
Enquiring and Reasoning

Over Diagrams

Using the

Semantic Web

By

Zaineb BEN FREDJ

A thesis submitted in partial fulfilment of the requirements of

Oxford Brookes University

for the degree of

Doctor of Philosophy

Oxford Brookes University

Department of Computing

School of Technology

Wheatley Campus

Oxford, OX33 1HX, UK

May 2011

 2

Abstract

This thesis is a contribution towards the representation of diagrams in a way that

improves the ability to enquire and reason about the information on which the

diagram is based. This research is directed towards the acquisition of the information

behind carefully selected “formal diagrams”. The hypothesis underlying the proposed

approach is that “if information on the structure and the semantics of formal diagrams

were preserved, made ‘part of the diagram’ by willing authors at the creation stage,

these diagrams would be more perceivable, operable and understandable and, as a

result, suggest enhanced accessibility benefits for such diagrams”.

The main contribution of this research is the introduction of a novel approach

called Graphical Structure Semantic Markup Languages. GraSSML reveals that “if

the information of the diagram is made part of the diagram at the creation stage, it is

possible to represent diagrams in a way that improves the ability to enquire and reason

about the information on which the diagram is based, thus making diagrams more

perceivable, operable and understandable and, as a result, suggesting enhanced

accessibility benefits for such diagrams”. Graphical content is no longer thought of as

ink on the paper or pixels on the screen but as the intrinsic structure and semantics of

the information.

Three different evaluations, each assessing GraSSML from a different

perspective, have been carried out. A technical perspective evaluation demonstrated

the feasibility and applicability of GraSSML. The development and implementation

of a full functional proof-of-concept prototype demonstrated GraSSML for two

different types of diagrams selected from two different application domains presented

as use cases. A methodology to apply the GraSSML conceptual architecture to a

“formal diagram” in a given application domain has been developed. An author’s

perspective evaluation provided information on the viability and applicability of the

methodology developed for the application of GraSSML conceptual architecture. The

application of the methodology has been tested, independently, by a third party during

a double blind trial. And finally a user’s perspective evaluation, carried out with three

sighted users and two blind users against a set of predefined tasks, demonstrated the

perceivability, operability and understandability of diagrams using GraSSML and as a

result validated the hypothesis.

 3

To the loving memory of my father, Ali Ben Fredj

To my extraordinary mother, Faouzia Ben Fredj

To my eight sisters and two brothers

To my husband, Kamel Heus and two daughters,

Hannah and Jasmine

 4

Acknowledgments

I would like to thank here some of the people without whose help and support

this thesis would never have been completed. These people have been helpful in their

support and encouragement even during the most difficult periods.

I owe my deepest gratitude to my supervisor Professor David Duce for his help,

advice and encouragement. I am deeply thankful to him for his guidance and support

from the initial to the final stages of this research.

I am also grateful to Professor Bob Hopgood and Dr Mary Zajicek, for their

help, guidance, support and encouragement.

I would like to express my gratitude to Elizabeth Maynard for being there,

helping and supporting me during the whole process.

To David Lightfoot, who guided me and supported me towards and during my

studies at Oxford Brookes University.

 Thanks should also go to staff in the Computing Department of Oxford

Brookes University, and in particular to Samia Kamal, Anne Becker, Ken Brownsey,

Fareena Salih, Rosemary Ostley and Professor Denise Morrey.

To my friends who were here when I needed them the most: Patricia Vilain,

Pauline McKneow, Lamine Ouyahia, Dunya Bendahoud, Musbah Sagar, Emna Menif

and Caroline Berard.

To my special parent who always encouraged me to study and never give up. I

wish my father could have seen that I have completed it.

I thank my eight sisters (Beya, Soundes, Naila, Nozah, Samia, Akbel, Aida and

Fattouma) and my two brothers (Mohamed-ali and Essamadi), without whom life

wouldn’t be the same.

Not least, thanks to my husband Kamel Heus, for loving and supporting me in

all my endeavours, and to my lovely daughter Hannah for giving me the love, support

and willingness never to give up, and finally to my new daughter Jasmine, who has

kept me awake whenever she could to ensure the completion of the thesis.

 5

Contents

Abstract ...2

Acknowledgments...4

Contents...5

List of Figures ...10

Introduction ..13

1.1 Terminology ...15

1.2 Motivation ..16

1.3 Aims and Research objectives..18

1.4 Research Contribution..24

1.4.1 The GraSSML Conceptual Architecture ...24

1.4.2 Fully working prototype..24

1.4.3 Methodology to apply the GraSSML approach.................................25

1.4.4 Credibility of GraSSML..25

1.5 Structure of the thesis ...26

1.6 Publications ..27

1.7 External Support...30

1.8 Originality...30

Diagrammatic Representations...31

2.1 Nature and importance of diagrams ...31

2.1.1 Graphics...31

2.1.2 Diagrams..32

2.2 Graphicacy..36

2.3 Syntax, Semantics and Pragmatics of Diagrams36

2.4 Taxonomies of visual representations ..37

2.4.1 Blackwell Taxonomy of taxonomies...37

2.4.2 Lohse’s Taxonomy..38

2.4.3 Blenkhorn and Evans’s taxonomy...39

2.4.4 Takagi and Tatsuya’s taxonomy..40

2.4.5 A Synthesised Taxonomy Selection of Diagrams.............................42

2.5 Diagrammatic Communication ..43

2.6 Generating diagrams...45

 6

2.6.1 A Presentation Tool (APT)..45

2.6.2 BOZ ...47

2.6.3 TRIP2 ..47

2.6.4 AVE...48

2.6.5 OntoDiagram ...49

2.6.6 SemViz ..49

2.6.7 PIC...50

2.7 Discussion and Conclusion...51

Accessible Diagrams: A Critical Review ..52

3.1 Diagrams on the Web ...52

3.1.1 Graphic formats ...52

3.1.2 Guideline 1.1 and the WCAG 2.0 POUR Principles.........................54

3.2 Current approaches to presenting accessible diagrammatical content55

3.2.1 Existing alternative modalities to access diagrams non-visually55

3.2.2 Description of some current Bottom-up approaches58

3.2.3 Limitations of Bottom-up approaches ...65

3.2.4 Summary of issues...66

3.3 Diagrams processing ..68

3.3.1 Visual processing of diagrams...69

3.3.2 Issues of Non-visual presentation of diagrams..................................70

3.4 Accessible Diagrams Requirements ...73

3.4.1 Loss of information at diagram rendering ...73

3.4.2 Lack of accessibility support for both image and vector formats74

3.4.3 Presentation: modality issues ..74

3.5 Discussion and Conclusion...75

The GraSSML Approach...78

4.1 Terminology ...78

4.2 Approach ..79

4.3 Conceptual architecture ..81

4.4 Semantic level ..82

4.4.1 Ontology..82

4.4.2 Data Model ..83

4.5 Structure level: ZineML ...84

4.6 Presentation level..87

 7

4.6.1 Graphical representation..89

4.6.2 Textual representation ...89

4.6.3 Query systems ...90

4.6.4 Other representations...91

4.7 Transformations..91

4.7.1 Data model to ZineML..92

4.7.2 ZineML to Representation...92

4.8 GraSSML in practice..93

4.8.1 Initiation ..95

4.8.2 Applying GraSSML...96

4.8.3 The authoring process..97

4.9 Conclusion..98

Evaluation: A Technical Perspective ..101

5.1 GraSSML Prototype Architecture ..101

5.1.1 Stage 1: Ontology..104

5.1.2 Stage 2: Data model...104

5.1.3 Stage 3: Notational conventions..106

5.1.4 Stage 4: Graphical Representation ..108

5.1.5 Stage 5: Verbalisation model (Semantics)112

5.1.6 Stage 6: Verbalisation model (Structure) ..112

5.1.7 Stage 7: Query systems ...112

5.1.8 Graphical User Interface..113

5.2 Use Case: Hierarchical Diagram “Organisation Charts”........................114

5.2.1 Organisation Charts ...114

5.2.2 Main Example ...116

5.2.3 More examples ..130

5.2.4 Hierarchical diagrams in different domains132

5.3 Use Case: Process Diagram “UML Activity Diagram”135

5.3.1 UML Activity Diagram ...135

5.3.2 Main Example ...135

5.3.3 Process diagrams in different domains..155

5.4 Conclusion..157

Evaluation: An Author’s Perspective ...158

6.1 Introduction ..159

 8

6.1.1 The GraSSML FCP project ...159

6.1.2 Objectives of the GraSSML FCP project ..160

6.2 Evaluation methodology...161

6.3 GraSSML FCP..163

6.3.1 Class of diagrams: “Charts” ..163

6.3.2 The GraSSML FCP approach..165

6.3.3 Semantic Level ..168

6.3.4 Structure level..170

6.3.5 Presentation level...172

6.4 Results ..178

6.5 Conclusion..180

Evaluation: A User’s Perspective..181

7.1 Heuristic evaluation..182

7.1.1 Participants ..183

7.1.2 Method...183

7.1.3 Results ...184

7.1.4 Conclusion...187

7.2 Blind users Evaluation..187

7.2.1 Participants ..187

7.2.2 Equipment..188

7.2.3 Materials ..188

7.2.4 Tasks..195

7.2.5 Methods ...197

7.2.6 Results and discussion...200

7.3 Conclusion..202

Conclusion and Future Work..205

8.1 Main findings of the research ...205

8.2 Contributions ..205

8.2.1 The GraSSML Conceptual Architecture ...206

8.2.2 Fully working prototype..207

8.2.3 Methodology to apply the GraSSML approach...............................207

8.2.4 Credibility of GraSSML..208

8.3 Open issues and future work ..208

8.4 Conclusion..211

 9

References ...213

Graphical Formats on the Web...224

A.1 Raster formats..224

A.1.1 Graphic Interchange format (GIF)..225

A.1.2 Portable Network Graphics (PNG)...226

A.1.3 Joint Photographic Experts Group (JPEG).....................................226

A.2 Vector formats ...226

A.2.1 Computer Graphics Metafile (CGM or WebCGM)227

A.2.2 Scalable Vector Graphics (SVG)..227

A.2.3 Small Web Format (SWF)..231

Accessibility...234

B.1 Definition...234

B.2 Legal Frameworks ...235

B.3 Accessibility Guidelines ..236

B.4 Blindness..237

B.5 Screen Readers...238

Accessibility of Diagrams...240

C.1 Diagrams on the Web ..240

C.1.1 Diagram inserted as vector images ...240

C.1.2 Diagram inserted as vector graphics...240

C.2 Guidelines for diagrams accessibility ..241

C.2.1 WCAG 2.0 – Guideline 1.1 Text Alternatives................................241

C.2.2 Limitations of Text Alternatives...242

C.2.3 Screen Readers and diagram accessibility244

Accessibility of Diagrams and the WCAG 2.0 ...246

D.1 The POUR Principles of the WCAG 2.0...246

D.1.1 Perceivable..246

D.1.2 Operable..250

D.1.3 Understandable ...251

D.1.4 Robust...251

D.2 Existing approaches in the context of the defined requirements251

 10

List of Figures

FIGURE 1: EXAMPLES OF “PROCESS DIAGRAMS” ..21

FIGURE 2: EXAMPLES OF “H IERARCHICAL DIAGRAMS” ..22

FIGURE 3: EXAMPLES OF “CHARTS”..23

FIGURE 4: THESIS STRUCTURE..26

FIGURE 5: GRASSML TIMELINE ALONG SIDE W3C TIMELINE OF W3C RECOMMENDATIONS.................29

FIGURE 6: CATEGORIZATIONS OF COLLECTED GRAPHICS (TAKAGI AND TATSUYA, 2007)41

FIGURE 7: DIAGRAMMATIC COMMUNICATION BASED ON (NARAYANAN, 1997)45

FIGURE 8: TRIP2 MODELS (TAKAHASHI ET AL., 1991)..48

FIGURE 9: A SIMPLE EXAMPLE « DO YOU SEE WHAT I MEAN? »..66

FIGURE 10: GRASSML APPROACH..80

FIGURE 11: GRASSML SYSTEM OVERVIEW...81

FIGURE 12: GRASSML CONCEPTUAL ARCHITECTURE..82

FIGURE 13: EXAMPLES OF BASIC SHAPES DEFINED BY ZINEML ..86

FIGURE 14: GRASSML SYSTEM ARCHITECTURE...94

FIGURE 15: GRASSML PROTOTYPE ARCHITECTURE..103

FIGURE 16: POSSIBLE SOURCES OF INFORMATION OF THE RDF DATA MODEL104

FIGURE 17: CREATION OF THE RDF GRAPH USING FORMS IN PROTÉGÉ..105

FIGURE 18: CREATION OF THE RDF GRAPH USING GRAPH WIDGET IN PROTÉGÉ..................................105

FIGURE 19: BASED ON ILOG JVIEWS DIAGRAMMER TOOL CHAIN ...109

FIGURE 20: ARCHITECTURE OF JVIEWS DIAGRAMMER ...109

FIGURE 21: SYMBOL EDITOR FOR UML ACTIVITY DIAGRAM EXAMPLE ...111

FIGURE 22: ORGANISATION CHART EXAMPLE...115

FIGURE 23: CLASS HIERARCHY FOR V ISIONS ORGANISATION CHART ONTOLOGY116

FIGURE 24: VISIONS ORGANISATION CHART ..117

FIGURE 25: CREATION OF THE INDIVIDUALS USING GRAPH WIDGET..118

FIGURE 26: ZINEML CODE FOR THE V ISIONS ORGANISATION CHART EXAMPLE...................................119

FIGURE 27: VISIONS ORGANISATION CHART WITH DRAWING DIRECTION “R IGHT”120

FIGURE 28: VERBALISATION MODEL TEMPLATE FOR ORGANISATION CHARTS121

FIGURE 29: "MENU" AND “GENERAL DESCRIPTION” SECTIONS...122

FIGURE 30: "DETAILED PROSE DESCRIPTION" SECTION...123

FIGURE 31: "DETAILED LIST DESCRIPTION" SECTION...123

FIGURE 32: TEXTUAL REPRESENTATION OF THE STRUCTURE (MENU AND GENERAL DESCRIPTION

SECTIONS)..124

FIGURE 33: TEXTUAL REPRESENTATION OF THE STRUCTURE (DETAILED PROSE DESCRIPTION SECTION)

..125

FIGURE 34: TEXTUAL REPRESENTATION OF THE STRUCTURE (DETAILED LIST DESCRIPTION SECTION)..125

FIGURE 35: SPARQL QUERY "WHO MANAGES DIRECTLY...?"..126

 11

FIGURE 36: RESULT OF QUERY “WHO MANAGES DIRECTLY DANIELLE PEPIN”127

FIGURE 37: RESULT OF QUERY “WHO MANAGES INDIRECTLY DANIELLE PEPIN”128

FIGURE 38: RESULT OF QUERY “WHO MANAGES DIRECTLY DANIELLE PEPIN”129

FIGURE 39: RESULT OF QUERY “WHO MANAGE INDIRECTLY DANIELLE PEPIN”...................................129

FIGURE 40: OXFORD BROOKES UNIVERSITY ORGANISATION CHART EXAMPLE131

FIGURE 41: OXFORD BROOKES UNIVERSITY EXAMPLE (DIRECTION=“RIGHT”)....................................132

FIGURE 42: PROBABILITY TREE DIAGRAM EXAMPLE ...133

FIGURE 43: WEBSITE STRUCTURE EXAMPLE..133

FIGURE 44: GENETIC FAMILY TREE EXAMPLE..134

FIGURE 45: UML AD ENROLLING IN THE UNIVERSITY FOR THE FIRST TIME..136

FIGURE 46: HIERARCHY OF THE CLASSES OF THE UMLAD ONTOLOGY ...137

FIGURE 47: OBJECT PROPERTIES OF THE UMLAD ONTOLOGY ...137

FIGURE 48: DATATYPE PROPERTIES OF THE UMLAD ONTOLOGY ..137

FIGURE 49: TEMPLATE EXTRACTED FROM (TAYLOR, 2008B) ...141

FIGURE 50: VERBALISATION MODEL TEMPLATE FOR UML ACTIVITY DIAGRAMS141

FIGURE 51: TEXTUAL REPRESENTATION OF THE SEMANTICS (GENERAL DESCRIPTION SECTION)..........142

FIGURE 52: TEXTUAL REPRESENTATION OF THE SEMANTICS (DETAILED PROSE DESCRIPTION SECTION)

..142

FIGURE 53: TEXTUAL REPRESENTATION OF THE SEMANTICS (DETAILED LIST DESCRIPTION SECTION) .143

FIGURE 54: TEXTUAL REPRESENTATION OF THE STRUCTURE (GENERAL DESCRIPTION SECTION)144

FIGURE 55: TEXTUAL REPRESENTATION OF THE STRUCTURE (DETAILED PROSE DESCRIPTION SECTION)

..144

FIGURE 56: TEXTUAL REPRESENTATION OF THE STRUCTURE (DETAILED LIST DESCRIPTION SECTION)..145

FIGURE 57: TEXTUAL QUERY SYSTEM FROM V IEW MODE INTERFACE...146

FIGURE 58: COMPLETING SELECTION OF AN OPTION...147

FIGURE 59: SELECTING OPTION FOR “ENROL IN UNIVERSITY” ..147

FIGURE 60: RESULT OF QUERY “T RAVERSE GRAPH FROM ... TO ...” ..148

FIGURE 61: SELECTION OF QUERY “SHOW ME ALL ELEMENTS OF TYPE...” WITH OPTION SELECTED

“A CTIVITY ” ...149

FIGURE 62: RESULTS OF THE QUERY “SHOW ME ALL ELEMENTS OF TYPE ACTIVITY ”149

FIGURE 63: SELECTION OF QUERY “SHOW ME PATH TO FINAL ACTIVITY FROM...” WITH OPTION

SELECTED “I NITIAL ACTIVITY ” ..150

FIGURE 64: RESULTS OF QUERY “SHOW ME PATH TO FINAL ACTIVITY FROM ...”151

FIGURE 65: ACTIVITY DIAGRAM EXAMPLE “BOWLING” ..152

FIGURE 66: NESTED ACTIVITY DIAGRAM EXAMPLE ...153

FIGURE 67: EXAMPLE OF SUB-ACTIVITIES ...153

FIGURE 68: STARUML EXAMPLE “JUKEBOX” ...154

FIGURE 69: A SIMPLE FLOWCHART EXAMPLE..155

FIGURE 70: ANOTHER EXAMPLE OF A FLOWCHART WITH DIFFERENT NOTATIONAL CONVENTIONS.......155

FIGURE 71: EXAMPLE OF A FLOWCHART FOR COMPUTING FACTORIAL N (N!).......................................156

 12

FIGURE 72: BAR CHART EXAMPLE ..164

FIGURE 73: COLUMN CHART EXAMPLE...164

FIGURE 74: PIE CHART EXAMPLE ..165

FIGURE 75: THE GRASSML FCP CONCEPTUAL ARCHITECTURE..165

FIGURE 76: BALANCE SHEET EXAMPLE USED...166

FIGURE 77: THE GRASSML FCP SYSTEM ARCHITECTURE...167

FIGURE 78: DATATYPE PROPERTIES OF GRASSML FCP ONTOLOGY ..168

FIGURE 79: OBJECT PROPERTIES OF THE GRASSML FCP ONTOLOGY ..168

FIGURE 80: HIERARCHY OF THE CLASSES OF THE GRASSML FCP ONTOLOGY169

FIGURE 81: COLUMN CHART STRUCTURE ELEMENT..170

FIGURE 82: FGML CODE SAMPLE...171

FIGURE 83: FGML “EVOLUTION OF THE CASH” EXAMPLE..172

FIGURE 84: COLUMN CHART GENERATED USING GRASSML FCP..173

FIGURE 85: TEXTUAL PRESENTATION OF FIGURE 84 ...174

FIGURE 86: TEXTUAL PRESENTATION OF FIGURE 84 (TABULAR VERSION) ...174

FIGURE 87: BALANCE SHEET ASSETS SUBSET EXAMPLE ..175

FIGURE 88: SMART PIE CHART “NET CURRENT ASSETS FOR COMPANY A IN 2002” EXAMPLE177

FIGURE 89: SMART PIE CHART “WHO IS SMALLER...” QUERY...178

FIGURE 90: SMART PIE CHART “WHO ACCOUNTS FOR...” ...178

FIGURE 91: UMLAD FOR ATTENDING A COURSE LECTURE (DIAGRAM 1) ...189

FIGURE 92: UMLAD FOR EATING WHEN HUNGRY (DIAGRAM 2)...190

FIGURE 93: UMLAD ENROLLING IN THE UNIVERSITY FOR THE FIRST TIME (DIAGRAM 3)191

FIGURE 94: MY SIMPLE ORGANISATION CHART (DIAGRAM 4) ...192

FIGURE 95: OXFORD BROOKES UNIVERSITY ORGANISATION CHART EXAMPLE (DIAGRAM 5)193

FIGURE 96: VISION ORGANISATION CHART (DIAGRAM 6) ..194

FIGURE 97: EXAMPLE OF SIMPLE MODIFICATION IN SVG..230

FIGURE 98: SCREEN READER USAGE (WEBAIM, 2009A)..238

 13

Chapter 1

Introduction

The World Wide Web plays an important role in modern society which thrives

on information. Computer graphics is an important component of the web in

conveying information via diagrams, maps, visualisations, illustrations, etc. There

exists a wide variety of kinds of graphics (photographs, painting, maps, diagrams,

symbols, etc.), each of them using different notations and carrying different kinds of

information. Different graphics are indeed accessed and looked at in different ways.

This research will be restricted to the study of diagrammatic representations,

which are structured visual representations of concepts and relationships between

these concepts. Diagrams offer powerful advantages in presenting, accessing and

processing information.

Until quite recently, browser support for graphics was restricted to image file

formats such as GIF, PNG and JPEG. Today, most browsers also provide support for

one or more vector graphics formats such as SWF, SVG and CGM. Despite the

importance of vector graphics and the recent innovative advances in web technology,

relatively little attention has been paid to making information of this kind available to

a wide range of people accessing it in a wide range of situations.

The need for accessibility support on the web was recognised ten years ago and

is now a legal requirement. Accessibility is not only for people with obvious

disabilities but also for people who simply access information and learn in different

ways (SLOAN et al., 2006). The mobile Web is a good example that illustrates this

idea (HARPER et al., 2006).

According to the Web Content Accessibility Guidelines 2.0 (WCAG 2.0) (W3C,

2008c), four principles (POUR) provide the foundation for Web Accessibility:

Perceivable (P), Operable (O), Understandable (U), and Robust (R). These principles

“lay the foundation necessary for anyone to access and use Web content”. These four

principles apply perfectly to visual web content such as diagrams but the actual

guidelines defined, does not really indicate the requirements to make this type of

content POUR.

 14

This thesis intends to contribute to the representation of diagrams in a way that

could improve the ability to enquire and reason about the information on which the

diagram is based and thus making diagrams more perceivable, operable and

understandable and, as a result, suggesting enhanced accessibility benefits for such

diagrams. This information could then be presented, explored and adapted in a

multimodal POU environment. Note that this research will address three of the

principles defined by the WCAG 2.0. Graphical content is no longer thought of as ink

on the paper or pixels on the screen but more as an abstract entity that has an intrinsic

structure and semantics.

This research is directed towards the acquisition of the information behind

carefully selected “formal diagrams”.

The hypothesis underlying the proposed approach is that “if information on the

structure and the semantics of formal diagrams were preserved, made ‘part of the

diagram’ by willing authors at the creation stage, these diagrams would be more

perceivable, operable and understandable and, as a result, suggest enhanced

accessibility benefits for such diagrams”.

The proposed approach named Graphical Structure Semantic Markup

Languages (GraSSML) is as follows:

1. Large classes of diagrams (vector graphics) are defined with a clear set of

rules and symbols from which they are created.

2. Such diagrams are defined via a data model conforming to an ontology

and rule set that is mapped down onto a logical description of the vector

graphics that is not constrained by final form rendering and layout

constraints.

3. This logical description is then mapped to an appropriate final form for the

graphical representation on the output device.

4. Perceivability, operability and understandability support is provided by

alternative transformations of the semantic and logical representations to

alternative final forms (e.g. text or aural equivalents) and query facilities

that allow the end user to explore, enquire and reason over the information

content of the diagram.

 15

1.1 Terminology

The following terms are used throughout this thesis with these definitions:

� GraSSML: name of the proposed approach aiming at contributing to the

representation of diagrams in a way that improves the ability to reason and

enquire about the information on which the diagram is based. The approach

is described in Chapter 4.

� ZineML: generic XML language that captures the structure of a diagram in the

GraSSML approach. A description of ZineML can be found in Chapter 4

section 4.5.

� Verbalisation model: consists of a template, in the GraSSML approach,

gathering essential information at an appropriate level of abstraction

(structure or semantics), organizing and presenting it in a way that is easy to

understand textually. A more detailed description can be found in Chapter 4

section 4.6.

� Graphic: A visual representation that is not just text. It includes charts, graphs,

diagrams, flowcharts, drawings, symbols, maps, painting, and photographs.

The word “graphic” and “graphical representation” are used interchangeably.

� Diagram: A simplified and structured visual representations of concepts and

relationships between these concepts to represent and clarify a topic.

� Image (raster graphic): Raster graphic composed of a rectangular array of

pixels where each pixel may have both colour and opacity defined.

� Vector graphic: Graphic composed of a set of geometric objects defined by the

coordinates of paths and areas.

� Vector image: A vector graphic that has been rendered as an image.

� Image format: A standardised way of representing an image. The data

describes the characteristics of each individual pixel. PNG, JPEG and GIF

formats are the most often used formats to display raster graphics images on

the web.

� Vector graphic format: A standardised way of representing a vector graphic.

The data contain a geometric description of the objects the graphic is

composed of. If displayed on a raster display, the vector graphic must be

rasterized. This is not necessary if rendered on a vector display. WebCGM,

 16

SVG and SWF formats are some examples of vector formats used over the

web.

� element: An HTML markup element for including images in web pages.

Most browsers support the GIF, PNG and JPEG image formats.

� <object> element: An HTML markup element for including an open-ended

range of external objects in web pages. Such objects can be text, images,

vector graphics, audio, video, etc. Most modern browsers support the SVG

vector format natively and the SWF and CGM vector formats via proprietary

plugins.

� Web accessibility: This thesis follows the definition of accessibility used by the

Web Accessibility Initiative (WAI) (WAI, 2009): “Web accessibility means

that people with disabilities can perceive, understand, navigate, and interact

with the Web, and that they can contribute to the Web. Web accessibility also

benefits others, including older people with changing abilities due to aging.

Web accessibility encompasses all disabilities that affect access to the Web,

including visual, auditory, physical, speech, cognitive, and neurological

disabilities ... a key principle of Web accessibility is designing Web sites and

software that are flexible to meet different user needs, preferences, and

situations.”

1.2 Motivation

This research started with a study aiming at understanding: what makes

diagrams unique? Why are they difficult to make accessible? What is missing from

the existing methods and finally what needs to be addressed to make them

perceivable, operable and understandable?

Diagrams present information in a way which is easy to access and process.

They offer an instant access to the information present in the diagram, offering the

ability to gain an overview of the information presented as well as the ability to access

details of that information. This flexibility reduces the load of the working memory

allowing diagrams to act as an external memory support. Such representations

simplify and facilitate search of information as their spatial grouping abilities allows

related information to be accessed and processed simultaneously. Diagrams also

facilitate recognition by making information that would be implicit in other forms of

representation such as textual, more explicit. But this is true only if these diagrams are

 17

“effective diagrams” meaning that the diagram matches well what it represents and

the task for which it is intended, making inferences instant and obvious.

Accessibility of diagrams, represented as vector graphics, for blind users and

users who access this type of graphics in an environment where visual representations

are inappropriate was the initial motivation of the research. For these users, alternate

methods of accessing this type of web content have to be offered as they are unable to

use the visual communication channel. Vector graphics accessibility means for these

users the ability to understand, interact and navigate information presented

diagrammatically. As the research progressed, it was realized that the approach that

had been developed was far more general in the sense that it would potentially benefit

“ALL”, including computers.

The World Wide Web Consortium is the leading organization promoting Web

Accessibility and developing guidelines and techniques to encourage the development

of accessible Web content. The first version of the WCAG, WCAG 1.0 (W3C, 1999)

provided techniques to achieve accessibility, these were mainly related to HTML. The

second version, WCAG 2.0 (W3C, 2008c), which became a recommendation in

December 2008 aimed at being more general by taking into account different

advanced technologies that have made their place in today’s web content. The WCAG

2.0 is built on four principles considered essential for any web content to be made

accessible (Perceivable, Operable, Understandable and Robust).

These guidelines have some applicability to images but do not address vector

graphics per se. The regulations involve providing blind people the same message a

sighted person would get from an image. In the case of vector images accessibility, it

is required to include alternative text that should serve as an effective replacement for

the information provided by the vector image. This must be the same information that

is given by the vector image to people who can see it.

Alternative accessible representations of graphics are possible but recovering

the necessary information is difficult and time consuming unless that information has

been built-in at the time of creation. Some attempts have been made to provide access

support to vector images but even though most of these approaches provide a partial

solution to the problem, the main limitation resides in the absence of information

“behind” the graphic. Accessible diagrams require the information behind the diagram

to be preserved in a way that makes it possible for a user to enquire and reason over it.

 18

Some approaches aimed at taking advantage of diagrams have recognized this

need of preserving access to the original information behind the diagram. They aim at

generating expressive and effective diagrams from high level descriptions of a given

set of data. But none of these approaches addressed the perceivability, operability and

understandability of the diagrams obtained.

The availability of the information behind the diagram allows the meaning to be

explicit which assists perceivability, operability, understandability, though even this is

not directly tested there is something akin to an inductive reason for having these

three principles. By making diagrams perceivable, operable and understandable then

by definition they are made more accessible. Due to time limitations and lack of

resources it was not possible to test this directly by carrying out major user studies.

1.3 Aims and Research objectives

This research aims at exploring a different approach derived from the benefits

and limitations identified in existing approaches.

It is believed that defining a “smart diagram system” that stores the original

information, and provides details of the transformation performed to generate the

filtered view of the information, and allows them to perform alternative

transformations on the information to provide different presentations is a potential

way forward for this research area. Such a system should aim at representing

diagrams in a way that it is possible to enquire and reason about the information they

carry, making them perceivable, understandable and operable.

A system aimed at retaining as much information as possible at the creation

stage of the diagram would enable readers to use this information in as many ways as

possible offering the ability to enquire and reason over the diagram. The aim is to

define a general purpose architecture to explore the hypothesis and develop a

methodology for applying that architecture to carefully selected classes of diagrams

from specific application domains.

It is not expected that this approach will be applicable to all kinds of graphical

content, but rather to well-structured “formal diagrams” that conform to well-defined

conventions in specific formally defined domains.

A full description of different graphic classification systems is given in Chapter

2 Given the rich diversity of diagrammatic representations captured in these

taxonomies and taking into account the time frame of the research, there is a need to

 19

focus the research on some specific types of diagrams carefully selected as a basis to

demonstrate that the approach proposed in this thesis is viable and applicable

The exemplars chosen are part of Lohse’s (LOHSE et al., 1994) network chart

category. Such diagrams show relationships between components using lines, arrows,

proximity, etc. Their planar coordinate system does not convey any meaning whereas

the relative arrangement of objects does. Blenkhorn and Evans (BLENKHORN and

EVANS, 1998) call this class of diagrams “schematic diagrams” consisting of objects

and the relationships between these objects. Takagi and Tatsuya (TAKAGI and

TATSUYA, 2007) identified a separated sub-class for such diagrams: “formal

diagrams”. Formal diagrams are well structured and conform to conventions in

specific domains. They are defined as having a well-defined data model behind their

structure. For reasons discussed in Chapter 2 section 2.4.5, two representative classes

were chosen to test the GraSSML approach:

• Process diagrams (Figure 1): describe the relationships between processes

using a set of well-defined elements linked together using arrows

representing flows. A good exemplar of this class is UML Activity

Diagrams.

• Hierarchical diagrams (Figure 2): consist of elements organised into layers

between concepts. Organisational charts are a good example of this class.

The third exemplar chosen by a third party to test the applicability of the

proposed approach was:

• Charts (Figure 3): are concerned with the display of data using symbols.

Financial charts were chosen by a user who independently evaluated the

approach. They are required to be formally described and are significantly

different from the two other exemplars.

The research aims and objectives can be summarized as follows:

1. Understand what makes diagrams unique. Explore various taxonomies of

graphical representations and select the classes of diagrams this research

will be applicable to (Chapter 2).

2. Why are diagrams difficult to make perceivable, operable and

understandable? Establish what is missing from the existing methods and

finally what needs to be addressed to express and present them in a way that

 20

would provide the ability to enquire and reason about them? Identify the

issues/ requirements this research will aim at addressing (Chapter 3).

3. Explore, design and develop a general purpose conceptual architecture to

address the issues/ requirements and support the hypothesis Chapter 4).

4. Develop a methodology for applying our architecture to an application

domain for a specifically selected class of diagrams (Chapter 5).

5. Implement a proof of concept tool (GraSSML prototype) to demonstrate the

feasibility and applicability of the proposed approach and apply the

methodology to carefully selected classes of diagrams from specific

application domains (Chapter 5).

6. Assess the viability and applicability of the approach through independent

evaluation by an external user of the system which also applied the approach

to a different class of diagrams (Chapter 6).

7. Perform an evaluation with blind and sighted users by evaluating the

developed prototype against a set of predefined tasks to assess the

perceivability, operability and understandability of diagrams presented using

GraSSML in order to validate the hypothesis (Chapter 7).

 21

Figure 1: Examples of “Process Diagrams”

 22

Figure 2: Examples of “Hierarchical Diagrams”

 23

Figure 3: Examples of “Charts”

 24

1.4 Research Contribution

The main contribution of this research is the introduction of a novel approach

called Graphical Structure Semantic Markup Languages (GraSSML).

The contributions of the thesis are summarized as follow:

• The GraSSML Conceptual Architecture.

• A fully working prototype demonstrating the feasibility and applicability of

the approach for three different application domains.

• A methodology to apply the GraSSML conceptual architecture to a given

application domain.

• Credibility of GraSSML: evidence of the benefits of GraSSML through

instances of evaluation of the working prototype with users.

1.4.1 The GraSSML Conceptual Architecture

GraSSML contributes to the representation of diagrams in a way that improves

the ability to enquire and reason about the information on which the diagram is based

and thus making diagrams more perceivable, operable and understandable and, as a

result, suggesting enhanced accessibility benefits for such diagrams.

This framework relies on the presence of essential selected information

provided by domain experts and the willingness of authors to allow the capture and

access to such information while creating their diagrams upon which the approach

relies. This exposes a new way of thinking about the authoring of diagrams.

1.4.2 Fully working prototype

The viability of the approach and its applicability for three different application

domains has been demonstrated through a fully working prototype.

A fully functional implementation of the GraSSML conceptual architecture has

been implemented in a proof-of-concept tool (GraSSML prototype). Three use cases

have been considered, each for different classes of diagrams from different

application domains: Process diagram “UML Activity Diagram” (Chapter 5 section

5.3), Hierarchical diagram “Organisational Charts” (Chapter 5 section 5.2) and Charts

“Financial charts” (Chapter 6).

The system uses a combination of web technologies, including OWL, RDF,

XSLT, GRDDL, along with some new XML based languages (ZineML), in an

attempt to enable the authoring of diagrams based on their meaning (semantics) and

 25

not their visual rendering/ presentation. This exposes a new way of thinking about the

authoring of diagrams and is an interesting use of the semantic web technologies to

assist this authoring process.

The GraSSML prototype has demonstrated that the GraSSML conceptual

architecture is sound.

1.4.3 Methodology to apply the GraSSML approach

A methodology to apply the GraSSML conceptual architecture to a ‘formal

diagram’ in a given application domain has been developed. An author’s perspective

evaluation provided information on the applicability of the methodology developed

for the application of GraSSML conceptual architecture.

Olivier BRAECKMAN, an MSc student, independently, applied GraSSML to

financial reports in order to represent “financial charts” in a way that it is possible to

reason and enquire over the information they carry thus making them more

perceivable, operable and understandable and, as a result, enhancing their

accessibility. The application of the methodology has been tested by Olivier during a

double blind trial in which he, alone, performed the data gathering, processing and

recording as well as an initial analysis. Afterwards the results and data obtained were

analysed, interpreted and evaluated. The viability and applicability of the GraSSML

approach was successfully assessed by Olivier who extended the system for a

different class of diagrams. The evaluation of the process is presented in the

evaluation chapter from an author’s perspective (Chapter 6).

1.4.4 Credibility of GraSSML

The credibility of GraSSML has been demonstrated through the ability to reason

and enquire about the information behind diagrams. This ability to reason and enquire

has been demonstrated through the proof-of-concept prototype. The three use cases

implemented within the GraSSML prototype demonstrated the feasibility, viability

and applicability of the GraSSML approach but did not provide any insight on

whether GraSSML support the hypothesis. An evaluation of the GraSSML prototype,

carried out with two blind users and three sighted users against a set of predefined

tasks, allowed us to assess the perceivability, operability and understandability of

GraSSML. This evaluation (Chapter 7) demonstrated the hypothesis and supports the

ability for further studies, for greater work.

 26

1.5 Structure of the thesis

Figure 4 illustrates the structure of the thesis.

