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Preface

This book helps to mark the completion of the Distributed Computing Systems research
programme (DCS) sponsored by the U.K. Science and Engineering Research Council.
The DCS programme, from 1977-1984, culminated in a conference at the University of
Sussex, Brighton, U.K. in September 1984. The conference included a series of tutorials
on major topics in distributed computing, based on the contents of this volume. When
the programme first started, there was relatively little research in distributed computing
underway in the UK., and it was to promote research in what was seen as a key area for
the future, that the programme was conceived. During the lifetime of the programme the
field grew enormously both in the breadth of activity and the depth of understanding.
Within the programme itself, a number of research themes emerged, and these have been
reflected in the organization of the book.

The book aims to give a basic grounding in each of the areas covered. A general fam-
iliarity with the relevant aspects of computing is assumed, but specialist knowledge is not
required. The book should be of interest to researchers and practitioners in the field,
academic and industrial, and will also serve as an introductory text for new researchers.
It is appropriate as an undergraduate or postgraduate text for a single-term introductory
course on distributed systems.

The book is divided into five parts corresponding to the five themes covered.

® Part I describes the dataflow approach to parallel computation, one of the bases on
which parallel super computer of the future will be constructed. This part is contributed
by John Glauert, John Gurd, Chris Kirkham and Ian Watson, all members of the Man-
chester dataflow project, a DCS funded investigation which has established a world lead
in this approach. Topics covered include the basic principles of dataflow computing, the
evolution of dataflow computer architectures and the high level languages used to pro-
gram them. Details of the Manchester prototype dataflow computer structure, instruc-
tion set and performance are presented. The single-assignment programming language
SISAL is introduced.

¢ Part II is concerned with declarative languages, and with computer architectures to
support their evaluation. The essence of the declarative approach to programming is to
shift the burden of determining in detail how something must be done, from the pro-
grammer to the architecture. The first chapter in this part, by John Darlington, intro-
duces the reader to functional languages and their conventional implementation. The
next chapter, by Bill Clocksin, introduces logic languages and their conventional imple-
mentations. The remaining chapters, by Richard Kennaway and Ronan Sleep, describe
the origins and rise of novel architectures to support such languages, and the parallel
approach to implementation.
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® Part III addresses loosely-coupled distributed systems. Such systems are multi-
computer configurations that do not share immediate memory and can be dispersed over
wide geographical areas. They form much the greater part of the distributed systems
that have investigated and are in use today. The chapters in this part, by Keith Bennet,
Ian Wand and Andy Wellings, describe the general architecture of such systems and
examine the detailed requirements of their various components, operating systems
appropriate to this environment and related programming languages.

® Part IV deals with closely-coupled distributed systems, typically systems which do
share a common memory. The alternative architectures that may be adopted for the
design of such systems; the structure and features of typical programming languages; the
nature of run-time support software; and software development tools for debugging and
testing applications, are considered in turn. This part concludes with two case studies
describing the overall design of hardware and software for experimental multi-
microprocessor systems (Cyba-M, developed at Swansea and UMIST; and POLYPROC,
University of Sussex).

® Part V by Robin Milner and Samson Abramsky faces the essential questions of
modelling and verifying concurrent systems. What is a good mathematical model of con-
currency? Can there be a common model for both hardware and software? A con-
current program may be thought of alternatively as software to be compiled or as
description of the behaviour of a piece of hardware. The development of fundamental
notations for such programs’ description is explored and some approaches to verifying
them mathematically are illustrated using simple examples.

The editors of this book were the Industrial Coordinator, Academic Coordinator and
Technical Secretary of the DCS Programme when it terminated. We, and the contribu-
tors, wish to acknowledge the many researchers whose work has contributed to this book.

We are particularly grateful to Paul, Arthur, Frits and many others at CWTI for their
assistance, patience and understanding during the preparation of the book. Finally, we
would like to thank Alan Kinroy, Duncan Gibson and Elizabeth Fielding for their ster-
ling work in producing the many diagrams in the book.

Easter 3, 1984 Fred B Chambers
David A Duce
Gillian P Jones
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1 Fundamentals of Dataflow

J. R. Gurd

1.1 INTRODUCTION

It is becoming apparent that future requirements for computing speed, system reliability,
software manageability and cost-effectiveness will entail the development of alternative
computer architectures to replace the traditional ‘von Neumann’ organization on which
our present computing practices are based. Dataflow architecture is one possible alterna-
tive which aims for high-speed computing via efficient exploitation of software parallel-
ism in a highly parallel system of processing hardware. The name ‘dataflow’ is derived
from the graphical model of computation which is used to describe how programs are
executed. In this model data is active and flows asynchronously through the two-
dimensional program, activating each instruction when all the required input data has
arrived. This is in direct contrast to the ‘von Neumann’ model in which data passively
resides in store whilst instructions are executed one-at-a-time according to a defined
sequence controlled by a ‘program counter’.

Dataflow architectures, as described in this part of the book, are only one alternative
to traditional computers. Several other models with similar characteristics are emerging,
and these are sometimes confused with dataflow systems, usually because they too are
driven by their data. In particular, string reduction and graph reduction systems fall
into this category. In the following we will concentrate on ‘pure’ dataflow architectures.

This part of the book is divided into four chapters, covering fundamentals, hardware
techniques, machine-level programming and high-level software. This first chapter opens
with a discussion of the nature of software parallelism, the possible ways of representing
it, and some implications for parallel machine-code design. This provides an introduc-
tion to dataflow notation and also demonstrates the important distinction between static
and dynamic dataflow systems. The chapter concludes with a discussion of techniques
for compiling from various high-level programming languages into dataflow object-code.

In Chapter 2 on hardware we consider the requirements for executing dataflow code
and exploiting the exposed software parallelism. We then study three different system
designs which have been, or are being, constructed as experimental research vehicles for
further work applying and refining dataflow techniques. The chapter closes with a dis-
cussion of dataflow system performance.

Chapter 3, on machine-level programming, studies the languages which are used to
specify graph programs for the Manchester Dataflow Machine. The lowest-level interface
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is via a compact textual representation of the binary messages which are sent to load the
program store. This is difficult for humans to use as a programming vehicle, and it is
more normal to use the Template Assembler (TASS) which is also described.

Chapter 4 describes a specific high-level language for dataflow programming, SISAL,
illustrated by a number of examples of language constructs and some complete pro-
grams. SISAL is a single-assignment language with Pascal-like syntax. It is currently
being used for evaluation of a variety of multiprocessing strategies.

1.2 PARALLELISM IN SOFTWARE

Two kinds of parallelism can be found in software. The first kind occurs when a com-
mon operation (or set of operations) is to be applied to many separate sets of data. An
example is the element-wise addition of several arrays, as in the Fortran program:

DO 101 = 1,100
F(I) = AQ) + B(I) + C(I) + D)
10 CONTINUE

The second kind is found when different operations (or sets of operations) are to be
applied to separate (or even common) sets of data. This may be found in many blocks
of assignment statements, for example, the following Fortran code:

A=E-G
Bi=rH.#Z
G = BE¥H &K
D=E+G

These forms of parallelism have been known for a long time and their importance in
influencing parallel hardware design has been recognized. Flynn [1] classified hardware
systems as SIMD (single-instruction-stream, multiple-data-stream) if they exploit the first
kind of software parallelism, and MIMD (multiple-instruction-stream, multiple-data-
stream) if they exploit the second kind.

Nowadays this classification is considered overly simple, but no generally accepted
alternative taxonomy is emerging. The difficulty seems to be that parallel hardware may
be deployed at a different level of ‘granularity’ to the obvious software parallelism. For
example, in an instruction pipeline, small parts of the execution of successive instructions
are processed concurrently by overlapping, regardless of any program parallelism at the
instruction level, or above. In the absence of a level-independent taxonomy of parallel
systems comparison of different architectures is by ad hoc methods. We have found it
useful to distinguish between ‘regular’ and ‘irregular’ parallelism when comparing the
abilities of dataflow systems with those of more conventional parallel systems.

Regular parallelism exists wherever the same task is to be performed many times over,
usually on disjoint data. With connected data it may be necessary to exploit regular
parallelism via a pipeline, as in the instruction pipeline cited above. With unconnected
data, as in the case of the first (SIMD) kind of software parallelism, a lock-step parallel
array of hardware can be used, as in the DAP [2] or ILLIAC 1V [3]. In either case, the
actions to be performed concurrently are highly regular, and the performance of the sys-
tems depends critically on whether or not the program can provide sufficient work with
the required amount of the required form of regularity.

Most of the parallel computers so far constructed exploit regular parallelism of one
form or another. In practice it has proved surprisingly difficult to arrange for programs
to provide, continuously, sufficient parallelism of the desired nature. Consequently appli-
cations run at variable speed, the regular parts executing rapidly, whilst other sections
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are necessarily slower. In many cases the slow segments dominate overall performance
and reduce the total speedup of programs to a small fraction of that intended.

Irregular parallelism exists wherever different tasks are potentially concurrently exe-
cutable, sometimes on common data. This corresponds to the second (MIMD) form of
software parallelism. An independent array of parallel hardware, such as in the CDC
6600 [4] (on a small scale) or the C.mmp [5] and Cm* [6] multiprocessors (on a large
scale), is needed for implementation. Where common data is involved complex interlock-
ing mechanisms are necessary to prevent unintentional accesses being made (e.g. reading
data before it has been defined, or writing before all prior reads have been completed).
Note that hardware mechanisms which exploit irregular parallelism will also be able to
handle regular parallelism. The reverse is not usually the case.

Few systems have been constructed to exploit irregular parallelism on a large scale,
and it is in this area that many interesting experiments in computer architecture are now
being conducted. The best known examples use parallelism at the ‘process’ level, derived
from programming languages such as Concurrent Pascal [7], Modula [8], Distributed
Processes [9], and Communicating Sequential Processes [10] and implemented on shared-
memory or message-passing multiprocessors. Dataflow systems exploit irregular paraliel-
ism at a lower level, approximating to the conventional machine-code instruction-level.

Whether parallelism is regular or not, the key issue in developing a system to exploit
it is to provide an effective notation for expressing potential parallelism in programs. In
the following section we develop a notation for instruction-level irregular parallelism by
examining the nature of inherent parallelism in a small segment of conventional Fortran
code.

1.3 PROGRAMS AS GRAPHS

Consider the following set of Fortran assignments which multiply together the ‘variables’
I1, 12, I3, 14, 15 and I6 and put the result in ‘variable’ K:

L=11*I12
M=I3*14
N=1I5*1I6

K=L*M*N

To discover the potential software parallelism we must discard the traditional view of a
program as a list of instructions which manipulate data in fixed storage locations in a
defined sequence. Instead we need to concentrate on the role the individual storage loca-
tions play as they temporarily hold data values whilst the latter pass between operations
in the program. The pattern of store accesses brought about by the sequence of activa-
tion of instructions is normally contrived by the programmer to achieve the combinations
of data with operators dictated by the particular problem being solved. The fact that
this is specified as a one-at-a-time process owes more to the history of the development
of computers than to inherent constraints in the problems that computers are used to
solve.

1.3.1 Data Dependence Graphs

An alternative view of the combination of data with operators is obtained by construct-
ing a data dependence graph for the program [11,12]. Algorithms for this task are in
common use for conventional machines in optimizing compilers. In the example above,
we simply draw a number of arcs over the program, one arc for each variable. The tail
of an arc shows where the variable is assigned, and the head shows where the variable is
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consumed (by appearing on the right-hand side of an assignment statement). In more
complex examples more than one arc may be required for a variable when it appears on
the right-hand side of more than one assignment statement. Multiple assignments, where
a variable is assigned a value at more than one point in the program, can be dealt with
by systematically renaming the variables so that a version is created without multiple
assignments, but with the same meaning as the original. Where variables appear only on
the right-hand side they are assumed to be input data to the program segment. The
resultant graph for our example is shown in Figure 1-1.

This diagram is more visually attractive if it is rearranged to show enforced sequence
down the page, with potential concurrency across the page, as shown in Figure 1-2.

In this graphical form it is possible to omit all the variable names as they are now
superfluous, being constrained to be the same at head and tail of each arc. If names are
required (as an aid to understanding, or for writing a textual version of the graph), they
can be written just once, alongside the appropriate arc. Each assignment statement can
be simplified to a description of the expression to be computed. In many cases this will
be a simple arithmetic operation, as in the case of the multiplication in our example,
shown in Figure 1-3.

inputs

I1 I2 I3 14 I5 16

——= It = K. * 12
M = I3-.% 14
b
N = I5s * I6
|
P l
K = L *M*N

Nq—

result

Figure 1-1
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J

result

Figure 1-2

Figure 1-3

1.3.2 Machine-Level Graph Programs

We have now constructed a simple statement-level data dependence graph. Note that it
retains the meaning of the original program, but it also shows potential parallelism and
enforced sequence in a two-dimensional format. In order to illustrate all the program
parallelism available for exploitation by instruction-level parallel hardware it is necessary
to decompose the program even further. Of course the level to which we descend is com-
pletely arbitrary. We could build a system capable of multiplying three values together
in one instruction (in which case the above graph would not need further reduction), or
we could go to the extreme of implementing only boolean operators (AND, OR, NOT,
etc.) in hardware, and building up more complex operators using standard techniques (in
which case our example graph would require considerable further decomposition). Most
of the dataflow computers currently under construction use an instruction-level compar-
able to that of a 16-bit minicomputer with extended arithmetic capabilitics. We shall
assume this level in the remainder of this part of the book. This implies the availability
of straightforward monadic and dyadic arithmetic operators on integer and floating-point
numbers, and we will also assume the existence of operators which generate and
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manipulate boolean values.

In our example program it will be noted that the lowest expression evaluation in the
graph is not a machine instruction at this level. Consequently it must be implemented
by a subgraph of instructions such as either of those shown in Figure 1-4.

In this particular example it is immaterial which of these alternatives is used, and a
compiler could choose between them arbitrarily. In other cases there will be efficient and
inefficient options and compilers will need to be sensitive to the assessment criteria if
they are to produce optimal code under a wide range of conditions. To develop such
assessment criteria we need to know how programs will actually execute on a specific
parallel hardware configuration. This is too difficult to discuss in detail here, but we
shall finish this chapter with a brief description of an abstract dataflow implementation
model from which the basic principles of execution may be derived.

1.3.3 Execution of Machine-Level Graphs

Consider a complete machine-level program graph for our example in which each multi-
ply instruction is given an identification number, as shown in Figure 1-5. Remember
that the purpose of this notation is to allow all potentially concurrent instructions to exe-
cute simultaneously. In the original sequential program we would expect the multiplica-
tions to be performed in the order {1}, {2}, {3}, {4}, {5}, producing the answer in five
multiplication times. On the graph above we can see that either of the parallel execution
orderings (1, 2, 3}, {4}, {5} or {1, 2}, {3, 4}, {5} will produce the answer in three mul-
tiplication times (given at least three and two multipliers, respectively). The problem for
the parallel execution model is to cause one of these parallel execution orderings to be
followed.

It is difficult to arrange activation of instructions by some parallel equivalent of a pro-
gram counter. In the first place such program counters would have to be associated with
processors, and the variable amounts of parallelism that could occur might require large
numbers of these processors, many of which could frequently become idle. Secondly, the
idea of a program counter is closely linked to the concept of a linear data store with
fixed locations for each program variable. Large numbers of active instructions would

L M N L M N

OR

Figure 1-4
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I 12 I3 14 15 Ie6

K

Figure 1-5

imply large numbers of active store locations with attendant problems of multiplexing
the required accesses. In addition to this each horizontal ‘band’ of instructions would
have to be synchronized so that the next lower band could not start processing until all
current instructions had terminated. This implies that a program would proceed at the
speed of the slowest operation in each band. Apart from these problems, the task of
allocating instructions to processors would be extremely difficult.

