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FOREWORD

The idea for this Conference arose from a desire by specialists in magnet computation at the Rutherford
Laboratory to have discussions with their counterparts in industry and unversities, Usually in the past
this particular topic has been submerged in meetings catering for the much wider field of magnet technology,
i.e. Intermag and Magnet Technology conferences. That we were justified in arranging Compumag has been

demonstrated by the enthusiastic response -~ over 200 participants from 15 countries.

Whilst the standard achieved in the Conference must be judged by the guality of the papers appearing in
these Proceedings, it cen be said that most aspects of the field were covered and the discussions both in
and out of the formal sessions were very valuable. A highlight of the conference was the specially set up
magnet design work station, based on a GEC LO80 computer linked to the Rutherford Laboratory's IBM 360/195
computer, A series of demonstrations using these facilities served to indicate the importance of computer
aided graphics techniques in magnet design. In this connection I should particularly like to thank the
teams from the Central Electricity Research Laboratories, Leatherhead, Imperial College of Science and

Technology, London and the Rutherford Laboratory.

I must express my appreciation to the delegates, the invited speakers, and meumbers of the various
organising committees for their efforts in meking the Conference a success and to Dr. G, Manning, deputy
director of the Rutherford Laboratory, for meking the opening address. Finally my thanks to the Science

Research Council without whose support this Conference could not have taken place.

18th May, 1976 C W Trowbridge

Editorial Note:

These Proceedings have been produced by direct photographic reproduction of material supplied by
contributors, and no changes have been made in wording or presentation. This has enabled the

Proceedings to be made available with minimum delay.
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Compumag Oxford, 31 March to 2 April 1976

COMPUTATION OF MAGNETOSTATIC FIELDS

P. Silvester

1. Mathematical Formulation of the Physical Problem.

Nearly all magnetostatic and quasi-static analyses pre-

sented to date have been based on scalar or vector potential

formulations. These often appear in the forms
div u grad ¢ = 0 (1)
curl v curl 4 = J (2)

Generally, these representations involving second order dif-
ferential operators lead to simple discrete forms and
favourable matrix properties (e.g. symmetry). In this
form, the magnetic properties are easiest to represent as
permeabilities or reluctivities. In contrast, the poten-
tials may also be formulated in terms of integral equations;
in that case, the magnetic properties are often easier to

represent in terms of a magnetisation vector M, e.g.,

T2 X’ 1aq (3)
r r

Ho [ [ Jd _4m M X »r
Such formulations frequently lead to iterative methods of
solution, since M is implicitly related to 4. 1In conse-
gquence, wide use has been made of the integral forms in two
sets of circumstances;the nonmagnetic case, in which ¥ van-
ishes, and the nonlinear case, in which iterative methods
must be employed in any event. The vector potential formu-
lation is clearly less economic computationally, since three
components must be considered. On the other hand, it is
very difficult to treat distributed currents by the scalar
potential technique, so that it is most useful where magne-
tic fields exterior to relatively thin conductors are to be
calculated.

The differential eguation formulations (1) and (2) re-
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quire solving a three-dimensional operator equation of the

form

DV = G (4)
where D is a differential operator and its associated boun-
dary conditions, V is the variable sought, and ¢ represents

the given sources and boundary condition inhomogeneitiés.
It is widely recognised that if ¢ and D depend (in some co-
ordinate system) only on two coordinate quantities, V does
likewise, and the problem may be reduced to one in two di-
mensions. It is less well understood that an equivalent
treatment is possible if ¢ is guite general, but D depends
on only two coordinate quantities. In such cases, V and

¢ may be expanded in terms of suitable orthogonal functions,
leading to replacement of the three-dimensional problem by
a set of two-dimensional problems, which may be solved se-
parately.

25 Discretisation of the Continuum Equations.

Two major discretisation methods have been widely em-
ployed: finite differences and finite elements. In the

former, the scolution is approximated at certain selected
points in the region of interest, while in the latter, an
approximation uniquely defined everywhere in the region is
sought.

Finite difference methods tend to result in very large
and very sparse systems of equations, for whose solution it-
erative methods have traditionally been employed. However,
there exists good evidence that direct solution methods
which take account of matrix sparsity are at least competi-
tive with iteration techniques. Iteration methods suffer
from two grave shortcomings in magnetostatics: their conver-
gence is very slow, and there is no valid nonlinear theory

to serve as a guide in choosing acceleration and stabilisa-
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tion factors. The slowness of convergence is inherent in the
interface conditions (large permeability ratios typically en-
countered, thus it is a result of the physical problem rather
than of its mathematical treatment.

Finite element methods lend themselves well to the con-
struction of Newton minimisation schemes, which do not suffer
from the convergence troubles encountered by finite differ-
ences. They are geometrically flexible, allowing curved
shapes to be modelled as well as rectilinear ones. The
systems of algebraic equations to be solved are usually
smaller and denser than with finite differences; thus sparsi-
ty-exploiting direct solvers are attractive, though some it-
erative techniques have been used as well (e.g., conjugate
gradients) . For integral equations, element functions need
only possess CO continuity, and are thus relatively easy to
construct (even though the resulting integrals are not al-.
ways easy to evaluate) by Galerkin projections. For dif-
ferential equation problems, Cl continuity is required;
suitable functions are easy to construct for the scalar case,
but not for the vector case if restrictions are to be placed

on the divergence of 4.

3. Computational Considerations.

The mathematics of finite elements have now reached a
level of development exceeding that of finite differences.
Concurrently, practical algorithm development has been car-
ried far by engineering analysts. Unfortunately, much less
attention -- one might almost say none -- has been paid to
establishing principles and standards of generally useful
software. There are as many conventions and standards as
programming groups, so that virtually every mathematical
step has to be re-created by every programming group.

At present there exists no generally agreed language or
terminology, oriented toward finite mathematics and computa-
tional solutions, for the description of magnetic field pro-
blems. This lack not only renders communication between
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programs incredibly difficult, it also leads to much fruit-
less discussion between analysts. Much wvaluable manpower
and ingenuity is at present being wasted in the creation of
input languages and data structures suitable only for speci-
fic, strongly restricted, analysis programs. In the future,
effort needs to be directed to producing well-documentéd,
generally useful software modules, and on which specific ap-
plications programs can be based. The ability to create
these, however, presupposes agreement on the form of data
structure for representing problems to be analysed.

Only rarely is the field solution itself of use to the
analyst. Much more often, he seeks functionals of the
field -- inductance values, generated voltages, lifting
forces, power losses. The calculation of such quantities
again requires the problem description, as well as the com-
puted solution for the field, to be embedded in a data
structure of standard form.

4. Conclusions.

Many good static field analysis programs now exist,
particularly for two dimensional problems. Further work
on nonlinear problems, especially in three dimensions and
using integral equation formulations, may be anticipated.
However, the greatest need at present is for standardisa-
tion of data bases so as to permit analysts to link toge-
ther already existing program segments.
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Discussion following paper:

(Fox, Oxford) (1) I would comment that the strongly implicit methods
of Stone and corresponding factorization méthods of people like Golub and
Concus should be included in your list of methods. They seem to me to
form a very satisfactory balance between iterative methods and direct
methods, with more connection with the latter. I agree that direct

methods have many attractions.

(2) It surely isn't true that Newton's method always converges from an
arbitrary start? The method might be slow if you have to compute the
Jacobian matrix all that often and although Newton has guadratic converg-

ence, ie e = kev2 (where e, is the error), this doesn't say that

v+l
the number of significant figures is doubled at each stage. It is true

for sufficiently small v if k is not too big.

(Silvester, McGill) (1) I agree that semi-iterative (or semi-direct?)
methods have many attractions, even though they are not widely used at

present.

(2) For magnetostatics problems, where reluctivity and its first deriv-
ative are monotonic, the usual finite-element functionals are convex.

Thus Newton's method converges. Unless really extreme saturation levels
are encountered, starting Newton from a null solution (ie assuming the
magnetic material to be linear) often yields potentials accurate to within
a factor of two. In other words, one correct binary digit is usually
achieved on the first or second Newton step. This starting point appears
to be sufficiently near the solution to produce nearly quadratic con-
vergence subsequently. Typically, 16 correct bits are obtained in the
fifth or sixth iteration, if the maximum flux density in the problem is

around 2.0 - 2.5 tesla.
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(Jacobs, CERL) I am interested in the second method you described for
treating problems in infinite regions which utilizes a linear operator
for the imposed boundary condition at the artificially included finite
boundary. Yet another method utilizes the inversion in a circle for two
dimensions (on a sphere for three dimensions) of the outer part of the
problem which extends to infinity. Thus one cbtains two finite problems
forming a discus or hyperdiscus matched on the common boundary. The
resulting movement of rectangular coordinate nodal points (if used) to
model such a curved boundary concords with your comments on the longer
time spent on deriving the algebraic equations. With finite element
methods one can also develop specific "infinite" elements which extend to
infinity.

(Silvester) I guite agree. Inversion mappings have been used for
various problems with good success; their main disadvantage I believe is
a fussy and uneconomic program structure. Infinite finite elements
(defined on an unbounded geometric region but bounded in energy) have been
successfully used for various two-dimensiocnal problems; they produce the

desired boundary operator directly.



Compumag Oxford, 31 March to 2 April

MAGNETOSTATIC FIELDS COMPUTED USING AN INTEGRAL EQUATION DERIVED FROM
GREEN'S THEOREMS.

J Simkin and C W Trowbridge
Rutherford Laboratory, Chilton, Didcot, Oxon, OX11 0QX

ABSTRACT

A method of computing magnetostatic fields is described that is based on a
numerical solution of the integral equation obtained from Green's Theorems.
The magnetic scalar potential and its normal derivative on the surfaces of
volumes are found by solving a set of linear equations. These are obtained
from Green's Second Theorem and the continuity conditions at interfaces
between volumes. Results from a two-dimensional computer program are

presented and these show the method to be accurate and efficient.

1. INTRODUCTION

The present generation of computer programs for calculating magnetostatic
fields in three dimensions are expensive to use and they will continue to
be until new algorithms are developed. Changes in computer hardware, eg.
parallel processors, may make it possible to obtain solutions more quickly,
but, it is doubtful whether the amount of storage available will change

significantly. In this paper the numerical solution of an integral equation -

derived from Green's Theorems is shown to have many advantages over existing

integral equation methods.

Integral equation methods are now widely accepted and the Rutherford
Laboratory program GFUNSD(]},which solves the integral equation for the
volume distribution of induced magnetisation, has been successfully used
for the design of many magnets. As an example of the accuracy of this
program the measured and computed results for the homogeneity of an
essentially two-dimensional C shaped dipole magnet are shown in Figure 1.
This accuracy (better than 1 part in 10%) was obtained by using 10 minutes
of CPU time on an IBM 360/195, a cruder model capable of 1% accuracy would
typically require 10 seconds CPU time. In the case of strongly three-
dimensional magnets however, 60 minutes of CPU time are probably required
for an accuracy better than 1%. Furthermore, for complex problems even

when the magnetisation distribution has been computed, the time taken to
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compute fields at particular points is not trivial.
HOMOGENEITY, IN

J PARTS M 10
X (cw)

SOLID LINE _  GFUN COMPUTED
-6 = POINT VALUES MEASURED RESULTS

-8

FIGURE 1 - MEASURED AND COMPUTED HOMOGENEITY OF THE FIELD PRODUCED BY
A C-SHAPED MAGNET WITH SMALL POLE TIP SHIMS

Iselintz) has proposed a scalar potential method that may prove to be more
efficient than GFUN3D which uses the three component magnetisation. An
alternative approach is the Boundary Integral Method, this method is based
on the numerical solution of an integral equation for the magnetic scalar
potential, derived from Green's Theorems. This approach has already been

used for the solution of linear flow and elasticity proh]ems.(s’h’S)

For linear problems, ie. constant permeability, it is only necessary to
define the boundaries of regions with different permeability, together with
a far field boundary condition - however the far field boundary can be
expanded to infinity. A region may consist of several surfaces that do not
touch or intersect and this fact together with the use of symmetry allows
the calculation of fields with minimal effort. In an appendix an extension

is discussed that will make it possible to include non-linear permeabilities.
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To determine the magnetic field distribution in a region the magnetic scalar
potential and its normal derivative to the boundary must be computed over
the surface of the region. This is done numerically by sub-dividing the
surface into small areas over which the potential and normal derivatives are
assumed constant. The distribution is then found by solving a set of linear

equations for the potential and its derivative.

A two-dimensional computer program was written to test the method and
compare the accuracy with existing programs. Results from several tests
are given. It is expected that this method will be even more attractive

for three-dimensional calculations.

2. THEORY
Green's second theorem can be used to relate the magnetic scalar potential
V(p) at a point p inside a volume to the magnetic scalar potential and its
outward normal derivative on the surface of the volume. The equation
connecting them is:

Vip) == [ Lozvav oo ! 12 4s - o { VE D ds ()

vo | ume

where r is the distance between the point p and an element of the volume
or surface of the region. |If the permeability of a region is constant

then:
V2V = 0

and therefore the first integral in equation (1) is zero. In Appendix 1
the use of a perturbation term based on the volume integral is shown as

a possible means of extending the method to non-linear permeabilities.

If a surface is defined just inside the boundary of a volume and this
surface is subdivided into small areas over which V and %% are constant

then equation (1) becomes:

dv,
] j 1 3 ]
Vip) = 3 [.E 5. 4 ds;. = ¥ ] & dsj] (2)
j=t,m ] 55 s;
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where the surface is subdivided into m area elements. Equation (2) can
also be used to express the potential of a point on this surface as a
function of the potential and its outward normal derivative on each

surface area element.

If the geometric factors relating to the potential and its derivative on
every element of the surface are calculated for points at the centroid
of every area element, then providing V or %% is known on every area
element, the unknown values can be found by solving a set of exactly

determined linear equations.

0f more interest is a problem consisting of regions with different
permeability where there are interfaces between the regions. For
example, consider a two-region problem, where region 1 has permeability
¥y and region 2 has permeability py. (This could correspond to region 1
being iron and region 2 air.) There must be some driving field, however
this is at present of no account expect that a distribution of field Hv
is assumed to be produced by a set of current carrying conductors. A
surface is defined just inside each region and this surface is sub-

divided into small elements with an exact correspondence between the

elements across the interface between the regions.

