s DCS Lan

SCIENCE AND ENGINEERING RESEARCH COUNCIL
RUTHERFORD APPLETON LABORATORY

COMPUTING DIVISION

DISTRIBUTED COMPUTING NOTE 522

VISITS issued by
D A Duce
Notes on a Visit to Dr J Gurd et al
University of Manchester 16 November 1981 24 November 1981
DISTRIBUTION: R W Witty
F Chambers (Logica Ltd)
D A Duce

Miss G P Jones
Investigators/Gurd and Watson

John Gurd gave an overview of the project and the data flow concept.

BACKGROUND

The project started with unfunded work (simulation) between 1976 and

1978. The construction of a simple ring prototype machine has been
supported with DCS funds from 1978-81. A rolling grant has just been
awarded (1981-85) for the construction of a multiring system. In
addition a third grant (1981-84) has been awarded for the construction of
system software for the prototype (a cross compiler in the first instance).

Algorithm design is being considered under the rolling grant. Staff
resources to 83 are:

1" RA cross compiler =
1 RA algorithm work
1 RA hardware for multiring system

There are in addition several PhD students working on related topics.

OVERVIEW

In the mid 70's such. techniques as pipelines, vector pipelines and
multiple functional units were being used to introduce parallelism into
hardware. However conventional programming techniques were being used
in support of these developments and there were concerns as to how far
that could go. Providing the parallelism in the problem was of the
requisite sort (eg vectors appropriate length) such techniques worked
well, but they could only work for regular parallelism.

Consider the program fragment:

C-_—

a = b*c+d*e
c = at+x

y = xc

Dataflow analysis turns this into a 2-D graph:

Q\\au//p. d\\ \Z/e

*

N

Y -
.

l

y

Enhancements permitting cycles, loops, conditionals and functions are
possible.

An execution model for such a graph is the following: data is carried by
tokens which are pulled towards the foot of the graph. All data values
have an associated tag — the destination.

Operands are consumed by operators, thus if more than one copy of a data
value is required (eg x in the graph above) these have to be generated
explicitly by copy operators.

Data structures can be represented as a bunch of tokens flowing down an
arc together. There are many possibilities. One is that the arcs
may be FIFO's and components of a structure are identified by their
positions in the queue. This technique is difficult to implement in
hardware (unbounded FIFO's). An alternmative approach is to colour
tokens — a colour being an extension of the tag field.

A further problem is to distinguish tokens generated on different cycles
of a loop or levels of recursion. Recursion can require a FILO mechanism
(ie consume in reverse order to generation). Token colouring covers this
case.

The Manchester machine uses the token colouring model. 96 bits are
allowed for data, colour and destination. The largest value that can be
carried is a 32 bit real. This wastes a lot of store but is acceptable
for a prototype machine.

To connect this execution model into hardware, three things are required:
(i) a mechanism to carry tokens into heads of arcs
(ii) a matching process to match pairs of tokens
(iii) processing

The execution cycle is then:

match » pick up destination -+ process

1 I

This is realised in the following skeleton architecture:

matching unit

progressing <~ graph store
unit

The matching store looks for tokens with the same colour and destinations
differing only in the arc field (left or right). The matching visit has
an associated pool of tokens - if the partner for the token just received
has already arrived, the pair are dispatched to the graph store, otherwise
the token goes into the pool to await the arrival of its partner. The
design of the matching store is a critical part of the architecture.

The graph store contains one entry per node. The executable package
from the graph store may have up to two tokens and two destination fields
(eg copy operation).

The processing unit consists of a number of processors:

[
— =
=

The package may execute on any free processor.

There are two units missing from the simple ring above, one is the
communications switch between processing unit and matching unit, which
allows tokens to be injected into and removed from the ring, the other is
a FIFO token queue between the switch and matching unit, which allows
parallelism to build up without the entire system becoming deadlocked.

The matching unit is an associative store implemented as a hash table.
There .are 8 memory banks in parallel, when the hash address has been
formed, the 8 banks are searched in turn for a matching value.

