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"RINGS AND THINGS"
A Report for SERC/DCS Committee on
Local Area Networks (or Local Networks),
by E. B. Spratt University of Kent

1. Preamble

This report has been prepared on behalf of the SERC for the Indus-
trial Distributed Computing Systems Conference in March 1983. An
attempt has been made to cover the main types and applications of Local
Networks in use within the U.K. with reference to the position in the
last quarter of 1982 together with some discussion on comparative
assessments and standards. The emphasis is on systems in use within the
Academic Community i.e. sites within the SERC (Science Bngineering
Research Council) the Universities and Polytechnics.

The views presented in what follows are personal to the author and
do not in any way reflect the policy of the SERC, the University of Kent
or indeed any other official body with which the author is associated.
The task of selecting suitable material from the large (and growing)
amount of available information has not been easy and any omissions
should be viewed in this light.

Numbers in square brackets e.g. [9], refer to individual items in
the list of references given at the end of this report.

2. Organisation of the report
The material in this report is organised as follows
3. general introduction
4. a note on terminology
5. technology for local networks
- transmission media
- access methods
6. comparative issues
7. protocols for local and wide area networks
8. standards
9. current work in the U.K.
10. local networks which are marketed in the U.K.
11. some current applications of local networks
12. a users survey on local networks
13. conclusions

14. references



3. General Introduction

We commence by explaining what is meant by a local network. They
have three distinctive properties.

(1) A diameter of up to 2 to 3 kilometres.
(2) A raw (or total) data rate exceeding one megabit per second.

(3) Owned by a single organisation.

The reader who is interested in a general introduction to loecal
networks should consult [12] or [1].

There are two main reasons why local networks are required, and
these are essentially the same reasons that organisations are interested
in networks in general.

The first reason for an interest in local networks is to exploit
the advantages of functionally distributed computing. Typically, if
this approach is followed some of the computers are dedicated to
specific functions such as terminal handling, data base management, file
storage, printing or controlling industrial control equipment. This is
the main relevance of local networks for the SERC Distributed Computer
Systems research program. As is well known SERC made a policy decision
some three years ago to standardise on one particular local network,
namely the Cambridge Ring (which we consider further in a later section)
to act as a common research vehicle for research groups in this area.

The second reason for the importance of local networks is to inter-
connect computers, terminals, and peripherals which are located either
in the same building or in many cases in nearby buildings, in such a way
as to enable them to intercommunicate and also to allow them all to
access a remote host computer or another network. The presence of the
local network makes it possible for the remote facility to connect to
the local network at one particular point (which is usually called a
gateway).

It is this latter reason which has led many Universities and
Polytechnics to plan and in some cases to implement computer services
based on local networks. The Joint Network Team of the Computer Board
and the Science Ingineering Research Council is finding and co-
ordinating development work in this area. It will be recalled that the
Computer Board is responsible for the provision of computer systems for
central university computer services, whilst the Joint Network Team is
funded jointly by the Computer Board and the SERC, to be responsible for
co-ordinating network activities between the SERC and the universities
and other sites within the Academic Community. One important aspect of
this work is the implementation of standards and reference is made to
this later in this report.

Local Networks are an important component of the SERC Common Base
Software Policy which concentrates on two languages, Fortran 77 and Pas-
cal on GEC and Prime minicomputers together with ICL PERQ workstations,
where the latter are connected by means of Cambridge Rings.

Local networks differ from the wide area (or 1long haul) type in
several ways (Fig 1). A crucial difference is that the developers of
wide area networks are often compelled by legal or economic reasons to
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use the public telephone network, which is not necessarily the most
suitable technical choice. On the other hand the designers of local
networks can choose and even lay their own choice of high bandwidth
cables. This gives them definite advantages. In particular, bandwidth
(or simply the carrying capacity of the network) is not such a scarce
resource as for wide area networks and thus it is not necessary to
optimize its use with local networks to anything like the extent that is
done in the wide area case.

4, A note on terminology
Here we explain certain terms which will be used in this report.

A local network (or indeed a wide area network) essentially con-
sists of nodes which are linked together in some way by means of a
transmission medium, these nodes usually consist of several logically
distinct components which may or may not be physically distinct. For
instance there 1is always a means of allowing an attachment to the
transmission medium, some standard logic and device specific logic which
is used to attach the actual user device. The latter could for example
consist of a simple micro to operate sensory devices, a mini or even a
mainframe computer (Fig 2).

One of the most crucial concepts in networking is that of a proto-
col. A protocol is a precise set of rules which enable computer systems
to intercommunicate. It is important to realise that protocols are
necessary with both the hardware and software aspects of communication
and there is usually more than one level of protocol involved.

5. Technologies for Local Networks

In this section we consider a number of topics concerned with tech-
nologies for local networks. Although it may be fashionable to debate
the issues in this area they seldom take the same importance to the end
user.

5.1+ Media for local networks

There are four areas to consider

type of cabling

broadband and baseband

passive

network layout

Before discussing these separately it should be noted that we
assume serial transmission is being used. Although parallel transmis-
sion is feasible there appears to be no particular requirement for this
at the present time due to the high speeds which are available for
serial transmission and the costs of working with parallel transmission.

Cabling

The three main cable types are twisted pair, coaxial and fibre
optic. There are many different forms of both twisted pairs and coaxial
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cable to meet various specifications, e.g. noise immunity, and choice of
bandwidth. The important point is that both these choices are quite
satisfactory for the majority of local network environments. The choice
of cable type is usually determined by engineering considerations and
installation issues. With environments which have high levels of elec-
tromagnetic radiation or there is a requirement for high speed serial
transmission the natural choice is for fibre optic cable and there is
little doubt this will come into much more common use after a year or
So.

Baseband and Broadband

The difference between these two types of media is that in the
baseband case there is a single channel for the information flow whereas
in the broadband case there are a number of channels superimposed on a
single cable using frequency division multiplexing techniques. A number
of techniques are used to control access to the baseband media and these
are considered in a later section. It should be noted that these tech-
niques may also be used with individual broadband channels.

Broadband cabling is based on CATV (Cable Television) technology
and has more bandwidth than a similar baseband system. However the
broadband channels are independent, so it is necessary for attached dev-
ices to select channels using frequency agile modems, with special
switching equipment being used to enable connections between different
channels to be made. One issue which has to be faced with this tech-
nique is that modems operating at radio frequencies are required to
access these channels and if the costs of such equipment are to be kept
within reasonable bounds then the bandwidth of the individual channels
must be roughly in the range 5 to 10 megabits/second. If this remains a
serious limitation in the future then it would appear that the next gen-
eration of baseband systems which should work in the 50 to 100 megabit
range would be very attractive. Although there is much debate on the
broadband v baseband issue it is perhaps likely that the two media will
co-exist as, to an extent, they are complementary.

Passive or Active Systems

There has been much discussion on the advantages and disadvantages
of these systems. Two comments are perhaps in order, firstly, high
reliability systems can be achieved at reasonable costs and secondly,
the increasing availability of LSI components for devices such as
repeaters should also significantly improve reliability. In either case
it is essential to be able to rapidly locate and fix faults.

Network layout

There are two related issues here. Firstly the network topography,
which is the way in which the cabling is actually installed, and
secondly the network topology which is a way of describing the logical
links between the nodes.

Various topologies have been proposed e.g. rings, busses and stars.
However many actual networks are made up of more complex topologies.
For instance it is possible to use a central ring with linked subrings
and some systems consist of interconnected busses forming tree confi-
gurations. (See Fig 3). Major considerations when choosing a topology
are network management, reliability and maintenance. The topography is
of course directly related to the wiring costs and hence the economics
of a local network.



5.2. Slotted Rings

This section refers to the specific case of a Cambridge Ring rather
than a general slotted ring since the former has most of the important
characteristics of this particular type of local network. The ring is
formed from nodes which are joined by means of suitable cabling, this
can be either twisted pairs or fibre optics and it is perfectly feasible
to mix these two types. With twisted pairs the 1length of cabling
between nodes is normally about 200 metres and there must be a repeater
at each node to regenerate the signal. Some nodes may consist solely of
repeaters but others may have user devices attached to them. In the
latter case the repeater is used for the attachment to the transmission
medium as noted in an earlier section. 1In this case the interface
between the user device and the repeater is called a station, and such a
node is often referred to simply as a station (Fig 4). The operation
of the Cambridge Ring is based on the setting up and subsequent use of
circulating slots or fixed size packets (or units of information) which
pass continuously round the ring in a undirectional manner. Clearly
there must be at least one of these packets. Each packet contains data,
the address of the source and destination nodes together with control
information.

This slot structure is created when the ring is turned on, using a
special station called the monitor. Thereafter the monitor continuously
checks this structure and corrects it if necessary. For example, there
is a mechanism to set a bit to show as empty packets which may have
become full due to errors.

The original packet size was 38 bits but the current version (known
as CR82) includes two additional control bits that may be used in the
implementation of higher level protocols. FEach packet contains two 8
bit fields which are for the destination and source addresses and a 16
bit field for data. The remaining bits are used for control purposes,
e.g. to indicate whether the slot is full or empty and whether the data
was accepted (or rejected) at the destination (see Fig 5).

The stations each have a select register which can be set to either
accept (or reject) all packets which are addressed to it or receive from
a specified source. This provides a selection mechanism which,
together with the values of the slot response bits provides efficient
low level acknowledgement and control facilities.

It is not possible for any of the network nodes to monopolise the
traffic since the sender clears its own packet after it has been round
the ring and is not then allowed to use it again immediately. There is
also a facility to prevent a node which is transmitting at a high data
rate from swamping a node with a slow receiver. The above description
assumes that all the nodes have devices attached to them, in actual
rings some of the nodes may just be repeaters. The reader who wishes to
refer to a further treatment should consult [5].

5.3. Token passing

In this type of network access to the transmission medium is by
" means of a token which is passed from station to station according to
some set of rules set up by the network designer. A station can only
transmit when it is in possession of the token. When a node has fin-
ished transmitting it passes on the token to the next node in a sequence
which places all the nodes of the network onto a logical ring, though
the medium itself need not be a ring. As with slotted rings it is
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necessary to provide suitable functions for initialisation, error
recovery and monitoring the logical ring. In particular it is crucial
to have procedures for restoring the token if it becomes corrupted.

With token networks the packets can be of variable length and high
line utilisations are possible (see papers by Bux in [3]), but it is
necessary to provide complete packet buffers.

Work is currently being carried out on the use of tokens on bus
topologies and this is still at an early stage of development. In con-
trast many ring networks have been and are based upon token passing. An
interesting recent example is the IBM experimental token ring which is
described in [4] in a paper by Bux and his co-authors. In this ring
each station is a potential monitor, though of course there is only one
of these in actual use at any given time.

5.84. Carrier sense multiple access

The so-called Carrier Sense Multiple Access (CSMA) technique is
used in a number of networks including the Xerox Ethernet [2, 10]. It
is an example of a broadcast media access method. In broadcast systems
each connected device is at 1liberty to broadecast its information over
the network. Since two transmissions occurring at the same time will

result in the data being corrupted it is necessary to have arrangements
to overcome this problem.

In CMA each node of the network "listens" to see if any other
nodes are transmitting. If this is the case then the node defers its
transmission to a later time. If however the channel is free then it
begins its transmission. However, since signals take a short time to
travel along the network, it is possible for two nodes to transmit at
almost identical times thus causing a collision. Therefore transmitting
stations listen to the first part of the transmission. A collision will
be detected and each station will then stop transmitting. They then
wait for random time intervals and retransmit. Due to these random time
intervals it is unlikely that the transmissions from these nodes will
occur at the same time again. This is called collision detection and
the usual abbreviation for this type of broadcast technique is CSMA/CD.

This basic technique may be implemented in various ways but it is
usually done with coaxial cable where the single inner conductor is mon-
itored for the presence or absence of signals.

The rules of the CMA/CD technique imply that this type of network
is probabilistic, i.e. there is no absolute guarantee that a transmis-
sion can be completed within a given time or that a station can transmit
at a guaranteed minimum data rate. In practice this does not appear to
be very restrictive and data communication response times are usually
rapid.

The information on an Ethernet is transmitted in a packet, the for-
mat of which is given in Fig 6.

6. Comparative Issues
Comparisons are notoriously difficult and local networks are not an

exception to this rule. However some trends appear to be coming clearer
and we will now consider them.

The costs involved in local networks often only form part of a
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total system cost and may in fact perhaps be less than 15%. One factor
which is going to reduce costs and improve reliability is the availabil-
ity of LSI components and these seem likely to become available in quan-
tity during 1983, and they will then be speedily incorporated into pro-
ducts.

There are likely to be continual discussions about the relative
merits of baseband and broadband systems. Each have their advantages,
for example individual broadband channel speeds are currently limited in
speed to some 10 to 12 megabits but there can be several of them. Much
will depend upon developments in Frequency Agile Modems, which are used
to attach devices to these channels. Another factor of importance in
the U.K. is that there is less experience compared with the U.S. with
the cable television technology (CATV) which is used with broadband net-
works, but voice and television transmissions can be carried out on a
broadband network. On the other hand baseband speeds will probably
increase past the 50/100 megabit range for rings using fibre optic
cabling. A comparison between rings and other types of local network is
given in [17].

Some of the points which are important when comparing networks are
rather more down to earth and practical than some of the considerations
above. Engineering and maintenance considerations are crucial in our
view. From time to time things will go wrong and then faults will have
to be speedily rectified. A lightning strike is one example of a
phenomenon which has affected both ring and ethernet networks (with com-
plete impartiality). Equally monitoring must be considered and embedded
into the system in a suitable manner. Yet another important factor is
that there is, as yet, only a small amount of feedback from customer
sites.

These considerations lead one to the conclusion that it is too soon
to start picking out outright winners in the local network field. Any-
one contemplating the purchase of one of these systems would be well
advised to avoid too many preconceived notions and to prepare a detailed
specification of their requirements before starting detailed discussions
with possible suppliers.

T. Protocols for local and wide area networks

In this section we present some information about protocols, since
these are a vital component in any local or wide area network. A proto-
col, standard, is necessary for the orderly exchange of information
between computer processes. Without standard protocols it is impossible

for systems from different suppliers or manufacturers to intercommuni-
cate in an effective manner.

Most authorities now agree that these issues should be discussed
within the framework of the Reference Model for Open Systems Intercon-
nection which was put forward as a recommendation by the International
Standards Organisation in 1978 (known as the IS/0SI Reference Model),
see [18]. Although it was originally intended for Wide Area Networks,
many of the ideas apply also to local networks, see [7].

Essentially the proposal states that the communication issue should
be addressed in terms of a seven-layer model as shown in Fig 7. Each of
these layers provides a certain subject of services to the overall set
of network functions which are required. In general each layer provides
facilities to the modules (software or firmware) in the layers above.
The physical link layer transfers the information as a stream of bits.
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The data link layer structures this bitstream in order to provide an
error-free communication path between two nodes. The network control
layer sets up the path between nodes, routes, messages, errors, inter-
vening nodes, addresses messages and controls the flow of messages
between nodes.

The transport layer provides the end-to-end control of the communi-
cation session once the path has been established, allowing processes to
exchange data reliably and sequentially. This is independent of which
systems are communicating or their location in the network. The two
layers above this are concerned with providing facilities for the appli-
cations layer, which provides services which support the actual user
tasks. File and job transfer, terminal protocols and things like Elec-
tronic Mail are dealt with at about this conceptual level.

There are several important matters arising out of this model.
Local network protocols do not conform exactly to the first three layers
as discussed above. However it is generally agreed that any intercon-
nections or gateways between local and wide area networks should be at
the Transport level which enables the essential end to control issue to
be resolved. In this connection it will be recalled that the British
Telecom PSS (or Switchstream 1) service essentially uses the first three
layers in the form of the CCITT X25 standard protocol. Provided the
Transport level has been suitably implemented on the Local Network it is
then feasible to use the same higher level protocols (or layers) on both
local and the wide area networks. Whilst this may not be appropriate
for all applications; and in particular for certain types of distributed
computer system, nevertheless it does provide the means to effectively
interconnect wide area and local networks. So that for example files
may be transferred between the two systems.

The Academic community in the U.K. has standardised on high level
protocols (i.e. protocols above level 3) for wide area networks pending
developments in International Standards, called the Coloured Book proto-
cols. Namely

Yellow Book, Transport Layer.

Blue Book, File Transfer.

Red Book, Job Transfer and Manipulation.
Green Book, T329 Terminal Protocol.

Gray Book, Electronic Mail.

These are gradually being introduced for interconnection between
community sites using either the Science Engineering Council Network
(SERCNET) or the British Telecom PSS/Switchstream 1 service. Some of
these sites, for example the University of Kent, have Cambridge Ring
local networks and the coloured book protocols will also be used on
them. It seems likely that the same developments will take place for
Ethernets or other local networks on community sites.

However below the transport level the protocols for Cambridge Rings
or Ethernets differ from the ISO/0SI model, there are several reasons
for this. In particular the transient error rates are much lower (by
three or four orders of magnitude) than in a typical wide area network,
so with the higher speeds which are available in the local network case
it is practical to correct these at a higher level rather than level
two. Also addressing problems tend to be much simpler. Some details of
the Cambridge Ring protocols at these levels are given in [5 and 14].
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8. Standards for Local Networks in the U.K.

Two of the most important standard developments affecting the U.K.
are CR82 (see [13]) for Cambridge Rings and the forthcoming U.S.
IEEE802/DIX/ECMA standard for Ethernets. Though at the present time
both of these have de-facto rather than genuine standard status.

As its name implies CR82 emerged in 1982 as a result of discussions
between the four U.K. suppliers of Cambridge Ring components namely
Logica-VTS, Orbis/Acorn, SEEL, Toltec, together with the Science
Engineering Research Council and the Joint Network Team. The 1latter
organisations acting on behalf of the academic community. There were
two consequences arising from this development. Firstly, there was a
change from a 38 bit to a 40 bit minipacket by adding 2 additional con-
trol bits (Fig 5) and any equipment supplied to the CR82 specification
from one of the firms above will interwork with CR82 equipment obtained
from any of the others. Whilst CR82 has not been approved by the Brit-
ish Standards Institute (or BSI) nevertheless it is a significant step
forward.

It seems unfortunate that it did not prove possible to get CR82
considered by the European Computer Manufacturers Association (ECMA) or
the IEEE802 Local Network Standard Committee set up by the Institute of
Electrical and Electronic BEngineers in the U.S.

The CR82 definition covers only hardware. Specifications for pro-
tocol layers above this have been prepared by working groups set up by

the JNT, as discussed in a previous section. Details of this are given
in [14].

Although Cambridge University and Ferranti collaborated over the
design of an LSI version of the principal Cambridge Ring components to a
slightly enhanced version of the CR82 standard, using Uncommitted Logic
Array techniques, this has not come into widespread use. It seems
likely to be superseded during 1983 by an LSI version commissioned by
the SERC. There are of course significant advantages for everyone once
the components are engineered in silicon. For example reliability is
superior and the standard status is much clearer.

The Ethernet position is rather different, the original design was
carried out by Metcalfe and Boggs [16] of the Xerox Corporation at Palo
Alto Research Centre (Xerox Parc) as part of a project work on Offices
of the Future. Subsequently the specification of a revised version was
agreed with the Digital Equipment Corporation (DEC) and Intel, and this
was published in August 1980. Each partner in this grouping brought
distinect advantages to the exercise, for example, Intel was to develop
an LSI version of the Ethernet components whilst DEC had expertise in
systems, micro mini computers and mainframes. DEC, Intel and Xerox are
referred to as the DIX group in what follows. This specification was
widely circulated, and it was possible for other firms to obtain a
manufacturing licence for a reasonable fee. The hope of the DIX group
was that other firms would use the specification to build compatible
equipment and to a large extent this is what happened.

The original DIX standard (see [10]) did not cover any software
protocol layers, however Xerox have themselves defined such facilities
and the ECMA input to IEEE802 has also resulted in a proposal for the
higher protocol levels. These are not compatible with the Rainbow pro-
tocols, in particular the Transport level is somewhat wider in scope
than the comparable Yellow Book Transport Service. Nevertheless the
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difference between these two levels is not large and it would be feasi-
ble to consider using the higher level Rainbow protocols on both Cam-
bridge Rings and Ethernets. It is of course likely that many users of
these networks will wish to define their own protocols for specific
applications, particularly if the corresponding 1local networks are

closed, i.e. they are entirely self contained and do not communicate
with other networks.

In parallel with the DIX developments the IEEE in the U.S. set up
a Local Network specification group know as the IEEE802 Committee and
the DIX Ethernet specification was submitted to this body.

However the DIX Ethernet specification did not emerge as a recom-
mendation of the IEEE802 committee, though considerable discussion
ensued. In the meantime ECMA was considering Local Networks and came
down in favour of a similar system which was backed by a large number of
firms in the computer industry including ICL and CTL. ECMA then entered
into discussions with IEEE802 and the DIX group. Late in 1982 all three
bodies agreed upon a final version of the specification for submission
to the IEEE. LSI versions have been developed by several suppliers and
should be available in quantity during 1983. The reader should note
that the IEEE802 work deals with other types of Local Network, specifi-
cally token rings and busses.

Although there are many Local Network products being marketed in
the U.K. it is our view that careful attention should be paid to these
two "standards". We have excluded discussion on local networks running
at speeds lower than 10 megabits per second but it should be noted that
there are several interesting products, e.g. the Acorn Econet which is a
simple type of Ethernet, tut currently only appears to connect Acorn
systems. Another example is the Clearway system which is marketed by
Real Time Systems Ltd, which may be used to interconnect equipment from
different suppliers. It is a simple, effective and low cost system.

The reader who is interested in developments in U.K. standards and
local networks should consult the recent report to the Focus Committee
on Information Technology standards which is available from the Depart-
ment of Industry. This contains recommendations on future work and in
particular considers Electronic Telephone exchanges and their relation
to local networks [11].

9. Current work in the U.K.

A substantial amount of the local network research and development
effort in the U.K. is going into Rings. For example, research on high
speed slotted rings is being carried out at Cambridge. Several Univer-
sities (Cambridge, Loughborough, University College London) are
cooperating with British Telecom, Logica, GEC-Marconi on the Universe
project. This is studying the possibilities opened up by interconnect-
ing Cambridge Rings by means of a communications satellite using 1 mega-
bit per -second links, supplemented by normal terrestrial network connec-
tions. A general description of the status of this work during early
1982 is given by Kirstein et al in [8]. This reference also contains
four specialist papers on the Universe project dealing with protocol
architecture, encryption, network measurement and authentication.

There are a number of projects being carried out in the SERC Dis-
tributed Computing Programme all using the Cambridge Ring as a standard
research vehicle, these include
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Needham, R.M. Cambridge Developments of the
Cambridge Ring
K.H. Bennett Keele A Distributed Filestore
H. Brown, S.E. Binns Kent Typesetting and Text
and D.J. Caul Processing Servers for
the Cambridge Ring
P.J. Brown and Kent Compiling Servers for the
P.H. Welch Cambridge Ring
B. Randell Newcastle Reliability and Integrity
of Distributed Computing
Systems
C.A.R. Hoare, Stoy, J.E. Oxford Distributed Computing
and Harper M.K. Sof tware
R. Bornat Queen Mary Pascal-M: A language for
College, the design of Loosely-Coupled
London Computer Systems
D. Hutchinson and Strathelyde Direct Comparison of Ring
W.D. Shepherd and Ethernet Type Systems.
Gateways for the
Interconnection of
Cambridge Rings and
Ethernet-like networks.
J.W. Hughes and UMIST Multiprocessor Sof'tware
M.S. Powell Engineering
P.T. Kirstein University Communication Protocols in
College, the context of X25 Computer
London networks
I.C. Wand York Operating Systems for a

Network of Personal
Computers

Further details are given in the Annual Reports from the SERC on
Distributed Computing Systems.

The University of Strathclyde has an SERC Research grant for a com-
parative study on Cambridge Ring and Ethernet Type local networks. This
work will also involve the developments of a gateway between these two
networks. This is worth noting in view of the 1likely importance of
these two technologies in the U.K. and the fact that some organisations
may be involved with both of them. One University carrying out work on
broadband systems is Sussex, and this includes the development of fre-
quency agile modems and an Ethernet channel.

Kent, Leeds and Oxford are working on development contracts from
the JNT on Cambridge Rings. Kent are tackling terminal concentrators,
ring to ring bridges, reconfiguration and monitoring. The work at Leeds
and Oxford involves different types of fibre optic cabling, whilst
Oxford are also working on printer servers and micro computer inter-
faces. Other JNT projects on Ring interfaces involving both hardware
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and software, for several different computer systems including Prime,
DEC Vax (Unix and VMS) and GECH000, are being carried out on collabora-
tive projects involving Universities, Polytechnics and Industry. It is
interesting to note that these interfaces will operate at the Transport
level. Other developments have been carried out at the Edinburgh
Regional Computer Centre which include improved version of ring com-
ponents and micro and minicomputer interfaces. It is anticipated that
most of the items described in this paragraph will be marketed.

10. Local networks which are available in the U.K.

There are four firms currently active in the Cambridge Ring field,
Logica VIS, Orbis, SEEL and Toltec. Logica supplied the original SERC
Rings and has just announced a fibre optic ring cabling product, and has
also developed a fileserver. SEEL are working on fibre optics and ways
of increasing reliability by duplicating certain components. It will be
recalled that these firms all supply ring components to the CR82 stan-
dard.

Some twenty companies have made a commitment to the ECMA "Ethernet"
local area standards and since these will eventually be compatible with
the IEEE802 and DIX standards, there is likely to be considerable effort
put in by the relevant U.K. companies who include ICL, Computer Technol-
ogy Ltd (CTL, NTL and OTL) and this implies work on both baseband and
broadband systems.

Mn interesting U.K. developed local network system is available
from Xionics Ltd. Their system consists of two networks in one - there
is the Xinet ring network to which minis, mainframes and word processors
are connected using so-called intelligent sockets. The network allows
for 4095 addresses using 256 byte packets. With 16 bytes reserved for
error checking, addressing, and flag data. Hogging is avoided by let-
ting each intelligent socket have a packet of its own.

The Xinet is attached to the Xibus which is a closely coupled net-
work of processors which manage disc stores and carry out monitoring
functions (as in the Cambridge Ring). There is extensive duplication
within the Xionics system as regards cabling, power supplies and discs,
to provide a high degree of redundancy.

Several networking type interfaces are available and others are
planned, e.g. Telex, Ceefax, Oracle, the interconnection of Xionics
systems, PSS and mainframes from suppliers such as IBM, ICL and DEC.
The standards position is not entirely clear with this network and it
appears to be a closed system with gateways providing any required com-
patibility with other systems.

The general picture which emerges is that of a rather limited
number of installations during 1982, which is likely to increase enor-
mously in 1983.

11. Some current applications of networks

Local networks are being used in the academic community in at least
two different ways. Many sites are using them as research vehicles for
work on Distributed Computing, whilst others are using them as the basis
for the provision of a computer service. An example of the former is
the University of Cambridge who also provide a departmental computing
service. A detailed description of this system which is based upon the
Cambridge Ring, is given in [5]. Perhaps the main characteristic of
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this work is that users of the system access banks of processors
attached to the network from terminals relying on a shared filestore (or
fileserver) on a separate node. There is no local filestore directly
attached to the terminal or the processors. On the other hand the
University of Kent based their computer service on a Cambridge Ring net-
work service in January 1980. This has enabled a considerable rational-
isation in the communication facilities. (Spratt [81) describes the
current state of this system and (Spratt [3]) contains an account of
earlier work. Another example of a University which has based part of
its computer service on this type of network is the Regional Computer
Centre at Edinburgh. University College, London is using Cambridge
Rings both in their research work and in their provision of gateway
facilities to ARPANET for SERC Research Workers.

Very few Ethernet systems appear to be in actual use within Univer-
sities or Polytechnics during the last quarter of 1982. Apart from the
work at Strathclyde mentioned earlier. However it is clear that this
situation will change in 1983 as firm plans are known to exist at a
number of sites.

The situation in the non-academic community is less clear. In gen-
eral it appears that a number of baseband and broadband networks have
been installed by U.K. firms essentially based on imported product
mainly from the U.S., these systems often provide Ethernet facilities.
Examples of this are Thame Systems and Case, who are using Ungermann
Bass Net One equipment, and Network Technology Ltd who are using Sytek
systems. A number of these systems are being installed under a govern-
ment sponsored programme concerned with Office Automation. Some Ether-
nets have been installed by Xerox, in particular for the Greater London
Council. Xionics have installed a number of systems including one in
the Cabinet Office.

The four CR82 Cambridge Ring suppliers each have an installed user
base, with Logica taking a leading role in respect of customers outside
the U.K. Other firms have developed other types of ring, e.g. Racal
with their Planet system which was announced during 1982.

12. Networks Users Association Survey
This is basically a U.S. organisation and some of the results of a

recent survey on local networks as reported in the Localnetter
Newsletter (see References-reports) are summarised below.
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Responding Organisation Classification.

Miscellaneous End Users 41.5
Banking 18.4
Government 16.1
Education 12.0
Manufacturing 12.0
Application of networks under following four categories
Host Access 37.6
Office Automation 32.8
Intra Data Centre 19.8
Manufacturing 9.8
Transmission preference under following four categories
Broadband 37.7
Baseband 27.9
PRX 19.6
Ring/Loop 4.7

Note. This is a rather odd question, presumably the Ring/Loop
plus the Baseband figures of 42.6 is the important point
to note.

Media Access Technique preference

CMA/CD 32.9
Don’t Care 30.5
Token 20.2
Don "t know 16.4

Type of Access required
Statistical (Contention) 40.3

Don 't care 37.0
Guaranteed 22.7
Preferred Local Network type
Baseband/CSMA-CD 44.8
Broadband/CSMA~-CD 29.5
Baseband/ Token 15.4
Broadband/ Token 10.3
Traffic Types

Data and Graphics 45.7
Data only 25.1
Data/Graph/ Video 17.2
All four 12.0
LN Compatibility Requirements
Multiple Vendor 69.1
Single Vendor 30.9
Gateway requirements

Dissimilar Networks 46.2
Similar Networks 34.9
Both 18.9

LN Standard requirements

Yes 93.5
No 6.5
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Whilst this survey is not definitive it does provide very useful infor-
mation on the requirements and interests of local network users. In
particular standardisation and multiple vendors appear very important
issues. It would also appear that many users are not particularly wor-
ried about the baseband v broadband or CMA/CD v Token Passing type of
debate. More information is given in the December issue of the Local-
netter Newsletter.

13. Conclusions

Local networks cover a wide variety of systems and we have concen-
trated upon those which have reasonably high speeds at the present time.
The situation in the U.K. over the next few years seems likely to be
heavily influenced by the recent Ethernet standard discussed earlier and
Cambridge Rings and other Ring based systems such as those from Xionics
and perhaps Racal. It will be interesting to assess the Universe pro-
ject when this is completed but early reports appear to be most
encouraging.

One of the most important factors behind these developments is the
emergence of LSI components for most of the local network hardware.
This will bring the benefits of stability, reliability and low costs to
users of these systems particularly for baseband systems. Ethernet CSMA
techniques however are applicable on Broadband based systems though here
the advantages of LSI may take longer to appear. Additionally there are
speed restrictions on Baseband Ethernets which do not apply to rings,
and the 1latter also have a distinct advantage in relation to the
straightforward use of fibre optics.

If this mixed Ethernet/Ring scenario proves valid, then it will be
important to have gateways between these networks. The SERC initiative
at the University of Strathclyde is important in this context. As
further developments in rings are carried out in the U.K. thus it will
be crucial to put them into silicon at the appropriate time, test them
out and tackle the international standards scene in a determined manner;
speeds in the 50/100 megabit range appear quite feasible.

Another matter which may become important is that of encryption
particularly for security purposes and the work at the National Physical
Laboratory and in the Universe Project is pertinent in this regard.

In a more speculative vein it will be interesting to see if IBM
decide to market a local area network product. As stated earlier they
have published material on an experimental token ring [4] and this has
been submitted to the IEEE802 committee. A possible complication is the
patent position on token rings which may affect the attitude of the
standards bodies.

A comment upon recent developments in Japan is perhaps in order.
At least three companies, including Fujitsu and NEC, have announced
local area network products involving fibre optic token ring, at speeds
in the range 18 to 30 megabits per second, some of these can cover large
distances, e.g. up to 100 kms, which is far in excess of the 3/4 kms
diameter local networks given in our definition earlier in this paper.

In conclusion it appears that Local Networks are being increasingly
used, we should have some stability once the LSI versions are available
in 1983, though developments will certainly continue. Finally some
standards de-facto are beginning to emerge.
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PERSONAL VIEWS

EMPHASIS ON DEVELOPMENTS IN ACADEMIC COMMUNITY

® UNIVERSITIES
®  POLYTECHNICS

® SCIENCE AND ENGINEERING RESEARCH COUNCIL (SERC)



TWO TYPES OF COMPUTER NETWORK

® LOCAL

@ WIDE AREA

LOCAL:  DIAMETER UP TO 2/3 kM
TOTAL DATA RATE > 1 MEGABIT PER SEC

OWNED BY ONE ORGANISATION

WIDE AREA: CAN BE INTERCONTINENTAL
TYPICAL DATA RATE ~9600 BITS PER SEC

INVOLVE PTT's (EG BRITISH TELECOM)



WHY ARE LOCAL NETWORKS IMPORTANT?

1) REQUIRED TO EXPLOIT ADVANTAGES OF FUNCTIONALLY DISTRIBUTED
COMPUTING

COMPUTERS IN NETWORK DEDICATED TO SPECIFIC FUNCTIONS

TERMINAL HANDLING

DATA BASE MANAGEMENT

STORAGE OF FILES

PRINTING

CONTROLLING PROCESS CONTROL EQUIPMENT

REASON FOR RELEVANCE TO SERC DCS PROGRAMME



2)

USED TO INTERCONNECT

COMPUTERS
TERMINALS

PERIPHERALS (EG PRINTERS)
WORK STATIONS
REMOTE/LOCAL FACILITIES

CAN BE USED AS BASIS OF A COMPUTER SERVICE FOR TEACHING/
RESEARCH/ADMINISTRATION

JOINT NETWORK TEAM SERC
COMPUTER BOARD
DEVELOPMENT PROGRAMME

- STANDARDS

BANDWIDTH NOT SCARCE RESOURCE



SERC COMMON BASE POLICY

FORTRAN /7
PASCAL

GEC 4000 g 44

| MINICOMPUTERS
PRIME
ICL PERQ WORKSTATIONS
CONNECTED BY
CAMBRIDGE RING LOCAL NETWORKS

WHICH IN TURN ARE INTERCONNECTED USING WIDE AREA
NETWORKS



4 NODE LOCAL NETWORK
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STANDARD LOGIC

DEVICE SPECIFIC
LOGIC

<T DEVICE

TYPICAL NODE ON LOCAL NETWORK

PROTOCOL: PRECISE SET OF RULES ENABLING COMPUTERS TO
COMMUNICATE EFFECTIVELY



TECHNOLOGIES FOR LOCAL NETWORKS

MEDIA - SERIAL TRANSMISSION

CABLING
BROADBAND AND BASEBAND
PASSIVE

NETWORK LAYOUT

SLOTTED RINGS

TOKEN PASSING

CARRIER SENSE MULTIPLE AcCESS (CSMA)



CABLING

TWISTED PAIR
COAXIAL
FIBRE OPTIC

® ENVIRONMENT

® BANDWIDTH

® NOISE IMMUNITY

® ENGINEERING/INSTALLATION ISSUES




BASEBAND

SINGLE SIGNALLING CHANNEL
ACCESS SIMPLE
sPEEDS 10-30 MEGABITS/SEC
100 MEGABITS / SEC UPWARDS FEASIBLE

BROADBAND
SEVERAL SIGNALLING CHANNELS
ACCESS COMPLEX - FREQUENCY AGILE MODEMS
CHANNEL SWITCHERS
CHANNEL SPEEDS 10 MEGABITS/SEC
CABLE TELEVISION TECHNoLoGY (CATV)



PASSIVE OR ACTIVE

NETWORK LAYOUT

NETWORK TOPOGRAPHY WIRING
NETWORK TOPOLOGY LOGICAL LINKS
MANAGEMENT
RELIABILITY

MAINTENANCE



SLOTTED (CAMBRIDGE) RING

TWISTED PAIR

FIBRE OPTIC

MINIPACKET - CR82
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TOKEN PASSING

HAVE TO POSSESS TOKEN TO TRANSMIT
LOGICAL RING
RINGS

VARIABLE LENGTH PACKETS

GOOD LINE UTILISATION

BUSES (1EEES0Z)




CARRIER SENSE MULTIPLE ACCESS (CSMA)

BROADCAST

COAXIAL CABLE

COLLISION DETECTION
- PROBABILISTIC |

ETHERNET (CF  ALOHA)



COMPARATIVE ISSUES

e DIFFICULT
® POSSIBLE TRENDS

#  LOCAL NETWORK FORMS ONLY SMALL (BUT VITAL) PART OF TOTAL
SYSTEM COST

# AVAiLABILITY OF LSI COMPONENTS WILL REDUCE LN COSTS

#  BASEBAND V BROADBAND
BASEBAND SPEEDS WILL INCREASE
FIBRE OPTIC TECHNOLOGY
CATV - FREQUENCY AGILE MODEMS
BROADBAND - VOICE
BUT PABX DEVELOPMENTS
#  ENGINEERING / MAINTENANCE

# MONITORfNG / MANAGEMENT

#  SPECIFY REQUIREMENTS CAREFULLY



PROTOCOLS FOR LOCAL AND WIDE AREA NETWORKS

PROTOCOL - USED TO PROVIDE FOR AN ORDERLY EXCHANGE OF
INFORMATION BETWEEN COMPUTER PROCESSES
®  STANDARDS
e REFERENCE MODEL FOR OPEN SYSTEM INTERCONNECTION (0SI)
INTERNATIONAL STANDARDS ORGANISATION (1S0)
7 LAYER MODEL

DEVISED IN A WIDE AREA CONTEXT. BUT IDEAS VALID IN LOCAL
NETWORKS



APPLICATION CAN
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PRESENTATION e
WIDE
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SESSION CASE
TRANSPORT TRANSPORT
' SERVICE
______________________ | BYTE
STREAM
NETWORK
_________________________ BASIC BLOCK
DATA LINK
| RING
v m—m---smmm = o= e o= = -l LARDWARE
PHYSICAL
WIDE AREA LOCAL

e BRITISH TELECOM SWITCHED STREAM 1 (pss)
x25 (ccI1TT)

@ CAMBRIDGE RING PROTOCOLS GIVEN AS EXAMPLE NOT EXACTLY AS

LEVELS 1 10 3

FOR WIDE AREA CASE AT LOWER LEVELS

(CAMBRIDGE RING)

SERVICE

1S0/0ST REFERENCE MODEL. WIDE AND LOCAL AREA NETWORKS




ACADEMIC COMMUNITY PROTOCOLS

COLOURED BOOK PROTOCOLS (RAINBOW SERIES)

YELLOW BOOK TRANSPORT SERVICE

BLUE BOOK FILE TRANSFER

RED BOOK JOB TRANSFER AND MANIPULATION
' GREEN BOOK 7529 TERMINAL PROTOCOL

GREY BOOK ELECTRONIC MAIL

ORANGE BOOK CAMBRIDGE RING PROTOCOLS

ETHERNET POSITION

ERROR RATES ON LOCAL NETWORKS



“STANDARDS” FOR LOCAL NETWORKS IN THE U.K.

