L']EF_I

ENp OfF
RINC INSTERD

l WRITE DOUT FINISH]

iy

FIC 7 8 ! SEWLIFIED FLOW DIACRRM OF CRELA

270 | | S —

Chapter 7

After setting up the initiél coﬁditions i.e. reading
in the names and opening the necessary files, the program
finds the address of the first group defiﬁition.. 1f the
addres; is that of thé ring head pointer then there are no
group definitions present and thé program starté to
process the main definition. If a definition is present
then the group name is found and is written out to the
output file. Thz group definition bead is then examined
to find if any repeat definitions are pre;ent. If one 1is
present then fhe rebeat pafameters are reéd from the value
bead and the repeat specifier is written to the output
file. The repeaf'definition'is then checked to see if it
contains any répeat definitions and if so the depth of
repeat is incremented and the process repeated. When the
present definition does not céntain any. further repeat
definitions then the shapes in the definition are written
out. A sort is then made on the type of définition
processed. If it was a repeat definition then the end
repeat order word is written out, thé depth of repeat Ais
reduced and the address of the next repeat definition
found. The process 1is repeated until ail the repeat
definitions have been processed, the program then writes
out the shapes in the group definition and after writing
dut the endgroup order word finds the address of the next
group definition. This prpcessing of = the group
definitions continues until all the group definitions have
been written out. The main definition is then processed
but again must first go through the process of writing out

all the nested repeat definitions before actually writing

271

Po——

Chapter 7/

out the shapes in the main definition. The finish order

word is. then written out and the files closed.

The actual writing out of the ménual input’ language
requires an identical technique to that '‘described in
section 7.2 for the digitiser program. The reading of the
ring data structure requires the déta structure handiing

routines used in most of the other programs.

7.9 GAEL8A Data structure reorganiser.

This program reorganises the data structure on disc
so that it is in an optimum order for interaction. The
program also removes all unused area and mask beads and

recalculates all the bounding fectangles.

The data is ségéed so that the definition beads and
area béads are on the same page or on consecutive pages so
that the area beads can be checked 'to see if they can
contain shapes within the window using the minimum number
page changes. However once an area bead hés been found to
be capable of containing shapes within the window then all
the shapes must be processed, hence all the mask and shape
beads for a particular area bead must be on either the
same page or on consecutive pages so that again the number
of page tfansfers required to process the shapes is
minimised. The simplified flow diagram to perform the

reordering of the data is shown in Fig. 7.9.1. The

initial conditions consist of reading - in ~the names and

(START >

'SET UP INITIAL CONDITIONS

SET UP MAIN DEFINITION BEAD

SET UP MAIN AREAR BERDS

SET UP GROUP DEFINITION BERDS

SET UP MRIN REPERT DEF BERDS

-

SET ~-UP "CGROUF DEFINITIONS .

SET UP MAIN REPERT DEFINITIONS

SET UP MHIN MASK AND SHARPE BERDS

CLOSE FILES ETC

(ExiT)

FIG 7 9 1 SIMPLIFIED FLOW DIRGRAM OF

273

Lhapter /

remy

les. The main layout head bead is

bl

opening the necessary £
then set up in the new data structure which is followed by
beads for every area that is used in the old layout. A
group definition bead is then set up in the new data
structure for each group definition in the original
structure. fhese are follqwed by repeat definition beads

i

for all the main repea definitions present in the

original étructure, The actual group definitions i.e. any
repeat definitions, the area beads, mask beads and shape
beads, are then copied onto the new structure. The repeat
definitions may well be nested and if so all the necessary
definition contents i.e.. area, -+mask, value and shape
beads, must be set up. The same process applies.to the
main repeat definitions which again cad contain nested
repeats. ¥Finally the main definipion mask and shape beads

are, set up. g

The techniques used to handle the data structures are
virtually identical tc those used in other programs except
that provision is made for fhe two data structures vthat
must be handled.‘ The task is simplified as ther¢ is a
requiremgnt to’read from the ofiginal data structure but
no requirement to write to it. The new data structure

however has to be both written to and read from.

wilta oL g

7.10 GAEL9A etc. Post Processcors.

These programs convert the ring data structure into

the drive tapes for a range of

mask making machines

ranging from the Coradi tape controlled coordinatograph to

the Gyrex Pattern Generator.

All these programs work the same
the . floQ diagrams are those shown in
7.5.6.. The actual_éutput varies from
but. usually uses the buffered output

in section 7.2.

8]
~J
[94]

way as GAELSA 1i.e.
Fig. 7.5.5 and Fig.
program to program

techniques described

CHAPTER 8: Performance

This chapter is devoted to the subjective assessments
and objective meacurements that were carried out on the
pfograms'in order to evaluate their performance at various
'staées during their development. The chaptef starts withl
a subjective assessment of the PAELLA suite of programs
running on the Systemshare time-sharing service and is
followed by a comparison between the performance of the
cequential block data structure used in PAELLA with the
initial ring data structure usgd in the first wversion of
GAELIC. The results of the various improvements made Lo
the ring data structure culminating din the final data
struckure using area beads are then described and'the
chapter closes wigﬁ a subjective assessment of @ the

interactive facilities available in the GAELIC. suite.

ra

8.1 PAELLA Performance

The PAELLA programs were written, ~ - mainly by the
author,?&*Gawﬁﬂ Instruments Microelectronics Ltd (GIM) for
use on.the Systemshare time-sharing service; Most of the
programs belong to 'G;M and are not generally available.
{owevgr, the Wolfson Unit retained rights to the two iﬁput
programs and these are used in the GAELIC suite. Most of
the integrated circuit masks produced by GIM were of a
proprietary nature and no objective measurements were
made. It 1is nevertheless worth discussing their

subjective assessment of the PAELLA programs.

=9
2
(@Y

Chapter 8

The programs are designed to take the output from a
Metrcgraph digitiser or a manual input language

description of the layout, and convert it initially into

R4Y LM
Y ~,~‘{‘
Bl

check drawings on an on-line inc%eﬁgntal plotter and

finally into - drive tapes for gﬁgye " controlled
coordinatographé to produce the m;;k ?masters. It was
realised that without any interactive correction
facilities, the programs would have limited facilities but
it was necessafy to produce a working system in the
minimum time. GIM found the —correction of errors by
either modifying the digitiser output or the ﬁahuai “input
language was extremely tedious and most of the time was
spent looking for and <correcting errors rather than
digitising the layout. The method of providing the input
data‘was found to ngsuccessful provided that either an
accurately gridded mylar was used for the drawing or only
small parts of a 1ayout were drawn on normal gridded
paper. The major problem that appeared if these’
requirements were not met, was that many polygons had = one
or more sides at a small angle rather tﬁan all the sides
paraxial. Finding which point is in érror andb correcting

it by examining the input language is far toco slow and

cumbersome.

)
Ry
~3

18

8.2 PAELLA and GAELIC Comparison

As most of the designs processed by CIM vere of a
proprietary nature, the completed designs were ndt
available apd s0 no timing or costing data was possible.
However, 'permission was 6btained fgém GIM to use the
PAELLA programs to do some comparative tests on three
circuits that ~were availgble for publication. The
circuits are shown in figs 8.1, 8.2 .and 8,3 and the

results of the measurements are shown in table 8.1.

I Layout 1I Layout 21 Layout 31T

I

I Lo o e e e e 1
I I I I I
L PAELLA CPU Time I 20.4 I 29.6 1 724.8 1
I Sequential Bloqk_ﬁSecs I I I I
I D. S. "Connect I 3 I 3 I 24 I
I Mins I I I I
I I I I I
I I I I I
I GAELIC CPU Time I 17.6 1 14,2 1 584.0 I
I Original Ring Secs 1 I . I I
I b. §S. Connect I 3 I - 3 I 9 I
I Mins I I . 1 I
I I I I I

e S hr - e v e . - e G A A e e - —— . S G . - —— e S e T = — . me M . R W v S G e ve S e - —— -

.Comparison of Sequential Block and Ring
Data Structures

Table 8.1
The object of the test was to compare tHe perforhance
of the PAELLA programs and the original version of GAELIC,
both of which ran on the Systemshare time-sharing service.
The digitiser..inpuk and manual input language programs

both of which can produce dump code files "are common to

Chapter 8

both éystems as are the post-proccesscrs convérting the
coordinate file into drive tapes .for tape controlled
coordinatographs. However, the method of producing the
coordinate file from the dump code file is different in
each system using different data structures és aiscuséed
in Chapter 4. The tests are therefore a comparison of the
sequential Block Data Structure uged in PAELLA with the
Ring Data Structure used in CAELIC. Errors are detectgd
in PAELLA either by the syntax checkers or by plotting all
or part of the drawing on an incremental plotter. They
are corrected, ﬁowever, by modifying'the input yanguage
file. GAELIC, in addition can detect errors by plotting
part of the layout on the Tektronix and the errors can be
corrected interactively. This means that thg only wvalid
comparison between“ché two systems is the time to convert

~the Dump Code file into the Coordinate file.