Equation (2) then gives for each surface element:

V.(R1) - 1= (I ) Lgs, = viR1) [ @

jR) - (T s Ty (P dsp)=0 (3)
;=I,nl i s, s;

v, (R2) - (: i R N | ds, = V. (R2) [ 2 (1) ds.)=0 (4)

k Ty i=1,n2 an s r i i siani P

where VJ{RI) are the potentials in region 1 and Vk(RZ) are potentials in
region 2. On the interface between the two regions V and %% on the surface
elements are unknown in both regions. If V or %% is known on the surface
elements that are not on the interface then the set of linear equations
formed from (3) and (4) will still be under-determined. Two extra
equations must be introduced for each interface element and these can be

obtained from the interface continuity conditions. The equations are:
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\!J.(Rl) = Vk(RZ} (5)
av, (R1) avk(Rz)
M- gl #HO(RD ) =up( 5= +H (RD)) (6)
J J k J

where H, (R1) is the outward normal component of the driving field on element

J
j of region 1. The same ideas can be applied to problems consisting of any

number of regions.

It is interesting at this stage to examine the set of equations generated
to determine V and %% in a two region problem, where there is an interface
between the regions. A pictorial representation of the equations is shown
in Figure 2. There are nl and n2 sides and ml and m2 unknowns in region I
and 2 respectively. The submatrix (1) is dense and is formed from the
coefficients from equation (3) applied to the element of region 1.
Similarly submatrix (4) comes from region 2. The submatrices (2) and (3)

are sparse (two unknowns per row) and are generated from the interface

conditions. The other areas contain zeros. |f on the boundary surfaces
where the potential or its derivative is known the value is zero then all
the right-hand sides are zero except those corresponding to the normal B

continuous boundary conditions.

je—wl —bje—— m2 —

'f V(R | o ]
al ) and "
:l' v (R1) i

an

(2) 1nterface 0
(3) Interface == E

V(R2) ! e .
-T' and 0
n2 3V (R2) .
(4) n '

| R

FIGURE 2 - A REPRESENTATION OF THE SET OF LINEAR EQUATIONS REQUIRED TO SOLVE
FOR THE POTENTIAL AND ITS NORMAL DERIVATIVE IN A 2 REGION PROBLEM
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FIGURE 3 - SUBMATRICES (1) and (2) ARE DENSE, (3) IS SPARSE

In order to make the most efficient use of existing computer programs

for solving linear equations the interface conditions can be used to
replace unknowns on the interface in region 2 by the values in the
equivalent elements in region 1. The order of the matrix can be reduced
using this technique but at the expense of the loss of the blocking that
previously existed. From a long term point of view it would be more
efficient to use the blocked matrix and special factorising methods.
Figure 3 shows the structure of the set of equations after order reduction
has taken place. In the case of a problem only consisting of interfaces

the order is reduced to half its previous size.

3. SYMMETRY

The number of unknowns in a problem can be reduced significantly when the
geometry and its associated potential distribution possesses a known
rotational or reflective symmetry. The two methods that can be employed
to make use of this symmetry are shown pictorially in Figures 4 and 5.

In Figure 4 a model of a dipole magnet is shown where the Dirichlet and
Neumann boundary values have been used to imply the rest of the model.

In Figure 5 the whole model is shown but, because the potentials in the
2nd, 3rd and 4th quadrants have an exact equivalence to those in the first
quadrant, the potentials in the first quadrant are the only ones which

must be computed explicitly.
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The far field boundary shown in Figure 5 can be expanded to infinity because
there are no boundary connections between it and the magnet; the far field
boundary then has no effect on the problem whatsoever. This:is obvious for
real problems where the potential and its normal derivative to the far
boundary can be defined as zero. It is not immediately clear in the two-
dimensional infinite 1imit because the potential from a boundary side
becomes infinite at large distances. However the divergence of the
potential from a complete surface must be zero and therefore the contri-
butions from all elements of a surface will cancel to produce zero

potential at infinity.

V=20

B C
AlR
3V -
ﬁ=0 & V =10
)
&
AlR
A V=0 D

FIGURE 4 - BOUNDARY INTEGRAL METHOD MODEL USING NEUMANN AND DIRICHLET
BOUNDARY VALUES
4. APPLICATIONS OF THE METHOD

A two-dimensional magnetostatic computer program was written to test the
accuracy and efficiency of the method. The results for the program were
very encouraging. In the program the fields from infinitely long conductors
with polygonal cross section and curvilinear faces were computed using
existing analytic expreSSIons.(?) The boundaries between regions of
different permeabilities were subdivided into plane faces over which the
potential and its normal derivative were assumed to be constant. The
expression for the potential and field from such faces are given in

Appendix 2. The integrals can be evaluated for higher order basis
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FAR FIELD BOUNDARY

FIGURE 5 - BOUNDARY INTEGRAL METHOD MODEL USING EQUIVALENT ELEMENTS AND

SYMMETRY - THE FAR FIELD BOUNDARY 15 SHOWN BUT IT CAN BE AT
INFINITY

functions but this leads to problems at external corners because the

integrals have singular kernels. This problem can be solved but it was

simply avoided in the present program by computing the potentials at the

centroid of each element where the integral is well behaved. The program

can be run interactively on- the Rutherford Laboratory IBM 360/195 and in

this version an elegant data input package was used for specifying the

boundary data of polyhedra.

5. RESULTS

The results from two test cases are included in this section; a comparison
of analytic and computed results for the field in a hollow, infinitely
long, constant permeability cylinder in a uniform external field; and a
comparison of the GFUN and Boundary Integral Method computed fields for a

two-dimensional C magnet.

(a) Hollow Cylinder. The fields in a hollow infinitely long constant
permeability cylinder in a uniform field perpendicular to the axis of the
cylinder were computed using the Boundary Integral Method. The inside

radius of the cylinder was 5 cms and the outside radius 10 cms. The
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FIGURE 6 - SHIELDING FACTOR OF HOLLOW FERROMAGNETIC CYLINDER - INSIDE
RADIUS 5 CMS, OUTSIDE RADIUS 10 CMS, PERMEABILITY 100 - AS A

FUNCTION OF THE NUMBER OF INDEPENDENT BOUNDARY FACES IN THE MODEL.
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FIGURE 7 - SHIELDING FACTOR OF A HOLLOW FERROMAGNETIC CYLINDER - DIMENSIONS
AS FIGURE 5, PERMEABILITY 1000 - AS A FUNCTION OF THE NUMBER OF
INDEPENDENT BOUNDARY FACES.
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cylinder was approximated by many-sided polyhedra and symmetry was used

so that only potentials and derivatives in the first quadrant were
computed explicitly. In Figures 6 and 7 the computed shielding factor

of the cylinder is plotted as a function of the number of boundary faces
for cylinders with relative permeabilities of 100 and 1000. The accuracy
is very good, and most of the error is due to the polygonal approximation.
The field in the hollow centre should be uniform and in the computed cases
the homogeneity was always better than 2 in 10%. An interesting point to
note about the results is that the fields at points inside the cylinder
were obtained as accurately as the shielding factor, this is not true in

the GFUN program where eigenvalue solutions can be obtained.

(b) C-Shaped Dipole Magnet. The geometry of this magnet is shown in

Figures 8 and 9, Figure 8 shows the GFUN model and Figure 9 the Boundary
Integral Method model. The results in Figure 1 have shown that GFUN
gives accuracies of the order of 0.01% for the homogeneity of this type
of C magnet. GFUN was therefore used to compute the field homogeneity
of the magnet shown in Figure 8 for steel with a relative permeability of
1000.0. In Figure 10 the GFUN results are compared to those obtained using
the Boundary Integral Method (BIM) for several different models. Symmetry
was used and therefore only the upper Y plane was computed explicitly.

(In both these cases the far field boundary was at infinity.) The results
for this case are again good. Figure 11 shows a computed map of lines of
constant scalar potential for the 140 element BIM model.

30.
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FIGURE 8 - GFUN MODEL OF A TWO-DIMENSIONAL C-MAGNET
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FIGURE 9 - BIM MODEL OF A TWO-DIMENSIONAL C-MAGNET
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ok FIGURE 11 - A MAP OF THE COMPUTED MAGNETIC SCALAR POTENTIAL FOR A
C~MAGNET
oo 6. CONCLUSIONS
The results achieved for two-dimensional magnet problems are encouraging
and appear to be competitive with other methods. The extension of the
R Boundary Integral Formulation to three dimensions is relatively straight-
forward and should in principle lead to a more efficienct algorithm than
-2.0 3 the one currently in use in GFUN. For example, the following table compares
200 SLERENV GRAGD; = SDLEBLINE: Bais JBIT (15K SKR) @ predicted computing time (seconds) for a range of problems, ie. for existing
180 ELEMENT |BM -+ By = 30357 ( 35 SEC) 2
-3.0 140 ELEMENT 1BM - g 8y = .3027T ( 15 SEC) @ GFUN, BIM and the Scalar Potential Integral Equation formulation. The
10 EEErENT 1A . By =3 & 50) table also gives times for computing a single field point.
4.0 =
Surface GFUN Scalar
- Vi iiie Magnetisation BIM Int.Eq.
5.0 4 " Method Me thod
© Elements = - -
Single Single Single
Elements Int. Field Int. Field Int. )
& in BIM Eq. i Eq. 53 Eq. Fleld
Point Point Point
T T ¥ L} T L T T T B
-5.0  -k.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 W0 5.0 216 216 114 2.16 12 0.36 k.2 | 2.16
X COORDINATE (CM) 343 294 450 3.43 30 0.49 18.0 3.43
FIGURE 10~ COMPUTED HOMOGENEITY OF THE FIELD UNDER THE POLE TIP 12 384 1488 2:12 n 0.64 35.0 5.12
OF THE C MAGNET SHOWN IN FIGURE 8. 730 L86 4320 7.30 133 0.80 162.0 7.30

10
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It can be seen that, as the number of elements increases, BIM compares
very favourably with the Scalar Integral Equation method both for the

main solution and for fields at single points.

Since the existing program is restricted to constant permeability problems
the best method for solving the non-linear problems must be established
- the multi-region option outlined in Appendix 1 Section 2 will be tried

first by modifying the existing two-dimensional program.

Finally, it should be emphasised that this method has a far wider range
of applicability than magnetostatics; for example, solution of current
flow potentials in association with eddy currents(s); also it may be
used to advantage in improving the efficiencies of programs already

developed such as GFUN for computing the fields at single points.
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APPENDIX 1

EXTENSION OF THE GREEN'S THEOREM APPROACH TO NON-LINEAR MAGNETOSTATIC
PROBLEMS.

There are two possible methods of extending the method to cover non-

linear problems; the first involves using a perturbation term based on
the volume integral in equation (1); the second would require the whole
of an iron volume to be subdivided into separate volume elements on the

surfaces of which the potential and its normal derivative are computed.

(1) Perturbation term method. The magnetic field H; at a point can be

divided into two parts - ﬁc due to currents and ﬁH due to the iron.

HT=HC+HM (7)
Since:

DivB=0
Then:

Div(uﬁc + uﬁﬁ} =0 (8)

(only isotropic materials are considered here)

iy
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From equation (8)

n

Div(uﬁM) (Vy) . QM + u(v.ﬁh)

1]

S 2u - - nioqE
(vu). HH uvev Dlv(uHc)

Since:
Div(uHc)= 0 then:

1 -
V2V = —Vu. H
v T (9)

Combining equations (2) and (9):

bvp) = [ L ow ) Ea 10 pyL ) g (10)
v L S

This equation could be solved numerically by calculating the contributions
of the volume integral when the solution for V and 2 is known., Using a

an

simple iterative scheme the values of V and %% could then be updated by
resolving equations (3) and (4) with the volume integral contribution

added to the right-hand sides and the continuity conditions modified.

(2) Volume subdividion method. The existing two-dimensional program can

be used to evaluate this method. The ferromagnetic regions of a problem
must be divided into small elements over which the change in permeability
is small. The equations to be solved are unchanged but an iterative method
must be used to converge the solutions for the permeabilities. This method
has several advantages; the matrix to be solved is banded and sparse and
has a similar structure to those obtained in finite element methods; a
numerical calculation of the gradient of u is not needed. It is hoped to
try this second method if present improvements to integral equation methods

do not fulfill their promise.

12
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APPENDIX 2

EXPRESSIONS FOR THE FIELD AND POTENTIAL FROM SINGLE AND DOUBLE LAYER
SURFACE CHARGES ON INFINITELY LONG PLANE FACES OF FINITE WIDTH

A typical region consisting of many boundary faces is shown in Figure 12.
All the expressions given below are for points in the local coordinate
system of a boundary face - Figure 13. The faces are infinitely long

and of the plane of the paper - in the Z direction:

(1) Potentials. The integrals to be evaluated are shown in equation (2).

The potential at a point p(x,y) is:

v,

v(p) = %; Dﬁ{za) + 2 531 (xtn (ry/ra) + b2n(rirg) - 2b + y8)]

where 2b is the width of the face.

(2) Fields. The field at point p(x,y) is:
H=- grad V(p)

Therefore:

s | il o d
H [\.fJ Y( —)

X 2w T12 T‘z"’
ﬂi {x (ﬂ - ﬂ) + E-ﬂ(!' /r J + b((x+b} _ (X‘b))
" l']z rs "12 F22
+ (.‘ZL = _Lz) ].‘J
r12 I‘22
1 -b) _ (x-b
Hy =7n [VJ' {‘(—_“x L . Jeh) 2)}

ro? r

v,
N NS B SRS A wyldah) | Gably o op
i rlz r‘gz r12 I’22 r7_2 rl""
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FIGURE 12 - GLOBAL COORDINATE SYSTEM,
A BOUNDARY SURFACE SUBDIVIDED INTO ELEMENTS

8

p(x,y)

FIGURE 13 - LOCAL COORDINATE SYSTEM OF AN ELEMENT
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Discussicn following paper:

(Yeh, Oak Ridge) Please elaborate on the matching of the number of

variables with the number of equations in your method.

(Simkin, Rutherford) If Neumann or Dirichlet boundary wvalues are
defined on every surface element the set of linear equations for the
unknowns is exactly determined by the Green's theorem equations for every
surface element. Where the potential and derivative are unknown on inter-
faces tlere must be an exact equivalence between elements forming surfaces
on either side of the boundary. For each pair of equivalent elements two
extra equations are cbtained from continuity of V and B across the
boundary. Thus for the pair of equivalent elements we have four unknowns
and four equations - see the section of the paper on eguation reduction.
(Rosten, CHAM Ltd) You mentioned the application of the IEM for comput-
ing the distribution of current within conductors. Would you elaborate

this point.

(Simkin)

in the volume of a general 3-D variable cross section conductor.

The IEM can be used to compute the current flow at any position
Having
computed J, the conductor fields still need to be calculated using volume
integration methods - see the paper by C J Collie on fields and potentials
from hexahedra in the Proceedings.