These arguments constitute a compelling reason for abandoning program counters in
instruction-level parallel computers. The key to making this transition is to notice that a
data dependence graph shows how instructions are dependent on data. It is not sensible
to execute an instruction before all the data it requires is available. Conversely, once an
instruction has finished executing, all other instructions that are waiting for its output
data can be activated safely. The simplest way to execute a graph program so as to obey
these rules is to send data directly from instruction to instruction according to the data
dependence arcs, and to allow each instruction to execute when and only when it has all
its required input data available. In this way the graph program execution will be data-
driven.

We can illustrate data-driven execution of graph programs by introducing data-
carriers, known as ‘tokens’ after Petri-net notation [13], onto the data dependence graph.
Each token carries one data value. A token is constrained to move (at any speed it can)
from the tail to the head of one data dependence arc. Tokens wait at the heads of their
dependence arcs until all other arcs (if there are others) pointing to the same instruction
also have tokens at their heads. At this time this instruction can be executed, taking an
arbitrary amount of time to complete, after which its result token(s) is(are) placed on its
output arc(s). The tokens causing the execution are no longer needed, and so they will
be removed from their (input) arcs.
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The sequence of ‘snapshots’ in Figure 1-6 shows how our example program could be
used to evaluate 6! by sending tokens with integer values 1 to 6 to the program inputs
I1 to 16, respectively. Tokens are shown on the dependence arcs as black discs with the
associated values written alongside. The way in which the data appears to flow through
the program graph during execution is the reason for the name ‘dataflow’.

1.4 GENERALIZED DATAFLOW GRAPHS

The multiplication program considered above is not a general example of conventional
computing practice. The only arithmetic operation used is multiplication and there are
no control structures, such as conditionals or loops. In this section we consider enhance-
ments to the dataflow notation which help to accommodate more general programs.

The first point to be made is that any form of machine instruction can be represented
by a node in a dataflow graph and could therefore be executed in parallel with other
instructions. This property makes the graph notation useful for exploiting irregular
software parallelism. The simplest case in which this is advantageous is in the evaluation
of general arithmetic expressions in which any arithmetic machine instructions could be

Il 12 13 1415 I6

Figure 1-6
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used. Such expressions can be converted easily into graphs. In fact most conventional
compilers already generate ‘expression evaluation trees’, when parsing high level pro-
grams, before they generate the required linear object code. The dataflow execution
model demonstrates how such trees may be evaluated directly, in time proportional to
their height, using parallel instruction execution. At a higher level, the model also allows
whole expressions to be evaluated concurrently. Additional parallelism can be found
when control structures are invoked.

1.4.1 Conditionals

The simplest control structure is the conditional (if ... then ... else ... fi). We can con-
struct a data dependence graph for a conditional statement using conditional dependence
arcs which are controlled by the runtime evaluation of a boolean predicate. These arcs
are implemented using the two ‘switching’ machine instructions, known as branch and
merge, shown in Figure 1-7 and Figure 1-8.

These may be visualized as two-way switches inserted into the arcs of a standard
dependence graph. Each switch selects one of two possible routes for an incoming data
token, the other route being left inactive. The route is selected according to the value of

data value input

boolean
control
O value

input

‘true’ output - ’false’ output -
receives data receives data
value if value if
boolean is boolean is
true false

Figure 1-7
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data value A input data value B input
D boolean
control
- - - 0
input
Q
output -

receives data value A if boolean is true

or data value B if boolean is false

Figure 1-8

a boolean control token. The data and control tokens wait for each other at the inputs
to the switch exactly as they would at a dyadic or triadic arithmetic instruction. Where
it is certain that only one of the data inputs to a merge instruction will be generated,
and in proper correspondence to the associated boolean (e.g. from a previous branch
instruction using the same control value), the merge may be omitted from the machine
code and the two data arcs conjoined, as shown in Figure 1-9.

Using the extended instruction set we can implement a conditional Fortran statement
such as:

C=A
IFQI.EQJ)C =F

by the graph shown in Figure 1-10 in which ‘1’ indicates that tokens travelling down
this arc will be destroyed, and the ‘=7 instruction generates a boolean value indicating
whether its two data inputs are equal.

1.4.2 Loops

Switch instructions are most powerful when used to implement graphical loops and func-
tions. These are important because they allow complex computations to be defined by
relatively small programs, in the same way as conventional loops, subroutines or pro-
cedures. However, these reentrant constructs pose substantial implementation problems
in a parallel computer because of the possibility of simultaneous activation of the reen-
trant code.
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data value A input data value B input
output -
receives either A or B
(but not both)
Figure 1-9
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As an example, consider the Fortran program segment below:

I=N
J=1
10 IF (I1.LE. 0) GOTO 99
A
I=1-1
GOTO 10
9 M=1]

This is an iterative program which computes values of N! for variable N (i.e. not just 6!).
It translates into the machine-level graph of Figure 1-11. Detailed analysis of this graph
reveals that it is possible for more than one token to occupy the arcs labelled “? and “??.
Consequently, it is essential that the arcs of the graph behave as first-in-first-out queues
(otherwise the loop could terminate early because of overtaking on the arc labelled ‘7).
Unfortunately implementation of unbounded queues proves to be difficult, so it is usual
in practical dataflow systems to restrict the normal ‘firing rule’ so that instructions can
only be executed when their output arc is empty.

This is the simplest way of implementing reentrant graph programs, but it is not com-
pletely general because it prohibits concurrent reentrancy. It only permits loops which
are reactivated in strict sequence. Although a limited amount of parallelism can be
obtained by pipelining within the cycles of a loop, there is often further parallelism
which can only be extracted by a more general scheme (as described in the next two sec-
tions). Systems which implement this first scheme, allowing only sequential, cyclic reen-
trancy, are known as static dataflow systems [14].

1.4.3 Functions

A typical case in which concurrent reentrancy is required is when the programmer
defines a function (i.e. a user-defined subgraph) which is to be called from several places
within the program. This is somewhat similar to a Fortran subroutine. It is, of course,
possible to create many copies of the machine code representing the function and to
plant them ‘in-line’ at the appropriate places. However, this is wasteful of instruction
storage for large functions and those which are called frequently. It also prohibits the
use of recursion since this implies provision of infinitely expanded program graphs. Con-
sequently, two alternative implementation schemes for reentrant programs have been
proposed.

The first such scheme permits concurrent reentrancy via an apply instruction, planted
at the start of a user-defined subgraph, which creates a new copy of the subgraph each
time it is activated [15]. All input tokens to a subgraph activation are gathered together
at the apply instruction and are then transferred to the unique new copy of the reentrant
code. An exit instruction, placed at the end of the copy of the subgraph, gathers
together all the output tokens for the activation and transfers them back to the output
arcs of the appropriate apply instruction. The copy of the reentrant code is then des-
troyed. The operation of this scheme is analogous to conventional macro-expansion in
that extra code and data space is allocated whenever it is called for. This avoids data
having to share code concurrently.

An alternative scheme allows data to share code by ‘tagging’ tokens as they enter into
and exit from the reentrant areas [16, 17]. This system is similar to the use of a stack for
implementing procedures and functions on conventional machines, except that the con-
current activation of shared graph code requires that each token be individually tagged
with the appropriate ‘name-base’ instead of using global stack registers to identify the
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currently active data space. In visual terms tagging can be thought of as the process of
colouring the data tokens [18]. The graph execution rules need to be modified so that
only tokens of the same colour (i.e. those carrying identical tags) can group together to
cause execution of an instruction. Special instructions are needed to create new tags at
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entry to, and to restore old tags at exit from, the reentrant code. Of course, tokens must
carry extra bits to denote the tag.

Note that token-tagging can be used to distinguish data belonging to different cycles
around a loop. For example, in the program shown in Figure 1-11, assuming all input
tags have value zero, the tags could be incremented each time round the loop at the
points labelled “+ +°, and zeroed on exit from the loop at the point labelled ZZ°. In
this case it is no longer necessary for the arcs to act as first-in-first-out queues, and the
‘firing rule’ can be derestricted.

Systems using the above schemes to implement concurrently reentrant functions are
known as dynamic dataflow systems. The first scheme is called the dynamic code-copying
scheme. The second scheme is known as the dynamic tagged, or dynamic code-sharing
scheme. Hybrid dynamic systems use both code-sharing and code-copying in order to
limit the size of the tag.

1.4.4 Structured Data

Compact programs can also be written using data structuring, by which a single variable
name is used to refer to a large collection of simple data items. Two schemes have been
developed to implement data structures in dataflow graph programs.

The first scheme uses separate storage to hold the structures and represents each struc-
ture travelling in the program graph by a pointer token. A specialized structure store is
responsible for executing read and write operations on structures, and also for issuing the
appropriate pointers [19). All other instructions are as described above, and operate on
scalar data, or control the flow of pointer tokens through the program graph.

An alternative scheme uses the tagging system described in the previous section [20].
Each eclement of a data structure is a normal token which carries a unique tag defining
the position of the element in the structure. Tag-sensitive instructions are used to mani-
pulate the structure in the required way. This scheme is particularly useful for imple-
menting regular structures, such as arrays, whose elements are all subject to continuous
processing (as, for example, in signal processing applications).

1.5 COMPILATION OF GRAPH CODE

The examples introduced earlier demonstrate that it is possible to generate dataflow
graphs from a conventional high-level programming language such as Fortran. However,
the analysis algorithm that forms data dependence graphs from such languages is highly
complex and takes a long time to execute. There exist other languages which are easier
to translate and these are receiving the majority of attention in dataflow research pro-
jects.

1.5.1 Conventional Languages

The principal difficulties with conventional languages reside in possible side-effects due
to explicit use of storage locations (accessed by the programmer as ‘variables’). Data
dependence analysis is often hampered by obscure array index expressions which are
impossible to analyse at compile-time and thus requires some assistance from the pro-
grammer to indicate how the arrays will be accessed. However, the worst problem is that
of aliasing via the use of unbounded arrays or arithmetic operations on pointers. No
amount of compile-time analysis can help unravel devious or undisciplined use of such
language ‘features’. The only method of control is to ban the facilities from the language
[21].
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1.5.2 Single-Assignment Languages

Single-assignment languages (SALs) have no concept of sequential execution and no
direct control statements such as the GOTO. To combat the ambiguities that might arise
from reassigning values to variables, the languages allow each variable to be assigned just
once in a program. Constructs which permit controlled reassignment in special cases,
such as loops, are provided. SALs tend to use data structures, such as arrays and
streams, that can be readily implemented in dataflow graphs. There are often strict type
and scope rules. In particular, it is common to prohibit all forms of side-effect in reen-
trant constructs. The net results are languages that provide ideal textual syntax for the
description of dataflow graphs [22,23, 16, 24, 25].

Many SALs were developed without reference to dataflow execution, and they are
similar to the functional or applicative languages which have been developed without
reference to any particular means of execution.

1.5.3 Functional Languages

Functional languages are based on the mathematics of functional algebra and have no
concepts of storage state and assignment [26]. They are sometimes referred to as zero-
assignment languages. In fact, if assignment is restricted to occur only once for each
variable in a program, the effect is the same as if there were no assignment at all and
‘assignment’ statements were treated as definitions of the variables. In this sense SALs
and functional languages are identical and it should come as no surprise to find that
absence of GOTOs and side-effects are common to them both. However, functional
algebra allows more powerful programming constructs than are used in SALs because it
permits construction of higher order functions and abstract data structures. Conse-
quently the two groups are not directly equivalent. Nevertheless they have enough in
common to make it attractive to implement functional languages on dataflow systems.

Several attempts have been made to compile dataflow code from higher order func-
tional languages [27]. These indicate that it is possible to implement such languages
fully, but there are many doubts as to the efficiency of programs produced in this way.
Recent research has concentrated on developing mixed data-driven/demand-driven archi-
tectures for such languages [28].

1.6 SUMMARY OF DATAFLOW GRAPHS

Dataflow graphs are a convenient notation for representing parallel computations. They
permit conditional constructs, loops, functions (including recursion), and data structur-
ing. Translation to dataflow graphs is feasible from a wide range of high-level program-
ming languages.

There is a natural classification for dataflow systems according to the way they handle
reentrant code. The three classes of system are known as static, dynamic code-copying,
and dynamic tagged schemes.
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2 Architecture and Performance

I. Watson

2.1 INTRODUCTION

The dataflow model represents a parallel computation as a directed graph removing any
requirement for unnecessary sequencing. If the model can be mapped on to a physical
machine structure it should be possible to overcome many of the problems which have
been encountered in the design of parallel machines based on more conventional compu-
tational models in which sequencing is fundamental. We will consider a variety of
approaches to machine design in an attempt to explain how the architecture of current
dataflow machines has arisen.

An equally important feature of the dataflow approach is the development of a paral-
lel programming style which retains the power of current programming languages but
removes any necessity to express parallelism explicitly and requires no knowledge of the
machine structure. Although conventional high level programming languages reflect the
basic sequential nature of the machines which execute the compiled code, the details of
more complex architectural features (instruction pipelines, virtual memory etc.) are usu-
ally completely hidden. There is much evidence that, if the programmer is required to
take account of machine level features (vectorization, overlays etc.), then the program-
ming task becomes significantly more complex and error prone. This situation can only
be compounded by the introduction of parallelism. It will be seen that this attempt to
hide the physical structure from the programmer has a significant influence when consid-
ering practical implementation.

2.1.1 Existing Parallel Machines

A great deal of work has been done on parallel computer structures. Before considering
a completely new architectural approach we should first consider the two major types of
‘conventional’ parallel computer architecture to see if the dataflow model is relevant.

Array processors (e.g. DAP [1] ) have been designed to exploit the parallelism which
exists in problems where similar operations can be performed on every element of an
array concurrently with each processor executing the same sequence of instructions. This
‘single instruction stream, multiple data stream’ parallelism is only a small subset of that
which can be expressed in dataflow form and a machine structure of this type is unsuited
to the general case.
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A ‘multiple instruction stream, multiple data stream’ capability is necessary in order
that different processing resources can be executing different operations at the same time.
A large number of machines of this type have been proposed and a significant number
built, for example C.mmp [2] and Cm* [3]. They usually consist of a number of conven-
tional processors, each with their own program and data stores connected together via
either a common store or a communication network (crossbar switch, common bus, slot-
ted ring etc.). They are intended to be programmed in a relatively conventional language
such as Modula [4] which has facilities for expressing communication between parallel
processes. The user is required explicitly to divide a program into suitable parallel sec-
tions which can be mapped on to the physical machine structure.

This view of computation not only places a severe burden on the user but also con-
strains the architecture. The communication between processes is bidirectional and is
unpredictable both in peak and average bandwidth. In order to produce satisfactory per-
formance, an architecture is required which allows very high speed communication
between random processors in the network. In practice the machine designers have
compromised assuming that the data rates could be controlled and hence the machines
have failed to realize their potential. This is not surprising as such random high speed
communication is very difficult to achieve.

If a viable architecture of this type were developed then the dataflow approach with
its software advantages would certainly be applicable to such a structure. However, the
constraints imposed by the communicating process view of parallel computation are
relaxed in a dataflow environment and it is possible to consider more realistic physical
implementations of MIMD computers.

2.1.2 Fine Grain Versus Coarse Grain Parallelism

It is clearly possible to apply dataflow principles over a wide range of problem structures
from individual machine operations to processes at the level discussed above. If the
correct process divisions are chosen then it is probable that the communication
bandwidth for a given rate of computation will be minimized.

Conversely, if a low level is chosen then the number of inputs required before an
operation can be executed will be smaller and hence the mechanism required to detect
this condition in a physical machine will be simplified.