The first layout shown in fig 8.1 is a small MOS test
circuit designed by - the Wolfson.Unit tofevaluate an MOS
process.‘ It does not ccocntain any group ™~ definitions or
repeats and because it is small is entirely core resident
in GAELIC,. The second circuit is a small test example
used during the development of the CAMP system [ref] and
contains both group and repeat facilities But again 1is
core resident in GAELIC. The third circuit is par£ ofthe
correlator layout designed by the Wolfson Unit and uses
both group. and répeat facilities and is large enough po'

use the paging facilities in GAELIC.

279

L

3

=

1...

|

with no grouped and repeated shapes

PLELTL

| SRS

small circuit

Layout of-

1

8,

Fig

- 18e

J

|
"]
1

i

UJ
—]
iy
: ()
01T
—
L
(]

T I] N

. Fig 8.2 Layout of-éma_ll circuit with'grouped and repeated shapes

Chapter 8

The results show that for a small «circuit without
group definitions etc there is a slight but significant
saving in CPU time when using the ring data structuré,
though thére is. no variation in the connecf time used.
This slight variation is probably due to the fact that
using the riﬁg data structure, the data is always in core
while using the sequental block data structure requires
the files to be rewound ﬁgr each mask. The small layout
using group and repeat facilities shows a considerable
reduction in the CPU requirements to process the data
using the ring data structure because of the way the group
and repeat facilities are handled. The data for the ring

data structure is again held entirely in core.

The CPU time to process the large section of layout
{fig 8.3] shows a 20% saving using the ring data structure
but there is an even more dramatic saving in connect time.
Normally the connect time required to run a program on a
timesharing service varies with the number}of users on the
systém' and so in general is-not a meaningful measuremeﬁt.
However, these particular measurements were made late in
thé'evéning when the system was very lightly loaded and so
there was a significant variation in the connect time.
This wvariation 1is almost certaiply greater than the
variation in CPU even after allowing for thé ‘effects of
loading and an explanation must be found‘ for it. A
significant point to note is that 584 seconds of CPU time
will require 9 mins 44 seconds of connect tinme. The

connect time is only measured to the nearest minute so the

282

shapes

ed

repedt

[g2]
o~

th gréuped and

layout wi

e g

large

of

Part

3

.

8

Pleaov iy i IR

g

F

9 min measurement indicates that there was only one user
on fhe system and that the time téken for ‘random access
disc transfers was included in the CPU time.mesurements.
I1f the time for the sequential file handling was charged
to the connect time and not to CPU time theﬁ this would
explain the fdct that the connect time was correspondingly

loﬂger for the sequential block data structure.

8.3 Minor Improvements to GAELIC

The GAELIC programs.were transferred from the GE430
computer used for the Systemshare time—shafing éervice to
the Decsystem 10 of the CAD project. The programs were
then‘ modified to calculatg and store the bounding
rectangle of each definition in the data structure and to

maké. use of theée boﬁnding rectangleé when plot;ing or
modifying the layout. Certain other minor improvements
were made to the code at the same time to speed up the
operation., The original programs reéuired,eq;h .shape to
be checked against the window to be plqtted regardiesé of
the fact that it is in the instance of a group definition
and the whole instance 1is outside the window. Thé new
programs check the bounding rectangle of an instance of a
gfoup " against the window by making the necessary
transformations of the bounding rectangle of the
definition and the instance 1is ignore if completely
"outside the window. These two versions of the program

were compared for processing the same layouts as before

i.e. figs 8.1, 8.2 and 8.3 and the results are shown in

28L

.

@]
I
£
vy
re
e]
ry
(€]

table 8.2.

These results show that the vepsion with the bounding
rectangles and other minor improvements requires less CPU
time to create the ring data structure than the original
versicn. This was due to certain cf the minor
modifications. The time to plot _the' complete layouts
showea no appreciable difference between the two versions;
the bounding rectangle version would of course have taken
longer without the minor modifications. Thé CPU time .

required to plot a window of the large circuit was

appreciably reduced from 63 sec to 18 secc.

The bounding rectangle concept was therefore well
wvorth implementing dinto the GAELIC system. This new
version of the GAELIC'programs known as the °s”’ version
was used by Mr R. Kelly of the Wolfson Unit to design the
layout of an ‘ integratéd circuit correlator. His
experience of using the programs are sumharised in a.joint
paper [ref g. 1) presented at the CAD Conference -at
Southampton April 1974, His comments on ghe ergonomics of
the systen were extrenmely usefui and they eqabléd an order
of priority to be obtained for the .various modifications
"and improvemeﬁts that were desired. His mainrcfiticism of
the system was the time taken to plot out ~a different
window of the layout as the coordinates of the window héd
to be typed in. Other ergonomic problems were those
‘involving shapes withig definitions. For reasons
described in earlier chapters, it was only possible to

identify and modify shapes in the particular definition

285

(%]

Chapter 8

being proéessed at the time. One can identify and modify
the origin of the instance of a group definition but one
cannot modify shapes within the definition. However, it
is always possible tc discover an error in a definition
when viewing an instance of it in another definition. A
designer will often know ‘the name of a Aefinition
containing ba shape but on the occassions when he cannot
remember, he has the difficult task of plotting each
definition in turn. Iq generai the facilities provided
were performing the required functions but not necessarily

in the most efficient way.

8.5 Effect of Area Beads.

Chapter 5 describes the reasons why the size of the
areas into which the layout is divided should effect- the
perfecrmance of the data structure. Measurements were made

of various aspects of the performance of the. data

structure,. The main aspects of the performance are the

time to <create the data structure, the time to plot the

whole layout, thé timé to plot a window and “the time to
identify a point in the definition. The effect bf the
area beads will not be noticed on small circuits and will
be most noticeable on dayouts wifh a minimuﬁ of group‘and
repeat definitions. It.is extremely difficuit té éﬁtain
large integrated circuit designs that can be published and
unless the compexity of the design can be shown with the
results, the results loose much of their value. Part of a

MOS ‘shift register design was obtained from ICL with

285

Chapter 8

permission to publish at a scale shown in fig 8.4. This
éan be seen as having a large number of group and repeat
definitions, but the data Qas prqcessed to remove all
these 'definitions and just prod;ce rectangles and
polygons. It was the data for one 'layer, the
metallisation, that was used for the first set of tests,
the results of which are shown in tables 8.3 and 8.4 and
figs 8.5 and 8.6. The tests are of fhe CPU time to compile
the dump code fiie into the data structure, to plot the
full layout on the Tektronix and to plot a window for a

range of area sizes.

The first measurements are of the CPU time required
to create the ring datg structure file from a dump code
file for various area‘size with the_ comparative time to
prodﬁce the previous ring data structure without the area
concept as ccmparison. The ‘area’ program also monitors
the . number of “disc reads and writes’ that were required
to create the data structure and‘ these méasurements are
shown with ‘the others in téble 8.3. The term “disc reads
and writes’ refers to the number of times that the
required page of the data structufe was not in core and
had to be_read in, after writing out ;nother page to disé
if its conﬁents had been changed, it does not refer to the
actual number of disc transfers required. The results
show a rapid increase in the number of “disc reads and
writes’ as the size . of the area 1is rgduced with a
propontiénate increase in the CPU time. This is to be

expected as the number of area beads must be increased as

287

-

_ | S
L ==
T 3. 1 T S
. n.an]ru.lJ(L. P s!..lu_\v!_ T il “L('M
llllll N - = "l T L hl;wh'h
, 5 , - , . o oD Qo) Go=ed 0D O fjj J o=

oo il i o et | Qe 0 sl lq_s2 0 o R S e ,u.t_al;% ICRESE s

) er o 10 3 C 1 i . S Py e ey) e ﬂd.n u)=

B .
N e e e U e e T e N e T e 3 _\Hx =
. = - -

- ; R .,_J‘Ui lr:./_ﬁl.mlrwu ’ !
o mx‘n.'“a 0 GO G GEEL =) O

T < TSI I I ITIIITINT p S
N R G R N T It
. AT T i

Cf
':1
IC‘
i
7‘
o=t
J{
"
I

T Ty SmpSpeaitag Sy paiugiavtisgoay Sepup
4 kll - Need T T —
x T s
7 iy e (li..l..Tr pebnebegtlyl v
I T L ST T DY T I m.|”ﬂ..llll.t’4!l}|;lrl(, “nll Y Ag] Gonshena gyt ..n....u.
 Qrbimy ful itami pibvivigipoes Hvied v ins il St 1..||h.|.|.‘|||J|||yhl:vx s Brintopuuibratig i