(Rogers, Southampton) We have used an integral equation method based on
Green's functions for each sub-region of the field. It has been success-
fully applied to the computation of functionals of the field (such as
inductance) but we have found considerable errors in the local field at
singular points. Do you have to take any special precautions to avoid

this problem?

(Simkin)

close to areas of the surface where the potential or surface tangent

The fields and potentials are well behaved except at points
changes discontinuously. At the moment the problem is avoided by displac-
ing such points a very small distance. In future higher order basis

functions will be used on our surface elements and it will be necessary

to investigate methods of overcoming these weak singularities.

Magnetostatics A2

({Ohiwa, Cambridge) Could you give me some idea of the accuracy of the

calculated field in terms of the number of mesh points, required storage

and computer time.

(Simkin) The results included in the paper give some of the figures.
Typically, for linear problems accuracies of the order of 1% can be
obtained using 200K of storage and 6 seconds CPU time on an IBM 360/195.
In solving the linear equations we have only used simple gaussian elimin-
ation and not made any use of the blocked and non-dense nature of the

coefficient matrix. The method could be made more efficient-
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A SCALAR INTEGRAL EQUATION FOR MAGNETOSTATIC FIELDS

Ch. Iselin
CERN, Geneva, Switzerland

Abstract

For the solution of magnetostatic field problems in three dimensions,

integral equation methods have been used mainly because of the following

advantages:

i)

ii)

The unknown quantities need to be calculated in iron only, i.e. the
domain of calculation is finite.

The boundary conditions at infinity are taken care of automatically,
and the magnetic field can be found correctly anywhere in space.

On the other hand, the following difficulties have been encountered

with integral equation methods:

i)

ii)

iii)

potential in iron by Galerkin's method.

The number of unknowns is large;
matrix.

it must be found by inverting a full

The condition number of the matrix to be inverted can be very large.

The magnetic field is infinite on iron edges. This makes it impos-
sible to use certain, otherwise convenient, approximations to the

magnetic field.

In this paper we propose to solve the integral equation for the scalar
It is believed that this avoids

the last two of the above problems.
1. BASIC EQUATIONS

where

The magnetostatic field obeys the two Maxwell equations

divB =0 €3]
arl H=73, (2)
B: magnetic flux density
e magnetic field strength
j: current density.

Magnetostatics A3

-+ -+
Furthermore, B and H are related by the material equation
-+ +

B = B(ﬁ) : (3)

We now introduce the magnetic field ﬁu of the coils alone, which obeys
the equations
div Hy = 0 )

-+
curl Hy = j . (5)

The field Hy can be found by the law of Biot and Savart
4y = f J?’-;-—r av . (6)
For any scalar potential ¢ the expression

A=, + grad ¢ (7)

fulfils eq. (2). Instead of using eq. (1), we can make use of the magne-
tization M of the iron

> > -
M=B-u H, (8a)
or
> >
M=M (Hy + grad ¢) . (8b)

Equation (8b) shows the functional dependence of M upon .

Equation (1) may then be replaced by

-+

Ho div grad ¢ = - div M . (9)

This has the solution

+ >
M-
r?

amigg = - [ av . (10)
iron &

It is clear that neither the potential ¢ nor the magnetization M is known

at this stage. In this paper we are trying to give a method to find the

scalar potential.

2. METHODS USED SO FAR

2.1 Halacsy's method

In the RENO computer programl), the unknown is the scalar potential.
It is found by the following procedure:

15
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i) Insert the definition B = 1H into eq. (1).
div B = div [u(H, + grad ¢)] =0 . an
ii) Combine eqs. (8) and (10) giving

(u - u,) @, + grad ¢) - T
dmugd = - f U av . (12)
T
iron
iii) Insert eq. (12) into eq. (11), yielding a rather complicated equation

for ¢.
iv) Solve the equation resulting from step (iii) numerically.

The equation for the scalar potential is solved using a regular rec-
tangular grid. This imposes important restrictions on the iron geometry.
The method is very difficult to adapt for anisotropic iron.

Note that both eqs. (11) and (12) uniquely determine the scalar poten-
tial, and that both have the same solution. This may be the reason why the
method often breaks down, due to an attempt to invert a singular matrix.

2.2 Magnetisation method

To our knowledge, the flyst authorsto use integral equation methods with
success was Trowbridge et al. 'The computer program GFUN solves the integral
equation

E O -
fi=H, - +— grad f M'Tay (13)
A, T

iron
combined with the material equation
M = M(H) (14)

in terms of the magnetization M or of the total magnetic field strength .
The method could easily be adapted for anisotropic iron. The GFUN program
has been used with considerable success in several laboratories, but it

still leaves some problems unsolved.

So far the program uses a piece-wise constant magnetization. The dis-
continuities of M on element boundaries can cause problems by allowing some
non-physical solutions to be generated and by making difficult an accurate
field calculation in the iron. One cannot use more sophisticated approxi-
mations for the magnetization, as long as they depend on values on iron
edges, since on iron edges the fields are discontinuous.

16
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Another disadvantage of this method is that its unknown is a
vector and that the number of unknowns is higher by a factor of three
compared with a method searching for the scalar potential.

3. THE PROPOSED METHOD

5.1 Basic idea

We note that the scalar potential ¢ introduced in eq. (7) must be
finite in all space. We shall therefore try to solve eq. (10)

dmugd + f M Tav=o0 (15)
T
iron
together with the material equation
M = M(H, + grad ¢) (16)
iteratively in terms of tﬁe scalar potential ¢.
Assume that after k iterations we have found a guess ¢(k). The mag-
netization is then
m - M[I—l + grad ¢(k3] an
Inserting ¢(k) and ﬁ(k] into eq. (15) we have
%, (k)
amige®™ + [ IEay - £ 40, 18)
T

iron
The idea is now to find a linear integral equation for the kth correction
a¢(k) by linearizing in the neighbourhood of our last guess:
£ L (00 gy 2p 00

7o [P® graa 2607
f v =0 . (19)

3
iron S

Here P(k) is the (3 x 3) Jacobi matrix of partial derivatives of the com-
ponents of M with respect to the components of il

3.2 Methods of solution

Let us now choose a suitable function space with the finite dimen-
sion N to approximate our scalar potential. In this space we define a
base

{,x,,2), N=1, 2,3, ..., N} . (20)
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In terms of our base the kth correction is approximated as

2™ = Y co (xy,2) (1)

n=1

Further, we define the set of functions
T - [P[k) grad ¢_]
dv

k+1)
() g
My meorif dmuod, + f = . (22)
i iron
This allows us to write eq. (19) as
N
£+ Y =0, (23)
n=1

We are left with a problem of linear algebra: that is to fit a function
f(k] in the best possible way by a linear combination of (hopefully!)

linearly independent functions wgk).

A solution to this fitting problem can be found by Galerkin's method.
We define the inner product of two functions by

(u,v) =fuv dv , (24)

the integral being taken over the iron volume only, or over the whole space,
whichever is more convenient for the functions concerned. We also select
a linearly independent set of trial functions

{tm{x,y,z), m=1, 2, 3, ..., N} . (25)

Then the relations
N
o ) + I <, (50400 0
n=1

provide us with a system of N linear equations in the N unknowns Chr

The simplest choice for the trial functions t is to use N Dirac func-
tions. The scalar products in eq. (26) then simply mean evaluation in N
different points, i.e. the correction is such that eq. (23) becomes true in
these N points.

A solution of eq. (23) in the least-squares sense means minimization
of

(600, £00

] = minimm . 27
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The trial functions are then L wn(lk]. This choice must usually be
ruled out, because the trial functions are non-zero in whole space, and
the computational effort to evaluate the inner products is prohibitive.

A compromise would be to take th = O Further investigations will
be necessary to find out if this choice is worth the effort.

4. CHOICE OF BASE FUNCTIONS

4.1 Linear base functions

For a first trial of the method the base of functions was defined in
a straightforward way. The iron was cut into small tetrahedra, allowing
a rather general geometry. On each tetrahedron the potential was taken to
be a linear function of position, defined by its values in the four ver-
tices of the tetrahedron. The magnetic field and the magnetization were
thus both constant throughout each tetrahedron, in a similar way to the
GFUN program.

The trial functions t, were taken to be Dirac functions centred on
the tetrahedron vertices, i.e. eq. (23) was solved for the tetrahedron
vertices. For simple problems, such as an iron cube in a homogeneous mag-
netic field, the results were rather encouraging. For more realistic pro-
blems, such as, for example, a race track coil surrounded by a cylindrical
iron shell, the potential values were still approximately correct in the
solution points, but very large oscillations of the potential appeared
close to the iron surface. This was because the tangential component of
the magnetic field should be nearly zero on the iron surface, which is only
possible if the potential is allowed to vary to a higher degree than linear.

The use of linear base functions seems not to be appropriate if the
number of calculation points is small. For a very fine subdivision of the
iron it may possibly give reasonable results.

4.2 Quadratic base functions

For the second test, the same subdivision of the iron into tetrahedra
was used. This time the potential was allowed to be a quadratic function
of position, defined by its values in the vertices, plus the values in the
midpoints of the tetrahedron edges. This made the magnetic field a linear
function of position in each tetrahedron. The magnetization was assumed
to vary linearly with position as well. Equation (23) was again solved
in all points with unknown potential values.

17
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The solution using quadratic base functions gave much better results
than the approach using linear base functions. Even for a rather coarse
subdivision of the iron, the results were comparable with results found
using the GFUN program, but there is still a problem left. Since the mag-
netic fields were only coupled through the potential, when going from one
tetrahedron to the next, they were not smooth on the interface. It remains
to be investigated whether a different method of numeric differentiation
of the potential gives better results. These investigations are under way.

4.3 Isoparametric base

Investigations are also under way on the use of an isoparametric re-
presentation as has been used in the finite element method*). This would
permit one to use a very general geometry and still to have a smooth mag-
netic field all over the iron. Unfortunately, due to the lack of time, no
numeric results can be presented yet.
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Discussion following paper:
(Trowbridge, Rutherford) What set of basis functions did you chose and
was the gain in efficiency expected with your method actually achieved?

(Iselin, CERN) I used three sets of base functions:

(1) tetrahedral elements with linear ¢ wvariation
(2) tetrahedral elements with quadratic ¢ wvariation

(3) 'isoparametric' (r, ¢,8) elements.

So far only case (3) gave acceptable results. The time for setting up
the matrix is comparable to GFUN, but the time for one iteration is cut
down to about 4%.
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An account for the use of the FEM for magnetostatic problems

S.J. Polak, A. Wachters, A. de Beer

N.V. Philips' Gloeilampenfabrieken, ISA-DSA/SCA

Abstract

The FEM is considered for magnetostatic problems involving
both soft isotropic and hard anisotropic

materials in this article. Special attention is paid to
existence and uniqueness aspects for these non-linear
problems. For hard anisotropic materials a new model is
introduced. The program package MAGGY contains this model and
has been used to compare calculated with measured data.

1. Introduction

In the last ten years numerous calculations have been
performed, using the FEM for the numerical approximation of
solutions of magnetostatic problems. These are e.g. mentioned
in [1] - [7]. In most descriptions no attention is paid to
the validity of this use w.r.t. existence, uniqueness and
convergence aspects. These do not trivially fit in the usual
theory because magnetostatic problems are non-linear. Only in
[2] a special approximation of the B-H curve is used for this
purpose, Here the FEM is considered for a very general class
of magnetostatic problems while paying special attention to
the above-mentioned aspects. For hard anisotropic materials

a new, simple and usable model is introduced. The model is
available in the program package MAGGY. Results from

computations with MAGGY are compared with measured data.
2. Basic notions

2.1. Suppose V an open simply connected region in R3 or R2

with closure V, §V=V\V. On V we have the usual spaces L, and

o

w% (see e.g. [9]). The space L,

and associated norm defined by

has the usual inner product

(2.1.1.)  (£,8) =/ fg dv, ||£]], = (£,©)F

Magnetostatics A4

[+]
The space wé has inner product and norm
ERt 2D (f,8)y=/ygrad f.grad g dv,||f]|w=(f,f)%

We will use Pk to denote some finite dimensional subspace of
29,
Wz.

2.2. For a magnetostatic problem on VCRs we have

(20T curl H j 5, H the magnetic field,
j the current density;

(202620) div B(H) = 0 , B the fluxdensity.

Suppose B an invertible vector function of H in the sequel,
B is continously partially differentiable w.r.t. H. We note
that !ij dv<e,

2.3. In this section 2.3. we consider the case where the
problem is two-dimensional for symmetry reasons and in
cartesian coordinates. We identify V with the accompanying

region in R,. Now j can have a component perpendicular to V

2
only and thus is effectively a scalar function. A vector

potential A is introduced with
f2w8ads) B = curl Aon V, A =0 on &V

which represents condition (2.2.2.). Because j is
perpendicular to V, A only needs to have one component,
perpendicular to V. Therefore also A is effectively a scalar
function. However where necessary A is to be interpreted as
the appropriate vector,

Remark: in this case we have |curl A| = [grad A| such that
Az0 on &V is sufficient to give: ||curl A|[ =0¢=A=0. Thus A
is uniquely defined for a certain B. The equation (2,2.1.)

then gives

(2.3.2.) curl H (curl A) = j on V, AZ0 on &V with jeLz.

19
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The FEM is usually considered as the minimisation of the

following energy integral:

B=zcurl A

(2.3.3.) E(A) = Tyl H(b).db - 2jA dv

over some Pk' This is termed the energy formulation of the

preblem. The Galerkin formulation of (2.3.2.) is

(2.3.4.) Iy H(curl A), curl f dv = Iy j £ dv for all feP

and f is interpreted as a vector perpendicular to V as usual.

In §5 it is shown that these formulations are equivalent.

2.4. For a three dimensional problem (2.3.1.) does not

uniquely define the vector potential. Thus we use a different

approach. A "source field" Hc is established with
(2.4.1.) curl Hc =

This is e.g. done with Biot-Savart's law in vacuum. For the
discussion of the FEM we assume this solution Hc with
Hc € L2 available. Then we use (2.2.2.) giving

1"
o

on V
0 on &V,

(2.4.2.) div B(H, + grad f)
£

m

The Galerkin formulation for this problem is
(2.4.3.) Iy B(Hc + grad f) grad g dv = 0  for all geP,.

3. B-H properties of various kinds of materials

3.1. Magnetic materials may be classified according to
different criteria, either in the classes isotropic and

anisotropic or in the classes of soft and hard. (see fig 1)
soft hard

isotropic Fig.1. classes of magnetic

anisotropic materials

20
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An isotropic material is characterised by the fact that a
virginal sphere has no preferred direction, Other materials
are anisotropic. Soft magnetic materials are characterised
by the fact that no field in the material can exist if no
external source for a magnetic field is present. Other
materials are termed hard.