It is also necessary to consider how the machine is to be programmed. With a small
number of notable exceptions (e.g APL), programming languages express computations
at a relatively fine grain level of operation. Although there are many worthwhile
attempts to produce ‘very high level’ programming languages they still retain the capabil-
ity of performing scalar addition etc. If these operations are required for general purpose
computation then this is the level at which the programmer will compose at least some
portion of his code. If a number of such operations must then be ‘bundled’ for execution
by the machine then this would need to be automated if the programming philosophy is
to be maintained. Of course, the natural function/procedure divisions may be appropri-
ate to minimize communication, but they may not. The automation of the task then
becomes complex.

A further factor in the decision is the choice of static or dynamic task allocation. This
is particularly important if coarse grain parallelism is considered. If high level operations
are allocated to processing resources statically at the start of the problem execution, then
each processor need only have access to the code which it will execute. In a dynamic
scheme there is a requirement for access to the whole program from each individual pro-
cessor. If each contains all the code, this could be a large overhead in storage, but if
large portions of code are passed around dynamically this increases the bandwidth
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requirements and the overheads of process allocation. In order that efficient use is made
of parallel resources, it is important that they do not become idle, the chances of idleness
are significantly increased in a scheme which allocates processes statically using coarse
grain parallelism.

The choice is not straightforward, and this is reflected in the machine structures that
have been proposed and constructed. On balance, it appears that the fine grain parallel-
ism approach is winning but this may only be a temporary lead.

2.2 MACHINE TOPOLOGIES

An obvious physical realization of a dataflow machine could consist of a processor for
each computational node on the graph together with a reconfigurable communication
network to provide the interconnections. There are two objections to this. Such a system
would be grossly inefficient because inactive nodes would result in inactive processors.
This might be overcome if several nodes were allocated to each processor. However, the
complexities of the required communication are such that no physical machine based on
these principles has been attempted.

An abstraction from the ‘physical’ interconnection of the dataflow graph can lead to
more realistic structures for physical machines. If each node is allocated a unique
identifier, the interconnections can be held in a node description as the identifier of the
next node (together with an input number) to which data will be sent when computed. It
is then possible to replace the explicit interconnection paths by a generalized communi-
cation network. A data value, when computed, uses the next node information as a rout-
ing director to find the processor which contains the required operation. It should now
be clear how such a technique would allow a dataflow program to be mapped on to a
conventional multi-processor where a number of nodes are statically allocated to each of
the processors.

At this point it is worthwhile noting that the communication required is essentially
uni-directional. A result value is computed and the computational resources used can be
released to another task immediately. No reply is needed and, as long as the processor
which contains the destination node has other work to do, the transit time to the destina-
tion is not critical. It should also be noted that there is no requirement to maintain ord-
ering through the communication network. It is these aspects of the dataflow model
which relax the architectural constraints on the physical structure and render the
crossbar-switch approach to multi-processor design unnecessary.

2.2.1 Tree Structures

A large number of computational problems have the property that they start slowly,
build up to a crescendo of activity, and then collapse to produce a relatively small resuit.
This has led to an interest in tree structured machines, an example of which, using a
binary tree, is shown in Figure 2-1.

A major reason for the interest in this physical structure is the ease with which it
could be mapped on to VLSI using ‘Recursive H’ techniques. Figure 2-2 shows the basic
principles of this method.

Although other computational models are also applicable, it is possible to see how a
dataflow computation might map on to such a structure. The initial nodes are placed at
the root of the tree and, as they produce their results, they are passed down, eventually
reaching the leaves where maximum activity takes place. As the computation collapses
the results can be passed back to the root. Unfortunately, as one might imagine, it is
almost impossible to devise a general strategy whereby a computation can be mapped
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statically on to such a structure so as to produce sensible use of the resources.

A dynamic allocation scheme is necessary. If the root processor holds a complete
description of the dataflow graph, it can decide from the results which it produces which
areas of the graph are to be activated next; and pass these together with the data to its
sub-processors. If the distribution strategy is carefully chosen, then the computation
could spread itself nicely over the structure.

A machine which operates in this way was conceived and partially constructed by Al
Davis at the University of Utah. One processing node became operational in 1978 [5]
and using information about the characteristics of this a complete structure was
evaluated by simulation. The results of this work indicate that many problems still exist
in this approach. Not only does the distribution occupy significant resources, but also the
strategy is still complex. Computations which appear to become very active may cease
due to run-time conditions which cannot be predicted and large sections of the physical
tree which have been allocated may suddenly become idle. The limited communication
available then makes re-distribution of the computation a very inefficient task. A further
problem arises when the leaves of the tree are reached and processors discover that they
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are in possession of a rapidly expanding section of the code.

Recognizing these difficulties there have been several proposals for machine topologies
which can be classified as ‘virtually tree structured’ [6]. The physical machine structures
can be viewed as ‘folded trees’ so that the communication is more general. Most of these
ideas have not aimed at dataflow, but the more recent related area of Reduction
Machines for the implementation of functional languages. It remains to be seen whether
practical implementations of these ideas will work. There are still overheads of task dis-
tribution and unfortunately many of the physical interconnection schemes are not obvi-
ously suited to VLSI implementation.

2.2.2 Ring Structures:

The tree structured approach to machine design has been driven by the possibilities of
highly parallel computers which exploit the potential of VLSI technology; the datafiow
computational model is then viewed as a possible method of using these machines.

An alternative approach is to take the dataflow model as the driving force and design
machines which make maximum use of its capabilities. The particular technological con-
straints of VLSI, although important, should only be addressed when the feasibility of
these parallel structures is fully understood. This has resulted in a variety of ring-
structured dataflow machine designs.

The most serious problem in any multi-processor structure is the provision of a flexi-
ble interconnection scheme with high bandwidth. The uni-directional communication
property and the lack of a requirement for very rapid transit time between processors are
exploited in ring-structured datafiow machines to overcome this problem. Figure 2-3
shows the basic outline of such a machine.

A processor is assumed to contain:

(1) A description of the dataflow graph.
(2) A mechanism for assembling incoming data into complete packets for execution.

The switching mechanism is composed of individual 2X2 switches, each of which con-
tains buffers at its input to hold incoming data. Routing information within the data
packet indicates which of the switch outputs it is directed towards. The overall structure
is therefore effectively a set of parallel pipelines. An N input, N output switch requires
N/2(log N) individual elements and any route through the switch is a log N stage pipe-
line. It can be shown that, assuming random contention for switching resources, such a
structure achieves a throughput bandwidth which approaches its theoretical maximum.
However its complexity is manageable in a practical implementation. As the communica-
tion is uni-directional, the only price paid is the pipeline delay between processors. As
long as the processors are kept active and the pipeline is kept full by parallelism in the
program, then no degradation of performance should result.

This structure has been presented without any mention of the exact dataflow compu-
tational model used or the level of granularity employed. The basic structure is largely
independent of these factors and as such has formed the basis of most of the major
dataflow machines which have been, or are in the process of being, constructed. The
differences between these machines are reflected in the detailed structure of the proces-
sors.
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2.3 PRACTICAL MACHINES

Although it has been mentioned that the dataflow principle is applicable to any level of
granularity and the choice is not immediately obvious, all the major projects have chosen
to implement the model at the level of simple machine instructions. The prevailing view
amongst those closely involved is that programming languages require this. Others
believe that the major impact of dataflow ideas will be at a higher level. Whatever the
final outcome, the projects which are currently in progress are providing a great deal of
useful information in the area of parallel machine design. It is worthwhile therefore to
examine some of the architectures in more detail.
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2.3.1 The MIT Static Dataflow Machine

A machine which uses the static dataflow model of computation is being implemented
currently by a team led by Jack Dennis at MIT. It uses bit-sliced microengines con-
nected via a general purpose unidirectional routing network [7]. In this system the three
major dataflow tasks of:

accessing the program description;
gathering tokens to produce executable packets;
executing instructions;

are implemented in software in the processor modules.

A key factor in the design of the MIT system is the ability to expand its power by
adding extra processors via an extended communications switch.

The desire to expand power by adding hardware is common to all dataflow system
designs. There is keen debate about the maximum size of switch that can be constructed
(or that will be feasible in the forseeable future). There is an obvious relationship
between the power of individual processors, the total power, and the size of the switch.
Because the MIT system uses conventional microprocessor software to emulate the
dataflow model, it runs relatively slowly and large switches will be needed for substantial
applications (e.g. weather forecasting). It is envisaged in the MIT design that switches of
size 500 X500 and more can be implemented using byte-wide 2 X2 routers.

Other researchers are less confident that switches of this size will be practicable. Con-
sequently they have concentrated on improving the execution rates of individual proces-
sors by designing their internal structure to be dataflow oriented.

2.3.2 The MIT Dynamic Dataflow Machine

Another research group at MIT, under the leadership of Arvind, is constructing a VLSI-
based dataflow processor with many of the characteristics of the ring-structured system.
The main features of this system are that (1) data structure accesses are handled
separately from ordinary token activities, and (2) there is a two-tiered communication
system [8]. The processor design is outlined in Figure 2-4.

The three major dataflow activities are handled by separate hardware, in particular the
token gathering operation is performed by a small associative store. Data structure
operations are treated separately so that (1) they can be performed quickly, and (2) the
potentially large numbers of tokens involved do not occupy space in the expensive
unmatched-token store. The two-tiered communication structure relieves the general
communications switch of excess traffic as long as programs exhibit strong ‘locality’ (i.e.
processing activity is localized in subgraphs and processors rather than communicating
randomly with other subgraphs/processors). Locality also benefits the size of the
unmatched-token store, and current plans at MIT are to implement a small 64-word
store.

Reduced traffic in the communications switch allows bit-wide data paths to be used.
The proposed building block for this MIT system is an 88 bit-wide module. Using
program locality still further, large-size switches can be made rather less complex than
the networks proposed for other systems.

This design relies heavily on strong program locality. The language Id [9] also
developed by Arvind’s team, has appropriate properties, and the system is being designed
around this language.
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2.3.3 The Manchester Dynamic Dataflow Machine

A research group at Manchester University under the leadership of John Gurd and Ian
Watson has constructed a specialized ‘ring-structured’ dataflow processor with funding
from the Distributed Computing Systems Programme of the Science and Engineering
Research Council of Great Britain [10, 11). In this ring-structure the three dataflow tasks
(i.e. matching tokens together; finding the next instruction; and processing of instruc-
tions) are implemented in three separate hardware modules. The individual actions in
these modules are dependent solely on the module input data so that successive actions
may be overlapped by connecting the modules in a pipeline. One extra pipeline module
is provided to queue excess tasks when highly parallel programs are running. The overall
ring-structure is therefore a four-stage pipeline as shown in Figure 2-5.

The fundamental unit of data in the switch is a token-package representing a tagged
token on an arc of the program graph. The token has a data type and value, and a tag.
The arc is represented by the address (in the program graph store) of the instruction at
its head (known as the ‘destination’). The token is the smallest data package in the sys-
tem, and so the queue module is positioned adjacent to the switch, at the input to the
ring.

Queued tokens are presented one-at-a-time to the matching unit, which is responsible
for grouping together tokens with the same tag heading for the same destination instruc-
tion. In the Manchester system tokens may be grouped together in ones or twos, so that
triadic instructions and above cannot be supported. Tokens which expect to find a
partner, but which arrive at the matching unit before the partner does, are kept in the
unmatched-token store until the partner arrives. At this time (or, in the case of a single-
input instruction, when the first and only token arrives) all the required input data and
the common tag and destination fields are sent to the instruction fetch unit as a token-
pair package.

The program graph is stored as an array of instructions each representing one opera-
tor and its associated output arc(s). The destination field of an incoming token-pair is
used as an address to fetch the next instruction which contains an opcode and up to two
destination fields. This produces a complete executable package which is sent to the pro-
cessing unit. Here the specified opcode is executed using the collected data and tag as
operands, and the result token(s) is(are) finally returned to the communications switch
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input.

The critical part of this system is the matching unit. The task of pairing tokens
together is an act of association and so the unmatched-token store is (pseudo-)associative
in nature; it is implemented using a hardware-hashing mechanism. In the technology
chosen for the prototype version the average match time is 450 nanoseconds [12]. This
limits the instruction execution rate of the ring-structured processor to just over 2 million
instructions per second (MIPS). The prototype instruction processing element is some
fifteen times slower than this and so a serially-activated parallel array of up to 15 such
elements is required as a processing unit. At the time of writing the prototype system is
running at just less than 2MIPS with 12 elements in the array.

The prototype implementation is tailored to stable, MSI, medium-speed, TTL technol-
ogy. Higher speed could be obtained using faster logic and storage components, for
example ECL. Comparable speed might be obtained if design were tailored to VLSI
technology.

2.3.4 Other Projects

Several other projects are worthy of mention. A research system built in 1978 by a team
led by Don Oxley at Texas Instruments used four microprocessors and a 990/10 host,
connected together via a time-multiplexed communication ring [13]. This was a very low
performance system but served to demonstrate some basic dataflow principles. A
dataflow machine is being developed at NTT in Japan by Makoto Amamiya and his
group [14]. Their hardware has been operational for about one year. The LAU project
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led by Jean-Claude Syre at CERT Toulouse in France [15] produced a working machine
which was closely related to dataflow. Additional information on dataflow systems and
languages has been published in a special issue of IEEE Computer [16].

2.4 PERFORMANCE OF DATAFLOW SYSTEMS

Little has yet been published about the performance of these dataflow systems in practi-
cal applications. The most comprehensive results obtained so far have come from the
Manchester project [17]. These relate to the performance of the parallel processing ele-
ments within a single ring structure but nevertheless are impressive. A number of small
but realistic programs of widely differing structure, with both regular and irregular paral-
lelism, were run on a ring with between one and twelve processing elements. The results
are summarized in Figure 2-6.

The speedup remains almost linear until the bandwidth limitations of the ring pipeline
are approached. Since those results were published the store sizes in the ring have been
expanded so that more realistic sized problems can be executed. The initial evidence is
that the previous performance is maintained.

The next stage of the Manchester project is to investigate the performance of a multi-
ring structure. This is being done using a microprocessor based system with two 68000
machines providing the function of a ring processor. A four ring system has recently
become operational and will soon be extended to twenty rings. If the results of this are
equally satisfactory, then the dataflow approach will be capable of producing very
efficient high speed parallel computers.
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3 Assembler Level Programming

C. C. Kirkham

3.1 MANCHESTER DATAFLOW MACHINE FEATURES

As described previously, the Manchester Data Flow Machine at present consists of a sin-
gle ring. The node store, one of the units in the ring, holds an encoding of the program
graph, and the purpose of this chapter is to explain this encoding and to describe the
features which graphs on the Manchester Machine may contain.

3.1.1 Instruction Format

For easily understood reasons, nodes on dataflow graphs for the Manchester machine are
restricted in the following ways:

There may be 1 or 2 input arcs.
There may be 0, 1 or 2 output arcs.

The restriction on the number of inputs enables matching in the matching unit to be
implemented in a straightforward manner, while that on the number of output arcs is
determined by the size of an instruction. There are few occasions when no outputs are
required, so the instruction encoding does not cater for this option and all nodes must
have 1 or 2 destinations. If a node has a single destination it can also have a literal as
one of the inputs, but then it may only have a single incoming arc. A destination in an
instruction identifies the node to which the arc is connected, which of the two possible
input points at which it is attached, and also the matching function. The latter indicates
to the matching unit what it should do with a token on this arc, namely whether to
attempt to match it with another token or not. The matching function was introduced as
a result of an early change in the ring design to put the matching unit before rather than
after the node store. However it has since been significantly generalized to provide other
facilities as will be described below.

