BE VISION, A Package of IBM 7090 FORTRAN Programs
to Draw Orthographic Views of Combinations of Plane

and Quadric Surfaces
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Abstract. BE VISION is a package of ForTRAN programs for drawing orthographic views
of combinations of plane and quadric surfaces. As input, the package takes rectangular coord:.
nate equations specifying the surfaces plus a three-angle specification of the viewing direction,
Qutput is a drawing on the Stromberg Carlson 4020 Microfilm Recorder. Many views of ope
scene may be obtained simply by changing the viewpoint.

The various subroutines of the package and their functions are described in this paper.
It also gives numerous examples of pictures that were produced by BE VISION. The pack-
age has been in use since April 1964.

1. I'ntroduction

The choice of quadric surfaces for the general program was made for practical ang
esthetic reasons. While there are many geometrical figures consisting of planes along,
the vast majority of objects in the real world contain some curved surfaces. A pro-
gram for drawing pictures would not be very useful if it did not at least include »
provision for the simplest of these, namely quadric surfaces. In drawing the curves
of the picture it was found that a great many calculations for each point had to be
made. If surfaces of higher degree than two were considered, the storage space and
the machine time used would become too large to be practical; however, the program
for drawing quadrics has proved versatile enough to produce some quite complicated
pictures.

A quadric surface is the locus of the general second-degree equation in thres
variables :

Q(x,y,2) = a” + af + a2’ + bz + baxz + by + e + ay + ez +d =0,

The program can handle any Q including planes. To handle complex objects, not
only complete surfaces but also bounded quadric surfaces were included in the
vocabulary of the program. Indeed, since many quadrics, such as planes or cylinders,
are unbounded, some limits must be provided to obtain a picture at all. Thus, the
program accepts two kinds of surfaces as input; namely, (1) the principal equations,
which define the surfaces themselves, and, (2) the bounding inequalities which limit
the extension of the surfaces of type (1). The type (1) and type (2) equations are
alike in that they are of the same form (plane or quadric surfaces), but they also
have these important differences:

(a) A principal surface may stand alone without boundaries, is defined by an
equation, is a visible, opaque surface, and has visible intersections with other
principal surfaces and with its own bounds.

(b) A bounding surface must be associated with a principal surface, is defined by
an inequality, is an invisible, transparent surface, and has visible intersections only
with its associated principal surfaces.
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A. Gensral Notption . The following notations sre used throughout this pey
The sruntion of the general quadrie surfoer fa:
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Two intersecting quadric surfaces are:
Q'(z, v, 2) = o’ + a4+ a2’ + bz + bz + byxy + 6 + oy + ez + d = 0,
Q" (x,y,2) = A’ + Ay + A + Bz + Byxz -+ By + Cx + Cay
+ Cz + D =y,

B. Minima and Maxima. A minimum and a maximum value for each of the
three variables, z, y, # must be calculated for every surface in the picture. Any
portion of a curve on a surface will be discarded with no further investigations,
if it lies outside the limits for that coordinate on that surface. '

These limits are obtained either from the bounding equations provided as inpyt
or from the natural bounds of the surface itself or from a combination of these twg.
The simplest bounds which may be placed on a surface are the six inequalities
Trin S € < Timax s Ymin LY < Ymax A0 Zmin < 2 L Znax - If any of these is provided as
input, it is left untouched. If a minimum or a maximum of a variable has nof been
provided as input, it is obtained in the following way: The equation of the surface
itself and the equations of all its bounds are examined for natural limits. From these
the lowest value of a variable is taken as its minimum and the highest value of 5
variable is taken as its maximum.

Let us take one of the variables, say z, and show how its natural limits are de.
termined.

Case 1. If, for example,

Q= f(z) = ax + ¢ = 0,

then Tmin = —¢/0 = Tmax -
Case 2. If

Q=fa)=a’+bx+c=0,

then Zmin  and  Zmax, respectively, equal the lesser and greater of
—b £+ (B — 4ac)/2a.
Case 8. If

Q= f(z,y) = ax® + af’ + bsxy + ez + ey + d = 0,

the discriminant is set to 0 and solved for z:

(bsz + &) — dag(a2” + ez +d) =0 (1)
where Zmia s equal to the lesser of the roots of (1) and #max , the greater of the roots
of (1).