DEVELOPMENTS:-  CR82 CAMBRIDGE RING
1EEE802/DIX/ ETHERNETS
ECMA

CR82 AGREED RING COMPONENT SUPPLIERS ACADEMIC COMMUNITY

ACORN/ORBIS
LOGICA / VTS
SEEL
TOLTEC
LSI VERSION ~ LATE 1983

ETHERNET - XEROX

- | p|EC ;
I[NTEL) DIX
X | EROX

1Eee802

ECMA - EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

icL, cTtL (OTL, NTL)



ACORN - ECONET

REAL TIME SYSTEMS LTD - CLEARWAY

INEXPENSIVE, LOW SPEED - STANDARDS?

EXAMPLES OF DEVELOPMENTS



CURRENT WORK IN U,K. - SERC

RINGS e CAMBRIDGE - HIGH SPEED SLOTTED RINGS
® UNIVERSE PROJECT

CAMBRIDGE
UNIVERSITY COLLEGE, LONDON
LOUGHBOROUGH

BRITISH TELECOM

GEC MARCONI

INTERCONNECTION OF CAMBRIDGE RINGS USING
SATELLITE PLUS TERRESTRIAL LINKS

e DISTRIBUTED COMPUTER SYSTEMS RESEARCH

RINGS AND ETHERNETS

BROADBAND NETWORK

CAMBRIDGE
KEELE
KENT
NEWCASTLE
OXFORD

QMC. LONDON
STRATHCLYDE
UMIST

UCL, LONDON
YORK

COMPARATIVE STUDY + GATEWAY STRATHCLYDE

SUSSEX



RINGS (CONTINUED)

JOINT NETWORK TEAM CONTRACTS

TERMINAL CONCENTRATORS KENT
RING-RING BRIDGES

RECONF I GURAT ION

MONITORING

FIBRE OPTIC LINKS OXFORD

PRINTER SERVERS

RING INTERFACES FOR
VAX/UNIX
VAX/VMS
GEC 4000

RING COMPONENTS EDINBURGH REGIONAL
COMPUTER CENTRE



LOCAL NETWORKS AVAILABLE IN U.K.

CAMBRIDGE RINGS

"ECMA ETHERNET"

XIONICS RING

RACAL - PLANET

LOGICA - VTS
FIBRE OPTIC PRODUCT
FILESERVER

SEEL
CABLE DUPLICATION

ORBIS
TOLTEC

DIX/1EEE802
ICL g LARGELY IMPORTED
cTL (NTL, oTL)

BASEBAND + BROADBAND

XIBUS - CLOSE COUPLED

XINET - LOCAL NETWORK

INTERFACES TO PSS

sissrsrereerne s MAINFRAMES (IBM, ICL, DEC)

LIMITED NUMBER OF INSTALLATIONS 1982

MANY MORE 1983



CURRENT APPLICATIONS

e ACADEMIC COMMUNITY
e RESEARCH VEHICLES FOR WORK ON DISTRIBUTED COMPUTING

e BASIS OF COMPUTER SERVICES
CAMBRIDGE
KENT

RINGS APART FROM STRATHCLYDE
SUSSEX
EDINBURGH

e NON ACADEMIC COMMUNITY
INSTALLATIONS BASED ON IMPORTED PRODUCTS - "ETHERNETS”
® THAME AND CASE
(UNGERMANN BASS - NET ONE)
® CTS
(SYTEK)
® XEROX

OFFICE AUTOMATION - GOVERNMENT SCHEMES



USER SURVEY

STANDARDISATION
MULTIPLE VENDORS
BASEBAND V BROADBAND

CSMA/CD V TOKEN PASSING



CONCLUSIONS

U.K. SITUATION HEAVILY INFLUENCED BY

© CR82
IEEE802/DIX/ECMA 'ETHERNET”
XIONICS
RACAL

e |SI COMPONENTS
o GATEWAYS FOR INTERWORKING

# NEED FOR MORE U.K, ACTIVITY ON #
INTERNATIONAL STANDARDS



IBM TOKEN RING

JAPAN FUJITSU
NEC
FIBRE OPTIC TOKEN RINGS
18 - 30 MEGABITS/SEC
up 10 100 KMs

LOCAL NETWORKS INCREASINGLY. USED

SbME STABILITY WITH LSI

STANDARDS EMERGING



EVALUATING LOCAL AREA NETWORKS

Doug Shepherd
Computer Science Department

University of Strathclyde

1.Introduction

The past two years have seen a Llarge 1increase 1in the commercial
availability of local area networks. These systems are usually based on one
of the following three architectures:~ slotted ring, CSMA collision
detection bus, or token ring. Examples of each type are the Cambridge Ring,
Standard Ethernet and MIT's token ring respectively. A number of papers
have appeared describing these architectures [1,2,3]1 and the paper by
Sprattl4] gives a good overview of the systems available. Most of the
manufacturers make similar claims for the performance and versatility of
their local area networks and it is the purpose of this paper to present a
cross section of the work that has been carried out in evaluating the
performance of various local area networks. It is not our intention to give
an exhaustive review of the Literature but rather to select one or two
results that will give the reader some feeling for the relative merits of

the various local area network architectures.

In the first part of the paper we lLook at modelling, both analytical
and simulation, in the second part we present some actual performance
measurements for the Ethernet and Cambridge Ring respectively, in the.third
part we discuss other factors that should be considered besides

performance, and finally we draw appropriate conclusions.

2.Model ling



A Large number of papers have appeared in the Lliterature on modelling
various Llocal area network architectures [5]). The majority use analytical
techniques but there are a few that use simulation. The three papers we
will discuss in some detail are the ones by Werner Bux[6], Blair and
Shepherd [7], and Almes and Lazowskal81. The first paper compares
analytically four different types of LAN architectures namely: token ring,
slotted ring, random access bus (CSMA with collision detection), and
ordered access bus (MLMA reservation scheme). The second uses simulation
to compare the Standard Ethernet[9] with the Cambridge ring. The work
described 1in the third is wunusual in that it first of all derives an
analytical model of an Ethernet-like system and then simulates the

Experimental Ethernet system.

2.1 Analytical Comparison of Four Types of LAN Architecture

The performance criterion that Bux investigates is the delay=-throughput
characteristic of the system. Delay is measured as the mean transfer time
of the packets which he defines as the time interval from the generation of
a packet at the source station until its reception at the destination.
This means the transfer time includes the queueing and access delay at the

sender, the transmission time of the packet, and the propagation delay.

Modelling of the Networks

In order to allow for direct comparison of the results, consistent
assumptions are made with respect to traffic properties for all models.
These are: packets are generated at the § stations according to a Poisson
process and the packet lengths can be generally distributed. A header is
added to every packet which contains control and addressing information.

Bux draws the following conclusions from his study. The token ring



performs almost ideally over the whole range provided the delay in each
station 1is kept to a minimum. The slotted ring shows comparativély high
transfer delay values due to the short slots of this type of ring, which
mean that there is a high overhead for addressing and control information
and the time needed to pass empty slots around the ring to ensure fair use
of the bandwidth. The bus with CSMA and collision detection behaves ideally
as long as the ratio of propagation delay to mean packet transmission time
is low. If this ratio exceeds 5% the increase in collision freqUency causes
significant performance degradation. The MLMA ordered access bus shows
stightly higher transfer delay than the token ring. This difference, which
in most cases is insignificantly small, is caused by the overhead required

for scheduling of the packets.
2.2 Simulation

Blair and Shepherd have carried out a number of simulation studies of
the Cambridge Ring and Ethernet-like systems({7,10]. The one we will discuss
here compares the Cambridge Ring with the DEC, Intel, Xerox Ethernet[9].

The Standard DIX Ethernet specification was used namely:-

Data Rate 10 Mbs Slot time 512 bits
Jam Signal 32-48 bits Interframe spacing 9.6-10.6 microsecs

Preamble 64 bits Packet size 64-1518 bytes

The workload model consists of S stations. A Poisson arrival of
messages s assumed with mean inter—arrival times t1 through tS. Constant
message lengths L1 through LS are also assumed. A block consists of a
header, route, data and checksum. A block is transmitted as one Ethernet
frame or N ring minipackets. The error. rate for each system is considered

to be 1 in 10°7. Message destinations are random.

The following message statistics are collected:



1. Start time - arrival time in station queues
2. Select time - time message is selected for transmission

3. Finish time - acknowledgment successfully received.

From these the mean queuing times, service times and delays can be

calculated.

The number of stations, propagation delay between stations and frequency of
the systems can be varied. In the case of the Cambridge Ring the number of
minipackets and the number of data bytes per minipacket can be set. For
the Ethernet the inter—-frame spacing, length of preamble and length of jam

signal can be varied.

The frequency of both the ring and ethernet were set at 10 MHz with a 6
bit delay between stations. The number of minipackets in the Cambridge Ring
model is set to be optimal. The decision rule 1is to minimize the

minipackets without introducing wasted bandwidth[11].

A number of experiments were carried out by varying the number of
stations 1in the system while keeping the message length constant at 16
bytes. The results obtained show that as the number of stations increase
the Ethernet is only better than the Cambridge Ring at low loads. For 32
stations the Cambridge Ring performs consistently better. The reason for
this s that the collision window for the Ethernet is longer for Llarger
networks increasing the chance of collisions whereas the addition of extra

stations to the Cambridge Ring can be compensated by the extra packets that

can be accommodated.

The simulators were then run using different message lengths. As the
message lengths increase the performance of the Ethernet system is superior

to the Cambridge Ring and in addition is more stable 1i.e. expected delay




does not degrade sharply as load increases.

Satisfactory delay characteristics in LANs depend not only on Llow,
stable expected delay but also on low variance of delay times. The variance
of delay in the two systems was compared by plotting the ratio of standard
deviation to mean for delay times against total offered load. Ethernet
clearly has higher variance at all level of loads. There are two reasons

for this :

1. It has been shown [12] that the backoff algorithm achieves stability for
Ethernet at high loads at the expense of a kind of last come first served
scheduling[8] resulting in high variance of delay times.

2. The Cambridge Ring has guaranteed maximum and minimum transmission
times. The L(ow Level protocol 1implies that a station at worst gets

1/n(m+2) and at best gets 1/(m+2) in an n station, m minipacket ring.

The paper concludes that for most configurations Ethernet has a lower
expected delay than the Cambridge Ring. The major reason for this is the
overhead of the minipacket protocol in the Cambridge Ring. However the
Cambridge Ring has the desirable property that delay characteristics do not

depend on the size of the network or on the message lengths.

Almes and Lazowska use a simple analytic model based on 1/q control to
study Ethernet-like systems, where q is a measure of the instantaneous load
on the communication medium. They also simulate the Experimental Ethernet
and from the vresults of their simulation conclude that their analytical

model is acceptable. They also draw the following conclusions:-

Ethernet and other networks based on the 1/q model are

stable.

The Ethernet has considerable variance in response time. This



variance does not, however, make it unsuitable for *soft

real-time'" applications at moderate average loads.

The performance of the systems is quite sensitive to packet
size distribution. Higher technologies e.g optical fibres,
will provide greatest benefit for applications that can -

use large packet lengths.

They also conclude that there might be some benefit in using a back-off
algorithm based on an estimate of q from information available to the

stations.

3.Some Practical Measurements

Very few papers have appeared containing actual performance
measurements of existing systems. An exception is the paper by Shoch[12]

which considers the Ethernet at Xerox Parc and a paper by TempleC13] which

examines the Cambridge Ring system at the University of Cambridge.

3.1 Traffic Measurements of Ethernet

At Xerox Parc there are a number of interconnected Ethernet systems
which have been providing a service for several years. They use a coaxial
cabletrunning at 2.94 MHz. The particular local Ethernetwork chosen for the
measurements spans about 1800 feet and connects over 120 machines. These
machines include a large number of single-user stand-alone computers, two
time=-sharing servers, numerous shared printers and fileservers as well as

several gateways. Applications include: file transmission to the printers,

access to shared data-base systems and terminal access to time-=sharing

machines.

To conduct the measurements a series of specialised test and monitoring



programs has been constructed to assess the behaviour of the network.
There is a promiscuous station which can receive all of the packets passing

by. The measurements were taken using this passive technique.

One of the first results obtained was that one damaged packet in about
6000 was detected, and this resulted in the design of a new interface.
Using the new interface a packet error rate of 1 in 2,000,000 packets was

achieved.

Performance Under Normal Traffic Loads

The utilisation of the system over a full 24-hour period ranges from
0.60% to 0.84%. During the busiest hour this rises to 3.6%, busiest minute
17% and busiest second 37% This verifies the design assumption that

computer applications tend to produce a bursty pattern of requests.

Most of the packets sent through the system are short ones, but most of

the total volume is carried in the large packets.

Performance Under High Ldad Conditions

The previous section discussed the system under normal operating
conditions. Further growth of new systems will increase the load on the
net and the system ought to be able to handle short term bursts at very

high load.

To enable this to be tested a set of test programs was constructed to
generate artificially high Llevels of traffic. Using a special control
program these are loaded into idle machines on the net and then wused to
produce a specified offered load to the network. As the total offered load
increases from 0% to 90% channel utilisation matches it perfectly: all the

traffic gets out correctly and under high Loads the Ethernet system remains



stable.

From these results it can be concluded that:
1. The error rates are very low, and few packets lost.
2. Under normal load, there are véry few collisions.
3. Under heavy load there are more collisions but the collision
mechanisms work well and channel utilisation remains high.
4. Even under heavy loads the Ethernet channel does not become

unstable.

The last result would suggest that the several proposals for complex

control schemes would offer Little benefit for the increased complexity.

3.2 Traffic Measurements of the Cambridge Rihg

Some measurement work has been done at the University of Cambridge
Computer Laboratory by Temple. The system consists of a Cambridge Ring
operating at 9.8 Mbit/sec, with 3 minipacket slots and a gap of 3 bits.
The ring is used to support the Cambridge Distributed Computing System[14]
and also has a number of machines connected to it, such as the 1IBM 370,
which provide a service for the general user. One of the devices on the
ring is the fileserver[15] which as well as providing filing capabilities
for the processor bank is used as a paging device for the CAP machine. i.e.

swapping is carried out across the Ring.

A special device called a Traffic Monitor has been built which can be
connected to the ring via a repeater. The repeater can either be a stand-
alone one or one connected to a station. The traffic monitor can be
attached to a standard vdu which allows particular patterns to be entered
for matching against minipackets. The software also allows histograms of

traffic to be displayed on the vdu. A complete description of the monitor



can be found in the report by Balfour[161].

The results from a typical experiment to see how many packets were
accepted were that 86X are accepted, 2% unselected, 5% ignored, and 7%

busied. The ring utilisation was 3.4%.

Most of the time the ring utilisation ia about 1% although bursts of up
to about 20% were observed when a single station transmits at ring speed.
For a medium term transaction, Lloading a processor bank méchine, the
utilisation 1is of the order of 10%. Over a longer period (30 mins) the
typical utilisation is 3% and over a 24 hour period is 1.3%. The CAP is
the only machine working at ring speed and one can see the bursts of CAP
activity over a 0.1 sec time period. Over a 10 sec time period bursts are

eliminated and utilisation clusters around a mean of 2.7%.

4.0ther Considerations

Although performance is an important factor in considering a local area
network one thing that 1is perfectly clear from the previous sections is
that all the systems discussed have more than ample bandwidth for currrent
applications. In fact it is the belief of this author that in the case of
Distributed Operating Systems the type LAN architecture you choose is
irrelevant. In fact at Strathclyde we have developed a network operating
system, called MIMAS, which runs on top of both an Ethernet-like system and
a Cambridge RingC17]. Therefore it should be other factors that influence

the choice of LAN used. We discuss a few of these factors below.

Internetworking

It seems extremely likely that any Llarge organisation will have a
number of separate installations consisting of devices connected together

by their own local network. In order to gain the full potential of



networking and to maximise the sharing of expensive facilities such as disc
storage it will be necessary to Link these networks together. In addition

it may be desirable to Link the local area network to a wide area network,

typically through the X25 access protocol.

Because of the variable size of their basic packets the token ring and
the Ethernet have a clear advantage over the slotted rings with their
smaller fixed length packets. For instance, in the case of the Cambridge
Ring which has only 8 bits for the destination address the Limit on the
number of stations it can address is 256. This means that it has to wuse a
local addressing scheme. Therefore, any gateway linking Cambridge Rings
together must be able to transform from a local address to one recognised
by the rest of the networks. The token ring and Ethernet, however, can
have a larger destination and source field. In their case a global
addressing scheme could be adopted using a standard 48 bit address field
which would allow every station to have a unique address over all the
networks. This has been proposed in the paper by Dalas and Printis[181, who
call it a universal address. The use of universal station numbers in an
internetwork provide for reliable and manageable operations as the system

grows, as machines move, and as the overall topology changes.

Flow Control and Guaranteed Response.

The token ring and Ethernet have no low level flow control. A packet is
sent to a station and the sender has no idea whether it has been accepted
or not. Any acknowledgment must be provided b} the higher level protocols.
Experience is showing that it is the high level protocols which slow the
systems down. The Cambridge Ring, however, indicates in the reponse bits
whether or not the minipacket has been accepted. If for instance the

response bits indicate that the destination was busy the minipacket can be
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retransmitted.

With an Ethernet system there is no guaranteed response time. In the
case of a token ring the maximum response time will be function of message
lengths as well as the number of stations. The slotted ring, however, will
have maximum response time which only depends on the number of stations in
the system. This might be 1important 1in some real-time situations, for
instance if the Llocal area network is used to link some form of control

system together.

Another example is the use of mixed voice and data traffic over the
network. If the network 1is very lightly loaded then an Ethernet could
handle voice as well as datal19] taking advantage of the fact that there is
considerable redundancy in the digitised speech. However, if the load
increased by having a large number of calls going on at the same time then
the dinformation Lost would be unacceptable. The Cambridge Ring, however,

would have the same characteristics whatever the load[20].

Cost

An important factor in evaluating any LAN will be its cost. In the
opinion of the author there are a large number of applications of LANs that
do not require a 10 Mbyte/sec bandwidth. Xerox Parc, for 1instance, have
been operating with a 3 Mbyte/sec system for a number of years and the
measurements carried out show that there is considerable spare capacity.
This would appear to indicate that systems built using cheap off-the-shelf
components operating at 1-2 MBits/sec would be quite suitable for a Llarge

number of cases, for example a shop floor reporting system[21].

High Level Protocols
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In this paper we have concentrated on the low level characteristics of
the LANs and no attempt has been made to discuss the type of high level
protocols they support. It is the design and implementation of suitable
protocols for systems that 4is now the major problem in LANs. It is not
clear that the underlining architecture has much of an influence on the
higher Llevel protocols and this 1is one of the main current areas of
research. There is no doubt that these are the critical factors in LAN

performance.
S5.Conclusions

In this paper we have presented some results from studies in evaluating
the performance of LANs. The results obtained from the analytical and
simulation studies give some indication of the likely performance of the
various systems. However, they should be treated with caution as the
traffic profile used in them bears Llittle relation to those found in
practice. The simulation studies, on the whole, seem to produce results
that are nearer to those found in practice. The actual measurement figures
are extremely dinteresting and seem to suggest that the predicted collapse
of the Ethernet does not occur and that back—off is no problem. On pure
performance grounds the token ring would appear to be best but other
factors besides performance should be taken into consideration, for

instance whether the system would support a real=time application.

Finally we would Llike to quote from an interesting paper by Saltzer and
Clark[22]: "Considering the various technical arguments it appears that one
cannot make a clear case for either the contention-controlled broadcast net
or the ring technologies. Both approaches have good arguments in their
favour, and it dis Llikely that such dissues as ease of installation,

maintenance, and administration will dominate the technical issues”.
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1.  WHAT IS NEEDED IN LOCAL AREA NETWORKING

Local Area Networks (°LANs") for data communication between various sorts
of devices is all the rage at the moment. There is a veritable avalanche of
publicity about this wonderful vehicie for interconnecting the vast assortment of
cheap computers, terminals., smart instuments, peripheral input/output devices,
and specialist user equipment flooding onto the market. A Martian visitor might be
reassured by all the noise and be led to believe that loca! networking is a

comfortable reality. But the natives know different: the LAN situation is presently a
messl|

Despite a reasonably mature body of analytical technical literature which has
grown up around the substantial success of more than a decade of Wide Area
Networks (WANs) working over large geographical expanses., and despite the
thundering advances in (and plummeting prices of) digital hardware. there is as
yet no commercially-available LAN known to us which even comes close 1o
satisfying the real needs felt by most users. More than one aspiring LAN user has
recoiled in dismay upon learning that he cannot easily do for his streams of
sophisticated data something like what he has always been able to do for his lowly
voice’'s messages - pick up a telephone on an internal network. comply with a
simple dial-up protocol to connect his instrument with a destination instrument.
carry out a two—-way conversation observing only the loosest of communication
protocois, and then close down the connection with reasonable confidence in his
ability to redirect to a new destination the next such sequence of actions with an
acceptable likelihood of satisfactory service.

The viewpoint most users of a LAN would want to adopt is, as Figure 1
shows, simplicity itself.

The user wishes merely to plug in his equipment (be it computer. terminal,
or whatever) into what may be conceived of as a "socket® dangling from a “pipe”
(the LAN) which can be instructed to connect up to any other sort of device
residing in a suitable subset of the total community of devices that might be
availabie for connection. The user will value highly the ability to gracefully plug
and unplug connections and will be inclined to care as little as possible about the
detalled way the LAN accomplishes this: the user simply wants to see such action
take place when he commands it. He wants physically remote connections to be
indistinguishable from connections to user devices coresident with his own. The
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Figure 1. User’'s Preferred View of a LAN

user wants the pipe to accommodate data transfers having any format and any
transmission speed he chooses: that is, the pipe - once connected up - should
be transparent. And of course he wants the whole business to be cheap.

it is a recipe for trouble if the LAN bulider provides a product that departs
much from the user’s simplistic view. The LAN builder is well within his rights to
impose a standard intermediate interface requirement to serve as the plug/socket
arrangement. This is needed even for local connection anyhow, whether or not the
LAN pipe exists: there are plenty of successful examples of workable interfaces and
some eonjoy fairly widespread current acceptance (most notably the IEEE 488
interface {1J). Furthermore. it is physically undeniable that more distant
connections will incur greater transport delays in pumping the data from one end



of the pipe to the other. Naturally the LAN builder will try to minimize the transport
delay and would wish to have an "effective pipe length" which shrinks when
physical connections are moved to physical locations closer to the user’s location.
For the limiting case of connection through the LAN to a device at the very same
location ("Device A" of Figure 1). the user must feel that the potential advantage
to be gained from unplugging from the LAN pipe and plugging directly into the
local device would be so slight as to be overwhelmingly outweighed by the
operational flexibility the pipe offers for future connection patterns.

Some users will, of course, want something more than the bare essentials
Figure 1 sets out. First, users want high-level services. This is a matter for the
end-to-end interchanges between devices. Whatever users or pools of users want
to do with their devices’ data is between themselves and not the business of the
LAN. which should properly present itseif only as a very reliable, but unobtrusive
communication medium, ready for the occasional connection reconfiguration.

There will be nervous users that want muitiple pathways between a pair of
devices and gregarious users feeling compelled to broadcast to more than one
other device. These special scenarios can be handled by the LAN appearing to
present a bundie of pipes into which user devices can wire muitiple plugs if
desired: but it is still at user level that decisions must be made as to whether the
device actually activates operation over more than one pipe.

Users of WANs are typically very different from the potential users of LANs
and their needs are in some respects much easier to meet. WANs might, for
example, be carrying traffic between computers and faraway terminals dealing in
airline reservation or bank account information. LANs. on the other hand. may
interconnect devices scattered about a production line or an office complex and

might well be supporting traffic relating to automatic manufacturing/testing or stock
controt information.

The diversity of uses for LANs is expected to be prodigious indeed. and it is
hard to arrive at a foolproof categorization of them. Roughly speaking. there are
applications in the “leisurely service" category which we mentioned above and
might classify as the office automation type of LAN. the highly-demanding
applications requiring what we could call the real-time instrumentation type of LAN
needed for laboratory automation/high-speed industrial process control, and of
course the gradations between these two extremes.



Office automation LAN users are In many ways spiritually akin to users of
existing WANs - they need to convey largish volumes of data among workstations
and file servers, but can often live with slow, human-scale response times

(hundreds of milliseconds maybe). Nevertheless. the technical problems

associated with networks to satisfy this class of LAN user are different in many
ways from those to do with WANs, and share broad features with the probiems
confronting instrumentation LANs. Successful satisfaction of the requirements of
the real-time instrumentation class automatically provides a workable solution for
the bulk of office automation needs (though the converse is not true), so we will
focus hereafter on characterizing this "hot end” of the LAN scene while describing
our own approach to serving this sector.

Instrumentation environments often grow up without a comprehensive
expansion plan, with a multiplicity of vendors gaining Iinroads with largely
incompatible equipment. While fully-integrated process plants might escape this
fate by buying in single—-vendor installations all at once and forbidding homebuiit
"add~ons" or upgrades employing other vendors’ "look-alikes®, it is the more usual
situation that small user groups in companies and research labs independently
accumulate a heterogeneous community of user devices in which some sections
eventually outgrow their immediate support resources (in which case resource
replication is a possible alternative to sharing of remote resources) or in which
incontrovertible necessity for communication arises. say if some resource (like a
nuclear reactor, for instance) is absolutely unique. An exceedingly wide range of
user device types is likely to be brought into an instrumentation LAN and. in the
best voracious maverick tradition. their clamour for unrestricted support will

severely test any LAN.

2. THE STATE OF PLAY IN LANs

Three of the scary obstacles confronting a purchaser of electronic equipment
are: technical possibility, cost, and standardization. After finally learning that a
product he desires is feasible. manufacturable. and affordable, he is faced by the
spectire of a dead—end committment if new equipment is “*frozen out® by subsequent
industry trends toward some incompatibile standard. Fortunately a fairly safe
condition prevalls in the interface game at the moment, in that the IEEE 488 (or
IEC 625 [21) standard is a comfortable and much-accepted way for connecting
instruments and computers.



IEEE 488 is a blessed relief from the RS 232 “standard” that snarls up many
a good multi~computer site and. In addition to point-to—-point communication
possibilities, offers excellent multi-drop capabliities for ciusters of devices.
However, the communication furnished is of the close proximity kind., with no
provision for runs on the order of a few kilometres. which can easily be found in
distributed instrumentation systems.

Longer distance (though still "local®) communication is instead the province
of the LAN. It is now the fashion to speak of data networks in the ordered
framework promoted by the ISO Open Systems Interconnection initiative. The "0OSI
Reference Model" [3] is a handy vehicle not only for discussing and comparing the
structures of proposed networks., but aiso for systematically unraveiling the
complexity of a network so that its specifications can be partitioned and standards
can be established for portions of the complete system. The ideas of the OSI
mode! have propagated widely and can be found described in some books (4], (5]
as well as In numerous technical publications and popular press items.

In essence. the OSI model stratifies networks into seven layers which work
from the lowest level of physical connection right up to the user’'s applicication.
While manufacturers are busily launching products into the field. standards bodies
are feverishly hammering out agreed rules by which “peer entities" (residing
generally in separate equipments) at each of these levels can be put into
communication. The hierarchy is set up so that a layer provides a service to the
layer above. making use of the service provided to it by the layer below. enhanced
by its own in-layer protocol/. These services allow (horizontal) peer entity-to-entity
protocols of communication to be sustained. Layers communicate (vertically)
across Interfaces.

At the time of writing, the conceptual interfaces and services between Level
1 ("Physical Layer") and Level 2 ("Data Link Layer") and between Level 2 and
Level 3 ("Network Layer") have been largely settled. The services required by
Level 4 ("Transport Layer") are receiving Iintense attention by a variety of
international standards organizations and advisory groups.

Meanwhile networks are in operation in advance of the existence of any
standards. Retrospective mapping of designed and functioning networks onto the
0S| model sometimes reveals [5] that independent layering approaches have in fact
been adhered to in design practice (which usually is a good thing). though which



neworks wlill prove to comply with any of the emerging standards remains

problematical.

Vaiuable practical work at Layers 1 and 2 is being done. with Ethernet-like
systems (6] and Cambridge Ring-like systems [7] commanding the fieid. However,
these developments concern themselves with the lowest two layers. leaving the
higher reaches of the OS! layering as the responsibility of the user. The crippling
need for heavy user awareness of, and involvement in the operation of. the
functions of the Network Layer precludes the carefree style of usage described in
conjunction with Figure 1. The upshot of this is that the poor user faces stringent
restrictions on ftransaction speeds, connectability. data format. and procedures.
Pius, he normally has to provide and adapt his own general-purpose host
computers to take part in specialized network-related jobst!

There are very few LAN developments concerned with the instrumentation
sector and, so far as we know, nothing apart from our own work underway which
Is aimed at directly incorporating the Network Layer features as an inherent part of
the LAN. MININET is a true network (in the sense that communicating nodes are
capable of transferring information via one or more intermediate nodes) for
instrumentation applications. unique in the Network Layer services which are being
built in. The firm intention is to liberate the user from the confines of network
awareness and to make Figure 1 a reality.

3. FEATURES OF MININET IN BRIEF

MININET is a LAN based on packet-switching technology which is primarily

designed to satisfy the requirements of instrumentation environments. A short list
of its features includes:

Abllity to interconnect a heterogeneous population of user devices
o Catgrs for non-intelligent user devices

Choice of arbitary interconnection topology

% Multi-media links

Paves the way for easily-redirected resource sharing

6



X Supports very high communication speeds

= Ultra—~high transparency

Express treatment of short messages by means of word switching

f Flexible yet reliable

All these attributes taken together constitute a powerful aid to users and to
providers of LAN services. Elaboration on these features and why most users will
value most of them is now given.

4. THE USER DEVICES THEMSELVES

MININET is not a computer network per se, since there is no expectation that
a device directly serviced by the network have any computational capability or bear
any connection to a computer. Many humble devices will fill this bill; for instance,
we may wish to digitize a transducer voltage with an A/D converter and pass the
stream of readings across the network to a distant D/A converter feeding one
channel of a multi-channel pen recorder. At this destination other readings from

scattered sites might also contribute recordings for human assessment and action.

While MININET users are under no obligation to hook any sort of computer
onto the network (since all computational power required for operation of the
network is incorporated directly in the elements of MININET) there iIs, of course,
likewise no reason not to make every device connected via the network a computer
of some size or description. If so, we are merely landed with a special (computer
network) case. Sometimes it is desired to pass all data from transducers,
converters. and instruments first through a proximate host computer for digestion,
prior to onward transmission. Whether computers get in on the act or not (and
surely the embedding of cheap microprocessors in much equipment increases the
likelihood that they will) MININET is unlike many other LAN solutions in that it sets

no intelligence barriers. Any device dealing with digital data is welcomed with open
arms.



5. TOPOLOGY. NETWORK ELEMENTS. LINK TYPES AND RESOURCE SHARING

It is often true that a pool of small computers needs access to a pool of
peripheral devices such as line printers and plotters. Rather than spend a fortune
on attaching dedicated (under-utilized) peripherals to each mini and
microcomputer it is usually sensible to try a strategy of sharing. The connectivity
maze explodes if many computers and devices are inciuded in the scenario., so
some have sought solution by the dreaded centralization of resources. with
interconnections limited to vulnerable star. bus or ring topologies. MININET allows
any topology to be chosen. Its nodal elements can be snapped together through
point-to~point links in any desired layout, as Figure 2 exhibits. Internodal

RING <

TR

KEY =
<} Station
G Exchange
BUS K<] Connected user

devices are not
shown

Figure 2. An Example MININET Showing Possible

Connectons and Topology

distances can be up to about one kilometre.

in looking at Figure 2. the reader must supply from his imagination a great
number of user devices sprinkled about, since their explicit inclusion would
hopelessly clutter this drawing. Over 900 user devices could be supported by the
example arrangement in the diagram alone, and this is less than a quarter of a

8



single MININET’s capacityl

Figure 2 shows the two main network elements: Stations and Exchanges. A
Station is a network node which provides the user access Into MININET. An
Exchange is a node that provides. in addition, a store—and-forward relay function,
routing packets of user Iinformation towards their destinations. Each of these
sophisticated special processors contains sufficient Inherent computational
resources to function without reference to any external service or host computer.
There can be up to 64 user devices attached to each node and there can be 64
nodes in a MININET.

Each line between nodes represents a physical link which is independent of
every other such link. Some links (referred to as MININET channels) could be siow
(e.g. telephone links ) while others couid be very fast (say, optical fibre links).
This multiplicity of media is nearly unheard of in current LAN practice. despite its
obvious desirability if cost or operational factors recommend its adoption. Overall
network speed will not be reduced to the speed of the slowest of the links. as
happens with non-homogeneous rings.

in addition to point-to—point links MININET can cheerfully utilize multi-node
channels such as rings and buses. as the intermeshing in Figure 2 clearly
demonstrates. In other words. MININET is capable of providing its Level 3 service
by utilizing ring (Cambridge Ring. for example) or bus (Ethernet. for exampie)
Level 2 structures.

Returning to the issue of resource sharing. it is evident that a great many
dispersed devices constitute the resource community. Each user device can be
allocated a virtual connection through MININET to another device. on a one-to-one
basis. This is what Figure 3 indicates. Blissfully Figure 3 hides the complexity of
the detailed physical pathway used to connect devices. It is obvious that the ability
to easily redirect data flowing on the Device U - Device B virtual connection to a
Device U - Device C virtual connection will be a vaiuable asset and will, among
other things. greatly facilitate resource sharing. This can be done in MININET: a
user either instigates human intervention to the operator's console or through a
management Port connecting in a cooperating host computer which can act as a
reservation agent. In any case, a “diai~up® sort of request is issued from
Station 6. If the relevant network management entities agree that a disconnect on
the Station 6. Port 5 - Station 4, Port 3 virtual connection can be completed in

9
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Figure 3. How MININET Becomes Like Figure 1

favour of the virtual connection shown dotted to Station 7. Port 1 then this is

carried out automatically.

We have found this flexibility of use to be a great boon to MININET users.

6. SPEED. TRANSPARENCY AND THE MESSAGES

The term ‘“real-time" is highly subjective and its popular computer connotation
signifies very siow stuff compared to the needs of instrumentation. Instrumentation
LANs must meet real real-time deadlines since the data is typically highly volatile.
Many of the user transducers and instruments may have no storage capabilities

whatsoever, so there is no option but to flush away the data as fast as possible.

Also it is in the nature of instrumentation and control systems to need very
quick delivery of short messages. Suppose Device U is a flotation transducer
detecting the imminent overflow of fluid in a tank. If Device B is a computer at a

central monitoring and command centre it needs to receive Device U’s report
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immediately — perhaps that warning message would be a single data word. There
can be no hanging about to assemble other words from Device U or even other
words from the other Ports on Station 6 (the connected devices might be dormant
at that time anyhow). Express handling of that single word from Device U could be
of paramount importance. Perhaps the computer (Device B) would subsequently
issue an equally-important switch-on command word that needs to hotfoot its way
through the network to actuate a pump, Device D.