3.1.2 Matching Functions

The usual purpose of the matching function is given above, namely to allow the match-
ing store to decide whether an operand will need to be matched with another going to
the same node. In common use, therefore, only two matching functions are useful,
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namely BY (bypass), for operands going to monadic operators or dyadic operators with a
literal, and EW (extract-wait), for operands which need to be paired. The remaining 6
matching functions are provided for special purposes which will only be hinted at here.
For a more complete explanation of the use of some of the more unusual matching func-
tions see Catto et. al. [1]. The naming of the matching functions, other than BY, follows
a pattern which will now be explained. When an operand arrives at the matching store a
search is made, psendo-associatively, for a matching operand. Either this succeeds or it
does not, and for each of these circumstances there is an action required of the matching
store. Matching functions are named by giving the first letter of the action on successful
match followed by the first letter of the action otherwise. The possible actions are:

Successful match actions

Extract remove the matched operand from the matching store.
Preserve leave a copy of the matched operand in the matching store.
Increment  leave an incremented copy of the matched operand.
Decrement leave a decremented copy of the matched operand.

In all cases the incoming operand and the operand with which it matched are sent on to
the node store as a pair of operands for a dyadic operator.

Unsuccessful match actions

Wait insert the operand in the store for subsequent matching.
Defer give up for now and try again later.
Abort invent a matched operand of type Empty to form a pair.

Generate as Abort, but also store the incoming operand in the matching store as if it
were going to the opposite input point to this node.

Not all combinations are found to be useful, and below is a list of the seven imple-
mented with a brief indication as to where they are used.

EW  The normal matching function for dyadic operators.

ED Used in non-deterministic situations such as entry to critical sections - a form of
busy waiting.

PD Used to store values such as array elements at a node in the graph.
ID Used at the entry to monitors to generate a stream of requests.

DD Used in reference counting so that stored objects can be disposed of when no
longer required.

EA  Used in guarded commands - i.e. in non-deterministic situations.

PG Used in ‘lazy evaluation’.

3.2 THE INSTRUCTION SET

The instruction set has been divided into two distinct partitions. One class contains ord-
ers which only ever generate one ‘logical’ result and are known as single result orders.
The other orders have two ‘logical’ results and are known as double result orders. The
significance of ‘logical’ above is that the two possible result arcs are used for different
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purposes and values - it does not refer to how many copies of the result are produced.
Thus there is a duplicate order provided to produce two copies of its input, but this is a
single result instruction. The classic example of a double result instruction is the order
to perform integer division which produces the quotient on one output arc, and the
remainder on the other. With a single result instruction the node can produce one or
two copies of the single result, depending on the number of destinations in the node.
With a double result instruction the situation is more complicated. If only one of the
logical results is required this is indicated by the prefix to the instruction, and then the
available destinations can be used to provide one or two copies of this result. Otherwise
the prefix indicates that both results are required, in which case the left result is sent to
the first destination, and the right result to the second. Thus the possible prefix values
are:

for a single result order.
for a double result order using both logical results.

for a double result order using the left result only.

m g Z

for a double result order using the right result only.

3.2.1 Example Orders

The DUP (duplicate) order is very easy to describe. It takes a single operand of any
type, and copies it to its single logical result. Of course, to be useful, this order usually
uses both destinations to obtain two copies of that result. Notice that the type of the
operand is mentioned here. This is because all values in the machine have a type, and
most orders are sensitive to this type. Thus the SBI (subtract integers) order is also a
single result order, this time with two operands. If both operands are of type integer the
result is produced by subtracting the second operand from the first, and is also of type
integer. The error behaviour of SBI when the operands are not of type integer, or when
the resultant value overflows the range of integer values, will be described below.

As mentioned above DRM (divide integers with remainder) is a double result order. It
requires two input operands, both of type integer. The left result is then the integer quo-
tient, and the right result is the remainder. The BRR order is an implementation of
branch, mentioned in Figure 1-7. It is also a double result order, with two operands.
However in this case the types of the operands may differ. The right operand must be of
type boolean, and is used to decide which logical result should receive a copy of the left
operand, which can be of any type. If the right operand is zrue the right-hand result is
produced, otherwise the left. The error behaviour of each of these orders will be
described in the next section.

3.2.2 Error Behaviour

The above description has entirely omitted any mention of the behaviour of the orders in
error situations. This is by no means a trivial detail as will be seen from the varying
forms of error behaviour which will be discussed in this section. As a general rule the
host computer is informed whenever an error is detected. This allows the user to abort
the program by some crude external mechanism, such as resetting the mnachine! This is
necessary because a program with a large amount of parallelism can perform a large
amount of computation in parallel with, and completely independent of, its fault generat-
ing fragment. It will not in general be desirable for programs to Check repeatedly
whether any error has occurred to cause termination and this is left to the host.



36 The Dataflow Approach

However, there are also situations where errors need not indicate that the program
should be halted. For example a program may not need to worry about the correct value
of an expression which overflowed if it is determining the smaller of two expressions; it
need only give up if both expressions overflow. All that is required is that no program
should produce wrong answers as a result of detected errors. The Manchester Machine
has a data type ‘Error’ which is usually produced as the result by a node which detected
an error. The value part contains information about the position of the error and the
nature of the error. The above discussion means that in general error values should not
change into non-error values as a result of the operation of a node.

There is only one way to produce an error at a DUP node, and that is by providing it
with a right-hand input. This will cause a ‘type error’ to occur, and the result produced
will be of type ‘error’ to indicate this. However the DUP node is quite important in con-
sidering error handling, as it is specified to pass on its operand regardless of type. Thus
error values are propagated just like any others.

SBI however can produce an error token as a result in a variety of ways. Firstly, if
the operands are of correct type but the result of the subtraction is out of range an
integer overflow error will occur. If either of the operands are of type error, however,
this error will be passed on unchanged. If both operands are of type error, the left will
be passed on - and the information in the right operand will be lost. Finally, a type
error will occur if either (or both) operands are of neither integer nor error types. This
error behaviour is designed to fit the principles enunciated above, and is general for
arithmetic operations. DRM shows how this has to be complicated in the case of double
result orders. When DRM produces an error result, which it can do for any of the rea-
sons given for SBI, it does so to borh results.

BRR is more interesting, however, in that only one result is used for error tokens.
This is because branch orders are used to implement loops, and it is possible by correct
use to cause a loop to terminate if an error occurs in evaluating its termination condi-
tion. Of course the result of the loop is still an error, but it is desirable to terminate the
loop cleanly when this happens. Thus, because BRR is meant to implement repeat
loops, where a true condition terminates, an error type for the right-hand operand causes
it to be sent to the right result only. The right result is also used for the type error token
if the right hand operand is of a type which is neither boolean nor error. There is a
BRW order, to implement while loops, which differs from BRR only in the fact that it
sends error tokens to the left result instead.

3.2.3 Dynamic Arcs

Most arcs in a dataflow graph are static. That is they are fixed and join one node to
another in a permanent way. However there are situations when the destination to
which a node should send its result needs to be different for separate activations of that
node. The classic example of this is when a function returns a result to the part of the
graph that called it. In a manner analogous to that of conventional computers, we wish
to have the choice whether to duplicate the code of the function body everywhere it is
called or whether to have just a single copy to which arguments are passed and from
which results are returned to the calling graph. Passing arguments into a function body
presents no difficulty, but a dynamic arc is required to obtain the result. The destination
for this arc is the right operand to the SDS instruction which creates the arc, the left
operand being the value to be sent. Thus the return information when a function is
called consists of the destination to which the resulting value should be returned.
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3.2.4 Labelling

As mentioned earlier, the Manchester Machine uses ‘labelling’ to allow graphs to be mul-
tiply used. Thus there are three label fields associated with each operand and these are
known as the activation name, the iteration level and the index. For much of the time, the
use of labels is not apparent as the matching store only matches operands with identical
labels and most orders produce results with the same labels as their inputs. However
there are orders whose purpose is to manipulate the label fields in various ways, and
some of these will now be described.

The YIL order yields the iteration label of its single operand as the single result. The
type of this result is ordinal, a restricted range of non-negative integers. SIL normally
produces a left result which is the same as the left operand but with its iteration level
equal to the value of the right operand. The right logical result is used in cases where the
type of the right operand is not ordinal, or where the label produced by this operation
could not be represented in the space available for it. The ADL order is similar, except
that the right operand in this case must be of type integer, and its value is added to the
iteration level rather than replacing it. In this case a negative iteration level, which would
be illegal, also produces an error on the right output. There are orders which correspond
to these for manipulating the index and activation name fields of the label, and other
orders have also been introduced.

3.2.5 Other Orders

There are many other orders in the Manchester Machine. Among the more complex are
special purpose orders proposed by Bowen [2] to implement and manipulate data struc-
tures. For details of the full instruction set of the machine, see the Basic Programming
Manual [3].

3.3 THE MACHINE-LEVEL USER INTERFACE

The interface between the ring and the outside world is provided by the host, now a
VAX-11/780, via the switch. All input to the ring and output from it is in the form of
‘messages’. Indeed all information passing round the ring is in this same form. Labelled
operands passing from the processing unit to the matching store via the switch and the
token queue form ‘normal’ messages. This is the expected traffic when a program is exe-
cuting. However programs are loaded, and various monitoring actions also need to take
place, and these are implemented by means of ‘special’ messages. These are destined for
particular units on the ring, and are passed on unchanged by all other units. At the
indicated unit the special message is removed from the ring, and causes the requested
action to occur. For example, there is a special message to load an entry in the node
store, and this is how programs are loaded. Another important use of special messages is
in providing output from the ring to the host by means of special messages to the host
which the switch diverts from the token queue. Indeed all forms of monitoring provided
by the machine generate special messages to the host, including the monitoring of errors
mentioned above.

Figure 3-1 gives a listing of a program in the most low-level form, namely as the tex-
tual representation of the special messages required to load it into the node store.
SPNLN indicates a ‘special message to the node store to load a node’, and therefore
prefixes each order of the program. The data is in the form of normal messages to be
inserted into the token queue when the program is to be executed. This program is
shown as a dataflow graph in Figure 3-2.
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; Simple iterative factorial program

SPNLSO O 11

SPNLNO ONDUPO ILBY0 2LEW
SPNLNO INSBIO 6LBY Il
SPNLNO 2DBRRO 4REW0 10LBY
SPNLNO 3NCEIO TLBY I0
SPNLNO 4NMLIO SLBY

SPNLNO S5LADLO 2LEW Il
SPNLNO 6NDUP0 8LEWO 3LBY
SPNLNG 7NDUPO 2REW0 8REW
SPNLNO 8LBRRO 4LEW0 9LBY
SPNLNO S9LADLO 1LBY I1
SPNLNO 10ROPTO 11LBY GO
SPNLNO 1INKILO OLBY

; and the data is
NIS 0000 OLBY

Figure 3-1

3.4 THE TEMPLATE ASSEMBLER (TASS)

As you can see, the SPNLN form is rather tedious to read or write. In addition it lacks
many of the facilities commonly found in conventional assemblers, such as labels and
macros. Anyone writing the SPNLN code has to explicitly generate all the DUP nodes
to produce multiple copies of a value, and must also be careful about using only one out-
put from any node with a literal input. TASS, for ‘Template Assembler’, rectifies these
deficiencies and provides its user with a cleaner view of the machine. This cleaner view
is also useful to compilers, and in fact TASS was mainly intended as an intermediate
code to be generated by high-level language compilers. Although it is instructive about
the way in which the machine works, it has never been our intention to make users write
assembly language programs, and therefore even TASS is not too attractive. Probably
some kind of graphical program generation tool would provide the best user interface at
this level [4].

In TASS nodes are named. If the node has only a single logical result this name
represents the result and can be used as an operand in other nodes. It can be used as
many times as required, with TASS supplying any DUPs necessary. If the node has two
logical results, then the node name represents both of them, and must be qualified before
it can be used as an operand. This qualification takes the form of the a selection of the
left or right output, following the name with .L or .R respectively. Indeed if a double
result operation is used but only one of the results is required, the node itself may be
qualified and then the name represents the single specified result as with a single result
operation. Hence:
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I1

SBI

Figure 3-2
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aplusb = (ADI a b); ! adds a and b - both results
! of earlier operations
resdive = (DRM aplusb c);

quotient = (DRM aplusb c).L; ! Does the division a 2nd time,
! but only keeps the left result
zero = (SBI resdivc.L quotient); ! This will be zero

Literals are represented by strings, and are very similar to their SPNLN form. They can
however be named, e.g.

pi = "R3.14159";
halfrem = (DRM resdivc.R “12").L;

~TASS carefully removes the restriction that only one result may be used of a double
result operator if a literal is present. It does so by planting two copies of the operator if
both logical results are required, and supplying the same inputs to them both. However,
notice that it is still an error to write an operation with two literals, and the use of names
for literals can make this less obvious!

It is one of the characteristic features of the Manchester Dataflow Machine that there
is no ‘merge’ operation. That is to say, no node is required at the point in a dataflow
graph where two arcs join to provide the input to a single input point. Obviously such
situations should only occur after careful thought by the programmer to check that only
one of the arcs should deliver a result with any particular label, and this will be the case
when the value is the result of a conditional computation, for example. The simple nota-
tion used above does not deal with this situation however - for an operand is a name (or
a literal). TASS therefore uses a Merge operator to maintain this simplicity, and this
does not inconvenience the user who must anyway be aware of this situation. Thus

thenres = (BRR thenval bool).R;
elseres = (BRR elseval bool).L;
res = (Merge thenres elseres);

leaves res as the name to be used where the result of the conditional expression is
required. Of course no code is planted for a Merge! Merge can have any number of
arguments.

There are situations where Merge is not quite enough. An example is where the
values of arguments are sent into the body of a function by each call. To use Merge
would require a knowledge of how many calls there are in the program, and although
this information can be obtained it could be a significant amount of work for such a
trivial reason. To deal with this, TASS provides a way of naming the input points of a
node and then linking operands to them. The input point is filled in with a dummy
value, ‘°. Thus

inarg = (DUP _);

argpoint = L’inarg; ! naming the input point.
When a value, say x, is to be linked to this position, it is done as follows

(Link argpoint x);

This mechanism could, of course, be used instead of Merge - but each mechanism has a
sensible use and both are provided.

One complication introduced by using names in TASS is that the addresses of nodes
are no longer known, and a mechanism must be provided for literals of type destination.
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These can be derived from the identifications of input points given above in the follow-
ing way

inargdest = D’argpoint;

This makes inargdest a literal of type destination with a value of the input to the DUP
node given earlier. Thus, to give a more complicated example, a program to add the
integer results of calls to two different functions, f and g, would contain

fplusg = (ADI __);
thisfret = (SYN D’L’fplusg trig).L;
thisgret = (SYN D’R’fplusg trig).L;
(Link fretpt thisfret);
(Link gretpt thisgret);

where fretpt and gretpt are the positions in the bodies of f and g respectively to which
return addresses are sent, i.e. the right hand input points of their SDS nodes.

TASS is quite a general system, and the description above was designed to illustrate
its simple use as a dataflow assembly language. It also quite naturally provides macro
facilities and is used in rather different styles by the two compilers which code generate
into TASS.

As a simple illustration, Figure 3-3 contains a TASS version of the program given ear-
lier in graphical and SPNLN forms.

(1 "TASS” "TSM") ;
! Iterative factorial calculation

in = (Data "I 5”) ;

n = (DUP in) ;

mer.n = (Merge n newn) ;
ndec = (SBImer_n”I1”);

endtest = (CEI ndec 71 0”) ;

muln = (BRR ndec endtest).L ;
newn = (ADL muln”I1”).L;
mer_fac = (Merge n newfac) ;
endbr = (BRR mer_fac endtest) ;
cand = (MLI muln endbr.L) ;
newfac = (ADL cand I 1”).L ;

(OPT endbr.R "G 0”) ;
(Finish) ;
Figure 3-3
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4 High Level Dataflow Programming

J. R. W. Glauert

4.1 INTRODUCTION

In Chapter 1 it was explained that the most attractive way to program dataflow systems
is to use a language based on a functional style. This chapter gives a tutorial introduc-
tion to the language SISAL, developed as a result of collaboration between the Manches-
ter Dataflow Group and a number of other researchers at Lawrence Livermore National
Laboratory, Digital Equipment Corporation, and Colorado State University.