Here we will only discuss the B-H properties of materials
belonging to the diagonal blocks of figure 1,

3.2. For soft isotropic materials the field dependence of the

flux density is well-known:
(3.2:1.) B(H) = p(|H|)H,

where the magnetic permeability p is a scalar, sothat B can
be interpreted as a scalar function of H (B-H curve), which

is differentiable and invertible.

3.3. For hard anisotropic materials the field dependence of
the flux density may be formulated as follows:

(8.48.44) B(H) = w(H)H + B,

where Br is the remanence and y(H) a tensor. In general p(H)
can not be obtained from available experimental data for
such materials. However, for sintered hard anisotropic

materials containing single domain particles one may take:

0 Yry

(3.3.2:) w(H) =y, = H.B/|B|

oy

where LYY cgn be obtained from the B-H curve and
url=1+§3/|HA[, in which MS the saturation magnetic moment
and [HA| the anisotropy field strength.

The approximation of w(H) by e.g. (3.3.2.) is justified by
experiments described in a paper of Zijlstra presented at
this conference, and a model calculation described in the

following sections.
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3.4. The field dependence of the magnetic moment of a single
domain particle can be obtained from a treatment similar to
the one given by Stoner and Wohlfarth [18]. Since the
anisotropy energy of a single domain particle is give to a
first approximation by:
(3.4.1.) Fa 2k Sin2 U
A 12
where k is a parameter depending on the temperature,wi is the
angle between the magnetization vector Mi and the easy axis
of the monocrystalline particle., In the presence of a
magnetic field H,which makes an angle oy with the easy axis,

the equilibrium direction of M; can be obtained from

£l < A 3 _ i B -
(3.4.2.) EEE(EA M; .H)=2kcosy, siny, ]Mi||H|51n(ui ¥;)=0,

sothat as shown in figure 2 the magnetization is directed

along the resultant of H and a hypothetical field HA i the
3
so-called anisotropy field of strength 2kcoswi/|Mi|.

Fig. 2. Dependence of magnetic
moment Mi of the magnetic
field H and the anisotropy
field Hy for a single

P i
domain particle

If Ms is the spontaneous magnetisation per unit volume the
magnetic moment Mi of a single domain particle per unit
volume is:

H+ H

(3:043:) My o= M A, 5 M| =M.

|H + HA,i|

3.5, The magnetic moment M per unit volume in a point in the
material may be considered as the sum of the magnetic moments
per unit volume of the particles, each with a volume Tos in a

small volume V surrounding the point sothat

Magnetostatics A4

H + HA

(3::5.44) M=% IM.r.=M_I T——————iiT T./V
i {11 sy H + HA,i i

If ri<<V the summation may be replaced by integration. For
spherical coordinates 8 and ¢ and the probability density
function f(8,4) for the distribution of the direction of
the particle magnetie moments

_ 2w H+HA(8,¢)
(3.5.2.) M(u,|Hl)=MSIDI

0 f(e,4)sin6dede/
|H+H (8,9) |

2m 7
IUIDf(6,¢)sineded¢,

where

o o
(3.5.3.) |HpC0,8) |=|H, |cose(o,4) IHAI=2k/MS 3
and due to (3.4.2.)

(3.5.4%,) cos¢(0,¢)sing(6,4) = lﬁ%— sin(a(8,¢) - w(6,9))
|8, |
% is the angle between H and the direction of the average

of HA(8,¢), which is the direction of the remanence.

3.6, For a uniform distribution:

1, for Dsesao and 0<¢<2n

3Bl Lwd f(o,9) ={
0 , for Bys6sm and 0sé<2w

the double integral of (3.5.2.) has been calculated by Gauss
quadrature, after determination of the appropriate root of
(3.5.4,), as function of H and @, Because of the appearance
of Bloch walls for |H| smaller than 0.5 H; a reversal field
H, was introduced (see paper of Zijlstra).

The results of the calculations show the following relations
for the compenents of M(a,|H|) parallel and perpendicular to

the direction of the remanence resp.

21
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(3.6.2.) M//(E,|H|)

(3.6.3.) M (o, [H])

"

M//(§;|H'I)for |H|cosu=|H'|cosa',

MS|H|sinE/([Hg| + ]H|cosEJ,(E,eo<&ﬂl

From these relations it follows that the magnetic
susceptibility, defined by M = yH + M_ is a tensor of
following form:

sothat ur// =

_ x//(|H]cosaJ 0

0

MS/(]H;| + |H|cosa)

i +x/!(|H[cosu) can be obtained from the B-H

curve if as argument the projection is taken along the

direction of the remanence. For u,, can be taken
+ |H|cosw) = 1 + MS/|H;1, since in practice

1+ M /C|H,|

lH]<<]H;| for the anisotropic materials of interest.

4, Basic inequalities

4.1, For notational ease we consider only 2 dimensional
problems in this §. This is no restriction because the

3 dimensional extension is trivial here,
The models presented in §3 are of the following form:

(4.1 B

= Z(H)H + Br

where Z(H) is a matrix and B, independant of H.
In the soft isotropic case Z(H) = u(|H|)I where I is the
identity matrix. For the hard anisotropic case we consider

(4.1.2.) 7

(H)

Wiz

0
o| 2 vy THoMps By )0 HgE,,

We note that there allways exists a d<c such that

(4.1.3.) U<dsusd-1 8 0<dsg g <a”? in the soft isotropic

case and 0O<ds

22

dB//

dH//

=d

=3

for the hard anisotropic case.
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The properties stated in the following lemma are used in §6.

Lemma (4,1.) If AH H(BZJ - H(Bi)

AB = 32 - Bl then
(4.1.4.) AH.AB 2 d71 |aB|? ,
(4.1.5.) sH.AB = d ~ |aH|? ,
(4.1.6.) |aH|s2d|aB| and |aB|s2d™|aH|

. 5 s 3 5 5 9B
proof: We first consider the jacobian matrix ((iﬁ))

In the soft isotropic case

(4.1.7.) (@2 = w([HDI-—25 27 + —2 alBl 7
|H| |H]“ a|H|
HZ H H
where 2Z'(H) = Y| is a semi-positive definite
HH H;

matrix. Also I - Z'(H)/|H|2 is semi-positive definite,using
9B L 3B 2
(4.1.3.) we therefore have |((§H))|—m§x((3§))x.x/]x] 2d>0 or

(4.1.8.) (3B x.x 2 a |x|?

From (4.1,7.) it also follows that

(4.1.9.) (8| s w+ St <2a

1

In the hard anisotropic case we chose a coordinate system
with x//Br and yi1B,. In this coordinate system we have

B
//
3B _ 0
((gﬁa) = 3H//
0 &

where with (4.1.3.) we have again (4.1.8.) and (4.1.9.).

e e s
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Using a Taylor development and ((%%)) = ((2By)™! e find

3H
(Bolol.) - (4.1.6.)

5. Equivalence of the Galerkin and energy formulation in the

two dimensional case,

5.1. For the proof of theorem (5.1.) we need the following

equality on VcRa

(5.1.1.)  f, curl H. fdv = fy H.curl £dv + f (AAXH).n do

For the two dimensional case we can still use this formula
by interpreting the vectors A, B and H as in (2.3.) and f£//A.
We assume the volume to have unit length perpendicular to
VCRZ and note that the contributions from top and bottom
planes cancel.

5.2, The operator T is defined by

(92149 TA = curl H (curl A) - j
Theorem (5.1.)

(5.2.2.)  E(A)SE(f) for all fef, &)
(5.2.3.)  (TA,£), = 0 for all fefl]

Proof: a. Suppose for a certain A and ] we have (5.2.3.),

then define

B

AE=E(A)-E(£)=/,/

¢/popp H(P).db - j.AA dv

where AA = A - f and AB = curl aAA.
We also have, using (5.1.1.) and AA = 0 on &V that

Iv j.aA dv = IV H.AB dv

Therefore
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B

AE = Jyfp_,p H(P).db - H(B).AB dv

which with (4.1.8.) gives AE<0.

b. Now suppose E(A)<E(f) for all feﬁ%. With (4.1.8.) we have

B

fg_ap H(b).db = H(B-AB).AB

B
therefore

Iy H(B-AB).AB - j.AA dv=/y H(B).AB-AH,AB-j.AAdv<AE<O

where AH = H(B) - H(B-AB) or using

IV H.AB dv = fcurl H.AA dv
we find
IV AH.AB - (curl H - j).8A dv =2 0

for all AA, Using a Taylor development for AH and taking AB
small enough this implies

ry (38 [aB|? - (curl H - 3).84 av 2 0

v

we write AA = eAA' and see that we have,ezp + e€q20 for all
e. Therefore q=0 or (TA,f) =0

6. Existence, uniqueness and convergence

6.1. In this § the theory from §2 of [10] is applied for the
magnetostatic problem, This theory is used in the following
form

Theorem (6.1.)
Let T be a mapping from ﬁ% into L2 satisfying

Q,: there existsa cg>0 such that




Compumag Oxford, 31 March to 2 April 1976

(6.1.1.) (Tu = Tv, 2); s e | Ju-v||yl12Z]]y

for all u, v and Zsﬁ% and

Qz: there exists a 02 such that

2
(6.1.2.) (Tu - Tv, u-v); 2 e, | [u=v] |y

for all u, vaﬁ%
then the problems

R : (Tu,v)L= 0 for all ueﬁ% and
R, : (Tuk,v)L= 0 for all u eP, have unique solutions,and

(6.1.3.) [ lu-ully; s D inf {||z—u||w|zePk}
for some fixed D>0

6.2. The problem posed in (2.3.) is considered here again.

The operator T is defined by

TA = curl H(eurl A) - j
Then
(TA,-TA,,A5) =/ (H(curlA, )-H(curlA))curlA, dv
and (4,1.6.) gives
|H(curlA )-H(curlA,)|s2d|curl(A -A,) |
we find, using Schwartz inequality
(TAl—TAZ,Aa)L < ||A1—A2|Lw||A3HW
which is property Ql'
¥

(TAi-TA Al—AQ)L=fV(H(curlA J=H(curlA

2
curl(A1 A2) dv

23

2k
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and (4.1.5.) gives
H(curlA,)-H(curlA,) .curl(A,-A,)z d(curl(A,-A,))?
which implies property Qz.

6.3. In this section we consider the problem (2.4.). The

operator T is defined by
Tf = div B(Hc + grad f)

As in section (6.2.) we may conclude that properties Q; and
Q2 are satisfied, this time using (4.1.4.) and (4.1.6.).

6.4, Thus for the problems posed in (2.3.) and (2.4.) we may
apply theorem (6.1.). Convergence of approximate solutions
depends on the spaces Pk. It follows from (6.1.3.) that, if

Pchk+1 and 1im P

[11].

, is dense in ﬁ% then iim u =u, see e.g.
krw ]

7. The program package MAGGY

7.1. The package MAGGY offers facilities for the
approximation of 2-dimensional magnetbstatic problems. These
problems may be either in polar, cylindrical or cartesian
coordinates. Calculations are performed using isoparametric
bilinear quadrilaterals in either of these coordinates. The
previous existence etc. considerations only apply in the
cartesian case. The problem and algorithm information have
to be given in a problem oriented language, MAGLAN.



Compumag Oxford, 31 March to 2 April 1976

The package contains an interpreter program which checks and
expands the input and also generates part of the calculating
program (e,g., dimension statements). Then a set of secondary
programs is available for plotting, printing and the
calculation of some secondary results. The package is
completely written in Fortran. MAGGY2 is an open package in
the sense that it is possible to give user chosen function
names for most numbers in the input. The accompanying
functions have to be given, immediately following the MAGLAN
input.

7.2. The checice of elements in the FEM was done with ease of
specification of the mesh as criterium rather then optimum
flexibility. However structures of complicated nature have
been analysed using MAGGY as can be seen in fig.3,5) In [3]
an easy way of specifying a quadrilateral mesh can be found.
Here an improved version is given.

A coarse quadrilateral mesh, topologically equivalent to a
square mesh, has to be provided. An example is shown in

fig. 4. The mesh is completed by the program with linear

interpolation.
2 5 Fig. 4.
5
1 23((0,6) (1,6) (5,6) (6,6)
18 3 18(€(0,3) (1,3) (4,3) (6,3)
2 i = 51(0,1) (2,1) (4,1) (6,2)
5 1 11¢0,0) (2,0) (4,0) (6,0)
10 + t + 1 10 20 30
T Yx0 1 2 3 &% 5 8
line nod 10 20 30

This mesh can be specified to the program by giving
x(1) = 40, x(10) = 2%2, 2+1, x(20) = 3*4, 5, x(30) = Ux6,
y(1) = 40, y( 5) = 3%1, 2, y(18) = Lx3, y(23) = 4x6.
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This is all the mesh information needed for MAGGY, is short
and readable.

,/’/aﬁﬁﬁ;_t:::trhh“mhx

T wOTORIdE

Fig. 5. :::: ::wn:r an @
/ near Mg

8., A comparison between computed an measured data

The flux, A(z,R)E2ﬂ£ B(z,r)r dr, in a cylindrical Ticonal
900 bar has been measured at a number of points in the axial
direction,.z. The flux also has been computed with MAGGY
using the model for permanent magnets discussed in §3.

The results obtained for three different meshes are shown in
Tabel 1, column two, three and four; Czl,rz}/(zz,r2)
indicates the total number of mesh lines in z- and
r-direction within a region of 200*130mm2 surrounding the
magnet, and the number of meshlines within the magnet of
44,875%10,875mm>
The measured flux is shown in the last column of table 1,

respectively.
Except for the last two points near the pole of the magnet

the results for the finest mesh agree with experiment to
within 1%, and the difference is almost constant.
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Tinocal 900 bar with radius of 10.875mm and half length of
44,875, Flux measured through a cylinder with radius of 11mm

is given in 1973

Table 1

Tesla.

Magnetostatics A4

Acknowledgement

Flux calculated by MAGGY

Flux

z-goond (11,11) (21,19) (43,37) measured

/(5,4) /(9,6) 7(19,12)

0.0 .382 «383 .386 392
2.5 . 396 .392
5.0 .396 392
7.5 w381 .395 +392
10.0 . 394 .390
12.5% .392 .389
15.0 374 . 386 .390 .388
17,5 .387 . 384
20.0 .380 384 .380
22.5 .379 « 375
25.0 . 349 .368 w373 +.369
276 . 364 .360
30.0 . 346 353 .3u8
J2+5 337 .333
35.0 . 284 .308 «+317 . 314
31h .2390 + 287
40.0 . 245 «253 , 248
42.5 . 206 .185
44,875 A1t 124 .130 .120
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Discussion following paper:

(Becker, Texas) The issue of loss of accuracy in obtaining gradients of
the finite element solution (by numerically differentiating the solution)
is a serious one in the analysis of stress and flow problems as well as

in the present context. Some techniques that have been used (with a mixed

degree of success) includes:

(a) Use of higher order Lagrangian elements (usually isoparametric)
with gradients calculated at appropriate interior points.