These considerations highlight the differences between this sort of environment
and the office automation style of demands. Because of the burstiness of the
Instrumentation traffic and the volatility of each individual word, the data packets
must be short. In MININET, a packet contains one 16-bit user word - so we have
a word-switching network. The complete packet conveyed in the network is 32 bits

in length. Also the trans—network delivery delay time must be low. Our design goal
is to provide transaction speeds of 100 K packets per second (so users get word-
switched transactions at up to 1.6 M bit/second)! Even more significant for us
than this high sustained throughput figure. is the goal of mean internodal (hop)
delays of about 50 microseconds.

The effect of the extraordinary transaction speed provision of MININET (not to
be confused with the high line speeds quoted for other LANS) is to roll back the

barrier of speed enormously, so that people with slow speed applications can
simply view their connections as instantaneous and direct their worries elsewhere.
People with very high speed demands (nuclear experimental control, packetized
speech processing. etc.) will be able at last to live with networking.

So high speed. by obliterating bottlenecks, promotes transparency. Equally,
word-sized packet communication aids transparency. Since the common currencies
of the instrumentation world (16-bit words) are being interchanged. one packet
carries the equivalent of a single physical transfer between a computer and a
device. This extends the concept of transparency well beyond mere code
independence. Do-it-yourself protocols at user level are not put into disarray when
communication is cranked up using the network.

7. FLEXIBILITY AND RELUIABILITY

Considerable care has been taken to ensure that a very highly reliable brand
of communication takes place In MININET. Layered precautions in bhardware,
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software and protocols give us cause for confidence that under all but the severest
of operational calamaties, users will recelve proper sequential delivery of their data
words. Heavy network loading and the harsh noise environment of the shop floor
may conspire to choke back the network throughput, but users can expect
degradation to be graceful and orderly. Inevitable link and node failures shouid be
absorbed as soft, recoverable failures. And, by virtue of a fairness criterion
imposed at all levels of the network design. no subsets of user devices “hog"®
network resources, regardless of their state.

MININET flexibility starts by the user being able to ignore the network and
believe the fiction that communication is being provided by a direct local
connection instead of through the network. if he has adopted the interface required
to be compatible with the network he can be oblivious of MININET's presence or
absence. For instance, Device U of Figure 3 could be disconnected from
Device A and plugged into Port 5 of Station 6. where a virtual connection through
to Device B might already be set up. if Device B were identical to Device A then
perfect communication could resume (assuming the slightly longer propagation

delay caused no trouble at user level). Not one iota of change to the hardware or

software would be necessitated by the presence of MININET!

This near—invisibility is alien to mainstream LAN guarantees and provides the
solid basis for operational flexibility in MININET. We are sometimes told that the
easy incorporation of a microprocessor (for handling network communication) into
every possible user device - thereby making each device network-conscious - is a
sensible alternative to our rigid requirement for zero user-invasiveness of MININET.
On at least two counts this contention is fallacious. First, network-related tasks
are complicated and many very simple homebuilt devices would be dwarfed in cost,
size and complexity by the system needed to strap onto them. (Recalling that a
full-blown MININET couid support 4096 user devices., it is outrageous to entertain
hardware and construction costs which go beyond the absolute minimum needed -
the interface.) Secondly. network-related software modifications and upgrades
wouid present an unmanageable problem. For, even Iif all such mods could be
downline broadcast (more likely, up to 4096 PROM sets would need to be
retrofitted) , how could a network manager be certain which of his many devices
were operational and on-line on the day the changes were piped down?
Transparency is not only desirable, it is nearly mandatory. Any user intelligence

should be expended only on application—-related tasks.
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Finally, further MININET flexibility comes in how the network itself can undergo
physical reconfiguration during operation. Nodes can be taken out of service or
replaced during network operation. User devices will be routinely unplugged or

plugged in without affecting the network.

8. A TASTE OF THE DETAILS

Just because MININET will be a simple system as far as the user sees. does
not mean that MININET itself is simpie. A good team has been at work for a long
time tackling the unique problems presented in every aspect of the hardware.
software, procedures and protocols. Essentially it has not been possible to adopt
anything prefabricated: everything has been built from the ground up.

The work has., from the outset, been characterized by fruitful international
collaboration. Part of the team has been based at the Polytechnic of Central
London and part at Bologna University. Readers interested in following the detailed
technical aspects of the work can be supplied some of the documents which tell
the story (e.g. [8] - {14]). The intention of this section of the paper is merely to
briefly give a flavour of some of the technical issues.

First. there is the matter of a suitable hardware interface. We have developed.
and have successfully used for more than six years. a low-cost parallel interface
called DIM [8] which is the mainstay of all our laboratory communication and is the
prime Interfacing mode for MININET. A less provincial capability will be provided
through a Port for IEEE 488 devices.

After defining the full target specification for MININET {9], much of our early
efforts went into the definition of two protocols. The MININET Link Protocol (MLP)
ensures sequential packet interchanges between nodes under all error and
retransmission eventualities [10]1. The MININET Control Protocol (MCP) secures
internode communication, never seen by the users, which permits effective
network management [11]. The overall hierarchy of concerns and service aspects
of MININET is best appreciated by referring to Figure 4.

Flow control, effected by means of Back Pressure Flow Vectors [12]., and
routing (quasi-fixed, using a tree rooted at the destination node so as to minimize
the Channel weighted distance from each node to the root {131 ) turned into
remarkably complex matters due to. among other things. our insistence on
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maintaining intrinsic packet delivery sequentiality from one end of every virtual
connection to the other.

The central ideas of MININET were shown to good effect in 1980 when, after
an extensive programme of hardware and software development. an operational
plateau was reached with a low-speed version of MININET. A good snapshot survey
of work up to that point is given in [12]. Stress testing of a small network in
London (consisting of four Stations and two Exchanges) exercised and validated
the design approaches for speeds of only 30-50 packets per second. Despite the
fact that this low-speed design is only a mere shadow of the target system (now
coming into service), the performance of a single Station in Bologna acting as a
multiplexer for computer room resource sharing has been impressive. The system
operates at around 400-500 packets per second. permitting dial-up connection
changes between four computer systems. two printers. a paper tape unit and
several terminals. Its operation (non-stop since February 1980) is crucial to the

operation of that computer room. One five-minute power supply failure and. in late
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1982, one printed circuitboard failure caused the only interruptions to perfect
service in all that time. It is strongly felt that, as a result of this soak test, there
Is every likelihood that the target MININET is being well engineered.

The key element in launching the full-specification MININET is the Station,
since it is this special-purpose communications processor which gives MININET a
big edge over LANs that suffer the bottleneck of a slow, general—-purpose
processor (user-supplied sometimes) for network entry. The functional
representation of the Station looks simple (Figure 5). Taking the lid off to look at
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Figure 5. Functional Division of the MININET Station

the structure. though. reveals that it is a complicated beast (Figure 6) which,
apart from hardware that embraces seven very dense printed circuitboard types in
the heart of the Station. also demands an elaborate real-time operating system
and much task-specific software. The Station has internal processing speeds of up
to one megapacket per second! A description of the Station is presented in [14]:
the first prototype bas been undergoing test and refinement during the final quarter
of 1982.
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9. WHAT COMES NEXT

Full-performance Stations will go into service at the Polytechnic of Central
London and at Bologna University during 1983. It will be possible to configure
meaningful interconnections (involving less than four Stations) before final
resolution of design detalls of the high-speed Exchange.

In parallel with the on—going programme of research that will result in many of
the refinements mentioned above (e.g. Cambridge Ring interface. IEEE 488 Port,
a Speech Port, etc.). the commaercial viability of a MININET will be investigated.
Operational experience with in—house laboratory users will, of course. be the first

proof of the pudding and provide invaluable guidance on future improvements.
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THE STRUCTURING OF DISTRIBUTED COMPUTING SYSTEMS

Brian Randell

Computing Laboratory,
University of Newcastle upon Tyne

ABSTRACT

Two recursive structuring principles which aid the con-
struction of sophisticated distributed computing systems are
described, namely that:

(& a distributed computing system should be functionally
equivalent to the individual computing systems of
which it is composed, even with respect to exception
reporting (i.e. the information that a system pro-
vides to its environment when it 1is unable, or
perhaps even not designed, to carry out a requested
operation), and

(ii) fault tolerant systems should be constructed from
generalised fault tolerant components. (Such com-
ponents try to tolerate, wherever appropriate, their
own faults and those reported to them by underlying
components, and also being wrongly invoked - both by
the components they interact with and the component
of which they themselves form part.)

The first principle motivates the use of a strict context-
relative naming scheme for all objects in the computing sys-
tem - taken together the principles enable the problems of
constructing coherent systems from heterogeneous components,
of incorporating fault tolerance and of providing multi-
level security, to be greatly simplified by being treated as
essentially separable logical problems.

An operational distributed computing system based on
UNIX* and designed in accordance with these principles is
used for illustration. This system has been implemented by
adding a software subsystem, known as the Newcastle Connec-
tion, to each of a set of UNIX systems, so as to construct a
distributed system which is functionally equivalent at both
the wuser and the program level to a conventional uni-
processor UNIX system. Prototype extensions of the system,

¥JNIX Is a Trademark of Bell Laboratories.
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providing multi-level security and hardware fault tolerance,
have also been produced, and are briefly described, as are
plans to incorporate non-UNIX systems into the overall dis-
tributed system.

1. INTRODUCTION

Careful structuring is of course crucial to the success of any com-
plex computing system design. Appropriately chosen internal interfaces
and system components can make the overall system much easier to
comprehend, and hence to construct, validate and, if necessary, to
modify. This applies whether one is concerned with the design of a
large software system, resident on a single computer, or the software
and hardware making up a distributed computing system.

In this latter case, allocation of separate software functions to
separate computers can make the overall structure of the system much
more explicit than when all the software is held in the memory of, and
executed by, a single computer. Thus some designers of distributed com-
puting systems have taken as their main structuring principle the iden-
tification of functions that can be so treated and their implementation
as so~-called "servers" - name servers, file servers, boot servers, mail
servers, compiler servers, server servers, etc, However, as we will
seek to show, there is much more to the topic of structuring distributed
computing systems than this. Indeed such an approach, unless carried out
in accordance with an appropriate overall system architecture, can lead
to systems which are difficult to modify or extend, for example in
response to changed workloads.

In this paper various structuring principles and techniques, some
but not all of them reasonably well known, are discussed not just in
abstract terms but rather as they relate to a distributed system that we
have designed and 1implemented at Newcastle. Our work has in fact
involved the development of a software sub-system (called the Newcastle
Connection) which can be added to each of a set of physically connected
UNIX or UNIX-lookalike systems in order to turn them into a distributed
system (which for the purposes of this paper will be called a UNIX
United system). Such a system has been operational at Newcastle for
some months on a set of PDP11s connected by a Cambridge Ring; pre-
release versions of the Connection subsystem have been made available to
a small number of other organisations for experiments using various com-
puters and versions of UNIX. Full details of UNIX United and the New-
castle Connection can be found in Brownbridge et all[1], which also sur-
veys a number of related systems developed elsewhere,

The discussion of structuring techniques forms the subject of the
next two sections of this paper, with Section 3 also including an over-
view of the structure of the UNIX United system. These sections provide
a logical framework which allows the topics of distributedness, hetero-
geneity, fault tolerance and security to be treated as essentially
separate design 1issues -~ 1in fact as the subjects of Sections U4 to 7,
respectively, with Section 8 containing brief concluding remarks.
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2. BASIC STRUCTURING TECHNIQUES

One common form of system structuring is that of division of
software and/or hardware into (or equivalently, construction of a system
out of) a set of co-existing interacting components. Such structuring
only makes sense if the interfaces between components are, so to speak,
"narrow". Such interfaces are ones which

(i) can be specified more simply than the internal construction of
the components that they separate can be described (e.g. pro-
cedures with a small number of reasonably simple parameters, or
hardware components with relatively few connecting wires), and

(1) are placed across low bandwidth information transmission paths.

This form of structuring is more easily described than applied,
since the correct choice of interfaces (presuming it is not deereed by
other factors, such as the requirement to use given pre-existing com-
ponents) often requires considerable experience and insight. For exam-
ple, distributed systems that have been structured into multiple speci-
alised servers, but with badly positioned interfaces, could be unneces-
sarily complicated and/or have very poor performance characteristics
indeed, with much time 1lost moving large amounts of information from
computer to computer, or waiting in line for particular heavily cong-
ested servers.

The technique of structuring a system by dividing it into a set of
co-existing interacting components can be contrasted with the technique
which is associated with the phrase "level of abstraction", in which one
or more components are constructed using ("on top of") other components.
This second form of structuring is commonly thought of, at 1least in
software, in linguistic terms, with an interface defining a language of
operations, data types, etc., which the lower level implements and the
upper 1level 1is programmed in. Perhaps the most notable early applica-
tion of this program structuring technique to the construction of an
operating system was Dijkstra's THE multiprogramming system[2]. 1In this
system a set of conceptually separate levels of abstraction dealt with a
set of separate issues, such as processor scheduling and memory alloca-
tion. Although this system was a multiprogramming system, the structur-
ing concepts it embodies are as relevant to distributed systems as to
centralised systems, and are used extensively in UNIX United.

3. THE PRINCIPLE OF RECURSIVE STRUCTURING

The single most important structuring principle that is reflected
in the design of UNIX United is that:

A distributed computing system should be functionally equivalent to
the individual computing systems of which it is composed, even with
respect to exception reporting (i.e. the information that a system
provides to its environment when it is unable, or perhaps even not
designed, to carry out a requested operation).

This recursive structuring principle has previously been advocated
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and 1investigated, both at Newcastle and elsewhere, in connection with
computer architectures intended specifically for VLSI implementa-
tion(3,4]. The principle aim was to design a processor architecture
which need not be affected by changes in level of integration - to get
away from the apparently inexorable progression of incompatible
microprocessor architectures, with ever bigger word lengths and instruc-
tion sets, that have accompanied the evolution of VLSI technology.
Instead, with a "recursive" architecture, as increased integration lev-
els make it possible, an ever greater number of component processors are
fitted within a single chip, so improving 1its performance without
affecting its functionality.

To the best of our knowledge, UNIX United is among the first exam-
ples, if it is not the first example, of the application of this princi-
ple to operating systems. It is perhaps worth remarking that in comput-
ing systems design an architectural concept of any real merit should at
least in principle be equally applicable at any of a number of 1levels,
e.g. microprogram, program, operating system, data base access, etc.

Adherence in the design of a distributed system to the recursive
structuring principle provides, at the level of complete computing sys-
tems, the sort of benefits that the concept of block structure in Algol
60 provided to programmers over what had been available hitherto, in
languages such as FORTRAN and COBOL. For example, it makes possible an
extremely simple means of joining existing distributed systems together
- something that would not be at all easy with, say, the Cambridge Model
Distributed System[5], because of the sort of naming and addressing
mechanisms it incorporates. Equally, and perhaps less obviously, adher-
ence to the principle facilitates the partitioning of a system into
separate pieces, a subject to which we will return in Section 7 in con-
nection with the problem of providing multi-level security.

In essence, the value of the principle is that - by definition - a
distributed system which is recursively structured in this way is inde-
finitely extensible, at least in theory. 1Indeed UNIX United has been
designed with the intention of constructing a very large distributed
system, involving both wide and local area networks.

The component systems of which a recursively structured distributed
system 1is constructed must, on the other hand, possess characteristics
that are appropriate for the distributed system as a whole - firstly,
they must provide (at 1least the appearance of) parallel processing
facilities. This even a uni-processor UNIX does, because of its ability
to allow users and their programs to initiate asynchronous processes.
In a UNIX United system such processes may, without having to be changed
in any way, 1in fact be run on separate processors, so that quasi-
parallelism is transformed into actual parallelism,

Secondly, the various objects within a system (computers, data
items, 1/0 devices, etc.) must be accessible by means which are indepen-
dent of whether the system is in fact a complete one, or merely a com-
ponent of a larger system. Thus component computers should support a
general "contextual naming" scheme for their various objects. In other
words, there should be means for introducing and entering (and leaving)
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new naming contexts, and all names must be context-relative. This is a
characteristic that UNIX possesses by virtue of its hierarchical scheme
for naming files, devices and commands, in which -directories serve as
the required contexts.

root /' -=> g
/ \
Vi \
/ N
user 1lib
/ \ / \
/ \
current / \
working --> brian fred
directory / \ / N\
/ \ / \
dir1 b c
/ \
/ \
a b

Figure 1: The UNIX Name Space

Figure 1 shows part of a typical UNIX naming hierarchy. Files,
directories, etc., can only be named relative to either the directory
which is designated as being the "current working directory" or that
which 1is designated as the "root directory". Thus "/user/brian/dir1/a"
and "diri1/a" identify the same file, the convention being that a name
starting with "/" is relative to the root directory. Objects outside a
context can be named relative to that context using the ".." convention
to indicate a parent directory. (Note that this avoids having to know
the name by which the context is known in its surrounding context.) The
names "/user/fred/b" and "../fred/b" therefore identify the same file,
the second form being a name given implicitly relative to the current
working directory rather than the root directory.

As its name implies, the current working directory can be changed.
In fact the root directory can also be re-positioned. In both cases how-
ever, this can be done only by specifying a context-relative name.
There 1is on the other hand no means of specifying an absolute name,
relative to the base of the tree, say. The base directory, which is usu-
ally but not necessarily chosen as the root directory, can itself be
recognised only by the convention that it is its own parent. Moreover
all other means provided for identifying any of the various kinds of
objects that UNIX deals with, e.g. users, processes, open files, etc.,
are related back to its contextual naming scheme.

This simple and elegant scheme of context-relative naming has been
taken advantage of in UNIX United by identifying individual component
UNIX systems with directories in a larger name space, covering the UNIX
United system as a whole. Any directory can be associated with a
separate UNIX machine - in Figure 2 we show how a UNIX United system
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spanning an entire university might be created from the machines in
various university departments, using a naming structure which matches
the departmental structure (without regard to the actual topology of the
underlying communications networks).

/ N\ /
/N /0N
1 \ /0N
A\ u2 U1 U2 U3
/N /N /N /N
/7 /N N\
/ \

\
CS EE Maths ....
i\
'
1
[}

Figure 2: A University-Wide UNIX United System

The figure implies that from within the Computing Science
Department's U1 machine, files on 1its U2 machine will normally have
names starting "/../U2" and files on the machine that the Electrical
Engineering Department has also chosen to call "U2" will need to be
identified with names starting "/../../EE/U2", (UNIX has various means
for, in effect, abbreviating lengthy names, which need not concern us
here.)

By taking advantage of UNIX's contextual naming scheme in this way,
it has been possible to produce a distributed system which is function-
ally equivalent at both the user and the program level to a conventional
uni-processor UNIX system, even with respect to error reports. All the
standard UNIX conventions, e.g. for protecting, naming and accessing
files and devices, for input/output redirection, for inter-process com-
munication, etc.,, are applicable without apparent change to the system
as a whole. All issues of inter-processor communication, networking pro-
tocols, etec., are hidden. Thus the standard UNIX facilities can be wused
without concern for the fact that several machines may be involved, and
the user need have no knowledge of what data and messages flow when, or
between which machines, or which processor actually executes any partic-
ular program.

In fact the present implementation of UNIX United runs programs on
the machine within whose file store their program code is held. Thus the
command line

/../U1/sort /,./U2/data | /../U3/summarise
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which might have been entered on a terminal logged in to U4, say, causes
the ‘sort' program to be run on machine U1, with its data being fetched
from U2 and the results being piped to the ~summarise' program running
on U3 in parallel with ‘sort'. On the other hand if U1 and U3 were
merely directories on a single UNIX machine, “sort' and ' summarise'
would have run in an interleaved fashion,

Adoption of the recursive structuring principle thus has a profound
(and highly beneficial) effect on the usability of a distributed system.
It also provides, in conjunction with the principle of the separation of
logical concerns, a number of valuable guidelines as to how to tackle
the various implementation issues, including the provision of fault
tolerance and multi-level security, and also the construction of a
coherent system from a collection of heterogeneous components.

k. DISTRIBUTEDNESS

In our view, the structuring principles discussed above make it
particularly natural to regard "distributedness" (i.e. the fact that a
system incorporates a set of autonomous yet interacting computers) as
providing a design problem which is clearly separable from various other
issues, most notably fault tolerance, with which many papers and designs
often 1link it apparently inextricably, e.g. Popek[6]. We regard the
problem as involving two principal issues, namely those of:

&) routing each request for activity to the appropriate component
computing system, from the one in which it originated, and

(ii) preserving the appearance of a single overall recursively struc-
tured name space, and hiding any local addressing mechanisms used
inside the component computing systems in support of this name
space.

The provision of atomic actions, for example, is regarded as a
separate issue (addressed in Section 6), since such facilities are at
least in principle of as much relevance to a computing system which
merely provides the appearance of parallel (and hence possibly interfer-
ing) processes using a single processor as one in which there is actual
parallelism. In other words, atomic actions are as relevant to a time
sharing system as to a distributed system.

We have accordingly tried to identify the minimum set of facilities
that are needed for the provision of distributedness (in a recursively
structured system) and to implement them in a clearly separate mechan-
ism. UNIX United has in fact been implemented merely by adding a sub-
system, in the form of a software layer, to an otherwise unchanged UNIX
system, In direct analogy with the THE hierarchy of levels of abstrac-
tion, other equally strictly distinguished software layers, relevant to
other separable 1logical concerns, can be placed above (or below) the
Newcastle Connection layer, as appropriate.

The positioning of the Connection layer is governed by the struc-

ture of UNIX itself., In UNIX all user processes and many operating sys-
tem facilities (such as the 'shell' command language interpreter) are
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run as separate time-shared processes, able to interact with each other,
and the outside world, only by means of ' system calls' - effectively
procedure calls on the resident nucleus of the operating system, the
UNIX kernel. The Connection is a transparent layer that is inserted
between the kernel and the processes, It is transparent in the sense
that from above it is functionally indistinguishable from the kernel and
from below it appears to be a set of normal user processes. It filters
out system calls that have to be re-directed to another UNIX system (for
example, because they concern files or devices on that system), and
accepts calls that have been directed to it from other systems. Thus
processes on different UNIX machines can interact in exactly the same
way as processes on a single machine. (There is a quite separate 1issue
of whether UNIX needs additional forms of inter-process communication,
e.g. for synchronous message passing between unrelated processes.
Clearly, if such facilities were added to the UNIX kernel the Connection
layer would have to be extended in order to ensure that they worked for
processes that happened to be on different machines.)

Since system calls act like procedure calls, communication between
the Connection 1layers on the various systems is based on the use of a
remote procedure call protocol{7], and is shown schematically below.

iUser programs,
inon-resident
IUNIX software

1
i

iUser programs, i
inon-resident i
{UNIX software |
remote procedure |- |
1
]
]
]
|

iNewcastle Connectioni< >iNewcastle Connection
i calls !
{UNIX Kernel tUNIX Kernel

UNIX1 UNIX2

Figure 3: The Position of the Connection Layer

A slightly more detailed picture of the structure of the system would
reveal that communications actually occur at the hardware level, and
that the kernel includes means for handling 1low level communications
protocols. However all such 1issues are hidden from the user of UNIX
United.

It is of course still left to each UNIX programmer to choose to
implement a given algorithm in the form of a single process, or alterna-
tively as a set of interacting processes, so as to take advantage of the
quasi-parallelism in UNIX, and perhaps real parallelism in UNIX United.
Thus the existence of the Newcastle Connection still leaves open the
question of whether a centralised or (logically) distributed implementa-
tion of, say, a data base manager is most appropriate in given cir-
cumstances - physical distribution has however been subsumed within log-
ical distribution.
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.1, Names and Addresses

In a recursively structured system each component computer
possesses what appears to be a complete name space, but which in fact is
just part of the overall name space. Thus one of the consequences of
distributedness is the requirement for some means of combining these
component name spaces,

The technique that we have evolved for this purpose in UNIX United
is as follows. Each component UNIX system stores just a part of the
overall naming structure, In fact each system stores the representation
of its own section of the naming tree, However each system also stores a
copy of those parts of the overall naming structure that relate it to
those other UNIX systems with which it is directly connected in naming
terms (i.e. which can be reached via a traversal of the naming tree
without passing through a node representing another UNIX system).

(base) .
7' N\

Figure U4: Representing the Name Space

In Figure Y4, if "directories" A, B and C are associated with separate
UNIX systems, the parts of the tree representation stored in each system
are as follows:

UNIX-A: A,B,E,F,(base)
UNIX-B: A,B,C,D,(base)
UNIX-C: B,C,G,H

It is assumed that shared parts of the naming tree are agreed to by
the administrators of each of the various systems involved, and do not
require frequent modification - a major modification of the UNIX United
naming structure can be as disruptive as a major modification of the
naming structure inside a single UNIX system since names stored in files
or incorporated in programs (or even just known to users) may be invali-
dated.

It is not reasonable to assume that all accessing of all types of

object in a distributed system will be performed using general contex-
tual names each and every time. Rather, in the interests of efficiency,
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and in order to exploit actual hardware provisions, names will when
appropriate be bound to what are effectively addresses, of limited scope
and validity, so that repeated accesses to a given object can then be
made by just using its address.

For example, in UNIX the act of opening a file (identified by a
contextual name) causes what is effectively an address, local to the
current process, to be assigned for use in subsequent accesses to that
file. This address (a UNIX "file descriptor") will be valid only until
the file is closed. If the file is to be accessed by a process on a
remote system, a file descriptor which is valid on that system must be
used. However this file descriptor must be associated with the relevant
file descriptor on the system holding the file. 1In UNIX United this
task is carried out within the Connection layer, using appropriate map-
ping tables. (There 1is of course more to the subject of names and
addresses than this - see for example Saltzer[8]. Indeed the facilities
in UNIX for name binding have some inadequacies. However the job of the
Connection layer is to produce a fully compatible distributed version of
UNIX, and not to "improve" its functionality in any way.)

4.2, And AsS For Name Servers ..

Given the comments in the Introduction about structuring a distri-
buted system out of specialised servers on separate computers it is
perhaps worth describing explicitly how one such server concept, that of
a "name server", fits into the UNIX United scheme. The basic function of
a name server is to provide a central repository for information regard-
ing the physical addresses of the various other components of the dis-
tributed system, information that can then be used to enable these com-
ponents to be accessed directly.

A UNIX United system can easily be set up, using a Ring network,
say, to work in just this way, as is illustrated in Figure 5.

NS NS
i / \
/ \
i i / \
Us-i i-U1 7/ \
i i / \
Ul-| i-u2 / \
i ! / \
U1 v2 ses U5
i /N /N /\
U3

Figure 5: A Name Server

Here all but one of the component UNIX systems are made subservient, in
terms of the global naming tree, to the one other system, labelled NS in
the diagrams. This system will contain hardware addresses (ring port
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numbers) for all of the others, each of which will hold the hardware
address of just the NS system. If U1, say, needs to access a file on U2
it can ‘open' the file using a name which starts "/../U2" - hence the
name of this section! The ‘open' system call will have to access NS in
order to check permissions, but will in due course return the port
number of U2 so that thereafter reads and writes to the file will go
directly to U2, and not involve NS.

The name server idea is thus seen as just a specialised usage of
the general UNIX United scheme, and in particular of the route optimisa-
tion that the Connection implements amongst a set of UNIX systems that
are all in the same hardware address space, be it a Ring, an Ethernet,
an X25 network, or whatever.

5. HETEROGENEITY

Much work on distributed systems, particularly on network proto-
cols, mixes up two separate issues, namely distributedness and hetero-
geneity. Thus typical file transfer protocols, virtual terminal proto-
cols, etc,, are as much concerned with incompatibilities between comput-
ing systems as the fact that several computing systems are involved.
Our approach, based on isolating and then separately solving the problem
of distributedness, would appear to be of relevance solely to computing
systems composed of identical component computing systems. This is not
the case - the components just have to be functionally equivalent to
each other, a task that 1is made easier by the fact that there are
defined ways of responding to system calls which cannot be carried out,
for whatever reason.

For example, one could connect together UNIX systems which have
little or no file storage with other systems that have a great deal -
i,e. construct a UNIX United system out of workstations and file
servers, Almost all that is necessary is to set up the naming tree prop-
erly.

Moreover since the Connection layer is independent of the internals .
of the UNIX kernel, it is not even necessary for the Connection layer to
have a complete kernel underneath it - all that is needed is a kernel
that can respond properly (even if only with exception messages) to the
various sorts of system call that will penetrate down through, or are
needed to support, the Connection layer. 1In fact the Connection layer
itself can be economised on, if for example it is mounted on a worksta-
tion that serves as little more than a screen editor, say, and so has
only a very limited variety of interactions with the rest of the UNIX
United system. All that is necessary is adherence to the general format
of the inter-machine system call protocol used by the Newcastle Connec-
tion, even if most types of call are responded to only by exception
reports. (In fact when a UNIX United system is implemented using a
number of different types of computer, low level incompatibilities such
as differing number representations might not be fully hidden from
users.) '

Thus the syntax and semantics of this protocol assume a consider-
able significance, since it can be used as the unifying factor in a very
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general yet extremely simple scheme for putting together sophisticated
distributed systems out of a variety of size and type of component - an
analogy we like to make is that the protocol operates like the scheme of
standard-size dimples that allow a variety of shapes of LEGO children's
building blocks to be connected together into a coherent whole. In par-
ticular it can be seen as unifying the two apparently distinct forms of
structuring discussed in Section 2, since essentially the same interface
is used both to co-existing and to underlying components.

In fact one example of the use of specialised components was men-
tioned earlier, 1i.e. the name server. However, though the name server
was discussed as though it was a standard UNIX system (perhaps even with
its own files and processing activities) this does not have to be the
case. Rather, if it is functioning solely as a name server it could
well make sense for it to have been implemented specially, and not based
on a UNIX kernel, so long as it responds properly, if only with excep-
tion messages, to the various UNIX system calls.

Another specialised component that is being investigated at Newcas-
tle is a terminal concentrator. The concentrator is designed to serve as
part of an existing campus network, serving various sorts of host com-
puting systems, and is 1in no way related to UNIX. However it is now
being extended so as to have a (very limited) remote UNIX system call
interface, so that it can be linked to a UNIX United system, from which
it will appear to be a conventional UNIX system whose naming tree con-
tains just terminals.

Another development that is being considered is that of providing a
limited remote UNIX system call interface on a totally different operat-
ing system. Initially just the basic system calls concerned with file
accessing would be supported, and mapped into equivalent facilities
within this other system. The simplicity and extensibility of this
approach contrast favourably with the more conventional one of having
each operating system support a general file transfer protocol, particu-
larly since it enables a remote file to be accessed and updated selec-
tively.

Perhaps the most ambitious approach to the problems of linking
heterogeneous computing systems together is the Open Systems Intercon-
nection (0SI) schemel[9]. This involves the creation and definition of
what are hoped will prove widely acceptable abstractions of a number of
concepts that exist in differing forms in different systems, such as
files, processes and transactions. 1In fact the OSI scheme can be viewed
as an attempt to specify an abstract operating system, unfortunately one
whose adequacy and merits cannot be known until its functions have been
mapped successfully on to one or more probably uncongenial host operat-
ing systems, In comparison our UNIX-based approach provides a form of
"coherent heterogeneity" based on a proven set of abstractions, already
successfully implemented on a wide and ever-growing variety of different
hardware. Moreover it is our belief that the UNIX system calls are suf-
ficiently simple, yet general, to be used as a common basis on to which

LEGO is a Registered Trademark of LEGO Systems A/S.
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one should be able to map many of the facilities of a wide variety of
different .operating systems. Thus 1in relation to OSI's famous seven
levels of protocols, one could say that the present UNIX United hides
the bottom four levels and in some senses does away with the need for
the other three, substituting for them the full UNIX system call inter-
face, (In fact it would be possible to implement the Newcastle Connec-
tion at various other levels of the 0SI model.)

6. FAULT TOLERANCE

System structuring techniques play a very large role in the provi-
sion of effective fault tolerance, as is discussed at length by Anderson
and Leel10]. This describes our (of course!) recursive approach to the
construction of fault tolerant systems out of fault tolerant components,
such that, at least in principle, each level of component can contain
facilities for trying to tolerate:

(1) faults in underlying components that are reported to it,

(ii) its own faults, and

(iii) faulty invocation of the component by its environment, i.e. the
enclosing component, or a co-existing component with which it is
interacting.

Compared to a centralized system, a distributed system provides new
opportunities for the provision of high reliability by means of fault
tolerance, and also new types of fault that could impair reliability
unless properly tolerated. These are logically separable issues and:
should be treated as such. Moreover they are also separable from any
opportunities or requirements for fault tolerance that would exist in an
equivalent non-distributed system.

In line with this attitude regarding the separation of logical con-
cerns, UNIX United is structured so that the only reliability problems
which are treated within the Connection 1layer are those which arise
specifically from the fact that the system is distributed. Nevertheless
the internal structure of the Connection layer is itself worthy of note,

The Connection layer uses a remote procedure call (rpe) protocol
which .addresses the problems caused by breakdowns ("crashes") of the
component computers and communication links, and the occasional loss of
messages across the links. 1In these circumstances it could be all too
easy for a remote procedure to be accidentally executed several times -
our rpc protocol attempts to prevent this and to achieve an "exactly
once" semantics[11]. There remain the problems of the computer which is
trying to make a (perhaps related) series of remote procedure calls
itself crashing on occasion, or of the Connection layer, despite its
best efforts, being wunable to achieve all the requested calls. These
problems are not regarded as the province of the Connection layer.
Rather they are essentially similar to problems that can arise in a cen-
tralized (multi-programming or time-sharing) system - problems for which
recoverable atomic actions (ones which are guaranteed either to succeed
or to do nothing) provide an answer., (All of these issues are treated in
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much greater detail in papers relating to the rpec protocol.)[12,13]

Though it follows from application of the recursive structuring
principle, it is worth mentioning explicitly that the Connection layer
reports any errors that it cannot recover from in terms similar to those
used by the UNIX kernel. Thus it reports merely that a file cannot be
opened, rather than, say, that the communications line to the machine
containing the file is not operational. (In practice, facilities to aid
fault location and repair may well be needed, but this is regarded as a

separate 1issue from that of exception reporting for purposes of fault
tolerance.)

Support for atomic actions per se is not regarded as part of UNIX
United, since it would augment the functionality of UNIX itself. However
an appropriate further software layer is being developed which will pro-
vide UNIX, and hence UNIX United, with atomic actions which are recover-
able, at least with respect to file usage. It is based on the Distri-
buted Recoverable File System[14] developed earlier at Newcastle for
UNIX. In essence the new layer will just provide three additional system
calls:

(i) Establish Recovery Point (i.e. start state-saving, and 1locking
files),

(ii) Discard Recovery Point (i.e. discard saved state, and unlock
relevant files), and

(iii) Restore Recovery Point (i.e, go back to 1latest uncommitted
recovery point).

Adding this layer to the system is best done by placing it between
the kernel and the Connection layer, whose provisions will therefore
have to be augmented to deal with the three additional system calls.
(In the case of the Discard Recovery Point call, it might well be
thought necessary to incorporate a simplified form of "two-phase commit
protocol"[15], which would involve the provision of another system call
"Prepare to Discard Recovery Point" by the Atomic Action 1layer. This
should minimise the risk of having some but not all the component UNIX
systems complete their Discard Recovery Point calls.) The resulting

software structure for each component computer will be as shown in Fig-
ure 6 below:
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Figure 6 : Fault Tolerance Layers

Another well known form of fault tolerance is that of using repli-
cation and majority voting, -typically with the aim of masking opera-
tional hardware faults. A prototype extension to UNIX United has
already been constructed which wuses this approach. It has involved
adding an additional transparent software sub-system (the Modular Redun-
dancy layer) to each of a number of UNIX systems on top of their Connec-
tion layers, Copies of a conventional application program and its files
can then be 1loaded onto each of three systems and run so that file
accesses are synchronized and voted upon. Any malfunctioning computer
so 1identified by the voting is automatically switched out and in due
course another switched in to replace it.

This of course is not a new idea - a well-known computing system
using this technique is the SIFT system[16]. The point is that the
technique is very simple to implement when it is separated from issues
of distributedness., Needless to say, given that the Modular Redundancy
layer is transparent, one can envisage using both it and the Atomic
Action layer together, the latter having the task of trying to cope with
situations where the problem is not a hardware fault, but one arising,
say, from erroneous input data.

The significance of the simplicity, generality and mutual indepen-
dence of these various mechanisms when used in conjunction with the
notion of recursive structuring is considerable. Complexity is one of
the major impediments to reliability, so that complicated and needlessly
interdependent fault tolerance mechanisms are more likely to reduce than
to improve -reliability, because of the danger of situations arising,
particularly during error recovery and system reconfiguration, that have
not been catered for properly.
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T. SECURITY

The recursive structuring principle implies that the security pro-
visions existing in component computing systems must be mirrored exactly
by the distributed system as a whole. In fact UNIX United allows each
constituent UNIX system to have its own named set of users, user groups
and user password file, its own system administrator ("super-user"),
etc. Each constituent system has the responsibility for authenticating
(by user identifier and password) any user who attempts to log in to
that system. Any Connection layer, when receiving messages containing
system calls diverted to it by the Connection layer on some other sys-
tem, then only needs to authenticate the identity of the system which is
the source of its messages.

