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Preface

This book helps to mark the completion of the Distributed Computing Systems research
programme (DCS) sponsored by the U.K. Science and Engineering Research Council.
The DCS programme, from 1977-1984, culminated in a conference at the University of
Sussex, Brighton, U.K. in September 1984. The conference included a series of tutorials
on major topics in distributed computing, based on the contents of this volume. When
the programme first started, there was relatively little research in distributed computing
underway in the U.K., and it was to promote research in what was seen as a key area for
the future, that the programme was conceived. During the lifetime of the programme the "
field grew enormously both in the breadth of activity and the depth of understanding.
Within the programme itself, a number of research themes emerged, and these have been
reflected in the organization of the book.

The book aims to give a basic grounding in each of the areas covered. A general fam­
iliarity with the relevant aspects of computing is assumed, but specialist knowledge is not
required. The book should be of interest to researchers and practitioners in the field,
academic and industrial, and will also serve as an introductory text for new researchers.
It is appropriate as an undergraduate or postgraduate text for a single-term introductory
course on distributed systems.

The book is divided into five parts corresponding to the five themes covered.

• Part I describes the dataflow approach to parallel computation, one of the bases on
which parallel super computer of the future will be constructed. This part is contributed
by John Glauert, John Gurd, Chris Kirkham and Ian Watson, all members of the Man­
chester dataflow project, a DCS funded investigation which has established a world lead
in this approach. Topics covered include the basic principles of dataflow computing, the
evolution of dataflow computer architectures and the high level languages used to pro­
gram them. Details of the Manchester prototype dataflow computer structure, instruc­
tion set and performance are presented. The single-assignment programming language
SISAL is introduced.

• Part II is concerned with declarative languages, and with computer architectures to
support their evaluation. The essence of the declarative approach to programming is to
shift the burden of determining in detail how something must be done, from the pro­
grammer to the architecture. The first chapter in this part, by John Darlington, intro­
duces the reader to functional languages and their conventional implementation. The
next chapter, by Bill Clocksin, introduces logic languages and their conventional imple­
mentations. The remaining chapters, by Richard Kennaway and Ronan Sleep, describe
the origins and rise of novel architectures to support such languages, and the parallel
approach to implementation.
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• Part III addresses loosely-coupled distributed systems. Such systems are multi­
computer configurations that do not share immediate memory and can be dispersed over
wide geographical areas. They form much the greater part of the distributed systems
that have investigated and are in use today. The chapters in this part, by Keith Bennet,
Ian Wand and Andy Wellings, describe the general architecture of such systems and
examine the detailed requirements of their various components, operating systems
appropriate to this environment and related programming languages.

• Part IV deals with closely-coupled distributed systems, typically systems which do
share a common memory. The alternative architectures that may be adopted for the
design of such systems; the structure and features of typical programming languages; the
nature of run-time support software; and software development tools for debugging and
testing applications, are considered in turn. This part concludes with two case studies
describing the overall design of hardware and software for experimental multi­
microprocessor systems (Cyba-M, developed at Swansea and UMIST; and POLYPROC,
University of Sussex).

• Part V by Robin Milner and Samson Abramsky faces the essential questions of
modelling and verifying concurrent systems. What is a good mathematical model of con­
currency? Can there be a common model for both hardware and software? A con­
current program may be thought of alternatively as software to be compiled or as
description of the behaviour of a piece of hardware. The development of fundamental
notations for such programs' description is explored and some approaches to verifying
them mathematically are illustrated using simple examples.

The editors of this book were the Industrial Coordinator, Academic Coordinator and
Technical Secretary of the DeS Programme when it terminated. We, and the contribu­
tors, wish to acknowledge the many researchers whose work has contributed to this book.

We are particularly grateful to Paul, Arthur, Frits and many others at CWI for their
assistance, patience and understanding during the preparation of the book. Finally, we
would like to thank Alan Kinroy, Duncan Gibson and Elizabeth Fielding for their ster­
ling work in producing the many diagrams in the book.

Easter 3, 1984 Fred B Chambers
David A Duce
Gillian P Jones
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1 Fundamentals of Dataflow

J. R. Gurd

1.1 INTRODUCTION
It is becoming apparent that future requirements for computing speed, system reliability,
software manageability and cost-effectiveness will entail the development of alternative
computer architectures to replace the traditional 'von Neumann' organization on which
our present computing practices are based. Dataflow architecture is one possible alterna­
tive which aims for high-speed computing via efficient exploitation of software parallel­
ism in a highly parallel system of processing hardware. The name 'dataflow' is derived
from the graphical model of computation which is used to describe how programs are
executed. In this model data is active and flows asynchronously through the two­
dimensional program, activating each instruction when all the required input data has
arrived. This is in direct contrast to the 'von Neumann' model in which data passively
resides in store whilst instructions are executed one-at-a-time according to a defined
sequence controlled by a 'program counter'.

Dataflow architectures, as described in this part of the book, are only one alternative
to traditional computers. Several other models with similar characteristics are emerging,
and these are sometimes confused with dataflow systems, usually because they too are
driven by their data. In particular, string reduction and graph reduction systems fall
into this category. In the following we will concentrate on 'pure' dataflow architectures.

This part of the book is divided into four chapters, covering fundamentals, hardware
techniques, machine-level programming and high-level software. This first chapter opens
with a discussion of the nature of software parallelism, the possible ways of representing
it, and some implications for parallel machine-code design. This provides an introduc­
tion to dataflow notation and also demonstrates the important distinction between static
and dynamic dataflow systems. The chapter concludes with a discussion of techniques
for compiling from various high-level programming languages into dataflow object-code.

In Chapter 2 on hardware we consider the requirements for executing dataflow code
and exploiting the exposed software parallelism. We then study three different system
designs which have been, or are being, constructed as experimental research vehicles for
further work applying and refining dataflow techniques. The chapter closes with a dis­
cussion of dataflow system performance.

Chapter 3, on machine-level programming, studies the languages which are used to
specify graph programs for the Manchester Dataflow Machine. The lowest-level interface
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is via a compact textual representation of the binary messages which are sent to load the
program store. This is difficult for humans to use as a programming vehicle, and it is
more normal to use the Template Assembler (TASS) which is also described.

Chapter 4 describes a specific high-level language for dataflow programming, SISAL,
illustrated by a number of examples of language constructs and some complete pro·
grams. SISAL is a single-assignment language with Pascal-like syntax. It is currently
being used for evaluation of a variety of multiprocessing strategies.

1.2 PARALLELISM IN SOFIW ARE
Two kinds of parallelism can be found in software. The first kind occurs when a com­
mon operation (or set of operations) is to be applied to many separate sets of data. An
example is the element-wise addition of several arrays, as in the Fortran program:

DO 10 I = 1,100
F(I) = A(I) + B(I) + CCI)+ D(I)

10 CONTINUE

The second kind is found when different operations (or sets of operations) are to be
applied to separate (or even common) sets of data. This may be found in many blocks
of assignment statements, for example, the following Fortran code:

A = E-G
B = H * Z
C=E*H+F
D=E+G

These forms of parallelism have been known for a long time and their importance in
influencing parallel hardware design has been recognized. Flynn [1] classified hardware
systems as SIMD (single-instruction-stream, multiple-data-stream) if they exploit the first
kind of software parallelism, and MIMD (multiple-instruction-stream, multiple-data­
stream) if they exploit the second kind.

Nowadays this classification is considered overly simple, but no generally accepted
alternative taxonomy is emerging. The difficulty seems to be that parallel hardware may
be deployed at a different level of 'granularity' to the obvious software parallelism. For
example, in an instruction pipeline, small parts of the execution of successive instructions
are processed concurrently by overlapping, regardless of any program parallelism at the
instruction level, or above. In the absence of a level-independent taxonomy of parallel
systems comparison of different architectures is by ad hoc methods. We have found it
useful to distinguish between 'regular' and 'irregular' parallelism when comparing the
abilities of dataflow systems with those of more conventional parallel systems.

Regular parallelism exists wherever the same task is to be performed many times over,
usually on disjoint data. With connected data it may be necessary to exploit regular
parallelism via a pipeline, as in the instruction pipeline cited above. With unconnected
data, as in the case of the first (SIMD) kind of software parallelism, a lock-step parallel
array of hardware can be used, as in the DAP [2] or ILLIAC IV [3]. In either case, the
actions to be performed concurrently are highly regular, and the performance of the sys­
tems depends critically on whether or not the program can provide sufficient work with
the required amount of the required fonn of regularity.

Most of the parallel computers so far constructed exploit regular parallelism of one
form or another. In practice it has proved surprisingly difficult to arrange for programs
to provide, continuously, sufficient parallelism of the desired nature. Consequently appli­
cations run at variable speed, the regular parts executing rapidly, whilst other sections
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are necessarily slower. In many cases the slow segments dominate overall performance
and reduce the total speedup of programs to a small fraction of that intended.

Irregular parallelism exists wherever different tasks are potentially concurrently exe­
cutable, sometimes on common data. This corresponds to the second (MIMD) form of
software parallelism. An independent array of parallel hardware, such as in the CDC
6600 [4] (on a small scale) or the C.mmp [5] and Cm* [6] multiprocessors (on a large
scale), is needed for implementation. Where common data is involved complex interlock­
ing mechanisms are necessary to prevent unintentional accesses being made (e.g. reading
data before it has been defined, or writing before all prior reads have been completed).
Note that hardware mechanisms which exploit irregular parallelism will also be able to
handle regular parallelism. The reverse is not usually the case.

Few systems have been constructed to exploit irregular parallelism on a large scale,
and it is in this area that many interesting experiments in computer architecture are now
being conducted. The best known examples use parallelism at the 'process' level, derived
from programming languages such as Concurrent Pascal [7], Modula [8], Distributed
Processes [9], and Communicating Sequential Processes [10] and implemented on shared­
memory or message-passing multiprocessors. Dataflow systems exploit irregular parallel­
ism at a lower level, approximating to the conventional machine-code instruction-level.

Whether parallelism is regular or not, the key issue in developing a system to exploit
it is to provide an effective notation for expressing potential parallelism in programs. In
the following section we develop a notation for instruction-level irregular parallelism by
examining the nature of inherent parallelism in a small segment of conventional Fortran
code.

1.3 PROGRAMS AS GRAPHS
Consider the following set of Fortran assignments which multiply together the 'variables'
11, 12, 13, 14, 15 and 16 and put the result in 'variable' K:

L=Il*12
M = 13 * 14
N = 15 * 16
K=L*M*N

To discover the potential software parallelism we must discard the traditional view of a
program as a list of instructions which manipulate data in fixed storage locations in a
defined sequence. Instead we need to concentrate on the role the individual storage loca­
tions playas they temporarily hold data values whilst the latter pass between operations
in the program. The pattern of store accesses brought about by the sequence of activa­
tion of instructions is normally contrived by the programmer to achieve the combinations
of data with operators dictated by the particular problem being solved. The fact that
this is specified as a one-at-a-time process owes more to the history of the development
of computers than to inherent constraints in the problems that computers are used to
solve.

1.3.1 Data Dependence Graphs
An alternative view of the combination of data with operators is obtained by construct­
ing a data dependence graph for the program [11,12]. Algorithms for this task are in
common use for conventional machines in optimizing compilers. In the example above,
we simply draw a number of arcs over the program, one arc for each variable. The tail
of an arc shows where the variable is assigned, and the head shows where the variable is
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consumed (by appearing on the right-hand side of an assignment statement). In more
complex examplesmore than one arc may be required for a variable when it appears on
the right-hand side of more than one assignment statement. Multiple assignments, where
a variable isassigned a value at more than one point in the program, can be dealt with
by systematically renaming the variables so that a version is created without multiple
assignments, but with the same meaning as the originaL Where variables appear only on
the right-hand side they are assumed to be input data to the program segment. The
resultant graph for our example is shown in Figure 1-1.

This diagram is more visually attractive if it is rearranged to show enforced sequence
down the page,with potential concurrency across the page, as shown in Figure 1-2.

In this graphical form it is possible to omit all the variable names as they are now
superfluous, being constrained to be the same at head and tail of each arc. If names are
required (as an aid to understanding, or for writing a textual version of the graph), they
can be written just once, alongside the appropriate arc. Each assignment statement can
be simplified to a description of the expression to be computed. In many cases this will
be a simple arithmetic operation, as in the case of the multiplication in our example,
shown in Figure 1-3.

inputs

II 14 1612 13

L IWJ_J
M 13 * 14

N
I

15 * 16

K L * M * N

K

result

Figure 1-1

15
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inputs

II 12 13 14 15 16

~
I I

L
L II * 12 M = 13 * 14 N 15 * 16

I
L ~

K L * M * N

~
K

~
result

Figure 1-2

II 12 13 14 15 16 t'

K

Figure 1-3

1.3.2 Machine-Level Graph Programs
We have now constructed a simple statement-level data dependence graph. Note that it
retains the meaning of the original program, but it also shows potential parallelism and
enforced sequence in a two-dimensional format. In order to illustrate all the program
parallelism available for exploitation by instruction-level parallel hardware it is necessary
to decompose the program even further. Of course the level to which we descend is com­
pletely arbitrary. We could build a system capable of multiplying three values together
in one instruction (in which case the above graph would not need further reduction), or
we could go to the extreme of implementing only boolean operators (AND, OR, NOT,
etc.) in hardware, and building up more complex operators using standard techniques (in
which case our example graph would require considerable further decomposition). Most
of the dataflow computers currently under construction use an instruction-level compar­
able to that of a 16-bit minicomputer with extended arithmetic capabilities. We shall
assume this level in the remainder of this part of the book. This implies the availability
of straightforward monadic and dyadic arithmetic operators on integer and floating-point
numbers, and we will also assume the existence of operators which generate and
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manipulate boolean values.
In our example program it will be noted that the lowest expression evaluation in the

graph is not a machine instruction at this level. Consequently it must be implemented
by a subgraph of instructions such as either of those shown in Figure 1-4.

In this particular example it is immaterial which of these alternatives is used, and a
compiler could choose between them arbitrarily. In other cases there will be efficient and
inefficient options and compilers will need to be sensitive to the assessment criteria if
they are to produce optimal code under a wide range of conditions. To develop such
assessment criteria we need to know how programs will actually execute on a specific
parallel hardware configuration. This is too difficult to discuss in detail here, but we
shall finish this chapter with a brief description of an abstract dataflow implementation
model from which the basic principles of execution may be derived.

1.3.3 Execution of Machine-Level Graphs
Consider a complete machine-level program graph for our example in which each multi­
ply instruction is given an identification number, as shown in Figure 1-5. Remember
that the purpose of this notation is to allow all potentially concurrent instructions to exe­
cute simultaneously. In the original sequential program we would expect the multiplica­
tions to be performed in the order {I}, {2}, {3}, {4}, {5}, producing the answer in five
multiplication times. On the graph above we can see that either of the parallel execution
orderings {l, 2, 3}, {4}, {5} or {l, 2}, {3, 4}, {5}will produce the answer in three mul­
tiplication times (given at least three and two multipliers, respectively). The problem for
the parallel execution model is to cause one of these parallel execution orderings to be
followed.

It is difficult to arrange activation of instructions by some parallel equivalent of a pro­
gram counter. In the first place such program counters would have to be associated with
processors, and the variable amounts of parallelism that could occur might require large
numbers of these processors, many of which could frequently become idle. Secondly, the
idea of a program counter is closely linked to the concept of a linear data store with
fixed locations for each program variable. Large numbers of active instructions would

L M N L M N

OR

K K

Figure 1-4
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II 12 13 14 15 16

K

Figure 1-5

imply large numbers of active store locations with attendant problems of multiplexing
the required accesses. In addition to this each horizontal 'band' of instructions would
have to be synchronized so that the next lower band could not start processing until all
current instructions had terminated. This implies that a program would proceed at the
speed of the slowest operation in each band. Apart from these problems, the task of
allocating instructions to processors would be extremely difficult.

These arguments constitute a compelling reason for abandoning program counters in
instruction-level parallel computers. The key to making this transition is to notice that a
data dependence graph shows how instructions are dependent on data. It is not sensible
to execute an instruction before all the data it requires is available. Conversely, once an
instruction has finished executing, all other instructions that are waiting for its output
data can be activated safely. The simplest way to execute a graph program so as to obey
these rules is to send data directly from instruction to instruction according to the data
dependence arcs, and to allow each instruction to execute when and only when it has all
its required input data available. In this way the graph program execution will be data­
driven.

We can illustrate data-driven execution of graph programs by introducing data­
carriers, known as 'tokens' after Petri-net notation [13], onto the data dependence graph.
Each token carries one data value. A token is constrained to move (at any speed it can)
from the tail to the head of one data dependence arc. Tokens wait at the heads of their
dependence arcs until all other arcs (if there are others) pointing to the same instruction
also have tokens at their heads. At this time this instruction can be executed, taking an
arbitrary amount of time to complete, after which its result token(s) is(are) placed on its
output arc(s). The tokens causing the execution are no longer needed, and so they will
be removed from their (input) arcs.
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The sequenceof 'snapshots' in Figure 1-6 shows how our example program could be
used to evaluate 6! by sending tokens with integer values I to 6 to the program inputs
II to 16, respectively. Tokens are shown on the dependence arcs as black discs with the
associated valueswritten alongside. The way in which the data appears to flow through
the program graph during execution is the reason for the name 'dataflow'.

1.4 GENERALIZED DATAFLOW GRAPHS
The multiplication program considered above is not a general example of conventional
computing practice. The only arithmetic operation used is multiplication and there are
no control structures, such as conditionals or loops. In this section we consider enhance­
ments to the dataflow notation which help to accommodate more general programs.

The first point to be made is that any form of machine instruction can be represented
by a node in a dataflow graph and could therefore be executed in parallel with other
instructions. This property makes the graph notation useful for exploiting irregular
software parallelism. The simplest case in which this is advantageous is in the evaluation
of general arithmetic expressions in which any arithmetic machine instructions could be
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Figure 1-6
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used. Such expressions can be converted easily into graphs. In fact most conventional
compilers already generate 'expression evaluation trees', when parsing high level pro­
grams, before they generate the required linear object code. The dataflow execution
model demonstrates how such trees may be evaluated directly, in time proportional to
their height, using parallel instruction execution. At a higher level, the model also allows
whole expressions to be evaluated concurrently. Additional parallelism can be found
when control structures are invoked.

1.4.1 Conditionals
The simplest control structure is the conditional (if ... then ... else ... 6). We can con­
struct a data dependence graph for a conditional statement using conditional dependence
arcs which are controlled by the runtime evaluation of a boolean predicate. These arcs
are implemented using the two 'switching' machine instructions, known as branch and
merge, shown in Figure 1-7 and Figure 1-8.

These may be visualized as two-way switches inserted into the arcs of a standard
dependence graph. Each switch selects one of two possible routes for an incoming data
token, the other route being left inactive. The route is selected according to the value of

data value input
"

------0--
boolean
control
value
input

'true' output -
receives data

value if
boolean is

true

'false' output -
receives data

value if
boolean is

false

Figure 1-7
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data value A input data value B input

1 1 boolean
control
value
input

- ---0-------

output -

receives data value A if boolean is true

or data value B if boolean is false

Figure 1-8

a boolean control token. The data and control tokens wait for each other at the inputs
to the switch exactly as they would at a dyadic or triadic arithmetic instruction. Where
it is certain that only one of the data inputs to a merge instruction will be generated,
and in proper correspondence to the associated boolean (e.g. from a previous branch
instruction using the same control value), the merge may be omitted from the machine
code and the two data arcs conjoined, as shown in Figure 1-9.

Using the extended instruction set we can implement a conditional Fortran statement
such as:

C=A
IF (I .EQ. 1) C = F

by the graph shown in Figure 1-10 in which '_l_' indicates that tokens travelling down
this arc will be destroyed, and the '=?' instruction generates a boolean value indicating
whether its two data inputs are equal.

1.4.2 Loops

Switch instructions are most powerful when used to implement graphical loops and func­
tions. These are important because they allow complex computations to be defined by
relatively small programs, in the same way as conventional loops, subroutines or pro­
cedures. However, these reentrant constructs pose substantial implementation problems
in a parallel computer because of the possibility of simultaneous activation of the reen­
trant code.
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As an example,consider the Fortran program segment below:

1= N
J = 1

10 IF (I .LE. 0) GOTO 99
J = 1* J
I = 1- 1
GOTO 10

99 M = J

This is an iterative program which computes values of N! for variable N (i.e. not just 6!).
It translates into the machine-level graph of Figure 1-11. Detailed analysis of this graph
reveals that it is possible for more than one token to occupy the arcs labelled'?, and '?1'.
Consequently, it is essential that the arcs of the graph behave as first-in-first-out queues
(otherwise the loop could terminate early because of overtaking on the arc labelled'?').
Unfortunately implementation of unbounded queues proves to be difficult, so it is usual
in practical dataflow systems to restrict the normal 'firing rule' so that instructions can
only be executedwhen their output arc is empty.

This is the simplest way of implementing reentrant graph programs, but it is not com­
pletely general because it prohibits concurrent reentrancy. It only permits loops which
are reactivated in strict sequence. Although a limited amount of parallelism can be
obtained by pipelining within the cycles of a loop, there is often further parallelism
which can only be extracted by a more general scheme (as described in the next two sec­
tions). Systemswhich implement this first scheme, allowing only sequential, cyclic reen­
trancy, are known as static dataflow systems [14].

1.4.3 Functions
A typical case in which concurrent reentrancy is required is when the programmer
defines a function (i.e. a user-defined subgraph) which is to be called from several places
within the program. This is somewhat similar to a Fortran subroutine. It is, of course,
possible to create many copies of the machine code representing the function and to
plant them 'in-line' at the appropriate places. However, this is wasteful of instruction
storage for large functions and those which are called frequently. It also prohibits the
use of recursion since this implies provision of infinitely expanded program graphs. Con­
sequently, two alternative implementation schemes for reentrant programs have been
proposed.

The first such scheme permits concurrent reentrancy via an apply instruction, planted
at the start of a user-defined subgraph, which creates a new copy of the subgraph each
time it is activated [15]. All input tokens to a subgraph activation are gathered together
at the apply instruction and are then transferred to the unique new copy of the reentrant
code. An exit instruction, placed at the end of the copy of the subgraph, gathers
together all the output tokens for the activation and transfers them back to the output
arcs of the appropriate apply instruction. The copy of the reentrant code is then des­
troyed. The operation of this scheme is analogous to conventional macro-expansion in
that extra code and data space is allocated whenever it is called for. This avoids data
having to share code concurrently.

An alternative scheme allows data to share code by 'tagging' tokens as they enter into
and exit from the reentrant areas [16, 17]. This system is similar to the use of a stack for
implementing procedures and functions on conventional machines, except that the con­
current activation of shared graph code requires that each token be individually tagged
with the appropriate 'name-base' instead of using global stack registers to identify the
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currently active data space. In visual terms tagging can be thought of as the process of
colouring the data tokens [18]. The graph execution rules need to be modified so that
only tokens of the same colour (i.e. those carrying identical tags) can group together to
cause execution of an instruction. Special instructions are needed to create new tags at



16 Thef)ataflow Approach

entry to, and to restore old tags at exit from, the reentrant code. Of course, tokens must
carry extra bits to denote the tag.

Note that token-tagging can be used to distinguish data belonging to different cycles
around a loop. For example, in the program shown in Figure 1-11, assuming all input
tags have value zero, the tags could be incremented each time round the loop at the
points labelled •+ + " and zeroed on exit from the loop at the point labelled ·ZZ'. In
this case it is no longer necessary for the arcs to act as first-in-first-out queues, and the
'firing rule' can be derestricted.

Systems using the above schemes to implement concurrently reentrant functions are
known as dynamic dataflow systems. The first scheme is called the dynamic code-copying
scheme. The second scheme is known as the dynamic tagged, or dynamic code-sharing
scheme. Hybrid dynamic systems use both code-sharing and code-copying in order to
limit the sizeof the tag.

1.4.4 Structured Data
Compact programs can also be written using data structuring, by which a single variable
name is used to refer to a large collection of simple data items. Two schemes have been
developed to implement data structures in dataflow graph programs.

The first scheme uses separate storage to hold the structures and represents each struc­
ture travelling in the program graph by a pointer token. A specialized structure store is
responsible for executing read and write operations on structures, and also for issuing the
appropriate pointers [19). All other instructions are as described above, and operate on
scalar data, or control the flow of pointer tokens through the program graph.

An alternative scheme uses the tagging system described in the previous section [20).
Each element of a data structure is a normal token which carries a unique tag defining
the position of the element in the structure. Tag-sensitive instructions are used to mani­
pulate the structure in the required way. This scheme is particularly useful for imple­
menting regular structures, such as arrays, whose elements are all subject to continuous
processing (as, for example, in signal processing applications).

1.5 COMPILATION OF GRAPH CODE
The examples introduced earlier demonstrate that it is possible to generate dataflow
graphs from a conventional high-level programming language such as Fortran. However,
the analysis algorithm that forms data dependence graphs from such languages is highly
complex and takes a long time to execute. There exist other languages which are easier
to translate and these are receiving the majority of attention in dataflow research pro­
jects.

1.5.1 Conventional Languages
The principal difficulties with conventional languages reside in possible side-effects due
to explicit use of storage locations (accessed by the programmer as 'variables'). Data
dependence analysis is often hampered by obscure array index expressions which are
impossible to analyse at compile-time and thus requires some assistance from the pro­
grammer to indicate how the arrays will be accessed. However, the worst problem is that
of aliasing via the use of unbounded arrays or arithmetic operations on pointers. No
amount of compile-time analysis can help unravel devious or undisciplined use of such
language 'features'. The only method of control is to ban the facilities from the language
[21).
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1.5.2 Single-Assignment Languages
Single-assignment languages (SALs) have no concept of sequential execution and no
direct control statements such as the GOTO. To combat the ambiguities that might arise
from reassigning values to variables, the languages allow each variable to be assigned just
once in a program. Constructs which permit controlled reassignment in special cases,
such as loops, are provided. SALs tend to use data structures, such as arrays and
streams, that can be readily implemented in dataflow graphs. There are often strict type
and scope rules. In particular, it is common to prohibit all forms of side-effect in reen­
trant constructs. The net results are languages that provide ideal textual syntax for the
description of dataflow graphs [22,23,16,24,25].

Many SALs were developed without reference to dataflow execution, and they are
similar to the junctional or applicative languages which have been developed without
reference to any particular means of execution.

1.5.3 Functional Languages
Functional languages are based on the mathematics of functional algebra and have no
concepts of storage state and assignment [26]. They are sometimes referred to as zero­
assignment languages. In fact, if assignment is restricted to occur only once for each
variable in a program, the effect is the same as if there were no assignment at all and
'assignment' statements were treated as definitions of the variables. In this sense SALs
and functional languages are identical and it should come as no surprise to find that
absence of GOTOs and side-effects are common to them both. However, functional
algebra allows more powerful programming constructs than are used in SALs because it
permits construction of higher order functions and abstract data structures. Conse­
quently the two groups are not directly equivalent. Nevertheless they have enough in
common to make it attractive to implement functional languages on dataflow systems.

Several attempts have been made to compile dataflow code from higher order func­
tional languages [27]. These indicate that it is possible to implement such languages
fully, but there are many doubts as to the efficiency of programs produced in this way.
Recent research has concentrated on developing mixed data-driven/demand-driven archi­
tectures for such languages [28].

1.6 SUMMARY OF DATAFLOW GRAPHS
Dataflow graphs are a convenient notation for representing parallel computations. They
permit conditional constructs, loops, functions (including recursion), and data structur­
ing. Translation to dataflow graphs is feasible from a wide range of high-level program­
ming languages.

There is a natural classification for dataflow systems according to the way they handle
reentrant code. The three classes of system are known as static, dynamic code-copying,
and dynamic tagged schemes.
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2 Architecture and Performance

I. Watson

2.1 INTRODUCTION
The dataflow model represents a parallel computation as a directed graph removing any
requirement for unnecessary sequencing. If the model can be mapped on to a physical
machine structure it should be possible to overcome many of the problems which have
been encountered in the design of parallel machines based on more conventional compu­
tational models in which sequencing is fundamental. We will consider a variety of
approaches to machine design in an attempt to explain how the architecture of current
dataflow machines has arisen.

An equally important feature of the dataflow approach is the development of a paral­
lel programming style which retains the power of current programming languages but
removes any necessity to express parallelism explicitly and requires no knowledge of the
machine structure. Although conventional high level programming languages reflect the
basic sequential nature of the machines which execute the compiled code, the details of
more complex architectural features (instruction pipelines, virtual memory etc.) are usu­
ally completely hidden. There is much evidence that, if the programmer is required to
take account of machine level features (vectorization, overlays etc.), then the program­
ming task becomes significantly more complex and error prone. This situation can only
be compounded by the introduction of parallelism. It will be seen that this attempt to
hide the physical structure from the programmer has a significant influence when consid­
ering practical implementation.

2.1.1 Existing Parallel Machines
A great deal of work has been done on parallel computer structures. Before considering
a completely new architectural approach we should first consider the two major types of
'conventional' parallel computer architecture to see if the dataflow model is relevant.

Array processors (e.g. DAP [I] ) have been designed to exploit the parallelism which
exists in problems where similar operations can be performed on every element of an
array concurrently with each processor executing the same sequence of instructions. This
'single instruction stream, multiple data stream' parallelism is only a small subset of that
which can be expressed in dataflow form and a machine structure of this type is unsuited
to the general case.
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A 'multiple instruction stream, multiple data stream' capability is necessary in order
that different processing resources can be executing different operations at the same time.
A large number of machines of this type have been proposed and a significant number
built, for example C.mmp [2] and Cm* [3]. They usually consist of a number of conven­
tional processors, each with their own program and data stores connected together via
either a common store or a communication network (crossbar switch, common bus, slot­
ted ring etc.).They are intended to be programmed in a relatively conventional language
such as Modula [4] which has facilities for expressing communication between parallel
processes. The user is required explicitly to divide a program into suitable parallel sec­
tions which can be mapped on to the physical machine structure.

This viewof computation not only places a severe burden on the user but also con­
strains the architecture. The communication between processes is bidirectional and is
unpredictable both in peak and average bandwidth. In order to produce satisfactory per­
formance, an architecture is required which allows very high speed communication
between random processors in the network. In practice the machine designers have
compromised assuming that the data rates could be controlled and hence the machines
have failed to realize their potential. This is not surprising as such random high speed
communication is very difficult to achieve.

If a viable architecture of this type were developed then the dataflow approach with
its software advantages would certainly be applicable to such a structure. However, the
constraints imposed by the communicating process view of parallel computation are
relaxed in a dataflow environment and it is possible to consider more realistic physical
implementations of MIMD computers.

2.1.2 Fine Grain Versus Coarse Grain Parallelism
It is clearly possible to apply dataflow principles over a wide range of problem structures
from individual machine operations to processes at the level discussed above. If the
correct process divisions are chosen then it is probable that the communication
bandwidth for a given rate of computation will be minimized.

Conversely, if a low level is chosen then the number of inputs required before an
operation can be executed will be smaller and hence the mechanism required to detect
this condition in a physical machine will be simplified.

It is also necessary to consider how the machine is to be programmed. With a small
number of notable exceptions (e.g APL), programming languages express computations
at a relatively fine grain level of operation. Although there are many worthwhile
attempts to produce 'very high level' programming languages they still retain the capabil­
ity of performing scalar addition etc. If these operations are required for general purpose
computation then this is the level at which the programmer will compose at least some
portion of his code. If a number of such operations must then be 'bundled' for execution
by the machine then this would need to be automated if the programming philosophy is
to be maintained. Of course, the natural function/procedure divisions may be appropri­
ate to minimize communication, but they may not. The automation of the task then
becomes complex.

A further factor in the decision is the choice of static or dynamic task allocation. This
is particularly important if coarse grain parallelism is considered. If high level operations
are allocated to processing resources statically at the start of the problem execution, then
each processor need only have access to the code which it will execute. In a dynamic
scheme there is a requirement for access to the whole program from each individual pro­
cessor. If each contains all the code, this could be a large overhead in storage, but if
large portions of code are passed around dynamically this increases the bandwidth
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requirements and the overheads of process allocation. In order that efficient use is made
of parallel resources, it is important that they do not become idle, the chances of idleness
are significantly increased in a scheme which allocates processes statically using coarse
grain parallelism.

The choice is not straightforward, and this is reflected in the machine structures that
have been proposed and constructed. On balance, it appears that the fine grain parallel­
ism approach is winning but this may only be a temporary lead.

2.2 MACIHNE TOPOLOGIES
An obvious physical realization of a dataflow machine could consist of a processor for
each computational node on the graph together with a reconfigurable communication
network to provide the interconnections. There are two objections to this. Such a system
would be grossly inefficient because inactive nodes would result in inactive processors.
This might be overcome if several nodes were allocated to each processor. However, the
complexities of the required communication are such that no physical machine based on
these principles has been attempted.

An abstraction from the 'physical' interconnection of the dataflow graph can lead to
more realistic structures for physical machines. If each node is allocated a unique
identifier, the interconnections can be held in a node description as the identifier of the
next node (together with an input number) to which data will be sent when computed. It
is then possible to replace the explicit interconnection paths by a generalized communi­
cation network. A data value, when computed, uses the next node information as a rout­
ing director to find the processor which contains the required operation. It should now
be clear how such a technique would allow a dataflow program to be mapped on to a
conventional multi-processor where a number of nodes are statically allocated to each of
the processors.

At this point it is worthwhile noting that the communication required is essentially
uni-directional. A result value is computed and the computational resources used can be
released to another task immediately. No reply is needed and, as long as the processor
which contains the destination node has other work to do, the transit time to the destina­
tion is not critical. It should also be noted that there is no requirement to maintain ord­
ering through the communication network. It is these aspects of the dataflow model
which relax the architectural constraints on the physical structure and render the
crossbar-switch approach to multi-processor design unnecessary.

2.2.1 Tree Structures
A large number of computational problems have the property that they start slowly,
build up to a crescendo of activity, and then collapse to produce a relatively small result.
This has led to an interest in tree structured machines, an example of which, using a
binary tree, is shown in Figure 2-1.

A major reason for the interest in this physical structure is the ease with which it
could be mapped on to VLSI using 'Recursive H' techniques. Figure 2-2 shows the basic
principles of this method.

Although other computational models are also applicable, it is possible to see how a
dataflow computation might map on to such a structure. The initial nodes are placed at
the root of the tree and, as they produce their results, they are passed down, eventually
reaching the leaves where maximum activity takes place. As the computation collapses
the results can be passed back to the root. Unfortunately, as one might imagine, it is
almost impossible to devise a general strategy whereby a computation can be mapped
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Figure 2-1

Figure 2-2

statically on to such a structure so as to produce sensible use of the resources.
A dynamic allocation scheme is necessary. If the root processor holds a complete

description of the dataflow graph, it can decide from the results which it produces which
areas of the graph are to be activated next; and pass these together with the data to its
sub-processors. If the distribution strategy is carefully chosen, then the computation
could spread itself nicely over the structure.

A machine which operates in this way was conceived and partially constructed by Al
Davis at the University of Utah. One processing node became operational in 1978 [5]
and using information about the characteristics of this a complete structure was
evaluated by simulation. The results of this work indicate that many problems still exist
in this approach. Not only does the distribution occupy significant resources, but also the
strategy is still complex. Computations which appear to become very active may cease
due to run-time conditions which cannot be predicted and large sections of the physical
tree which have been allocated may suddenly become idle. The limited communication
available then makes re-distribution of the computation a very inefficient task. A further
problem arises when the leaves of the tree are reached and processors discover that they
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are in possession of a rapidly expanding section of the code.
Recognizing these difficulties there have been several proposals for machine topologies

which can be classified as 'virtually tree structured' [6). The physical machine structures
can be viewed as 'folded trees' so that the communication is more general. Most of these
ideas have not aimed at dataflow, but the more recent related area of Reduction
Machines for the implementation of functional languages. It remains to be seen whether
practical implementations of these ideas will work. There are still overheads of task dis­
tribution and unfortunately many of the physical interconnection schemes are not obvi­
ously suited to VLSI implementation.

2.2.2 Ring Structures
The tree structured approach to machine design has been driven by the possibilities of
highly parallel computers which exploit the potential of VLSI technology; the dataflow
computational model is then viewed as a possible method of using these machines.

An alternative approach is to take the dataflow model as the driving force and design
machines which make maximum use of its capabilities. The particular technological con­
straints of VLSI, although important, should only be addressed when the feasibility of
these parallel structures is fully understood. This has resulted in a variety of ring­
structured dataflow machine designs.

The most serious problem in any multi-processor structure is the provision of a flexi­
ble interconnection scheme with high bandwidth. The uni-directional communication
property and the lack of a requirement for very rapid transit time between processors are
exploited in ring-structured dataflow machines to overcome this problem. Figure 2-3
shows the basic outline of such a machine.

A processor is assumed to contain:

(1) A description of the dataflow graph.

(2) A mechanism for assembling incoming data into complete packets for execution.

The switching mechanism is composed of individual 2X2 switches, each of which con­
tains buffers at its input to hold incoming data. Routing information within the data
packet indicates which of the switch outputs it is directed towards. The overall structure
is therefore effectively a set of parallel pipelines. An N input, N output switch requires
N/2(log N) individual elements and any route through the switch is a log N stage pipe­
line. It can be shown that, assuming random contention for switching resources, such a
structure achieves a throughput bandwidth which approaches its theoretical maximum.
However its complexity is manageable in a practical implementation. As the communica­
tion is uni-directional, the only price paid is the pipeline delay between processors. As
long as the processors are kept active and the pipeline is kept full by parallelism in the
program, then no degradation of performance should result.

This structure has been presented without any mention of the exact dataflow compu­
tational model used or the level of granularity employed. The basic structure is largely
independent of these factors and as such has formed the basis of most of the major
dataflow machines which have been, or are in the process of being, constructed. The
differences between these machines are reflected in the detailed structure of the proces­
sors.
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2.3 PRACTICAL MAClHNES

Although it has been mentioned that the dataflow principle is applicable to any level of
granularity and the choice is not immediately obvious, all the major projects have chosen
to implement the model at the level of simple machine instructions. The prevailing view
amongst those closely involved is that programming languages require this. Others
believe that the major impact of dataflow ideas will be at a higher level. Whatever the
final outcome, the projects which are currently in progress are providing a great deal of
useful information in the area of parallel machine design. It is worthwhile therefore to
examine some of the architectures in more detail.



2 ArchitectureandPerformance 27

2.3.1 The MIT Static Dataflow Machine
A machine which uses the static dataflow model of computation is being implemented
currently by a team led by Jack Dennis at MIT. It uses bit-sliced microengines con­
nected via a general purpose unidirectional routing network [7]. In this system the three
major dataflow tasks of:

accessing the program description;
gathering tokens to produce executable packets;
executing instructions;

are implemented in software in the processor modules.
A key factor in the design of the MIT system is the ability to expand its power by

adding extra processors via an extended communications switch.
The desire to expand power by adding hardware is common to all dataflow system

designs. There is keen debate about the maximum size of switch that can be constructed
(or that will be feasible in the forseeable future). There is an obvious relationship
between the power of individual processors, the total power, and the size of the switch.
Because the MIT system uses conventional microprocessor software to emulate the
dataflow model, it runs relatively slowly and large switches will be needed for substantial
applications (e.g. weather forecasting). It is envisaged in the MIT design that switches of
size 500X500 and more can be implemented using byte-wide 2X2 routers.

Other researchers are less confident that switches of this size will be practicable. Con­
sequently they have concentrated on improving the execution rates of individual proces­
sors by designing their internal structure to be dataflow oriented.

2.3.2 The MIT Dynamic Dataflow Machine
Another research group at MIT, under the leadership of Arvind, is constructing a VLSI­
based dataflow processor with many of the characteristics of the ring-structured system.
The main features of this system are that (1) data structure accesses are handled
separately from ordinary token activities, and (2) there is a two-tiered communication
system [8]. The processor design is outlined in Figure 2-4.

The three major dataflow activities are handled by separate hardware, in particular the
token gathering operation is performed by a small associative store. Data structure
operations are treated separately so that (1) they can be performed quickly, and (2) the
potentially large numbers of tokens involved do not occupy space in the expensive
unmatched-token store. The two-tiered communication structure relieves the general
communications switch of excess traffic as long as programs exhibit strong 'locality' (i.e.
processing activity is localized in subgraphs and processors rather than communicating
randomly with other subgraphs/processors). Locality also benefits the size of the
unmatched-token store, and current plans at MIT are to implement a small 64-word
store.

Reduced traffic in the communications switch allows bit-wide data paths to be used.
The proposed building block for this MIT system is an 8X8 bit-wide module. Using
program locality still further, large-size switches can be made rather less complex than
the networks proposed for other systems.

This design relies heavily on strong program locality. The language Id [9] also
developed by Arvind's team, has appropriate properties, and the system is being designed
around this language.
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2.3.3 The Manchester Dynamic Dataflow Machine
A research group at Manchester University under the leadership of John Gurd and Ian
Watson has constructed a specialized 'ring-structured' dataflow processor with funding
from the Distributed Computing Systems Programme of the Science and Engineering
Research Council of Great Britain [10, II]. In this ring-structure the three dataflow tasks
(i.e. matching tokens together; finding the next instruction; and processing of instruc­
tions) are implemented in three separate hardware modules. The individual actions in
these modules are dependent solely on the module input data so that successive actions
may be overlapped by connecting the modules in a pipeline. One extra pipeline module
is provided to queue excess tasks when highly parallel programs are running. The overall
ring-structure is therefore a four-stage pipeline as shown in Figure 2-5.

The fundamental unit of data in the switch is a token-package representing a tagged
token on an arc of the program graph. The token has a data type and value, and a tag.
The arc is represented by the address (in the program graph store) of the instruction at
its head (known as the 'destination'). The token is the smallest data package in the sys­
tem, and so the queue module is positioned adjacent to the switch, at the input to the
ring.

Queued tokens are presented one-at-a-time to the matching unit, which is responsible
for grouping together tokens with the same tag heading for the same destination instruc­
tion. In the Manchester system tokens may be grouped together in ones or twos, so that
triadic instructions and above cannot be supported. Tokens which expect to find a
partner, but which arrive at the matching unit before the partner does, are kept in the
unmatched-token store until the partner arrives. At this time (or, in the case of a single­
input instruction, when the first and only token arrives) all the required input data and
the common tag and destination fields are sent to the instruction fetch unit as a token­
pair package.

The program graph is stored as an array of instructions each representing one opera­
tor and its associated output arc(s). The destination field of an incoming token-pair is
used as an address to fetch the next instruction which contains an opcode and up to two
destination fields. This produces a complete executable package which is sent to the pro­
cessing unit. Here the specified opcode is executed using the collected data and tag as
operands, and the result token(s) is(are) finally returned to the communications switch
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input.
The critical part of this system is the matching unit. The task of pairing tokens

together is an act of association and so the unmatched-token store is (pseudo-)associative
in nature; it is implemented using a hardware-hashing mechanism. In the technology
chosen for the prototype version the average match time is 450 nanoseconds [12]. This
limits the instruction execution rate of the ring-structured processor to just over 2 million
instructions per second (MIPS). The prototype instruction processing element is some
fifteen times slower than this and so a serially-activated parallel array of up to 15 such
elements is required as a processing unit. At the time of writing the prototype system is
running at just less than 2MIPS with 12 elements in the array.

The prototype implementation is tailored to stable, MSI, medium-speed, TTL technol­
ogy. Higher speed could be obtained using faster logic and storage components, for
example ECL. Comparable speed might be obtained if design were tailored to VLSI
technology.

2.3.4 Other Projects
Several other projects are worthy of mention. A research system built in 1978 by a team
led by Don Oxley at Texas Instruments used four microprocessors and a 990/10 host,
connected together via a time-multiplexed communication ring [13]. This was a very low
performance system but served to demonstrate some basic dataflow principles. A
dataflow machine is being developed at NIT in Japan by Makoto Amarniya and his
group [14]. Their hardware has been operational for about one year. The LAU project
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led by Jean-Claude Syre at CERT Toulouse in France [15] produced a working machine
which was closely related to dataflow. Additional information on dataflow systems and
languages has been published in a special issue of IEEE Computer [16].

2.4 PERFORMANCE OF DATAFLOW SYSTEMS
Little has yet been published about the performance of these dataflow systems in practi­
cal applications. The most comprehensive results obtained so far have come from the
Manchester project [17]. These relate to the performance of the parallel processing ele­
ments within a single ring structure but nevertheless are impressive. A number of small
but realistic programs of widely differing structure, with both regular and irregular paral­
lelism, were run on a ring with between one and twelve processing elements. The results
are summarized in Figure 2-6.

The speedup remains almost linear until the bandwidth limitations of the ring pipeline
are approached. Since those results were published the store sizes in the ring have been
expanded so that more realistic sized problems can be executed. The initial evidence is
that the previous performance is maintained.

The next stage of the Manchester project is to investigate the performance of a multi­
ring structure. This is being done using a microprocessor based system with two 68000
machines providing the function of a ring processor. A four ring system has recently
become operational and will soon be extended to twenty rings. If the results of this are
equally satisfactory, then the dataflow approach will be capable of producing very
efficient high speed parallel computers.
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3 Assembler Level Programming

c. C. Kirkham

3.1 MANCHESTER DATAFLOW MACHINE FEATURES
As described previously, the Manchester Data Flow Machine at present consists of a sin­
gle ring. The node store, one of the units in the ring, holds an encoding of the program
graph, and the purpose of this chapter is to explain this encoding and to describe the
features which graphs on the Manchester Machine may contain.

3.1.1 Instruction Format
For easily understood reasons, nodes on dataflow graphs for the Manchester machine are
restricted in the following ways:

There may be 1 or 2 input arcs.
There may be 0, 1 or 2 output arcs.

The restriction on the number of inputs enables matching in the matching unit to be
implemented in a straightforward manner, while that on the number of output arcs is
determined by the size of an instruction. There are few occasions when no outputs are
required, so the instruction encoding does not cater for this option and all nodes must
have 1 or 2 destinations. If a node has a single destination it can also have a literal as
one of the inputs, but then it may only have a single incoming arc. A destination in an
instruction identifies the node to which the arc is connected, which of the two possible
input points at which it is attached, and also the matching function. The latter indicates
to the matching unit what it should do with a token on this arc, namely whether to
attempt to match it with another token or not. The matching function was introduced as
a result of an early change in the ring design to put the matching unit before rather than
after the node store. However it has since been significantly generalized to provide other
facilities as will be described below.

3.1.2 Matching Functions
The usual purpose of the matching function is given above, namely to allow the match­
ing store to decide whether an operand will need to be matched with another going to
the same node. In common use, therefore, only two matching functions are useful,
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namely BY (bypass), for operands going to monadic operators or dyadic operators with a
literal, and EW (extract-wait), for operands which need to be paired. The remaining 6
matching functions are provided for special purposes which will only be hinted at here.
For a more complete explanation of the use of some of the more unusual matching func­
tions see Catto et. al. [1]. The naming of the matching functions, other than BY, follows
a pattern whichwill now be explained. When an operand arrives at the matching store a
search is made, pseudo-associatively, for a matching operand. Either this succeeds or it
does not, and for each of these circumstances there is an action required of the matching
store. Matching functions are named by giving the first letter of the action on successful
match followedby the first letter of the action otherwise. The possible actions are:

Successful match actions

Extract remove the matched operand from the matching store.

Preserve leave a copy of the matched operand in the matching store.

Increment leave an incremented copy of the matched operand.

Decrement leave a decremented copy of the matched operand.

In all cases the incoming operand and the operand with which it matched are sent on to
the node store as a pair of operands for a dyadic operator.

Unsuccessfulmatch actions

Wait

Defer

Abort

insert the operand in the store for subsequent matching.

give up for now and try again later.

invent a matched operand of type Empty to form a pair.

as Abort, but also store the incoming operand in the matching store as if it
were going to the opposite input point to this node.

Not all combinations are found to be useful, and below is a list of the seven imple­
mented with a brief indication as to where they are used.

Generate

EW The normal matching function for dyadic operators.

ED Used in non-deterministic situations such as entry to critical sections - a form of
busy waiting.

PD Used to store values such as array elements at a node in the graph.

ID Used at the entry to monitors to generate a stream of requests.

DD Used in reference counting so that stored objects can be disposed of when no
longer required.

EA Used in guarded commands - i.e. in non-deterministic situations.

PG Used in 'lazy evaluation'.

3.2 THE INSTRUCTION SET

The instruction set has been divided into two distinct partitions. One class contains ord­
ers which only ever generate one 'logical' result and are known as single result orders.
The other orders have two 'logical' results and are known as double result orders. The
significance of 'logical' above is that the two possible result arcs are used for different
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purposes and values - it does not refer to how many copies of the result are produced.
Thus there is a duplicate order provided to produce two copies of its input, but this is a
single result instruction. The classic example of a double result instruction is the order
to perform integer division which produces the quotient on one output arc, and the
remainder on the other. With a single result instruction the node can produce one or
two copies of the single result, depending on the number of destinations in the node.
With a double result instruction the situation is more complicated. If only one of the
logical results is required this is indicated by the prefix to the instruction, and then the
available destinations can be used to provide one or two copies of this result. Otherwise
the prefix indicates that both results are required, in which case the left result is sent to
the first destination, and the right result to the second. Thus the possible prefix values
are:

N for a single result order.

D for a double result order using both logical results.

L for a double result order using the left result only.

R for a double result order using the right result only.

3.2.1 Example Orders
The DUP (duplicate) order is very easy to describe. It takes a single operand of any
type, and copies it to its single logical result. Of course, to be useful, this order usually
uses both destinations to obtain two copies of that result. Notice that the type of the
operand is mentioned here. This is because all values in the machine have a type, and
most orders are sensitive to this type. Thus the SBI (subtract integers) order is also a
single result order, this time with two operands. If both operands are of type integer the
result is produced by subtracting the second operand from the first, and is also of type
integer. The error behaviour of SBI when the operands are not of type integer, or when
the resultant value overflowsthe range of integer values, will be described below.

As mentioned above DRM (divide integers with remainder) is a double resultorder. It
requires two input operands, both of type integer. The left result is then the integer quo­
tient, and the right result is the remainder. The BRR order is an implementation of
branch, mentioned in Figure 1-7. It is also a double result order, with two operands.
However in this case the types of the operands may differ. The right operand must be of
type boolean, and is used to decide which logical result should receive a copyof the left
operand, which can be of any type. If the right operand is true the right-hand result is
produced, otherwise the left. The error behaviour of each of these orders will be
described in the next section.

3.2.2 Error Behaviour
The above description has entirely omitted any mention of the behaviour ofthe orders in
error situations. This is by no means a trivial detail as will be seen from the varying
forms of error behaviour which will be discussed in this section. As a generalrule the
host computer is informed whenever an error is detected. This allows the user to abort
the program by some crude external mechanism, such as resetting the machine! This is
necessary because a program with a large amount of parallelism can performa large
amount of computation in parallel with, and completely independent of, itsfaultgenerat­
ing fragment. It will not in general be desirable for programs to check repeatedly
whether any error has occurred to cause termination and this is left to the host.
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However, there are also situations where errors need not indicate that the program
should be halted. For example a program may not need to worry about the correct value
of an expression which overflowed if it is determining the smaller of two expressions; it
need only give up if both expressions overflow. All that is required is that no program
should produce wrong answers as a result of detected errors. The Manchester Machine
has a data type 'Error' which is usually produced as the result by a node which detected
an error. The value part contains information about the position of the error and the
nature of the error. The above discussion means that in general error values should not
change into non-error values as a result of the operation of a node.

There is only one way to produce an error at a DUP node, and that is by providing it
with a right-hand input. This will cause a 'type error' to occur, and the result produced
will be of type 'error' to indicate this. However the DUP node is quite important in con­
sidering error handling, as it is specified to pass on its operand regardless of type. Thus
error values are propagated just like any others.

SBI however can produce an error token as a result in a variety of ways. Firstly, if
the operands are of correct type but the result of the subtraction is out of range an
integer overflow error will occur. If either of the operands are of type error, however,
this error will be passed on unchanged. If both operands are of type error, the left will
be passed on - and the information in the right operand will be lost. Finally, a type
error will occur if either (or both) operands are of neither integer nor error types. This
error behaviour is designed to fit the principles enunciated above, and is general for
arithmetic operations. DRM shows how this has to be complicated in the case of double
result orders. When DRM produces an error result, which it can do for any of the rea­
sons given for SBI, it does so to both results.

BRR is more interesting, however, in that only one result is used for error tokens.
This is because branch orders are used to implement loops, and it is possible by correct
use to cause a loop to terminate if an error occurs in evaluating its termination condi­
tion. Of course the result of the loop is still an error, but it is desirable to terminate the
loop cleanly when this happens. Thus, because BRR is meant to implement repeat
loops, where a true condition terminates, an error type for the right-hand operand causes
it to be sent to the right result only. The right result is also used for the type error token
if the right hand operand is of a type which is neither boolean nor error. There is a
BRW order, to implement while loops, which differs from BRR only in the fact that it
sends error tokens to the left result instead.

3.2.3 Dynamic Arcs
Most arcs in a dataflow graph are static. That is they are fixed and join one node to
another in a permanent way. However there are situations when the destination to
which a node should send its result needs to be different for separate activations of that
node. The classic example of this is when a function returns a result to the part of the
graph that called it. In a manner analogous to that of conventional computers, we wish
to have the choice whether to duplicate the code of the function body everywhere it is
called or whether to have just a single copy to which arguments are passed and from
which results are returned to the calling graph. Passing arguments into a function body
presents no difficulty, but a dynamic arc is required to obtain the result. The destination
for this arc is the right operand to the SDS instruction which creates the arc, the left
operand being the value to be sent. Thus the return information when a function is
called consists of the destination to which the resulting value should be returned.
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3.2.4 Labelling
As mentioned earlier, the Manchester Machine uses 'labelling' to allow graphs to be mul­
tiply used. Thus there are three label fields associated with each operand and these are
known as the activation name, the iteration level and the index. For much of the time, the
use of labels is not apparent as the matching store only matches operands with identical
labels and most orders produce results with the same labels as their inputs. However
there are orders whose purpose is to manipulate the label fields in various ways, and
some of these will now be described.

The YIL order yields the iteration label of its single operand as the single result. The
type of this result is ordinal, a restricted range of non-negative integers. SIL normally
produces a left result which is the same as the left operand but with its iteration level
equal to the value of the right operand. The right logical result is used in cases where the
type of the right operand is not ordinal, or where the label produced by this operation
could not be represented in the space available for it. The ADL order is similar, except
that the right operand in this case must be of type integer, and its value is added to the
iteration level rather than replacing it. In this case a negative iteration level, which would
be illegal, also produces an error on the right output. There are orders which correspond
to these for manipulating the index and activation name fields of the label, and other
orders have also been introduced.

3.2.5 Other Orders
There are many other orders in the Manchester Machine. Among the more complex are
special purpose orders proposed by Bowen [2] to implement and manipulate data struc­
tures. For details of the full instruction set of the machine, see the Basic Programming
Manual [3].

3.3 THE MACIllNE-LEVEL USER INTERFACE
The interface between the ring and the outside world is provided by the host, now a
VAX-llI780, via the switch. All input to the ring and output from it is in the form of
'messages'. Indeed all information passing round the ring is in this same form. Labelled
operands passing from the processing unit to the matching store via the switchand the
token queue form 'normal' messages. This is the expected traffic when a program is exe­
cuting. However programs are loaded, and various monitoring actions also need to take
place, and these are implemented by means of 'special' messages. These are destined for
particular units on the ring, and are passed on unchanged by all other units. At the
indicated unit the special message is removed from the ring, and causes the requested
action to occur. For example, there is a special message to load an entry in the node
store, and this is how programs are loaded. Another important use of specialmessages is
in providing output from the ring to the host by means of special messagesto the host
which the switch diverts from the token queue. Indeed all forms of monitoringprovided
by the machine generate special messages to the host, including the monitoringof errors
mentioned above.

Figure 3-1 gives a listing of a program in the most low-level form, namelyas the tex­
tual representation of the special messages required to load it into the node store.
SPNLN indicates a 'special message to the node store to load anode', and therefore
prefixes each order of the program. The data is in the form of normal messagesto be
inserted into the token queue when the program is to be executed. This program is
shown as a dataflow graph in Figure 3-2.
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; Simple iterative factorial program

SPNLSO 0 11
SPNLNO ONDUPO lLBYO 2LEW
SPNLNO INSBIO 6LBY II
SPNLNO 2DBRRO 4REWO IOLBY
SPNLNO 3NCEIO 7LBY 10
SPNLNO 4NMLIO 5LBY
SPNLNO 5LADLO 2LEW II
SPNLNO 6NDUPO 8LEWO 3LBY
SPNLNO 7NDUPO 2REWO 8REW
SPNLNO 8LBRRO 4LEWO 9LBY
SPNLNO 9LADLO lLBY II
SPNLNO lOROPTO 11LBY GO
SPNLNO IINKILO OLBY

; and the data is

NI5 0 0 0 0 OLBY

Figure 3-1

3.4 THE TEMPLATE ASSEMBLER (TASS).. As you can see, the SPNLN form is rather tedious to read or write. In addition it lacks
many of the facilities commonly found in conventional assemblers, such as labels and
macros. Anyone writing the SPNLN code has to explicitly generate all the DUP nodes
to produce multiple copies of a value, and must also be careful about using only one out­
put from any node with a literal input. TASS, for 'Template Assembler', rectifies these
deficiencies and provides its user with a cleaner view of the machine. This cleaner view
is also useful to compilers, and in fact TASS was mainly intended as an intermediate
code to be generated by high-level language compilers. Although it is instructive about
the way in which the machine works, it has never been our intention to make users write
assembly language programs, and therefore even TASS is not too attractive. Probably
some kind of graphical program generation tool would provide the best user interface at
this level [4].

In TASS nodes are named. If the node has only a single logical result this name
represents the result and can be used as an operand in other nodes. It can be used as
many times as required, with TASS supplying any DUPs necessary. If the node has two
logical results, then the node name represents both of them, and must be qualified before
it can be used as an operand. This qualification takes the form of the a selection of the
left or right output, following the name with .L or .R respectively. Indeed if a double
result operation is used but only one of the results is required, the node itself may be
qualified and then the name represents the single specified result as with a single result
operation. Hence:
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GO

Figure 3-2
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aplusb = (ADI a b); ! adds a and b - both results
! of earlier operations

resdivc = (DRM aplusb c);
quotient = (DRM aplusb c).L;

zero = (SBI resdivc.L quotient);

! Does the divisiona 2nd time,
! but only keeps the left result
!This will be zero

Literals are represented by strings, and are very similar to their SPNLN form. They can
however be named, e.g.

pi = "R3.l4159";
halfrem = (DRM resdivc.R"I2").L;

...:rASScarefully removes the restriction that only one result may be used of a double
result operator if a literal is present. It does so by planting two copies of the operator if
both logical results are required, and supplying the same inputs to them both. However,
notice that it is still an error to write an operation with two literals, and the use of names
for literals can make this less obvious!

It is one of the characteristic features of the Manchester Dataflow Machine that there
is no 'merge' operation. That is to say, no node is required at the point in a dataflow
graph where two arcs join to provide the input to a single input point. Obviously such
situations should only occur after careful thought by the programmer to check that only
one of the arcs should deliver a result with any particular label, and this will be the case
when the value is the result of a conditional computation, for example. The simple nota­
tion used above does not deal with this situation however - for an operand is a name (or
a literal). TASS therefore uses a Merge operator to maintain this simplicity, and this
does not inconvenience the user who must anyway be aware of this situation. Thus

thenres = (BRR thenvalbool).R;
elseres= (BRR elsevalbool).L;
res = (Merge thenres elseres);

leaves res as the name to be used where the result of the conditional expression is
required. Of course no code is planted for a Merge! Merge can have any number of
arguments.

There are situations where Merge is not quite enough. An example is where the
values of arguments are sent into the body of a function by each call. To use Merge
would require a knowledge of how many calls there are in the program, and although
this information can be obtained it could be a significant amount of work for such a
trivial reason. To deal with this, TASS provides a way of naming the input points of a
node and then linking operands to them. The input point is filled in with a dummy
value, '_'. Thus

inarg = (DUP _);
argpoint = L'inarg; !naming the input point.

When a value, say x, is to be linked to this position, it is done as follows

(Link argpointx);

This mechanism could, of course, be used instead of Merge - but each mechanism has a
sensible use and both are provided.

One complication introduced by using names in TASS is that the addresses of nodes
are no longer known, and a mechanism must be provided for literals of type destination.
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These can be derived from the identifications of input points given above in the follow­
ing way

inargdest = D'argpoint;

This makes inargdest a literal of type destination with a value of the input to the DUP
node given earlier. Thus, to give a more complicated example, a program to add the
integer results of calls to two different functions, f and g, would contain

fplusg = (AD! __ );
thisfret = (SYN D'L'fplusg trig).L;
thisgret = (SYN D'R'fplusg trig).L;
(Link fretpt thisfret);
(Link gretpt thisgret);

where fretpt and gretpt are the positions in the bodies of f and g respectively to which
return addresses are sent, i.e. the right hand input points of their SDS nodes.

TASS is quite a general system, and the description above was designed to illustrate
its simple use as a dataflow assembly language. It also quite naturally provides macro
facilities and is used in rather different styles by the two compilers which code generate
into TASS.

As a simple illustration, Figure 3-3 contains a TASS version of the program given ear­
lier in graphical and SPNLN forms.

(I "TASS" "TSM") ;
! Iterative factorial calculation
in = (Data "I 5") ;
n = (DUP in);
mer,,n = (Merge n newn) ;
ndec = (SBI men.n "I I") ;
endtest = (Cfil ndec "I 0") ;
muln = (BRR ndec endtest).L ;
newn = (ADL muln "I I ").L ;
mer..fac = (Merge n newfac) ;
endbr = (BRR merJac endtest) ;
cand = (MLI muln endbr.L) ;
newfac = (ADL cand "I 1").L ;

(OPT endbr.R "G 0") ;

(Finish) ;

Figure 3-3
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4 High Level Dataflow Programming

J. R. W. Glauert

4.1 INTRODUCTION
In Chapter I it was explained that the most attractive way to program dataflow systems
is to use a language based on a functional style. This chapter gives a tutorial introduc-
tion to the language SISAL, developed as a result of collaboration between the Manches- •
ter Dataflow Group and a number of other researchers at Lawrence Livermore National
Laboratory, Digital Equipment Corporation, and Colorado State University.

It will be assumed that the reader has some knowledge of conventional languages such
as Pascal [1] and Algol68 [2]. SISAL will be described by comparison with such
languages and many features of the syntax will appear familiar. The underlying seman­
tics of SISAL are very different from those of conventional languages, however. A pro­
gram places few constraints on the order of evaluation, allowing much implicit parallel­
ism which can be exploited by a dataflow system.

No attempt will be made to describe the complete SISAL language, nor to give a for­
mal syntax or semantics. The reader should consult the SISAL Language Reference
Manual [3] for further details. The language is introduced through a series of examples
illustrating many of its notable features, and then some complete programs are discussed.

4.2 PROGRAM STRUCfURE

4.2.1 Functions
SISAL does not allow procedures, but heavy use is made of junctions, which are always
free from side-effects. A SISAL program contains a main junction which is evaluated to
yield the result of the program. SISAL functions consist of a header and an expression.
Expressions may yield multiple results as illustrated by the following complete program:

% Return the value of the argument, its square, and square root
function Test ( Arg: real returns real, real, real )

Arg, Arg*Arg, sqrt{ Arg )
end function

Wherever the syntax for computing a tuple of values occurs, indicated by separating a
list of expressions by commas, the individual expressions may be computed in parallel by
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a dataflow system. Since there are no side effects it is also possible to compute sub­
expressions independently.