L.Jll- M TR T .J.q.i L T e S s e TS T I.qll...ha\a T
o e e e
(it P ey Y. e

= H .,M.n.ulisx..U .lrlt.a. n....r,lh.nn.nu At 0=
i ,rﬁ 5 Jiestila_=i g 2 Qe o o ot o et
U L) (% - J.J [} L,_ ,..,,.i_ el J 5 1 o i =t

e C —) =T (el i o v Tr 502
rmﬂ@lc s Jci.fiiﬂvu LT HLJ_ﬂa -~ G_ls,lm_ F i

===g P-..l!c =g s R nage O :L ==—-0 = o==0

———— 3 b

.||.|l|.Jf

U.

e e ce = e Lull.vlt PRy re————__ \l e — [B p—— — e ——
" -‘...rlﬁlﬁlr!l U...li - |.|.le. SR haradGN e BT e 25
fateg by . rm — e =
R S N e N ek W Sl U)
et e e T e S T e ST I Y T
S e 1 1 1 R § T

) rJl.l..ilb Q=0 om0 O |||}U .HaI.JlU ﬂwﬂ“

ozl “__.J sl i 2] J il] ﬁ]
il J ImJJU -ur,..ﬂu £ iu rltf Irt LGJIL wg
i

layout

ICL
288

4

8.

Fig

Chapter 8§

the area size 1is reduced. As each new shape is entered
its area bead is calculated, and each area bead already
present must be checked to see the required'bead is
presenf and if missing must be added to the data
structure. The first version of the program'creatéd the
area bead only when required and this meant that the area
beads»were fragmented throughout the data structure and éo
many pages had to be read just to examine the area beads.‘
The version actually used in the test required the
"bounding rectangle of the.layout to be entered via the
keyboard and the program then sets up all possible area
beads before actually reading the data from the duﬁp code
file. This means that all the area beads are on the same
page or on consecutive pages in the data structure and so
the number of pageﬁmghat need to be read in are minimised.
This for areas of 1024 increhents reduced the number of
disc reads from 4650 to 20; the number of disc writes from
1008 to 52 and the CPU time from 23 mins 14 seconds to 55

seconds. The increased CPU time for the largest area size

over the other large size areas 1is more difficult to
explain - the reason 1is prébably due to an optimising
feature o£ the Fortran Operating System where the system
detects that division by a power of 2 is taking place and
doeg bit shifting on the numbef,' division by any other
nunber requires a normal division process which takes
longer. The largest4area size reduired a division by
unity whereas all others requires a division by a factor
of two. It therefore appears thét unity is not processed

as a power of 2.

289

The second set of measurements were of the CPY time
and disc reads required to plot out all or part of the
'layout for various area sizes from the initial ring data
structure created from the dump code file. The part of
the layout plotted was a window whose bottom left hand
~corner was 1000,1000 increments and whose top right hand
corner was 1200,1200 whereas the bounding rectangle of the
complete layout was 348,287, and 6678,3270. The results
are shown 1in a tab;lar form‘in table 8.4 énd the CPU time
and disc 'reads 1in graphical form in figs 8.5 and 8.6
vresﬁectively. For comparison, similar measurements for
the original data structure without the use of areas are

also shown in each figure.

When plotting a full layout, the CPU time required 1is
always greater than that required for the original data
étructure. This is due to the.time required to process
the area beads, the time taken to check if eéch bead is
withip the plotting window. However, as tﬁe size of the
area 1s decreased there is a substantial increase in the
CPU time required. This increase is due to the fact that
the data is’ fraémented, shapes within a given area are
almost certainly not all on the same . page and so ‘the
respective pages must be brought .into core to enable the
data to be extracted. The shapes for anothef area may be
on. the same pages Sup in a different order and the pages
must be brought back in again when the next area |is

plotted. This would mean that a large number of page

reads would be required and a corresponding increase in

290

Chapter 8

CPU time to set up the necessary page transfers. The
actual page reads were monitored at the same time as the
CPU time was measured and the number of reads substantiate

the hypothesis.

Plotting out a small window requires only certain
areas to‘be pr&éessed. The actual areas required are the
areé O whicﬁ contains all the large shapes and any areas
that can contain shapes that could appear within the
window, i.é. areas within the window and those immediately
adjacent as described in Chapter 5. The results show thét
there is an optimum size of area for the window plotted
that- minimises both the CPU time and the disc redds to
plot out the wiﬁdbw. This is due to the varying number of
shapes within each area:' if the area is large, processing
fhe areas within tﬁ;»window and. all adjacenﬁ‘ areas can
result in processing most of the data structure. At the
other extreme, howevér, if the agea' is t&o :small, most
shapes will ©be too big to be associated with the normal
area beads and muét. therefore be classified as lafge
shapes and associated with area number 0. When plotting a
window, area number 0 must always be processed and so for
any window most of the shapes must be processed and so
again the CPU time and number of disc reads must again be
‘high. The area size that requires the minimum of CPU time
and disc reads must therefore lie between these two limits
and for plotfing a window of this circuit this optinum

size is shown to be approx 512 increments square. At this

size there 1is a saving of approximately 30% in the CPU

291

" Chapter 8

time and the number of disc reads compared with the

original ring data structure.

"If most. of the interactive -design time was spent
plotting the fuli layout rather than a smail window, then
the area coﬂcept would not have been justified.
Fortunately, most of the design time is spent plotting
small windows and a reasonsable estimate is 90% of the
plots are of small windows and only 10% of them are of the
full.layout. The area concept is. pherefore more than

justified even on this initial aree ring data structure.

This initial data structuré is arranged on the disc
in the order in which the data was entéred. This is
almost certainly mnot the best order for subsequent
processing and so the program GAELB8A is used to rewrite
the data structuré onto aisc in a more optimum order. The
measurements made on the initial data structure were
repeat on this “clean” data structure and the results are
shewn in a tabular form in table 8.5 aga'inva graphical

form in figs 8.7 and 8.8.

The CPU time and number of 'disc reads required to
plot the full layocut is considerably reduced and compares
far more favourably with the original Qata structure.
This 1is because the “clean up’ process enéﬁrés that all
the shapes within a given area are written consecutively
on the disc i.e. on the same page or consecutive pages and
so once a page of data is brought into core the maximum

amount of data is obtained from it.

Chapter 8

- - —— - - W . R e e - . e - fim Al e A Gt S Ee P e s e A Ame G e Am e v — -~ —

I I Layout LI Laycut 2I Layout 31
I et et it I
I GAELIC .length I 4 I 2 I 75 1
IInput Language blocks . I I I I
I I I I S I
I GAEL2 CPU Time I 5 I° 3 I. 84 I
I. Syntax Checker Secs I I "I I
I Dump length I 4 I 2 I 74 I
I Code File blocks I T € I I
I GAEL3 CPU Time I 2 1 1 I 86 I
I Compiler to RDS Secs I I I I
I Ring Data length I 8 I 4 I 100 I
I Structure File blocks I I I ' I
I GAEL4 " CPU Time I 3 I 4 I 154 I
I Full Lavout Secs I I I I
I GAEL4 CPU Time I - I - I 63 I
I Small Window Secs I I . I I
I I I I I
I GAEL2A CPU Time I 6 I 3 1 65 I
1 Syntax Checker Secs I I I I
I. Dump length I 4 I 2 I 74 I
I Code File blocks I I 1 , 1
I GCAEL3A CPU Time I 1.5 I 1 I 74 I
I Compiler to RDS Secs I I I I.
i Ring Data length 1 8 1 4 I 100 1
I Structure File blocks 1 D B I I
I GAEL&4A CPU Time I 3.5 I 5 I 151 I
I Full Layout Secs I I I 1
I GAEL4 CPU Time I - I - 1 18 I
I Small Window Secs I I I I

.Comparison of Original GAELIC with version
using Bounding Rectangle

Table 8.2

293 *

Chapter 3

I Area I CPU Time I HNumber of I Humber ofI Length ofl
I Length I I Disc I Disc I D.S. I
Iincrementsl min:secs I Reads I Writes I Blocks Y
1 1 I I I I
I 128 I 27:52 1 3574 1 1151 I 55 I
1 I I I I I
1 I I I I I
1 256 I 3:42 1 53 I 88 I 44 I
I I I 1 I I
I I I I I I
I 512 I 1:35 1 30 I 63 1 41 I
I I I 1 I I
I I I I 1 I
I 1024 I 56 I 20 1 52 I 40 I
I I I I I I
1 I I ' I I I
1 2048 I 43 1 5 I 37 1 40 I
I I I I I 1
1 L I 1 I I
I 4096 I 37 X 0 I 32 I 40 I
I I 1 I X 1