(b) Use of conjugate approximation or other projection methods (as
in the work of Oden or of Wheeler).

(c) Use of mixed or mixed-hybrid models in which the gradients are

solved directly.

Have you considered any of these techniques and, if so, how do you view

their usefulness?

(Polak, Philips, Eindhoven) The problem mentioned is often encountered
by us.

B values can be obtained by higher order Lagrange elements inside the

elements.

If fﬁ.ds has to be calculated over element boundaries I think that

Hermite elements with interface conditions would be a good choice.

I am not sufficiently familiar with conjugate approximations and there-
fore cannot give an opinion on their value for this problem. Then of
course in integral methods as in GFUN H is solved directly. However for
larger problems the full matrix involved will compare unfavourably with

the sparse FEM matrices.

As integral methods and GFUN are enjoying some prominence at this
conference it is worthwhile clarifying this point.

For an nxn problem, the FEM with Choleski and simple elements used kn®
operations. For the same problem the integral method would typically
involve only n?/5 unknowns which would require 1/3 (1/5n2}3 operations.
The factor 5 chosen here is problem dependent but there is always an n

for which the FEM becomes cheaper.

Therefore we can say that up to a certain magnitude integral methods
should be good for calculating H directly and in general using FEM

one has to use appropriate elements.
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PHYSICAL BASIS OF THE VARIATIONAL METHOD FOR THE
COMPUTATION OF MAGNETIC FIELD PROBLEMS

P. Hammond, Department of Electrical Engineering,

University of Southampton, England.

1. Introduction

The hallmaerk of good computational work is accuracy and attention to
detail. The skilled worker who has these gqualities in mind cannot easily
take a detached view of the computation as a whole., In particular he is
unlikely to question the need for the computation. Yet such questioning
is essential if the physical concepts are to be disentangled from the
algebraic and numerical techniques. Engineers who design such devices as
transformers and rotating machines are used to thinking in terms of
physical models. They use such terms as leakage flux and they represent
the device by equivalent ecircuit parameters. To determine these
parameters they need information about the magnetic field. Before the
advent of computers this information was difficult to obtain and crude
approximations had to be made. Now the opposite difficulty exists.
Engineers are often swamped with information, which is not only useless in
itself, but actually blocks the design process, because data-handling has
become the over-riding difficulty. Under such circumstances the designer
turns his back on computation and relies on intuition and experience, much
as & physician may do when presented with a large array of chemical test
results on a patient. This is of course a pity, but nevertheless it is a
real problem. This paper is a plea for better co-operation between
computer analysts and designers. It is a plea that the designer should
explain to the analyst what information he needs and that the analyst
should restrain his desire to show what the computer can do and
concentrate instead on providing simple and elegant programs for
particular needs. This does not necessarily mean that the big 'suite of
programs ' should be ignored, but it does mean that the analyst should
seek to understand that the pressing need is for solutioms to particular
problems rather than for information which may be useful one day. Of
course this is a big theme and cannot be dealt with in one paper. What
can be done here is to illustrate the theme by a particular example. The
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example which has been chosen is the method of the calculus of variations
which underlies the method of finite elements.
2. The variational method

The development of numerical methods for the solution of magnetic

field problems has in general started from a consideration of the
differential equations describing the field. These equations have been
discretised and by this means a finite-difference mesh has been generated
to replace the continuous field distribution. More recently the finite-
element method has become popular, which is based on a definite integral
or 'functional of the field energy. Algebraically both methods may lead
to similar computation schemes involving the solution of many simultaneous
equations. If these equations are taken as the starting point of the
computation the choice of method depends only on the past experience of
the analyst and the characteristies of the digital computer available.

One might conclude that the physical content of the two methods would
also be very similar, but a close examination shows that this is not so.
Indeed, the differences can be put to good use in certain cases. Let us
consider these differences. The finite-difference method starts with the
differential relationships which relate the local field curvature, i.e.
the divergence and curl, and the local time-variation of the field,to the
local source density. In order to obtain the field in a region the
numerical process scans the local source densities and then anchors the
mesh to the boundary by imposing given boundary conditions. The finite-
element method on the other hand depends on formulating an energy
functional and finding its maximum or minimum by a variational technique.
In this variational process the differential equation appears as the
Euler-Lagrange equation of the functional. If the object of the method
were to recover a known equation via an often unknown functional, this
would be a strangely circuitous route. A physical interpretation of the
functional is needed to make sense of the method.

To arrive at such an interpretation let us take the particular case
of a Poissonian field. The functional is known to be F = J[/ ¢ p dv +
% fIf ¢ € V2 ¢ dv, where ¢ is a scalar potential and p is a source
density. It is convenient to write this in 'inner product' notation

F=<¢,p>+é‘-<¢,a?2¢>

If p is taken as an assigned source density and ¢ as a variable, the first
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variation of F is given by
§F = <8¢, p> + <8¢, £ VZ¢>.
Thus for zero first variation, we have V2 + p = 0, which is of course
Poisson's equation. Thus the functional F is the required one. But where
did it come from? Its stationary value is given by
R = <6, 0> =% <h, 0> =3 <hy 0>

and this is the potential energy of a set of known sources p. The
potential energy is the 'inter-action' of the sources in terms of the
scalar potentiai $, which in elementary field theory is defined as
potential energy per unit source. It is therefore reasonable to start
from the functional rather than from the field quantity itself, because
the functional has physical significance in terms of energy.

But more remains to be said. Let us generalise the field equation
- € 92 = p by adopting the operator notation L$ = p. We then have

F =<4, p> -3 <4, L>
which can be recast into the form
P wd i, 95 Rioky T,

The first term gives the potential energy and the second term introduces
the constraint L¢ = p by means of the familiar method of a Lagrange
multiplier. The method, therefore, seeks the energy of the system of
sources p subject to the operator equation of the field. Since the
designer generally needs to know this energy rather than the field
distribution, the method is well adapted to meet his needs. It should be
noted that the functional is essentially a system parameter. It is of
course possible to divide any system into smaeller sub-systems, and if this
is done the method is akin to the differential finite-difference method.
But the functional can be of arbitrary size and does not need to be sub-
divided.
3. The adjoint problem

The meaning and the possibilities inherent in the variational method
become even clearer if a more general functional is considered. Let there
be two sets of sources designated by p and pa, and let their associated
field quantities by ¢ and ¢*. Consider the mutual energy of the two sets
of sources. This mutual energy is given by <¢, p%s = ¢¢a, p>. Consider
the functional

F =<4, p™> - <¢%, Lp - p>
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where p® and p are the assigned known values of the sources. To find
the stationary value of F we put
§F = 0 = <89, p°> = <6¢%, Lo - p> - <¢*, Lé¢>

If in the last term we transpose the operator L to another operator La,
such that

<¢%, Log> = <1 ¢°, &>
we obtain the two conditions

L¢ = p and L2 ¢% = o2,
The physical significance of this is clear. The first term of the
expression

F =<4, p> - <¢°, L - p>
givesthe inter-action energy of the sources p and p®. Hence the stationary
value Fs determines this energy parameter. The parameter is subject to
the two-fold condition that ¢ obeys L¢ = p and ¢a obeys L® ¢a = pa. The
second system is called the adjoint system. The adjoint sources p? are
associated with their own field ¢a and an adjoint operator 12, 1In many
cases, such as Laplacian and Poissonian fields, L = L% and the operators
are said to be self-adjoint. An important exception is tne diffusion
equation, which is not self-adjoint. If p = p? the stationary value of
the functional Fs gives the self-energy of the system. Otherwise F gives
the mutual energy of two systems.

On first meeting the adjoint field quantities one may regard them as
a peculiarity of the variational method. More than that one may even
decide that the appearance of the adjoint problem is a drawback of this
method. Such a conclusion is very wide of the mark. The adjoint problem
draws attention to the physical basis of field calculation methods in
general and provides valuable guidance for the formulation of effiecient
computation schemes. To understand what is happening it is necessary to
go back to the experimental basis of field theory.
Consider for instance the electrostatic field. The entire theory is

built on the experimentally observed inter-action of electric charges.
In the simplest case two charges act on each other and a mutual potential
energy can be associated with the system formed by the two charges. The
notion of an electric field only arises when the problem of inter-action
is separated into two problems, in which one charge acts as a source for
a field which then acts on the other charge. The field is no more or no
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less than a useful mental construct which enables the problem to be
separated into two stages.

It is therefore not surprising that information asbout a field
distribution is of use to the designer only as far as it can be made to
vield further information about such physical matters as force and energy.
To put it very bluntly, the designer does not require the field map at all.
This is at the root of much of the misunderstanding between computer
analysts and designers, which is so common in industry. Of course we are
overstating the difficulties, because to the experienced eye a field map
does present useful information. Nevertheless it also contains much
information which is not useful, namely the field distribution in a region
free of matter. Moreover if the information is presented in numerical
form, the problem of interpretation becomes well-nigh insoluble.

Since inter-action is the basis of both theory and practice in field
problems, it is not surprising that the variational method draws attention
to two field equations which have to be satisfied in order to determine
the mutual energy for the equilibrium condition. Unless there is an
adjoint source, there is no system. A single source by itself is an
abstraction which has no counterpart in the physical world. The adjoint
problem draws attention to the prineiple of reciproecity. The energy of a
system is always a mutual relationship. Thus the self-energy, as for
instance the self-inductance of a circuit is really a mutual energy of the
parts of the circuit. The self-inductance is not a property of the
material of the wire, but a property of the geometrical arrangement of the
parts of the wire relative to each other. In the integration process the
elements of the circuit fulfil the role of the adjoint sources as well as
the original sources. The adjoint problem therefore coalesces with the
original problem. If on the other hand mutual inductance is to be
caleulated each coil is the adjoint of the other.

L. The adjoint source as a probe of the field

The notion of mutual inductance leads to another important observation
about field calculations. Suppose we regard the 'secondary' coil as a
probe to be used in examining the field of a set of 'primary' coils. For
every position of this probe there will be a mutual inductance between it
and the primary coils. We can set up the energy functional as

F=<,J% - A%, LA-J>
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where J are the primary current densities and gé the current densities in
the probe. A and é? are the vector potentials due to these current
densities and L is the operative % V x V x which is also 1, 6F=0
leads to L A = J and A g? = g?. Suppose we require & map of the field
parameter A. In order to find A at a point, we need to shrink the probe
to an infinitestimal current element. However, the probe must carry
finite current in its infinitesimal cross-section, because if the current
itself were to be infinitesimal there would be no measurable inter-action.
Thus the current will have to have infinite density and can be represented
by a Dirac § function. Thus by requiring information about the local
distribution of A, we have decided that the probe must have the properties
of a § function. Similarly an electrostatic field map requires a probe
which is a charge of infinite density and zero volume.

The inter-action energy can be written as either <A, gf> or <§§,_§>.
The first form requires the use of the § function probe and the second
requires the use of the Green's function 5}. This may be the better
choice, but Green's function solutions tend to have slow convergence. The
trouble is due to the stringent requirement to find the field at every
point. All this information has to be paid for.

If the adjoint source is thought of as a probe designed to elicit
information about the field, we notice at once how important it is that
the designer should specify to the computer analyst what information he
requires. If, for instance, the mutual inductance between two windings of
a machine is required, the analyst can choose one of the windings as the
'probe'. Such a large probe will be insensitive to local field variations
and this will reduce the computational effort. It would be wasteful to
explore the field with a tiny probe and then derive the large-scale
energy parameter.

S An example of a self-inductance calculation

In problems of self-inductance the natural choice of probe is in
terms of the assigned current density itself. We then obtain the energy
in terms of the integral % <A, J>. This integral may be insensitive to
the actual distribution of A and it becomes possible to use a fairly rough
approximation for A which will still give a close value for the energy and
hence the inductance. As an example consider the internal inductance of a

T-shaped conductor in a slot in highly-permeable iron as shown in the
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figure. Y
1 2A _
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A _
E; n =3 2 2 _J

The slot is open at the top and we have assumed that the magnetic field is
constant across the opening. There is a uniform current density Jz =J
across the section of the conductor, so that the total current is 10J.
The iron is essumed to be infinitely permeable, so that the tangential H
along the iron boundary is zero. Hence the tangential field across the
opening of the slot is R ea 10J/2 = - 5J.

To calculate the internal inductance we have to isolate the conductor
from the outide region. This can be done by assuming there to be a surface
current across the opening of the slot which gives the correct magnetic
field inside the slot and zero field outside. This means there is a
current I = Hx = - 5J at the slot opening.

The internal inductance of such a conductor has been carefully
investigated by various writers. Thus we have accurate values for
purposes of comparison with the approximate values we shall derive by

(1)

Mullineux and Stoll gives a method from which we deduce that the internal

means of the variational method. In particular a paper by Jones, Reed,
inductance is L = 0.570 Mo H/m.
For the variational method we set up the usual functional

relapedhl-tanm-p
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where the second term describes the energy associated with the surface
current at the slot opening. Thus

Fea iz -3 @ vxnaw
4 uo
= <A, J> + é,_];| --]2:- <B, B>
uo

The first variation of F is given by

OF = <§A, J> +

sa, II - £ <B, 68> =0

We note that A_ = A_ = O and therefore B_ = 0. Also B_ = % and
31\ x Y z X a

B =~ "2 . ¥

y 3
X

To find an approximate value for the functional and therefore for the
inductance we must choose appropriate functions for Az' A constant value
for Az gives zero magnetic field and therefore does not contribute to the
solution. We consider next Az = ax + by. From symmetry a = 0, so that

we have Az = by. This implies that B_ = 0 and Bx = Db is a constant. Then

F = <y, J> - |3b, SJ| - %'u <b2s

[}
2 +2 3 +1
1 5p2
=IJ .:rbydxdy/er J b ydx dy - 150 J dx - 2=
g =2 2 - -1 ©
2
=878 +53D <30 T 2
Yo
2
w w1 T e
Ha
For 6F = 0 we put %% = 0, hence - 17J - i0b =0 and b = - l.Tuo J

Substituting in F we obtain F = lh.hSuo Jg and L = 0.289u°, which should
be compared with the accurate value L = 0.570uo.