Figure 4: Thesis Structure

• Chapter 2 (Diagrammatic Representations): Reviews the published

literature related to diagrammatic representations as well as taxonomies for

graphical representations. This has led to the selection of the classes of

diagrams the GraSSML approach will be applicable to.

• Chapter 3 (Accessible Diagrams: A Critical Review): Reviews some

relevant work on the accessibility of diagrams on the web. This has led to

 27

the identification of issues/requirements the proposed thesis will aim at

addressing.

• Chapter 4 (The GraSSML Approach): GraSSML is described, in detail,

introducing the GraSSML three-level conceptual architecture: semantic,

structure and presentation and the transformations between these levels

• Chapter 5 (Evaluation: A Technical Perspective): Describes the system

architecture of the proof-of-concept tool called the GraSSML prototype to

demonstrate the feasibility and applicability of the GraSSML approach.

The development and implementation of the full functional proof-of-

concept prototype demonstrating GraSSML for two different types of

diagrams, selected from two different application domains: Process

diagrams (UML Activity Diagram) and Hierarchical diagrams

(Organizational Charts), is then presented as two different use cases.

• Chapter 6 (Evaluation: An Author’s Perspective): Describes the

evaluation carried out to assess the viability and the applicability of the

GraSSML approach to a different class of diagrams (in this case “charts”)

in a different domain (“financial reporting”) by a third party. An MSc

Student, Olivier BRAECKMAN, from Oxford Brookes University applied

the GraSSML prototype to a different class of diagram “charts”, in the

finance application-domain.

• Chapter 7 (Evaluation: A User’s Perspective): Describes the evaluation,

carried out with three sighted users and two blind users against a set of

predefined tasks, to demonstrate the perceivability, operability and

understandability of diagrams using GraSSML and to validate the

hypothesis.

• Chapter 9 (Conclusion and Future Work): The thesis concludes by

summarizing the original contributions and discusses ways the work could

be extended.

1.6 Publications

A timeline (Figure 5) along side the W3C developments, has been created in

order to illustrate the influence of developments in W3C on GraSSML. This project

initially started in 2002 but was suspended for nearly three years for personal reasons.

In the intervening period the World Wide Web started its evolution towards the

 28

“Semantic Web” which emerged as a new vision. This led to changes such as: new

technologies, new recommendations, new working groups and new tools. As these

new technologies and supporting tools emerged, an “opportunity” to explore them

with regard to diagram accessibility was noticed. The different publications present

the GraSSML version at the time. The 2003 paper describes the initial ideas of our

research project. These ideas evolved and were developed following W3C

developments. The 2006 and 2007 papers describe this evolution and application. The

current latest version of GraSSML has not been published yet outside this thesis. The

main changes appeared at the semantic level in which the domain specific markup

language has been replaced with RDF graphs.

The Publications are as follows:

• 2003: BEN FREDJ, Z., DUCE, D. A. “Schematic Diagrams, XML and

Accessibility”, Proceedings of the Theory and Practice of Computer

Graphics (TPCG'03).

• 2006: BEN FREDJ, Z., DUCE, D. A., “GraSSML: accessible smart

schematic diagrams for all”, Proceedings of the 2006 international cross-

disciplinary workshop on Web accessibility (W4A): Building the mobile

web: rediscovering accessibility? Edinburgh, U.K.

• 2006: BEN FREDJ, Z., DUCE, D. A., “GraSSML: Smart Schematic

Diagrams, XML and Accessibility”, Proceedings of the Theory and

Practice of Computer Graphics (TPCG'06), Middlesbrough, United

Kingdom

• 2007: BEN FREDJ, Z., DUCE, D. A., “GraSSML: accessible smart

schematic diagrams for all”, Universal Access in the Information Society,

6(3), 233-247.

• 2008: BEN FREDJ, Z., DUCE, D. A., ZAJICEK, M.: “GraSSML: a new

approach for Accessible Web Graphics for All”, tactile 2008, fourth

international conference on tactile diagrams, maps and pictures for blind

and partially sighted children and adults in education, work and daily life,

Birmingham, UK.

 29

Figure 5: GraSSML Timeline along side W3C timeline of W3C Recommendations

 30

1.7 External Support

A licence of 2 years for the product “ILOG JViews Diagrammer” has been

kindly provided by ILOG (now IBM) for the realisation of the approach.

1.8 Originality

The Financial case study was done by Olivier BRAECKMAN a master student

at Oxford Brookes University in 2007/2008. His Master’s dissertation entitled

“GraSSML Financial Chart Project- Accessible Financial Reporting” is deposited in

the Oxford Brookes University Library (BRAECKMAN, 2008). Apart from this the

entire research is the author's own work.

 31

Chapter 2

Diagrammatic Representations

This chapter reviews the published literature related to diagrammatic

representations. The nature and the importance of diagrammatic representations as

well as the necessity to access such representations are emphasized.

A number of taxonomies for graphical representations have been proposed, each

following a specific classification scheme. A review of these taxonomies helped select

the classes of diagrams the GraSSML approach will be applicable to. Some research

work aimed at taking advantage of diagrammatic representations is presented. This is

concerned with the generation of “effective” diagrams from high level descriptions.

2.1 Nature and importance of diagrams

2.1.1 Graphics

Graphics have had a long history, starting from as far as the prehistoric periods

through cave paintings and engraved stones. They are visual representations which

can be produced on different surfaces (e.g. paper, computer screens, or stone) aimed

at conveying information visually to illustrate, inform or entertain. Examples of visual

representations include charts (pie charts, bar charts, histograms, function graphs,

scatter plots), diagrams (tree diagrams, network diagrams, flowcharts), drawings,

symbols, maps, painting, photographs.

These play an important key role in representing, conveying and communicating

information in many different areas of science, education and business. Graphics

enhance understanding, analysis, exploration and memorization of complex

information (TUFTE, 1997). Larkin and Simon (LARKIN and SIMON, 1987), and

Lohse share the view that (LOHSE et al., 1994) “Visual representations are data

structures for expressing knowledge. As such, visual representations can facilitate

problem-solving and discovery by providing an efficient structure for expressing the

data.” Tufte states that “Graphics reveal data” (TUFTE, 2001).

They are extensively used in many fields to either draw attention to important

information, or serve as an extra support to understand certain concepts. Businesses

profitably use graphics to advertise their products and/or services by using well

 32

defined artwork. In business and finance, graphics have been used to create financial

graphs and charts to highlight trends over time; these graphics are referred to as

“business graphics”. Graphics are used by some to mislead or deceive using methods

such as distortion, distraction or ambiguity to confuse the reader as to what is

relevant. Graphics have also proved efficient in propagating political ideas (e.g.

posters, graffiti, and flags). Science and education extensively use graphics to

illustrate concepts (e.g. diagrams) which otherwise would be difficult to describe and

explain (e.g. anatomy, maps).

Graphics are an integral part of the web and played an important role in the

success, acceptance and growth of the World Wide Web and continue to occupy an

important position in the use of the web (DUCE et al., 2002). In 1994, the Mosaic

browser contributed to the transformation of the web. The html element

introduced in the mosaic browser allowed images to be viewed within a web page and

played a key role in the growth of the web. Indeed, the advantages of being able to

communicate via graphics on the web did not go unnoticed by organisations which

now could reach and provide information to millions of potential customers by

communicating their logos, their products, their locations on maps, their art work

(photographs, paintings, etc.) (GILLIES and CAILLIAU, 2000). Wilson (WILSON,

2008) states that “the graphical nature of the Web is definitely one of its biggest

selling points”. As mentioned in the introduction, this research will be restricted to

the study of diagrams.

2.1.2 Diagrams

A. Definition

It is not trivial to define what a diagram is and answers vary depending on

specific perspectives (FATHULLA and BASDEN, 2007).

One definition proposed by (VISWANATH et al., 2006) is “A diagram is a

simplified, structured representation that describes the components of a system and

their spatial relationships”.

In the context of their research Larkin and Simon (LARKIN and SIMON, 1987)

define diagrams as external representations recorded on some medium (e.g. paper,

blackboard). A representation consists of both data structures and programs which

operate on them through the processes of search, recognition and inference, to make

new inferences. They define diagrammatic representation as a “data structure in

 33

which information is indexed by two-dimensional location”. In this thesis the

following definition of a diagram is adopted:

“A diagram is a simplified and structured visual representation of concepts and

relationships between them used to represent and clarify a topic. Diagrams are

composed of shapes and text. The information concerning the concepts represented

and their relationships is the important information whereas its layout is not”.

B. Main Characteristics of diagrams

Many scientists have focused their efforts on discovering the powerful

advantages diagrams offer in accessing and processing information.

� Powerful advantages of diagrams

Diagrams provide an intuitive mechanism to access, interact with and process

complex information. They are considered as being a powerful tool. As Tufte

(TUFTE, 2001) states “…of all methods for analysing and communicating statistical

information, well-designed data graphics are usually the simplest and at the same

time the most powerful”.

Many researchers worked on identifying why such representations are powerful

and what makes them different to other forms of representations in conveying

information and solving problems (LARKIN and SIMON, 1987, TUFTE, 2001,

KULPA, 1994, SUWA and TVERSKY, 2002).

Diagrams can be used to display a large amount of information (TUFTE, 2001)

offering the user an overview of the information displayed. Indeed, diagrams are

concise, they offer the ability to gain a bigger picture of the information presented and

simultaneously offer the ability to explore by digging deeper into its details without

losing this big picture. This ability to offer flexible constant access reduces the effort

needed by the working memory as the diagram act as an external memory support

(LARKIN and SIMON, 1987).

Diagrams allow effective communication which facilitates the representation of

abstraction. They have the ability to present the information in a way which is easy to

access and process (TUFTE, 2001): (LARKIN and SIMON, 1987) “A diagrammatic

representation permits information at or near one locality to be accessed and

processed simultaneously”.

 34

This simplifies and facilitates the search for specific information (distance,

relationships between objects, size, colour, etc.) and reduces memory needed in the

process (LARKIN and SIMON, 1987, SUWA and TVERSKY, 2002).

Larkin and Simon (LARKIN and SIMON, 1987) compared two informationally

equivalent representations: sentential and diagrammatic representations. They state

that the “diagrammatic” representations convey relationships among information

more directly than “sentential” representations. Text differs from diagrams in the way

it conveys information. They have found that diagrams facilitate the search of

information as the spatial grouping ability of these representations allows related

information to be perceived at once.

Diagrams have proved to be effective tools at promoting communication and

visual thinking. Diagrams prove to be of great help in reasoning, problem solving and

decision making (KULPA, 1994).

Diagrams are organised by location and often much of the information needed

to make inferences is explicitly preserved and located in proximity, making search

and recognition easier (LARKIN and SIMON, 1987). This form of presentation

makes information more explicit than other forms of presentation (e.g. textual

presentation) allowing direct retrieval of that information (KULPA, 1994).

Larkin and Simon believe that “diagrams and the human visual system provide,

at essentially zero cost, all of the inferences we have called perceptual”(LARKIN and

SIMON, 1987). They state that “the great utility of the diagram arises from

perceptual enhancement” so “that people can focus attention on part of a diagram,

and that they can detect cues there and use them to retrieve problem-relevant

inference operators from memory”.

� Not all diagrams are powerful

As well as providing explanations on why diagrams can be superior to other

representations, Larkin and Simon (LARKIN and SIMON, 1987) also highlight the

need for appropriate knowledge that is required to effectively take advantage of such

representations.

Not all graphics are considered as “good” graphics. In that respect not all

diagrams are worth ten thousand words. It depends on the ability of the user to

construct an effective diagram. The diagram should be constructed in a way which

takes advantage of the features that makes them powerful, which is not always trivial.

If badly constructed, a diagrammatic representation can conceal the information

 35

message intended to be conveyed. Gurr (GURR, 1999) investigated the issues of

diagrammatic communication in order to find out what makes an effective

diagrammatic communication. He argues that an “effective diagram” is one that

matches well what it represents and the task for which it is intended, making certain

inferences instant and evident.

Of course, exceptions arise when an author creates a diagram with the intention

to mislead or deceive and in which the diagram does not match well with what it

represents. These kinds of diagrams could still be defined as “effective” as they are

designed to confuse the reader as to what is relevant, which is exactly the intent of the

author (e.g. some financial charts).

This difficulty of creating an effective graphical representation is discussed by

Tufte in his books (TUFTE, 1997, TUFTE, 1990, TUFTE, 2001). Tufte (TUFTE,

2001) refers to “Graphical excellence” which consists of complex ideas

communicated with clarity, precision and efficiency. This should give “the viewer the

greatest number of ideas in the shortest time with the least ink in the smallest space”.

C. Summary

Diagrams, which are simple structured visual representations of concepts and

relationships between these concepts, present information in a way which is easy to

access and process. They offer an instant access to all the information present in the

diagram, offering the ability to gain an overview of the information presented as well

as the ability to access details of that information. This flexibility reduces the load of

the working memory allowing diagrams to act as an external memory support. Such

representations simplify and facilitate search of information as their spatial grouping

abilities allows related information to be accessed and processed simultaneously.

Diagrams also facilitate recognition by making information that would be implicit in

other forms of representation such as textual, more explicit. But this is true only if

these diagrams are “effective diagrams” meaning that the diagram matches well what

it represents and the task for which it is intended, making inferences instant and

obvious.

 36

2.2 Graphicacy

Using effective graphical representations requires the acquisition of necessary

skills called graphicacy skills.

Graphicacy (BALCHIN and COLEMAN, 1966), a word created by Balchin and

Coleman in 1965, (ALDRICH and SHEPPARD, 2000) describes the capacity to

comprehend and present information in the form of graphics. Graphicacy is identified

as a complex form of communication (WILMOT, 1999): “ It requires that the

reader/creator of graphic language possesses conceptual knowledge of the

phenomena represented in the graphic representation, as well as spatial perceptual

abilities and an understanding of spatial concepts; and it requires practical skills of

being able to create graphic forms to communicate information to others.”

The comprehension of information presented graphically requires prior

knowledge. A person’s capacity to interpret certain types of graphics relies on his

background knowledge. Two main types of background knowledge have been

identified as being essential in comprehending graphics:

• Knowledge about the specific graphic system used to represent the

information.

• Knowledge about the subject matter that is represented graphically.

Personal knowledge of a domain influences the interpretation of the

graphical information.

Research suggests that (NARAYANAN, 1997) “diagram comprehension is a

constructive process in which the individual attempts to use his or her prior

knowledge of the domain, information presented in the diagram, and his or her

reasoning skills to build a mental model”.

2.3 Syntax, Semantics and Pragmatics of Diagrams

Effective diagrams are considered as expressions of visual languages, with their

own syntax, semantic and pragmatic. The syntax of a diagram is characterized by the

set of graphical elements, their properties and their relationships.

The semantics of a diagram concerns the relationships of graphical elements to

the concepts these graphical elements are applicable to. It concerns the meaning of the

diagram: the concepts, their properties and their relationships.

 37

Pragmatics concerns the relationships between the graphical elements and the

receiver interpreting them. It concerns the best appropriate usage of syntax to ensure

an appropriate interpretation of the diagram’s information by a human receiver. This

information includes the implicit knowledge. The pragmatics helps to emphasize

important aspects of the diagram. An author of a diagram starts with the information

he wants to communicate and needs to find out the best way to communicate this

information effectively. Examples of pragmatic issues are the choices in properties of

graphical elements such as size, colour or position. Taking into account practical

experiences and observations, decisions and actions are made to ensure an appropriate

interpretation of the diagram. Such issues have no impact on the semantics of the

diagram but will have an impact on its interpretation by a human receiver. Gurr

(GURR, 1999) states that pragmatics helps to bridge the gap between “what is said

and what is meant”. The correct use of pragmatic features contributes to the

understanding of the diagrammatic representation.

In order to comprehend information presented graphically it is important to

know how to interpret graphics. Such interpretation requires graphicacy skills which,

as well as oral, literal and numerical skills are essential to communicate effectively.

2.4 Taxonomies of visual representations

The investigation of different varieties of diagrammatic notations is of interest

to researchers in psychology and cognition. Various classes of graphics can be

identified depending on the chosen classification scheme.

Different diagrams types are looked at in different ways. The same type of

diagram can be read in a number of different ways.

A wide range of classifications has been described. Taxonomies of visual

representations have been developed in several different academic fields. Each of

these taxonomies focuses on certain aspects of graphical representations.

2.4.1 Blackwell Taxonomy of taxonomies

Based on the analysis of some of these taxonomies, Alan F. Blackwell et al.

(BLACKWELL and ENGELHARDT, 2002), proposed a classification divided into

two sets of aspects: representation related and context related.

� Representation related aspects relate to:

The components of the diagram:

 38

(1) Basic graphic vocabulary

(2) Conventional elements

(3) Pictorial abstraction

The graphic structure of the diagram:

 (4) Graphic structure

The meaning of the diagram:

(5) Mode of correspondence

(6) The represented information

� Context related aspects relate to:

(7) Task and interaction

(8) Cognitive process

(9) Social context

A common distinction between existing taxonomies involves the differences

between “function” and “structure” of visual representations. Depending on the

context of their use, either functional or structural taxonomies are considered for

visual representation. In a “functional taxonomy”, the visual representations are

classified based on their “intended use”. According to Blackwell et al., this refers to

“(7) task interaction” and “(9) social context” aspects. In a “structural taxonomy”, the

visual representations are classified based on their perceived structure. According to

Blackwell et al., this refers to “(1) basic graphic vocabulary” and “(4) graphic

structure”.

2.4.2 Lohse’s Taxonomy

An experimental classification of visual representations has been carried out by

Lohse et al. Participants were asked to classify visual representations based on their

structural similarities.

A first study (LOHSE et al., 1990) based on this experimental classification,

identified six categories of visual representations: graphs, tables, networks, diagrams,

maps and icons.

In the following studies (LOHSE et al., 1994), the initial basic categories have

been confirmed and some more categories have emerged from the new experiments, a

total count of 11 categories (Table 1).

 39

Graphs
encode quantitative information. Some examples of common
graph types are histogram, line chart, bar chart, pie chart

Tables
2D arrangement of words, numbers and symbols or a
combination of them

Network charts
make use of arrows, proximity, etc. to show the relationship
between components

Structure diagrams describe the physical objects they represent

Process diagrams
describe the interrelationships and processes associated with
the physical objects

Maps symbolic representations of physical geography
Graphic tables same as table but considered more attractive
Cartograms spatial maps that show quantitative data
Icons as a label, convey a single meaning
Time charts similar to table but encode temporal data
Pictures realistic depictions of an object or scene

Table 1: Lohse's taxonomy of visual representations

This classification is mainly based on the perceptual classification of these

visual representations by the participants rather than the analysis and interpretation of

unique features of these visual representations. Some of the categories obtained by

Lohse’s experiments fit the group categories of 2D visual representations presented

by Bertin (BERTIN, 1983): Diagrams, Networks, Maps and Symbols.

2.4.3 Blenkhorn and Evans’s taxonomy

For the purpose of their research on graphics accessibility more specifically on

“Talking Tactile diagram”, Blenkhorn and Evans (BLENKHORN and EVANS, 1998)

considered that graphical information can be classified into the following five types

(Table 2).

 40

Real world images
This type refers to photographic images, pictures. Highly
visual, they have proved to be a challenge to represent in any
other modality.

Maps

2D views of objects where the absolute position, size and
shape of each object are considered important. Relative
position and size must be maintained for a map to be
meaningful. They are defined as an abstract view of the real
world emphasising the essential details. Examples include
geographic maps; diagrams of mechanical components,
medical drawings, etc. Most of these representations are
successfully presented as tactile diagrams sometimes with
speech added.

Schematic diagrams

These are structured diagrams which consist of objects and
the relationships between these objects. As maps, they are
also defined as presenting abstract information, however for
this type of representation position and size of the objects of
the representation are not as important as the explicit
relationships between these components. Examples of such
representations include software engineering diagrams,
project planning charts, organisation charts, underground
map, etc.

Charts
This type of representation presents structured tabular data.
Pie charts and histograms are examples.

Graphical interfaces
This type of representations refers to windows, icon, menu,
and pointer type of interface rather than the information
which can be represented using such an interface.

Table 2: Blenkhom and Evans's (1998) taxonomy of visual representations

2.4.4 Takagi and Tatsuya’s taxonomy

In an attempt to identify next generation accessibility features in graphics

standards, (TAKAGI and TATSUYA, 2007) carried out a survey of “typical” existing

business graphics. A set of 60 examples were classified according to their complexity

and formality, their accessibility potential was also discussed by the authors. Four

categories emerged from their survey (Table 3).

 41

Simple graphics
This category is presented as simple to
describe using an alternative modality such as
Braille or speech output.

Formal diagrams

These diagrams are defined as having a well-
defined data-model behind their structure.
Examples of these diagrams include tree
structures, Unified Modelling Language
(UML) diagrams.

Table structures
These diagrams can be regarded as tables and
consequently can be accessed as such by
assistive technologies.

Composite diagrams and graphics

These accounted for 50% of the sample
graphics categorized. They are composed of
multiple types of diagrams and are mostly
informal. These diagrams are a challenge in
terms of accessibility.

Table 3: Takagi and Tatsuya’s taxonomy (TAKAGI and TATSUYA, 2007) of visual

representations

Figure 6 extracted from (TAKAGI and TATSUYA, 2007) shows an overview

of the classification of the examples selected for their study, the categories identified

are shown. The complexity of the graphics is shown on the horizontal axis and the

formality on the vertical axis.

Figure 6: Categorizations of collected graphics (TAKAGI and TATSUYA, 2007)

 42

2.4.5 A Synthesised Taxonomy Selection of Diagrams

The previously discussed taxonomies have been considered. Given the rich

diversity of diagrammatic representations captured in these taxonomies and taking

into account the time frame of the research, there is a need to focus on some specific

types of diagrams carefully selected as a basis to demonstrate that the approach

proposed in this thesis is feasible.

As a starting point, the structural taxonomy proposed by Lohse (LOHSE et al.,

1994) has been used to identify some representative types of diagrams for which the

proposed approach might be applied. Any of the previously presented taxonomies

could have equally been chosen as a starting point as in this instance only the name of

the category differs.

The types of diagrams selected are part of the “Network chart” category defined

by Lohse. These diagrams show the relationships between components using lines,

arrows, proximity, etc. Their planar coordinate system does not convey any meaning

whereas their relative arrangement does. Network charts include flow charts,

organizational charts, decision trees, pert charts and data models. Blenkhorn and

Evans (BLENKHORN and EVANS, 1998) have named this class of diagrams

“Schematic diagrams”. They define these diagrams as structured diagrams which

consist of objects and the relationships between these objects. As maps, they are also

defined as presenting abstract information, however for this type of representation the

position and size of the objects of the representation are not as important as the

explicit relationships between these components. Examples of such representations

include software engineering diagrams, project planning charts, organisation charts,

etc. The selection was further narrowed down to “formal diagrams”. Referring to the

(TAKAGI and TATSUYA, 2007) taxonomy in terms of formality and complexity,

“formal diagrams” are diagrams defined as having a well-defined data model behind

their structure.

The approach explored in this thesis will apply to well structured diagrams that

conform to well-defined conventions in specific formally defined domains. The

selected classes are representative of a wider range of diagrams. It is believed that

because of underlying similarities, demonstrating that the approach works on these

selected classes would allow inferring the feasibility on a wider range of diagrams of

the same type.

 43

This led to the reasoned choice of selecting two classes of formal diagrams:

• Process diagrams: describes the relationships between processes and/or

objects. They consist of elements linked together using arrows representing

flows between the elements. Examples (Figure 1) of this class of diagram

are business process diagrams, UML Activity diagrams, process flow

diagrams, flowchart diagrams, UML state diagrams.

• Hierarchical diagrams: describes hierarchical relationships in levels/layers

between concepts. They consist of a hierarchical structure of elements

organised into different levels. These diagrams are often used to depict the

structure of a model (e.g. enterprise, family, system, etc.). Examples of this

class of diagram (Figure 2) are Organisation charts, Family Trees, Warnier-

Orr Diagrams, Directory Trees, etc.

In the context of this thesis, two particular types of diagrams have been selected

as a basis for experiments, one from each of the two classes: Organisation charts from

the hierarchical diagram class and UML Activity diagrams from the process diagram

class.

2.5 Diagrammatic Communication

As argued in the previous section diagrams can be useful and have an important

place in communication as they play a key role in some disciplines such as science,

geography or mathematics. But as mentioned by Larkin and Simon (LARKIN and

SIMON, 1987), studies on understanding why diagrams are such a useful powerful

representations lead to questions such as “what is the knowledge required for

effective diagram use?”. Indeed, in their view “diagrams can be better

representations … because the indexing of its information can support extremely

useful and efficient computational processes. But this means that diagrams are useful

only to those who know the appropriate computational processes to take advantage of

them”.

Among their advantages, the way diagrams encode, convey information and aid

reasoning, has attracted much interest in many fields of research (NARAYANAN,

1997). These research interests have been classified in three categories:

• Nature of diagrammatic representations

• Cognitive processes of diagrammatic representations: perception,

comprehension, reasoning, generation and manipulation

 44

• Computational processes of diagrammatic representations: parsing,

interpretation, compilation, execution, generation and manipulation.

Diagrammatic communication involves the use of diagrammatic languages for

the creation of diagrams to communicate information. So diagrams are considered as

expressions of visual languages.

Horn states “Visual Language as one of the more promising avenues to the

improvement of human performance in the short term (the next 10 to 15 years)”

(HORN, 2001). He introduces the major goals for the next 15 years:

• automatically create diagrams from text

• create tools for collaborative mental models based on diagramming

• improving the semantic web, by managing multiple meanings of visual

languages in real time on the web

• get computers to understand the link between visual and verbal languages,

etc.

Each diagram carries a message. Diagrams are created in order to communicate

a specific intent and aim to make this intent understandable by a reader.

This intent needs to be accessed to discover the knowledge the diagram carries.

As Lohse (LOHSE et al., 1990) writes “visual representations carry no meaning

without the decoding processes that interpret the visual representation. People must

have rules to interpret features of visual representation.” Once such rules become

familiar, diagrams develop into an efficient tool for communication.

Such diagrammatic communication requires generation, comprehension,

reasoning and interaction involving three entities (NARAYANAN, 1997): the

diagrammatic representation representing the intended message, the communicator

representing the idea diagrammatically and the receiver comprehending the meaning

of the diagram. Figure 7 extracted from (NARAYANAN, 1997) illustrates such a

model of communication. The communicator and receiver roles may be cognitive or

computational agents. Computational processes involve diagram parsing, diagram

interpretation, program execution, diagram generation and manipulation to convey the

result of program execution. The cognitive processes are diagram perception,

comprehension, inference and diagram generation and manipulation to convey the

results of inferences. Based on the model (NARAYANAN, 1997) stipulates that the

 45

utility of a diagrammatic communication rests on “its computational tractability and

cognitive effectiveness”.

Figure 7: Diagrammatic communication based on (NARAYANAN, 1997)

2.6 Generating diagrams

The previous sections on diagrams led to the question of the production of

diagrams on computers. Researchers working on visualization have been investigating

the most appropriate way of displaying a given set of data on a computer. They have

been exploring ways for generating diagrams from high-level representations. These

approaches are mainly aimed at automatically generating effective diagrammatic

representations based on the type of the data to be presented and/or the tasks it is

intended for (DUKE et al., 2005) .

The following sections review different methods that have been explored over

time to generate diagrams from raw data. Each of these methods explores a given

intent. They start from high-level representations of a given set of data. They are

aimed at generating expressive and effective diagrams based on the type of data

and/or the tasks it is intended for.

2.6.1 A Presentation Tool (APT)

Mackinlay (MACKINLAY, 1986) was one of the first to contribute to the

automatic design of visualizations. He explored the automatic design of expressive

and effective graphical presentations for 2D static presentation of relational data such

 46

as bar charts, scatter plots, etc. His approach is based on the assumption that

“graphical presentations are sentences of graphical languages, which are similar to

other formal languages in that they have precise syntactic and semantic definitions”.

Mackinlay highlights the fact that all communication is based on convention

sharing. Indeed, to determine how messages are constructed and interpreted a group

of persons have to agree and share a given set of conventions. In the case of

communications of graphical representations, these conventions define how specific

arrangements of graphical objects encode information. The formalization of these

conventions is used as a basis for the logic program designing presentations

automatically.

They have built “A Presentation Tool” (APT) that designs graphical

presentations of given information automatically. APT extracts the information from a

database, and then synthesizes a graphic design which is an abstract description

indicating the graphical techniques used to encode the information it presents. Based

on this graphical design the tool renders a graphical presentation.

The foundation of this research relies on the development of visual languages

describing the syntax and semantics of graphical presentations.

Two set of criteria are used to codify graphic designs: expressiveness and

effectiveness. The expressiveness criteria determine whether a graphical language can

express exactly the given information. The effectiveness criteria determine whether a

graphical language exploits the capabilities of the output medium and the human

visual system. However, in this particular research, the author focuses on the

generation of designs which can be accurately interpreted. APT generates optimal

graphical designs by matching data types with respect to Cleveland and McGill’s

recommendations (CLEVELAND and McGILL, 1984).

APT presents a number of limitations. It is mainly intended for specific graphics

which are easily interpreted. Its applicability and capabilities are restricted. APT does

not take task into account, so the graphics generated may not be the best for a specific

task hence based on Gurr’s definition of an effective diagram (GURR, 1999), they

might not be effective diagrams.

 47

2.6.2 BOZ

BOZ (CASNER, 1991) extends APT by rooting predicate in task. BOZ designs

different graphical representations of the same information based on the nature of the

task intended to be supported. It relies on the cognition theory of Larkin and Simon

(LARKIN and SIMON, 1987) and shares Gurr’s view on the effectiveness of a

diagram depending on how well it matches both what it represents and the “task” for

which it is intended.

One advantage of such a method is the achievement of an effective graphic well

designed for the intended task. But when creating a diagram not only the information

to be presented is needed but the intention of the receiver must be known and passed

to the system. As mentioned by Casner, BOZ presents some limitations as this process

involves human intervention. Task descriptions have to be prepared by hand and then

submitted to BOZ. Also BOZ does not provide good enough time predictions.

2.6.3 TRIP2

TRIP2 (TAKAHASHI et al., 1991) is a prototype system based on a model of

bi-directional translation between internal abstract data of applications and pictures to

generate diagrams (e.g. graph diagrams). It is based on declarative mapping rules

expressed in Prolog. Using these rules it becomes possible for changes made on a

diagram to be fed back to the abstract structure data automatically by the system.

As the authors stress, the idea of bi-directional translation is basically simple.

The difficulty arises in its applicability as a general model, due to the infinite amount

of possible kinds of data and visual representations. This imposes the definition of

specific dependant rules for every new combination of abstract data and picture.

To address this issue, they define four different representations (Figure 8):

• Application’s Data Representation (AR): the application specific data.

• Abstract Structure Representation (ASR): the underlying abstract structure

represented by relations of abstract objects from the data.

• Visual Structure Representation (VSR): the underlying structure of the

picture.

• Pictorial Representation (PR): the representation of the picture to be

rendered on the device.

 48

Two universal representations, ASR and VSR, are used as pivots. Using these

pivots, whatever changes occur on the abstract or pictorial data, will essentially not

affect the mapping rules between ASR and VSR.

As pointed out by the authors the approach presents some drawbacks. The user

has to write the mapping rules and their inverse, which is not straightforward using

Prolog. A possible solution proposed is to derive one from the other or allowing the

specification of the rules visually.

Figure 8: TRIP2 models (TAKAHASHI et al., 1991)

2.6.4 AVE

AVE (Automatic Visualization Environment) (GOLOVCHINSKY et al., 1995)

generates diagrams automatically based on the theory that “diagrams are constructed

based on the data to be visualized rather than by selections from a predefined set of

diagrams”.

AVE uses basic diagram components corresponding to relations present in the

data. The aim is to preserve relational properties of the data within the graphical

presentation in order to reflect the structure of the data. AVE does not aim to be

general. It is particularly useful for the generation of diagrams from heterogeneous

data structures (GOLOVCHINSKY et al., 1995). A prototype that automatically

constructs semantic networks diagrams has been developed. It demonstrates how,

based on properties of binary relations, data stored in semantic networks have been

 49

organised and the classification of the binary relations is exploited to visualize the

data structure.

2.6.5 OntoDiagram

With the intent to provide a better care in paediatric cardiology, a research

project called “OntoDiagram” (VISHWANATH et al., 2005) (Ontology based

Diagram Generation) has explored the automatic generation of diagrams based on

patient’s information stored in a cardiology database and by using clinical and spatial

ontologies representing the human heart.

OntoDiagram used spatial and domain terminology common to domain experts

to model the structural aspects of a diagrammatic description. This description is then

used to generate the diagram. The heart is modelled as a hierarchical representation of

concepts. The possible defects are modelled into a classification including for each its

unique spatial aspects relative to the normal heart. The image descriptions of the

components generated by the models are mapped to actual images of the components.

To make the composition process more efficient and effective, the heart base is used

to configure each component position. Annotations are used to add extra information

to each heart component and heart defect, these are then classified depending on their

physiology. This offers users the option to modify the amount of information on a

representation depending on its preferences or the heart defect requirements. They

have developed a query interface which allows heart defect descriptions to be queried

and to generate diagrams.

An expansion (VISWANATH et al., 2006) of the project aimed at capturing the

variability of heart defects was developed. By modularising the knowledge underlying

the heart diagram, it becomes possible to apply transformation models to represent the

effects.

2.6.6 SemViz

Gilson et al. (GILSON et al., 2008) propose a novel approach to produce an

end-to-end automatic visualization from extracted semantic information of domain

specific data retrieved from the web. Their approach combines ontology mapping and

probabilistic reasoning techniques.

 50

This approach pursues the same goals as Mackinlay (MACKINLAY, 1986) and

falls into the same scope of (DUKE et al., 2005). The originality of the approach

relies on the use of ontologies and ontology mapping.

A domain ontology is mapped to a web page. This domain ontology stores the

semantics of the domain specific data represented in the web page. The domain

ontology is then mapped to different visual representations ontologies which capture

popular visual representations. Each of the visual representation ontologies captures

the semantics of a visualization style (e.g. Graph, Networks).

A semantic bridging ontology is then used to map the domain ontology and the

visual representation ontology. This ontology specifies the appropriateness of each

semantic bridge by using some specific key knowledge “semantic equivalence” about

the relationship between the data and the possible target visualizations. This

information is based on expert knowledge about how domains can be “usefully”

visualized by different visual representations. Based on the “analysis” of these three

ontologies, different possible visualization designs are dynamically generated. These

visualizations are scored, and the top best ones are then presented for the user to make

a decision based on his needs. A prototype based on this approach, called “SemViz”

and dealing with “music charts”, has been developed to demonstrate the potential of

the approach.

2.6.7 PIC

Bentley argues that a language is “any mechanism to express intent, and the

input to many programs can be viewed as statements in a language”. By viewing

inputs in this way, it is possible to see how to decompose a computation into a

sequence of processing steps in which the output of one step is fed into the input of

the next. An example is Kernighan’s PIC language (KERNIGHAN, 1982,

KERNIGHAN, 1991), a component of the Unix document production suite for

constructing line drawings from textual descriptions. This language works by

generating code that is interpreted by the TROFF typesetting system to produce the

drawing on the page. Bentley shows how other Little Languages designed to express

particular kinds of graphical representations, for example chemical structures, CHEM

(BENTLEY et al., 1986) and graphs, GRAP (BENTLEY and KERNIGHAN, 1986),

can be translated into PIC and hence rendered in a document.

 51

Kernighan’s PIC language is one possible way of generating diagrams.

Although, PIC predates all of the latest new web technologies and does not make use

of ontologies, it exposes a very powerful idea: “multiple transformations”. Some

people such as Jeni Tennison (TENNISON, 2005) have picked up on the powerful

advantages of such multiple transformations. She highlights the advantages of

structuring a workflow into XML pipelines to improve the manageability of XML

publishing by specifying smaller transformations.

The research project presented in this thesis noticed and intends to explore the

availability of the current powerful technologies in order to express the kind of

intuitions behind PIC.

2.7 Discussion and Conclusion

This chapter has provided a detailed description of the powerful advantages

(Section 2.1.2B) diagrams offer in presenting, accessing and processing information.

Diagrams are created in order to communicate a specific intent which needs to

be accessed to discover the knowledge the diagram carries. The whole idea resides in

the communication between the cognitive agent and the computational agent (Figure

7). It is all about a certain symmetry that allows going back up through some

mediating intermediate abstract representation, to the original information, the “raw

data”. The techniques presented (section 2.6) recognize the need of “going back up”.

Some of these techniques have highlighted the importance the formalization of the

conventions shared plays when communicating using diagrams. These methods rely

on the development of visual languages expressing the syntax and semantics of

diagrams.

A review of taxonomies for graphical representations helped select the classes

of diagrams this research will be applicable to. The approach explored in this thesis

will apply to well structured diagrams that conform to well-defined conventions in

specific formally defined domains. For reasons discussed in section 2.4.5, two classes

of formal diagrams have been selected: “Process diagrams” and “Hierarchical

diagrams”.