SISAL functions may be recursive and may take and return arguments of any type.
The syntax for calling functions is conventional.

All values are strictly typed but it is usually unnecessary to give types since they can
be derived from the form of an expression. No implicit type coercions are performed.
The types of function arguments and results must be given, however, as illustrated above.

4.2.2 CompoundExpressions
In common with other Functional languages, SISAL has no concept of variables to
which repeated assignments can be made. There is no control structure to specify the
order of evaluation of statements. Instead there are facilities for declaring named values.
There is a rich syntax for the expressions used to define such values. This provides the
full expressive power found in conventional languages while allowing the implicit paral­
lelism in an algorithm to be exploited.

The compound expression allows a number of local definitions to be made and used in
the final result expression:

% FindReal solutions ax2 + bx + c = 0

Rootl, Root2 :=
let

d := sqrt( b*b - 4*a*c);
t: = 2*a

in
(-b + d) / t, (-b - d) / t

end let

4.2.3 Conditional Expressions
There are no conditional statements in the form found in Pascal, but instead there are
conditional expressions similar to those available in Algol68. The following SISAL
expression could be used to compute the absolute value of a variable, although a built-in
function, abs, is also available for the purpose:

% Compute the absolutevalueof Arg

AbsArg := if Arg > 0.0 then Arg else -Arg end if

There can be only one statement defining AbsArg so a value must be provided by both
then and else arms of the expression. It is often required to define the values of several
names on the basis of a single condition. This facility is provided by the syntax for han­
dling tuples of values already used in the examples above:

% Sort two valuesinto order

Lesser, Greater: = if A < B then A, B else B, A end if
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4.2.4 Iterative Expressions
Repetitive computation is essential for most programming tasks. Since SISAL provides
recursive functions it is possible to express repetitive computation in recursive form. It
can be argued, however, that an iterative style is more natural for many algorithms.
SISAL has a form of expression which allows a sequence of values to be computed, the
final result being chosen when some condition is met. Each name concerned is given an
initial value and there is a rule for computing a new value in terms of the old. Hence it
is possible to repeat some computation, evaluating successive approximations to a solu­
tion, until an acceptable result is obtained:

% Calculatethe SquareRoot of X usingNewton's method

Root :=
for initial

R:= X / 2.0
repeat

R := (oldR + X / old R) / 2.0
until abs( R - old R ) < Epsilon
returns value of R
end for

The keyword old preceding an identifier references the value bound to the name before
the body of the loop was invoked, while the unadorned name refers to the new value. "
Hence the initial value is referred to as old during the first invocation of the body.

The keyword until may be replaced by while, in which case the sense of the test is
reversed. It must be stressed that SISAL does not follow Pascal in using while and repeat
to distinguish loop bodies which may be skipped entirely from those which are always
executed at least once.

SISAL does provide the equivalent of both types of iteration, however, for in addition
to the form:

for initial <decls> repeat <body> <test> returns <expr> end for

which always invokes the body at least once, there is also:

for initial <decls> <test> repeat <body> returns <expr> end for

The iterative construct also allows the use of recurrence equations. The next example
computes the factorial of a number N using while and the form which tests before invok­
ing the loop body:

% Iterativecomputation of N Factorial

FacN :=
for initial

C, P:= I, I;
whileC < N
repeat

C:=oldC+I;
P:=oldp·C

returns valueof P
end for

It will be seen that the effect is to multiply together all the values in the sequence
represented by C. The order of multiplication is not significant and a suitable parallel
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implementation could improve on the essentially sequential algorithm given. SISAL
allows reduction operators to be applied to the sequences of values returned from the
iterative construct:

% Useof a Reduction Operator to computeN Factorial

FacN:=
for initial

C:=
whileC < N
repeat

C:=oldC+1
returns valueof product C
end for

This example introduces a new form of the returns clause. As well as returning the last
value bound to a name, it is also possible to combine all the values associated with the
name in the init clause and successive loop cycles.

4.2.5 Forall Expressions
It is often required to perform the same computation on each of a set of values. In con­
ventional languages it is necessary to use an iterative construct even if the computation
for each value in the set is independent and evaluation could have proceeded in paralleL
The factorial example used above could have generated the sequence of numbers to be
multiplied together without using a recurrence equation.

SISAL has another style of for expression for computing a set of results for each value
produced by a generator. The simplest generator yields all the integers in a range. The
example below computes the factorial and also provides the sum of the squares of the
numbers from one to N:

% ComputeFactorial N and the Sumof Squares to N

FacN, SumSq: =
for C in I, N

Sq:=C*C
returns valueof productC, valueof sumSq
end for

The returns clause has the same syntax for both varieties of for expression. The results
computed for each binding created by the generator are available in the returns clause.
The set of bindings may be empty, as in the case where N is less than one. If the returns
clause employs a reduction operator, the appropriate unit value will be returned, so the
example above would yield one for FacN and zero for SumSq.

4.3 DATA STRUCTURE

4.3.1 Arrays
So far only simple data values have been illustrated, although practical programs will
require more sophisticated data structures. SISAL permits arrays of any type of value.
The following type declarations introduce one and two dimensional arrays of real
numbers:
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typeVector = array [ real];
typeMatrix = array [ array [ real]];

Arrays are similar to those in Algo168, values having bounds determined at run-time by
their defining statements. The statements below show forms for building array values,
including an array with no elements and an array whose elements are all the same. In
the case of an empty array it is not possible to determine the type from context, so the
type Vector is given explicitly.

Array access uses conventional syntax and there are functions for enquiring the
bounds and number of elements in an array. Array catenation appends the elements of
the second array to the first, continuing the bounds from the upper bound of the first
array:

Arrl := array [ I: 1.0; 2: 4.0];
Arr2 := array Vector [ ];
Arr3 := arrayJiU( I, 10,0.0);

EI2 := Arrl[ 2 ];
Size3:= array....size(Arr3 );
Up2 := array_jimh(Arr2 );

Arr4 := Arrl II Arr3;

The repeutive constructs can be combined with array data structures in a flexible
fashion. Previous examples have shown how the series of values computed in an iterative
loop may be added or multiplied together. It is also possible to form the series of values
into an array:

% Double Each Elementof Array ArrA

ArrB:=
for I in I, 10

Double: = ArrA[I] * 2.0
returns array of Double
end for

The for in repetitive form can be used to operate on all elements of an array simultane­
ously. A generator for use with arrays makes the elements of the array available directly
without explicit subscripting as in the version below:

% Double Each Elementof Array ArrA

ArrB:=
for El in ArrA

Double := El * 2.0
returns array of Double
end for

The number of values generated depends on the size of the array. The corresponding
indices are available via the extended generator:

for EI in ArrA aLindex Ix

For each invocation of the for in expression body there will be corresponding bindings to
EI and Ix.
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The SISALdot construction allows corresponding elements of more than one array to
be processed. The example below computes the inner product of two arrays and forms
an array containing the sum of the corresponding elements of the original arrays:

% ComputeInner Product of ArrA and ArrB and PointwiseSum

InnerProd,ArrC :=
for ElA in ArrA dot EIBin ArrB

P := ElA * E1B;
S:=ElA+EIB

returns value of sum P, array of S
end for

There is also a cross product syntax, useful for handling matrices, equivalent to nesting of
for in expressions.

4.3.2 Streams
It is intended that SISAL arrays should be thought of as single objects to be manipu­
lated as a whole. Hence an implementation will generally require that all elements of an
array have been given values before any part of the array may be used. As a conse­
quence there may be synchronization after a repetitive construct which generates an
array.

SISAL streams, on the other hand, may be viewed as sequences of values, produced in
order, individual elements being available as soon as they are computed. Functions
operating on streams may act as filters, passing on only some of the input values, or
computing a function of the values as they arrive.

The operations available on streams are more limited than those on arrays. Streams
may be built in much the same way as arrays, although no index values are required.
The size of a stream may be enquired and the first element may be extracted. A func­
tion is available which strips off the first element, leaving the rest of the stream:

type IntStream = stream [ integer );

Strl := stream [ I, 4, 9, 25 );
Str2 := stream.resa StrI );

EI2 := stream...first(Str2 );
Size: = stream..size(Str2 );

The repetitive constructs may yield streams as well as arrays, and values of the result will
be made available as soon as possible. The transforming and filtering applications of
streams are illustrated by the following two examples. The first squares every element of
a stream while the second rejects negative elements:

% Transform a Streamby Squaringeach element

ResStr :=
for E1in ArgStr

Sq:=EI·EI
returns streamofSq
end for
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% RemoveNegativeelementsfrom a Stream

ResStr :=
for El in ArgStr

Neg := (El < 0.0)
returns stream of El unlessNeg
end for

In the second example the resulting stream is formed by appending each element in the
stream to the result, unless the corresponding value of Neg is true. There is a keyword
whenwhich complements unless.

Streams of any data type are permitted, although the intended application of streams
makes a type which is a stream of a stream, of little interest.

4.3.3 Records
Record types may be used. Creation of records is similar to that for arrays, but uses
field names rather than index values. Field selection is as in Pascal:

type Complex = record [ Re, 1m:real];

X := record [Re: 10.0;1m:3.1];
y := record [ Re: X.Re; 1m: -X.lm ];
Z := X replace [ 1m:-X.lm ];

The expression for Z yields the same value as Y; the replace form is useful for manipulat­
ing records with many fields and yields the record given as its first argument, but with
some fields taking new values.

4.4 OTHER LANGUAGE FEATURES
A number of aspects of SISAL have been omitted from this introductory tutorial. There
are a number of additional operations available on arrays and streams, and further
reduction operations are provided. Simple booleanand character types are available, along
with the familiar operations on those types.

The only form of expression omitted, tagcase, is used to access a type which acts as the
disjoint union of existing types. A tag value indicates the component type present in a
particular instance of the union type and is used to select the appropriate clause of the
tagcase expression. Union types may be defined recursively, allowing data structures such
as trees and linked lists to be constructed without the use of a pointer type.

A major area not mentioned in this introduction is the handling of errors by SISAL.
Every operation and every form of expression in a SISAL program has a well-defined
behaviour in the presense of errors. Each data type contains special error values which
are returned as the result of any expression of the given type generating an error, or
receiving an argument which is an error value. Errors will therefore propagate through
expressions and be returned as the result of the program. A program may take special
action in the presence of recoverable errors by using the special boolean function is....error
which can be applied safely to any value.
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4.5 SOME COMPLETE SISAL PROGRAMS

The programs given below are adapted from Appendix D of the SISAL Language Refer­
ence Manual [3].

4.5.1 Sorting
The first example uses a parallel algorithm based on QuickSort. The parallel for expres­
sion yields three arrays, containing all values less than, equal to, or greater than the
pivot:

% QUICKSORT
%
% Splitthe argument array on the basis of the first element,
% applyingthe algorithm recursivelyto the two unsorted arrays

typeVector= array ! real ]

functionQuickSort ( Info: Vector returnsVector)

if array.sizet Info ) < 2
then

Info
else

let
Piv = Info!I];
L,M,R:=

for Data in Info
returns

array of Data when(Data < Piv),
array of Data when(Data = Piv),
array of Data when(Data> Piv)

end for
in

QuickSort(L) I I M I I QuickSort(R )
end let

end if

end function
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4.5.2 Prime Numbers

The second example uses stream filters to compute a sequence of Prime numbers using
the Sieve of Eratosthenes:

% SIEVE
%
% Create a Stream of all Prime Numbers less than N2

% by the Sieve Method

type IntStream = stream [ integer]

function Sieve ( N: integer returns IntStream )

function Filter ( S: IntStream; N: integer returns IntStream )

let
P := streanLfirst( S );
R := stream.rest/ S );
F:=

ifP> N
then R
else

let
G:=

forVinR
NotPrime := (mod( V, P) = 0)
returns stream of V unless NotPrime
end for

in Filter( G, N )
end let

end if
in stream [P] I I F
end let

end function

let
StartList :=

for I in 2, N*N
returns stream of I
end for

in Filter( StartList, N )
end let

end function
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4.5.3 ~uadrattIre

The final example is a recursive Adaptive Quadrature program for integrating a given
function overa specified range. The original example is more complete, handling error
situations.

% QUADRATURE
%
% Integrate the function F over the givenrange

functionIntegrate ( Low, High: real returns real )

% The Function to Integrate
function F ( X: real returns real )
X*X
end function

% Compute Approximation usingTrapezoidalRule
functionArea ( Low, FLow,High, FHigh: real returns real )
(High - Low) * (FHigh + FLow) / 2.0
end function

% Recursivelysub-divideare until approximation is acceptable
% Providedwith functionsat end points and crude area of Trapezium
functionQuad( Low, FLow,High, FHigh, Trap: real returns real )

let
Mid: = (Low + High) / 2.0;
FMid := F( Mid );
LTrap := Area( Low,FLow,Mid, FMid );
HTrap := Area(Mid, FMid, High, FHigh );

in
if Abs( LTrap + HTrap - Trap ) < Epsilon
then LTrap + HTrap
else

Quad(Low,FLow,Mid,FMid,LTrap)+
Quad(Mid,FMid,High,FHigh,HTrap)

end if
end let

end function

let
FLow: = F( Low);
FHigh := F( High );

in
Quad( Low,FLow,High, FHigh,Area( Low,FLow,High, FHigh ) )

end let

end function
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5 Functional Programming

J. Darlington

5.1 INlRODUcnON
Functional languages have had a small band of very enthusiastic advocates for many
years now. Their origins as practical languages can perhaps be traced to the develop­
ment of LISP by John McCarthy in the early 60's but their ancestry goes directly back to
the lambda calculus and recursion equation notations developed by workers in
mathematical logic in the 1930's. For the last ten years functional languages and related
technologies have been developed by, amongst others, Backus, Burge, Burstall, Hender­
son, Landin, MacQueen, Turner and the author. With notable exceptions this has been,
until lately, largely a British phenomenon. However, functional languages are now
beginning to attract a much wider interest and several developments, not least the advent
of highly parallel VLSI architectures, are promising to translate the theoretical advan­
tages of these languages into practical reality.

This article attempts to introduce the reader to the functional languages, briefly
describing most aspects concerned with their development, implementation and use.

5.1.1Foundations of Functional Languages
Functional languages trace their origins to the lambda calculus developed by Alonzo
Church in the 1930's [1). This calculus arose from work on basic computability theory
and in particular the attempt to define precisely the intuitive notion of which functions,
of the positive integers, could be computed in a mechanical or algorithmic way.
Church's proposal, which became known as Church's Thesis, was that these effectively
calculable functions should be identified with those functions that are expressible in a
simple calculus, the lambda calculus. Although not amenable to formal proof Church's
Thesis is now universally regarded as true, which makes the lambda calculus not a bad
base on which to design a programming language.

In Church's lambda calculus expressions, called lambda expressions, are used to denote
functions. Thus the expression

Ax.x2+2

denotes the function which when applied to a number squares it and adds 2 to it. A
lambda expression has two parts. The part up to the dot is called the bound variable
and the part after the dot is called the body. The process of putting the two halves
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together is termed abstraction, as the function denoted by the lambda expression is
abstracted from its body.

Functions denoted by lambda expressions are applied in the normal way by juxtapos­
ing them with their argument, thus

(Ax.X2 + 2) (5)

denotes the application of the denoted function to the value 5 and evaluates to 27.
A lambda expression can also appear in an argument position as in

(M. f(5» Ax.X2+ 2

which evaluates again to 27. Note that the bound variable f in this case is 'function
valued'.

These lambda expressions form the well formed formulas of the lambda calculus. The
calculus is completed by a set of rules of lambda conversion i.e. rules that convert one
lambda expression to another without changing its meaning. These rules are purely syn­
tactic and can be applied without knowing the meaning of the expression.

There are three such rules. The first (the alpha-rule) says that we can change the name
of the bound variables as long as we do it consistently. The second (the beta-rule) is the
most important, and corresponds to function application. It says that lambda expres­
sions of the form (Ax.M) N can be converted to the form M[N/x] i.e. M with N substi­
tuted for x, again as long as we do it consistently. The third rule is the opposite of the
beta-rule and says that any expression can be converted to an abstracted function re­
applied to appropriate arguments.

The basic idea behind the lambda calculus is that application of these rules
corresponds to evaluating a program (or effectively computing a function) as they can be
applied mechanically. An application of the beta-rule is termed a reduction. If A can
be converted to B using only alpha and beta rules A is said to be reducible to B. An
expression that cannot be reduced any further is said to be in normal form. Normal
form lambda expressions correspond to the result of evaluating a program. Normal
forms are unique (up to applications of the alpha-rule).

In reducing a lambda expression there may be several choices of what to do next.
The main theorem of the lambda calculus, the Church-Rosser theorem, states that it does
not matter in what order things are done, all paths lead to the same result. Furthermore
if B is a normal form of A, A is convertible to B using only reduction steps. These
results make the lambda calculus a very tractable discipline on which to base a computa­
tional formalism.

Another formalism that also has had an influence on the design of several functional
languages, Kleene recursion equations [2], has the same origins as Church's lambda cal­
culus, namely the search for a formal notation to try and capture the notion of effectively
computable functions. Kleene recursion equations again are a method of denoting func­
tions, in this case by sets of mutually recursive equations.

For example the equations

Ack(n, 0) = n + 1
Ack(O,m + 1) = Ack(l, m)
Ack(n + I, m + 1) = Ack(Ack(n,m + 1),m)

define the famous Ackermann function. The general form of these recursion equations is
a set of, possibly mutually recursive, equalities concerning the functions being defined.
The form of expression allowed on the left hand side of these equations is restricted and
they are meant to be used in a left to right manner as production rules. There may be
several equations mentioning the same function on the left hand side and these equations
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are distinguished by the terms occurring in the argument position, e.g. the first equation
above is meant to be used for evaluating the Ackermann function when its second argu­
ment is zero, the second equation when the first argument is zero and the second non
zero and the third when both arguments are non zero.

The functions definable using Kleene style recursion equations are exactly those
definable using lambda expressions which gives even greater credence to the claim that
they both correspond to the set of all effectively calculable functions.

5.2 FUNCTIONAL PROGRAMMING
The object of writing a functional program is, not surprisingly, to define a set of func­
tions. Thus functional programming can be carried out in any conventional language,
such as Pascal, which has a function definition capability. As we shall see, however,
there are fundamental differences between functions as defined in Pascal and those
defined in functional languages.

5.2.1 Introduction
In a functional language, such as HOPE or KRC, a program is a set of equations
defining functions in terms of other simpler or primitive functions.

For example

rnax(x,y) = if x > y then x else y

defines the well known maximum function in terms of the primitives if then else and>.
The program

rnaxof3(x,y, z) = rnax(rnax(x,y), z)
rnax(x,y) = if x > y then x else y

shows the use of a defined function in the definition of a more complex function. Notice
that in the above program there is no ordering implied on the equations. The execution
of a functional language program involves evaluating an expression using the equations
of the program as directed, left to right, rewrite rules. Thus, for example, to find the
maximum of the three numbers 3, 5, 7 one evaluates the expression rnaxof3(3,5, 7) which
goes through the following rewrites before being reduced to the number 7

rnaxof3(3,5, 7)
~ rnax(rnax(3,5), 7)
~ rnax(if3 > 5 then 3 else 5, 7)
~ rnax(5,7)
~ if5 > 7 then 5 else 7
~7

,.

Functional programming systems are usually interactive. A user, characteristically, is
allowed to develop his program incrementally by adding or deleting equations and at any
time he can ask the system to evaluate a typed in expression. The system responds by
printing back the reduced answer.

Functions can, of course, be defined in terms of themselves, using recursion.

factorial(n)= if n = 0 then 1 else n * factorial(n-l)

Many functional languages rather than having one equation for each function being
defined allow the programmer to write several equations, each one dealing with a partic­
ular case in the manner of Kleene recursion equations.
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Thus

factorial(O)=
factorial(n+ 1) = (n+ I) * factoria1(n)

defines exactly the same factorial function as above. The first equation deals with the
case where the number input is zero and the second with all numbers that are greater
than zero. Note that in order to preserve the property that the order of the equations is
not important we require that for any value at most one equation should apply. This is
most easilyachieved by requiring that the cases covered by each equation are disjoint.

5.2.2 Data Structures
Structures are handled in functional languages by introducing a special class of func­
tions, called constructor functions. No equations are written to define constructor func­
tions, they simply act to build data structures. More accurately terms built out of con­
structor functions and constants (i.e. unary constructor functions) name data structures.

For example lists can be defined by introducing two constructor functions. One, nil,
names the empty list. Traditionally the other, two argument, constructor is written as
an infix operator ".". Thus the term 1.(2.nil)names the list with two elements I and 2
conventionally written as [1, 2).

Equations can be written to define functions over structures just as they can over
scalars.

For example

length(nil)= 0
length(x.l)= 1 + length(l)

defines the function that calculates the length of a list. Note how the ability to write
patterns in the left hand side of the equation not only gives one the ability to decide
what case to select but also the ability to decompose the structure and name the com­
ponent parts. Thus the "1" on the right hand of the second equation names the tail of
the list input i.e. the list minus its first element. This process of pattern matching is a
feature of the advanced functional languages shared with the logic languages and adds
great power, often removing the need to define explicit conditionals or selector functions.

Evaluating a program manipulating structures involves exactly the same process as
evaluating one involving only scalars. Thus to calculate the length of the list that we
would informally write as [I, 2) we reduce the expression length(I.(2.nil». The reduction
process continues, as before, until no further reductions are possible and the expression
consists solely of constructor functions or constants. This is illustrated in Figure 5-1,
which assumes + as a built in primitive.

Note that we can formally treat scalars as terms built from the constructor functions 0
and successor (written as + 1). Thus it makes sense to write n+ 1 in the left hand side
pattern or even n + 2 but not n + m. The two former expressions being syntactic sugar
for successor(n)and successonsuccessorm)respectively but the later implies a non deter­
ministic split of the input value which is not allowed.

This view of structures as terms in constructor functions allows functional languages
to deal directly with structures that would be termed 'abstract' in more conventional
languages. For example binary trees shaped as shown in Figure 5-2 can be introduced
by defining two new constructor functions, atom to build the leaf objects and tree to
build interior nodes. Thus the tree in Figure 5-2 is named by the term
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tree(tree(atom(l),atom(2», atom(3»

and a function to rotate such tree structures can be written as

rotatetatomm) = atom(n)
rotate(tree(tl, t2» = tree(rotate(t2),rotateul)

Thus rotate(tree(tree(atom(I),atom(2»,atom(3»)reduces to:

tree(atom(3),tree(atom(2),atom(1»)

which names the tree shown in Figure 5-3.

5.2.3 Higher Order Functions

All realistic functional languages are what is termed higher order. This means that func­
tions themselves can be passed around as data objects just as scalars or lists. This is in
keeping with the doctrine that in a soundly based programming language all objects
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Figure 5-3

should have full 'rights' and that there should not be first and second class citizens.
Thus in functional languages there are expressions that evaluate to objects that are

function valued. We have actually already seen such objects. Having defined a program
(equations) for the function factorial, the identifier factorial has as value the factorial
function. Functions are applied to their arguments by juxtaposition in the normal way,
with or without bracketing according to the style of parsing used e.g.

factorial3 or factorial(3)

It is often convenient to be able to define a function without having to give it a name
that is globally available as is the case with factorial. Several functional languages utilize
lambda expressions for this purpose. For example a lambda expression of the form
lambda n =* 2 * n evaluates to a function which multiplies the number to which it is
applied by 2. Thus (lambdan =* 2 * n) 4 evaluates to 8.

The following program computes the list of all the factorials from I to n by first con­
structing the list of integers from I to n and then using the map function to apply the
factorial function to each element. Note that the second argument of map is function
valued.

Iistoffact(n)
map(nil, f)
map(n.l, f)
Iisto(n)
Iistfromto(i,j)

= map(listo(n),fact)
= nil
= f(n).map(l,f)
= Iistfromto(l, n)
= ifi > j then nil
else i.listfromto(i+ I, j)

=1
= (n+ I) * fact(n)

fact(O)
fact(n+l)

Similarly

Iistofsquares(n)= map(listo(n),lambdan =* n2)

produces the list of squares of numbers up to n. Note that it is of course impossible to
use a lambda expression to denote a function that needs to use recursion in its definition
as there is no function name available to apply to achieve the recursive call!

An alternative mechanism employed in some functional languages is the use of partial
parameterization. Here a function of several arguments is applied to fewer arguments
than required to produce a function 'expecting' the missing arguments.

For example given the max function which expects two arguments
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max(x,y) = if x > y then x else y

we can apply it to only one argument as in max(3) to produce a function of one argument
that when applied to a number returns that number if it is greater than 3 and 3 other­
wise. i.e.

max(3)4 is equivalent to max(3,4).

The existence of higher order functions provides the basis for a powerful programming
style in functional languages. For any data structure one can define a set of general pur­
pose 'iterators' that walk over the data structures applying functions passed as parame­
ters in various ways. Given a rich enough set of these higher order functions most pro­
grams can be implemented as specific instantiations of these functions, removing the
need to write explicit recursions in the main program.

Functions can also be written that return functions as values. The classic example is
function composition

compose(f,g) = lambdax => f(g(x»

so compose(lambdan => n2, lambda n ~ 2 * n)4 evaluates to 64.
This use of function forming functions (sometimes known as functionals) leads to a

style of functional programming popularized by Burge and Backus and embodied in the
language FP (see below). Here programs are constructed at a higher level of functional
abstraction and the main building blocks are function forming functions such as com­
pose. In effect a program that would normally be expressed as a sequence of transfor­
mations on objects is replaced by a sequence of transformations on functions the result
of which is then applied to the object.

"

5.2.4 Set Expressions
One powerful idea that has been adopted in several functional languages is the use of set
abstraction. Relative set abstraction was first introduced in Zermelo-Frankel set theory as
a mechanism for defining sets in terms of qualified selections from other sets. It has
been adopted into functional languages to provide a convenient syntax for a particular
higher order iterator over sets.

For example, consider the problem of calculating all the right angled triangles that
can be constructed, whose sides are integer valued and less than a given size. If we
represent a triangle as a triple of integers representing the sizes of the three sides this
function can be written directly thus,

triangles(n)= {(nl, n2, n3) I 0 ..;;nl, n2, n3 ..;;n & nl2 + n22 = n32)

A set iteration consists of two parts: a generator, in this case 0 < nl, n2, n3 .;;;;n,
producing candidates for possible inclusion in the answer set; and a predicate, in this
case nl2 + n22 = n32, selecting which of these are to be included.

Set abstraction was first employed as a specification language in [3], its incorporation
into a functional programming language as an executable feature was first suggested in
[4] and implemented in [5]. SETL [6], used sets as a basic control primitive. HOPE,
KRC and Miranda all use set expressions. For an elegant exposition of the power of set
expressions see [7].
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5.2.5 QualifiedExpressions
Often the right hand side of an equation will contain more than one occurrence of the
same subexpression as in

g(x)= ifx = 0 then 0
else x+(g(x/2) • g(xl2))

This repetition of the same expression will do no harm to the meaning of the program
because, as we shall see below, it is an important property of functional languages that
the same expression in the same context always evaluates to the same result. However,
the repeated re-evaluation of the same expression can have disastrous consequences for
the efficiencyof the execution, especially if, as in our example, the redundancy occurs in
a recursive call that will exponentially amplify it.

This potential inefficiency is simply overcome in functional languages by the use of
qualified expressions which allow the programmer to name the repeated expression and
then refer to it by that name.

Thus many languages employ a construct such as

Bwherey=A

where the variable named y can be used to refer to the expression A throughout B. So
our example above could be written

g(x)= x + (y * y) where y = g(x/2)

It is important to realize that this is not assignment as the value of y does not change
throughout its use. The meaning of any expression involving where is always equivalent
to that of the expression where the qualified variable has been resubstituted with the
expression it denotes.

Many languages allow the use of pattern matching in where expressions just as they
allow it on the left hand side of equations. Thus

quotrem(x,y) =if x < y then (0, x)
else (1 + m, n)
where (m, n) = quotrem(x- y, y)

is a function to calculate the quotient and remainder of a pair of numbers. Note that
quotrem as well as taking a pair of numbers as arguments returns a pair of numbers and
that pattern matching (of a simple form) is used in the where construct.

5.2.6 Typing
The concept of typing is orthogonal to whether a language is functional or not; however
functional languages have several advantages when it comes to developing powerful typ­
ing systems, and many functional languages have typing systems in advance of any avail­
able elsewhere. Three of the most developed functional languages ML, HOPE and
Miranda (see below) all employ the polymorphic typing system developed by Robin
Milner [8]. This supports a strong typing discipline but allows variables to appear in
type statements thus avoiding many of the rigidities found in strong typing as employed
in, say, Pascal.

Using the Milner algorithm one can either ask the user to give the types of his func­
tions prior to their definition, and then check that the expressions he types in are con­
sistent with the information he has given; or infer the types of the functions as he inputs
them, and signal an error if it is impossible to do this consistently.
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HOPE adopts the former strategy, ML and Miranda the latter. For example in
HOPE before defining the factorial function one would have to give its type

dec fact: num ~ num
fact(O) = 1
fact(n + 1) = (n+ 1) * fact(n)

In ML and Miranda the type would be inferred (from knowledge of the types of the
basic functions) and presented to the user.

Polymorphism appears trivially in the definition of the identity function (a function
one would actually never need to write in a functional language). In HOPE this would
be

typevar alpha (introducing a type variable)
dec id : alpha ~ alpha
id(x) = x

Thus id is restricted only in that the type of its output must be the same as the type
of its input. It can be applied to objects of any type, numbers, characters, trees etc.

Polymorphism is much more useful when it is applied to data structures. Thus, for
example, the same list building and manipulating functions can be used for lists of
numbers or lists of lists or lists of trees in contrast to the situation in Pascal where these
all would be different types requiring separate function definitions.

Functions are, of course, a type and the full definition of our compose function in
HOPE would be .'

typevar alpha, beta, gamma
dec compose: (beta ~ gamma) X (alpha ~ beta) ~ (alpha ~ gamma)
compose(f, g) = lambda n => f(g(n))

(If EI and E2 are type expressions EI _ E2 is the type expression denoting functions
from EI to E2).

The Milner algorithm is not generally applicable to non-functional languages. It is
our experience that the combination of strong typing and polymorphism provides a very
powerful aid to correct program development and is essential for any realistic program­
ming language.

One crucial point to note is that functional languages are deterministic. For any given
input they will always give the same answer. Furthermore all pure functional languages
have the Church-Rosser property: alternative sequences of evaluation, if they terminate,
always lead to the same answer.

The above describes the main features of most modem functional languages. There
are matters we have not considered such as syntactic extensions and modular structures
but we have covered the main building blocks. Functional languages are characterized
by the small number of basic concepts employed and the consistent way these are com­
bined to form powerful notations. Most functional languages are very simple to learn
once the basic concepts have been grasped.



66 DeclarativeSystems

5.3 FUNCflONAL PROGRAMMING METHODOLOGIES

5.3.1 The Importance of Functional Languages
The reasons why functional languages are considered important and a significant ad­
vance on conventional languages are threefold. First, it is held they are intrinsically
more powerful languages than conventional ones, so program construction is a simpler
and less error prone task. Second, formal manipulation of functional programs is possi­
ble, enabling the process of program transformation, the systematic derivation of efficient
programs from specifications, to be supported. Third, parallel evaluation of functional
programs is easy to organize, allowing the design of very fast, extensible, multi-processor
machines. We will return to these points in more detail below but it is worth taking
some time to consider the theoretical reason behind all these claimed benefits.

Pure functional languages are referentially transparent. This means that programs
written in functional languages can be considered static objects and that the meaning of
an expression in a functional language depends on the meaning of its component subex­
pressions and not on the history of any computation performed prior to the evaluation of
that expression. There is thus a clean notion of equivalence between expressions and
equivalent expressions can be freely substituted for each other in any context without
changing the meaning of the whole expression. Clearly mathematics is referentially tran­
sparent and 3 + 2 is equivalent to 5, so 3 + 2 can be substituted for 5 in the expression
8 * 5 yielding 8 * (3 + 2) without changing the meaning of the whole (40).

It would be very difficult to consider doing mathematics with a language that was not
referentially transparent; it is one of the ground rules for any notation to be comprehen­
sible and manipulable and this applies to notations for writing programs as much as
notations for writing mathematics.

Languages with variables that can be assigned to are not usually referentially tran­
sparent. The meaning of an expression involving such variables can vary according to
the history of the computation performed prior to the evaluation of that expression.

Thus a programmer writing a functional language program is free to concentrate on
the declarative reading of his program, what will be computed not how it will be com­
puted, as the meaning of the program will be independent of the order of its evaluation.
A programmer in a conventional, sequential, language must take care that all his opera­
tions are performed in the right order to achieve the correct result, an extra intellectual
responsibility, and one that mitigates against comprehensibility, modularity or
modifiability.

5.3.2 Specification
Programming in functional languages lends itself very nicely to a process of specification
or prototyping prior to the development of efficient programs. It is very natural, when
using a functional language, to develop a model of the system one is attempting to build.
If one disregards the need for efficiency it is very natural to write programs in a func­
tional language that very directly specify what is to be computed. The point is that
specification and program are written in the same notation and specifications can be run
or interrogated to test out one's ideas on an emerging system or demonstrate the
intended capability to a customer.

The power of functional languages for specification purposes can be extended by
removing some of the restrictions placed on the notation to permit efficient interpreta­
tion. As we saw earlier functional languages are a subset of a general equational
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language, a subset chosen to allow the equations to be used as directed rewrite rules. If
one is not concerned initially with evaluation one can remove these restrictions and allow
a user to define functions using general equations.

For example given a definition of multiplication by repeated addition

mult(a, 0) = 0
mult(a, b+ 1) = a + mult(a, b)

It is natural to specify a function to perform (exact) division by the general equation

mult(div(n,m),m) = n

Such an equation serves perfectly well to define div, it is just not, at first glance, a
program that would enable us to compute divisions.

Other ways a functional language can be extended for specification purposes include
allowing equations over infinite sets or lists that are not constructable but perfectly well
defined. For example the following 'program' specifies the ordered list of numbers that
are composites of 2, 3 and 5, the well known Hamming problem,

hamming = order(composites)
composites= {i * Y * Sk I i, j, k ;;;.O}
order(S) = mintS),order(remove(min(S),S»
mineS)= {s I sES forall s' E S: s' ;;;.s}
remove(x, S) = {s I sES & s~x}

The point is that composites is an infinite set so min(composites) is not executable.
However the above serves as a perfectly adequate specification of hamming which can be
at least symbolically evaluated and interrogated using theorem provers rather than
efficient program executors and can be systematically transformed to an efficient pro­
gram.

5.3.3 Transformation
Having established a satisfactory specification the next step is to develop an efficient pro­
gram to accomplish the task. The idea underlying transformation is that the specification
should be systematically manipulated in order to produce this program. The critical
requirement is therefore for a set of manipulation rules that allow programs to be
transformed improving their efficiency while leaving their meaning unaltered. It is a
great advantage of the functional languages that such a set of manipulation rules can be
simply provided. Because functional languages are referentially transparent they can be
manipulated just as familiar mathematical forms are manipulated. The' =' sign in a
functional program really is equality and equivalent expressions can, by and large, be
interchanged freely without the need for elaborate checking. This is the basis for the
unfold/fold system of program transformation first developed in [9). This is a set of six
simple rules for transforming functional programs. These rules have been proved correct
once and for all so there is no way their application can change the meaning of a pro­
gram, thus doing away with the need for a separate proof of the correctness of each
transformation attempted. Such a simple set of rules would be impossible to obtain for a
conventional language such as Pascal.
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The example below shows a very simple transformation of a program to compute the
average of a list of numbers to a more efficient version.

Specification/Initial Program

average(l) = div(sum(I), counul)
sum(nil) = 0
sum(n.l) = n + sum(l)
count(nil) = 0
count(n.I) = 1 + count(l)

Transformation

Introduce a new function (guaranteed to preserve the meaning of the program as it does
not overlap with any case previously defined).

av(l) = (sum(l), counul)

Instantiate this equation

av(nil) = (sum(niI), coununil)

Symbolically evaluate this equation

aV(nil)= (0, 0)

Again instantiate (A)

av(n.!) = (sum(n.!), countm.l)

Symbolically evaluate

av(n.!) = (n + sum(l), 1 + counul)

Re-arrange

av(n.!) = (n + u, 1 + v)
where (u, v) = (sum(l), counul)

(A)

(B)

Use (A) 'backwards'

av(n.!) = (n + u, 1 + v)
where (u, v) = av(l)

Rewrite the original equation for average

average(l) = div(u, v)
where (u, v) = (sum(l), counul)

Again use (A) backwards

average(l) = div(u, v)
where (u, v) = av(l)

(C)

(D)

Final Program

The net result of the above manipulations is three new equations (B, C, D) that have
been systematically derived from the initial program and taken together constitute a
more efficient program for average
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average(l)= div(u,v) where(u, v) = av(l)

av(nil)= (0, 0)
av(n.l) = (n + u, I + v) where(u, v) = av(l)

As well as being correct the unfold/fold system has been shown to be powerful in that it
is capable of expressing a wide variety of substantial transformations, e.g [10, 11].

The simple formal nature of transformations in a functional language presents the
possibility of at least partially mechanizing the process. The system described in [12]
enables a user to design his program, by writing a structured transformation plan utiliz­
ing high level transformation operators, that is executed by the system that implements
the transformation as a sequence of the lowest level, correctness preserving, operators.
Such a system, we consider, combines the precision and accuracy of formally based pro­
gram development with the practicality and intelligibility of structured program design.
The fact that the program design is itself a formal object, the transformation plan, has
very important advantages when it comes to program modification and maintenance. It
is ironic that of all the professions, programming itself is still relatively unautomated. It
seems necessary that computers contribute materially to the programming process if
software development is ever to reach the standards of accuracy, reliability and replica­
bility that are required. The combination of functional languages, specification, transfor­
mation and semi-automatic program development systems seems to offer a feasible route.

,0
5.3.4 Parallel Evaluation

/
)
The design of computer architectures to take advantage of the opportunities for parallel­
ism inherent in functional and related languages is dealt with in depth elsewhere in this
volume. It is worth pointing out here, however, that the reason why it is much simpler
to organize parallel evaluation for functional programs than for programs in a sequential
language is exactly the same reason as conveys all the other advantages alluded to above,
namely possession of referential transparency.

For example consider our original program for the average example give above

average(l)= div(sum(l),counul)

If we attempt to evaluate average(I.(2.(3.nil»)application of this equation leaves us with

div(sum(I.(2.(3.nil»),count(I.(2.(3.nil»»

to compute.
It is clear that the computation of sum(I.(2.(3.nil») can proceed independently of the

computation of count(I.(2.(3.nil») because of the absence of any time dependent
behaviour. They can therefore be computed in parallel with consequent gain in
efficiency. Note that the transformation performed above only affects an improvement if
the target machine is a sequential one. It is often the case that a parallel implementation
allows the efficient execution of what would otherwise be viewed as preliminary
specifications or inefficient initial programs. We are not claiming that the advent of
parallel architectures will do away with the need for the careful design of good algo­
rithms, either by program transformation or by informal manual methods; they will,
however, lift the level in doing away with the final, awkward, step of fitting the func­
tional program to the sequential nature of the machines currently in use.
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5.4 SEQUENTIAL IMPLEMENTATION OF FUNCTIONAL LANGUAGES
Anyone implementing a functional language on a conventional, sequential, machine faces
several problems. The very nature of the languages makes them somewhat unsuited to
the machines in existence today and in order to preserve their pure nature, which is
really their raison d'etre, one has either to put up with a certain degree of inefficiency or
expect the compiler to do more work than would be necessary for a sequential language,
such as Pascal. It has been the case traditionally that functional languages are happiest
when implemented on machines with large unsegmented virtual address spaces and
significant amounts of real memory. However certain very impressive implementations
have been developed lately and functional languages are beginning to be fitted onto
machines at the micro end of the range.

It is very gratifying to be able to report that implementations of functional languages
on parallel machines seem easier than on sequential machines. It is our experience on
the ALICE project [13], that in a parallel context many of the problems previously asso­
ciated with implementing functional languages either disappear or have much more
efficient solutions. A HOPE compiler for ALICE, written in HOPE itself, described in
[14], illustrates this point well.

5.4.1 Implementation via Transformation to a Sequential Language
Instead of attempting to implement a functional language on a sequential machine by
direct interpretation or compilation one can transform the functional language program
to a program in a conventional sequential language which can then be evaluated in the
traditional way. Early work on program transformation tended to regard functional
languages as purely specification languages and envisaged a final phase of translation to
a sequential language. With the growing interest in functional languages as program­
ming languages in their own right this route has been neglected; it could still offer some
advantages. The main point is that almost all the transformations necessary to produce
an efficient sequential program can be carried out as source to source transformations at
the functional level, where programs are more amenable to manipulation, and the final
translation to a conventional language can be automatic. Even features such as storage
overwriting, which do not have a meaning in a functional language, can still be treated at
the functional level as described in [11]. Working at this level it is possible to achieve
much more significant transformations than if the equivalent program were expressed in
a sequential language and one may actually end up with a more efficient program start­
ing with an inefficient functional language specification, rather than attempting to
directly write an efficient sequential language program.

5.4.2 Interpretation and Source Reduction
The simplest way to implement a functional language is to develop a source interpreter
that mimics the operational semantics for functional languages we described earlier, i.e.
expression rewriting. Here the program and expression to be evaluated are parsed to
give tree structures and the interpretive loop consists of detecting a rewritable subexpres­
sion within the expression being evaluated and performing the appropriate substitution.
Such interpreters are, of course, rather slow in execution but can be instrumented to pro­
vide a great deal of intelligible information about program execution and therefore make
excellent program development tools.
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5.4.3 S.E.C.D. Machine Implementations
Many implementations of functional languages that use compilation are based on the
S.E.C.D. machine. This is an abstract machine developed by Landin [15] to support the
evaluation of lambda calculus expressions. It is a register transfer machine and its name
derives from the designation of the four principal registers used.

As with all machines the S.E.C.D. machine has its own machine code. Thus a func­
tional language program is compiled to a program in this machine code which when exe­
cuted, according to the semantics of the S.E.C.D. machine, terminates with a value
equivalent to that which would have been obtained by direct reduction of the functional
language program.

The main problem to be overcome in the design of such an abstract machine is to
fully support functions. Functions can be created dynamically and applied at points
remote from their definition. To be implemented correctly functional languages must
obey static binding rules, that is any free variables in a function body must take on the
values they had when the function was defined, not the values they have when the func­
tion is applied. This is handled in S.E.C.D. style implementations by representing
dynamically created functions by an object called a closurewhich can be viewed as a pair
consisting of the function body and the environment pertaining at the time of that
function's definition. Thus when such a function is applied the current environment is
suspended and replaced by the environment part of the closure.

The four registers in an S.E.C.D. machine are

S the stack, which is used to hold intermediate values generated during the evaluation
of an expression.

E the environment, which holds the values bound to variables during evaluation.

C the control list, the machine language program being executed.

D the dump, a stack used to hold the suspended computation when a new function is
applied.

An excellent description of the S.E.C.D. machine and the way it can be used to sup­
port a functional language can be found in [16].

"

5.4.4 Graph Reduction Implementations
All languages, functional or otherwise, in current use today employ variables as a con­
venient way of referring to entities created during computation. So even if one does not
allow variables to be assigned to, one is still faced with the task of deciding what is the
current value of a particular variable symbol. The S.E.C.D. machine uses the classic
technique of employing an environment, some association of variable symbols with their
current values, to tackle this problem. This is not the only solution though and several
functional language implementations have pursued the alternative solution of actually
replacing the occurrence of the variable symbol by its value, that is copying the function
body with the appropriate substitutions made, rather than creating a new environment
and leaving the function body unaltered.

The technique of evaluating a functional language program by rewriting an expression
where the expression is represented in (directed, acyclic) graph form is, not unnaturally,
known as graph reduction. An impressive implementation of a functional language that
uses a compilation approach to graph reduction is described in [17]. Here a compiler for
a functional language FC, a subset of ML, operates by compiling each function, viewed
as a rewrite rule, to a sequence of instructions for an abstract graph reduction machine,



72 Declarative Systems

called the Gnnachine. The G·machine code for a function manipulates the graph to
reduce a function application to its value. The G-code is then translated into sequences
of native codefor a VAX-II that directly perform the required rewrites. The resulting
implementation is very fast indeed.

The furthest one can go in avoiding the use of variables, and therefore the need for
closures, is to compile the program to a form that does not involve variables at all.
Turner [18]presents an approach following this route where the program is compiled to
a machine code consisting entirely of combinators from combinatory logic [19]. The
compiled program then consists entirely of an expression built from applications of a
fixed set of combinators. There is a set of rewrite rules for certain combinator
configurations that is fixed across all programs so evaluation consists simply of reducing
the combinator expression using these rules. The simplicity of this idea has prompted a
hardware realization in the form of a sequential combinator reduction machine [20].

The appeal of the combinator approach is that it reduces the problem of evaluating a
functional program to a small number of primitives. The disadvantage is that the combi­
nators define rather small transformations and combinator expressions for non-trivial
user functions may become quite large and thus require a correspondingly greater
number of steps to interpret. Hughes [21] refines the combinator idea and uses an
infinite (program dependent) set of 'super-combinators'. A program is translated into an
expression containing super-combinators and a set of super-combinator definitions.

5.5 FUNCllONAL LANGUAGES

5.5.1 LISP
LISP started life as a pure functional language [22]. It was quickly 'improved' by adding
features, such as assignment, designed to increase performance on sequential machines.
There has been widespread use of LISP particularly in the US Artificial Intelligence com­
munity for many diverse applications, powerful user support environments have been
developed (e.g. INTERLISP) and powerful single user workstations have been designed
for LISP. Recently there has been a resurgence of interest in pure LISP, and LISPKIT
[16] represents an interesting return to pure LISP.

5.5.2 ML
ML is a functional language developed at Edinburgh University as part of the LCF
theorem proving project [23]. Although initially conceived as a meta-language (hence
ML) to direct proof systems it is a powerful general purpose higher order functional
language employing the Milner polymorphic typing algorithm. There are several imple­
mentations of ML, primarily in LISP.

5.5.3 HOPE
HOPE is a polymorphically typed higher order recursion equation based functional
language. It is a successor to an earlier first order recursion equation based language,
NPL [5], that itself grew from work on program transformation, The first implementa­
tion of HOPE was at Edinburgh University [24]. There are now implementations at Bell
Labs and at Imperial College, London, where it was the initial language behind the
design of the parallel graph reduction machine, ALICE [13].



5 FunctioTUlIProgramming 73

5.5.4 SASL, KRC, Miranda
Turner has been responsible for a series of higher order functional languages [25], cul­
minating in Miranda which is a polymorphically typed, higher order, recursion equation
based functional language. Several implementations of these languages exist in C and
BCPL.

5.5.5 FP
FP is a functional language developed by John Backus and popularized by his Turing
Lecture [26]. FP has a style that can best be described as APL'ish as it shuns the use of
variables and concentrates on the use of operators. FP has many enthusiastic followers,
particularly in the U.S; several implementations have been developed and several novel
architectures designed around FP.

5.6 APPLICA nONS OF FUNCTIONAL LANGUAGES
Functional languages have potentially universal applicability. They are general purpose
programming languages and could ultimately replace sequential languages completely.
However, we have a long way to go before this happens. With the outstanding exception
of LISP it is probably fair to characterize functional languages as emerging from adoles­
cence into full maturity. They have much theoretical potential but they are only just
beginning to become widely appreciated. Many significant applications have been car­
ried out, some of which are mentioned below. Experience with these projects seems to
bear out the advantages claimed for functional languages.

By far the widest experience has been with LISP. Since its development in the 1960's
it has become the language of the U.S. Artificial Intelligence community and has spread
widely into other fields. LISP's sparsity of syntax and the fact that programs and data
share the same representation makes it very attractive as a systems programming
language and almost all advanced AI language implementation work is carried out in
LISP.

A feature of LISP's development is the large amount of effort that has gone into the
development of programming environments. INTERLISP is the best known of these and
has grown over the years as the result of many people's efforts and now provides a very
powerful collection of editing, debugging and general programming support tools.

A multiplicity of applications have been written in LISP including algebraic manipula­
tion systems, planning and learning systems, robot controllers and automatic program­
ming systems. One must record that all these systems have been written in 'dirty' LISP
but recently interest has revived in the pure subset and some large systems are being
recoded. Interest in LISP has extended to the development of high powered work sta­
tions optimized for LISP which have now been in commercial production for many years
and are proving very popular, especially in the U.S.

Around the universities there has been much interest in, and use of, pure functional
languages. HOPE has been used at Edinburgh to write sophisticated mathematical and
program specification packages [27]. Also at Edinburgh, Feather used NPL to fully
specify the text formatter from Kernighan and Plauger [28], and transformed this, com­
pletely mechanically, to an efficient implementation [29].

At Imperial much of the system and application software for the ALICE graph reduc­
tion machine [13] is written in HOPE. In particular Ian Moor has developed a HOPE
compiler for ALICE that is completely written in HOPE. This covers the whole
language and certainly qualifies as a significant sized application at around 5,000 lines of
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HOPE (14). Other system software written in HOPE includes the meta-language pro­
gram transformation system [12), and a variety of text and structure editors. Several of
the interesting application programs have been written as student projects. It is worth
recording our local experience that undergraduate students, by and large, take to func­
tional languages very enthusiastically, and their productivity and accuracy is markedly
higher using functional rather than conventional languages. Applications that have been
developed include a picture description package in HOPE [30), that allows complicated
scenes to be described purely declaratively or statically; a tax guidance program; and an
intelligent structure editor that allows a user to input a language syntax definition in
B.N.F., and produces for him a structure editor/program input system for that language.

An interesting experiment is reported in (31). Here an experiment was performed
implementing the Unix parser generator Yacc in SASL and comparing it to the seqmm­
tial implementation. The conclusions can be summarized as supporting the claims made
for functional languages as regards programmer productivity and code compactness
(although the latter was not improved by as much as had been hoped); confirming that
strong typing and data encapsulation are even more essential in a functional language
than an imperative one; and indicating that debugging of functional language programs
is a difficult activity needing more research attention.

Henderson has used LISPKIT extensively to develop an operating system and suite of
program development tools [32).

In the U.S. Buneman and his colleagues at the University of Pennsylvania have
developed a functional language with a data base query facility. This language FQL (33),
is actually in commercial use and being used by, amongst others, travelling salesmen who
use it to interrogate their companies' data bases over phone lines.

5.7 FUTURE DEVELOPMENT OF FUNCTIONAL LANGUAGES
Research in functional languages is continuing apace in all areas of application, program­
ming methodology and support, language design, implementation techniques and
machine design. We consider that the future prospects are very promising as all the
developments in supporting technologies are moving in directions that will enable the
theoretical advantages of functional languages to be fully exploited. The prospect of a
complete functional language programming environment, allowing program specification
and formal transformation, all running on a highly parallel VLSI machine, is very attrac­
tive and should be easily obtainable before the end of the decade. Such developments
will enable functional languages to offer significant cost performance advantages both in
software production and execution speed.

It is invidious to highlight any particular development in what is a very exciting field
but two aspects that are particularly exciting are the adoption of functional languages by
commercial concerns and the growing convergence between the logic and functional
languages.

As we saw earlier there have been sufficient applications of functional languages to
demonstrate their practical utility, but real progress will only be made when organiza­
tions, separate from sites developing functional languages, use them on problems of com­
mercial interest to them. This is starting to happen to a significant degree and provides
valuable feedback to the designers of these languages.

The logic and functional languages are basically similar. Both are based on
mathematical notations providing the opportunity for formally based program develop­
ment and parallel evaluation. The differences are that functional languages are deter­
ministic, they are often typed, to our eyes they have a richer and more readable syntax
and make powerful use of higher order facilities. What they lack in comparison to logic
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languages is the sort of control structure that allows a relation, once defined, to be used
in several modes. Analysis of the reason for this difference points to the fact that the
logic languages employ unification, a generalization of the pattern matching employed in
functional languages. However it has been shown [34] and [35], that unification can be
smoothly incorporated into functional languages.

The resulting languages possess all the control structure flexibility of the logic
languages while retaining all existing advantages of the functional languages. Parallel
developments on the logic side open up the very real possibility of a unified logic and
functional language being developed in the near future.
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6 Logic Programming and Prolog

W. F. Clocksin

6.1 AN mSTORICAL INTRODUCTION
Logic programming has come about as a result of earlier work on mechanized theorem
proving. One of the first serious studies of the mechanization of reason was carried out
by the 17th Century mathematician Gottfried Leibniz, with his proposal of the calculus
ratiocinator. The disappointed Leibniz failed in his attempt to devise the ratiocinator,
and had to content himself with inventing (with Newton) the differential and integral cal­
culus.

Since the work of Herbrand [l] in the 1930's, much research in mechanized theorem
proving has been carried out by Davis, Putnam, Prawitz, and others. The growth of
interest which has produced the field as we know it today can be traced from Robinson's
paper [2] in which a description of the resolution principle first appeared. Resolution is a
generalization of modus ponens and makes use of a powerful pattern matching operation
called unification. Siekmann and Wrightson [3] give a comprehensive collection of the
earlier papers in the field.

The development of logic programming as an area of study in its own right can be
traced to the work of Green [4], Hayes [5], Kowalski [6], and Alain Colmerauer. Around
1970, Kowalski and Colmerauer were led to the fundamental idea of programming in
logic: that logic can be used as a programming language. The acronym Prolog -­
Programming in Logic -- was contrived at about this time, and the first Prolog inter­
preter was implemented by Roussel at Marseille in 1972.

The idea of using subsets of first order predicate calculus as a programming language
was a significant contribution, because, until about 1970, computer scientists had used
logic only as a specification language. However, Kowalski [7] and others showed that
logic has a procedural interpretation as well, making it possible in principle to use logic as
a programming language. The subsequent development of efficient implementations of
Prolog compilers [8,9] has shown that it is also practical and efficient to use subsets of
logic as a programming language. The programming language Prolog is not a pure logic
programming language, but it is the first widely available language that has been inspired
by logic programming concepts.

The main thesis of logic programming, as expressed by Kowalski [10] is that an algo­
rithm can be usefully expressed in two components: the logic and the control. The logic
is the statement of what the problem is: properties of the problem and the solution. The
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control is a statement of how it is to be solved. The ideal goal of logic programming is
that the programmer need only specify the logic component of an algorithm. The con­
trol should be exercised by the computer. This ideal has not yet been achieved, but it is
an interesting research methodology to determine the extent to which useful programs
can be written using only logic. Several benefits could accrue if this goal is met:

(1) It is easier to reason about statements in a logic program.

(2) A large number of problem solving methodologies can be conveniently represented
in logic [11].

(3) There are more opportunities for the exploitation of parallelism.

(4) Using a single uniform formal system may bear helpful consequences for software
engineering.

In order to achieve this goal, two problems need to be solved. The first is the control
problem. Currently, programmers need to provide small but undue amounts of control
information, partly by ordering the clauses and goals in a program, and partly by the use
of extra-logical "features" in the language. Although experienced and fluent Prolog pro­
grammers can write idiomatic and hence "better" programs having little or no control
information, some control problems have still not been solved satisfactorily.

The second problem is the negation problem. Since only positive information can be
a logical consequence of a database, special rules are needed to deduce negative informa­
tion. Thus, existing interpreters cannot implement negation, but only a problematic ver­
sion by means of the negation by failure rule. Current research is aimed at understand­
ing negation and finding a more satisfactory implementation.

Today logic programming is a well established and quickly growing field in computer
science. Although initially established in Britain and Europe, it has recently attracted
considerable attention in the USA and Japan. There are now several international
conferences and workshops per year, and a new journal devoted to logic programming
has been founded. Textbooks on logic programming [12,11], mathematical reasoning
[13], and Prolog programming [14] are available. Prolog has been widely used in the
areas of artificial intelligence and design automation, and we will survey some of these
applications in this tutorial. See [15] for a recent discussion of the current major issues
in logic programming: comparison with functional programming and with languages
such as Prolog, and the combination of object language and metalanguage. A survey of
the theoretical foundations of logic programming is available in [16]. A more
comprehensive history of logic programming has been written recently by J A Robinson
[17].

6.1.1 The Future
Prolog is only a first step in the practical use of logic programming. Promising areas of
active interest include the following:

• Databases. Logic programming could make important contributions to our con­
cepts of database systems: using logic as a uniform language for data, programs,
queries, views, and integrity constraints has great theoretical and practical potential
[18,19,20].

• Concurrency. We need ways of understanding and exploiting the parallelism impli­
cit in a logic program. Recent explorations in this direction are PARLOG [21] and
Concurrent Prolog [22,23,24]. PARLOG has a rich set of control features
expressed by annotations, while Concurrent Prolog is very simple.
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• Semantics. Improvements in how the semantics of logic programming and of Pro­
log [25,26) can be expressed have been made recently by [27,28,29).

• Other Logics. Bowen (30) investigates the issues involved in programming in full
first-order logic. Moszkowski and Manna (31) propose the use of temporal logic as
a programming language. Deduction methods for Sj, a modal logic, have been
developed [32,33). There is increased interest in unifying logic programming with
functional programming (34). Using many-sorted equational logic as a program­
ming language has been proposed by (35).

• Efficiency. Ways of speeding up Prolog programs are under investigation. Further
work on portable compilation (36) is needed; work is in progress on "intelligent"
backtracking (37) and processors more suitable for running logic programs are
under development [38].

• Tools. Logic Programming needs software engineering (and vice versa). One way
forward is to investigate the use of logic as a specification language; logic programs
can then be derived by using program transformation techniques (39). Prolog needs
a module system; many have been proposed (40). A polymorphic type system and
checker based on the work of Milner has been devised by Mycroft and O'Keefe
[41]. Automatic debugging of Prolog programs has been investigated by Shapiro
(42). Software engineering of some aspects of Prolog has been investigated by
Mellish (43) and Bruynooghe (44).

6.2 PREDICATE CALCULUS

6.2.1 Syntax
We begin with a quick review of the syntax for Predicate Calculus (PC). We shall use
the version known as PC with equality. The following symbols are used:

• variables. Variables are written in lower-case, and are drawn from the last few
letters of the alphabet (examples: x, y).

• constant symbols. Constant symbols are written in lower-case, and are drawn from
the beginning of the alphabet and from the digits (examples: a, nil, 0, I).

• function symbols. Function symbols are constant symbols having an arity, which is
a positive number specifying how many arguments the function takes. Constant
symbols can be thought of as function symbols of arity O.

• predicate symbols. Predicate symbols are written with an initial upper-case letter,
and have an arity. There are two reserved predicate constants T and F, which will
be used to stand for "true" and "false".

Terms are constructed from applying a function symbol to constants and variables. The
syntax of terms is defined recursively by three rules:

(I) Constants and variables are terms.

(2) If f is a function symbol of arity n, and t,,. ...t, are terms, then f(t" ...,tn) is a term.

(2) A sequence of symbols is a term only on the basis of rules (I) and (2).

An atomic formula is a predicate symbol applied to terms. If P is a predicate symbol of
arity n and t" ....t, are terms, then P(t" ...,tn) is an atomic formula. The predicate symbol
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'=' of arity 2 is usually written infixed between its arguments: for terms t1 and t2, t1=t2
is an atomic formula.

The following are statements (or Formulae):

• atomicformulae.

• ~S for statement S.

• SI 1\ S2 for statements SI and S2.

• SI V S2 for statements SI and S2.

• 81:J S2 for statements SI and S2.

• 81 = S2 for statements SI and s,
• 'Vx.Sthe universal quantifier, for variable x and statement S.

• 3x.S the existential quantifier, for variable x and statement S.

Some examples of statements are as follows:

'Vx.Number(x) :J 3y. x = succ(y)
'Vx.'Vy.add(x,y) = add(y,x)

A literal is an atomic formula or a negated atomic formula. A positive literal is a literal
without a negation sign; a negative literal is a negated literal.

6.2.2 Semantics
An interpretation of a statement S consists of a nonempty domain D, and a set of assign­
ments to each constant, variable, function symbol, and predicate symbol occurring in S
as follows:

(1) To each constant, and to each variable, we assign some element in D.

(2) To each n-ary function symbol, we assign a mapping from D" to D.

(3) To each n-ary predicate symbol, we assign a mapping from D" to {T,F}.

For every interpretation of a statement over a domain D, the statement can be evaluated
to T or F according to the following rules:

(1) If the truth values of statements S, SI and S2 are evaluated, then the truth values of
~ S, (SI 1\ ~), (SI V ~), (SI :J ~), and (SI =S 2) are evaluated using the classi­
cal truth tables for these connectives.

(2) 'Vx.S is evaluated to T if S evaluates to T for every assignment of a member of D to
x; otherwise it is evaluated to F.

(3) 3x.S is evaluated to T if S evaluates to T for at least one assignment of a member
of D to x; otherwise it is evaluated to F.

If a statement evaluates to T in an interpretation '1', we say that 'I' is a model of S, or
that S has a model '1'. A statement S is satisfiable if and only if it has at least one
model (that is, iff there is at least one interpretation 'I' such that S is evaluated to T in
'1'). A statement is unsatisfiable if it has no models. If a statement S evaluates to T in
all interpretations, it is called valid and we write ~S. Note that if S is unsatisfiable, then
~~S. Examples of valid statements are:
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F '\;Ix.X = X
FF(O) :::> 3x. F(x)
F ('\;/x.F(x» :::> F(O)

6.2.3 Proofs
A statement in the propositional logic (no variables and quantifiers) having n predicate
symbols has 2n interpretations, so it is possible (but sometimes impractical) to verify the
validity of a propositional statement under all possible interpretations. However, in PC
there are an infinite number of interpretations. Thus, exhaustive evaluation is not possi­
ble. We thus require the notion of proof.

A formal system has the following components:

(1) Sentences, the things that can be expressed.

(2) Axioms. These are a subset of the sentences which are postulated to be theorems.

(3) Rules of inference. These are rules for deducing new theorems from given ones.

A formal proof is a sequence SJ,~"",Sn of sentences such that each S, is an axiom, or
follows by a rule of inference from some subset of SJ,...,si-I' The theorems of the for­
mal system are those sentences which are members of proofs. The last sentence in a
proof is called the theorem proved by the proof. The notation ~S means that S is a
theorem.

Collections of axioms and rules of inference for PC can be found in, for example,
Manna (45). In general, the purpose of the axioms and rules of inference is to ensure
that a statement is provable (a theorem) if and only if it is valid (true in all models), that
is, ~S iff FS. In the next section we shall show how rules of inference may be used to
perform computation. The two rules we use are '\;I-elimination (specialization) and the
substitution of equal expressions:

(1) if ~'\;Ix.S, then infer ~S, in which occurrences of x have been replaced by some
expression e, where free variables in e are considered unique. The last proviso is
given so that from formula '\;Ix.3y. x > y, and expression y, we cannot infer
~3y. y > y.

(2) if ~tl= t2, then infer ~t[td= t[t2],where t[t;] means that t is a term containing t..

We shall not dwell here on the many different kinds of inference rules used in, for exam­
ple, natural deduction systems, In later sections we shall see that one rule, the resolution
rule, will suffice for our purposes.