We have deliberately chosen a poor approximation in order to
illustrate the method. It will have been noted that our choice of Az
implied a constant magnetic field everywhere in the conductor. Since we
know that the field is zero at the bottom of the slot and that it has a
finite value at the top, our choice is a poor one.

Let us consider an improved trial function A_ = ay + by2, for which

B =a+ 2by. In the variational process we put 35 = 0 and %% =0 to

obtain a and b. This gives F = 21&.2514o J2 gnd L = O.hﬁsuo. This is

%1
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already within 15% of the correct value and may be sufficient for
practical purposes. The power of the method is shown by the fact that a
close approximation of the inductance has been obtained, although the
field pattern is highly inaccurate. For instance at y = O we know that

Bx = 0 but on approximation gives Bx =a= O.5Tu0 J. The reason for the
power of the method lies in the fact that it has been designed to find the
best value of the energy or the inductance and does not seek to find an
accurate flux map. If the designer needs the inductance it is unnecessary
and wasteful to find a field. Of course it is desirable to choose a
reasonable trial function for the field, but the method is not very
sensitive to the actual choice,

In this example we have used the variational method in exactly the
same way as it is used in the method of finite elements. The only
difference is that the shape of the conductor is somewhat unusual.
Moreover most finite-element calculations use a linear relationship for
the trial function. Clearly a linear relationship will give adequate
closeness of fit over smaller regions. In any case finite-element
solutions are not limited to linear representations of the potential. The
difference between our method and that of the usual finite-element method
does not lie in the mathematical technique, but in the approach to the
problem., The finite-element method is generally used to obtain a field
map and this, as has been mentioned before, implies a desire for
information about the distribution of energy in a region. Our approach on
the other hand is to regard the variational method as dealing with a
system and seeking the energy of that system in an equilibrium condition.

6. Upper and lower bounds for the functional

One objection which could be raised to the method illustrated by the
example of the T-shaped conductor is that the degree of approximation to
the accurate solution is in general not known. This is a common failing
in numerical methods and is similar to the uncertainty that exists in
manufacturing processes. The correct choice of tolerances comes with
experience. It is both expensive and useless to call for closer
tolerances than those that are needed. But happily the variational method
suffers less from uncertainty then many other methods. So far we have
used only the equilibrium relationship which sets the first variation of

the functional to zero. Further information can be obtained by
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considering the second variation. The sign of this variation determines
whether the functional is a maximum or a minimum. Thus the functional
F=<A, J> + |A, J| - %ho <B, B> is a maximum at its stationary value,
because only the third term contributes to the second variation and its
sign is negative.

It is a valuable property of the magnetostatic problem that a dual
functional can be formulated which has the same stationary value but asa
minimum. Thus the approximate functionals can be used to provide both a
lower and an upper bound for the correct value. This greatly reduces the
uncertainty. P

The dual functional is given by F' = Eg <H, H>. Reverting to our
example, the simple choice of Hy =0, H =~ % y J gives F' = 32.41y J?
and L'= O.GQSuD. This provides an upper bound for the inductance. It is
interesting to note that if we take the average of this upper bound and
the lower bound L = 0.485u° previously obtained, we arrive at
L= 0.56?yo which is within }Z of the correct value. For a fuller
discussion of dual upper and lower bounds the reader is referred to a
paper 'The calculation of inductance and capacitance by means of dual
energy principles' by the present author and Dr. J. Penman to be
published shortly in the Proceedings of the Institution of Electrical
Engineers.

7. Variational treatment of the diffusion equation

Finally it may be of interest to look at the treatment of diffusion
problems by means of the variational method. Consider an assigned
harmonic current distribution iejwt. In order to obtain a functional
independent of time we must choose an adjoint current which has a
-jut

*
negative time variation. Thus Je is a possible choice. J and J*

are complex conjugates. The vector potential and the adjoint vector
potential are chosen similarly. The operator equation LA = J is given
by % YxVxA+ qué = J where o is the coniuctivity and hence the
operators are L = 5 ¥ x9x+ jus, and L? = ¥ ¥V x¥ x - jus. The
complex functional is given by F = <A, _.f>--% <§, L A>. This functional
contains both the inductance and resistance. It is very interesting tha
in this instance the adjoint quantities use a negative time. But of
course this is exactly what is done by using the complex conjugate in
phasor calculations. Once again the adjoint problem is an essential

feature in the determination of the system parameters.
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8. Conclusion

In this paper a plea has been made for a better understanding between
computer analysts and designers of electrical machines. In particular it
is urged that the designer often needs large-scale system parameters
rather than the details of a field map. Variational methods are well-
adapted to provide this information economically.
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Discussion following paper:

(yeh, Oak Ridge) Could the variational bound approval be as useful when
the guantity of interest is not the energy of interaction but some other

guantity, eg the field in some region?

(Hammond, Southampton) The variational method seeks a functional, ie a
guantity which can be described by a real or complex number. Thus the
parameter of interest must be such a number if it is to be obtained by
this method. If it is desired to find the field at a point, then this
can be done by using a source which has strength unity and placing it at
that point. The interaction energy is then equal to the field at the
point. A scalar fiend can be found by a single functicnal, a vector
field needs a vector probe and in general will need three functionals.
The method is essentially an energy method, but this is not restrictive if
it is realised that energy is what fields are all about.

{Popovic, Belgrade) I should like to agree with Prof Hammond that
physical insight is often very important in making useful approximations
for magnetic field problems. Frequently we are inclined to write a paper
which should be entitled "A very general method for solving arbitrarily
large prcoblems with an application to a very small problem", when the

small problem could be solved with a much simpler theory.

(Carpenter, Imperial College) The method gives a very neat way of deriv-
ing what appears to be a surprisingly accurate solution by simple approx-
imations. But the accuracy depends on the upper and lower approximations
being equally displaced from the exact solution. Is this a fortunate
accident in the examples given, or can Prof Hammond obtain two solutions

generally which are merely egually displaced?

(Hammond) I suspect that one needs to acquire experience with the method
and I am still rather inexperienced. However, if the variable function is
expressed as a polynomial then the order of the polynomial should probably
be the same for the same physical gquantity in both the upper and the lower
bound. Thus in a linear magnetic material H and B should have the same
type of approximation. It is also important to pay attention to the
boundary conditions and use the same accuracy, or lack of it, in modelling

the two functicnals.

(Silvester, McGill) Would Prof Hammond care to indicate the extent of
applicability of this theory to non-linear problems?

35
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(Hammond} The method depends on the geometrical relationships of the
field, ie on its curl and divergence. It is independent of the constit-
utive relationships. An analogous statement for networks says that
Tellegen's theorem is independent of the linearity of the circuit

elements. All that matters is that both Kirchhoff laws hold. If hysteresis
is present, the problem would have to be specified by giving information

about the initial state as well as the shape of the hysteresis loop.

(Jevons, Birmingham) A practical example of approaching the accurate
solution from both sides and averaging the result, occurs in the use of
resistance networks to determine circuit parameters of fields problems.
Suppose a 'straight' analogue is made and the resistance measured, and
then the dual made by interchanging equipotential and flow line boundaries
and the resistance again measured. The average of the two measured values
is very close to the accurate value for even very coarse meshes. One or

two mesh refinements gives rapid convergence to the accurate value.

(Hammond ) I have no first-hand experience of resistance analogues and
am very greatful to Dr Jevons for confirming that the method works well

in such an application.

(Reece, GEC) The machine designer would wish to know not only the self
inductance of a tee-bar but alsc the AC resistance. Is it possible to
use the method described in dissipative situations, and hence to obtain

AC resistance?

(Hammond) Yes, the functicnal can be complex and embody both resistance
and inductance. This is briefly treated in the last section of the paper.
I do not think it is possible to cbtain a doubly-bounded solution,

however.

(Steel, CERL) Prof Hammond makes an important contribution to the
conference in that he reminds us that we should always be aware of the
questions which underlie the investigation of fields. This can be
illustrated by one of many classical examples in the literature. I

chose the determination of the maximum temperature of a thermally well
insulated conductor carrying an electric current. If the non-linear
relation between thermal and electric conductivities is taken into account

then it has been shown by Raymond Holm that
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(Steel, continued)

Tm
v2=18[p A ar
To

V is the potential across the
conductor
Tm is the maximum temperature

To is the end temperature.

Note that for pure metals p ) = T and the relation between Tm and V
is algebraic and independent of the shape of the conductor!

(Hammond) The example cited by Mr Steel is new to me. It certainly
reinforces Mr Steel's comments. It seems to me that the greatest
challenge to a teacher is how to foster the gift of physical understand-

ing with which some of his students are endowed.
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SOME TECHNIQUES AND APPLICATIONS OF THE FINITE ELEMENT
METHOD FOR SOLVING MAGNETIC FIELD PROBLEMS

Eric Munro

IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598, U.S.A.

1. Introduction

The finite element method! provides a powerful numerical technique for solving
magnetic field problems. The author’s work in this field has been concerned mainly
with using the method to calculate field distributions in magnetic electron lenses?:3, and
the computer programs developed for this purpose have recently been published®. In
this paper, the principles of the method are summarized, the derivation of the finite
element equations is explained, and techniques for solving the equations are discussed.
Extensions of the method for handling the properties of materials with non-linear
magnetization characteristics and permanent magnet materials are described. A
technique for calculating the fields due to toroidal deflection coils inside rotationally-
symmetric magnetic electron lenses is also presented. Each technique is illustrated by
typical computed results, to show the wide range of applications of the method.

2. Principles of the finite element method

The partial differential equation of the boundary-value field problem is first
replaced by a corresponding functional, whose minimization is equivalent to solving the
original differential equation. The entire region inside the boundary is then divided into
many small sub-regions called finite elements. These finite elements may be triangles,
quadrilaterals or more complicated shapes. The potential distribution within each
element is then approximated by some simple function of position, e.g. a first-order
polynomial (first-order elements), a second-order polynomial (second-order elements),
or a higher-order polynomial if extreme accuracy is required. Using this approximation,
the potential distribution within each element is then expressed as a function of the
potentials at mesh-points associated with the element. In this way, the contribution
from each element to the overall value of the functional is expressed in terms of the
mesh-point potentials. The requirement that the functional is to be minimized is then
used to derive a set of algebraic equations, inter-relating the potentials at adjacent
mesh-points. These equations are then solved to give the potential at each mesh-point.

3. Derivation of the finite element equations

The derivation of the finite element equations will be illustrated using the magnetic
electron lens shown in Fig. 1 as an example. This lens consists of a magnetic circuit,
polepieces and coil windings, which all have rotational symmetry about the axis XYZ.
If the field distribution is required only in the polepiece region ABCD, this can be
calculated using a scalar potential. If the fields are required throughout the entire
magnetic circuit region EFGH which includes the coil windings, then a vector potential
must be used. Each of these cases will be considered in turn.
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Fig. 1 Cross-section of a typical magnetic electron lens

3.1 Scalar potential formulation

The polepiece region ABCD contains no coil windings. The magnetic field strength
throughout this region can therefore be expressed as the gradient of a scalar potential

H
V,ie.

H = grad V (1)
V satisfies the differential equation

div (u grad V) = 0 (2)

where p is the permeability at any point. For linear problems, in which x is assumed to
be independent of H, the solution of (2) subject to prescribed boundary conditions can
be obtained by minimizing the functional

F= ff 3 varadv . graav a (3)

subject to the same boundary conditions. (A proof of this can be found in Ref. 2.) For
the rotationally-symmetric lens of Fig. 1, (3) becomes

2 2
F o= ff%p[{%—g—) + (%) ]znr dz dr (4)
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The functional (4) must now be minimized numerically by the finite element method.
To do this, the region to be analyzed is divided by a mesh into small quadrilateral
regions (Fig. 2). The mesh lines are chosen to coincide with the polepiece profiles. A
fine mesh is used where high accuracy is required; a coarser mesh is used elsewhere.
Each quadrilateral is subdivided into two triangular finite elements. This subdivision is
done in two separate ways (Fig. 3). A typical finite element is shown in Fig. 4. Let the
potentials at the vertices be denoted by V,(z.r)), Vj(zj,r») and V(zp.r.). Since in our
example we are using first-order finite elements, we make the approximaltion that the
potential varies linearly over the element. With this approximation, the contribution AF
from a single finite element to the value of the functional (4) is

I 2 3 2
Y7 (i£1 b"v") +(1‘£1 c1v1) )

where p = permeability of element, r, = value of r at centroid of element, a = area of
element, b;=r;-1y and ¢;=z,-z;. Differentiating (5) gives

] - [l B

= UL
Fis M 5 (b,il::j + cicj) (7)

where

Using (7), a 3 x 3 matrix F;; is calculated for every element of the mesh. Since Fj; is
symmetric, only six coefficients need be stored for each matrix.

The matrices F;; are now used to set up the finite element equations, by imposing
the condition that the functional is to be minimized. To illustrate how this is done, let
V, be the potential at a general mesh-point (see Fig. 3) and let V, VZ’ .+ s Vg be the
potentials at the eight adjacent mesh-points. The condition for minimizing the function-
al is

%"}0 - 0 (8)

Now, if Vy, is changed, keeping all the other potentials constant, then the corresponding
change in the functional will be due only to the changes in the contributions from the
twelve shaded elements E-E, in Fig. 3. Thus from equation (8) we obtain

aaF dAF : 3AF -
(ﬁﬁ) (ﬂﬁ) + ..+ (ﬂﬁ) =0 (9)
£y Es Eyz

By substituting equation (6) for each of the elements E|-E|, into equation (9), we
obtain a nine-point finite element equation of the form

8

$ PV =0 (10)
meg MM

where each coefficient P is the sum of appropriate terms of F;;. In this way, a finite
element equation is generated for every mesh-point which is not a boundary point.
Points which lie on the symmetry axis YZ in Fig. 2 are treated as a special case, and at
each of these points a six-point equation is obtained. The prescribed boundary poten-
tials on the boundaries AY, AC and CZ (see Fig.2) are then inserted into the equa-
tions. These equations are then solved, as described in Section 4, to give the potential

%6
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Fig.2 Finite element mesh for calculating the scalar potential
distribution in the polepiece region of the lens of Fig. 1
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Fig. 3 Subdivision of the quadrilateral regions into triangular finite elements

r
P\iifzi,ri]
rlb}l A..‘\
[ eVdziend
Vj{zj .l'j]' ,

o

Fig. 4 A typical finite element for the scalar potential formulation
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at each mesh-point. The scalar equipotentials can then be plotted out on a computer
graph plo}[er, as show_n in Fig. 5, and the field comonents at any point can be obtained
by numerical differentiation of the computed mesh-point potentials.