It will be assumed that the reader has some knowledge of conventional languages such
as Pascal [1] and Algol68 [2]. SISAL will be described by comparison with such
languages and many features of the syntax will appear familiar. The underlying seman-
tics of SISAL are very different from those of conventional languages, however. A pro-
gram places few constraints on the order of evaluation, allowing much implicit parallel-
ism which can be exploited by a dataflow system.

No attempt will be made to describe the complete SISAL language, nor to give a for-
mal syntax or semantics. The reader should consult the SISAL Language Reference
Manual [3] for further details. The language is introduced through a series of examples
illustrating many of its notable features, and then some complete programs are discussed.

4.2 PROGRAM STRUCTURE

4.2.1 Functions

SISAL does not allow procedures, but heavy use is made of functions, which are always
free from side-effects. A SISAL program contains a main function which is evaluated to
yield the result of the program. SISAL functions consist of a header and an expression.
Expressions may yield multiple results as illustrated by the following complete program:

% Return the value of the argument, its square, and square root
function Test ( Arg: real returns real, real, real )

Arg, Arg*Arg, sqrt( Arg)
end function

Wherever the syntax for computing a tuple of values occurs, indicated by separating a
list of expressions by commas, the individual expressions may be computed in parallel by
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a dataflow system. Since there are no side effects it is also possible to compute sub-
expressions independently.

SISAL functions may be recursive and may take and return arguments of any type.
The syntax for calling functions is conventional.

All values are strictly typed but it is usually unnecessary to give types since they can
be derived from the form of an expression. No implicit type coercions are performed.
The types of function arguments and results must be given, however, as illustrated above.

4.2.2 Compound Expressions

In common with other Functional languages, SISAL has no concept of variables to
which repeated assignments can be made. There is no control structure to specify the
order of evaluation of statements. Instead there are facilities for declaring named values.
There is a rich syntax for the expressions used to define such values. This provides the
full expressive power found in conventional languages while allowing the implicit paral-
lelism in an algorithm to be exploited.

The compound expression allows a number of local definitions to be made and used in
the final result expression:

% Find Real solutions ax* + bx + ¢ = 0

Rootl, Root2 : =
let
d := sqrt( b*b - 4*a*c );
t:= 2*a
in
(-b+d)y/t, (b-dy/t
end let

4.2.3 Conditional Expressions

There are no conditional statements in the form found in Pascal, but instead there are
conditional expressions similar to those available in Algol68. The following SISAL
expression could be used to compute the absolute value of a variable, although a built-in
function, abs, is also available for the purpose:

% Compute the absolute value of Arg
AbsArg : = if Arg > 0.0 then Arg else -Arg end if

There can be only one statement defining AbsArg so a value must be provided by both
then and else arms of the expression. It is often required to define the values of several
names on the basis of a single condition. This facility is provided by the syntax for han-
dling tuples of values already used in the examples above:

% Sort two values into order

Lesser, Greater : = if A < B then A, B else B, A end if
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4.2.4 Iterative Expressions

Repetitive computation is essential for most programming tasks. Since SISAL provides
recursive functions it is possible to express repetitive computation in recursive form. It
can be argued, however, that an iterative style is more natural for many algorithms.
SISAL has a form of expression which allows a sequence of values to be computed, the
final result being chosen when some condition is met. Each name concerned is given an
initial value and there is a rule for computing a new value in terms of the old. Hence it
is possible to repeat some computation, evaluating successive approximations to a solu-
tion, until an acceptable result is obtained:

% Calculate the Square Root of X using Newton’s method

Root ;=
for initial
R:=X/20
repeat
R:=(0ldR + X/ 0ldR) /20
until abs( R - old R ) < Epsilon
returns value of R
end for

The keyword old preceding an identifier references the value bound to the name before
the body of the loop was invoked, while the unadorned name refers to the new value.
Hence the initial value is referred to as old during the first invocation of the body.

The keyword until may be replaced by while, in which case the sense of the test is
reversed. It must be stressed that SISAL does not follow Pascal in using while and repeat
to distinguish loop bodies which may be skipped entirely from those which are always
executed at least once.

SISAL does provide the equivalent of both types of iteration, however, for in addition
to the form:

for initial <decls> repeat <body> <test>> returns <expr> end for
which always invokes the body at least once, there is also:
for initial <<decls> <test> repeat <body> returns <expr>> end for

The iterative construct also allows the use of recurrence equations. The next example
computes the factorial of a number N using while and the form which tests before invok-
ing the loop body:

% Iterative computation of N Factorial

FacN :=
for initial
C, Péa=l; 15
while C < N
repeat
C:=0dC + 1;
P:=oldP*C
returns value of P
end for

It will be seen that the effect is to multiply together all the values in the sequence
represented by C. The order of multiplication is not significant and a suitable paraliel
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implementation could improve on the essentially sequential algorithm given. SISAL
allows reduction operators to be applied to the sequences of values returned from the
iterative construct:

% Use of a Reduction Operator to compute N Factorial

FacN : =
for initial
C:=1
while C < N
repeat
C:=0dC +1
returns value of product C
end for

This example introduces a new form of the returns clause. As well as returning the last
value bound to a name, it is also possible to combine all the values associated with the
name in the init clause and successive loop cycles.

4.2.5 Forall Expressions

It is often required to perform the same computation on each of a set of values. In con-
ventional languages it is necessary to use an iterative construct even if the computation
for each value in the set is independent and evaluation could have proceeded in parallel.
The factorial example used above could have generated the sequence of numbers to be
multiplied together without using a recurrence equation.

SISAL has another style of for expression for computing a set of results for each value
produced by a generator. The simplest generator yields all the integers in a range. The
example below computes the factorial and also provides the sum of the squares of the
numbers from one to N:

% Compute Factorial N and the Sum of Squares to N

FacN, SumSq : =
forCin 1, N
Sq:=C*C
returns value of product C, value of sum Sq
end for

The returns clause has the same syntax for both varieties of for expression. The results
computed for each binding created by the generator are available in the returns clause.
The set of bindings may be empty, as in the case where N is less than one. If the returns
clause employs a reduction operator, the appropriate unit value will be returned, so the
example above would yield one for FacN and zero for SumSq.

4.3 DATA STRUCTURE

4.3.1 Arrays

So far only simple data values have been illustrated, although practical programs will
require more sophisticated data structures. SISAL permits arrays of any type of value.
The following type declarations introduce one and two dimensional arrays of real
numbers:
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type Vector = array [ real };
type Matrix = array [ array [ real ] ];

Arrays are similar to those in Algol68, values having bounds determined at run-time by
their defining statements. The statements below show forms for building array values,
including an array with no elements and an array whose elements are all the same. In
the case of an empty array it is not possible to determine the type from context, so the
type Vector is given explicitly.

Array access uses conventional syntax and there are functions for enquiring the
bounds and number of elements in an array. Array catenation appends the elements of
the second array to the first, continuing the bounds from the upper bound of the first
array:

Arrl := array [ 1: 1.0; 2: 40 ];
Arr2 : = array Vector [ ];

Arr3 := array_fill( 1, 10, 0.0 );
El2 := Arrl[ 2 ];

Size3 : = array_size( Arr3 );
Up2 := array_limh( Arr2 );

Arrd := Arrl || Arr3;

The repetitive constructs can be combined with array data structures in a flexible
fashion. Previous examples have shown how the series of values computed in an iterative
loop may be added or multiplied together. It is also possible to form the series of values
into an array:

% Double Each Element of Array ArrA

ArB :=
forIinl, 10
Double : = ArrA[l] * 2.0
returns array of Double
end for

The for in repetitive form can be used to operate on all elements of an array simultane-
ously. A generator for use with arrays makes the elements of the array available directly
without explicit subscripting as in the version below:

% Double Each Element of Array ArrA

ArB : =
for El in ArrA
Double := El * 2.0
returns array of Double
end for

The number of values generated depends on the size of the array. The corresponding
indices are available via the extended generator:

for El in ArrA at_index Ix

For each invocation of the for in expression body there will be corresponding bindings to
El and Ix.
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The SISAL dot construction allows corresponding elements of more than one array to
be processed. The example below computes the inner product of two arrays and forms
an array containing the sum of the corresponding elements of the original arrays:

% Compute Inner Product of ArrA and ArrB and Pointwise Sum

InnerProd, ArrC : =
for ElA in ArrA dot EIB in ArrB
P .= ElA * EIB;
S:= EIA + EIB
returns value of sum P, array of S
end for

There is also a cross product syntax, useful for handling matrices, equivalent to nesting of
for in expressions.

4.3.2 Streams

It is intended that SISAL arrays should be thought of as single objects to be manipu-
lated as a whole. Hence an implementation will generally require that all elements of an
array have been given values before any part of the array may be used. As a conse-
quence there may be synchronization after a repetitive construct which generates an
array.

SISAL streams, on the other hand, may be viewed as sequences of values, produced in
order, individual elements being available as soon as they are computed. Functions
operating on streams may act as filters, passing on only some of the input values, or
computing a function of the values as they arrive.

The operations available on streams are more limited than those on arrays. Streams
may be built in much the same way as arrays, although no index values are required.
The size of a stream may be enquired and the first element may be extracted. A func-
tion is available which strips off the first element, leaving the rest of the stream:

type IntStream = stream [ integer ];

Strl := stream [ 1,4,9,25];
Str2 : = stream_rest( Strl );

El2 : = stream_first( Str2 );
Size ; = stream_size( Str2 );

The repetitive constructs may yield streams as well as arrays, and values of the result will
be made available as soon as possible. The transforming and filtering applications of
streams are illustrated by the following two examples. The first squares every element of
a stream while the second rejects negative elements:

% Transform a Stream by Squaring each element

ResStr :=
for El in ArgStr
Sq:= El * El
returns stream of Sq
end for
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% Remove Negative elements from a Stream

ResStr ;=
for El in ArgStr
Neg := (El < 0.0)
returns stream of El unless Neg
end for

In the second example the resulting stream is formed by appending each element in the
stream to the result, unless the corresponding value of Neg is true. There is a keyword
when which complements unless.

Streams of any data type are permitted, although the intended application of streams
makes a type which is a stream of a stream, of little interest.

4.3.3 Records

Record types may be used. Creation of records is similar to that for arrays, but uses
field names rather than index values. Field selection is as in Pascal:

type Complex = record [ Re, Im: real |;

X := record [ Re: 10.0; Im: 3.1 ];
Y := record [ Re: X.Re; Im: -X.Im J;
Z := X replace [ Im: -X.Im ];

i

The expression for Z yields the same value as Y; the replace form is useful for manipulat-
ing records with many fields and yields the record given as its first argument, but with
some fields taking new values.

4.4 OTHER LANGUAGE FEATURES

A number of aspects of SISAL have been omitted from this introductory tutorial. There
are a number of additional operations available on arrays and streams, and further
reduction operations are provided. Simple boolean and character types are available, along
with the familiar operations on those types.

The only form of expression omitted, tagcase, is used to access a type which acts as the
disjoint union of existing types. A tag value indicates the component type present in a
particular instance of the union type and is used to select the appropriate clause of the
tagease expression. Union types may be defined recursively, allowing data structures such
as trees and linked lists to be constructed without the use of a pointer type.

A major area not mentioned in this introduction is the handling of errors by SISAL.
Every operation and every form of expression in a SISAL program has a well-defined
behaviour in the presense of errors. Each data type contains special error values which
are returned as the result of any expression of the given type generating an error, or
receiving an argument which is an error value. Errors will therefore propagate through
expressions and be returned as the result of the program. A program may take special
action in the presence of recoverable errors by using the special boolean function is_error
which can be applied safely to any value.
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4.5 SOME COMPLETE SISAL PROGRAMS

The programs given below are adapted from Appendix D of the SISAL Language Refer-
ence Manual [3].

4.5.1 Sorting

The first example uses a parallel algorithm based on QuickSort. The parallel for expres-
sion yields three arrays, containing all values less than, equal to, or greater than the

pivot:

% QUICKSORT

%

% Split the argument array on the basis of the first element,

% applying the algorithm recursively to the two unsorted arrays

type Vector = array | real |
function QuickSort ( Info: Vector returns Vector )

if array_size( Info ) < 2

then
Info
else
let
Piv = Info[l];
LLMR:=
for Data in Info
returns
array of Data when (Data < Piv),
array of Data when (Data = Piv),
array of Data when (Data > Piv)
end for
in
QuickSort( L) || M || QuickSort( R )
end let
end if

end function
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4.5.2 Prime Numbers

The second example uses stream filters to compute a sequence of Prime numbers using
the Sieve of Eratosthenes:

% SIEVE

%

% Create a Stream of all Prime Numbers less than N?
% by the Sieve Method

type IntStream = stream [ integer ]
function Sieve ( N: integer returns IntStream )
function Filter ( S: IntStream; N: integer returns IntStream )

let
P := stream first( S );
R := stream_rest( S );

F.=
ifP >N
then R
else
let
G:=
for Vin R
NotPrime : = (mod( V, P) = 0)
returns stream of V unless NotPrime
end for
in Filter( G, N )
end let
end if
in stream [P] || F
end let
end function
let
StartList : =
for [ in 2, N*N
returns stream of [
end for
in Filter( StartList, N )
end let

end function
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4.5.3 Quadratuire

The final example is a recursive Adaptive Quadrature program for integrating a given
function over a specified range. The original example is more complete, handling error
situations.

% QUADRATURE
%
% Integrate the function F over the given range

function Integrate ( Low, High: real returns real )

% The Function to Integrate
function F ( X: real returns real )
X5 X

end function

% Compute Approximation using Trapezoidal Rule
function Area ( Low, FLow, High, FHigh: real returns real )
(High - Low) * (FHigh + FLow) / 2.0

end function

% Recursively sub-divide are until approximation is acceptable
% Provided with functions at end points and crude area of Trapezium
function Quad( Low, FLow, High, FHigh, Trap: real returns real )

let
Mid : = (Low + High) / 2.0;
FMid := F(Mid );
LTrap : = Area( Low, FLow, Mid, FMid );
HTrap : = Area( Mid, FMid, High, FHigh );
in
if Abs( LTrap + HTrap - Trap ) < Epsilon
then LTrap + HTrap
else
Quad(Low,FLow,Mid,FMid,LTrap) +
Quad(Mid,FMid,High,FHigh,HTrap)
end if
end let
end function

let

FLow := F( Low );

FHigh := F( High );
in

Quad( Low, FLow, High, FHigh, Area( Low, FLow, High, FHigh ) )
end let

end function
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5 Functional Programming

J. Darlington

5.1 INTRODUCTION

Functional languages have had a small band of very enthusiastic advocates for many
years now. Their origins as practical languages can perhaps be traced to the develop-
ment of LISP by John McCarthy in the early 60’s but their ancestry goes directly back to
the lambda calculus and recursion equation notations developed by workers in
mathematical logic in the 1930°s. For the last ten years functional languages and related
technologies have been developed by, amongst others, Backus, Burge, Burstall, Hender-
son, Landin, MacQueen, Turner and the author. With notable exceptions this has been,
until lately, largely a British phenomenon. However, functional languages are now
beginning to attract a much wider interest and several developments, not least the advent
of highly parallel VLSI architectures, are promising to translate the theoretical advan-
tages of these languages into practical reality.

This article attempts to introduce the reader to the functional languages, briefly
describing most aspects concerned with their development, implementation and use.

5.1.1 Foundations of Functional Languages

Functional languages trace their origins to the lambda calculus developed by Alonzo
Church in the 1930°s [1]. This calculus arose from work on basic computability theory
and in particular the attempt to define precisely the intuitive notion of which functions,
of the positive integers, could be computed in a mechanical or algorithmic way.
Church’s proposal, which became known as Church’s Thesis, was that these effectively
calculable functions should be identified with those functions that are expressible in a
simple calculus, the lambda calculus. Although not amenable to formal proof Church’s
Thesis is now universally regarded as true, which makes the lambda calculus not a bad
base on which to design a programming language.