"

6.3 FUNCI10NAL AND RELATIONAL FORMS, AND PROOFS
The interpreter of a logic programming language is a theorem prover which controls the
order in which inference rules are used. There are many possible ways one might "exe­
cute" sets of statements via inference. We shall show two approaches here: an equa­
tional style related to functional programming, and a clausal form of the style generally
employed in logic programming.

Consider the language with the constants nil and the integers, and with function sym­
bols cons of arity 2, and append of arity 2. Suppose we have a theory with the following
axioms:
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AI. f- Vy. append(nil,y) = y
A2. f- Va.Vx.Vy. append(cons(a,x),y) = consia.appendtx.y)

If we want to compute append(cons(l,cons(2,nil»,cons(3,nil», we can proceed to
cons(1,cons(2,cons(3,nil») by a judiciously chosen sequence of inferences as follows:

1. By A2 and V-elimination,
f- append(cons( 1,cons(2,nil»,cons(3,nil» = cons( 1,append( cons(2,nil),cons(3,nil»)

2. By A2 and V-elimination,
f- appendtconsfz.nilj.consfd.nil) = cons(2,append(nil,cons(3,nil»)

3. By 1,2, and the '=' rule,
f- append(cons(I,cons(2,nil»,cons(3,nil» = cons( I,cons(2,append(nil,cons(3,nil»)

4. By Al and V-elimination,
f- appendmil.const Lnil) = cons(3,y)

5. By 3, 4, and the '='-rule,
f- append( cons( I,cons(2,nil) ),cons(3,nil» = cons( I,cons(2,cons(3,nil»)

Thus, sequences of inferences constitute a kind of computation. To illustrate another
style closer to that used in logic programming, we enrich the language with a predicate
symbol Appended of arity 3 satisfying:

A3. f- Vy. Appended(nil,y,y)
A4. f- Vw.Vx.Vy.Vz.Appended(x,y,z) :J Appended(cons(w,x),y,cons(w,z»

Intuitively, Appended(x,y,z) means that the result of appending y to x is z. In this for­
mulation we can represent the problem of appending x and y as the problem of finding a
z such that f- Appended(x,y,z). For example, to append cons(l,cons(2,nil» to cons(3,nil)
we proceed as follows:

1. Answer is Zl where f- Appended(cons(l,cons(2,nil»,cons(3,nil),zl)

2. By A4, answer is z], where Zl = cons(1,z2) and
f- Appended( cons(2,nil),cons(3,nil),Z2)

3. By A4, answer is cons(l,z2)' where Z2= cons(2,z3) and
f- Appendedmil.consts.nilj.zj)

4. By A3, answer is cons(l,cons(2,z3», where Z3 = cons(3,nil).

Thus, the answer is cons(l,cons(2,cons(3,nil»).
Although the style of logic programming illustrated by A3 and A4 may seem cumber­

some compared with the functional style of Al and A2, it does have the advantage that
arguments and results are treated symmetrically. For example, in the equation
append(x,y) = z, it is implicit that z is the result of appending x to y. In the statement
Appended(x,y,z), the variable z is not treated specially. Thus, we can use A3 and A4 to
solve problems such as:

Given x and z, find y such that Appended(x,y,z).
Given z, find x and y (i.e. partitions of z) such that Appended(x,y,z).

Thus, the same logic program can be executed in different ways to solve different prob­
lems. Doing this is not as straightforward in the functional style of Al and A2.
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In performing the above proofs, or computations, the correct rule of inference was
judiciously chosen every time, to give a short and efficient computation. This came
about because my colleague who performed the computation knew the answer in
advance, and was able to 'guide' the computation toward the answer with a minimum of
intermediate steps. Until researchers better understand the nature of theorem proving,
purely mechanical methods cannot be expected to possess such oracular prowess, so spe­
cial techniques must be used when performing such computations.

Most logic programming interpreters are refutation systems, which reason by a method
the early philosophers called reductio ad absurdum. That is, the negation of the result to
be proved is used to derive a contradiction. Working from the negated goal, the theorem
prover applies rules of inference to derive successive goals. If a contradiction is eventu­
ally derived, then the original goal is a logical consequence of the program.

From a theorem proving point of view, the only interest is to demonstrate logical
consequence. However, from a programming point of view, we are more interested in
values that are bound to variables. Thus, when we give a goal S to a theorem prover, we
are asking it to find values of the variables such that S, with these values substituted,
holds. Thus, when performing a refutation proof, if a contradiction is derived, then not
only have we found the contradiction to the negated goal, but we have also found a set
of values that gives a counterexample, which is an instance that satisfies the original goal.
This kind of proof is called a constructive proof.

The Resolution Rule is a rule of inference which is especially suitable for conducting
formal proofs by machine. Before we discuss the resolution method, we should introduce
unification, which is the pattern-matching mechanism by which variables are bound to
values during the course of a resolution proof.

6.4 SUBSTITUTION AND UNIFICATION
Variables in a logic program are instantiated by a special process of substitution called
unification. A substitution is a finite set of the form {t}IvJ,....t, /v;}, where each Vj is a
variable, each tj is a term, and the variables are distinct. Each element tj IVj is called a
binding for Vj. We read this as ''1; is substituted for u,". If I/J is a substitution and L is
a literal, then LI/J is the term obtained from L by simultaneously replacing each
occurrence of the v, in L by tj• LI/J is called an instance of L. For example, if L is the
literal P(x,f(y),a) and I/J the substitution {f(z)/x, z/y}, then LI/J would be the statement
P(f(z),f(z),a). Note that in this case, L{f(z)/x, z/y} means the same thing as LI/J. We
shall use these notations interchangeably in the Unification Algorithm below.

As we shall see below, it is sometimes necessary to combine substitutions. Given a
literal L and substitutions I/J and ~, we need a combination operation, denoted 0, such
that L(I/JO~ has the same effect as (LI/J~. The reason we need this is to combine substi­
tutions as they are generated, so we can delay the application of the composite substitu­
tion to L. The set union operation, U, might be used as a combiner, but is incorrect
when different substitutions want to bind different terms to the same variable. The fol­
lowing combination method is explained fully in [13].

To combine substitutions I/J and ~,

(1) Replace each pair t/X in I/Jby tI/J/X to form 'It.

(2) Delete from ~ each pair u/Y, such that u/Y E 'It, to form S.
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(3) The combined substitution is now q, U E.
We say that a substitution l/; unifies a set {L(,....L;} if LII/; = ... = L, 1/;. We call the

statement L; the unification of {L(,....L,} by 1/;. Robinson [2] showed that for any
unifiable set there is a most general unifier, which is unique to within a permutation of
variables, and from which any other unifier can be obtained by a further substitution.
For example, the set {P(x,f(y),b), P(x,f(b),b)} has a unifier {a/x, b/y}, but the most gen­
eral unifier is {b/y}.

There are a number of algorithms for unifying a set of literals and for reporting
failure if the set cannot be unified. Such algorithms are found in theorem proving pro­
grams, Prolog systems, and many artificial intelligence programs. Refer to, for example
[2,46,47,48,49,13].

We now give an algorithm for unification. This algorithm contains the occur check, in
which the algorithm reports failure if a circular (infinite) term is constructed. Because
the occur check is expensive, most implementations of Prolog ignore it. The unification
algorithm given below takes as its input two terms and a 'partial' substitution which is
used to gather substitutions as they are discovered. The output is the set of combined
substitutions giving the most general unifier. The algorithm works by searching TI and
T2 as expression trees, simultaneously, by depth-first search. If two corresponding nodes
in TI and T2 are found to be different, we call such a pair a disagreement pair. The
nodes in a disagreement pair are actually the roots of subtrees of TI and T2.

To unify terms TI and T2 given 1/;:

(1) If TI and T2 are identical, then succeed and output 1/;.
(2) Otherwise, search the expression trees of TI and T2, looking for the first disagree­

ment pair. Let <t»t2> be the first disagreement pair.

(3) If tl is a variable and tl does not occur in t2, then recursively unify the terms
T1{t2/tl} and T2{t2/tt} given I/; 0 {t2/t!}.

(4) If t2 is a variable and t2 does not occur in t(, then recursively unify the terms
T1{tl/t2} and T2{tl/t2} given I/; 0 {tl/t2}.

(5) Else fail.
The unification algorithm above unifies two terms, and this is all that is required for a

Prolog implementation. However, full unification as defined for the resolution method
requires the simultaneous unification of a set of terms. The above algorithm can be
extended to unify a set of expressions:

• T I and T2must be replaced by a set of expressions, ~.

• As substitutions are applied to this set, it will be reduced in size. If it ever
becomes a singleton (containing only one element), the algorithm terminates with
success.

• The disagreement pair must be replaced with a disagreement set fl, of correspond-
ing subexpressions from each member of ~.

Thus, to full-unify ~ given 1/;:

(I) If ~ is a singleton, then succeed and output 1/;.
(2) Otherwise, let fl be the first disagreement set of ~.



6 Logic ProgrammingandProlog 87

(3) If.:l contains a variable v and a term t, and v does not occur in t, then recursively
full-unify ~{t/v} given 0/ 0 {t/v},

(4) Else fail.
When unification is used in resolution proofs, the unification algorithm used must

satisfy two properties:

• Unification must succeed in unifying ~ precisely when there is a substitution 0/ such
that ~o/ is a singleton.

• Unification must return the most general unifier, 0/, of E, That is, there must be no
substitution g such that ~g is a singleton and that ~ is an instance of ~g, unless ~g
is also an instance of ~o/.

The proof that full-unify has both these properties appears in [47].

6.5 CLAUSES AND RESOLUTION
A clause is a disjunction of literals. A ground clause is one which contains no variables.
The resolution rule[2] is a rule of inference that can be applied to clauses. When it is
applicable, the resolution rule is applied to two parent clauses to produce a derived
clause called the resolvent. The resolvent is computed by forming the disjunction of the
two clauses and then eliminating any complementary pairs. Complementary pairs, which
are clauses of the form --P V P, are in fact tautologies and may be deleted from any"
formula without any effect. Thus, from the ground clauses

P V --Q V R

and

--P V Q V S
we obtain the disjunction

P V --Q V R V --P V Q V S

from which, when eliminating complementary pairs, the resolvent

RVS

is obtained.
In order to apply resolution to clauses containing variables, we must be able to find a

substitution that can be applied to the parent clauses so that complementary literals are
produced. In this case, we simply check to see if the two parent clauses have a most
general unifier. So, for clauses

P(x) V --Q(x)

and

Q(a)

we obtain

(P(x) V --Q(x) V Q(a)){ a/x}

which simplifies to Pea).
Given a predicate calculus statement S, it is possible to convert it to a conjunction of

clauses by applying a sequence of transformation rules. Given S, we construct a
sequence of formulas Sb",Sn such that S = Sb each S, is satisfiable if and only if S,+ 1 is
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satisfiable, and Sn is a conjunction of clauses. We shall summarize one algorithm for
converting Sto clause form. More information can be found in, for example [49,45,14].

(1) Eliminate equivalence symbols by substituting (XI::J X2) 1\ (X2 ::J Xl) for
x, == X2. Eliminate implication symbols by substituting ~Xl V X2 for x, ::J X2.

(2) Reduce the scope of negations so that each negation symbol applies to at most one
atom. Make use of DeMorgan's laws and other equivalences pertaining to negated
quantifiers.

(3) Remove existential quantifiers by introducing new constant symbols called Skolem
functions (named after Thoralf Skolem [50] who first isolated their properties).

(4) Move universal quantifiers to the outside of the formula.

(5) Distribute'/\' over 'V' to put the formula in conjunctive normal form.

(6) Convert the conjunction to set form, where each argument of the conjunction is a
member of some set C. Each member of set C will be either a literal or a disjunc­
tion of literals, and thus is a clause.

Let us consider the following example of conversion from a PC formula into clause
form. We shall convert three axioms and a goal into clause form, and perform a resolu­
tion proof. Consider the statement, "for all x and y, if x is the father of y, and y is the
father of z, then x is the grandfather of z." In PC, this is:

'\;;/x.'\;;/y.F(x,y) 1\ F(y,z) ::J G(x,z).

Set C contains one clause, namely our first axiom:

AI. ~F(x,y) V ~F(y,z) V G(x,z).

Now let us add the PC formulae F(Charles,William) and F(Philip,Charles), which con­
vert into the next two clauses:

A2. F(Charles,William)
A3. F(Philip,Charles)

Now if we wish to pose the query, "Do there exist individuals x and y such that x is the
grandfather of y?", we use the PC formula

3x.3y. G(x,y)

which, when negated (because we shall perform a refutation proof), and converted to a
clause, becomes:

~G(x,y).

After renaming the variables of the goal clause (from x and y to u and v) to prevent
clashes, the resolution proof proceeds as follows, where we produce one new theorem at
each step:
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Tl. Resolving Al and the goal clause, f- ~F(u,y) V ~F(y,v).
(with substitutions {u/x, v/z})

TI. Resolving A2 with the right-hand literal of Tl, f- ~F(u,Charles).
(the substitutions are [Charles/y, William/v)

T3. Resolving A3 with T2, we derive the empty clause and halt.
(the substitutions are {Philip/uj).

The substitutions relevant to our goal are {Philip/u, William/v}, so we see that
G(Philip,William) is a theorem. Thus, our above "computation" has found a
grandfather-grandson pair.

Again, the sequence of deductions was judiciously chosen. Suppose in T2 we had
decided to resolve A2 with the left-hand literal of Tl. We would have obtained
~F(William,v), which cannot be resolved with any of our axioms or theorems, so is a
"dead-end" of the proof -- it cannot be shown that William is the father of anyone.
Similarly, resolving A3 with the right-hand literal of Tl would have given a dead-end.
The fact that just one refutation exists is sufficient to prove the goal, however.

There is considerable scope for parallelism in this example. A refutation was obtained
when Al was reduced to the empty clause: this reduction of Al can be achieved in one
step by simultaneously resolving A3 with the leftmost literal of AI, A2 with the centre
literal of AI, and the goal clause with the leftmost literal of AI.

The resolution algorithm for a conventional sequential computer can be written as fol-
lows. We begin with a base set of clauses (our "logic program") C:

Until the empty clause is a member of C, repeat:
1. select two distinct resolvable clauses i and j from C
2. compute a resolvent r of clauses i and j
3. add r to set C

What we have not mentioned is how to decide which two clauses to select (Step 1), and
which resolution of literals to perform (Step 2). Many strategies have been developed,
and much of the history of mechanical theorem-proving has been devoted to developing
control strategies and refinements to the resolution method. Names of typical strategies
are: breadth-first, set-of-support, unit-preference, linear-input, ancestry-filtered. Many of
these are surveyed in [47,51,49,13].

Linear-input resolution is a suitable strategy for use as a logic program interpreter. In
this method we always use the previous resolvent as one of the parents of the next reso­
lution step. The other parent must be one of the axioms, and not a derived theorem.
Thus, we can represent the refutation as a linear path; our above proof was a linear­
input resolution. In clauses which have one positive literal, linear-input resolution is
complete -- it will find a refutation if there is one. SL-resolution [52] tells us to use
linear resolution (that decides one parent), and to select one of the most recently used
literals from that parent to determine what the other parent should be (if there is one).
This narrows down the search even more. The search technique used in most Prolog
implementations is a variant called LUSH resolution, which operates over clauses that
have at most one positive literal. This is discussed in the next section.
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6.6 LOGIC PROGRAMMING TERMINOLOGY
In this sectionwe will give the terminology generally used in logic programming. In par­
ticular, the Horn clause [53] is normally used in logic programs. The predicate
Appended previously defined was expressed using two Horn clauses. We begin with the
syntax of logicprograms.

• A term is as previously defined.

• An atom is an atomic formula as previously defined. A literal (positive literal,
negative literal) is as previously defined.

• A Kowalski clause is a formula of the form A], ...,Ak _B], ...,Bn, where each Ai
(i= l, ...,k) and each B, (i= l, ...,n) are atoms. The B, are called the antecedent, and
the Ai are called the consequent. The empty clause, denoted _, is the Kowalski
clause with empty consequent and empty antecedent. Such a clause is understood
as a contradiction.

• A definite clause is a formula of the form A_B], ...,Bn, where A and each B,
(i = l, ...,n) is an atom, A definite clause of the form A_ is called a unit clause.

• A goal clause is a formula of the form _ B],...,Bn, where each B, (i = l, ...,n) is an
atom.

• A Horn clause is a clause which is either a definite clause or a goal clause.

• If A~B], ....B, is a definite clause, then A is called the head and B],....B, is called
the body of the clause. A logicprogram is a finite set of definite clauses. The col­
lection of all definite clauses having the same predicate in the head is called a pro­
cedure.

It is conventional to assume that variables in clauses are universally quantified. Com­
mas separating atoms in the antecedent denote conjunction, and commas separating
atoms in the consequent denote disjunction.

Disjunctions of literals can be converted into Kowalski clauses simply by writing
negative literals as positive literals in the antecedent, and writing positive literals as posi­
tive literals in the consequent. Thus,

-B) V ...V <-B, V A) V ...V Ak

where all the B, are negative literals, may be written in Kowalski form as

A],...,Ak - B],...,Bn·

A clause containing only one positive literal will contain only one literal in the
Kowalski-form consequent, and this is defined above as a definite clause. To simplify
matters, we shall henceforth use only Horn clauses, which contain zero or one positive
literals, and thus are either definite clauses or goal clauses.

Considering our grandfather relation from the previous section, conversion of the
axioms into Horn clauses yields:

HI. G(x,z) _ F(x,y), F(y,z).
H2. F(Charles,William)_
H3. F(Philip,Charles)_

Our query to "compute" a grandfather-grandson pair converts to the following goal
clause:
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- G(x,y).

The LUSH proof procedure was designed to conduct constructive proofs over sets of
Horn clauses. The LUSH system is due to Kowalski [7], but the name LUSH was con­
trived by Hill [54] as the rather unlikely acronym for Linear resolution with Unrestricted
Selection for Horn clauses. LUSH works as follows. Given a goal clause

- Al,···,Ai-l,Ai,Ai+J,···,An

and some definite clause
C _ BJ,...,Bm

The LUSH method selects some literal Ai such that C and Ai have a most general
unifier "', and infers a new goal clause

- (Al,···,Ai-J,BJ, ...,Bm,Ai+l,···,An)l/l

Thus, the body of the definite clause is substituted for the selected literal Ai' The unifier
'" represents the variable bindings now in effect as a result of this deduction step.

It now remains to decide on a rule to select the literal Ai. The selection rule assumed
by the Prolog language is the one that always selects the leftmost literal. The search
strategy determined by this selection rule is depth-first leftmost-descendant-first. Finally
we must decide the order in which definite clauses are chosen. In Prolog, the order is
determined by the textual order of clauses in a program: if clauses C1 and Cz occur in
that order and both match the selected literal in a goal statement, then the inferred goal
clause will be obtained by matching with C1 first.

Using our Horn clauses HI-H3 above, let us conduct a LUSH computation to answer
the goal clause _ G(u,v).

(I) Starting with the leftmost goal (there is only one), the only choice we can make is
HI, giving the new goal clause _ F(u,y), F(y,v) with variables matched as shown.

(2) Starting with the leftmost goal, we must match it with H2 (the textually earlier
one). Replacing the leftmost goal by the null body and instantiating the variables,
we obtain the goal clause _ F(Charles,v).

(3) Matching the leftmost goal (the only one), the only choice we can make is H3,
which gives _, the empty goal. The substitutions {Philip/u, William/v} are now
available, which satisfies the goal G(Philip,William).

Prolog's selection rule enforces a strict depth-first left-to-right search of the proof tree.
More general variations of Prolog use whatever selection rule they see fit. This is
exploited in (to name a few) IC-Prolog [55], PARLOG [21], LOGLISP [56], Concurrent
Prolog [22], and MU-Prolog [57]. These systems are steps closer to the ideal of program­
ming in logic. Further development will be necessary before such languages can
approach the efficiency with which strict Prolog-style computation can be performed on
conventional computers. However, effectiveness may be more telling: Naish [58] gives a
convincing demonstration of the ability of MU-Prolog to perform a well-directed compu­
tation on problems that confound ordinary Prolog's inflexible search strategy.

"

6.7 DATABASES AND NEGATION
The connection between logic and databases is appealing and useful, and this is an area
of active interest (see, for example [18,59], ) in the logic programming community.
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Consider the relationship between a Horn clause program and a relational database.
In a relational database [60] relations are regarded as tables, in which each element of an
n-ary relation is stored as a row of the table having n columns. Using Horn clauses, a
table can be represented by a set of unit clauses; an n-ary relation is named by an n-ary
predicate symbol. Other representations, such as 2-tuples as suggested by semantic nets
[61) have been considered.

According to Dahl [62) the use of Horn clause logic has a number of advantages over
conventional treatments of databases:

• Rules as well as facts can coexist in the description of a relation.

• Recursive definitions are allowed.

• Multiple answers to the same query are allowed.

• There is no role distinction between input and output.

• Inference takes place automatically.

Other advantages of using logic for databases are described by Kowalski [63,19) and
Lloyd [20).

Two issues in particular arise when considering logic and databases: monotonicity and
negation. The issue of monotonicity arises when considering the use of logic for the
representation of knowledge [64,65). Most logics we consider are monotonic: if sen­
tence S follows from a set of sentences ~, then S follows from any set of sentences that
includes E, Using the previous terminology, if ~ ~ S, then T ~S, where ~ cT. So, the
addition of "new" statements cannot lead to the repudiation of "old" consequences; once
you deduce something, you can't get rid of it. This property has led some researchers to
criticize logic as a means of representing knowledge. For example, consider representing
the belief that "all birds can fly": if x is a Bird, then x Can Fly. If there are exceptions
(such as penguins), how do we axiomize this conveniently? When new information
comes to light concerning flightless birds, how do we reconcile this with previous axioms?
Studying how to address these issues formally is the problem confronted by non­
monotonic logic [66). It is incorrect to criticize standard logic for its inadequate han­
dling of non-monotonic problems, because it was never designed to deal with such prob­
lems. The issues of using logic for knowledge representation should instead focus on:

• having a better idea of what we want to represent;

• recognizing that knowledge acquisition involves more than simply adding new
clauses to a database.

The next issue is negation. A Horn clause program, like a database, is incapable of
representing negations of relations -- the database contains only information about true
instances of a relation. However, processing even simple queries may reveal the need to
show that certain instances of a relation are false. For example, suppose we have the fol­
lowing database:

The battle of Waterloo occurred in 1815.

How can we show that the battle of Waterloo did not happen in 1923? The above
(admittedly small) database cannot tell me when the battle didn't happen, unless we are
prepared to do one of two things:
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• We can complete the database by adding a sentence meaning that the battle of
Waterloo did not happen in any year other than 1815: we could say that the battle
happened only in 1815.

• We can use a general rule of inference, called negation by failure: if what we are
looking for is not in the database, then we conclude that it is false.

A crucial assumption is that all the information contained in the database is sufficient as
a model. This is known as the Closed World Assumption (CWA) [67]. Using this
assumption, if we wish to show that ~ P, we attempt to prove P. If every possible proof
fails, then we "deduce" ~P. Both PLANNER [68] and Prolog handle negation this way.
This can be considered as a "negation by failure" deduction rule of the form

from not ~ P infer ~ ~ P

as introduced by Clark [55]. Clark showed that the negation by failure rule was sound
provided that P is ground, and that the required deductions are made from a "com­
pleted" database (COB) obtained by replacing the "if' clauses of the database by "only
if' clauses. Recent work, comparing Clark's COB with Reiter's CWA, has been carried
out by Shepherdson [69]. In particular, he has shown that there are logic databases for
which the CWA and COB may be separately consistent, but may be incompatible. How­
ever, if the database consists only of definite Horn clauses, then the CWA and COB are
mutually consistent.

6.8 PROLOG AS A PROGRAMMING LANGUAGE
Prolog is the most widely used programming language to have been inspired by logic
programming research. The popularity of Prolog as a programming language stems from
a number of properties:

• Powerful symbol manipulation facilities, including unification with logical variables.
Programmers can consider logical variables as named 'holes' in data structures.
Unification also serves as the parameter passing mechanism, and provides a selector
and constructor of data objects. When combined with recursive procedures and a
surface syntax for data structures, the symbol manipulation possibilities of Prolog
can be compared with -- and can be considered to exceed [70] -- those of LISP.

• Automatic backtracking provides generate-and-test as a basic control flow model.
This is more general than the strict unidirectional sequential flow of control in con­
ventional languages such as LISP. Although generate-and-test is not appropriate
for some applications, other control flow models can be programmed to correspond
to the demands of a particular application.

• Program clauses and data structures have the same form. This is a property that
Prolog shares with LISP.

• The procedural interpretation of clauses, together with a backtracking control struc­
ture, provides a convenient way to express and to use nondeterministic procedures.
However, the price to pay is the occasional necessity to employ extralogical control
features such as fail and cut.

• The relational form of procedures lends the possibility to define 'reversible' pro­
cedures that can be used for more than one purpose. It is the responsibility of the
programmer to ensure whether or not a particular procedure is meant to completely
implement a given relation.
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• A Prologprogram can be regarded as a relational database that contains rules as
well as facts. It is easy to add and remove information from the database, and to
pose sophisticated queries.

It is not the purpose of this chapter to give a tutorial on programming in Prolog in
particular. For this refer to the article by Sammut and Sammut [71] and the textbooks
by Clocksin and Mellish [14] and Clark and McCabe [72]. In this section we hope to
convey whatit is like to program in Prolog.

A Prologprogram is a set of procedures. Each procedure defines a particular logical
relationship, or predicate. A procedure consists of one or more assertions, or clauses. A
clause can be either a Jact or a rule, and is represented by a term.

A term is either a constant, a variable, or a structure. Constants are either atoms or
integers, although some Prologs make available signed floating-point numbers and nega­
tive integers. Structures are sometimes called "complex terms" or "compound terms", and
are essentiallythe same as atomic formulae as previously defined. Note the different use
here of the word atom, which is used in Prolog to mean a non-numeric constant, and has
nothing to do with atomic formulae as previously defined.

The exact syntax of terms varies from one variant of Prolog to another, but we will
describe the so-called Edinburgh syntax, which is accepted by the most widespread of
Prolog implementations. Atoms consist of alphanumeric atoms or sign atoms.
Alphanumeric atoms are denoted as strings that begin with a lowercase character, and
can include digits and the underscore character. Sign atoms are strings that consist of
characters known as sign characters (+, >, ?, $, etc). Integers are, as expected, strings
of digits. In case it is desired to denote an atom other than the above, any string
enclosed in single quotes will be treated as an atom. Variables are denoted as strings
beginning with an upper-case character or with an underscore character. Structures con­
sist of a Junctor (which is an atom) and one or more components (which are terms). A
functor of arity N has N components. Structures are denoted by denoting the functor,
followed by an opening round bracket, followed by the N components separated by com­
mas, followed by a closing round bracket. List structures are composed from the functor
'.' of arity 2, but a more convenient syntax for lists is accepted. The elements of a list
may be enclosed in square brackets and separated by commas. Atoms may be nom­
inated as operators, and may be assigned a priority, an associativity (right or left), and a
position (prefix, infix, postfix). When used to denote functors of structures, the nom­
inated atom may be used in the nominated operator syntax. For example, if the atom
'+' is nominated as an infix right-associative operator, then it can be used to denote
terms such as X+ 12,which is the same as +(X,12).

Note that the syntax for Prolog terms is 'upside down' from that used in logic pro­
gramming -- constants are lower-case instead of upper-case, and variables are upper-case
instead of lower-case. One can contrive many reasons for why this should be; perhaps
the best is so that Prolog programs can never be confused with logic programs.

As stated above, clauses are either facts or rules, and are denoted by terms. Clauses
can be given a declarative interpretation or a procedural interpretation. Suppose A and
Bh....B, are terms. The rule clause

(in which the B; are called goals) can be read in two ways:

• As a declarative statement: That A is provable follows from B; (for all i,
1 .;;;;i .;;;;n) being provable.
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• Or procedurally, where in order to execute procedure A, then all procedures called
by BJ, ....B, should be executed. Clauses that have no goals are called facts.

Notice that the above interpretations do not admit the order in which the goals should
be considered. Prolog uses the LUSH strategy discussed in the previous section, in
which the selection rule selects the leftmost goal for execution. Thus, the conjunction of
goals acts as a stack of procedures awaiting execution -- the leftmost goal acts as the top
of the stack. The order in which clauses are examined is determined by the textual order
in the program.

For an example, the append relation is often used for concatenating two lists together
to form a third. We define the predicate appendiX,Y,Z) such that the list X con­
catenated with the list Y forms the list Z. The procedure can be defined using two
clauses. The first clause represents the fact that the empty list concatenated with some
list L is the same as L. The second clause represents the fact that a list with head H and
tail T, when concatenated with some list L, produces a list with head H and some tail Z,
provided that T is concatenated with L to produce Z. The procedure is as follows:

append([ ),L,L).
append([H IT],L,[H IZ)) :- append(T,L,Z).

Note the similarity with the relational form of the predicate Appended as defined in an
earlier section of these notes. The reversible behaviour of append can be seen from a
few examples. In each case, the Prolog user is posing a goal clause (prefixed by '?-') to
the Prolog system, which then responds by printing the terms unified with variables in
the goal clause:

?- append([a,b,c),[1,2,3),X).

X = [a,b,c,I,2,3)

?- append(X,[beta),[ alpha, 17,beta)).

X = [alpha,17)

?- append(X,Y,[a,b,c)).

X = [), Y = [a,b,c)
X = [a), Y = [b,c]
X = [a,b), Y = [c)
X = [a,b,c), Y = []

For the last goal, the system has computed all of the partitions of the list [a,b,c].
For another example, consider searching a graph. Given the definition of a relation

arc(X,Y), meaning there is an arc from node X to node Y in the graph, let us define a
relation path(X,Y), meaning there is a path of arcs from node X to node Y. The follow­
ing facts will represent a graph having five nodes and five arcs:

arc(a,b).
arc(b,c).
arc(a,d).
arc(d,e).
arc(b,e).

The path predicate consists of two clauses. The fact states that any node is a path to
itself. The rule states that a path from X to Y consists of an arc from X to some Z,
together with a path from Z to Y:
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path(X,X).
path(X,Y) :- arc(X,Z), path(Z,Y).

Such a program will work on an acyclic graph, but may not necessarily terminate if the
graph has a cycle. Suppose we had added the fact arc(c,a) to the above database, and
queried path(a,d). Despite the fact that arc(a,d) is part of the definition of the graph,
using the built-in search strategy of Prolog would result in an endless loop searching the
nodes a,b,c,a,b,c,...! This is easily mended: we simply ensure that we do not search
nodes that have been visited. We redefine path to include another component: a list of
the forbidden nodes. When finding an arc along which to travel, ensure that it is not a
forbidden node. If it is not forbidden, then traverse the arc, adding the node to our list
using list construction. If backtracking should occur at any point, the list is automati­
cally restored to the appropriate prior value. The additional predicate legal(X,Y)
succeeds if node X is not on the forbidden list Y:

path(X,X,F).
path(X,Y,F) :- arc(X,Z), legal(Z,F), path(Z,Y,[Z IF]).

legal(X,[D.
legal(X,[H IT]) :- X =1= H, legal(X,T).

Notice the second clause of the path predicate. In strict Prolog we are compelled to
write the legal goal to the left of the path goal. Because of the left-to-right execution
strategy, we must ensure that the node is checked for legality before we find a path from
it. This is an example of the way that Prolog diverges from the ideal of programming in
logic. Presumably in logic programming, one would be able to write the goals in any
order.

Because the basic computational mechanism of Prolog is top-down search through a
tree of goals, representing parsing problems is especially suited to the Prolog approach.
A grammar rule notation can be used to express the grammar of a Prolog, and the Pro­
log system will translate a grammar rule clause into a normal Prolog clause automati­
cally.

The following example shows a Prolog program that can parse and generate sentences
in a language, constructing a parse tree tagged with the appropriate linguistic consti­
tuents. The problem from pages 31-32 of Nilsson [49] translates into Prolog grammar
rules in the following way. Let the grammar contain the following terminal symbols,

of approves new company sale director the

and the following non-terminal symbols,

s np vp pp p v dnp det a n

which will be used to labels nodes of the parse tree that correspond to linguistic consti­
tuents sentence, noun phrase, verb phrase, prepositional phrase, preposition, verb, deter­
mined noun phrase, adjective, and noun. The grammar is defined by the following Pro­
log program, which bears a resemblance to grammars as written in linguistics texts.
Each rule expresses the decomposition of a linguistic constituent into simpler consti­
tuents. Terminal symbols (words in the sentence) are shown enclosed in square brackets.
Elements of the parse tree are built up as the arguments of goals become instantiated.
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sentence( seX,Y)) --> deLnounyhrase(X), verb_phrase(Y).

verb_phrase(vp(X,Y)) --> verb(X), det_noun yhrase(Y).

prep.phraserpprx.Yj) --> prep(X), det_nounyhrase(Y).

prep(p(of)) --> [of].

verb(v(approves)) --> [approves].

deLnoun yhrase(dnp(X,Y)) --> determiner(X), nounyhrase(Y).
deLnoun yhrase(dnp(X,Y)) --> =.nounyhrase(X), prepyhrase(Y).

nouILphrase(np(X,Y)) --> adjective(X), noun_phrase(Y).
nouu.phrasempfxj) --> noun(X).

adjective(a(new)) --> [new].
adjective(a(company)) --> [company].

noun(n(director)) --> [director].
noun(n(company)) --> [company].
noun(n(sale)) --> [sale].

determiner(d(the)) --> [the].

For example, if the sentence "the company director approves the new sale" is run
through the above program, the parse tree shown in Figure 6-1 is obtained. This struc­
ture can be used in subsequent phases of a language understanding program, for exam­
ple. For a real application, the grammar would require enhancement for richer syntactic
and semantic constructs, for detecting number, tense agreement, etc. See [73] for more
information.

the

Figure 6-1
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6.9 EXTRALOGICAL FEATURES
To use Prolog in "real" applications, it is currently sometimes necessary to use language
features that go beyond pure logic. These features are made available as built-in (or
evaluable) predicates. Domolki and Szeredi [74] classify the extralogical language
features into five categories: arithmetic, string-handling, input and output, program
modification, and control of execution.

Arithmetic and string handling could in principle be represented in pure logic. Arith­
metic operations could be represented extensionally as tables, and string handling could
be accomplished by list manipulation. However, these operations are implemented using
built-in predicates because conventional computer hardware does these operations more
efficiently.

Input and output are needed for arbitrary communication with users. Input and out­
put cause side-effects and are thus extralogical. However, some implementations provide
a form of "backtrackable" input, meaning that backtracking will undo the given side
effect. This is useful for implementing stream-oriented input. In this scheme, alternative
versions of a procedure may access the same input stream: elements of the stream are
not destructively consumed.

The built-in predicates for program modification are used for adding and removing
clauses from the database. This makes possible self-modifying procedures, which can be
considered dangerous programming practice. In practice, Prolog programs are factored
into procedures and data, although the boundary is not often obvious. O'Keefe [75,76]
argues that much of the normal manipulation of the database is dangerous and ill­
considered. In the present situation, where the database facilities had not been
"designed into" Prolog, and where the semantics are complicated, O'Keefe is certainly
correct. Problems can be alleviated by devising higher-level interfaces to the primitive
database operations, for example "set of all solutions" predicates [77] and dependency­
oriented database systems [78]. Database manipulations are also necessary for imple­
menting programming environments [79].

The most controversial built-in predicates are for controlling the execution mechanism
of Prolog. Two issues on the use of control features should be borne in mind. First, it is
valuable to know the extent to which every "real" application can be written in pure
logic. As mentioned before, certain advantages are thereby conferred. Second, as we
show in a later section, overuse of control features can be indicative of poor program­
ming practice. It is desirable to approach logic on its own terms rather than to write
Fortran programs in Prolog. Thus, it is debatable whether control features should be
made available in the first place. The cut operation, written as an exclamation mark in
programs, removes a number of branches in the search tree by prohibiting the remaining
alternative choices of the currently executing procedure. This can be used to increase
efficiency without changing the meaning of the program. However, the cut is often used
to deliberately change the meaning of the program. Often, such changes of meaning are
unnecessary. For example, consider three alternative definitions of the max predicate,
for which max(X,Y,Z) means that Z is the maximum of X and Y.
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maxl(X,Y,X) :- X > Y.
maxl(X,Y,y) :- X ".:;Y.

max2(X,Y,X) :- X > Y, !.
max2(X,Y,y) :- X ".:;Y, !.

max3(X,Y,X) :- X > Y, !.
max3(X,Y,y).

In these examples, maxI and max2 are declaratively correct. Of these two, max2 pro­
vides a more efficient program, because the cut removes the information retained for (an
ultimately futile) backtracking. Regrettably, max3 is the most common rendering. When
the strict Prolog execution model is used, it is procedurally correct, and is probably the
most efficient because the ".:;test is not required on the second clause. However, declara­
tively speaking, max3 is rubbish, and is not guaranteed to execute correctly on more gen­
erallogic interpreters.

There are a number of research activities in the area of control primitives for logic
programming. In particular, control can be specified by annotating variables with their
intended function [55]. Also, control declarations (see [80,58] ) can be used to separate
the program from the control specifications. This can be used, for example, to declare
that a procedure is determinate. Control issues are most important when devising alter­
native execution models that exploit parallelism. We have previously mentioned a list of
implementations that offer more sophisticated default control schemes.

6.10 IDIOMATIC PROGRAMMING IN PROLOG
As with any programming language, it is possible to design poorly and to program
poorly in Prolog. Probably the ability to write "good" Prolog programs is a sign of
fluency in the language, and it turns out that well-written programs tend to be free of
extralogical features and within the purely functional logic programming methodology.
To put it another way, simply because extralogical "features" exist does not mean that
the programmer, with careful thought, is compelled to use them. Programmers who
think in terms of global variables, iteration, and if..then ..else tend to rely on the extralog­
ical features. This reliance is ultimately to their cost: the resulting programs are often
obscure and inefficient. Of course, it is dangerous to make pronouncements in what is
regrettably an emotionally-charged topic such as programming practice. However, the
advice that I offer here is not derived from some philosophy of programming, but from
experience.

We can illustrate the dramatic contrast between "writing Fortran programs in Prolog"
and writing idiomatic programs with the following example. The two programs given
below were written independently by two different programmers, who, at the time they
wrote their code, were not aware that they might attract public notice. The programs
compute solutions to the "Truth teller" puzzle: Find a number, consisting of N digits, in
which the first digit is the number of D's in the number, the second digit the number of
l's in the number, The first solution, perhaps the worst Prolog program I have ever seen,
is as follows:
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init(D);- ass....xn(D), assert(rest(D», !.

ass...xn(O);- !.
ass...xn(D) ;- 01 is D-I, asserta(x(Dl~)), asserta(n(Dl», ass....xn(DI).

go(O) ;- initIO), guess(D,O).
go(-);. abolish(x,2), abolish(n,I), abolish(rest,I).

guess(D,D) ;- result, !, fail.
guess(D,N) ;- x(N,X), var(X), !, n(y), N =< Y, N*Y =< 0, ass(N,y),

set(O,N,y), NI is N + 1, guess(D,NI).
guess(O,N) ;- x(N,X), set(D,N,X), NI is N + 1, guess(D,NI).

ass(N,X) ;- only(retract(x(N~»), asserta(x(N,X», onlyrupdatei lj).
ass(N~) ;- retract(x(N~», asserta(x(N~», update(-I), !, fail.

only(X) :- X, !.

set(O,N,X) ;- count(N,Y), rest(Z), !, Y =< X, X =< Y +Z, Xl is X-Y, setI(D,N,Xl,O).

setl(~N,O~) ;- !.
setl(D,N,X,P) ;- n(M), P =< M, x(M,y), var(y), M'N =< D, ass(M,N),

set(O,M,N), Xl is X-I, PI is M, setl(D,N,Xl,Pl).

count(N,X) ;- bagof(M,M{x(M,Z),nonvar(Z),Z =N),L), length(L,X).
count(~O).

update(Z) ;- only(retract(rest(X»), ZI is X-Z, assert(rest(ZI».
update(Z) ;- retract(rest(X», ZI is X+Z, assert(rest(ZI», !, fail.

result ;- print(--», n(N), x(N,M), print(M), fail.
result ;- nl.

The above program uses nearly every extralogical feature available: use of the database
for side-effects, cut, fail, var, and metacalls. By contrast, the following program is much
shorter. It is easier to understand, and runs about 100 times faster. Extralogical features
are used sparingly (in fact, a simple modification to the program obviates any need for
them) for obvious reasons.

go(N,L) ;- guess(N,N,O,O,[),L), print(L), nl, fail.

guess(I,Total,S,SS,L,[TIL)) ;- !, T is Total-S, count(O,[TIL],l).
guess(Val,Total,S,SS,L,List) ;-

VI is Val-I,
neAl,
SS2 is VI*A+SS,
SS2 =< Total,
S2 is S+A,
guess(V1 ,Total,S2,SS2,[A IL),List),
count(VI,List,A).

count(N,[ ),0).
count(N,[NIA),B) ;- !, B > 0, C is B-1, count(N,A,C).
count(N,[A IB),C) ;- count(N,B,C).

n(O). n(I). n(2). n(3). n(4). n(5). n(6). n(7). n(8). n(9).
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For more discussion along these lines, this time using an example from theorem prov­
ing, refer to the paper by O'Keefe [75] for an entertaining and informative study of com­
parative programming in Prolog. Also, other issues in this area are discussed by
Bruynooghe [81].

6.11 PRACflCAL APPLICATIONS OF PROLOG
In this section we shall survey a number of applications to which Prolog has been put.
We concentrate on four areas -- expert systems, interface to databases, design automa­
tion, and scientific tools -- giving two or three examples from each area. For more dis­
cussion of the experiences of using Prolog in practice, refer to [74]. A survey of Prolog
applications in Hungary appears in [82].

6.11.1 Scientific Tools
The Press system [83] is a Prolog program for deriving the analytic solutions of simul­
taneous transcendental equations. Press was originally designed as a component of
Mecho [84], but increased interest in computer-aided algebra led to the development of
Press in its own right. Examples of equations that can be solved in a few second include
the following (in each case, solve for x):

42x+1X5x-2 = 61-x

cos(x) + cos(3x) + cos(5x) = 0

3tan(3x) - tan(x) + 2 = 0

logz(x) + 410&(2) = 5

3sech2(x) + 4tanh(x) + 1 = 0

log. (x + 1) + log. (x -1) = 3

e3x - 4ex + 3e -x = 0

cosh(x) - 3sinh(y) = 0 & 2sinh(x) + 6cosh(y) = 5

For more information about using logic programming and Prolog as tools for the
mathematician, refer to [13].

Designing drugs is an expensive business, and it would be helpful to predict the per­
formance of experimental substances before they are synthesised. A group in Budapest
[85] has devised a program for automatic derivation of regression models as used in
biochemical problems. Their system can predict the activity of unsynthesised drugs on
macromolecular receptor sites. A specific example is the calculation of qualitative
structure-activity relationships for antifungal nitroalcohols [86] which is important in the
development of pesticides. Also see [87] for an application in predicting the interaction
of pharmacological compounds.

6.11.2 Expert Systems
An expert system is, like Gaul, thrice divided: it consists of an inference engine, a data­
base of facts and rules, and an interface to the user. An expert system must satisfy these
criteria:
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(1) It mustbe easy to examine, change, and extend the knowledge in the database;

(2) The systemmust be able to 'explain' its deductions by responding to "why" ques­
tions from the user;

(3) The system should be able to reason judgmentally, using confidence factors or some
other system.

Clark and McCabe [88] sketch some techniques for implementing such portions of expert
systems in Prolog.

A group at Lisbon University [89] has developed an expert system for environmental
resource evaluation. Called ORBI, the system can answer questions stated in Portugese
concerning whether, for example, a particular map reference is suitable for intensive agri­
culture. ORBI gives an answer in Portugese based on information in the database such
as climate, soil characteristics, planning permission, and geological data. The authors of
ORBI state that Prolog is "an excellent language for expert system implementation", and
gave three reasons:

(1) The same simple formalism (clauses) can be used uniformly for natural language
processing, the knowledge base, the explanation facility, etc.

(2) Prolog offers compactness of expression together with efficient implementation, and
this makes it possible to implement ORBI in a minicomputer.

(3) The dual semantics, declarative and procedural, facilitates system development.
An expert "garden centre assistant" system has been implemented by Walker and

Porto [90]. It can answer questions stated in English about a variety of garden pests and
pesticides. Typical questions it can answer are as follows:

What products do you sell?
What can I use to kill snails?
Is there anything I can use that will fertilize my lawn?
What can I use to kill weeds around my fence?
Do I need a sprayer to use Product A?
Does Product A kill dandelions in less than 20 days?
What are the weeds?
When should I use Product F?
What precautions should I show when using Product A?
What is the response time of each product that kills annual weeds?
What can I use on dandelions that will kill them in less than 2 days?

When the normal facilities of Prolog are not sufficient for an expert system, it is possi­
ble to write a layer of software in Prolog to provide the extra facilities needed. Such an
expert system "shell" has been developed [91] to provide a system for embedding expert
systems. This system provides facilities for forward as well as backward chaining,
confidence factors, and various methods for controlling the session.

6.11.3 Design Automation
Forrest and Edwards [92] describe a Prolog program that can translate algorithmic
finite-state machines (AFSMs) into programmable logic array (PLA) programs. AFSMs
are procedural programs, rather like Algol programs, that specify the desired behaviour
of a component -- for example, the toy traffic light controller of Mead and Conway [93].
Translating such programs into PLA programs is one step toward automatic generation
of VLSI from behaviouriaI specifications.
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Barrow [94] has developed a Prolog program that can prove the correctness of digital
hardware circuits. Circuits are represented hierarchically, with a component name at the
top and NMOS FETs at the bottom. One such circuit consists of 23,448 components, of
which 14,432 are transistors. Designs consisting of about 18,000 transistors have been
verified, but the DEC-10 begins to run out of space at about this point.

A design-for-testability (DF!) system has been developed by Horstmann [95] The pur­
pose of a Off system is to verify that certain rules in circuit design have been observed.
If a violation is detected, the system will change the circuit to preserve the design rules.
An advantage of this system is the ease in which it can be interrupted to "explain" how
it arrived at a particular violation (or non-violation). According to Horstmann, Prolog is
a good language for this application, and other Computer Aided Design problems that
can take advantage of logic programming are design verification, design transformation,
and certain forms of design analysis that require non-algorithmic solutions.

A group in Edinburgh [78] has devised a system for maintaining consistent architec­
tural databases. This aids the architect in carrying out modifications to an architectural
design by automatically checking and enforcing predetermined constraints. Other work
on using Prolog for computer-aided architectural design is reported in [96,97,98]

6.11.4 Interface to Databases
CHAT-80 [73] is a system that can answer questions about world geography stated in
English. The system knows about cities, populations, countries, continents, rivers, and
oceans. Examples of questions that can be answered by CHAT include:

Does Afghanistanborder China?
Which country's capital is Ouagadougou?
Which is the ocean that borders Africancountries and that bordersAsian countries?
What is the capital of each country bordering the Baltic?
What are the latitudes of the countriesnorth of the UK?
Which country is bordered by two seas?
Howmany countriesdoes the Danube flowthrough?
From what country does a river flowinto the PersianGulf?
What is the total area of countries south of the Equator not in Australasia?
What is the averagearea of the countries in each continent.
Howmany countries are there in each continent?
Is there someocean that does not border any country?
What does border the ocean that does not border any country?
Whichare the continents no country in whichcontains more than two citieswhose

population exceedstwomillion?
Whichcountry bordering the Mediterraneanborders a country that is bordered by

a country whosepopulation exceedsthe population of India?

All of these questions are answered in a few seconds or less on a DECsystem-lO.
If you need to access CODASYL databases using relational queries, then you must

translate the queries into a program that will efficiently traverse the CODASYL data­
base. Gray and Moffat [99] describe a Prolog program to do this translation, and
interestingly enough, it outperforms the original PASCAL program for this task.
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7 The 'Language First' Approach

J. R. Kennaway and M. R. Sleep

7.1 MOTIVATION FOR CHANGE
Technology has advanced considerably since the first computers were built. Very Large
Scale Integration (VLSI) techniques make it possible to produce huge numbers of single
chip computers at low cost. In spite of such advances, the basic organizational principles
on which computer design is based have remained largely static, with the following key
features:

(1) sequential, centralized control of computation via a unique sequence control regis­
ter.

(2) a centralized random access memory.

These 'von Neumann' features have served us well for over 30 years, particularly with the
use of clever engineering ideas like pipelining, virtual memory, and Single Instruction
Multiple Data (SIMD) extensions. These ideas, when carefully integrated and realized
using the most advanced technology, have led to very powerful computers like the Cray
and the ICL DAP. Before considering more novel forms of architecture, an obvious first
question is: why not stick with von Neumann architectures?

The clearest motivation for re-examining the basic principles is sheer speed. Given
VLSI technology, we can produce cheaply huge armies of chips to attack problems in
parallel. Provided we can work out some way of organizing these chips to do the work
required, we can 'buy speed' from VLSI. But - particularly if we wish to exploit a Multi­
ple Instruction Multiple Data (MIMD) approach to parallelism - new organizational
principles are needed.

A less obvious motivation is the software crisis. We want to produce high-quality
software at reasonable cost. Backus [1] has argued that conventional languages are
unnecessarily difficult to program in, and that many of the difficulties stem from a 'von
Neumann' orientation of the languages concerned. The underlying concern of a conven­
tional programmer is to guide a single locus of control through a cunningly designed
maze of assignment, conditional and repetitive statements (ie the program). At each step
the programmer has (perhaps quite unconsciously) as a major concern the details of how
things are done rather than getting right what is done.

Because much of our civilization manages to stagger along using programs developed
in this imperative style, it may be judged reasonably successful - at least for
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programmingvon Neumann machines with a single locus of control. Even here, how­
ever, the softwarecrisis indicates there is something wrong with conventional languages
and suggestswe should examine alternatives. When 5th generation architectures [2]
with perhaps thousands of chips working in parallel are considered, the prospect of pro­
gramming each.chip individually becomes unthinkable, and the case for a new approach
which does not require the programmer to consider individual control loci in detail
becomes overwhelming.

In this chapter and the next we present one view of the growing body of work on
novel architectures for declarative languages. Such work is motivated by the following
beliefs:

(1) Architecture should be language oriented.

(2) The most harmful feature of conventional languages after the goto statement is des­
tructiveassignment.

(3) Declarative (zero assignment) languages not only facilitate the reading and writing
of programs by people, but also enable automatic program transformation tech­
niques [3].

(4) Banishing destructive assignment from the programmers vocabulary has the
interesting side effect of making declarative programs naturally amenable to paral­
lel execution. In particular, sub-expressions can be evaluated safely in parallel.

7.2 THE 'LANGUAGE-FIRST' APPROACH
Although the following quote from Dijkstra [4] is taken out of context, it neatly sum­
marizes the general approach of novel architects: It used to be the program's purpose to
instruct our computers; it became the computer's purpose to execute ourprograms.

The architects' starting point is now the language rather than some fiendishly clever
engineering idea which takes no account of programmability. A possible disadvantage of
this approach is that each language may lead to a quite individual architecture which is
unsuited to other languages. In the event, just two families of declarative languages have
been considered seriously by novel architects, the lambda-based languages, for example
Burge's language [5], HOPE [6], SASL [7], FFP [I], ML [8] and VAL [9]; and the
logic-based languages, for example Prolog [10]. Operationally, lambda-based languages
require only simple (non-backtracking) pattern matching facilities and are therefore
easier to support. Perhaps for this reason, and the fact that logic languages are fairly
recent, the bulk of the work so far on novel architectures has focussed on lambda-based
languages.

There are now signs that logic and lambda languages (and perhaps process-oriented
languages too) can be integrated in a natural manner. While this does not simplify the
problem, it does suggest that work on lambda-oriented architectures provides useful
guidelines for parallel architectures which support more advanced languages.

7.2.1 An Example of Declarative Programming
Both logic and lambda languages are declarative. The most striking feature of these
languages for a conventional programmer is the total absence of assignments as well as
goto statements. Programming in a declarative language is much closer to writing a set
of mathematical equations than conventional programming. Earlier chapters present
excellent introductions to lambda and logic languages. Here we give only a simple
example intended to highlight operational and architectural issues. We use SASL rather
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than HOPE because it illustrates nicely the lazy evaluation issue.
The problem we consider is a simplified form of the Hamming problem discussed in

[4]. We want to generate and print in ascending order integers of the form (2i)*(y)
where i and j range from 0 upwards.

Our basic approach is to write equations which define the required infinite list, which
we will call ans. There are many equations which have the desired solution. Because we
want to feed the equations to some machine which we expect to produce the answer, we
must be careful to make sure our equations have a workable procedural (machine
oriented) reading as well as the declarative (equational) reading.

In lambda languages, the procedural interpretation of equations is to regard them as
rewrite rules which permit the machine to replace elements of an expression which match
the left hand side of an equation with the corresponding right hand side.

For example, in order to define a function which accepts a (possibly infinite) list of
integers, and returns a new list in which every element has been doubled, we may write
in SASL:

DEF DoubleAll () = ( )
DoubleAll (h:t) = (2*h):(DoubleAll t)

The first equation says that given an empty list the result is also an empty list. The
second equation deals with the more general case of a list with head h and a tail called t,
using the infix ':' operator to represent the LISP constructor CONS. In procedural terms,
the equation says that we can produce a doubled version of a list by doubling the first
element and then applying the function DoubleAll to the tail. Given the list (I :(2:( »)
we can ask a SASL system to print a doubled version by typing:

DoubleAll (I :(2:( ») ?

First, the SASL machine will see that the form as input cannot be printed because it is a
function application. It now searches the 'database' of equations, and recognizes that the
second equation can be used as a rewrite rule, matching h with I and t with the list
(2:( ». This produces the revised form:

2:(DoubleAll (2:( »)

Because this is (in LISP terms) a CONS, the machine now attempts to print the head,
and succeeds immediately because it is the integer 2, which is directly printable. The
machine will now process the tail, whose form is currently:

(DoubleAll (2:( »)

After further deductions like those illustrated above, the system will print the required
result and then stop. Notice that although the equations were written in terms of infinite
lists, this does not present a problem because of the printer-driven nature of the SASL
machine. It is perfectly possible (and very useful) to write equations which define real
infinite objects in SASL. For example,

DEF Poslnts = (from I) WHERE from n = n:(from(n + I»

defines the list of natural numbers. SASL progams written using this infinite list will of
course use only part of it if they terminate.

Although we have interpreted the equations procedurally as rewrite rules, each opera­
tional step represents a change of form in keeping with the equations. Each change
preserves the meaning. Because of this fact, unlike programmers, architectures for
declarative languages may actually overwrite old forms with equivalent ones, using des­
tructive assignment. This is the basis for graph reduction described in more detail below.



114 DeclarativeSystems

Returning to our problem, we can also define a function called TrebleAll which is
similar to DoubleAll except that it uses 3 as a multiplier instead of 2. We can now
write:

DoubleAns = DoubleAll(ans)
TrebleAns = TrebleAll(ans)

and observe that if we merge DoubleAns with TrebleAns we obtain (with some repeti­
tions) ans with the first element (I) missing. This is the critical observation which allows
us to solve the problem and write:

DEF ans = 1:(RemoveDups(Merge(DoubleAll( ans»,(TrebleAll( ans»»
WHERE

DoubleAll ( ) = ()
DoubleAll (h:t) = (2*h):(DoubleAll(t»
TrebleAll ( ) = ( )
TrebleAll (h:t) = (3*h):(TrebleAll(t»
Merge « ),(» = ()
Merge (x ,(» = x
Merge «),x) = x
Merge (x , y) = IF head(x)<head(y)

THEN head(x):(Merge«tail(x»,y»
ELSE head(y):(Merge(x,(tail(y»»
FI

RemoveDups () = ()
RemoveDups (ht{h.t) = RemoveDups (h:t)
RemoveDups (h:t) = h.(Removepupsu)

Having input these equations to a SASL system, we can ask for the whole (infinite)
sequence to be printed, or select some finite portion using an appropriate function.

Note the use of pattern matching to define the auxiliary functions Merge and
RemoveDups. The ordering of the equations for the different cases is significant,
because the machine will try the cases in the order presented. In the interests of clarity,
we have deviated slightly from real SASL syntax by using the IF .....FI form of condi­
tional, and using the selectors head and tail which should really be hd and tl in runnable
SASL.

The major points to note from this example are:

(1) Running a declarative program changes its form but never its meaning.

(2) The declarative programmer must have a good understanding of the procedural
interpretation of the equations he writes if he is to produce good programs.

(3) The basic idea in declarative programming is to conceive of the result as some com­
plex data structure, and then to devise defining equations which, besides their
mathematical interpretation also have a machine oriented (procedural) interpreta­
tion.

(4) Printer-driven control of the use of equations as rewrite rules. This makes it possi­
ble to write equations involving infinite objects without necessarily producing non­
termination.

Not all declarative languages have the final property, which perhaps emphasizes the fact
that declarative languages, like conventional languages, require the programmer to think
operationally. But the declarative framework constrains the programmer to a world in
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which form but not meaning can change. This means that if the equations are right, a
wrong answer will never be produced, although termination may be affected. This pro­
perty makes declarative programming much more like writing specifications than conven­
tional programming. Resulting programs are much easier to read, write and prove. The
new approach adds new problems, however. In particular, updating a single element of a
huge data structure requires in principle a complete copy of the whole object, and clever
implementation techniques are needed to deal with this.

7.2.2 The Design Process
For a given language, an idealized machine can be designed which defines operationally
the semantics of the language. This computational model usually makes unrealistic
assumptions - for example an idealized Algol machine supports arrays of unbounded size
and no real computer can deal with this. The job of the computer architect is to devise a
physical model which, within its limitations, behaves exactly like the computational
model. The process of designing a language oriented architecture starts with the rather
high level computational model and progressively refines it until it becomes physically
realisable at which point it is a physical model. By the time this stage is reached, the set
of programs which the model will deal with satisfactorily will be considerably smaller
than the set of programs which the idealized computational model supports. Finally, the
physical model is mapped onto existing technology using all the clever engineering ideas
around to yield a real machine.

Given a single computational model, a huge number of differing physical models may
be derived using the top-down methodology. The physical models may be distinguished
both in performance terms (sheer speed) and also in terms of the restrictions placed on
the programmer. A good physical model leads to real machines which run fast, and
perhaps more important, do not unduly force the user to 'program round' their limita­
tions.

No real architect uses a pure top-down methodology. In practice, there is a strong
temptation to let 'efficient' instructions on the real machine find their way into a
language implementation, often changing the language semantics dramatically. Thus
'real' LISPs support destructive assignment, and most language implementations provide
'hooks' which allow the user to get at a relatively naked form of the raw machine.

Novel architects are not immune from this bottom-up influence, especially if they sup­
port an active user community. But the novel architect feels guilty when he succumbs to
such pressures, and asks the language designer for help.

7.3 DESIGN ISSUES FOR LAMBDA MACIDNES
Because functional languages such as HOPE and SASL are based on the lambda cal­
culus, the starting point for a 'top down' architect is the lambda calculus core of such
languages. From this core we now develop some of the central architectural issues.

7.3.1 The Lambda Calculus
The following remarkably simple syntax captures the essence of all the classical func­
tionallanguages:
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E ::= identifier
A identifier . E
@EE

The first production allows us to introduce names for objects, the second production
gives the power of abstraction, and the third production expresses the application of one
function to another. The (usually invisible) symbol @ is read APPLY. This very sparse
notation is in fact very general, but we will follow [II] and use a richer notation which
allows atoms representing constructors, integers, integer operations etc. in what follows.
We will also use the conditional form of expression.

In most conventional languages, the function which triples its argument is (give or
take minor syntactical details) written in the following form:

f(x) = x*3

In lambda languages, we write instead:

f = ,\ x. (x*3)
or without the infix sugar:

f = ,\ x. @ (@ * x) 3

This allows us to talk about f without worrying about naming its arguments. In particu­
lar, we can now write equations defining functions in which just one identifier appears on
the left hand side. We 'call' functions in the lambda calculus by applying them to an
argument, eg

@f5

will 'send' 5 to f, to produce the result 15 which - because it is exactly equivalent to the
original expression - can replace it.

At first sight the lambda calculus with an explicit symbol for application looks rather
horrid; for example f(x)=2*x+x/3 turns into

x x . (@ (@ + (@ (@ * 2) x) (@ (@ / x) 3»)

However, the unsugared (machine) form has advantages: in particular, functions which
both accept and return functions may be defined. (@ * 2) is the function which doubles
its argument. In general, the 'equal civil rights' property of the lambda calculus is a
powerful mechanism for developing - in conventional terms - program forming programs,
the advantages of which have been amply illustrated elsewhere [I2].

Usable ('sugared') lambda languages allow the user to adopt conventional infix nota­
tion, to pre-name values of expressions using LET, and to post-name values using
WHERE. Structured data types can be made available by adding a few built-in func­
tions and constants. Programming in a pure lambda-based language can be done in a
purely descriptive fashion: we imagine the output (presumably some complex data struc­
ture) and describe it in terms of the input, as illustrated in section 7.2.1. Aside from the
capability to write 'program forming programs' (which takes some practice), the most
notable feature of programming in a lambda-based notation is the total absence of the
assignment statement. This means, for example, that the usual 'loop counting' variables
must be replaced by recursive calls. The reward is referential transparency: within its
scope, any mention of an identifier denotes the same value throughout the run of the pro­
gram. This key property makes life easier for both the human reader and the machine
reader (e.g. some architecture expected to run the program).
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7.3.2 From Semantics to Architectural Issues
The basic formal rule for evaluating lambda expressions is beta-conversion:

@ (A x. E) F -> [x ~ F] E

where the right hand side means (a copy of) the expression E with all free occurrences of
x replaced by (a copy of) the expression F, possibly with name changes to avoid free
variables in F being captured by abstractions in E. This rule appears simple to state, is
incredibly powerful, but is very difficult to implement efficiently. It is also very ambigu­
ous: in particular, given a large expression containing many reducible sub-expressions, no
evaluation order is specified.

All usable lambda languages considerably extend the core syntax, for example by
allowing arithmetic operators and numeric atoms. Although such extensions lead to
many new reduction rules (e.g, 3*4 ~ 12) besides beta-conversion, there are two central
issues in developing lambda-oriented architectures:

(1) What evaluation order sh uld we use?

(2) How should beta conversion be done?

Very roughly, in conventional terms the questions are: (1) when should we evaluate
parameters? and (2) how should parameters be passed? In the sections which follow we
illustrate and discuss both issues.

7.3.2.1 Evaluation Order
In conventional (control flow) languages, the order in which statements are executed usu­
ally has a dramatic effect on the outcome. A major result of the lambda calculus (see
e.g [5] ) states (roughly) that the choice of order makes no difference to the value,
although it may affect termination. Evaluation of a lambda expression proceeds by iden­
tifying one or more reducible sub-expressions (or redexes), and replacing them with
equivalent, but simpler expressions using the reduction rules. This reduction process is
repeated until there are no more redexes, when the expression is in normal form. For
example, «3*4)+(5*6» contains 2 redexes: (3*4) and (5*6). These may be reduced in
any order (or in parallel) to 12 and 30 respectively. The original expression has now
been reduced to the form (12+30) which may be further reduced to the normal form 42.
Essentially, computation is viewed as controlled deduction rather than a sequence of
apparently meaningless state changes. This change of viewpoint is perhaps the most fun­
damental aspect of 'novel architecture' work.