From an individual user's point of view, therefore, though he might
have needed to negotiate not Jjust with one but with several system
administrators for usage rights beforehand, access to the whole UNIX
United system is via a single conventional “login'. Subject to the
rights given to him by the various system administrators, he will then
be governed by, and able to make normal use of, the standard UNIX file
protection control mechanisms in his accessing of the entire distributed
file system. 1In particular there is no need for him to log in, or pro-
vide passwords, to any of the remote systems that his commands or pro-
grams happen to use. This approach therefore preserves the appearance
of a totally unified system, without abrogating the rights and responsi-
bilities of individual system administrators.

Though the standard UNIX security facilities, when carefully used,
are as good if not better than those of most other time-sharing systems,
they are quite inadequate against determined attack by would-be penetra-
tors. There are many situations where the potential costs of a security
violation, and the danger of deliberate attempts to subvert the security
controls, are so great that positive assurances regarding the security
of a system are required. (This is particularly the case if a multi-
level security policy is involved,) It then does not suffice merely to
have "plugged" all the various gaps that previous penetrations have
revealed. Rather, a compelling argument guaranteeing that the system
has been designed and implemented so as to adhere to the required secu-
rity policy must be supplied. In these circumstances it is essential to
construct the system in such a way that the mechanisms on which security
depends are clearly identified, and simple enough for their adequacy to
be manifest - ideally for their correctness, with respect to some formal
statement of the required security policy, to be proven formally,
perhaps by, or with the aid of, a program verification system.
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Figure 7: Multi-level Secure UNIX

Two important types of security mechanism are those that prevent
information flow, and those that monitor and mediate such information
flow as is allowed, between system components that cannot be trusted to
adhere to the security policy, perhaps because of their complexity. The
recursive structuring technique can readily be used to construct a sys-
tem that provides multi-level security, by allocating separate
(untrusted) general-purpose component computers to different security
levels and implementing appropriate (trusted) security mechanisms as
transparent additions to the inter-processor communication 1links. A
prototype of such a system has in fact already been constructed (indeed
in just a few days) based on UNIX United, using encryption-based secu-
rity mechanisms (called "Z-boxes") to prevent information flow between
security regimes, and to control the types of security reclassification
allowed. This system is portrayed in Figure 7 above.

Construction of a much more sophisticated version of this system is
now planned, a description of which is given in Rushby and Randelll17].
The system structuring techniques involved enable us to have some confi-
dence that the design of the security-relevant aspects of the system
will be simple enough to be amenable to formal specification and verifi-
cation. There 1is also every reason to believe that the system will not
suffer the sort of severe performance degradation that has resulted when
attempts have been made to provide multi-level security in a general
purpose operating system running on a single computer, Furthermore,
there should be nothing to prevent the immediate incorporation of the
sort of fault tolerance mechanisms described earlier, without impacting
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the trustworthiness of the security mechanisms, due to the careful
separation of the various issues involved.

8. CONCLUSIORS

In our view, the ideas that we have tried to encapsulate in the
form of two "structuring principles" provide a surprisingly effective
and constructive methodology for the design of distributed systems, and
for dealing with issues such as reliability and security. Moreover they
give a means of making a coherent system out of a heterogeneous set of
components - in part by hiding the heterogeneity behind a facade of
homogeneity, in part by treating it as exceptional behaviour for which
fault tolerance provisions can be made.

Certainly our experience with UNIX United provides what we regard
as strong evidence for the merits of this methodology. As reported
inf{1], a very useful distributed system, enabling full remote file and
device access, was constructed within a month of starting implementation
of the Connection layer. Needless to say, the fact that - due to the
transparency of the Newcastle Connection - it was not necessary to
modifly or in most cases even understand any existing operating system or
user program source code was a great help! 1In a very few months this
system had been extended to cover remote execution, multiple sets of
users, etec., two prototype extensions of the system, for multi-level
security and hardware fault tolerance, had been successfully demon-
strated, and the design of others commenced., However we still feel we
have barely begun to explore all the many possible ramifications of the
scheme, and of course there are many evaluation exercises and engineer-
ing improvements to be investigated.

What has been presented here as a discussion of structuring princi-
ples for the design of distributed computing systems could equally well
be viewed as a rationale for the design of UNIX United. It would be
nice to be able to report that the process of designing UNIX United had
been guided, at all times, by explicit recognition of these principles.
In practice the above account is as much a rationalisation of, as it is
a rationale for, the design of UNIX United. The various structuring
ideas, in particular those on fault tolerant components and on recursive
architectures, had already been a subject of much work at Newcastle, but
the work that led to the specification and detailed design of the New-
castle Connection has contributed to, as well as greatly benefitted
from, our understanding of system structuring issues. Equally it owes
much to the external form (if not internal design) of UNIX itself - the
only operating system we know of which is at all close to being an ideal
component of a recursively structured distributed computing system.
Nevertheless we would not wish to give the impression that UNIX is per-
fect, and that these structuring ideas are relevant only to UNIX and
UNIX~1like systems. Rather, we ©believe that the ideas provide an
interesting perspective from which to judge the merits of existing or
planned systems, and can help to guide further work on the design of
operating systems and distributed systems.
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THE STRUCTURE OF

DISTRIBUTED COMPUTING SYSTEMS



A "STRUCTURED” DISTRIBUTED COMPUTING SYSTEM

BOOT

SERVER

NAME
SERVER

BOOT
SERVER

SERVER
SERVER

COMPILER]
SERVER |

PROCESSING
SERVER




BASIC STRUCTURING TECHNIQUES

CO-EXISTING INTERACTING COMPONENTS

LEVELS OF ABSTRACTION

INTERFACE

(LINGUISTIC) INTERFACES

® GOOD STRUCTURING <> “NARROW" INTERFACES
® SEPARABLE LOGICAL CONCERNS SHOULD BE IDENTIFIED, AND

TREATED SEPARATELY

/DISTRIBUTEDNESS/FAULT TOLERANCE/HETEROGENEITY/SECURITY/ -

ARE ALL SEPARABLE.



A RECURSIVE STRUCTURING PRINCIPLE

A DISTRIBUTED COMPUTING SYSTEM SHOULD BE FUNCTIONALLY EQUIVALENT
TO THE INDIVIDUAL COMPUTING SYSTEMS OF WHICH IT IS COMPOSED.,
EVEN WITH RESPECT TO EXCEPTION REPORTING.,

(IE THE INFORMATION THAT A SYSTEM PROVIDES TO ITS ENVIRONMENT
WHEN IT IS UNABLE, OR PERHAPS EVEN NOT DESIGNED., TO CARRY OUT
A REQUESTED OPERATION,)



RECURSIVE MACHINE. PHYSICAL SYSTEM ORGANIZATION:

FIRST LEVEL external bus
SECOND LEVEL
Thirdg level 1 f ]
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external bus

. LOGICAL SYSTEM ORGANIZATION:
IP FIRST LEVEL

SECOND LEVEL

AT

Fourth level




ADHERENCE TO THE RECURSIVE STRUCTURING PRINCIPLE:

SIMPLIFIES THE TASK OF JOINING (EVEN DISTRIBUTED) SYSTEMS

i

TOGETHER

- VIZ BLOCK STRUCTURE IN PROGRAMMING LANGUAGES
2, MEANS THAT A SYSTEM IS INDEFINITELY EXTENSIBLE
BUT REQUIRES COMPONENT COMPUTERS TO PROVIDE:
1. (AT LEAST THE APPEARANCE OF) PARALLEL PROCESSING

CONTEXTUAL NAMING



CONTEXTUAL NAMING

REQUIRES MEANS FOR INTRODUCING AND ENTERING (AND LEAVING) NEW
NAMING CONTEXTS

AND THAT Ag_l: NAMES FOR OBJECTS IN THE COMPUTING SYSTEM MUST
BE CONTEXT-RELATIVE

(A GIVEN SYSTEM NEED NOT KNOW WHETHER IT IS JUST A COMPONENT IN
SOME LARGER SYSTEM)



THE UNIX CONTEXTUAL NAME SPACE

rooT '/’ //////a\\\\\\
USER LIB
CURRENT \\\\\\\\
WORKING ——> BRIAN FRED
DIRECTORY //////L\\\ a\\\\\\

A B
/USER/BRIAN/DIR]/A = DIR]/A
/USER/FRED/B = . ./FRED/B



A UNIVERSITY-WIDE UNIX UNITED SYSTEM

AN

E
Ul uz Ul U2 U3

AWAYAVAYA

FROM WITHIN CS’s Ul MACHINE

MATHS

/../U2 1DENTIFIES THE U2 MACHINE IN CS

/../../EE/U2 THE U2 MACHINE IN EE

(UNIX MACHINES ARE MADE TO LOOK LIKE DIRECTORIES., IE - CONTEXTS -
IN A LARGER UNIX SYSTEM, “UNIX UNITED")



UNIX UNITED

A DISTRIBUTED SYSTEM WHICH IS INDISTINGUISHABLE AT USER AND
PROGRAM LEVEL FROM A UNI-PROCESSOR UNIX

FILE ACCESS, DEVICE ‘USAGE, [/0 REDIRECTION, INTER-PROCESS
COMMUNICATIONS., CHANGE DIRECTORY. ETC ALL WORK ACROSS MULTIPLE
MACHINES

ALL ISSUES OF INTER-PROCESSOR COMMUNICATION AND OF NETWORK
PROTOCOLS HIDDEN

EXISTING PROGRAMS USING MULTIPLE PROCESSES CAN., WITHOUT BEING
CHANGED., USE MULTIPLE PROCESSORS



DISTRIBUTEDNESS

(- THE PROBLEM THAT ARISES THROUGH HAVING MULTIPLE AUTONOMOUS
COMPUTERS INTERACTING) '

e A LOGICAL PROBLEM SEPARATE FROM, EG FAULT TOLERANCE

TWO PRINCIPLE ISSUES:

® ROUTING REQUESTS FOR ACTIVITY TO APPROPRIATE COMPONENT
COMPUTING SYSTEM., FROM THE ONE IN WHICH IT ORIGINATED

® PRESERVING THE APPEARANCE OF A SINGLE (RECURSIVELY STRUCTURED)
NAME SPACE., AND HIDING ANY LOCAL ADDRESSING



THE NEWCASTLE CONNECTION

A TRANSPARENT SOFTWARE LAYER WHICH HANDLES ALL (AND ONLY) THE
PROBLEMS OF DISTRIBUTEDNESS

USER PROGRAMS. USER PROGRAMS
NON-RESIDENT NON-RESIDENT
UNIX SOFTWARE UNIX SOFTWARE
REMOTE
NEWCASTLE CONNECTION [&— NEWCASTLE CONNECTION
PROCEDURE
UNIX KERNEL CALLS UNIX KERNEL

® FROM ABOVE., LOOKS LIKE THE KERNEL - FROM BELOW., LOOKS LIKE
A SET OF USER PROCESSES

® NO CHANGE NEEDED TO EXISTING SOURCE CODE - UNIX OR USER
PROGRAMS



UNIX UNITED

(BASE) O - UNIX SYSTEM

REPRESENTING THE NAME SPACE

UNIX A UNIX B UNIX C

(BASE)/\ (BASE)

E////A\\\\F B A

AN
N\,

ACTUAL PORTION OF NAMING TREE (1-NODES) STORED ON EACH MACHINE



A NAME SERVER

NS NS
I
U5 Ul
Ul U2 U3 U U5
U U2
U3
COMMUNICATIONS STRUCTURE NAME STRUCTURE

NS CONTAINS HARDWARE ADDRESSES FOR ALL THE OTHER MACHINES. THEY
EACH HAVE ONLY ITS ADDRESS (RING PORT NO.)

Ul Accesses FILES IN U2 usine /../U2 - PERMISSION TO OPEN A FILE
INVOLVES NS, LATER READING AND WRITING DOES NOT.



HETEROGENEITY

THE COMPONENT COMPUTERS JUST HAVE TO APPEAR SIMILAR - AND CAN RETURN
EXCEPTION MESSAGES TO SYSTEM CALLS THEY CANNOT SUPPORT

DISK |
SERVER

' TERMINAL
WORK
lSTATION \, e {CONCENTRATOR

FOREIGN NUMBER
o/s CRUNCHER

EACH BOX LOOKS LIKE A UNIX SYSTEM TO THE OTHERS!

"A VIRTUAL SYSTEM CALL PROTOCOL”



UNIX UNITED

VERSUS

OPEN SYSTEMS INTERCONNECTION MODEL

UNIX UNITED HIDES THE BOTTOM THREE OF OSI'S SEVEN LAYERS
OF PROTOCOLS

AND LARGELY DCES AWAY WITH THE NEED FOR THE OTHERS -
REPLACING THEM WITH UNIX'S SYSTEM CALLS



A FAULT TOLERANCE PRINCIPLE

FAULT TOLERANT SYSTEMS SHOULD BE CONSTRUCTED FROM GENERALISED
FAULT TOLERANT COMPONENTS

(sucH COMPONENTS TRY TO TOLERATE., WHEREVER APPROPRIATE., THEIR
OWN FAULTS AND THOSE REPORTED TO THEM BY UNDERLYING COMPONENTS.
AND ALSO BEING WRONGLY INVOKED BY THE COMPONENTS THEY INTERACT
WITH AND THE COMPONENT OF WHICH THEY THEMSELVES FORM PART.)



FAULT TOLERANCE

1. DISTRIBUTED SYSTEMS PROVIDE NEW OPPORTUNITIES FOR
OBTAINING HIGH RELIABILITY THROUGH FAULT TOLERANCE

PLUS
2. NEW TYPES OF FAULT
3, THESE ARE TWO SEPARATE ISSUES., AND ARE ALSO SEPARATE FROM

ANY OPPORTUNITIES OR REQUIREMENTS FOR FAULT TOLERANCE THAT
WOULD EXIST IN AN EQUIVALENT CENTRALIZED SYSTEM.

THE NEWCASTLE CONNECTION DEALS WITH ITEM 2 ONLY,



FAULT TOLERANCE WITHIN THE CONNECTION

THE CONNECTION USESA REMOTE PROCEDURE CALL PROTOCOL TO ACHIEVE
“EXACTLY ONCE"” SEMANTICS:

e TO GUARANTEE THAT SYSTEM CALLS ARE NOT ACCIDENTALLY REPEATED
BECAUSE OF THE CALLED MACHINE CRASHING AND RESTARTING. OR

COMMUNICATIONS PROBLEMS.

® IT DOES NOT CONCERN ITSELF WITH PROBLEMS ARISING FROM CRASHES
OF THE CALLING MACHINE - THIS IS WHAT ATOMIC ACTIONS ARE FOR -

AND THEY ARE EQUALLY NECESSARY ON A TIME-SHARING MACHINE
(IE ORDINARY UNIX)



FAULT TOLERANCE LAYERS

USER PROCESSES. ETC

NEWCASTLE CONNECTION, WITH
RPC AND 2-PHASE COMMIT

ATOMIC ACTION SUPPORT

UNIX KERNEL

ATOMIC ACTION SUPPORT PROVIDES EXTRA SYSTEM CALLS

ESTABLISH RECOVERY POINT

(PREPARE TO DISCARD RECOVERY POINT)
DISCARD RECOVERY POINT

RETURN TO RECOVERY POINT

SLIGHTLY EXTENDED NEWCASTLE CONNECTION MAKES THEM WORK FOR A
DISTRIBUTED PROCESS.



MASKING HARDWARE FAULTS

THE CONNECTION LAYER HIDES THE LOCATION OF PROCESSING AND STORAGE -
A FURTHER (SIMPLE) TASK TO HIDE THEIR REPLICATION

USER PROCESS USER PROCESS USER PROCESS
TMR LAYER TMR LAYER [ 3TMR LAYER
CONNECT ION CONNECTION CONNECTION
KERNEL KERNEL KERNEL

® TMR LAYER PERFORMS SYNCHRONIZATION; MAJORITY VOTING., AND
RECONFIGURATION

® USER PROGRAM UNCHANGED - BUT PROVIDED WITH HIGHLY RELIABLE
HARDWARE



SECURITY

UNIX UNITED ALLOWS EACH UNIX SYSTEM TO HAVE ITS OWN
ADMINISTRATOR, STILL IN CONTROL OF ACCESS TO HIS MACHINE

NEVERTHELESS., A USER ONLY LOGS IN ONCE, TO WHOLE SYSTEM.
AND IS THEN SUBJECT TO NORMAL UNIX ACCESS CONTROLS

MILITARY-TYPE SECURITY REQUIRES FORMAL CERTIFICATION OF
SECURITY MECHANISMS - EVEN UNIX MUCH TOO COMPLICATED

THE RECURSIVE STRUCTURING PRINCIPLE ALLOWS ONE TO SUBDIVIDE.
AS WELL AS TO COMBINE, SYSTEMS



MULTI LEVEL SECURE UNIX

TOP SECRET
UNIX
UNCLASSIFIED (}9
UNIX
¥
SECRET
UNTX

CONTRUCTED FROM

Z-BOXES

(ENCRYPTION, ETC)

SECRET
UNIX

g

®

ECURE
FILE SERVER

UNCLASSIFIED
UNIX

TRUSTED COMPONENTS - FOR PREVENTING INFORMATION FLOW., AND
FORHMQNITQRING/MEDIATING PERMITTED INFORMATION FLOW.

(SIMPLE ENOUGH TO CERTIFY)

UNTRUSTED COMPONENTS - GENERAL PURPOSE UNIX SYSTEM., WORKING

AT A SINGLE SECURITY LEVEL

IN TOTAL., LOOKING LIKE A SINGLE CONVENTIONAL UNIX SYSTEM!




THE STRUCTURING PRINCIPLES:

GREATLY SIMPLIFY CONSTRUCTION OF DISTRIBUTED SYSTEMS, BY
ALLOWING MANY ISSUES TO BE DEALT WITH SEPARATELY

THIS IS NOT JUST THEORY:

® PHASE 1 UNIX UNITED (REMOTE FILE AND DEVICE ACCESS) BUILT
IN FOUR WEEKS

® REMOTE EXECUTION, MULTIPLE USER GROUPS., ETC ADDED IN FEW
MONTHS

® PROTOTYPE MULTI-LEVEL SECURE UNIX CONSTRUCTED IN LESS THAN
A WEEK

® TMR-UNIX IN A FEW MONTHS

® SYSTEM NOW BEING MADE AVAILABLE TO OTHERS



CLOSELY COUPLED SYSTEMS

R. L. Grimsdale
University of Sussex.

The first part of this papver describes the general
concepts of closely-coupled systems and the second part reports
on some examples of closely-coupled systems which have been
developed in the U.K.

PART I CONCEPTS

Introduction

A closely-coupled system may be defined as a collection
of linked processor and memory modules which collaboratively
execute a single job under one overall management. A loosely-
coupled system, on the other hand, is a set of linked computers
each under the control of a separate user and each executing a
distinct program, but with the several computers communicating
or making access to a common database from time to time. An
example of a loosely-coupled system is a collection of personal
computers distributed around a building linked together by a
communication channel. The individual computers may be used
for quite different purposes. The programs or users may send
messages to one another or access a shared filestore. There
is no central management although certain standards for data
exchange must be adopted.

In our definition of a closely-coupled system there is an
underlying concept of a single activity, sub-divided into a
collection of tasks which execute in parallel. At certain
periods in their activities, the tasks inter-communicate in a
well-disciplined way. A task is organised to send a message
to a second task, this second task being organised to receive
such a message from the first task.

Taking an overview of the closely-coupled system, it is
seen as a collection of processor, memory and input-output
modules with a certain inter-connection scheme. Such a
hardware arrangement requires the addition of system software
to make it useable. Traditionally, this support software
takes the form of an Operating System and a Programming
Language. A basic operating system comprises modules or
device drivers which hide the fine details of the operation
of devices such as printers and disc memories. A more
advanced operating system will permit several user programs to
share the hardware facilities, giving each user the impression
that he has exclusive use of a private or virtual machine. A
further facility which may be provided is a mechanism to manage
movement of blocks of data between discs and the immediate
access memory. This can include a filing system whereby data
blocks can be encapsulated in named files, with a directory
being provided for the user.

The programming language simplifies the programming task
and modern programming languages provide a structured framework
for good program construction together with a versatile naming
facility for the objects to be manipulated. The system is
layered. The lowest level is the hardware, upon which the
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operating system creates virtual machines and then, at a
further level, the programming language compiler effectively
converts the system into a machine which acts as an inter-
preter for the high-level language application programs.

Closely-coupled systems normally are embedded, that is
they form part of a larger engineering system, for example,
industrial process control, air traffic control or telephone

exchange control system. The system designer must be
provided with good facilities to program the system for his
particular application. This must include adequate access

to certain hardware features not normally available in a
high-level language. It will be seen that a high-level
language for a multi-processor system can include features
normally provided in the operating system. Comprehensive
control of the system is therefore available through the high-
level language.

There are various motivations for adopting a closely-
coupled system architecture. An increase in speed over that
available in a single processor can be achieved if the system
algorithm can be decomposed into tasks which can operate in
parallel. Redundancy can be exploited to provide improved
reliability or availability. Perhaps the main reason for
adopting a multiprocessor approach is because the system itself
is inherently distributed. Processing power can be directly
associated with each of the main activities, with data movement
being effected between the functional modules.

Architecture

The technique used to interconnect the processor modules
influences the characteristics and performance of the system.
The simplest arrangement is that in which one processor has
an output port and another has an input port; these are
connected, so that a word sent to the output port will appear
on the associated input port. The ports can be replaced by a
register shared by the two processors. A hardware semaphore
mechanism is necessary to ensure that the writing and reading
operations on this register are mutually exclusive. This
arrangement can be extended to become a multiplicity of registers
by use of a shared memory module. Each processor connected
to the shared memory via a port and a hardware mechanism is
provided to prevent simultaneous accesses. The meaningful
use  of the shared memory is a software consideration.

A number of different topologies are used. A module can
have a connection to one, two or four neighbours or to many.
The two-neighbour connection implies a ring configuration.

An alternative arrangement is that in which a shared bus is
employed. Finally, there is the one-to-many, or broadcast
configuration. In the direct connection between modules,
data is transferred under the control of a mechanism which
ensures exclusive access to the data. In the ring system,
data can be sent from any module to any other on the ring in
the form of a short packet. The ring operates under the
control of a token which is a short, particular bit sequence.
A module that wishes to transmit a packet may do so when it
observes the passage of the token. The transmitting module
modifies the token, converting it to a connector and then
injects the packet into the ring. At the receiving module
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the packet is marked by an acknowledgement and completes its
journey around the ring back to the sender. The token

ensures that there is no contention for the ring and the

return of the packet to the sender provides the necessary
acknowledgement mechanism. The ring resorts to a contention
system if the token is lost. Any module may then attempt to
inject the token and arrangements must be provided to ensure
that only one token remains on the ring. The shared bus
relies on contention resolution for its operation. In the
Carrier Sense Multiple Access Collision Detect (CSMA/CD)

system a module will wait for silence on the bus and will then
attempt a transmission which, if successful, will be acknowledged
by the receiver. However, it is possible that a second module
may transmit simultaneously with another module, possibly
because the second module initiated its transmission before

it received the transmission from the first module. In this
case, the modules may hear each others transmissions, but if
not they become aware of the collision because the messages

are corrupted and the receiving modules do not send acknowledge-
ments of an error-free reception. The transmitting modules
will make further attempts after random time intervals.

The particular form of closely-coupled systems that we
are concerned with here are those in which parallel execution
occurs at the task level and in which each task is a signifi-
cant segment of sequential program code. This is in :
distinction from the dataflow class of machine in which
parallelism occurs at the instruction level or distributed
array processors in which identical operations are performed
on many operands in parallel.

Concurrency Support Mechanisms

Certain basic requirements to support concurrency can be
identified. Firstly, it is necessary for the results produced
by one task to be used as an input to another task, and
therefore some satisfactory mechanism of data transfer between
tasks must be provided. Secondly, there is normally a need
to synchronise the operation of tasks. Because of mutual
inter-dependence, one task cannot proceed beyond a certain
stage without some action occurring in a dependant task.
Similarly the dependent task cannot continue beyond a particular
stage until the previous task has accomplished certain
operations. Summarising, there is a need to pass data between
tasks, and a requirement to synchronise tasks.

Before the advent of programming languages which supported
concurrency it was necessary to employ a multi-tasking operating
system to perform the inter-tasking operations. This provided
a way of binding together a number of separate sequential
programs to form a multi-task system. A common arrangement
was to provide a bounded buffer for inter-task communication.
The operation put(item) and get(item) respectively stored a data
item in the buffer and retrieved an item from the buffer.

The functions full and empty were used to test the current state
of the buffer. To prevent simultaneous access to the buffer
it was necessary to employ a semaphore (1). There are
objections to the use of this technique because the primitives
can be easily misused or even omitted. The problem arises
because the primitives are at too lower level. Because of
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this, various high-level constructs have been incorporated in
programming languages, having the advantage of a degree of
compile~-time protection.

The Monitor Concept

The Monitor (2,3) is an arrangement in which shared data
is encapsulated with a set of procedures which perform
operations on that data. The data cannot be accessed except

through the use of these procedures. The monitor is activated
by a process (external to the monitor) making a call on one of
the monitor procedures. Only one process at a time may be

actively executing a monitor procedure within a given monitor.
The monitor construct therefore provides exclusive access to
shared data and has the advantage of encouraging careful
programming of the monitor procedures thereby safeguarding the
monitor data structures against misuse. If no process has made
a call on a monitor procedure, then when a process makes a call
on a procedure of that monitor, that call will be serviced
immediately. The execution of the calling process will be
suspended until the procedure has completed its operation and
returns control to the calling process. However, if a monitor
procedure is in execution, then any other call on a procedure
of that monitor will not be serviced immediately, the calling
process will be suspended and the request will be placed in a
queue. When the activated procedure completes its execution,
the process which called it leaves the monitor; the queue is
inspected, the waiting request is serviced and on completion

of the associated procedure call, the calling process leaves
the monitor and resumes its independent execution. In this
way, the processes access the shared data in mutual exclusion.

The monitor thus provides a mechanism for accessing
shared data in an exclusive and therefore safe manner; it
does not directly synchronise the processes which call it,
but provides a signalling mechanism whereby this may be
accomplished. A process which gains access to a monitor
procedure can, within the procedure issue a wait signal. The
process is then suspended and another process is allowed to enter
the monitor. The waiting process will be resumed when another
process enters the monitor and sends a signal for that waiting
process. The monitor is an elegant concept and can ensure
that the states of the processes which use it are deterministic.
It can be implemented very effectively on a multi-processor
system which uses shared memory since it is inherently a
mechanism for gaining controlled access to a block of shared
data. It is not so convenient to use in a distributed system.

The Rendezvous

The requirements for inter-process communication are,
firstly, a mechanism for data exchange, which in the monitor
system is provided by the sequential use of a shared memory by
the communicating processes. The second requirement is for a
scheme for synchronising processes. This need for a synchron-
ising mechanism arises because processes must keep in step
with one another. This is exemplified by the case in which
a producer process generates a sequence of values which are to
be subsequently processed by a consumer process. The consumer
process must accept values from the producer, one by one, such
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that the rate at which the values are consumed matches the

rate at which they are generated by the producer process.

If the two processes were free running they could get out of
step. The relative timing of the processes must therefore

be enforced by synchronisation, which implies that the faster
process must be caused to wait for the slower. The rendezvous
mechanism, introduced by Hoare (4) and Brinch Hansen (5)
combines the operations so data transmission and synchronisation
is performed in one mechanism.

In the scheme as introduced by Hoare (4), if a process A
wishes to transmit data to a process B then each process must
announce its intention to communicate. Process A will include
within the sequence of instructions it executes, a request to
transmit to process B. Similarly process B includes in its
sequence a request to receive from A. If x is the datum to
be transmitted from A and y is the name of the variable (or
location) in B which is to receive it, then process A includes
the statement

B i x
and process B has the statement
A 2 Yy,

If process A executes the statement Blx first it is suspended
until B reaches the statement A?y. Similarly, if B arrives

at the request first it will be caused to wait until A arrives

at its request. When both processes have reached the rendezvous
the data is transferrdd and the processes resume their respect-
ive executions. The mechanism is symmetric, in that the caller
announces the name of the receiver and vice versa. This
symmetry is not practical if the receiver is a library process
which might be required to be called by several processes

unknown to it.

The alternative, proposed by Brinch Hansen (5) and adopted
in Ada is asymmetric; in this the caller announces the name of
the server (receiver) process, but the callers remain anonymous
to the receiver. The server process includes an accept state-
ment within the body of its code. This accept statement is
very similar to a procedure statement. The reserved word accept
is followed by the name of the entry and after this comes the
list of formal parameters. Finally, there is the sequence of
statements which is executed when the rendezvous occurs.

Through the use of parameters, data can be passed from the
caller to the called process and vice versa. It is not always
convenient to require that a called process should only respond
to a particular entry call. A non-deterministic arrangement
has therefore been introduced whereby a called process can at

a particular point in its operation respond to a number of
different entries. The classical example is the case in which
the called task is the manager of a bounded buffer; the alter-
native responses it must be able to make are to receive an item
into the buffer or to deliver one. Furthermore, guards can be
associated with the alternatives so that, for example, a request
to deliver an item will only be serviced if an item is present
in the buffer.

For specific applications, less general constructs may be
useful. For example, a system based on message passing may be
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appropriate. In this a number of bounded buffers can be
created which are used as carriers of messages between pro-
cesses. For some process control or real-time data processing
applications a broadcast facility is desirable. This will
‘be non-deterministic because there will be no attempt to

ensure that all receivers have received the message, nor will N
there be any attempt to check that a particular receiver has
received all the messages that have been sent. Although

this transmission system appears unsatisfactory, it may be
acceptable for the particular application because the same
information may be sent repeatedly from a sensor and it is
unimportant if an individual value is lost.

PART II EXAMPLES OF CLOSELY~-COUPLED SYSTEMS

The CYBA-M Multi-Microprocessor - U.M.I.S.T.

The CYBA-M multi-microprocessor (6) originated at the
University College of Swansea and is now at the University of
Manchester Institute of Science and Technology. The objective
was to provide a design method and development environment for
the impliementation of multi-microprocessor based products.

It was assumed that, in the target systems, the overall algorithm
could be suitably sub-divided into a set of concurrent tasks.

The programs to execute the individual tasks would be held in

the ROM of the individual processors. There would be static
interconnections between the individual processors. CYBA-M

was developed as a vehicle which would enable experimentation

on those general aspects of concurrent processing element

design which are largely device independent.

CYBA-M is based on a shared memory architecture and consists
of 16 processor elements, each of which comprises an 8080 pro-
cessor with a 16 Kbyte local memory. Each processor element —
has a connection to a port of a lé6-port 10 Mbyte/sec global
memory. The global memory is used to provide inter-connections
between the processing elements. The relatively high data rate
of the global memory was selected to minimise the contention on
that memory. In addition, the processing elements can access
a l6-port image memory which provides memory-mapped connections
to peripheral devices. -

The software approach (7) which has been adopted for CYBA-M
is based on concepts of control~flow and data-flow. These
techniques have been used to formulate parallelism, including o
pipe-1lining and over-lapping. Recent work has concentrated on
the exploitation of CYBA-M for a number of real-time applications.

CONIC - Imperical College of Science and Technology, London

CONIC (8) provides an integrated set of technigques and
tools for constructing and managing large distributed computer
control systems, particularly for industrial process control.
The software architecture is modular and systems can be configured
from multiple instances of the modules. The module is defined
as the smallest replaceable software component of the system and
consists of a set of concurrent tasks. The tasks forming a
module always reside in a single physical station, but it is
possible to have more than one module in a station.

Both modules and tasks within modules inter-communicate by
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passing typed messages. Entry and exit ports are defined for
the modules. A system is configured by creating instances of
modules at stations and by linking the entry and exit ports of
those modules. This configuration can be done at run-time,

to allow for extension and modification of the system. The
Conic language provides two types of communication primitives.
The first type is a set of request-reply primitives which are
intended to be used to send commands and receive responses or

to query the status of other components in the system. These
are synchronous in operation in that the sender is blocked

until a reply is received from the responder. Also the
responder can be blocked whilst awaiting requests to arrive.

The second set of communication primitives provide unidirectional
message passing which meets the requirement for the transfer of
alarms and status information. The sending task is not
blocked, since no reply is expected. Because it is not blocked
it could update the message whilst it is in the process of being
delivered. Accordingly, a buffer of a pre-determined fixed
size is employed. When the buffer is full the oldest message
is over-written.

Message passing over the network is performed by a communi-
cation system which supports two main classes of service. These
are, firstly, the virtual circuit which provides an error-
correcting link between stations. The second is a datagram
service, without error-correction.

To date, the kernel which implements multi-tasking and
inter-task communication, the communications system and operating
system which provides facilities for loading and modifying the
system have been implemented on a system composed of 5 LSI-11
computers connected by asynchronous links to form a communications
ring.

DEMOS - National Physical Laboratory and Scicon

The DEMOS system (9) has a theoretical capability for up to
254 mini- or micro-computers, but typically the number would be
inthe range 5 to 50, each connected to a 1l6-bit parallel ring
which is clocked at 1OMHz. The individual computers cannot
access each others memories; communication between them is
implemented by message transfer over the ring. DEMOS is
designed to be programmed as a single virtual machine in
Concurrent Pascal (10). This language uses Monitors to support
concurrency. An applications program consists of a number of
modules which, when compiled, are statically allocated to
processors by a systems generation program. Inter-computer
communication is managed by a kernel resident in each processor.
Information is transferred in blocks over the ring which
functions as a multi-ported block transfer mechanism. It was
recognised that shared memory architectures are better suited
for Concurrent Pascal and that network architectures of the
type selected suit a non-deterministic message passing language.
Nevertheless, it was considered that the use of monitors and
classes in Concurrent Pascal provided a better programming
environment and that the overall design was a reasonable compro-
mise.

It was necessary to devise a scheme for operating the
monitor concept in conjunction with the ring connection between
processors. Because a process attempting to access a monitor
may be delayed, (by virtue of the mutually exclusive access to
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a monitor), messages containing the parameters of a call on a
monitor procedure may have to be queued. Queuing is not done
at the destination kernel because this would require too much
space, and therefore the technique adopted is to delay the
transmission of a message until the successful completion of

a handshake protocol conducted by the kernels.

POLYPROC - The University of Sussex Multi-Processor System

POLYPROC (11) is an experimental multi-microprocessor
system which serves as a vehicle for exploring techniques for
constructing embedded systems. Particular emphasis has been
placed on providing a good environment for systems design
through the use of a high-level language which encompasses
the features of an operating system.

The programming language which has been implemented on
Polyproc is MARTLET (12). This language is based on sequential
PASCAL with the incorporation of certain features for inter-
process communication, notably the rendezvous concept similar
to that used in ADA (13). The aim was not to implement the
full Ada language but rather to incorporate the more important
features which support concurrency. Thus Martlet includes
many of the structural features (task modules) and the con-
currency features (entry-call/accept, select). In addition,
instancing and exception handling are incorporated.

The methodology adopted for the development of Martlet
programs for Polyproc allows the application programmer to
create a suite of task modules without the need to know about
the particular hardware configuration on which those tasks are
to run. The task modules can execute concurrently and communi-
cate with each other in order to perform the overall system
function (14). The task modules can be compiled separately
and the compiled code for each module can be statically assigned
to the various processing elements which comprise the selected
hardware configuration. This is known as the system config-
uration phase, and is, in turn, performed by a system config-
uration program, This latter is an interactive program which,
in response to a dialogue with the operator, takes the compiler
output and in turn produces a memory image for each local
processor within the system together with the necessary data
structures to be used by the run-time support software to
effect inter-task communication.

The compiler and the configuration program are both written
in Pascal to allow portability and run on a host computer which
is linked to the Polyproc system. The host machine also
includes performance monitoring and diagnostic software which
can be employed to facilitate the location and run-time errors
during the development phase and to obtain information about
the run-time performance of the system.

The Polyproc Hardware Configuration

The hardware configuration for a Polyproc system is very
flexible and is not restrained to the use of a particular
microprocessor, The particular architecture to be described
is that which has been implemented in the laboratory, but as
will be seen later, the cost of adopting different forms of
architecture is low.

Ultimately as processors become cheaper it will be possible
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to implement each particular computing function or task by an
individual processor or station. At the present time, costs
are such that it is still economical to include an element of
time sharing in the allocation of tasks to processors.

A Polyproc system consists of one or more Stations each of
which consists of a number of processing elements with associated
local (private) memory. Also, processing elements in a station
have access to a shared or global memory which is used as a
means for fast communication between processing elements within
the same station.

In recognition of the fact that the control of the inter-
tasking operations within a station could usefully occur in
parallel with the execution of the tasks themselves, it was
decided to include a Control Processor within each station.