A similar technique is used for calculating two-dimensional scalar potential
chstn!;uuons in planar (x,y) coordinate systems. In such cases, instead of using the
functional (4), the following functional is used:

2 2
i 1 aV aVv
AN RN R N 1&3)
and equation (7) is replaced by

= —Ea
F‘ij 32 (b_?bj - cicj) (12)

where p = permeability of element, a = area of element, bi=y:-yy and ¢;=x,-x..In all
other respects, the analysis of planar fields is identical to the analysis of rotationally-
symmetric fields.

Fig. 5 Computed scalar equipotentials in the polepiece region of the lens of Fig. 1
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3.2 Vector potential formulation

To calculate the field distribution throughout the the region EFGH in Fig. 1, which
encloses the coil windings, a vector potential must be used, since a scalar pptential
cannot be used in regions containing currents. The vector potential A is defined such
that the flux density B is the curl of A, i.e.

B = curl A (13)
A satisfies the differential equation
curl (-III curl A) = J (14)

where p = permeability and J = current density at any point. For linear problems, in
which p is assumed to be independent of B, the solution of (14) subject to prescribed
boundary conditions can be obtained by minimizing the functional

F =fff(2%gr_1_g.cuﬂg - 3A) dv (15)

subject to the same boundary conditions. (A proof of this can be found in Ref. 2.) For
the rotationally-symmetric lens of Fig. 1, (15) becomes

2 2
iy fﬂ?—ul- [{g_i&) * (g_iﬂ"'&'?-') ] . Jeﬁe}hr dz dr  (16)

where Jj and Ay are the ¢-components of J and A respectively. The functional (16)
must now be minimized numerically by the finite element method. The procedure for
doing this is analogous to that used in the scalar potential formulation. The region to be
analysed is first divided into quadrilateral regions (Fig. 6). The mesh lines are chosen
to coincide with the profiles of the magnetic circuit and coil windings. A fine mesh is

E H
TLTRRARRAN,
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= TTIE SRS
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C 1 I T ' 1 1 | e — ::ﬁ!
XI | S | 1 | I [N S i ! z

Fig. 6 Finite element mesh for calculating the vector potential distribution throughout
the magnetic circuit and coil windings of the lens of Fig. 1

o
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Fig.7 A typical finite element for % \
the vector potential formulation [ 2Alzp )
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used where high accuracy is required; a coarser mesh is used elsewhere. Each quadri-
lateral is subdivided into two triangular finite elements. This subdivision is done in two
ways (Fig.3). A typical finite element is shown in Fig. 7. Let the values of A, at the
vertices of the element be denoted by A;(z,r;), Aj(z;ry) and Ay(z,r). Making the
first-order finite element approximation, i.e. assuming that Ay varies linearly over the
element, we find that the contribution AF from a single element to the value of the

functional (16) is

AF = }'S&( g b.A.)z +( 2 d.A.)Z - %Javr‘ua( g A1) (17)
Hal\j=1 T i=1 11 i=1

where p = permeability of element, r, = value of r at centroid of element, a = area of
element, b;=r.-r, and d;=z,-z:4+-2a/3r,. In obtaining (17) from (16), we have made
the approximation that JfzM"dzdr = z,™r "a, where (z,,r,) is the centroid of the
element. This approximation is satisfactory provided that the elements are sufficiently
small. Differentiating (17) gives

) - [0 -
i %g—{bibj + dydy)

and 6 = - 53, mroa

where F

(19)

Using (19), a 3 x 3 matrix F;; and a value of G; are calculated for each finite element.
We then proceed to set up the finite element equations, using exactly the same reason-
ing as for the scalar potential formulation. In this case, each finite element equation
has the general form

8
m=0 '

where each coefficient P, is the sum of appropriate elements of F;;, and Q is the sum of
appropriate elements of G;. The boundary conditions are that Ay = 0 on the outer
boundaries EX, EH and HZ (see Fig. 6), and Ay = 0 on the axis XZ. These boundary
conditions are inserted into the finite element equations. The equations are then
solved, as described in Section4, to give the vector potential Ay at each mesh-point.
The magnetic flux lines (lines of constant rAy) can then be plotted on a computer graph
plotter, as shown in Fig. 8, and the flux density components at any point can be
obtained by numerical differentiation of the computed mesh-point potentials.

3%
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Fig.8 Computed flux distribution throughout the magnetic
circuit and coil windings of the lens of Fig. 1

An analogous technique is used for calculating two-dimensional vector potential
distributions in planar (x,y) coordinate systems. In such cases, instead of using the
functional (16), the following functional is used:

: =ff%'z% [@qz s <g—§z~f]- JZAZE dx dy (21)

where J, and A, are the z-components of J and A respectively; the expressions (19)
are replaced by

e 1
F‘IJ = zl-l'g (b‘th + cicj} )

and G.I =“%’ JZ da

where p = permeability of element, a = area of element, b;=y.-y, and =Xy -X;; and the
magnetic flux lines are lines of constant A_. In all other respects, the calculation of
vector potential distributions for planar fields is identical to that for rotationally-
symmetric fields.
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4. Methods for solving the finite element equations oI 1 MT- coLLy g
Let there be 1 x J mesh-points in Fig.2 or Fig. 6, and let them be numbered aoH 1> (1, Dl:u'ij (1,3) SRS 5 (1,0)
sequentially, column by column, as shown in Fig. 9. Then, if the finite element equa- s
tions for each mesh-point are arranged in this same order, the matrix of coefficients will (2,0¢ . i
appear as shown in Fig. 10. This matrix contains nine non-zero diagonals, correspond- ] & (3,0
ing to the nine coefficients in each equation. This matrix will always be symmetric, (3,1)] '
because the constituent finite element matrices F;; (see equation (7) or (12)) are
themselves symmetric. Consequently, only five caefflments need be stored for the
left-hand side of each equation. The equation for the (i,j)" mesh-point can therefore g
be written in the following form: a3
ROW £—""
Pi-1,3-1,5 Vicn,g-1 T PiLg1e Vigger t Paen,gen,3 Vivga
. : c (1,1 0——9 @ (1,)
* P Vg Y PLsa Vst Mg Ve e e, - » :

Fig9 Numbering of the I x J mesh-points column by column

*Pia Ve f PrgaVign t o PLis Vg T G,y (23)
- IxJ \al

The most straightforward way of solving these equations is by gaussian elimination -_-I
and backward substitution, using a symmetric banded matrix subroutine®. This is the 8 -
% : 4 . T -ZERO ZEROS
approach adopted by the author in his programs®. As the gaussian elimination pro- PO e
ceeds, all the coefficients which lie between the outermost non-zero diagonals in Fig. 10 CORTTICIRNTS
become filled with non-zeros. Since the matrix is symmetric, it is sufficient to store EER N ———
only the upper half of the band. Thus (I+2) coefficients must be stored per equation, ‘j N
or a total of (I+2)1J coefficients for all the equations. Hence this method becomes e T ™ e N
very expensive on storage if large nuinbers of mesh-points are used. For example, the
maximum mesh-size which the author has used with this method is 70 x 100 mesh-
points. With each variable stored in double precision mode (8 bytes), approximately 4
megabytes of storage were required; this is feaSIble on a large computer, such as an
IBM 370/168, with virtual storage capability®. Despite the expensive storage penalty,
the gaussian elimination method has the great advantage that the solution is obtained - L]

?;rzz:llgih s; that there are no questions of convergence or choice of iteration parameters Fig. 10 The finite element equations written in m -

arV Q.

ZEROS

Polak’ has greatly alleviated the storage problem for the gaussian elimination Method No. of variables No. of arithmetic
technique by storing most of the band matrix on a disc file, and only operating on a to be stored operations required

small block of the matrix in main storage at any given time. 3

For very large mesh-sizes, it may be preferable to use some iterative techmque, Gaussian elimination (143) 10 Iy
such as successive over-relaxation®, the alternating-direction |mphc:l method , or
approximate matrix faclon?auon techmqueq, such as Stone’s method'? or Dupont,
Kendall and Rachford’s method!!., With such techniques, the storage required is Alternating-direction implicit method 7 1J 20 IJN
directly proportional to the number of mesh-points. The author has experimented with
these techniques, and the general conclusion is that they work satisfactorily if suitable Stone's method 14 1J 40 IJN
iteration parameters are chosen, but in all cases the convergence is slow and no rational
basis has been found for choosing the iteration parameters in the case of complicated Dupont, Kendall and Rachford's method 11 IJ 34 IdN
problems of practical importance. More study is required before the relative advan- ,
tages of each method can be satisfactorily compared. The storage requirements and Table 1 Storage and time requirements for various methods of solving
number of arithmetic operations for each method is summarized in Table 1. the equations (IxJ = no. of mesh-points; N = number of iterations)

Successive over-relaxation 6 IJ 192 IJN
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5. lllustrative examples of computed flux distributions = S on
A useful application of the vector potential formulation has been the analysis of /' el ; \
electron lenses wit_h supercqnducting polepieces‘%. Fig. 11 shows_ a typical example. / f e ;Tm
The superconducting polepieces exclude magnetic flux (the Meissner effect), thus \ i | i
producing a very concentrated focusing field in the centre of the lens. The Meissner \ ‘&& —|; ) ‘
effect is simulated in the program simply by setting the relative permeability of the N\ k ‘\‘ ,| .
superconducting polepieces to a very small value, e.g. 107, NN \ =
' ~ e
The vector potential formulation has also proved particularly useful in analysing a \ /
type of electron lens called a ‘snorkel lens’, which was invented by Mulvey!3. Fig. 12 INCIDENT ELECTRONS
shows a typical example, together with the computed flux distribution. A beam of '
electrons approaching the lens from the left is focused by the magnetic field in front of
the ‘snout’ of the snorkel lens. Since the direct influence of the coil windings on the — _
focusing field must be taken into account, such lenses could not be analysed by previous FOCAL PLANE 7 wh‘m |
finite difference methods which used a scalar potential formulation. The properties of _—= i : / “"«-h:-_-::.\_l |
a range of such snorkel lenses have been calculated by the finite element method, and i ! ﬁ
the results have been published in a recent paper'4. . i-— !I )
i e e : | L))
(5 = — ~\\\\“ *x\‘:‘“—_——’f;/—//’///

Fig. 12 Computed flux distribution for a snorkel lens

6. Solution of non-linear problems

The functionals (3) and (15) are valid only for linear problems, for which the
permeability p is assumed to be independent of the field strength H. In this section, the
method is extended to solve field problems involving magnetic materials with non-linear

POLEPIECE % 7 SUPEELE’;’%JCCE ING magnetization characteristics, such as shown in Fig. 13. We define two quantities U,
— N — ——— and U (see Fig. 13) as follows:
AXIS — A AXIS H1
Ur: {Hl} = fB dH = complementary energy/unit volume
0
(24)
B
u(s,) = lfH dB = stored energy/unit volume
0
B
g 1
I RARRCSES ST
N\~
|
\\\ |
Fig. 13 A non-linear magnetization characteristic, \ / :
showing the definitions of U and U, \ /?t
N\
S / |
N
. T : : . / % >H
Fig. 11 Computed flux distribution in a lens with superconducting polepieces H =
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Then the appropriate functionals to be minimized for non-linear problems are as -

follows:

For scalar potential problems, the linear functional (3) is replaced by

F =fffucdv (25)

and for vector potential problems, the linear functional (15) is replaced by

F =fff(u-i.g} dv (26)

(A proof of the validity of these functionals can be found in Ref. 2.) Since the function-
als (25) and (26) are non-linear, the resulting finite element equations are also non-
linear. These equations have the general form

%{T = FVVps o 0V) =0, i=1,n (27)
where F is the value of the functional, V; is the potential at the ith mesh-point, f; is a
non-linear function of the mesh-point potentials and n is the number of finite element
equations. These non-linear equations can be solved iteratively by Newton’s method.
To do this, an initial approximation to the solution is calculated using a constant
permeability. Let this initial approximation be denoted by [V;[] A set of residuals[r;]
and a Jacobian matrix[]ii]are then calculated, whose general elements are defined as

Ry = Bl ly e 5 (28)

3y %,fj» T e D) (29)
From equation (27), it follows that

SRR LR (30)

3y ggj—gv}(vll,vzl, V1) (31)

To calculate r; and J;;, we invoke the fact that if V; is changed, the resulting change in F
is due solely to changes in the contributions AF to the functional from the twelve finite
elements E,-E,, in the neighbourhood of V; (see Fig. 3). Thus from (30) and (31) we

obtain
_ (3aF (aaF) (aaF)
r., = + + .. 4 (32)
L (W'I_)El W?Ez Wiy,
2 2 2
3~ AF 3"AF 3 AF
sy = (i), + G, o v () )
1 Mydlgle NV HNgle, Py /e,

r; and J;; are calculated for each finite element equation using (32) and (33). The
changes fa“Vi to be applied to the mesh-point potentials are then calculated by solving the

matrix equation
[ [#] = - [n] (34)

Magnetostatics A6

The matrix [Ji‘]has the same symmetric banded structure as the finite element coeffi-
cients, and so (34) can be solved using any of the methods discussed earlier. Having
solved for [:&Vl], the new approximation to the potentials is given by

11 - I

"] - [ ]+ [‘“’1] (35)
[Vi"J is then used as the starting point for the next iteration. This cycle is repeated until
all the residuals are negligibly small. The resulting potential distribution is the solution
of the finite element equations (27). As an example, Fig. 14 shows the flux distribution
in the lens of Fig. 1 at a very high excitation, computed using a non-linear magnetiza-
tion characteristic. Comparison with the corresponding linear solution of Fig. 8 shows
that the magnetic saturation at high excitations produces non-linear flux leakage in the
back bore of the lens.

Fig. 14 Computed flux distribution for the lens of Fig. 1 under saturation conditions

L1




Compumag Oxford, 31 March to 2 April 1976

7. Solution of problems involving permanent magnet materials

In Section 3, we described how to solve field problems involving magnetic materials
with linear magnetization characteristics of the form

B=ul .

where B = flux density, H = field strength and » = permeability. In this section, we
extend this method to the solution of problems involving permanent magnet materials

with magnetization characteristics of the form
= 37
B = u(H+H) (37)

where H, = ‘coercive field strength’, which is assumed to be a constant for the materi-
al. The type of magnetization characteristic corresponding to (37) is shown in Fig. 15.

.
d

Fig. 15 Magnetization characteristic
for a permanent magnet material

B -P[H + H.)