If a match is not found, the token will be inserted at the hashed address
in the next free bank. When all 8 positions corresponding to that
address are full, the token is dispatched to be dealt with by the overflow
unit (LSI-11) "at its leisure'. The overflow unit can safely be an order
of magnitude slower than the main unit.

There is a counter associated with every line in the hash table which gives
the number of values for that line in the overflow unit.

One can envisage many different ways of dealing with overflow and migration
of tokens from the overflow unit to the main hash table when lines become
free. Investigation of the performance of different strategies is a
question for research.

The inter unit interfaces use identical hardware which means that single
visits can be emulated by a host, tested against a host etc.

The system now contains at least one example of each type of board required.
3 PE's are now working, it is estimated that somewhere between 15 and 20

-3 -

will be necessary to keep the machine running at maximum speed.

Additional memory boards are required for the token queue, node store
and matching unit.

Each unit around the ring is synchronous with its own clock. Inter=
unit links are asynchronous with full handshaking resynchronisation between
units. :

The beat time of the ring is 200 ns. The processing elements are micro
coded; there is one writable control store and one clock (200 ns cycle
time) for all pe's. Instructions take an average of 5-6 microsecs. The
processing unit should on average deliver results every 200 ns, the match-
ing store and graph store every 300 ns, (wider highways).

The host interface is only capable of producing tokens every 170 microsecs.

The processing elements are running at full speed, but other units have
been detuned to just keep the three pe's currently operational, occupied.
The remaining pe's should be completed by the end of January. A

redesign of the matching unit controller board may be necessary to get this
unit up to specification, but this is not regarded as disastrous.

All tokens flowing through the communications switch can be monitored.
By post processing this data (collected on 11/02 magnetic tape deck)
statistics can be gathered, eg how long tokens stay in matching unit.

John is making a case for a PERQ - statistics are presented in graphical
form; the ability to browse through the data would be a valuable asset
to the evaluation programme. They also want a means of linking the host,
overflow store, PERQ and 11/23, ie they want to borrow a Cambridge Ring
also. *

SOFTWARE

There are three strands to consider:

-

1 Fortran/Pascal etc. 2
2 (Graphical coding) simple assignment languages.
3 Zero assignment languages.
1 They are trying to get hold of Kuck's Parafrase system which could

be used to generate dataflow machine code from Fortran.

2 Languages such as LAU, Id and Val (Dennis MIT) are being considered.
John Glauert is going to the States next summer with a brief to pick
up the end-user consensus on an acceptable language for programming
dataflow machines.

They are keen to pick up Val and Id, but both pose problems. The
Val compiler is written in CLU, the Id compiler in MACLISP.

They have been offered the Id compiler code and asked if they could
get time on the Edinburgh DEC 10s (say 50-100 AU's). DAD to
investigate.

3 LISP, SASL etc. Reduction systems - code rewriting. There is a

very close link between single and zero assignment languages.

—

DEMONSTRATION

We were shown the dataflow machine in operation calculating factorial
5 by Gurd's double factorial recursive algorithm. This showed an
approximately line-on speed up using I, 2 and 3 processors (processors
can be switched in and out independently).

GENERAL POINTS

1 John and Ian think it is the basic ideas in the machine that are
useful, rather than the realisation in the particular technology
they have chosen. They would like to see other machines of a
similar nature to see how they compare.

2 John has received several inquiries about using the machine. It
was agreed such requests should be channelled through SERC.

3 John asked about ARPAnet access. John has been given form and will
complete in due course. DAD to look into how best to complete the
form.

4 John would like to be kept in touch with what is happening in Japan.

5} They have had an offer of collaboration from a computer company and

requested clarification of the general principles.

6 They would like to know what Roger Newey's view is now. DAD to
investigate.
7 They think they will be ready for the formal review of the evaluation

programme by July 1982, 1If a PERQ is to have a part in this
programme they would need it before the end of March at the latest.

8 A man from DEC who is interested in PCB routing algorithms is
visiting Machester in December for 10 days to try his algorithms on
the machine.

9 Can Ian get an earmarked studentship for next year which would not
reduce the departmental quota in some sense.