 52

Chapter 3

Accessible Diagrams: A Critical Review

This chapter reviews some relevant work on the accessibility of diagrams on the

web. It aims at exploring the accessibility of diagrams and exposing associated

problems. The effects of such problems for blind people are covered but the problem

is seen as more general as it concerns all people. Indeed, all of us could become blind

in some contexts. This could happen while our eyes are needed for other things (e.g.

driving), low lighting levels, etc. In such situations the use of visual representations

becomes inappropriate. To overcome the barriers faced while accessing diagrams on

the web, it is important to understand the issues and limitations involved in making

diagrams perceivable, operable, understandable and robust.

The main findings, obtained through the presented methods in this chapter, are

discussed, leading to the identification of issues/requirements the proposed thesis will

aim at addressing.

3.1 Diagrams on the Web

It is a moral obligation as well as a legal obligation to provide accessible

information on the web. Appendix B defines accessibility as well as the legislative

framework related to it.

Graphics over the web, “Web graphics”, such as diagrams, charts and

illustrations are essential components of the content of the World Wide Web as it

exists today. Therefore, it is important to consider accessibility of web graphics if the

WWW is to reach its full potential. Due to their visual nature diagrams present a

challenge as they are hard to access for blind people and people who work in an

environment where visual representations are inappropriate. This section aims at

highlighting the barriers/constraints faced while accessing diagrams on the web.

3.1.1 Graphic formats

A full review of the most commonly found formats on the web is presented as

well as their main characteristics and limitations in Appendix A.

Currently most diagrams are represented using raster formats. For the purpose

of the thesis these diagrams were named “vector images” (image of a vector graphic

 53

represented in a raster format). Raster formats are inappropriate for perceivable,

understandable and operable diagrams. The information concerning the diagram

(objects and relationships between the objects) is lost as only the data describing the

characteristics of each individual pixel is available within the format used. Even

though metadata can be injected in most raster formats, this facility imposes some

constraints as it can only be added on top of the file format and not at the individual

level of objects requiring the diagram to be seen as one entity. So the description has

to be done for the complete image. The information added could be enormous if it

attempts to describe the diagram in detail or if it is going to be used to describe the

diagram as a whole.

Vector formats present more opportunities than raster formats to make the

information of the diagram available for accessibility purposes. Vector formats such

as SVG, SWF and WebCGM are available on the web. Even though they offer

accessibility features (some inherited from being vector formats (zoomable, plain text

format, metadata added at level of individual object) and other proper to each

individual format (e.g. SVG alternative equivalent)), they do not guarantee

accessibility. Indeed if not authored properly with accessibility in mind they can be a

challenge to access.

Currently SVG (W3C, 2001, DOUG and CULLER, 2009), which comes with a

set of accessibility features (title, desc, grouping, comments, class attributes for

styling, etc.), is the most appropriate vector graphic format on the web. It is a low-

level graphics standard but it is defined in XML which offers many advantages as it

can be used in conjunction with other web technologies. Even though notes on the

accessibility features of SVG (MCCATHIENEVILE and KOIVUNEN, 2000) have

been published by the W3C, no guidelines exist on how to author accessible vector

graphics. SVG stores structural information about the graphic as an integral part of the

graphic but the amount of structure is mainly author dependent. SVG does not capture

diagrams at a high enough level of abstraction. It is more a “final form” presentation,

which has some drawbacks in the direct creation of complex, highly structured,

diagrams. Furthermore, most editors do not author or encourage authoring accessible

SVG by correctly grouping elements or promoting the use of “title” or “desc” for

example. A full description of the limitations of SVG is presented in (Appendix A

section A.2.2B).

 54

3.1.2 Guideline 1.1 and the WCAG 2.0 POUR Principles

According to the WCAG 2.0 (W3C, 2008c), four principles (POUR) provide the

foundation for Web Accessibility: Perceivable, Operable, Understandable, and

Robust.

• Perceivable: Information and interface components must be perceivable.

Users must be able to perceive the information presented using at least one

of its senses.

• Operable: Interface components and navigation must be operable. Users

must be able to operate the interface.

• Understandable: Information and the operation of the interface must be

understandable. Users must be able to understand the information presented

as well as the operations the system offers.

• Robust: Content must be robust enough that it can be interpreted by a

variety of user agents. Users must be able to access the content with

current and future user tools.

These principles “lay the foundation necessary for anyone to access and use

Web content” (W3C, 2008c).

These four main principles of WCAG 2.0 apply perfectly to visual web content

such as diagrams but the actual guidelines do not really indicate the requirements to

make this type of content (vector graphics) accessible.

The only requirement found (WCAG 2.0 Guideline 1.1) is the provision of

“Text Alternatives” which does not apply to vector graphics but rather to vector

images. Furthermore, for various reasons discussed in (Appendix C section C.2.2) this

is not always appropriate as it does not ensure accessibility of such web content. If the

description is missing, if a meaningless description is provided or if the diagram is too

complex to be described textually, blind users or users who work in environments

where visual representations are inappropriate, find themselves denied access to

possibly important information. The support of assistive technologies (e.g. screen

readers (see Appendix B section B.5)) allowing access to such alternative information

is also limited for some occasions (e.g. when fall back mechanism for the object

element is not well supported (see Appendix C section C.2.3)).

 55

3.2 Current approaches to presenting accessible

diagrammatical content

Many researchers have explored different approaches to make diagrammatic

content accessible to blind or visually impaired people by presentation in other

modalities such as textual, auditory, tactile or combinations of them (e.g.

Audio/Tactile). These approaches have been termed “bottom-up approaches”. They

start with a vector image, attempt to infer or extract information from this, and then

generate alternative presentations.

These approaches have greatly contributed to resolving some of the accessibility

problems of graphical content faced by visually impaired users. They provide useful

methods and tools to interpret, present and navigate graphical information. However,

they do have some limitations which need to be considered for the accessibility of

diagrammatic content.

The different possible alternative modalities to access diagrams for blind people

are reviewed followed by a detailed review of current bottom-up approaches to

presenting diagrammatic content to blind people by generating alternative

presentations in other modalities.

3.2.1 Existing alternative modalities to access diagrams non-

visually

Blind people, deprived of the sense of sight, have to rely on other senses to

access information, mainly touch and hearing. Different modalities (BAILLIE et al.,

2003) have been explored: Tactile, Audio, Haptic, Audio/Haptic and Audio/tactile.

A. Tactile presentation access

In certain circumstances, diagrams can effectively be converted into a tactile

diagram when appropriate and well designed. In these cases, tactile diagram become

an invaluable resource of information.

But as stated by the RNIB National Centre for Tactile Diagrams (NCTD, 2008)

“Converting the visual graphic to an appropriate tactile graphic is not simply a

matter of taking a visual image and making some kind of “tactile photocopy”. The

tactile sense is considerably less sensitive than the visual sense, and touch works in a

more serial manner than vision. Therefore the visual graphic needs to be re-designed

by experts to make sense in a tactile form.”

 56

There exist a number of tactile formats:

1. Embossed diagrams are produced on a Braille printer which punches dots

to make the diagram (e.g. Tiger Tactile Graphics and Braille Embosser).

2. Swell paper consists of microcapsule paper which swells on black areas

when exposed to heat.

3. Vacuum formed diagrams using a thermoform printer.

Tactile diagrams are limited by the amount of information they can express.

Tactile devices do not allow high resolution. Tactile diagrams require some practice

to read and interpret, even with the simplification process they went through. Very

complex diagrams can be really difficult to read with the touch sense alone. When

reading a diagram tactually, the diagram has to be discovered by scanning it tactually

for a mental image of the whole diagram to be built, whereas while reading a diagram

visually the overall diagram is looked at and then the details can be read if needed.

This kind of diagram can be expensive to produce. This modality requires

important resources and cannot satisfy the large amount of diagrams available due to

the lack of appropriate devices. In the case of Tactile diagrams which are not

refreshable; once produced they need to be reproduced if a modification is required

making them not too adequate for diagrams changing over time. Much research is

being carried out in order to address the issues of tactile diagrams, some exploring the

feature of SVG in the facilitation of generation of tactile diagrams (ROTARD and

ERTL, 2004), others attempt to automate the transcription process needed to produce

accessible tactile diagrams (GONCU, 2009).

B. Auditory description access

Auditory access is a popular way of conveying information for the blind. There

are different kinds of auditory access: speech and non-speech auditory access.

Screen readers and voice browsers rely on speech auditory access to convey the

information on the screen to the blind user.

Sonification, an emerging success in accessibility (FRANKLIN and ROBERTS,

2004), uses non-speech sounds (i.e. pitch, timbre, volume) to represent and convey

information. This method has proved to be an excellent way to convey the trend of a

graph for example (BENNETT, 2002).

Auditory access of information within a diagram presents some drawback due to

their nature. Audio differs in the way it conveys information. It provides information

 57

sequentially. Furthermore, audio does not offer any external support for the

exploration of the information presented. Complex diagrams presented in sound could

stretch the limit of the working memory.

C. Haptic access

Haptic interfaces combine tactile and kinaesthetic sensing (force feedback

interface) (ROTH and PUN, 2003) to perceive spatial information such as proximity,

texture and shapes.

 A mix of different modalities have also been researched, this includes:

Audio/Haptic and Audio/Tactile modalities.

D. Audio/ Haptic access

Another modality explored (ROTH and PUN, 2003) to make diagrams

accessible is a combination of audio and haptic access, most of the time involving

force feedback devices and non-speech sound and/or synthesized speech. It has

successfully been explored for graphs (YU et al., 2002) more specifically pie charts,

line chart and bar charts.

E. Audio/Tactile access

Many researches have focused on improving tactile diagrams. A combination of

tactile diagrams with audio has been of great interest in research in making diagrams

accessible (KENNEL, 1996, WALL and BREWSTER, 2006, RNCB, 2009,

VIEWPLUS, 2009). The audio/tactile access method can be used to make diagrams

accessible to many blind people. Well made audio-touch diagrams can contain

additional information that helps make complex diagrams accessible too. It has been

proved to greatly reduce the mental effort needed to access diagrams.

A well known example is AudioGraf (KENNEL, 1996) from Kennel.

AudioGraf presents a diagram in an audio-tactile way; the diagram is displayed on a

touch sensitive panel and explored by the user who gets access to different levels of

detail depending on the pressure applied on the panel through speech and non-speech

audio.

Currently the two most popular audio/tactile devices are IVEO Touchpad

(VIEWPLUS, 2009) and the Talking Tactile Tablet (T3) (RNCB, 2009). Text labels

are attached to regions of the tactile diagrams which are placed on a touch panel

connected to a computer. Then the diagram is explored by the user who navigates

 58

with his hand on the tablet, each region pressed outputs an audio description of the

label attached to it. These techniques have proved to be very useful to explore graphs,

maps, charts, etc.

Although popular, these techniques are limited by the amount of information

tactile diagrams can express and so cause problems on complex and rich diagrams.

One solution proposed by IVEO is the use of SVG which allows the diagrams to be

zoomed and printed based on the area of interest (see the IVEO project in the next

section). The origin of the audio information is important, the more comprehensive

these audio outputs are the better the experience but if they are badly designed the

user might get frustrated and give up as a result. Using this modality, the user needs to

search and discover the information instead of consulting it. It might be difficult for a

novice user who might get discouraged.

3.2.2 Description of some current Bottom-up approaches

These bottom-up approaches can be organised into two categories:

• Infer alternative presentations from the original one

• Explore accessibility features of SVG

A. Infer alternative presentations from original one

In the first category, there is an attempt to infer alternative presentations from

the one given by an author, by either using a third human party (MIKOVEC and

SLAVIK, 1999, KURZE et al., 1995), or by applying a semi-automatic analysis

(ELZER and SCHWARTZ, 2007, HORSTMANN et al., 2004b, FERRES et al.,

2008). This process infers additional information. Tools are provided to enable users

to navigate and explore such information.

� Blind Information System (BIS) and Graphical User Interfaces for Blind

People (GUIB)

The “Blind Information System” (BIS) (MIKOVEC and SLAVIK, 1999) and

“Graphical User Interfaces for Blind People” (GUIB) (KURZE et al., 1995) are two

interesting projects that have proposed methodologies to tackle the problem of

graphics accessibility for blind users. These approaches have made a significant

practical impact by allowing blind users to comprehend graphical information.

Although their approaches differ in detail, they share a common basis in the fact that

they depend on human intervention by a third party, “a moderator”, not necessarily

the author, who provides a description of the graphical information.

 59

The “Blind Information System” (BIS) is a project, developed at the Czech

Technical University (MIKOVEC and SLAVIK, 1999). It is a system for the

interpretation of graphical information. It develops a hierarchical picture description

methodology based on an XML grammar which characterizes pictures by structure

and semantics. The result obtained is a text (XML) document describing the semantic

and structural view of the picture. The description obtained depends on the person

creating it. This person, who will probably not be the author, might omit important

information from the description and provide an idiosyncratic interpretation.

In the context of the “Graphical User Interfaces for Blind People” (GUIB)

project (KURZE et al., 1995) a two phase methodology is introduced, which is

supported by software which allows the work of one sighted person to be used by

many blind people.

The two phases are:

• Phase 1: a modelling tool supports a sighted person (the moderator) in

producing a model of the visual graphic taking into account the

representational and presentational aspects of the graphics and the

interaction facilities available to the blind person.

• Phase 2: a presentation tool allows the blind person to interact, explore and

experience the graphics without the assistance of a sighted person. This

approach presents an obvious drawback: the moderator, who most of the

time is not the author of the graphics, has an important responsibility. He

decides what information to convey and imposes his view when the graphic

is being read.

� Summarizing Information GrapHics Textually (SIGHT)

In SIGHT (ELZER and SCHWARTZ, 2007) there is an attempt to

automatically infer and convey the intended message a graph carries. SIGHT (ELZER

and SCHWARTZ, 2007) is a system, implemented as a browser extension, enabling

visually impaired users to gain access to a textual summary of the hypothesized

intended message of the graphic. The information of the graphic is summarized by the

system around this inferred message and then provided to the user who accesses it

using a screen reader. This approach hypothesizes that “…the core message of an

information graphic (the primary overall message that the graphic conveys) can serve

as the basis for an effective textual summary of the graphic (ELZER and SCHWARTZ,

 60

2007)“. The system is currently limited to simple bar charts and investigation for line

charts is ongoing.

A Browser helper object (BOH) is created the instant an instance of the browser

is created. It then intends to establish which object is in focus on the browser. Once

the graphic has been detected it is passed to a Visual Extraction Module. This module

analyses the image file and produces an XML representation containing the

information about the graphic (for the type “bar chart”, it will contain numbers of

bars, labels of the axis, label of each bar, height of the bars, etc.). The author specifies

that for the moment the VEM only handles electronic images with certain fonts and

with no overlapping characters. The VEM is also limited as it assumes only standard

placement of textual information such as captions, labels and axis headings. For

example, if a bar chart is detected, the system attempts to infer its intended message.

The XML file is then passed to a “pre-processing and caption tagging module”. The

pre-processing adds extra information judged to be important in the XML file based

on the analysis of its content and the caption tagging extract information from the

captions and then passes the file to the Intention Recognition Module (IRM). The

IRM is charged to recognize the intended message of the graphic. The IRM reasons

on three communicative signals to determine the intended message of the graphic:

• Relative effort required for different perceptual and cognitive tasks. This

signal is based on the hypothesis that “the relative difficulty of different

perceptual tasks serves as a signal about which tasks the viewer was

expected to perform in deciphering the graphic’s message”.

• Importance of entities in the graphic which draw attention to important

aspects of the graphic (e.g. different colors used, different annotations,

captions, etc.).

• Presence of certain verbs and adjectives in the caption. The aim being to

extract communicative signals from these.

The evidence extracted using the communicative signals, is used by the IRM

Bayesian inference system to infer the intended message of the graphic.

The system has been evaluated for “bar charts”. Despite the advantages

presented by the author (provide access to the communicative intent of the graphic,

does not necessitate specialized hardware, no action required by the web developer)

the results showed that the intended message inferred was not always the one actually

 61

intended by the bar chart. This might result in conveying the wrong intent, which

could lead in a misinterpretation.

� Technical Drawings Understanding for the Blind (TeDUB)

The TeDUB (TEchnical Drawings Understanding for the Blind) project which

began in 2001, explored the possibility of a semi-automatic analysis of diagrams

(HORSTMANN et al., 2004a, HORSTMANN et al., 2004b). The system developed

generates descriptions of certain classes of diagrams automatically (electronic circuit

diagrams, UML diagrams and architectural plans) and allows blind people to read and

explore them on a PC with the aid of a computer games joystick and a screen reader.

The diagrams used in the TeDUB project are taken from different sources. They can

be raster graphics, vector graphics (SVG), file format with semantic content (e.g.

XMI, CAD format).

The system is composed of two main parts. The first is the “DiagramInterpreter”

which is the knowledge processing unit. It analyses the diagram provided, operates on

a network of hypotheses until a semantic description of the whole diagram is found

and converts it into a representation that is used by the second main part of the

system: the “DiagramNavigator”. The latter allows the blind users to navigate and

annotate these diagrams through a number of inputs and output devices.

In the event that the automatic process might lead to wrong results, the

“ImageAnnotator” is used to make corrections. Their approach for the presentation

and navigation of diagrammatical information offers many advantages for blind users.

But as the authors point out, due to noise and distortions in the original data, the

(semi-) automatic analysis of the diagram information may produce wrong results. To

overcome this issue, the Image Annotator tool is provided to allow a human to correct

and to improve the internal description generated. Human intervention and time may

thus be needed.

� iGraph-Lite

The iGraph-Lite system (FERRES et al., 2007) is an open source project aiming

at providing automatic short verbal descriptions of given graphs and some means of

interaction to interpret and query the graph’s information. iGraph-Lite (FERRES et

al., 2007) attempts to make the information carried by the graph accessible to users so

they can explore the graph information and infer its intended message depending on

his own need.

 62

Contrary to SIGHT, the main objective of iGraph-Lite is of Natural Language

based interactivity with the information of the graph.

The graphs are created using some standard applications (SPSS, Microsoft

Excel, OpenCalc) with a specific plug-in installed on the application. This plug-in

allows the creation of an XML file containing all the information regarding the

structure and the data provided to create the graph. The XML file is then translated

into a text file or a web page which can be accessed by a screen reader.

The iGraph-Lite system consists of three subsystems:

1. The P-System, parses the XML file and generates a logic version of the

given graph taking into account mathematical properties of the data (e.g.

maximum, minimum).

2. The C-System stores different kinds of rules for describing and querying

the logic version generated by the previous subsystem.

3. The L-System, which is the language subsystem, takes the outputs from

the previous subsystems, including all possible inferences, and generates a

natural language text (general description or response to a query) plus the

querying system.

The XML file can be explored and the data can be queried “sequentially” while

a textual description is provided. The query system is said to be a “sequential”

querying process as it allows the user to move from one point to another at a time.

Some navigation commands allow the current position in the graph to be

indicated and values to be skipped, the � and  keys allowing the user to travel

around the data.

iGraph-Lite presents some limitations. Some evaluation results of the project

showed that some of the users needed to get more semantics, some important

information are not inferred and so not conveyed to the user. Some information at the

P-System level is inferred based on algorithms from a concept repository which is

limited to a set of algorithms which might not be sufficient. Users also would like to

get more interactivity with the graphs; the presently “sequential” query system is not

adequate when looking for exact information. The system depends on a plug-in

installed on the graphical application. This approach might cause some problems as

the plug-in might not be supported by some graphical application and the currently

supported applications might be evolving at a faster pace than iGraph-Lite.

 63

B. Explore accessibility features of SVG

The second category includes approaches that have explored the accessibility

features of SVG and have attempted to overcome some of SVG’s limitations.

Additional information is embedded in an SVG document (e.g. metadata, constraints,

and alternative descriptions) and alternative presentations are generated based on

added information.

� The Science Access Project (SAP) and ViewPlus project

The Science Access Project (SAP) group at Oregon University aims at

developing methods to make information accessible for visually impaired people. In

1997, SAP started a research project to make vector images accessible. They obtained

some useful results and acquired an understanding of the possibilities and limitations

of audio/ tactile access of vector images. With the emergence of SVG they stopped

this research project concluding that “there is no way to make vector images that are

more or less automatically accessible as a separate accessibility page needs to

accompany each vector image” (SAP, 2005).

They then developed the ViewPlus project (BULATOV and GARDNER, 2004).

The project’s current hardware/software product line has a group of SVG applications

which can provide excellent access “to most” SVG graphical information for all:

• ViewPlus IVEO Creator application

• ViewPlus embosser

• ViewPlus TouchPad

A blind user can use the ViewPlus IVEO Creator application to import a

diagram from the Web, paper copy, or any electronic file, and create an accessible

IVEO SVG version. This diagram can then be printed to a ViewPlus embosser to

create a tactile version, and it is then placed on a ViewPlus touchpad to read. When a

region of the diagram is touched, it speaks the information attached to it. For most

diagrams, the audio feedback and the tactile layout of a standard size diagram is quite

accessible. However for complex, information rich, diagrams if a better view is

needed, SVG lets one zoom and make bigger copies.

Many accessibility features of SVG have been successfully explored in the

ViewPlus project (BULATOV and GARDNER, 2004), but some of its limitations

have also been identified (GARDNER and BULATOV, 2001).

 64

The accessibility features are of benefit only if used in the document creation

process. If a document is not properly structured (e.g., careful use of <g>elements), it

becomes very difficult to provide alternative presentations even if alternative

descriptions are provided for individual elements. Some SVG documents become less

accessible when created without <title> and <desc> elements, so to overcome these

drawbacks SAP has created an SVG editor that permits addition of a title and

description to elements that do not have them. Some SVG documents are very badly

structured and therefore less informative. So occasionally, re-ordering the hierarchical

structure of the SVG to organize objects into proper groups becomes necessary.

In the ViewPlus project the authors have taken an approach based on exploring

the information behind the picture, but the solutions proposed are expensive in terms

of adding extra information and/or reorganizing it. This illustrates the fact that SVG is

in a sense too low level and does not contain enough information about the structure

of the graphical information.

� Constraint Scalable Vector Graphics (CSVG)

An extension to SVG, called Constraint Scalable Vector Graphics (CSVG)

(BADROS et al., 2001), has been proposed. It partially addresses some of the

limitation of SVG by proposing additional capabilities, semantic zooming, differential

scaling and semantics preserving manipulation. CSVG allows attribute values to be

expressions whose values are determined at display-time. These additional

capabilities allow alternate layouts for the same logical group of components in a

diagram, which greatly improves SVG’s value. Whilst this constraint-based approach

permits a more flexible description of graphical content, CSVG remains close to

SVG, and still captures diagrams at a similar low level of abstraction.

� The SVG linearizer tool

The SVG linearizer tool (HERMAN and DARDAILLER, 2002) generates a

textual linear representation of the content of an SVG file by using a metadata

vocabulary describing it. The author has to describe the SVG-content using this RDF

vocabulary and to add textual descriptions to all elements that constitute primary RDF

resources. Then, from this information plus information contained in the SVG file

itself, an HTML file is generated. As described by the authors, the generation of the

RDF metadata is done mostly by hand and this could be facilitated by appropriate

authoring tools. Indeed, adding the RDF annotations is an onerous task for the author,

and this operation can be tedious and not very efficient for complex diagrams.

 65

This method is too dependent on the creator’s patience and willingness to

produce appropriate metadata (at least in the proof-of-concept tool). As proposed in

(LEWIS, 2006), one possible alternative to make the approach easier for authors and

less prone to errors would be to provide this facility through a semantically rich

markup language, rather than requiring the author to semantically enrich the diagram.

Furthermore, as the authors of the SVG linearizer tool (HERMAN and

DARDAILLER, 2002) point out, “the specification of the right vocabulary is

undeniably the hardest research issue to evolve this approach further”.

3.2.3 Limitations of Bottom-up approaches

The approaches proposed in BIS and GUIB contain, as their authors point out

(KURZE et al., 1995), an intrinsic drawback, i.e., the resulting description of the

picture relies heavily on the expertise, analysis and indexing of a third party (not the

author of the vector image most of the time). An important responsibility placed on

the moderator is to decide what information to convey, and thus the moderator

indirectly imposes a view when the picture is being read (which may result, for

example, in an idiosyncratic interpretation of the information or in the inadvertent

omission of important information).

In the approaches of TeDUB, SIGHT and iGraph Lite, the automatic (ELZER

and SCHWARTZ, 2007, FERRES et al., 2007) or semiautomatic (HORSTMANN et

al., 2004b) analysis of the diagrammatic presentation (vector image) may produce

wrong results due to noise and distortions in the original data presentation which may

need time and human intervention to correct and/or improve the information extracted

(HORSTMANN et al., 2004a, ELZER and SCHWARTZ, 2007) or due to limitations

of algorithms in charge of recovering semantic information behind the diagram

(FERRES et al., 2007).

In the second set of approaches described (ViewPlus, CSVG and SVG

Linearizer tool), the authors have identified the need to preserve the information

behind the diagram by storing it within the format representing it (in this case SVG).

They all try to explore the accessibility features in SVG and also attempt to overcome

some of its limitations (see APPENDIX section A.2.2): the author dependent low

level nature of SVG and structure of the information. The solutions proposed involved

sometimes reorganising the structure of the SVG if the original is badly structured,

enriching it by adding extra information (adding title and desc element when missing

 66

or inserting RDF annotations). These solutions are expensive and onerous for the

author who is willing to invest time and patience.

An important point noticed while analysing these existing approaches is that

most of the limitations they present are not due to the way they allow the user to

access and explore information but are due to the pitfalls inherent in trying to recover

this information from the diagram. The absence of information “behind” the vector

image which is lost at the creation stage is the main problem.

The following section discusses an example that illustrates the idea.

3.2.4 Summary of issues

A. Loss of information at diagram rendering

Figure 9: A Simple example « Do you see what I mean? »

Figure 9 is a diagram given without any additional context. This diagram is

composed of three boxes organised into two levels and connected by undirected lines.

Is it possible to infer what the boxes and the lines between them represent? What

information is available about the relationship between Sue and John? One could

assume that the three boxes represent three employees working for the same

company. The connections might represent lines of command, implying a hierarchical

relationship between the employees (e.g., John manages Sue). Another interpretation

could be that this diagram represents salary grades. John is in the next salary grade

above Peter and Sue, who are in the same grade. Many other interpretations are

possible, e.g., a family tree, a floor plan. The brain infers information based on

previous experiences, making one see and understand what one wants to see and was

taught to see (NARAYANAN, 1997).

Without any contextual information provided with a diagram represented as a

vector image it is difficult or even impossible to infer what the author of the diagram

 67

intended it to mean. This is mainly due to the fact that the semantics of the diagram is

not made explicit.

Over time many researchers highlighted the need of having this precious

information behind the diagram available. In 1997, John A. Gardner (GARDNER et

al., 1997) gave an overview of the concepts of “smart diagrams” (information behind

a diagram) and intelligent diagrams browsers for accessing such information. He

highlighted the fact that “Nearly every part of smart graphics technology exists today,

but to our knowledge there is no complete package that incorporates everything

necessary to author a smart picture, incorporate it into an electronic document, and

display it intelligently”. In an attempt to identify “…next generation accessibility

features in future graphics standards…” As mentioned in Chapter 2 section 2.4.4,

Takagi et al. (TAKAGI and TATSUYA, 2007) made different surveys, one of which

highlighted the complexity of existing business graphics which they categorized into

four categories: simple graphics, formal diagrams, table structure and composite

diagrams and graphics. (As mentioned in Chapter 2, the “formal diagrams” category

is of interest in this thesis.) Takagi states: “Formal diagrams are formally defined

diagrams, which have a well defined data-model behind the visual structure, such as

tree structures, Venn diagrams…UML diagrams. If non-visual conversion were

defined for each data model and blind users learned the appropriate access method,

then these diagrams should be accessible. In order to implement this approach, the

graphics should have functions to preserve the data-model for each part of the

figure” .

Takagi also underlines that the most important information to be presented non-

visually is the “represented information”, “however no standards support bundling of

the represented information in graphics. The idea of a “data-model attachment” is an

important idea”.

B. Author’s willingness

The willingness of authors, to allow the capture and access of the diagram

content information while creating their diagrams, is an important aspect to consider.

Given a diagram on the web, the sighted user can gain what information he can

from its representation. The information that he can obtain depends on the author, the

quality of the graphics system used and the appropriateness of the diagram or

visualization techniques used. The information will in general, be tailored by the

 68

author so that what the user sees and the information he acquires is what the author

intended and what the author allowed him to acquire “What the author means”.

There is a moral and legal duty for the author to provide an equivalent

perceivable view to the blind person. That also means that if the author has

constrained the information provided to the sighted user for any reason then he should

ensure that the same constraints are applied to the information provided to the blind

user. For this to be possible, the author needs to generate an alternative equivalent

view that does not need the diagram to be seen. To deal with situations where authors

decline to do that, researchers have come up with a number of “bottom-up

approaches”. Such approaches are the best that can be achieved given that authors

refuse to provide access to the information behind the diagram and there is no

jurisdiction to force them doing it. These “bottom-up” solutions would satisfy both

the moral and legal requirements.

C. Graphical format

The alt-text approach and most of the other approaches described previously are

as good as they could be for images but if the image is a vector image then better

accessibility could be achieved by first using the appropriate format: “vector graphic

format” and capturing the information behind it.

To summarise, if all one has to work with is a raster image, the bottom-up

approaches (adding descriptive information to an existing diagram) are appropriate. In

the “Do you see what I mean?” context, this is starting with what is seen, which is all

that is available.

3.3 Diagrams processing

As argued in Chapter 2, diagrams are excellent tools for conveying and

communicating information. They offer powerful advantages for our ability to access,

process and memorize information presented.

These main features are what make diagrams different to other forms of

representation such as text (LARKIN and SIMON, 1987) or sound (BROWN et al.,

2004). Because of their sequential nature, text and sound do not present the same

advantages when processed.

 While diagrams can be used as external memory (SUWA and TVERSKY,

2002) presenting complex diagrams textually or aurally presents some challenges on

 69

the working memory, especially if the diagram represented is complex. As introduced

by Miller (MILLER, 1956) short term memory is limited at around 7±2 “chunks”

(elements). So as stated by Brown (BROWN et al., 2004) “if a diagram contains more

than 7±2 items of information, it is unlikely that a user will be able to build a

complete mental representation of the diagram unless some chunking takes place”.

Having an idea about the powerful advantages diagrammatic representations

offer over other representations such as textual or auditory and highlighting the

limitations the currently used approaches present, the principle question arises of how

to make these visual representations perceivable, operable and understandable? What

is needed? What is missing?

A summary of how sighted people process and interact with diagrams is

researched in order to gain an understanding of how the information presented

diagrammatically is accessed by sighted people. The challenges of non-visual

presentation of diagrams have then been researched.

3.3.1 Visual processing of diagrams

Shneiderman (SHNEIDERMAN, 1996) summarizes the basic principles of

visual design as the Visual Information seeking Mantra: “Overview first, zoom and

filter, then details on demand”. Through this mantra, the importance of an overview is

highlighted as it is the first task of an interaction with a diagram.

A person performs different tasks when faced with a diagrammatic

representation (SHNEIDERMAN, 1996, CARD et al., 1999). The seven tasks

identified by (SHNEIDERMAN, 1996) are:

• Overview: gaining an overview of the entire diagram when needed.

• Zoom: Zoom in on specific elements of interest.

• Filter : Getting rid of unwanted elements by hiding them from the visual

representation for users to be able to control the viewing of information and

focus on specific elements that interests them.

• Details-on-demand: Getting detailed information from specific elements

of interest.

• Relate: Viewing relationships among elements of the diagram.

• History : History of actions which consists of keeping track of actions

performed by the user allows him to retrace their steps when needed by

actions such as undo, replay or progressive refinement.

 70

• Extract : Allowing the search and extraction of specific information

through queries which allows users to get answer to specific questions.

Shneiderman emphasizes that a system should support the full task list, because

this allow information to be presented rapidly and for rapid user-controlled

exploration. He also specifies that such support would require a novel and specialized

‘data structure’ among other things. Most of these tasks explore the powerful

advantages offered by a diagram and are easily performed by the human visual system

when exploring the diagram visually. But having access to all these tasks in a non-

visual environment (e.g. for visually impaired users) is a challenge with actual

diagrams (represented as vector image or vector graphics). Thought needs to be given

to how to allow these tasks to be performed on diagrams, what is needed? Or rather

how to design diagrams in such a way that it is possible to enquire and reason about

the information they carry, making them more perceivable, operable and

understandable, thus allowing any user regardless of his abilities to perform these

tasks to access and explore the information presented by the diagram.

3.3.2 Issues of Non-visual presentation of diagrams

What aspect of the visual representation of the diagram needs to be

communicated non-visually? What kind of information needs to be conveyed? Many

research projects have addressed these questions (BENNETT, 2002, BROWN et al.,

2004).

The information presented will depend on the alternative modality used to

communicate the diagram non-visually (e.g. tactile, audio, audio/tactile, etc.). When

presenting the information of the diagram by touch the information concerning the

position of the objects composing the diagram is conveyed as for the nature of the

tactile modality, but is this essential information in the accessing and processing the

information?

The benefit of presenting co-ordinate positions of the objects composing

diagrams has been investigated by David Bennett (BENNETT, 2002) and has proved

to provide no benefit in the non-visual presentation of diagrams in audio. This comes

back to the definition of diagram in Chapter 2: “A diagram is a simplified and

structured visual representation of concepts and relationships between them used to

represent and clarify a topic. Diagrams are composed of shapes and text. The

 71

information concerning the concepts represented and their relationships is the

important information whereas its layout is not”.

So the information behind the visual representation of the diagram “the

information content” is the information to be conveyed non-visually.

Aiming at demonstrating his hypothesis that “the way in which a blind person

can access diagrammatic information will affect the ease of performing tasks”, David

Bennett developed two models of navigation presenting the content information of a

diagram. The first one presents the hierarchical structure of the information and the

second one presents the connection-based structure. Through a set of experiments he

validated his hypothesis which confirmed that the navigation model used has a

significant effect on the performance of the user’s task.

The theory behind the result obtained by David Bennett has been explored by

Andy Brown who (BROWN et al., 2004) looked at the non-visual presentation of

graph based diagrams taking into account the cognitive science behind the use of such

representations. Keeping in mind the main advantages diagrammatic presentations

offer for sighted readers (Chapter 2), he identified a collection of issues any system

presenting non-visual diagrams should take into account:

• Recognition: One main advantage of a diagram is its ability to make some

implicit information, which would normally need to be deducted from other

forms of presentation, explicit. A mechanism to provide access to implicit

information within the diagram presented non-visually should be provided

if this representation is to be an alternative equivalent to diagrams (in

specific domains it should be possible to pre-determine a set of specific

aspects to be looked at (e.g. cycles in graphs)).

• Task dependence: The recognition of implicit features in a diagram

depends on the type of diagram and the information that is needed which is

related to the nature of the task intended. What is meaningful depends on

the nature of the information presented and the interests of the reader.

• Overviews: when using the sense of sight the whole diagram can be seen

offering instant access to all of the information presented. The diagram

provides an external reference which can be used as an external memory

support. Some sort of support, substituting the loss of such external

memory support, should be provided for the exploration of a diagram

 72

presented non-visually. Andy Brown suggests that overviews can be

integrated into a hierarchical data structure as presented and explored by

David Bennett.

• Search: a facility to search for specific information within the diagram is

essential in providing a substitute to the lost ability of scanning the diagram

visually for specific information. Connection-based navigation, which

allows finding related objects, is needed.

• Representational constraints: consideration should be taken into deciding

on the resemblance between the diagrammatic presentation presented

visually and its non-visual presentation. What needs to be presented? A

presentation that resembles the visual diagram or the information the

diagram represents? This would depend on the context the diagram will be

used in and the modality it will be presented in (e.g. tactile, audio, etc.). If

it is to be used in a collaborative environment where the diagram is used as

an essential means of communication between members of a team to

discuss and share ideas then a common language is needed to discuss the

diagram in both presentations (visual and non-visual).

The previously presented factors give an overall picture of what would be

required for a system to present diagrams visually or non-visually keeping in mind the

advantages diagram offer when presented visually.

It is noticed that most of the tasks identified by Shneiderman as needed to allow

user-control exploration of the information presented by a system, also apply to

systems aiming at presenting diagrams non-visually.

Providing an overview as a hierarchical structure of the information of the

diagram is important and provides a means to reduce working memory load. To

facilitate searching and recognition of the information careful attention needs to be

given in offering appropriate navigation models (hierarchical and connection-based).

The importance of giving the user control over the information he wants to navigate

and access is highlighted for both visual and non-visual presentation of diagrams.

 73

3.4 Accessible Diagrams Requirements

The previous analysis helped in highlighting a number of issues and limitations

current approaches present for the problem of making diagrams accessibility on the

web. Online resources such as email discussion lists (WebAIM, BCAB, yahoo groups

(blindwebbers, blindtech), freelists accessible image), forum proceedings (T2RERC,

2003), reviews of forum discussions, etc. have also provided valuable input.

Three main issues have been identified:

• loss of information at diagram rendering

• lack of accessibility support for both image and vector formats

• presentation modality issues

Hence a set of requirements that a new approach should satisfy in order to

overcome these has been identified.

These requirements should be incorporated into a system aiming at representing

diagrams in a way that it is possible to enquire and reason about the information they

carry, thus making diagrams more perceivable, operable and understandable and as a

result more accessible. Such an approach should not replace existing “bottom-up”

approaches but rather complement and enhance them.

The requirements are organised around the three main issues identified and are

summarised in Table 4.