I S | 1 I I
L 8192 I 37 L 0 1 32 I 40 L
I I I 1 I I
1 1 1 I I 1
I 16384 I 38 1 0 1 32 I 40 I
I I I I 1 1
1 I I I ~ 1 I
I 32768 1 39 L 0 1 32 I 40 I
I 1 I I I 1
1 I I I I I
I Original I :30 I - I - I 40 I
I D. S. 1 I I I 1

‘Results creating “Initial’ Data Structure

Table 8.3

~NY
w
*\

Chapter 8

I Area I Plotting Full Layout I Plotfing Small Windowl
1 Length v e e - Uy R 1
Iincrementsl CPU Time I Number of I CPU Time I Number of I
I 1 Secs I Disc ReadsI Secs I Disc ReadslI
I 1 I I I I
I 128 I 118 1 195 I 19 I 54 I
I I I I I I
I I 1 I I I
I 256 1 100 I 198 I 14 I 4] I
I I I 1 I I
I I I I I I
I 512 I 71 1 125 T 9 1 27 I
I 1 I I I I
I I I I I I
I 1024 I 80 1 137 I 17 1 57 I
1 I 1 ’ 1 1 I
I I I 1 I I
I 2048 I 64 I 91 I 16 I 51 I
I L I I 1 T
I I I I I I
I 4096 I 56 1 50 I 19 1 50 I
1 I I 1 I I
L I I I 1 I
1 8192 1 51 I 40 I 15 I 40 I
1 I I I I I
I I I I~ I L
I 16384 I 52 I 40 I 16 T 40 I
I I I 1 I I
I I I : I I I
I 32768 1 52 I 40 I 16 I 40 I
I 1 I I I I
I I I I I I
I Original I 50 I 40 I 14 I 40 I
I D. S. I I I I I

Results using_'Initial' Data Structure

Table 8.4

Chapter 8

I Area I Plotting Full Layout I Plotting Small Windowl
I Length I--=--ememcercrccccce e [e e e = 1
Iincrementsl CPU Time I Number of I CPU Time I Number of I
I 1 Secs I Disc Readsl Secs I Disc Readsl
1 I I 1 I I
I 128 I 62 I 53 I 11 I 28 I
1 1 I 1 1 I
1 I I 1 I I
I 256 I 59 I 53 T 7 I 13 i
I I I I I I
1 I I I I 1
H 512 I 58 I L4 1 5 I 9 I
I I I i L I
I I I I I 1
1 1024 I 55 I 51 I 8 1 18 I
1 I I T i I
I I I I I I
T 2648 I 62 1 50 1 12 I 25 I
I 1 I I 1 1
1 I I I I I
I 4096 1 52 I 43 I 17 L 43 I
I I e 1 I I 1
I 1 I I I I
I 8192 I 52 1 40 1 16 1 40 I
I 1 I 1 I I
I I T I I
I 16384 I 51 I 40 1 16 1 40 7 I
L I I 1 1 I
1 I I 1 I 1
L 32768 I 53 1 40 I 16 I 40 I
1 1 I I I I
1 I I 1 : 1 I
I Original I 50 I 40 I 14 I 40 I
I D. S. 1 I I I 1

Results using “Clean’ Data Structure

Table 8.5

AY4

ot disc

number

120 +

100+

FULL LAYOUT

cank . .
» number of disc reads Vs area size

for INITIAL data structure

.reads -

6ol

SMALL WINDOW

20k

4 L i 2 L I] : 1 i 0
128 256 _ 52 . 1024 . 2048 4096 | . 6192 16334 . 32768
- ' f tength of area ‘ ' Co

Figure 8:5-

85¢

time [secs)

P U

120

100

variation of C.PU Time to plot . layout

, ' with area size for INITIAL data structure
8ot - - :

60

FULL LAYQUT

- o = - e w— e - -~ - e Em e wm = G wm e

L0

.20

SMALL WINDOW

128 256 ! 512 ’ 1024 P 2048 . 4096 8192 . 16384 - 32768
. ~length of area

Figure 8-6

66¢

nambeor of disc

reads

120+

100}

80 +

~

FULL LAYOUT

L0t

SMALL WINDOW

A

for CLEAN data structure

aumber of discs reads Vs, area size

128

255

512

1024

2043

length

Figure,

L0936
of

3.7

area

8192

16384.

32768

00t

120k

100+
variation of C.RU Time to Plot Layout
with area size for 'CLEAN
Data Structure

80

o~ ' ' FULL LAYOUT

2 60F - .

- ' / .
VI -

U.

C.P

oo
IS
- -— i .
< L0+ - ' ' : .
20

\\‘ SMALL WiNDOW
0 -l " \ ! . . 1 1 I

128 256 512 1024 2048 4096 8192 16£§SL 32768
' : length of area '

Figure 8.8

CHAPTER 9: Future Work

"The GAELIC programs nave been sucteséfully applied to
the design of integrated cirédit layouts and the
experience gained from this has indicated several
possibilities for future.work. This work can be divided
into‘three main Categories.. Firstly there are diréct
extensions to the GAELIC programs which enhance its
Qsefulness for integrated'circuit design. . Most of these
extensions §uch as merging two shapeétcontaining a common
line segment'are straightforward and are implemented when
required. There are some that are far more difficult to
implement such as the provision of constraints. Secondly
there are additional programs that are required which
extend the use of the system and layout rule checking and
mask function chéEKing fall into this category. Finally
there are several applications in other disciplines that
can be met by the GAELIC software such as thin film layout

and timber framed house design.

9,1 Constraints

" 0ften when deéigning an integrated circuit <a
situation occurs where one component Or shapé muét be a
fixed distance from another component. A typical example
is the metallisation over a contact hole. Here if the
contact .hole is moved, the metallisation should be
constrained to movev_by exactly the éame amount. The

contact hole and metallisation however do not share the

301

Chapter 9

.

same coordinates as the metal must overlap the hole by a
fixed distance. This type of constraint was a feature of
the original Sketchpad work and was present in the Marconi
Myriad graphics system. It was not, however, inserted
into GAELIC as

1) it uses a large amount of. computing power .to check
that the constraints are not.being violated and
~2) poses problems of how the éonstraints should be

satisfied. Take for an example the contact hole and

metallisation shown in fig. 9.1.

——mn

Fig. 9.1 Movement of Metallisation with Constraints.

~

I1f the contact hole is moved from “A° to "B’ then the
program is faced with the problem of whether tﬁe
metallisation should be stretched along line CD or along
line EF. The- answer depends on the othef components in
the circuit and writing computer programs to solve this

problem is a separate piece of research work.

302

Chapter 9
9.2 Layout Rule checking

The semiconductor manufacturers always produce a set
of ‘layout rules’” for each integrated circuit brocess.A
These specify the miniﬁum and maximum dimensions that are
allowed on the masks. For example, the rules will spécify
that minimum width for a particlar diffusion track 1is so
many‘units or-thaf one shape cannot be closer than a given
amount to another shape on the same diffusion. Returning
to our example with the contact hole and metallisation,
the metallisation must always overlap each éontact hole by
a fixed quantity. These checks can obviously be done
efficiently by the computer and the GAELIC ring data
structure is an ideal way of holding tﬁe necessary layout
description. Previous work onAthis problemA lhas - produced
programs that require a great deal of computer time to run
because all -the data must be searched over and over again.
The area association wused in GAELIC means that only
certain areas and consequently only certain parts of the
. data - structure need be examined. One of my colleagues at
.the University of Edinburgh is at present working on a
program using the GAELIC ring data structure and the

results appear extremely promising.

9.3 Mask Function Checking

The layout rule checking just discussed will tell the
designer that helhas two shapes too close together or that
he has-a contact hole with no metaliisation éovering it.
However,it will not tell him that it is the wrong
metallisation over the contact hole and that the circuit
cannot possibly work. This requires another type of
program that is more concerned with the function of the
circuit produced by the mésks and is consequently called

“mask function checking’.