It looks at first sight as if exploiting parallelism gains speed and loses nothing. Why
not 'data drive' the computation so that all redexes are reduced in parallel? Unfor­
tunately, an injudicious choice of evaluation order may have undesirable consequences:

(1) it may lead to non-termination, most obviously when the two arms of a conditional
statement are evaluated in parallel. Most interesting computations depend on con­
ditional statements to prevent fruitless (and possibly infinite) computation.

(2) however many chips are used, any real machine has a finite capacity for realizing
parallelism. Once this limit is reached, further attempts to exploit parallelism sim­
ply clog up the system queues.
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(3) in a distributed architecture, the communication costs involved in distributing sub-
expressionsto other processing elements may outweigh the time saved.

Thus the choice of evaluation order affects performance in a marked manner, and the
issues noted above provide a useful checklist for evaluating novel architectures. One
attractive solution is to pass the buck to the user by introducing annotations to the
language whichhe may use to specify the evaluation order, and perhaps the form (rang­
ing from string to pointer) in which arguments are passed. This is reminiscent of pre
virtual-memory days when every programmer worth his salt had his optimal overlay
scheme for memory management. The alternative approach is to make the architecture
take the decisions in a dynamic manner. This is the ideal approach, but it is much
harder. At present, we cannot be sure that the distributed equivalent of virtual memory
'magic' willappear, and certainly annotations are useful in the short term.

7.3.2.2 Beta-conversion
Methods of implementing beta-conversion can be divided into several classes.

(i) String Reduction

Whenever a function is applied to an argument, a copy is made of the function body
with a copy of the argument substituted for each occurrence of the formal parameter.
Using an 'outermost first' evaluation order, the following expression:

f(sqrt(4» WHERE f(x) = IF x=l
THEN h(x)
ELSE g(x*5)
FI

is beta-convertible to:

IF sqrt(4)= I THEN h(sqrt(4») ELSE g(sqrt(4)*5) FI

Here we have used string reduction to realize beta-conversion, making 3 complete copies
of the argument. Because the new form is a conditional, and the argument occurs in
both arms, one of the copies will certainly be thrown away. Further, because of the
evaluation order, two evaluations of sqrt(4) are involved assuming both hand g force
evaluation of their arguments.

For this reason, systems using string reduction generally evaluate expressions in appli­
cative order, reducing arguments to normal form before supplying them to functions.
This loses the software engineering advantages of being able to handle infinite data struc­
tures in a uniform way. It is interesting to note that HOPE [6] though having predom­
inantly applicative order semantics, includes a non-strict list-constructor for precisely this
purpose. Furthermore, some functions - such as conditional, mentioned above - should
not be evaluated with applicative order.

(ii) Graph Reduction

We can save much of the unnecessary work of string reduction by copying pointers to
sub-expressions rather than the full text. This graph-reduction approach is described in
detail for the pure lambda-calculus in [13]. The basic idea is that the current form of the
expression being evaluated is stored not as a string or a parse-tree, but as a graph, in
which common subexpressionsmay be shared. As an example, the expression
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IF sqrt(4)= 1THEN h(sqrt(4» ELSEg(sqrt(4)*5)FI

might be represented in graphical form as in Figure 7-1, where the subexpression sqrt(4),
which occurs three times in the linear representation, occurs but once in the graph, with
three references to it.

To perform the beta reduction of an expression @ (Ax.f)g (where f and g are expres­
sion graphs) we make a new copy of f in which all occurrences of the formal parameter x
are replaced, not by copies of g, but by pointers to g. Notice that we cannot simply sub­
stitute pointers to g for x in f itself, as there may be other references to f. We must 'peel
off a new copy to make the substitution in.

The great advantage of this method is that when g is eventually evaluated, every refer­
ence to g will have the benefit of the work performed. g will be evaluated at most once,
however many times its value is needed. And if we perform reductions in normal order,
then if the value of g is never needed it will never be evaluated at all. Thus we obtain
normal order semantics without the overhead of multiple evaluation which we saw for
string reduction.

This method may still require some unnecessary copying. Whenever a function is
applied, we must peel off a copy of its body. Some of this can be avoided. Any subex­
pressions of the body in which the formal parameter does not occur need not be copied,
but can be shared between the original and all peeled off copies. It is not clear, however,
that the cost of storing the information necessary to recognize these subexpressions does
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not outweighthe benefits gained. Another possibility is that if there are no references to
the function body other than through one particular application of it (and a reference
counting schemecould be used to recognize this) then substitution for the formal param­
eter can be done in the original, without copying. But in general there may be substan­
tial parts of the function body which a graph reducer cannot avoid copying, and which
(because theylie on unselected arms of conditionals) may be thrown away.

(iii) EnvironmentalSchemes

Moving from string to graph reduction involves being progressively lazier about making
copies, in the sense that we copy pointers instead of strings of arbitrary length. The
standard environmental scheme for realizing beta-substitution takes this process to its log­
ical conclusion by doing no copying at all. Instead, beta-substitution is simply 'remem­
bered' by adding an (identifier,expression) pair to an environment. In the example above,
the pair would be (x,sqrt(4». When the identifier x is needed for further evaluation, (e.g.
in the conditional test x= I) it is looked up in the environment, and future lookups can
share the benefit of forced evaluation if we take some care in the implementation.

At first sight, the environmental scheme wins hands down because copying is never
done unless it is needed. In this sense, it is a purely demand-driven scheme. On closer
examination, however, the picture is not so clear:

(1) The basic drawback of the environmental mechanism is that in order to
understand an expression fully the environment in which it was created must
be consulted. In a correct implementation which supports functions which
can accept and return functions, this means that each expression must contain
at least a reference to the environment in which it was created. In a simple­
minded environmental scheme, in which every beta-conversion is remembered,
a considerable amount of excess baggage may be accumulated in the form of
environmental entries which will never be consulted. Schemes which minim­
ize excess baggage tend to destroy the basic point of the environmental
approach by complicating the remembering process.

(2) Even if the excess baggage problem can be cured, efficient lookup mechanisms
are needed. The larger the environment, the higher the cost of entry and
lookup. In an expression with a huge environment and many free
occurrences of a variable x, it might be cheaper to perform the lookup once
and distribute copies (possibly as pointers) rather than do many lookups.

(3) In a highly parallel machine access to the environment acts as a bottleneck.

(iv) Lazy Graph Reduction and Combinators

The newest approach to beta-substitution is to use lazy graph reduction. In Wadsworth's
original scheme [13] every beta substitution involved a 'full peel' of a copy of the origi­
nal graph. It would be better to only do the copying in response to the demands of the
rest of the computation. One method of achieving this is to introduce environments,
though in a way rather different to the previous section. When we encounter a beta­
redex @ (:>U.f)g, we merely replace it with the pair (f,{x=g}), where {x=g} is the
environment which associates x with g. Such a pair is called a closure. We then con­
tinue by attempting to evaluate f. If we discover further redexes, we reduce them. But if
we find an occurrence of x whose value we need before proceeding further, then we
'push' the environment {x=g} down through f to that occurrence of x, peeling off a copy
only of the path traversed. At the end of the path we substitute for x a pointer to g, and
continue looking for the next redex to reduce. In general, when we find a redex we
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reduce it; when we find a variable we look for the closure where it is defined and peel off
a copy of the path from that closure down to the variable.

The evaluation method we have just described can be programmed directly. Another
way of obtaining lazy graph copying is by the use of director strings (14). We examine
the program at compile time and translate it into a variable-free form which replaces a
tree consisting of interior nodes and leaf nodes which mention variables by a tree of inte­
rior director nodes which will switch incoming arguments to exactly the places specified
by the variables. The 'switches' encode the information in the variables, which may now
be replaced by anonymous holes which notionally wait to be filled by the switching pro-
cess.

For example, the expression:

f(5) WHERE f(x) = 2*x+x*(3*4)

may be replaced by the tree shown in Figure 7-2.
The distribution sub-tree for x has been marked with double lines: it indicates that in

order to evaluate the expression, the argument 5 may (in this case will) have tobe sent
both left and right at the uppermost + node in the tree, and that this + node should
distribute copies both right and left. Copies (string or pointer) now arrive at the • nodes
in the diagram, to be further distributed right (by the leftmost • node) and left (by the
rightmost • node). Intuitively, we imagine the incoming value for x being distributed to
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just the places it is needed in the expression via the distribution sub-tree. An obvious
encoding for distribution sub-trees is to tag each apply with a director from the set
(/\, \,1) representing the distribution instructions 'send both ways, send right, send left'
respectively. Multiple abstractions produce strings of directors. Using this idea, Figure
7-2 translates to the variable-free form shown in Figure 7-3, where the boxes represent
'holes' for the missing argument values. The directors guide an argument to just the
places required in an expression, in a number of small steps which may be realized con­
currently when 'both-ways' directors are involved. Conditional expressions effectively
represent directors which are determined dynamically, switching an argument left or
right depending on whether the condition is true or false. Director strings provide a
simpler means of obtaining lazy graph copying than the environmental scheme, but at
the cost of some loss of flexibility of reduction order.

The practicability of this technique was first suggested by Turner [7] who introduced
the Sl, Bl, and Cl combinators (switches) which closely correspond to the three direc­
tors. A fuller description of the director approach is available in [14,15].

7.3.2.3 Choice of computational model
It would be nice if the architect could select a preferred evaluation order and a scheme
for beta-substitution in the secure knowledge that the decisions are independent. Unfor­
tunately, this is not the case. For example, selection of outermost (lazy) evaluation
favours some pointer scheme (graph reduction, lazy graph reduction or environment) as
against string reduction to reduce the amount of copying. In general, string reduction is
only practicable for innermost (eager) evaluators.
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To complicate matters further, use of 'lazy' evaluation [16] (which corresponds to
outermost evaluation) extends significantly the class of programs which terminate: in
particular, the programmer can define his output using functions which operate on
'folded up' versions of infinite lists. Because this is an extremely useful tool in the
programmer's kit, the expressive power of the language adds another dimension to the
problem of choosing a computational model.

7.4 TIlE IMPORTANCE OF TIlEORY
In the last section, we saw that the choice of evaluation order and method for beta sub­
stitution are not independent. This suggests that we may be working at too high a level.
Lazy beta substitution breaks a single potentially large beta substitution into a number
of bounded operations, and allows the evaluator to order these so as to optimize some
measure of performance.

Although some theoretical results have emerged from recent U.K. work in this area,
notably on the space complexity of translation to combinator form [17,18] a powerful
theoretical handle on the basic pragmatic issues is needed.

The recent work of Staples may provide such a handle. In a series of papers
[19,20,21] Staples develops a general theory of optimal reduction orders in graph rewrit­
ing systems, of which lambda calculus with beta reduction, combinators, and directors
are examples. In particular he develops a key requirement of the 'basic reductions' pro­
vided by a machine which ensures that there exists a simple optimal reduction order.
For 'pure' combinators and directors (i.e. without any built-in operators such as addition,
multiplication, etc.) this optimal order is just the leftmost-outermost ordering. When
arithmetic operators are added this algorithm only has to be augmented with 'demand
forking' at such operators. In [22] he develops a form of lambda-calculus in which
beta-reduction is broken down into small steps in a way similar to the environmental
scheme of section 7.3.2.2(iii). For this system too, leftmost-outermost reduction is
optimal.

Because Staples' work applies to any 'reduction' machine, it provides important clues
to the designers of novel architectures. More generally, it illustrates the importance of
theory in a new and exciting area.

t·
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8 Towards a Successor to von Neumann

J. R. Kennaway and M. R. Sleep

8.1 PHYSICAL MODELS
An effective physical model acts as a conceptual bridge between the computational
model and the hardware. At the highest level, the physical model specifies the general
organization of the architecture which can be realized in hardware.

At this level, a von Neumann machine consists in essence of a processing element with
one or more registers, a special sequence control register, and a global random access
memory with completely destructive update. This efficiently supports sequential control
flow.

Parallel evaluation of declarative programs appears to require radical changes to von
Neumann architectures, which will be developed and illustrated in this chapter.

8.2 EVOLUTIONS OF THE VON NEUMANN PHYSICAL MODEL
Before considering alternatives to von Neumann architecture at the physical level, it is
worth considering ways in which its performance could be improved, and how it could
be used to support a declarative style of programming.

8.2.1 Increase Oock Speed
This has the enormous advantage that every program experiences the same speedup:
exploitation of parallelism is irrelevant. But for a given technology improvements in this
direction are limited, and the basic concern of the programmer continues to be navigat­
ing the von Neumann control locus through a complex maze of imperative statements.
Thus, even if it were possible to increase clock speed at will, the von Neumann contribu­
tion to the software crisis would remain.

8.2.2 Increase Granularity of Instruction
This can be done by (in extremis) providing a single instruction for each program,
and/or making instructions operate on much larger data items. The first approach is not
practicable (although 'special purpose' instructions are good for some applications). The
second approach leads to SIMD (single instruction stream/multiple data stream) general­
izations of the original von Neumann design such as the eRA Y and the DAP. Such
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machines require great skill to program well.

8.2.3 Use Pipelining
A basic characteristic of the von Neumann machine is that each instruction appoints a
unique successor,which is most often the instruction stored in the immediately following
location. Pipelined architectures exploit this fact by performing speculative work on
future instructions which is lost when a jump takes place. For sound statistical reasons,
commercial exploitation of pipelining involves a small (e.g. 4) number of stages, and
good compilers are needed to utilize pipelining effectively.

8.2.4 Parallel Composition of von Neumann Chips
VLSI allows us to make whole von Neumann machines on single chips. Provided we can
find out how to exploit, in a programmable manner, large-scale hookups of such chips
we should be able to 'buy speed', at least for some applications. This route is attractive,
especially when coupled with a good programming methodology. occam on the Tran­
sputer [1] is the best example around at present. Transputer-like devices may yield many
GIPS (billions of instructions per second) per cubic foot if correctly programmed for spe­
cialist applications, for example ones amenable to systolic algorithms [2]. A very impor­
tant use of large scale transputer hookups is to provide usable simulations of novel archi­
tectures such as ALICE [3] which are very slow on sequential machines.

8.2.5 Exploiting von Neumann for Declarative Languages
Computational models such as the SECD machine for ISWIM [4] the combinator
machine for SMALL [5] and the APM machine for extended Prolog all give simple state
transition models for supporting particular styles of declarative programming.

A very fruitful approach in the short term to realizing high performances for declara­
tive languages is to decompose an abstract machine such as SECD or APM into a small
set of specialist functions which can be realized as a finite network of communicating
von Neumann devices.

The precise decomposition of the overall functionality of a machine which supports
declarative languages into a finite number of subfunctions, each of which can be realized
by bounded von Neumann chips, is a subject of considerable commercial interest at the
time of writing. This interest makes it reasonably safe to say that 'super von Neumann'
machines will be making money around 1990, and that such machines will typically
involve a smallish number (say 10-20) of communicating chips. A good machine will
yield better than one million LIPS (logic instructions per second) for logic languages
around 1990, and will cost about 100 pounds at 1984 prices. Dramatic improvements on
these figures are conceivable given the discovery of a truly novel machine design.

8.3 A GENERAL MODEL OF A YON NEUMANN SUCCESSOR
From the above discussion of von Neumann machines, a key characteristic which
emerged was that each instruction appoints a unique successor. A secondary, but (particu­
larly if we have distributed computing in mind) important characteristic of a von Neu­
mann machine is the assumption of a large, flat address space for the main memory.
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From the requirements of both lambda and logic formalisms, it is clear that the
'unique successor' attribute of the von Neumann machine is inadequate. For example,
evaluation of

x*y WHERE x = sqrt(4)AND y = sqrt(9)

means the simultaneous creation of two demands, one for the integer form of sqrt(4), the
other for the integer form of sqrt(9). .
In logic languages, each goal to be proved may appoint several subgoals, all of which are
to be proved. A successor to von Neumann machines must be capable of appointing
more than one instruction to succeed the current one. Formally, the state transition
function for the new machine must support the concept

subexpression _ SETOF subexpressions

But not only must the architecture be able to appoint more than one successor, it must
also be able to remember that, when all the successors have finished, the parent expres­
sion may be reducible. Thus the simple 'goto' nature of the von-Neumann architecture is
inappropriate, and recursive call is the basic mechanism for transferring control.

We concentrate in what follows on the lambda language case, mainly because it is
much easier. A very general organization is shown in Figure 8-1.

It consists of an (extensible) number of PE's (processing elements) and two 'task
pools'.

Notionally at least, each task fully describes a sub-expression of the overall computa­
tion, together with a destination specifying where the evaluated form is to be placed. For
the original expression which began the computation, this will be an output device. For
sub-expressions, the destination will specify a field within some other task held in the
waitingpool.

Each processing element picks any task from the selected pool and examines it to see if
it requires sub-expressions to be evaluated. If so, the relevant sub-expressions are
extracted and added as tasks to the selected pool. The original task, which now has holes
in it, is added to the waiting pool. These holes will be filled by returning results. If the
original task does not need sub-evaluations, it is evaluated and the result used to fill a
hole (either in one of the tasks in the waiting pool or in the output device). Filling in

.'

selected
pool

waiting
pool

Figure 8-1
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the last hole in a waiting task moves it to the selected pooL
This simplepicture is the basis for nearly all novel architectures to date, which how­

ever differ greatly in detail. The basic idea is to replace the single sequence control regis­
ter in a von Neumann machine by a set of tasks selected for execution at each time step.
The choice of computational model specifies a scheme for beta-substitution. If we can
devise an efficient, extensible, highly parallel, random access implementation of the task
pools required in the general organization, there is no reason not to use pointer schemes
for beta substitution. If on the other hand this proves tricky, it may be better to risk
some unnecessary copying to avoid bottlenecks in accessing the pools.

8.4 PARTICULAR ORGANIZATIONS FOR DISlRIBUTING WORK
The general organization shown above represents a rather high level model which lacks a
considerable amount of important detail. It is obviously possible to simulate the model
directly using a uniprocessor. It is much more difficult to invent a scheme which distri­
butes the computation over real parallel hardware without creating communication
bottlenecks. This is the distribution problem, which is the main issue at the physical
leveL We now examine some approaches to this problem.

8.4.1 Pipelined Ring Architectures (PRAs)
Rather than let tasks sit passively in a pool as the general model proposes, and making
the processing elements pick them out, we might reverse the idea and make selected tasks
move to the processing elements. Each processing element now processes a stream of
incoming tasks and emits a stream of results. These results can be merged and the
resulting stream processed by a task former which, in terms of the general model has
access to the waiting pool and employs it to create a stream of new tasks. The ring is
closed by feeding all the result streams to a fan-out mechanism which distributes the
tasks to the processing elements as they become available. The PRA scheme is shown in
Figure 8-2 in diagrammatic form.

At this level of abstraction, no decision has been made about the representation of
tasks, nor about their granularity. Note that the PE's do not have direct access to the
waiting pool in the PRA model, so that each executable task must include all the infor­
mation (code and data) needed to perform the task. Perhaps for this reason tasks in
working prototypes tend to be fine grain, eg (3+4).

In contrast to most of the other models of distribution, several prototype PRA's are
running now, notably the Manchester Dataflow Machine [6]. By clever decomposition of
the task former, the ring may be heavily pipelined, and many rings may be intercon­
nected using an exchange switch for inter-ring communication. MIT's Jack Dennis [7]
pioneered this approach, but continues to advocate a more static approach than the
Manchester group. If inter-ring traffic can be kept low, multi-layered dataflow machines
promise very high performances. By clever - perhaps seminal - use of the 'colouring'
facilities in the Manchester machine, it is possible to support higher order functions [8].

The PRA model was originally proposed by Dennis, who has been a prime mover
towards a 'top-down' approach to architecture. Dennis has now been joined by Arvind
[9] who is currently planning to build a 64-ring prototype using available chips within
the next 3 years. Arvind's proposal follows closely the Manchester work, but adds a spe­
cial I-structure unit to each ring to handle large data structures. This alleviates the prob­
lem of having to physically process huge data structures each time an element is exam­
ined.
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8.4.2 Packet Circulation Ring Architectures (PCRAs)
The most obvious bottlenecks in the PRA scheme are the input and output streams to
and from the processing elements. One way of increasing throughput is to use many
rings, and both Manchester and MIT are following this path. One alternative approach
is to use a slotted ring for communication to distribute resources to processing elements.
A slotted ring is simply a circular conveyor belt divided into slots. A sender places a
message in the first empty slot he sees. A receiver looks out for a message addressed to
him, and removes it to create a new empty slot. The practicality of the slotted ring con­
cept has been amply illustrated by the Cambridge ring project [10].

The general idea behind PCRA's is to place a number of PE's in a circle and serve
them with resources using one or more slotted rings. Messages, represented by 1 or more
packets may denote for example a task, a global address, or data. A single slotted ring
may be used for all communication, as with the real Cambridge ring, or a number of
specialized rings may be used to distribute particular resources. Similarly, the ring
servers may be highly specialized or more general purpose, eg processing elements with
some local memory.

An advanced machine is being constructed at Imperial college by the ALICE (Appli­
cative Language Idealized Computing Engine) group [3]. Although the present (1984)
design of ALICE has evolved considerably (it now has both VTA and SDMA aspects),
the original ALICE proposal used two slotted rings, one for distributing tasks from the
selected pool and one for distributing memory for new tasks. Both rings act as distribu­
tion agents for a global packet pool which merges the functions of the selected and ready
pools in the general model. To avoid the merged packet pool becoming a bottleneck, use
of a multi-ported memory with an advanced topology is proposed.

A particularly interesting feature of ALICE is that it can support traditional control
flow concepts as well as reduction semantics. This is because the Compiler Target
Language (CTL) [11] retains some von Neumann features, supporting random access to a
global packet memory and destructive update of packets. The early development of CTL
allows software tools for ALICE to be developed in parallel with hardware construction.
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A precursorof ALICE is the Newcastle GCF (Generalized Control Flow) architecture
proposed by Treleaven et al [12]. An earlier (hardware) use of the slotted ring idea is
seen in the Texas Instruments Distributed Data Processor [l3] which effectively used a
slotted ring tolink: several dataflow uniprocessors.

8.4.3 PhysicalTree Architectures (PTAs)
Rather than use a slotted ring for communication, we might use a more advanced topol­
ogy. Many proposals adopt a binary tree which is perhaps the simplest topology that
gets everything close (O(log n) together. Some proposals for example AMPS [14] use
the tree structure solely for communication and load balancing purposes, with all the
work being done at the leaves. Other proposals for example DDMI [1S] and Mago's
machine [16]usemore intelligent interior nodes.

In the AMPSproposal [14] each leaf of the tree is a processor/memory element which
is capable of executing tasks sequentially or in parallel, and also capable of allocating
storage for new tasks. There is no global memory, although there is a uniform global
address space. The internal nodes in the physical tree perform the routing required for
access to non-local memory, and external communication is via specialized leaf nodes.
Although the root node of a binary tree is in principle a potential bottleneck, the load
balancing takes place at the lowest possible interior node so that the root node is only
employed when one half of the tree is full loaded. AMPS supports outermost evaluation
of the lambda language FEL [17] which includes many pragmas/annotations for user
control of parallelism. FEL supports a wide range of syntactic sugar. At present, AMPS
exists as a sophisticated simulation vehicle.

Because the evaluator for a lambda language is essentially recursive, the idea of build­
ing a physical tree structure of processor/memory/routing elements which recursively
decomposes an expression into its primitives is attractive. An early example of this
approach is the DDMI hardware at Utah [15] which evaluates simple data-driven nets.
A basic difficulty with this very direct approach is that whilst work can be distributed
down the tree, there appears to be no counterpart of the AMPS mechanism for passing
work from one leaf to another.

A quite different way of using a tree is the Mago machine [16]. This represents a
simultaneous head-on attack at all the difficult problems. The machine is unashamedly
string reduction - pointers are not used. Storage management is dealt with by including
it in the basic machine cycle. Expressions (written in Backus's FFP notation [18] ) are
stored in a linear array of [cellswhich are the leaves of a physical binary tree. Each lcell
contains processing power as well as memory, and lcells are connected to immediate
neighbours to facilitate data movement within the lcell array. The interior nodes of the
physical binary tree, called tcells, co-operate with their neighbours in a largely asynchro­
nous fashion to achieve distributed string reduction. A computational cycle is realized
by a number of waveswhich sweep down from the root node of the physical tree and are
reflected upwards by the leaves. The wavefront may carry control and data information.
During its passage up and down the tree, the wavefront encounters tcells and lcells with
which it exchanges control and data information. A number (which is variable) of
sweeps is required to execute a basic Mago cycle, which can be split into the following
three phases:

(1) The partitioning phase. This examines the lcell array to determine the innermost
(reducible) sub-expressions,and allocates tcells to each such expression. An impor­
tant result of Mago's work is that each tcell will never be allocated to more than 4
sub-expressions during this phase. Microcode for the operators discovered during



8 Towards a Successor to von Neumann 131

this phase is distributed to appropriate places.

(2) The e:xecution phase. The lcells which contain a reducible expression, and the teells
sitting above them, now operate in concert to achieve distributed reduction. If the
result requires more leells than the original expression (eg if a named operator is
replaced by its FFP text), further processing is delayed until the next cycle.

(3) The storage management phase. Although this is achieved in a distributed fashion,
involving several sweeps, it is best thought of as a global operation which entirely
rearranges the text stored in the lcells to leave room for sub-expressions which grow
with reduction, and to compact those which shrink. When the whole expression
represented in the array of lcells outgrows its physical bounds, some of the expres­
sion overflows into virtual memory, presently via the leftmost eell [Darn82]. Dur­
ing the storage management phase, all execution is suspended. Once storage
management is complete, another Mago cycle begins.

The whole scheme (as Darlington once commented) is rather like a petrol engine: first
the reducible expressions are determined, then 'fuel' in the form of microcode is distri­
buted, next actual reductions (computational work) takes place, and finally (during the
'exhaust' phase) unwanted leells are reclaimed.

The Mago machine is a unique and highly original proposal. Its major features are:

(1) A global machine cycle synchronized by the physical root.

(2) Inclusion of storage management in the basic cycle.

(3) A direct 'string reduction' approach.

Although not realized in hardware, the well known planar layout scheme for a binary
tree makes the Mago machine attractive for direct VLSI realization. Considerable effort
has been made to develop analytic techniques for performance prediction [19]. This
work suggests that by clever microcoding of suitable primitives an O(n *n) time for
matrix multiplication is possible.

8.4.4 Virtual Tree Architectures (VTAs)
Parallel evaluation of a lambda-based language requires the architecture to recursively
decompose an expression into its component parts (eg arithmetic operations), evaluate
some of the components, and combine the results. The whole evaluation process may be
regarded as growing an 'evaluation tree' which first expands and then collapses to yield
the final result. The structure of the evaluation tree is defined by the original expression,
together with the evaluation order selected in the computational model. Innermost first
evaluation in its purest form completely expands the process tree until all nodes
represent primitive expressions (eg (3 +4» which can be directly reduced. Outermost
(lazy) evaluation reduces each node until further reductions necessitate the (lazy) evalua­
tion of sub-expressions, and only then instructs the necessary sub-trees to grow.

If the expression at the root node of the evaluation tree determined that (say) 5 sub­
expressions should be evaluated in parallel, we could in principle create 5 new physical
evaluators, give one sub-expression to each, and wire the 5 new evaluators to allow them
to send the results to the root node. Similarly, each new evaluator might be recursively
endowed with the same powers to create and wire in new evaluators as and when they
are needed.

Direct hardware implementation of this scheme is unrealistic, but it is possible to
simulate it using a finite, strongly connected set of physical evaluators each of which can
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support manynodes in the evaluation tree. Each evaluator has primitive off-loading and
memory management capability. The basic idea behind the Virtual Tree approach is to
wrap a possibly huge evaluation tree around a much smaller physical network. A good
VTA will initially grow the evaluation tree as fast as it can, and when all the physical
evaluators arebusy restrict further growth of the evaluation tree to avoid overloading the
physical resources (eg system queues).

Because it entirely avoids complex compile time analysis of expressions, the simplest
approach to realizing a VTA is to implement some sort of diffusion mechanism, which
uses only local communication between physical evaluators to make decisions regarding
offioading and memory management. One basis for such a scheme is a physical evalua­
tor which, left to its own devices, simulates depth-first priority parallel evaluation. When
new nodes are created in the evaluation tree they are placed on a stack in local memory,
and the uppermost node is then considered by the evaluator. Suitable modifications are
made to the parent node which remains stacked and will be reconsidered when its chil­
dren return results. An important feature of this simple scheme (which can be seen in
[20] ) is that the memory required to support it is related to the maximum depth of the
evaluation tree rather than (as with very eager schemes) the total size of the evaluation
tree. For a balanced evaluation tree, this is O(log N) which perhaps suggests that a
means of dynamic rebalancing during evaluation is desirable.

To introduce the possibility of parallel evaluation, we connect our single physical
evaluator (which simulates lots of virtual evaluators) to a small number of immediate
neighbours, each of which we endow with the power to steal work from the stacks of
immediate neighbours. In general, allowing neighbours to steal work from the upper­
most part of the stack results in fine grain diffusion, whilst the choice of lower elements
on the stack corresponds to coarse grain diffusion. Note that rather than add extra work
to an already overloaded physical processing element by asking it to take responsibility
for offioading, we make inactive neighbours actively seek to steal tasks. In order to make
good offioading decisions, each physical evaluator needs a fairly recent picture of the
workload in its vicinity. This may be maintained by forcing physical neighbours in the
architecture to exchange loading information regularly.

VTA work is particularly active in the UK. The University of East Anglia has
developed a simulation vehicle with full-colour graphics instrumentation, which shows
clearly how a simple diffusion mechanism leads to rapid and even spread of work across
the physical topology and yet governs undue exploitation of parallelism which leads oth­
erwise to huge system queues [21]. The University of Bath [20] have been developing
similar ideas although with considerably more emphasis on compile-time analysis. Bath
have recently reported a working hardware configuration [22]. The idea of preventing
communicating processes from getting separated in a physical architecture has been
traced to [23]. Both East Anglia and Bath devoted much attention in their early work to
developing physical topologies which are intuitively well suited to supporting evaluation
trees. In retrospect, this effort may be unnecessary: first, every architecture must in the
end be realized in 3-space, and second, given locality-preserving offioading, fancy topo­
logies really only help the initial 'infection' stage of the computation, during which a big
problem placed at a single node diffuses throughout the network. For interesting (huge)
problems, this represents a decreasing fraction of the run time: it is conjectured that even
a ring would support many Virtual Tree applications.
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8.4.5Shared Distributed Memory Architectures (SDMAs)
In a Shared Distributed Memory Architecture, a large number (eg 4K) of processing ele­
ments access a large number of memory elements via an advanced multistage switching
network. Schwartz (24) develops a family of extensible computers based on this idea,
and illustrates a large number of applications. The NYU (New York Ultracomputer)
project [25] is examining this SDMA approach in considerable detail, for example (26)
discusses the wireability problem and proposes a solution for 4K processing elements.

Because previous SDMA work has largely been concerned with particular applica­
tions, its potential for lambda-based languages remains largely unexplored. There
appears to be considerable potential, especially for graph-reduction schemes where
efficient support of sharing is very important. Recent changes to ALICE make it look
increasingly like an SDMA machine.

8.4.6 Novel Sequential Architectures (NSAs)
In the short term at least, the best way to 'buy speed' might be to realize some novel
approach to beta-substitution directly in conventional hardware. The SKIM (27) project
takes just this view, by implementing Turner's combinator approach [28] to beta substitu­
tion directly in hardware. The performance outpaces most conventional implementa­
tions, with notable exceptions such as the Chalmers VAX implementation (29) which
directly compiles equations into VAX machine code, and Cardelli's ML compiler (30).

An early direct hardware realization of beta-conversion is the GMD lambda machine
(31) which uses several hardware stacks. A parallel variant, which may fairly be con­
sidered a VTA, has recently been developed by Kluge (32). A joint ICLIOxford project
has recently produced a rather fast microcoding of the PERQ which supports
Henderson's LISPKIT LISP (33). Turner at Kent is currently engaged on a similar
microcoding exercise for his KRC (34) language using an Orion. KRC is notable in sup­
porting set abstraction which, as Turner has demonstrated (35) is a very powerful
language feature.

8.5 A NOTE ON LOGIC MAClDNES
Programming in a lambda-based language is accomplished by writing down an expres­
sion which denotes the desired result, and requiring the implementation of the language
to transform it into normal form. Thus, writing times(4,5), the implementation is
expected to replace this by 20. Logic-based languages such as Prolog depend on rela­
tions rather than functions. The simple example of a multiplication would be written as
times(4,5,z), and the implementation is expected to deduce that z=20. But relational
programming gives much greater generality: the multiplication predicate can just as
easily be used 'in reverse' as a factorization predicate. Writing times(x,y,20), the imple­
mentation is required to deduce that (1,20), (2,10), (4,5), (5,4), (10,2), and (20,1) are pos­
sible values of x and y. In general, a relation may be 'programmed' by writing down a
set of clauses which specify what must be proved in order to prove an instance of the
relation. Each clause specifies, for some class of instances of the relation, a set of sub­
goals, all of which must be satisfied in order to prove some instance of the relation. A
simple example is list concatenation, which may be programmed in Prolog as:

concat(NIL,x,x) ..
concat(x.y,z,x.w):- concat(y,z,w).

The first clause says that the concatenation of NIL with any list x is the same list. The
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second saysthat to show that x.w is the concatenation of x.y and z, we may show that w
is the concatenation of y and z. (In LISP terms, x.y means CONS x y so that '.' is the
Prolog infixoperator for CONS.) Suppose we supply the Prolog system with the above
program and the goal concat( 1.2.NIL,3.NIL,x}. It will match the goal against the head
of the second clause (as the first clause does not match), and will make the following
associations between the variables of the clause and those of the goal:

x ~
y ~ 2.NIL

~ 3.NIL
X.w ~ x

Note that the x which occurs in the goal is a different x from that which occurs in the
clause. It now finds that to produce an x making the original goal true, it should find a
w such that concat(2.NIL,3.NIL.w} is true, and take x = l.w. This in turn will give rise
to a new goal concat(NIL,3.NIL,v}, with w = 2.v. This goal matches the first clause for
concat, givingv = 3.NIL, and by a series of back-substitutions, x = 1.2.3.NIL.

The computation proceeds very much as it would in a lambda-based language such as
HOPE (36)where we would define a concat function by:

concat(NIL,x) = x
concat(x.y,z) = x.concat(y,z)

But there the similarity ends. There is a complete symmetry between the three
argument-places of the concat predicate. It can be used not just for concatenation, but
for splitting a list in two. concat(1.2.NIL,x,1.2.3.NIL} will be executed by Prolog to bind
x to 3.NIL, and concat(x,y,1.2.3.NIL} will split the list 1.2.3.NIL into two parts in every
possible way. Similarly, one predicate can do the work of both multiplication and fac­
torization, or both addition and subtraction.

In the example program, the right hand sides of the clauses consisted of at most one
literal (i.e. a relation symbol applied to a set of arguments). In general they may contain
several, and a set of values is sought for the variables of the clause which makes all the
literals true together. For each literal, there may be several clauses whose left hand sides
contain the same predicate as the literal. These are alternatives which must each be
matched against the literal in turn until one succeeds. The clauses of a Prolog program
thus define a tree-structured search space which the implementation must explore. This
tree has two sorts of branching: AND branching, where each of a set of sub-goals must
be completed, and OR branching, where anyone must be.

We can distinguish between the purely logical core of the language and the control
structures, implicit or explicit, which direct this exploration [37). Examples of implicit
control in sequential implementations are the ordering of literals in a clause (they are
executed from left to right) and the ordering of all the clauses having a given predicate
on their left-hand sides (they are attempted in sequence). Additionally, there is a power­
ful mechanism, CUT, allowing the programmer to discard parts of the search space, and
it is possible for a program to add or remove clauses from itself as it runs. Some imple­
mentations add further control facilities [38).

Logic programs provide obvious opportunities for parallelism. Expansion of the des­
cendants of any node in the search tree may be done simultaneously. The problem is to
decide what the appropriate control structures for directing a parallel search should be.
There have been several proposals for parallel versions of Prolog [39,40) but this area of
research is as yet not so well developed as for lambda-based languages.

A key issue here is probably what clauses constitute 'reasonable' input for a logic
machine. Warren (41) has shown that 'reasonable' logic programs can be compiled into
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efficientcode for a DEC-IO and in principle an army of chips should be able to work
fast on large logic programs. But we are much further from knowing how to 'buy speed'
for logic languages than we are for lambda-languages. Pollard [42] has considered the
problem in some detail, and the Stockholm group [43] has several active logic machine
projects. The largest single co-ordinated effort at building logic machines is currently in
Japan [44]where much of the 5th generation programme is devoted to producing efficient
logic machines, both sequential and parallel, in short order.

8.6 CONCLUSION
There is still some mileage to be gained from further developments of von Neumann
architectures. But the main conclusion must be that the increasingly active dialogue
between the designers of languages and machines evidenced above will produce a new
generation of machines which will be largely programmed in declarative style. If it turns
out that we can 'buy speed' from VLSI for declarative languages, performance considera­
tions alone will force a change. If, on the other hand, this proves to be a hard problem,
the undeniable software engineering advantages of the declarative approach will be the
major force for change.

Factors which militate against the general adoption of declarative languages include
the following:

(1) Current implementation techniques for declarative languages are relatively slow,
although the adoption of good compiling techniques, see for example [29,30,41]
has brought the factor down to 2 to 4.

(2) It is difficult with the current breed of declarative languages to express detailed
control information which is critical in some applications such as real-time process
control and database update.

In the short term, we foresee the development of 'super von-Neumann' machines
specifically designed to produce high performance for one or more declarative languages.
Such machines will follow the route taken by specialist LISP machines, and employ pipe­
lining and caching extensively. Within the next few years, such super von-Neumann
machines will rapidly reduce the perceived performance gap between classical and
declarative languages.

Concurrently with these developments, we anticipate within a decade real speedups
from novel, highly parallel architectures for declarative languages. In our view the ques­
tion is no longer if such techniques will win, but when.
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I. C. Wand

9.1 INTRODUCTION
It is generally agreed that distributed computing has been made possible by the dramatic
change in the price/performance of computing elements resulting from the recent rapid
advances in VLSI technology, and by the development of effective communications, both
over local area (LAN) and wide area networks (WAN).

Semi-conductor technology has advanced at a bewildering rate over the last 15 years.
It is now possible to buy processors for a few pounds which will outperform most of the
mainframes that were available in the 1960's. Clearly it is tempting to connect a number
of these relatively cheap processors together to achieve increased processing power, geo­
graphical separation and increased reliability. To do this, wide area and local area net­
works are required.

Wide area computer networks have been available to some researchers for several
years, although their availability to UK workers is quite recent following the establish­
ment of PSS and SERCnet. However special purpose networks have been available for
some time (e.g. banking). To date most wide area computer networks have used packet
switching technology.

Local area networks, which are intended to provide wide bandwidth over a limited
distance, have developed rapidly in recent years. Such networks make use of relatively
cheap methods of interconnection such as co-axial cable, twisted pairs, fibre optics, etc.
Unfortunately there is no agreed international standard for LANs and no single technol­
ogy yet dominates the market. Loosely coupled systems, the subject of this tutorial, are
usually connected via LAN systems.

Distributed computing systems are well suited to organizations which do not exhibit a
centralized structure. Such structures have become more common as companies have
devolved responsibilities away from the central office towards semi-independent subsidi­
aries. Clearly the computing systems used within such an organization must reflect this
devolved structure or an artificial distortion in commercial practice will develop. Local
tasks can be run and controlled by the people who understand them best; they are then
fully responsible for the results.

If processing is installed at the locations where the computing power is required, then
communications costs are reduced. Many different system architectures are possible
ranging from the use of intelligent terminals connected to a central mainframe, to placing
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powerful workstations on the desks of each worker. There are many intermediate
arrangements which might involve clusters of computers and a number of different net­
work technologies.

9.2 OBJECfIVES
LeLann [l] has listed the objectives that users expect from distributed systems:

1. Increasedperformance. This can be obtained by the use of multiple processing ele­
ments, although contention and bottlenecks are present in conventional multi­
processors with shared store or busses. Decentralized techniques of overall system
control are probably the only ones that can achieve greatly enhanced performance.
Short response time and high throughput are probably best achieved by the parti­
tioning of global system functions.

2. Extensibility. Such systems must adapt to a changing environment, although the
overall design of the system should not be changed. Alterations to the environment
might include the modification of performance requirements and the modification
of functional requirements. Any extensibility will require some kind of modular
architecture, which will provide a simpler system design and ease installation (and
subsequent maintenance).

3. Availability. Hardware has become more reliable as technology has advanced;
furthermore reliability can be enhanced by duplicating or triplicating vital
hardware. Similar progress is now being made with software [2] by providing
checkpoints, roll-back, and other specialized recovery mechanisms. Clearly distri­
buted or multi-processor systems can be used for consistency checking so that fail­
soft computing is available.

4. Resource Sharing. A resource may be a low-level physical device such as a peri­
pheral or it may be a complex item such as a filing system. Such resources may be
allocated statically (at system generation time) or they may be allocated dynami­
cally. The system requires a mechanism whereby optimal and dynamic resource
allocation can be achieved with associated optimal sharing.

9.3 A MODEL FOR DISTRIBUTED SYSTEM ARCIDTECI1JRES
Watson [3] has described a model for distributed systems architecture which contains
three dimensions. One axis is concerned with a set of logical layers, where each layer
and sublayer has design and implementation issues of its own. In addition there are a
set of issues common to all layers. Watson describes this axis as being perpendicular to
that describing the individual layers. The third axis is said to describe global interac­
tions of various parts of the system. It is the first and second axes which we describe
here.

9.3.1 Layers, Interfaces and Abstract Objects
The concept of layers of design or levels of abstraction has long been accepted as good
software engineering practice. Layers have a number of advantages, including:
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1. The internal structures, including the algorithms, are not visible to other layers.
Therefore we have separation of concerns.

2. Complex systems can be broken down into simpler pieces.

3. Testing and analysis can proceed a layer at a time.

The service provided at any particular layer can be further decomposed into modules.
The decomposition of a system into layers and modules is somewhat arbitrary, although
guidelines are suggested in the ISO Reference Model [4]. This decomposition requires
the identification of interfaces both between adjacent layers and between modules within
a given layer. An interface consists of:

1. A set of visible abstract objects, together with operations and parameters.

2. The rules governing the legal sequences of these operations.

3. The encoding and formatting required for operations and parameters.

Distributed systems provide access to real and abstract objects or to resources where the
distributed nature of the system is often hidden as much as possible. Real objects are
entities such as processors, 110 devices, etc., whereas abstract objects are entities such as
files, directories, etc. Abstract objects can be used as basic building blocks for creating
higher level objects. A particular object type is implemented by a group of modules
together called an object manager or server. Note that the implementation details of a
resource representation are only of concern to a particular server.

Two kinds of object are possible:

1. Active, where the distributed system model is of a process which can be thought to
be executing on a real or virtual processor.

2. Passive, such as an 110 device, a communications channel or a file.

All communication is between processes via interprocess communication (lPC) using
messages as requests and replies. Even when the remote procedure call model is used, it
can be described in terms of messages being exchanged. A particular process can be a
server or a customer/client at different times. Messages that contain directives are called
control messages; these can be distinguished from data messages, which contain informa­
tion that is simply passed on or is used. As Watson [3] points out, data messages are
logically just parameters of requests and replies, which because of their size, are sent
separately.

9.4 THE MODEL LAYERS
The model is made up of several basic layers, each of which is discussed in turn.

9.4.1 Applications Layer
The services provided by this layer depend upon the particular application being con­
sidered. In turn it will determine the services to be provided by the lower layers.

As Watson remarks, there are few distributed applications in the true sense, although
the following design areas can be identified as important.
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1. Applicationstructure, in which the important questions are: how should processing
be distributed? How should application processes be organized for control and
communication? How should data be distributed? What mechanisms are required
to support different data and processing organizations?

2. Language issues, in particular what language features are necessary to support dis­
tributed processing beyond those required in languages that are used in uni­
processor systems. One possible objective of any such languages would be to pro­
vide a view from which the system appears to be non-distributed to the user. A
further requirement may be to give the user the ability to specify the placement of
data and its visibility hence providing both control and performance.

9.4.2 Distributed Operating System
This layer will provide all the services needed by the distributed servers. The layer will
build upon kernel component drivers, and will communicate with higher level objects via
the message-based IPC.

The characteristics of distributed operating systems are quite similar to those of non­
distributed systems, and the relationship between the application program and the
operating system is likely to be roughly similar in the two environments. The major new
issues are those of internal organization and implementation.

Important issues in the design and construction of a distributed operating system
layer are:

1. The resource model.

2. The server model, together with the Customer-Server Interaction Model.

3. The distributed system kernel, including the IPC service and interface, the network
and the associated protocols.

9.4.3 Hardware/ Firmware Components
Most components used in computing systems have been designed for use in single pro­
cessor or closely coupled non-distributed systems. Of course most can be used in distri­
buted systems, although their design is not always suited to a message-orientated distri­
buted environment. Many aspects of low-level components could be improved when
used in a distributed environment including: structures that will deal with efficient IPCs
and the representation! encoding of the related data; structures that will support system
state information; and mechanisms to provide access control, security, etc.

9.5 ISSUES WITIllN EACH LAYER

9.5.1 Naming
An identifier is a symbol used to designate or reference an object; it can be used for a
wide variety of purposes, including protection, error control, resource management, locat­
ing resources, and as a way to build composite objects from simpler components. Furth­
ermore, identifiers can be used at all levels in a system; at the bottom level they will be
machine addresses. Names can often be used within a local context; other names will be
unique within the whole system.
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9.5.2 Error Control
Error control is used to detect and to attempt to recover from errors at all levels in the
system. No single error control mechanism would appear to be appropriate for all layers
in a system. There are particular problems in a distributed environment, namely:

1. Names may be re-used.

2. Error control must be maintained during periods of delay, message errors, system
crashes, etc.

3. The communications medium may cause damage to the error control information,
including mis-sequencing.

Clearly protocols supporting the IPC mechanism via end-to-end protocols require
mechanisms to guard against lost information. One obvious mechanism is the retry.

A full discussion of these reliability issues is given in Anderson and Lee [2].

9.5.3 Resource Management
Each layer in a system is responsible for the appropriate management of buffer space,
communication channel access, address space, etc. Allocation and scheduling is usually
carried out locally because allocation on a global basis is not well understood. Watson
concludes that the mechanisms which will achieve both low delay and high throughput
will require long term retention of some state information and some preallocation of
resources and functionality in various layers. Cacheing and demand allocation strategies
are possible ways of achieving the appropriate delay-throughput balance. Clearly some
form of flow control will required to prevent congestion.

9.5.4 Synchronization
The term synchronization is usually used to describe mechanisms by which cooperating
processes share resources or share events. In a non-distributed system, the problem is
straightforward as all processes see the same system state. This is not the case in a dis­
tributed system, even when there are no errors or node failures in the associated network.

When errors, including message damage or mis-sequencing, are introduced, the prob­
lem becomes much more difficult. Clearly there is a strong interaction between error
control and synchronization; the problem becomes more difficult when the number of
nodes exceed two.

9.5.5 Protection
The same degree of protection will be required in a distributed and a non-distributed
system, although in the former case these will be much complicated by the problems of
physical distribution and heterogeneity.

Within a single processor, either all processes are equally trustworthy or they can
access each other through a well defined, reliable interface such as an IPC mechanism.
Assuming that the kernel operating system running on each node and the servers can be
trusted, then encryption can be used at all levels to protect the information and the
overall system.

An alternative system uses capability techniques [5] where the possession of a capabil­
ity gives the right of access. In a uni-processor system these can be administered by the
kernel alone, although in a distributed system they can no longer be kept in a trusted
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place. Of course, servers can encrypt capabilities or use passwords to protect them
against forgery.

9.5.6 ObjectRepresentation
At each levelin the system, objects will be defined. These may be files, processes or
directionsat the higher-level or they may be packets at the IPC level.Usually type infor­
mation willbe passed to indicate the form of translation required with a header/body
structure beingrequired. Communication objects can be considered to be either data or
control information.

9.6 GWBAL ISSUES
Important globalissues include:
1. What is the relationship between local schedulingand resourceallocationon global

performance?
2. Howandwhen should objects be movedfrom node to node?
3. Whenmultiplecopies of filesexist,how can global consistencybe maintained?
4. Are globalname servers required?
5. What is the correct layering of the overall system architecture and what are the

interlaces?
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10.1INTRODUcnON
A physical data link between computers is a prerequisite of many distributed computer
system architectures. During the last few years, local area network technologies have
provided the means to access a remote computer with latency and transfer rates com­
mensurate with those provided by a local hard disc. Although we shall see in this
chapter that higher-level protocols usually hide the implementation details of the physical
link layer, the potential communications performance opens up opportunities for
cooperative working between computers that would be infeasible with slow links.

In this chapter we shall concentrate on the Cambridge Ring local area network [1,2].
A brief review of other local area network technologies is presented, but a more detailed
description of alternative approaches can be found in [3]. Cambridge Rings are installed
in a number of U.K. Universities and companies; components are available commer­
cially; and development is being supported by the UK Science and Engineering Research
Council. The Ring work undertaken at the University of Kent is particularly notable
both for its pioneering role in a service environment and its contribution to software and
hardware products.

We shall adopt a bottom-up presentation of the Cambridge Ring, starting with the
physical level and discussing subsequently the design of higher level protocols. Two
approaches to protocol design will be described; the first is based upon the adoption of
international standards, and the second based upon remote procedure calls. We shall
then discuss the performance of the ring, including both theoretical and practical results.

Over the last few years, several variants of the Cambridge Ring have appeared. In an
attempt to discourage further divergence, the Science and Engineering Research Council
with the Joint Network Team of the Computer Board and Research Councils, have pub­
lished a recommended standard specification for Ring hardware interfaces and for cer­
tain protocols [4,5]. In this chapter, these recommendations will be described unless
stated otherwise.

The Ethernet [6] was developed at Xerox Palo Alto Research Centre from about 1972
onwards; related designs have also appeared e.g. [7]. A cooperative effort involving Digi­
tal Equipment Corporation, Intel and Xerox has produced an "Ethernet Specification"
[8], in effect as an intended standards proposal. More recently, Subcommittee 3 of IEEE
Committee 802 has dealt with what is generally known as "Ethernet". In practice, it is
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likely that therecommendations of this Subcommittee will be accepted as the standard;
for example certain changes proposed by this group have now been adopted in commer­
cial integrated circuit designs.

The Ethernet uses a shared passive communications channel (the "ether") for which
stations wishing to transmit must contend. To acquire the ether, a station listens until
the ether is quiet (i.e. no other transmissions are in progress), when it immediately begins
to transmit. It is possible nevertheless for a collision to occur for two reasons: first an
erroneous station may start to transmit at any time; and second, two stations may start
to transmit on a quiet ether at approximately the same time. Due to electrical propaga­
tion delays, each only detects the collision (by detecting signal distortion) a little later.
The maximum time interval is called the collision window. As soon as a collision is
detected, the stations abort their transmissions, and each reschedules theirs a pseudo­
random interval later. Stations recognize transmissions intended for them by inspecting
the packet addresses. Higher level protocols will (as usual) deal with errors, corruption,
receiver not listening etc. A number of performance studies and measurements of Ether­
nets (and Ethernet-like systems) have been undertaken; see for example [9,10].

Token passing rings represent an important class of networks. A token (usually a dis­
tinctive header) circulates a ring-organized network. Any node wishing to transmit must
capture the token (i.e. alter the header); it then has exclusive use of the network until it
releases the token. Care must be taken to ensure that the loop contains exactly one
token.

A further category of network topology is the store and forward mesh. This is more
commonly found in wide area networks but can be used locally. An example is a campus
network based on X25. Such systems have been installed in several UK Universities,
and Universities have contributed to X25 developments. For example, the research
group at University College London under Prof. Kirstein was influential in the early
design of X25 and implementations were undertaken. At the University of Kent, X25 to
Ring gateways were produced, and at the University of York an implementation of X25
under UNIX has been released.

10.2 THE CAMBRIDGE RING

10.2.1 Hardware Mechanisms
At the lowest level, the communications link consists of a number of repeaters connected
by a cable, the complete link forming a closed loop (Figure 10-1). The cable uses two
twisted pairs to carry the signal unidirectionally. The modulation scheme is a form of
phase modulation. Each balanced pair carries a nominal rectangular wave; when a
change in both signals is present, a logical '1' is indicated, while a change in only one
pair indicates a logical '0'. The direction of the change is not relevant, and to avoid long
periods of D.C. when sending continuous logical 'O's, the single change is alternated
between the pairs (Figure 10-2).

The data is transmitted at IOMbits per second, and since each bit is denoted by a
change on at least one pair, the modulation code is 'self-clocking', i.e. a 10 MHz clock is
carried with the signals. The two twisted pairs operate at a potential difference of 28
volts, which is maintained at several sites around the ring by simple D.C. power supplies.
The repeaters obtain their D.C. power from the ring, thereby being independent of the
mains supply in the building in which they are housed. The basic operation of the ring
is thus ensured as long as sufficient 28V power supplies remain active (Figure 10-3).
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At this level, the ring behaves as a large shift register, with storage provided by the
cable and repeaters. The repeaters perform two functions: first they regenerate the sig­
nals; and second they provide the means of injecting data into the ring and extracting
data from it, in demodulated bit-serial form (i.e. NRZ with separate clock). Using ordi­
nary telephone cable, runs of up to 200m between repeaters are possible, although at
Keele University the use of high quality signal cable has enabled runs of up to 400m
without problems.
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A minipacket structure is imposed on the underlying circulating data by stations inter­

posed between repeaters and host computers. Data is always transmitted in fixed-length
minipackets of 40 bits, and there are a fixed number of minipackets in a ring (deter­
mined by the electrical length of the ring installation). A special station called a monitor
ensures a clean start-up of the ring, as well as detecting a limited class of errors. A ring
will not operate if this critical component fails (so in practice it is important to hold a
second monitor station for rapid substitution when problems arise).

10.2.2 Minipacket Operation
Each station in a ring is given a unique integer address in the range I to 254. When a
station wishes to transmit, it awaits an "empty" minipacket; this minipacket is set to
"full", and two bytes of data are inserted. The minipacket travels to the destination
where the data is copied (usually) and the minipacket returns to the sender. The
transmitting station now sets this minipacket to "empty" again as well as comparing the
incoming minipacket contents with that sent out (raising an error if corruption is
detected). A station cannot immediately re-use a minipacket and no station can swamp
the ring with traffic. In addition, the minipacket after the one just emptied cannot be
used either (because the station cannot react to the full/ empty bit so soon after the
response bits of the previous packet), so for an S-minipacket ring, the maximum point­
to-point data rate is 4/(S+2) Mbits per second. Note that a transmitter has at most one
minipacket in flight at any time. The minipacket structure is :

type byte = 0..255;
type minipacket = record

header: 0..1; {permanently "I"}
full/ empty : 0..1;
monitor passed : 0..1;
destination : byte;
source : byte;
data high : byte;
data low : byte;
response: 0..3;
type: 0..3;
parity: 0..1 {even parity}

end

The header bit exists for synchronization purposes. The full/ empty bit indicates the
state of the rninipacket as described above. The ordering of fields is chosen carefully so
that minipackets may be transmitted and received "on the fly". The destination byte, as
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well as the high and low data bytes and the type bits, are filled under program control
from the host computer. The source byte is inserted by the transmitting station and may
be read at the receiver by the host. Several facilities are included for low-level error
detection (e.g.monitor passed and parity bits).

Each station has as part of its receive function a source select register (SSR) which is
set under host control to one from three sets of values. The SSR determines, in part, the
response of the receiver to an incoming minipacket.

Value

o
1-254
255

Meaning

listen to no-one
listen to named station
listen to all

The response bits in the minipacket indicate the action at the station identified by the
'destination' field as follows

Response bits Meaning

1 I
1 0
o 1
o 0

ignored (as sent out)
rejected (due to SSR)
accepted
busy

If there is no station with the specified address, the response will be "ignored". Other­
wise, if SSR is set to exclude the transmitter the response will be "rejected". Third, the
receiver station may not yet have emptied its buffer, and a response of "busy" will be
returned. In some station designs, the transmitter will automatically retry the mini­
packet, with some form of back-off to avoid using excessive ring bandwidth. Finally, the
minipacket may be "accepted".

10.2.3 Node Structure
The station provides a parallel data interface to the host computer. Since direct connec­
tion is unlikely, an interface unit (sometimes called an access logic unit) is interposed
(Figure 104). Two types of station interface are in common use; these are referred to as
"Type 1" and "Type 2" and are distinguished by the details of the electrical signals. The
station interface provides signals for both data and gating, so that information required
to transmit a minipacket and information from a received packet may be transferred.

The Type 1 interface permits the connection of a typical 8-bit bus-structured mini­
computer to a ring station using only a few TTL chips; see for example [11]. The regis­
ters of the station are mapped into the address space of the microprocessor allowing sim­
ple control from software.

10.3 PROTOCOLS
In distributed computer systems, two approaches to the design of communications proto­
cols are taken. The first follows the route of standardization, and is heavily influenced
by the ISO-OSI seven layer model. Thus at the level of the transport layer interface,
local area networks will not be distinguishable from wide area networks (apart perhaps
from their performance). We shall not consider this approach in detail here; Tanenbaum
[12] for example gives a good introduction to the ISO-OSI model and terminology, and
[5] shows how the transport level interface [13] may be mapped onto the Cambridge
Ring. Also, the ISO protocols have generally been designed to optimize the use of
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networks characterized by low bandwidth, low throughput and high error rate and these
protocols may notably and unnecessarily affect performance in a local area network, giv­
ing a poor throughput under ideal conditions.

In the second approach, the requirements for a distributed system are identified, and
appropriate protocols are designed to fulfil them. An important class of requirements is
demanded by inter-process communication and we shall spend some time discussing
these. In both approaches, a simple data link level of protocol called "P-Iayer" protocol
is in popular use, so we shall describe this briefly first of all.

10.3.1 P-Iayer Protocol
The P-Iayer protocol is derived from an older "Basic Block" protocol which is similar in
principle, but differs in detail e.g. in the length of some of the fields. A packet is
defined by:
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type
type
type

octet
16-bit

'packet

= 0..255;
= 0..216-1;
= record
header: 16-bit = Hex 9C99;
size: 16-bit;
port: 16-bit;
data: [1..size+ I] of octet;
pad: octet; (only if size is even)
checksum: 16-bit
end

The checksum is an end-around-carry sum, not a cyclic redundancy remainder. The
semantics of the P-layer packet are "best effort to deliver". Although the returning mini­
packets provide a mechanism for flow control and acknowledgement, extra minipackets
may erroneously arrive at the receiver; a block may escape the checks of the sumcheck;
recognition of headers may present difficulties, and so on.

10.3.2 Inter-process Communication
In a wide class of distributed systems, processes are executed on a collection of comput­
ers. It is necessary for the processes to communicate with each other to transmit data
and to synchronize. It is not the intention here to discuss process models in distributed
systems. However, Lauer and Needham [14] have argued that many operating system
designs fall into one of two broad categories: message-passing or procedure-orientated.
They then argue that each characteristic of a message-passing system has a dual in the
procedure-based system. In this chapter we shall consider in more detail the procedure­
orientated model, concentrating in particular on the provision of a remote procedure call
(RPC) facility. The discussion will be based heavily on the work of Panzieri and Shrivas­
tava [15,16] although the scheme described by Blair [17] is also acknowledged. In both
cases, distributed operating systems were being constructed on top of an existing local
operating system, UNIX [18], which provided a procedure call mechanism to all ser­
vices. It thus made sense to provide a uniform interface to both local and remote ser­
vices - in other words to provide a remote procedure call which was indistinguishable
from a local call.

Although our description of protocol design is top-down, starting from the require­
ments to provide an RPC, it is important to note that this can be taken one stage further
in the so-called 'end-to-end argument'. Saltzer [19] suggests that efficient protocol
designs can only be justified by considering the applications for which they are required.
A layered approach may replicate checks in each layer, yet more are required by the
application. For example, if a user wishes to read a file, the only message sent to the tar­
get site could be a read request. The acknowledgement is implied in the arrival of the
requested data. In the LOCUS system [20], the use of protocols based on the above
argument is supported by its authors.

10.3.3 Remote Procedure Calls
In this section, the caller is termed the "client" and the called object is termed the
"server". An RPC basically involves sending the client's request (the procedure parame­
ters) to the appropriate port identifying the service at the appropriate server. The server
performs some work, and later returns the" results to the client. During the call, the
client's execution is suspended. Issues of naming (i.e. to identify the server/port) are not



154 Loosely-CoupledSystems

discussedhere;for further details, see for example[21].
A distributedsystem is characterized by the possibility of partial failure; either the

client or theserver(or both) may crash during the call. In addition there will in general
be errors on the communications link, requiring multiple transmissionof the same mes­
sage. In [16)the reliability requirements are defined:
Rl: The client'srequest message must include a sequence number which must match

that of the corresponding result message(note : all retries of the messagecontain
the samesequencenumber).

R2: Sequencenumbers must survivenode crashes.
The sequencenumbering allows the server to detect and reject duplicated messages.
Additionallyif the client crashes during a call an "orphan" execution continues at the
server. In order to effect an 'exactly once' RPC semantics,a third requirement in addi­
tion to Rl andR2 must be met:
R3: A servermust detect an orphan, and undo the work done before accepting a new

call.
The design in [16)does not meet requirementR3 at the RPC level; instead orphans are
handled at a higher level which deals with the atomicity of user programs. The imple­
mentation of the RPC is now quite straightforward,using the P-service(for example)of
the CambridgeRing. The semantics are thus "at most once".

The only remainingproblem is that of generating sequencenumbers. A combination
of the uniquenode number (e.g. ring station address) and the current clock value is sug­
gested; a broadcast algorithm is required to keep clocks in the required degree of syn­
chronizationwhilst coping with "runaway" clocks. Each node maintains a list of the
latest sequencenumbers from everyactivemode.

10.3.4 Multiple Networks
In the previous section, the application level requirement for remote procedure call was
provided in terms of the Cambridge Ring P-Iayer service. A realistic distributed system
should not be tied to one network technology,and in the generalcase there may be more
than one networkbetween the client and the server. Different networksmay be used to
call a different server,and may includelocal and wide area networks.

Panzieri and Randell have recently [22]proposed an interface for use within UNIX
user programs whichhides the actual communicationsprotocols used over each network.
The approach is of wider interest than UNIX (United) however. At the higher level,
remote procedure calls are implementedin terms of lower level network-specificdrivers
e.g. for X25, simpleserial lines, Ethernet etc. The P-Ievelservicefor the CambridgeRing
also is regarded as a network-specificdriver. Each of these lower level drivers has an
associated adaptor program which maps the network-specificinterface into a single
network-independent interface(the kernel interface). Note that at this kernel level, the
different networks are still visible,but we now have a single synchronousprocedure call
mechanismfor all of them.

Thus the adaptor interfaceprovidessimpleprimitivesfor sendingand receiving(possi­
bly large) datagrams, using a simplestandardizednetwork addressingschemebased on a
<host number, port number> pair (Figure 10-5).
An attractive feature of theNewcastledesign is that it includesa specificwell-defined

programming interface to the network adaptors. Also, it is a top-down approach in
which the various issues are separated and dealt with at different levels. Thus the
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application program is concernedwith the issue of transaction units and atomicity. The
application could employ a server whose actions are idempotent, thus simplifying the
handling of orphan servers.