3.4.1 Loss of information at diagram rendering

As mentioned by (RIBERA, 2008) “the final format should allow its content, its

presentation and its interactivity to be manipulated independently in order to

personalize each one according to the user’s preferences”. The problem with most

current ways of creating diagrams is that information is lost, the only thing which

remains is a visual graphical presentation presented through an array of pixels. The

absence of information “behind” the diagram which is lost at the creation stage is the

main problem. It would be more useful if the information behind the diagram was

made available. This would ensure the information provided to the user is the same as

the information that the author of the diagram intended to provide. In other words, no

information is missing, distorted or inferred.

 74

The following requirements have therefore been identified:

• Capture, encode and preserve the original information behind the diagram

at the creation stage.

• Present the diagram from this.

3.4.2 Lack of accessibility support for both image and vector

formats

The format used should be adapted to the nature of diagrams which are defined

as structured sets of objects and relationships between these objects.

The following requirement has been identified:

• Use an appropriate format to store the information of the diagram.

3.4.3 Presentation: modality issues

The requirements identified for the presentation modality issues are proposed in

order to address the issues identified by Andy Brown in section 3.3.2 (Recognition,

Overviews, Search, Task dependence and Representational constraints).

The following requirements have been identified:

• Provide a mechanism to provide access to implicit information present in

the diagram information (Recognition), by making it explicit.

• Provide mechanisms of exploration/ navigation of the information.

• Provide an overview of the information (Overviews).

• Provide a mechanism to process and search the information presented

(Search).

• Provide the user with the power to decide which information he wants to

obtain depending on the nature of the task he wants to achieve (Task

dependence).

 75

Issues Requirements

Information
Loss of information at

diagram rendering

� Capture, encode and preserve the original information behind
the diagram at the creation stage.

� Present the diagram from this

Graphical format
Lack of accessibility

support for both image
and vector formats � Use an appropriate format to store the information of the

diagram.

Presentation modality

Presentation modality
issues

� Provide a mechanism to provide access to implicit information
present in the diagram information (Recognition), by making it
explicit

� Provide mechanisms of exploration/ navigation of the
information

� Provide an overview of the information (Overviews).

� Provide a mechanism to process and search the information
presented (Search)

� Provide the user with the power to decide which information he
wants to obtain depending on the nature of the task he wants to
achieve (Task dependence)

Table 4: Accessible Diagrams Requirements

Once the requirements were identified, it was noticed that they are the same as

those for non blind people accessing and processing information within a diagram

(section 3.3.1). In (section D.2), a table has been created to provide an overview of all

the existing approaches reviewed.

3.5 Discussion and Conclusion

This chapter has explored and exposed a number of issues and limitations

current approaches present in to the problem of diagram accessibility on the web. The

absence of the information “behind” the diagram which is lost at the creation stage

has been identified as the main problem. This lead to the identification of a set of

requirements a new approach should satisfy in order to overcome this.

The following table (Table 5) presents an overview of the main existing

approaches against the defined requirements.

 76

 Requirements TeDUB SIGHT iGraph Lite OntoDiagram SemViZ

� Capture, encode and
preserve the original
information behind the
diagram at the creation
stage.

 � �

In
fo

rm
at

io
n

� Present the diagram from
this

 � �

G
ra

p
h

ic
al

fo

rm
at

 � Use an appropriate
format to store the
information of the diagram.

Vector
image

Vector
image

Vector
image

Vector
image

Vector
image

� Provide a mechanism to
provide access to implicit
information present in the
diagram information
(Recognition), by making it
explicit

� Provide mechanisms of
exploration/ navigation of the
information

� � �

� Provide an overview of
the information (Overviews). � � � �

� Provide a mechanism to
process and search the
information presented
(Search)

 � � P
re

se
n

ta
ti

o
n

� Provide the user with the
power to decide which
information he wants to
obtain depending on the
nature of the task he wants
to achieve (Task
dependence)

 � �

Table 5: Overview of existing approaches against the defined requirements

The TeDUB, SIGHT and iGraph Lite approaches have been created with

accessibility in mind whereas OntoDiagram (Chapter 2) and SemViz (Chapter 2

section 2.6.6) have been created in an attempt to automatically generate expressive

and effective diagrams from high-level representations of a given set of “raw data”.

Both categories of approaches present different benefits and limits in the fulfilment of

the requirements.

TeDUB, SIGHT and iGraph Lite have produced some good results in terms of

presentation of accessible diagrams non-visually but still have some limitations

mainly due to the absence of information “behind” the image which is lost at the

creation stage and the pitfalls inherent in trying to recover this information. In the “Do

 77

you see what I mean context (section 3.2.4A)”, this is starting with what is seen,

which is all that is available.

OntoDiagram and SemViz present other possibilities as the original information

from which the diagram was generated is available. They are starting with “What I

mean” and generating “what you see” providing links from the presentation to the

underlying information. They have explored the use of ontologies in creating

diagrams. But this only applies in a single medium. Indeed, none has taken into

account or explored alternative modalities for presenting the information generated in

a variety of presentation media. Furthermore, the possibilities offered by the use of

data models and ontologies for enquiring and reasoning over diagrams have not been

explored by any of these methods.

This research proposes a solution derived from the benefits and limitations of

these approaches. It is hypothesized that defining a smart diagram system that stores

the original information, and provides details of the transformation performed to

generate the filtered view of the information, and allows alternative transformations

on the information to provide different presentations is a solution to the problem of

diagram (accessibility) perceivability, operability and understandability on the web.

Various accessible presentation forms could be generated but it is not the aim of

the proposed approach to create a new type of accessible representation but more to

draw inspiration from existing “bottom-up” approaches previously presented which

are specialized at that level.

Furthermore, if authors decided to use such a system, the resulting diagram

would be information rather than just a graphical presentation of that information and

as a result would offer enhanced accessibility benefits without further work from the

author. On another hand, if authors choose not to use the system, and it is assumed

many would not for a variety of reasons (e.g. protect data, do not want to invest effort,

etc.), then it is up to them to satisfy the accessibility issues by some other methods

(e.g. existing approaches).

The requirements should be incorporated into a system aiming at representing

diagrams in a way that it is possible to enquire and reason about the information they

carry, thus making diagrams more perceivable, operable and understandable.

 78

Chapter 4

The GraSSML Approach

This research proposes a solution to the issues identified that fulfils the

requirements listed (Chapter 3 section 3.4). The hypothesis underlying the proposed

approach is that “if information on the structure and the semantics of formal diagrams

were preserved, made part of the diagram by willing authors at the creation stage,

these diagrams would be more perceivable, operable and understandable and, as a

result, suggest enhanced accessibility benefits for such diagrams”. Graphical content

is no longer thought of as ink on the paper or pixels on the screen but more as an

abstract entity that has an intrinsic structure and semantics.

This chapter presents this novel approach called Graphical Structure Semantic

Markup Languages (GraSSML), a three-level conceptual architecture that captures

and provides access to this “information behind the diagram”.

GraSSML considers the possibilities the semantic web vision offers to the

ability to enquire and reason over diagrams and its benefit to problems such as

accessibility of diagrams.

The chapter starts by specifying the terminology used in the remainder of this

thesis. The proposed approach is then introduced giving a description of the main

ideas. Then the three levels: the semantic level, the structure level and the

presentation level and the transformations between these levels are described in more

detail. Use cases presented in the next chapter illustrate the idea.

4.1 Terminology

The terminology is based in part on the glossary of the Web Content

Accessibility Guideline 2.0 (W3C, 2008c).

� Content: the information and sensory experience to be communicated to the

user by means of a user agent, including code or markup that defines the

content's structure, presentation, and interactions. The qualified nouns web

content and graphical content are used in an analogous sense.

 79

� Presentation: the “rendering of the content in a form to be perceived by users”

(e.g., as print, as a two-dimensional graphical presentation, as a text-only

presentation, as synthesized speech, as Braille, etc.).

� Representation: used in the sense in which it is used in REST

(REpresentational State Transfer), a phrase coined by Fielding (FIELDING,

2000) to describe the architecture of the World Wide Web (W3C, 2004a).

Web resources are referenced using URIs and a representation of the

resource is returned. In the context of this research representations are

expressed in an XML-based data format (markup language).

4.2 Approach

The GraSSML approach is to start with the meaning behind a diagram (instead

of its graphical presentation) and then generate one of its possible presentations

without losing access to the initial meaning. There are thus a minimum of two levels

in this approach (Figure 10). The “top” level represents the meaning of the

information communicated by the diagram: its semantics. The “bottom” level

represents the possible presentations of this semantics.

The existence of sets of (predefined) rules which allow the “bottom level” to be

generated from the “top level” is posited. Two different sets of rules are identified:

• Domain specific structural rules (notational conventions): define the

diagram components (primitives and attributes) required by the domain and

the class of diagrams it belongs to.

• Preferential presentation rules: these rules express preferences concerning

the representation of the diagram in terms of aesthetics preferences or

practical preferences which depend on a user’s preferences and/or device

requirements. These rules are considered important for implementation of

“adaptability” features.

The identification and differentiation of these two sets of rules justify the

existence of an intermediate structure level aiming at providing a logical description

of the diagram. Once the “bottom level” has been generated using these rules, it

becomes possible (if the rules are carefully defined) to travel from one level to

another in a reversible manner.

 80

Figure 10: GraSSML approach

The GraSSML approach is not applicable to all kinds of diagrams but is aimed

(see Chapter 2 section 2.4.5) at formal diagrams which have a well-defined data

model behind their structure. This data model captures the information on which the

diagram is based. These are well structured and conform to well-defined conventions.

Two classes of formal diagrams have already been identified: “process diagrams” and

“hierarchical diagrams”. Both classes considered are representative of a wider range

of diagrams and have been used to demonstrate the feasibility and applicability of the

proposed approach (Chapter 5). In addition to organizational charts (hierarchical

diagram), UML activity diagrams (process diagram), GraSSML has also been applied

to “Charts” (Chapter 6), more specifically charts in the financial domain (e.g. Bar

charts, Pie charts).

An overview of the GraSSML system is presented in Figure 11.

 81

Figure 11: GraSSML system overview

4.3 Conceptual architecture

The conceptual model is presented in (Figure 12). Each GraSSML level

captures a specific aspect of a diagram. The rendering processes that generate

presentations from representations (e.g. an XHTML user agent) are not shown as

these are external to GraSSML.

 82

Figure 12: GraSSML Conceptual Architecture

This layered conceptual model reduces a task to a sequence of transformations

between inputs and outputs expressed in different “Little Languages” (BENTLEY,

1986). The basic model does not depend on specific technologies but technologies are

needed to refine the abstract model into the GraSSML architecture. An important step

is to express the structure and semantics of the diagrams formally.

The three levels of GraSSML (semantic, structure and presentation level) and

the transformations between these levels are described in the following sections.

4.4 Semantic level

Referring to the example illustrated in Chapter 2 (section 3.2.4A), at this level

the question how to capture “What I mean?” arises.

The description of a diagram at the semantic level is captured by a data model

which makes use of domain specific ontologies.

4.4.1 Ontology

For each application domain, information concerning the concepts used, the

relationships between them, and the meaning behind each is required. The ontology is

created by the domain expert. A domain expert needs to study the domain and the

class of diagrams to identify what concepts, properties and constraints are needed to

 83

represent the diagrams. The domain expert is in the best position to determine what

fundamental information is needed in order to have a full understanding of the

information to be conveyed. As was pointed by Herman and Dardailler (HERMAN

and DARDAILLER, 2002), the specification of the right vocabulary is fundamental.

The process of constructing an ontology is well explained in (NOY and

McGUINNESS, 2000). It is important to keep in mind that there is more than one way

to represent a domain. The best representation depends on the application anticipated.

The formulation of the ontology is an iterative process as the ontology is modified

until the required result is obtained. The predefined set of queries defined at the

initiation phase are useful in determining if the ontology is complete enough to

resolve them.

The ontology could either be created, automatically generated from some source

or be a pre-existing ontology. The possible use of pre-existing ontologies is an

important aspect of the GraSSML approach as the creation of the ontology describing

the background domain could be seen as complex and costly in term of time and

effort. Furthermore, there already exist a large number of ontologies that have been

created for various purposes. The ability to visualize, enquire and reason over heavy

data conforming to these existing ontologies is one of the main benefits of GraSSML.

This point is further discussed in Chapter 8 (section 8.3).

Along with the specification of a particular ontology, the domain expert defines

the notational conventions that would govern the graphical representation of the

information captured in the data model. The information might, for example, be

represented in a diagram (graphical or tactile), or as written or spoken text. These

transformations are captured in sets of rules (e.g. Data Model to ZineML) governing

the generation of ZineML at the structure level from the data model. These

transformation rules are described in detail in section 4.7.1.

4.4.2 Data Model

A Data model, an instance of a diagram which conforms to an ontology, lies at

the heart of the GraSSML approach. GraSSML is agnostic to the source of the data

model. GraSSML can be presented with any data model that conforms to an existing

ontology. The specification of the ontology is important for the approach to

successfully process the data model provided. Indeed, it is important to remember that

 84

one possible data model representation with many semantics is possible as it depends

on the ontology attached.

The ontology has a key role in the approach as having access to the data model

and the ontology to which it conforms, allows implicit information to be made

explicit. This offers the ability to enquire and reason about the information on which

the diagram is based.

The data model could be hand authored, created using a tool, or generated by an

application (Chapter 6 section 6.3.3B).

4.5 Structure level: ZineML

An intermediate structure layer has been introduced in the transformation from

the semantic level to the presentation level. One could argue that it is possible to map

directly from the semantic representation to the diagram presentation making the

structure layer redundant. This mapping is possible but adaptability would be lost in

the process. Indeed, as explained earlier section 4.2 (Figure 11), this layer has been

added for specific reasons.

This level is intended to distinguish between the notational conventions

followed by a presentation and the marks on the screen. This is necessary to obtain a

presentation of the diagram that takes into account user or device requirements while

respecting the notational conventions imposed at the semantic level. There is an

interesting parallel between the role of the intermediate level in this model and the

role of intermediate layers in graphics standards to promote device independence

(ARNOLD and DUCE, 1990).

At this level a generic language that captures the structure of a diagram has been

defined, called ZineML. Figure 12 shows the position of ZineML in the GraSSML

system.

ZineML is at a higher level than SVG in representing the structure of the

diagram and facilitates the creation and modification of diagrams. ZineML documents

aim to be readable by humans and to give good overviews of diagram structures. The

language seeks to be rich enough to allow accessible alternatives of the structural

representation of a diagram to be created. ZineML provides the diagram components

required by the diagram domain being presented. The set of primitive shapes differs

from one diagram class to another and the constraints on positioning and connectivity

differ. For example, when representing a UML activity diagram, the horizontal and

 85

vertical layout of the diagrams is quite flexible but the shapes, of the concepts

represented, (e.g. actions, decisions, initial activity, etc.) are precisely defined as are

the types of connectors to be used. For organisation charts, the positioning in at least

one direction is defined by the diagram class. This intermediate level binds the

notational conventions in a coordinate free environment.

In the conversion from ZineML to its graphical representation there may be

flexibility allowed in primitive placement, where connectors are attached to boxes,

what rendering styles to use that are mainly for aesthetics or adaptability of a specific

diagram. The constraint based layout engine (Figure 14) uses this flexibility in

achieving the conversion to the appropriate graphical representation.

The transformation from ZineML to a presentation determines and adjusts

positions and sizes using predefined presentation algorithms. The derivation of

graphical or other presentations from ZineML is done in accordance with predefined

rule sets (ZineML to Representation). These rule sets combine two levels of rules:

1. Notational conventions defined at the semantic level and passed on to

ZineML (Data Model to ZineML), for example the geometric shape used

to denote a particular semantic category.

2. Preferential presentation rules: these rules express preferences concerning

the representation of the diagram in term of aesthetic preferences or

practical preferences which depends on users’ preferences and/or device

requirements. Theses rules are considered important for implementation of

“adaptability” features.

In consequence, ZineML needs to be more flexible than most intermediate

languages. It needs to separate the primitives and attributes required by the diagram

notational conventions from those required by the layout engine. This allows inquiries

about the diagram to respond with information relevant to the diagram domain and

not its aesthetic layout.

ZineML has a wider range of options than similar intermediate languages with

the ability to divide the functionality into that required by the diagram domain and

that required by the layout engine.

As some domain specific languages already exist, ZineML offers the

possibilities to combine GraSSML with Standard notations or exchange formats for

different domains, like for example XMI (OMG, 2007) for UML. Indeed, it is

possible to generate ZineML from another domain specific language as well as the

 86

other way round. The UML Activity Diagram use case (Chapter 5 section 5.3)

demonstrates how a standard like XMI could be integrated within GraSSML.

As noted earlier, ZineML caters for diagrams such as process diagrams and

hierarchical diagrams. ZineML defines a set of basic shapes (Figure 13) that cover a

wide range of possibilities for such diagrams common in the domains considered. A

predefined library of diagrams was used as a starting point (Figure 1 and Figure 2)

and a set of basic shapes used in each diagram was extracted. It is important to keep in

mind that it is impossible, a priori, to find all possible shapes since the diagrammatical

notation has no limit. Indeed, users often imagine and create their own specific

shapes. So ZineML needs to be extendable, and allow the addition of new shapes

defined by users. To define a new shape, the user first needs to attribute a name

identifying the new shape. This shape would be linked in the notational convention to

its appropriate concepts it is intended to represent. The graphical representation of the

new shape needs to be defined at the presentation level where the renderer will

generate it using its user defined presentation aspect and integrate it within the

diagram graphical representation.

Figure 13: Examples of basic shapes defined by ZineML

ZineML is not domain dependent. It proposes options that express and apply

rule sets when creating the diagrams. These rule sets can be used to tailor the diagram

specifically to a domain. ZineML can determine and adjust positions and sizes semi-

automatically, with a minimum of effort from the author for creation and modification

of a diagram.

The graphical presentation of ZineML depends on the user predefined Structure

to Presentation rule sets. The following options have been taken into account in the

design of ZineML.

• The author wants to create a diagram without giving any explicit size and

positional information. In this case a default algorithm defines default size

and positions for each element of the diagram. For example, each shape

may adjust itself to its content, which can be a text string or any other

 87

shape. If the default diagram obtained does not suit the user, he still has the

possibility of changing the rules applied by selecting another presentation

algorithm or by using one of the following options that requires the user to

give more explicit information on how he would like the structure to be

presented (e.g. drawing direction).

• The author specifies positions and sizes of the elements. For example, the

attributes “bottom”, “top”, “left”, “right” for the alignment, or “h” and “w”

for the height and width of a shape, the attribute direction (down | up | right

| left) to specify the drawing direction.

• The author creates the diagram with a specific set of global constraints. The

specification of these constraints allows an author to define the syntax that

all valid diagrams of this domain have to conform to. These constraints are

defined in the set of rules used to represent the diagram: size of graphical

element, relative positions, valid relations, etc.

Whatever the option used, if any modification is made, the presentation

algorithm maintains the structure of the diagram by reapplying itself to the modified

ZineML file, respecting the rule sets defined.

4.6 Presentation level

At the presentation level, diagrams are represented by modality specific

languages.

Both the structure and semantic of the diagram are made available and both

types of information can be conveyed.

To make the most of this valuable information available within the diagram,

careful attention needs to be taken in the design and implementation of presentation

and navigation tools, taking into account both user and device requirements. To

present and explore this information in the best possible way and to provide

presentations (visual or non-visual) as perceivable, operable and understandable as

possible, specific studies are referred to.

Results from Chapter 3 are referred to in order to determine how to best explore

the availability of the “information behind the diagram”, how best to present this

information visually (SHNEIDERMAN, 1996) and non-visually (BROWN et al.,

2004).

 88

As mentioned in Chapter 3, a person can perform different tasks when faced

with a diagrammatic representation. Shneiderman (SHNEIDERMAN, 1996)

identified a list of tasks (overview, zoom, filter, details-on-demand, relate, history,

extract) a system should support for the information of a diagram to be successfully

presented and explored by a user. These issues concerning the non-visual presentation

of diagram have been identified by Brown (BROWN et al., 2004) and needs to be

kept in mind (recognition, task dependence, overview, search, representational

constraints).

Thought needs to be given to how to allow these tasks to be performed on

perceivable, understandable and operable diagrams or more specifically how to design

perceivable, understandable and operable diagram presentations to allow any users or

machines to perform these tasks and enquire and reason about the information.

In this area the GraSSML approach builds on knowledge acquired in the

“bottom-up” projects described in Chapter 3. These projects have developed and

successfully demonstrated the effectiveness of certain techniques in presenting

graphical information to visually impaired users by successfully addressing some of

the issues identified by Brown in the presentation of diagrams non-visually.

It is important to specify that the aim of this research project is not to develop

new techniques in presenting graphical information effectively but to extrapolate from

the existing techniques which have been proved to work.

The difference in the GraSSML approach is that these techniques are explored

using the original information preserved from the creation stage rather than

information inferred by some means.

The availability of the information “behind the diagram” allows alternative

presentations to be generated such as static or interactive presentations. Static

presentations include graphical and textual presentations. One of the original benefits

of the GraSSML approach is that it allows the creation of query systems (graphical or

textual interactive presentations) which allow interactive exploration of the

information. Having access to the data model and its ontology allows implicit

information to be made explicit thus one of the main advantages of diagrammatic

representation “recognition” becomes possible.

 89

4.6.1 Graphical representation

A graphical representation of the diagram is generated taking into account the

information provided by the data model, the notational conventions rules

(transformation from Data Model to ZineML) and the user and/or device requirements

(transformation from ZineML to Representation).

SVG is used as the graphical output renderer. Good quality SVG is ensured by

the existence of the structure level populated by the ZineML language.

ZineML captures the structure behind the diagram and the notational

conventions governing its graphical representation. That information is organised and

represented in SVG using the accessibility features (MCCATHIENEVILE and

KOIVUNEN, 2000) SVG offers (appropriate use of grouping, title, desc, id, class,

etc.).

For complex diagrams, interactive exploration is possible using SVG’s facilities

(e.g. Chapter 5 scripting is used) and the available information concerning the

structure and semantics of the diagram (e.g. hiding and exposing details).

4.6.2 Textual representation

Verbalisation Model templates that generate a textual representation of the

structure and the semantics of the diagram have been implemented. The verbalisation

model consists of a template, defined by the domain expert, gathering essential

information at the appropriate level of abstraction, organizing and presenting it in a

way that is easy to understand textually. The information needed for such a

verbalisation model is collected from the data model at the semantic level and from

the ZineML representation of the diagram at the structure level.

Pre-selected ornamental keywords such as connection words (e.g. “labelled”,

“named”) are used to make the resulting textual description more human readable,

natural and easy to understand.

Construction of the templates is a manual process. The necessary information

from the data model is extracted and the template is then applied to the retrieved

information in order to generate the verbalized representation.

Techniques which have been successfully evaluated and accepted as efficient by

research teams have been used to design such verbalisation models. The aim was to

demonstrate that such representations could be generated using GraSSML.

 90

This follows guidelines described in (NCAM, 2008, CORNELIS and

KRIKHAAR, 2001, WEB, 2002, NBA, 2000, OU, 2009, NCAM, 2006).

Verbalisation models can also be used by the author as a tool to check the

efficiency of the graphical presentation of his diagram. Indeed, the author can check

that the textual representation obtained by applying the appropriate verbalisation

model templates cover all the aspects he wants the user to perceive when accessing

his diagram.

4.6.3 Query systems

With the structure and semantics of the diagram available, it is possible to

express queries concerning specific parts of a diagram in novel ways: this provides a

nascent “smart diagrams” capability. Because of the reversibility properties of the

GraSSML architecture, information at any layer can in principle be queried from a

representation at another layer.

Having access to the data model and its ontology, it is possible to derive

additional information that the data model holds but does not express explicitly. The

ontology holds some inference rules which are used by a reasoner to make inferences

on the data model. This mechanism allows “recognition” by making implicit

information explicit (BROWN et al., 2004).

The query system is a means for users to access this information in a way they

require it. As it is not possible to predict all the different queries, it is essential to

provide an endpoint which allows the user to query the information behind the

diagram by formulating their own queries. The author can provide some queries, but

can easily add more in response to demand and/or the user can add their own. This

point is discussed in the final chapter on future work (Chapter 8).

Although, it would be possible to implement such a system allowing users to

formulate their own queries, due to time constraints, it was decided to implement a

defined standard set of queries which are believed to get used a lot in the respective

domains of the selected formal diagrams. The idea is to demonstrate the feasibility

and applicability of the approach.

Definition of the queries that would be used by the textual query system and/or

the graphical query system should be defined with the aid of the domain expert who is

in the best position to identify what queries users are likely to expect and which

queries would allow the user to explore the diagram efficiently. It is the role of the

 91

domain expert to determine meaningful and useful queries that would allow the user

of the system to acquire comprehensive information about the diagram.

A. Graphical smart diagrams

The graphical query system allows the user to interact with the diagram by

selecting some part of it and choosing the query to apply from a menu. The result is

shown graphically by highlighting, hiding or changing font size or colour.

B. Textual query system

A textual query system allows the user to query the graphical information

through a graphical interface. The results are shown textually.

4.6.4 Other representations

Other alternatives representations are possible at this level, such as Braille,

sound and non speech, Audio/Tactile. Other researchers (BULATOV and

GARDNER, 2004, HUYNH et al., 2005, KURZE et al., 1995, MIKOVEC and

SLAVIK, 1999, ROTARD and ERTL, 2004) have studied which options are most

appropriate in particular situations, supported by evidence from evaluations. These

projects have developed and successfully demonstrated the effectiveness of certain

techniques in presenting graphical information non-visually. One challenge for

GraSSML is to generate such representations by transformation from one of its

information representation level (structure “ZineML” or semantics (Data Model)).

One approach would be to have “access” to the format used in these methods and

from there generate their proposed representations using the GraSSML approach.

4.7 Transformations

An important motivation behind the GraSSML layered conceptual model

(Figure 12) is to reduce a task to a sequence of transformations between inputs and

outputs expressed in different “Little Languages” (BENTLEY, 1986). The worthiness,

flexibility and efficacy of doing multiple transformations have been explored at

various levels of the GraSSML conceptual architecture.

Many transformations could be considered between the different levels. The

whole system is intended to be reversible, meaning that it is possible from one level to

reach information available at another higher or lower level. The two main

transformations are presented in the following sections.

 92

4.7.1 Data model to ZineML

This transformation concerns the definition of the notational conventions (Data

Model to ZineML) which are analogies between the concepts defined in the ontology

and the notations used to represent them when the diagram is to be represented

graphically. These sets of rules govern the generation of ZineML from the data model

expressed at the semantic level. Information from the data model is extracted and the

notational conventions which are defined by the domain expert are applied to the

extracted information to generate ZineML.

4.7.2 ZineML to Representation

The information gathered during the authoring process is presented to the user

who wants to consult the diagram in order to extract and explore the information

contained therein. To present the information in an appropriate format, user and/or

device requirements should be taken into account. These requirements allow the

adaptation of the information into the appropriate presentation medium (e.g. graphical

presentation, textual presentation, etc) and corresponding representation. If the user is

visually impaired, a textual presentation might be more appropriate. The textual query

system could also be used to browse the information and get a better understanding of

the graphical information or of a large textual presentation. Many possibilities are

considered; depending on the user/device requirements one or more of these

presentations could be generated and presented to the user.

The Composite Capabilities/Preferences Profile framework (CC/PP) (W3C,

2004b) could be used at this level. It allows device capabilities and user preferences to

be expressed using RDF and can be used to guide the adaptation of content presented

to that device. CC/PP could improve the way different implementation versions of the

same information are distributed to an end user.

For the graphical presentation, a transformation is applied to the ZineML. This

generates the graphical representation of the diagram taking into account the

notational conventions defined within ZineML passed by the semantic level and the

user and/or device requirements.

When a textual presentation is required, the appropriate verbalisation model

template is applied to generate it. The appropriate template is applied to the structure

level if the textual description of the structure of the diagram is required and to the

semantic level if the textual description of the semantics of the diagram is required.

 93

4.8 GraSSML in practice

The methodology to apply and author GraSSML involves seven stages and a

number of actors. Figure 14 illustrates the concrete GraSSML system architecture

developed. The seven numbered areas of the figure illustrate the seven stages

involved in the application of the GraSSML approach. These are described in section

(section 4.8.2). The following sections summarize this by outlining the actors

involved in the process and the process itself. Three different actors may be identified:

• A domain expert, to share his knowledge of the domain to define the

ontology of the domain, the rules for notational conventions, the

presentation rules to reflect user or/and device requirements, the queries

definition, and the verbalisation model templates allowing the textual

description of the structure and the semantics of the diagram.

• The author, the person or system who creates a diagram. The author

creates the diagram by defining the data model of the information to be

portrayed. The data model is linked to the ontology that formulates the

conceptual schema for this kind of diagram in the domain selected.

• The user, the person who wants to access, explore, query, or browse the

diagram content.

 94

Figure 14: GraSSML System architecture

 95

4.8.1 Initiation

Initiation is the process that collects (generates) the information required to

handle a new type of diagram. There are four aspects, each carried out by the domain

expert:

1. Formulation of the ontology

2. Notational conventions

3. Verbalisation model Templates

4. Basic Query definitions

The approach relies heavily on the presence of a domain expert to generate the

original content in an appropriate form. Such domain knowledge is essential in the

initial annotation representation of the diagram. This process provides a way to share

that knowledge across a wide user base.

As discussed in section 4.4.1, the creation of the ontology describing the

background domain could be seen as complex and costly in term of time and effort.

But the ontology could either be created, automatically generated from some source

or be a pre-existing ontology. It is worth noting that the cost of creating the ontology

is not insurmountable as illustrated in Chapter 6 where an ontology has been

generated from an XBRL taxonomy and then extended to meet the requirements of a

new domain (financial reporting). This ontology was created by a third party who had

never previously created an ontology.

With this type of knowledge in place, the GraSSML approach is sound.

The domain expert needs to indicate how much information needs to be

provided by the author to produce a reliable data model and thus diagram.

The domain expert is also the person in the best position to choose the basic

queries needed for the type of diagram. It is his role to know what is a relevant or not

as a query. Hence basic queries are defined and put in place. Such tasks involve

manual intervention from the domain expert. But it could be possible to generate these

queries automatically. This point is further discussed in Chapter 8.

The time needed at the initiation stage may be seen as requiring too much effort.

But it could be argued that this time is a small price for the domain expert to pay in

order to allow potential authors to create diagrams that would be more perceivable,

operable and understandable.

 96

It is not expected that the author engage in the work of creating ontologies and

graphical rules, though the framework would and should not preclude them from

doing so. Of course a question remains: will the domain expert do a good job? This

would lead us to questions outside the scope of the thesis.

4.8.2 Applying GraSSML

The seven numbered area of the Figure 14 illustrate the seven stages involved in

the application of the GraSSML approach. These are described as follow:

• Stage 1- Ontology: Using information gathered at the initiation stage, an

ontology describing the background domain is either created or generated

from some source. A pre-existing ontology could also be used.

• Stage 2- Data model: The diagram is defined via a data model conforming

to the ontology. The conformance to the ontology is important for the

approach to successfully process the data model provided.

• Stage 3- Notational conventions: A set of notational conventions, which

are analogies between the concepts defined in the ontology and the

notations used to represent them when the diagram is to be represented

graphically, are defined. These notational conventions govern the

generation of ZineML from the data model.

The following stages emphasize the advantages of having access to the

information “behind the diagram” as it allows alternative presentations to be

generated and enquiry and reasoning to be achieved:

• Stage 4- Graphical representation: A graphical representation of the

diagram is generated taking into account the information provided by the

data model, the notational conventions and some user and/or device

requirements.

• Stage 5- Verbalisation model (Semantics) and Stage 6- Verbalisation

model (Structure): Verbalisation Model templates are created to generate

a textual representation of the structure and/or the semantics of the

diagram. The verbalisation model consists of a template gathering essential

information at the appropriate level of abstraction, organizing and

presenting it in a way that is easy to understand textually.

• Stage 7- Query systems: One of the original benefits of the GraSSML

approach is that it allows the creation of query systems (graphical or textual

 97

query systems) making it possible for users (and machines) to enquire and

reason over the information. The ontology has an important role in the

approach as having access to the data model and its ontology allows

implicit information to be made explicit. This stage demonstrates the ability

to enquire and reason about the information on which the diagram is based.

All of the stages are described in more detail in subsequent sections.

4.8.3 The authoring process

The GraSSML approach involves significant changes in the authoring process

and the awareness of graphical information for the author and the user. Its different

stages may be seen as expensive in time and effort.

The GraSSML authoring process starts by creating the data model of the

diagram. The author needs to select the ontology for the domain of interest. This

phase is semi-automatic. The author also needs to specify the type of the diagram at

the structure level and to select the notational conventions from amongst those already

defined by the domain expert.

The ultimate aim is to define an authoring process that is easy to learn and

understand. The author should feel that he is in control and that he is able to create the

intended diagram the way he wants it to be.

The author should also understand the aims of the system: contributing to the

representation of diagrams in a way that could improve the ability to enquire and

reason about the information on which the diagram is based. Graphical presentation of

the diagram is not the sole intent of the GraSSML system, but only one of the possible

media in which to present the information.

The focus of the prototype is to show the power of the transformational

approach, and for this reason a more general approach has been taken to authoring,

not least because the authoring process might itself involve transformation or

extraction from some other sources.

As mentioned in section 4.4.2, the data model can originate from different

sources, opening doors to new opportunities for the creation of diagrams from

different sources and by different people with various abilities. A number of existing

tools which people know about and feel comfortable with could be considered for the

authoring process. Options involving WYSIWYG tools, that people feel comfortable

with, and textual creation of RDF graph opens new horizons for the authoring of

 98

diagrams aiming at preserving the information behind them and allowing enquiry and

reasoning over that information. This idea is illustrated in an example later in the

thesis (Chapter 5 section 5.3.2H).

4.9 Conclusion

This chapter has presented the main ideas behind the GraSSML approach aimed

at fulfilling the defined requirements in Chapter 3 (section 3.4) and supporting the

hypothesis. The underlying three-level conceptual architecture of GraSSML have

been described offering details of its levels (semantics, structure and presentation

levels) and the transformations between these levels.

Table 6 shows how GraSSML addresses the requirements and provides a

comparison view of GraSSML with existing approaches reviewed in (Chapter 2 and

Chapter 3). The seven stages previously described are referred to, to specify which

feature of the architecture relate to addressing which requirement.

The overheads on diagram authoring required by the adoption of the proposed

approach have been discussed (see section 4.8). It is strongly believed that the benefit

of providing access to the information behind the diagram will outweigh the effort

involved in using the GraSSML approach in its current state of development. Many

developments could be carried out in order to make the process of using GraSSML a

pleasant experience, making authors confident in its viability. This will be discussed

in Chapter 8.

 99

 Requirements TeDUB SIGHT iGraph
Lite OntoDiagram SemViZ GraSSML

� Capture, encode and
preserve the original
information behind the
diagram at the creation
stage.

 � �
�
1, 2

In
fo

rm
at

io
n

� Present the diagram
from it

 � �

�
3, 4, 5,

6,7

G
ra

p
h

ic
al

fo

rm
at

 � Use an appropriate
format to store the
information of the diagram.

Vector
Image

Vector
image

Vector
image

Vector
image

Vector
image

Vector
Graphics

� Provide a mechanism
to provide access to
implicit information present
in the diagram information
(Recognition), by making it
explicit

 �
1, 2, 7

� Provide mechanisms of
exploration/ navigation of
the information � � � �

5, 6, 7

� Provide an overview of
the information
(Overviews). � � � � �

5, 6

� Provide a mechanism
to process and search the
information presented
(Search)

 � � �
4, 5, 6, 7

P
re

se
n

ta
ti

o
n

� Provide the user with
the power to decide which
information he wants to
obtain depending on the
nature of the task he wants
to achieve (Task
dependence)

 � � �
4, 5, 6, 7

Table 6: Overview of existing approaches and GraSSML against the defined requirements

Three different evaluations are considered, aiming to assess the GraSSML

approach from three different perspectives and gather evidences to support the

hypothesis:

• Technical perspective: Aims at demonstrating the feasibility and

applicability of the GraSSML approach. The development and

implementation of a full functional proof-of-concept prototype

 100

demonstrates GraSSML for two different types of diagrams selected from

two different application domains presented as use cases: the hierarchical

class of diagram, more specifically Organisation charts and the process

class of diagram, more specifically UML activity diagrams

• Author’s perspective: Aims at demonstrating the viability and

applicability of the proposed approach. A third party has extended the

GraSSML system (GraSSML FCP) for a different class of diagrams. He

has developed the implementation of a different class of diagram “Charts”

(financial charts).

• User’s perspective: A user evaluation with three sighted users and two

blind users has been carried out with the aim of providing an insight on

whether GraSSML supports the perceivability, operability and

understandability principles of the WCAG 2.0 (see Chapter 3 section 3.1.2)

for diagrams and as a result to demonstrate the hypothesis.

These evaluations are presented in more details in the following chapters.

 101

Chapter 5

Evaluation: A Technical Perspective

This chapter describes the system architecture of the proof-of-concept tool

called the GraSSML prototype developed to demonstrate the feasibility and

applicability of the GraSSML approach described in the previous chapter.