—
4—-—nuj

d

> H
/(__Hc_)

For the scalar potential formulation, we proceed in a manner analogous to that
described in Section3.1. The scalar potential V is still defined as in equation (1), but
since B and H are now related by (37) instead of (36), the differential equation (2)
must be replaced by

div I:u (grad V-+ gc}] =0 (38)
The functional whose minimization corresponds to the solution of (38) is
=ffflgu(grad‘-'i-gcl.(gr‘adv+ﬂc)dv (39)

For rotationally-symmetric systems, (39) becomes

< o (@

where H,, and H_, are the z and r components respectively of the coercive field H...
For a triangular finite element, the contribution AF to the value of the functional (40) is

3 2 3 2
AF = unroa{[zl( }Jlbi\'i) + Hzc] + [’Z%(.Elciv'i)+ Hrc] } (41)
i i=

where r, a, b; and c; are as defined for equation (5). Differentiating (41) gives

+ QL+ He }2] 2qr dz dr  (40)

2
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[%%15] - [F) ["f] + [ (42)
—2“5) {b b - €;C; L)

G, =
and i urrg (byH, . + ciHe)

The 3 x 3 matrix F;; and the 3-component vector G; are calculated using (43) for every
finite element. The finite element equations are Lhen set up using F and G; in exactly
the same way as described in Section 3.1.

where

] (43)

For permanent magnet problems in planar (x,y) coordinates, the expressions for F
and G; corresponding to (43) are

- u

and i ’ (44)

I JULWE, Cifye)

where b; and c; are as defined for equation (12), and H,. and H},c are the x and y
components of the coercive field H.

For the vector potential formulation for permanent magnet materials, we rewrite
(37) in the form

B.) (45)

_1
H=iilB- 8

where B, = pH_ is the ‘remanent flux density’ (see Fig. 15). The vector potential A is
still defined as in equation (13). However, since B and H are now related by (45), the
differential equation (14) must be replaced by
l - ] =
curl [u (curl A - B)) Jd (46)
The functional whose minimization corresponds to the solution of (46) is

Sf[A a2 @rin-s)-aa] @ @)

For rotationally-symmetric systems, (47) becomes

2 2
=[/{2%(§&+Bcr) +(3—Aﬁ-«rﬂﬁ.-B )]-JH}andzdr (48)

where B, and B, are the z and r components of the remanent flux density B.. Fora
mangular finite element, the contribution AF to the value of the functional (43) is

i 3 72 3 2 3
AF = Irga )| 1 1 ) -2
” { Za ZlbiA Ber| * |2 ifldiAi Bez[ (3™ 02 1.51A1' (49)

where r, a, b; and d; are as defined for equation (17). Differentiating (49) gives

] - [ 2] ¢ o e
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where
ol — m .+ d.d.
F1J 2ua (biba 4 :I)
d 2 (51)
an _ Tr _ _
6; = T (byBgy - diB,) 3 Jgmrod

The expressions (51) then replace the expressions (19) in the generation of the finite
element equations.

For problems involving permanent magnet materials in planar (x,y) coordinates,
the expressions corresponding to (51) are

1
— P s b. ¥ C.C,
s (b1bJ c1cJ} _—

= —1 - 1
G, P (b,chy c.B ) - 34,2

F‘ij

j 7 CX

where b;, ‘;i and J, are as defined for equation (22), and B, and ch are the x and y
components of the remanent flux density B,.

A typical application of this technique is shown in Figs. 16 and 17. It is a solution
in planar (x,y) coordinates of a magnetic circuit containing an outer soft iron yoke of
square cross-section, four tapered permanent magnets oriented so as to produce a
quadrupole field, and four tapered soft iron polecaps. This might represent, for
example, a permanent magnet quadrupole electron lens, or a permanent magnet
four-pole stator for am electric motor. Fig. 16 shows the computed scalar potential
distribution and Fig. 17 shows the computed vector potential distribution.

8. Calculation of the fields due to toroidal deflection coils inside rotationally-symmetric
electron lenses

The concept of deflecting an electron beam by a toroidal deflection yvoke located
centrally inside a magnetic lens (Fig. 18) as a means of reducing the aberrations of an
electron beam scanning system was first proposed by Pfeiffer!3. In such systems, the
rotationally-symmetric magnetic circuit of the lens has a significant influence on the
deflection field. A method which has been devised for analysing such systems!® will be
summarized here. The current loading in the yoke is first expressed as a Fourier series
of harmonic components, thus:

f(e) = (NI); sine + (NI)gsin30 + (NI)g sin 56 + ... (53)
where (NI) represents the number of ampere-turns in the n' harmonic. Then it can

be proved that the field components due to the n'P harmonic of the current loading
have the general form: .

= 3¢ = 2% ,
A 57 COS ne H'r‘ 5 Cos ne
1 (54)
- 3, 3¢ 3, 30 .
H, = = = I:W i) + E(ur*—az):l sin ne

where @ is a scalar function of z and r, and u is the permeability at any point. @(z,r)
satisfies the following differential equation:

2
__3_( gi) =4 E¢ + %{Fr:_:) = _h (NI)D a(r,z) (55)
r
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Fig. 16 Computed scalar potential distribution in a permanent magnet quadrupole lens
(the permanent magnets are indicated by cross-hatching)
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Fig. 17 Computed vector potential distribution in a permanent magnet quadrupole lens

(the permanent magnets are indicated by cross-hatching)
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Fig. 18 A toroidal deflection coil inside a rotationally-symmetric magnetic electron lens

Fig. 19 Computed distribution of #(z,r) for a toroidal-coil-in-lens problem

2

Fig. 20 Computed deflection field at the axis for the system shown in Fig. 19

Magnetostatics A6

where g(z,r) = 1 inside the cross-section of the deflection coil and g(z,r) = 0 outside
the coil, and ®(z,r) = 0 on the outer boundary and also on the axis. The functional
whose minimization corresponds to the solution of (55) is

j[{ur[ 28 +(!‘i) v (@ )J 200 (NL)y *9}drdz (56)
r

The functional (56) can then be minimized numerically using the finite element method
to give the function ®(z,r), and then the field components can be calculated using (54).

As an example, Fig. 19 shows the computed distribution of @(z,r) for the first
harmonic (n=1) of a typical toroidal-yoke-in-lens problem, and Fig.20 shows the
corresponding computed transverse deflection field at the axis.

9. Conclusions

The principles of the finite element method and some of its applications in solving
boundary-value static magnetic field problems have been described. The method can
handle complicated magnetic circuit geometries, finite permeabilities, magnetic satura-
tion effects and the properties of permanent magnet materials.
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Discussion following paper:

(Chiwa, Cambridge) In the field of electron optics, the guantities
required are the magnetic field and its derivétives with respect to Z
rather than magnetic potential. Therefore, it is necessary to carry out
numerical differentiation to obtain these guantities; losing sifnificance
in doing so. How do you cope with this? Could you give me some idea of
the accuracy of the calculated field in terms of the number of mesh points,

required storage, and computer time?

(Munro, IBM, USA) I have carried out the numerical differentiation with
respect to Z by using a cubic spline technique which ensures continuity

of the first and second derivatives. For most applications, I generally
have used a mesh of about 25 x 50 points, which generally enables the
axial field distribution to be calculated to an accuracy of about 1%.

For this mesh size, the storage required on an IBM 370/168 is approximately
250 kilobytes with all the variables stored in double precision mode, and
the solution time is of the order of a few seconds. The maximum mesh size
I have handled is about BO x 100 points. In any given application, the "’
accuracy of the results can be estimated by first solving the problem with
a relatively coarse mesh, and the repeating the calculation with twice as
many mesh points in each direction. 1In the latter case, the result will
be about four times more accurate than in the former case, and this

enables an estimate of the upper bound of the errors to be obtained.

(Diserens, Rutherford) When you calculate the fields from potentials do
you apply any smoothing at this stage? How many points do you use in

each field calculation?

(Munro) I have generally calculated the field distribution along the
axis using a cubic spline technique which ensures continuity of the first
and second derivatives. 1In this technique, I have not used any initial
smoothing of the potential values at the mesh points. 1In the case of
field componerts at internal mesh points, I have calculated the field
components at the centroid of each quadrilateral region using the computed

potential values at the four corners of the guadrilateral.

(Trowbridge, Rutherford) The calculation of magnetic lens aberrations
requires the integral of the field to be calculated through the fringe
field of the magnet - how did you ensure that the remote boundary in your

computer model was sufficiently far away?

Magnetostatics A6

(Munro) No special techniques were used, however the position of the
external boundary was varied to ensure that this effect could be made

negligible.

(Jacobs, CERL) Dr Munro illustrates some interesting comparisons of
various direct and iterative solution procedures. For the nine diagonal
coefficient matrix with its special symmetric sparsity layout, the
Strongly Implicit Procedure (Stone's method) would generally use a
factorization into lower and upper triangular factors each with only

five non-zero diagonals. Alternatively the factorization of the standard
five diagonal matrix would be used in conjunction with a ";odified“
iterative scheme, where in essence, the other diagonal coefficients are
relegated to the right hand side of the equation to add to the excitation
source term. The important attribute of SIP is the marked lack of
importance of accurate parameter selection. However, I believe the very
special form of the matrix enables Gaussian elimination to be used with
only very limited fill in. The method would eliminate the elements of the
lst column using the first row, then the elements of the (I + l)st column
using the (I + l)st row; etc. The total number of operations is then
proporticnal to IJ.

(Munxro) I appreciate your comments on alternative implementations of
Stone's method as it applies to nine-point equations, and I intend to try
out both your suggestions, namely using triangular matrices with fine non-
zero diagonals instead of four, and relegating the potentials at the
corner nodes to the right-hand side of the equation. As regards your
comments about the ability to perform Gaussian elimination of my banded
matrix equation in a number of operations proportional to 1J, I do not
think that this is possible, but I would very much like to hear a detailed
algorithm for your proposed scheme, since if what you suggest is in fact
possible, it would certainly represent a significant breakthrough in the

direct solution of banded sparse matrix equations.

(Fox, Oxford) (1) I would like to ask if you used any special ordering
in the equations for Gauss elimination. This is important, and for example
the "optimal" ordering of F A George involves much less computer time and
storage. (2) Following up Dr Jacob's remarks on the Stone method, it
appears that the parameters are less important than the B matrix in

LU = A + B, where L and U are your triangular matrices. It seems to be

desirable, in current language, for A + B to have second-order comparability
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(Fox, continued) with A, and I am not sure whether or not you looked

into this. (3) You also mentioned a method -by Dupont et al. They virtually
put a parameter on the right-hand side of the equations, and Stone puts one
on the left. I have heard of recent work in Bmerica in which somebody is
trying to get the best of both werlds by putting parameters on both sides.

I haven't seen the paper, but I could give you a reference.

(Munro) (1) I simply ordered the equations by numbering the mesh points
sequentially column by cclumn. I had believed that this ordering would
result in the most efficient Gaussian elimination, because of its topo-
logical simplicity. However, if the method of George is more efficient, I
will be very interested to incorporate it in my programs. (2} Up till
now, my investigations of Stone's method have been somewhat limited and I
am not sure whether the B matrix I have chosen ensures second-order
comparability of (A + B) with A. I intend to investigate this as a
result of your comment. (3) The method of Dupont et al does in fact
allow for the possibility of variable iteration parameters on both sides
of the equation. I will be interested to receive the reference on the

recent paper published on this subject.
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NUMERICAL MODELS OF THREE-DIMENSIONAL END WINDING ARRAYS

by
C.J. Carpenter* and D.H. Locke*#*
Abstract

The three-dimensional magnetic fields in machine end regions can be
most conveniently solved in differential terms by computing a magnetic
scalar potential. The complexity of the end winding shapes makes it
difficult to translate the three components of the current density vector
into suitable field sources in a simple and systematic way. For many
purposes it is convenient to treat the field in travelling wave terms, and
it is necessary to extract the fundamental and harmonic components of the
sources. The paper examines the general problem of tramslating complex
current distributions into equivalent sources for a numerical scalar
potential computation, The method is applied to a turbogenerator end

region and illustrated by field solutions.

Principle symbols

B magnetic flux density 5 mesh coefficient matrix

F network branch m.m.f T electric vector potential (egqn. 1)
H magnetic field strength ¥  separation direction

J current density V  differential vector operator

m harmonic number ¥ permeability

R, real part of complx quantity @ magnetic scalar potential

r,8,2z cylindrical coordinates n,68,t local coordinate system (Fig. 1)

indicates phasor quantity T  indicates vector quantity

T', " T functions defined by equations 2 and 16 respectively

* Electrical Engineering Department, Imperial College, London, SW7 2BT

*% C,A. Parsons and Co, Ltd., Heaton Works, Newcastle upon Tyne, NE6 2YL.
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1  INTRODUCTION

The magnetic fields in the end regions of electrical machines are
generated by winding end-connections of complex shape, and these give a
three-dimensional flux pattern whose computation is of increasing
importance in the design of turbogenerators and other large machines,
The field in the vicinity of the windings can be predicted satisfactorily
by numerical integration using current elements and simple image sources
to model the nearest iron surface, and this method has long been used to
obtain winding inductances and conductor forces. It is much less well
suited, however, to the problem of predicting the fields and losses in
the stator core, and in other materials exposed to the leakage field.
Differential methods are then more conventient, preferably formulated in
terms of a magnetic scalar potentialls?, since this reduces the magneto-
static problem to the calculation of a single function with simple and
well-behaved boundary and interface conditions. Eddy currents are easily

incorporated?s3,

The use of a scalar function transfers attention from the problem of
making three-dimensional field calculations to that of describing their
sources. The current density vector J within the end windings has three
components defined by the machine geometry. Each component varies in a
complex manner, but not independently of the others. The extraction and
translation of this data into a form suitable for a numerical model is
tedious and prone to error. The sources can be expressed in terms of
travelling waves, thus reducing the field computation from three
dimensions to two, but this requires the extraction of the J components
as a function of position in the end winding cross-section. The analysis
can be carried out independently for many different sections through the

winding, but this is often unnecessary.

It is shown in this paper that the practical problems of providing
an economic description of the current density vector in an arbitrary
winding configuration, and of translating these sources into a scalar
potential computer program, are closely related. Although the principles
of the field transformation from a solenoidal to a scalar potential form
can be stated very simply in terms of a separation of field compoaentsl’z,

its practical application in a general purpose program, particularly one
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with irregular elements, requires an operational and systematic formulation
of the various ways in which the sources can be generated. The very
flexibility of the method, and the range of choice in applying it, can be
an embarrassment in preparing algorithms, and one objective is to combine

this flexibility with the statement of precise computational instructions.

For present purposes it is assumed that the currents are all specified.
The principles discussed are directly applicable to three-dimensional eddy
current problems, and some aspects are examined in a companion paper“.
The wider implications, however, require a more extensive treatment than

can be given here.

Outer c