Case 4. If

Q = f(xy Z) = alxz + a322 + bzfl:z + (% + C32 + d = O,

the same process is used as was used for case 3.
Case 5. If

Q= f(x,y,2) = ot + ay + a?t + bz + baxz + by + ax + oy + ez +d =10,

the z discriminant is set to 0 and solved for y, the y discriminant is then set to 0
and solved for . Then the two roots are Zyin and Tmax -
The Zmin 1A Zrmax obtained by processes 3, 4 and 5 are not necessarily the actual
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minimum and maximum values of « for the surface Q. They are limits for the surface
 but they may well be the values between which the surface ¢ does not exist (this
is the case for a hyperboloid of two sheets). This is useful information for determin-
ing visibility but it is not what is desired for minima and maxima. To forestall
such cases where no natural limits exist, it is necessary for the user to supply clear
limits to the program.

C. Curves of Intersection. An intersection or a bound is a curve of intersection
of two quadric or planar surfaces, Q" and Q”. The points on a curve are obtained by
varying one of the coordinates from its minimum to its maximum and solving the
equations Q" and Q" for the other two coordinates at each point. The minima and
maxima of x, y and z for the curve are obtained by taking the larger minimum and
the smaller maximum for each variable for Q" and Q”. Every point on the curve is
tested for these bounds and eliminated if it does not lie within them. However, these
bounds only enclose a rectangular parallelepiped and are not stringent enough.
Each point must also be tested to make sure it meets the inequality requirements of
all the bounds of the surface or surfaces. If a point does not fall within bounds,
it is flagged as invisible.

1f Q" and Q" contain the same variable in the second degree, there will be more
than one branch of the curve of intersection. In the case where Q” and Q” contain at
least two of the same variables in the second degree, we wish to eliminate one of
the variables, say x, between the equations and get one equation F(y, z) = 0.

By using Sylvester’s method we obtain an eliminant which furnishes a necessary
and sufficient condition that the two equations have a root in common.

If Sylvester’s method is applied to the equations for the quadrie surfaces, namely,
Q'(z,y,2) = 0and Q" (z, y, 2) = 0 with

Q' (z,y,2) = ai’ + o/ + a?’ + byxy + bz + bz +cx + ey + ez +d =0
and
Q" (z, y, 2)

= A’ + Ay’ + A + By + Bavz + Bz + Cix + Cwy + Cz + D = G,

the resultant becomes

a  Giytbizdc) (asy?+ aazt + bryz + sz +d) 0

0 a (bsy+ b2z + o) (aay? + aeat - byye -+ cay -+ caz + P

A1 (Byy+Biz+C) (At A2+ Biyz + Cez+ D) 0 -
0 A (Bay +Baz+ Co (Ary2+ As+ Biyzs + Cay+ Gz + D)

The value of this determinant is the required equation F(y, z) = 0. Either y or
2, say 2, is varied in increments of delta from its minimum to its maximum and
substituted in ¥ = 0. Since F is in general quartic [5], this gives the possibility of
four real solutions for y at each value of z. Four separate lists are kept for these
curves if they should exist. At each point, ¥ and z are substituted in Q = 0and
Q" = 0 to get a solution for z; if Q" = 0and Q" = 0 have common real roots, these
roots are entered into the lists.

It may oecur that a curve does not extend clear across from the lower to the
upper limit of the varying coordinate. In this case two branches must terminate by
joining instead of by running out of bounds. Unless the point of meeting appeared
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in the list for each branch, a gap would occur at the junction. This point of meeting
is calculated by using one of the methods 3, 4 or 5, for determining natural boundg
as explained in the section on minima and maxima.

The subroutine for calculating intersections contains many subsections for specia}
cases. It was divided in this way to avoid unnecessarily lengthy calculations,

D. Edges [1]. In general any quadric surface will have visible curves (herein
known as edges) which are not intersections with other surfaces. Every surface i
tested for second degree terms to find these extremal points which are not a bound-
ary. These extremal points are points at which the line of view is tangent to the
quadric surface. The following theorem is used to obtain-these points.

TaBOREM. If the point (a, B, v) lies on the quadric surface Q(z, y, 2), the line
= a-+ N,y =B+ wus,z=v -+ vswill be the tangent to the surface at the poin
(a, B, v) if and only if its direction cosines, N, u and v satisfy the equation

)‘Ql(a7 187 'Y) + p.Qg(Ol, B: 7) + VQI‘I(“! ﬂ) ’Y) = O)

where Q1 , Qa2 and Q5 are the partial derivatives of Q with respect to x, y and z respectively.