The implementation is seen as a means to an end. The aim was not to produce a

production quality piece of software but more a fully functional proof-of-concept

prototype reflecting the conceptual architecture of GraSSML. So, the different

technologies used have been selected accordingly in an attempt to build a system

“working prototype” where experiments can be done, within the timescale of the

thesis.

The development and implementation of the full functional proof-of-concept

prototype demonstrating GraSSML for two different types of diagrams, selected from

two different application domains: Process diagrams (UML Activity Diagram) and

Hierarchical diagrams (Organizational Charts), is then presented as two different use

cases.

5.1 GraSSML Prototype Architecture

The GraSSML prototype architecture is illustrated in Figure 15. This is a

reification of the system architecture presented in Figure 14. The seven stages

involved in the application of the GraSSML approach have been described in Chapter

4 section 4.8.2.

GraSSML is an application of semantic web techniques to provide machine-

readable metadata for diagrams. Semantic web technologies have been used to

express the semantic intent behind a diagram required by the GraSSML approach. As

the research progressed, semantic web technologies ((Resource Description

Framework (RDF) / RDF Schema (RDFS) / Web Ontology Language (OWL))

became more prominent technologies and tool support improved. Therefore a general

approach starting from a data model (RDF graph) and associated ontologies was

developed.

 102

All the parts of the GraSSML conceptual architecture have been implemented in

the GraSSML prototype. Extensible Markup Language (XML), Extensible Stylesheet

Language Transformations (XSLT) and Scalable Vector Graphics (SVG) have all

been used to populate the GraSSML architecture.

The open source development platform Eclipse has been used as a Java

integrated development environment (IDE). The key transformations have been

implemented using an XSLT transformation engine (Saxon).

 103

Figure 15: GraSSML Prototype Architecture

 104

5.1.1 Stage 1: Ontology

Protégé (PROTEGE, 2009), the extensible platform-independent environment

for creating and editing ontologies and knowledge bases has been used to author this

ontology.

5.1.2 Stage 2: Data model

The RDF data model lies at the heart of the proposed GraSSML approach. Its

conformance to the OWL ontology is important for the GraSSML approach to

successfully process the RDF graph and make implicit information explicit. So the

relationship between the RDF graph and the OWL ontology it conforms to, is key to

the ability to enquire and reason about the information on which the diagram is based.

The RDF data model may be produced in several different ways (Figure 16).

The data model might be:

• created through an authoring tool (PROTEGE, 2009)

• extracted from SVG, XHTML or HTML5 documents using technology

such as GRDDL (W3C, 2007), Microformats (MICROFORMATS, 2005)

and RDFa (W3C, 2008a)

• scraped from Web pages using technology such as Piggy Bank (HUYNH et

al., 2005)

• extracted from domain specific markup languages (e.g. XMI (OMG, 2007)

for UML diagrams (see section 5.3), XBRL (XBRL, 2007) for Business

Reporting).

Figure 16: Possible sources of information of the RDF data model

 105

The Protégé OWL editor has been used to create individuals (RDF graphs)

validated against the appropriate ontology. Protégé offers two different options to

create the data model, either using only forms (Figure 17) or alternatively using the

graph widget to create the individuals (Figure 18) and then forms to enter the details

concerning these individuals.

Figure 17: Creation of the RDF Graph using forms in Protégé

Figure 18: Creation of the RDF Graph using Graph Widget in Protégé

 106

5.1.3 Stage 3: Notational conventions

A. XSLT Transformation

The rules which relate concepts expressed in the data model with the notations

needed to represent them in the diagram to be represented graphically are expressed

by an XSLT (Extensible Stylesheet Language Transformation) transformation.

The XSLT transformation generates ZineML from the information retrieved

from the RDF graph. The XSLT transformation embodies the notational conventions

which express analogies between the concepts defined in the ontology and the

notation used to represent them when the diagram is to be represented graphically.

B. ZineML

This section provides a description of the syntax of ZineML.

� ZineML Syntax

ZineML is an application of XML with ZineML as the root element. It has an

attribute “type” that defines the class of diagrams being represented.

Some of the features of the language are:

• By default, elements are drawn from left to right and connected at the

default positions.

• Each element has a well defined bounding box which can be named for

referencing.

• Objects have a default size but this is expanded to ensure text or other

shapes inside it remain inside the shape of the object.

• Each object has a set of defined connection points named by default n | s | e

| w | nw | ne | sw | se | c | left | right | top | bottom.

• An XML Schema for a specific class of ZineML diagrams ensures the

markup is constrained to that specific class’s requirements.

• Coordinates in ZineML have the X-direction from left to right and the Y-

direction from top to bottom. This is the same as SVG and PDF.

• The default unit is the point (72 points to an inch). Units can also be

defined in px, mm, cm and inches. The units to be used are defined as an

attribute “units” on the root element.

• Units can be defined as absolute or relative to the current position.

 107

� ZineML Basic Shapes

The set of shapes provided by ZineML is open-ended and user-defined. A set of

basic shapes, presented in the following table, is provided initially. Most elements can

have textual content. For example <box>some text</box>.

Each shape has a set of attributes. Some attributes apply only to specific shapes

and others to all shapes. The attributes presented in the table are specific to that shape

whereas the following sets of attributes apply to all shapes:

• id: unique id

• visibility: true | false

• color: fill color of the shape

• strokeColor: stroke color of the shape

• x, y, width, height

• halign, valign

• att-point: n | ne | e | se | s | sw | w | nw | c | left | right | top | bottom

The basic set of shapes is illustrated below.

ZineML element Shape (ILOG Symbol) Specific attributes

Box

labelColor

labelVisibility

Rbox

labelColor

labelVisibility

Line

x1, y1

x2, y2

arrow

from, to

headType= start | end |

both | none

circle

R

 108

Dcircle

colorIn

colorOut

strokeColorIn

strokeColorOut

ellipse

rx, ry

labelColor

labelVisibility

diamond

thickBar Direction

5.1.4 Stage 4: Graphical Representation

The commercial ILOG JViews Diagrammer tools (Figure 19) and SDK in Java

have been used to generate the graphical representation of diagrams in SVG from the

ZineML description at the structure level.

At this level due to the nature of the topology of process diagrams and different

possible layouts for hierarchical diagrams, it was quickly realized that a constraint

based algorithm was needed. At this point it was interesting to explore existing tools

and find out how they would integrate with the GraSSML approach. ILOG JViews

Diagrammer was found to be an excellent choice for a decent constraint based layout

algorithm. It has demonstrated its ability internationally and commercially. As ILOG

were interested in the project, it was possible to obtain a copy of this powerful tool for

this research project.

While generating diagrams using JViews Diagrammer different aspects have to

be understood. ILOG JViews Diagrammer provides several design tools (Figure 19)

to automate the production of diagrams. This research makes use of two of them: the

Symbol Editor and the Designer.

 109

Figure 19: Based on ILOG JViews Diagrammer Tool Chain

The JViews Diagrammer architecture (Figure 20) provides a clear separation

between the data and its presentation. The JViews Diagrammer data model is part of

the Styling and Data Mapping (SDM) engine, and forms the connection between the

data source and its views on display. SDM relies on the Framework SDK and the

Graph Layout SDK which are also part of JViews Diagrammer. The SDM engine is

one of the most important pieces of JViews Diagrammer as it controls the data-to-

graphics mapping.

The Framework SDK provides a comprehensive structured 2D graphics API

that includes graphic objects, interactors, views, transformations, graphs, sub graphs,

etc. The Graph Layout SDK provides a set of graph layout algorithms.

Figure 20: Architecture of JViews Diagrammer

 110

Symbols are the starting point of a diagram. A symbol is a collection of graphic

objects, parameters and conditions used to represent a concept. A CSS file is used to

store the information needed to represent a symbol (type and position of shapes, text,

images, etc.). The CSS file contains a description of the JavaBeans to use, their

settings and logic needed at the instantiation of the symbol. Symbols data is stored

and organized inside palette files structures which are stored in Java archive files

(.jar). A tool called the Symbol Editor (Figure 21) is used to create the symbols and

organize them within palettes. Different parameters could be assigned to the symbol;

these would be linked later on to specific values from a data model containing the

information to be represented.

The diagram generated is created from a data source which is expressed in our

case in the required XML format called “diagram format” defined by ILOG. This data

source is in fact an ILOG valid representation of the information represented in

ZineML (notational conventions). It is generated from ZineML using an XSLT

transformation.

In JViews Diagrammer, the Designer creates a display by binding the data

source elements to the symbols created with the Symbol Editor and saved in a palette.

Using the Designer it is possible to specify that a given type of data instance from the

data source (e.g. Diamond) be represented by a given symbol (e.g. Lozenge), and that

a particular value of a field defined in the data source to be bound to some symbol

parameters to define the aspects of the symbol.

The Designer defines the link between the symbols and the elements defined in

the data source; this mapping is described in a CSS format and allows the Designer to

create a display of the diagram. The output is a project file combining the CSS part

and the XML part (data source) and can be loaded into an application at run time.

It is also possible using the SDK of ILOG JViews Diagrammer to customize the

data model and refine the graphic representation of the data. Further Java classes

provided within the JViews Diagrammer Advanced Framework allows the generation

of the output SVG graphical representation of the diagram. This is what has been used

in order to generate a tailored SVG representation of the diagram. ILOG generates

SVG as an output format. Some modifications were needed to enrich and reorganize

the SVG output to provide a link to the semantic information.

ILOG JViews Diagrammer and ZineML have produced a flexible system where

significant changes in rendering can be divorced from the logical description of the

 111

diagram. ILOG proved to be an excellent choice in putting in place generating the

graphical representation of the information taking into account the information

collected at the structure level through ZineML. When using the GraSSML approach

having one set of symbols rather than another set of symbol is not important, what

matters is the definition of a set of symbols and connectors. The tools provided with

ILOG (symbol editor and the designer) are perfect candidates to implement such

aspects of the approach. ILOG JViews Diagrammer provides most of what the

GraSSML prototype requires although some features required by ZineML in the

generation of SVG could not be generated correctly but this did not affect the overall

correctness of the GraSSML approach. It was not possible within the scope of the

project to correct these.

Figure 21: Symbol Editor for UML Activity Diagram E xample

Of course, it would be possible to use any other system to replace ILOG (e.g.

VGJ, Dia, etc.). The main points involve the creation of the symbols, naming them,

identifying their anchor points and using a constraint based layout engine and renderer

to deal with the generation of the appropriate graphical representation.

 112

5.1.5 Stage 5: Verbalisation model (Semantics)

The verbalisation model templates defined in XSLT, generate textual

representations of the diagram semantics. In the GraSSML prototype, this is done in

two stages using an XML intermediate format.

Information is extracted from the RDF graph and transformed into the syntax of

an XML intermediate document. A second XSLT Transformation is applied to the

intermediate document using the information extracted from the RDF graph and the

research into appropriate presentation of diagrams non-visually (NCAM, 2008,

CORNELIS and KRIKHAAR, 2001, WEB, 2002, NBA, 2000, OU, 2009, NCAM,

2006).

This research suggests information should be provided in layers of increasing

detail. Initially the user is given an accessible XHTML overview targeted at a screen

reader (title, type of diagram, complexity, intent, etc.) ideally defined by a domain

expert using appropriate techniques and enriched with appropriate ornamentations

(e.g. “labelled”, “followed by”, “if”, etc.).

For information aimed at screen readers, special attention should be paid to wih

links, headings, paragraphs and page elements. The screen reader Jaws

(FREEDOMSCIENTIFIC., 2009) has been used to evaluate how it would read the

description generated. If needed, the presentation of the end result can also be styled

using CSS.

5.1.6 Stage 6: Verbalisation model (Structure)

Some diagrams need to be described in terms of their structure (e.g. modelling

languages such as UML).

The implemented verbalisation model templates generate the diagram structure

in XHTML based on the syntax of the corresponding ZineML representation.

5.1.7 Stage 7: Query systems

The Jena framework (JENA, 2009) for building Semantic Web applications

(written in Java) and the SPARQL query language for RDF (W3C, 2008b) have been

used to retrieve information from the RDF graph and store it in an XML document.

The graphical query system and the textual query system have been

implemented using Jena and SPARQL.

 113

For both query systems a SPARQL end point would have been the best option

for authors and users to define their own queries. Such an end point could allow the

automatic generation of queries from some formal specifications and so being more

author-friendly and user-friendly. But unfortunately due to the timescale of the thesis

it was not considered as essential to implement.

On the other hand to prove the feasibility of such a query system a “hand-

coded” version with a predefined sample of possible queries has been developed. The

hand-coding involved includes the SPARQL queries themselves as well as the Java or

Java/JavaScript interfaces to collect the information required by the selected query

(e.g. “who manages directly…?” query requires the “name of the person concerned by

the query” e.g. “Linda”) and the Java or Java/JavaScript interface displaying the result

of the query.

The “Textual Query System”, queries the RDF graph of the diagram using a

predefined user interface implemented in Java. The results are presented textually

within the same interface.

The Graphical query system allows the SVG diagram to be queried directly by

selecting an object on the diagram and selecting the query to apply to it from a

predefined graphical menu expressed in SVG. The results are presented graphically

(e.g. using highlighting or hiding). This graphical query system has been written in

Java and JavaScript. It currently runs as a Java component using Batik SVG in a Java

environment which offers JavaScript support. An important aspect at this level is the

Java which is called from JavaScript to provide results of queries selected on the SVG

document. The queries are executed by the Java program and returned to JavaScript

which displays them. The results are then used to modify the SVG document. The

query could also be run within a Web browser using techniques described in

(COOPER et al., 2005).

5.1.8 Graphical User Interface

The graphical User interface has been implemented with accessibility in mind.

Effort has been put in place to ensure keyboard and screen reader accessibility of the

different elements of the interface.

Java Access Bridge (JAVA, 2009) for windows has been used to ensure that

Assistive technologies such as screen readers are able to interact with the Java based

graphical interface objects under windows. Mnemonics as well as keyboard short cuts

 114

have been used to ensure accessible navigation around the interface. The interface has

been tested using Jaws to ensure the focus is not lost while navigating the interface.

5.2 Use Case: Hierarchical Diagram “Organisation

Charts”

Hierarchical diagrams, as exemplified by “Organisation charts” will be

explained in this section. A full description of one organisation chart will be followed

by more specific examples from the same domain. Finally some examples from the

same class of diagram but in a different domain will be presented.

5.2.1 Organisation Charts

Organisation charts are found in most corporate, government and academic

institution web sites. They show the formal structure of an organisation in terms of the

relationships between its departments and/or employees. They show the lines of

command and responsibilities within the organisation.

Many variants of the basic chart exist often due to the structure and the size of

the organisation chart. A good starting point for finding examples of different types of

organisation charts is (http://www.orgplus.com/).

Organisation charts consist of a set of connected shapes (e.g. circle, rectangle,

square, triangle, etc.) where each shape represents an employee or a department. The

names of the department, employee or position are often the textual information

provided with the shape but this varies depending on the company’s need. The lines

connecting the shapes represent direct “line relationships” between

superior/subordinate employees or departments. “Lateral relationships” between

different employees or departments working at the same hierarchical level, can be

shown. These charts can be represented as horizontal or vertical trees. They need to be

frequently revised and updated if the workforce is regularly changed or if the structure

of the institution changes. Sometimes to avoid frequent updating of an organisation

chart, only position titles are used rather than the names of employees. They become

very large and complex for large organisations and are then represented as a set of

smaller organisation charts representing individual departments. Alternatively nested

organisation charts can be represented. Different layout conventions can be found

within the same chart to accommodate the size of the chart (Figure 22). The layout

used is either level layout or tip-over layout or a combination of both.

 115

• Level layout: the nodes are organised into levels and these levels are

arranged either horizontally or vertically

• Tip-over layout: in order to balance the organisation chart, certain tip-over

alignments are applied to a selected set of nodes (e.g. leaf nodes, or root

nodes, etc.).

Figure 22: Organisation chart example

Different notational conventions can be found, use of different colour schemes,

different information displayed (e.g. photos, title, division, name, etc.), different

interactive facilities such as links or buttons to expand or hide a sub-tree or zoom

on/click on an employee to get access to more details about the person.

Organisation charts are mostly represented on the current web as vector images.

When designed with accessibility in mind other representations are provided to make

them accessible to screen readers. A text alternative describing the vector image (e.g.

Organisation chart of…) as well as a link to (“Organization chart Text only version”),

a detailed description of the organisation chart, are the most common non-visual

alternatives for this type of diagram found on the web. Either detailed natural

language descriptions or bullet lists describing the different levels of the organisation

chart can be found.

 116

5.2.2 Main Example

Figure 24 presents the organisation chart of VISIONS (VISIONS, 2009), an

incorporated non-profit social service and vision rehabilitation agency. This example

will be used to describe the organisation chart use case.

A. Stage 1: Ontology

An ontology has been created. As the ontology is too big to be shown, Figure 23

shows the class hierarchy of the extended technology built using Protégé.

Figure 23: Class hierarchy for Visions Organisation Chart Ontology

 117

Figure 24: VISIONS Organisation Chart

 118

B. Stage 2: Data model

The data model has been created using Protégé but could be accessed,

previewed and modified using the graph widget (Figure 25) of the GraSSML

prototype interface..

Figure 25: Creation of the Individuals Using Graph Widget

C. Stage 3: Notational conventions

The following conventions have been defined for the VISIONS example:

• Each employee is represented by a black box filled with white and a black

centred label representing the position and name of the employee.

• Each “manages” and “reportTo” relationship is represented by orthogonal

black lines connecting the employees of the relationships.

• The organisational chart is represented as a hierarchical diagram from top

to bottom.

Information is extracted from the RDF graph and transformed into the syntax of

an XML intermediate document. A second XSLT Transformation generating the

ZineML is then applied to the intermediate document using the information extracted

from the RDF graph and the appropriate notational conventions.

 119

The ZineML for the Visions Organisation Chart example is as follows (Figure

26):

<?xml version=“1.0” encoding=“utf-8”?>

<ZineML type=“Hierarchy” id=“Zine BEN FREDJ” direction=“Bottom” creationDate=“2009-09-03 “ author=“Zine

BEN FREDJ” title=“Visions Organisation Chart” visibility=“false” layoutMode=“LEVEL” >

<box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
id=“id_NancyMiller”>Executive Director Nancy D. Miller
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_NataliaYoung”>Controller Natalia S. Young</box>
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_BetsyFabricant”>Director Of Recreation And Residential Programs Betsy Fabricant
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_NancyAnnNowak”>Camp Director NancyAnn Nowak
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_DaniellePepin”>Assistant Camp Director Lions Danielle Pepin</box>
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_CarmenThorne”>Assistant Camp Director Carmen Thorne</box>
 </box>
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_AmandaLSlattery”>Director Of Social Services Amanda L. Slattery
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_DawnSuvino”>Director Of Information Services and Technical Training Dawn
 Suvino</box>
 </box>
 </box>
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_JeanLGeiger”>Development Director Jean L. Geiger</box>
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_DianeSWeiss”>Director Of Rehabilitation And Community Outreach Diane S. Weiss
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_KaiRSmith”>Assistant Director Of Business Development Kai R. Smith</box>
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_AnniePresley”>Assistant_Director Of Rehabilitation Services Annie Presley</box>
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_AntoinetteEmers”>Assistant Director of Community Outreach Antoinette Emers</box>
 </box>
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_CarlosCabrera”>Director of Facilities Management Carlos Cabrera
 <box color=“white” visibility=“true” strokeColor=“black” labelColor=“black” labelVisibility=“true”
 id=“id_SixfredoRodriguez”>Camp Caretaker Sixfredo Rodriguez</box>
 </box>
</box>
</ZineML>

Figure 26: ZineML code for the Visions Organisation Chart Example

Changing the direction of the Organisation chart only requires changing the

value of the attribute “direction” in the ZineML element. Figure 27 illustrates the

result for direction=”Right”.

 120

Figure 27: VISIONS Organisation Chart with drawing direction “Right”

D. Stage 4: Graphical representation

In the current prototype, the SVG code has been generated by the ILOG JViews

Diagrammer. The actual SVG code generated is not relevant to the use case. This is

rendered correctly but is large and complex.

E. Stage 5: Verbalisation model (Semantics)

A verbalisation model allowing the generation of a textual representation of the

semantics of the diagram has been implemented.

The definition of the template has been based on guidelines on how to describe

this kind of hierarchical diagrams. They recommend that these diagrams be described

using well structured prose or using nested lists reflecting the levels of the hierarchical

structure of the organization chart.

 121

The verbalisation model template shown in Figure 28 has been prepared to

describe the semantics of an organisation chart, parameterized items are shown in

italics. This follows guidelines described in (NCAM, 2008, CORNELIS and

KRIKHAAR, 2001, WEB, 2002, NBA, 2000, OU, 2009, NCAM, 2006). Two

different verbalisation models have been defined for this use case:

• Presented as a more “natural language” description using some “ornament

text” (version often found on the web as a text alternative to this kind of

diagram). This version might present some drawbacks in certain situation

due to the limitation of “Text Alternative”.

• Presented as a list reflecting the hierarchical structure of the data. This

method has proved effective by many researchers aiming at presenting

information non-visually (BENNETT, 2002, BROWN et al., 2004,

METATLA et al., 2008)

Semantics of the diagram
General description
The Organisation chart is entitled title
It was created on the creation date
The author is author information
The chart is organized into depth of the organization chart levels and is composed of number of employee
employee(s)
Detailed prose description
(Description of each individual level)
At level current level in the organization chart
There is (are) number of employee employee(s)
(Description of each employee at this level)
The position of employee named name of employee directly managed by position of employee named name of
employee
Detailed tabular description
Hierarchical data structure representing the organization chart

Figure 28: Verbalisation Model Template for Organisation Charts

The template (Figure 28) has been applied to the XML intermediate document

extracted from the RDF data model to generate the textual representation of the

semantic of the Visions organization chart.

The verbalisation model has been developed as an XSLT Transformation on the

XML intermediate document retrieved from the data model.

The result obtained is presented in four different sections in the web page:

1. Menu (Figure 29): a menu allowing the navigation around the different

presentations of the information

2. General description (Figure 29): this provides general information

concerning the organization chart diagram: title, creation date, name of the

author, an indication of the number of levels and the total number of

 122

employees composing the diagram. This last piece of information provides

an overview of the complexity of the diagram.

3. Detailed prose description (Figure 30): the detailed prose description

provides a complete human-like description of the diagram as it would be

described by a third party in audio.

4. Detailed list description (Figure 31): the detailed list description allows

navigation around the information by making use of nested lists.

Figure 29: "Menu" and “General description” sections

 123

Figure 30: "Detailed prose description" section

Figure 31: "Detailed list description" section

 124

F. Stage 6: Verbalisation model (Structure)

This stage respects the same template created at stage 5 (Verbalisation model

(Semantics)), but expresses the elements of the diagram in terms of objects rather than

concepts. The resulting sections are shown in (Figure 32, Figure 33 and Figure 34).

Figure 32: Textual representation of the structure (Menu and General description

sections)

 125

Figure 33: Textual representation of the structure (Detailed prose description section)

Figure 34: Textual representation of the structure (Detailed list description section)

 126

G. Stage 7: Query systems

To illustrate the approach in the context of the organisation chart use case

example (Figure 24), the following queries have been defined. Note these were

derived using anecdotal skill and are not the result of a formal study into how users

might want to query organisation chart diagrams.

• General Information Queries about the diagram

• What is it? Give me more information (Graphical query system).

• Who is the author of the diagram?

• When was it created?

• What is the title of the diagram?

• How many employees have the same first name?

• Queries about the employees and the relationships between them

• Who is this employee?

• Who manages directly this employee?

• Who manages indirectly this employee? (Recognition using the ontology)

• Who reports directly to this employee?

• Who reports indirectly to this employee? (Recognition using the ontology)

• How many managers have more than 5 staff?

The following code (Figure 35) shows the SPARQL query “Who Manages

directly…?” as it is used by the query system. First a model which reads the

appropriate information from the data model is defined. The defined query is executed

to find all the triples in the data model matching the query. The result is captured and

then output on a Java interface.

 String QueryPrefix = “PREFIX mydomain:<http://www.owl-ontologies.com/OrgChart_Ontology.owl#>“;
 String QueryString = QueryPrefix
 + “SELECT ?IDResult ?NameResult ?IDEmployee “
 + “WHERE { ?IDResult mydomain:manages ?IDEmployee . “
 + “?IDResult mydomain:name ?NameResult . “
 + “?IDEmployee mydomain:name \”“ + EmployeeName + “\” .}”;

Figure 35: SPARQL query "Who Manages directly...?"

As described in Chapter 4, having access to the data model and its ontology, it

is possible to derive additional information that the data model holds but does not

express explicitly. The ontology holds some inference rules which are used by a

reasoner to make inferences on the data model. This mechanism allows “recognition”

by making implicit information explicit (BROWN et al., 2004).

 127

This is illustrated with the SPARQL query “Who Manages Indirectly…?” In

this case an inference model is defined making use of the OWL reasoner to collect the

appropriate result from the data model as well as the ontology it conforms to. The

“manages” property is defined in the ontology as transitive, which allows the OWL

reasoner to infer “who directly manages” but also who indirectly manages a given

employee. Both results are collected and sent to the interface to be displayed.

� Textual query system

The following examples provide an overview of the text-based query system.

Figure 36 shows the result of the query “Who Manages Directly Danielle Pepin”

when indirect superiors are excluded. Figure 37 shows the result of the query “Who

Manage Indirectly Danielle Pepin” when indirect superiors are included.

Figure 36: Result of query “Who Manages Directly Danielle Pepin”

 128

Figure 37: Result of query “Who Manages Indirectly Danielle Pepin”

� Graphical smart diagram

The two following examples illustrate the process of querying the smart SVG

diagram directly. In Figure 38, the box representing the “Who Manages Directly

Danielle Pepin” has been selected, and a menu offering different possible queries

appears. In this example the query “Who Manages Directly” has been selected. The

result is highlighted in pale red and the element queried is highlighted in pale yellow.

In the example presented in Figure 39, the query “Who Manages Indirectly” has

been selected. The result is highlighted in similar ways to the previous example. This

example illustrates the advantage of the “recognition” mechanism offered by

GraSSML making implicit information explicit using the inference rules expressed in

the ontology linked to the data model representing the information behind the

diagram. The property “manages” being defined as transitive, it is possible for a

reasoner to deduce who manage indirectly a given employee. The “Who Manages

Indirectly” query result also includes the “Who Manages Directly” results.

 129

Figure 38: Result of query “Who Manages Directly Danielle Pepin”

Figure 39: Result of query “Who Manage Indirectly Danielle Pepin”

 130

5.2.3 More examples

This section explores other examples of the same class of diagrams in the same

domain. A full description of each will not be provided but specific aspects which

need to be tailored are described.

A. Different ontology and notational conventions

This section considers the Oxford Brookes Organisation Chart example

presented in Figure 40. In this case both the ontology and the notational conventions

are different. The ontology was extended to add the new concepts identified such as

Dean, Assistant Dean, Director of research, etc.

The notational conventions needed to be changed. This involved changing both

the stroke color of the symbol representing employee to white and changing the layout

algorithm to TIP_LEAVES_OVER.

 131

Figure 40: Oxford Brookes University Organisation Chart Example

132

B. Different notational conventions

Changing the direction of the Organisation chart (Figure 41) only requires

changing the value of the direction attribute in the ZineML element.

Figure 41: Oxford Brookes University Example (Direction=“Right”)

5.2.4 Hierarchical diagrams in different domains

Hierarchical diagrams are widely used in different domains: in mathematics

(graphs, probability tree diagrams (Figure 42)), in computing (Website structure

(Figure 43), Questions, Options and Criteria (QOC)), in biology (genetic family trees

(Figure 44)), etc. Hierarchical diagrams are often used in order to provide an overview

of a hierarchical structure. They all vary in term of information represented and

notational conventions. Different symbols are employed, labelled in different ways

and using different colours to represents different concepts. The links between the

133

different hierarchical levels can be undirected represented by lines or directed in one

or both directions represented by arrows.

Figure 42: Probability tree diagram example

Figure 43: Website structure example

134

Figure 44: Genetic family tree example

GraSSML could be applied to these types of diagrams as formal conventions

govern their representation and interpretation. But as mentioned in previous chapters

presenting the GraSSML approach, this would require a formal study of the different

domains and their notational conventions to create their appropriate ontology and

necessary transformations required at the different levels of GraSSML. No changes

are involved in term of the conceptual architecture of GraSSML, only the type of

information required at the different levels needs updating.

135

5.3 Use Case: Process Diagram “UML Activity

Diagram”

Process diagrams, as exemplified by “UML Activity Diagrams” will be

explained in this chapter. A full description of one UML Activity Diagram will be

given followed by more specific examples from the same domain. Finally some

examples from the same class of diagram but in a different domain will be presented.

5.3.1 UML Activity Diagram

Process diagrams represent stages in a process using different basic shapes

linked by arrows indicating process flow.

The UML activity diagram (UMLAD) (AMBLER, 2001) models high-level

business processes or the transitions between states of a class. Activity diagrams show

the flow of activities through the system. They are typically used for modelling a

single business process. Activity diagrams show a sequence of actions, processes,

activities.

5.3.2 Main Example

Figure 45 (AMBLER, 2001) presents the process of enrolling at the university

for the first time. This example will be used to describe and illustrate the application

of the GraSSML prototype to UML activity diagrams.

This activity diagram shows how someone new to the university would enrol for

the first time. In summary, if your forms are correctly filled out, then you can proceed

to enrol in the university. If your forms are not correct, then you need to obtain help,

perhaps from a registrar, to fill them out correctly. After you are successfully enrolled

in the university, you must attend the mandatory overview presentation, as well as

enrol in at least one seminar and pay in at least some of your tuition.

136

Figure 45: UML AD enrolling in the university for t he first time

137

A. Stage 1: Ontology

Figure 46, Figure 47 and Figure 48 show respectively the class hierarchy, object

properties and datatype properties for the UML Activity Diagram (UMLAD)

ontology.

Figure 46: Hierarchy of the Classes of the UMLAD Ontology

Figure 47: Object properties of the

UMLAD Ontology

Figure 48: Datatype properties of the

UMLAD Ontology

 138

B. Stage 2: Data model

The data model was created and modified using Protégé within the GraSSML

prototype.

C. Stage 3: Notational conventions

The following table (Table 7) describes the different symbols in the UML

activity diagrams.

Initial Activity. This shows the starting point or first activity of
the flow. It is denoted by a solid circle. It is the point at which
you begin reading the action sequence.
The filled circle represents the starting point of the activity
diagram.

Final Activity: The end of the Activity diagram is shown by a
bull's eye symbol, also called a final activity.
The filled circle with a border represents the ending point. A
circle surrounding a smaller solid circle.

The rounded rectangles represent processes or activities that
are performed.
The rounded rectangle represents an action

Decisions: if a decision is to be made, it is depicted by a
diamond, with the options written on either side of the arrows
emerging from the diamond, within box brackets (see the
[condition] symbol).
The diamond represents decision points. It could have many
possible outcomes depending on the condition.

 Transitions: The arrows model the flow order between the
various activities.
The arrows represent transitions between activities.

[Condition]

Conditions: The text on the arrows represent conditions that
must be fulfilled to proceed along the transition and are always
described using the format “[condition]”

Concurrent Activities: Some activities occur simultaneously or
in parallel. Two activities can occur in parallel when no direct
relationship exists between them and they must both occur
before a third activity can.
Such activities are called concurrent activities. For example,
listening to the lecturer and looking at the blackboard is a
parallel activity. This is represented by a horizontal split (thick
dark line) and the two concurrent activities next to each other,
and the horizontal line again to show the end of the parallel
activity.
The thick bars represent the start and end of potentially
parallel processes.

Title+ ID

The label at the top is composed of an appropriate title for the
diagram and an identifier.
It may also contain a date and the names of the authors.

Table 7: Symbols in the UML activity diagrams

 139

The following key aspects of the conventions are defined for this use case:

• There can be only one initial activity symbol on an activity diagram and

only one transition line connecting the initial activity to an action. The

location of the initial activity can be anywhere; but it is usual to place it at

the top left corner of the diagram.

• Every activity diagram should have at least one final activity symbol to

show where the action sequence ends. Several final activity symbols are

allowed indicating different terminations in the logic.

• Each decision point symbol will have multiple transition lines connecting it

to different actions. Each transition line involved in a decision point must

be labelled with a guard condition text which is always placed in brackets.

A guard condition explicitly says when to follow a transition line to the

next action. A second approach to modelling decisions is to have multiple

transition lines coming out of an action. As with decisions points, each

transition line involved must be labelled with a guard condition text.

• Activities which occur simultaneously or in parallel are called concurrent

activities. These are represented by a fork which is a thick solid bar with

one transition entering it and several leaving it and a join which is also a

thick solid bar but with several transitions entering it and only one leaving

it. For every start (fork) there is an end (join).

UML activity diagrams are usually documented with a brief description of the

activity and an indication of any action taken during a process. The ZineML elements

defined are presented in Table 8.

 140

Symbols Concept ZineML element Attributes (default value)

Initial Activity <circle>

id (no default value)
color (black)
visibility (true)
strokeColor (black)

Final Activity

<Dcircle>

id (no default value)
visibility (true)
colorIn (black)
colorOut (white)
strokeColorIn(black)
strokeColorOut(black)

Action <Rbox>

id (no default value)
color (white)
visibility (true)
strokeColor (black)
labelColor (black)
labelVisibility (true)

Decision <diamond>

id (no default value)
color (white)
visibility (true)
strokeColor (black)

Transition

<arrow>

id (no default value)
makesLoop (false)
from (no default value)
to (no default value)

[Condition]

Condition

Content of the
<arrow> element
if condition exist

Fork or Join <thickBar>

id (no default value)
color (black)
visibility (true)
strokeColor (black)

Table 8: ZineML elements for the UML activity diagrams

D. Stage 4: Graphical representation

In the current GraSSML prototype the SVG code has been generated by the

ILOG JViews Diagrammer.

 141

E. Stage 5: Verbalisation model (Semantics)

This verbalisation template has been designed taking into account expert advice

on how to describe this type of diagram textually and in audio. The following

template (Figure 49) extracted from (TAYLOR, 2008b) served as a basis to express

the template for process diagrams.

This flow chart shows the [process/flow/...]
[Optional list of symbols or explain symbols used]
[Describe overall process from start to end points]
[Describe simplest path first, if necessary define subsections and relation to each other, then details of sub-sections.]

Figure 49: Template extracted from (TAYLOR, 2008b)

The following template (Figure 50) has been applied to an XML intermediate

document extracted from the RDF data model to generate the textual representation of

the semantic of the UML Activity Diagram:

Semantic of the diagram
Link to the graphical representation of the diagram
General description
This UML Activity Diagram is entitled title
The author is Author information
The creation date is date
Description: Extra description provided by the author if exist
The activity diagram is composed of
List of objects composing the diagram (e.g. 6 Actions)
Detailed prose description
Description of the overall process represented in the diagram from start to end points
Detailed tabular description
Hierarchical data structure representing the UML activity diagram from start to end points

Figure 50: Verbalisation Model Template for UML Activity Diagrams

The verbalisation model has been developed as an XSLT Transformation on the

XML intermediate document retrieved from the data model.

The resulting textual representation of the semantics of the diagram is shown

below (Figure 51, Figure 52 and Figure 53).

 142

Figure 51: Textual representation of the semantics (General description section)

Figure 52: Textual representation of the semantics (Detailed prose description section)

 143

Figure 53: Textual representation of the semantics (Detailed list description section)

F. Stage 6: Verbalisation model (Structure)

The resulting textual representation of the structure of the diagram is shown

below (Figure 54, Figure 55 and Figure 56).

 144

Figure 54: Textual representation of the structure (General description section)

Figure 55: Textual representation of the structure (Detailed prose description section)

 145

Figure 56: Textual representation of the structure (Detailed list description section)

G. Stage 7: Query systems

� Textual query system

Figure 57 shows the selection of the query “Traverse Diagram From … To…”

from the view mode interface.

 146

Figure 57: Textual query system from View mode interface

Once the query is selected, the user is required to specify the “from” and “to”

options from the appropriate combo boxes (Figure 58). The choices presented in the

combo boxes are extracted from the data model. This technique is used to avoid

possible mistakes while entering the values. The user can select the check box “Step

by step” if he wants to follow the process of traversing the diagram step by step.

While traversing the graph, if different paths are possible, the user would be requested

to select one possible option via a dialogue box. In this example the option “Fill out

enrolment forms is Correct” has been selected (Figure 58) and the option “Enrol in

University” is Accepted has been selected (Figure 59). The final result is presented in

Figure 60. The whole process has been implemented using SPARQL to query the data

model containing the information of the diagram.

 147

Figure 58: Completing selection of an option

Figure 59: Selecting option for “Enrol in University”

 148

Figure 60: Result of query “Traverse Graph from ... To ...”

� Graphical Smart Diagrams

Two examples are illustrated. In the first example the query “Show me all

elements of type…” is selected. A dialogue box is displayed waiting for the type to be

selected from a list (Figure 61). The type “Activity” is selected. The results are shown

in Figure 62. In this example, access to the data model as well as access to its

corresponding ontology plays an important role. The ontology holds some inference

rules which are used by a reasoner to make inferences on the data model. This

mechanism allows “recognition” by making implicit information explicit (BROWN et

al., 2004). Using the Jena inference model and the OWL ontology reasoner, in this

specific query, since action, initial activity and final activity are defined as sub-classes

of activity, they are inferred as being activities. The result presented in Figure 62

reflects this result as the correct elements are highlighted.