At the next level, the RPC handler provides an 'at most once' call to the remote pro­
cess, independently of the underlying network. The RPC is implemented in terms of a
network-independentdatagram service. Communicationsissuesparticular to the network
are dealt with by the network-specificdriver, which also provides a network-specificpro­
gramminginterface. The adaptor then maps the network-independentinterface into this.
For example,if a network specificdriver provides accessto an X25 packet switchingnet­
work, it may incorporate an X25 driver whose interface supports virtual circuits between
pairs of host computers. The adaptor for this driver provides to higher levels the
abstraction of a uniform datagram service.

Note that the adaptors do not attempt to unify many networks; each network is still
visible at the levelof serviceprovidedby the adaptors, although a singlenaming conven­
tion is used for all networks. A remote serviceis thus identifiedby the triple (adaptor,
host number, port number).

10.4 PERFORMANCE ISSUES
It was noted at the start of this chapter that high speed local area networks were an
"enabling technology" for distributed computer systems. The performance offered in
practice by local area networksis thus of considerableimportance and has been the sub­
ject of a number of studies. The results of some of these concerned especiallywith the
CambridgeRing are presented in this section.It willbecomeapparent that to measureor
model the ring performance in isolation is not of great interest. The characteristicsof
the hardware and software at the transmitter and receivermust be incorporated in order
to achieveresultsof importance.
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10.4.1 Interrupt-per-minipacket Access Logic
The simplest way to connect a host computer to a Cambridge Ring Station is to map the
station registers into the memory space of the host (e.g. [11]). All processing of the
minipackets is carried out by the host. Brereton [23] reported measurements taken
between user processes running on two LSIlI/02 host computers attached to a ring by
such interfaces. For a block size of 512 bytes, the transfer rate was 1.45
kilobytes/second. For comparison, a local transfer of a similarly sized block gave 26.3
kilobytes/second. These results are dominated by the time taken to service an interrupt
from the arrival or departure of each minipacket. The use of polling improves the perfor­
mance (but not dramatically). It is concluded that hardware and software techniques of
commensurate performance to the ring must be used in the hosts to exploit its high
speed potential.

Following the above rather discouraging measurements, simulation studies were car­
ried out at Keele [24] to explore the high-performance limitations of the ring. The
rationale for the simulation is based on the contention caused not by the ring itself but
by the receiver, due to SSR being set. Three queue scheduling policies at the transmitter
were investigated : cyclic; longest queue first; and oldest queue first. One queue per des­
tination station was assumed.

It was concluded from the study that the cyclic queue policy is best. For a small
number of hosts, the ring should provide a satisfactory communications system even at
high demand rates. At low demand rates, the ring under the "basic block" protocol per­
forms an order of magnitude faster than a disc transfer with head movement, under the
(possibly unrealistic) assumption that a node can receive at maximum rate.

An alternative strategy at the receiver is to omit setting SSR on receipt of a header.
The receiver must then be responsible for inspecting each incoming packet and adding it
to an appropriate buffer ("unzipping"). This now introduces contention on a minipacket
basis. Singleton and Peake [25] modelled this strategy under the cyclic transmit queue
policy. Briefly it was concluded that at low ring utilization there is no significant
difference; it is only at very high utilization that the unzipping method becomes superior.
However the model did not include any extra overhead for processing the minipacket at
the receiver, which may be unrealistic. Additionally, the 'SSR' method is well suited to
special hardware support using an outboard processor to implement the P-level proto­
col; the hardware for the unzipping approach looks much more complex. DMA tech­
niques to handle basic blocks in some form of outboard processor are essential to reach
the performance levels suggested in this section. Calculation of the checksum on the fly,
repeated retry on "busy" status etc. are relatively straightforward to achieve.

10.4.2 Other Work
In [26] Temple reports on measurements made on the ring installed in the Computing
Laboratory at Cambridge, in particular concerning the number of minipackets circulating
the ring. In [27], it is argued that the optimum size for minipackets is around 8 bytes,
offering a trade-off between an increase in effective bandwidth and fragmentation. It is
reported that at Cambridge University a prototype ring provides a means of altering the
minipacket size to between 1 and 8 data bytes. Mayne [28] describes a model for Basic
Block timeouts, which shows the importance of choosing the values correctly to avoid
lock-out.

In [29] a comparison of the performances of the Cambridge Ring and Ethernet is
described, based on a simulation model. The protocol assumed the 'Basic Block' scheme
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described earlier. A Poisson distribution for the message arrival is used, with uniform
distribution amongst the receiver stations. Details of the queueing discipline are not
given. As with the Keele simulation, blocking actually within the receiver is not
modelled, and conventional use of the SSR with the Cambridge Ring is assumed.

The first set of experiments take a 16-byte block and investigate the delay provided
for a given offered load. A speed of 10MHz is assumed for both the Ring and Ethernet.
The Ring is much less sensitive to the number of stations than Ethernet. Generally how­
ever the Ethernet offers lower average delays. In further experiments, the effect of vary­
ing the message size is investigated. The Ethernet offers much greater efficiency for the
transmission of 128 byte blocks, measured by the average delay time. However for the
Ring, the transmission efficiency of 16 byte and 128 byte blocks is almost the same, as
measured by the normalized delay ( =delay/message length). This is due to the effect of
the fixed length 2 byte minipackets.

It is concluded from economic arguments that it is reasonable to compare a lOMHz
Ring with a 3MHz Ethernet. It would seem that, according to the model, the mean
delay of the Ring is significantly better than that of Ethernet. At Strathclyde University,
a local area network configuration has been established [7] which incorporates both a
Cambridge Ring and "Strathnet", an Ethernet-like network. This will allow direct com­
parison of performance, though no results have yet been published.

Work by King and Mitrani [30] on modelling the Cambridge Ring has led to interest­
ing results. The first part of the paper models the basic Ring hardware using a closed
loop queueing network with 2 nodes and N jobs, where N = number of stations. The
paper discusses appropriate functions for the server, and results from analytical solutions
are compared with simulation studies. King and Mitrani also model the Ring at the
Basic Block level, again using a closed queuing network. Good agreement is found
between the results of this model and a simulation. An interesting comparison is made
between the model and a model of a token-passing ring. For a two station Ring,
response times are plotted against the coefficient of variation of the message length distri­
bution. The Cambridge Ring has a constant response time, which is worse than the
token ring when the coefficient of variation is small, but better for a larger coefficient.

10.5 DEVELOPMENTS
A number of developments of the Cambridge Ring have been proposed, though not all
have been published. It is hoped that the Ring station, and repeater can be implemented
on a very small number of special purpose chips, thereby reducing the node cost consid­
erably. The technology of the Cambridge Ring (TIL) could be enhanced, and in con­
junction with fibre-optic links it is possible that much higher speeds than lOMHz are
attainable. The minipacket length could be extended; in one proposal that is understood
to be under investigation in Cambridge, the current 40 bit minipacket would coexist
alongside "long minipackets" which could be used (for example) to send complete disc
blocks. This would move the Ring towards the 'token-passing' type of architecture,
which could improve latency and transfer rates for large blocks, though the Ring would
lose its attribute of a predictable lower limit on point-to-point bandwidth as well as an
upper limit.

As the use of local area networks grows, the problems of internetworking, including
connections to wide area networks, become of importance. In the UNIVERSE project
[31], several Cambridge Rings in the UK were connected via lMbit/second satellite
links. At the London site, four rings were used, with inter-ring bridges among them, and
also bridges to the PSS and SERCNET wide area networks. For further details of this
project, see [32].
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10.6 CONCLUSIONS
Attention hasbeen concentrated on local area networks and especially on the Cambridge
Ring. A top-down approach to protocol design has been described, motivated by the
requirements of a distributed operating system incorporating communicating distributed
processes. Other applications may have different requirements (e.g. distributed process
control) but the strategy of top-down design may still be valid. An important advantage
of this approach is that it has kept network-dependent issues separate from network­
independent issues. However the applications have all been concerned with homogene­
ous systems. The problem of heterogeneous linked systems is regarded as another
separate issue,which layers 5 to 7 of the ISO-OSI model address; they have not been
considered in this chapter.

The top-down approach does not however argue that the method of communication is
irrelevant and that performance can be ignored. If the high bandwidth of current tech­
nologies (let alone higher speed derivatives) is to be exploited fully, the performance of
all communications hardware and software must be considered. This remains a challeng­
ing development area.
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11 Distributed Filestores

K.H.Bennett

11.1 MOTIVATION
In any computer system, secondary storage performs three key functions, as a repository
for data, as an extension of main memory and as a means of inter-user communication.
The user view (how it performs, how reliable it is, for example) is critical to the success
not only of the filestore but of the whole system. This is no less true of a distributed
computer system than of a single stand-alone machine. The ability on one machine to
access a file stored on another is often considered to be an important facility of a distri­
buted system.

We shall begin this chapter by defining terms and then discussing important issues in
filestore design. We shall then examine several filestore designs representing different
approaches and emphases. The general issue of reliability will receive particular atten­
tion. The early sections of this chapter and the description of the Keele filestore are
largely based on [I).

11.1.1 Filestores, Fileservers and Files
A .filestore will be considered as a repository for data, providing a mnemonic (user­
arbitrary) naming scheme for files. There will be some means of protecting data from
unauthorized access, plus some means of allowing clients of a shared file to ensure con­
sistent update of data. A .file will be taken to be a user-arbitrary sequence of bytes
which is stored by the filestore under a given name (or names), and not interpreted by
the filestore.

A .fileserver will be taken to mean a repository, where files can be stored, and which
provides an index address for files contained in it. This address may contain authoriza­
tion information. A directory server will provide a mapping from user-arbitrary
mnemonics to the fileserver index, and provide data protection, perhaps using any
authorization facilities provided by the fileserver.
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11.1.2 Naming

The naming of files in a filestore (and in a fileserver) is an issue of great importance;
many of the new problems in a distributed filestore are concerned with naming. In this
section the basicconcepts are introduced, using the approach of [2].

A name is an identifier, typically a character string or integer, used to refer to an
object. An object may have more than one name; a name may refer to more than one
object but this can lead to ambiguities which must be resolved in practice. A context is
defined as a mapping from a set of names to a set of objects. A common example is a
directory in a UNIX-style filestore which maps filenames to files. A context may well
map a name to another context. For example, a directory in a filestore may name other
directories, often referred to as subdirectories. In this case we have a naming network.
This allows reference to an object indirectly via a path name. A path name is a sequence
of names, where all but the last name is the name of a context; this is illustrated by the
UNIX filestore, where /usr/fs/keith/myfile refers to the file myfile in the directory
/usr/fs/keith. If there is a particular context in a naming network from which all
objects can be named then that context is called a root. The instantiation of a mapping
in a context is called binding. The time at which binding is performed has a large impact
on the properties of the system. A static binding, applied when the object is declared, is
often efficient,but restricts relocation and other system changes. Dynamic binding is per­
formed when the object is used allowing greater flexibility but at the cost of applying the
binding at each use. Since several contexts may be involved in the mapping of a name
to the eventual object, a spectrum of binding possibilities exists.

By an address, we mean a name which is system generated. Intuitively, an address
refers to the location of an object, but this is not always the case. An example of an
address in UNIX is an i-node number, which refers to a file on disc. The i-node number
itself is not sufficient to locate the data in a file and it is necessary to use the i-list as a
mapping from i-node to blocks of data on the disc. The i-node number is not usually
referred to directly by a user, but is obtained from a directory which maps names to i­
node numbers. In practice the implementation of a context, such as a directory in a
filestore, may not provide a direct mapping from name to object, but from name to
address (which is but another name). That address may have to be interpreted in
another context in order to access the object. For example, UNIX directories map
names to i-nodes, which in turn map to files.

There is widespread use of the idea of a unique identifier (example: a CPU serial
number). A unique identifier is a name in a single global context which names all
objects in the system. Its advantage is that it provides an unambiguous way of identify­
ing any object in the system. Typically, a unique identifier is a fixed length integer
chosen to be large enough to exceed the number of objects ever likely to be created by
the system.

Shoch [3] has further categorized identifiers into names, addresses and routes. A
name refers to an object; an address refers to its location; a route refers to the means of
finding the address once we know what it is.

At a given layer in the architecture of a system, contexts can be hierarchical or flat
(unique identifier). The latter is simple, but there are problems in a distributed system of
generating system-wide unique identifiers. (How does one ensure that the serial numbers
of CPUs are indeed unique?). Context tables can become very large. Hierarchical con­
texts have an important advantage in that they are readily extensible.
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11.1.3 Protection
In a system which is shared among a number of users, the issue of data protection is
important. Individuals should be limited to the data they are permitted to access. This
is to prevent reading of confidential data, to prevent inadvertent update of another
person's data or, in extreme circumstances, to prevent malicious update of another
person's data.

11.1.4 Consistency
A filestore is said to be consistent if it satisfies a set of conditions called consistency con­
straints. These constraints are arbitrarily chosen, but intuitively state that the filestore
(or database) behaves sensibly. Consistency constraints can be considered to form part
of the specification of the filestore. It is often the case that a filestore must pass through
inconsistent states. For example, a transfer of money between accounts may leave a
ledger file inconsistent between the times of debiting one account and crediting of the
other.

To overcome this, operations are usually grouped into "logical transactions" which are
similar to atomic actions with the added property that they transform the filestore from
one consistent state to another. Atomicity includes the property that an operation
succeeds completely, or has no effect at all, so that inconsistent intermediate states are
not important (the recoverability property). A second atomicity property ("serializabil­
ity") is that two independent transactions operating on the same data concurrently will
have the same effect as if one transaction had completed operations on the data before
the other commenced. Techniques to implement atomic transactions are discussed later.

11.2 ISSUES IN DISTRIBUTED FILESTORE DESIGN

11.2.1 Data Placement
If the distributed filestore consists of a fileserver on a single computer then data place­
ment is simply concerned with disc space management. In a filestore in which data is (in
some way) spread across several linked computers, mechanisms must be designed to
place data according to some policy decision. For example, the optimization of perfor­
mance is a sensible objective which might be met by trying to keep a process and its data
as "near" as possible to each other. However, physical proximity is not necessarily an
adequate definition of nearness. On a high speed local area network, accessing a remote
file may be little slower than a local file, and there is unlikely to be much difference in
accessing two files on two similar remote nodes. Where the physical network provides
significant delay either on latency or on transmission rate, then a distinction between
local and remote is useful. A further aspect of performance could be the relative loading
on the nodes which contain the filestore. If two copies of a file exist, it would be advan­
tageous to access the file copy on the node with the lesser loading.

Reliability may be achieved by holding multiple copies of files; it is then necessary to
place files in such a way as to minimize the likelihood of loss and to maximize availabil­
ity. There is clearly no sense in placing two copies of a file on the same ,volume if it is
possible to split them across two volumes. If volumes are on distinct nodes, then all the
better.
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11.2.2 Consistency
There are a number of consistency constraints that one might place on a filestore:

1. Any two copies of the same file shall appear to be identical to a user.

2. Any process which does not successfully complete an operation on a file shall
have no effect on the contents of the file.

3. Between user-generated operations on a file, the contents of the file shall not
change.

4. Twoindependent concurrent operations on the same file shall be serializable.

The first constraint is clearly vital. At worst, a user process ought to be informed if two
copies of a file are not identical, but then the process is left with a difficult decision. The
second constraint implies some form of recoverable atomic action or transaction. The
third point might well be an integrity constraint (i.e. the system models the real world).
The fourth point again implies some form of atomic transaction.

In a distributed system, which can exhibit partial failures, the second and fourth con­
straints are of overriding importance. It is interesting to note that several centralized
filestores, notably UNIX, do not guarantee either.

Verhofstad [4] has written a useful review of recovery techniques in database systems;
most of these use replicated copies of data either in full or in the form of side files, audit
trails etc.

11.2.3 Shared Access
Users need to share data storage for reasons of economy. However, much more funda­
mental is the need to access and update shared data due to cooperative working, i.e. the
data is used for communication between users. Two important issues must be resolved,
namely the protection of data from illegal access and the control of concurrent accesses.

The former problem may be alleviated by holding purely personal data physically
separate from shared data. Nevertheless a mechanism to protect confidential shared data
should also cope with personal data. Two approaches to protection are feasible: we can
protect the interface, and we can protect access to the data. Interface protection is
difficult in a distributed system where malicious users may tap the communication line.
This may require encryption techniques, but implemented at the user level rather than as
an integral part of the filestore. Davies [5] gives further details of cryptography. Discus­
sion of the protection of the access to data is also based on this source. We postulate a
set of objects OJ to be protected, and a set of subjects Sj who wish to access objects. A
matrix A is set up such that Aij contains the access rights of subject j to object i (Figure
11-1).

An entry Aij may contain rights such as read, write, execute, change rights etc. It is
impractical to store the matrix as such in a computer as it is very sparse, so techniques
must be adopted of representing it compactly yet allowing fast lookup.

A column in the matrix represents what is termed the access control list of that object.
In practice, the list (of subjects) can be stored in association with the object and checked
on access. Thus each subject Sj must have a unique identifier, which (as we have seen)
is difficult to accomplish in a distributed system. In UNIX, only three subjects for a file
are recognized: the owner, the group and everyone else.

A row corresponding to one subject represents the capabilities of that subject. When
a subject requires access to some object, it presents a capability for the object which is
then checked for validity. The checking is simple since no extra data is required.
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Figure 11-1
However, capabilities must not be forgeable, and although this is often accomplished in
centralized systems by tagging the address, in distributed systems some form of encryp­
tion may be used instead.

Filestore facilities and protection are separate issues, in the sense that access control
mechanisms should not make the filestore restricted in application nor intolerable to
users. For example, filestores which attempt to provide protection by limitations on
naming tend to be unsatisfactory in practice.

11.2.4 Shared Update
The problems of implementing serializable and recoverable atomic transactions are
described in the next section. We note here that serializability requires some method of
implementing mutually exclusive access to files, and a common method of doing this is
by means of a lock. Before a process accesses a file it must lock that file, and on com­
pletion of the activities of that file, unlock it. One problem with locks is that of
deadlock. Another problem is how to deal with a process which does not relinquish a
lock, either by oversight or because of some partial failure. Performance can be
degraded because concurrency is limited. In a loosely coupled system the detection of
such problems is not easy.

11.2.5 Naming
The naming scheme for files and contexts depends very much on the style of secondary
storage required. The provisions of the Cambridge fileserver, and the UNIX United
filestore (two systems reviewed later) are very different. In this section we shall concen­
trate on filestores, because of the extra requirements posed by file sharing.

The naming in a filestore is largely for the benefit of users of the system. The naming
is typically mnemonic, and ideally arbitrary strings of characters should be permitted
(though practical limitations often exist). Apart from allowing individual users to
retrieve files, the naming scheme should allow users to share files. This means that any
file can be accessed (via a global context) by any user on the system. UNIX achieves
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this by allowingany user to use the pathname of any file in the system. The separate
access controlmechanism is used to provide protection. A useful facility of a filestore is
the ability to switch contexts. For example, if userl wishes to access the files of user2, it
is useful if userl can use the same names (i.e. the same context) as user2.

Two possible ways of implementing a filestore are discussed by [2]. The first tech­
nique effectivelyrequires access to a file for read and write using the filename each time.
The second technique, called "direct access", is to use the name of a file to obtain an
address, and that address is used for accessing the contents of the file. The choice of
technique depends on a number of issues in the design of the system. The direct access
method is most common (e.g. it is used in UNIX). However the address must remain
valid during the period of activity of the file. Finally, any dependency of a file name on
its location (or on the client) is highly undesirable.

11.3 REVIEW OF DISTRIBUTED FILESTORES
In this section we describe three different approaches to providing filing facilities in a
distributed computing system. The first of these, the Cambridge fileserver [6,7], is
motivated by application in a server-based operating system. It is used, for example, in
the Cambridge Model Distributed System (CMDS) [8,9]. Briefly the fileserver must pro­
vide a service to a range of clients' machines which do not necessarily wish to operate
identical filestores,and may not possess their own discs. The machines in the CMDS are
connected via a Cambridge Ring network.

The second system to be described is the UNIX United system developed at Newcas­
tle University. This is an homogeneous environment, in that all machines support the
UNIX version 7 kernel interface. The literature contains a number of examples of
attempts to link UNIX machines, in particular their filestores. UNIX United is probably
the most elegant of these.

The third system is the KUDOS filestore developed at Keele University. This has
different objectives again, stressing the increase in availability that potentially can be
gained through the redundancy that is often present in distributed systems. Thus files
may be kept as multiple copies, but algorithms must be incorporated to ensure con­
sistency between them.

11.4 THE CAMBRIDGE FILESERVER

11.4.1 Operations

The design objectives of this fileserver include high speed transfer to random-access
word-addressed files, and a high degree of crash resistance. Objects stored are either files
or indices, each identified by a unique identifier (UID) which is 64 bits long including 32
"random" bits. A file is a sequence of 16-bit words on which random-access read and
write operations are available to clients. Note that the fileserver keeps no state informa­
tion between operations (apart from the files and indices of course). An index is a list of
UIDs, on which preserve, retrieve and delete operations are available. Finally files and
indices may be created.

Naming in the fileserver is in terms of UIDs; moreover a client can set up a general
directed storage graph where nodes are files and indices. Thus there is a single global
context in which file UIDs are unique, but it is implemented by stepping through indices
whose UIDs are known. The UID is also used as a capability for protecting access to
files and indices. A client must remember the UID of the node given as its root;
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subsequently the client may construct directed graphs and exchange UIDs with others
knowing only this root UID. No delete operations are provided in the fileserver. A spe­
cial system "root" index is designated and a periodic asynchronous garbage collector is
invoked [10] to remove all objects not accessible from root. If a client wishes to use its
own naming scheme (e.g, a UNIX-style directory scheme) it may do so in terms of the
fileserver interface. The fileserver itself has no knowledge of this higher level structure.
Thus UNIX directories would be implemented using files.

11.4.2 Crash Recovery
A single write operation can cause changes to many data and map blocks, and failure
part way through can leave the storage in an inconsistent state (note that transactions
involving more than one fileserver operation are the responsibility of the client). When a
file is created, it is defined by the client to be normal or special. In the former case no
provision is made for recovery; update may be in place. Special files in the Cambridge
fileserver are updated using an "intentions list" mechanism [II] which permits a single
operation comprised of several block operations to be carried out atomically. The block
allocation tables for special files contain the following state information:

i) allocated/deallocated

ii) intending to allocate/intending to deallocate

The intentions list algorithm is:

for all blocks to be updated do
choose a deallocated block and mark it "intending to allocate";
change old block to "intending to deallocate";
write to the new block

od;
set commit bit; {on stable storage}
for all relevant blocks do

change all intending to allocate blocks to "allocated";
change all intending to deallocate blocks to "deallocated"

od;
reset commit bit;

Up to the setting of the commit bit, all changes can be done. After setting the com­
mit bit, the changes will be done (eventually). On a crash, the commit bit indicates
whether to go forward or back. In the forward case, all "intending" blocks must be
definitely allocated or deallocated. Clearly a crash part way through setting the commit
bit or intention bits will invalidate the above algorithm. The fileserver uses a form of
stable storage (see Chapter 12) comprising map blocks and cylinder blocks. Should one
or other be unreadable, it can be reconstituted from the other. Various performance
optimizations are described, for example holding a modest cache of frequently used disc
blocks which tends to favour the retention of cylinder and objects map blocks.

11.4.3 Conclusions
The fileserver combines high performance with a simple interface. Under light loading
conditions, typical access times for a 512 byte block in a file are 50 milliseconds (read)
and 65 milliseconds (write) including communications overheads. Matters of locking are
left to clients.



168 Loosely-CoupledSystems

The XeroxWFS system (e.g. [12,13) is not dissimilar from the Cambridge fileserver;
a comparative review is given in [14). The Xerox DFS [11) is implemented on a
cooperating set of server computers, and to give the illusion of a single logical system,
the additional complexity of multiple server operations must be catered for. The DFS
provides special operations as well for start transaction and end transaction, between
which there may be more than one simple file operation involving multiple clients.

11.5 UNIX UNITED
The UNIX United system [15) is much more than just a distributed filestore. In this
chapter we shall concentrate on the filestore aspects. Before examining the system itself,
we shall discuss the notion of recursive structuring which has in part motivated the
UNIX United development [16). Several other systems incorporate linked UNIX
machines; seefor example [17,18,19,20,21,22,23,24,25).

11.5.1 Recursively Structured Distributed Systems
The basic thesis of Randell's paper is that a distributed computing system should be
functionally equivalent to the individual computing systems of which it is composed.
Thus UNIX United, which is composed of several UNIX systems, aims to be function­
ally equivalent to a conventional UNIX system. All the standard UNIX features includ­
ing naming, protecting and accessing devices, files and directories are provided. Hence
issues of inter-processor communication are completely hidden from users and programs.

Randell emphasizes the distinction between recursive structuring and "flat tran­
sparency". We shall illustrate this by comparing the UNIX United naming scheme for
files with that of the Apollo system [26). Both are based upon UNIX.

Figure 11-2shows a typical UNIX name space. Files are named relative to either of
two movable "pointers", the current root and the current working directory. If the root
is "I" and the current working directory is keith, then Ifs/cs/keith/x and x both refer to
the same file, using a pathname scheme as described earlier. Also the convention ".." is

I.r>:
fs usr bin etc

/ \ 11\ /\ //\\
/\

keith

11\

cs

/\
john

/\ /\
ken

x mfile y x b

Figure 11-2
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used to indicate the parent of a context, so ..I ..zcc/john/x and /fs/cc/john/x name the
same file. To construct a larger system out of several such name spaces, the above pro­
perties (with others) must be unchanged. Figure 11-3 shows a UNIX United name
space. This larger namespace is constructed from Figure 11-2, and two subtrees "bung"
and "bbc", This in fact is the UNIX United namespace that is used at Keele University
and bung and bbc correspond to specific hardware systems. (this need not be the case
however). Thus files on the bbc machine can be referred to from bung, assuming a root
directory pointer at bung, by e.g. I ..lbbc/bin/who. The systems at Newcastle and
Keele could be united, say, as shown in Figure 11-4 so that a user on bbc could access a
file at Newcastle using the name 1..I ..lNewcastle/Ul/bin/date.

In the Apollo Domain system, a special system-wide root, designated by I I provides a
single global context for UNIX system names, e.g. as shown in Figure 11-5.

The name I I provides an absolute starting point so that e.g. Ilmachinel/bin/who
uniquely identifies the named file. Clearly extra machines (or UNIX namespaces) can be
added to the Apollo system. However two separate Apollo systems cannot be linked so
that they function as one; a single I I is required (two machines must have unique
names).

11.5.2 Naming
The major requirement in a recursively structured system is that all names are context­
relative. There is no such thing as an absolute name since this would conflict with the
ability to extend the namespace. Today's base directory is tomorrow's subdirectory in
some larger namespace. It is thus evident why UNIX has proved a suitable system for a
recursively structured distributed system. The hierarchical file naming scheme makes it
easy to combine systems without name clashes. Standard mechanisms for file protection
and controlled sharing of files carry over directly (although the problem of user
identifiers must be recognized and solved). The use of relative addressing, based on
movable current working and root directories is of particular importance.

11\,

Keele

/I~
bung fs etc bbc

/\\/\ /\
bin usr usr bin

/\ /\ / \
Figure 11-3
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11.5.3 Implementation
UNIX United is implemented by imposing an extra layer of software, called the Newcas­
tle Connection, between the kernel on each participating system and the rest of the
operating system as in Figure 11-6.

System calls (to the kernel) are intercepted; those that are to be handled locally are
passed to the local kernel, while those that are to be handled remotely are passed to the
appropriate machine. To user and operating system programs this is invisible; put
differently, no changes to existing user and operating system programs are required to
participate in a UNIX United system. The Connection layer is implemented as a library,
and programs using system calls are relinked to that library (programs not so linked
therefore are purely local).

The mechanism used for the inter-machine communication is the remote procedure
call described earlier. On a remote machine, a spawner process, which runs continu­
ously, initially receives an "open file" request and spawns a fileserver process as a result.
Subsequently the originator communicates directly with the fileserver, using the name
returned by the spawner. When the file is opened the Connection makes an entry in a
per-process table indicating whether or not the file descriptor (an integer used to refer to
the file between open and close calls) refers to a local or remote file. This table also
holds the corresponding remote node addresses, so that at a read or write, remote
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Figure 11-6

accesses are routed immediately.

11.5.4 Other Issues
Protection in UNIX United uses the facilities provided by UNIX. Each system has its
own list of approved users, set up by the system manager. In a UNIX United system, a
manager must decide additionally on a list of permitted remote users, together with a
mapping from remote to local name. Remote and local user names are not confused.
No new mechanisms are introduced for shared access to files. Work is proceeding at
Newcastle to implement a triple modular redundancy layer, and primitives to support
atomic transactions, above the UNIX kernel, but few details are yet available.

The performance of UNIX United is difficult to quantify, and little numeric informa­
tion is available. The system at Keele University consists of three PDP/LSIlI type
machines connected by a Cambridge Ring. Recompilation of programs to link in the
Connection library increases the code space, sometimes by a few Kbytes. Access to local
facilities seems unimpaired. The time taken for a remote operation would appear to be
dominated at Keele by the limitations of the Cambridge Ring access logic hardware on
each host. In qualitative terms, the Connection was accepted with great enthusiasm by
users at Keele, who were happy to put up with the communication delays because of the
extra facilities offered.

The confluence of the recursive structuring principle and UNIX results in a distri­
buted filestore which, at Keele at least, has proved highly successful in a Computer Sci­
ence user environment. The decision of the UNIX United designers to retain the UNIX
Version 7 kernel interface as their "standard" means that the system is straightforward to
bring up on a machine which conforms to this interface. The Connection layer then
deals with the issue of "distributedness",

Finally, we note that certain nodes could offer specialised UNIX services - fileservers,
terminal switches etc., by offering just the appropriate kernel calls.

11.6 THE KEELE DISTRIBUTED FILESTORE
The project at Keele (called KUDOS) had complementary objectives to the two systems
described earlier. An important aim was to explore the costs and benefits of using
redundancy - and in particular multiple file copies - to achieve high reliability and availa­
bility of file service. The main part of the design is thus a distributed directory system,
which uses one or more fileservers to construct a filestore of greater reliability than its
components. A fileserver provides the ability to create, delete, read and write random­
access rows of bytes. Protection is by means of capabilities. Any pointers within a file
must be kept by clients. Unlike the Cambridge fileserver there are no atomic operations.
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Rather such matters are regarded as the responsibilities of clients.
The decision was taken to provide a sensible text naming scheme along the lines of

that used in UNIX. Additionally it was decided to increase the availability of files by
holding multiple copies of them. Thus a named IDe is a level of abstraction at which a
single object is actually implemented as several copies. It is possible to hide multiple
copies at different levels of abstraction (for example by replicating disc drives on a con­
troller). However a text naming scheme permits sharing readily between users, and there
is a strong incentive to hold the multiple copies on different machines if possible.

The structure of the filestore as a whole is described by Figure 11-7.
The name server is an important component of the Keele system. It implements a

mapping from a logical narnespace to a network address. Although the diagram shows it
as a single process, a distributed algorithm is used (full details are given in [27]). Logi­
cal names include volume names and directory managers but not files.

The directory server implements a mapping from file names to volumelfile identifier
pairs. A file name may refer to a number of copies and the directory server resolves

name-server

A
D

c E

FB

A locate directory-server
B locatel addl delete IDes
C IDe liD, IDecreation/deletion
D catalogue location of directory-server
E file I/O, file creation/deletion

(for storage of directories and copies of files)
F catalogue location of volumes
G physical I/O

Figure 11-7
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inconsistencies between copies of the same file.

11.6.1 The Directory System
KUDOS provides a system-wide single hierarchical filestore; the naming scheme is simi­
lar to that of UNIX (without links). A root directory exists, which is replicated in all
volumes. The root directory contains subdirectories (not necessarily replicated on all
volumes). Each subdirectory can have subdirectories of its own. All directories can also
contain files. To access a file, it is necessary to "activate" all directories in the path to
that file. Activation of a directory involves creating a process to handle operations on
files in that directory. Such a process is called a directory manager, and is created on
behalf of a client by the parent directory's manager. The manager of root is per­
manently active. The manager of a directory is responsible for all operations on files in
that directory, for ensuring consistency of file copies and for deactivating itself. Also it
is responsible for multiple client access to the directory. Only one manager is allowed to
exist for anyone directory at one time.

We shall call the active filestore the hierarchy of directories and their contained files
which have currently active managers. The dormant filestore is all the rest. Files can
only be accessed through the active filestore. It is only necessary to ensure that the
active filestore is consistent and up-to-date. Inconsistencies can be permitted in a dor­
mant part of the filestore until that part is activated. It is likely that only a small frac­
tion of the filestore will be active at any time.

11.6.2 Replication Management
Each directory has a set of associated volumes, which are exactly those volumes on which
any file or subdirectory in that directory is replicated. The set of associated volumes of a
directory must be a subset of the associated volumes of its parent directory. Thus the
root directory has, as its associated volumes, all volumes in the system (see Figure 11-8).
A command interpreter could hide the details of the associated volumes if required, sim­
ply offering different levels of reliability (possibly at different costs). The above scheme
is called "overlay mount" to distinguish it from the UNIX-style subtree mount.

The notation x(vlv2) means that file or directory x has associated volumes vi and v2.
Thus a volume contains the full path name to any files stored on it, and if the volume is

r (vi v2 v3 v4)

/~
a (vI v2 v3) b (v3 v4)

/\ \
c (v2 v3) d (vi) e (v3)

Figure 11-8
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active, all fileswith copies held by it are accessible. Volumes are thus independent of
one another and this is the basic mechanism for achieving high availability. Mounting a
volume is straightforward; its name must be identified to the name server. The directory
manager detects its presence and acts accordingly.

11.6.3 Directory Resolution
We assume temporarily a strictly increasing timestamp universally available throughout
the system (this problem is discussed in more detail in Chapter 12). When a file is stored
through the directory system, the filename plus a timestamp are stored in each copy of
the directory. On activation all on-line copies of the directory are inspected and any
out-of-date file copies are identified using their timestamps. All copies are brought up­
to-date by copying files (and timestamps). A problem can occur when a file is deleted
from one copy of a directory while another copy is off-line. An "assassin" is placed in
the directory entry in this case, together with a timestamp. The entry can then be
removed when the volume comes on-line and the directory is activated. Since only one
manager for a directory is permitted in KUDOS, provided that manager always consults
the same clock, and that clock is accurate to a few seconds, there should be no problems
of timestamping. In KUDOS a clock was simulated by a simple counter incremented on
each read.

11.6.4 Other Features
The basic protection mechanism used is capabilities; users may also provide a read and
write capability on file creation. A simple mapping can be provided (by clients) from a
mnemonic password to a capability.

The directory scheme provides a multiple readers or single writer type of locking. A
lock will timeout unless refreshed; this is the mechanism for deadlock breaking. A lock
is on a whole file.

11.6.5 Results
Suppose that a disc is on-line with probability p. If discs are independent, and if there
are n copies of a file, the probability that the file is available in KUDOS is:

l-(l-p)n

This of course ignores faults in other parts of the system. If C is the probability that the
communications system is working, and N is the probability that a node is operating,
then the file is available with probability

1-(I-pNC)n.

The KUDOS system was implemented on two LSIlI/02 machines, with two UCSD
Pascal workstations acting as clients. The communication mechanism was a Cambridge
Ring network. The performance of this scheme was totally dominated by hardware limi­
tations, so performance was analysed in terms of disc accesses and messages passed. The
consistency algorithms are O(N) in time, where N = number of file copies.

KUDOS constructs a virtual filestore from several physical fileserver machines. More
recently at Keele, Brereton has been using the "overlay mount" concept to provide
highly available files in UNIX United. A replication layer is interposed above the New­
castle Connection but below user and operating system code. System calls are inter­
cepted; if they do not involve replicated files, they are passed to the Connection layer
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below. If the call is an operation on a replicated file, the layer carries out the required
actions, using the facilities provided by the Connection to access both local and remote
resources transparently. The layer thus maps a single user textname onto several UNIX
United textnames. A majority consensus algorithm is used to vote on replicated opera­
tions. It is envisaged (but not yet implemented) that the name tree supporting highly
available files could form part of a larger UNIX United name tree. Users access all the
name space in a unified way. This does not of course mean that the files are highly avail­
able to "remote" users (since there will probably be unreliable components interposed).
For further details see [28,29].

11.7 OTHER WORK
This chapter has examined three different solutions to providing filestores in a distributed
computing system, based on the design issues outlined in section 11.2. There are, of
course, a number of other filestore projects of interest as well as those referenced in the
text. An example is the Network Filing System developed at Edinburgh University [30].
This provides a coherent filing system to client processes, using a UNIX-style textnaming
scheme. The filing system will typically incorporate several servers. Consistency of files is
preserved across concurrent access and server crashes; this is accomplished by an atomic
transaction mechanism which uses a two-phase commit tailored to the requirements of a
file store. The reference also includes an excellent review.

The Felix file server [31] has as its principal aims the support of workstation virtual
memory, the sharing of data and the secure storage of data. In the referenced paper
only the "first layer" of services is described; higher level facilities such as a conventional
file system with user defined directories are not discussed but are promised for the future.
However a set of locking and begin/commit/end transaction management primitives are
provided. Careful replacement is used to provide atomic updates on files; no stable
storage is used.

The Swallow project [32] at M.I.T. contains interesting ideas for reliable data storage,
especially concerning transaction management. The "data repository", possibly distri­
buted over several machines, is designed to offer long term reliable storage and to sup­
port sharing of data amongst a distributed system of highly autonomous machines.
Atomic transactions are permitted which can update data stored on several machines.
Each client machine must run a program called a "broker" which mediates all accesses to
data in the repositories. The data repository is designed so that the principal long term
storage can be provided by (write-once) optical discs. Tanenbaum [33] describes the
Amoeba distributed system incorporating a directory system which provides UNIX-style
textnaming. All pathnames are relative and the server maps them to ports. These are
used to access the file itself.

Another system of particular interest is the PULSE project at the University of York
[34]. This is described in more detail in 13.3.2 below.

It has been shown that different applications and different objectives can result in very
different designs for distributed filestores. In which direction, then, are such filestores
likely to develop? One strong possibility is for filestores to be superseded, at least at the
application level, by database systems. Even in a multi-access operating system there is
a requirement for structured files, locking on file records and an avoidance of the multi­
ple occurrence of data items. Often files have many more attributes than those explicitly
catered for in existing filestores, and there need to be mechanisms to express the relation­
ship between these attributes. Whether the high efficiency of filestores can be retained
with a database (possibly distributed) is less clear, but the arguments sound strangely
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familiar to those of the 1960's regarding high level languages.
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12 Mechanisms for Distributed Control

K. H. Bennett

12.1 REVIEW OF PROBLEMS
In loosely-coupled distributed systems, there are two problems which lie at the heart of
many of the new difficulties in system design. The first problem is that of unpredictable
delays in the communications mechanism. The second is the possibility of partial failure.

A communications system can be made as reliable as required, but then unpredictable
delays may become very considerable and widely distributed. Jensen [1] has suggested a
useful model in which he defines the production of a signal, and its manifestation; the
relationship between the two, including ordering, latency and completeness, is defined as
the signal observability. In a centralized system, or tightly coupled distributed comput­
ing system with shared memory, signal observability is very high. In a loosely-coupled
system it is poor, and conventional centralized techniques of synchronization do not
carry over. The reason is that the overall system state (represented by values in memory)
is spread round several machines. No process operating on one machine can have a con­
sistent view of the total system state. Assume for example that a process on machine A
reads from store on machines B and C. By the time the values get back to the process
(probably at different times) the values in the store locations on Band C may well have
changed (and possibly the manifested signal is now of little use).

In this section we shall base our approach on the work of Anderson and Lee [2] and
LeLann [3]. Systems will be regarded as constructed as a number of levels of abstrac­
tion, in which an operation at level i is composed of one or more actions at level j, where
j < i. With knowledge of the specification of each operation and its constituent actions,
we are in a position to prove the correctness of the system. It is evident that the
specification of an action must not be invalidated in practice by unanticipated con­
current activities, and this may be ensured by insisting that all actions be executed
strictly serially. In a distributed system, which can offer opportunities for parallelism,
this is very inefficient. Two actions can proceed concurrently if they do not read from or
write to any data objects in common (the correctness proofs are independent). However,
of more interest is the problem: how do we organize access to shared data objects in
such a way that the specification is preserved, yet maximum concurrency is attained?
Control of the order in which actions are carried out is a vital requirement for the imple­
mentation of atomic operations, and therefore for correctness proofs. The need to coor­
dinate the executions of cooperating sequential processes may be satisfied by mutually
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exclusive access to a common data object; we therefore regard this as another manifesta­
tion of the ordering problem. The example now given is due to Lelann [31.

Let a set of data objects X = [Xl>X2, .•. Xnl be updatable by two concurrently exe­
cuting operations A = [A., A2, ••• AnI And B = [B], B2, ••• Bnl. Here Ai and B, represent
the actions belonging to A and B respectively which manipulate data object Xi. Accord­
ing to the order in which the actions Ai and B, are executed and interleaved, different
final states of X will result. For each data object Xi>one of two orderings of actions is
possible; either Ai is before B, or B, is before Ai. More formally, either Xi(A,B) =
Bi(Ai(Xi(O)))or Xi(B,A) = A/B/X/O))). Suppose that the specification allows only two
valid final states; either

X(A,B):[Xi(A,B) for all i], or
X(B,A):[Xi(B,A) for all il

These two final states would result from serialized actions; either all A happen before all
B or vice-versa. This can be achieved by ensuring that for all i either Ai happens before
Bi, or B, happens before Ai. This is the only interleaving that is valid. Let us consider a
specific example; suppose we have two data objects X, and X2, such that XI =X2• Two
operations A and B are defined as follows:

A: XI := x, + 100
X2: = X2 + 100

B: XI := X, * 5
X2:= X2 * 5

Serial execution of these operations (in either order) maintains the truth of the predicate.
So does the interleaved execution:

XI := X, + 100
XI := X, * 5
X2:= X2 + 100
X2 := X2 * 5

which conforms with the condition defined above. However the order:

XI := x, + 100
X2 := X2 + 100
X2 : = X2 * 5
X, := X, * 5

does not, and does not maintain the truth of the predicate.
An interleaved ordering of actions can thus be equivalent to a strictly serial ordering;

for further details see [4,51

12.1.1 Partial Failure
The second problem, of partial failure, occurs when a task is delegated as an set of sub­
tasks to several concurrent processes on distinct processors. Conventional implementa­
tions of atomic actions rely on the execution being performed on a single machine. If this
crashes, the recovery manager has access to the system state with high observability. In
a distributed system, the subactions of an atomic operation are executing on several
machines, and a crash of one machine part way through the operation must be handled
both by the issuing site and by the recovery manager(s) at the crashed site(s). The issu­
ing site may itself crash as well.

This chapter comprises three parts. The first examines synchronization mechanisms in
distributed computing systems and describes two solutions, based on timestamps and on
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locking. The second part discusses atomic transactions and introduces the two phase
commit protocol for their implementation. Finally the multiple copy update problem is
considered. Some of the results described are well established and have been available in
the literature for some time. Nevertheless they remain an important contribution to
understanding distributed control mechanisms.

12.2 SYNCHRONISATION IN DISTRIBUIED SYSlEMS

12.2.1 Introduction
Imagine that two processes P and Q are communicating via messages. We require that
messages are processed by Q in the order that they were sent by P. However, the com­
munications mechanism between the two may well be unable to guarantee to preserve
ordering (due to alternative routing, lost messages etc). The usual solution to this is to
append a sequence number to each message, so that Q can detect and recover from out­
of-order messages.

Now consider three processes, P, Q and R. P sends a message to Q. P then sends a
message to R, which itself sends a message to Q as a result. How do we now guarantee
that the messages received by Q are in the same order they left P?

A number of solutions have been proposed to solve the problem of synchronization in
a distributed computing system. These are often divided into "centralized" and "distri­
buted" solutions; an example of the former is a central physical clock. Thus a producer
(say) may read the time from this clock, and append it to messages to act as a sequence
number. An example of such a clock is the 60kHz signal broadcast in the U.K. with an
encoded time signal. This seems straightforward but there are significant problems. It is
essential that at all times the correct value of the clock is read. Also account may have
to be taken of the finite propagation speed of radio waves in a widely separated distri­
buted system.

Another class of solutions relies on centralized decision making within a single pro­
cess. This leads to problems of single points of failure and performance bottlenecks.

12.2.2 A Distributed Implementation
The system we shall discuss in more detail in this section is a decentralized scheme based
on multiple clocks. The solution was originally described by Lamport in (6). A decen­
tralized scheme has the potential advantage of greater reliability and better performance.

The object of the algorithm is to provide a consistent total ordering of events (thus we
we can always determine if event a is before event b for all events). This provides us
with the precise control over event ordering needed for synchronization. We assume that
a signal always manifests itself after its production. If x causes action y, and p (issued
after x) causes action Z, we cannot define the relationship between the times of y and z.
This is an example of a partial ordering. The basis of Lamport's algorithm is that each
process which issues messages has a local counter (incrementation is always positive); the
value of this counter is attached to each issued message at the instant it is issued. The
counter is incremented between messages, and on receipt a receiver advances its counter
so that it is greater than the timestamp in the incoming message. The notation "a~b" is
defined, meaning a happened before b. We now state the condition for a system of
clocks to be correct (where Cj{z) is the value from the clock C, assigned in process i to
event z}:
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Clock condition: for any events a,b, if a ~ b then C;(a) < C;(b)

The clock condition is satisfied if

CI: if a,b are events in process Pi and a ~ b, then C;(a) < C;(b)

C2: if a is the sending of a message by process Pi and b is the receipt of the message by
process Pj, then C;(a) > 9b)

Lamport shows that the following algorithms ensure CI and C2:

RI: each process Pi increments C; between any two successive events

R2: interprocess messages are timestamped with the value Tm= Cja). On receipt of the
message, Pj sets q greater or equal to its present value, and q > Tm

To impose total order, we order events by the time (i.e. value of C;) at which they occur.
If C;(a) < Cj(b) there is no problem; if C;(a)=Cj(b) i.e. the events are concurrent, then
the process identifier may be used as the ordering criterion. This does of course assume
that we are able to identify processes uniquely. This is a significant problem, as is the
management of failure and anomalous behaviour due to external events. Lamport shows
how several clocks, running approximately at the same rate, may be synchronized to give
a total ordering.

Other related solutions to distributed synchronization include circulating privileges
and circulating sequencers [3]. A good review article may be found in [7]. The total
ordering of events in a distributed computer system has wider applications, for example
in some multiple copy update algorithms.

12.2.3 Locking

The simplest form of lock provides exclusive access by the process holding that lock to a
data object or objects. If the object is already locked, the process must wait until the lock
is released (or abort, or preempt, the other process). Locking may lead to deadlock, when
no process can proceed; this may be avoided in the first place, or detected and one or
more processes rolled back. More complex locks, such as "multiple readers - single
writer", potentially offer higher concurrency.

Locking enables us to maintain serializability without going to the extreme of serialis­
ing all operations. Eswaran [4] has shown that the following two phase locking scheme
is correct i.e. will ensure consistency. Once an operation has started, any use of a
resource causes that resource to be locked. During this first phase, no locks are ever
released. When all actions in the operation are complete, the operation is committed. In
the second stage, all the operations in the first phase are actually carried out; when a
resource is finished with, the lock on it is released. The second phase may be done con­
currently with the subsequent execution.

Either the caller or the system may issue an abort instruction. This can only be done
before the commit. The operation will be rolled back by releasing all locks - no updates
have been undertaken at this stage.

The main example of a system-generated abort is at a detected deadlock. Further­
more, an incomplete transaction must not reveal results to others at a higher level, in
order to avoid causing aborts if it subsequently must be undone. A distributed locking
protocol is usually implemented within some structure such as an atomic transaction (see
below). Local lock managers on participant sites are responsible for issuing and check-
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ing locks on local data objects (possibly abstracting physical resources).

12.3 ATOMIC TRANSACTIONS

12.3.1 Introduction
An atomic transaction is composed of one or more actions, the transaction having the fol­
lowing properties:

PI: the transaction is executed entirely or not at all (failure atomicity).

P2: If two or more concurrently executing transactions access shared data, then the
effect is as if the transactions had been obeyed one after the other (serialization
atomicity).

We can see immediately that atomic transactions are concerned both with recoverability
and error control, and with synchronization. Their attraction lies in the property that
they transform the system from one consistent state to another. In between, the state
may become temporarily inconsistent, but that does not matter as long as PI and P2
above hold. The implementation of atomic transactions becomes of particular interest
when the actions within are executed on several systems in a distributed computing
environment. If anyone (or more) actions do not complete for any reason, the whole
transaction must be aborted.

As a very simple example, consider a banking system in which the total amount of
cash paid in must equal the sum of the balances. If a customer withdraws 1000 pounds
from the branch at A, and the appropriate account on the head-office computer in B is
debited by 1000pounds, then either both or neither of these action must take place. To
solve this type of problem (with high probability), we shall describe a technique called
the two phase commit protocol; as a preparatory stage we will describe how operations
on a disc may be made strongly atomic using stable storage. Then we shall describe how
atomic transactions fit into the general structure of distributed systems. These tech­
niques are well established, though less frequently implemented.

12.3.2 Stable Storage
The problem that this aims to solve is that a single sector disc operation is only weakly
atomic. The operation can crash part way through, and a recovery manager cannot
determine whether the operation succeeded or not. In stable storage each block is stored
twice on "separate" areas of the disc: (say Block 1, Block 2). It is assumed that the disc
unit will indicate if a single write operation which completes is successful (using CRC
checks etc). Possibly the operation may have to be repeated until successful (or a crash).
It is also assumed that a write to block 2 is not started until the write to block 1 has suc­
ceeded. Note that 'crash' does not include a disc head crash, with which stable storage
(on one disc) cannot cope.

The crash recovery algorithm works as follows:
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read block 1 and block 2;
if both are readable and block I= block 2
then

nothing {crash did not affect stable storage}
else

if one block is unreadable {a crash or other fault has occurred}
then

copy from good block to bad block
else

if both readable but different
{a crash occurred between writing the 2 blocks}

then
choose either block and copy it to the other

fi
fi

Ii

This algorithm works even if there are subsequent crashes during its execution.

12.3.3 Two Phase Commit
An operation does not meet property PI if one (or more) of its component actions fails.
The two phase commit resolves this as follows. The site receiving the client request
becomes the commit coordinator [8]. At the start of the transaction, the cooperating
sites start their sub-actions, such that they can be rolled back if required. This is the first
phase. Locks are acquired if necessary as described above.

The coordinator is then requested to commit by the client. The coordinator sends
"request commit" messages to all participating sites. These respond indicating their wil­
lingness to commit. If a site indicates "no" (or cannot be contacted) the coordinator
aborts. If all vote "yes" then the coordinator records the commit (atomically, on stable
storage) and broadcasts a "commit" message to all participants. From now on, the tran­
saction will proceed to completion regardless of crashes of the coordinator or partici­
pants. At the very end the coordinator unsets its commit bit. Note that the decision to
commit is centralized and is stored in one place.

The vital component to ensure completion is the recovery manager which is started
after a crash, before any user activities. If the transaction is not yet committed, the
recovery manager will roll it back (by broadcasting "abort"). More interestingly, sup­
pose that the coordinator crashes after setting the commit bit but before the end of tran­
saction. The recovery manager will repeat the broadcast of the "commit" message; all
participants must by this time be in a position to complete or roll back, so the recovery
manager waits for a positive acknowledgement. The following Algol 68-like code
describes the protocol more precisely:
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Coordinator:
vote := commit;
for all participants whilevote = commit do

send request commitmessage;
if reply =F agree
then vote := abort
fi

od·,
if vote =commit
then

COMMIT;
for each participant do

send commitmessage;
wait for yes-acknowledge

od·,
if timeout on above then repeat it fi

else{ abort if any aborts }
for each participant do

send abort message;
wait for yes-acknowledge

od·,
if timeout on above then repeat it fi

fi·,
reset COMMIT;

In the poll, the reply may not be "agree" because the participant cannot be contacted.

Participant:
wait for request commitmessage;
ensure undo-redo;
if for any reason we cannot ensure
then reply abort
else reply agree
fi;
wait for verdict; { phase 2 }
if verdict = commit
then releaseresourcesand locks;

instantiate update;
reply yes-acknowledge

else
undo participant;
reply yes-acknowledge

fi

Initially, the participant is asked to go into a state in which it can either redo or undo
the transaction. This information must be carefully recorded (ensure undo - redo). The
undo and redo must be idempotent operations. The participants themselves do not
"commit". They have to ensure a weaker condition, that they can be undone or that the
change can be instantiated. A typical transaction participant may write to many blocks;
there are techniques (e.g. the intentions mechanism) for implementing redo-undo quite
simply, by never updating in place. In a database system, this may not be practical, so
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update in place is accompanied by a careful log of the change of state. A useful discus­
sion can be found in [9] including a description of an implementation.

The above protocol in the absence of crashes needs 4N messages for N participants
(i.e. it is O(N)). A modified version based on linear ordering requires (2N) messages but
there is less opportunity for concurrency. Neither method is completely water tight - for
example if the communications links fail.

12.4 TRANSACflON STRUCTURES
We have seen that the two phase commit protocol will (within an unbounded time)
ensure that after a crash a transaction will be restored to a consistent state, either by rol­
ling back or rolling forward (transaction not done/done). The issue is thus closely
related to the more general topic of fault-tolerant computing, and the purpose of this sec­
tion is to examine how transactions contribute to this. Much of the description is based
on the results of the reliability project at Newcastle University, especially [2,10].

One diagram in Anderson and Lee's book succinctly summarises the structuring
approach to fault tolerant systems developed at Newcastle (Figure 12-1). Note that this
structure is inherently recursive; Randell expresses this as "Fault tolerant systems should
be composed out of generalized fault tolerant component systems."

Briefly, a layer of abstraction is presented with service requests. If these are outside
the specification, an interface exception is immediately raised. Hopefully, the layer will
eventually return a normal response. Possibly, faults will be detected locally, resulting in
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entry to code to handle this abnormal activity. Again, it is desirable for the fault to be
tolerated leading to a return to normal activity. This may not be possible, in which case
a failure exception is raised to the layer of abstraction above.

An important technique for providing fault tolerance in a distributed system is
through recoverable atomic actions. It follows from the above arguments that provision
for nested atomic actions will be required.

12.4.1 Transactions in UNIX United
At Newcastle, additions are proposed to add support for atomic actions in UNIX (and
therefore UNIX United) [10]. The research is based partly on the earlier work by Jegado
[11] on a distributed recoverable filestore. The main aim of this was to study the incor­
poration of the general recovery mechanisms for fault tolerance into a filestore rather
than just transactions. The basis of the recovery structure in this design is three system
calls

1. establish recovery point (erp): start state-saving and locking files

2. discard recovery point (drp): discard saved state, unlock files

3. restore recovery point (rrp): go back to state at recovery point.

The first 'erp' operation returns a recovery point number for use by drp and rrp. The
act of restoring to a recovery point amounts to rolling back the execution. Discarding a
recovery point is a commit operation, because we can then no longer recover backwards
to the (now non-existent) recovery point.

When a user establishes a recovery point, the distributed file manager broadcasts an
'erp' message to all participants, who establish their own recovery points. A similar
action occurs when the user does a restore or discard operation. A recovery cache
mechanism provides the means of recovery. Note that the above scheme does not sup­
port a two phase commit protocol; some but not all of the participants may discard their
recovery points. It is proposed to add a fourth system call to the UNIX (United) imple­
mentation called "prepare to discard recovery point", corresponding to the first part of
the two phase commit. The structure of a system now appears as in Figure 12-2.

It is seen that this structure involves a clear separation of issues; the issue of distribut­
edness is handled in the Connection layer. This provides an illusion of a single commit
operation, which the Connection implements in a two phase manner on all the partici­
pant machines. Thus above the Connection the appearance of a single system is main­
tained.

12.5 MULTIPLE COPY UPDATING

12.5.1 Problem Area and Objectives
This section summarises a design for managing multiple copies of files within the UNIX
United operating system. It represents a development of the scheme first implemented in
the Keele University KUDOS distributed filestore. Multiple copy updating of files
includes the problems of synchronization, naming, atomicity, recovery and performance.

Replicating copies of files is an example of increasing reliability through fault tolerant
techniques, and the facilities of a loosely coupled distributed system offer novel oppor­
tunities for increasing reliability. The advantages of providing high file availability and
reliability will not be re-examined here, except for stressing the importance of their use
with shared files.
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The requirement of multiple copy techniques could be to achieve mutual consistency
i.e. all copies identical. This decreases reliability - not all copies may be on-line. Thus
we relax the condition to be in terms of all on-line copies, and in the algorithm to be
described there must be a majority of such copies available. We must cope with off-line
copies when they reappear (or are referred to). During a multiple copy update, the
copies may become temporarily inconsistent, but this must not be visible to the client
process. A second requirement is to accommodate crashes which can occur at any time
in the participants.

The objective of the project described here was also to examine the UNIX United
interface as a means of supporting a multiple copy layer, with particular emphasis on
performance, narning and crash recovery issues. This assumed that no modifications to
the UNIX kernel were acceptable.

12.5.2 Related Work

The KUDOS algorithm described earlier updated whatever on-line file copies were avail­
able. No facilities for atomic actions or crash recovery were incorporated, although
volumes reintroduced to the system were handled. Consistency control was achieved by
tirnestamping file copies.

Multiple copy updating has been explored and implemented in database systems,
often in conjunction with the synchronization and transaction techniques described ear­
lier. A good introduction may be found in [12). A set of algorithms is described which
are based mostly upon voting; the participating sites intercommunicate to decide if the
update can proceed. For example, in synchronous voting the participants broadcast to
each other so that each can come to a decision on whether to proceed with the transac­
tion. Then the transaction is executed (or not). The algorithm relies on a total order of
events to handle concurrent transactions. This is a good example of a distributed control



12Mechanismsfor DistributedControl 189

algorithm - there is no central coordinator site.
In a majority consensus voting scheme [13] a majority of participants must vote 'yes'

for a transaction to proceed. Gifford [14] describes a variation in which a copy is
assigned some number of votes. An operation must have a minimum number of votes to
proceed, allowing reliability and performance characteristics of a file to be modified on
both read and write. It has been implemented within the Xerox Violet system.

The LOCUS system [15,16] supports the management of multiple file copies, and
allows updates when a majority is not present (which may happen for example when the
network partitions). The system then attempts to merge several updates undertaken in
separate partitions, when the network reforms. In general there is no solution to this
problem, but specific cases can be solved.

12.5.3 The Keele Replicated File Implementation
UNIX United provides a process model indistinguishable from that of UNIX itself. In
particular, user and operating system programs make system calls for both local and
remote L'O, file manipulation etc. In the Keele system, a layer is inserted between user
and operating system programs, and the Newcastle Connection, to intercept system calls
as described in the previous chapter. This layer presents to programs above it the illu­
sion of single (but highly available) files, which are actually implemented as several
copies.

The algorithm for consistency management requires that a majority of up-to-date
copies of the file are present for an update to proceed. This means that successive
updates to the same file always have at least one file copy in common, and a local ver­
sion number can be used to identify consistent copies. Also at most one set of copies can
take part in an update, eliminating separate updates to disjoint partitions. Note that not
all on-line copies may have the same version number. The naming of replicated files is
based on the KUDOS "overlay mount" scheme.

The description of the algorithm separates two quite distinct issues: the voting algo­
rithm itself, and mechanisms for dealing with recovery from crashes of any of the partici­
pant sites. The work is derived from that presented in [17].

12.5.4 Majority Consensus Algorithm
A set of replicated copies of a file are distributed over several UNIX systems linked by
the Newcastle Connection. Each copy has associated with it a version number, the loca­
tion of other copies, and status information (available to the recovery manager). We
shall concentrate on the update operation which is undertaken on the UNIX write system
call. The algorithm has been described more formally by Brereton in terms of Nutt nets.

Before an update request can proceed, a single coordinator site must be established to
handle the update. This is achieved by inspecting the status of the file copy marked as
"master". If an update to the file is in progress, its "master" copy will be locked for the
duration of the write, and the new update must be rejected or queued ( the former is
actually implemented). If no update is in progress, the local file copy is locked and
marked as "master", and the old master is marked as "fellow". This must be performed
atomically to prevent more than one master existing. The coordinator process must now
locate and communicate with at least half of the remaining copies of the file. Details of
the operation and the associated data are sent to each remote machine. The remote
copies are locked and the updates performed as intentions (see previous section). The
version numbers are also incremented using a similar mechanism. Thus the participants
reach an undo-redo state. It can be seen that the "master" and "fellow" states act as the
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lock on the filewhich is held centrally.
The participants then reply to the coordinator on the success of the update. The coor­

dinator collects votes, and then broadcasts an update message. If insufficient votes are
collected, the intentions are never instantiated. The coordinator also instantiates its own
update and unlocks its file. Note that all remote operations are undertaken using pro­
cedure calls. The similarity with two-phase commit mechanisms is apparent, though
crash recovery is handled differently.

12.5.5 Crash Recovery
Recovery procedures are implemented for two types of failure:

(1) failure of a participant during an update, so that a majority while initially esta-
blished is no longer available.

(2) failure of coordinator site

The above may also occur because communication fails. In either case, each remaining
copy of the file is marked as "recluse" indicating "possibly out-of-date". The basis of
most recovery schemes is to ensure that sufficient state information exists at the time of
the crash for the recovery manager to bring up the system into a well-defined and con­
sistent state. This is a function of the "status" associated with each file copy.

If a machine crashes, its recovery manager marks all file copies with "recluse" status
on reinitialization. File copies for which a majority set is found to exist (and which is
accessible) are brought up-to-date (by copying), using the master as source.

If the coordinator crashes, the recovery mechanism is invoked at the next update
operation from a recluse site to establish an operational set of copies. The most recent
version is used as source. The algorithm copes with simultaneous attempts to coordinate
the reconstitution of an operational (up-to-date) set, and failure during the reconstitu­
tion.

12.5.6 Analysis and Performance
Deadlock is avoided when requests are in conflict by a centralized scheme for request
acceptance, with distributed recovery. A possibility of starvation exists when a site
repeatedly fails to become coordinator for a request. This could be overcome by queue­
ing requests, but the overheads are undesirably high in an environment where simultane­
ous updates to shared files are rare.

A weak consistency is maintained between file copies so that copies are not all
guaranteed to be up-to-date. However an out-of-date copy is always restored to the
most recent on-line version before update. The system as implemented is not totally
crash resistant because it assumes that the underlying software layers will provide sup­
port for atomic operations. This is not yet the case.

Some early performance figures have been taken for the Keele implementation. The
UNIX filestore does not allow extra file attributes to be stored with the file, so explicit
separate files have been used (and those associated with a directory e.g. file copy loca­
tions) are themselves replicated. Thus the overhead on file operations is dominated by
the time taken to open files. A read of a local copy of a replicated file takes approxi­
mately the same time as a read on a non-replicated local file. It is hoped to report on
more detailed measurements elsewhere.
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12.6 SUMMARY
Synchronisation and atomicity in distributed systems pose new problems compared to
centralized operating systems. Mechanisms have been presented in this chapter for
achieving consistent behaviour in the face of partial failure and unreliable communica­
tions. The management of replicated copies of objects brings together several of these
difficulties which must be solved coherently to give an adequate system design. There is
a need to obtain further experience of implementing the type of mechanisms described in
this section, and assessing their performance in everyday use.
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I. C. Wand and A. J. Wellings

13.1 TIIE DISTRIBUTED SYSTEM MODEL
Flynn [I] has divided computer architectures into four types:

(1) single instruction acting on a single item of data (SISD); for example, a conven-
tional uni-processor system; "

(2) single instruction acting on multiple data items (SIMD); for example, parallel pro­
cessors;

(3) multiple instructions acting on a single data stream (MISD); for example, pipeline
computers; and

(4) multiple instructions acting on multiple data items (MIMD); for example, mul-
tiprocessor systems and computer networks.