This control processor does not execute any application software
but serves to schedule the execution of tasks on the several
remaining processors in the station which are referred to as
Local Processors. Inter-station communication is under the
management of a separate control processor. In the current
system CSMA/CD serial data transmission is used for inter-
station communication, employing a single coaxial cable to which
each station is connected by a tap. A station is composed,
therefore, of a control processor, a communications processor
and a local processor, the number of the latter being chosen to
suit the applications requirement.

The processor adopted for the system is the Intel 8086, and
a station consists of a number of SBC 86/12A single board
computers which plug directly into the main station bus. This
latter is based on the Intel Multibus, and additional shared memory
and peripheral interface boards also plug directly into the same
bus. Each processor board contains an 8086 CPU, an amount of
local memory (PROM and RAM) and various peripheral interfaces
and timers.

Run-time Support Software

The Martlet compiler generates an intermediate language,
M-Code, which is executed interpretively. The use of an inter-
mediate language was adopted because it was not justifiable to
devote effort to the production of a translator to generate
machine code for the target machine. Although interpretation
is slower than full translation, the approach has a number of
advantages. The software can be transported to different
target machines at very little cost, the intermediate code is
very compact and it is possible to incorporate instrumentation
mechanisms to provide information about the performance of the
system.

As described above, each Polyproc station consists of a
control processor, a communications processor and a number of
local processors. The control kernel (15) is contained within
the control processor and each local processor has a small local
kernel. The logical function of the control kernel is to
transform the system hardware into a virtual machine which
supports the concurrency features of the language. As will
be explained later, the control kernel of one station interacts
with the others to support inter-tasking operations between
tasks in different stations as well as supporting communication
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between tasks in the same station. To facilitate readability
and permit modifications in the development of the system, the
control kernel has been written in Martlet. The control kernel
is the sole owner of all vital and critical data structures for
the management of the station operation.

The control kernel data structures consist of a suite of
task activation records (one per task module resident in the
station), a set of processor status records (one per local
processor), a station directory containing the names and
locations of each task, an interrupt map table to allow inter-
rupts to be mapped into calls to the correct service task, and
a set of interrupt and communication channel flags, the latter
being used to control inter-station communication. A task
activation record is created and initialised at the time a task
is assigned to a specific local processor. In addition to
information such as the task's name, its priority, and processor
identity, the task activation record also includes data that are
used by the control kernel to implement communication primitives
at run-time. The processor status record holds information
about the task currently being executed, the task next to be
executed, and an array of queues holding tasks that are ready
to run on the processor.

To illustrate the mechanism which is invoked to achieve a
rendezvous, the detailed sequence of events will be described
for the case in which both the calling task A and called task
B are in the same station:

(i) The calling task A first evaluates the value and
variable parameters for the call. This action is analogous
to a procedure call in a procedural language. These para-
meters are evaluated in the local memory space of the local
processor on which A is executing. These parameters are then
copied into the parameter area designated for it in the station
shared memory. Task A then issues the entry call.

(ii) The local kernel of the local processor on which A
is running then places the address of the called task, together
with the index of the entry to be called and the pointer to
the parameter area of the calling task, in the mailbox of the
caller's task activation record. The local kernel then requests
the control kernel to switch the calling task.

(iii) The control kernel which has been running concurrently
on the control processor has been polling the requests and on
detecting the request in (ii) the control kernel suspends the
calling task and links it to the entry in the called task.

(iv) When the called task reaches the rendezvous point
(or it may already have reached this point and hence be
suspended) , the local kernel of the local processor on which
the called task runs, pushes the address of the parameter block
of the caller onto the called task's stack. The called task
then uses this pointer to access the parameters, executes the
entry sequence and returns values via the variable parameters
before issuing the end-accept call. The local kernel relays
this end-accept request via the mailbox of the called task.

(v) The control task implements an end—-accept request
by first releasing and rescheduling the calling task and then
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rescheduling the called task.

(vi) When task A runs again it then copies the variable
parameters (if any) back into its local memory space.

(vii) Finally, task A and task B continue running con-
currently.

The copying overheads while passing parameters is relatively
low due to the fact that only the pointer to the parameter area
in the shared memory need be passed to the called task. The
rendezvous mechanism can therefore be implemented relatively
efficiently on a shared-memory multiprocessor architecture.

In the case when the calling and called tasks reside in
different stations two approaches are possible. In the dynamic
method, inter-station communication must be set up at the time
of the entry call, whereas in the static method provisions are
made in advance.

In the dynamic approach (16), no memory is pre-allocated
and a three-part protocol must be used to handle each inter-
station entry call. The control kernel in the calling station,
on receipt of any entry call to a task in a different station,
sends a request-for-entry message to the destination station.

The control kernel in the latter then inserts the request in

the appropriate entry queue to wait for the called task to
become ready for the rendezvous on this entry. It may, however,
be already waiting. When ready, a ready-to-accept response is
returned to the control kernel in the calling station, which,

in turn, responds by sending the parameters associated with the
call. Similarly at the completion of the rendezvous, any
variable parameters associated with the call are returned to

the calling task. This dynamic approach will obviously
necessitate dynamic allocation of memory for the parameter area
of the tasks involved in an inter-station communication.
Furthermore, system performance is degraded because of the extra
burden placed on the control kernel as it assumes responsibility
for all communications with tasks in other stations.

The alternative static approach, which is the one which has
been adopted in the Polyproc system, overcomes the problems of
dynamic memory allocation at the expense of making a pre-allocation.
In this method, a pair of intermediate transport tasks are intro-

duced automatically at system configuration time. The two
intermediate tasks then act as local agents - one for the caller
and the other for the called task. The operation is then

transparent to the control kernel as it is the transport tasks
which handle the interface to the low-level communications
protocol. This functional separation permits a different low-
level communications layer to be substituted if desired. There
are no run-time memory management problems as the required
buffer memory is allocated in advance at system generation
time, but the static approach can be expensive in memory if
there are a large number of possible inter-station calls.

There are, inevitably, greater overheads involved in making
inter-station calls, compared with those between tasks in the
same station, when shared memory can be employed.

Interrupt Handling

It is desirable to handle interrupts in a way which is both
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structured and independent of the specific hardware employed.
The interrupt is regarded as an entry to a task which includes
an accept statement for that interrupt.

To implement this scheme in a way which is compatible
with the requirements of the hardware, it is necessary to have
a low level interrupt handler on the local processor to which
the interrupt source is physically connected. On receipt of
an enabled interrupt, the task currently running on that pro-
cessor is interrupted. The low-level interrupt service
routine sets a flag in the shared memory which is subsequently
pelled by the control kernel of the station. The control
kernel, on detecting the set flag, creates a dummy task
activation record and links it to designated entry of the
interrupt service task. The interrupt service task is then
scheduled, and when it runs the interrupt request is serviced.
Obviously arrangements can be made to poll interrupts which
require fast response times, more frequently.

Experience with Polyproc (17) has shown that the rendezvous
inter-task mechanisms are convenient both to use and to imple-
ment. They provide a one-to-one and a many-to-one form of
communication, but do not support a broadcast requirement
directly. As expected, inter-task communication within a
station, supported by shared memory, is efficient, but overheads
are encountered when the communication is between tasks
resident in different stations.

REFERENCES

! Dijkstra, E. H., Co-operating Sequential Processes in
Programming Languages, Ed. F. Genuys, p. 43-111, Academic
Press, 1968.

25 Hoare, C. A. R., Monitors: An Operating System Struct-
uring Concept, Comm. ACM, 17, 10, p. 549-557, 1974.

3y Brinch Hansen, P., Operating System Principles, Prentice
Hall, 1973.

4. Hoare, C. A. R., Communicating Sequential Processes,
Comm. ACM, 21, 8, p. 666-677, 1978.

5. Brinch Hansen, P., Distributed Processes: A Concurrent
Programming Concept, Comm. ACM, 21, 11, p. 934-941, 1978.

6. Dagless, E. L., A Multimicroprocessor - CYBA-M, Inform-
ation Processing 77 IFIP, p. 843-848, Ed.B. Gilchrist,
North-Holland, 1977.

72 Dowsing, R., Software for CYBA-M, Microprocessors and
Microsystems, 3, 7, p. 306-310, 1979.

8. Sloman, M. S., The CONIC Communication System for
Distributed Process Control, Communications in Distributed
Systems Conference, Berlin, Jan. 1983, Springer-Verlag.

9. Dowson, M. et al, the DEMOS Multiple Processbr, Euro IFIP
79, Ed. P. A. Samet, North Holland, 1979.



10.

e

12.

13.

14.

L5}

16.

1570

—13—

Brinch Hansen, P., The Programming Language Concurrent
Pascal, IEEE Trans. Soft. Eng., 1, 2, p. 199-207, 1975.

Grimsdale, R. L., Halsall, F., Martin-Polo, F., and
Shoja, G. C., POLYPROC II - The University of Sussex
Multiple Microprocessor, Proc. IEEE 2nd. Int. Conf. on
Distributed Computing Systems, p. 95-104, 1981.

Grimsdale, R. L., Halsall, F., Martin-Polo, F. and

Shoja, G. C., MARTLET: A Programming Language for a
Distributed Multiple Microprocessor System, Proc. ICS,
6th Euro. Reg. Conf. on Systems Architecture, p. 403-414,
1981.

Ledgard, H., ADA - An Introduction and Ada Reference
Manual, Springer-Verlag, 1981.

Grimsdale, R. L., Halsall, F., Martin-Polo, F. and Wong,
S. A., Structure and Tasking Features of the Programming
Language Martlet, Computers and Digital Techniques,
Proc. IEE, 129, 2, Pt. E., p. 63-69, 1982,

Shoja, G. C., Halsall, F., and Grimsdale, R. L., A
Control Kernel to Support Ada Intertask Communication

on a Distributed Multiprocessor Computer System, Software
and Microsystems, 1, 5, p. 128-134, 1982.

Dowson, M., Collins, B. and McBridge, B., Software
Strategy for Multiprocessors, Microprocessors and Micro-
systems, 3, p. 263-266, 1979.

Shoja, G. C., Halsall, F. and Grimsdale, R. L., Some
Experiences of Implementing the Ada Concurrency Facilities
on a Distributed Multiprocessor Computer System, Software
and Microsystems, 1, 6, p. 147-152, 1982,



CLOSELY COUPLED SYSTEMS

CLOSELY COUPLED SYSTEM:

= COLLECTION OF LINKED PROCESSOR AND MEMORY MODULES
- COLLABORATIVELY EXECUTE A SINGLE JOB
= UNDER ONE MANAGEMENT

LOOSELY COUPLED SYSTEM:

- SET OF LINKED COMPUTERS

— EACH UNDER CONTROL OF SEPARATE USER
= SEND MESSAGES TO EACH OTHER

= ACCESS COMMON DATABASE



CLOSELY COUPLED SYSTEM

SINGLE ACTIVITY

= SUB-DIVIDED INTO COLLECTION OF TASKS
WHICH EXECUTE IN PARALLEL

= WELL-DISCIPLINED INTER-TASK COMMUNICATION



PROGRAMMING. LANGUAGE

OPERATING SYSTEM

b

N,

\

HARDWARE



EMBEDDED SYSTEMS

PART OF A LARGER ENGINEERING SYSTEM

INDUSTRIAL PROCESS CONTROL
AIR TRAFFIC CONTROL
TELEPHONE EXCHANGE CONTROL




MOTIVATIONS FOR CLOSELY COUPLED SYSTEMS

INCREASE IN SPEED OVER SINGLE PROCESSOR

= IF SYSTEM ALGORITHM CAN BE DECOMPOSED INTO TASKS
WHICH OPERATE IN PARALLEL

IMPROVED RELIABILITY OR AVAILABILITY

SYSTEM IS ITSELF INHERENTLY DISTRIBUTED



PROCESSOR

INTERCONNECTION

I

PROCESSOR

OUTPUT
PORT

PROCESSOR

< [

REGISTER

CONTENTION
LOGIC

PROCESSOR
INPUT
PORT
PROCESSOR
PROCESSOR

SHARED
MEMORY







TOKEN RING

CONNECTOR TOKEN




CSMA/CD




CONCURRENCY SUPPORT MECHANISMS

K—pnm

TASK TASK
)
\\ \\\\_///
AN

SYNCHRONISING




PUT(ITEM)

Y

FULL?

ACQUIRE SEMAPHORE
IF NOT FULL
PUT(ITEM)-
RELEASE SEMAPHORE

- GET(ITEM)

(

SEMAPHORE

BOUNDED

BUFFER

\

EMPTY?

ACQUIRE SEMAPHORE
IF NOT EMPTY
GET(ITEM)

RELEASE SEMAPHORE



PROCESSES

THE MONITOR

QUEUE

ONE
USER
ONLY

MONITOR
PROCEDURES

DATA
STRUC-
TURE




P waIT

»  S1GNAL




MONITOR

MONITOR

ELEGANT CONCEPT

CAN ENSURE STATES OF CALLING PROCESSES ARE DETERMINISTIC

» SUITABLE » SHARED
< < MEMORY




SYMMETRIC RENDEZYOUS

TASK A TASK B

» A?Y




!
{
!
|
i
I

X .REQUEST
I

END X

TASK
BEGIN

END X

X 1s
ENTRY REQUEST:
BODY X IS

LooP
ACCEPT REQUEST
/* STATEMENTS WHICH
SERVICE REQUEST */

END LOOP:

.
’



SELECT
WHEN COUNT < MAXSIZE => _
ACCEPT SEND_CHAR (C: IN CHARACTER) DO

END:

OR _
WHEN COUNT > 0 => } _
ACCEPT RECEIVE_CHAR (C: OUT CHARACTER) DO



o

MESSAGE PASSING




BROADCAST




CYBA-M ARCHITECTURE

GLOBAL MEMORY

8080
PROCESSORS

IMAGE MEMORY

MEMORY MAPPED PERIPHERALS




CONBEGIN

AV

VY

AN\

Y END

AY COUNT

CONEND

WHILE X
Do F(x)
CONBEGIN
Zo: 2y} Z,
CONEND
ENDWHILE

PIPELINE STRUCTURE OF A WHILE .. DO LOOP,



CONIC ICST

INTEGRATED SET OF TOOLS AND TECHNIQUES FOR CONSTRUCTING AND
MANAGING LARGE DISTRIBUTED COMPUTING SYSTEMS

MODULE MODULE

5|
3\

g ’
\ —l \L

TYPED MESSAGES




DEMOS  NPL AND SCICON

16 BIT
PARALLEL RING
10 MHZ cLock

CONCURRENT PASCAL
MONITORS o , .
INTER-PROCESS REQUESTS QUEUED AT SOURCE
3-WAY HANDSHAKE



POLYPROC  UNIVERSITY OF SUSSEX

FOR EMBEDDED SYSTEMS
MARTLET PROGRAMMING LANGUAGE

SEQUENTIAL PASCAL
INTER-TASKING LIKE ADA

TASK MODULES
ENTRY-CALL/ACCEPT
SELECT

INSTANCING
EXCEPTION HANDLING



APPLICATIONS PROGRAMMER(S) CREATE SUITE OF TASK MODULES
WITHOUT THE NEED TO KNOW ABOUT CONFIGURATION OF TARGET
ARCHITECTURE

TASK MODULES CAN BE SEPARATELY COMPILED
STATIC ASSIGNMENT AT SYSTEM CONFIGURATION PHASE

COMPILER AND CONFIGURATION PROGRAM ARE BOTH WRITTEN IN
PASCAL ‘



NOT CONSTRAINED TO ONE TYPE OF MICROPROCESSOR

POLYPROC HARDWARE CONFIGURATION

SEVERAL TASKS IN ONE STATION

ETHER

P ! LP EP COM
SM

LP LP &P COM
SM

INTEL 86/12A .
MULTIBUS

OWN DEISIGN-
COMMUNICATIONS

PROCESSOR

CP  CONTROL PROCESSOR - MANAGES INTER-TASKING AND TASK SCHEDULING

IN PARALLEL WITH TASK EXECUTION ON LOCAL
PROCESSORS

COM COMMUNICATIONS PROCESSOR - SUPPORTS CSMA/CD PROTOCOL
LP LOCAL PROCESSORS - EXECUTE APPLICATION TASKS —
SM SHARED MEMORY - SUPPORTS INTER-TASK COMMUNICATION BETWEEN

TASKS IN A STATION



POLYPROC RUN-TIME SUPPORT SOFTWARE

MARTLER COMPILER GENERATES M-CODE = -EXECUTED INTERPRETIVELY
SLOWER EXECUTION
PORTABLE

INTERMEDIATE CODE IS COMPACT
CAN INCORPORATE PERFORMANCE
MEASUREMENT TECHNIQUES

CONTROL KERNEL IN CONTROL PROCESSOR

SUPPORTS INTER-TASKING
AND TASK SCHEDULING

SMALL LOCAL KERNEL IN LOCAL PROCESSOR - FOR TASK/CONTEXT SWITCHING



CONTROL KERNEL

TRANSFORMS SYSTEM INTO VIRTUAL MACHINE SUPPORTING
CONCURRENT FEATURES OF LANGUAGE

PROVIDES INTER-TASKING WITHIN STATION
TRANSPORT TASKS PROVIDE INTER-STATION COMMUNICATION

SOLE OWNER OF ALL VITAL AND CRITICAL DATA STRUCTURES
FOR STATION OPERATION



CONTROL KERNEL DATA STRUCTURES

SUITE OF TASK ACTIVATION RECORDS (ONE PER TASK MODULE RESIDENT
IN STATION)

SET OF PROCESSOR STATUS RECORDS (ONE PER LOCAL PROCESSOR)
STATION DIRECTORY - NAMES AND LOCATIONS OF EACH TASK
INTERRUPT MAP TABLE - TO MAP INTERRUPTS TO SERVICE TASKS

SET OF FLAGS - INTERRUPT AND COMMUNICATION CHANNELS



IMPLEMENTATION OF RENDEZVOUS MECHANISM

CALLER TASK

CALLING TASK EVALUATES
PARAMETERS INTO LOCAL
MEMORY 0

PARAMETERS COPIED TO
SHARED MEMORY

N
ENTRY CALL ISSUED

LOCAL KERNEL PUTS ADDRESS
OF CALLED TASK *+ INDEX OF
ENTRY IN MATLBOX

v
LOCAL KERNEL REQUESTS -
CONTROL KERNEL TO SWITCH
CALLING TASK

CONTROL KERNEL POLLS
REQUEST .

SUSPENDS CALLING TASK

LINKS IT TavENTRY IN
CALLED TASK

CALLED TASK

CALLED TASK REACHES

 ENTRY POINT

SUSPEND§/

RENDEZVOUS

LOCAL KERNEL FOR CALLED
TASK. PUSHES ADDRESS OF

CALLER'S PARAMETER BLOCK
ONTO ITS STACK

EXECUTE ENTRY SEQUENCE

RETURNS VALUES VIA VARIABLE %
PARAMETERS :

[SSUES END-ACCEPT VIA
MAILBO N

CONTROL KERNEL IMPLEMENTS
END-ACCEPT

RELEASES AND RESCHEDULES =
CALLING AND CALLED TASKS

CALLING TASK COPIES
VARIABLE PARAMETERS
INTO ITS LOCAL MEMORY
- RESUMES EXECUTION

CALLED TASK RESUMES

EXECUTION



CALLING AND CALLED TASKS IN DIFFERENT STATIONS

DYNAMIC APPROACH .

REQUIRES MEMORY ALLOCATION FOR PARAMETER BLOCK
= BUT THIS IS NOT PRE-ALLOCATED

MEMORY ALLOCATED WHEN REQUIRED AT RECEIVING STATION
MESSAGES (PARAMETER BLOCKS) QUEUED AT SENDER

TRANSMISSION CONTROLLED BY THREE-WAY HANDSHAKE PROTOCOL



CALLING AND CALLED TASKS IN DIFFERENT STATIONS

STATIC APPROACH

(USED IN POLYPROC)

PAIR OF INTERMEDIATE TRANSPORT TASKS ARE INTRODUCED
AUTOMATICALLY AT SYSTEM CONFIGURATION TIME

OPERATION IS TRANSPARENT TO CONTROL KERNELS
= APPEARS THE SAME AS INTRA-STATION COMMUNICATION

THIS FUNCTIONAL SEPARATION PERMITS A DIFFERENT LOW-
LEVEL COMMUNICATION LAYER TO BE SUBSTITUTED IF DESIRED

GREATER OVERHEADS BETWEEN STATIONS COMPARED WITH WITHIN
STATIONS



INTERRUPT. HANDLING
DESIRABLE TO HANDLE INTERRUPTS IN A WAY WHICH IS
STRUCTURED AND INDEPENDENT OF HARDWARE

INTERRUPT 1S REGARDED AS AN ENTRY TO A TASK WHICH INCLUDES
AN ACCEPT STATEMENT FOR THAT INTERRUPT

LOCAL PROCESSOR CONTROL PROCESSOR

LOW. LEVEL
X INTERRUPT
HANDLER

SHARED

MEMORY
//////’“‘DETECTS FLAG

ECREATES DUMMY
TASK RECORD

CENTRY. IN
;SERVICE
TASK

LINKS TO ENTRY
IN SERVICE TASK




The New Programming: Eunctional and Logic Languages

John Darlington
Department of Computing
Imperial College, London

Antroduction

Although there are a bewildering variety of computers currently available
together with an equally bewildering variety of languages with which to
program them, there is a real sense in which all machines and languages in
use today are the same, All computers in common use are based on the von
Neumann principle around which the very first succesful computers were
built., They thus all operate by having a program stored in memory through
which control flows causing operations to be performed reading and altering
memory locations. At any one time one instruction in the program is being
obeyed, thus the machines are inherently sequential, Almost all the
programming languages in use today faithfully follow this model. Thus even
so called high level languages such as Pascal have sequential control flow
and assignment as their fundamental characteristics.

Certain languages designed primarily for systems work, such as Ada, extend
this model somewhat by incorporating tasking facilities that allow control
to be at several points simultaneously allowing distributed systems to be
modelled. However these facilities are built on top of a sequential
language and crucially all concurrent activity must be anticipated and
controlled by the programmer., Although one can conceive of systems of,
say, up to ten separate processes being explicitly programmed, systems of a
million processes are beyond human comprehension and control.

This, almost total, reliance on von Neumann machines and languages has led
computing into some critical dead ends. On the software side despite
valiant efforts and many innovations we are still incapable of developing
and maintaining even moderately complex systems with the degree of
reliability and precision that should characterise an engineering or
scientific discipline,

Considering the great strides computers have had in increasing productivity
in many diverse areas of commerce and industry it is ironic that an
activity central to their use, programming, has remained largely
unmechanised, Of course sophisticated editors and efficient compilers have
brought about significant increases in programmer productivity, but the
central intellectual task of programming, that of devising the algorithm to
be employed to meet the stated requirements, is still very much an art and
incapable of being mechanised to any significant degree. It is in this
area (and the related one of program modification and maintenance) that
mostof the cost and unreliability of software development is to be found.
What we desperately need to bring the power of computers to bear on this
problem is ways of dealing with specifications, programs and the
relationship between them at levels above that of simple text., It has been
found impossible to develop such a calculus of program development using
the conventional languages.

On the hardware side incredible amounts of effort and expense have been and
are continuing to be devoted to attempting to get machines to run faster.
By increasing switching speeds, shrinking connection distances and
improving internal organisation increases in performance can still be won,
But the sequential, one thing at a time, restriction places fundamental



limitations on how far this process can be carried. The obvious answer is
to go to parallel evaluation and have many things going on at once,
However if we attmpt to do this while still following the basic von Neuman
model and more importantly attempting to execute von Neumann based
languages that are inherently sequential we run into severe difficulties,
Extensive co-ordination and communication is needed between processors to
ensure that different parts of the program are executed in the sequence
prescribed and this soon outweighs any gains achieved, Thus projects aimed
at building multi-processor machines for conventional languages have by and
large been failures apart from specialised applications such as vector or
array processors,

In contrast the declarative languages have very different origins. They
are based on various mathematical formalisms developed initially in the
study of formal deduction and computation. The two main classes of these
languages are the logic programming languages based on the first order
predicate calculus and the functional programming languages based on the
lambda calculus and recursion equations. This pedigree gives the
declarative languages fundamentally different properties from the
conventional ones. Being faithfully derived from mathematical formalisms
they inherit all the desirable, indeed essential, properties of such
notations that give mathematics its unique power. Conventional languages
most certainly do not have these properties., The most important of these
properties goes by the technical name referential transparency and requires
that equivalent expressions can be substituted freely for each other
without altering he meaning of the expression they are substituted into.
For example arithmetic is referentially transparent so 5 can be freely
substituted for the expression 3 + 2., Another way of saying this is that
the meaning of an expression should depend solely on its textual context
and not at all on any notion of the history of the computation being
performed,

This, it is claimed, conveys fundamental advantages on the declarative
languages and enables them to break the log jams at present being
encountered in computing, Firstly these languages are intrinsically more
powerful, concise and understandable programming vehicles for the reasons
alluded to above, Furthermore because of their simple substitutive
properties formal- manipulation of programs becomes feasible and we can
develop simple calculi for conducting program developments in, guaranteed
to preserve the meaning of the programs thus manipulated. The development
of such calculi seems an essential requirement if programming is ever to
become a science (and therfore mechanisable) rather than a craft.

Secondly because the meaning of any subpart of a declarative language
program is independent of the meaning of other textually disjoint subparts
the meaning of the whole is independent of the order of the evaluation of
the parts and they can therefore be evaluated in parallel. Thus parallel
evaluation of these languages is the natural model of evaluation and can
proceed with a minimum of co-ordination or communication. This form of
parallel evaluation is therefore rapdom or patural and need not be
programmed in explicitly. Thus the degree of concurrency exploitsble is
limited only by the degree of parallelism in the algorithm employed and the
number of processing units available, As algorithms can be easily written
that, in declarative languages, give rise to exponential amounts of
parallelism it can easily be seen that the speed of computers based on
declarative languages is no longer limited by the technology employed but
by the number of processors available, This is a much healthier position
to be in especially as the new VLSI technology dictates that machines can
be much more economically built out of many identical replicated components
rather than a few complex ones,



In section 1 we introduce functional and logic programming languages and
give simple examples of their use. Section 2 lists some exist‘:ing
declarative languages and their implementations while section 3 outlines
some of the main applications the languages have so far been put to,
Sections 4 and 5 very briefly introduce the ideas of program transformation
and parallel evaluation that make declarative languages so attractive,
Section 6 discusses some issues involving the declarative languages and
problems that need to be overcome, while section 7 speculates on the future
for the languages.

T Reglaralise amuaiss

In this section we will attempt very briefly, to introduce the functional
and logic programming languages. Fortunately the language's simplicity
aids this task,

1.1 Eupelicpal Lapeuages

Programs in a functional language consist simply of sets of equations
defining functions in temms of other simpler or primitive functions.

For example

max(x,y) = if x >y thep x glse v

employs the primitive if then glse to define a function, max, to calculate
the maximum of two numbers.

The program

maxof3(x, y, z) = max(max(x,y), z)

max(x,y) = i€ x > y thep x glse ¥

defines two functions max as above and maxof3 to calculate the maximum of
three numbers, Note that there is no ordering implied on the equations.

Functions can be defined in terms of themselves,
factorial(n) = 4 n = O Lhep 1 glsg n * factorial(n-1)
defines the familiar factorial function.

Several functional languages instead of having just one equation for each
function, have separate equations, one for each case of the input
parameter, thus

factorial(0)

= 1
factorial(n+1) =

n+1 #* factorial(n)

defines the same factorial function, The cases covered by each equation
must be disjoint.

Executing a functional program is very simple, It consists of taking an
expression and rewriting it according to the equations of the program until
no further rewritings are possible, The equations are thus used in a left
to right manner as reduction rules, For example, to compute the factorial
of 5 given either of the above programs our starting expression would be
factorial(5) and the reductions would proceed



factorial(5) => 5 ¥ factorial(4) => 5 * (4 * factorial(3))

=> 5 % (4 * (3 % factorial(2))) => 5 * (4 * (3 ¥ (2 ¥ factorial(1))))

= 5% (4% (3% (2% (1% factorial(0))))) => 5% (4 % (3% (2% (1% 1))))
=> 120 (Assuming * as a built in function).

Note that functional programs are deterministic, in that for any given
program and starting expression there is only one possible answer.
Moreover functional programs have the Church-Rosser property, that is if at
any stage of a computation several equations may be applied next the final
answer, if one is found, is independent of which particular equation is
chosen. Thus different modes of evaluation can be explored without
affecting the correctness of the final result.

Structures are very simply accommodated in the declarative languages by
introducing functions, called constructor functions, and using expressions
constructed out of these functions to name structures, Thus lists have two
constructor functions nil, the empty list and cons which takes an element
and a list and builds a list equivalent to the original but with the
element added at the front. Thus the term cons(1, nil) names the list with
one element, 1, and cons(1, cons(2, cons(3, nil))) names a three element
list, Cons is often written as an infix operator, " . ". Thus 1.nil is
the same as cons(1, nil),

Equations can be written over structures just as easily as over scalars

length(nil)

0
length(x,.1)

1 + length(1)

Defines a function to calculate the length of a list,

This ability to introduce new structures by simply introducing new

constructor functions means that what would be considered abstract data

types in more conventional languages can be introduced and directly

manipulated in declarative languages. Thus binary trees can be defined by

introducing two new constructor functions, atom to construct tips of binary

trees and tree to construct the interior nodes., Thus the term
tree(tree(atam(1), atam(2)), tree(atam(3), atom(4)))

names the binary tree
,/// \\\ ,/// \\\\
1 2 3 y

and



frontier(atam(n)) = n.nil

frontier(tree(t1, t2)) = append(frontier(t1), frontier(t2))
append(nil, 1) = 1

append(x.11, 12) = x.append(1l1, 12)

defines a function frontier that returns a list of the elements of a tree
produced by a left to right traversal. Append joins two lists together,

All functional languages in serious use today are higher order. This means
that functions are treated as first class objects and can be passed as
paramaters and returned as values. Only Algol-68 amongst the conventional
languages approaches this simple but powerful facility,

For example a function map can be simply defined that takes a function as a
paramater and applies it to every element of a list

map(nil,f) = nil
map(x.1,f) = f(x).map(l,f)

The existence of such functions makes program writing much easier, Thus a
function, double, that doubles every element of a list can be written in
terms of map without employing any explicit recursion

double(1)
times2(n)

map(l, times2)
2 %n

Lambda expressions can be used to define functions locally without giving
them global names, Thus lambda n. 2¥n is an expression denoting a function
that on being given a number will multiply it by 2. Thus double can be
written

double(l) = map(l, lambda n, 2%n)
The ability to define function building functions is very powerful. For
example

compose(f,g) = lambda n. f(g(n))
takes two functions and returns the function that is their camposition.

The availability of higher order functions encourages very powerful
programming styles, Often one approaches a problem by defining the data
structures naturally involved together with a collection of higher order
'iterators' that walk over these structures applying functions given as
paramaters, If this is done correctly programming the application largely
consists of suitably instantiating these high level iterators and there is
little or no explicit recursion in the main program with consequent gain in
reliability and understandability,

The use of function forming functions, such as compose, carries this
process even further, and encourages the use of 'program forming
operations'. That is algorithms represented as functions can be operated
on directly to produce more powerful algorithms.

1.2 LoRis PERRCAMGGE

As functional programming can be viewed as a computational use of the
lambda calculus so logic programming is a computational realisation of the

B



first order predicgte calculus. In this calculus the primitive statements

concern relationships between individuals for example Father(John,Heather),

Heavy(Lead) and Times(2, 2, 4). Present implementations of the wider logic

programming ideal are all based on the Horn cluse subset of loglc. Tha? is

all statements in a logic program have the form of either atomic assertions
Mother(Kate, Heather)

asserting the fact that Kate is the mother of Heather; or general rules
Grandparent(x, y) if Parent(z, y) and Parent(x, z)

stating the fact that you are the grandparent of someone if there is some

individual (z in the above rule) who is your child and the parent of the

purported grandchild,

Thus a logic program is a collection of clauses stating either general
rules or specific facts

Grandparent(x, y) if Parent(z, y) and Parent(x, z)

Parent(x, z) jif Father(x, z)

Parent(x, z) if Mother(x, z)

Mother(Ann, Kate)

Father(Maurice, Kate)

Mother(Kate, Heather)
Running a logic program consists of querying this data base. Thﬁs we can
ask if certain relations hold given the facts contained in the program.
The simplest queries are those that have yes/no answers such as

Grandparent(Ann, Heather) ?

This simple theorem is implied by the above program regarded as a set of
assumptions so the user answer to such a query would be yes.

Other ways of querying the program involve constructing answers. Thus a
query of the form

Grandparent(Ann, x) ?

where x is a variable asks the program to exhibit any x which satisfies the
relation, Given the above program there is only one such individual,
Heather, which will be found as a result of running the logic program.

Logic programs have a wonderful versatility in that the same program can be
queried in many different ways. For example a query

Grandparent(x, Heather) ?

asks the program to try and find the grandparents of Heather., In this case
we would hope the program would come up with two answers for x, Maurice and
Ann, Note that in contrast with the functional languages logic programs
are non-deterministic, that is, there may be several possible answers for
any given input. '



This style of programming can equally well be applied to more conventional
problems, for example

Factorial(0, 1)

Factorial(n+1, w) if Factorial(n, u) and Times(n+1, u, w)
Length(nil, 0)

Length(x.1, w) if Length(l, u) and Plus(u, 1, w)

define the Factorial and Length relations analogous to the factorial and
length functions defined earlier. Again these programs can be queried in
many ways

Length(1.(2,nil), u) ?
asks the program to find the length of a given list, but
Length(x, 2) ?

asks the program to construct a list of length 2. In the second case the
answer found would be u.v.nil) where u and v are variables, an expression
representing all the lists of length 2.

All current implementations of the logic programming ideal are variants of
the language PROLOG. This employs the Horn clause subset of logic as
described above and imposes extra restrictions to make the running of
programs feasible on sequential machines. In PROLOG the rules are tried in
the order they are written i.e, top down and left to right within a rule
and the interpreter employs backtracking to explore alternative  solutions,
This and other features added to assist efficient sequential
implementations mean that PROLOG is not strictly speaking a declarative
language.

As well as being a uniquely powerful and flexible programming language
logic has applications beyond those of conventional languages. For example
the same formalism can be used as a data base model and query language, for
knowledge representation and problem solving in artificial intelligence
applications, and for implementing expert systems,

2. implemenkakions

The UK. is extremely fortunate in having many of the pioneers and
principle exponents of functional and logic programming., In this section
we Wwill very briefly mention most of the principal U.K. activity with
reference to some of the more important work abroad.

2.1 FEnclieaal laneuages

HOPE is a higher order recursion equation based functional language
initially developed and implemented at Edinburgh, Burstall et al [1980l.
HOPE has strong polymorphic typing. This conveys all the advantages of
strong typing with a much greater degree of flexibility. HOPE was
initially implemented in POP-2 on the SERC's DEC-10 at Edinburgh. Our own
group at Imperial is now making extensive use of HOPE and continuing its
development, We have developed a Pascal interpreter for HOPE that has been
used very successfully for teaching and transported to several machines
including a PERQ. Our parallel graph reduction machine, ALICE, Darlington
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and Reeve [1981], was initially developed around HOPE although it now
encompasses logic as well as more conventional languages. Ian Moor has
written a compiler for HOPE to ALICE Compiler Target Language that is
written entirely in HOPE and handles the whole language, Moor [1982].

ML, a largely functional language, was developed at Edinburgh in connection
with the LCF program proving project, Gordon et al [1977] and has been
implemented on a VAX by Luca Cardelli. The polymorphic type checking
algorithm employed in HOPE was developed initially for ML, Milner [1977].

David Turner has developed a higher order functional language KRC (Kent
Becursive Lalculus) (a development of his earlier SASL (St Andrews Static
Language) and pioneered a novel implementation technique for functional
languages involving compilation to a simple low level order code that is
itself a declarative language, Turner [1979]. Aurthur Norman and
colleagues at Cambridge have built special hardware to run this order code,
Clarke et al [1980] and Turner is developing a micro-coded implementation
of it on a powerful mini-computer.

LISP initially started out as a pure functional language although its
purity was soon destroyed by enthusiastic implementors eager to extend the
language., Recently interest has been shown in reviving the pure form.
Peter Henderson at Oxford has developed a pure, highly portable version of
LISP called LISPKIT. LISPKIT has recently been transported to a PERQ with
a section of the abstract machine interpreter micro-coded with impressive
gains in efficiency.

Other centres with interest in functional languages in the U.K. include
East Anglia (Burton and Sleep), Newcastle (Treleaven), Manchester (Gurd and
Watson), Warwick (Wadge) and Westfield College London (Hankin and Glazier)
and Queen Mary College London (Abramsky).

In the U.,S, there is a lot of interest in functional languages centred
around Backus's FP and FFP systems following his very influential ACM
Turing Award Lecture, Backus [1978]. Many universities have active groups
centred around the language and are designing parallel machines based on
functional languages, It is known that several U,S. manufacturers have
functional language machines under consideration at least in their research
laboratories,

2.2 Logic ProBCammipg

PROLOG was first designed in France by Colmerauer, and implemented by
Roussel, Roussel [1975], although a lot of the early work on logic and
logic theorem proving ws done at Edinburgh. A very efficient and
influential implementation of PROLOG was done on the SERC's DEC-10 at
Edinburgh by David Warren, Warren [1977]. Implementation of PROLOG on a
PDP-11 was also carried out at Edinburgh, Mellish [1980].