The problems.associaﬁed with mask fugction checking
are quite complex. Attempts have been made to feed in the
electrical description of the shapes at the same time as
their topologicalnggscriptionf Unfortunately this does
not necessarilyvmeén that the eléctriéal data is <correct.
Mistakes could be made when entering the description that
are not detected .and sovalthough a program checking the
layout will predict that it will work,. the actual circuit
méy not. It is the;efore imperative that-‘the electrical
description must be .extracted automatically from the
layout description. There are so many different
integrated circuit components_[available fhat to search
through all the shapes_‘trying to decide4 if they form
résistors, capacitors or transistoré etc; woula take far
too much computer time. A method must be found where the
user does not enter the electrical description per se, nor

does the computer have to work everything out for itself.

304

Chapter 9

A possible solution to this problem is to rumn an
'interactive program where the user tells the combuter what
component he thinks is formed by a series of shapes -and
the éomputér checks 1if it 1is true. The compuﬁgr only
checks if the shapes form oné particular cpmponenfs ie.
does not have toc try all possible.components nor does the
users data have to be perfect. it also has the advantage
that the user <can restrict the range of dat& search by
specifying Vthat the. component. lies between certain
topelogical 1limits. For example he céuld indicate thaﬁ
the emitter, base and collector terminals of a transistor
are at coordinates xl,yl x2,y2 .etc. Again- the area
association of the GAELIC data structure can save

considerable computer time.

Another-problggmthat has to be solved is how does“thg
computer check. that it is the correct circuit. At first
sight it would appear that the answer was to draw out a
circuit diagram and let the user_chéck‘it against his
original diagram. However, there are two objections to
this. There are stray components that would not have been
specified in the original diagram which would make the
circuit appear different. There is also the more
fundamental problem of programming the computer to draw
out the circuit diagram in the saﬁe style aé the originél
circuit diagram. How many of us have looked at a circuit

in a book for several minutes before realising that it is

a common circuit just drawn to a different convention? A

possible solution to this pfoblem is to derive the input

-

305

Chapter 9 ‘ .

daté for a transient analysis or logic simulation program
from the description of the layout -inv the ring data
structure. The test sequence that will be wused on the
final <circuit 1is- then applied to the appgopriate input
terminals and if the response 1is ididentical with the
required response from the finished <circuit, then the
layout is correct or an alternative layout has been
designed. This does obviously rely on the test sequence

being correct which is a problem in its.own right.

Another collecague at the University of Edinburgh is

now working on this problem of “mask function checking”’

9.4 Automatic Layout

For the reasons outlined in Chaptcrs 1 and 2, it is
extreﬁely difficult to write fully automatic layout
programs, For some time to come, therefore, it will be
éssential for the designer to manually intéract wifh any

attempted automatic layout design. This mantual

interaction can obviously be carried out usinngAELIC.

One approach to the automatic design problem that
merits further investigation is to use the approach of
Radley of placing the compénent qnd then placing all the
metallisation associated with that component. However,
the components should not be as small as transistoré or
resistors rather gates and flip-flops. These can be

predesigned (again using GAELIC) or just an estimate of

306

Chapter 9

the required area of siliéon given. The program can then
éllocate the required shape or the required area. .The
réquired areca can be some of the space between existing
components and the user can then use GAELIC to design the

actual component to fit in the alloted space.

The other approach is to use entirely predefined
components and to use a centre of gravity algorithm té get
a placement. "However, the routing is done first and so
the component sizes are increased té take account of the

space required by the interconnections.

Another feature that should be exploited in - any
automatic design program is that certain interconnections
in the actual circuit must be extremely low impedance,
the performance. This information must be fed to the
computer in order to decide on where crossovers nust be

placed.

Research work is Dbeing carried out using this

approach by the C.A.D. Project at Edinburgh Univefsity.

9.5 Stand Alone Computers

<

The GAELIC programs can be run on smaller stand alone
computers such as the PDPll, the Nova 1200 and the Modular

.1, The computer must have a Fortran compiler, must have

discs and must be capable of handling the Tektronix:

terminals. There should be at least 24k of core store,

307

Chapter 9

preferably 32k to avoid problems with overlaying, and it

is desirable to drive the Tektronix at 9.6KBaud or faster.

The advantages of using a standalone computer are

1) that the time-sharing delgys while the computer
services other users are removed'complqtely,

2) the Tektronix can be driven at its maximum speed
ie. 9.6KBaud or above,

3) the discs can have fixed heads giving a much
faster transfer rate and

4) it may well be cheaper. If the program is to be
used to design more tﬁan six large integrated circuits a
year then the economics indicate that a standalone
computer is cheaper than using a commercial time-sharing'

company.

There are disadvantages using a standalone computer.
There has to be a certain amount of reprogramming to allow
for the shorter word lengtli. With the size of integrated

circuits being produced nowadays a 16 bit word is not

capable of holding the <complete rangé‘ of addresses
required for the data structure. Often there are

restrictions in the Fortran compilers where certain
standard functions are not implemented and the standard
disc handling routines supplied by the manufacturer are

far from optimum for this type of application.

The first wversion of GAELIC has been fully
implemented on a Modular 1 Eomputer by Smith’s Industries,

Cheltenham and been used to design integrated circuits for

308

Chdpter 9

at least two years. The final version of GAELIC has been
implemented on a P.D.P.11/40 but has not been extended to

cater for double word addressing.

9.6 Refresh Graphics

There is no reason why the GAELIC programs cannot be
used with a refresh graphics terminal and a stand-alone
computer, There will be the problems of flicker déscribed
in chapter 6 and this will put a limit on the size of
picture tﬁat can be displayed. Most of the work on
integrated <circuit design is done with a émall window but
occassiénally the whole layout 1is required and this

creates severe problems.

The area association in the GAELIC Vdata structure
will considerably reduce the time required to regenerate
"the display file although a lot of work will have to be
done if a light pen is to be used to feed back information
from the graphics terminal to the ring dagé structure when
components are moved etc. If a tracking cross controlled

by a tracker ball is wused then the amount of new

programming is minimised.

309

Chapter 9
9.7 Layout Design with Automatic Rule Checking

The minimisation of the search time brought about by
the area association of the data structure means that it
should be possible te write a version of GAELIC that
checks each component as it is entered or modified to
ensure that it does not violate the layout rules. Using a
data structure without area association would mean a
search through the compete layout each time that a shape
was moved or entered ana could not Ee done in a reasonable
time. The time taken to interact would be so slow thaﬁ

the system would not be usable.

The cost of using GAELIC on a commercial timé—sharing
computer is reigtively high at the moment. Increasing the
amount of computingugope at each stage may make it too
expensive too use. However, it 1is mnevertheless a

practical possibility on a standalone machine.

9.8 Thin Film Circuit Design

The ability to move components around and to add
interconnections between them is obviously desirable when
dping thin film circuit layout design and there is
obviously a use for GAELIC here. There is also a problem
of desigﬁing accurate thin film that can be considerably
simplified by the wuse of. the computer. Designing a
resistor by hand to go into a given area involves a great

deal of drawing a meandering resistor and the counting

310

Chapter 9

squres to see if the value is correct. Realising this
problem, a student was employed during a summer vacation
to work on this problem and under the author’s direction
wrote a program to automatically design a given value.
resistor on been given its value and boundiné rectangle.
A typical design is shown in fig 9.2: the design is coded
up in the GAELIC manual input language and can then Dbe

placed in the required position using the GAELIC programs.

The author is currently extending the work on thin

film layout design on an S.R.C. grant.

9.9 Timber Framed House Design

This work fesu;ted from the author’s desire to design
a- house -to be built on a plot of land he had pdrchased.
Timber framed houses are constrﬁcted from a selection of
mass produced timber frames. Certain standard designs are
produced by the timber frame ménufacturers but there are
no subgtantial reasons why the frames cannot be used to
conétruct indiyidually désigned’houses. The designer need
only kqow the.types of frames available, the sizes of roof
.trusses that can be used and the positions of any load
bearing walls and he is in a position .to do his own
designs. The GAELIC suite can be used to advantage here
by setting wup a library of standard frames and then
interactively calling them up and positioning them on the

Tektronix screen. The frames can be coded in the computer

so that the actual frame dimensions are stored on one

n

Resistor value 150 Ka

Resistivity 4000 / 3q

Fi,g. 9.2 Resistor design to tit in given area

>

312

layer and the overall dimensions stored on another layer.
The tiﬁber frames are first drawn on the screen te ensure
that they fit together correctly and then the other layer
can be-displayed to shﬁw the actual. plan. The plan 1is
then be plotted out on the Calcomp 563-piotter at the
correct scale for submitting to the 1local planning
authority. A similar process is employed to obtain the
elevations. Examples of the plan and elevations of a

bungalow are shown in figs. 9.3 and 9.4.