It is possible to classify MIMD architectures further according to their interconnection
structures [2]; however, for the purpose of this tutorial, two types of MIMD systems are
considered: those where the processor elements share access to a common memory and
those where they do not. These two types of system are referred to as tightly-coupled
and loosely-coupled distributed systems. Clearly a system where each element consisted
of multiple processors could still be viewed as a loosely coupled distributed system but
unless otherwise stated this tutorial assumes that each element is a uni-processor. It also
assumes that processor elements are identical in that they execute the same order code.
The problems associated with connecting heterogeneous processor elements together are
not addressed here.

13.1.1 Tightly Coupled Distributed Systems
In a tightly coupled system, processors have access to a common memory, although each
may have private memory as well. They usually take the form of multi-processor sys­
tems, such as CM* [3] and CYBA-M [4], or special systems for fast specialized computa­
tions such as vector or array processors.

Enslow and Saponas [5] list four reasons to explain why the improvements in perfor­
mance expected with tightly coupled systems have not been obtained.
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(1) The direct sharing of resources such as memory and 110 devices often results in
access conflicts and delays.

(2) User programming languages that support the effective utilization of tightly cou­
pled systems have not been developed adequately.

(3) The development of "optimal" schedules for the utilization of the processors is very
difficult except in straightforward or static situations.

(4) Any inefficiencies present in the operating system appear to be greatly exaggerated
by the distribution of the executing code.

13.1.2 Loosely Coupled Distributed Systems
In loosely coupled systems processors do not share access to a common memory
although they may share peripheral devices. Communication between processors is done
at the input/output level.

Two types of loosely coupled systems can be considered: those which operate over a
wide area network, such as the Arpanet [6] or PSS [7], and those which operate over a
local area network (LAN) such as the Cambridge Ring [8] or the Ethernet [9]. However,
the nature of the distributed system is essentially independent of the type of network
technology used.

Logically, a loosely coupled distributed system can be considered to be collection of
processes running on various processor elements (or nodes). Although processes running
on the same node can communicate using shared memory, processes running on separate
nodes must communicate via messages (or their equivalent).

13.1.3 Static and Dynamic Systems
A static system is one whose structure remains unchanged as long as the system exists.
It may have built-in redundancy to cope with failures in particular elements of the sys­
tem but the overall operational requirements will demand a system that is unchanging as
a function of time. Static systems tend to be associated with special purpose applications
and often run on dedicated hardware. A typical example is an Embedded Computer
System, which may be a uni-processor, a tightly coupled or a loosely coupled system.
An example of a static loosely coupled system is the Demos-86 Multi-microcomputer
[10].

Dynamic systems have changing operational requirements so their structure must be
able to adapt to possible changes. This may take the form of adding extra nodes to the
systems or it may be the dynamic creation or destruction of processes. General purpose
operating systems are dynamic systems. Examples of dynamic tightly coupled operating
systems include STAROS [11], Hydra [12], Medusa [13] and MUNIX [14]. Examples of
loosely coupled operating systems are Arachne [15], Series One distributed operating sys­
tem [16], Accent [17], LOCUS [18], the Rings-Star system [19] and PULSE [20].

13.1.4 Fully Distributed Systems
The term distributed system has been used, so far, to denote the physical distribution of
hardware. However, as Enslow [21] points out, at least four components of a system
might be distributed: hardware or control logic, data, the processing, and control. He
defines a "Fully Distributed Processing System" [5] as being characterized by the follow­
ing:
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(1) multiplicity of general resources, including processors;

(2) loosely coupled physical interconnection;

(3) a unity of control such that the system must define and support a unified set of
policies governing its operation;

(4) system transparency: users must be able to request services without being aware of
their physical location; and

(5) component autonomy: components operate in an autonomous fashion, requiring
cooperation with other components to exchange informations.

Another description has been given by Jensen [22]. He describes a "Fully Distributed
Computer" to be

"a multiplicity of processors that are physically and logically interconnected to
form a single system, in which overall executive control is exercised through the
cooperation of decentralized system elements. It is not sufficient that the proces­
sors appear to the user as a virtual single system - they must constitute an actual
single system at all levels of abstractions."

13.2 CLASSIFICATION OF DISTRIBUTED OPERATING SYSTEMS
We present below an informal classification of Distributed Operating Systems. It is
based upon a presentation given by Keeffe et al [20].

(1) A Network of Autonomous Systems

The main characteristic of this division is that the network is used explicitly. No
attempt is made to hide the underlying system from the user. In order that
machines of widely differing architectures, and consequently different operating sys­
tems, may communicate, there must be protocols for all projected activities. Two
such systems are well known: one is uucp [23], whereby different UNIX systems
may transfer files; the other is represented by implementation of the JNT "Blue
Book" file transfer protocol [24]. At command level, both these systems require the
user to express the communication in terms of "machine name" and "operation
name". The user must know the "address" of the remote machine.

(2) A Network of Autonomous Systems with the Network Hidden

Systems within this category are broadly similar to those described above, except
that the presence of a network is hidden from the user. This is usually achieved by
introducing a further layer of software between the user and the network. The most
important characteristic is that the user must know the location of the resource
within his name space, but he may not know whether that name denotes a remote
or local object. It does not follow that the name space for the overall "super­
system" appears the same from different points within it, with the possible result
that a resource may have different names from different nodes in the network.
Examples that fall within this category are the National Software Works [25), the
Newcastle Connection [26], and Cocanet [27].
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(3) Integrated Loosely Coupled Systems with Autonomous Nodes

This category is characterized by the presentation of a uniform name space to all
users, but where individual nodes of the system may function alone, albeit with
only a subset of that name space available to them. Any given resource will have
the same name, irrespective of the source of the request. Additionally, the name
may denote a resource which, depending on conditions, may be either local or
remote. We place our own work on the PULSE system in this category, along with
the LOCUS project [18).

(4) Integrated Loosely Coupled Systems but with Non-autonomous Nodes

Systemswithin this division are similar to those in the previous one, except that the
nodes are not capable of operating alone. A machine removed from the network
will no longer be operable, but the remainder will continue to function. Examples
are Arachne [15], the Cambridge Distributed Computing System [28], the New
Mexico State University Ring-Star system [19], and the Edinburgh Domain Struc­
ture for Distributed Computer Systems [29].

(5) Tightly Coupled Distributed Systems

Unlike the systems described above, this category applies to several processors
sharing memory on a common bus. One such system is StarOS: [11] there are
many others.

The categories above are not exhaustive. For instance, we have not included the Demos
system [10], where processes are allocated to machines at link time. Furthermore, we
have not attempted to categorize the network nodes themselves, so that no mention has
been made of the homogeneity or power of the processors, or whether there is local file
storage.

A further classification of distributed UNIX operating systems based upon the naming
structures of distributed file systems is given by Wupit [30].

13.3 DESCRIPTION OF 1WO DISTRIBUTED OPERATING SYSTEMS

13.3.1 Cambridge Distributed Computing System
The Cambridge system is built around a Ring local area network, to which terminals are
connected via a concentrator; a set of processors; and various servers which are responsi­
ble for allocating services upon receipt of an appropriate request. The Cambridge system
is essentially different from other distributed operating systems where the computing
power are dispersed to the individual terminals (which are then called Personal Comput­
ers or Workstations).

In this system each user has a private terminal which can be connected as a remote
terminal to some other machine on the network. The computers are provided in a so­
called Processor Bank, where the individual machines in the bank are not committed in
advance to any particular user. When a request is made by a user at a terminal for a
computer then the processor bank acts as a processor server and will allocate a machine
if one can be made available.

The Processor Bank is organized by a Resource Manager and the user's interface to it
is controlled by a Session Manager. Other servers in the system are the File Server, the
Ancilla (for loading programs into individual machines), the Time Server, and the Name
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Server (which relates names to locations).
This system, by contrast with other systems such as PULSE, concentrates all of the

disk storage in the File Server and the individual machines do not have private, local
disks. From the point of view of data sharing, this has some benefits as it has enabled
several other systems, such as TRIPOS, to be implemented on top of it.

One innovative feature of the system is that authentication and protection mechanisms
are built in at the lowest level. This is done by building authentication into even the
most basic protocols; this means that once the user has identified himself to the system,
unique identifiers can be passed around the system without further user involvement.

13.3.2 The PULSE Distributed Operating System
PULSE [20] is an experimental system designed and implemented at the University of
York with support from the SERC DCS programme since early in 1980. It is intended
to operate on a high speed local area network of loosely coupled powerful personal com­
puters. A prototype system running on two LSIIII-23 based personal computers con­
nected by a Cambridge Ring is currently operational.

The PULSE project is a development of the results of earlier research [31,32] which
explored various ways of distributing the UNIX operating system [33]. It has two major
goals:

(1) To investigate how a system may be constructed to give the benefits of a self­
sufficient personal computer to each user, whilst not losing the facilities for com­
munication and sharing of data inherent in centralized systems. In particular a dis­
tributed file system has been built which provides a single global UNIX-like hierar­
chy.

(2) To assess the suitability of the programming language for the development of dis­
tributed systems in general and distributed operating systems in particular. This
work is discussed further by Wellings et al [34].

The system has two main features. First, each machine in the network is capable of run­
ning "stand-alone" without logical or physical connection to the network. Second, the
filing system has a consistent appearance when accessed from any machine.

Each PULSE machine runs at least a kernel and a file server. The kernel supports the
requirements of the Ada language, as well as allowing several programs to run con­
currently and to communicate. An important result of using Ada is that all interpro­
gram communication is achieved through task rendezvous: kernel objects called "Medi­
ums" act as buffer tasks, which accept and forward messages. The kernel also provides
basic management facilities for the allocation and manipulation of new program images.

The file system is implemented by an instance of a file server program running on
each PULSE machine. This program is written in Ada, and makes full use of the
language's tasking facilities. Each server is responsible for all access to, and management
of, files on its machine. This includes the loading of programs, and the association of
particular IPC channels with file names.

In order to improve the availability and speed of access to files, a primary copy [35]
scheme of file replication has been adopted. The file servers co-ordinate access to multi­
ple copies of the same file and ensure their mutual consistency. A fuller description is
given by Keeffe et al [20].

The PULSE project has now reached the point where truly distributed programs can
be loaded and run, where a distributed filing system is operational, and where the opera­
tional characteristics of the system can be measured. One significant result has be the
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discovery of major problems in the use of the Ada tasking model. These difficulties have
been caused both by the complexity of Ada (giving a slow implementation, and, in par­
ticular, very long task switching times) and by fundamental problems with the language
when it is usedfor resource control [36].
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14 Programming Languages

I. C. Wand and A. J. Wellings

14.1 INTRODUCTION

The techniques underlying distributed systems implementation draw heavily upon those
used in operating systems for controlling concurrent access to shared resources; in many
cases the related concepts have been incorporated in programming languages.

Although languages for concurrent programming differ considerably one from another,
they must have three features in common [I]

(1) the ability to express concurrent execution,

(2) process synchronization, and

(3) inter-process communication.

There has been much experimentation with new methods for concurrency and resource
control by extending a programming language with suitable library facilities. Generally,
when the techniques have been understood they are brought into the language domain,
thereby extending the security of the mechanism by including, for example, strong typ­
ing. Examples of such methods include concurrent (or parallel) processing, exception
handling, and more recently atomic transactions. Language research into atomic transac­
tions is being carried out in the US by Liskov at MIT [2,3,4] and at Rochester [5], and
in the UK at Newcastle [6,7].

We now discuss concurrent programming techniques and the associated programming
language features; where appropriate, examples from operating systems are given. Sub­
sequent sections discuss how these techniques are extended to particular forms of distri­
buted computing.

14.2 CONCURRENT EXECUTION
There are four basic mechanisms for achieving concurrent execution. First and simplest
of these is the coroutine which has been included in languages such as Simula [8] and
Modula-2 [9]. Secondly, the fork and join notation, which is used in the UNIX operating
system [10], and can be found in the Mesa language [11]. Thirdly, the Cobegin or Parbe­
gin, first introduced by Dijkstra, has appeared in Communicating Sequential Processes
[12], Edison [13], and more recently in occam [14] and Argus [4]. Finally, explicit process
declarations can be found in Concurrent Pascal [15], Modula [16], Distributed Processes
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[17], Parlance [18], Pascal-M [19], the RED language [20], starmod [21] and SR [22].

14.2.1 Process Synchronization and Communication

Synchronization and communication can be achieved either by reading and wntmg
shared data or by the sending and receiving of messages between processes which do not
share data. In general it is difficult to separate synchronization from communication. If
a process is to synchronize with another it must detect an action performed by that pro­
cess; this requires a flow of information between the processes which can take the form
of a simple message called a signal. Furthermore some ordering of events is required if
two processes are to communicate with each other sensibly.

14.2.2 Shared Variables

Andrews and Schneider [1] distinguish two types of synchronization when communica­
tion is based upon the use of shared variables. The first is mutual exclusion, which
ensures that a sequence of statements is treated as an indivisible operation. The second
is condition synchronization, to coordinate execution of concurrent processes when a
shared object is in a state inappropriate for executing a particular operation.

Various methods of achieving synchronization and communication using shared vari­
ables are now discussed.

Test and Set

If the hardware provides a single test and set instruction, then synchronization can be
achieved using a busy wait protocol. To provide mutual exclusion a process uses test
and set on a shared variable. If the test indicates that the variable was previously zero
then the process may enter the mutually exclusive routine; at the end of the 'routine it
must set the variable back to zero. If a process finds as a result of using test and set that
a variable was previously set, then it can deduce that another process is currently execut­
ing the routine. Condition synchronization is now required so that the process can wait
until the routine is cleared for entry. This is achieved by continually testing and setting
the variable until the result indicates that the variable is now clear. This is usually
known as busy waiting.

Semaphores

Semaphores are another simple mechanism for providing synchronization. They are
integer-like variables whose values can only be altered by the operation P and V. If S is
a semaphore, when a process executes the operation P(S), then S is decremented by one.
If S is greater than or equal to zero then the process continues execution. However, if S
is less than zero then the process is blocked and put on a queue associated with S. It
remains blocked until a V(S) operation releases it. When a process executes the V(S)
operation, S is incremented by one. If S is greater than zero it continues, if S is less than
or equal to zero a process waiting on the queue associated with S is released. Both the
releasing and the released process are now free to continue.

Semaphores can be used to program almost any kind of synchronization although they
lead to an unstructured form of programming. For example, if a process omits a P or
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applies such an operation to the wrong semaphore, then the result can be chaotic.

Conditional CriticalRegions

Condition Critical Regions [23,24] are an attempt to overcome some of the problems
with semaphores. A critical region is a section of code that is guaranteed to be executed
in mutual exclusion. A conditional critical region provides mutual exclusion and condi­
tion synchronization. Variables which are to be shared between processes are grouped
together in resources where a shared variable is only allowed in one resource and can
only be accessed by a conditional critical region naming that resource. Processes execut­
ing different regions naming the same resource are also mutually exclusive. Condition
synchronization is provided by allowing a boolean variable as a guard to that conditional
critical region. If a process attempts to enter a conditional critical region and the associ­
ated guard evaluates to false, then the process is delayed until the guard evaluates to
true. Processes must re-evaluate their guards every time a conditional critical region
naming the resource is exited. Brinch Hansen [24] introduced the await and cause con­
structs to increase the efficiency of this language mechanism; when a condition is tested
in a conditional critical region, if that condition is false then the process awaits an event,
where an event is a variable of type event on which processes can be queued. When a
process exits a conditional critical region it can wake up up all processes waiting on an
event by issuing a cause on that event. Conditional Critical regions have been imple­
mented in Edison [13].

Monitors

The main problems with conditional critical regions are that they can be dispersed
throughout the programs and that they are costly to implement [II. Monitors [25,26] are
intended to alleviate these problems. The critical regions are written as procedures and
are encapsulated together with the data into a single program unit called a monitor in
which associated procedure calls are guaranteed to be mutually exclusive. Condition
synchronization is provided by a variety of methods depending on the particular type of
monitor being used. In Hoare's [25] monitors condition variables are used with the
operations wait, including an optional priority, and signal. When a process issues a wait
operation on a condition variable it is blocked and placed on a queue associated with
that variable; the queue is ordered according to the priority of the wait operation. If no
priority is given, then they are queued infirst-in-jirst-out order. The monitor lock is then
released allowing further monitor procedure calls. When a process executes a signal
operation on a condition variable, then, if no other process is blocked, it continues.
However, if there are processes waiting, the process which issued the signal operation is
suspended and the first process in the queue associated with the condition variable is
reactivated. A process blocked on a signal is resumed when no other process has the
monitor lock; they are given priority over all other processes attempting to obtain the
lock to execute a monitor procedure. Pascal Plus [27] is an example of a language which
uses Hoare's monitors. Modula [16] provides very similar facilities using interface
modules and signals.

In Concurrent Pascal [15], condition variables are replaced by queue variables; they
differ in that only one process can be waiting on a queue variable at anyone time. The
operations delay and continue are analogous to wait and signal, the main difference being
that a continue causes the invoking process to return from the monitor procedure
whereas the signal does not. The process activated by the continue resumes execution of
the monitor procedure within which it was delayed.

So far it has been assumed that a process resumes its execution after being delayed if
the condition causing it to block initially is no longer true. An alternative approach is to
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provide a conditionalwait [25] where a boolean expression is associated with the opera­
tion. The process is blocked until this expression evaluates to true. This approach is
potentially inefficient because it requires the evaluation of all conditional waits every
time a process exits from a monitor.

In Mesa [11] a different approach is taken. There is no conditional wait, but
processes cannot assume that the condition causing a block is removed. The notify
operation (comparable to a signal) merely indicates that the blocked process should re­
evaluate the condition. A broadcast operation is also provided to notify all the processes
waiting on a particular condition variable. Mesa provides external procedures in a moni­
tor; these are procedures which are logically outside the monitor but are declared within
the same module for reasons of packaging. However these procedures may access only
unchanging read-only global variables inside the monitor and must not call any internal
procedures, or use any of the condition variable operations. These restrictions are
checked at compiler time.

The problems associated with the use of monitors have received much attention in the
literature with particular interest in the semantics of nested monitor calls [28,29,30,31].
Andrews and Schneider [1] have discussed this controversy in detail. Various approaches
to the nested monitor problem have been suggested [29,32,31]. The most popular one,
adopted by Concurrent Pascal [15] and Mesa [31], is to maintain the lock. Other
approaches include prohibiting nested procedure calls altogether [33], providing a special
purpose construct [34] or providing constructs which specify that certain monitor pro­
cedures may release their mutual exclusion during procedure calls [32].

Path Expressions

Path Expressions [35] provide synchronization of a shared variable by specifying the
allowed ordering of procedures which manipulate that variable. The following is an
example of the notation used:

selection
sequencing
concurrency

".",
"0"

For instance the path

path {read},(openwrite;write) end

denotes permitted read/write access to a shared variable; a choice is made between an
arbitrary number of readers or a single write which must first issue an open write
request.

This approach provides a mechanism for denoting mutual exclusive access to a shared
resource while not preventing access when mutual exclusion is not required. However
conditional synchronization is difficult. Problems occur when access to parameter infor­
mation is required before attempting synchronization [36, 1].

Ada Tasking

In all of the techniques described above mutual exclusion and synchronization are con­
trolled by separate mechanisms. Ada tasking [37] attempts to amalgamate these require­
ments into a single language feature.

Ada tasking is a complex set of language features which are interconnected with most
other aspects of the language. Ada tasks can be declared at the start of any scope and
are initiated either by virtue of their declaration or by their use via the storage allocator.
The lifetime of a task is intimately bound up with its dependent tasks and no block will
be left until all dependent tasks have completed. The Ada tasking model assumes that
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all of the tasks in a program run in the same address space; in other words it presumes a
shared store model. As will be seen later it is difficult to construct an implementation of
Ada tasking for a loosely coupled system that reflects the Ada tasking semantics and is
reasonably efficient.

Communication between Ada tasks can be achieved by two different mechanisms.
First, by the use of variables which are global to the tasks which want to communicate,
and second, by the use of procedure-like entries into tasks. When a task wishes to pass
information to another it calls the entry in that task; the sender will wait until the called
task has dealt with the call. In Ada this interaction is called a rendezvous. It is impor­
tant to note that, although the caller must know the name of the task entry it is calling,
the called task is unaware of the identity of the caller. The called task will receive the
entry calls in a FIFO order. Several facilities are provided for further control over the
calling entry sequence including timed calls, a method of specifying alternative entry
points, families (arrays) of entries, etc. Furthermore, there is a complicated interaction
with the exception mechanism in Ada.

Wellings et al [38] has shown that the Ada tasking mechanism has serious shortcom­
ings when it is used for resource allocation.

14.2.3 Message Passing
Message passing is an alternative to the use of shared data when providing a communi­
cation and synchronization mechanism between processes. Gentleman [39] has suggested
that there are four issues which determine the semantics of message passing:

(I) process naming,

(2) blocking or non-blocking send,

(3) representation of a message, and

(4) communication failures.

Furthermore, Liskov [3] has suggested four properties that the communication primitives
should provide:

(1) User programs need not deal with the underlying form of messages. For example,
users should not need to translate data into bit strings suitable for transmission or
to break up the message into packets.

(2) All messages received by user programs are intact and in good condition. For
example, if messages are broken into packets, then the system only delivers a mes­
sage if all packets arrive at the receiving node and are properly reassembled.
Furthermore, if the bits in a message have been scrambled, the message either is
not delivered or is reconstructed before delivery; clearly some information is
required for error checking.

(3) Messages received by a module are the kind that module expects. Support for this
property requires type checking which may be performed either at compile-time or
run-time. Performing such type checking is analogous to the type checking of pro­
cedure calls.

(4) Modules are not restricted to communicating only in terms of a predefined built-in
set of types. Instead, modules can communicate in terms of values of interest to
the application. In particular, if the application is defined using abstract data
types, then values of these types can be communicated in messages.
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14.2.3.1 Process Naming
In many programming languages the process receiving the message does not know the
identity of the sending process. In others both identities must be known. For example,
in CSP [12] explicit naming is required; in DP [l7] the calling task, must name the called
task, but the called task is unaware of who is calling and can receive from anyone; and
in Parlance [18] neither task names each other, the connection being done by another
process. By contrast in DP the calling task not only has to name the called task but also
an associated procedure. In SR the caller need only name the entry, termed an opera­
tion, because each entry is directly associated with a process.

If processes name each other indirectly then some form of medium is required for
inter-process communication. This medium is called a channel in occam, a mailbox in
RED and Pascal-M, an exchange in the Series One Distributed Operating System [40], a
link in the Arachne (formerly called Roscoe) distributed operating system [41], and a
port in the extensions to CLU [3] and the SPICE kernel [42]. With indirect naming and
using some forms of interconnection medium, it is possible to have many processes send­
ing messages and many processes reading messages, although some systems restrict this
to many senders and a single reader. For example the Arachne link allows only a single
reader whereas Pascal-M allows many readers and many writers.

It is important to decide whether the names used for communication are interpreted
locally or globally. For example in the Accent kernel [42] ports cannot be manipulated
or named by a process as they are local capabilities; this protects a port against acciden­
tal or malicious access. However, in Pascal-M a mailbox is named by a global number
which identifies the processor on which the mailbox resides. Protection is provided by
having a large scattered range of identifiers with a random number component.

14.2.3.2 Blocking or Non-blocking Send
Liskov has suggested three possibilities for message operations: [2]

(1) a no-wait send,

(2) a synchronized send, and

(3) a remote invocation send.

In the no-wait send, the sender continues execution immediately the message has been
sent. This implies some buffering mechanism between the communicating processes. If
there is an unbounded buffer then the sending process will never be blocked. However,
the sending processes can then queue more messages than the receiving process can han­
dle. A bounded buffer means that the system must provide a means of controlling the
flow of data between processes which have mismatched speeds.

Rashid and Robertson [42] have listed three alternative actions that can be taken
when the buffer is full.

(I) The process is blocked until the message can be placed in the queue. This is useful
if the sending process does not care if it is blocked and it is only interested in send­
ing the message. An example of this can be found in the RED language.

(2) The process is notified after suspending itself for a specified period while waiting
for the message to be sent. This approach would be convenient where the process
is sending a wakeup message to another process.



(3) The message is accepted by the kernel but the data is left in the process' address
space until it can be queued. The process is notified when this has happened. The
most likely use for this option is that a server process is attempting to reply to a
messagebut the client's queue is full. In this case the server does not wish to block
but does want the data to be sent and furthermore wishes to be notified when this
has been done.

An alternative action, not mentioned by Rashid and Robertson, is for the system to
throw the message away. If the message was important then the sending process will
wait for a reply; if an acknowledgement has not arrived within the specified time, the
message can be repeated.

With the synchronized send the sender waits until the message has been received, as
for example in CSP, Pascal-M and Parlance. In the remote invocation send the sender
waits until it has received a reply as in the SR language and the Thoth operating system
[43].

So far a blocking receive has been assumed. However some languages provide an
option for a non-blocking receive and a means whereby a process can block while wait­
ing for one of several messages to arrive. In Pascal-M this is provided by the select state­
ment. CSP and SR use this form of message. In the more general case the selection may
be between either send, receive or both message operations, and each one may be pre­
ceded by a guard [44]. Andrews [45] gives details of how guards function within selective
message operations.

When selection is applied to receiving messages further control may be provided. In
PLITS [46], a transaction key may be attached to a message when it is sent and the
receiving process can delay until a message with the specified transaction key arrives. In
SR a process can supply a Boolean condition with the receive operation which may
include information in the message itself. This allows a process to look at the contents
of a message before it receives it. If the Boolean condition is true, then the 'receive' is
complete, otherwise another message is tried. If all messages queued on that 'receive' do
not satisfy the boolean expression, then the statement blocks or another guard is
evaluated.

14.2.3.3 Message Formats
The form of message can be thought of as being similar to a function call where the
parameters to the send or receive contain the data to be sent in the message. OP and SR
are examples of this syntax. The alternative notation is where a message is treated as a
single object which may be compound in structure. Operating Systems with message
passing primitives view messages in this way, as do Pascal-M and the RED language.

The messages can be of fixed or variable length. The Arachne [41], Thoth [43] and
GEC 4000 operating systems allow only a fixed size message to be sent. Pascal-M allows
variable length messages to be sent through different mailboxes but they must be fixed
for a particular one. The RED language allows variable length data to be sent through
its mailboxes in the form of variable length arrays. If variable length data transmission
is allowed then there is the problem of allocating the space in the receiving process. This
may be solved by allocating a maximum size buffer for the message, by allowing a pre­
view of the message to determine its size and then preallocating the space, or by using
virtual memory techniques to map the message into the receiver's address space.
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14.2.3.4 Communications Failure
There are several failures which may occur when processes are communicating. They
include the following: the destination is absent; the destination is unable to accept the
communication; or the communication subsystem has garbled, lost or duplicated a mes­
sage. Two protocols [47] have been proposed for communication in an environment
where errors may occur: a Virtual Circuit and a Datagram.

A Virtual Circuit is a logical connection set up between communicating processes. All
errors are masked out by the supporting software which must be able to cope with gar­
bled communication and sequencing problems. Only when the connection is broken are
the processes informed. A Datagram is a packet of information which is carried to its
destination without reference to any other packet. No guarantee is given of their
arrival, whether they are intact or whether they are lost or duplicated. The programs
using the datagram service must provide their own error detection and correction.

14.3 TASKS ON LOOSELY COUPLED DISTRIBUTED SYSTEMS
In a loosely coupled distributed system there is no shared memory between the proces­
sors, so tasks in separate machines cannot run efficiently if they share data.

Clearly the difficulty of sharing data efficiently between tasks gives rise to problems in
the efficient implementation of existing (uni-processor) multi-process (task) programming
languages on loosely coupled distributed systems. Languages in this class include
Modula, and Pascal-Plus.

14.3.1 Ada
Downes and Goldsack [48] have discussed the difficulty of using preliminary Ada in a

loosely coupled system. They have introduced the concept of a zone which is a package
containing a static task with other (possible) internal subtasks. All tasks within a zone
may communicate using the full language features; however, communication between
zones can only use the rendezvous mechanism and is restricted further by not allowing
pointers to be passed as parameters. It is intended that a particular zone should be con­
sidered as a virtual node in a network. (A more detailed discussion of the virtual node
concept when applied to Ada is given by a feasibility study commissioned by the Euro­
pean Communities and carried out by SPL International [49]. ) This virtual node con­
cept is similar to language constructs designed specifically for distributed programming,
for example the guardian of extended CLU [3] and Argus [4], and the "network module"
of starmod [21],

Jessop [50] states that for a language to be effective in a distributed environment, as
well as providing a suitable model for process communication and synchronization, it
must also provide the following.

(1) The separate compilation of modules and support for program libraries

(2) The exceptions encountered when attempting to communicate.

(3) The dynamic instantiation of nodes in the network without reinitialising the entire
virtual network system.

An Ada task satisfies two of these requirements but, because it is unable to encapsulate
data the same way as a package and cannot be a library unit, it is unsuitable as a virtual
node. (In the early version of Ada called Green, tasks could satisfy (l) and (2) but not
(3).) A package on the other hand is static.
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For a static distributed system, such as those found in embedded computer systems,
Jessop's requirement for dynamic instantiation of nodes can be relaxed. A network pack­
age as a virtual node can be introduced, which is a restricted form of a normal package.
Only tasks specifications and type declarations may be visible from this package; in addi­
tion, access variables may not be declared as parameters to entries.

Even with this simple approach, certain assumptions have been made about the
underlying communication network. For example it assumes that the request "to enter a
rendezvous" arrives at the site of the called task. Although the language does provide a
timed entry call, if the delay time expires it is assumed that the called task could not
respond within the stated period, although it is assumed that the entry call was received.
Furthermore, once a rendezvous has been entered, the language assumes it will complete
eventually or the entered task is aborted. In addition, the language assumes that the
called task will be able to return any result to the calling task immediately the rendez­
vous has finished. Consequently, if the communication subsystem fails, there is no way
for the calling task to withdraw from the rendezvous, and the called task must wait until
the calling task has received the results. Once a connection is broken, either the tasks
must wait for the communication network to be repaired, or assume that the task has
been aborted. The problems of remote entry call are very similar to the problems of
remote procedure calls. A fuller discussion of the problems and possible solutions is
given in the literature [51,52,53]. A further complication is caused by the replication of
the network package at many nodes in the network. If a change is made to the package
(for example, to the static data), then the new package must be made available to all of
the nodes simultaneously.

Even if we accept the restrictions of the virtual node concept, the problems associated
with the actual synchronization primitives, already outlined in these notes, become more
difficult. In a distributed system, machines can go down and therefore tasks will be
aborted arbitrarily. There can be long delays when communication takes place across the
network, and so race conditions may occur in this circumstance.

14.3.2 occam
occam [14] is a small language designed to exploit the architecture of a number of loosely
coupled processors connected by communication channels; such an architecture is real­
ised by the forthcoming INMOS Transputer. The language is modelled on CSP,
although the detailed method of synchronization is very similar to that of Ada. In par­
ticular, input can be awaited on a number of channels, the input being taken from the
first channel which provides data. One important difference from Ada is that an occam
concurrent process must state the name of the channel in use and the provider of data
must also name the same channel. Communication can be thought of as a distributed
assignment. For example:

PAR
c!x
c?y

is the same as the distributed assignment

y:= x

The behaviour of a process is only visible from the messages which pass along its
channels. The internal structure of a process is hidden, providing modularity when con­
structing large programs.
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The language provides explicit mechanisms for the construction of sequences of
sequential statements (SEQ) and for sets of statements that may be executed in parallel
(PAR). For example the following is a simple double buffer:

WHILE TRUE
VARx,y:
SEQ

PAR
buffer.in? x
buffer.out !y

PAR
buffer.out !x
buffer.in? y

The language contains a restricted set of statements consistent with its philosophy of
simplicity. It is interesting to note that the initial version of occam is typeless, the single
data type being the "word". Furthermore, occam programs will execute on one or more
processors with identical semantics, although there will be performance gains when
further processors are added to the network.

14.3.3 Pascal-m
Pascal-m [19] is a dialect of Pascal designed to allow type-secure programming of sys­
tems of communicating processes, designed at QMC under a DCS SERC grant. It is
based upon synchronized message-passing, without the use of shared memory, using so­
called mailboxes, which are separated from processes; thus allowing non-deterministic
pairings of senders and receivers.

Pascal-m programs are structured using modules which allow the programmer to
describe the constraints on the initial interconnection of processes, and to control the
lifetime of mailboxes. The association of types with mailboxes means that the Pascal
rules of strong typing apply across the entire system. Mailbox identifying values may be
transmitted, thus allowing the specification of dynamically extensible patterns of inter­
connection.

As an example of the use of Pascal-m, the following program fragment is a solution to
the producer-consumer problem using an intermediate buffer to solve the problem of the
producer and consumer running at unequal speeds.
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CONST Tmax = ...

MAILBOXp. C: mt;

PROCESSproducer (X: mt as send);
BEGIN ... send data to X ... END;

PROCESSbuffer(U:mt as receive;V: mt as send);
lYPE Tindex = I..Tmax;
VAR T: ARRAY[Tindex]of t;

nextin, nextout: Tindex;
count: O..Tmax;

BEGIN
count: = 0; nextin := 1; nextout := 1;
REPSELECT

IF count < Tmax THEN receiveT[nextin]from U:
BEGIN
nextin := (nextinmod Tmax)+ 1; count := count+ 1
END;

IF count<>O THEN send T[nextout]to V:
BEGIN
nextout := (nextout mod Tmax)+ 1; count: = count-I
END

END {repselect}
END; {buffer}

"

PROCESSconsumer(Y:mt as receive);
BEGIN ... receiveV fromY ... END;

INSTANCEP = producer(P);b = buffer(P.C); c = consumer(C);

In this program, the producer sends its data to the mailbox P and the consumer pro­
cess receives its data from mailbox C. The buffer process between them receives from P
and sends to C. The REPSELECT statement, which never terminates, offers to receive
from the producer whenever there is room in the buffer array, and, simultaneously, to
send to the consumer whenever there is something in the buffer array.

Any number of intermediate buffer processes can be inserted between the producer
and the consumer processes. Note that the designers of the producer or consumer
processes need take no notice of the inclusion of buffer processes. The following pro­
gram fragment interposes two buffer processes between producer and consumer.

MAILBOXP, B, C: mt;

INSTANCEp= producer(P);
bI = buffer(P.B); b2 = buffer(B.C);
c = consumer(C);

The designers of Pascal-m have now described the extended semantics that are neces­
sary for the use of the language in a distributed environment [54). Their basic assump­
tion is that no distinction should be made between local and remote communication in
the linguistic structure of the language. Furthermore they make a assumption of fairness
when several communications are possible, in the sense that if a process is willing to
communicate and there continue to be potential partners for it, then there must be a
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time in the future by which that process will have communicated. The designers of
Pascal-m have now defined a protocol which will ensure the appropriate semantics, with
the basic communication taking place using datagrams over the underlying network. The
protocol does not demand a completely reliable network, but requires a transmission­
truthful network; by this they mean that if the sender is told that the message was
received, then it definitely was received; although if he is told that the message wasn't
received, then the position is uncertain. Such a network property can be implemented by
using suitable checksums in each packet transmitted. Fairness is ensured by associating
a counter with each select guard.

At present the QMC group are putting their ideas on distributed Pascal-m to the test
by implementation. So far no results have been reported.

14.3.4 CONIC
CONIC [55] provides an integrated set of techniques and tools for constructing and
managing large distributed computer control systems. The original architecture evolved
during a project, funded by the National Coal Board, on the use of microprocessors for
monitoring and control in coal mines. The project has been funded subsequently by the
SERC DCS programme.

The CONIC system provides a two level language: one for the programming of indivi­
dual software components (module definitions), and the other for the configuration
management of a distributed system built from instances of these modules.

The module definition language has some similarity to Ada, in that it separates the
interface specification of a module (or package) from the operational part. A major con­
cern has been the definition of an interface specification technique which does not
include behavioural aspects of the module. Each module or group of modules may con­
tain one or more tasks; this program is then placed in the distributed system using the
configuration language. The inter-task communication is achieved by message passing,
using send-wait and receive-reply primitives.

The configuration language enables modules to be interconnected to form a system.
The language insists that ports and their associated messages are strongly typed; further­
more, it enables the mapping, of groups of modules on to hardware structures of stations
and subnets, to be specified. In addition, it permits the naming of groups of modules so
that they can be associated to reflect a particular application structure.

The implementation work has investigated the problems of dynamic reconfiguration,
an important problem in any environment which requires continuity of service.
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15.1 INTRODUCTION
Parallel computation, or the concurrent operation of separate processing units, has for a
long time been used as a technique to derive better performance from a given technol­
ogy. The first step, taken some thirty years ago, was to move from bit-serial computers to
word-serial or parallel computers to achieve an order of magnitude improvement in per­
formance. Various styles of concurrency within a monolithic computer system then
evolved to enable several operations to occur at once. These styles were identified and
classified by Flynn [1]

SISD
SIMD
MISD
MIMD

Single Instruction Single Data (Conventional Computer)
Single Instruction Multiple Data (e.g. ICL-DAP)
Multiple Instruction Single Data (e.g. CRAY-20S)
Multiple Instruction Multiple Data (e.g. CMU-C.mmp)

In the first (SISD) the instruction cycle is executed as one sequential procedure. In the
second (SIMD) a plurality of data operations may be invoked to occur concurrently dur­
ing one instruction cycle, whilst in the third (MISD) actions within an instruction cycle
may be overlapped with different actions of consecutive instruction cycles to achieve a
higher rate of instruction execution. The MIMD organisation allows several computers to
operate separately,concurrently and in concert so that several instruction cycles may be
occurring simultaneously, to give an instruction execution rate which is directly propor­
tional to the number of active computers in the assemblage. It is this organization which
is the basis for the architecture of closely coupled systems. In these systems, we are con­
cerned about methods of interconnecting computers to enable communications between
them to occur within the conventional instruction cycle, to achieve the rapid transfer of
working variables and control information between concurrent processes acting as parts
of a total process. The interconnection method itself places certain requirements on the
instruction set and hence the architecture of the individual computer [2].

In this chapter we will consider strategies for the interconnection of computers and
the basic properties of the instruction set to enable reliable connections. The direct
shared memory, implemented as a multiport memory in the CYBA-M or as part of a
Multibus system will be described in some detail before indirect methods of coupling
computers are discussed, which lead on to loosely coupled distributed systems, or to the
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realization of very large parallel computing systems utilising a vast number of transputers
[3].

15.2 INTERCONNECI10N STRATEGIES
A study of the possible. methods of interconnecting computers was carried out by Ander­
son and Jensen [4], which was later analysed to identify the most likely methods to be
used for closely coupled systems [5]. It is appropriate to revise this analysis in the light
of experience.

In closely coupled systems the implementation of the algorithm to be executed can be
seen as a network of co-operating sequential processes Figure 15-1. Each sequential pro­
cess occupies a single microcomputer or processor/memory pair and the co-operation
involves an arc which links computer to computer. It is in the nature of co-operation that
during a transaction one process will send data to a second process which receives it.
Thus, each arc can be viewed as a buffer register which is written to by the execution of
a store order in the sending processor and subsequently read from by a load order
obeyed in the receiving processor. As far as each processor/memory pair is concerned,
the real memory address space is apportioned between conventional memory, output
ports and input ports. The output ports connect to arcs for sending by store orders and
the input ports for receiving from arcs by load orders. The physical provision of the
memory elements which enable these ports and hence the arcs (which link the processes)
depends upon the interconnection structure to be used. The most obvious structure is by
direct wire links. In this each arc is physically provided by an individual buffer memory
and appropriate connections into the memory space of both the sending and receiving
processor. The problem is not unlike that faced by the designer of a product based upon
a single microprocessor, several input/output devices and different types of RAM and
ROM. Each new problem to be solved is described by a new network of

Input [

Output

o Process

Arc showing flow
-- of information

Figure 15-1
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processor/memory pairs, which in turn specifies the memory arrangement for each pro­
cessor and the physical routing of the wires which become the arcs. Modifications to the
network require physical changes at both the sender and receiver, as well as the change
of the buffer memory and the interconnections.

The network of arcs between the processor/memory pairs are programmed by a physi­
cal process not unlike that of a patchboard of the early analogue computers. The setting
up of a new problem by patching a different set of interconnections for an assemblage of
processor/memory pairs creates many difficulties and it is worthwhile to consider an
electronically programmed method of interconnection. One obvious method is the cross
bar employed in the CMU-C.mmp system [6]. The alternative which has been adopted
on a wide scale is to provide a direct shared memory as in CYBA-M [7], or as in Mul­
tibus [8].

15.3INSlRUCTION SET PRIMITIVES
The basic method of transferring data between the processor and the buffer of the arc is
to use the load and store instructions, which effectively transfer between a central register
in the processor and a location in the memory space designated as the address of the
buffer. Each processor is assigned address locations for its own private memory, and for
the shared memory space which provides the arc buffers. It is possible for all the shared
memory to be accessible from all the processors attached to it. Conflicts arise when two
or more processors attempt to access the shared memory simultaneously. This connection
for access must be dealt with by the circuits of the multiport memory or the shared bus.
The way in which the contention is resolved is transparent to the process running in the
processor/memory pair and does not affect the instruction set, it merely affects the tim­
ing of the interaction between processor and shared memory. Synchronisation of the
instruction cycles of the various processors is achieved within the logic circuits of the
shared memory controllers, and is no concern of the programmer when preparing the
instruction sequences. However, incorrect software synchronization can lead to indeter­
minacy deadlock. Many of these processes are at a high level and will be dealt with in
Chapter 16, but there is one problem which must be solved by special facilities in the
hardware which affect the instruction set [9).

15.4TEST ANDSET OF LOCK
So far in this discussion the shared memory has been the location of the private arc
buffers, which are essentially only ever written to by a single sender and read by a single
receiver. The shared memory may include locations which are used as working space by
several processors, or correspond to buffers for shared peripheral devices. The sharing of
these resources amongst several concurrent processes can lead to confusion if two or
more use the shared resource simultaneously. Special semaphore arrangements must be
made to ensure that one and only one process has sole use of the resource until it has
dealt with it. The form of the semaphore could be a byte in the shared memory, termed a
lock byte, which is associated with each shared resource. If the lock is set, or closed, then
the particular resource is currently the property of a process, and all others are locked
out from it and denied access to it. If the lock is not set, or open, then the resource is
free and waiting to become the property of the first process which attempts to stake a
claim. The protocol requires a process to examine the lock byte before attempting to
have its way with the shared resource behind the lock. If the lock is set as closed, then
the resource is already seized by another process, and the interrogating process must
proceed no further, but must delay access to this resource until the lock is open. If the
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lock is open, then the interrogating process must first close the lock before proceeding to
access the resource. The action of reading from the shared memory, then checking the
status of the lock byte, can take several memory cycles, during which time other proces­
sors may read the same lock byte and believe they have also found an open lock. They
will then close the lock and proceed as if they had sole rights of access. The use of the
simple load and store instructions with the lock byte cannot guarantee correct working of
the protocol.

It is necessary to make special provision in the hardware either to ensure that the
reading of a lock byte will immediately set the lock to closed [1OJ,or to provide special
instructions [9j. The 6800 instruction set includes a test and set instruction. When this is
obeyed, the lock byte is read from shared memory into the processor; all other accesses
to the shared memory are held up until the processor has examined the value of the lock,
and written back a new value into the byte in shared memory. At the end of this Read­
Modify-Write memory cycle the shared memory is again released to accesses from any
processor through the bus. In the 8086 a special prefix lock may be inserted before any
instruction. When inserted before an exchange instruction, the action is similar to the
Read-Modify-Write sequence of the Test and Set instruction.

15.5 MATCIDNG OF PROCESSOR AND MEMORY SPEED
In the early days of computing, the technology of the processor was based solely on elec­
tronic components whilst the memory devices relied upon acoustic or magnetic
phenomena. The electronic components could operate at a higher rate then the memory
devices, and extra delays were introduced at the interfaces where the transducers con­
verted between electronic signals and acoustic or magnetic effects. The processor became
much faster than its associated main memory. Whilst the memory technology was
predominantly based upon the magnetic core the time of an instruction cycle was deter­
mined by the cycle time of the read (destroy) - write (restore) cycle of the memory.
Within the instruction cycle there would be one memory cycle for instruction fetch and
usually a second memory cycle for operand fetch or store.

In those days, the circuits of the processbr were waiting for the memory and their
potential for doing work was not fully exploited. The efficiency of the combined
processor/memory pair could be increased by partitioning the memory into a small
number of sections, and allowing for a separate access mechanism to each section; so
that the access for an instruction in one section might be interleaved with the operand
access of the previous instruction located in another section of the memory [llj. Such an
arrangement, as shown in Figure 15-2, resulted in several similar separate memory com­
ponents being attached to one processor component.

The advent of semiconductor memory technology changed the situation. Gradually,
as the semiconductor technology developed, the time devoted to accessing a memory
component became similar to that of the time required for actions within the processor.
Indeed, when the first microprocessors were released in the early 1970s, the instruction
cycle time of the processor was longer than the access time of the associated memory
components. An arrangement as shown in Figure 15-3 became possible in which four
microprocessors could be interleaved with one memory, giving a structure in which each
processor could operate at full speed; a factor of four improvement in raw instruction
speed could be achieved. This increase in instruction execution rate can be exploited if
the program can be subdivided into four separate procedures, which run concurrently on
the four separate processing elements. This is a rare possibility, and should not be used
as the basis for achieving an increased performance for execution of a conventional
sequential program. It is far easier to achieve a better overall instruction execution rate
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for a given program by using a single processor to match the speed of the memory com­
ponent. This is seen in the development of bi-polar bit slice microprocessor components
to match the uni-polar memory components.

However, there are few information processing tasks which rely on the execution of a
single sequential procedure. It is more common to find several concurrent processes mak­
ing up the total processing activity. A single processing element may be time-shared
amongst these processes, or each process may be assigned to its own processing element,
which co-operate with other processes by communicating through a shared memory as
shown in Figure 15-4.

The shared memory may also include common data or program areas and memory
mapped input! output devices to be shared among the processing elements.

15.6 SHARED MEMORY IMPLEMENTATION
There are two extreme requirements which govern the choice of shared memory imple­
mentation technique. At one extreme is a requirement for a high rate of response by the
shared memory to requests for access by individual processes. These are situations where
performance is important, and there is a desire to achieve an overall speed which is pro­
portional to the number of processing elements involved.

At the other extreme there is less desire for a high response rate, but more desire for
flexibility in the number and type of processing elements and memory components to be
shared.

The first requirement suggests a multi-port memory approach, Figure 15-5, in which
the number of ports is fixed at the outset by the problem, to allow optimizing the design
of the access circuitry to achieve a high rate. The second requirement suggests a bus
structure, Figure 15-6, which can be flexible both in the number and type of devices
attached to it. In this case emphasis is on the development and adoption of a bus stan­
dard to support this type of activity, over a long period of time, involving many
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manufacturers. Such a standard must be a compromise which sacrifices performance to
some extent.
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15.7 COMMON FEATURES OF SHARED MEMORY ACCESS MECHAN­
ISMS

First we have the ports at the interface between the individual processing element and
the shared memory interconnection mechanism. Next we have the arbitration circuit
which receives signals from each of the ports, and delivers acknowledgements to these
when they are allowed to proceed to access the memory. The arbitration circuit must also
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control the method of selecting the route between the port and the global memory. The
route is the next important component. In the case of the shared memory, this is a basic
and/ or gate for routing data and addresses from the port to the memory access mechan­
ism, and a basic fan-out mechanism for the routing of data from the memory to the indi­
vidual ports. Finally, we have the memory component and its own individual access
mechanism.

The sequence of actions for accessing the shared memory is as follows, and is num­
bered in Figure 15-7. The first action is to signal the arbitration circuit and to wait for
permission to proceed. When the permission is granted, the routes are established
between the port and the memory, and the information passes from the port to the
memory. The memory is then accessed, and, in the case of a read from memory, the data
read from memory is then routed back to the appropriate processor port. It is important
to remember that there are four separate operations involved, since each one has a
different time depending upon the method of implementation employed. The first action,
that of negotiating with the arbitration circuit and receiving permission to proceed, can
be either a very short time interval or a very long one, depending upon traffic to the
memory and the particular arbitration algorithm employed. The next action, of actually
moving address (and data) from the port to the memory depends upon the particular cir­
cuit technique employed and the physical wire delays between the ports through the
routing circuit to the memory itself. In the case of a bus these delays can be quite long
since the bus has been designed to cover a fairly long distance and cope with a diverse
number of processor ports attached; whereas in the multi-port shared memory, the routes
have been very carefully engineered to be as short as possible, and the delay from port to
memory can be quite short. The next time is the access to the memory itself. Where per­
formance is important, it is assumed that this memory is of high speed and of only one
type. However, in the case of the bus situation, it is assumed that the memory may well
be of different types coping with a variety of situations, and that the actual time to this
memory may vary depending upon the type. The final action is routing data from the
memory to the port. The time taken for this in the case of the bus is similar to the time
for routing from the port to the memory component, since the circuitry is very similar.
In the case of the multi-port memory, the mechanism is different, since here the memory
is providing fan-out to all the individual ports; only one of the ports will, in fact, get the
output from the memory into its own buffer registers. This is a different mechanism to

{
Signal request to arbitration

1 circuit and wait for permission.
2 { Route Address ( & Data) Between

Port & Memory
3 { Access Memory

for read ( or write)
4 { Route Data from

Memory to port

Figure 15-7
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the and/or combination required for routing data and address from the ports into the
memory.

The main difference between the two implementation mechanisms can be seen in the
discussion on the timing sequence. In the case of the multi-port memory, the times are
all short and can all be well controlled, suggesting the possibility of a highly synchron­
ized access mechanism. In the case of the bus approach, the delays can vary depending
upon the particular application, since the number of processing elements attached to the
bus can vary, the number of memory components attached to the bus can vary, and so
on. It would seem, therefore, sensible to assume that the bus interconnection mechanism
would lend itself to a more asynchronous approach, where time is less predictable. It is
not intended to look at the bus system in any fine detail, since this information can be
readily obtained from the manufacturers of microprocessor components. The detailed
considerations of the direct shared memory access mechanisms used in the CYBA-M are
given in Chapter 19. The CYBA-M interconnection mechanism is able to achieve a very
high performance from the shared memory. The rate of executing instructions in a pro­
cessor, where the memory accesses are made to the shared memory, is only reduced by a
very small percentage, even when 16 processors are simultaneously in contention for the
one shared memory.

15.8 POINT-TO-POINT IN1ERCONNECTIONS : THE TRANSPU1ER
So far in this chapter, we have considered the ways in which we may programme the
interconnections between processing elements by the use of shared memory to represent
the arcs. An alternative approach would be to provide processing elements with
appropriate communication facilities, so that they may be directly connected as indicated
in Figure 15-1. Before we pursue this alternative, it is as well to note that the directional­
ity indicated in Figure 15-1 may represent the general behaviour of processes which
transmit input into outputs. In practice, however, the arcs between processing elements
are usually bidirectional, if only to enable the backward acknowledgement from the
receiver to the sender. It is therefore obvious that, in designing a node to support directly
arcs for interconnection purposes, these arcs must be bidirectional, and the node must
cope with this bidirectional feature. In agreeing the specification of such a processing ele­
ment, it is important to decide upon the number of arcs which need to be provided in
the physical structure of the device. It is clear that a transputer with one bidirectional
port attached to it may, in certain circumstances, be used to implement a unidirectional
ring. However, this is a special case which is hardly worthy of further discussion. A tran­
sputer which has two bidirectional ports can be used to implement a bidirectional ring. It
is necessary to provide three bidirectional ports to enable anything other than these
structures. With three bidirectional ports, it is possible to provide random nets of pro­
cessing elements, which allow streams to merge onto one node or to be fanned out from
a node. Such a component is, of course, a natural for the implementation of a tree of
processing elements which may have application for reduction machines. The next step
would be to provide four bidirectional arcs on such an element. By this technique, it is
possible to have two orthogonal bidirectional rings, providing a structure as shown in
Figure 15-8, as well as a tree structure or a wider set of random structures. A transputer
proposed by the INMOS Company does indeed provide a capability of implementing
four simultaneously active arcs [12]. Each arc can support a transfer of l.SMbytes per
second each way. The internal processing element of the transputer is a 32-bit system
providing 10 million instructions per second processing power, with memory as well as
these link capabilities. It also provides facilities for interfacing local peripherals.
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15.9 CONCLUSIONS
The architecture of Closely-Coupled Systems is based primarily upon the direct shared
memory. There are two possible ways in which to implement interconnections to this
memory. One is by a multi-port approach with special circuitry to obtain a high rate of
access to the memory, which has the constraint of providing a fixed number of ports, and
there is some loss of flexibility. The other extreme is the multi-bus approach, which
allows for a variety of processing elements to gain access through a shared bus to the
shared memory components which may, themselves, be of a variety of devices.

It is essential when considering the processing element to be included in such closely­
coupled systems to ensure that there are certain basic facilities to enable synchronization
of processes. The recent advent of the transputer has made it possible to contemplate a
regular array of processing elements linked via high performance arcs. Such elements,
which have a capability of four links, also make it possible to contemplate other irregular
structures suited to the particular needs of a problem. In the case of the transputer, the
programming of arcs must be achieved by an indirect method superimposed upon the
regular structure, or by direct physical connections using direct links between the pro­
cessing elements involved. There is clearly going to be much interest in future in the role
of the transputer in closely-coupled systems.
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R. L. Grimsdale

16.1 INTRODUCTION
The type of system with which we are concerned has been identified in the previous
chapter as a member of the MIMD class. The architecture is characterized by an
arrangement in which two or more processors have shared access to a memory module.
Another important characteristic is the degree of granularity of the software modules.
An important property of multi-processor systems is their ability to perform operations
in parallel. In the present type of system there is coarse granularity and moderate size
tasks execute in parallel. Each task includes a block of instructions which are executed
in sequence. At certain points in the sequence of execution of the tasks there is a
requirement for data exchange between the tasks. A task which is due to receive data
cannot proceed until the supplying task is able to deliver. This arrangement should be
compared with the Data Flow class of machine which exhibits fine granularity. Process­
ing units perform operations on, typically, two operands. Before the operation can com­
mence, both the operands must have been supplied. The coarse grain system with which
we are concerned requires careful design of the inter-task communication facilities,
because the user has a considerable degree of freedom in the design of the individual
modules. Good support from a programming language is thus very desirable. The phy­
sical path over which processor pass data from one to another has been identified as a
register, which may be a single separate physical unit, or exist with others in a memory
module. An objective of a programming language which supports multi-tasking is to
hide such details from the user, and to provide safe methods of inter-task communica­
tion.

In addition to the special requirements noted above, a good programming language
should provide control constructs for structured programming, with the ability to define
data types and to provide run-time type checking. The task of creating a large system
benefits enormously from a modular language permitting partial compilation and testing.

16.2 CONCURRENCY SUPPORT MECHANISMS
Certain basic requirements to support concurrency can be identified. First, it is neces­
sary for the results produced by one task to be used as an input to another task, there­
fore some satisfactory mechanism of data transfer between tasks must be provided.

~~--------
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Second, there is normally a need to synchronize the operation of tasks. Because of
mutual interdependence, one task cannot proceed beyond a certain stage without some
action occurring in a dependent task. Similarly the dependent task cannot continue
beyond a particular stage until the previous task has accomplished certain operations.
Summarizing, there is a need to pass data between tasks, and a requirement to synchron­
ize mutually dependant tasks.

Before the advent of programming languages which supported concurrency it was
necessary to employ a multi-tasking operating system to perform the inter-tasking opera­
tions. This provided a way of binding together a number of separate sequential pro­
grams to form a multi-task system. A common arrangement was to provide a bounded
buffer for inter-task communication. The operation 'put(item), and 'get(item)' respec­
tively stored a data item in the buffer and retrieved an item from the buffer. The func­
tions 'full' and 'empty' were used to test the current state of the buffer. To prevent
simultaneous access to the buffer it was necessary to employ a semaphore [I]. There are
objections to the use of a semaphore because such a low-level mechanism can be easily
misused or even omitted. Because of this, various high-level constructs have been incor­
porated in programming languages, having the advantage of a degree of compile-time
protection.

16.3 THE MONITOR CONCEPT
The monitor [2,3] is an arrangement in which shared data is encapsulated with a set of
procedures which perform operations on that data. The data cannot be accessed except
through the use of these procedures. The monitor is activated by a process (external to
the monitor) making a call on one of the monitor procedures. Only one process at a
time may be actively executing a monitor procedure. The monitor construct therefore
provides exclusive access to shared data, and has the advantage of encouraging careful
programming of the monitor procedures - thereby safeguarding the monitor data struc­
tures against misuse. If no process has made a call on a monitor procedure, then when a
process makes a call on a procedure of that monitor, that call will be serviced immedi­
ately. The execution of the calling process will be suspended until the procedure has
completed its operation and returns control to the calling process. However, if a monitor
procedure is in execution, then any other call on a procedure of that monitor will not be
serviced immediately, the calling process will be suspended, and the request will be
placed in a queue. When the activated procedure completes its execution, the process
which called it leaves the monitor; the queue is inspected, the waiting request is serviced
and, on completion of the associated procedure call, the calling process leaves the moni­
tor and resumes its independent execution. In this way, the processes access the shared
data in mutual exclusion.

The monitor thus provides a mechanism for accessing shared data in an exclusive and
therefore safe manner; it does not directly synchronize the processes which call it, but a
signalling mechanism is provided whereby this may be accomplished. A process which
gains access to a monitor procedure can, within that procedure, issue a 'wait' signal. The
process is then suspended and another process is allowed to enter the monitor. The
waiting process will be resumed when another process enters the monitor and sends a
signal for that waiting process. The monitor is an elegant concept, and can ensure that
the states of the processes which use it are deterministic. It can be implemented very
effectively on a multi-processor system which uses shared memory, since it is inherently a
mechanism for gaining controlled access to a block of shared data. It not so convenient
to use in a distributed system. An example now follows of the use of the monitor, the
'consumer-producer' problem in which a producer process generates a sequence of values
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which are to be subsequently processed by a consumer process. The consumer process
must accept values from the producer, one by one, such that the rate at which the values
are consumed matches the rate at which they are generated by the producer process. If
the two processes were free running they could get out of step. The relative timing of
the processes must therefore be enforced by synchronization, which implies that the fas­
ter process must be caused to wait for the slower.

program producer-consumer;
monitor bounded....buffer;

far b:buffer;
noLfull,not_ empty: signal;

procedure entry transmit(in item:data);
begin

if full then wait(notJull) end if;
put(item);
send(noLempty)

end;
procedure entry receive(out item:data);

begin
if empty then wait(noLempty) end if;
get(item);
send(notJuU)

end;
begin

{ initialize b }
end; {monitor}

process producer;
var item:data;
begin

repeat
produce(item);
bounded.buffer. transmit(item)

until false
end; {producer}

process consumer;
var item:data;
begin

repeat
bounded.buffer.receivedtern):
consume(item)

until false
end; {consumer}

parallel begin
producer;
consumer

parallel end.

The program consists of the monitor module, the producer process and the consumer
process. Within the monitor is the data structure b which is a buffer acting as a tem­
porary receptacle for transporting the 'item' of data, together with the two procedures
transmit and receive which are the only means of accessing b.
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The program body simply initializes the two processes, setting them into concurrent
operation. On completion of 'produce' the 'producer' process calls the monitor pro­
cedure 'transmit' with 'item' as the parameter of the call. Similarly the 'consumer' pro­
cess will issue a call to the 'receive' procedure at the appropriate time. Normally, the
mutual exclusion rule applies to monitor procedures - only one process can be executing
a monitor procedure at anyone time. However, to allow synchronization within a moni­
tor, a signalling mechanism is provided. If a process gains access to a monitor pro­
cedure, then issues a 'wait' on a signal, that process will be caused to wait until the sig­
nal is suitable. During this period the mutual exclusion rule is waived to allow the other
process to enter the monitor. This other process calls a monitor procedure, which, as the
last operation, issues a 'send' on the signal, thereby activating the waiting process.

16.4 THE RENDEZVOUS
The requirements for inter-process communication are, firstly, a mechanism for data
exchange, which in the monitor system is provided by the sequential use of a shared data
structure by the communicating processes. The second requirement is for a scheme for
synchronizing processes. This need for a synchronizing mechanism arises because com­
municating processes must keep in step with one another. The rendezvous mechanism,
introduced by Hoare [4] and Brinch Hansen [5] combines the operations of data
transmission and sychronisation in one mechanism.

In the scheme as introduced by Hoare [4], if a process A wishes to transmit data to a
process B then each process must announce its intention to communicate. Process A will
include, within the sequence of instructions it executes, a request to transmit to process
B. Similarly process B includes in its sequence a request to receive from A. If x is the
datum to be transmitted from A and y is the name of the variable of B which is to
receive it, then process A includes the statement

B! x

and process B has the statement

A? Y

If process A executes the statement B!x first it is suspended until B reaches the statement
A?y. Similarly, if B arrives at the request first it will be caused to wait until A arrives at
its request. When both processes have reached the rendezvous the data is transferred
and the processes resume their respective executions. The mechanism is symmetric, in
that the caller announces the name of the receiver and vice versa. This symmetry is not
practical if the receiver is a library process which might be required to be called by
several processes unknown to it.

The alternative, proposed by Brinch Hansen [5] and adopted in Ada is asymmetric; in
this the caller announces the name of the server (receiver) process, but the callers remain
anonymous to the receiver. The server process includes an 'accept' statement within the
body of its code. This accept statement is very similar to a procedure statement. The
reserved word 'accept' is followed by the name of the entry and after this comes the list
of formal parameters; finally there is the sequence of statements which is executed when
the rendezvous occurs. Through the use of parameters, data can be passed from the
caller to the called process and vice versa. It is not always convenient to require that a
called process should only respond to a particular entry call. A non-deterministic
arrangement has therefore been introduced whereby a called process can, at a particular
point in its operation, respond to a number of different entries. The classical example is
the case in which the called task is the manager of a bounded buffer; the alternative
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responses it must be able to make are: to receive an item into the buffer or to deliver
one. Furthermore, guards can be associated with the alternatives, so that, for example, a
request to deliver an item will only be serviced if an item is present in the buffer. The
bounded.buffer task for the consumer-producer problem in Ada simplified form is:

task bounded.buffer is
entry append(item: in data);
entry take(item: out data);

endbounded.buffer;
task body bounded.buffer is

b:buffer;
full,empty: boolean;
begin

empty: = true; full: = false;
loop
select

when not full =>
accept append(item: in data) do
put(item);
end append;

{update count of number of items in buffer and set
empty = false and full= true if appropriate};

or
when not empty =>

accept take(item: out data) do
get(item);
end take;

{update count of number of items in buffer and set
full= false and empty = true if appropriate}

end select;
end loop;

end bounded.buffer:

The execution of a select statement begins by evaluating all the guard conditions. Then
one of the 'open' alternatives ( ones with true guards) is selected. Suppose that the pro­
ducer process had made an 'append' entry call: it would be blocked until
bounded.buffer executes the select statement. If both guards are open, then either entry
could be the next to be executed; however, the select will choose the alternative which
will lead to an immediate rendezvous. If, on the other hand, the select statement has
been reached and both alternatives are open, bounded.buffer will wait at this point for
the first rendezvous to occur.