 149

Figure 61: Selection of Query “Show me all elements of Type...” with option selected

“Activity”

Figure 62: Results of the query “show me all elements of type Activity”

 150

The second example is the same query described for the textual query system.

From the menu presented in Figure 63, the query “Show me path to final activity

from…” is selected with the option “Initial activity”. The path from the initial activity

to the final activity is traversed interactively using information provided by the user

when needed. The same decisions are selected as the previously presented example.

Figure 64 shows the results of the query executed.

Figure 63: Selection of Query “Show me Path to Final Activity From...” with option

selected “Initial Activity”

 151

Figure 64: Results of query “Show me Path to Final Activity From ...”

H. More examples

This section explores other examples of the same type of diagrams in the same

domain. A full description of each will not be provided but specific aspects which

need to be tailored are described. The UML Activity diagram ontology could be

extended to include other concepts such as sub-action, swimlanes, other resources,

etc. All of these features can be implemented however; there is much work ahead

before eventually reaching a full implementation compliant with the UML Standard.

� UMLAD with Different notational conventions

Figure 65 describes the bowling activity. From this Activity diagram, you can

get the information needed by an animation shown when someone made a strike.

In this case only the notational conventions at the structure level needs to be

changed. This involves changing the colour of the symbol representing an action from

white to green and changing the colour of symbol representing a decision point from

white to red.

 152

Figure 65: Activity Diagram example “bowling”

Because of time constraints, in the current GraSSML prototype the XSLT

transformations needed to apply the notational conventions are hand coded, so such

modifications require the manual modification of the appropriate information.

One could easily create a tool to automatically generate the transformations

from a set of defined requirements. Such a tool would allow the user to map the

concepts and relationships in the ontology to their corresponding notational

conventions. Such a tool would essentially be a table where the user would enter the

notational conventions expressed in ZineML for all the concepts and relationships.

� Sub-action extensions

In an activity diagram, activities can be nested. This involves some actions

referring to another activity diagram showing the internal structure of that action. Two

notational conventions are possible: represent the nested activity diagram inside the

action (Figure 66) or represent an external activity diagram inside the action (Figure

67).

This involves changes in both the semantic level and the structure level. At the

semantic level the ontology should reflect this kind of construct. This could be done

by defining an action as either simple or composed. If defined as composed the action

could itself refer to another activity diagram describing it.

 153

At the structure level, some modifications would be required depending on how

the nested activity diagram is to be represented, as nested or external representations.

For both cases, the notational conventions would need to be updated.

Figure 66: Nested activity diagram example

Figure 67: Example of sub-activities

� Importing Activity Diagrams from StarUML using XMI

This example illustrates the generation of a data model of a UML Activity

diagram created using a software modelling tool and exported in XMI to be integrated

within GraSSML.

The XML Metadata Interchange (XMI) is an Object Management Group

(OMG) standard for exchanging metadata information via Extensible Markup

Language (XML). Its most common use is as an interchange format for UML models.

 154

The StarUML project is an open source UML project to develop a fast, freely-

available software modelling tool and platform. With StarUML, it is possible to

import as well as export XMI 1.1. UML 1.3.

StarUML (Figure 68) was used to create a UML Activity diagram named

“Jukebox”. Once created, the diagram was exported in XMI. Based on the information

in the XMI exported, a data model conforming to the UMLAD ontology defined

within GraSSML has been generated.

The transformation uses a set of templates, matching the appropriate XMI tags

to create the necessary RDF resources for each of the diagram concepts. The

stylesheet concatenates the UMLAD ontology directly into the RDF and the instances

created conform to the previously created ontology. The generated OWL file can be

opened in Protégé successfully.

Figure 68: StarUML example “Jukebox”

 155

5.3.3 Process diagrams in different domains

Activity diagrams are very similar to Flowchart diagrams (Figure 69): system

flowcharts, program flowcharts, document flowcharts, logic flowcharts and process

flowcharts. They represent processes or algorithms using shapes linked by arrows

which, as for UML activity diagram, indicate flows. They are used in many different

fields (e.g. computing, business), varying in terms of notational conventions (different

shape in different colours) to analyse, design and document processes.

The three following figures present three different examples of flowcharts

(Figure 69, Figure 70 and Figure 71).

Figure 69: A simple flowchart example

Figure 70: Another example of a flowchart with different notational conventions

 156

Figure 71: Example of a flowchart for computing factorial N (N!)

As can be observed, different symbols are employed. Some are similar to those

explored in the UML Activity diagram use case and some depend on the type of

flowchart represented.

Start and end symbols can be represented by either circles or rounded rectangles

labelled “Start”, “End” or using a short sentence indicating either the start or end of

the process. The flow of control is represented as an arrow between the symbols and

decisions are also represented as diamond symbols. Different symbols such as

cylinders, parallelograms or rectangles with wavy base are also introduced.

GraSSML could be applied to such diagrams but it would require a formal study

of the different conventions to create a suitable ontology.

The main differences are:

• Ontology definition

• Notational conventions, nothing major

• The ZineML language will need to be extended with the new shapes

• Verbalisation model: Depending on the type of flow chart selected, the

implementation of the verbalisation template will need some modification

in the traversal of the graph defined by the data model. But the structure of

the verbalisation model itself does not have to be modified as it applies to

all process diagrams.

 157

5.4 Conclusion

The GraSSML prototype has demonstrated that the GraSSML conceptual

approach is sound.

This chapter has described how the GraSSML conceptual approach has been

concretely achieved using web technologies and tools available. It gave a concrete

view of one possible realisation of the approach but it would be relatively easy to

replace the current set of technologies with alternatives of similar functionality. It has

been shown how the approach could integrate with some existing powerful tools to

generate diagrams. ILOG is a good example of such tool.

This chapter has demonstrated the applicability of the GraSSML conceptual

architecture through the GraSSML prototype for:

• the hierarchical class of diagram, more specifically Organisation charts.

• the process class of diagram, more specifically UML activity diagrams.

It has also demonstrated what would be required to apply the approach to other

hierarchical diagrams or process diagrams in different application domains.

All the use cases presented in this chapter involved the creation of an ontology

or minor amendments of a pre-existing ontology which involved a certain amount of

time and effort. As mentioned in Chapter 4 section 4.4.1, the possible use of pre-

existing ontologies is an important aspect and one of the key benefit of using the

GraSSML approach.

The following chapter presents a different use case which takes advantage of

this benefit. The implementation of a different class of diagram “Charts” (financial

charts) have also been developed but by a third party. Indeed an external user of the

system has assessed the viability of the approach by extending the system for a

different class of diagrams.

 158

Chapter 6

Evaluation: An Author’s Perspective

Olivier BRAECKMAN, an MSc Student, independently, applied the GraSSML

approach to a different class of diagrams “charts”, in the finance application-domain

(“financial charts”). Examples of this class of diagram are Column charts, Bar charts,

Pie charts, Line charts and Scatter charts.

Having a computing and business background, he defined a research project

aimed at developing accessible financial reports.

The first step of his project involved some research on both financial reporting

practices and existing graphic accessibility approaches. It was decided at this stage to

introduce him to the GraSSML conceptual architecture by explaining to him the ideas

behind the approach and demonstrating the working prototype developed for process

and hierarchical diagrams.

Even though, Olivier BRAECKMAN’s research project aimed at exploring the

possible enhanced accessibility features GraSSML could offer in order to produce

accessible charts, this evaluation is intended to assess the viability and applicability of

the GraSSML approach rather than evaluating the accessibility of the charts obtained.

The principle aim of this evaluation was to assess the understanding, viability

and the applicability of the GraSSML approach to a different class of diagrams (in

this case “charts”) in a different domain (“financial reporting”) by a third party. It

assesses whether the methodology is sound and reliable enough and well enough

defined for somebody else to apply it with minimum intervention and it also shows

what is involved for somebody else applying it.

The application of the methodology has been tested by Olivier BRAECKMAN

during a double blind trial in which he, alone, performed the data gathering,

processing and recording as well as an initial analysis. After which the results and

data obtained were analysed, interpreted and evaluated for the purpose of the thesis.

After two initial sessions, of four hours each, explaining and demonstrating the

approach, Olivier was left to reflect on his project and the possible approaches which

could be applied to address them. Olivier decided to use GraSSML to create

accessible financial reports especially accessible charts. This chapter describes the

 159

evaluation that was carried out and the main points concerning the GraSSML

Financial Chart Project (GraSSML FCP) authoring process.

6.1 Introduction

6.1.1 The GraSSML FCP project

For a full description of the project, see (BRAECKMAN, 2008).

The initial analysis has been carried out by Olivier.

A. Financial reporting practices and standardisation

Financial reporting, which is a formal report of a business financial activity

provides essential information to assess the health of a business.

It is used by various users for different purposes such as investors who want to

make sure of the security of the investment, banks who want to insure loans could be

repaid, tax authorities to check if declarations are truthful, employees to check the

situation of the business they work for, etc. The information is presented in a

structured manner using four basic elements: Balance sheet, Income statement,

Statement of retained earnings and Statement of cash flows.

Over time each country has developed their own practices, making the

comparison of international companies a tricky task as it involved a certain amount of

guidelines and rules (Generally Accepted Accounting Principles (GAAP)) to make it

possible. It is in that context that the International Accounting Standards Board

(IASB) triggered the development of the International Financial Reporting Standards

(IFRS) which have been adopted by many countries (e.g. USA, EU, and Canada).

Such standards are seen as an opportunity for the development of generic tools

to generate and communicate financial information. It is in that perspective that since

1998 XBRL (eXtensible Business Reporting Language) (XBRL, 2007) which is an

open data standard for financial reporting, has been developed by an international

consortium. Its aim is to create financial reports which are computer-understandable

and in which the information can be accessed and used ‘intelligently’ (recognised,

selected, analysed, stored and exchanged).

Financial charts are an integral part of these reports and are an important aspect

of such reports. They are usually generated using one of the following mostly used

software: SPSS, Microsoft Excel or OpenCalc.

 160

These charts are seen as an important part of such reports for reasons that have

already been acknowledged in Chapter 2. Even though it is acknowledged that these

charts cannot contain all the information available in financial reports, they play an

important role in conveying important information in an understandable way,

allowing non specialised persons to gain a minimum access to the information.

These financial reports aim at being an important source of information for

various persons in various situations and for various reasons. Therefore the

information they present should be relevant, reliable, understandable and most

importantly accessible as it can be accessed by users having different needs and

preferences (e.g. language, device, situation, disability, etc.).

B. Accessibility issues

Currently financial reports are mostly presented using two formats: HTML and

PDF. Although these formats offer accessibility features, they can be accessible only

if authored with accessibility in mind. In financial reporting different accessibility

issues can be identified, but these are not proper to financial reporting but are linked

to the authoring of documents in different formats such as PDF or HTML, the

acknowledgment and respect of the available accessibility guidelines and the

considerations given to user’s preferences and needs (language, disability, devices

used, etc.). The accessibility of financial charts which is a type of diagram has been

presented and discussed at length in the Chapter 3.

6.1.2 Objectives of the GraSSML FCP project

The first stage of this project involved some research in the exploration and

analysis of different existing approaches which could improve the accessibility of

financial reports. Following this analysis, Olivier has decided to apply the GraSSML

approach to the identified problem that is the accessibility of well-defined financial

charts in financial reporting.

Olivier choose to apply GraSSML to financial reports in order to represent

“financial charts” in a way that it is possible to reason and enquire over the

information they carry thus making them more perceivable, operable and

understandable and, as a result, enhancing their accessibility.

The objective of the project was an attempt to improve the financial reporting

practises by creating automated ways of generating and processing the financial

information available in such reports respecting the existing standards. A “proof-of-

 161

concept” prototype applying the GraSSML conceptual architecture into the generation

of the most commonly used chart in financial reporting was achieved. The

methodology followed is presented in the following section.

Due to the complexity of the IFRS which requires a vast amount of knowledge

to make fully accessible financial reports, it was decided by Olivier to focus on three

commonly used types of charts: pie charts, columns chart and bar charts, all generated

based on a single sample balance sheet expressed in XBRL.

6.2 Evaluation methodology

Different steps were involved in the evaluation process for the applicability of

the GraSSML approach to financial charts. Regular meetings were set up with a view

to observing Olivier’s understanding and applicability of the GraSSML approach.

Before starting the evaluation, Olivier researched existing approaches into

making graphics accessible (iGraph, TeDUB, SVG Linearization and GraSSML, all

of these have been presented in Chapter 3 section 3.2.2).

It was important at this stage, for the success of the evaluation, to make sure that

Olivier had an understanding of the main ideas behind the GraSSML approach, its

applicability context and its limitations. To achieve this, an interview was carried out.

Olivier was asked about the different approaches researched and their differences with

GraSSML. It was noticed that some clarification was needed during the discussion.

From the interview it was judged that Olivier had gained an understanding of

the main ideas behind GraSSML. To illustrate his understanding of GraSSML, he

made a remark related on his understanding of XBRL: “The idea behind GraSSML is

similar to the one behind XBRL, instead of treating graphical information as a set of

pixels or geometric objects; GraSSML identifies each of the concepts represented and

their relationships to each other. This information is made available so that a

computer can make sense of it and perform different actions such as search,

inferences, etc. and then generate an appropriate representation of it in a certain

modality”.

Even though the main ideas were grasped by Olivier, he was still not very sure

about the roles of all the different levels of abstractions (semantic, structure and

presentation), especially the structure level. He was also worried about the

applicability of GraSSML to financial chart accessibility and the selection of

appropriate web technologies to implement these levels. But he was reassured and

 162

introduced to the next step of the evaluation which involved the applicability of

GraSSML in different stages: the GraSSML conceptual architecture (Figure 12) and

as well as the GraSSML system architecture (Figure 14).

A. “Initiation” Study of the field of interest

The first stage involved a study of the field the GraSSML approach applied to,

in this case financial reporting. Indeed, a certain amount of information is needed in

order for GraSSML to handle a new class of diagram in this specific field.

Having identified the class of diagram “charts”, this “initiation” phase aims at

collecting essential information to be used to formulate the four aspects needed to

apply GraSSML:

1. The Ontology

2. Notational conventions

3. Verbalisation model Templates

4. Query definitions

A certain amount of domain knowledge is essential, in particular for the choice

of minimal information needed (“primary resources”), choice of the appropriate

vocabulary, choice of the most commonly needed queries (not exhaustive just needed

to check the reliability of the ontology formulation).

B. Applying GraSSML

After the initiation stage, the process of applying the GraSSML approach to

financial reporting took place. This stage involved the different stages presented in

Chapter 4 which were presented to Olivier in the form of a document accompanied by

its graphical representation. It was mentioned at this stage that the basic model of

GraSSML does not depend on specific technologies and that this choice is open to any

modification. The seven stages that have already been described Chapter 5 are

summarized as follows:

• Stage 1: Ontology

• Stage 2: Data model

• Stage 3: Notational conventions

• Stage 4: Graphical representation

• Stage 5: Verbalisation model (Semantics)

• Stage 6: Verbalisation model (Structure)

• Stage 7: Query systems

 163

6.3 GraSSML FCP

6.3.1 Class of diagrams: “Charts”

This class of diagram mainly encodes quantitative information. Charts describe

data using symbols (bars, slices, lines, points, etc.) and text (symbols label, title, axis

labels, legends, etc.). Different types of charts exist, each providing a different way of

representing a set of data (chart: bar, pie, column, line, scatter chart). Depending on

the type of chart used according to the type of data to be represented, a certain amount

of meaningful information can be extracted as some kinds of charts are more useful

for presenting a given set of data than others. For the context of this project the three

most commonly used charts used in financial reporting were selected: bar (Figure 72),

column (Figure 73) and pie (Figure 74) charts.

There exist different variants of bar/column chart and pie chart such as clustered

column chart, stacked bar chart, exploded 3D pie chart, Pie of pie chart, etc. Many

other type of charts are part of this class of diagram such a line charts, scatter charts,

bubble charts (which are a type a scatter chart), etc.

A. Bar / Column charts

Bar charts and column charts are charts in which data values are represented

using bars lengths which are proportional to the represented value. They differ in

terms of notational conventions, in a bar chart, the bars are presented horizontally and

in a column chart the bars are presented vertically. They are often used to compare

relative quantities over a certain period of time or representing different categories.

Text and colour can be used to add information to them.

 164

Figure 72: Bar Chart Example

Figure 73: Column Chart Example

B. Pie charts

Pie charts are used to illustrate percentages represented as sectors. Each sector is

proportional to the quantity it represents out of the total quantity represented by the

 165

entire pie. Text can be used to label the sections, provide legends and a title. Different

colours can be used to differentiate the sections.

Figure 74: Pie Chart Example

6.3.2 The GraSSML FCP approach

Figure 75 shows the GraSSML FCP conceptual architecture derived from the

GraSSML conceptual architecture (Figure 12). At the structure level FGML

(Financial Graphics Markup Language), based on ZineML, has been introduced. This

XML based language is based on the ideas behind the ZineML language presented in

Chapter 4 aiming at capturing the structure behind the diagrams.

Figure 75: The GraSSML FCP Conceptual Architecture

 166

Accessible financial charts were generated based on information retrieved from

a created sample of a Balance sheet (Figure 76) expressed using the XBRL open

standard. The decision to use XBRL was based on its anticipated success in financial

reporting but the source of the information could have also been extracted from any

other properly defined language.

A study and an understanding of the XBRL report taxonomy were essential for

the creation of this balance sheet sample. The possibilities of using such a standard

within the GraSSML approach demonstrates the interoperability advantages of XBRL

as well as the flexibility GraSSML offers. From this study of XBRL a basic XBRL

taxonomy tailored to the needs of the project has been created using XML Schema.

The sample balance sheet instance document was then created using this taxonomy.

Figure 76: Balance Sheet Example Used

 167

Figure 77 shows the GraSSML FCP system architecture presenting the specific

web technologies selected by Olivier at the different stages of the application. Note

that stage 6 (section 6.2B) which relates the verbalisation model of the structure of

the diagram was not achieved during the evaluation.

Figure 77: The GraSSML FCP System Architecture

 168

6.3.3 Semantic Level

A. Stage 1: Ontology

This stage was a challenge for Olivier as it was the first time he had to create an

ontology. The paper entitled “Ontology Development 101: A Guide to Creating Your

First Ontology” (NOY and McGUINNESS, 2000) was given to Olivier for guidance.

He found it very useful in the process of creating his ontology for financial reporting.

The study of the XBRL taxonomy as well as the understanding of the paper provided

allowed Olivier to proceed with the creation of its ontology using the ontology editor

Protégé.

The concepts and properties of these concepts required for the creation of the

ontology were identified and organised appropriately into classes and subclasses

(Figure 80). Apart from the concepts expressed on the previously defined taxonomy

extra concepts (context, unit and creation) were added to the ontology.

Figure 78 shows the different datatype properties defined and Figure 79 the

different Object properties.

Figure 78: Datatype properties of

GraSSML FCP Ontology

Figure 79: Object properties of the

GraSSML FCP Ontology

 169

Figure 80: Hierarchy of the Classes of the GraSSML FCP Ontology

B. Stage 2: Data model

At this stage the whole financial report was encoded into the data model making

the semantics of the whole report, and not only the charts’ semantics, accessible. The

information contained in the financial report was extracted from its XBRL

representation using an XSLT transformation. The data model obtained respected the

defined ontology. A data model holding only the semantics of the chart to be

generated was created. It is a sub-data model of the data model. This sub-data model

was very important in the GraSSML approach. Its content is relied upon at the

structure and presentation level of the GraSSML conceptual architecture for the

generation of one of its possible representations.

The author is required to provide information on what concepts in which

context he wants to represent in a specified type of chart (pie chart, bar chart, etc.).

The author is assisted in the process as all the possible options extracted from the data

 170

model are presented to him, avoiding in this way any mistakes. Using the Jena API

and the SPARQL engine, all the appropriate information is retrieved form the data

model into the sub-data model which now represents the semantics of the information

to be contained in the selected type of chart.

6.3.4 Structure level

A. Financial Graphics Markup Language (FGML)

At this stage, Olivier found it hard to understand the role of this level, arguing

that it would be possible to generate the presentation level from the semantic level.

With the existence of this level clarified and understood, the creation of an

intermediate ZineML-like structure level language, FGML, was easy. In order to

define FGML, Olivier researched and analysed the core structure components of the

charts to be studied (column/bar chart and pie charts in this case). Using the column

chart as an example, the process of creating FGML was as follows:

First the column chart was decomposed and its basic elements identified. The

decomposition is illustrated in Figure 81.

• The axis: horizontal (1) and vertical (2)

• Label: axis can be labelled (3)

• Scale to the vertical axis (5)

• Segments or bars (4)

More complex elements such as segments composed of sub-segments are

possible in a stacked column chart for example. But even though FGML could be

extended to express these alternatives this was not treated in the project.

Figure 81: Column chart structure element

 171

B. Stage 3: Notational conventions

The notational conventions allow the generation of FGML from the sub-data

model. An XSLT Transformation for each type of chart has been used to apply these

notational conventions to the extracted sub-data model.

At this level Olivier started realizing the different options offered by the

GraSSML conceptual architecture. Having read about XML languages, he suggested

the possible integration of other existing structure languages such as GraphXML. This

aspect has been discussed in Chapter 4 section 4.5.

The following code sample (Figure 82) shows the core components express in

FGML of the example presented in Figure 83. This example shows the evolution of

the cash from 2002 till 2004. The attribute “segmentSeparator” indicates that each

segment will be separated by 10 pixels. The value of the segment width is

automatically calculated taking into account the total number of segments in the chart.

<chart type=“Column” title=“Evolution of the Cash”>
 <axisX segmentSeparator=“10” length=“350” />
 <axisY minVal=“0” maxVal=“30000” unit=“Euro” length=“200” />
 <segments>
 <segment id=“Cash_CompanyA2002-12-31” stroke=“black”>
 <name>Cash</name>
 <value>30000</value>
 </segment>
 <segment id=“Cash_CompanyA2003-12-31” stroke=“black”>
 <name>Cash</name>
 <value>29000</value>
 </segment>
 <segment id=“Cash_CompanyA2004-12-31” stroke=“black”>
 <name>Cash</name>
 <value>20000</value>
 </segment>
 </segments>
</chart>

Figure 82: FGML code sample

 172

Figure 83: FGML “Evolution of the Cash” example

6.3.5 Presentation level

It is at this level that Olivier realised the various possibilities offered by

GraSSML in terms of presentations. Three possible presentations were implemented:

the textual presentation of the semantics of the chart, a textual query system and an

interactive graphical presentation “smart diagram”. Before any of these presentations

could be generated, the data model of the financial report and the sub-data model of

the wanted chart were generated using the main graphical interface. All the

transformations leading to the appropriate presentation depend on the information

contained in these data models.

A. Stage 5: Verbalisation model (Semantics)

Verbalisation model templates allowing the generation of such description for

each type of chart were developed using an XSLT Transformation. The generic

template allowed the description of a specific chart using commonly used sentences to

be built dynamically. After researching the literature on to how to read, understand

and describe the selected charts, Olivier came up with a set of conventions on how to

describe them. Based on description guidelines from the Open University (TAYLOR,

 173

2008a) different steps were identified for the description of column charts and pie

charts.

A column chart description should involve the following steps:

• Identify the context of the information (title, scale, unit, years, etc.)

• Identify the number of segments in the graphic

• Identify each column and describe it as much as possible (label, value, etc.)

• Analyse and compare the segments (i.e. identify the highest and lowest

segments)

A pie chart description should involve the following steps:

• Read the title to find what the proportions are about

• Identify the number of slices in the pie

• Identify each segment and describe it as much as possible (slice name,

value, etc.)

• Analyse and compare the slices (i.e. identify the highest and lowest slices)

Having accessibility in mind the XHTML textual description generated took

into account accessibility guidelines on their authoring.

As well as a sequential textual description (Figure 85) of the information

contained in these charts, a tabular representation (Figure 86) of the information they

contain as been achieved. This involves the creation of a table containing the name

and value of each segment or slice. Appropriate accessibility guidelines have been

followed by Olivier.

Figure 84: Column Chart Generated using GraSSML FCP

 174

Figure 85: Textual presentation of Figure 84

Figure 86: Textual presentation of Figure 84 (Tabular version)

 175

B. Stage 7: Textual Query System

Having access to the ontology and the data model representing the financial

report, it was possible to develop a textual query system allowing the formulation of

general or specific queries. Dependent on the limits of the ontology reasoner and the

presence of the appropriate information a certain amount of queries could be

implemented. In an ideal situation the development of a SPARQL end point would

allow any user of the financial report to formulate their own queries specific to their

needs but due to time limits and for the purposes of the research project a limited set

of queries were implemented:

Queries aiming at providing general information about the chart:

• Find the Balance Sheet Creation Details

• Find the Balance Sheet Unit

• Find the different Balance Sheet contexts

An accessible Java graphical interface was implemented to access all available

queries. With the use of the AccessBridge, mnemonics and keyboard shortcut, the

graphical interface became accessible to most users using screen readers.

Other, more specific, queries were implemented. Some made use of the

advantages the ontology reasoner provided in making “inferences”.

The example presented in Figure 87 shows that “the Assets accounts for Current

Assets which itself accounts for the Cash concept”. A transitive “accountFor”

property has been defined in the data model. An ontology reasoner using this

transitive property definition would be able to infer that Current Assets accounts for

the Cash concept but also that Assets indirectly accounts for the Cash concept.

Figure 87: Balance Sheet Assets Subset Example

Olivier, not being a domain expert, found it quite difficult to select an initial set

of queries to implement. But once selected, he found the process of implementing

them quite easy.

 176

The implementation of the accessible graphical interface was a challenge for

him but with some research and with the help of a screen reader (Jaws evaluation

version) to check the result produced, he succeeded in creating it.

C. Stage 4 and 7: Graphical Query system “Smart Diagram”

The “Smart diagram” feature was the most exciting one for Olivier. Being able

to query the graphical presentation of the chart and gaining graphical or textual

feedback from it was for him an advanced feature that he had never encountered in

previous studies.

At this stage, due to the time limit involved, some propositions on how this

stage could be implemented have been presented to Olivier. However, he was still

asked to implement it in the way he thought would be appropriate.

The first step (Stage 4) involved the generation of the graphical representation

using SVG. Olivier was aware of the different possibilities for selecting the

information needed to generate an appropriate chart from the data model of the

financial report. The solution adopted might not be the best one, as it does not take

into account the best graphical representation for the selected data and the tasks

planned, but rather the user selected chart for this selected data. But at this stage the

aim was to demonstrate the idea and not to create “effective” charts (GURR, 1999) as

addressed by previously presented researched such as APT (MACKINLAY, 1986),

BOZ (CASNER, 1991) or AVE (GOLOVCHINSKY et al., 1995).

Using the implemented accessible graphical user interface, the generation of a

bar/ column chart or pie chart is described as follows by Olivier.

1. Choose a graphic type to generate

2. Choose the purpose of the graphic. This can either be

a. Trends of a given concept in the available contexts, or

b. Comparison of several concepts in a given context.

3. Generate the sub-data model

4. Apply the Notational conventions from sub data model to FGML

5. Apply the transformation from FGML to SVG

6. Load the graphic in the interface

The transformation from FGML to SVG was done using a generic XSLT

transformation taking into account the data present in the FGML document and the

nature of the chart to be generated (pie, column or bar chart).

 177

Once the graphical representation generated, different technologies such as

Java, JavaScript, Jena SPARQL and Batik are used to allow the different elements of

the graphical presentation expressed in SVG to be queried directly, interactively,

making reference to the semantic of the chart expressed in the data model.

The example illustrated in Figure 88 shows an information area, on the right of

the smart pie chart containing a list of predefined queries, which is generated once an

element is clicked on.

Depending on the selected element of the pie chart, a set of information

corresponding to this element is provided. This information results from basic queries

on the element selected such as its name, value, entity, and period. All this

information is automatically extracted from the data model. This provides an

overview of the information concerning the selected element.

The information behind the diagram being totally accessible it is possible to

perform various queries to provide information or make comparisons.

Figure 88: smart Pie chart “Net Current Assets for Company A in 2002” example

The query “Who is smaller” than the selected slice in the Pie chart of Figure 89,

returns two results. Both slices have been highlighted by changing their colour.

 178

Figure 89: Smart Pie Chart “Who is smaller...” query

The inference query discussed previously “Who accounts for…” could also be

run by selecting a slice and clicking on the appropriate query on the information area.

The result showing the concepts accounting for the concept selected (in this

case “Account Receivable”) is returned in an accessible messageBox Figure 90.

Figure 90: Smart Pie Chart “Who accounts for...”

6.4 Results

Olivier carried out different technical testing to evaluate the implementation

side of the project. A set of specific test cases carefully selected to evaluate the

different part of the prototype have been successfully carried out.

Olivier thought about carrying out a user evaluation but due to limited resources

and the time at hand he decided that it should be considered in future work.

The original aim of this evaluation was to evaluate the applicability of the

GraSSML conceptual approach to a different class of diagram in a different field by a

 179

third party and to demonstrate the ability GraSSML offers in inquiring and reasoning

about the information on which a diagram is based.

The evaluation was considered a success as the result obtained was as expected.

It was interesting to evaluate the degree of difficulty felt by Olivier during the

different stages of the application. Different feedbacks were collected from Olivier,

each concerning different aspects of the project. The interviews conducted at the

different stages included some of the following questions: Was it difficult? How long

did it take you to understand and apply GraSSML? Which part was the most difficult?

What would you have changed? Do you think it could be used? Do you think you

would be ok creating Graphs this way? How did you think about the instructions on

the application of the methodology? Do you have any further comment?

Olivier realised that financial expert knowledge was essential in the creation of

such an approach. Such knowledge would greatly influence the creation of the

ontology, the type of charts generated depending on the data to be represented and the

tasks intended for, the way the information is presented, and also the design of an

appropriate end-point allowing a potential user to express queries.

The complexity of the IFRS taxonomy was such that a decision has to be made

in simplifying it into a subset based on a simple example. At this level, expert

knowledge is essential.

At the beginning of the evaluation project Olivier expressed his apprehension on

the application of GraSSML. Some of the levels expressed in GraSSML were not

understood and some features expected such as the “smart diagrams” seemed too

complex to be achieved in the time at hand. It was difficult for Olivier to see “charts”

from a different perspective, thinking of its creation in a completely different way he

is used to.

The following suggestions have been made by Olivier:

� Implementation of new type of charts: line charts, scatter chart or different

possible variant such as 3d charts, split pies, etc.

� Involve financial experts: to allow a better understanding of the requirements

and/or needs of the potential system users.

� Ontology generation: In a future development a transformation from XBRL to

automatically generate the ontology could be considered.

� Built-in speech interface: accessibility could be improved by integrating a

“built-in” speech interface removing the need of a screen reader.

 180

� Graphical presentation improvement:

• To reduce the amount of visual processing required understanding and

analysing a financial chart.

• In terms of implementation of the graphical presentation some

improvement could be achieved in term of compatibility as the actual

solution provided was more to prove the feasibility of the approach rather

then taking into account such aspects.

� Smart diagram capabilities: Taking into account results on studies to reduce

the amount of visual processing required understanding and analysing a

financial chart, results of the “smart diagram” could be improved (e.g.

reordering resulting columns).

6.5 Conclusion

This evaluation provided information on the applicability of the GraSSML

conceptual architecture. The viability of the GraSSML approach was successfully

assessed by Olivier who extended the system for a different class of diagrams.

Even though Olivier started off the project with reservations, by the end he fully

understood the system enabling him to successfully apply GraSSML in the financial

reporting domain. The result obtained was quite impressive as Olivier experimented.

The number of propositions he made to improve the implemented prototype were

various, demonstrating a full understanding and enthusiasm for the approach. Olivier

set up the approach in another domain by following a set of stages presented to him

step by step. Even though Olivier applied the approach successfully an initiation to

the project was needed. The methodology should be reviewed to make it well defined

enough for someone to apply it with minimum intervention. The analysis of this

evaluation could be used to compile a formal document into the application of

GraSSML into another domain for a different class of diagram. Olivier expressed a

willingness to develop the system further especially at the presentation level where

different flexible and extensible presentation modalities are possible.

This project has also demonstrated the flexibility of the conceptual architecture

as argued in Chapter 4. The origin of the information populating the Ontology and the

data model (on which GraSSML approach relies) can be multiple. In this specific case

the information came from the “XBRL taxonomy” and the “XBRL document”

expressing the financial report.

 181

Chapter 7

Evaluation: A User’s Perspective

GraSSML aims to contribute to the representation of diagrams in a way that

could improve the ability to enquire and reason about the information on which the

diagram is based and thus making diagrams more perceivable, operable and

understandable and, as a result, suggesting enhanced accessibility benefits for such

diagrams.

The technical perspective evaluation and the author’s perspective evaluation

demonstrated the feasibility, viability and applicability of the GraSSML approach but

did not provide any insight on whether GraSSML supports the POU(R) principles of

the WCAG 2.0 (see Chapter 3 section 3.1.2) for diagrams.

This chapter describes an evaluation which was undertaken with two blind

participants. This study was conducted to assess the perceivability, operability and

understandability of diagrams presented using GraSSML. The Robust (R) principle of

the WCAG 2.0 was not addressed nor assessed in this research.

The main objective was to get an initial idea of the POU(R) support of

GraSSML used by blind users against a set of predefined tasks.

Of course, it is acknowledged that every blind user is different (Appendix B)

and has different preferences and ways of working, so evaluating the system with only

two blind users is not representative of the blind community. It is also important to

keep in mind that the primary aim of this research project does not lie in the

evaluation of the modalities employed at the presentation level. It was never intended

to create a new presentation level modality or to develop the best accessible interface

taking advantage of the proposed approach. It is recognized that other projects,

involving specialised teams of researchers and adapted material, have invested much

effort in generating accessible presentations (Chapter 3). The presentation level of

GraSSML relies on and refers to these existing established approaches (see Chapter 3

section 3.2) (e.g. verbalisation models guidelines, TeDUB approach to presenting

information, T3 or ViewPlus use of audio/tactile modalities, non speech sound, etc.).

 182

The evaluation here gives an insight into the kind of results and reactions to be

expected from the main benefits of the GraSSML approach which is the ability to

enquire and reason about the information on which the diagram is based.

This phase of the project was carefully prepared and much thought was given

into the methods to use. Aspects to be taken into account included the search for blind

users willing to carry out the evaluation, the approach to be evaluated, the type of

evaluation to use, the set up of the evaluation and the evaluation itself as well as the

analysis of its results. “Welcome to Just Ask: Integrating Accessibility throughout

design” by Shawn Henry (HENRY, 2007) was a useful resource that provided

awareness of different aspects of accessibility implementation and interaction with

disabled users.

Before the evaluation with blind participants, an informal “heuristic evaluation”

(NIELSEN and MOLICH, 1990) was carried out with three sighted users, one being

familiar with screen readers (Jaws in particular). The aim of the heuristic evaluation

was to identify obvious faults in the design of the overall interface used by blind or

sighted users but it would also provide an initial idea of the POU support of the

GraSSML system by sighted users against a set of predefined tasks.

As finding keen blind participants with the right profile is difficult, it was

important not to waste them. To maximize the chances of success, it was important to

remove any interface errors early on. The heuristic evaluation allowed the correction

of identified interface problems and the evaluation with blind participants was carried

out with the revised version of the prototype. Both evaluations and their respective

results are presented in the following sections.

7.1 Heuristic evaluation

Heuristic evaluation (BENYON et al., 2004) involves usability experts checking

the GraSSML prototype against a list of heuristics for good design.

The heuristics were used as a basis for the evaluation. These heuristics are the

WCAG 2.0 principles (perceivable, understandable and operable).

• Perceivable: Information and interface components must be perceivable.

Users must be able to perceive the information presented using at least one

of its senses.

• Operable: Interface components and navigation must be operable. Users

must be able to operate the interface.

 183

• Understandable: Information and the operation of the interface must be

understandable. Users must be able to understand the information presented

as well as the operations the system offers.

7.1.1 Participants

This evaluation involved three participants who provided feedback on the

degree to which the user interface was usable. All three participants were familiar

with graphical user interface design having studied these at university. Only one of

the participants was familiar with the use of screen readers.

7.1.2 Method

The evaluators were first informed about the aim of the prototype and its

intended use. The evaluators were asked to explore the GraSSML system, considering

each heuristic in turn in an effort to identify potential usability issues with respect to

the three principles presented earlier (perceivable, understandable and operable). They

were asked to bear in mind that the GraSSML system evaluated was only a prototype

aiming at evaluating the applicability of the proposed approach. It was important not

to go too deep into the evaluation for example concerning the aesthetics of the

interface.

The evaluation was conducted with use cases where the participants had to carry

out typical user tasks (section 7.2.4). The walkthrough involved the same tasks to be

used in the evaluation with the blind participants. These tasks could be achieved in

different ways using different modalities offered by GraSSML:

• Textual presentation: the verbalisation model of the structure and the

semantics of the diagram

• Graphical presentation: the SVG presentation

• Query systems: the textual query system and the graphical query system.

Even though the aim was to prepare for the evaluation with the blind

participants, the opportunity was taken to evaluate the whole interface, including the

parts the blind users would not access but would appreciate if working in a

collaborative environment with sighted users.