313

7ig

DINING

==

=2
i

ﬂ KITCHEN

LOUNGE

| sTuoY BED 1

HALL

_n
=

/] S . .
_,m.//g BED 3 = BED 2

bl : n ’
b= =

- Fig. 8.3 Plan of timber framed house

. Sig

Fig. 9.4 Elevation of timber framed house

CHAPTER 10: Conclusions

This final chapter contains a brief discussion on
whether the requirements for a computer aided mask design
system were sound and whether they were met by the GAELIC

programs. ' _ .-

10.1 Were the requirements sound?

The overall objective of the work was to produce a
suite of computer programs ~that would assist in the
production of.integraped circuit maské. There were two
possible methods of approach; the first was to write a
suite of programs that would remove as much of the tedious
repetitive work from the design cycle as possible,.leaving
- the designer free Egﬂconcentrate on the actual proéess of
desigﬁing. The seéond was to write ﬁrograms that

automatically designed a layout on being given a schematic

diagram of the circuit.

This second approach was rejected for four reasons:

1) The problems-of Qriting such programs are severe and
any pfoposed éolution | cannot be guaranteed ‘to be
succesful.

2) The programs would not allow for any variations 1in
design technique as any new design ideas would take months
to implement. The programs would therefore be continually
out of date.

3) The designer is not going to be responsive to a

316

o

Chapter 10

program that threatens to make him redundant.
4) The desigqer can always stop during-his design process
when he Trealises that a new situation has occured and
think how to get round the problem. fhe computer, on the
other hand, will continue to work the way it has been

programmed, regardless of the consequences.

It was decided to adépt the first option where the
designer is still in charge of the design. Since that
decision all tﬁe British semiconductor manufacturers and
most ‘of the equipment manufacturgrs use this approach.
None of them use fully automatic progréms. The éverall

requirement was therefore extremely sound.

The decision to write a portable set of programs
rather than a set of programs for a specific computer is
open tovslight doubt. At preseﬁt GAELIC is the only suite
of 1layout design programs that is running on a commercial
time~sharing.sérvice and so is unique in this respect. It
provides the opportunity for equipment ménufacturers and
educational establishments to try designing their "~ own
integrated «circuits with a minimum capital cost. From a
comnercial point of view, however, it can be argued that
this was not the correct decision ag the integrated
circuit manufacturers have all chosen ‘turn-key’ systems
on mini-computers. However these systems wefe produced by
very large teams of hardware and software engineers. It
has been feported, for example, that Applicon have a team

of 80 programmers working on their software. It would

have been impossible to compete with that sort of backup.

317

GAELIC can be mounted on mini~computers as discussed in

Chapter 9 and so can be used as a turn—-key system.

The choice cf the Tektronix storage tube tefminal for
the interactive part of t?e progranm was sound as it has
enabled the software to remain extremely portable. It
also allows the largest of ‘integrated circuits to be
displayed withbut flicker. Most of the successful
“turn-key’ systems use the storage tube display, usually

with special interface hardware.

10.2 Were the requirements met?

The. original GAELIC softwvare has been in wuse at
Smith’s Industries at Cheltenham for several years now and
produced a large nEQSGr of successful integrated <circuit
desigﬂs. The Wolfson Unit have used the original version
to design the correlator discussed in Chapter 2 and have
"used the latest version to design another two‘large
integrated «circuits. The correlator design was s o0
succeséful that working samples were obtainéd from the
first batch of circuits produced and it has not Dbeen
necessary to make any. changes to ‘the masks. This
achievement is mainly due to the skill and patience of the
designer but 'is nevertheless pértly due to the ease with
which the layout could be changed during the design phase.

The two remaining designs are complete and are awaiting .

mask making.

\

Chapter 10

The Post Office Résearch Establishment are currently
using the latest version of GAELIC to aesign-a,variety of
integratedlcircuits’on a comﬁercial time-sharing service
and the Royal Radar and Signals Establishment are also

using it for the design of charge coupled devices.

The overall requirements have without doubt been met

and GAELIC has proved itself a commercially viable system.

NS

APPENDIX 1% The variation of overall yield with die size

There are two main factors that effect the yield of
an iqtegrated- circuit slice.‘ The first is the number of
complete die it is possible to get from the slice and the
second 1is the-number of the die that are perfect. Let us
consider the effect of the yield on the number of perfect

die that can be obtained from a given process.

Assume that for a given process the yield of die
100thou by 100thou is 50%. The probality of any one
complete die being perfect is 0.5. If a 200thou by 200thou
die was made using the same process then the probability
of the top right hand quarter being perfect dis 0.5, the
probability of the top left hand quarter being perfect is
0.5 etc. The probability of. the total die being perfect
is the produét.ofwlge probabilities of the quarters being

perfect ie.

0.5 * 0.5 % 0.5 % 0.5 = 0.0675

This can be expressed more generally. 1f the
probability of a die 9f area A beiné correct is Pa, then
the probability of a die of area B being correcf is Pb,
where Pb is given by: |

Pb = Pa *% (B/A)

where **%* represents raised to the power of.

The total number of perfect die is therefore the
maximum number of die possible times the probability that
each die 1is perfect. It therefore 1is essential to

calculate the maximum. number of die possible.

320

Appéndix 1

Calculating the number of complete die that can be
obtained from a slice 1is relativelf straightforward.
However it must be remembered that the number of die
possible not only depends on the size of the die and the
size of the slice, but also on the positioning of the
scribe 1lines between the die- and the diameters of the

slice. Consider the three slices shown in fig. 1.

(dl | (0) ' (d)

Figure 1 Possible complete die

The first slice (a) has the die vpositioned .so that
the scfibe iines are coincident with the diagonal in both
directions and resﬁltg in four complete die. The second
vslice (b) has the diagonal exactly halﬁ way between the
scribe lines in both directions and results in. five die.‘
The final slice has . its diagonal ~coincident withhthe
scribe line in one direction and half way between the
scribe lines in thé other direction and this results in

eight die.

Fig 1 shows the three possible combinations on a
square die, 1if the die is rectagular, there are four
possibilities as slice (c¢c) can be in two forms with either

the long or the short -side being coincident with the

w
~
-

Appéndix 1
diagonal.

A computer program was written by the author which
calculates the cost of producing an integrated circuit bf
a given size compared with the cost of producing a circuit
100thou square for a given siée of slice. The program
calculates the number of complete 100thou square die from
the given si;e of slice and from the given yield finds the
number of good dig per slice.‘ The cost of producing a
slice can then be found assuming that it costs one unit to
produce one perféct 100thou square circuit. The number of
complete' die of the size entereﬁ can thén be calculated
and hence the number of good die per slice. The cost of
producing a singie die is then calculatéd from the cbst of
producing a slice.

This work was done in conjunction of B.R. Kirk of
~General Instruments, Glenrothes, Fife who checked the
results against the actual yields obtained for various die

sizes and found extremely good correlation.

APPENDIX 2: The insertion of beads into the group

definition ring

In order that the bounding rectangles " of the groub
definitions can be correct%y‘computed, it-essential that
the beads on the group defintion ring are in a specific
order. For example let us consider the definitioqs of two
groups A and B where the definition of B coﬁtains an
instancé of A. It is necessary that the bounding rectangle
of A is calculated before the bounding rectaﬁgle of B.
This 1is simply done by ensuring that the definition bead
for A preceeds thelbeaq for B on the group definition ring

and computing the bounding rectangles in order.

Unforturately, one of .the- features of- the GAELLIC
language 1is that it does not restrict the order in which
the group definitions are entered. The defintion of B
_could therefore easily preceéd that of A. The program that
creates the ring data structure therefore must arrange the
definitions in the correct order and this is done by an

integer function called “ISKGRP'.

Let us consider the problem in a little more detail
by taking as an example the definitions of groups A - 1

which are structured as shown in fig. 1.

Appendix 2

/\ /N N

/N [\ /7 \

Fig. 1 Group structure for example 1.

Here the definition of group A <contains callé to
groups B and D, the definitidn of B contains calls to E
and F etc. If we assume that these definitions are
entered into the computer in alphabetic order, then the
order of the group definition beads on the ring. must be

continually changed as shown in fig 2.

(88)
N
o~

Appendix 2

Order of beads Notes Data entered
A '. Definition cf A
BA (1] . Call to B in def of A
BDA-or DBA [23 Call to D in def of A
BDA o ' Definition of B
EBDA o . Call to L in def of B
EFBDA o Call to F inldef of B
EFBDAC . [3] Definition of C
EFBDAC Call to C in def of C
EFBDAGC) Call to G in def c¢cf C
EFBDAGC Definiton of D
EFBDAGC ' ' Call-to F in def of D
EFBHDAGC Call to H in def of D
EFBHDAGC \ Definition of E
EFBHDAGC Definition of F
EFEHDAGC - Definition of G
EFBHDAGC _ Definition of H
EFBHDAGCI : befinition of I
EFEHDAGCI ' Call to B in def of I

EFBHDAGCI Call to G in def of I
Fig 2 Ordering of Definition Beads

Notes

[1) If a group call is encountered before the actual
definition, the definition bead must be-inserted into thg
ring and it is sensible therefore to insert it before the
bead of the calling definition.