The other main UK., centre for PROLOG is Imperial College, Here a variant
of PROLOG known as IC~-PROLOG was implemented in Pascal, Clark and McCabe
[1979]. McCabe has also developed a version of PROLOG for 8 bit micro's
known as micro-PROLOG which has been very influential in spreading PROLOG
and the ideas of logic programming, he is now developing a PROLOG abstract
machine with the aim of producing a highly portable PROLOG compiler, Also
at Imperial Keith Clark and Steve Gregory have developed a variant of
PROLOG known as PARLOG aimed at parallel evaluation and operating system
style applications, Clark and Gregory [1981]. Gregory has developed a
compiler for PARLOG into ALICE Compiler Target Language, Krysia Broda,
also at Imperial, has written an interpreter for PROLOG in HOPE that will



accept micro-PROLOG syntax and run, in parallel, on ALICE.

Other U.K, centres with an interest in PROLOG and logic programming include
Exeter (Campbell), Sussex (Mellish, Sloman) and York.

A lot of interest in PROLOG has been demonstrated in Hungary where a VAX
based implementation, M-PROLOG has been developed, Szeredi [1977]. In
North America the University of Waterloo has an active PROLOG group that
have developed Waterloo PROLOG for IBM machines, Recently PROLOG has been
attracting much attention in the U.S, particularly in the areas of natural
language parsing. Of course there is a great deal of interest in PROLOG in
Japan which we will discuss below.

3. aeplisaldens

It would be fair to characterise declarative languages as in the transition
stage between experimental small scale applications and large scale serious
usage. Enough non-trivial applications have now  been written to begin to
Jjustify the claims made for these languages on theoretical grounds but more
work, both practical and theoretical, needs to be done to finally
establish these languages as serious contenders to replace the more
conventional languages in all applications.

HOPE has been used in Edinburgh to write sophisticated mathematical and
program specification packages, Burstall [1979]. Also at Edinburgh Martin
Feather used a precursor of HOPE to fully specify the text formatter from
Kernighan and Plauger [1976] and transformed this, completely mechanically,
to an efficient implementation, Feather [1979].

At Imperial Moor's HOPE in HOPE compiler is a large HOPE program (3,000
lines) that handles all the stages of parsing and code generation
completely declaratively, The manner of its construction bore out many of
our hopes for the functional languages. Our meta-language based transfor-
mation system is written entirely in HOPE as are all the tools we are
developing for the ALICE programming environment such as a structure
editor.

PROLOG has been extensively used at Edinburgh. The Mecho project, Bundy
(19791, used PROLOG to develop a mechanics problem solving system while
Pereira and Warren used it to implement a sophisticated natural language
interface, Pereira et al [1976].

At Imperial PROLOG has been used very widely, Clark, Hammond and McCabe
have been using PROLOG to implement expert systems. Systems have been
constructed that deal with such diverse topics as supplementary benefit
entitlements, dam construction, genetic engineering and care of the
terminally ill, as well as the development of software tools to assist the
building of such systems., Ennals and Kowalski are conducting a project
using PROLOG in schools to teach not only the ideas of logic programming
but the organisation of knowledge in many areas of the school curriculum,
including history, language and science. PROLOG has also been used in
compiler writing, Moss [1980], graphics, Julien [1982], critical path
analysis, Kriwaczek [1982] and formalising legal concepts, Sergot [1982].

Much of the implementations for the PARLOG ALICE compiler and the PROLOG
abstract machine are being written in PROLOG.

Hungary has some very serios applications involving PROLOG including
symbolic mathematics, drug interaction analysis, architectural planning and
compiler writing,



4. Preeram Rexclopment in Reclaraline LapRNRgEs

Athough declarative languages in themselves are much higher level and
powerful than conventional programming languages their clean mathematical
properties make it possible for program development and maintenance to
become a much more formally based, systematic and mechanisable activity
than it is at present. The idea of program transformation was first
pioneered with the functional languages, Burstall and Darlington [19771.
The idea here is that many of the difficulties encountered at present in
attempting to produce good quality software arise from trying to meet
several incompatible goals simultaneously. In particular attempts to make
programs clear and correct (and therefore easily modified) often conflict
with the need to make them efficient, The transformation approach
separates these two concerns and approaches the programming task in two
stages. Firstly the programmer is encouraged to write the program
initially concentrating only on making it as clear and understandable as
possible ignoring any concern with efficiency. When he is satisfied with
this specification he successively transforms it to more and more efficient
versions using methods guaranteed to preserve the meaning of the original
program while improving its performance., Thus we need a calculus of
meaning preserving transformations. Such a calculus is almost impossible
to find for conventional languages, the presence of shared structures,
assignment and side effects means that the most complex checking and
program provig is necessary before even the simplest manipulation can be
performed. In contrast the simple substitutive properties of the
declarative languages mean that such a calculus is easily produced. What
is more such calculi can be proven once and for all to be correctness
preserving, little or no proving being necessary when they are applied.

Transformation ideas apply equally well to the logic programming languages
and have been extensively investigated, Bibel [1978] and Clark [1977]. In
the functioal languages equality is used as the main deductive step in the
logic languages this is replaced by logical inference,

Declarative languages have other advantages that apply at the specification
stage. Although such specifications are written for maximum clarity and
may employ language features that are extensions of those efficiently
executed (e.g, infinite sets in the functional case and non-clausal form in
the logic case) they very often can be 'run', albeit partially or slowly,
to check out the initial specification. Thus a process of early
prototyping is possible whereby the initial specification is itself tested
and debugged and then systematically transformed to an efficient program,
The crucial point is that specification and program are in the same
formalism and there is a continuum, not a discontinuity, between the two,
This process of software evolution, we think, matches much closer to the
reality of software development than the disjoint specify - program -
verify steps that the strict program verification approach prescribes,

Substantial work has already been done to show that program transformation
is capable of formally but intelligably expressing large and complicated
program developments and that partial mechanisation of this technique is
feasible, The work reported in Darlington [1981] shows how the use of a
meta-language enables the design of complex programs to be captured in a
structured and understandable manner. This we feel has important
consequences for program modification and maintenance as well as initial
program development.
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5. Rasallel Exalualien

The benefits of parallel evaluation for declarative ;anguages and the
design of suitable machines to exploit this will be 1nvest1gateq more
thoroughly in other companion papers, However we shall briefly discuss
this topic in relation to the language's features and the ease of use of
these languages.

Consider the following functional program to again compute factorial
factorial(n) = factb(1, n)

factb(i, j) = if i = j then 1 _
glse if 1+ 1= thep J S

glse factb(i, mid) * factb(mid, j)

Where mid = |1 + iJ

2

Thus if were are allowed to reduce all available subexpressions in parallel
an evaluation of factorial 5 would proceed

factorial(5) => factb(1, 5) => factb(1, 3) ¥ factb(3, 5)
=> (factb(1, 2) ¥ fact(2, 3)) ¥ (factb(3, 4) ¥* factb(4, 5))
=> (2%3) # (4 %65) =>6% 20 =>120

A total of 5 reduction steps instead of the 11 needed previously,

The most obvious advantage for parallel evaluation is of course the
potential for dramatic increases in speed for declarative languages. Our
prediction for the ALICE prototype, a relatively modest 16 processor
machine, is that it will run HOPE an order of magnitude faster than
conventional languages on a medium sized mainframe, Such an increase would
straight away make the declarative languages very attractive indeed,
However, perhaps more important is the fact that parallel machines provide
a natural implementation for declarative languages. It has been our
gratifying experience that it is easier to compile declarative languages
onto a parallel machine than onto a sequential one, Furthermore often the
forms of program that benefit most by parallel evaluation are the ones that
are easiest to express, This is perhaps not well illustrated by the
factorial example but parallel algorithms are often closer to the natural
specification of problem than sequential ones. Transformation techniques
can be equally well used to maximise the amount of parallel evaluation
present in a program as they can to fit a program to a sequential machine,

For logic languages the question of parallel evaluation is slightly more
complicated, For example consider the following classic logic program for
deciding the fallibility of individuals

Fallible(x) if Human(x)

Human(Turing)

Human(Socrates)

Greek(Socrates)

Say we wanted to use this program to find a fallible Greek our query would

1



be
Fallible(x) and Greek(x) ?

Now there are opportunities for investigating both the Fallible question
and the Greek question in parallel by using the separate clauses of the
program. Thus OR-parallelism is easy to achieve, The difficulty arises in
that any x that purports to be an answer to the whole query must satisfy
both parts. Thus AND-parallelism gives rise to the need for co-ordination
between otherwise independent parts of the program.,

This question of how to achieve the maximum benefit from parallel
evaluation apart the encouraging thing is that parallel evaluation allows
us to implement much more fully the logic programming ideal rather than
PROLOG., For instance by being inherently sequential PROLOG interpreters
only provide a partial implementation of logic. That is if we view a logic
program as a set of assertions PROLOG interpreters, because of their depth
first backtracking nature, may go into a loop and fail to find a solution
although one is logically implied by the assertions. Given a parallel
machine we can implement a complete breadth first search for solutions and
remove many of the impure features from PROLOG that are there just to
control a sequential search,

6. Jssuss and Oeen Exehlswms

Although much progress has been made there still remain many issues to be
tackled before declarative languages can claim to be fully mature and all
embracing.

6.1 Beel Time Eroblems

The main virtue of the declarative languages, absence of side effects could
be viewed as a handicap when tackling problems involving the need to effect
the outside world., This is not necessarily so, but it is true that
declarative languages have not been extensively used in real time or
control applications. There are theoretical and language issues that need
to be solved concerning the sequentialisation of operations when this is
required by the application. Sequential languages are burdened all the
time by explicit sequentialisation, sometimes it comes in handy but there
is no reason why we cannot add it to the declarative languages when needed,
the issue is how to do it cleanly and transparently.

Included in this class of problems are operating system applications. The
issue here is how to specify behaviour that affects the outside world (i.e,
controlling printers etc), control access to shared resources and achieve
the right degree of non-deterministic behaviour. The language PARLOG,
Clark and Gregory [1981]1 and the work of Shapiro represent substantial
advances towards solving these problems,

6.2 Lack of assigowept apd uwpdalable siruciues

The absence of assignment is the chief characteristic of the declarative
languages and is essential for their power. However it is still an open
question whether there are problems for which the ultimately efficient
solution requires in place updating of a shared data structure, If this
were so such tdestructive' assignments could be cleanly introduced into an
initially totally declarative program by transformation. Programs written
employing destructive assignments and side effects are notoriously error

12



prone and hard to debug,

6.3 Pacallel Exaluakion

As parallel machines are only now being developed there are many
interesting research problems connected with the practical behaviour of
programs under parallel evaluation. What is the analog of tracing a
program? How are resources allocated and controlled on a parallel machine?
Is the user interface to a declarative language itself expressed in
declarative terms? :

T. Eukige Rexslosmends

The future looks highly promising for the declarative languages. The
arrival of the parallel machines should see their ultimate acceptance but
much can be one in the interim using conventional implementations or novel
sequential architectures, The way forward seems to lie in further
development of the languages, their associated programming techniques and
their application to realistic problems.,

One obvious development is to attempt to combine the advantages of both
functional and logic languages in a new formalism. This is already
hapenning to some extent, many versions of PROLOG now incorporate
functional notation, Studies are also underway to incorporate unification
into the functional languages. This gives a language with all the power of
PROLOG with regard to invertibility etc, but still retaining the ability
to use higher order functions and functional notation,

Much development work is needed before automated program development is
practical but a lot of the theoretical groundwork has been done and the
exposure of these techniques to large scale software engineering
applications is ripe.

A great boost has recently been given to the declarative languages by the
Japanese Fifth Generation Programme, This activity is now underway and
reports indicate that the Japanese are enthusiastically pursuing their
commitment to the declarative languages. The concentration of the Japanese
activity seems to be largely on declarative languages, program
specification and development systems and sequential and parallel machines
for these languages. Applications at the moment seem largely restricted to
using PROLOG and variants as a kernel language for system work and
developing natural language interfaces.
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DECLARATIVE LANGUAGES

JOHN DARLINGTON

IMPERIAL COLLEGE



PROCEDURAL LANGUAGES

DECLARATIVE LANGUAGES

VON NEUMANN MACHINES

SEQUENTIAL LANGUAGES
WITH ASSIGNMENT

BASIC

PASCAL

O
o}
O

ADA

SOFTWARE CRISIS

PERFORMANCE TECHNOLOGY
LIMITED
FUNDAMENTAL LIMITS

PARALLEL MACHINES

MATHEMATICALLY BASED LANGUAGES

FUNCTIONAL - HOPE., KRC
LOGIC - PROLOG

FORMALLY BASED PROGRAM DEVELOPMENT

PERFORMANCE ALGORITHM LIMITED

NO FUNDAMENTAL LIMITS




DECLARATIVE LANGUAGES BASED ON MATHEMATICAL NOTATIONS

FUNCTIONAL - LAMBDA CALCULUS
RECURSION EQUATIONS

LOGIC - FIRST ORDER PREDICATE CALCULUS
NO ASSIGNMENT, SIDE EFFECTS OR EXPLICIT SEQUENCING
COMPUTE BY VALUE NOT EFFECT

POWERFUL., COMPREHENSIBLE PROGRAMMING LANGUAGES
FORMALLY BASED PROGRAM MANIPULATION POSSIBLE

PARALLEL EVALUATION NATURAL



FUNCTIONAL LANGUAGES

PROGRAMS SETS OF EQUATIONS DEFINING FUNCTIONS

MAX (X, Y) = IF X DY THEN X ELSE Y
MAXOF3(X.,Y.Z) = max(mMax(x.y).z)
FACTORIAL(N) = I1FN=0 THE 1 ELsE N * FAacT(N-1)

EVALUATION REDUCTION OF AN EXPRESSION

FACTORIAL (4) 2> 4 * racTorIAL (3)
'—'—'9 4 * (3 * pactoriaL (2)) 94 ¥ (3% (2 * pacTorIAL (1))
=S 4% (3% (2% (1* racTorIAL (0))))

Syt (3*(2%(1*1))

> 24



®  PATTERN MATCHING
SEPERATE EQUATIONS #OR DIFFERENT CASES OF ARGUMENT

FACTORIAL (0) = 1
FACTORIAL (N-+ 1)

(N+ 1 * pacTorIAL (N)

®  STRUCTURES AS TERMS IN DATA CONSTRUCTORS
EG LISTS NIL. CONS
[1 ~ nIL
[1] ~ cons(l.NIL)
[1.2,31 ~ cons(1,cons(2,cons(3,NIiL)))

(conNs(N,L) -= N.L INFIX OPERATOR)

® USED IN PATTERN MATCHING
0
1 + LENGTH(L)

LENGTH (NIL)

LENGTH (N.L)

- "ABSTRACT' TYPES BECOME CONCRETE



® HIGHER ORDER - FUNCTIONS FIRST CLASS OBJECTS

NIL
F(x).MaP(L, F)
®  'CANNED' ITERATORS

MAP(NIL, F)
MAP(X.L, F)

compoSE (F,G) = LAMBDA N. F(c(N))
® FUNCTION LEVEL PROGRAMMING —> BACKUS

® STRONG POLYMORPHIC TYPE CHECKING

* LAZY EVALUATION



LOGIC PROGRAMMING

CALCULUS OF RELATIONS

EG  UNCLE(FRED, ANN)
HEAVY (LEAD)

TiMES(2, 2, 4)

PROGRAMS SET OF CLAUSES
HORN CLAUSE SUBSET OF LOGIC

FACTORIAL(O, 1)
FACTORIAL(N + 1, v) IF FACTORIAL(N, u)
AND TIMES(N + 1, u, V)

LENGTH(NIL, 0)
LENGTH(X,L, U) IF LENGTH(L, N) AND PLUS(N, 1, U)



e EVALUATION IS QUERYING PROGRAM

) CHECKING
FACTORIAL(H, 2U)?

U

YES

(I1)  FINDING

(A) FACTORIAL(L, u)?

N7
YES, U = 24

(B) FACTORIAL(y, 24)?

0
YES, U = 4

e INVERTIBILITY APPLIES TO STRUCTURES

LENGTH(L, 2)?

N2 .
YES, L = CONS(u, cons(v., MIL))



LOGIC PROGRAMMING UNIFIES

® DATA PROCESSING

® DATA BASES

® KNOWLEDGE REPRESENTATION

®  EXPERT SYSTEM IMPLEMENTATION



ADVANTAGES OF DECLARATIVE LANGUAGES

REFERENTIALLY TRANSPARENT NOTATIONS
® VALUES DEPEND ON CONTEXT NOT COMPUTATIONAL HISTORY

® POWERFUL., CONCISE., UNDERSTANDABLE PROGRAMMING
LANGUAGES

SIMPLE MANIPULATION RULES
® PROGRAM TRANSFORMATION POSSIBLE

® PROGRAM DEVELOPMENT FORMALLY BASED,
MECHANISATION POSSIBLE

SPECIFICATIONS lEXECUTABLE'
® FEARLY PROTOTYPING
® TESTING, DEVELOPING SPECIFICATIONS



PARALLEL EVALUATION NATURAL
FACTB(L,N)
IF 1 =J THEN 1

FACTORIAL(N)

FACTB(1, J)
ELSE IF 1 + 1 =J THEN J
ELSE FACTB(I, MID) * FACTB(MID, J)

WHERE MID = '[igi

EXHIBITS EXPONENTIAL INCREASE IN PARALLELISM
FACT(5)

FACTB(1, 5)

N

FAaCcTB(1,- 3) * racTB(3, 5)

N

(racTB(1, 2) * rFACTB(2, 3)) * (FAcTB(3, 4) * FAacTB(4, 5))

N %

223) * (425)
N2
6* 20

J

120




U.K. IMPLEMENTATIONS

1. FUNCTIONAL LANGUAGES
(1) HOPE

EDINBURGH HOPE COMPILER IN POP-2
IMPERIAL

HOPE PASCAL INTERPRETER
HOPE IN HOPE COMPILER
(FOR ALICE)
WESTFIELD

(11)  KRC
KENT INTERPRETER AND COMBINATOR COMPILER

CAMBRIDGE SKIM MACHINE

(r11) LISPKIT
OXFORD
PERQ MICRO-CODED IMPLEMENTATION

(iv) ML
EDINBURGH VAX COMPILER’



2, LOGIC PROGRAMMING

PROLOG NOT LOGIC PROGRAMMING

(1) EDINBURGH
pEc-10 PROLOG COMPILER
PDP-11 PROLOG SYSTEM

(11)  IMPERIAL
IC-PROLOG - PASCAL ON [BM
MICRO-PROLOG - & BIT MICROS
PROLOG ABSTRACT MACHINE
PARLOG
OR-PARALLEL PROLOG FOR ALICE

(111)  YORK
PROLOG ON PERQ

(IV)  SUSSEX
POPLOG
POP-2 + PROLOG



APPLICATIONS

FUNCTIONAL
HOPE IN HOPE COMPILER
TRANSFORMATION META-LANGUAGE SYSTEM
GRAPHICS
DATABASE QUERY

LOGIC

EXPERT SYSTEMS

DATABASES

TEACHING CHILDREN

LEGAL INTERPRETATION
NATURAL LANGUAGE PARSING



ISSUES

e SYNTHESIS OF FUNCTIONAL. LOGIC LANGUAGES
e INCORPORATION OF UNIFICATION INTO FUNCTIONAL
LANGUAGES
® POLYMORPHIC TYPE CHECKING IN LOGICAL LANGUAGES
e HIGHER ORDER FUNCTIONS IN LOGIC

e PURE LOGIC VS PROLOG
USE OF STANDARD LOGIC

® REAL TIME/OPERATING SYSTEM PROBLEMS

e USER INTERFACE
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1 Introduction

Although technology has advanced considerably since the first
computers were built, the basic organisational principles have
remained largely static, with the following key features:

1. Sequential, centralised control of computation via a unique
sequence control register.

2. A centralised, Random Access, memory.
3. Destructive update.

These “von Neumann” features have served us well for over 30
years, particularly with the use of clever engineering ideas
like pipelining, virtual memory, and Single Instruction Multiple
Data (SIMD) extensions. These ideas, when carefully integrated
and realised wusing the most advanced technology, have led to
very powerful computers like the Cray and the DAP. An obvious
first question is: why not stick with von Neumann?

1.1 Motivations for Change

The clearest motivation for re-examining the basic principles
is sheer speed. Given VLSI technology, we can produce
cheaply huge armies of chips to attack problems in parallel.
Provided we can work out some way of organising these chips
to do the work required, we can “buy speed” from VLSI. But
the unique sequence control register in the von Neumann
machine restricts us to an SIMD approach to parallelism,

A less obvious motivation is the software crisis. We want to
produce high-quality software at reasonable cost. Backus
[Back78] has argued that conventional languages are
unnecessarily difficult to program in, and that many of the
difficulties stem from a “von Neumann’ orientation of the
languages concerned. The underlying concern of a
conventional programmer is to guide :a single locus of control
through a cunningly designed maze of assignment, conditional
and repetitive statements (ie the program). At each step the
programmer has (perhaps quite unconsciously) as a major
concern the details of how things are done rather than
getting right what is done.

Because much of our civilisation manages to stagger along
using programs developed in this imperative style, it may be
judged reasonably successful - at least for programming von
Neumann machines with a single locus of control. Even here,
however, the software crisis 1indicates there 1is something
wrong with conventional languages and suggests we should
examine alternatives. When 5th generation architectures with
perhaps thousands of chips working in parallel are
considered, the prospect of programming each chip
individually becomes unthinkable, and the case for a new
approach which does not require the programmer to consider
individual control loci becomes overwhelming.

=



2 The “Language-First” Approach to Architecture.

Although the following quote from Dijkstra [Dijk76] is taken out
of context, it neatly summarises the general approach of novel
architects:

"It used to be the program”“s purpose to instruct our computers;
it became the computer”s purpose to execute our programs,"

The architects” starting point is now the language rather than
some fiendishly clever engineering idea which takes no account
of programmability. A possible disadvantage of this approach is
that each lanquage may lead to a quite individual architecture
which is unsuited to other languages. 1In the event, just two
families of languages have been considered seriously by novel
architects, the lambda-based 1languages (eg Burge”s language
[Burg75], SASL [Turn79], FFP [Back78}, ML [GMW79], VAL [AcDe79])
and the logic-based languages (eg Prolog {C1Me8l}).
Operationally, lambda-based languages require only simple
(non-backtracking) pattern matching facilities and are therefore
easier to support. Perhaps for this reason, and the fact that
logic languages are fairly recent, the bulk of the work so far
on novel architectures has focussed on lambda~-based languages.

There are now signs that logic and lambda languages (and perhaps
process-oriented languages too) can be integrated in a natural
manner., Whilst this does not simplify the problem, it does
suggest that work on lambda-oriented architectures provides a
sound basis for parallel architectures which support more
advanced languages.

3 The Design Process

For a given language, an idealised machine can be designed which
defines operationally the semantics of the language. This
Computational Model usually makes unrealistic assumptions - for
example an i1idealised Algol machine supports arrays of unbounded
size and no real computer can deal with this. The job of the
computer architect is to devise a physical model which, within
its limitations, behaves exactly like the computational model.
The process of designing a language oriented architecture starts
with the rather high level computational model and progressively
refines it until it becomes physically realisable at which point
it is a physical model. By the time this stage is reached, the
set of programs which the model will deal with satisfactorily
will be considerably smaller than the set of programs which the
idealised computational model supports. Finally, the physical
model is mapped onto existing technology using all the clever
engineering ideas around to yield a real machine.

Given a single computational model, a huge number of differing
physical models may be derived using the top-down methodology.
The physical models may be distinguished both in performance
terms (sheer speed) and also in terms of the restrictions placed
on the programmer. A good physical model leads to real machines
which run fast, and perhaps more important, do not unduly force
the user to “program round” their limitations.



No real architect uses a pure top-down methodology. In
practice, there is a strong temptation to 1let “efficient”
instructions on the real machine find their way into a language
implementation, often changing the language semantics
dramatically. Thus “real” LISP supports destructive assignment,
and most language implementations provide “hooks® which allow
the user to get at a relatively naked form of the raw machine.

Novel architects are not immune from this bottom-up influence,
especially if they support an active user community. But the
novel architect feels guilty when he succumbs to such pressures,
and asks the language designer for help. A major outcome of the
DCS programme has been to make the UK a world focus for this
increasingly active and fruitful dialogue between language
designer and architect.

4 Novel Lambda Machines.

Before describing individual novel architectures, we develop
some basic ideas which (in retrospect) have guided much of the
work. This task is eased because nearly all the work has
focussed on lambda-based languages.

4.1 The Lambda Calculus.

The following remarkably simple syntax captures the essence
of all the classical computer languages:

E ::= 1identifier
lambda identifier ., E
@ E E

In conventional terms, functions are represented by 1lambda
abstractions., 1Instead of writing:

f(x) = x*3
we write instead: ‘
f = lambda x. (x*3)

which allows us to talk about f without worrying about naming
its arguments. We “call” functions in the lambda calculus by
applying them to an argument, eg

@ £5

will “send” 5 to f, to produce the result 15 which - because

it is exactly equivalent to the original expression - can
replace it.

Although at first sight the 1lambda calculus 1looks rather
horrid, (eg f(x)=2*x+x/3 turns into : lambda x . (@ (@ + (@
(@ * 2) ) (@ (@ / %) 3))) ) the unsugared (machine) form has
advantages: 1in particular, functions which both accept and
return functions may be defined. (@ * 2) is the function



which doubles its argument. In general, the “equal civil
rights” property of tha lambda calculus is a  powerful
mechansism for developing - in conventional terms - program
forming programs, the advantages of which have been amply
illustrated elsewhere [Turn8lb]}.

Usable (“sugared”) lambda languages allow the user to adopt
conventional infix notation, to pre-name values of
expressions using LET, and to post-name values using WHERE.
Programming in a pure lambda-based language can be done in a
purely descriptive fashion: we imagine the output
(presumably some complex data structure) and describe it in
terms of the input, using LET"s and WHERE”“s as appropriate.
Aside from the capability to write “program forming programs”
(which takes some practice), the most notable feature of
programming in a lambda-based notation is the total absence
of the assignment statement. This means, for example, that
the usual “loop counting” variables must be replaced by
recursive calls. The reward is referential transparency, ie
within its scope, any mention of an 1identifier denotes the
same value throughout the run of the program.

4.2 Computation Models for Lambda Languages.

The basic rule for evaluating lambda expressions is
beta-conversion:

@ (lambda x.(Ex)) F -> [x<~F] ExXx

where the right hand side means (a copy of) the expression Ex
with all free occurrences of x replaced by (a copy of) the
expression F. This rule is simple to state, incredibly
powerful, and very difficult to implement efficiently. It is
also very ambigquous: in particular, given a large expression
containing many reducible (ie beta convertible)
sub-expressions, no evaluation order is specified.

There are two central issues in developing lambda-oriented
architectures:

1. What evaluation order should we use?

2. How should beta conversion be done?

4.2.1 Evaluation Order.

In conventional (control flow) languages, the order in
which statements are executed usually has a dramatic
effect on the outcome. A major result of the 1lambda
calculus [see eg Burg75] states (roughly) that the choice
of order makes no difference to the value, although it may
affect termination, Evaluation of a lambda expression
proceeds by identifying one or more reducible
sub-expressions (or redexes), and replacing them with
equivalent, but simpler expressions using beta conversion.
This reduction process is repeated until there are no more



Redexes, when the expression is in canonical form. For
example, ((3*4)+(5*6)) contains 2 redexes:  (3*4) and
(5*6) . These may be reduced in any order (or 1in pagallel)
to 12 and 30 respectively. The original expression has
now been reduced to the form (12+30) which may be €further
reduced to the canonical form (42) . Essentially,
computation is viewed as controlled deduction rather than
a sequence of state changes. This change of viewpoint is
perhaps the most fundamental aspect of “novel
architecture” work.

It looks at first sight as if exploiting parallelism gains
speed and loses nothing. Why not “data drive” the
computation so that all redexes are reduced in parallel?
In fact, an injudicious choice of evaluation order may
have unfortunate consequences:

a. it may lead to non-termination, most obviously when
the two arms of a conditional statement are evaluated in
parallel, Most interesting computations depend on
conditional statements to prevent fruitless (and possibly
infinite) computation.

b. however many chips are used, any real machine has a
finite capacity for realising parallelism. Once this
limit is reached, further attempts to exploit parallelism
simply clog up the system queues.

c. 1in a distributed architecture, the communication costs
involved 1in distributing sub-expressions to other
processing elements may outweigh the time saved.

Thus the choice of evaluation order affects performance in
a marked manner, and the issues noted above provide a
useful checklist for evaluating novel architectures. One
attractive solution is to pass the buck to the user by
introducing pragmas and annotations to the language. This
is reminiscent of pre virtual-memory days when every
programmer worth his salt had his optimal overlay scheme
for memory management. The alternative approach is to
make the architecture take the ,decisions in a dynamic
manner. This 1is of course the right approach, but it is
much harder. At present, we cannot be sure that the
distributed equivalent of “virtual memory” magic will
appear, and certainly annotations and pragmas are useful
in the short term.

4.2.2 Beta-Conversion,

The basic operational mechanism for evaluating lambda
expressions is beta-conversion, which 1is in principle
simple textual substitution. For example, using an
“outermost first”® evaluation order, the expression:

f(sqrt(4)) where f(x)= if (x=1)
then h(x)
else g(x*5)
£l



reduces (ie is beta-convertible) to:
if ((sqrt(4))=1) then h(sqrt(4)) else g((sqrt(4))*5) Ei

Here we have used string reduction to realise
beta-conversion, making 3 complete copies of the argument.
Because the new form 1is a conditional, and the argument
occurs in both arms, one of the copies will certainly be
thrown away. Further, because of the evaluation order,
two evaluations of (sqrt(4)) are involved assuming both h
and g force evaluation of their arguments.

We can save much unnecessary work by copying pointers to
sub-expressions rather than the full text. This
graph-reduction approach, described in detail for the
lambda-calculus in Wadsworth [Wads71], not only bounds the
work done in copying each argument, but also allows
results to be shared so that only 1 evaluation of
(sgqrt(4)) now takes place. But we are still making one
wasted copy - and in general many more - albeit only of a
pointer. In fact, we are usually doing much more copying
because in a graph reduction scheme we “peel off° a
specialised copy of the function body to hold the new
pointers. Whilst “peeled off” copies can share common
portions of the original graph, the existence of deep
arguments will force much actual graph copying, even if a
huge portion of the graph is later thrown away (eg in an
unselected arm of a conditional).

Moving from string to graph reduction involves being
progressively lazier about making copies. The standard
environmental scheme for realising beta-substitution takes
this process to its logical conclusion by doing no copying
at all. 1Instead, beta-substitution is simply “remembered”
by adding an (identifier ,expression) pair to an
environment. In the example above, the pair would be
(x,(sqrt(4))). When the identifier x 1is needed for
further evaluation, (eg in the conditional test (x=1)) it
is looked up in the environment, and future lookups can
share the benefit of forced evaluation if we take some
care in the implementation.

At first sight, the environmental scheme wins hands down
because copying is never done unless it is needed. 1n
this sense, it is a purely demand-driven scheme, On
closer examination, however, the picture 1s not so clear:

a. A fast environmental scheme must employ an efficient
“lookup” mechanism for identifiers. 1In particular, deep
accesses to the environment should cost little more than
shallow ones.

b. by its nature, the environmental scheme shares a
single copy of the expression denoted by an identifier
between a potentially huge number of occurrences of that
identifier. Whilst this means that all uses of the
identifier experience the benefits of forced evaluation of
the expression, it also means that the unique copy may act
as a bottleneck in a highly parallel architecture,
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However efficient the 1look-up mechanism is, it is

desirable to minimise its |use. In a large expression
containing many occurrences of a particular identifier, it
may be cheaper to perform the look-up once and distribute
at least pointers, even if some of these are thrown away.

4.2.2.1 Lazy Graph Reduction and Combinators,

The newest approach to beta-substitution is to use lazy
graph reduction. In Wadsworth”s original scheme, every
beta-substitution involved a “full-peel” of a copy of
the original graph, so that if there are N occurrences
of the identifier, at least N nodes would be copied
whether or not required. It would be better to do lazy
copying of the graph. This may be done by examining
the program at compile time and translating it into a
variable~-free form which replaces a tree consisting of
interior nodes and leaf nodes which mention wvariables
by a tree of interior director nodes which will switch
incoming arguments to exactly the places specified by
the variables. The “switches” encode the information
in the wvariables, which may now be replaced by
anonymous holes which notionally wait to be filled by
the switching process.

For example, the expression:
f(5) where f (x)=2*x+x* (3*4)

may be replaced by the tree shown in fig. 1:
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The distribution sub-tree for x has been marked with
double lines: it indicates that in order to evaluate
the expression, the argument 5 may have to be sent both
left and right at the uppermost + node in the tree, and
that this + node should distribute copies both right
and left. Copies (string or pointer) now arrive at the
* nodes in the diagram, to be further distributed right
(by the leftmost * node) and left (by the rightmost *
node). Intuitively, we imagine the incoming value for
x being distributed to just the places it is needed in
the expression via the distribution sub-tree. An
obvious encoding for distribution sub-trees is to tag
each apply with a director from the set (SN
representing the distribution instructions “send both
ways, send right, send left” respectively. Using this



idea, fig. 1 translates to the variable-free form
shown in fig. 2, where the boxes represent 'holgs‘ for
the missing arqument values. The directors guide an
argument to Jjust the places required in an expression,
in a number of small steps which may be realised
concurrently. Conditional expressions effectively
represent directors which are determined dynamically,
switching an argument left or right depending on
whether the condition is true or false. The
practicability of this technique was first suggested by
Turner [Turn79] who introduced the S1,Bl1 and C1l
combinators (switches) which closely correspond to the
three directors. A fuller description of the director
approach is available in [KeS182,Dijk80].

4,.2.3 Choice of Computational Model.

It would be nice if the architect could select a preferred
evaluation order and a scheme for beta-substitution in the
secure knowledge that the decisions are independant.
Unfortunately, this 1is not the case. For example,
selection of outermost (lazy) evaluation favours some
pointer scheme (graph reduction, lazy graph reduction or
environment) as against string reduction to reduce the
amount of copying. In general, string reduction is only
practicable for innermost (eager) evaluators,

To complicate matters further, use of “lazy” evaluation

[HeMo76] (which corresponds to outermost evaluation)
extends significantly the class of programs which
terminate: in particular, the “lazy” programmer can

define his output using functions which operate on “folded
up” versions of infinite 1lists, Because this is an
extremely useful tool in the programmer®s kit, the
expressive power of the language adds another dimension to
the problem of choosing a computational model.

4.3 Pﬁysical Models.

An effective physical model acts as a conceptual bridge
between the computational model and the hardware. At the
highest level, the physical model specifies the general
organisation of the architecture which can be realised in
hardware.

At this level, a von Neumann machine consists in essence of a
processing element with one or more registers, a special
sequence control register, and a global random access memory
with completely destructive update. This efficiently
supports sequential control flow.

To support parallel evaluation of lambda languages, a novel
architecture must support the chosen computational model,
which specifies an evaluation order and a scheme for beta
substitution,



4,4 A General Organisation,

Any interesting evaluation order for a lambda language may
create a huge number of redexes (reducible sub-expressions)
which can be executed in parallel. 1In a von Neumann machine,
every instruction appoints a unique successor, which can be
recorded (indirectly) in the sequence control register. 1In a
lambda machine, each expression may in principle appoint a
large number of sub-expressions for sub-evaluation, For
example, outermost evaluation of ((3*4)+(5*6)) attempts to
perform the + first, and appoints the sub-expressions (3*4)
and (5*6) as successors. But not only must the architecture
be able to appoint more than one successor, it must also be
able to remember that when all the successors have finished
the parent expression may be reducible. Thus the simple
“goto” nature of the von-Neumann architecture is
inappropriate for lambda machines, which require recursive
call as the basic mechanism for transferring control,

A very general organisation for achieving this 1is shown

below:
4: z&
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Notionally at least, each task fully describes a
sub-expression of the overall computation, together with a
destination specifying where the evaluated form 1is to be
placed. For the original expression which began the
computation, this will be an output device. For
sub-expressions, the destination will specify a field within
some other task held in the waiting pool.

Each processing element picks any task from the selected pool
and examines it to see if it requirés sub-expressions to be
evaulated. If so, the relevant sub-expressions are extracted
and added as tasks to the selected pool. The original task,
which now has holes in it, is added to the waiting pool.
These holes will be filled by returning results., TIf the
original task does not need sub-evaluations, it is evaluated
and the result used to fill a hole (either in one of the
tasks in the waiting pool or in the output device). Filling
in the 1last hole in a waiting task moves it to the selected
pool,

This simple picture is the basis for nearly all novel
architectures to date, which however differ greatly in
detail. The basic idea is to replace the single sequence
control register in a von Neumann machine by a set of tasks
selected for execution at each time step. The choice of

computational model specifies a scheme for beta-substitution,
If we can devise an efficient, extensible, highly parallel,
random access implementation of the task pools required in
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the general organisation, there 1is no reason not to use
pointer schemes for beta substitution. If, on the other hand
this proves tricky, it may be better to risk some unnecessary
copying to avoid bottlenecks in accessing the pools.