If the line is the line of view and its direction cosines are \o , ug , vo , and if @(x,y, 2)
is the surface for which an edge is wanted and (z, y, 2) is the point we are looking
for, the equation to be solved is

M(2air + by + bz + 1) + pe(bsr + 20y + bz + )
4+ vo(ber -+ by + 2052 + ) = ),
2(2a:N + bspo + bawo) + y(bsho + 2a2u0 + bwo)
4+ 2(baho + bupo + 2amw0) + (o + oo + cavy) = 0.

This gives us a linear equation in x, ¥ and z. We already have a second degree
equation (the equation of the surface) and we solve these numerically for edges
just as we did for intersections.

. Visibility {1]. When considering the feasibility of writing BIE VISION, one
of the first problems to be encountered was that of deciding whether a line is
visible or not. For a picture with a fixed number of known surfaces and a predeter-
mined view, large sections of curves are known to be visible or invisible; but the
whole point of writing BE VISION was to have a general program for drawing
any reasonable number of quadric surfaces from any view. In order to decide on the
visibility of a curve (say of the intersection of surfaces Q" and Q") or any arbitrarily
small part of that curve, all the surfaces including Q" and Q" have to be examined
to see if any of them hides it from view. (Two good examples of this difficulty can
be seen in Figure 9, the ellipsoidal coordinates, and Figure 6¢, an oblique view of
Mickey Mouse.) Changing the angle of the picture plane even slightly may make
a large difference in the amount of visibility of a curve (as much as from completely
visible to completely invisible or vice versa as in Figure 2). To assure an accurate
and general way of deciding on the visibility of a curve, the author chose the
following method; namely, calculate it point by point and test each point against
all the surfaces to see if any of them is hiding it from view. Unfortunately this is
a time-consuming process.
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Figure 4 shows the orientation of the axes and the angles of the pisture plane.
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Fig. 4. Coordinate system

Fic. 5a-d. Four views of a mounting plate

ITI. Discussion

1. At the time BE VISION was written literature on the subject of drawing
quadric surfaces was rather sketchy. The most important treatises on the subject
of the analytic geometry of 3-dimensions did not cover such practical problems (for
BE VISION) as which coordinate to vary for a curve, how to get the general
numerical solution for the intersection of two quadric surfaces, or how to find the
exact point at which the solution of the two equations becomes imaginary. These
rules had to be derived and this fact undoubtedly made the subroutines which
calculate the intersection of curves the most difficult to write.

More recently several papers have been written suggesting solutions to some of
these problems. Luh and Krolak [6] use a pair of inequalities to obtain the inter-
section of a pair of quadric surfaces, but they do not explain how to get the exact
end points of this intersection. Roberts [7, 8] has done extensive work in the field
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APPENDIX
Theorem Used to Determine Visibility

TueorEM. (1) Q(z, y, 2) = 0 ¢s the equation of a quadric surface; (2) ¢,
Q2 , Qs are the partial derivatives of Q with respect to x, y, z; and (3) q(z, v, z) is
the part of @ which is homogeneous in the second degree. Then the parameter values of
the points tn which the line x = o + \s, y = B + us, 2 = v + vs meets the quadric
surface Q(z, y, z) = 0, are the roots of the equation

Lo + 2Lys + Ly = 0,

where

Ly = Q(a, 8, 7),
L, = %D‘Ql(a: B, 'Y) + F‘Q‘A’(a: B8, ’Y) + “Q?S(o‘) B, 'Y)],
Ly = q(\, u, "’)'

CororLaRY. Thelinex = o+ Xs,y = B + pus, 2 = v + vs (a) will meet the
quadric surface Q in two distinct real points iff Li® — LoLy > 0; (b) will be tangent to
Q iff L* = LoLs ; and (c) will not have any real points in common with the surface
iff L — LoLe < 0.

If (@, B, v) is a point being tested for visibility, (z, y, 2) is one of the points of

(a) above and Ao, uo, vo are the direction cosines of the line of view; then (e, 8, v)
is hidden by the surface Q(z, ¥, 2) = 0 and not drawn if

[ + uoB + voy) — (Ao + poyy -+ v2)] < 0.