For certain real-time applications a broadcast facility may be required. This will be
non-deterministic, because there is no certainty that all processes have received the mes­
sage, or that a particular process has received all the messages that have been sent.
Although this non-determinacy appears unsatisfactory, it may be acceptable for particu­
lar applications, because information may be sent repeatedly, with no importance being
attached to the loss of an individual message.



236 Closely-CoupledSystems

16.5 SYSTEM DEADLOCK

Programming languages do not normally give any protection against deadlock. Deadlock
can arise, for example, in a system in which there are two resources: a printer and a disc
drive. If only one process at a time is allowed to access each device, then it is possible
for a system to deadlock, even though the locks which ensure exclusive access to each
device are operating correctly. For example process PI may gain exclusive access to the
printer while process P2 gains exclusive access to the disc. Suppose now that PI requests
access to the disc, and P2 to the printer, while still holding access to the original devices.
Process PI must wait for P2 to give up its exclusive access to the disc. Similarly P2 is
waiting for PI to give up its access rights to the printer. Hence PI is blocked by P2, and
P2 is blocked by PI. A solution to this problem is to put both resources (printer and
disc) under the control of a third process P3, and insist that PI and P2 can only obtain
access to the resources by making a request to P3. P3 then acts as a resource manager,
and allocates the pair of resources to either PI or P2. This solution which is an example
of 'Deadlock Avoidance', however, assumes that the pattern of resource requests is
known in advance for all processes.

The situation is more complex if there are a number of processes and resources. For
example: a process PI is forced to wait on a process PO. This in turn causes P2 to wait
for PI, and so on, until a chain of waiting processes is set up, with PO waiting on Pn.
Hence a cycle is established, and a deadlock condition results, with POwaiting on itself.
An unsatisfactory solution, but one which is often suggested, is to employ time- outs so
that, PO, for example, relinquishes its request and dies. However, this is unsatisfactory in
most applications, and leads to an indeterminate state of the system. An alternative is to
employ on-line deadlock detection. This mechanism operates at run-time every time a
request for a resource is made, and therefore must be very fast. Each process calls a
deadlock avoidance process before attempting to get access to a resource.
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R. L. Grimsdale

17.1 THE CONTROL KERNEL
The function of a Control Kernel is to transform the individual processors of a closely­
coupled system into a set of virtual machines which provide facilities for implementing
the concurrency requirements of the system. Task switching, task and processor schedul­
ing, queue handling and the implementation of inter-task communication and synchroni­
zation primitives are just some component parts of a multi-processor control kernel.

This chapter, after first discussing the overall structure of a control kernel which is
suitable for use in a multi-processor computer system, describes the implementation
details of a control kernel which has been produced for a multi-processor system con­
structed from commercially available processing units, and which supports most of the
inter-task communication facilities of the concurrent programming language Ada.

17.1.1 Control Kernel Sructure
The particular architecture [1] for which the control kernel has been designed includes a
number of nodes or stations which are linked together by means of a high-bandwidth
communications sub-network. To meet the requirement for high data-processing rates a
multi-processor shared memory architecture is used within a station.

When deciding on the overall structure of the control kernel for such systems, an
important consideration is whether the local kernel associated with each processor should
have the right to access and manipulate global data structures related to tasks, queues,
etc. which are resident in different processors. Also, each local processor must normally
handle its own I/O interrupts, and so must execute some code in an uninterrruptible
state. This can clearly create access rights conflicts which must be resolved in addition
to the normal communication and synchronsiation concurrency requirements.

The preferred structure for the overall control software in a multi-processor system of
the type just outlined, therefore, is to utilize separate autonomous control kernels for
each station in the system. Each control kernel then manages all the resources (both
hardware and software) within that station, and all communications with other stations
in the system. Then, if a multi-processor architecture is required within a station, each
local processor contains a small slave kernel which operates under the overall control of
the master control kernel within that station. The overall control software is therefore
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modular, and functions in a clear and consistent way.

17.1.2 Control Kernel Design
A single master control kernel within each station, controlling perhaps several local
(slave) processors, results in a number of advantages, especially when implementing
inter-task communications. For example, since the control kernel is the sole owner of all
vital and critical data structures, such as task activation records and task queues, conten­
tion and mutual exclusion problems associated with access rights to these data structures
are greatly reduced. Also, this eliminates the need for low-level access rights control
primitives, and so enables the control kernel to be written entirely at a high level, result­
ing in a more flexible and secure design.

Another important aspect of the design of the control kernel is the uninterruptable
environment in which it must be executed. Execution of tasking commands involves the
updating of variables and queues which must be carried out as indivisible operations,
and so the execution of the associated control kernel routines must be logically uninter­
ruptible. However, as the control kernel manages all I/O interrupts for the station, and
assuming that these are to be processed by high-level services tasks, it is not possible to
allow a low-level interrupt service routine to initiate directly the execution of a high-level
service task. This means, therefore, that the low-level routine can only signal to the con­
trol kernel that an interrupt has occurred, and it is the control kernel which actually
maps this into a call to the high-level service task, and schedules the latter to run.

To implement this scheme, each device interrupt is first served by a linked low-level
routine which runs on the associated local processor. This simply satisfies the real-time
constraints of the 110 device being serviced, and the routine then sets a flag to signal to
the control kernel that the interrupt has occurred. The control kernel then detects that
the interrupt has occurred when it polls this flag, and, in turn, maps it into a call to the
task which will eventually process the data. After setting an interrupt flag, the local pro­
cessor simply resumes executing the task it was executing prior to the interrupt, without
any regard to the consequences of setting the interrupt flag, and it is the control kernel
which decides when the data should be processed. This ensures that the logical progress
of the tasks currently being executed is not interrupted, and also that the control kernel
retains control of the complete system.

17.2 CONTROL KERNEL IMPLEMENTATION
The control kernel described in this section has been designed to control and manage the
resources of the multi-processor shared memory node or station which is in turn a com­
ponent of a larger multiple station system. The architecture of the overall system is as
shown in Figure 17-1. A station is constructed from a number of standard Intel 86/12A
single-board computers which execute the tasks allocated to the station, and which com­
municate with each other using a Multibus-compatible shared memory board. The con­
trol kernel also runs on an Intel 86/12A specifically dedicated to that purpose, in order
to relieve the burden of control from the remaining local processors within that station.
In an attempt to maximize parallelism within the station, inter-station communication is
controlled by a separate Intel 8088 based communications control processor, which per­
forms the necessary inter-station communications protocol, but presents a standard inter­
face to the control kernel. The protocol may be changed, therefore, with minimal effect
on the overall application and control kernel software.

The system is intended primarily for real-time embedded applications. A complete
application program for the system is thus written as a suite of task modules, each of
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which performs a selected system processing function. Task modules are subsequently
distributed and statically assigned to the individual processors comprising the system
using an interactive system configuration program. The latter takes as input the output
from the language compiler, and in turn produces a memory image for each processor
within the system together with associated data structures for use by the run-time kernel
software to effect inter-task communication.

The application programming language used with the system is called Martlet [2], and
this has also been used to write the control kernel. The sequential part of Martlet is
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essentially Pascal, but to achieve concurrency many of the structural and tasking facilities
of Ada have been incorporated. For example, task modules each contain a specification
and a body, and tasks communicate with each other using the rendezvous concept. The
concurrency primitives supported include the rendezvous primitives entry call, accept,
end-accept and also the associated select and delay statements. Martlet also provides
facilities for instancing, parameterisation, and exception handling, but there are no facili­
ties in MartIet for dynamic creation of tasks or the use of packages, as are available with
Ada. In addition, the language contains a facility - the port statement - which allows
absolute 110 device ports to be manipulated and also the mapping of interrupts directly
into external entry calls. Also, memory registers can be addressed directly. It is possi­
ble, therefore, to write the control kernel entirely using Martlet, resulting in a structured,
and hence more easily understood, design.

The control kernel is composed of two parts: the kernel data structures and the kernel
routines. Each will now be considered.

17.2.1 Data structures
The control kernel data structures consist of a suite of task activation records (one per
task module resident in the station), a set of processor status records (one per local pro­
cessor), a station directory containing the names and locations of each task, an interrupt
map table to allow interrupts to be mapped into calls to the correct service tasks, and a
set of interrupt and communications channel flags, the latter being used to control inter­
station communication.

Task activation record

All the runtime information associated with each task in the system is maintained in an
associated task activation record (TAR), as shown in Figure 17-2. A task activation
record is created and initialized at the time the task is assigned to a specific local proces­
sor. In addition to information such as the name of the task, its priority, and processor
identity, the task activation record also includes some fields that are used by the control
kernel to implement the inter-task communication primitives at run-time. These are
listed below together with a brief description of their function.

ACCEPTED_TASK: A pointer to the last task which has been accepted for a rendez­
vous. Because more than one task can be accepted for the same entry they are linked in
a LIFO queue pointed to by the ACCEPTED_TASK.

DELAYED: A record which contains the wake-up time of the task when placed in the
delay queue and also a transfer address which shows where the task should continue exe­
cuting after the lapsed time has expired.

CONTEXT: A record which contains the processor registers and other run-time status
information on the task, and must be saved during a context switch.

Q_STATE-SET: This field shows the entry queues which are non-empty; i.e. at least
one calling task is waiting on the entry queue for which the corresponding entry index
bit has been set. Q_STATE_SET is accessible by the control kernel only.

E...STATE...SET: This set shows the indexes of the entries for which calls can be
accepted. E...STATE...SETis also only accessible by the control kernel.

MAILBOX: This record represents the task-system communication exchange. When a
local kernel encounters a task communication opcode, e.g. entry call, accept etc., it
places the opcode together with the related parameters in the MAILBOX of the
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associated task activation record. It then sets a flag (REQ_FLAG) so that the control
kernel can switch the processor to a new task and execute the opcode placed in the
MAILBOX. The control kernel subsequently returns any variable parameters to the
local tasks via the MAILBOX.

ENTRY..RECORD: This is a pointer to the entry descriptor of the task. The entry
descriptor is an array of records which hold information about the entries of a task, and
therefore its size depends on the number of entries of the task. Each record contains the
following information:

(1) TRANSFER..ADDRESS: This is the address of the entry point to the entry's code
section. When an entry call is accepted in a select statement, the processor starts
executing form this TRANSFER..ADDRESS of the called entry.

(2) ENTRY_Q: All tasks calling the entry are linked to this FIFO queue which is
defined as a record containing a pointer to the first and a pointer to the last task in
the queue.
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Processor statusrecord
Information about each local processor in a station is kept in a record called the proces­
sor status record. The processor status records are also created and initialized by the
system configurationprogram during the task assignment operation. The different fields
are as follows:

RUN_TASK: A pointer to the task currently being executed by the processor.

NEW_TASK: A pointer to the task that the processor wit next run when forced into a
context switchby the control kernel.

REQ_FLAG: A Boolean variable set by the local processor that wishes to be switched
by the control kernel. It is reset by the control kernel.

ACKN_FLAG: A Boolean variable set by the local processor to acknowledge an inter­
rupt invoked by the control kernel. It is reset by the control kernel.

READY_Q: Array of FIFO queues holding tasks that are ready to run on the processor.

Station Directory
The station directory is generated by the control kernel from information available in the
processor status records of each station and activation records of the tasks. Each direc­
tory record contains the name of a task, its instance number and a pointer to the activa­
tion record of the task.

Interrupt Map Table
The interrupt map table is generated by the control kernel when interrupt service tasks
identify themselves to the control kernel by executing interrupt service requests. An
interrupt service request is executed at the start of an interrupt service task, and, as a
result, the interrupt vector to be serviced and the index of the entry to be called are
passed to the control kernel. The control kernel then initializes a corresponding map
table record with the following information:

(1) the interrupt vector

(2) a pointer to the interupt service task

(3) the index of the service entry to be called

17.2.2 Control Kernel Routines
The control kernel contains procedures for:

(1) general FIFO, LIFO, and random queue management

(2) clock and time-out management

(3) mapping interrupts as entry calls

(4) directory generation and search

(5) task scheduling and processor switching

(6) implementation of inter-task communication and synchronization opcodes
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(7) station initialization

(8) polling the specified flags and calling the appropriate procedure when a flag is set

(9) exception handling

The main body of the kernel then simply initializes the various data structures and then
commences polling of the various flags to determine the next action to be performed.
Some of the kernel routines are now discussed.

Handling of Run-time Queues

Four types of run-time queues are managed by the control kernel:

(I) the ready queues (FIFO)

(2) the entry queues (FIFO)

(3) the accepted tasks queues (LIFO)

(4) the delay queue (random).

The control kernel is the owner of all the run-time queues, and therefore has the sole
right to manipulate them. A schematic diagram showing the various types of queue
which the control kernel must handle is shown in Figure 17-3.

Each ready queue is associated with a priority level of a particular processor in the
staion. Tasks are allocated and placed in the appropriate ready queue at the time the
task is assigned to that processor.

Each task entry has a waiting FIFO queue which is initialized in the entry's descrip­
tor, and all tasks calling an entry are linked to its waiting queue by the control kernel.

The accepted tasks queue is a LIFO queue which is formed by linking the tasks which
have been accepted by a given task. The accepted task field in the task activation record
of the called task points to this queue. The task that has been accepted last is placed at
the head of the queue and is released first.

The delay queue holds all the tasks which have executed a delay statement and whose
time-outs have not expired. Depending on the duration of their delays, tasks are inserted
at the appropriate point within a delay queue. Sometimes it becomes necessary to
remove a task from the delay queue before its delay lapse time has expired. This can
happen, for example, as a result of an entry call; a rendezvous becomes possible for a
task which has been placed on a delay queue during execution of a select statement. The
delay queue is sorted so that the task with the least amount of delay is first in the queue.

Task Scheduling

Tasks in the system can be in one of five states: running, ready, halted, suspended or
delayed, as shown in Figure 17-4..

The priority based scheduler is generally invoked when a task is made ready and
added to a processor ready queue, or when a local processor requests the current task it
is running to be suspended. The scheduler simply selects the highest priority task from
the processor's ready queue and interrupts the local processor, forcing it to switch to the
selected task. The latter then performs a context switch, and sets the acknowledgement
flag to inform the control kernel the switch is complete. Then, if the local processor
requested the switch, the control kernel accesses the opcode from the mailbox of the
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suspended task and executes the corresponding routine.

Implementation of Tasking Opcodes

A major function of the control kernel is to implement the tasking opcodes passed to it
by the local kernel in the mailbox of the switched task. There are five opcodes passed
from a local processor to the control kernel: suspend (opcodes accept, select and delay
are all mapped as suspend), entry call, end-accept, connect-tasks and request-interrupt­
service. Each is handled by a separate procedure, as follows:

Suspend The suspend routine first determines the entries which can accept a call and
have also received a call from other tasks. If there are several possibilities, then one
entry is selected at random. The address of the parameter block in the mailbox of the
calling task at the head of the corresponding entry queue, is then transferred to the mail­
box of the now suspended called task. The called task is then placed in the appropriate
ready queue, and the scheduler is re-called. If, however, there is no call for any of the
entries which are in a position to accept one, then the suspended task is placed in the
delay queue.
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Figure 17-4

Entry-call The entry-call routine first checks if the called task is currently suspended
awaiting a call. If so, the entry call can be accepted immediately, and so the suspended
task is placed in the appropriate ready queue, and the scheduler is called. If, however,
the entry call cannot be accepted immediately, then the caller is placed in the
corresponding entry queue of the called task, and the set indicating the state of the entry
queue is updated to include the new entry call.

End-accept Each accept statement is terminated by an end-accept command which sig­
nals that the statements associated with the rendezvous have been executed. The end­
accept routine first checks if the call originated from an interrupt. If it did, the appropri­
ate interrupt level is re-enabled; otherwise the task making the call is placed in its ready
queue for re-scheduling. In both cases the called task is then placed in its own ready
queue, and the scheduler is called to allow both tasks to continue independently of each
other.

Connect-tasks The connect-task opcode is executed once only for each called task at the
start of execution of the calling task. The connect-task routine searches the station direc­
tory for the called task, and returns the address of the called task to the mailbox of the
calling task. The calling task is then re-scheduled.

Request-interrupt-service The request-interrupt-service command is issued by a device
driver task pending receipt of an interrupt. The associated routine first removes the
interrupt vector address and entry index from the mailbox of the driver task, and enters
these, together with the task name, into the interrupt map table. These are then used to
map the actual interrupts into dummy entry calls. The driver task is then suspended.

Exception Handling

The exception handling in Martlet follows very closely that proposed in Ada. The pre­
defined exceptions include those normally provided with sequential Pascal, such as case
error, arithmetic overflow etc., and also two associated with the tasking feature: guard
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closed and tasking error.
If an exception is raised during a rendezvous, the local kernel informs the control ker­

nel via the mailbox of the task, which is then suspended. The control kernel then
releases the accepted task(s) for this block, and raises the task error exception. If the
tasking error flag is found to be true when a task involved in a rendezvous runs after re­
scheduling, then the local kernel unwinds the procedures, starting with the innermost
level at which the exception was raised, until a handler is found.

I/O Interrupt Handling and Synchronisation

The run-time control kernel maintains an interrupt-enabled set which is used to syn­
chronize servicing of the interrupt flags set by the low-level interrupt routines. The
enabled set indicates those interrupts that can actually be accepted; i.e. an end-accept
for a previous entry call, made on behalf of a corresponding 110 interrupt, has already
been issued. When a request-interrupt-service opcode is executed, the corresponding
interrupt is also enabled, by updating the interrupt enabled set.

Only when the intersection of the interrupt-flags-set and the interrupt-enabled-set is
non-empty is one interrupt selected from the intersection, at random, and mapped as a
dummy entry call. This ensures that an interrupt is serviced before a new interrupt is
accepted for entry call mapping.

17.2.3 Memory Management

Local memory, as well as the shared memory space required for the parameter area of a
task, is allocated when the task is assigned to a specific local processor at system
configuration time. Run-time management of the local memory is therefore concerned
simply with the dynamic requirements for stack and memory space during the execution
of each task. This is managed by the local kernel of each processor.

Hence, requests by tasks for run-time memory are made to the local kernel using the
external call 'acquire'. Similarly, memory is released using the 'release' call. The local
kernel allocates the requested memory on a first-fit basis, and re-links any released blocks
to the pool of available memory. The memory and stack requirements for each pro­
cedure within a task are produced by the compiler and stored after the code of each task.
This information is therefore available to the local kernel at run-time.

17.3 INTER-PROCESSOR COMMUNICATIONS MECHANISMS
The control kernel may wish, as a result of a scheduling decision, to force a local proces­
sor to switch to a new task. Similarly, a local processor may reach a point in the execu­
tion of a task that needs the services of the control kernel (e.g. as a result of executing a
tasking command).

Obviously a safe and deadlock-free method of communication between control and
local processors has to be utilized. The solution adopted is for the control processor to
interrupt the local processors when it requires their attention, but for the latter to get the
attention of the control processor by setting a corresponding request-flag that is polled
by the control processor at periodic intervals. The sequence of actions taken in a dialo­
gue between the control kernel and a local processor is shown in Figure 17-5.

The preceding discussion relates to communications within a single station. In a
configuration with multiple stations, however, communications between tasks located in
different stations are transparent to the control kernel. A compiled suite of tasks can be
assigned arbitrarily to any available processor or station at system configuration time,
taking into account the available hardware, and any possible constraints concerning
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allocation of peripheral devices to processors. The connect-task routine of the control
kernel connects tasks which are in the same station. The control kernel itself is not
aware of the existence of other stations, and treats all tasks as if they existed in their own
stations. This ensures a uniform handling of all entry calls in the system, irrespective of
their physical location.

To realise this objective, and make the location of caller and called tasks transparent
to each other (as well as to the control kernel), two intermediate transport tasks are
created: a pseudo-called task, which is assigned to the same station as the calling task,
and a pseudo-calling task which is assigned to the same station as the called task. The
two pseudo-tasks present a standard interface with the calling and called task, respec­
tively, and also interface with the low-level network communications system. Thus, on
receipt of a call from the calling task, the control kernel simply reschedules the pseudo­
called task within its own station in the normal way, and it is the latter which performs
the necessary inter-station call using the network communications system. Similarly, on
receipt of the incoming call, the pseudo-calling task makes the call to the called task in
the normal way, and this is again handled transparently by the control kernel. This is
shown diagramatically in Figure 17-6.
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18 Development Aids

F. Halsal/

IS.1 INTRODUcnON
The widespread availability of a range of powerful and relatively inexpensive single
board computers means that an increasing number of system builders are now consider­
ing the use of multiple such units in their system designs. Typically, designs containing
multiple processing units are considered in order to improve throughput or to enhance
the reliability of a system. However, although the hardware to implement these systems is
now readily available, the associated software tools required to aid their development are,
on the whole, relatively primitive and still in an evolutionary phase.

This chapter describes the range of software development facilities which have been
implemented for use with an experimental multi-microprocessor development system
(M-MDS). The latter is now operational and is currently being used to investigate a
variety of problem areas associated with multiprocessor-based system designs. The facili­
ties provided include not only the software tools necessary for program development -
run-time diagnostic aids for example - but also the tools used to aid the performance­
evaluation of operational systems.

The chapter is organized into five sections. Following the introduction, section lS.l.l
outlines a typical software development cycle for a multiprocessor-based product and
identifies the role of the various software tools necessary to aid the debugging and testing
of a system under development. An overview of the M-MDS which has been imple­
mented in the laboratory is then presented in section lS.2 and section lS.3 describes
implementation details of the various software tools developed. Examples illustrating the
facilities are described at appropriate points, and the paper concludes with a discussion
of the experiences gained, and some suggestions for additional facilities such systems
might contain.

IS.I.1 The Software Development Cycle
From conception to installation, the development cycle of a multiprocessor-based pro­
duct can be both long and complex. Normally, the cycle starts with a detailed analysis
of the overall system requirements, which results, after a number of iterations and
refinements, in a formal specification for the system. The next phase is to convert this
document into a working system. Typically, this commences with an analysis of the



252 Closely-CoupledSystems

range of hardware necessary to support the application, and the selection of an appropri­
ate software approach - programming languages, development support tools etc.

Once this system-level design is complete, the application programming phase is then
entered. Essentially, this is concerned with converting the detailed requirement
specification into actual program code suitable for running on the selected target
hardware configuration; this process is strongly influenced by the environment within
which software development is to take place. Next, the system must be debugged and
thoroughly tested. Finally, the resulting product must be commissioned and installed
whereupon the software commitment is reduced to maintenance and, for long-life-cycle
products, upgrading.

18.1.2 Software Development Tools
This chapter is concerned specifically with a description of the various software tools
necessary for the debugging and testing phase of the development cycle for
multiprocessor-based products. The tools which are to be described can be partitioned
into two parts: program development aids, and performance monitoring and evaluation
facilities.

Program development aids are necessary to allow the application software being
implemented to be debugged. They include, therefore, the language compiler, linking and
loading utilities and, of particular interest here, run-time error and diagnostic facilities. A
good programming language compiler will, of course, detect many of the basic syntactic
errors in a program during compilation but it is equally important to provide good run­
time diagnostic aids. Indeed, this is especially true for multiprocessor-based systems in
which there can be many concurrent and inter-related sub-systems in operation at any
one time.

The run-time testing of the application software for a multiprocessor-based product
can be carried out in one of two ways. For a small, uniprocessor based system for exam­
ple, it is usual to test application software on the actual target hardware with the various
controlled devices attached by means of a microprocessor development system. For more
sophisticated multiprocessor-based designs, the limited high-level view presented by such
an approach is too restrictive and the current trend is towards the use of development
"testbeds" [1,2,3]. In practice, the configuration of such a facility comprises a separate
front-end machine, to host the development tool-set, linked to the target system. The
front-end machine is normally a general purpose uniprocessor machine and the aim is to
provide users with a high-level interface to the system under development.

Although the additional flexibility offered by a multiprocessor design - in terms of
architecture and performance - can be of significant benefit, it must be remembered that
the complexity of such systems can be great. Hence, it is essential that any development
system should allow users to change aspects of the target system under consideration and
to assimilate readily the effects of these changes upon the overall operation of the
software. Thus, the performance monitoring and evaluation facilities to be described
include utilities to monitor and display the concurrent execution of individual program
modules ("tasks") running anywhere within the target hardware, both qualitatively and
quantitatively.



18DevelopmentAids 253

18.2 THE LABORATORY M-MDS
The software facilities to be described have been implemented for use with a specific
multi-microprocessor development system known as Polyproc [4,5]. Although much of
the run-time software to support these facilities is inevitably influenced by the architec­
ture of Polyproc, the host software tools to be described are independent of the type of
target hardware selected and, it is felt, are typical of the tools necessary for the develop­
ment and test of application software for such systems.

A schematic representation of Polyproc is shown in Figure 18-1. As can be seen, it is
made up of the target hardware under development, front-ended by a separate host
machine. The system has been designed to provide a general purpose development
environment, to aid in the design and test of application software for a range of real-time
embedded computer systems comprising multiple processing elements. The target system
may include anything from a single station containing one processor, up to many linked
stations each of which contains multiple processing elements. Also, in order to make the
system as general as possible, the target utilizes all Multibus [6] compatible hardware.

The front-end host machine provides users of the Polyproc system with a high-level
interface to the various tools supported, and hence to the target system itself. The tool
set supported includes a target-control package, program development utilities and also a
range of performance monitoring and evaluation facilities as shown in Figure 18-2. The
development aids include:

• an editor to allow application programs to be entered and, if necessary, modified
"

MAR

~OST SYSTEM

TLET compiler- -11~~O~ - User(s)

t-up (linker) -1 LSI - r-loader - 11123 - System builde
+ diagnostics

I I I
MUL'TI'iUNI MUL'TliUNI MUL'TI'iUNI
PROCESSOR PROCESSOR ------ PROCESSOR
STATION STATION STATION

I I I
Inter-Station Communications Facility I

MULTIPROCESSOR UNDER DEVELOPMENT

r (user)
System se

System
Monitoring

Figure 18-1



254 Closely-CoupledSystems

VAX 111780

MARTLET Application
Compiler - Program

LSI 11123

Setup Vax/Lsi Copy Allocation

Assigns & links Copies code Computes a
task modules least-cost
to selected

00- files from assignment
target config. Vax to Lsi. strategy

L _ _ _ _ _ _ _ _j

Loader Monitor Presentation

Provides
Loads image Controls, debugging
files directly monitors & &
into chosen collects data

...•.
performance-

target config. from target assessment
tools.

I

I I I I I
POLYPROC TARGET SYSTEM

Figure 18-2

• a concurrent programming language; this is known as Martlet [7] and allows appli­
cation software for the system to be written in a structured form as a suite of
interacting, ADA-like [8] task modules



18DevelopmentA ids 255

• system generation utility; this is an interactive program which, under control of the
user, allows the suite of task modules comprising the application program to be
assigned to individual processing elements of the target system

• a high-speed loading utility; this permits the individual processing and memory ele-
ments to be loaded with their appropriate code-images

• a range of general purpose run-time support facilities

To make use of the system, the user first writes the application program in the form of a
suite of task modules. As with Ada, task modules can execute concurrently and commun­
icate with each other to exchange information in a disciplined manner. The complete
program is then compiled and, after any syntactic errors have been eliminated, the user
runs the system generation program. This, in turn, takes the output from the language
compiler and, interactively, allows the user to assign the individual tasks of the applica­
tion program to specified processing elements in the target system. A memory image for
each processing element is then created, containing the code for each task module
assigned to that processor, together with an image containing a set of associated task­
activation records for the shared-memory resident within each of the target stations. The
latter are used by the run-time support software to implement inter-task communication
and task scheduling. The user then runs the loader utility which down-loads each
memory image, via the serial monitoring highway, into the appropriate processor or
shared-memory (Figure 18-1). The monitor highway is based upon Ethernet [9] and each
station contains an intelligent communications-control board implementing the monitor­
station protocol. This board plugs directly into the station's Multibus giving direct access
to all station memory -both local and shared. Finally, the user is provided with a range
of run-time support facilities, which allow the complete program to be run, controlled,
debugged and monitored via the control console of the host machine. These tools are
now described.

18.3 RUN-TIME SUPPORT FACILITIES
A characteristic of many multiprocessor computer systems - particularly for embedded
applications - is that there is normally, no overall software layer encompassing the com­
plete system; rather, each node contains a local software shell controlling the operations
within that station. This is the configuration adopted in Polyproc where each station con­
tains a separate processor dedicated to running a "kernel" control program responsible
for all run-time scheduling and task-management duties. Thus, it is only through the
monitor machine that a user can gain a "global" picture of system operation. To pro­
vide access to specific facilities, the host software is organized as a number of function­
ally organized levels presented to the user as individual menus. The overall impression is
of a tree-like structure down which users may traverse until they have completed the par­
ticular command or operation required (Figure 18-3). This framework has been adopted
in order to impose a disciplined approach upon system-users, in an attempt to help
prevent ill-considered commands being issued to the target system [10].

As can be seen, each level is presented to the user as a menu of possible options logi­
cally grouped together and selected by entering a single key-letter. The configuration
illustrated reflects a cohceptual view of the target system rather than any list dictated by
solely architectural constraints of the target system. For any particular level, actions may
either be selected or the user may climb to the preceding (upper) level. Selection of an
option in a level will either cause that action to be performed or it will result in a des­
cent to a lower, more specific level if further refinement of the request is necessary. In



256 Closely-CoupledSystems

Levell

Program Monitor IBuild

Display Modify I

Level 3

I
Status

Perf. Data
Kernel Rec
Options

Level 4

Acquire

Status
Perf. Data
Kernel Rec.

Proc. Dump
Dir.Dump
Int. Dump
Task Dump

Bootstrap
Start/Stop

Auto. Buff. Dump
Trace Collect
Perf. Collect

Figure 18-3

the event of any mistakes being made in selection, error control returns the user to the
level from which the last command was issued.

In addition to the normal run-time management functions, the control kernel within
each station can be instructed, by means of commands entered at the host console, to
start recording the occurrence of specific, predefined events encountered during the run­
ning of a program. Each control kernel maintains a set of event buffers, organized as
dual cyclic queues. Thus, at its occurrence, event related data - including time - are
stored as an "event record" in the kernel buffer. Subsequently, depending upon the
options chosen by the user for that particular kernel, when each buffer becomes full the
contents will either be sent to the host machine automatically (Auto Collect) or may be
sent in response to a specific request from the user (Acquire). The data collected from
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the target system may then be displayed and analysed by the host machine.

IS.3.1 Program Debugging Aids
In both uniprocessor and multiprocessor systems, run-time errors may be caused either
by an abnormal condition arising during the execution of a program - for example,
divide-by-zero, stack overfiow etc. - or by a logical flaw being present in the design of the
program. However, in the case of multiprocessor distributed systems, a more subtle and
essentially higher-level form of failure can also occur - tasks may be scheduled in such a
way as to block certain system operations, system time constraints might not be met,
tasks may try to call other tasks that have already completed execution etc. Initially, dis­
tributed multiprocessor software tends to behave as a number of distinct, separate pro­
grams exhibiting the typical uniprocessor errors previously described. As the debugging
process continues, however, the "level" of the errors rises, and it is important to be able
to perceive a global picture of system events to help locate, isolate and correct this
higher-level class of error.

The primary means provided to carry out this function is the "Trace Collect" option.
As with Ada, the minimum entity capable of concurrent operation in Martlet is the task
module; tasks communicate by exchanging parameters during task-rendezvous and this
level of system operation provides a convenient event with which to trace software
behaviour. Thus, when in the Trace mode, the kernel logs each rendezvous occurring
within its own station. Each event-log consists of the identities of the calling and called
tasks and the global-time at which the event occurs. Two events are required to define
each rendezvous: one event marks the entry call and one event marks the completion of
the end-accept block. In this way, collections of such records constitute a history of all
inter-task communications in those stations in which the Trace option has been selected.

Central to this approach is the concept of a global-clock against which all events, no
matter where they occur, may be accurately registered. In this environment, the global­
clock comprises a set of independent, local clocks capable of being started or stopped
synchronously. This synchronism is achieved by means of the monitor-access link and so
long as the global-clock period is kept long, relative to message transit times for the link,
then each of the local clocks will appear synchronized. Further, to ensure the consistency
of the global-clock, the individual clocks are constructed from identical hardware
throughout the system and controlled by high accuracy crystals.

Clearly, the dynamic data collected by the host machine during such tracing will con­
sist of a large number of similar, partially-ordered data records. Hence, it is important
when displaying the results of a trace, for the user to be able to select specific and local­
ized views of the overall software at a level related to that at which it is currently being
investigated. In addition, since in a distributed multi-station implementation the physical
separation of the two communicating tasks may well be causing the error, it is important
that users can readily discriminate between tasks rendezvousing in the same station
(local) and between tasks rendezvousing in different stations (remote). Furthermore, pro­
vision must be made to display the occurrence of interrupts (mapped, as with Ada, to
entry calls) and error conditons. To achieve these aims, the following representations are
used:
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used:

A <- - -~ B Local entry call, A to B.
A - - > B Remote entry call, A to B.
A< - > B Local End-accept, B to A.
A~-~B Remote End-accept, B to A.
A~-~C Interrupt Service, A handles C.
A<**** >E Error State, A finds error E.

In addition, to help make the display output mirror the original program structure,
nested entry calls are progressively indented. For example, consider a four-level, nested
program segment of the form:

TASK A calls TASK B then
TASK B calls TASK C then
TASK C calls TASK D.
TASK D releases TASK C then
TASK C releases TASK B and then
TASK C calls TASK E.
TASK B releases TASK A whilst
TASK E releases TASK C.

If it is assumed that tasks A and B are resident in one station and tasks C, D and E in
another, the output to display the above sequence would be as follows:

A ---------B
B----C
C -------D
C -------D
B----C
C ------- E
A -------B
C ------ E

Clearly, while such a display indicates the rendezvous' encountered during program exe­
cution, it gives no indication of the time intervals between the various events. Conse­
quently, all trace displays have an optional "switch" that allows timestamps associated
with each event to be printed alongside each specific action. Collectively, these provide
the basic tools for indicating task-level interactions between program segments and the
following sections outline the options available to the user to scan through program exe­
cution histories following particular logical threads or noting specific actions.

Static Trace

The effect of this option is to cause the trace software, within the host computer, to
search the file of event records looking for any actions involving the named task. Hence,
using the same example given earlier, a static trace targeted upon Task C would produce
the following:

B - - - C
C ------ D
C ------ D
B - - - C
C ------ E
C ------ E
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Again, timestamps may be included and hence this form of trace can be particularly use­
ful in checking the sequence of all entry calls and end-accepts encountered by a task,
especially where such occurrences are determined by timeouts or some other non- deter­
ministic event.

Running Trace

The purpose of this option is to allow users to follow the thread of execution of a set of
rendezvous sequences. For example, using the same program segment as before, and
further, assume that Tasks A, B, C and D all perform some collective processing function
whilst the rendezvous between Tasks C and E is logically irrelevant to this function, a
running trace would accurately portray the main sequence when targeted upon Task A:

A ------ B
B - - - C
C ----- D
C ----- D
B - - - C
A ------ B

The above facility is implemented by the trace software redefining the target task dynam­
ically, each time the current target encounters an entry call or end-accept to another
task. Thus, in the above example, Task A is the first target, followed by Task B and so
on. Hence, once the end-accept from Task C to Task B has been executed, any further
actions by Task C will be ignored, until that task is once again referenced by the current
target.

Interactive Trace

While repeated use of the static and running traces with different initial targets can
display accurately the task-level interactions within the program, the amount of output
produced can, in practice, become excessive and, in some cases, repetitive. To help over­
come this, and to allow particular regions of a program to be accessed more quickly, the
static and running traces may be combined interactively. This allows the user to switch
at will between the two options at any time during the trace process. Again, using the
previous example, a typical user dialogue might produce the following:

A ------ B running
B - - - C running
C ----- D static
C ----- D static
B - - - C static
C ----- E static
C ----- E static
etc.

Since interrupts are mapped as external entry calls, some applications can produce a
large number of interrupt-service requests over a comparatively short interval of time. In
some instances, the effects of these requests might require investigation, but in many
cases such repetitive events can be ignored. To facilitate this, the display of entry calls
originating from interrupts has been made optional. Further, to aid in accessing required
sections of trace information quickly, not only is a taskname required to act as a target
variable but also an "occurrence value". This is a variable that can take a value from l..n
corresponding to an instance of that target within n such occurrences located by the
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value may be from0 to 47 and this corresponds to the maximum number of entry-points
in a MartIet task of 48; entries within a task are numbered sequentially starting from
zero.

The overall effectis to provide the user with a powerful and flexible set of tools, which
give complete control to follow the flow of execution of either small or large sections of
complex, distributed software quickly and easily.

18.3.2 Performance Evaluation Aids
The purpose of the performance evaluation aids is to provide the user with both quanti­
tative and qualitative insight into the operational characteristics of a program. The infor­
mation presented, therefore, must illustrate such things as the degree of parallelism
obtained within an implementation and the effects of system configuration changes as
well as numerical performance data.

The data base which all performance displays use includes a file of event records col­
lected by the monitor station in the manner previously described. Each record contains
information about the flow of jobs executed by each processing element contained within
the set of monitored stations. Linked with each event are a number of time-stamps,
which mark important points associated with each event. In addition, each record can be
allied with the particular processor being switched, and the station in which it resides.

The actual presentation of performance data to the user is an important design cri­
terion. In many systems, performance data, especially at the system level, can be avail­
able but presented merely as a string of percentages or worse. Such lists may well con­
tain the required information, but it is up to the user to extract relevant sections. Even
then, the final form of presentation for the chosen data will probably be graphical -
something the machine is perfectly capable of doing itself. The optimal solution is to
provide the user with some broad view of system performance, and to give a number of
options whereby the required areas can be located, isolated and displayed graphically.
Indeed, the use of graphics allows not only quantitative performance displays to be easily
generated, but also comparative, qualitative displays; permitting, for example, the effects
of system changes to be easily recognized. In the laboratory system, two main graphical
display-formats are available - time slice graphs for quantitative assessments, and a
modified Kiviat display for qualitative evaluations.

Time Slice Graphs

A time slice graph is essentially a collection of one or more activity profiles, one for each
named object. The running of each object is denoted by a horizontal line scaled to
represent the duration of that object's run. The basic format of such graphs is particu­
larly suited to displaying the performance of distributed, parallel software. For serial
machines, the activation lines for each object would be mutually exclusive - moving up or
down from any trace, no other would be encountered. For concurrent programs, more
than one object can be running in the system as a whole at anyone time. Thus, time
slice graphs can give a very clear indication of the relative states of many concurrent
software elements, as well as the actual time each element spends active. In this particu­
lar environment, the possible object-display space consists of all tasks contained within
the set of stations monitored to acquire that data file. Such a space will contain not only
user-written. application tasks but also system level tasks and handlers. For example, a
time slice graph could show up resource contention problems, possible uneven load bal­
ances and priority lockout (where certain tasks can be excluded from running by a con­
stant stream of higher-priority ready tasks). Indeed, by forcing the Kernel of each station
to record its own operations, control-program lockout [11] can be detected. This is
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analogous to the previous condition, except that it occurs when the demands made upon
the controller's resources (schedulers, queue up-daters etc.) mean that overall perfor­
mance is limited by the control program and not the capacity of the local processors.
Displaying the execution profiles for system tasks (such as the communications tasks in
Polyproc) can give a good insight into the operation not only of the system functions but
of the interactions between system functions and user applications tasks.

As an example, Figure 18-4 illustrates a time-slice graph for the program segment
used in the previous section.

Modified Kiviat Figures

The idea of using circular graphs to display system performance data was first presented
in 1973 [12] and these have become known as "Kiviat Graphs" after one of the authors.
The idea was that by carefully selecting the various axes, the plotting of such graphs
would produce easily recognisable figures or patterns which could highlight certain
aspects of qualitative computer performance. The basic form of these graphs is shown in
Figure 18-5. Each figure comprises an even number of axes equally spaced around a cen­
tral point. A circle, drawn from this centre point defines a maximum (generally 100%)
level for each system attribute represented by the axes. The axes are used to alternately
represent good and bad functions of system behaviour - for example, cpu utilization, if 0
channel usage etc. If a convention is adopted whereby the uppermost vertical axis is used
for a "good" attribute then a resulting star pattern would show a system that was operat­
ing extremely well. Similarly, other patterns such as wedges, keelboats etc. would indicate
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Figure 18-4
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unbalanced system operation and help to highlight the disturbing factor or factors [13).
This method works well enough but has two main restrictions. To plot a Kiviat figure,
users must supply an even number of system attributes - half good and half bad. In some
cases, this could lead to unnecessary inclusions or important exclusions of some system
characteristics and indeed, most profiles to date have used the cpu and if 0 axes
definitions employed in the original paper. Secondly, these figures have not been
employed above the lowest system level and hence have not been available to help users
cope with determining application-level software performance. The aim then, is to
improve these existing methods, and to develop a user driven tool which will allow
software profiles for application tasks running across a multiprocessor architecture to be
easily derived. To do this, users are presented with a list of tasks from which they may
choose significant tasks for display as a "Modified Kiviat figure" (MKF). For each
chosen application or system task, the user is asked to specify whether the running of
that task, on the assigned processor, constitutes a good or bad system attribute. Thus, a
transaction-based system might, for example, have the tasks responsible for handling
each transaction labelled as good while the tasks responsible for error logging might rea­
sonably be labelled bad. To further improve the usability of such a tool, the converse
state for each chosen element is calculated and plotted as a corresponding, neighbouring
axis. This eliminates the need for users to specify an equal number of good and bad sys­
tem attributes. Considering the above example, if the error logger has been defined as a
bad attribute, and runs for twenty percent of the machine's time, then the profile will
also contain an axis defining the "not-running" time of the error logging task as eighty
percent and treating it as a good attribute. This not only helps in generating the figure,
but it also helps to magnify the effect of any performance changes between profiles with
the same elements but measured under different conditions. However, care must be taken
in interpreting the MKF since, just because the running of a task is good, it does not
necessarily follow that a system in which that task does not run is always bad.



18 Development Aids 263

As with the time slice graphs described above, the tasks chosen for display may be
located anywhere within the distributed computer system. Thus, it is possible to con­
struct MKFs that represent the performance of certain application functions even when
in practice, these are fully distributed. Similarly, system-wide profiles can be generated -
for example, generating a MKF from the idle tasks resident on each local processor
could show overall computing-resource utilization. Continuous monitoring of such a sys­
tem would mean that an animated "film" of the system's operation could be generated
and displayed dynamically. Furthermore, MKFs can show the effect upon system opera­
tion of demands for localized or shared resources such as the communications channel.
User and system tasks may be mixed at will, and the time-period over which the run­
times are calculated varied. Associated with each MKF, a list is produced of the chosen
tasks, whether they have been labelled good or bad, and the percentage run-times for
each - no indication is given as to the physical location of the tasks.

It may be concluded from the above that the actual method and format of presenta­
tion of results using this approach are strongly influenced by the interpretation of the
application by the user. As an example, Figure 18-6 shows two MKFs derived from the
example in the previous section. The first is for the single station configuration in which
tasks A through E are defined as "good" system attributes whilst the running of the idle
task is designated as "bad". As can be seen, the "good" axes (1, 3, 5 etc.) are generally
fairly short reflecting the small amount of time required by each process. The obvious
exception is the idle task which also runs for only short time but, by inference, this is
now a "good" system attribute. The second MKF in Figure 18-6 is intended to give a
more qualitative analysis of the same application. For this, the idle times and the "out­
put" times of the two processors used in a two station configuration are compared. The
output actions of station 1 are concerned solely with the transmit task handling the entry
calls made by task B to task C. Similarly, the input-output demands made in station 2
originate from the associated receiver task. As can be seen from the figure, when the
axes are grouped into stations, the resulting figure is highly symmetrical indicating that
the operation of the two stations, with respect to these criteria, is well balanced.

"

18.3.3 Implementation Overheads
With any instrumentation system there will always be overheads imposed by the meas­
urement scheme. With the options available in this system, the tracing and performance
measurement overheads are associated only with the switching of tasks - not with their
internal workings. The degree of interference caused by the selection of either option
will, in the case of the performance option, be constant, and in the case of the trace
option, will, to some degree, vary. The overheads imposed by the performance option
will remain constant irrespective of the type of software. Each task switch is logged,
whatever the reason for that task being switched. Thus, by running an application that
contains a known number of task switches for a long period of time, and measuring the
difference between having the option enabled and disabled, a figure for the overhead
imposed upon each processor switch can be obtained. Averaging the results for several
runs returns:

Performance-Measurement Overheads
(per processor switch) = 13%

By employing a similar method, the overheads of the trace option can also be assessed.
However, these overheads will not be constant. The Kernel inspects the reason for each
switch and only if it is due to a flow control statement or to an error will the event be
recorded. Thus, to measure the overheads imposed by this option, it is necessary not only
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to know how many processor switches occurred, but also how many were recorded.
Using a method similar to that above:

Trace-Measurement Overheads
(70% record rate and per switch) = 18%.

Thus, it is clear that even coding the measurement routines in a high-level language, with
careful design the overheads imposed can be kept relatively low. One further point of
interest is that, so long as the local buffers did not overflow (i.e. one half was transmitted
while the other half was filling up) then there were no extra detectable overheads
imposed by enabling or disabling the "auto-buffer send" option.

18.4 DISCUSSION AND CONCLUSIONS
The overall approach of using a functionally separate machine to monitor the target
computer has proved both feasible and desirable. The system discussed has now been
used by a number of people with varying degrees of experience, and the man-machine
interface adopted has resulted in users being able to interact with the target system easily
and safely. The direct presentation to the user of collected run-time error reports and
event records has become one of the major debugging tools employed by users during
the development of application software. These reports, in conjunction with gathered
status information relating to any affected tasks, have proved a very quick means of
locating run-time errors encountered during the early stages of debugging. In addition,
the interactive trace facility which allows users to follow the flow of execution of a pro­
gram, has proved particularly helpful in locating higher-level errors of the kind not nor­
mally encountered in serially-programmed computer systems. The trace facility has also
enabled users to check their own conceptions of the expected behaviour of a program
against what actually occurred in the target system at run-time. This is especially impor­
tant in a parallel processing environment, in which many concurrent activities may be
taking place simultaneously. This, coupled with the facility - the time-slice graph - to
display the actual level of concurrency achieved within the target system at any given
time, means that users can conduct meaningful experiments into the optimum design and
configuration for any given system. In addition, the Kiviat figures have provided a
powerful, user-driven means of demonstrating the effects of even minor system changes
upon the performance of application software.

In the implemented system, there is scope for some investigations into alternative
display formats used to show the calls made between tasks within a complete program.
The current approach of using standard keyboard symbols is usable, but it effectively
illustrates task interactions in a serial rather than a parallel form. One approach being
considered is to generate a more formal picture of system behaviour using, for example, a
Petri-net or finite-state machine kind of symbolic presentation. Alternatively, the display
could be scaled vertically, to indicate the relative time spent between events, and hor­
izontally, to show the parallelism apparent in each application. Clearly, a number of
variants are possible.

A characteristic of most of the applications which have been investigated on the
laboratory system to date, has been that all input and output data are generated and
used by actual devices; for example, visual display units, disc controllers etc. Clearly,
however, for some applications - certainly in the earlier stages of the development pro­
cess - this may not be practicable, and so it is proposed that a separate "stimulus genera­
tor" will be implemented. This machine will be attached to the target system in the same
fashion as the monitor is currently - via the monitoring link - and its function will be to
generate input stimuli for, and absorb output data from, the target system. Further, it is
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proposed to enhance the data analysis facilities by providing the ability to create system
"profiles". These are, essentially, a known set of system outputs (responses) for a
predefined set of system inputs (stimuli), and it is envisaged that this feature will provide
valuable information for the subsequent development and in-service maintenance of any
given application system. In practice, to implement such a scheme it will be necessary to
define not only the range of information used to compile the profile, but also over what
period, and to what degree, any such profile is typical of actual system performance.
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19.1 INTRODUCTION
When the microprocessor first appeared to the electronic engineer in the data sheets of
the semiconductor industry, it was considered as something more significant than just the
next level of integration which began when the separate transistor and diode components
evolved into the logic gate. Just as the gate had brought the electronic engineer from the
level of static and dynamic circuit analysis in the frequency domain through the study of
transient response in the time domain and on to combinatorial and sequential logic cir­
cuit design, to use the microprocessor as a component would require an education in a
new subject. The electronic engineers would need to add to their knowledge of the
hardware technology by acquiring the knowledge, skills and techniques of Software Tech­
nology.

As part of this pedagogic exercise the Departments of Computer Science and Electri­
cal and Electronics Engineering in the University College of Swansea collaborated to
investigate the role of the microprocessor as a component in an information processing
system. It was clear at the outset that the projected low cost of the integrated circuit
components would lead to systems of many complex components including microproces­
sors and their associated memories. It was decided therefore to focus the collaborative
project on the specification, design, implementation and use of a multi-microprocessor
development environment.

The first phase of the project consisted of a dialogue between the hardware and
software scholars from both disciplines to establish a common understanding of the
problems, and to evolve a notation through which they could communicate. The
specification of a multimicroprocessor development environment emerged from these dis­
cussions.

By this time it was clear that there was no accepted language for the programming of
systems of concurrent cooperating processing elements. It was decided to experiment
with a notation based upon the use of Petri Net Techniques which would enable the
development of the applications programs. After agreeing the specification the two
tearns went their separate ways; the hardware team to analyse the specification, then to
design and build the working system; the software team to develop the tools for pro­
gram development on a separate mini-computer, which would eventually form part of the
multiprocessor complex and act as development console. Eventually, the two came
together as the hardware was commissioned, evaluated and then handed over as a
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working system to be used by the software group as a development environment.
By this time many students and research assistants has been involved in the project

and moved on. Indeed, the main investigators moved from Wales to the University of
East Anglia in Norwich and to U.M.I.S.T. in Manchester. At U.M.I.S.T., a joint project
was established between the Departments of Computation and of Electrical Engineering
and Electronics to maintain and use the CYBA-M multiprocessor. After long discus­
sions with Welsh speaking colleagues in Swansea, it was decided to name the system by
forming an acronym from the initial letters of Coleg Y Brifysgol Abertawe - University
College of Swansea. M stands for Mynth. Data links to Norwich, Swansea and later to
other research establishments enabled many workers to use the development facility.
During this time, the system has been used in a variety of investigations:- evaluation of
languages for real time concurrent systems, study of telephone exchange design, network
architecture, reduction machines, applications in control, image processing and simula­
tions.

Much experience has been gained in the maintenance of the hardware and software of
a multiprocessor system.

It is not possible in this short paper to cover all the important features of this long
complex project. In view of the other papers presented as part of this tutorial, we shall
concentrate upon the hardware aspects of the project and attempt to highlight the lessons
learnt by the electronic engineers to further their understanding of the role of the
microprocessor as a component.

19.2 SPECIFICATION AND INITIAL DESIGN DECISIONS
The prime requirement was for a rigid physical interconnection structure to allow the
close coupling of a small number, up to sixteen, of processing elements, each element to
comprise a processor-memory pair or microcomputer. All processing elements would
also share a common memory and a common set of input! output devices. The system
had to enable the programming of a wide variety of interconnections between processes
in the elements and in the shared input/output devices. Much emphasis was placed on
the need to trace the different processing element state vectors during the development of
low level programs.

It was decided to employ a direct shared memory interconnection scheme, which pro­
vided a structure for the programmable interconnection of processing elements as well as
the shared memory concept. A separate shared image memory structure was used to
provide the input-output ports. The 8080 microprocessor was selected from the small
number available at the start of the project. This has an address space of 64 K-bytes
which is divided as follows:

Local Memory
Shared Memory
Shared Image Memory
Total Memory

32 K-bytes (per processor)
16 K-bytes
16 K-bytes
= 512 K-bytes

The arrangement is shown in Figure 19-1.
Program development requires facilities for loading, running and monitoring the pro­

gram. In this environment the problem is not only to load, run and monitor up to 16
separate programs but also to monitor their interworking. The basic programmer inter­
face to the system is provided through a VDU keyboard attached by a privileged route
to one of the processing elements (PElS) as shown in Figure 19-2. Other facilities such
as a floppy disc system, line printer and modems for remote operation are also allowed a
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privileged route into PEI5. This processing element supports a job control language to
enable development activities. The loading of each program into the local memory of its
assigned processing element, from the file held on a floppy disc, is achieved by providing
separate routes between each processing element and PEI5, as illustrated in Figure 19-2.
The connections to the global and image memory ports are indicated to correspond to
Figure 19-1. The additional routes between each element and the direct local memory
access unit are shown. Also shown are the routes from each processing element to the
image memory. These routes are provided to enable a copy of each of the significant
registers within the microprocessor and its associated control logic, to be made accessible
in the image memory. Thus the processing element PEl5 may read the image memory
to establish the state of each processing element.

To summarize, the extra connections shown in Figure 19-2 enable the loading of pro­
grams and the issue of commands to run and halt them. Furthermore, every active regis­
ter in each processing element may be read by PEI5, as may all the global memory and
all the image memory. These data may be dumped onto floppy disc, copied to the line
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printer or displayed on the VDU, to provide the programmer with all the information
necessary for program development.

Preliminary discussions on the establishment of a basic design methodology led to a
detailed specification of certain direct hardware commands, to facilitate the control of
the individual elements through the job control language. In addition to the normal
commands of a JCL for a single processor, there are commands which cause a printout
of the processing elements within the system; which cause the system to halt on certain
breakpoint, or stack limit, traps; and which enable a printout of the state of the process­
ing elements on a halt. These extra facilities add to the complexity of each processing
element, some of them requiring 20 or so sequential operations. These operations are
controlled by a separate sequential state machine within each processing element. This
separate machine is known as the control slaveprocessor.

19.2.1 Control Slave Specification
The specification of the control slave is important for two reasons: first, it is a complex
piece of hardware, which could grow in a heuristic manner and exceed the space limita­
tions quite easily. Second, it forms only a small portion of the command console system,
the rest being program, and the designer of the software must have an unambiguous
statement of the operation of the slave - particularly since the hardware and software
must be delivered together, and neither can be fully tested without the other. The func­
tions of the control slave cannot be categorized easily, but all are provided to aid
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program testing.

The control slave performs the following functions:

• Store last instruction (considered essential for easy fault finding)

• Breakpoint control (used for single step)

• Time out for faulty or non-existent memory

• Detect halt instruction

• Set trap error (changing breakpoint register while enabled)

Control slave forces its processor to:

Reset (initialize at start-up and after fault)
Start executing user program
Stop executing user program
Dump processor state
Stopall the processors (a special hardware command)

Control slave obeys the following commands:

Enable or disable - Breakpoint operation
- Stopall on halt
- Stopall on breakpoint hit

Clear trap error

The response of the control slave to all expected events is described by a transiuon
diagram. Transitions can be caused by hardware events, or by the main commands,
which are generated by the command processor when a conventional processor instruc­
tion is obeyed, i.e. by software.

The transition diagram is the interface specification between the hardware and
software of the command console, and this approach has been found to be extremely
valuable in providing a clear definition of the control slave action. Every command
issued by the processor produces an acknowledgement by the control slave. This transi­
tion diagram describes only one of the many state machines required to implement con­
trol slave.

Stopall: A facility considered to be one of the most important features of the control
slave. As soon as a fault condition is recognised, stopall is generated by the slave detect­
ing the fault, and all processors are automatically stopped. The main fault conditions
are caused by:

Ilegal access, which causes a time-out because the memory location addressed does
not respond; also when S (local memory bus) attempts an access if S local memory
is not set.

Issuing an invalid command which causes the slave to enter the fault state. The
slave is designed to be ignorant where command execution is concerned, and it
expects the command processor to issue correct commands. The transition diagram
defines the valid and invalid commands.

Stopall can be enabled or disabled when a breakpoint hit occurs, or if a halt instruction
is obeyed. Stopall can only be removed by issuing a valid command to the control
slave.
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19.2.2 Process Flags
Binary semaphores are provided in a special memory, located for convenience in the
shared image memory. Each word is automatically cleared during a read cycle so that a
'1' set in a location can only be read once. The locations may also be accessed in the
normal way, so the command console may examine them non-destructively.

Available word: The process flags are provided to control the sharing of software
resources. The available word is identical in operation, but is associated with hardware
resources. All devices on the shared image memory have an available word which must
be examined before the resource is accessed. Each control slave and command control
word contain such a register.

19.3 HARDWARE DESIGN CONSIDERATIONS
The most important design criterion was the need to make the total CYBA-M a com­
pletely synchronous machine. The physical size is restricted to ensure low clock skew
over the whole system, and established design methods ensured that problems of syn­
chronization at the multiport memories did not exist [1].

The processor, the 8080, was selected when it was considered to be the only one suit­
able for the task. Only four of its instructions have not been supported and these are of
no direct value. Some of the other significant facts concerning the hardware design are
presented below.

19.3.1 Global Memory
A 16-port memory, with 10 M byte/see data rate, is constructed from a five- stage pipe­
line which operates with a beat period of 100 ns. The operations, in order starting from
requests generated by the node switch, are:

(I) Generate the next serve address

(2) Arbitrate

(3) Transfer address and data from port to store

(4) Perform memory cycle

(5) Transfer data from store to port

The pipeline arrangement works most efficiently when the traffic is high, a condition
which arises when contention is most likely to be a problem. However, when the traffic
is low, there is a 400 ns delay between request and serve, which incurs one delay beat in
the 8080.

Arbitration Circuit : A snapshot with pre-emptive priority is used to determine the
next serve address; an algorithm which ensures that all processors will get served. A
field programmable logic array (FPLA) is used to implement the priority logic, the serve
address logic, and the logic to enable the snapshot. Simply by changing the PLA pat­
tern, other serve algorithms can be implemented.

19.3.2 Image Memory
The shared image memory is a distributed structure designed on a bus of 2 metres, which
passes along the backplane of the image memory card frame and the processor card
frame. Each bus cycle takes 400 ns, and may be extended by the destination logic for up
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to three cycles for slower memory components. The priority logic IS functionally identi­
cal to the global memory circuit, including the FPLA; otherwise, the system is conven­
tional. To stop the time out on the control slave, the destination logic must generate an
acknowledge signal, the lack of which indicates a vacant address location. In this event,
the bus controller automatically proceeds to serve the next request on the next bus cycle.

19.3.3 Slave Processor
The control slave is the most complex single system in the multiprocessor. It consists of
15 state machines, the largest of which occupies 44 product terms in a 14-input 8-output
FPLA. Another FPLA implements two more state machines. Cost was less important
than the space saved by the use of FPLA's. One major difficulty was the testing of the
logic with FPLA's present. Returning faulty FPLA's for reprogramming by the supplier
was unacceptable, and a real time FPLA emulator system was essential.

19.4 SOME PERFORMANCE MEASUREMENTS
One of the objectives of measuring the performance of CYBA-M is to assess how the
overall machine performance degrades as the number of processing elements concurrently
accessing either the global or image memories increases. The measurements indicate
when the shared memory areas become a "bottleneck" in either interprocessor communi­
cations, access to shared code, or peripheral data transfers. The results may be used to
calibrate the machine, to assist in the derivation of optimum solutions to particular
application problems.

19.4.1 Performance Tests
The test consists of moving a block of data from the global memory into a number of
processing elements. The data are moved from the global memory, one byte at a time,
into an internal processor register. Each data byte transferred overwrites the previous
contents of the register. Although this may appear to be a meaningless test, it does per­
mit the maximum amount of memory activity to be generated. Two such tests are per­
formed:

Test 1 (Global) :- The program to transfer the data block is located in global memory,
and is accessed concurrently by all the processing elements involved in the block
transfer.

Test 2 (Image):- The program to transfer the data block is located in a read-write storage
area in image memory, and is accessed concurrently by all the processing elements
involved in the block transfer.

The performance of a shared memory is determined by the number of processing ele­
ments which are attempting to access the memory simultaneously. The processing ele­
ments interfere with each other, and therefore cause delays in accessing the memory.
The performance of the memory may be predicted by assuming that all the processing
elements access the shared memory with the same request distribution. In this case,
Weitzman [2] defines an "effective memory utilization factor" (r), which represents the
fraction of a processing element cycle time that is spent in a contended memory cycle.
For a CYBA-M processing element, r = tN/tA, where tN = memory cycle time and tA
= average time between memory requests. It is then possible to predict the probability
that the memory is locked due to concurrent memory requests from N processing ele­
ments, and hence derive the normalized memory throughput ratio, T, (or rate of memory
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cycles), relative to one processing element having uncontended access to the shared
memory. The resulting performT equation is:

tA T

T - ~ 1 - N [I - :: 1
N

=0

For the global memory, tN = lOOnsand for the image memory, tN = 800 ns; access to
the image memory area requires two image memory bus cycles. In the test programs,
when the data transfer program is in global memory, tA to global memory = 2.04
microseconds, and when the data transfer program is in the image memory, tA to image
memory = 2.75 microseconds. These figures are derived from the test program and are
calculated by dividing the time the microprocessor takes to execute one cycle of the test
program by the number of memory cycles in the program loop. The timing calculations
are simplified as the microprocessor only accesses the data block in a tight program loop
of six instructions. The loop time for the global memory loop is 18.4 microseconds,
while that for the image memory based loop is 24.8 microseconds; that is, 800 ns extra
for each of the instruction! operand fetch memory cycles, of which there are 8.

The performance measurements on transferring a 5000 byte data block for test 1 and
test 2 were carried out. The theoretical performance equation gives T as approximately
proportional to N, for N <tA / tN' The actual performance results were in agreement
with the theory.

It is worthy of note that in test 1 the initial performance results indicated a perfor­
mance degradation of approximately 0.5% per processing element when N processing ele­
ments are accessing the global memory concurrently. For a 16 processor application,
this represents 92% processor utilization under circumstances where all the memory
accesses are made to the global memory. With real applications programs, where the
code and workspace are located in the local memory of a processing element, only a few
references are made to the shared memory, which reduces contention to negligible levels,
and the processor utilization approaches 100%.

On the image memory, however, the contention is more dominant, it being eight times
slower than the global memory. Figure 19-3 shows the mid-point and deviation for the
experimental results up to 14 processors. The spread of the results is due to interference
caused by contention, and the situation is aggravated by the processors becoming locked
into a synchronization pattern. This appears to produce an average throughput that is
greater than that predicted by theory, and may explain why the experimental results out­
perform the theory. The effects of synchronization of this type have been noticed on
many of the applications studied, particularly when deterministic load patterns have been
applied.

19.5 CONCLUSIONS
The success of any microprocessor implementation depends upon the care and discipline
exercised at an early stage of the project to produce a clear specification of the system,
providing a precise statement of the software designers requirements to be satisfied by
the hardware designer. Hardware and software actions causing state transitions by an
appropriate hybrid state machine must be clearly separated. Once this has been achieved
the hardware design can proceed to deal with the usual problems of cost- effective per­
formance tradeoffs. During this project the FPLA emerged as a significant implementa­
tion component. The development of the system for programming these arrays formed a
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significant part of the project in its early days, as did the development of hardware
analysis techniques based upon the logic state analyser instruments as they became avail­
able.