4.5 Particular Organisations for Distributing Work.,

The general organisation shown above represents a rather high
level model which lacks a considerable amount of important
detail. It 1is obviously possible to simulate the model
directly using a uniprocessor. It is much more difficult to
invent a scheme which distributes the computation over real
parallel hardware without creating communication bottlenecks.
This is the distribution problem, which is the main issue at
the physical level. We now examine some approaches to this
problem.

4,.5.,1 Pipelined Ring Architectures. (PRA“s)

Rather than let tasks sit passively in a pool as the
general model proposes, and making the processing elements
pick them out, we might reverse the idea and make selected
tasks move to the processing elements. Each processing
element now processes a stream of incoming tasks and emits
a stream of results. These results can be merged and the
resulting stream processed by a task former which, in
terms of the general model has access to the waiting pool
and employs it to create a stream of new tasks. The ring
is closed by feeding all the result streams to a fan-out
mechanism which distributes the tasks to the processing
elements as they become available. The PRA scheme is
shown below in diagramatic form:

PElL—
> 3 :; >—
— PENn—-

& task former ~<

Y

tasks results

pools

At this level of abstraction, no decision has been made
about the representation of tasks, nor about their
granularity. Note that the PE”s do not have direct access
‘to the waiting pool in the PRA model, so that each
executable task must include all the information (code and
data) needed to perform the task. Perhaps for this reason
tasks in working prototypes tend to be fine grain, eg
(3+4) .

In contrast to most of the other models of distribution,
several prototype PRA“s are running now, notably the
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Manchester Dataflow Machine fGuwWwasg0] . By clever
decomposition of the task former, the ring may be heavily
pipelined, and many rings may be interconnected using an
exchange switch for inter-ring communication. MIT"s Jack
Dennis pioneered this approach , but continues to advocate
a more static approach than the Manchester group [Denn80].
If inter-ring traffic can be kept 1low, multi-layered
dataflow machines promise very high performances. By
clever use of the “colouring” facilities in the Manchester
machine, it is possible to support higher order functions
[Kirk82].

The PRA model was originally proposed by Dennis, who has
been a prime mover towards a “top-down”® approach to
architecture. Dennis has now been joined by Arvind
[Arvi8l)], who 1is currently planning to build a 64-ring
prototype using available chips within the next 3 vyears,
Arvind“s proposal follows closely the Manchester work, bhut
adds a special 1I-structure unit to each ring to handle
large data structures, This alleviates the problem of
having to physically process huge data structures each
time an element is examined.

4.5.2 Packet Circulation Ring Architectures. (PCRA”s)

The most obvious bottlenecks in the PRA scheme are the
input and output streams to and from the processing
elements., One way of increasing throughput is to use many
rings, and both Manchester and MIT are following this
path, One alternative approach is to use a slotted ring
for communication to distribute resources to processing
elements. A slotted ring 1is simply a circular conveyor
belt divided into slots. A sender places a message in the
first empty slot he sees. A receiver 1looks out for a
message addressed to him, and removes it to create a new
empty slot. The practicality of the slotted ring concept
has been amply illustrated by the Cambridge ring project
[Need79]}.

The general idea behind PCRA“s is to place a number of
PE“s in a circle and serve them with resources using one
or more slotted rings. Messages, represented by 1 or more
packets may denote for example a task, a global address,
or data. A single slotted ring may be used for all

communication, as with the real Cambridge ring, or a
number of specialised rings may be wused to distribute
particular resources. Similarly, the ring servers may be
highly specialised or more general purpose, eg processing
elements with some local memory.

An advanced PCRA is being constructed at Imperial college
by the ALICE (Applicative Language Idealised Computing
Engine) group ([Darl81]. The original ALICE proposal used
two slotted rings, one for distributing tasks from the
selected pool and one for distributing memory for new
tasks. Both rings act as distribution agents for a global
packet pool which merges the functions of the selected and
ready pools in the general model. To avoid the merged
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packet pool becoming a bottleneck, use of a multi-ported
memory with an advanced topology is proposed.

A particularly interesting feature of ALICE is that it can
support traditional control flow concepts as well as
reduction semantics. This is because the Compiler Target
Language (CTL) [Reev82] retains some von Neumann features,
supporting random access to a global packet memory and
destructive update of packets. The early development of
CTL allows software tools for ALICE to be developed in
parallel with hardware construction.

A precursor of ALICE 1is the Newcastle GCF (Generalised
Control Flow) architecture developed by Treleaven et al.
[Farr79]. An earlier (hardware) use of the slotted ring
idea is seen in the Texas Instruments Distributed Data
Processor [Corn79] which effectively used a slotted ring
to link several dataflow uniprocessors.

4.5.3 Physical Tree Architectures. (PTA s)

Rather than use a slotted ring for communication, we might
use a more advanced topology. Many proposals adopt a
binary tree which is perhaps the simplest topology that
gets everything close (O(log n)) together. Some proposals
(eg AMPS [KeLP79]) use the tree structure solely for
communication and 1load balancing purposes, with all the
work being done at the leaves. Other proposals (eqg DDM1
[Davi79], Mago®s machine [Mago79]) use more intelligent
interior nodes.

In the AMPS proposal [KeLP79], each leaf of the tree is a
processor/memory element which 1is capable of executing
tasks sequentially or in parallel, and also capable of
allocating storage for new tasks. There 1is no global
memory, although there is a uniform global address space.
The internal nodes in the physical tree perform the
routing required for access to non-local memory, and
external communication is via specialised 1leaf nodes.
Although the root node of a binary tree is in principle a
potential bottleneck, the 1load balancing takes place at
the lowest possible interior node so that the root node is
only employed when one half of the tree is full 1loaded.
AMPS supports outermost evaluation of the lambda language
FEL [Kell82], which includes many pragmas/annotations for
user control of parallelism. FEL supports a wide range of
syntactic sugar. At present, AMPS exists as a
sophisticated simulation vehicle.

Because the evaluator for a lambda language is essentially
recursive, the idea of building a physical tree structure
of processor/memory/routing elements which recursively
decomposes an expression into its primitives is
attractive. An early example of this approach is the DDM1
hardware at Utah [Davi79), which evaluates simple
data-driven nets,. A basic difficulty with this very
direct approach 1is that whilst work can be distributed
down the tree, there appears to be no counterpart of the
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AMPS mechanism for passing work from one leaf to another.

A quite different way of using a tree is the Mago machine
[Mago79]. This represents a simultaneous head-on attack
at all the difficult problems. The machine is unashamedly
string reduction - ©pointers are not used. Storage
management is dealt with by including it in the basic
machine cycle. Expressions (written 1n Backus's FFP
notation [Back78]) are stored in a linear array of lcells
which are the leaves of a physical binary tree. Each
lcell contains wprocessing power as well as memory, and
lcells are connected to immediate neighbours to facilitate
data movement within the lcell array. The interior nodes
of the physical binary tree, called tcells , co-operate
with their neighbours in a largely asynchronous fashion to
achieve distributed string reduction. A computational
cycle is realised by a number of waves which sweep down
from the root node of the physical tree and are reflected
upwards by the leaves, The wavefront may carry control
and data information. During its passage up and down the
tree, the wavefront encounters tcells and 1lcells with
which it exchanges control and data information. A number
(which is variable) of sweeps is required to execute a
basic Mago cycle, which can be split into the following
three phases:

l.The partitioning phase. This examines the 1lcell array
to determine the innermost (reducible) sub-expressions,
and allocates tcells to each such expression, An
important result of Mago”s work is that each tcell will
never be allocated to more than 4 sub-expressions during
this phase., Microcode for the operators discovered during
this phase is distributed to appropriate places.

2. The execution phase. The 1lcells which contain a
reducible expression, and the tcells sitting above them,
now operate in concert to achieve distributed reduction.
If the result requires more 1lcells than the original
expression (eg if a named operator is replaced by its FFP
text), further processing is delayed until the next cycle,

3. The storage management phase. Although this is
achieved 1n a distributed fashion, involving several
sweeps, it is best thought of as a global operation which
entirely rearranges the text stored in the lcells to leave
room for sub-expressions which grow with reduction, and to
compact those which shrink. When the whole expression
represented in the array of lcells outgrows 1its physical
bounds, some of the expression overflows into virtual
memory, presently via the leftmost cell ({Darn82]. During
the storage management phase, all execution is suspended.
Once storage management is complete, another Mago cycle
begins.

The whole scheme (as Darlington once commented) is rather
like a petrol engine: first the reducible expressions are
determined, then “fuel” in the form of microcode is
distributed, next actual reductions (computational work)
takes place, and finally (during the “exhaust” phase)
unwanted lcells are reclaimed.
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The Mago machine is a unique and highly original proposal.
Its major features are:

a. A global machine cycle synchronised by the physical
root.

b. 1Inclusion of storage management in the basic cycle.
c. A direct “string reduction” approach.

Although not realised in hardware, the well known planar
layout scheme for a binary tree makes the Mago machine
attractive for direct VLSI realisation, Considerable
effort has been made to develop analytic techniques for
performance prediction [Mago8l1). This work suggests that
by clever microcoding of suitable primitives an O(n*n)
time for matrix multiplication is possible.

4,5.4 Virtual Tree Architectures, (VTA“s)

Parallel evaluation of a lambda-based language requires
the architecture to recursively decompose an expression
into its component parts (eg arithmetic operations),
evaluate some of the components, and combine the results.
The whole evaluation process may be regarded as growing an
“evaluation tree” which first expands and then collapses
to vield the final result, The structure of the
evaluation tree is defined by the original expression,
together with the evaluation order selected in the
computational model. 1Innermost first evaluation in its
purest form completely expands the process tree until all
nodes represent primitive expressions (eg (3+4)) which can
be directly reduced. Outermost (lazy) evaluation reduces
each node until further reductions necessitate the (lazy)
evaluation of sub-expressions, and only then instructs the
necessary sub-trees to grow.

If the expression at the root node of the evaluation tree
determined that (say) 5 sub-expressions should be
evaluated in parallel, we could in principle create 5 new
physical evaluators, give one sub-expression to each, and
wire the 5 new evaluators to allow them to send the
results to the root node. Similarly, each new evaluator
might be recursively endowed with the same powers to
create and wire in new evaluators as and when they are
needed.

Direct hardware implementation of this scheme is
unrealistic, but it 1is possible to simulate it using a
finite, strongly connected set of physical evaluators each
of which can support many nodes in the evaluation tree,
Each evaluator has primitive off-loading and memory
management capability. The basic idea behind the Virtual
Tree approach 1is to wrap a possibly huge evaluation tree
around a much smaller physical network. A good VTA will
initially grow the evaluation tree as fast as it can, and
when all the physical evaluators are busy restrict further
growth of the evaluation tree to avoid overloading the
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physical resources (eg system queues).

Because it entirely avoids complex compile time analysis
of expressions, the simplest approach to real}51ng a YTA
is to implement some sort of diffusion mechanism, which
uses only local communication between physical evaluators
to make decisions regarding offloading and memory
management, The basis for such a scheme is a physical
evaluator which, 1left to 1its own devices, simulates
depth-first priority parallel evaluation. When new nodes
are created in the evaluation tree they are placed on a
stack in 1local memory, and the uppermost node is then
considered by the evaluator. Suitable modifications are
made to the parent node which remains stacked and will be
reconsidered when 1its children return results. An
important feature of this simple scheme (which can be seen
in [BoWW81]) 1is that the memory required to support it is
related to the maximum depth of the evaluation tree rather
than (as with very eager schemes) the total size of the
evaluation tree. For a balanced evaluation tree, this is
O(log N) which perhaps suggests that a means of dynamic
rebalancing during evaluation is desirable.

To introduce the possibility of parallel evaluation, we
connect our single physical evaluator (which simulates
lots of virtual evaluators) to a small number of immediate
neighbours, each of which we endow with the power to steal
work from the stacks of immediate neighbours. 1In general,
allowing neighbours to steal work from the uppermost part
of the stack results in fine grain diffusion, whilst the
choice of lower elements on the stack corresponds to
coarse grain diffusion. Note that rather than add extra
work to an already overloaded physical processing element
by asking it to take responsibility of offloading, we make
inactive neighbours actively seek to steal tasks. 1In
order to make good offloading decisions, each ophysical
evaluator needs a fairly recent picture of the workload in
its vicinity. This may be maintained by forcing physical
neighbours in the architecture to regularly exchange
loading information,

VTA work is particularly active in the UK. The University
of East Anglia has developed a simulation vehicle with
full-colour graphics instrumentation, which shows clearlyv
how a simple diffusion mechanism leads to rapid and even
spread of work across the physical topology and vyet
governs undue exploitation of parallelism which 1leads
otherwise to huge system queues [BuSl81]. The University
of Bath ([BoWW81] have been developing similar ideas
although with considerably more emphasis on compile-time
analysis, Bath have recently reported a working hardware
confiquration [MaFi82]. The idea of allowing neighbouring
processors to steal work has been traced to Martin
{Mart80]. Both ®ast Anglia and Bath devoted much
attention in their early work to developing physical
topologies which are intuitively well suited to supporting
evaluation trees. In retrospect, this effort was
misplaced: firstly, every truly extensible architecture
has to be realised in 3-space, and secondly fancy
topologies really only help the initial “infection” stage
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of the computation, For interesting (huge) problems, this
represents a decreasing fraction of the run time: it is
conjectured that even a rtring would support many
applications.

4.5.5 Shared Distributed Memory Architectures. (SDMA“s)

In a Shared Distributed Memory Architecture, a 1large
number (eg 4K) of processing elements access a large
number of memory elements via an advanced multistage
switching network. Schwartz [SchwB80] develops a family of
extensible computers based on this idea, and illustrates a
large number of applications, The NYU (New  York
Ultracomputer) project [GoTA82] 1is examining this SDMA
approach in considerable detail, for example ([Bian82)
discusses the wireability problem and proposes a solution
for 4K processing elements.

Because previous SDMA work has largely been concerned with
particular applications, its potential for lambda-based
lanqguages remains largely unexplored. There appears to be
considerable potential, especially for graph-reduction
schemes where efficient support of sharing is very
important,

4.5.6 Novel Sequential Architectures. (NSA”s)

In the short term at least, the best way to “buy speed”
might be to realise some novel approach to
beta-substitution directly in conventional hardware. The
SKIM [Clar80] project takes Jjust this view, by
implementing Turner®s combinator approach [Turn79] to beta
substitution directly 1in hardware. The performance
considerably outpaces most conventional implementations,
with perhaps the sole exception of the Chalmers VAX
implementation [AuguB82} which directly compiles equations
into VAX machine code., The SKIM hardware 1is not as
reliable as it might be, perhaps because of its low
funding: one (no doubt false) rumour suggested that SKIM
was funded by passing round a hat in a local hostelry. It
is to be hoped that SKIM2 will receive more appropriate
support.

An early direct hardware realisation of beta-conversion is
the GMD lambda machine ([Berk751 which uses several
hardware stacks. A parallel variant, which may fairly be
considered a VTA, has recently been developed by Kluge
[Klug82]. A joint 1ICL/Oxford project has recently
produced a rather fast microcoding of the PERQ which
supports Henderson“s LISPKIT LISP [Hend80]. Turner at
Kent is currently engaged on a similar microcoding
exercise for his KRC ([Turn8lal language using an Orion.
KRC is notable in supporting set abstraction which, as
Turner has demonstrated ([Turn8lb], 1is a very powerful
language feature,
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5 A Note on Logic Machines.

In lambda-based languages, computation is realised by a
relatively straightforward reduction process, which involves at
worst simple matching of tree-structures to determine the
appropriate re-write rule, In sharp contrast, logic languages
require a much more sophisticated pattern recognition capability
which generates and searches a large space of patterns. For

example, the following “fact” tells the 1logic machine that
(x*y=20) .

times(x,vy,20)

and the machine is expected as a matter of routine to deduce
that the pairs (1,20),(2,10),(4,5),(5,4),(10,2),(20,1) are all
consistent pair values for (x,vy). Intuitively, it 1is much
easier to realise this sort of capability in a sequential
machine simply because at each step 1in the computation each
logic variable can have at most one value at any time. 1In a
parallel machine, there 1is no such constraint. This makes
realising AND parallelism very difficult, although the multiple
solution sets dictated by the OR construct appear a natural
candiate for nparallelism. A key issue here is probablv what

clauses constitute “reasonable” 1input for a 1logic machine.
Warren [Warr77] has shown that “reasonable” logic programs can
be compiled into efficient code for a DEC-10 and in princiole an
army of chips should be able to work fast on large 1logic
programs, But we are much further €from knowing how to “buy
speed” for logic languages than we are for lambda-languages, and
it could be argued that logic languages raise quite new 1issues,
Pollard [Poll82] has considered the problem in some detail, and

the sStockholm group [Thor82] has several active 1logic machine
projects.

6 Conclusion

“Buying speed” from VI.SI is a hard problem. 1If we are content
with highly specialised chips, we might follow the systolic
approach [Kung79] which maps a particular algorithm onto
silicon. Making a potentially huge army of more general chips
work fast over a wide range of problems is much more difficult.
The “novel” avproach is to start with a language with semantics
that naturally permit parallel decomposition of the evaluation,

and then to develop an appropriate architecture using a top-down
design methodology.

As noted in Burge”s excellent 1introduction to lamhda-based
languages [Burg75], many of the developments discussed here were
forseen by Landin , particularly the use of the ambiguity with
respect to evaluation order to realise parallel evaluation.

Although it has perhaps taken much longer that Landin hoped, his
ideas are now a major influence,

At present, we have several hardware prototypes working or near
completion, The Manchester Dataflow machine is the most
advanced, and a hardware demonstration of the multilayering
approach to increasing performance further is underway. More
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recent projects such as ALICE are less advanced, but benefit
from the delay by being rather 1less tied to the operational
dataflow model. Virtual Tree Architectures are in their
infancy, but recent reports from Bath and East Anglia suggest
they are growing fast.

The major missing elements from an otherwise broad UK attack on
the problem of “buying speed” for lambda languages appear to be
the Physical Tree (Mago) approach, and the Shared Distributed
Memory (NYU) approach. Because, as noted in [Trel81), it is
still too early to pick a frontrunner, it might be sensible to
encourage UK groups to follow both these (and perhaps other)
lines of attack.

In the short term, working hardware demonstrations of novel
architectures are only to be expected given the DCS initiative.
But DCS funding does not allow “hi-tech” architectures, It ‘s
very important to realise that early “lo-tech” hardware, however
novel, is unlikely to beat in stopwatch terms the continually
evolving (state of the art) von Neumann rival, I conjecture
that moving to a distributed implementation loses at least an
order of magnitude to start with, and that 1lo-tech may add
perhaps another two. On this basis, we may need to go to
configurations involving thousands of chips before real
(stopwatch) speedups are realised.

In the 1last decade, the “language firet" approach to
architecture has produced not only some impressive early
hardware prototypes, but a wealth of practical and theoretical
results which suggest that we are close to breaking the von
Neumann mould.

The present position is characterised by a large number of
proposals, each of which looks sensible when viewed from a
particular angle. What we don”“t have is a single strong idea of
the kind that made virtual memory work for most applications,
At present, novel architects have had to be content with
demonstrating “virtual”® as opposed to “real” speedups, partly
because available funding could not support “hi-tech”
realisation, I believe that we should, raise our sights and
determine to build, within the next decade, an extensible novel
U.K. architecture which runs faster over a wide range of
problems (including matrix multiplication) than the best
co-existing von Neumann rival, The thesis is that breaking the
von Neumann mould in stopwatch terms requires a highly
entrepreneurial spirit - we must accept that in order to find
the best, we must be prepared to throw away lots of the worst.
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NOVEL ARCHITECTURES

M. R. SLEEP

UNIVERSITY OF EAST ANGLIA., NORWICH



THE VON NEUMANN COMPUTER

1. EAcH INSTRUCTION APPOINTS A UNIQUE SUCCESSOR.
2. CENTRALISED., RanNDoM Access. MEMORY HOLDS PROGRAM AND DATA.
3. DESTRUCTIVE UPDATE,

lCOMPUTATION VIEWED AS SEQUENCE OF STATE CHANGES]




WHY NOVEL ARCHITECTURES?

SPEED:

A, 'Von NEUMANN BOTTLENECK' BETWEEN PROCESSOR AND MEMORY.
B, NEED FORK INSTRUCTIONS FOR PARALLELISM,

SOFTWARE CRISIS:

A,  RECURSIVE CALL LESS ERROR-PRONE THAN UNCONSTRAINED
GOTO,

B, ZERO ASSIGNMENT (DECLARATIVE) PROGRAMMING LESS ERROR-
PRONE THAN UNCONSTRAINED DESTRUCTIVE ASSIGNMENT,

ICOMPUTATION AS CONTROLLED DEDUCTION




THE LANGUAGE-FIRST APPROACH TO ARCHITECTURE

1. DoN'T START FROM SOME FIENDISHLY CLEVER ENGINEERING IDEA.,
ONLY TO DISCOVER THE RESULT IS DIFFICULT TO PROGRAM.

2 DQ START WITH A GOOD PROGRAMMING LANGUAGE. AND USE ITS
SEMANTICS TO GUIDE A 'TOP-DOWN' DESIGN PROCESS.

‘IT USED TO BE THE PROGRAM’'S PURPOSE TO INSTRUCT OUR COMPUTERS:

IT BECAME THE COMPUTER'S PURPOSE TO EXECUTE OUR PROGRAMS.,'
(D1JksTRA 1976)



CHOOSING A LANGUAGE

. SIMPLICITY AND ELEGANCE.
. GENERALITY.

1
2
3,  POWERFUL ABSTRACTION CAPABILITY.
4,  POTENTIAL FOR PARALLELISM.

5

' WELL-UNDERSTOOD SEMANTICS..‘

CurRRENT CHOICE: LAMBDA-BASED LANGUAGES.,

FuTturRe CHOICES:

A.  LAMBDA-BASED LANGUAGES.

B. LOGIC-BASED LANGUAGES.

C.  PROCESS-ORIENTED LANGUAGES,

D. SOME NATURAL INTEGRATION OF A..C.



IDEALISED 'TOP-DOWN' DESIGN METHODOLOGY

LANGUAGE SEMANTICS
Y
CompuTATIONAL MODEL

Y

PHYs1cAL MopEL
Y

HARDWARE



COMPUTATION AS CONTROLLED DEDUCTION

RULES CoMPUTATION FORM
3*4->12 T=0: ((3*4)+(5%6))
5#6->30 = T=1: ( 12+ 30)
12430~ 42 T=2: ( 42 )

RULE APPLICATIONS CHANGE FORM BuT NoT MEANING,
INTERMEDIATE STATES ARE ALL READABLE.
RULES MAY BE APPLIED CONCURRENTLY.



BASIC REQUIREMENTS FOR CONTROLLED DEDUCTION

1. A (PARTIAL) ORDERING RULE FOR DETERMINING THE SET OF SUB-

EXPRESSIONS WHICH CAN BE EVALUATED IN PARALLEL AT EACH
STEP i

& AN EFFICIENT MEANS FOR REPLACING SUB-EXPRESSIONS WITH
MORE EVALUATED FORMS.

3. (ForR LoGIC-BASED LANGUAGES): AN EFFICIENT MEANS OF
DETERMINING 'UNIFYING' VALUES FOR PATTERN VARIABLES,



A GENERAL ORGANISATION

Basic CycLE

Ly PE's REMOVE TASKS FROM THE SELECTED POOL.
2. PE’s PROCESS THEIR TASKS., AND MODIFY POOLS ACCORDINGLY.

POOL POOL
OF ] OF
SELECTED|- WAITING
TASKS 2l TASKS




oy Ul = W N

PARTICULAR ORGANISATIONS FOR DISTRIBUTING WORK

P1PELINED RING ARCHITECTURES. (PRA),

PAckeT CircuLATION RinG ARcHITECTURES. (PCRA).
PHYs1cAL TREe ARcHITECTURES, (PTA),

VIRTUAL TREE ARCHITECTURES. (VTA).

NovEL SEQUENTIAL ARcHITECTURES. (NSA).

SHARED MEMORY ARCHITECTURES. (SMA),



EXECUTABLE
TASKS

PIPELINED RING ARCHITECTURES (PRA’s)

AN

“

RESULTS

PAAS

FORMER

EG MANCHESTER DATAFLOW MACHINE




PACKET CIRCULATION RING ARCHITECTURES (PCRA'S)

PMEg

PME 4

PME5-

EG IMPERIAL'S ALICE, NewcasTLe's GCF




PHYSICAL TREE ARCHITECTURES (PTA'S)

PME PME, PME PME 4

6 UTaH’'s AMPS, NorTH CAROLINA'S MAGO MACHINE

(Rc = ResoURCE CONTROLLER)




VIRTUAL TREE ARCHITECTURES (VTA'S)

EG EAsT ANGLIA's ZAPP, BatH BANK

(T = TRANSPUTER. I1E PMC ON A CHIP)



SHARED MEMORY ARCHITECTURES (SMA'S)

CUBE-LIKE
INTERCONNECTION
SCHEME

Ec NYU ULTRACOMPUTER




KEY HARDWARE PROJECTS

PROJECT CLASSIFICATION IsT RUN: No, PE’s
MANCHESTER PRA LATE 1981 12
ALICE PCRA 1983(p) 16
ARVIND PRA 1984(p) 64
MaGo PTA 2 ?
BaTH VTA LATE 1982 6
ZAPP VTA 1986(pr) b4
NYU SMA ? b4y
TURNER NSA 83/84(p) 1
SKIM NSA 80/81 1




PRELIMINARY OBSERVATIONS

ALL GROUPS HAVE PRODUCED GOOD-LOOKING PROJECTIONS,

SEVERAL UK GROUPS, NOTABLY MANCHESTER, ALREADY HAVE
WORKING HARDWARE.

CHOICE OF TECHNOLOGY (RANGING FROM CONVENTIONAL MICRO-
PROCESSORS TO CUSTOMISED VLSI) MAKES COMPARISONS DIFFICULT.

DCS-FUNDED GROUPS ARE IN THE FOREFRONT.

EXPECTATION

A FAST LAMBDA-MACHINE AROUND THE MID EIGHTIES



KEY ISSUES

1. ARCHITECTURE:

A. WHICH EVALUATION ORDER? ,
B. SHOULD RESULTS BE SHARED OR COPIED?
C. WHICH ORGANISATION IS BEST?

2. LANGUAGE:

A. SHOULD WE RE-INTRODUCE CONTROL FOR SOME APPLICATIONS?
B. SHOULD PROCESS AND LOGIC VIEWS BE INCLUDED?



PROGNOSIS

PARALLEL HARDWARE FOR LAMBDA-LANGUAGES SOON,
PROBABLY FASTER MICROCODED UNIPROCESSORS IN THE SHORT TERM,

NEW LANGUAGES WITH INTEGRATED LAMBDA/LOGIC/PROCESS VIEWS
WILL APPEAR,

NEW TECHNOLOGY WILL APPEAR, AND MAKE THE VON-NEUMANN MODEL
EVEN HARDER TO BEAT.

LITTLE CHANCE OF NOVEL ARCHITECTURES WINNING IN STOPWATCH
TERMS UNTIL THEY ARE REALISED USING STATE OF THE ART
TECHNOLOGY,



DATAFLOW COMPUTER ARCHITECTURE

J.R. Gurd

Department of Computer Science
University of Manchester
Manchester M13 9PL

Introduction

It is becoming apparent that future requirements for computing speed,
system reliability, software menageability and cost-effectiveness will
entail the development of alternative computer architectures to replace the
traditional 'von Neumann' organisation on which our present computing
practices are based. Dataflow architecture is one possible alternative which
aims for high-speed computing via efficient exploitation of software
parallelism in a highly parallel system of processing hardware. The name
"dataflow' is derived from the graphical model of computation which is used
to describe how programs are executed. In this model data is active and
flows asynchronously through the two-dimensional program, activating each
instruction when all the required input data has arrived. This is in direct
contrast to the 'von Neumann' model in which data passively resides in store
whilst instructions are executed one-at-a-time according to a defined
sequence controlled by a 'program counter'.

Dataflow architectures, as described below, are only one alternative to
traditional computers. Several other models with similar characteristics are
emerging, and these are sometimes confused with dataflow systems, usually
because they too are driven by their data. In particular, string reduction
and graph reduction systems fall into this category. Such systems will not
be discussed in this paper; we will concentrate on ‘'pure' dataflow
architectures.

The paper is divided into two major sections, one covering software,
the other describing hardware. In the software section we first consider the
nature of software parallelism, the possible ways of representing it, and
any implications for parallel machine-code design. This will provide an
introduction to dataflow notation and also demonstrate the important
distinction between static and dynamic systems. To conclude the software
section we discuss techniques for compiling from various high-level
programming languages into dataflow object-code.

In the section on hardware we consider the requirements for executing
dataflow code and exploiting the exposed software parallelism. We then study
three different system designs which have been, or are being, constructed as
experimental research vehicles for further work applying and refining
dataflow techniques.

Parallelism in Software

Two kinds of parallelism can be found in software. The first kind
occurs when a common operation (or set of operations) is to be applied to
many separate sets of data. An example is the element-wise addition of
several arrays, as in the Fortran program:

DO 101 =1,1,100
Fl1l = Ath +B[1] +cl1] + pl1]
10 CONTINUE



The second kind is found when different operations (or sets of operations)
are to be applied to separate (or even common) sets of data. This may be
found in many blocks of assignment statements, for example, the following

Fortran code:

g Qb
|
>l csl=~Nca]

+ F

+ % k!
QI Q2

These forms of parallelism have been known for a long time and their
importance in influencing parallel hardware design has been recognised.
Flynn [12] classified hardware systems as SIMD (single-instruction-stream,
multiple-data-stream) if +they exploit +the first kind of software
parallelism, and MIMD (multiple-instruction-stream, multiple-data-stream) if
they exploit the second kind.

Nowadays this classification is considered overly simple, but no
generally accepted alternative taxonomy is emerging. The difficulty seems to
be that parallel hardware may be deployed at a different level of
'granularity' to the obvious software parallelism. For example, in an
instruction opipeline, small parts of the execution of successive
instructions are processed concurrently by overlapping, regardless of any
program parallelism at the instruction level, or above. In the absence of a
level-independent taxonomy of parallel systems comparison of different
architectures is by ad hoc methods. We have found it useful to distinguish
between 'regular' and 'irregular' parallelism when comparing the abilities
of dataflow systems with those of more conventional parallel systems.

Regular parallelism exists wherever the same task is to be performed
many times over, usually on disjoint data. With connected data it may be
necessary to exploit regular parallelism via a pipeline, as in the
instruction pipeline cited above. With unconnected data, as in the case of
the first (SIMD) kind of software parallelism, a lock-step parallel array of
hardware can be used, as in the DAP [16] or ILLIAC IV [6]. In either case,
the actions to be performed concurrently are highly regular, and the
performance of the systems depends critically on whether or not the program
can provide sufficient work with the required amount of the required form of
regularity.

Most of the parallel computers so far constructed exploit regular
parallelism of one form or another. In practice it has proved surprisingly
difficult to arrange for programs to provide continuously sufficient
parallelism of the desired nature. Consequently applications run at variable
speed, the regular parts executing rapidly, whilst other sgsections are
necessarily slower. In many cases the slow segments dominate overall
performance and reduce the total speedup of programs to a small fraction of
that intended.

Irregular parallelism exists wherever different tasks are potentially
concurrently executable, sometimes on common data. This corresponds to the
second (MIMD) form of software parallelism. An independent array of parallel
hardware, such as in the CDC 6600 [18] (on a small scale) or the C.mmp [21]
and Cm¥ [17] multiprocessors (on a 1large scale), is needed for
implementation. Where common data is involved complex interlocking
mechanisms are neccessary to prevent unintentional accesses being made (e.g.
reading data before it has been defined, or writing before all prior reads
have been completed). Note that hardware mechanisms which exploit irregular
parallelism will also be able to handle regular parallelism. The reverse is
not usually the case.



Few systems have been constructed to exploit irregular parallelism on a
large scale, and it is in this area that many interesting experiments in
computer architecture are now being conducted. The best known examples use
parallelism at the 'process' level, derived from programming languages such
as Concurrent Pascal [7], Modula [20], Distributed Processes [8], and
Communicating Sequential Processes [14], and implemented on shared-memory or
message-passing multiprocessors. Dataflow systems exploit irregular
parallelism at a lower level, approximating to the conventional machine-code
instruction-level.

Whether parallelism is regular or not, the key issue in developing a
system to exploit it is to provide an effective notation for expressing
potential parallelism in programs. In the following section we develop a
notation for instruction-level irregular parallelism by examining the nature
of inherent parallelism in a small segment of conventional Fortran code.

Programs as Graphs

Consider the following set of Fortran assignments which multiply
together the 'variables' A, B, C, D, E and F and put the result in
'variable' K:

N Hm @
QX Q>
% % Kk
=YW
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To discover the potential software parallelism we must discard the
traditional view of a program as a list of instructions which manipulate
data in fixed storage locations in a defined sequence. Instead we need to
concentrate on the role the individual storage locations play as they
temporarily hold data values whilst the latter pass between operations in
the program. The pattern of store accesses brought about by the sequence of
activation of instructions is normally contrived by the programmer to
achieve the combinations of data with operators dictated by the particular
problem being solved. The fact that this is specified as a one-at-a-time
process owes more to the history of development of computers than to
inherent constraints in the problems that computers are used to solve.

An alternative view of the combination of data with operators is
obtained by constructing a data dependence graph for the program. Algorithms
for this task are in common use for conventional machines in optimising
compilers. In the example above, we simply draw a number of arcs over the
program, one arc for each variable. The tail of an arc shows where the
variable is assigned, and the head shows where the variable is consumed (vy
appearing on the right-hand side of an assignment statement). In more
complex examples more than one arc may be required for a variable when it
appears on the right-hand side of more than one assignment statement.
Multiple assignments, where a variable is assigned a value at more than one
point in the program, can be dealt with by systematically renaming the
variables so that a version is created without multiple assignments, but
with the same meaning as the original. Where variables appear only on the
right-hand side they are assumed to be input data to the program segment.
The resultant graph for our example is shown below:



This diagram is more visually attractive if it is rearranged to show
enforced sequence down the page, with potential concurrency across the page,
as follows:

inputs
G=A%*3B H=C*¥*D =B ¥*F
\~_______~\‘N J vrﬂ_______——/’
K=G ¥%H *¥7
K
~
result

In this graphical form it is possible to omit all the variable names as they
are now superfluous, being constrained to be the same at head and tail of
each arc. If names are required (as an aid to understanding, or for writing
a textual version of the graph), they can be written just once, alongside
the appropriate arc. Each assignment statement can be simplified to a
description of the expression to be computed. In many cases this will be a
simple arithmetic operation, e.g. the multiplication in our example:

We have now constructed a simple statement-level data dependence graph.
Note that it retains the meaning of the original program, but it also shows
potential parallelism and enforced sequence in a two-dimensional format. In
order to illustrate all the program parallelism available for exploitation
by instruction-level parallel hardware it is necessary to decompose the
program even further. Of course the level to which we descend is completely



arbitrary. We could build a system capable of muliplying three values
together in one instruction (in which case the above graph would not need
further reduction), or we could go to the extreme of implementing only
boolean operators (AND, OR, NOT, etc.) in hardware, and building up more
complex operators using standard techniques (in which case our example graph
would require considerable further decomposition). Most of the dataflow
computers currently under construction use an instruction-level comparable
to that of a 16-bit minicomputer with extended arithmetic capabilities. We
shall assume this level in the remainder of this paper. This implies the
availability of straightforward monadic and dyadic arithmetic operators on
integer and floating-point numbers, and we will also assume the existence of
operators which generate and manipulate boolean values.

In our example program it will be noted that the lowest expression
evaluation in the graph is not a machine instruction at this 1level.
Consequently it must be implemented by a sub-graph of instructions such as
either of the following:

G H I G H I

© oR
O

K K

In this particular example it is immaterial which of these alternatives is
used, and a compiler could choose between them arbitrarily. In other cases
there will be good and bad options and compilers will need to be sensitive
to the assessment criteria if they are to produce optimal code under a wide
range of conditions. To develop such assessment criteria we need to know how
programs will actually execute on a specific parallel Thardware
configuration. This is too difficult to discuss in detail here, but we shall
finish this section with a bYbrief description of an abstract dataflow
implementation model from which the basic principles of execution may be
derived.

Congider a complete machine-level program graph for our example in
which each multiply instruction is given an identification number:




Remember that the purpose of this notation is to allow all potentially
concurrent instructions to execute simultaneously. In the original
sequential program we would expect the multiplications to be performed in
the order {1%, {2}, {3}, }, {5}, producing the answer in five
multiplication times. On the graph above we can see that either of the
parallel execution orderings {1, 2, 31, {41, {5} or {1, 23, {3, 4}, {5} will
produce the answer in three multiplication times (given at least three and
two multipliers, respectively). The problem for the parallel execution model
is to cause one of these parallel execution orderings to be followed.