Carrying the heuristic evaluation this way would also provide an initial idea of

the perceivability, operability and understandability support of the GraSSML system

by sighted users against a set of predefined tasks.

 184

The evaluators were expected to evaluate the different modalities following the

tasks provided, first using the mouse and then using only the keyboard and screen

reader. Only the evaluator experienced with the screen reader Jaws was asked to

switch off her screen. Each evaluator worked independently, and was asked to report

any problems, identify the main principle it corresponded to and to make a

recommendation when possible.

7.1.3 Results

The process took between 3 and 4 hours for each participant taking into account

the interaction needed when they were unsure about some aspect of the prototype.

It was interesting to see how the participants could perform the tasks provided.

They were able to perceive, operate and understand the diagrams presented to

them using the GraSSML approach.

Some problems with the prototype interface were identified. It gave a good

overview of what might be incompatible with the intended blind users’ needs and

preferences.

The main problems reported concerned operability, in particular keyboard

accessibility where some parts of the interface were not keyboard accessible. The

screen reader user reported problems concerning “lost focus” which confused the

screen reader. Also when the focus was correct the logical order of the information

explored with the keyboard was not correct. Other problems reported were

consistency of layout and button text.

It was suggested that confirmation dialog boxes should be added in appropriate

locations to avoid the user going through a whole lot of stages by mistake or simply to

exit the system by mistake. The lack of accelerators was also mentioned.

The problems identified have been categorised in terms of perceivability,

operability and understandability principles.

The following problems and suggested solutions were obtained:

� Operability:

• Problem: The main interfaces for both types of diagrams were judged

confusing. Evaluators became lost and did not know what to do next. This

was primarily due to features of the interface related to the authoring

process not required by their set of tasks.

 185

Recommendation (implemented): creation of two views: “authoring

mode” and “view mode”.

• Problem: One interface presented problems with tabulation order when it

was used with a screen reader.

Recommendation (implemented): review the implementation of the

tabulation order.

• Problem: The user was unable to display previously searched information

to recall the results. He had to redo the search.

Recommendation (not implemented): provide a way to keep track of

previously explored information.

• Problem: The prototype only provides a solution to a limited set of

predefined queries.

Recommendation (not implemented): provide an end point to allow users

to create their own queries.

• Problem: After using the same interface for a while, the evaluators noticed

the lack of alternative ways to perform some functionality. An example

was the “who manages…” interface from the textual query system. For the

query to be executed, the interface requires the name of the employee to be

entered and the “search” button to be pressed. Once experienced with the

interface, the evaluator would have loved to simply press enter after

entering the name of the employee instead of having to tab to the “search”

button or click on it using the mouse. The same remark applied to other

parts of the prototype.

Recommendation (implemented): Provide multiple ways of doing things

in order to accommodate different level of user experience and habits

developed from other similar interfaces.

� Understandability:

• Problem: The evaluators expressed a concern that the amount of

information presented in the menu was confusing and that it was not

needed to access the information of the diagram. One evaluator suggested

the creation of two modes, an “authoring mode” presenting all the options

to create/amend/explore a diagram and a “view mode” to access the

information of the diagram.

 186

Recommendation (implemented): creation of two views: “authoring

mode” and “view mode”.

• Problem: The steps needed to “Traverse” a UML activity diagram were

not obvious and needed clarification. This was mainly due to the names

given to the buttons and the different ways the information was presented

(using a text editor view and then using a table view). The table view

confused the users and its presence was not understood.

Recommendation (implemented): change the labels of the buttons and

provide clear information about the role of the different views presented.

Alternatively, provide a help facility describing the role of each element of

the interface.

• Problem: Different names were used for buttons having the same function.

Their positions on different interfaces varied, confusing and triggering

wrong operations from the evaluator.

Recommendation (implemented): make sure all features have been used,

named and positioned consistently.

• Problem: The names given to the windows were unclear leading to users

not knowing which window he was looking at. This applied to the

evaluator using his keyboard, screen reader and with the screen switched

off to access the interface.

Recommendation (implemented): review the names given to the

windows.

• Problem: The prototype did not allow the user to undo errors made when

asking for some options He had to either exit the task and go though the

process again or wait until the end of the process and restart a new one.

The same problem appeared when the user unintentionally clicked on exit.

Recommendation (implemented): include a confirmation dialog box

before executing a task.

• Problem: Some messages were judged as not convivial and informative

enough, mainly the error messages.

Recommendation (implemented): review these messages and amend

them.

 187

7.1.4 Conclusion

This evaluation has demonstrated how the diagrams expressed in GraSSML

could be perceivable, operable and understandable for main stream users.

No problem concerning the perceivability of the information has been reported

by the participants. The problems reported concerned exclusively the operability and

understandability of the system. Most of them could be addressed, within the time

frame of the thesis, by following the recommendations.

This evaluation proved very useful in identifying usability problems concerning

the graphical interface of GraSSML. If not corrected, the identified problems would

have created problems during the blind user evaluation and wasted very precious time

with both blind participants. The version of the prototype used by the blind users

included the amendments resulting from the heuristic evaluation.

7.2 Blind users Evaluation

This section describes how an evaluation of the GraSSML prototype, carried out

with two blind users, allowed us to assess the perceivability, operability and

understandability of GraSSML.

This evaluation aims at demonstrating the hypothesis that “if information on

the structure and the semantics of formal diagrams were preserved, made ‘part

of the diagram’ by willing authors at the creation stage, these diagrams would

be more perceivable, operable and understandable and, as a result, suggest

enhanced accessibility benefits for such diagrams.”

 Will the user be able to perceive, operate and understand diagrams using the

GraSSML system? Will he be able to enquire and reason over the information on

which the presented diagram is based? How would the users react to the GraSSML

system? Will they consider using this kind of system to access diagrams? To find

answers at these questions, two methods have been used: a user evaluation and an

interview.

7.2.1 Participants

Both participants were male and aged between 25 and 30 and blind from birth.

They volunteered when a call for participants was given through different discussion

groups, forums, events, etc. The first participant graduated from Loughborough

University at the Department of Computer Science. The second participant held a

 188

GNVQ in Information Technology. Both were computer literate and taught their

knowledge to other people (visually impaired as well as sighted). Both considered

themselves as screen reader experts with Jaws (they also had experience with other

screen readers: windows eye, NVDA). Both were familiar with tactile diagrams and

diagrams described in audio or by a third party.

Both were familiar with the type of diagrams used in the experiment. They

recalled the frustration at not being able to access such diagrams and needing the

constant assistance of a sighted person in attempting to describe them. They

considered their knowledge of the domain UML Activity diagram as basic. In the

sense that they had learned about the concepts but because of the unavailability of

appropriate application compatible with screen readers, they did not go too deep into

the exploration or creation of these diagrams. Both participants expressed a very good

interest and excitement about the ideas behind the GraSSML project. They were both

used to carrying out similar kinds of evaluations for different research projects at

universities and companies.

7.2.2 Equipment

A laptop with a standard keyboard was used for the evaluation. The GraSSML

system was installed on the computer and accessed using the mouse, keyboard and

screen reader. The screen reader Jaws was installed. An audio and video recording

was made for the entire evaluation and later transcribed for analysis. The participants

were encouraged to describe verbally any problem they encountered.

7.2.3 Materials

Six diagrams, three from each class were selected for the evaluation. These

diagrams varied in size (number of objects) and in complexity (specific aspect such as

synchronisation, loops).

These variations were aimed at encouraging the participants to explore different

modalities in completing the tasks. The diagrams are shown in Figure 91 to Figure 96.

Diagram 1 (Figure 91) presents a simple activity diagram for attending a course

lecture. This diagram is composed of just 4 actions and a decision point.

The first activity is to get dressed before leaving for the lecture. A decision then

has to be made, depending on the time available before the lecture starts. If there is

sufficient time to catch the train, take the train; otherwise, take a cab to the University.

 189

The final activity is to actually attend the lecture, after which the activity diagram

terminates.

Figure 91: UMLAD for attending a course lecture (Diagram 1)

Diagram 2 (Figure 92) presents a simple activity diagram composed of 3

actions, a decision point and two Parallel Processes Bars. The loop formed from the

decision point back to the first action “Eat something good from the kitchen” as well

as the parallel process bars are the main distinctiveness of this example.

 190

Figure 92: UMLAD for eating when hungry (Diagram 2)

The final UML activity diagram example presented in diagram 3 (Figure 93) is

the UML activity diagram used previously (Chapter 5 section 5.3). Its complexity

compared to the previous diagrams is of interest as it presents more elements

including one decision point; two decisions modelled out of an action (“fill out

enrolment forms”), concurrent activities which include a set of sequential activities.

 191

Figure 93: UMLAD Enrolling in the university for th e first time (Diagram 3)

The three diagrams (Figure 94, Figure 95 and Figure 96) are organisation charts

which differ in terms of complexity, meaning the number of employees involved and

the number of levels they are organised into. All of these examples have already been

described in Chapter 5 section 5.2.

 192

Figure 94: My Simple Organisation Chart (Diagram 4)

 193

Figure 95: Oxford Brookes University Organisation Chart Example (Diagram 5)

 194

Figure 96: VISION Organisation Chart (Diagram 6)

 195

7.2.4 Tasks

The tasks were aimed at exploring different parts of the GraSSML prototype.

The tasks were deemed realistic, feasible with the prototype and explored the

prototype thoroughly. They were mainly aimed at finding out if the user could gain an

overview of the diagram and then answer some specific questions about the diagram

to assess the understanding of the information accessed. The questions were typical

for these types of diagram. The user was not expected to achieve all the tasks

perfectly at the first attempt using GraSSML. Learnability is considered an important

aspect to observe when performing the tasks. It was hoped the repetition would allow

assessment of the learnability of the user in using the prototype. Would the familiar

user develop different strategies in using the prototype?

For each diagram a task sheet was prepared. The following section presents the

different tasks for the different diagrams:

� Diagram 1: UML Activity Diagram “Getting dressed”

• How many actions? And what are these actions?

• What can you tell me about this diagram?

• What can you tell me about the complexity of this diagram?

• Is there any decision that needs to be taken? If yes how many? And what

are they? Answer the question using first the textual description and then

the query system.

� Diagram 2: UML Activity Diagram “eating when hungry ”

• What can you tell me about the complexity of this diagram compared to the

previous one?

• How many actions? And what are these actions?

• Is there any decision that needs to be taken? If yes how many? And what

are they?

• Can you describe what happens if “still hungry”? And also if “had

enough”?

� Diagram 3: UML Activity Diagram “Enrol at Universit y for the first time”

• What can you tell me about the complexity of this diagram?

• What is the sequence of actions happening before “Enrol at university”?

• Is there any decision which needs to be taken?

 196

• What action needs to be processed before the action “Make initial tuition

payment”

• Are there any actions executed in parallel? If yes, what are they?

� Diagram 4: Simple Organisation Chart

• How many employees are there?

• Who manages Sarah directly?

• Who manages Sarah indirectly?

• Who reports to Bob?

• Who reports to Peter directly?

• Who reports to Peter indirectly?

� Diagram 5: Vision Organisation Chart

• How complex it the diagram compared to the previous on? How many

levels and employee are there?

• Who manages Nancy D. Miller directly?

• Who manages Nancy D. Miller indirectly?

• Who reports to Annie Presley?

• Using the list description of the textual description of the semantic of the

diagram can you tell me who reports directly to Betsy Fabricant?

• Can you confirm your answer using the query system?

� Diagram 6: Oxford Brookes University

• How complex it the diagram compared to the previous on? How many

levels and employee are there?

• Who is the director?

• Who reports directly to the director?

• How many persons in total reports directly and indirectly to the director?

• Who manages Barry Martin directly? Who manages Barry Martin

indirectly? First using the list description, then using the prose description

and then using the query system.

• How many employees are there in level 2?

 197

7.2.5 Methods

The blind users were given different dates for the evaluation which took place in

isolation at the university. Both participants journey was planned with them and

arranged in a way for them to feel safe. They were greeted and collected directly from

the train station to the evaluation location. It was ensured that recording facilities were

available and functioning. There was no time limit for the evaluation. The users were

thanked for their time and work. They were then accompanied back to the train

station. They were also reimbursed for their travelling expenses.

During the whole process notes of observations were taken on paper and audio

as well as video recordings were made.

The whole evaluation process involved five different phases which are

presented in the following section.

A. Pre-experiment questionnaire

An initial questionnaire was answered by participants to gain an insight into

their visual ability, the duration of their visual impairment, their computer literacy,

their educational background, their experience with diagrams and the methods used to

access them, their knowledge of UML Activity diagrams and Organisational charts

and finally their experience of screen readers and preferences.

Additionally they were encouraged to share any previous experience with this

type of diagrams, specifying where, how, the type of modality and interaction

involved.

B. Presentation

First the participants were thanked for participating at this evaluation.

Before starting the evaluation the participants were told what the project was

about and the nature of the evaluation. They were then explained the procedure that

was going to be followed. They were also informed of their right to stop at any time,

to ask for a break, or to ask any questions if needed.

It was specified to the participants that they were not the ones being tested but

that they were testing the system, so they should not worry about making mistakes.

They were made aware that the evaluation sessions would be videoed and tape

recorded and that they were free to refuse.

 198

C. Training

After the introduction of the project and the description of the evaluation

process, each participant started with some training to familiarise themselves with the

interface of the prototype.

This involved familiarisation with the interface and exploration of the different

modalities offered by GraSSML. The first diagrams of both domain (Figure 91 and

Figure 94) were used here. At this stage of the evaluation, the participant was allowed

to ask questions related to the interface and the interpretation of the information.

Remarks and questions were recorded for later analysis.

D. The evaluation

The evaluation was to determine whether the blind users could extract useful

information and perform content-related tasks based on information, extracted from

the data model and ontology, and presented using GraSSML alternative presentations

through enquiry and reasoning.

Each participant was asked to complete a series of tasks on 6 different diagrams.

Task success as well as the process followed by the participants to achieve the task

was observed. The tasks were read out by the evaluator. The tasks were designed to

test the participant’s perception and understanding of the information presented by the

diagram. The answers were recorded and the user did not receive a feedback on the

correctness of the answer. When the participant seemed confused and frustrated, an

attempt to clarify the question was allowed by asking further questions or the decision

not to perform the particular tasks were allowed. A pause was taken between the two

type of diagrams or when the participant required a break.

The main aim was to judge if the tasks were achieved successfully or not. At

this stage of the project, the evaluation was more concerned with effectiveness than

efficiency of the prototype in term of correctness and success. This involves the

access of the appropriate information by the user as well as how well this information

was conveyed and how well the user made use of it by converting it into knowledge

for action.

The ease of use was also looked at, as this involved investigating aspect such as

ease of learning, understandability and subjective satisfaction. So as well as

observations made, measurements such as the number of correct answers were taken

during the evaluation.

 199

The participants were asked whenever possible to use “Think aloud protocols”

which involves thinking aloud as they perform the given tasks. This allowed getting

information on what they were thinking of and/or feeling while completing the tasks.

The users were encouraged to give comments on what they were doing, why they

were doing it and specify uncertainties they encounter. Notes were taken on when

users found problems or did something unexpected. Help was provided if users found

themselves stuck in the task and helped to move to the next task. It was considered

important to keep users talking to understand what was going through their mind

while doing the evaluation so questions such as “What do you want to do?”, “What

information is presented to you?”, “Is there a different way of doing it?”, “Why did

you choose this one?”, “What were you expecting?”, etc. So the evaluator (the author

of this thesis) sat with each blind user and engaged with them as they carried out the

tasks, providing some help if the user seems frustrated and lost.

The users were told that if they required information from the system that was

not yet implemented but that was possible to implement if time was given, then the

“Wizard of Oz” methodology (KELLEY, 1984) would be used. In such a case, the

evaluator would take the place of the system and provide an answer to the query.

E. Interview

A short structured interview involving the following questions was carried out

at the end of the evaluation. This stage of the evaluation is a more structured approach

to obtain feedback from the users at the end of the evaluation.

• Which representation do you think allowed you to gain an overview of the

information of the diagram?

• Did it give you an idea of the complexity of the diagram presented?

• What did you think of the amount of information presented?

• How easy was it to manage this information to complete the tasks?

• How easy was it for you to select the right representation to complete the

tasks?

• At any point did you think you were lost and/or confused? Why?

• What do you think of the proposed approach for accessing diagrams?

• Would you consider using this approach to access diagrams?

• Was there anything particularly good or bad about this approach?

• What would you suggest to improve the whole experience?

 200

7.2.6 Results and discussion

The results of the evaluation demonstrated that the participants were able to

perceive, operate and understand diagrams presented using GraSSML.

It was observed that the participants did not rely on a specific modality but on a

set of modalities. Indeed, once the participants felt confident in navigating between

the different modalities, they started using them to complement and validate each

other. However, users were observed to have a preference toward the textual

representation of the semantics to gain an overview of the diagram and to refer to the

diagram when wanting to verify information they needed.

One user enjoyed the different presentations of the same information by using

different formats. Being able to navigate from the textual description (that he

considered as a complete reassuring description of the diagram to have) and the more

specific textual query system was reassuring as he could find the wanted answer very

fast and check his answers if he was not sure.

Both users expressed their appreciation of the possibilities offered to extract

information from part of the diagram while maintaining access to the entire diagram

in different way. They felt secure having access to this external memory support.

Both users liked the fact that the verbalisation allowed them to get an overview

of the diagram whereas the query system allowed them to get a specific detail from

the information.

A strong preference for the textual query system was also expressed, both users

seemed to strongly appreciate this feature but they also made the remark that they

would rather love having a facility to allow them to decide on the queries formulation

to complement the basic queries available. For both users, having such search

facilities would be considered as ideal. Based on their past experience they compared

the query system as constantly having a third party answering your questions but

without being uncertain of the answer or tired of repeating the information.

Once familiar with the interface, navigation tools and format employed to

present the information, the users developed their own strategy at resolving the tasks

given. Both mentioned that they felt reassured of having constantly access to the

semantic textual representation of the diagram as they could refer to it, search it and

explore part of it when wanting to remember particular information about the

diagram.

 201

When asked about the quantity of information presented, both replied that they

felt confident in having access to the whole information and being able to choose how

to navigate it using different views. As well as the query system, the detailed list

description, once the way the representation works was understood, was a real success

in browsing the information quickly. However, for one user it took some time to

understand this representation as he made consecutive mistake when asked to use this

representation to provide the answer. He said that he was not used to nested lists. One

interesting point he made was the confusion in the organization chart presentation

between the name of the level provided by GraSSML and the way Jaws numbered the

levels in the nested list. For example, the root element is considered as level 1 in

GraSSML and identified a level 0 using the nested list navigation with Jaws.

One user felt it would be useful to have the visual equivalent of the spoken page

available at the same time so that a sighted co-worker could be called in for

clarification or work co-operatively with the blind worker. It was explained to him

that the graphical representation of the diagram could also be provided and

implementing a parallel view of it is possible.

In the case of complex diagrams, exploring the diagram non-visually can place

considerable strain on short term memory. It was suggested that the interface should

provide a way of marking points of interest in the information provided textually for

the user to be able to return to if needed. This would be of benefit to both sighted and

visually impaired users.

When exploring UML activity diagrams both users did not understand the role

of the “table representation” presenting the full information of elements when

traversing the diagram from one activity to another. Once explained, they strongly

advised on the creation of a help file providing this kind of information and other

information such as a summary of all the commands and their corresponding

shortcuts.

One of the users while using the textual query system to find out in diagram 1,

“who reports indirect” or “who manages indirect” found that the results were

confusing as the order provided did not reflect the chain of responsibility. The

evaluators in the heuristic evaluation provided this remarks but the solution used to

resolve the problem was apparently not enough (description of the details

relationships between the result employees).

 202

One point that both users found frustrating was the opening of some

functionalities which needs an XSLT transformation as the screen reader would read

the whole information present on the command prompt while the transformation was

running. Once used to it, they used “Ctrl” to make the screen reader stop reading it.

It was overwhelming how both blind users expressed a strong interest in the

developed prototype and required a copy to experiment further with it. One

participant asked of the possibilities offered to create diagrams using GraSSML. Once

explained he asked to make an attempt at using ZineML to create a simple activity

diagram. This was successfully achieved. It was explained that this aspect of the

project needed more work as using GraSSML for the creation of a more complex

diagram might cause some problems and that ZineML was not really aimed to be

authored this way. An attempt was made to demonstrate the use of protégé, but it was

noticed at this stage that the interface provided by protégé was completely

inaccessible for screen readers.

7.3 Conclusion

Both evaluations supported the initial hypothesis “if information on the

structure and the semantics of formal diagrams were preserved, made ‘part of

the diagram’ by willing authors at the creation stage, these diagrams would be

more perceivable, operable and understandable and, as a result, suggest

enhanced accessibility benefits for such diagrams”.

� GraSSML supports perceivability, operability and understandability

These evaluations demonstrated that GraSSML supports three of the principles

of the WCAG 2.0: perceivable, operable and understandable.

Both sighted and blind users were able to correctly answer all the questions.

They performed content-related tasks based on the information by enquiring and

reasoning about the information on which the diagram is based.

The information of the diagram presented through the verbalisation models and

the query system were found helpful for the enquiry of the diagrammatical content.

This demonstrated the perceivability, operability and understandability support

of GraSSML for both types of users against a set of predefined tasks.

 203

 All participants expressed a strong interest in the GraSSML system asking if it

would be available soon.

These evaluations support the ability for further studies, for greater work. Based

on suggestions made by the participants, it can also be concluded that the future of

GraSSML is very promising as all users were able to enquire diagrams.

� GraSSML suggest enhanced accessibility benefits

All participants were able to perceive, operate and understand the diagrams

GraSSML presented. Perceivability is the first step to accessibility upon which all

others are based, and without which accessibility cannot happen (WebAIM, 2009b).

With GraSSML, the information about the diagram is preserved “made part of

the diagram” in a way that improved the ability to enquire and reason about this

information making it perceivable, operable and understandable as demonstrated in

both evaluation.

It is acknowledged that both evaluations could not be used to make claims about

accessibility of the diagrams presented with the GraSSML prototype. The results

won’t be conclusive taking into account that the two blind users are not representative

of the whole blind population. A much larger set of users should be recruited to take

part in a more controlled evaluation of GraSSML; more thought needs to be put in

into the different way of testing the different aspects GraSSML has to offer, adapted

presentation modalities included.

� Implicit accessibility benefits results

The representation of the information at the presentation level in GraSSML can

be various and it was never the aim of GraSSML to create a new representation for

this level but more to draw inspiration from existing projects previously presented

which are specialized at that level.

It is in that context that for example, the best reliable verbalisation models that

are around have been sought. They have been demonstrated to work and the

implementation of the GraSSML approach demonstrated that they can be generated

automatically from the information captured at the creation of the diagram. So it has

been demonstrated that GraSSML can generate verbalisations that others have

subjected to more vigorous evaluation and they demonstrated to be working.

 204

� Proposed approach for future accessibility evaluations

Currently, there is no equivalent system to compare GraSSML against.

Projects reviewed in Chapter 3 such as TeDUB, T3 and ViewPlus have

researched, produced and obtained some very good results in terms of presentation of

diagram non-visually. It is acknowledged that if all of these approaches had clean

available and accessible formats of information, that they are using to generate their

elaborated presentations, then GraSSML will simply generate them and will fed them

back in their system that they have proved to work. Redoing the same evaluations as

they did but using the GraSSML approach to capture the information behind the

diagram could be done. This could bring some answers to the problems (Chapter 3)

they have identified at the creation level of the information to be used (automatic and

semi-automatic recovery of the information).

So a proposed approach for future evaluations of GraSSML would involve the

performance of a comparative study of the usability and accessibility of output

obtained using GraSSML against results obtained from a standard non GraSSML

diagram. It is suggested to use the TeDUB (HORSTMANN et al., 2004a) system

which has already produced good results when rendering standard diagrams in

accessible form for visually impaired user. In other words, to explore the extent to

which GraSSML can automatically generate the kinds of best-practice presentations

that other approaches generate manually or semi-automatically. The system would be

used to render GraSSML versions of a diagram and also render a standard graphical

version of the same diagram and compare the results for usability and accessibility

purposes. In this way it can establish whether the inclusion of the information behind

the diagram contributes to the usability and accessibility of the rendering of the

diagram.

 205

Chapter 8

Conclusion and Future Work

This thesis contributes to the representation of diagrams in a way that improves

the ability to enquire and reason about the information on which the diagram is based

and thus making diagrams more perceivable, operable and understandable and, as a

result, suggesting enhanced accessibility benefits for such diagrams.

This chapter summarizes the main findings of the research, presents the research

contributions made and discusses open issues and potential future work.

8.1 Main findings of the research

Diagrams offer powerful advantages (Chapter 2) in presenting, accessing and

processing information. They are created in order to communicate a specific intent

which needs to be accessed to discover the knowledge the diagram carries.

Different approaches aiming at making diagrams accessible have been reviewed

and analysed (Chapter 3). This analysis allowed the identification of a number of

issues current approaches present for the problem of diagrams accessibility on the

web. The absence of information “behind” the diagram which is lost at the creation

stage has been identified as the main problem. This lead to the identification of a set

of requirements (Chapter 3 section 3.5) a new approach should satisfy in order to

overcome them. This set of requirements would be incorporated into a system aimed

at creating perceivable, understandable and operable diagrams.

This research explored the concepts underlying a complete system based on

these requirements and defined a solution for some specific diagram classes (Chapter

2 section 2.4.5). The proposed approach is directed towards the acquisition of the

information behind carefully selected “formal diagrams”.

8.2 Contributions

The contributions of the thesis are summarized as follow:

• The GraSSML Conceptual Architecture

• A fully working prototype demonstrating the feasibility and applicability of

the approach for three different application domains

 206

• A methodology to apply the GraSSML conceptual architecture to a given

application domain

• Credibility of GraSSML: evidence of the benefits of GraSSML through

instances of evaluation of the working prototype with users.

8.2.1 The GraSSML Conceptual Architecture

The main contribution of this research is the introduction of a novel approach

called Graphical Structure Semantic Markup Languages (GraSSML). The hypothesis

underlying the GraSSML approach is that: “if information on the structure and the

semantics of formal diagrams were preserved, made ‘part of the diagram’ by willing

authors at the creation stage, these diagrams would be more perceivable, operable and

understandable and, as a result, suggest enhanced accessibility benefits for such

diagrams”

GraSSML makes the information on the structure and the semantics of the

diagrams ‘part of the diagram’. Graphical content is no longer thought of as ink on the

paper or pixels on the screen but as the intrinsic structure and semantics of the

information. The aim is to start with the information behind the diagram content

instead of its graphical (visual) presentation and then generate one of its possible

presentations without losing access to the initial meaning. Thus, rather than starting

from a filtered view (i.e. low level, low information image) and trying to infer the

information, the initial information is used as a starting point.

GraSSML contributes to the representation of diagrams in a way that improves

the ability to enquire and reason about the information on which the diagram is based

and thus making diagrams more perceivable, operable and understandable and, as a

result, suggesting enhanced accessibility benefits for such diagrams.

This framework relies on the presence of essential selected information

provided by domain experts and the willingness of authors to allow the capture and

access to such information while creating their diagrams upon which the approach

relies. This exposes a new way of thinking about the authoring of diagrams.

In order to evaluate the GraSSML approach, three different evaluations from

three different perspectives have been carried out: a technical perspective evaluation,

an author’s perspective evaluation and a user’s perspective evaluation. These are

discussed in section 8.2.2, section 8.2.3 and section 8.2.4 respectively.

 207

8.2.2 Fully working prototype

The viability of the approach and its applicability for three different application

domains has been demonstrated through a fully working prototype.

A fully functional implementation of the GraSSML conceptual architecture has

been implemented in a proof-of-concept tool (GraSSML prototype). Three use cases

have been considered, each for different classes of diagrams from different

application domains: Process diagram “UML Activity Diagram” (Chapter 5 section

5.3), Hierarchical diagram “Organisational Charts” (Chapter 5 section 5.2) and Charts

“Financial charts” (Chapter 6).

The system uses a combination of web technologies, including OWL, RDF,

XSLT, GRDDL, along with some new XML based languages (ZineML), in an

attempt to enable the authoring of diagrams based on their meaning (semantics) and

not their visual rendering/ presentation. This exposes a new way of thinking about the

authoring of diagrams and is an interesting use of the semantic web technologies to

assist this authoring process.

The GraSSML prototype has demonstrated that the GraSSML conceptual

architecture is sound.

8.2.3 Methodology to apply the GraSSML approach

A methodology to apply the GraSSML conceptual architecture to a ‘formal

diagram’ in a given application domain has been developed. An author’s perspective

evaluation provided information on the viability and applicability of the methodology

developed for the application of GraSSML conceptual architecture.

Olivier BRAECKMAN, an MSc student, independently, applied GraSSML to

financial reports in order to represent “financial charts” in a way that it is possible to

reason and enquire over the information they carry thus making them more

perceivable, operable and understandable and, as a result, enhancing their

accessibility. The application of the methodology has been tested by Olivier during a

double blind trial in which he, alone, performed the data gathering, processing and

recording as well as an initial analysis. After which the results and data obtained were

analysed, interpreted and evaluated. The viability and applicability of the GraSSML

approach was successfully assessed by Olivier who extended the system for a

different class of diagrams. The evaluation of the process is presented in the

evaluation chapter from an author’s perspective (Chapter 6).

 208

8.2.4 Credibility of GraSSML

The credibility of GraSSML has been demonstrated through the ability to reason

and enquire about the information behind the diagram. This ability to reason and

enquire has been demonstrated through the proof-of-concept prototype.

The three use cases implemented within the GraSSML prototype demonstrated

the feasibility, viability and applicability of the GraSSML approach but did not

provide any insight on whether GraSSML support the hypothesis.

An evaluation of the GraSSML prototype (Chapter 7), carried out with two

blind users and three sighted users against a set of predefined tasks, demonstrated the

perceivability, operability and understandability of diagrams using GraSSML and as a

result demonstrated the hypothesis.

Accessibility of diagrams is one possible application of the proposed approach.

Using GraSSML, the information content of the diagram (structure and semantics) is

captured at the creation stage. The availability of this information is a key aspect of

the approach. It allows GraSSML to provide, users and computers, the ability to

enquire and reason over this information. By making the meaning explicit then

GraSSML assist perceivability, operability, understandability and so, even though it is

not directly tested, there is like an inductive reason for having these three principles.

So by making diagrams perceivable, operable and understandable then by definition

GraSSML can make them more accessible. Due to time limitations and lack of

resources we cannot test this directly by carrying major user studies.

GraSSML could also be used in other type of systems different application

8.3 Open issues and future work

The work so far has demonstrated the feasibility and viability of the GraSSML

approach but further work is needed to fully elaborate the architecture and test its

general applicability. Work of value would be:

� Authoring process

• The GraSSML approach involves significant changes in the authoring

process and the awareness of graphical information for the author and the

user. It involves different phases which may be seen as expensive in time

and effort. The time spent in the creation of subject ontologies, the creation

of the notational conventions, the choice of useful queries, and the creation

of the verbalisation model templates may be all seen as requiring too much

 209

effort. Creating accessible diagrams is time consuming and any facilities to

shorten the timescale and reduce the effort would be advantageous. The

development of authoring tools to make the approach viable for a range of

authors is to be considered. It is believed many developments could be

carried out in order to make the process of using GraSSML a pleasant

experience, making a range of authors confident in its viability as a solution

to the problem of diagrams accessibility.

• This could be made in different ways considering the expertise and

experience of the author and the user. The authoring tools could allow the

creation of accessible diagrams by providing predefined libraries for data

models, predefined verbalisation templates and ZineML definitions for a

number of often used diagram classes for example. This could also involve

the inclusion of editing tool for the creation of specific ZineML markups,

templates, query systems, notational conventions. At this stage different

options could be envisaged. The ultimate goal being to assist authors in

learning and applying the GraSSML framework, developing specific

ontologies, various representation levels of graphics, etc.

• A certain amount of domain knowledge is essential, in particular for the

choice of minimal information needed (“primary resources”) and the choice

of the appropriate vocabulary. A method to measure what a good data

model is should also be considered and be created. This should allow

knowing if there is enough information to produce an effective alternative.

� Improve the GraSSML approach

• At the moment the GraSSML prototype includes a SPARQL endpoint,

though not visible to user. It essentially provides a user interface with

specific queries to illustrate the approach. Other future options include

• providing an explicit SPARQL endpoint to users,

• a richer set of queries for situations where user tasks are well-

defined,

• a natural language interface to either pre-defined queries or a “full”

SPARQL endpoint.

• Ontology at the structure level could be defined allowing the manipulation

of the structural information of the diagram (e.g. queries on the structure).

 210

• As not all users and situations are the same, adaptability is needed. Due to

the diversity of users’ ability and knowledge, diversity of devices and

taking into account new regulations and guidelines on accessibility, there is

a real need to make diagrams accessible and adaptable to the context in

which they are used. Adaptability has been considered and taken into

consideration during the design process of GraSSML but although it is

possible to implement it has not been done for time reasons. So further

development are needed at the presentation level, other modalities should

be explored by using successful existing technologies such as the T3

(RNCB, 2009) or the IVEO (VIEWPLUS, 2009) project to presenting the

information collected using multimodal modalities (e.g. Audio/Tactile)

• Possibilities of inserting an Explanation level which would justify the

different answers obtain from querying the data model based on the

information contained in the ontology should be considered. At the

structure level, ZineML allows you to know information about the diagram

that does not require you to know about the SVG. The same applies at the

semantic level which allows you to know about the semantic of the

diagram which does not require you to know about its ZineML

representation. If an explanation layer exists, it will be possible to explain

the reason behind the different answers from the query system. Not only

will GraSSML be able to provide you with answers but also with

explanations of why this information is provided.

� Applying GraSSML to other existing systems

• Investigating the application of GraSSML to other existing systems could

be the subject of further research. Indeed, GraSSML could be the starting

point for many projects currently aiming to access, present, explore and

adapt graphical information (DUKE, 2004, MARRIOTT et al., 2004).

• Other researchers would be the main beneficiaries being exposed to the

proposed GraSSML idea. In the long term all users including visually

impaired people do stand to benefit.

 211

� Open source development: Releasing the GraSSML framework on the Web

• A release of the GraSSML framework code to the general public on the

web would be of benefit to both the general public and the development

and evaluation of GraSSML itself.

� Evaluation of the benefit of the use of GraSSML

• The evaluations carried out have demonstrated the viability and the

worthiness of the GraSSML approach but it is acknowledged that the

results are not conclusive. Further evaluations and experiments are required

to reach a definitive conclusion on the benefits GraSSML offers in

accessing diagrammatic information for all (blind included). A much larger

set of users should be recruited to take part in a more controlled evaluation

of GraSSML; more thought needs to be put into the different way of testing

the different aspects GraSSML has to offer, adapted presentation

modalities included.

• Although GraSSML has been evaluated only with blind users accessing

diagrams, it is strongly assumed that the approach could benefit a wider

range of users in diverse situations as for example people who learn by

hearing information or people with learning disabilities that would benefit

from alternative presentations of graphical information, mobile users, etc.

GraSSML could also find a good use for education: e-learning. Indeed

diagrams which are known to have great importance in education could be

made to “reveal” information about them that might no be obvious for

some readers. Evaluations along these lines should also be considered.

� Possible Standardisation

This research could be the starting point to an accessibility guideline for vector

graphics similar to WAI. WAI Support for the approach would be needed and system

support (browsers and assistive technologies (e.g.: screen readers)) to allow users to

access the graphics at the logical or semantic view of the graphic would be needed

and could occur as a result.

8.4 Conclusion

The GraSSML approach contributes to the representation of diagrams in a way

that improves the ability to enquire and reason about the information on which the

diagram is based and thus making diagrams more perceivable, operable and

 212

understandable and, as a result, suggesting enhanced accessibility benefits for such

diagrams. The technical perspective evaluation and the author’s perspective

evaluation demonstrated the feasibility, viability and applicability of the GraSSML

approach. And finally the user’s perspective evaluation demonstrated the

perceivability, operability and understandability of diagrams using GraSSML and as a

result validated the hypothesis.

 213

References

ALDRICH, F. & SHEPPARD, L. (2000) 'Graphicacy': the fourth 'R'? Primary
Science Review, 64,8.

AMBLER, S. W. (2001) The Object Primer: The Application Developer's Guide to
Object-Orientation and the UML, Cambridge University Press, 0521785197.

ARNOLD, D. & DUCE, D. (1990) ISO Standards for Computer Graphics,
Butterworth-Heinemann Ltd, 0408040173.

AULT, H. K., DELOGE, J. W., LAPP, R. W., MORGAN, M. J. & BARNETT, J. R.
(2002) Evaluation of Long Descriptions of Statistical Graphics for Blind and
Low Vision Web Users. Computers Helping People with Special Needs.
Springer Berlin / Heidelberg.

BADROS, G. J., TIRTOWIDJOJO, J. J., MARRIOTT, K., MEYER, B., PORTNOY,
W. & BORNING, A. (2001) A constraint extension to scalable vector
graphics, Proceedings of the 10th international conference on World Wide
Web. Hong Kong.

BAILLIE, C., BURMEISTER, O. K. & HAMLYN-HARRIS, J. (2003) Web-based
teaching: communicating technical diagrams with the vision impaired,
Proceedings of the Multi-Modal Content: Flexible, Re-useable and Accessible:
the 2003 Australian Web Adaptability Initiative (OZeWAI) Conference.
Bundoora, Victoria, Australia.