The complete hardware and software of the CYBA-M development environment has
been operating reliably for many years and has provided many research students and
staff with their first experience of a multimicroprocessor project. Many of problems
solved during the project have given insights on how to make the best use of the newer
microprocessor components which have been introduced since we first met an advanced
8 bit microprocessor, the 8080.
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20.1 BACKGROUND AND AIMS
Computer systems which utilize multiple processors offer a number of advantages over
uniprocessor systems in a number of real-time application environments. Typically,
these include increased throughput, improved levels of system availability, ease of incre­
mental growth, and so on.

Although at the time of inception of this project it was possible to assemble a mul­
tiprocessor computer system from currently available commercial products - single board
computers, intelligent peripheral boards, etc. - there were not suitable software tools -
language compilers, run-time diagnostic aids, etc. - to allow application software for
such systems to be written and tested in a systematic way. The main aim of this project,
therefore, was to develop a methodology, and create a development environment, for the
design and production of high quality applications software in distributed multiprocessor
computer systems, intended for use in a range of real-time embedded applications.

20.2 A MULTIPROCESSOR DEVELOPMENT ENVIRONMENT
When developing the software and hardware for a dedicated microprocessor-based sys­
tem, it is normal practice to use the various software and hardware tools - editors,
debuggers, in-circuit emulators, etc. - provided with a microprocessor development sys­
tem (MDS), to enable the software under development to be conveniently entered and
edited, and subsequently tested on the actual target hardware configuraiton. Although
this is a suitable approach for developing such systems, the limited facilities available
with an MDS means that they are not suitable for developing more sophisticated
multiprocessor-based systems.

The approach adopted in this project, therefore, was to utilize a separate host com­
puter, to provide a flexible user interface with the target multiprocessor system under
development.

All application software is entered, compiled, linked and edited on the front-end host
machine, and the resulting memory images are then down-loaded and tested on the
selected target hardware configuration. In addition, the front-end machine contains a
range of performance monitoring and diagnostic aids, to provide the user of the system
with a convenient set of facilities for debugging the particular target multiprocessor sys­
tem under development.
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20.2.1 Target Hardware Configurations
The distributed multiprocessor system to be described has been implemented to investi­
gate a variety of real-time embedded computing applications, such as flight simulators,
robotics, process control etc. In applications of this type, the overall processing function
is often distributed naturally over a localized area. In a flight simulator, for example, the
processing is distributed among the many items of equipment - visual system, motion
control etc. - around the simulator, whereas, in a robotics application, the processing is
distributed through equipment distributed around the plant or site.

A logical evolution of this physical distribution of processing functions is to imple­
ment each function by means of a separate computing unit or station. The stations
which make up the system are then linked together to perform the overall system­
processing function. The level of processing power required within a station will, of
course, vary, and will depend on the amount of local processing required at that site. At
one extreme, a station may require only a single processing element; whereas, at the
other, a station may require a large number of elements. Similarly, different applications
will require varying numbers of stations.

In order to cater for a wide range of different application requirements, the system
development facilities have been designed to support a number of alternative target
hardware configurations. Thus a system may include just a single autonomous multipro­
cessor station. Alternatively, a system may be made up of a number of similar stations,
linked together, and collectively executing a single application program. Some of the
alternative target hardware and associated software configurations are illustrated in Fig­
ure 20-1.

Station Design

In each of the target systems a station can consist of a selected number of processing ele­
ments, each with an amount of local or private memory. In addition, in a multiprocessor
station, each element has access to a common shared memory which is used primarily as
a means for fast communication between processing elements within the same station.
Also, in order to maximize the level of concurrency within a multiprocessor station, a
separate processing element is designated as a master or control processor, dedicated to
the task of controlling and scheduling the other processors within that station.

The processor adopted for the system is the Intel 8086, and a station consists of a
nuinber of SBC 86/12A single-board computers which plug directly into the main station
bus. This is based on the Intel Multibus, and additional shared memory and peripheral
interface boards also plug directly into the same bus. Each processor board contains an
8086 CPU, an amount of local memory (PROM and RAM), various peripheral interfaces
and timers and, if required, additional special purpose co-processors to enhance the pro­
cessing capabilities of the host local processor. A schematic of a station is shown in Fig­
ure 20-2.

Interstation Communications

The stations which make up the system are linked together by means of a communica­
tions network. Since, in the application areas considered, stations may be distributed
over a local area, the communications subsystem selected for use with the laboratory
development facility is based on a serial coaxial bus network. The overall software struc­
ture, however, is independent of the type of interstation communications network. A
standard interface is utilized between the main station software and the communications
processor, and it is the latter which implements the appropriate network-dependent
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protocol. Thus alternative communications protocols and topologies may be used, sim­
ply by changing the communications-processor board within each station.

20.2.2 Software Development Tools
A feature of many real-time embedded systems of the type considered is that the applica­
tion software, once designed and tested, is usually static; that is, the suite of task
modules which make up the application program are normally statically assigned to the
individual processing elements in the selected target system.

Also, there is normally a need to communicate data between tasks, so that the status
of inter-related devices can rapidly be communicated between the tasks that control the
devices.
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The aim of the system designer is thus to partition the application requirements into
suitable subfunctions or tasks that can execute concurrently and communicate with each
other, and then to distribute and statically assign the resulting program code to selected
processing elements in the hardware configuration to be used. The methodology adopted
for the design and test of application software for the laboratory multiprocessor is:

• Define and analyse the application requirements and partition the application into
a number of subfunctions or task modules that can execute concurrently

• Define the function of each task module and the specification of the interface to be
used for inter-task communication

• Code each component task module using a suitable concurrent programming
language and compile the complete program

• Assign the compiled code of each task to a specific processor in the selected target
hardware configuration and create the memory image for each processor together
with the associated data structures for use by the run-time support software

• Run and monitor the performance of the application on a suitable development
system and identify and correct any programming errors

• Try alternative partitioning and assignment strategies to obtain an optimum run-
time system

The first step in the design is to define clearly the application requirements, and to parti­
tion the application into a number of reasonably sized operations or tasks which can, if
necessary, be carried out concurrently. Clearly, some tasks, such as those concerned with
the control of a specific device or piece of equipment, can be identified readily; others
may be less obvious, but necessary in order to exploit the potential advantages offered in
terms of, for example, enhanced throughput or system reliability. After the partitioning
operation has been performed, a detailed specification of the function of each task is pro­
duced, together with a specification of the necessary intertask communication parameters
to be used. Parallelism within the system exists, therefore, at the task level, where a task,
when implemented in actual code, is a reasonably sized program module. Although
there are no inherent built-in limitations to the size of tasks, the system designer typically
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partitions the application in order, first, to exploit the potential advantages offered by the
multiprocessor and, second, to minimize the number of requests for intertask communi­
cation.

The second step is to select a suitable concurrent programming language to code each
task module. Clearly, the language selected must contain the necessary concurrency
features to provide for intertask communication in a well defined manner; and the
language compiler should contain suitable compile-time checks to ensure their correct
usage.

Since, up to this point, the application software is not tied to a specific hardware
configuration, the next step is to take the output from the language compiler, and to dis­
tribute and assign the object code of each task module to a specific processor within the
target system. This is known as the system configuration phase; and is in turn per­
formed by a system configuration program [I]. This is an interactive program which
takes as input the output from the language compiler and in turn produces a memory
image for each processor within the system, together with associated data structures for
use by the run-time support software to effect intertask communication.

In order to identify and locate possible errors in both the partitioning of the applica­
tions software and the specified assignment, the memory images for each processor gen­
erated by the system configuration program are first downloaded and run on a labora­
tory development facility. This consists of the actual target multiprocessor hardware
front-ended by a single processor host machine. The latter runs both the compiler for
the applications programming language and the system configuration program. The "
run-time support software in the multiprocessor under development, in addition to per­
forming the normal run-time support functions concerning the scheduling of tasks and
processors, and the synchronizing and managing of intertask communications, contains
additional run-time diagnostic and performance monitoring aids. Thus any run-time
errors are detected, and appropriate trace and diagnostic messages output to the host
machine. Also, the performance of the specified task distribution is monitored, and
alternative partitioning and assignment strategies can be tried and their effects moni­
tored.

Finally, after all errors in the applications program have been corrected and the
optimum distribution of task modules determined, the memory images for the actual
applications hardware are produced.

The various software tools which have been designed and implemented for use with
this methodology are:

(1) A concurrent programming language: this is known as MartIet and has been
developed to enable a programmer to write applications software as a suite of task
modules which execute concurrently and communicate with each other in a syn­
chronized way.

(2) A system configuration program: this is known as Setup; it is written in Pascal and
runs interactively on the front- end machine. It allows users of the system to per­
form the assignment of task modules to the individual processing elements which
make up the selected target system and generates the necessary intertask and inter­
processor data structures for use by the run-time support software.

(3) The run-time support software: this forms the interface between the distributed
suite of task modules and the selected hardware configuration. Essentially, it
implements all intertask communication requests, and the scheduling of tasks and
processing elements.
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(4) Loading and performance monitoring and diagnostic software: this is primarily
resident in the host machine, but a part is also in firmware, on a special card in
each station, to allow application software to be down-loaded from the host
machine prior to testing; and performance monitoring and diagnostic data to be
gathered whilst the system is running.

Applications Programming Language

Although a number of programming languages which support concurrent processing are
available [2,3,4,5], the majority are based on the monitor concept [6] and are intended
primarily, therefore, either for a uniprocessor system or possibly for a multiprocessor sys­
tem which employs a single shared-memory architecture [7]. Consequently, since it was
intended to investigate architectures which contained distributed properties, it was felt
that a language providing a message-based intertask communication and synchronization
mechanism offered a more flexible solution. Moreover, it is essential that these mechan­
isms must be an integral part of the language in order to obtain the full advantages of
compile-time checks.

Although no such languages are as yet commercially available for a multiprocessor
system, the specification for the US Department of Defence language Ada [8] contains
many of the features just outlined, especially the tasking features proposed for multipro­
cessor implementations. In order to exploit these, therefore, it was decided to take an
existing sequential language - Pascal [9] - and to modify and extend this to include some
of the features proposed for Ada. The resulting language is known as Martlet [10] and
this is currently being used to produce application software for the system.

In brief, a Martlet program consists of a suite of task modules which communicate by
exchanging typed parameters, and synchronization is achieved using the concept of a
rendezvous [8]. Other facilities in Martlet are a 'delay' statement, the handling of inter­
rupts as external entry calls, a 'port' statement, multiple-task instances and exception
handling facilities. These are all discussed in detail in [10].

System Configuration Program

After the applications program has been compiled, the compiler output is used as input
to the system configuration program. This is written in Pascal, and interacts with the
system designer to create a memory image for each processor element in the multiproces­
sor structure.

The program first requests the system hardware configuration to be used, and then the
names of the files output by the compiler containing the object code and the correspond­
ing control information. It then systematically reads the code and control information
for each task, and requests the identity of the processor to which each task is to be
assigned, and the priority to be assigned to the task. Also, if the task has parameters
associated with it, the values to be assigned to them are requested. The program then
creates the data structures required by the run-time support software, both to schedule
the running of the tasks and to manage any intertask communication requests. This
includes , for each task that requires to communicate with a task in a different station,
the creation of a pair of pseudo-communication tasks: one in the calling task station
(transmit) and the other in the called task station (receive). This is shown diagrammati­
cally in Figure 20-3. Thus, whenever a task wishes to communicate with a remote task,
on receipt of the intertask communication request, the control processor schedules the
associated pseudo-called task in the normal way. The latter then communicates with the
requested remote pseudo-calling task, using the communications subsystem, which makes
the intertask communication request on its behalf. In this way, all intertask
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communication within a station is handled in a standardized way by the control proces­
sor, and is independent of both the physical location of the communicating tasks and the
specific network protocol adopted.

Each task within the system has a unique identifier assigned to it which includes both
the station address and, the task address. Thus, whenever two pseudo-tasks wish to com­
municate, a simple handshake protocol is followed using the communications network.
The requesting pseudo-task first sends a request-for-entry message via the network to the
addressed pseudo-task, which in turn responds with a ready-to-accept message when it is
scheduled. Parameter values associated with the entry call are then sent, and the remote
pseudo-task makes a normal entry call on behalf of the calling task. Finally, after the
call has been accepted and processed, any result parameters are returned to the calling
task via the two pseudo-tasks in a similar way. The system configuration program then
generates the memory image for each processor and shared memory resulting from the
specified assignments, and the system designer may, if he requires, display these on the
VDU screen.

Run-time Support Software

The control processor within a station contains an executive program known as the sta­
tion or control kernel [11]. In addition, since, with the selected hardware, a control pro­
cessor cannot physically access the working registers of another processor, each local pro­
cessor contains a small kernel which simply runs the task the control kernel has selected.
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A schematic diagram of the run-time support software within a station is shown in Fig­
ure 20-4 and a detailed description can be found in (11].

In summary, the control kernel is implemented in two parts: the kernel data struc­
tures, which are created by the system configuration program, and the kernel routines.

The kernel data structures are situated in the station shared memory, since they are
used by both the control kernel and the local kernels to effect the scheduling of tasks and
to control interprocessor communication. They are shown in Figure 20-5 and contain a
linked list of task activation records, a list of processor status records, a task directory
and an interrupt map table [11).

The control kernel routines are shown in outline in Figure 20-6. The scheduler rou­
tine is called whenever one of the ready queues associated with a local processor is
updated. The task switching routine is called either as a result of scheduling, or when a
local processor requests the current task it is running to be suspended. The local proces­
sor can request one of four actions: accept, entry call, end-accept or request interrupt
service, which are handled by separate routines. The main kernel routine has two seg­
ments: the initialization segment, and the segment which performs the polling of flags.

20.3 LABORATORY DEVELOPMENT FACILITY
Once the memory images for each local processor and shared memory above been
created, they are then down-loaded and run on a laboratory development facility in
order to locate any possible errors in the applications program, and to monitor its per­
formance during the test and run-time phases.

The development facility includes the actual target multiprocessor hardware, front
ended by a uniprocessor host machine, as shown in Figure 20-7. During development,
the latter contains the Martlet compiler and the system configuration program, and also
status monitoring and performance measurement software. In addition, the host is used

Local Processor Local Processor

Task B
Task A
Task C

Run-Time Support
Software

Figure 20-4
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in the run-time system for monitoring and diagnostic purposes.
Communication between the host and the one or more stations in the target system is

by means of a high bit-rate serial communications link which handles all communica­
tions with the host system. The system designer and/or service engineer can thus enter
commands at the host terminal (which result in specific control messages being sent to
selected stations in the system), and the station development board, in co-operation with
the station control kernel, initiates the specified actions. These include commands to
down-load the memory images for each processor, initiate the running of the application
tasks, and also commands to collect and display on the host terminal, station status
information and performance monitoring data. In addition, any run-time errors detected
by the control kernel are immediately reported to the host station, which then displays
the appropriate error message on the host console.

The station status information is of particular interest, either when an error message is
reported or when the current system state is required. It is provided only when
specifically asked for by the host. The control kernel responds to the request by formu­
lating a suitable response message containing the requested status information, and this
is then sent by the CCP to the host. It may include:
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• the status of each processor in the station

• the directory list of tasks in the station

• the current state of all interrupt flags

• the state of each task in the station (running or suspended)

• the entry call on which a task is suspended or is waiting to receive

• the task currently being run by each processor in the station.

Performance monitoring data is recorded continuously by the control kernel within each
station, in a circular buffer, and the current contents of the buffer may be requested at
any time by the host. The performance data includes a record of all the main events
that have occurred, together with associated time stamps. The events include control
kernel calls for intertask communication and also the scheduling of local processors.

In order to monitor the specified assignment during the development phase, such
information as the time a processor is idle, the frequency with which a task is called by
other tasks, the length of the ready queue of each processor, the frequency of interstation
communication between tasks etc. is also recorded. The system designer can thus try
different partitioning and assignment strategies and monitor their effects.

Once the application software has been fully tested, and the optimum partition and
assignment determined, the memory image for each processor is produced, and the host
processor is then used, if required, in a maintenance/ diagnostic role.
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20.4 DISCUSSION
The development environment which has been described enables applications software
for a distributed multiprocessor computer system to be designed and implemented in a
systematic way. The function and design of the various software components which are
used in the methodology have been described, and the structure and facilities provided in
a laboratory development facility presented.

The provision for target systems, made up of of multiple linked multiprocessor sta­
tions with disjoint address spaces offers considerable flexibility, and makes the described
system applicable to a wide range of application environments. Also, the use of a
separate processing element for the control of all interstation communications means that
the interstation communications facility can be readily varied, with minimal effect on the
applications software.

Although the rendezvous concept provides a safe and easy-to-use mechanism for com­
munication and synchronization between tasks, it creates a heavy demand on the run­
time kernel software for its implementation. Hence the use of a separate dedicated pro­
cessor to run the main station kernel significantly improves the concurrency of the sys­
tem, especially when the station contains multiple local processors. If a particular sta­
tion requires the use of only a single local processor, however, an additional processor
for the control kernel is clearly less justified. Indeed, to meet this possible requirement,
the laboratory development facility also offers the possibility of using a station which
contains a single combined local and control processor.

The use of a separate control kernel to manage all the other processors in a station
neatly overcomes many of the potential synchronization and deadlock problems associ­
ated with multiple processors accessing shared-data structures. With this arrangement,
however, the overheads involved in mapping interrupts into entry calls to high-level ser­
vice tasks is relatively high, and, consequently, in order to meet the real-time response
constraints of certain devices, it is necessary in the development system to handle a
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significant amount of the processing of interrupts using low-level service routines. This
clearly erodes the advantages of processing interrupts using high-level service tasks, .and
hence, for those devices which have a very fast time-critical response requirement, a spe­
cial dedicated processor must normally be used for their control.
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21 Using Algebra for Concurrency

A. J. R. G. Milner

21.1 INTRODUCTION
A prominent feature of any algebra is that its expressions, by their form, either exhibit
the structure of the objects which they represent, or exhibit the way in which those
objects were built, or could be built, or may be viewed. Often indeed an object does not
possess structure, but we impose structure upon it by our view of it - and thereby under­
stand it better. A rectangular array of numbers, for example, is not of itself a row of
columns, nor is it a column of rows; these are views which we impose upon it, and any
linear expressions of such an array will impose some such biased view.

So it is no accident that algebra is useful in understanding complex distributed sys­
tems; for such systems must have many parts (else they would not be complex), and a
structured view is essential in understanding something with many parts.

In designing an algebra for distributed systems, we are faced first with an inherent
difficulty; the connectivity of the components is not in general tree-like, whereas the
structure of an algebraic expression is always tree-like. It follows that the connectivity of
a system is not expressible merely by the form of an expression. However, the analysis
of an expression into subexpressions will express the analysis of the system into subsys­
tems - and the expressions will often be chosen in such a way that the subsystems which
are thus identified are physically meaningful, and possess properties from which proper­
ties of the complete system follow naturally.

A more detailed problem in algebra is: what is the nature of the connecting links
between the subsystems of a distributed system? In a system such as the following (Fig­
ure 21-1) do the arcs represent directed channels carrying data from one node to another,
in which case do they have memory capacity? Or do they represent simply the con­
tiguity of the objects represented by the connected nodes - an interface across which they
exchange an immediate interaction? And in either case does the forked arc from B to A
and C carry a communication between B and both A and C, or does it signify that a sin­
gle communication occurs between either B and A or B and C but not both?

One modest purpose of this chapter is to show that the precise answers to these ques­
tions can indeed be given by choosing one algebra or another, and that the different
choices differ markedly. In section 21.2 we look at an algebra in which the arcs
represent unbounded queues of data elements. In sections 21.3 - 21.6 we look at more
primitive (but more general) models in which arcs are immediate interfaces; in this case
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Figure 21-1

the queues of section 21.2 would themselves be represented by nodes of a particular
nature. Another - not so modest - purpose is to illustrate in each case that algebraic
proofs of system properties can indeed be carried out. We have no space either to treat
complex examples or to show the full richness of the algebraic theories concerned.
Instead we hope that readers will find interest in the significance and importance of the
fundamental choices in building an algebraic model - namely, fixing the nature of the
objects, and fixing the basic operators by which a rich enough class of objects can be
built.

In the final section 21.7, we comment very briefly upon the relation between algebra
and other theoretical tools for analysing concurrent systems.

21.2 PIPELINING : KAHN NETWORKS
A particularly simple and attractive form of concurrency is proved by the dataflow idea
which arose first from the work of Jack Dennis at MIT and his group, but was put on an
algebraic footing by Gilles Kahn - first at Stanford and then at IRIA (now INRIA) near
Paris.

Simple networks are considered in which each node receives a (possibly infinite)
sequence of values along each of zero or more output lines. If an output line serves
more than one succeeding node, then its values go to all of them. There may be loops in
the network, and typically some lines are designated as inputs and outputs of the entire
network. An example is shown below, in which the nodes are uninterpreted (Figure 21-
2). In this network, the node F2 may be interpreted as as a function of two input
sequences, yielding one output sequence; the other nodes similarly.

The question is: given the functions FJ, F2 and F3, how may we express the function
represented by the entire network, which takes input sequences x and y and yields output
sequence z? The answer is gained simply by introducing an unknown w standing for the
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y

z

Figure 21-2

sequence of values which travel along the single arc which loops back from F2 to Fl.
For then the output FI is FI (w,y) - a sequence - and this is fed into F2 , so that w
satisfies the equation

w = F2(x,F1(w,y»

and it can be shown that under simple conditions there is a unique solution to this equa­
tion - though depending on FI and F2 it may be an infinite, finite or even empty
sequence. Finally, since F3 receives as inputs w and FI (w,y), the output z is given by

z = F3(w,F1(w,y»

As a more concrete example, consider the following net SI (with no input and one
output line). We can calculate that it generates the sequence SI = 1.2.3. ... of all
positive integers. (Figure 21-3) To do this, we must first interpret the four nodes:

ZERO = o. f
ONES = LONES
THEN(x,y) = first(x).y

(a zero, followed by the empty sequence f)
(the infinite sequence of ones)
(the sequence y preceded by the first
member of the sequence x)

PLUS(x,y) = (first(x) + first(y» .PLUS(rest(x),rest(y»
(adds the pairs of inputs, one by one)

Note that any sequence x can be split into its leading member first(x) and its remaining
sequence rest(x). The sequence SI generated by the whole net clearly satisfies



SI = PLUS(ONES, THEN(ZERO,SI»

We can begin computing SI as follows:

SI = PLUS(ONES, THEN(O.€,SI»

= PLUS(1.0NES, O,SI)

= 1. PLUS(ONES, SI)

To go further, let us define inductively

Sk+1 = PLUS(ONES, Sk) (k = 1,2, ... )

If we can show that for all k;;;;.:I

Sk = k,Sk+1

then we have what we want, for it will follow that
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SI = 1.~ = 1.2,S3= 1.2.3,S4 =
= 1.2.3....

Figure 21-3

(I)

(2)

(3)

(4)

So let us prove (4) by induction on k. It certainly holds for k = I, since SI = 1.S2 fol­
lows from (2) and (3); so now assume that (4) holds at k, and prove it at k + I:

PLUS(ONES, s, )
PLUS(1.0NES, k,Sk+l)
(k+ I).PLUS(ONES, Sk+I)
(k+l),Sk+2

which is what we wanted.

by definition of Sk+1
by assumption
by PLUS
by definition of Sk+2

Nets of this kind can, in a very succinct manner, compute interesting and nontrivial
functions. Wadge (in his work on LUCID) and others have given many examples, and
the proofs can always be carried out in the above algebraic style - which is definitely a
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mathematical style rather than a specialised program-proof methodology.
Certainly the nets exhibit a form of concurrency and communication, namely "pipelin­

ing"; what are their limitations? First, the model and the proof method become consid­
erably more complex as soon as the nodes are not assumed to be determinate - or at
least not fully described as functions; an example of a non-determinate node is the
MERGE (Figure 21-4) in which it is known that z contains all members of x and of y in
the right order, but interleaved in an unspecified manner (eg. according to order of
arrival, which is not specified in the model). Such non-determinism can be very useful.
Second, the model attains its simplicity partly by omitting one feature of behaviour
which we may sometimes wish to take into account, namely the relative order in which
the input elements are received and the output elements delivered in a network. For­
considering our first illustrated net with nodes FJ, F2 and F3 - the solution which deter­
mines z as a function of x and y does not indicate how many elements from x and yare
absorbed before the first, second, ... element of z is generated

A third limitation is that any realization of the model will require unbounded memory
capacity to represent the queues of values which build up on internal arcs of a network.
It is important to be able to ignore this detail at a high level of modelling, but if memory
capacity is to be modelled then the Kahn networks are not the appropriate tool.

To achieve a general model of communicating agents which removes these limitations
involves, apparently, a totally different approach. We illustrate one such approach - but
emphasize that the purity of the Kahn model should tempt us to use the latter whenever
we can accept its limitations.

21.3 INTERACI1NG AGENTS
We now look at a algebraic way of presenting agents which interact with other agents
linked to them. A convenient simplification, to begin with, is to treat interaction as nei­
ther input nor output of values, but as a symmetric handshake between two (or perhaps
more) agents; its occurrence carries no value from one agent to another, but merely
means that something (eg. a high voltage pulse), rather than nothing, has occurred. Each
agent - which may be realised by one or many processors - carries sites or ports on its
periphery at which such events may occur; a Greek letter may be conveniently used both
to name the port and to stand for an event occurring at that port. Here is an agent with
two ports (Figure 21-5). If we wish P to be an agent which alternates between a and {3
events, then it may be specified by the equation

P = a.{3.P

z

Figure 21-4
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Figure 21-5

Of course, by expanding this, we can obtain

P = a./la./3.a ....

showing that the order of events (here, a strict alternation) at different ports is indeed
recorded. A slightly more complex agent (Figure 21-6) which alternately performs either
a) or a2, then /3,may be defined by the equation

Q = a)./3.Q + a2·/3·Q

(which may be abbreviated by Q = (a) + a2)./3.Q); here the binary operator "+"
between agent expressions indicates that either arm may be entered, but not both, during
a computation. Thus we already have two operations on agent expressions; summation -
meaning disjunction - and the prefixing (a.) of an atomic action at a particular port.

Typically, an agent P will have the form

P = ~(a;.P;)

where i ranges over some set, indicating the possible next actions of P.
We will not yet deal with how to stick agents together to form bigger agents; even

with the slender resources introduced so far we can represent the handling of data values.
For suppose we wish an agent (Figure 21-7) to represent a buffer with capacity one,
alternately receiving values in N (non-negative integers) at port a and delivering them at
/3. We may do this by taking a to stand for a single port, but for a family {a;li£N} of
ports, one for each value; likewise /3. Then our buffer can be defined

B = ~ (a;./3;.B)
;.N

A convenient notation for this (avoiding writing ~ too often) is gained by introducing
variables x,y, ... over N - or whatever data domain is appropriate - and taking the
first occurence of such a variable to imply summation over N :

B = ax./3x.B

A rather different - but equally simple - agent with two ports is a storage register which
can be assigned a value at a and can deliver its current value at {3. (Figure 21-8) The
parameter v in R(v) indicated the current value stored in the register, and - using a vari­
able as indicated above - we can define R(v) thus:

R(v) = ax.R(x) + f3v.R(v)

The importance of this example is that the formalism can treat both passive agents - e.g.
memory - and active agents on exactly the same footing. This is valuable in many appli­
cations; if we consider the systolic arrays discussed by Mead and Conway, for example,
then we find agents where memory capacity and processing power are united in the same
element, and it would be irksome to have these roles treated by different notations.

It is often helpful to represent the possible "courses of action" of an agent graphically.
For this purpose we can use a derivation tree. If we expand the agent Q, given above, a
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Figure 21-6

Figure 21-7

a8p

Figure 21-8

little way, then we get

Q = uJ.{3.(uJ.{3.Q+u2·/1Q) + U2·{3·(UJ.{3.Q+U2·{3·Q)

and we can conceive the indefinite expansion by a tree (Figure 21-9). Such a tree
represents both the action sequences which are possible (these are the paths of the tree)
and the possible alternatives at each point in an execution (these are the branches from a
node).

One final point before considering the composition of agents: the treatment is so far
ambiguous in the sense that it has not been determined whether our agents are synchro­
nous (forced to do something at every tick of a universal clock) or asynchronous (able to
wait indefinately until an interaction is expected or demanded by the environment).
Operators which compose agents cannot remain uncommitted in this sense; from now on
we shall adopt the second (asynchronous) alternative, but here remark that a synchro­
nous calculus is equally possible.

21.4 PRODUCT OF AGENTS
The focal point of an algebra of concurrent communicating agents, such as we are dis­
cussing, is undoubtedly the choice of an operator (a kind of product) which puts together
two agents to make a single agent, whose behaviour reflects both the independent actions
of each component and also their mutual interaction.

Let us consider two agents P and Q, which are buffer-like (as our very first example):
(Figure 21-10) We revert to the simple form in which values are not carried by
handshakes, but the addition of values poses no real difficulties. Notice that we have
arranged P and Q to share a port name {3; this arrangement can be made by using
"renaming" operators which we do not consider in this paper.

Now following the method of Hoare and his group, and also of George Milne, we
wish to "muiltiply" P and Q together to form an agent which may be pictured as in Fig­
ure 21-11 in which the actions of U and y may occur independently, but the action {3
may occur (as "interaction") when both P and Q are capable of it. Let us denote this
product operator by &{3 - we may call it {3-synchronization. There will be such an
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Figure 21-9

P=a.{3.P Q={3.y.Q

Figure 21-10

a Y

Figure 21-11

operator &a for any action a, and in general we may wish to use &A, A-synchronization,
for any set A of actions. Sticking to &fJ, and recalling that we wish to consider agents
expressed in the form ~ai.Pi' what equation should be satisfied by

(~ai.Pi)&P(~Yj.QJ) ?

The product agent should be available to do any ai which is =I={3, or any Yjwhich is =I={3,
or f3 itself provided ai = {3= Yjfor some i and some j. So we propose:

If P _ ~(ai.Pi) and Q - ~(Yj.Qj)'

then

P &fJ Q = ~ ai·(Pi &fJQ) + ~ Yj.(P&fJ Qj)
a;"i=fJ Yj"i=fJ

+ ~ {3.(Pi&fJ Qj)
a;=Yj=fJ

The first and second sums represent the independent actions of P and Q respectively,
while the third represents their interactions for all pairs i,j such that ai = {3= Yj. Such
a general equation may be less easy to understand than a particular case, so let us calcu­
late P &fJ Q for our particular case in which P = a.{3.Pand Q = {3.y.Q. We proceed as
follows:
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P &p Q = a.(/3.P) &p f3.(y.Q) (I)

= a.(/3.P &p f3.(y.Q))

Here we have used the product rule once, noting that the only possible first action is a
performed by P, since P cannot yet allow Q to perform 13. Now we shall be able to find
some equations which determine the behaviour P &p Q, for we have

{3.P&p f3.(y.Q) = f3.(P &p y.Q)

= f3.(a.{3.P &p y.Q)

= f3.(a.(f3.P &p y.Q) + y.(a.{3.P&p Q))

(this step reflects independent action by either component).

Also,

(2)

{3.P&p y.Q = y.(f3.P &p Q)

= y.(f3.P &p f3.y.Q)

while a.{3.P&p Q is just the original P &p Q.
If we put (I), (2) and (3) together, and write R for (P &p Q) and S for (f3.P &p f3.y.Q)

, we get the simple equations

(3)

R = a.S

S = f3.(a.y.S + y.a.S)

Apparently, then, our composite agent R first performs a , then repeatedly performs {3
followed by a and y in either order. In this simple case at least, we have been able to
deduce a product-free description of the product of two agents; the equations (4) might
have been written down to describe the behaviour of a single agent R with three ports
(Figure 21-12). Such transformations of description are the essence of the algebraic
approach. It may be compared with the algebra of regular expressions, which describe
the behaviour of finite automata in classical automata theory. But automata theory
failed to provide a notion of produce which was adequate to express how two concurrent
automata can interact.

At this point, we should ask whether our product P &p Q has given us.what we want.
On the one hand, we noted that it could again be "f3-synchronized" with yet another
agent, T say, which is also capable of performing 13 from time to time. The resulting
agent P &p Q &p T could be pictured as in Figure 21-13 which reflects that the action 13
will only be performed when all three agents are capable of it; thus f3-synchronization
permits us to model multi-way (not just two-way) handshakes. In passing, we note that
it is easy to show that &p is both communicative and associative, that is:

(4)

.(~)
13

Figure 21-12
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Figure 21-13

P &,8 (Q &,8 T) = (P &p Q)&,8 T

P&p Q = Q&p P

and such algebraic laws are essential in a smooth calculus.
On the other hand, we may have wished somthing different for the product of P and Q.

For we may argue that the intermediate port P should serve only for interaction between
P and Q, and that it should not be visible or accessible outside the product. In other
words, we look for a form of the product in which the only remaining visible actions are
a and y.

Following Hoare and Milne, we choose to achieve this not by modifying the product,
but by introducing an operation called hiding which may be applied to any agent to con­
ceal some of its actions. Specifically, if R is some agent possibly capable of performing
P from time to time, then

RIP
will represent R's behaviour with all P actions omitted. (Of course we have operators
"I a" for all actions a , and operators "/ A" for all sets A of actions.) Thus instead of
forming the product R = P & Q of our two agents, we shall often prefer to form the hid­
den product R' = (P &,8 Q) I P ; looking back at equation (4) above, we shall expect R'
to satisfy instead the equations.

R' = a.S' (4')

S' = a.y.S' + y.a.S'

i.e. the hidden product first performs a , and therafter repeatedly performs a and y in
either order. We shall not give the exact definition of the hiding operators here; it
requires refinements which would take up too much space.

There are variants of the product operators &a and &A. Instead of pursuing them
further, we shall now look briefly at an alternative originally introduced by the author; it
has an advantage over the above in that just one product operator is required, in place of
a family of operators indexed by actions a or by sets A of actions, but a disadvantage (in
the form given here) that it models only two-way (not multi-way) handshakes. Part of
the purpose of describing two approaches in this paper is to dispel the tempting impres­
sion that there is one clearly best algebra of concurrent processes.
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21.5 AN ALTERNATIVE AGENT PRODUcr
To define an alternative product, we make a new assumption, namely that for every
action a there exists an inverse action a , and that an interaction may occur between two
agents whenever they may perform inverse actions. Moreover, this interaction consti­
tutes for the product agent a distinguished action - denoted by the symbol T - which we
may call the silent action. By this means we can get away with just a single operator,
called composition and denoted by "I", in place of the family &p of operators - though
(as here presented) we thereby sacrifice multi-way handshakes and retain only two-way
handshakes.

Let us treat the same example as before (Figure 21-14) (Note that we have named one
of Q's ports inversely to one of P's ports, to make the product work). Rather than writ­
ing down a general equation for the product (~ai.Pi) I (~Yj.Qj) , we shall state the rule
informally: the next action of PI Q can be either an action which is possible for P or Q
independently, or a T action if P and Q can perform inverse actions.

We now begin to compute PIQ : (Figure 21-15)

PIQ = a.{3.P I {3.y.Q

= a.({3.PI.B.y.Q)+ .B.(a.{3.P I y.Q)

No inverse actions were possible (hence no T action results) on this first step. But the
second t~m, which was absent when we worked out P &p Q, represents the possibility
that Q's {3action may be complemented by a {3-action performed not by P but by some
further agent P' to be added later. In other words, systems like Figure 21-16 can be
formed by this product operation, representing how Q may interact with either P or P'
(but not both) through the same port. There is a disjunctive quality in "I" which con­
trasts with the conjunctive quality of " &p ".

If we were to proceed further in computing PI Q we would get a rapid expansion; for
example, for one of the terms we would get

- - -
{3.PI{3.y.Q= {3.(PI{3.y.Q)+ T.(P Iy.Q) + {3.({3.PIy.Q)

since the three possibilities of independent action, by either component and interaction,
are all present.

But we can avoid so much expansion by using an analogue to the hiding operator.
This time, we require something a little different; we use an operator \ {3called restric­
tion. The effect of R \{3 is to di~ard from R all alternatives (appearing as summands of
R) which begin with either {3or {3. This means that the only use of these actions within
R is to permit interaction between different components of R {yielding T actions for R
itself).

P=a.{3.P

Figure 21-14
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Figure 21-15

Figure 21-16

Let us now compute, not PI Q, but R" = (P IQ) \ {3:

R" = (a.{3.PI{3.y.Q)\{3

= a.({3.PI{3.y.Q)\ {3

= a.r.(Ply.Q)\/J

At each step, alternatives involving uncomplemented actions {3or {3have been discarded.
We now compute S" = (Ply.Q)\{3:

S" = (a.{3.PIy.Q)\/J

= a({3.Ply.Q)\{3 + y.R"

= a.y.({3.PQ) \ {3 + y.R"

= a.y.r.S" + y.a.r.s"

Putting these together, we have obtained the following product-free description of our
composite agent R" :

R" = a.r.S"

S" = a.y.r.S" + y.a.r.S" (4")

If we compare this with the equation (4') in the previous section, we see that the only
difference is in the presence of some r actions, which are so to speak traces of internal
communications. In fact there is mathematical justification for the algebraic law

a.r.P = a.P

(for arbitary a and P), and this law removes all difference between (4') and (4") !
There is a pleasant duality between the pair of operators (&{3, / (3) on the one hand,

and the pair ( I, \ (3)on the other:
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&p (ft sync;;hronization) demands certain interactions;

/ f3 (P hidiIlg) releases P from further synchronisation demands;
while

I (composition) permits both independent action and interaction;

\ P (ft restriction) inhibits certain uncomplemented actions.

In both cases,be lesson learned is that a pleasant algebraic treatment is obtained by
separating the sYI1thesis of concurrent agents into two phases: a product operation which
takes account of their interaction, and an encapsulation operation which prevents exter­
nal access to internal interfaces. The importance of the separation is that a binary pro­
duct operation can be applied repeatedly - to link an arbitary number of agents together
- before applying an encapsulation operation to "enclose" the composed system.

21.6 A BIGGER EXAMPLE
Consider the foll.owing system: (Figure 21-17) It consists of a ring of n identical agents,
each waiting for a communication from its predecessor in the circular order (as indicated
by the little arrows) except for CI,which is waiting for a communication on its al port.
It is intended to act as a distributed schedular for n independent agents P, ... ,Pn (not
shown). Pi will be connected to ~ at both ports ai and Pi ; Pi requests (at ai ) to initiate
a certain activity, and indicates (at Pi ) when it has completed the activity. The schedul­
ing discipline is as follows:

(1) Requests are treated in cyclic order, starting with PI ;
(2) Each Pi must alternate between ai and Pi - i.e. it cannot be running more than
one instance of the activity at any time.

It is quite easy to define the agents ~ , and then put them all together, using either pro­
duct operator; moreover, the algebraic proof that the resulting system has the two
desired properties is not hard. If we are going to use the second form of agent product,

Figure 21-17
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then we will define C;. as follows: (Figure 21-18)

q=Yi'q'
q' = IXi (Yi+l-Pi'c;' + Piol'i+I'c;')

(where subscript addition is modulo n)

Intuitively, q first learns (at Yi) from his predecessor that he may now grant a request
(at IXi); after that request he then transmits request permission (at l'i+1 ) and receives ter­
mination signal (at Pi ) in either order; he then repeats.

It is not hard to see that this system works. In fact, the scheduler is expressed as

S= (CI/I~ I .. , I Cn)\ 1'1 \ 1'2 ... \ I'n

and the formulation and proof that S satisfies properties like (l) and (2) above is not
difficult. It has been given as an example in the author's book "A Calculus of Commun­
icating Systems", and can equally well be treated using the operators (&p, / P) instead of
(I,\P) .

21.7 CONCLUSION
This short introduction to an algebraic approach to concurrency has necessarily omitted
some intricate details, as well as paying no attention to other algebraic approaches (for
example, Vaughan Pratt has suggested an approach which generalises the Kahn networks
in a different manner). What we hope to have shown is that four kinds of operator -
namely atomic action (IX.), summation (+), product ( &p or I ) and encapsulation (/ P
or \ P) - together give great expressive power, amd moreover satisfy interesting algebraic
identities.

In a methodology for proof about particular systems, we almost certainly need more
than "just" algebra. With algebra, we can typically prove equations between agent
expressions; we often wish also to prove that an agent possesses some property which is
not expressible by an equation. It is therefore important to look at the relation between
such algebras and logics - Temporal or Modal logics - designed to express interesting
properties of processes.

Another important relationship to study is between the algebraic approach and Net
Theory. The emphases of these models are different; communication is the cornerstone
of the algebra (in the present approach), while Net Theory emphasizes casual indepen­
dence, provides a totally different graphical aid to intuition, and provides different tools
for abstraction.

Finally, synchronous systems demand some form of treatment. The author has found
one way of integrating the above asynchronous algebra with an algebra of synchronous

.:C_ I l'i+1
v,

Figure 21-18
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(clocked) systems; this method has some mathematical simplicity - for example, the alge­
bra becomes more conventional, being at least a semi-ring (with agent sum and product
as the semi-ring operations) - but by no means obviously the best integration possible.
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22 Reasoning About Concurrent Systems

S. Abramsky

An attractive model for a concurrent system of any kind is a graph, with nodes which
represent subsystems, and arcs which represent connections or interfaces between subsys­
tems. In the case of distributed systems a tempting interpretation of such graphs
immediately suggests itself: nodes correspond to processes, and the arcs to communication
channels between processes. Of course to proceed further, we must say what processes
are, and how they communicate with each other. Many of the current approaches to dis­
tributed computing comprise variations on this theme. Our aim here is to explore one
such variation, which is closely linked to a programming style, of functional or applicative
programming, seen as being of major importance in the new generation of computing
technology. We shall place particular emphasis on the amenability of the functional style
to mathematical reasoning about program behaviour.

That conventional, sequential programs can be viewed as functions is not too surpris­
ing. The way we use such programs is to supply them with input data, execute them,
and gather the output. The natural abstraction of such a program is the input
datal output data correspondence it implements, i.e. the mathematical function it com­
putes. One can then turn around this interpretation of programs as functions, and
develop a notation for describing functions directly, in a mathematical style. As long as
we are careful in the design of our notation, e.g. so that the functions we can define are
computable, our mathematical definitions of functions can be viewed as programs. This is
the basic idea of functional programming

"

22.1 INTERACTIVE PROGRAMS

22.1.1 Sequences

Our first problem in extending this approach to distributed or concurrent programs is
that such programs exhibit a much richer variety of behaviour in the way they interact
with their environment than do conventional programs. We can illustrate this by refer­
ence to a simple interactive program, without bringing in concurrency explicitly
(although of course interaction between a program and its user can be viewed as a sys­
tem of two communicating processes). In contrast to our sequential program model (Fig­
ure 22-1) where all the input is represented initially, the program computes, and output
is returned, an interactive program starts to execute, is provided with initial input, pro­
duces some initial output, waits for more input, and so on. Clearly the ability to
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Input Program Output

Figure 22-1

interpret program behaviour of this kind as functional in character is essential if there is
to be any hope of extending the functional style to distributed and concurrent comput­
ing. How can this be done? The essential idea is to convert actions or events (the basic
ingradients of the imperative or procedural view of computation) into data (the basic
ingredient of the declarative, in our case the functional, view). The events in our system,
comprising a single interactive program, are: arrival of successive items of input data,
and departure of successive items of output. What matters logically about the input
items is not when they arrive, but their values, and the order in which they arrive. Thus
the natural abstraction for the input is as a sequence of basic data items; similarly for the
output. The entire program behaviour can then be viewed as a function from sequences
(of inputs) to sequences (of outputs).

As a first example, consider an interactive program whose task is to read a sequence
of integers from the input, and output the corresponding sequence of their successors.
What marks this an interactive program is that the program must output the successor of
each input item without waiting for any more input. Thus if I supply a I as first input
item, I should get back a 2 as output whether I provide any more input or not. The
important point is that all this can be expressed purely functionally. For example, the
equation

hd(f(l .x) = 2

says that the required function f must map any input sequence beginning with a 1 to an
output sequence beginning with a 2, no matter what the rest of the input sequence may
be - it may be empty. (NB: in the above equation, the symbol ":" denotes a prefixing
operator, used e.g. in " a:x " to construct a sequence from a basic data item a and a
sequence x. The hd" operator returns the first item of a sequence; and if undefined if
the sequence is empty. Thus hd(a:x) = a.)

The required function f can be defined thus:

f(a:x) = (a+I): f(x)

We can then use this equation to calculate:

f(1 :2:3:y) = 2:f(2:3:y) = 2:3:f(3:y)

= 2:3:4:f(y)

by successively substituting 2:3:y , 3:y , y for x .

22.1.2 History and State Information

One property of the function f which we have defined is that its i'th output value
depends only on the i'th value, and not on any of the previous input values. We say that
such a function is history independent, since at the stage when the i'th input value Xi is
being inspected, we can regard the sequence of previous inputs, Xo, .•. ,Xi-l as a "his­
tory" of our previous interactions with the program. There is of course nothing to stop
us writing programs in a purely functional style which do take account of previous
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inputs. For example, consider a parity counter program which is to read a sequence of
inputs, and for each n'th input is to output 0 if n is even, and I if n is odd. This must
be the simplest history dependent program, since one bit of information about the his­
tory is required! A functional definition is:

parity(x) = p(x,O)

p(a:x,O) = O:p(x,l)
, . p(a:x,l) = l:p(x,O)

Note how the auxiliary function p uses an additional parameter to hold the required
information bout the history. This parameter can be thought of as providing state infor­
mation. (In automata theory, the state of a machine may be thought of as an equivalence
class of histories, i.e.input-tape sequences.) Using this idea, interactive programs which
respond to inputs by modifying a state and/or producing outputs can be written rather
elegantly in a purely functional style. Examples of such programs include interactive
editors, databases and interpreters. For example, in an editor the state parameter would
correspond to the file being edited, the input sequence to the edit command stream, and
the output sequence to the editor prompts and file display information. A number of
programs of this kind are developed in [I]. Thus the scope of this method is much wider
than might at first be apparent.

22.2 CONCURRENT PROGRAMS

22.2.1 Function Families
We now turn from the simple interactive programs, which can be thought of as single­
process systems, to multi-process concurrent systems. We will represent multiple-process
systems pictorially by directed graphs. The nodes will correspond to processes, each of
which will be an "interactive program" of the kind already discussed, but generalized to
allow more than one input sequence (more than one output sequence is also possible but
we shall not need this for the moment). The arcs will correspond to the sequences,
which are now to be thought of as histories of communications between processes. Each
directed arc will represent a communication channel from the process at its source node -
the producer - to the process at its target node - the consumer. the nature of the com­
munication is buffered; the producer need not handshake with the consumer before emit­
ting a value on the channel. It will be convenient to allow arcs to be "split" so as to be
connected to several target nodes. This is to be understood as a non-contentious form of
sharing, equivalent to duplication of the arcs: the same values go to every target.

In terms of our functional notation, the transition from single-process to multiple­
process systems corresponds to the generalization from defining a single function over
sequences to defining a family of functions. Corresponding to cycles in our graph of
processes and communication channels there will be recursion in our definitions. Thus
once again a property of behaviour - in this case feedback - is mirrored by a construction
on data - in this case recursive function definition. (In functional programming, functions
themselves are just another type of data - in fact in a very austere functional languages,
such as pure lambda-calculus, they are the only data type.)

As a first example, consider the process network Figure 22-2 where the processes F
and G have the following behaviour: F first emits a 1 on its output (without requiring
any input) and then copies its input, item by item, to its output. G repeatedly takes a
pair of items from its two input sequences and outputs their sum. Functionally, we can
write:
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u

Figure 22-2

F(x) = l:x

G(a:x, b:y) = (a+b): G(x,y)

The whole system can be described by giving names to each of the arcs appearing in the
graph, as we have done in the figure, and writing a functional equation for the
"behaviour" of each arc, i.e. its value as a sequence:

u = F(v)

v = F(w)

w = G(u,v)

Note that the "splitting" of the arcs u and v in the figure is reflected in the equations,
since e.g. v appears as a parameter in both the first and the third equation. Also, the
cyclic nature of the graph is reflected in the mutual recursion between the definitions of
u, v and w - thus u is defined in the terms of u, v in the terms of w , and w in terms of u
and v. Because of this mutual recursion, it might seem that the system must deadlock,
with no useful information being produced. As we shall see, this is not the case.

First we will rewrite the above equations, using our definitions of F and G :

u = l:v

v = l:w

w = G(u,v)

where

G(a:x, b:y) = (a+b) :G(x,y)

Regarding u as the output of the whole system, we want to show that it generates the
sequence of Fibonacci numbers, i.e. the sequence given by

Fo = 1 Fl = 1 Fn+2= F, + Fn+l

This will be our first example of how the functional style lends itself to simple and
elegant methods of proof. Our argument will exhibit the mathematical character of our
equations; but keep in mind that the conclusion of the argument will provide informa­
tion about the behaviour of a concurrent, multi-process system. It is the duality of
point-of-view, between the mathematical properties of a notation and its computational
interpretation, which provides much of the motivation for what we are doing.

Turning to the proof, we first (re-) describe the sequences u,v,w in index notation:,__
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(I) Uo = I Uk+I = Vk
(II) Vo = I Vk+1= Wk
(III) Wk = Uk+ Vk

These descriptions can be read off directly from the defining equations for u, v and w.
(Of course in a more formal proof, we would have to give a detailed justification.) Now
what we want to show is:

Vk Uk= Fk

We argue by induction on k.

First Fo = I =Uo

FI = I = Vo= UI

directly from the equations for F and (I) and (II). We now show that Fk+2 = Uk+2,
assuming Fk = Ukand Fk+1 = Uk+l·

Vk+1
Wk
Uk+ Vk
Uk+ Uk+1
Fk + Fk+1
Fk+2

(I)
(II)
(III)
(I)

inductive hypothesis
definition of F

Arguments of this kind, where we reason about streams in an elementwise fashion, are
formalized particularly neatly in the LUCID system of Ashcroft and Wadge [2,3]. The
programming notation of LUCID can be regarded as a (deliberate) restriction of the gen­
eral functional style we are using.

22.2.2 Hamming's Problem
As a further example of reasoning of this kind, we consider the functional solution of
"Hamming's Problem", which is: to generate a sequence of integers in ascending order
satisfying the following properties:

(PI) I is in the sequence

(P2) If n is in the sequence, so are 2n, 3n and 5n

(P3) Nothing is in the sequence except as required by (PI) and (P2)

We need an auxiliary function to merge two sequences of integers in ascending order,
omitting duplicates: .

M(a:x,b:y) a:M(x,y)
a:M(x,b:y)
b:M(a:x,y)

ifa=b
ifa<b
ifa>b

We can now define a solution to Hamming's Problem as a process network (Figure 22-3).
Here F is the same function as we used in the previous example (Figure 22-2). The xn
functions, n = 2,3,4,5, are defined thus:

xn (a:x) = (aXn): xn(x)

The equations defining our network are then:

u= F(v) = I:v
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u

Figure 22-3

v= M(w,c)

w= M(a,b)

a= x2(u)

b= x3{u)

c= x5{u)

22.2.3 Deadlock and Convergence
Taking u as the output of the whole system, we shall prove that the system never
deadlocks, i.e. that at any stage, more output will always be produced, or equivalently, u
is infinite. This amounts to saying that for any k, the k'th term of u is a well defined
integer, which we shall write

(to be read: Ukconverges).
We again write properties of the sequences in index form:

(I) 110 = 1 uk+ 1 = Vk

(II) ~J, & bkJ, & CkJ,if and only if UkJ,

(III) if XkJ,and YkJ,then M{x,ylkJ,

Properties (I) and (II) are immediate from the definitions; note that x2 etc. are history­
independent functions. Property (III) needs a little thought. We note that at each stage
the merge process defined by M inspects one item from each input sequence, consumes
at most one item from each input sequence, and produces exactly one item on its output.
Thus to produce k items, it must inspect at most k items from each input. The existence
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of k items on each input is therefore sufficient to ensure the existence of k output items.
(It is not necessary - e.g. the merge process may inspect no more than one item from the
first input in producing the k output items. Question - in which case does this arise?)

We now prove that 'v'kUk! by induction on k.

For k=D, 110= I by (I).

Now assume Uk!.

Uk+1= Vkby (I)

Vk= M(w,c~, so vk! if Wk! and Ck! by (III)

Wk= M(a,b~, so Wk!if ak! and ht! by (III)

so Uk+I! if ak! & bk! & Ck!if and only if Uk! by (II)

but UkJ.by induction hypothesis. So Uk+IJ..

Certain cases of this kind of analysis for deadlock freedom are simple enough to be
automated. See [4].

22.3 DYNAMIC NElWORKS
We now turn to a final example of a concurrent program, which will serve two purposes.
Firstly, the process networks we have considered so far have been static in character:
there are a fixed number of processes, which remain unchanged throughout the computa­
tion. The functional style also allows us to describe a certain class of networks which
grow dynamically. The form of growth which can be described is where a single node of
the network is replaced by a sub-network, with the connections to the rest of the network
left unchanged. Our example will illustrate how such dynamic networks can be used. It
will also provide an opportunity to illustrate an alternative approach to proving facts
about concurrent systems behaviour described in a functional style.

Our example is a system whose output sequence will be the prime numbers in ascend­
ing order. The method used will be a parallel form of the sieve of Eratosthenes. The
dynamic network growth will be used to generate the array of parallel processes compris­
ing the sieve. The reader is challenged to give a proof of the correctness of this program
based on an operational understanding of its behaviour. By contrast, use of appropriate
forms of mathematical induction will allow an elegant correctness proof. We shall use
the notation "n!m" to mean "n divides m" (n, m integers), and "njm" to mean "n does
not divide m". Our equations are as follows:

P = Sift(I(2»

I(n) = n:I(n + I)

Sift(a:x) = a:Filter(a, Sifttx)

Filter(p,a:x) = Filter(p,x) if p!a

= a:Filter(p,x) if Pia

Then we claim that P is the required sequence. Intuitively, it is clear that 1(2) (or 12) is
the sequence 2,3,4, . .. of integers from 2. Filter(p,x) generates the subsequence of x
obtained by removing elements divisible by p. The sieve process (Sift) works by creating
one copy of the filter process for each prime generated thus far. Thus after k+ I primes
have been generated, we can picture the appearance of the network as in Figure 22-4.
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Figure 22-4
Of course, the activity of generating new integers to test and passing them through the

sieve can proceed in a highly parallel pipelined fashion, so there are many possible "pic­
tures". This should suggest why reasoning based on the mathematical properties of the
equations is to be preferred. A solution for this problem in Hoare's CSP language, with
a very similar process structure, but a quite different behaviour with respect to inter­
process synchronization, is given in [5].

22.3.1 Structural Induction
We now turn to the question of how we can prove the correctness of this last example.
The method we shall use is a form of structural induction on sequences (in this case,
sequences of integers). That is, to prove a property </> of sequences, we prove:

(1) </> holds for the empty sequence, which we write Q.

(2) If </> holds for a sequence x, then for any integer a, </> holds for a:x.

and conclude that </> holds for all sequences. The basis for this method of proof is that
all sequences are built up from the empty sequence by prefixing. However, there is a
subtlety. As we have seen in previous examples, and indeed as we expect in the present
case, the output of our system may well form an infinite sequence, while proving (1) and
(2) only guarantees that </> holds for any finite sequence. To ensure the validity of our
proof method, we must also prove

(3) </> is such that, if it holds for all finite initial segments of an infinite sequence, it
holds for the infinite sequence as well.

we say that </> admits induction or is admissible if it satisfies (3). A full explanation of the
issues raised here would take us too far afield, but they are important and fascinating.
For further discussion of admissibility see [6]. For theoretical foundations, see [7] and
[8]. In what follows, we shall omit proofs of admissibility for the properties we shall
consider. (There are in fact syntactical checks for admissibility when properties are for­
malized in the predicate calculus.)

The proof of correctness we shall give follows closely the outline in [9]. It proceeds in
structured fashion, by way of five lemmas.

Lemma 1

12 is the sequence of integers in ascending order from 2. We leave the proof of Lemma 1
as an exercise.

Lemma 2

"I p,L Filter(p,L) is a subsequence of L containing exactly those elements of L not divisi-
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ble by p.

Proof
By structural induction on L.

(1) L = Q. Filter(p,Q) = Q, so this case is trivial.

(2) L = a:x. By induction hypothesis, Filter(p,x) is a subsequence of x, therefore
Filter(p,x) and a:Filter(p,x) are both subsequences of a:x. Again by induction
hypothesis, Filter(p,x) contains exactly those elements of x not divisible by p;
therefore the subsequence of elements of a:x not divisible by p is given by
a:Filter(p,x) if Pia, and by Filter(p,x) if p!a, i.e. by Filter(p,a:x).

Lemma 3

V L Sift(L) is a subsequence of L.

Proof
By induction on L.

(1) L = Q. Sift(Q) = Q, so this case is trivial.

(2) L = a:x. By induction hypothesis, Sift(x) is a subsequence of x, and by
Lemma 2, Filtena.Sifttx) is a subsequence of Sift(x); therefore
Sift(a:x) = a.Filtena.Sifux) is a subsequence of a:x.

Lemma 4

V L if L is an increasing sequence of integers and p occurs in Sift(L), no other multiples
of p (than p itself) occur in Sift(L).

Proof
By induction on L.

(1) L = Q. Trivial by Lemma 3.

(2) L = a;x. Suppose p occurs in Sift(a:x).
Subcase (i): a=p. By Lemma 2, no multiple of a will occur in
Filter(a,Sift(x».

Subcase (ii): as=p. Since L is increasing and p occurs in L, since it occurs in
Sift(L), and by Lemma 3 Sift(L) is a subsequence of L, we must have a<p, so
a is not a multiple of p. By induction hypothesis, no multiple of p other than
itself occurs in Sift(x).

Lemma 5

VL, if every element of L is > I, and p is a prime occurring in L, p occurs in Sift(L).

Proof

(1) L = Q. Trivial.

(2) L = a:x.

Subcase (i): p= a Sift(a:x) = a.Filterra.Sifttxj), so p occurs in Sift(L).

Subcase (ii): p=Fa. Then p must occur in x, therefore in Sift(x) by induction
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hypothesis. By Lemma 2, p occurs in Filter(a,Sift(x)) if and only if p is not
divisible by a. Since p is prime, it is divisible only by itself and I. Since
ai=l by the assumption on L, and ai=p, p occurs in Sift(L).

Correctness of Primes Program

The sequence of integers P is exactly the sequence of prime numbers in ascending order.

Proof

Since all primes are integers >I by Lemma I all primes are members of 12, hence
by Lemma 5 of P = Sift(12). Since any non-prime is a multiple of primes, by
Lemma 4 no non-prime number can occur in P. Finally, by Lemma 3 P is a subse­
quence of 12,hence the primes appear in ascending order.

It is interesting to note that our correctness proof does not contain any argument for
the deadlock-freedom of the program, i.e. that p is infinite. The fact that the program is
deadlock-free reduces to the purely mathematical fact about the integers that there are
definitely many primes! This reduction of a significant fact about program behaviour to
a mathematical fact about a data type is typical of program verification in general, but of
functional programming in particular. .

The examples we have been considering have necessarily been rather small, and their
subject-matter not perhaps of great practical importance. The reader should not be
misled. The ideas and methods we have been discussing have a wide range of potential
applications. The challenge to realize this potential is open.

22.4 TIME DEPENDENCY
We now turn to an important - possibly the most important - aspect of concurrency and
distributed computing, namely synchronization, and time-dependent system behaviour.
It should be emphasised that the approach we have been using thus far does not extend
to the description of time-dependent behaviour. It does allow the description of a lim­
ited form of synchronization, namely producer-consumer synchronization of the kind
implicit in the use of buffered communication channels. However, it seems clear that
operating systems, process control systems, and any kind of hardware system considered
at a sufficiently fine grain of detail, all exhibit time-dependent behaviour of one sort or
another. We are faced with a dilemma: do we accept the fact that the functional style is
inadequate to deal with these important aspects of distributed computing, or do we try
to extend it to handle time-dependency, at the risk of destroying the very properties
which originally made the style attractive? Some interesting work has been done on
these matters, but the outcome is at present inconclusive. We shall do no more here
than indicate one of the main directions, and hope that the reader may be tempted into
further study.

A standard example of time-dependent behaviour is provided by the airline reservation
system. Here we have a shared database containing flight reservation information, which
is accessed by a number of geographically distributed terminals. Requests for reserva­
tions should be processed at the database in their order of arrival, and replies routed
back to the requesting terminal. If we separate the input and output functions of the ter­
minals, we have the situation in Figure 22-5.

The problem is how the two input sequences are to be processed by the Database pro­
cess? Within each sequence, the order of inputs is well defined, but the requirement that
items from two independent sources should be processed in their order of arrival appeals
to information about the ordering of items on Input I relative to items on Input 2 which
is not available in the system as it stands. To expose the problem more clearly, we factor
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Input 1 n,;;;;-OuTut 1I!;) :-TIn-p-u"--t"'"2~ Output 2

Figure 22-5

it as in Figure 22-6.
Now the problem is located in the task of serializing two independent sequences in the

order of availability of their items. The process which does this is usually called merge.
If we had a primitive "function" merge, the behaviour of the whole system could be

described as follows:

Outputl, Output2 = Db(u)

u = Merge (Inputl, Input2)

Here Db is the function to implement the database, which is essentially just a simple
interactive program of the kind we began by considering. Have we then solved our
problem, of describing time-dependent systems in the functional style? The notation
suggests we have, but here the notation is misleading. It suggests that merge is a func­
tion from a pair of input sequences to an output sequence. But if merge is to perform its
task of interleaving the two input sequences in time order, it cannot be anything of the
sort. The point is that part of the information on which it is basing its decisions as to
how to perform the interleaving is being suppressed. We could write

Merge (x,y,tx,ty)

as a function where tx is a sequence of integers such that (tX)kis the time at which Xk
becomes available, and similarly ty. But then, how are we to supply values for tx and ty
in calls of merge? Moreover, reasoning explicitly about absolute times in order to under­
stand systems behaviour seems something to be avoided.

How, then, are we to understand merge? One main approach is to view it as a non­
deterministic operator, which can on different occasions of use yield different results for
the same inputs. Thus the first item of the sequence

Merge (a:x,b:y)

may be either a or b; we cannot predict which. In order to recover a functional meaning
for merge, we can then say it maps a pair of input sequences to a set of output
sequences, representing the different possible results, i.e. the various ways in which the
interleaving might be performed. But then we must revise our account of the meaning of
all functions to work on sets. For example, the function Db for Figure 22-6 must now
be defined over sets of possible input sequences. The meanings of functional programs
become considerably more complex, and so unavoidably does reasoning about them.
Moreover, there are additional problems connected with the issues of fairness in the
interpretation of merge. A considerable amount of work has been done on the semantics
of merge; e.g. [10, II, 12, 13]. It seems fair to say that no satisfactory formalism for rea­
soning about functional programs with merge has yet been proposed.

Thus functional programming with merge is not yet understood adequately from the
theoretical point-of-view. However, it can be - and has been - implemented and experi­
mented with. The author and Richard Sykes have shown that with the addition of time­
ordered merge, the functional style is adequate to describe complete operating systems,
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Input 1

Output 1

Output 2

Input 2

Figure 22-6

interactive applications, robot-manipulation etc. Programs of this kind, displaying the
required time-dependent behaviour, have been demonstrated. Work on similar lines has
also been carried out by Henderson and Jones [1, 14].

We thus have a gap between theory and practice. It remains to be seen whether an
adequate theoretical foundation for the experimental work can be developed.
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