In Church’s lambda calculus expressions, called lambda expressions, are used to denote
functions. Thus the expression

Ax.x2 + 2

denotes the function which when applied to a number squares it and adds 2 to it. A
lambda expression has two parts. The part up to the dot is called the bound variable
and the part after the dot is called the body. The process of putting the two halves
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together is termed abstraction, as the function denoted by the lambda expression is
abstracted from its body.

Functions denoted by lambda expressions are applied in the normal way by juxtapos-
ing them with their argument, thus

Ax.x% + 2) (5

denotes the application of the denoted function to the value 5 and evaluates to 27.
A lambda expression can also appear in an argument position as in

(M. £(5)) Axx® + 2

which evaluates again to 27. Note that the bound variable f in this case is ‘function
valued’.

These lambda expressions form the well formed formulas of the lambda calculus. The
calculus is completed by a set of rules of lambda conversion i.e. rules that convert one
lambda expression to another without changing its meaning. These rules are purely syn-
tactic and can be applied without knowing the meaning of the expression.

There are three such rules. The first (the alpha-rule) says that we can change the name
of the bound variables as long as we do it consistently. The second (the beta-rule) is the
most important, and corresponds to function application. It says that lambda expres-
sions of the form (Ax.M) N can be converted to the form M[N/x] i.e. M with N substi-
tuted for x, again as long as we do it consistently. The third rule is the opposite of the
beta-rule and says that any expression can be converted to an abstracted function re-
applied to appropriate arguments.

The basic idea behind the lambda calculus is that application of these rules
corresponds to evaluating a program (or effectively computing a function) as they can be
applied mechanically. An application of the beta-rule is termed a reduction. If A can
be converted to B using only alpha and beta rules A is said to be reducible to B. An
expression that cannot be reduced any further is said to be in normal form. Normal
form lambda expressions correspond to the result of evaluating a program. Normal
forms are unique (up to applications of the alpha-rule).

In reducing a lambda expression there may be several choices of what to do next.
The main theorem of the lambda calculus, the Church-Rosser theorem, states that it does
not matter in what order things are done, all paths lead to the same result. Furthermore
if B is a normal form of A, A is convertible to B using only reduction steps. These
results make the lambda calculus a very tractable discipline on which to base a computa-
tional formalism.

Another formalism that also has had an influence on the design of several functional
languages, Kleene recursion equations [2], has the same origins as Church’s lambda cal-
culus, namely the search for a formal notation to try and capture the notion of effectively
computable functions. Kleene recursion equations again are a method of denoting func-
tions, in this case by sets of mutually recursive equations.

For example the equations

Ack(n, 0) =n+1
Ack(0, m + 1) = Ack(l, m)
Ack(n + 1, m + 1) = Ack(Ack(n, m + 1), m)

define the famous Ackermann function. The general form of these recursion equations is
a set of, possibly mutually recursive, equalities concerning the functions being defined.
The form of expression allowed on the left hand side of these equations is restricted and
they are meant to be used in a left to right manner as production rules. There may be
several equations mentioning the same function on the left hand side and these equations
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are distinguished by the terms occurring in the argument position, e.g. the first equation
above is meant to be used for evaluating the Ackermann function when its second argu-
ment is zero, the second equation when the first argument is zero and the second non
zero and the third when both arguments are non zero.

The functions definable using Kleene style recursion equations are exactly those
definable using lambda expressions which gives even greater credence to the claim that
they both correspond to the set of all effectively calculable functions.

5.2 FUNCTIONAL PROGRAMMING

The object of writing a functional program is, not surprisingly, to define a set of func-
tions. Thus functional programming can be carried out in any conventional language,
such as Pascal, which has a function definition capability. As we shall see, however,
there are fundamental differences between functions as defined in Pascal and those
defined in functional languages.

5.2.1 Introduction

In a functional language, such as HOPE or KRC, a program is a set of equations
defining functions in terms of other simpler or primitive functions.
For example

max(x, y) = if x > y then x else y

defines the well known maximum function in terms of the primitives if then else and >.
The program

maxof3(x, y, z) = max(max(x, y), z)
max(x,y) = if x > y then x else y

shows the use of a defined function in the definition of a more complex function. Notice
that in the above program there is no ordering implied on the equations. The execution
of a functional language program involves evaluating an expression using the equations
of the program as directed, left to right, rewrite rules. Thus, for example, to find the
maximum of the three numbers 3, 5, 7 one evaluates the expression maxof3(3, 5, 7) which
goes through the following rewrites before being reduced to the number 7

maxof3(3, S, 7)

= max(max(3, 5), 7)

= max(if 3 > 5 then 3 else 5, 7)
= max($, 7)

= if 5 > 7 then 5 else 7

=17

Functional programming systems are usually interactive. A user, characteristically, is
allowed to develop his program incrementally by adding or deleting equations and at any
time he can ask the system to evaluate a typed in expression. The system responds by
printing back the reduced answer.

Functions can, of course, be defined in terms of themselves, using recursion.

factorial(n) = if n = O then 1 else n * factorial(n-1)

Many functional languages rather than having one equation for each function being
defined allow the programmer to write several equations, each one dealing with a partxc-
ular case in the manner of Kleene recursion equations.
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Thus

factorial(0) = 1
factorial(n+ 1) = (n+ 1) * factorial(n)

defines exactly the same factorial function as above. The first equation deals with the
case where the number input is zero and the second with all numbers that are greater
than zero. Note that in order to preserve the property that the order of the equations is
not important we require that for any value at most one equation should apply. This is
most easily achieved by requiring that the cases covered by each equation are disjoint.

5.2.2 Data Structures

Structures are handled in functional languages by introducing a special class of func-
tions, called constructor functions. No equations are written to define constructor func-
tions, they simply act to build data structures. More accurately terms built out of con-
structor functions and constants (i.e. unary constructor functions) name data structures.

For example lists can be defined by introducing two constructor functions. One, nil,
names the empty list. Traditionally the other, two argument, constructor is written as
an infix operator “.”. Thus the term 1.(2.nil) names the list with two elements 1 and 2
conventionally written as [1, 2].

Equations can be written to define functions over structures just as they can over
scalars.

For example

length(nil) = 0
length(x.) = 1 + length(l)

defines the function that calculates the length of a list. Note how the ability to write
patterns in the left hand side of the equation not only gives one the ability to decide
what case to select but also the ability to decompose the structure and name the com-
ponent parts. Thus the “I” on the right hand of the second equation names the tail of
the list input i.e. the list minus its first element. This process of pattern matching is a
feature of the advanced functional languages shared with the logic languages and adds
great power, often removing the need to define explicit conditionals or selector functions.

Evaluating a program manipulating structures involves exactly the same process as
evaluating one involving only scalars. Thus to calculate the length of the list that we
would informally write as [1, 2] we reduce the expression length(1.(2.nil)). The reduction
process continues, as before, until no further reductions are possible and the expression
consists solely of constructor functions or constants. This is illustrated in Figure 5-1,
which assumes + as a built in primitive.

Note that we can formally treat scalars as terms built from the constructor functions 0
and successor (written as +1). Thus it makes sense to write n+1 in the left hand side
pattern or even n+2 but not n+m. The two former expressions being syntactic sugar
for successor(n) and successor(successor(n)) respectively but the later implies a non deter-
ministic split of the input value which is not allowed.

This view of structures as terms in constructor functions allows functional languages
to deal directly with structures that would be termed ‘abstract’ in more conventional
languages. For example binary trees shaped as shown in Figure 5-2 can be introduced
by defining two new constructor functions, atom to build the leaf objects and free to
build interior nodes. Thus the tree in Figure 5-2 is named by the term
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length(1.(2.nil))

|

1 + length(2.nil)

|

1 + (1 + length (nil))

|

1+ (1+0)

|
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2
Figure 5-1

1 2
Figure 5-2

tree(tree(atom(1), atom(2)), atom(3))
and a function to rotate such tree structures can be written as

rotate(atom(n)) = atom(n)
rotate(tree(tl, t12)) = tree(rotate(t2), rotate(tl))

Thus rotate(tree(tree(atom(1),atom(2)),atom(3))) reduces to:
tree(atom(3),tree(atom(2),atom(1)))

which names the tree shown in Figure 5-3.

5.2.3 Higher Order Functions

All realistic functional languages are what is termed higher order. This means that func-
tions themselves can be passed around as data objects just as scalars or lists. This is in
keeping with the doctrine that in a soundly based programming language all objects
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2 1

Figure 5-3

should have full ‘rights’ and that there should not be first and second class citizens.

Thus in functional languages there are expressions that evaluate to objects that are
function valued. We have actually already seen such objects. Having defined a program
(equations) for the function factorial, the identifier factorial has as value the factorial
function. Functions are applied to their arguments by juxtaposition in the normal way,
with or without bracketing according to the style of parsing used e.g.

factorial 3 or factorial(3)

It is often convenient to be able to define a function without having to give it a name
that is globally available as is the case with factorial. Several functional languages utilize
lambda expressions for this purpose. For example a lambda expression of the form
lambda n = 2 * n evaluates to a function which multiplies the number to which it is
applied by 2. Thus (lambda n = 2 * n) 4 evaluates to 8.

The following program computes the list of all the factorials from 1 to n by first con-
structing the list of integers from 1 to n and then using the map function to apply the
factorial function to each element. Note that the second argument of map is function
valued.

listoffact(n) = map(listo(n), fact)
map(nil, f) = nil

map(n., f) = f(n).map(],f)
listo(n) = listfromto(1, n)

listfromto(i, j) = if i > j then nil

else ilistfromto(i+ 1, j)
1

(n+1) * fact(n)

fact(0)
fact(n+1)

Similarly

listofsquares(n) = map(listo(n), lambda n = nz)

produces the list of squares of numbers up to n. Note that it is of course impossible to
use a lambda expression to denote a function that needs to use recursion in its definition
as there is no function name available to apply to achieve the recursive call!

An alternative mechanism employed in some functional languages is the use of partial
parameterization. Here a function of several arguments is applied to fewer arguments
than required to produce a function ‘expecting’ the missing arguments.

For example given the max function which expects two arguments
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max(x, y) = if x > y then x else y

we can apply it to only one argument as in max(3) to produce a function of one argument
that when applied to a number returns that number if it is greater than 3 and 3 other-
wise. ie.

max(3) 4 is equivalent to max(3, 4).

The existence of higher order functions provides the basis for 4 powerful programming
style in functional languages. For any data structure one can define a set of general pur-
pose ‘iterators’ that walk over the data structures applying functions passed as parame-
ters in various ways. Given a rich enough set of these higher order functions most pro-
grams can be implemented as specific instantiations of these functions, removing the
need to write explicit recursions in the main program.

Functions can also be written that return functions as values. The classic example is
function composition

compose(f, g) = lambda x = f(g(x))

$0 compose(lambda n = n?, lambda n = 2 * n)4 evaluates to 64.

This use of function forming functions (sometimes known as functionals) leads to a
style of functional programming popularized by Burge and Backus and embodied in the
language FP (see below). Here programs are constructed at a higher level of functional
abstraction and the main building blocks are function forming functions such as com-
pose. In effect a program that would normally be expressed as a sequence of transfor-
mations on objects is replaced by a sequence of transformations on functions the result
of which is then applied to the object.

5.2.4 Set Expressions

One powerful idea that has been adopted in several functional languages is the use of set
abstraction. Relative set abstraction was first introduced in Zermelo-Frankel set theory as
a mechanism for defining sets in terms of qualified selections from other sets. It has
been adopted into functional languages to provide a convenient syntax for a particular
higher order iterator over sets.

For example, consider the problem of calculating all the right angled triangles that
can be constructed, whose sides are integer valued and less than a given size. If we
represent a triangle as a triple of integers representing the sizes of the three sides this
function can be written directly thus,

triangles(n) = {(n1, n2, n3) | 0 < nl, n2, 3 < n & n1? + n2? = n3?)

A set iteration consists of two parts: a generator, in this case 0 << nl, n2, n3 < n,
producing candidates for possible inclusion in the answer set; and a predicate, in this
case n12 + n2? = n3? selecting which of these are to be included.

Set abstraction was first employed as a specification language in [3], its incorporation
into a functional programming language as an executable feature was first suggested in
[4] and implemented in [S]. SETL [6], used sets as a basic control primitive. HOPE,
KRC and Miranda all use set expressions. For an elegant exposition of the power of set
expressions see [7].
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5.2.5 Qualified Expressions

Often the right hand side of an equation will contain more than one occurrence of the
same subexpression as in

g(x) = if x = O then O
else x+(g(x/2) * g(x/2))

This repetition of the same expression will do no harm to the meaning of the program
because, as we shall see below, it is an important property of functional languages that
the same expression in the same context always evaluates to the same result. However,
the repeated re-evaluation of the same expression can have disastrous consequences for
the efficiency of the execution, especially if, as in our example, the redundancy occurs in
a recursive call that will exponentially amplify it.

This potential inefficiency is simply overcome in functional languages by the use of
qualified expressions which allow the programmer to name the repeated expression and
then refer to it by that name.

Thus many languages employ a construct such as

Bwherey = A

where the variable named y can be used to refer to the expression A throughout B. So
our example above could be written

gx) = x + (y * y) where y = g(x/2)

It is important to realize that this is not assignment as the value of y does not change
throughout its use. The meaning of any expression involving where is always equivalent
to that of the expression where the qualified variable has been resubstituted with the
expression it denotes.

Many languages allow the use of pattern matching in where expressions just as they
allow it on the left hand side of equations. Thus

quotrem(x, y) =if x <y then (0, x)
else (1 + m, n)
where (m, n) = quotrem(x - y, y)

is a function to calculate the quotient and remainder of a pair of numbers. Note that
quotrem as well as taking a pair of numbers as arguments returns a pair of numbers and
that pattern matching (of a simple form) is used in the where construct.

5.2.6 Typing

The concept of #yping is orthogonal to whether a language is functional or not; however
functional languages have several advantages when it comes to developing powerful typ-
ing systems, and many functional languages have typing systems in advance of any avail-
able elsewhere. Three of the most developed functional languages ML, HOPE and
Miranda (see below) all employ the polymorphic typing system developed by Robin
Milner [8]. This supports a strong typing discipline but allows variables to appear in
type statements thus avoiding many of the rigidities found in strong typing as employed
in, say, Pascal,

Using the Milner algorithm one can either ask the user to give the types of his func-
tions prior to their definition, and then check that the expressions he types in are con-
sistent with the information he has given; or infer the types of the functions as he inputs
them, and signal an error if it is impossible to do this consistently.
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HOPE adopts the former strategy, ML and Miranda the latter. For example in
HOPE before defining the factorial function one would have to give its type

dec fact : num — num

fact(0) = 1
fact(tn+1) = (n+1) * fact(n)

In ML and Miranda the type would be inferred (from knowledge of the types of the
basic functions) and presented to the user.

Polymorphism appears trivially in the definition of the identity function (a function
one would actually never need to write in a functional language). In HOPE this would
be

typevar alpha (introducing a type variable)
dec id : alpha — alpha
id(x) = x

Thus id is restricted only in that the type of its output must be the same as the type
of its input. It can be applied to objects of any type, numbers, characters, trees etc.

Polymorphism is much more useful when it is applied to data structures. Thus, for
example, the same list building and manipulating functions can be used for lists of
numbers or lists of lists or lists of trees in contrast to the situation in Pascal where these
all would be different types requiring separate function definitions.

Functions are, of course, a type and the full definition of our compose function in
HOPE would be

typevar alpha, beta, gamma
dec compose: (beta — gamma) X (alpha — beta) — (alpha — gamma)
compose(f, g) = lambda n = f(g(n))

(If E1 and E2 are type expressions E1 — E2 is the type expression denoting functions
from El to E2).