[2] A bead created for the second group <call in a

w
V)
(@a]

Appendix 2

ny e

«

definition <can be placed immediately before that of the
calling definition or at the beginning of the ring. As
the definition of the second group call can contain calls
to other groups, the former position ie. immediately
before the calling definitior bead is prefered.

[3] A definition of a group that has not préviously been
called <can contain <calls' to other groups and so it is
better to insert it at the end of the ring rather than at

the beginning.

From fig 2 and the notes, several rules can be
derived for the insertion of definition beads into the
group AGfinition ring.

1) Actual definitions c¢f groups must have the definition
bead inserted at the end of the ring.

>2)'Group calls withinvanother group definition must have
their- definition bead inserted before the.bead for the
definitioﬁ containing the call.

3 Group calls within the main definition must have their

definition bead inserted at the end of the ring.

-

The last rule is open to discussion but there 1is a
greater probability of a definition called in the main
definition containing calls to other definitions than
there is of a definition called from anotherAdefinition.
It would, perhaps, be better to insert it in the middle of
the ring between ‘the definition beads set up because of
group calls appearing in the input data and those set up
because of the actual definitions appearing. This,

however, is extremely difficult to do and so there only

326

Appendix 2

remained the <choice between the beginning and the end of

the ring.

The above ruLés only apply when the definition bead
is toc be added tc the group definition ring. If the
actual definition or a call to the particular group has
already- been ‘enﬁered, then the definifion bead will
already be present on the ring. Wheu this is the case it
is sometimes necessary to mcve the definition beads on the
ring to ensure that they remain in the correct order. For
example consider the structure of g?oups shown in fig 3
which assuming that the definitions are again added in

alphabetic order, gives the order of beads shown in fig 4 .

/\

/\

Fig. 3 Example of more complex group structure

327

Appéndix 2

Order of beads Notes Data entered
A ° ‘ | Defintion of A
pA Call to D in def of A
DFA | - Call to F in def of A
DFAB o ‘ | Definition of B
DFAB | | 1] Call to D in dei of B
DFAEB Call to E in def of B
DFAEBC | Definition of C
DFAEBC o 2] ' Definition of D
DFAEBC _ A ’ ~ Definition of E
DFAEBC ' [3] | Call to A in def of E
DFABCE - _ 4] Call to C in def of E
DFACEB | [5] Previous call to E in B

Fig. 4 Ordering of group definition beads
Notes

1] befinition bead for D was -already p;esent and was
positioned before the bead for B so no reordering was ’
necessary. -

[2] Definition bead for D was already present when actual
definition entered so again no reoredering was necessary.
Also the definition of D did not . contain any calls to
other definitions so again no reordering was required.

[3] The actual defintion of E contained a call to A but
as the definition bead for A was already present on the
-ring before the bead for E no reordering was necessary.

[4] The call to C in the definition of E causes problems

as the bead for A is present but is after the bead for -E.

Appendix 2

The decision to move bead . E is discussed later.

[5] There is a call to E in the defintion of B and so the

bead for B must be moved to immediately after the bead for

E. The definition of B is not called from other
¥

e
I

.definitions and so the order is now correct.

When a call to a group with an existing definition
bead 1is entered in a group definition whose bead also
exists, there is always the pqssibility'of the beads being
ip the’ wrong order eg. note [4] in fig 4. There are twé

possible ways of correcting the order of definition beads

on the ring. The first method is to move the calling
definition ie. the bead for E and the second is to move
the called definition bead ie. the bead for C. The latter

move would have the solved the problem immediately in our

case, as there 'would be no conflict in the positicns of

the beads for B and E. However, there are ofteﬁ

‘circumstances when moving the <called definition causes

problems with definitions that i£ calls and so chécks must
be made. To check if a definition contains calls to other
groups, all the area beads, all the mask béads and all the
shape ‘beads must be checked. However, to check if the
calling definition is called from other definitions only
the beads on the instance ring are examined, a‘much faster
operation. It is therefofe preferable to move the calling

definition, in our case the bead for E.

329

Appendix 2

It should be noted that it is only when a group call
is entered as part of another group definition that the
probléms occur. If the group call is part of the main
definition, it doesn’t matter where the defintion bead is
situated. Whén the dcfinifion itself is being entered
then its position is not critical until the group calls

arrive.

This situation with the beads already on the ring
gives a fourth rule to be added to the list:

4) If both definition beads are present when a call to
6ne definition 1is entered as part of the definition of a
second definition, then the bead fof the second defintion
must be moved so that it 1is after the figgt definition.
Any definitions calling the second definition must also be

moved if necessary .

Theserules are incorporated into “ISKGRP’.

APPENDIX 3: Newton’s digitiser coordinate transformation

Newton assumes that because of distortion the ©paper-
will appear as an unequal sided quadrilateral when
measured with the digitiser. The result is shown in fig

1.

Fig. 1l Distorted paper on digitiser
The digitiser coordinates of the corners of the paper
are xa, ya; xb, yb; xc, yc and xd, ya. The digitiser

coordinates of the point P are xp, yp-. The object of the
algorithm is to <calculate the paper coordinates of the

point P ie. Xp, Yp.

Me thod

Straight lines QS and TR are drawn on the paper so
that they pass throﬁgh the point P and are parallel to the

paper axes ie. QS is always Nx of the paper width away

331

Appendix 3

from the left hand side and TR is always Ny of the paper

height away from the bottom of the paper.

Therefore, for point P the equations for Nx and Ny
can be shown to be of the form:
ANx"2 + B.Nx + C =0

and p

D.Ny?2 + E.Ny +

=
il
o

Where A, B, C, D, E and F are functions of the point P.

Thesc give two roots for Nx and two for Ny; the

correct roots are. those which cause the point P to lie on

the paper.

. The digitiser coordinates of Q are xa + Nx.(xb-xa),

ya + Ny‘(yb-ya) and those for S are'lxd + Nx.(xc-xd),

yd + Hy.(yc~yd)

Now the equation for a line through two general point
x1, yl and x2, y2 is:

y.(x2-%x1) = x.(y2-yl) + (x2.yl-xl.y2)

Therefore the equation of QS is:

y.(xq-xs8) = x.(yq-ys) + (xq.ys-xs.yq)

i.e.
y.[xa+Nx.(xb—xa)—xd—Nx.(xc-xd)]=
‘ X.[ya+Nx.(yb-ya)-yd=-Nx.(yc-yd)]
+[(xa+Nx.(xb—xa)).(yd+Nx.(yc-yd))

—(xd+Nx.(xc-xd)j.(ya+Nx.(yb—ya))]

332

Appendix 3

i.e.
y.[xa—xd+Nx.(Xb—xa;xc+xd)]=
x.[ya~yd+Nx.{(-yatyb~yc+yd)]
+{(xa+Nx.(xb=-xa)).(yd+Nx.(yc-yd))]

~[(xd+Nx%.(xc-xd)) (yat+Nx. (yb-yd))]

This line passes through the point P, therefore
yp.[xafxd+Nx.(xb—xa;xc+xd)]=
xp.[ya—yd+Hx.(—ya+yb;yc+yd)]
+[(%a+Nx.(xb—xa)).(yd+Nx.(yc—yd))]

- [(xd+Nx.(xc-xd)) .(ya+Nx.(yb=yd))]

Rearranging in terms of Nx~2, Nx, etc. we get
Nx~2.[(xb-xa).(yc-yd)~(xc-=zd).(yb-ya)]
+Nx. [-yp.(=xa+xb-xctxd)+xp.(-yat+yb-yc+yd)
+xa.(yc-yd)+yd.(xb-xa)-xd.(yb=-ya)-ya.(xc-xd)]

+[xp.(ya-yd)-yp.(xa-xd)+xa.yd-xd.yal] = 0

i.e. A.Nx"2 + B.Nx + C = 0
wvhere: . \
A = (xb-xa).(yc-yd)-(xc~xd).(yb-ya)
B = xp.(—ya+ybfyc+yd) + yp.{(-xa+xb-xc+xd)
+ xa.(yc-yd)+yd.(xb-xa)-xd.(yb=-ya)-ya.(xc-xd)
C =

xp.(ya-yd) + yp.(xa-xd) + xa.yd-xd.ya

This equation can be solved for given values of xp
and yp to give values for Nx. These values are used to

give values for Xp.