It is difficult to arrange activation of instructions by some parallel
equivalent of a program counter. In the first place such program counters
would have to be associated with processors, and the variable amounts of
parallelism that could occur might require 1large numbers of these
processors, many of which could frequently become idle. Secondly, the idea
of a program counter is closely linked to the concept of a linear data store
with fixed locations for each program variable. Large numbers of active
instructions would imply large numbers of active store locations with
attendant problems of multiplexing the required accesses. In addition to
this each horizontal 'band' of instructions would have to be synchronised so
that the next lower band could not start processing until all current
instructions had terminated. This implies that a program would proceed at
the speed of the slowest operation in each band. Apart from these problems,
the task of allocating instructions +o processors would be extremely
difficult.

These arguments constitute a compelling reason for abandoning program
counters in instruction-level parallel computers. The key to making this
transition is to notice that a data dependence graph shows how instructions
are dependent on data. It is not sensible to execute an instruction before
all the data it requires is available. Conversely, once an instruction has
finished executing, all other instructions that are waiting for its output
data can be safely activated. The simplest way to execute a graph program so
as to obey these rules is to send data directly from instruction to
instruction according to the data dependence arcs, and to allow each
instruction to execute when and only when it has all its required input data
available. In this way the graph program execution will be data-driven.

We can illustrate data-driven execution of graph programs by
introducing data-carriers (known as 'tokens', after Petri-net notation) onto
the data dependence graph. Each token carries one data value. A token is
constrained to move (at any speed it can) from the tail to the head of one
data dependence arc. Tokens wait at the heads of their dependence arcs until
all other arcs (if there are others) pointing to the same instruction also
have tokens at their heads. At this time this instruction can be executed,
taking an arbitrary amount of time to complete, after which its result
token(s) is(are) placed on its output arc(s). The tokens causing the
execution are no longer needed, and so they will be removed from their
(input) arcs.

The sequence of 'snapshots' in Fig.1 shows how our example program
could be used to evaluate 6! by sending tokens with integer values 1 to 6 to
the program inputs A to F, respectively. Tokens are shown on the dependence
arcs as black discs with the associated values written alongside. The way in
which the data appears to flow through the program graph during execution is
the reason for the name 'dataflow’.



Figure 1. Dataflow evaluation of 6!

Generalised Dataflow Graphs

The multiplication program considered sbove is not a general example of
conventional computing practice. The only arithmetic operation used is
multiplication and there are no control structures, such as conditionals or
loops. In this section we consider enhancements to the dataflow notation
introduced above which help to accomodate more general programs.

The first point to be made is that any form of machine instruction can
be represented by a node in a dataflow graph, and, therefore, could be
executed in parallel with other instructions. This property makes the graph
notation useful for exploiting irregular software parallelism. The simplest
case in which this is advantageous is in the evaluation of general
arithmetic expressions in which any arithmetic machine instructions could be
used. Such expressions can be easily converted into graphs. In fact most
conventional compilers already generate 'expression evaluation trees', when
parsing high level programs, before they generate the required linear object
code. The dataflow execution model demonstrates how such trees may be



evaluated directly, in time proportional to their height, using parallel
instruction execution. At a higher level, the model also allows whole
expressions to be evaluated concurrently. Additional parallelism can be
found when control structures are invoked.

The simplest control structure is the conditional (if ... then ... else
o lle .fi)' We can construct a data dependence graph for a conditional
statement using conditional dependence arcs which are controlled by the
runtime evaluation of a boolean predicate. These arcs are implemented using
two 'switching' machine instructions known as branch and merge. These may be
visualised as two-way switches inserted into +the arcs of a standard
dependence graph. FEach switch selects one of two possible routes for an
incoming data token, the other route being left inactive. The route is
selected according to the value of a boolean control token. The data and
control tokens wait for each other at the inputs to the switch exactly as
they would at a dyadic or triadic arithmetic instruction:

Branch
data value boolean control value
input arec input arc
?
true output arc false output arc
(receives data value (receives data value
if boolean is true) if boolean is false)
Y
Merge
data value A data value B boolean control value
input arc ‘» input arc input arc
&

¢
output arc (receives data value A if boolean is true,
or data value B if boolean is false)

Where it is certain that only one of the data inputs to a merge instruction
will be generated, and in proper correspondence to the associated boolean
(e.g. from a previous branch instruction using the same control value), the
merge may be omitted from the machine code and the two data arcs conjoined:

data value A data value B
input arc input arc

one of A or B
(but not both)



Using the extended instruction set we can implement a conditional
Fortran statement such as:

C=A
IF (B.EQ.D) C = F

as the following graph:

A F B D

true false true ® | false
output output output output

legitimate conjoining of arcs

c

where er indicates that tokens travelling down this arc will be destroyed,

and the '=?' instruction generates a boolean value showing whether its two
data inputs are equal.

Switch instructions are most powerful when used to implement graphical
loops and functions. These are important because they allow complex
computations to be defined by relatively small programs, in the same way as
conventional 1loops, subroutines or procedures. However, these reentrant
constructs pose substantial implementation problems in a parallel computer
because of the possibility of simultaneous activation of the reentrant code.

Dataflow researchers have discovered three methods for dealing with
these implementation problems. The first method is the simplest, but it is
not completely general because it prohibits concurrent reentrancy. This
solution allows only graphical loops which are reactivated in strict
sequence. Although a limited amount of parallelism can be obtained by
pipelining within the cycles of a loop, there is often further parallelism
vhich can only be extracted by a more general scheme. Systems which
implement this first scheme, allowing only sequential, cyclic reentrancy,
are known as static dataflow systems.

The alternatives are known as dynamic dataflow systems. For example,
the second scheme permits concurrent reentrancy via an apply instruction
which, every time it is activated, creates a new copy of the reentrant part
of the graph it controls. All input tokens to this copy are gathered
together at the apply instruction and are then transferred to the unique new
copy of the reentrant code. An exit instruction, placed at the end of the
copy of the reentrant code, gathers together all the output tokens for the
activation and transfers them back to the output arcs of the appropriate
apply instruction. The copy of the reentrant code is then destroyed. This
scheme is called the dynamic code-copying scheme. Its operation is analogous
to conventional macro-expansion in that extra code and data space is
allocated whenever it is called for, in order to avoid data sharing code




concurrently.

On the other hand, the third scheme allows data to share code by
'tagging' tokens as they enter into and exit from the reentrant areas. This
system is similar to the use of a stack for implementing procedures and
functions on conventional machines, except that the concurrent activation of
shared graph code requires that each token be individually tagged with the
appropriate 'name-base' instead of using a global stack register to identify
the currently active data space. In visual terms tagging can be thought of
as the process of colouring the data tokens. The graph execution rules need
to be modified so that only tokens of the same colour (i.e. those carrying
identical tags) can group together to cause execution of an instruction.
Special instructions are needed to create new tags at entry to, and to
restore old tags at exit from, the reentrant code. Tokens must carry extra
bits to denote the tag. This scheme is known as the dynamic tagged, or
dynamic code-sharing scheme.

Hybrid dymamic systems use both code-sharing and code-copying, to
reduce the size of tag required.

Structured Data

Compact programs are also achieved using data structures by which a
single variable name refers to a large collection of simple data items. Two
schemes have been developed to implement data structures in dataflow graph
programs.

The first scheme uses separate storage to hold the structures and
represents each structure travelling in the program graph by a pointer
token. The specialised structure store is responsible for executing read and
write operations on structures, and also for issuing the appropriate
pointers. All other instructions are as described above, and operate on

scalar data, or control the flow of pointer tokens through the program
graph.

An alternative scheme uses the tagging system described in the previous
section. Each element of a data structure is a normal token which carries a
unique tag defining +the position of the element in the structure.
Tag-sensitive instructions are used to manipulate the structure in the
required way. This scheme is particularly useful for implementing regular
structures, such as arrays, whose elements are all subject to continuous
processing (as, for example, in signal processing applications).

Compilation of Graph Code

The examples introduced earlier demonstrate that it is possible to
generate dataflow graphs from a conventional high-level programming language
such as Fortran. However, the analysis algorithm that forms data dependence
graphs from these languages is highly complex and takes a long time to
execute. There exist other languages which are much easier to translate and
these are receiving the majority of attention in dataflow research projects.

In this context, the single-assignment languages (SALs) are important.
They have no concept of sequential execution and no direct control
statements such as the GOTO. To combat the ambiguities that might arise from
reassigning values to variables, the languages allow each variable to be
assigned just once in a program. Constructs which permit controlled
reassignment in special cases, such as loops, are provided. SALs tend to use




the data structures, such as arrays and streams, that can be readily
implemented in dataflow graphs. There are often strict type and scope rules.
In particular, it is common +to prohibit all forms of side-effect in
reentrant constructs. The net results are languages that provide ideal
textual syntax for the description of dataflow graphs. However, many SALs
were developed without reference to dataflow execution, and they are also
very similar to the functional or applicative languages which have been
developed without reference to any means of execution at all.

Functional languages are based on the mathematics of functional algebra
and have no concepts of storage state and assignment. They are sometimes
referred to as zero-assignment languages. In fact, if assignment is
restricted to occur only once for each variable in a program, the effect is
the same as if there were no assignment at all and 'assignment' statements
were treated as definitions of the variables. In this sense SALs and
functional languages are identical and it should come as no surprise to find
that absence of GOTOs and side-~effects are common to them both. However,
functional algebra allows more powerful programming constructs than most
SALs because they permit construction of higher order functions and
comprehensive data structures. Consequently the two groups are not directly
equivalent. Nevertheless they have enough in common to make it highly
probable that functional languages will be amenable +to efficient
implementation on dataflow systems. Research is in progress to demonstrate
operational compilers in this area.

Summary of Dataflow Graphs

Dataflow graphs are a convenient notation for representing parallel
computations. They permit conditional constructs, loops, functions
(including recursion), and data structuring. Translation to dataflow graphs
is feasible from a wide range of high-level programming languages.

There is a natural classification for dataflow systems according to the
way they handle reentrant code. The three classes of system are known as
static, dynamic code-copying, and dynamic tagged schemes.




Parallelism in Hardware

Before considering possible hardware implementations for a dataflow
computer, it is worth identifying two fundamental parallel hardware
configurations and summarising their characteristics. The configurations are
known as the pipeline and the parallel array.

Pipelines are wused where each hardware task (for example, an
instruction) can be subdivided into several shorter tasks that can be
executed in sequence and, preferrably, in isolation. Parallelism is
exploited by overlapping the operation of successive pipeline stages on
successive instructions. This situation is illustrated for a six stage
pipeline in Fig.2. The stages of the pipeline are shown across the top of
the diagram and +the optimum distribution of instructions through the
hardware over a period of time is shown underneath. After an initial delay
of 6t results are produced at the output every period t, even though each
complete task takes 6t to complete. To achieve this speedup the following
assumptions have been made:

(i) each subtask takes an identical, relatively short time to
perform;
(ii) there are no data dependences between the modules apart from
the main path through;
and (iii) there are no external constraints on providing input to the
pipeline, or to disposing of the results at the required rate.
If any of these assumptions is invalid, the distribution of tasks through

the pipeline will be uneven and the average rate of processing will
decrease.

Y

_%

stage 1 2 i3 4 5 6
time

0- t task 1 - - - - -

t- 2%t task 2 task 1 - - - -
2t~ 3%t task 3 tagk 2 task 1 - - -
3t~ 4t -task 4 task 3 task 2 task 1 - -
4t- 5t task 5 task 4 task 3 task 2 task 1 -
5t- 6t task 6 task 5 task 4 task 3 task 2 task 1
6t- Tt task 7 task 6 task 5 task 4 task 3 task 2
Tt- 8t task 8 task 7 task 6 task 5 task 4 task 3
8t- 9%t task 9 task 8 task 7 task 6 task 5 task 4
9t-10t task 10 task 9 task 8 task 7 task 6 task 5

10t-11¢% task 11 task 10 task 9 task 8 task 7 task 6
11t-12¢% task 12 task 11 task 10 task 9 task 8 task 7
12%-13% task 13 11 1 9 task 8

ta?k 12 ta§k ta?k

etc.

Figure 2. Six stage pipeline.
(delay per stage = t)
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Parallel arrays are used where each hardware task cannot easily be
subdivided, but there are many tasks independently available for execution
so that they may be distributed and executed concurrently. A parallel array
may be activated serially or in parallel.

In a serially-activated system the parallel array is located in a
pipeline and is fed with tasks at a relatively high rate, each task being
sent to a different module until &1l modules are active. The number of
modules required is roughly the time per task divided by the time per input
from the pipeline, so that the first module to be filled with a task is
emptied to the output pipe just as the last module is receiving its input.
This situation is illustrated for a six module array in Fig.3. Note that
finished tasks are output from the array at the same rate as for the
pipeline above, and after a similar initial delay. The following assumptions
have been made:

(i) each task takes an identical, relatively long time to perform;
(ii) there are no data dependences between the tasks or modules
apart from the input/output ports;
and (iii) input and output occur at an appropriately fast rate.
If any of these assumptions is invalid the performance again deteriorates.

i i R

_ i

module 1 2 ] 4 5 6
time
0- ¢t task 1 - - - - -
t- 2t task 1 task 2 - - - -
2t- 3t task 1 task 2 task 3 - - -
3t~ 4t task 1 task 2 task 3 task 4 - -
4t- 5t task 1 task 2 task 3 task 4 task 5 -
5t- 6t task 1 task 2 task 3 task 4 task 5 task 6
6t- Tt task 7 task 2 task 3 task 4 task 5 task 6
Tt- 8% task 7 task 8 task 3 task 4 task 5 task 6
8t- 9% task 7 task 8 task 9 task 4 task 5 task 6
91t-10% task 7 task 8 task 9 task 10 task 5 task 6
10t-11t  task 7 task 8 task 9 task 10 task 11  task 6
11t=-12¢% task 7 task 8 task 9 task 10 task 11 task 12
12%-13¢% task 1 8 task 9 task 10 task 11 task 12

> ta?k

etec.

!
l |
I I
I |

Figure 3. Six module serially-activated parallel array.
(delay per module = 6t)



In a parallel-activated array each module executes tasks independently,
and output from each module enters a routing network which sends data t? Fhe
input of the next required module. Perhaps the easiest way of visualising
this is to imagine all the modules locked in step with one another,
executing their different instructions 1literally in parallel. The
distribution of tasks in a six module parallel-activated array is
illustrated in Fig.4. The six tasks start and finish each period of 6t time
units, giving the same average throughput as the structures studied above
(N.B. similar assumptions have to be made).

In the following sections we study configurations of these Dbasic
structures which implement dataflow schemes in hardware. Note that in
practice it is difficult to ensure the validity of the conditions required
for maximum throughput.

PARALLEL COMMUNICATION SWITCH

module 1 2 ) 4 5 6
time
0- t task 1 task 2 task 3 task 4 task 5 task 6
t- 2% task 1 task 2 task 3 task 4 task 5 task 6
2t- 3t task 1 task 2 task 3 task 4 task 5 task 6
3t- 4% task 1 task 2 task 3 task 4 task 5 task 6
4t- 5t task 1 task 2 task 3 task 4 task 5 task 6
5t- 6% task 1 task 2 task 3 task 4 task 5 task 6
6t- Tt task 7 task 8 task 9 task 10 task 11 task 12
Tt- 8t task 7 task 8 task 9 task 10 task 11 task 12
8t- 9t task 7 task 8 task 9 task 10 task 11 task 12
9t-10t task 7 task 8 task 9 task 10 task 11 task 12
10t-11¢t task 7 task 8 task 9 task 10 task 11 task 12
11t-12¢ task 7 task 8 task 9 task 10 task 11 task 12
12t-13% task 13 ta?k 14 task 1

5 task 16 task 17 ta?k 18

etec.

Figure 4. Six module parallel-activated parallel array.
(delay per module = 6t)



Requirements for a Dataflow Computer

The description of dataflow notation earlier in the paper showed that a
dataflow computer (static or dynamic) needs to perform three major tasks:
(i) it must store a representation of the program graph;

(ii) it must implement the equivalent of data tokens which can flow
through the graph and match together with appropriate
partners;

and (iii) it must provide suitable instruction processing facilities.
Static and dynamic code-copying systems implement tokens by providing
additional data storage space in the program graph store. Dynamic tagged
systems require separate code and data stores. Instruction sets for the
different schemes reflect the needs discussed earlier (e.g. apply for
code-copying systems and change tag for code-sharing systems).

In terms of system architecture any of the schemes introduced in the
previous section could be used. In practice systems are designed to bYe
extensible via the addition of extra hardware modules, and so the pipeline
is not attractive as an overall structure. Consequently systems under
construction are based on parallel-activated parallel arrays of dataflow

processing elements. Pipelines are sometimes used within the processing
elements.

We shall first describe two systems in which conventional
microprocessors are used for these processing elements. Two differently
motivated refinements of this kind of system are then considered. Each
system is either already in operation or currently under construction.

Static Dataflow Multiprocessors

The two systems based on conventional microprocessors have structures
identical to that shown in Fig.4. They differ in the microprocessor
architecture used and in the nature of the communication switch. A research
system built in 1978 by a team led by Don Oxley at Texas Instruments used
four microengines and a 990/10 host, connected together via a
time-multiplexed communication ring [15]. A more powerful system is
currently being implemented by Jack Dennis and his group at MIT using
specialised ©bit-sliced microengines connected via a general purpose
unidirectional routing network [11]. In both systems the three major
dataflow tasks are implemented in software in the microprocessor modules.
The TI system can use a slow communication ring because of the relatively
slow processing speed of its microengines and the small number of processors
that need to be linked. In the MIT system the microengines are faster and
there are more of them so the switch needs to have much higher throughput.
Both systems implement a static dataflow scheme with possible extension to
dynamic code-copying.

Code for the TI system is produced from standard Fortran programs
whereas a single-assignment language (Val) has been defined and implemented
to act as the high-level interface for the MIT machine f2]. Arrays are
provided in both languages, but streams are also anticipated in Val.

A key factor in the design of the MIT system is the ability to expand
its power by adding extra processors via an extended communications switch.
The switch itself is a network of 2x2 routers connected in such a way that
data arriving at any input port may reach any output port in time
proportional to the logarithm of the number of processors. The structure of
the switch for 4, 8, and 16 processors is shown in Fig.5. Each 2x2 element
contains byte-wide data paths.
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Figure 5. Communication networks using 2x2 routers.

The desire to expand power by adding hardware is common to all dataflow
system designs. The systems described below also use switches that are

similar to those shown in Fig.5. There is keen debate about the maximum size
of switch that can be constructed (or that will be feasible in the
forseeable future). There is an obvious relationship between the power of



jindividual processors, the total power, and the size of the switch. Because
the systems described above use conventional microprocessor software to
emulate the dataflow model, they run relatively slowly and large switches
will be needed for substantial applications (e.g. weather forecasting). For
example, it is implicit in the MIT design that switches of size 500x500 and
more can be implemented using byte-wide 2x2 routers.

Other researchers are less confident that switches of this size will be
practicable. Consequently they have concentrated on improving the execution
rates of individual processors by designing their hardware to be dataflow
oriented. The projects described below follow this approach, and also both
implement dynamic tagged schemas.

An MSI Dynamic Tagged Dataflow Processor

A research group at Manchester University under the leadership of Ian
Watson and the author has constructed a specialised 'ring-structured’
dataflow processor with funding from the Distributed Computing Systems
Programme of the Science and Engineering Research Council of Great Britain

13l. In this ring-structure the three dataflow tasks (i.e. matching tokens
together; finding the next instruction; and processing of instructions) are
implemented in three separate hardware modules. The individual actions in
these modules are dependent solely on the module input data so that
successive actions may be overlapped by connecting the modules in a
pipeline. One extra pipeline module is provided to queue excess tasks when
highly parallel programs are running. The overall ring-structure is
therefore a four-stage pipeline as shown in Fig.6.

COMMUNICATION SWITCH

UNMATCHED, PROGRAM
TOKEN GRAPH
STORE STORE
T I
TOKEN TOKEN INSTRUCTION PROCESSING
QUEUE ©6—>] MATCHING —¢ FETCH B4 UNIT
'; UNIT : UNIT :
! l ‘|
\ L3 N
token package Idata ltag Idestination] 1 )
( 96-bits) : ',
token-pair package [data [data ] tag | destination | !
133-bits) g
executable package [data [data [ tag | opcode | destination | destination ]
(166-bits)

Figgre_g. Ring-structured dataflow processor.



The fundamental wunit of data in the switch is a token-package
representing a notational tagged token on an arc of the program graph. The
token has a data type and value and a tag. The arc is represented by the
address (in the program graph store) of the instruction at its head (known
as the 'destination'). The token is the smallest data package in the system,
and so the queue module is positioned adjacent to the switch, at the input
to the ring.

Queued tokens are presented one-at-a-time to the matching unit, which
is responsible for grouping together tokens with the same tag heading for
the same destinstion instruction. In the Manchester system tokens may be
grouped together in ones or twos so that triadic instructions and above
cannot be supported. Tokens which expect to find a partner, but which arrive
at the matching wunit before the partner does, are kept in the
unmatched-token store until the partner arrives. At this time (or, in the
case of a single-input instruction, when the first and only token arrives)
all the required input data and the common tag and destination fields are
sent to the instruction fetch unit as a token-pair package.

The program graph is stored as an array of instructions each
representing one operator and its associated output arc(s). The destination
field of an incoming token-pair is used as an address to fetch the next
instruction which contains an opcode and up to two destination fields. This
produces a complete executable package which is sent to the processing unit.
Here the specified opcode is executed using the collected data and tag as
operands, and the result token(s) is(are) finally returned to the
communications switch input.

The critical part of this system is the matching unit. The task of
pairing tokens together is an act of association and so the unmatched-token
store is (pseudo-)associative in nature. Details of the operation of the
matching unit are beyond the scope of the present paper. In the technology
chogen for the prototype version the average match time is 300 nanoseconds
[19_. This limits the instruction execution rate of the ring-structured
processor to 3.3 million instructions per second (MIPS). The prototype
ingtruction processing element is some twenty times slower than this and so
a sgerially-activated parallel array of 20 such elements is used as a
processing unit. At the time of writing (January 1983) the prototype system
is running at just less than 2MIPS with 12 elements in the array.

The prototype implementation is tailored to stable, MSI, medium-speed,
TTL technology. Higher speed could be obtained using faster logic and
storage components, for example ECL. Comparable speed might be obtained if
design were tailored to VLSI technology. The next section describes a
project in which this latter approach is being followed.

A VLSI Dynamic Tagged Dataflow Processor

Another research group at MIT, under the leadership of Arvind, is
constructing a VLSI-based dataflow processor with many of the
characteristics of the ring-structured system. The main differences between
this system and the MSI-based implementation are that (i) data structure
accesses are handled separately from ordinary token activities, and (< )
there is a two-tiered communication systenm _5]. The processor design is
outlined in Fig.7.
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Figure 7. VLSI-based dataflow processor.

Data structure operations are treated separately so that (i) they can
be performed quickly, and (ii) the potentially large numbers of tokens
involved do not occupy space in the expensive unmatched-token store. The
two-tiered communication structure relieves the general communications
switch of excess traffic as long as prograﬁé exhibit strong 'locality’' (i.e.
processing activity is localised in subgraphs and processors  rather than
communicating randomly with other subgraphs/processors). Locality also
benefits the size of the unmatched-token store, and current plans at MIT are
to implement a small 64-word store instead of the 16k-word version in use at
Manchester.

Reduced traffic in the communications switch allows bit-wide data paths
to be used. The proposed building block for this MIT system is an 8x8
bit-wide module. Using program locality still further, large-size switches
can be made rather less complex than the networks shown in Fig.5.

This design relies heavily on strong program locality. The language Id

[4], also developed by Arvind's team, has appropriate properties, and the
system is being designed around this language.

Summary of Dataflow Hardware

The great advantage of dataflow notation is that individual actions in
executing a graph program interact with one another solely by token flow
along the dependence arcs. All necessary synchronisation of data and
instructions is achieved by the act of 'matching' tokens together. Hence,
whether pipelines or parallel arrays are used for implementation, the
parallel hardware can be kept occupied by simple distribution techniques
without having to worry about inconvenient interlinkings of constituent
modules.



The systems presented above have similar overall structure but there
are considerable differences in detail. These are by no means the only
system designs in existence. Three other projects are worthy of mention. Two
of these have had operational hardware for several years. They are the LAU
project led by Jean~Claude Syre at CERT Toulouse in France [9], and the DDM1
project led by Al Davis at the University of Utah [10]. The third system is
being developed at NTT in Japan by Makoto Amamiya and his group [3_. Their
hardware has been operational for about one year. Additional information on

dataflow systems and lan%uages has recently been published in a special
issue of IEEE Computer [1 .

Little has yet been published about the performance of these dataflow
systems in practical applications. The existence of so much operational
hardware should lead to an expansion of assessment work, and subsequent
results, in the near future. The Japanese have stated their intention to
discover the abilities of such systems within three to five years. We
anticipate a similar timescale for study in Europe and the USA.
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THE MANCHESTER DATAFLOW COMPUTER

BRIEF SUMMARY OF DATAFLOW TECHNIQUES

THE MANCHESTER PROTOTYPE - HARDWARE AND SOFTWARE
EVALUATION METHOD - MEASUREMENTS AND MEANING
EVALUATION RESULTS

INTERPRETATION AND FUTURE WORK



DATAFLOW PROGRAM GRAPHS

INSTRUCTIONS APPEAR HORIZONTALLY IF THEY CAN BE EXECUTED
CONCURRENTLY., AND VERTICALLY IF THEY MUST BE EXECUTED IN
SEQUENCE.

SEQUENCING CONSTRAINTS ARE INDICATED BY DATA DEPENDENCE ARCS
DRAWN BETWEEN THE INSTRUCTIONS.,

INSTRUCTIONS DO NOT REFERENCE MEMORY - DATA (IN THE FORM OF
TOKEN PACKETS) IS SENT DIRECTLY ALONG THE DATA DEPENDENCE ARCS.

INSTRUCTION EXECUTION IS PROMPTED BY THE PRESENCE OF DATA
TOKENS AT ALL INPUT POINTS.
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DATAFLOW PROGRAMMING ROUTES

RANDOM-ASSIGNMENT SINGLE-ASSIGNMENT ZERO-ASSIGNMENT
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ACHIEVEMENTS AT MANCHESTER,

OVERVIEW
PROTOTYPE DATAFLOW HARDWARE RUNNING 1 - 1,5 MIPS

PRbTOTYPE SOFTWARE SUPPORT SYSTEM IN OPERATION

PRELIMINARY PERFORMANCE EVALUATION IN PROGRESS



MANCHESTER DATAFLOW HARDWARE CURRENT STATUS '

QUEUE :
4k tokens : 96b

50ns/uc : 4c/RW
2.5 M tokens/sec

MATCHING STORE | OVERFLOW UNITS
8 x 2k tokens ~ : 96b nlms /610 [
140ns/uc

1lc/BY : 3c/EW

2.04 Mmatch/sec -
‘ OVERFLOW
SWITCH INTERFACE

5 M tokens/sec l4k tokens /se._
60 M bytes/sec L 168k bytes/sec
! 9k pairs/sec

INSTRUCTION ST
2 x 4k instr : 70 b =

HOST 120 ns/ijc : 4c/PETCH
INTERFACE 2.08 M instr/sec
14 k¥ tokens / =
sec
168 k bytes/ max inptu rate:
sec

3.75 M instr/sec

DUP only 2.8 MIPS | PROCESSING UNIT
integer 1.6-1.8 12 PEs

real 1.0-1.5 MIPS | 267 ns/uc

45 M uc/sec

AJ max output rate:
3.75 M tokens/sec

* is average rate - all others maxima
v 4000 debugged MSI TTL ICs
90% of opcodes implemented (equivalent to simulator)



THE SOFTWARE ENVIRONMENT

MAD CODE HAND CODE NEW_CODE

M

MAD COMPILER NDL COMPILER

N o
70 <
TEMPLATE
ASSEMBLER/ |,
OPTIMISER
PE JJCODE
LOW-LEVEL MICROCODE
ASSEMBLER ASSEMBLER

SIMULATOR DATAFLOW HARDWARE

DISSASSEMBLER

RESULTS/MONITORING ALL PROGRAMS
WRITTEN IN
PASCAL



EVALUATION OBJECTIVES

TUNE PROTOTYPE HARDWARE FOR OPTIMUM PERFORMANCE.

DETERMINE THE NATURE OF SOFTWARE PARALLELISM THAT CAN BE
EXPLOITED BY THE HARDWARE.

ESTABLISH THE VALUE OF A DATAFLOW MIP,



EVALUATION METHOD

FOR PROGRAMS THAT DO NOT OVERFLOW
* DPLOT SPEEDUP CURVES
INTERPRET RESULTS

X RECTIFY PROBLEMS IN PROCESSOR AND PIPELINE HARDWARE

¥*

FOR PROGRAMS THAT OVERFLOW A LITTLE

DETERMINE NATURE OF BOTTLENECKS IN OVERFLOW LOOP
RECTIFY PROBLEMS IN HARDWARE/SOFTWARE

FOR PROGRAMS THAT OVERFLOW A LOT

DESIGN AND IMPLEMENT A HIERARCHICAL MEMORY
EVALUATE AND OPTIMISE PERFORMANCE




o

BASIC PROGRAM MEASUREMENTS

TOTAL NUMBER OF INSTRUCTIONS EXECUTED
= NUMBER OF EXECUTION STEPS WITH 1 PE

NUMBER OF EXECUTION STEPS WITH UNLIMITED PEs

(N.B. NOTIONAL ONLY: STEPS ARE NOT OF EQUAL TIME)
= L

A ROUGH MEASURE OF PROGRAM PARALLELISM (BUT DOES

NOT ACCOUNT FOR TIME-VARIANCE OF PARALLELISM)

PROPORTION OF EXECUTED INSTRUCTIONS WHICH HAVE ONE
INPUT (1.E. BYPASS MATCHING FUNCTION)



EXAMPLE PROGRAM MEASUREMENTS

THE FFT BUTTERFLY

¢EXPLICIT?UPLICATE‘ORDERS Mur BE Execren HERE}
@& [ ] [ ] ®

%> CAN BE
AMALGAMATED}

w
e
it
-
(@p]

o
=

B TIMESTEPS




TIME-VARIANCE OF PROGRAM PARALLELISM

(AREA OF EACH BLOCK = sl)
instantaneous
parallelism

1T4
1. CONSTANT &

B
21r—
|

2., LINEAR EXPANSION

5, LINEAR REDUCTION

i,  EXPONENTIAL EXPANSION

5. LOGARITHMIC REDUCTION

0. RECURSIVE DOUBLING
(exponential expansion -

constant - logarithmic o Seo
reduction)
1T
7. IRREGULAR o execution _
(mixed) s steps



BASIC HARDWARE MEASUREMENTS

5] TOTAL EXECUTION TIME FOR 1 PE
gy TOTAL EXECUTION TIME FOR n PEs
T | | .
P, = T EFFECTIVE NUMBER QF PES WHEN n ARE ACTIVE
n
Pa
E, = 100 — % UTILISATION OF n PEs
n
: 51
M, = n T, POTENTIAL MIP RATE FOR n PEs
1

S g
= fl ACTUAL MIP RATE FOrR n PEs



BENCHMARK CODES

(SIMPLE AND NO OVERFLOWS GENERATED)

NAME  SOURCE PARALLELISM Pgy COMMENT
FFT MACRO L W= 50/100 . / COMPLEX 32/64 POINT FFT
LAPLAC MACRO m W= 50/130 . / REAL [ITERATIVE LAPLACE
ASSEM RELAXATION
SUMPRO MAD L W=2-150+ .61 RECURSIVE DOUBLING
INTEGER SUM
INTC  MAD ‘ T=12 .64 TRAPEZOIDAL INTEGRATION
pLUML  MACRO L— T=50 .61)
ASSEM ;
; PLUMBLINE ALGORITHM
PLUML MAD L =20 .506)
HUGE  MACRO ‘ T= 50/70 .63 LOGIC SIMULATION
ASSEM
LEETC MAD h T = 20/40 .61 LEE ROUTER TEST




=
o

Actual MIPS (Mn)
5;

b
ILN

i

10

08

06

04

02

0.2

SPEEDUP CURVE

+ INTC TN = 12 Py 0.64

100%

90%

80%

LINES OF CONSTANT
FUNCTION UNIT

UTILISATION 70%
=12
+
+
+
Active no.of function units (n)
2 4 O 3 I O
04 . 06 08 10 12 14 16 18

Potential MIPS (Mn?)



>
[04]

Actual MIPS (Mn)
>

—
H

12

10

08

06

04

02

SPEEDUP CURVES

EFFECT OF VARIABLE g

+ SUMPRO T FROM 2 TO0 150 p = (0,61
BY

¢ 100%
90%

™= 150

w= 80
’ 80%

Y = 40
el 70%

+ 4 T= 20

n 4 +TW=10

+ + +TW=s

+ + 4+ W=2

02 04 06 08 10 1.2 14 16 1.8
Potential MIPS (Mn')



b
[00]

Actual MIPS (Mn)
>

—
H

12

10

08

06

04

02

SPEEDUP CURVES
EFFECT OF VARIABLE INSTR.MIX
+ FrT T =50 / 100 Poy = 0.7

X LAPLAC T = 50 /130 By = 07
. 100%
90%
80%
A= 130 70%
X M= 0 o
X
S 4
100
/"/
%
&
02 04 06 08 10 12 14 16 18

Potential MIPS (Mn?)



el
(o8}

Actual MIPS (Mn)
>

=
H

12

10

08

06

04

02

SPEEDUP CURVES

EFFECT OF SOURCE LANGUAGE
+ prumMl macro T = 50 Py = 0.61
X PLuM2 MADT = 20 P = 0.56

100%

90%

=50 gy,
+
+
+ 70%
7 T|-= ©
+ X
+
]
2
//
%
Y 4%
02 04 06 08 10 12 14 16 18

Potential MIPS (Mn?)



s
o

Actual MIPS (Mn)
o

14

12

10

08

06

04

02

SPEEDUP CURVES

PROTOTYPE CAD CODES
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POSSIBLE CAUSES OF FALL-OFF IN SPEED-UP CURVES FOR HIGH VALUES

OF T& (WHY IS THERE A "FORBIDDEN” AREA OF HIGH UTILISATION?)

SERIAL SECTIONS OF CODE DOMINATE TIMING
EXPERIMENT: ESTIMATE SERIAL SECTIONS - E.G. IN SUMPRO

A -4 -

PE OUTPUT ARBITRATOR SUFFERS CONTENTION

EXPERIMENT: LOOK FOR EVIDENCE THAT ADDING PES CAUSES FALL
IN MIP RATE

PIPELINE BUFFERING IS INADEQUATE

EXPERIMENT: FORCE UNIT EXECUTION TIMES TO BE CONSTANT,
ESPECIALLY IN THE MATCHING UNIT - USE BYpass
AND GET VERY HIGH EXECUTION RATES SO AS TO
"FLOOD"” THE PIPELINE, THEN LOOK FOR SIGNS
THAT FORBIDDEN AREA HAS DISSAPPEARED,
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UTILISATION OF MATCHING STORE

PRELIMINARY COMMENTS

PRESENT HASH ALGORITHM NOT VERY EFFECTIVE, (MAY NOT EVEN
BE WHAT WE THINK IT ISV)

OVERFLOW INTERFACE AND PROCESSING RATE FAR TOO SLOW AND
UNSOPHISTICATED TO OBTAIN REALISTIC RESULTS FOR PROGRAMS
WITH OVERFLOW, IMPOSSIBLE TO STUDY MEMORY HIERARCHY
WITH EXISTING EQUIPMENT.

LARGER MATCHING STORE WILL DEFER OVERFLOW PROBLEM. BUT
WILL ALSO DEFER STUDY OF MEMORY HIERARCHY.



SUMMARY
PRELIMINARY RESULTS OF EVALUATION STUDY

THERE IS SPEED-UP (VERSUS NUMBER OF PES) FOR A WIDE VARIETY
OF PROGRAMS: I,E, PROGRAMS HAVE PARALLELISM,

S
THE CRUDE MEASURE TT = §l IS A GOOD INDICATOR OF A PROGRAM'S
(& 0]

SUITABILITY FOR THE SYSTEM, REGARDLESS OF ANY TIME VARIANCE
OF THE PROGRAM PARALLELISM,

THE INTRODUCTION OF ADDITIONAL PIPELINE BUFFERING SHOULD IMPROVE
SPEED-UP CURVES CONSIDERABLY,

THE INTENDED CLOCK SPEEDS AND NUMBER OF PEs sHouLD GIVE A
REASONABLE MATCH OF PROCESSING RATE TO PIPELINE BEAT FOR
FLOATING POINT CODES.,

MORE WORK NEEDED ON THE MATCHING STORE AND OVERFLOW UNIT,

NO REALISTIC ASSESSMENT OF THE VALUE OF A DATAFLOW MIP YET
AVAILABLE,