The Milner algorithm is not generally applicable to non-functional languages. It is
our experience that the combination of strong typing and polymorphism provides a very
powerful aid to correct program development and is essential for any realistic program-
ming language.

One crucial point to note is that functional languages are deterministic. For any given
input they will always give the same answer. Furthermore all pure functional languages
have the Church-Rosser property: alternative sequences of evaluation, if they terminate,
always lead to the same answer.

The above describes the main features of most modern functional languages. There
are matters we have not considered such as syntactic extensions and modular structures
but we have covered the main building blocks. Functional languages are characterized
by the small number of basic concepts employed and the consistent way these are com-
bined to form powerful notations. Most functional languages are very simple to learn
once the basic concepts have been grasped.
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5.3 FUNCTIONAL PROGRAMMING METHODOLOGIES

5.3.1 The Importance of Functional Languages

The reasons why functional languages are considered important and a significant ad-
vance on conventional languages are threefold. First, it is held they are intrinsically
more powerful languages than conventional ones, so program construction is a simpler
and less error prone task. Second, formal manipulation of functional programs is possi-
ble, enabling the process of program transformation, the systematic derivation of efficient
programs from specifications, to be supported. Third, parallel evaluation of functional
programs is easy to organize, allowing the design of very fast, extensible, multi-processor
machines. We will return to these points in more detail below but it is worth taking
some time to consider the theoretical reason behind all these claimed benefits.

Pure functional languages are referentially transparent. This means that programs
written in functional languages can be considered static objects and that the meaning of
an expression in a functional language depends on the meaning of its component subex-
pressions and not on the history of any computation performed prior to the evaluation of
that expression. There is thus a clean notion of equivalence between expressions and
equivalent expressions can be freely substituted for each other in any context without
changing the meaning of the whole expression. Clearly mathematics is referentially tran-
sparent and 3 + 2 is equivalent to 5, so 3 + 2 can be substituted for 5 in the expression
8 * 5 yielding 8 * (3 + 2) without changing the meaning of the whole (40).

It would be very difficult to consider doing mathematics with a language that was not
referentially transparent; it is one of the ground rules for any notation to be comprehen-
sible and manipulable and this applies to notations for writing programs as much as
notations for writing mathematics.

Languages with variables that can be assigned to are not usually referentially tran-
sparent. The meaning of an expression involving such variables can vary according to
the history of the computation performed prior to the evaluation of that expression.

Thus a programmer writing a functional language program is free to concentrate on
the declarative reading of his program, what will be computed not how it will be com-
puted, as the meaning of the program will be independent of the order of its evaluation.
A programmer in a conventional, sequential, language must take care that all his opera-
tions are performed in the right order to achieve the correct result, an extra intellectual
responsibility, and one that mitigates against comprehensibility, modularity or
modifiability.

5.3.2 Specification

Programming in functional languages lends itself very nicely to a process of specification
or prototyping prior to the development of efficient programs. It is very natural, when
using a functional language, to develop a model of the system one is attempting to build.
If one disregards the need for efficiency it is very natural to write programs in a func-
tional language that very directly specify what is to be computed. The point is that
specification and program are written in the same notation and specifications can be run
or interrogated to test out one’s ideas on an emerging system or demonstrate the
intended capability to a customer.

The power of functional languages for specification purposes can be extended by
removing some of the restrictions placed on the notation to permit efficient interpreta-
tion. As we saw earlier functional languages are a subset of a general equational
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language, a subset chosen to allow the equations to be used as directed rewrite rules. If
one is not concerned initially with evaluation one can remove these restrictions and allow
a user to define functions using general equations.

For example given a definition of multiplication by repeated addition

mult(a, 0) =0
mult(a, b+1) = a + mult(a, b)

It is natural to specify a function to perform (exact) division by the general equation
mult(div(n, m), m) = n

Such an equation serves perfectly well to define div, it is just not, at first glance, a
program that would enable us to compute divisions.

Other ways a functional language can be extended for specification purposes include
allowing equations over infinite sets or lists that are not constructable but perfectly well
defined. For example the following ‘program’ specifies the ordered list of numbers that
are composites of 2, 3 and 5, the well known Hamming problem,

hamming = order(composites)

composites = {2 « 3/ » 5K | i, j, k = 0}
order(S) = min(S). order(remove(min(S), S))
min(S) = {s | s€S foralls' € S: s’ = s}
remove (x, S) = {s | sES & s5x}

The point is that composites is an infinite set so min(composites) is not executable.
However the above serves as a perfectly adequate specification of hamming which can be
at least symbolically evaluated and interrogated using theorem provers rather than
efficient program executors and can be systematically transformed to an efficient pro-

gram.

5.3.3 Transformation

Having established a satisfactory specification the next step is to develop an efficient pro-
gram to accomplish the task. The idea underlying transformation is that the specification
should be systematically manipulated in order to produce this program. The critical
requirement is therefore for a set of manipulation rules that allow programs to be
transformed improving their efficiency while leaving their meaning unaltered. It is a
great advantage of the functional languages that such a set of manipulation rules can be
simply provided. Because functional languages are referentially transparent they can be
manipulated just as familiar mathematical forms are manipulated. The ‘=" sign in a
functional program really is equality and equivalent expressions can, by and large, be
interchanged freely without the need for elaborate checking. This is the basis for the
unfold/fold system of program transformation first developed in [9). This is a set of six
simple rules for transforming functional programs. These rules have been proved correct
once and for all so there is no way their application can change the meaning of a pro-
gram, thus doing away with the need for a separate proof of the correctness of each
transformation attempted. Such a simple set of rules would be impossible to obtain for a
conventional language such as Pascal.
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The example below shows a very simple transformation of a program to compute the
average of alist of numbers to a more efficient version.

Specification/Ineitial Program

average(1) = div(sum(l), count(l))

sum(nil) =0
sum(nl) = n + sum(l)
count(nil) = 0

count(n.l) = 1 + count(l)

Transformation

Introduce a new function (guaranteed to preserve the meaning of the program as it does
not overlap with any case previously defined).

av(l) = (sum(l), count(l)) A)
Instantiate this equation

av(nil) = (sum(nil), count(nil))
Symbolically evaluate this equation

av(uil) = (0, 0) (®)
Again instantiate (A)

av(nl) = (sum(n.l), count(n.l))
Symbolically evaluate

av(nl) = (n + sum(l), 1 + count(l))
Re-arrange

avinl) = (n + u, 1 + v)
where (u, v) = (sum(l), count(l))

Use (A) ‘backwards’

avinl) = (n+ ul +v)
where (u, v) = av(l) ©

Rewrite the original equation for average

average(l) = div(u, v)
where (u, v) = (sum(l), count(l))

Again use (A) backwards
average(l) = div(u, v)
where (u, v) = av(l) D)
Final Program

The net result of the above manipulations is three new equations (B, C, D) that have
been systematicaily derived from the initial program and taken together constitute a
more efficient program for average
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average(l) = div(u, v) where (u, v) = av(l)

av(nil) = (0, 0)
av(nl) = (n + u, 1 + v) where (u, v) = av(l)

As well as being correct the unfold/fold system has been shown to be powerful in that it
is capable of expressing a wide variety of substantial transformations, e.g [10, 11].

The simple formal nature of transformations in a functional language presents the
possibility of at least partially mechanizing the process. The system described in [12]
enables a user to design his program, by writing a structured transformation plan utiliz-
ing high level transformation operators, that is executed by the system that implements
the transformation as a sequence of the lowest level, correctness preserving, operators.
Such a system, we consider, combines the precision and accuracy of formally based pro-
gram development with the practicality and intelligibility of structured program design.
The fact that the program design is itself a formal object, the transformation plan, has
very important advantages when it comes to program modification and maintenance. It
is ironic that of all the professions, programming itself is still relatively unautomated. It
seems necessary that computers contribute materially to the programming process if
software development is ever to reach the standards of accuracy, reliability and replica-
bility that are required. The combination of functional languages, specification, transfor-
mation and semi-automatic program development systems seems to offer a feasible route.

5.3.4 Parallel Evaluation

The design of computer architectures to take advantage of the opportunities for parallel-
/ism inherent in functional and related languages is dealt with in depth elsewhere in this
volume. It is worth pointing out here, however, that the reason why it is much simpler
to organize parallel evaluation for functional programs than for programs in a sequential
language is exactly the same reason as conveys all the other advantages alluded to above,
namely possession of referential transparency.

For example consider our original program for the average example give above

average(l) = div(sum(l), count(l))
If we attempt to evaluate average(1.(2.(3.nil))) application of this equation leaves us with
div(sum(1.(2.(3.nil))), count(1.(2.(3.nil))))

to compute.

It is clear that the computation of sum(1.(2.(3.nil))) can proceed independently of the
computation of count(1(2.(3.nil))) because of the absence of any time dependent
behaviour. They can therefore be computed in parallet with consequent gain in
efficiency. Note that the transformation performed above only affects an improvement if
the target machine is a sequential one. It is often the case that a parallel implementation
allows the efficient execution of what would otherwise be viewed as preliminary
specifications or inefficient initial programs. We are not claiming that the advent of
parallel architectures will do away with the need for the careful design of good algo-
rithms, either by program transformation or by informal manual methods; they will,
however, lift the level in doing away with the final, awkward, step of fitting the func-
tional program to the sequential nature of the machines currently in use.
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5.4 SEQUENTTIAL IMPLEMENTATION OF FUNCTIONAL LANGUAGES

Anyone implementing a functional language on a conventional, sequential, machine faces
several problems. The very nature of the languages makes them somewhat unsuited to
the machines inn existence today and in order to preserve their pure nature, which is
really their raison d’etre, one has either to put up with a certain degree of inefficiency or
expect the compiler to do more work than would be necessary for a sequential language,
such as Pascal. It has been the case traditionally that functional languages are happiest
when implemented on machines with large unsegmented virtual address spaces and
significant amounts of real memory. However certain very impressive implementations
have been developed lately and functional languages are beginning to be fitted onto
machines at the micro end of the range.

It is very gratifying to be able to report that implementations of functional languages
on parallel machines seem easier than on sequential machines. It is our experience on
the ALICE project [13], that in a parallel context many of the problems previously asso-
ciated with implementing functional languages either disappear or have much more
efficient solutions. A HOPE compiler for ALICE, written in HOPE itself, described in
[14], illustrates this point well.

5.4.1 Implementation via Transformation to a Sequential Language

Instead of attempting to implement a functional language on a sequential machine by
direct interpretation or compilation one can transform the functional language program
to a program in a conventional sequential language which can then be evaluated in the
traditional way. Early work on program transformation tended to regard functional
languages as purely specification languages and envisaged a final phase of translation to
a sequential language. With the growing interest in functional languages as program-
ming languages in their own right this route has been neglected; it could still offer some
advantages. The main point is that almost all the transformations necessary to produce
an efficient sequential program can be carried out as source to source transformations at
the functional level, where programs are more amenable to manipulation, and the final
translation to a conventional language can be automatic. Even features such as storage
overwriting, which do not have a meaning in a functional language, can still be treated at
the functional level as described in [11]. Working at this level it is possible to achieve
much more significant transformations than if the equivalent program were expressed in
a sequential language and one may actually end up with a more efficient program start-
ing with an inefficient functional language specification, rather than attempting to
directly write an efficient sequential language program.

5.4.2 Interpretation and Source Reduction

The simplest way to implement a functional language is to develop a source interpreter
that mimics the operational semantics for functional languages we described earlier, i.e.
expression rewriting. Here the program and expression to be evaluated are parsed to
give tree structures and the interpretive loop consists of detecting a rewritable subexpres-
sion within the expression being evaluated and performing the appropriate substitution.
Such interpreters are, of course, rather <low in execution but can be instrumented to pro-
vide a great deal of intelligible information about program execution and therefore make
excellent program development tools.
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5.4.3 S.E.C.D. Machine Implementations

Many implementations of functional languages that use compilation are based on the
S.E.C.D. machine. This is an abstract machine developed by Landin [15] to support the
evaluation of lambda calculus expressions. It is a register transfer machine and its name
derives from the designation of the four principal registers used.

As with all machines the S.E.C.D. machine has its own machine code. Thus a func-
tional language program is compiled to a program in this machine code which when exe-
cuted, according to the semantics of the S.E.C.D. machine, terminates with a value
equivalent to that which would have been obtained by direct reduction of the functional
langnage program.

The main problem to be overcome in the design of such an abstract machine is to
fully support functions. Functions can be created dynamically and applied at points
remote from their definition. To be implemented correctly functional languages must
obey static binding rules, that is any free variables in a function body must take on the
values they had when the function was defined, not the values they have when the func-
tion is applied. This is handled in S.E.C.D. style implementations by representing
dynamically created functions by an object called a closure which can be viewed as a pair
consisting of the function body and the environment pertaining at the time of that
function’s definition. Thus when such a function is applied the current environment is
suspended and replaced by the environment part of the closure.

The four registers in an S.E.C.D. machine are

S the stack, which is used to hold intermediate values generated during the evaluation
of an expression.

E the environment, which holds the values bound to variables during evaluation.
C the control list, the machine language program being executed.

D the dump, a stack used to hold the suspended computation when a new function is
applied.
An excellent description of the S.E.C.D. machine and the way it can be used to sup-
port a functional language can be found in [16].

5.4.4 Graph Reduction Implementations

All languages, functional or otherwise, in current use today employ variables as a con-
venient way of referring to entities created during computation. So even if one does not
allow variables to be assigned to, one is still faced with the task of deciding what is the
current value of a particular variable symbol. The S.E.C.D. machine uses the classic
technique of employing an environment, some association of variable symbols with their
current values, to tackle this problem. This is not the only solution though and several
functional language implementations have pursued the alternative solution of actually
replacing the occurrence of the variable symbol by its value, that is copying the function
body with the appropriate substitutions made, rather than creating a new environment
and leaving the function body unaltered.

The technique of evaluating a functional language program by rewriting an expression
where the expression is represented in (directed, acyclic) graph form is, not unnaturally,
known as graph reduction. An impressive implementation of a functional language that
uses a compilation approach to graph reduction is described in [17]. Here a compiler for
a functional language FC, a subset of ML, operates by compiling each function, viewed
as a rewrite rule, to a sequence of instructions for an abstract graph reduction machine,
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called the G-machine. The G-machine code for a function manipulates the graph to
reduce a function application to its value. The G-code is then translated into sequences
of native code for a VAX-11 that directly perform the required rewrites. The resulting
implementation is very fast indeed.

The furthest one can go in avoiding the use of variables, and therefore the need for
closures, is to compile the program to a form that does not involve variables at all.
Turner [18] presents an approach following this route where the program is compiled to
a machine code consisting entirely of combinators from combinatory logic [19]. The
compiled program then consists entirely of an expression built from applications of a
fixed set of combinators. There is a set of rewrite rules for certain combinator
configurations that is fixed across all programs so evaluation consists simply of reducing
the combinator expression using these rules. The simplicity of this idea has prompted a
hardware realization in the form of a sequential combinator reduction machine [20].

The appeal of the combinator approach is that it reduces the problem of evaluating a
functional program to a small number of primitives. The disadvantage is that the combi-
nators define rather small transformations and combinator expressions for non-trivial
user functions may become quite large and thus require a correspondingly greater
number of steps to interpret. Hughes [21] refines the combinator idea and uses an
infinite (program dependent) set of ‘super-combinators’. A program is translated into an
expression containing super-combinators and a set of super-combinator definitions.

5.5 FUNCTIONAL LANGUAGES

5.5.1 LISP

LISP started life as a pure functional language [22]. It was quickly ‘improved’ by adding
features, such as assignment, designed to increase performance on sequential machines.
There has been widespread use of LISP particularly in the US Artificial Intelligence com-
munity for many diverse applications, powerful user support environments have been
developed (e.g. INTERLISP) and powerful single user workstations have been designed
for LISP. Recently there has been a resurgence of interest in pure LISP, and LISPKIT
[16] represents an interesting return to pure LISP.