W
(%]
(9]

Appendix 3

A similar treatment. gives the equation for line IR
which can - be solved to give an équation for Ny of the
form:

D.Ny~2 ; E.Ny + F =0
This can be solved to give yalues for Ny and héncé values
for Yp. The values of Xp and Yp chosen are thcse which

cause point P to lie on the paper.

Note that the B, C, E and F have to be calculated for

each point digitised as they depend on xp and yp-.

<

334

APPENDIX 4: Simple digitiser coordinate traansformation

The method assumes that the paper distortion. is .
restricted to different scaling in the x and y directions
and. the paper being fixed to the digitiser at an angle as

shown in fig 1.

% t
9) Y4 xp Xe
T Yp P R\ |%
“)
’b
/
A
Xa X Xh
Ya P

Fig 1 Distorted paper on digitiser

The probiem to be solved is the same as before.
Given the digitisér coordinates of the corners of the
paper ie.v Xxa, yas; xb, yb; xc, yc etc. Eand the length L
and height H of the papervin paper coordinétgs; find the
paper coordinates of a point P, ie. Xp, Yp, whoée

digitiser coordinates are XxXp, yp-.

© 335

v

Appendix 4
Me thod

Draw horizontal and vertical lines through P to cut-
the edges of the paper at Q, R, §$ and T as shown in figvl.
The paper coordinates of Q, R, S and T, ie. Xq, Yq, .Xr
etc., 5re found in terms'of the.digitiser coordinates of
the cornérs and the point P and the length and height 6f
_the paper. The paper cPordinates of ghe point afe then
calculated from the intersection of the two lines QR and

TR.

By similar triangles:
(xp~xa) /(xb-xa) = Xq/L

ie. Xq - L.[(xp-xa)/(xb-xa)) and Yq = 0

and
(yp-yb) /(yc-yb) = Yr/H
ie. Xr = L and Yr = H.[(yp-yb)/(yc-yb)]
and | o
(xp-xd)/(xc—xd) = Xs/L .
ie. Xé = L.[(xp—xd)/(xcfxd)] and Ys = H
énd

(yp-ya)/(yd-ya) ='Yt/H‘

ie. Xt 0 and Yt = H.[(yp-ya)/(yd-ya)]

Line QS -has the equation:
(X~-Xq) /(Xs=Xq) = (Y=-Yq)/(¥Ys-Yq)

but- Yq = 0 and Ys = H, therefore

Appendix 4

(X-Xq)/(Xs-Xq) = Y/H
or

Yp = H.[(X-Xq)/(Xs-Xq)] - = = = = = = = (1)

Line TR has the equaticn:
(X=Xt)/(Xr-%Xt) = (Y-Yt)/(Yr-Yt)
but Xt = 0 and Xr = L, therefore

X/L = (Y-Yt) /{Yr=-Yt)

X = L.[(Y=-Yt)/(Yr=Yt)] = = = = = = = = (2)

Lines QS and TR intersect at point P and therefore
substitutipg (2) into (1) we. get:
Yp.(Xs-Xq) = H.[L.(Yp=Yt)/(Yr-Yt)=-Xq)
Yp.(Xs-Xq) . (¥Yr-Yt) = H.[L.(Yp-Yt)-Xq.(Yr-Yt)]

Yp.[(Xs-Xq).(Yr=Yt)=H.L] = =H.[L.Yt-Xq.(Yr-Yt)]

Yo= [H.(L.Yt+Xq.(Yr-Yt)]/[H.L-(Xs-Xq).(¥Yr=-Yt)]

Similarly substituting (1) into (2) we get:
Xp.(Yr-yt) = L.[H.(Xp-Xq)/(Xs-Xq)-Yt]
Xp.(Yr-Yt) .(Xs-Xq) = L.[H.(Xp-Xq)-Yt.(Xs-Xq)]

Xp.[(Yr-Yt).(Xs—Xq)—L;H] = -L.[H.Xq+Yt.(Xs-Xq)]

Xp = [L.(H.Xq+Yt.(Xs-Xq)]/[H.L-(Xs=Xq).(Yr=Yt)]

337

REFERENCES:

Schoor, H. “Computer-aided digital design and
analysis using a register transfer language’
IEEE Trans. Electronic Computers 1964 EC13

pp 730-737

Kerighan, B.W. and Lin, S. “An efficient heurist
procedure for partitioning graphs” Bell Syst. T
J. 1970 49 pp 291-307

ic
ech.

Hope, A.K. “Application of interactive computer
techniques and graph theory to printed circuit board
design’ PhD Thesis University of Edinburgh 1973,

Stevenson, F. “design and simulation of digital
systems’ Proc. Conf. on C.A.D. Sheffield
March 1968 -

Kaposi, A. “Logic testing by simulation’ I.E.E.
Conf. Publication 51 1969

Treble, D.P. ‘Dimensional checking of MOS LSI
layouts’ I.E.E. Conf. Publication 86 April 1972

Bardsley,C.W. “Computer aids for artwork generation’
IEEE Spectrum Sept 1971 pp 64-79 '

Fletcher, A. “The automatic layout of integrated

circuit masks” I.E.E. Conf. Publication 51 1969

Radley, P. “The automatic layout of electronic
circuits by computer’ I.E.E. Conf. Publication
86 April 1972

Rose, N,A. “computer aided design of printed circuit
boards’ PhD Thesis University of Edinburgh 1970

Wood, J. et al “Computer aided production of masks
for silicon integrated circuits’ I.E.E. Conf.
Publication 51 1969

Atiya, J. “The use of gfabhic display as an aid to
integrated circuit mask generation” I.E.E. Conf.
Publication 51 1969

(9]
W
<o

References

(&)
—

L.i4

£~
(%)l

4.6

Bird, S “Myriad Graphics Software’ The Marconi Co.
Gt . Baddow Essex 1970

~ Richardson, F.K. et al “An interactive graphical

system for the design of photomasks’ Proc N.E.
Electron. Res. and Eng. Nov 1970 pp 182-183

fFades, J.D. “GAELIC user’s manual’ Wolfson
Microelectronics Liaison Unit, University of
Edinburgh 1974 '

Wood, J. et al ‘Computer aided produckion of masks
for silicon integrated circuits’ I E.E. Conf.
Publication 51 1969

Knuth, D.E. “The art of computer programming in
information systems’ Voll Addison Wesley 1968

Dodd, G. “Elements of data management syétems' Comnp.
Surv. 1,2 June 1969 pp 115-135

Williams, R. ‘A survey of data structures for
computer graphic systems’ Comp. Surv. 3 March 1971
pp 1-22

Morris, R. “Scatter storage techniques’ Conm. ACH
11 1 Jan 1968 pp 38-44

Feldman, J.A. and Rovner, P.D. “An Algol based -
associative language’ Comm. ACM 12 8 Aug 1969
pp 439-449

Sutherland, I.E. “SKETCHPAD® Tech Report 296 Lincoln
Labs M.I.T. Jan 1963 . - -

Evans, D.S. and Katzenelson; J. ‘Data structure and
man machine communication for network problems’
Proc IEEE 55 7 Jul 1967 pp 1135-1144

McGuffin, R. et al ‘Computer-aided placement and
routing of high density chip interconnection
systems’ AGARD Conf. Proc. 130 May 1973

Childs, D.L. “"Description of a set theoretic data
structure’ Proc. AFIPS 1968 FJCC Vol 33 pp 557-564

339

References

4,10 Vood, J. et a
for gilicon i
Publication 5

1 “Computer aided production of masks
ntegrated circuits” I.E.E. Counf.

o

4.11 Bird, S “Myriad Graphics Scftware’ The Marconi Co.
Gt. Baddow Essex 1970

Ge\Ly. ‘ ’ -
4.12 RiAey, P.F,A. "The autonmatic design of photomasks’
PhD) Thesis University of Edinburgh 1975 '

5.1 Hubbold, R.J. “Software paging of list data
structures for interactice engineering design’
I.E.E. Conf. Publication 86 April 1972

7.1 Wood, J. et al “Computer aided production of masks
for silicon integrated citcuits’_I.E.E. Conf.
Publication 51 1969

7.2 Fades, J.D. “GAELIC user’s manual’ Wolfson
Microelectronics Liaison Unit, University of
Edinburgh 1974

7.3 Eades, J.D. “GAELIC system manual’ Wolfson.
Microelectronics Liaison Unit, University of
Edinburgh 1976

8.1 FEades, J.D. “Application of GAELIC to the design of
a large scale integrated circuit’ I.E.E. Conf.
Publication 111 April 1974

340