5.5.2 ML

ML is a functional language developed at Edinburgh University as part of the LCF
theorem proving project [23]. Although initially conceived as a meta-language (hence
ML) to direct proof systems it is a powerful general purpose higher order functional
language employing the Milner polymorphic typing algorithm. There are several imple-
mentations of ML, primarily in LISP.

5.5.3 HOPE

HOPE is a polymorphically typed higher order recursion equation based functional
language. It is a successor to an earlier first order recursion equation based language,
NPL [5], that itself grew from work on program transformation. The first implementa-
tion of HOPE was at Edinburgh University [24]. There are now implementations at Bell
Labs and at Imperial College, London, where it was the initial language behind the
design of the parallel graph reduction machine, ALICE [13].
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5.5.4 SASL, KRC, Miranda

Turner has been responsible for a series of higher order functional languages [25], cul-
minating in Miranda which is a polymorphically typed, higher order, recursion equation
based functional language. Several implementations of these languages exist in C and
BCPL.

5.5.5 FP

FP is a functional language developed by John Backus and popularized by his Turing
Lecture [26]. FP has a style that can best be described as APL’ish as it shuns the use of
variables and concentrates on the use of operators. FP has many enthusiastic followers,
particularly in the U.S; several implementations have been developed and several novel
architectures designed around FP.

5.6 APPLICATIONS OF FUNCTIONAL LANGUAGES

Functional languages have potentially universal applicability. They are general purpose
programming languages and could ultimately replace sequential languages completely.
However, we have a long way to go before this happens. With the outstanding exception
of LISP it is probably fair to characterize functional languages as emerging from adoles-
cence into full maturity. They have much theoretical potential but they are only just
beginning to become widely appreciated. Many significant applications have been car-
ried out, some of which are mentioned below. Experience with these projects seems to
bear out the advantages claimed for functional languages.

By far the widest experience has been with LISP. Since its development in the 1960’s
it has become the language of the U.S. Artificial Intelligence community and has spread
widely into other fields. LISP’s sparsity of syntax and the fact that programs and data
share the same representation makes it very attractive as a systems programming
language and almost all advanced Al language implementation work is carried out in
LISP.

A feature of LISP’s development is the large amount of effort that has gone into the
development of programming environments. INTERLISP is the best known of these and
has grown over the years as the result of many people’s efforts and now provides a very
powerful collection of editing, debugging and general programming support tools.

A multiplicity of applications have been written in LISP including algebraic manipula-
tion systems, planning and learning systems, robot controllers and automatic program-
ming systems. One must record that all these systems have been written in ‘dirty’ LISP
but recently interest has revived in the pure subset and some large systems are being
recoded. Interest in LISP has extended to the development of high powered work sta-
tions optimized for LISP which have now been in commercial production for many years
and are proving very popular, especially in the U.S.

Around the universities there has been much interest in, and use of, pure functional
languages. HOPE has been used at Edinburgh to write sophisticated mathematical and
program specification packages [27]. Also at Edinburgh, Feather used NPL to fully
specify the text formatter from Kernighan and Plauger [28], and transformed this, com-
pletely mechanically, to an efficient implementation [29].

At Imperial much of the system and application software for the ALICE graph reduc-
tion machine [13] is written in HOPE. In particular Ian Moor has developed a HOPE
compiler for ALICE that is completely written in HOPE. This covers the whole
language and certainly qualifies as a significant sized application at around 5,000 lines of
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HOPE [14]. Other system software written in HOPE includes the meta-language pro-
gram transformation system [12], and a variety of text and structure editors. Several of
the interesting application programs have been written as student projects. It is worth
recording our local experience that undergraduate students, by and large, take to func-
tional languages very enthusiastically, and their productivity and accuracy is markedly
higher using functional rather than conventional languages. Applications that have been
developed include a picture description package in HOPE [30], that allows complicated
scenes to be described purely declaratively or statically; a tax guidance program; and an
intelligent structure editor that allows a user to input a language syntax definition in
B.N.F., and produces for him a structure editor/program input system for that language.

An interesting experiment is reported in [31]. Here an experiment was performed
implementing the Unix parser generator Yacc in SASL and comparing it to the sequen-
tial implementation. The conclusions can be summarized as supporting the claims made
for functional languages as regards programmer productivity and code compactness
(although the latter was not improved by as much as had been hoped); confirming that
strong typing and data encapsulation are even more essential in a functional language
than an imperative one; and indicating that debugging of functional language programs
is a difficult activity needing more research attention.

Henderson has used LISPKIT extensively to develop an operating system and suite of
program development tools [32].

In the US. Buneman and his colleagues at the University of Pennsylvania have
developed a functional language with a data base query facility. This language FQL [33],
is actually in commercial use and being used by, amongst others, travelling salesmen who
use it to interrogate their companies® data bases over phone lines.

5.7 FUTURE DEVELOPMENT OF FUNCTIONAL LANGUAGES

Research in functional languages is continuing apace in all areas of application, program-
ming methodology and support, language design, implementation techniques and
machine design. We consider that the future prospects are very promising as all the
developments in supporting technologies are moving in directions that will enable the
theoretical advantages of functional languages to be fully exploited. The prospect of a
complete functional language programming environment, allowing program specification
and formal transformation, all running on a highly parallel VLSI machine, is very attrac-
tive and should be easily obtainable before the end of the decade. Such developments
will enable functional languages to offer significant cost performance advantages both in
software production and execution speed.

It is invidious to highlight any particular development in what is a very exciting field
but two aspects that are particularly exciting are the adoption of functional languages by
commercial concerns and the growing convergence between the logic and functional
languages.

As we saw earlier there have been sufficient applications of functional languages to
demonstrate their practical utility, but real progress will only be made when organiza-
tions, separate from sites developing functional languages, use them on problems of com-
mercial interest to them. This is starting to happen to a significant degree and provides
valuable feedback to the designers of these languages.

The logic and functional languages are basically similar. Both are based on
mathematical notations providing the opportunity for formally based program develop-
ment and parallel evaluation. The differences are that functional languages are deter-
ministic, they are often typed, to our eyes they have a richer and more readable syntax
and make powerful use of higher order facilities. What they lack in comparison to logic
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languages is the sort of control structure that allows a relation, once defined, to be used
in several modes. Analysis of the reason for this difference points to the fact that the
logic langnages employ unification, a generalization of the pattern matching employed in
functional languages. However it has been shown [34] and [35], that unification can be
smoothly incorporated into functional languages.

The resulting languages possess all the control structure flexibility of the logic
languages while retaining all existing advantages of the functional languages. Parallel
developments on the logic side open up the very real possibility of a unified logic and
functional language being developed in the near future.
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6 Logic Programming and Prolog

W. F. Clocksin

6.1 AN HISTORICAL INTRODUCTION

Logic programming has come about as a result of earlier work on mechanized theorem
proving. One of the first serious studies of the mechanization of reason was carried out
by the 17th Century mathematician Gottfried Leibniz, with his proposal of the calculus
ratiocinator. The disappointed Leibniz failed in his attempt to devise the ratiocinator,
and had to content himself with inventing (with Newton) the differential and integral cal-
culus.

Since the work of Herbrand [1] in the 1930’s, much research in mechanized theorem
proving has been carried out by Davis, Putnam, Prawitz, and others. The growth of
interest which has produced the field as we know it today can be traced from Robinson’s
paper [2] in which a description of the resolution principle first appeared. Resolution is a
generalization of modus ponens and makes use of a powerful pattern matching operation
called umﬁcatton Siekmann and Wrightson [3] give a comprehenswe collection of the
earlier papers in the field.

The development of logic programming as an area of study in its own right can be
traced to the work of Green [4], Hayes [5], Kowalski [6], and Alain Colmerauer. Around
1970, Kowalski and Colmerauer were led to the fundamental idea of programming in
logic: that logic can be used as a programming language. The acronym Prolog --
Programming in Logic -- was contrived at about this time, and the first Prolog inter-
preter was implemented by Roussel at Marseille in 1972.

The idea of using subsets of first order predicate calculus as a programming language
was a significant contribution, because, until about 1970, computer scientists had used
logic only as a specification language. However, Kowalski [7] and others showed that
logic has a procedural interpretation as well, making it possible in principle to use logic as
a programming language. The subsequent development of efficient implementations of
Prolog compilers [8, 9] has shown that it is also practical and efficient to use subsets of
logic as a programming language. The programming language Prolog is not a pure logic
programming language, but it is the first widely available language that has been inspired
by logic programming concepts.

The main thesis of logic programming, as expressed by Kowalski [10] is that an algo-
rithm can be usefully expressed in two components: the logic and the control. The logic
is the statement of what the problem is: properties of the problem and the solution. The
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control is a statement of how it is to be solved. The ideal goal of logic programming is
that the programmer need only specify the logic component of an algorithm. The con-
trol should be exercised by the computer. This ideal has not yet been achieved, but it is
an interesting research methodology to determine the extent to which useful programs
can be written using only logic. Several benefits could accrue if this goal is met:

(1) It is easier to reason about statements in a logic program.

(2) A large number of problem solving methodologies can be conveniently represented
in logic [11].

(3) There are more opportunities for the exploitation of parallelism.

(4) Using a single uniform formal system may bear helpful consequences for software
engineering.

In order to achieve this goal, two problems need to be solved. The first is the control
problem. Currently, programmers need to provide small but undue amounts of control
information, partly by ordering the clauses and goals in a program, and partly by the use
of extra-logical “features” in the language. Although experienced and fluent Prolog pro-
grammers can write idiomatic and hence “better” programs having little or no control
information, some control problems have still not been solved satisfactorily.

The second problem is the regation problem. Since only positive information can be
a logical consequence of a database, special rules are needed to deduce negative informa-
tion. Thus, existing interpreters cannot implement negation, but only a problematic ver-
sion by means of the negation by failure rule. Current research is aimed at understand-
ing negation and finding a more satisfactory implementation.

Today logic programming is a well established and quickly growing field in computer
science. Although initially established in Britain and Europe, it has recently attracted
considerable attention in the USA and Japan. There are now several international
conferences and workshops per year, and a new journal devoted to logic programming
has been founded. Textbooks on logic programming [12,11], mathematical reasoning
[13], and Prolog programming [14] are available. Prolog has been widely used in the
areas of artificial intelligence and design automation, and we will survey some of these
applications in this tutorial. See [15] for a recent discussion of the current major issues
in logic programming: comparison with functional programming and with languages
such as Prolog, and the combination of object language and metalanguage. A survey of
the theoretical foundations of logic programming is available in [16]. A more
comprehensive history of logic programming has been written recently by J A Robinson
[17].

6.1.1 The Future

Prolog is only a first step in the practical use of logic programming. Promising areas of
active interest include the following:

®  Databases. Logic programming could make important contributions to our con-
cepts of database systems: using logic as a uniform language for data, programs,
queries, views, and integrity constraints has great theoretical and practical potential
[18,19,20].

®  Concurrency. We need ways of understanding and exploiting the parallelism impli-
cit in a logic program. Recent explorations in this direction are PARLOG [21] and
Concurrent Prolog [22,23,24]. PARLOG has a rich set of control features
expressed by annotations, while Concurrent Prolog is very simple.
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®  Semantics. Improvements in how the semantics of logic programming and of Pro-
log {25, 26] can be expressed have been made recently by (27,28, 29].

®  Other Logics. Bowen [30] investigates the issues involved in programming in full
first-order logic. Moszkowski and Manna [31] propose the use of temporal logic as
a programming language. Deduction methods for Ss, a modal logic, have been
developed [32,33]. There is increased interest in unifying logic programming with
functional programming [34]. Using many-sorted equational logic as a program-
ming language has been proposed by [35].

®  Efficiency. Ways of speeding up Prolog programs are under investigation. Further
work on portable compilation [36] is needed; work is in progress on “intelligent”
backtracking [37] and processors more suitable for running logic programs are
under development [38].

®  Tools. Logic Programming needs software engineering (and vice versa). One way
forward is to investigate the use of logic as a specification language; logic programs
can then be derived by using program transformation techniques [39]. Prolog needs
a module system; many have been proposed [40]. A polymorphic type system and
checker based on the work of Milner has been devised by Mycroft and O’Keefe
[41]. Automatic debugging of Prolog programs has been investigated by Shapiro
[42]. Software engineering of some aspects of Prolog has been investigated by
Mellish [43] and Bruynooghe [44].

6.2 PREDICATE CALCULUS

6.2.1 Syntax

We begin with a quick review of the syntax for Predicate Calculus (PC). We shall use
the version known as PC with equality. The following symbols are used:

° variables. Variables are written in lower-case, and are drawn from the last few
letters of the alphabet (examples: x, y).

®  constant symbols. Constant symbols are written in lower-case, and are drawn from
the beginning of the alphabet and from the digits (examples: a, nil, 0, 1).

®  function symbols. Function symbols are constant symbols having an arity, which is
a positive number specifying how many arguments the function takes. Constant
symbols can be thought of as function symbols of arity 0.

®  predicate symbols. Predicate symbols are written with an initial upper-case letter,
and have an arity. There are two reserved predicate constants T and F, which will
be used to stand for “true” and “false”.

Terms are constructed from applying a function symbol to constants and variables. The
syntax of terms is defined recursively by three rules:

(1) Constants and variables are terms.
(2) Iffis a function symbol of arity n, and t,,...,t,, are terms, then f(t,,...,t,) is a term.
(2) A sequence of symbols is a term only on the basis of rules (1) and (2).

An atomic formula is a predicate symbol applied to terms. If P is a predicate symbol of
arity n and t,...,t, are terms, then P(t,,...,t,) is an atomic formula. The predicate symbol




82 Declarative Systems

‘=" of arity 2 is usually written infixed between its arguments: for terms t; and t, t;=t,
is an atomic formula.
The following are statements (or Formulae):

atomic formulae.

~S§ for statement S.

S1 A\ §, for statements S; and S,.
S, V §, for statements S; and S,.
S| D S, for statements S, and S,.
S| = §, for statements S, and S,.

Vx.S the universal quantifier, for variable x and statement S.

3x.S the existential quantifier, for variable x and statement S.
Some examples of statements are as follows:

Vx. Number(x) O Jy. x = succ(y)
Vx.Vy. add(x,y) = add(y,x)

A literal is an atomic formula or a negated atomic formula. A positive literal is a literal
without a negation sign; a negative literal is a negated literal.

6.2.2 Semantics

An interpretation of a statement S consists of a nonempty domain D, and a set of assign-
ments to each constant, variable, function symbol, and predicate symbol occurring in S
as follows:

(1) To each constant, and to each variable, we assign some element in D.
(2) To each n-ary function symbol, we assign a mapping from D" to D.
(3) To each n-ary predicate symbol, we assign a mapping from D" to {T,F}.

For every interpretation of a statement over a domain D, the statement can be evaluated
to T or F according to the following rules:

(1) If the truth values of statements S, S, and S, are evaluated, then the truth vatues of
~S, G NS, G VS (S O8,), and (S; =S ;) are evaluated using the classi-
cal truth tables for these connectives.

(2) Vx.Sis evaluated to T if S evaluates to T for every assignment of a member of D to
X; otherwise it is evaluated to F.

(3) 3x.S is evaluated to T if S evaluates to T for at least one assignment of a member
of D to x; otherwise it is evaluated to F.

If a statement evaluates to T in an interpretation ¥, we say that ¥ is a model of S, or
that S has a model ¥. A statement S is satisfiable if and only if it has at least one
model (that is, iff there is at least one interpretation ¥ such that S is evaluated to T in
¥). A statement is unsatisfiable if it has no models. If a statement S evaluates to T in
all interpretations, it is called valid and we write S. Note that if S is unsatisfiable, then
k~S. Examples of valid statements are:
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