BALCHIN, W. G. V. & COLEMAN, A. M. (1966) Graphicacy should be the fourth
ace in the pack. Cartographica: The International Journal for Geographic
Information and Geovisualization, 3,1, 23-28.

BENNETT, D. J. (2002) Effects of Navigation and Position on Task When Presenting
Diagrams to Blind People Using Sound Diagrammatic Representation and
Inference. Springer Berlin / Heidelberg.

BENTLEY, J. (1986) Programming pearls: little languages. Communications of the
ACM, 29,8, 711-721.

BENTLEY, J. L., JELINSKI, L. W. & KERNIGHAN, B. W. (1986) CHEM - A
Program for Typesetting Chemical Structure Diagrams. Computers and
Chemistry. Bell Labs.

BENTLEY, J. L. & KERNIGHAN, B. W. (1986) GRAP- A language for typesetting
graphs. Commun. ACM, 29,8, 782-792.

BENYON, D., TURNER, P. & TURNER, S. (2004) Designing Interactive Systems -
People, Activities, Contexts, Technologies,

 214

BERTIN, J. (1983) Semiology of graphics, Madison, University of Wisconsin Press,
0299090604.

BIGHAM, J. P., KAMINSKY, R. S., LADNER, R. E., DANIELSSON, O. M. &
HEMPTON, G. L. (2006a) WebInSight: making web images accessible,
Proceedings of the 8th international ACM SIGACCESS conference on
Computers and accessibility. Portland, Oregon, USA.

BIGHAM, J. P., MKAMINSKY, R. S., LADNER, R. E., DANIELSSON, O. M. &
HEMPTON, G. L. (2006b) WebInSight:: making web images accessible,
Proceedings of the Proceedings of the 8th international ACM SIGACCESS
conference on Computers and accessibility. Portland, Oregon, USA.

BLACKWELL, A. F. & ENGELHARDT, Y. (2002) A meta-taxonomy for diagram
research. IN OLIVIER, P., ANDERSON, M. & MEYER, B. (Eds.)
Diagrammatic Representation and Reasoning. London, Springer Verlag.

BLENKHORN, P. & EVANS, D. G. (1998) Using speech and touch to enable blind
people to access schematic diagrams. Journal Of Network and Computer
Applications, 21,1, 17-29.

BRAECKMAN, O. (2008) GraSSML financial charts project. MSc Dissertation,
School of Technology. Oxford, Oxford Brookes University.

BROWN, A., STEVENS, R. & PETTIFER, S. (2004) Issues in the non-visual
presentation of graph based diagrams. Proceedings of the Eighth International
Conference on Information Visualisation.

BULATOV, V. & GARDNER, J. (2004) Making Graphics Accessible, Proceedings
of the SVG Open 2004. Tokyo, Japan.

CARD, S. K., MACKINLAY, J. & SHNEIDERMAN, B. (1999) Using vision to
think. Readings in information visualization: using vision to think. Morgan
Kaufmann Publishers Inc.

CASNER, S. M. (1991) Task-analytic approach to the automated design of graphic
presentations. ACM Transactions on Graphics, 10,2, 111-151.

CLEVELAND, W. C. & MCGILL, R. (1984) Graphical Perception: Theory,
Experimentation, and Application to the Development of Graphical Methods
American Statistical Association, 79,387, 531-554.

COOPER, C., DUCE, D. A., LI, W., SAGAR, M., BLAIR, G., COULSON, G. &
GRACE, P. (2005) The Open Overlays Collaborative Workspace, Proceedings
of the SVG Open 2005.

CORNELIS, M. & KRIKHAAR, K. (2001) Guidelines for Describing Study
Literature, Available at http://projects.dedicon.nl/tedub/#Guidelines. Last
accessed 2008.

DOUG, S. & CULLER, M. (2009) A City Upon a Screen

 215

Exposing Civic Data Through Accessible Interactive Data Visualizations,
Proceedings of the SVG Open 2009. Mountain View, California.

DRC, D. R. C. (2004a) Formal Investigation report: web accessibility, Available at
http://www.drc-gb.org/publicationsandreports/report.asp. Last accessed 2009.

DRC, D. R. C. (2004b) The Web: Access and inclusion for disabled people, Available
at http://joeclark.org/dossiers/DRC-GB.html. Last accessed 2009.

DUCE, D. A., HERMAN, I. & HOPGOOD, F. (2002) Web 2D Graphics File
Formats. Computer Graphics Forum, 21,1, 43-64.

DUKE, D. J. (2004) Drawing Attention to Meaning. CyberPsychology & Behavior,
7,6, 673-682.

DUKE, D. J., BRODLIE, K. W., DUCE, D. A. & HERMAN, I. (2005) Do You See
What I Mean? IEEE Computer Graphics and Applications, 25,3, 6-9.

ELZER, S. & SCHWARTZ, E. (2007) A Browser Extension for Providing Visually
Impaired Users Access to the Content of Bar Charts on the Web. , Proceedings
of the 3rd WEBIST Conf. on Web Information Systems and Technologies.
Barcelona, Spain.

EUROPEAN, I. S. (2009) e-Inclusion, Available at
http://ec.europa.eu/information_society/activities/einclusion/index_en.htm.
Last accessed 2009.

FATHULLA, K. & BASDEN, A. (2007) What is a diagram?, Proceedings of the 11th
International Conference Information Visualization.

FERRAIOLO, J. (2008) How Ajax Changes the Game for SVG, Proceedings of the
SVG Open 2008. Nuremberg, Bavaria.

FERRES, L., VERKHOGLIAD, P., LINDGAARD, G., BOUCHER, L., CHRETIEN,
A. & LACHANCE, M. (2007) Improving accessibility to statistical graphs:
the iGraph-Lite system, Proceedings of the 9th international ACM
SIGACCESS conference on Computers and accessibility. Tempe, Arizona,
USA.

FERRES, L., VERKHOGLIAD, P., SUMEGI, L., BOUCHER, L., LACHANCE, M.
& LINDGAARD, G. (2008) A syntactic analysis of accessibility to a corpus of
statistical graphs, Proceedings of the 2008 international cross-disciplinary
conference on Web accessibility (W4A). Beijing, China.

FIELDING, R. T. (2000) Architectural Styles and the Design of Network-based
Software Architectures. Information and Computer Science. IRVINE, USA.,
UNIVERSITY OF CALIFORNIA.

FRANKLIN, K. M. & ROBERTS, J. C. (2004) A Path Based Model for Sonification,
Proceedings of the Information Visualisation, Eighth International
Conference.

 216

FREEDOMSCIENTIFIC. (2009) JAWS Screen Reading Software, Available at
http://www.freedomscientific.com/products/fs/jaws-product-page.asp. Last
accessed 2009.

GARDNER, J. & BULATOV, V. (2001) Smart Figures, SVG, and Accessible Web
Graphics, Proceedings of the CSUN International Conference on Technology
& Persons with Disabilities Conference. Los Angeles, CA.

GARDNER, J., RANGIN, H. B., BULATOV, V., KOWALLIK, H. & LUNDQUIST,
R. (1997) The Problem of Accessing Non-Textual Information On The Web,
Proceedings of the International World Wide Web Conference. Santa Clara,
CA.

GILLIES, J. & CAILLIAU, R. (2000) How the Web Was Born: The Story of the
World Wide Web, Oxford Paperbacks, 0192862073.

GILSON, O., SILVA, N., GRANT, P. W. & CHEN, M. (2008) From Web Data to
Visualization via Ontology Mapping, Proceedings of the Eurographics / IEEE
VGTC Symposium on Visualization (EuroVis '08). Eindhoven, Netherlands.

GOLOVCHINSKY, G., REICHENBERGER, K. & KAMPS, T. (1995) Subverting
Structure: Data-Driven Diagram Generation, Proceedings of the 6th
conference on Visualization '95.

GONCU, C. (2009) Generation of accessible diagrams by semantics preserving
adaptation. ACM SIGACCESS Accessibility and Computing,93, 49-74.

GURR, C. A. (1999) Effective Diagrammatic Communication: Syntactic, Semantic
and Pragmatic Issues. Journal of Visual Languages and Computing, 10 317-
342.

GWMICRO (2010) Window-Eyes, Available at http://www.gwmicro.com/Window-
Eyes/. Last accessed 2010.

HARPER, S., YESILADA, Y. & GOBLE, C. (2006) Proceedings of the 2006
international cross-disciplinary workshop on Web accessibility (W4A).
Edinburgh, U.K., ACM.

HELLER, M. A. (1989) Picture and pattern perception in the sighted and the blind:
the advantage of the late blind. Perception, 18,3, 379-389.

HENRY, S. L. (2007) Just ask: integrating accessibility throughout design, Lulu,
2007, 1430319526

HERMAN, I. & DARDAILLER, D. (2002) SVG Linearization and Accessibility
Computer Graphics Forum, 21,4, 777-786.

HORN, R. (2001) Visual language and converging technologies in the next 10--15
years (and beyond), Proceedings of the National Science Foundation
Conference on Converging Technologies (Nano-Bio-Info-Cogno) for
Improving Human Performance.

 217

HORSTMANN, M., LORENZ, M., WATKOWSKI, A., IOANNIDIS, G., HERZOG,
O., KING, A., EVANS, D. G., HAGEN, C., SCHLIEDER, C., BURN, A. M.,
KING, N., PETRIE, H., DIJKSTRA, S. & CROMBIE, D. (2004a) Automated
interpretation and accessible presentation of technical diagrams for blind
people. The New Review of Hypermedia and Multimedia, Special issue:
Accessible hypermedia and multimedia 10,2, 141-163.

HORSTMANN, M., MAGEN, C., KING, A., DIJKSTRA, S., CROMBIE, D.,
EVANS, G., IOANNIDIS, G., BLENKHORN, P., HERZOG, O. &
SCHLIEDER, C. (2004b) TEDUB: Automatic Interpretation and Presentation
of Technical Diagrams for Blind People, Proceedings of the Conference and
Workshop on Assistive Technologies for Vision and Hearing Impairment:
State of the Art and New Challenges. Granada, Spain.

HUYNH, D., MAZZOCCHI, S. & KARGER, D. (2005) Piggy Bank: Experience The
Semantic Web Within Your Web Browser, Proceedings of the International
Semantic Web Conference (ISWC).

JAVA (2009) Java Access Bridge, Available at
http://java.sun.com/javase/technologies/accessibility/accessbridge/index.jsp.
Last accessed 2009.

JENA (2009) JENA: A Semantic Web Framework for Java, Available at
http://jena.sourceforge.net/. Last accessed 2009.

KELLEY, J. F. (1984) An iterative design methodology for user-friendly natural
language office information applications. 2,1, 26-41.

KELLY, B., PHIPPS, L. & HOWELL, C. (2005a) Implementing a holistic approach
to e-learning accessibility, Proceedings of the ALT-C 2005 12th International
Conference Research. University of Manchester, England.

KELLY, B., SLOAN, D., PHIPPS, L., PETRIE, H. & HAMILTON, F. (2005b)
Forcing standardization or accommodating diversity?: a framework for
applying the WCAG in the real world, Proceedings of the 2005 International
Cross-Disciplinary Workshop on Web Accessibility (W4A). Chiba, Japan.

KENNEL, A. R. (1996) Audiograf: a diagram-reader for the blind, Proceedings of the
second annual ACM conference on Assistive technologies. Vancouver, British
Columbia, Canada.

KERNIGHAN, B. W. (1982) PIC - A Language for Typesetting Graphics. Software
Practice Experience, 12 1-21.

KERNIGHAN, B. W. (1991) PIC - A Graphics Language for Typesetting User
Manual. IN DOCUMENTS, I. U. P. S. M. S. (Ed.).

KULPA, Z. (1994) Diagrammatic representation and reasoning. Machine Graphics &
Vision, 3,1/2, 77-103.

 218

KURZE, M., PETRIE, H., MORLEY, S., DECONINCK, F. & STROTHOTTE, T.
(1995) New approaches for accessing different classes of graphics by blind
people, Proceedings of the 2nd TIDE Congress. Paris, Amsterdam.

LARKIN, J. H. & SIMON, H. A. (1987) Why a Diagram is (Sometimes) Worth Ten
Thousand Words Cognitive Science, 11 65-100.

LEWIS, R. (2006) The meaning of 'life': capturing intent from web authors,
Proceedings of the 2006 international cross-disciplinary workshop on Web
accessibility (W4A): Building the mobile web: rediscovering accessibility?
Edinburgh, U.K.

LOHSE, G. L., BIOLSI, K., WALKER, N. & RUETER, H. (1994) A classification of
visual representations. Communications of the ACM, 37,12, 36-49.

LOHSE, J., RUETER, H., BIOLSI, K. & WALKER, N. (1990) Classifying Visual
Knowledge Representations: A Foundation for Visualization Research,
Proceedings of the Visualization '90. San Francisco, CA, USA.

MACKINLAY, J. (1986) Automating the design of graphical presentations of
relational information. ACM Transactions on Graphics, 5,2, 110-141.

MARRIOTT, K., MEYER, B. & STUCKEY, P. (2004) Towards Flexible Graphical
Communication Using Adaptive Diagrams, Proceedings of the Advances in
Computer Science - ASIAN 2004.

MCCATHIENEVILE, C. & KOIVUNEN, M.-R. (2000) Accessibility Features of
SVG, Available at http://www.w3.org/TR/SVG-access/. Last accessed 2009.

METATLA, O., BRIAN-KINNS, N. & STOCKMAN, T. (2008) Constructing
relational diagrams in audio: the multiple perspective hierarchical approach,
Proceedings of the Proceedings of the 10th international ACM SIGACCESS
conference on Computers and accessibility. Halifax, Nova Scotia, Canada.

MICROFORMATS (2005) MICROFORMATS, Available at
http://microformats.org/. Last accessed 2009.

MIKOVEC, Z. & SLAVIK, P. (1999) System for Picture Interpretation for Blind,
Available at http://cs.felk.cvut.cz/~xmikovec/bis/interact99/index.html. Last
accessed 2009.

MILLER, G. (1956) The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information. Psychological Review, 63 81--97.

NARAYANAN, N. H. (1997) Diagrammatic communication: A taxonomic overview.
IN KOKINOV, B. (Ed.) Perspectives on Cognitive Science. Sofia: New
Bulgarian University Press.

NBA (2000) Excerpts from the NBA Tape Recording Manual, Third Edition,
Available at http://www.w3.org/2000/08/nba-manual/. Last accessed 2009.

 219

NCAM (2006) Beyond the Text project: Design Guidelines for Electronic
Publications, Multimedia and the Web, Available at
http://ncam.wgbh.org/publications/adm/. Last accessed 2009.

NCAM (2008) Effective Practices for Description of Science Content within Digital
Talking Books, Available at
http://ncam.wgbh.org/publications/stemdx/index.html. Last accessed 2009.

NCTD (2008) RNIB National Centre for Tactile Diagrams, Available at
http://www.nctd.org.uk/index.asp. Last accessed 2009.

NEUBERG, B. (2009) SVG in Internet Explorer and at Google, Available at
http://www.svgopen.org/2009/keynotes.shtml. Last accessed 2009.

NIELSEN, J. & MOLICH, R. (1990) Heuristic evaluation of user interfaces,
Proceedings of the Proceedings of the SIGCHI conference on Human factors
in computing systems: Empowering people. Seattle, Washington, United
States.

NOY, N. F. & MCGUINNESS, D. (2000) Ontology Development 101: A Guide to
creating your first Ontology. Stanford KSL Technical Report KSL-01-05.

NVDA (2010) NonVisual Desktop Access, Available at http://www.nvda-
project.org/. Last accessed 2010.

OMG (2007) XML Metadata Interchange (XMI), Available at
http://www.omg.org/technology/documents/formal/xmi.htm. Last accessed
2009.

OU, K. N. (2009) Guidelines for describing visual teaching material, Available at
http://kn.open.ac.uk/public/workspace.cfm?wpid=2709. Last accessed 2009.

PATIL, S. R. (2007) Accessible image file formats: the need and the way (position
paper), Proceedings of the Proceedings of the 2007 international cross-
disciplinary conference on Web accessibility (W4A). Banff, Canada.

PETRIE, H., HARRISON, C. & DEV, S. (2005) Describing images on the Web: a
survey of current practice and prospects for the future, Proceedings of the 3rd
International Conference on Universal Access in Human–Computer
Interaction International (HCII). Las Vegas, NEVADA.

PILGRIM, M. (2003) The Vanishing Image: XHTML 2 Migration Issues, Available
at http://www.xml.com/lpt/a/1240. Last accessed 2010.

PROTEGE (2009) Open source ontology editor and knowledge-base framework,
Available at http://protege.stanford.edu/. Last accessed 2009.

RESKINOFF, S., PASCOLINI, D., ETYA'ALE, D., KOCUR, I.,
PARARAJASEGARAM, R., POKHAREL, G. P. & MARIOTTI, S. P. (2004)
Global data on visual impairment in the year 2002. scielosp.

 220

RIBERA, T. M. (2008) Is the PDF format accessible? Information Technology and
Libraries 27,3, 25-43.

RNCB (2009) T3 Talking Tactile Technology, Available at http://www.rncb.ac.uk/t3/.
Last accessed 2009.

RNIB (2009) Royal National Institute of Blind People, Available at
http://www.rnib.org.uk/. Last accessed 2009.

ROTARD, M. & ERTL, T. (2004) Tactile Access to Scalable Vector Graphics for
People with Visual Impairment, Proceedings of the SVG Open 2004. Tokyo,
Japan.

ROTH, P. & PUN, T. (2003) Design and Evaluation of Multimodal System for the
Non-visual Exploration of Digital Pictures, Proceedings of the Interact 2003,
9th ICIP TC13 Int. Conf. on Human-Computer Interaction.

SAP (2005) Accessing Maps, Diagrams, and similar Object-Oriented Graphics, The
Science Access Project, Available at
http://dots.physics.orst.edu/graphics.html. Last accessed 2009.

SECTION508 (2009) Section 508 of the Rehabilitation Act, Available at
http://www.section508.gov/. Last accessed 2009.

SHNEIDERMAN, B. (1996) The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations, Proceedings of the 1996 IEEE Symposium on
Visual Languages.

SLOAN, D., HEATH, A., HAMILTON, F., KELLY, B., PETRIE, H. & PHIPPS, L.
(2006) Contextual web accessibility - maximizing the benefit of accessibility
guidelines, Proceedings of the 2006 international cross-disciplinary workshop
on Web accessibility (W4A): Building the mobile web: rediscovering
accessibility? Edinburgh, U.K.

STROBBE, C. (2008) SVG Accessibility Issues, Proceedings of the SVG Open 2008.
Nuremberg, Bavaria.

SUWA, M. & TVERSKY, B. (2002) External Representations Contribute to the
Dynamic Construction of Ideas. Diagrammatic Representation and Inference.
Springer Berlin / Heidelberg.

SWAN, H. (2009) Just how accessible is SVG?, Available at
http://www.iheni.com/just-how-accessible-is-svg/. Last accessed 2009.

T2RERC (2003) Proceedings from the Stakeholder Forum on Visual Impairment. IN
STROBEL, W. & BAUER, S. M. (Eds.).

TAKAGI, H. & TATSUYA, I. (2007) Technology Advances and Standardization
Toward Accessible Business Graphics. Universal Access in Human-Computer
Interaction. Applications and Services.

 221

TAKAHASHI, S., MATSUOKA, S., YONEZAWA, A. & KAMADA, T. (1991) A
general framework for Bi-directional translation between abstract and pictorial
data, Proceedings of the 4th annual ACM symposium on User interface
software and technology. Hilton Head, South Carolina, United States.

TAYLOR, M. (2008a) Describing graphs, charts and diagrams, Available at
http://kn.open.ac.uk/public/workspace.cfm?wpid=2752. Last accessed 2009.

TAYLOR, M. (2008b) Flow chart template, Available at
http://kn.open.ac.uk/public/workspace.cfm?wpid=3041. Last accessed 2009.

TENNISON, J. (2005) Managing Complex Document Generation through Pipelining,
Proceedings of the XTech

TUFTE, E. (1990) Envisioning Information, Graphics Press USA (1990),
0961392118.

TUFTE, E. (1997) Visual Explanations: Images and Quantities, Evidence and
Narrative Graphics Press USA (1997), 0961392126.

TUFTE, E. (2001) The Visual Display of Quantitative Information Graphics Press
USA; 2nd Ed edition (Jan 2001), 0961392142.

VIEWPLUS (2009) IVEO Tactile Touch and Audio Learning System, Available at
http://www.viewplus.com/products/touch-audio-learning/IVEO/. Last
accessed 2009.

VISHWANATH, K., VISWANATH, V., DRAKE, W. & LEE, Y. (2005)
OntoDiagram: automatic diagram generation for congenital heart defects in
pediatric cardiology. AMIA Symposium, 754-758.

VISIONS (2009) Services for the Blind and Visually Impaired, Available at
http://www.visionsvcb.org/org_chart_graphical.html. Last accessed 2009.

VISWANATH, V., TONG, T., DINAKARPANDIAN, D. & LEE, Y. (2006)
Ontological modeling of transformation in heart defect diagrams. 799–803.

VORBURGER, M. (1999) Altifier: Web Accessibility enhancement tool.

W3C (1999) Web Content Accessibility Guidelines 1.0, Available at
http://www.w3.org/TR/WAI-WEBCONTENT/#content-structure. Last
accessed 2009.

W3C (2000) Authoring Tool Accessibility Guidelines 1.0, Available at
http://www.w3.org/TR/ATAG10/. Last accessed 2009.

W3C (2001) Scalable Vector Graphics (SVG) 1.0 Specification, Available at
http://www.w3.org/Graphics/SVG/. Last accessed 2009.

W3C (2002) User Agent Accessibility Guidelines 1.0, Available at
http://www.w3.org/TR/UAAG10/. Last accessed 2009.

 222

W3C (2004a) Architecture of the World Wide Web, Volume One, Available at
http://www.w3.org/TR/2004/REC-webarch-20041215/. Last accessed 2009.

W3C (2004b) Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0, Available at http://www.w3.org/TR/CCPP-struct-vocab/.
Last accessed 2009.

W3C (2007) Gleaning Resource Descriptions from Dialects of Languages (GRDDL),
Available at http://www.w3.org/TR/grddl/. Last accessed 2009.

W3C (2008a) RDFa Primer: Bridging the Human and Data Webs, Available at
http://www.w3.org/TR/xhtml-rdfa-primer/. Last accessed 2009.

W3C (2008b) SPARQL Query Language for RDF, Available at
http://www.w3.org/TR/rdf-sparql-query/. Last accessed 2009.

W3C (2008c) Web Content Accessibility Guidelines 2.0, Available at
http://www.w3.org/TR/WCAG20/. Last accessed 2009.

W3C (2008d) The World Wide Web Consortium (W3C) Available at
http://www.w3.org/. Last accessed 2008.

W3C (2009) HTML5 A vocabulary and associated APIs for HTML and XHTML,
Available at http://dev.w3.org/html5/spec/Overview.html. Last accessed 2009.

W3C (2010) Accessible Rich Internet Applications (WAI-ARIA) 1.0, Available at
http://www.w3.org/TR/2010/WD-wai-aria-20100916/. Last accessed 2010.

WAI (2009) Web Accessibility Initiative (WAI), W3C, Available at
http://www.w3.org/WAI/. Last accessed 2009.

WALL, S. A. & BREWSTER, S. A. (2006) Tac-tiles: multimodal pie charts for
visually impaired users, Proceedings of the Proceedings of the 4th Nordic
conference on Human-computer interaction: changing roles. Oslo, Norway.

WEB, A. F. A. (2002) How to Create Descriptive Text for Graphs, Charts & other
Diagrams, Available at
http://www.cew.wisc.edu/accessibility/tutorials/descriptionTutorial.htm. Last
accessed 2009.

WEBAIM (2009a) Survey of Preferences of Screen Readers Users, Available at
http://webaim.org/projects/screenreadersurvey/. Last accessed 2010.

WEBAIM (2009b) Web Accessibility in Mind, Available at http://www.webaim.org/.
Last accessed 2009.

WEBAIM (2010) Creating Accessible Flash Content, Available at
http://webaim.org/techniques/flash/. Last accessed 2010.

WHITNEY, G. & KEITH, S. (2008) European Developments in the Design and
Implementation of Training for eInclusion Springer Berlin / Heidelberg.

 223

WILMOT, P. D. (1999) Graphicacy as a form of communication. South African
Geographical Journal, 2,81.

WILSON, B. (2008) MAMA - the "Metadata Analysis and Mining Application",
Available at http://dev.opera.com/articles/view/mama/. Last accessed 2009.

XBRL, I. C. (2007) eXtensible Business Reporting Language, Available at
http://www.xbrl.org. Last accessed 2009.

YU, W., REID, D. & BREWSTER, S. A. (2002) Web-based multimodal graphs for
visually impaired people, Proceedings of the 1st Cambridge Workshop on
Universal Access and Assistive Technology (CWUAAT). Cambridge,
England.

 224

Appendix A

Graphical Formats on the Web

There exist many file formats for diagrams. Those file formats can be grouped

into two main types: raster and vector. The choice on either depends on its

application; some file formats are more appropriate than others depending on the

context they are used in. A review of the most commonly found formats on the web is

presented as well as their main characteristics and their limitations. A review of Web

file formats is presented in (DUCE et al., 2002).

The following raster vs. vector format discussion is intentionally nuanced as to

the context intended in this thesis which focuses on diagrams.

Most of today’s web graphics are raster-based formats (e.g., GIF, PNG, and

JPEG). Despite its advantages for photographic images, this earliest support for web

graphics presents many limitations for other types of graphics such as diagrams.

Vector graphics formats (e.g. SVG, WebCGM and SWF), on the other hand, present

many advantages over raster-image formats for representing graphics such as

diagrams.

A.1 Raster formats

Raster-based formats consist of a rectangular array of pixels. The information

describing every individual pixel (colour, opacity, etc.) is needed to render the

graphic.

These are appropriate for some applications, for example sharing photographs

on the Web, but they also have several limitations for other applications such as

rendering diagrams. Their limitations can be summarized as follow:

� Time consumed in downloading large files: The size of raster formats is

important which can be an issue for their transmission. To tackle this issue,

two kinds of compression technique are implemented depending on the file

format: lossless and lossy. With lossless compression, the file size is reduced

without losing image quality whereas lossy compression involves losing

some information depending on the level of compression.

 225

� Resolution dependent: Raster graphics cannot be scaled without losing quality.

Indeed, being a resolution dependent format, expanding the size will impact

on image quality.

� Not searchable: Raster graphics are not searchable as they do not carry the

information represented in the image but only the information concerning the

pixels to be rendered. The information concerning the diagram represented is

lost. To overcome this limitation, optical character recognition (OCR)

techniques are used to recover the lost information, but these techniques

present some limitations themselves (i.e. noise might engender some

mistakes from the OCR).

Raster graphics are stored as a rectangular array of pixels. The structural

information of the diagram is lost. Although metadata can be injected in some raster

formats, this facility imposes some constraints as the content can only be described as

a separate part of the file format and not at the individual level of objects.

� Inability to style or make changes to the image: Very often the modification

of a diagram represented as a raster diagram requires recreating the diagram

as it is either not possible to alter it or simply too time consuming. This is

because it is not possible to edit individual part of such raster graphics as

separate objects. Raster graphics do not have the ability to be styled as no

separation between content and presentation is made.

� Inability to link or interact with the image: Although, linkage to some part of

the raster graphic is possible in HTML using image maps which allows areas

of the image to be hyperlinked to further information. It is difficult to link

and interact with raster graphics as only an access to a rendered version of

the information is available.

The three main raster formats used on the web are GIF, PNG and JPEG

A.1.1 Graphic Interchange format (GIF)

This format is suitable for simple computer graphics such as simple illustrations,

shapes, logos or diagrams with at most 256 colours. This format is widely supported

and used on the web as it can be efficient with low numbers of colours. It also offers

transparency, interlacing and limited animation support. It compresses the graphic

without losing data or distorting it.

 226

A.1.2 Portable Network Graphics (PNG)

PNG is a free open source lossless file format. Images saved as PNG are

efficiently compressed. PNG was developed as an alternative to GIF and provides full

colour (up to 24 bit in colour) support and is acceptable for real world images. PNG,

which is a recommendation of the W3C and an ISO/IEC Standard, was designed to be

used on the web.

PNG allows a short text description of the graphic to be embedded. This

information can be accessed by search engines.

A.1.3 Joint Photographic Experts Group (JPEG)

JPEG is the standard format for photographs on the web as it supports a full-

colour image (16.7 million colours) which produces good results for this type of

graphics. JPEG uses the lossy compression technique which offers a good

compression ratio but unlike GIF/PNG, JPEG loses some of its information when

compressed. Progressive JPEG allows a foggy view of the entire image while the rest

of the image is downloaded.

This format allows metadata to be embedded within the file header offering

additional information about the image.

A.2 Vector formats

Vector formats define a rich set of geometric objects, which can be rendered to

produce a visual image. The vector objects are interpreted and then drawn by

translating them into a raster image if displayed on a raster display. Vector formats

present many advantages over image format:

� Resolution independent: Vector formats are fully scalable without loss of

resolution. It is possible to alter the size without any impact on the quality as

the geometry adjusts to the changes. So, they can be zoomed and resized as

needed as they adapt well to arbitrary resolution.

� Smaller size: Files are “generally” smaller and the size is independent of

resolution, so they can often be downloaded and viewed faster than raster

images.

� Searchable: Additionally, the text of the graphics can be searched when text is

represented as text strings (it is sometimes not the case). Indeed, text is also a

vector object, so it can be accessed by search engines. The text can also be

 227

selected, copied, edited and modified. Additional information (metadata) can

be added and made an integral part of the structure of the graphics.

Both proprietary standards such as SWF and open standards such as WebCGM

and SVG can be found.

A.2.1 Computer Graphics Metafile (CGM or WebCGM)

CGM, an ISO/IEC standard, is a file format for 2D vector graphics, cell-array

graphics and text. CGM provides a rich set of primitives and attributes to describe

graphics.

It allows 2D graphics data interchange. CGM uses profiles to enable it to be

tailored to the needs of specific application areas in well-controlled ways.

WebCGM is a profile of CGM and an ISO/IEC standard for 2D vector graphics

on the Web. It was developed by CGM Open in collaboration with the W3C. It is a

recommendation of the W3C. WebCGM is mainly used in technical documents.

A set of metadata in WebCGM allows the support of hyper linking and links to

the application data, layering, document navigation, picture structuring, search and

query of the graphical information.

WebCGM does not have an XML representation and does not make use of CSS,

which can be seen as a limitation for some applications.

With WebCGM 2.0 which became a W3C Recommendation and an Oasis

Standard in 2007, metadata are XML-based using the XML Companion File (XCF)

and WebCGM objects can be accessed using the DOM.

A.2.2 Scalable Vector Graphics (SVG)

SVG is a vector graphic open standard developed by the W3C and heavily

influenced by the PostScript/PDF rendering model and primitive/attributes

(FERRAIOLO, 2008).

The emergence of this W3C Recommendation (W3C, 2001) has changed the

way 2D graphics are created on the web. SVG started off as a popular web format for

desktop computers and aimed at being a major vector graphics format for the web. It

has been widely supported by mobiles, authoring tools and browsers. Adobe, which

provided the Adobe SVG viewer (ASV) for IE, terminated its development and

support. The lack of support of SVG in IE (SWAN, 2009) has been seen as the

biggest hold-up in its popularity. However, this has been addressed by Google

 228

(NEUBERG, 2009) who provide SVG support in all browsers (e.g. Safari, Opera,

Firefox, IE) using either the native SVG support or “SVG Web” which is an advanced

JavaScript library that provides support for SVG.

Unlike WebCGM, SVG is an XML language and makes use of the CSS

mechanism supported on the Web.

A. Advantages and Accessibility features of SVG

SVG has introduced some accessibility features (MCCATHIENEVILE and

KOIVUNEN, 2000) that raster formats do not offer (STROBBE, 2008). When using

SVG, information about the graphic is available to the browser in terms of the objects

it is composed of.

SVG presents many advantages and accessibility features, some originating

from the vector graphic model, some inherited because SVG is an Extensible Markup

Language (XML) based language and some are part of the design of SVG itself.

� Origination from the vector graphic model

• SVG inherits the advantages previously mentioned, such as resolution

independence, small file size, scalable, zoomable, plain text format and

maintainable.

• The structural information of the diagram could be an integral part of the

graphic.

• Created graphical objects can be reused, making the structure of

complex graphics easier to manage and understand.

� Being an XML based language.

• SVG is encoded as plain text offering new possibilities for assistive

technology (text contained in text elements are kept intact as such).

• SVG offers all the advantages of XML: interoperability, Unicode

support, wide tool support, textual nature of XML (compression).

• SVG can be used as an XML namespace, so can be used in conjunction

with other XML languages such as MathML, SMILE or XHTML for

example. It also integrates well with other web technologies (DOM,

CSS, XSLT, XPath, etc.). This allows appropriate language markups to

be used suitably by authors, increasing accessibility.

• Content can be adapted to the characteristics of different clients through

the use of styling and scripting. CSS2 and XSLT can be used to modify

 229

the presentation of an SVG graphic which is important for accessibility.

The rendering can be adapted to the needs of the user. This can be done

in different ways: style definition, using classes and grouping or by

providing style definitions for different media. CSS2 and XSLT allow

the user to modify the presentation of the graphics (e.g. colour,

visibility). SVG supports dynamic interactivity having Scripting

potential, (EcmaScript).

• The information can be enriched by metadata which help provide more

information about the graphic and can help the search for information.

• Interaction becomes possible as an access to the DOM allows assistive

technology to access the underlying structure of the graphic.

� Part of the SVG design itself

• Alternative equivalent descriptions at the individual graphical element

level allow authors to include a textual description and a title for each

logical component of graphic in order to convey its role in the graphic.

• It is possible to provide alternatives based on whether a feature is

supported by using the ‘switch’ element and its defined attributes

(requiredFeatures or systemLanguage).

• SVG provides a number of style features beyond the properties defined

in CSS. These provide the ability for author to create content that can be

adapted to users needs; examples of such features include masking,

filters, etc.

B. Limitations of SVG

Nevertheless, a number of limitations remain, as SVG graphics are not

automatically accessible.

• Structure might not be suitably authored: Even though SVG stores

structural information about the graphic as an integral part of the graphic,

the amount of structure is mainly author dependent. The author has to

provide a well constructed structure. Some SVG documents are very badly

structured and therefore less informative. So occasionally, re-ordering the

hierarchical structure of the SVG to organize objects into proper groups

may be necessary. The structure of the SVG may reflect the sequence of

operations used to create the diagram, rather than the intrinsic object

 230

structure within the diagram itself. This is likely to be the case for diagrams

created with a general-purpose drawing tool. If not created using such a

tool, the final structure is dependent on the author. Some drawing tools

embed additional information in an SVG document so that higher level

structure (e.g. connectivity information) can be recovered by the drawing

tool when the document is subsequently modified. Of course one could

argue that SVG being an XML language, XSLT could be used to achieve

the transformation.

• Presents information at a low level of abstraction: SVG does not capture

diagrams at a high enough level of abstraction. It is more a “final form”

presentation, which has some drawbacks in the direct creation of complex,

highly structured, diagrams. It may be difficult at this level to handle

resizing (which in general may involve a change to the layout of the

diagram, not just a change of scale) and re-positioning of different shapes

in complex diagrams. A simple modification such as changing the layout of

a tree from vertical to horizontal can be awkward since the coordinates of

graphical elements have to be changed other than by application of an

affine transformation (Figure 97).

Figure 97: Example of simple modification in SVG

• No adaptability possible: SVG does not allow ‘flexible’ readjustment of

layout in response to viewer requirements and the viewing environment

such as different screen formats (PDA, mobile phone, etc.). The issue is

that the intentions of the author are not totally captured. This issue is

partially addressed with the “switch” statement which along with some

specific attributes provides the ability to specify alternative viewing

depending on user’s capabilities or language. So an alternative can be

provided depending on whether or not a feature is supported.

 231

• Limit in generating alternative presentations: Although SVG stores

structural information about graphical shapes as an integral part of the SVG

document and allows metadata to be attached to primitives, there is little

real scope for generating alternative presentations from a description at this

level. If a document is not properly structured (e.g., careful use of

<g>elements), it becomes very difficult to provide alternative presentations

even if alternative descriptions are provided for individual elements. Most

editors do not encourage authoring accessible SVG by correctly grouping

elements or prompting for “title” or “desc” attributes for example.

• Implicit semantic of the information: An additional issue is that an SVG

document contains the semantics of the diagram only implicitly. Authors

can include a text description for each logical component and a text title to

explain the component’s role in the diagram, but this approach of

“alternative equivalents” could become tedious for the creation of complex

diagrams and also if the metadata added by the author are not accurate

enough, the semantics of the diagram could differ from the description

obtained from this metadata.

• Problems with keyboard accessibility: SVG does not provide keyboard

access support.

A.2.3 Small Web Format (SWF)

SWF is a binary file format intended to deliver vector graphics and animations

on the web. SWF files can be generated from different Adobe products, Flash being

an example.

It delivers vector graphics, text, audio (version 3), video (version 6) over the

internet. The file format SWF was initially designed by Future Wave Software; it was

then purchased by Macromedia and finally acquired by Adobe in 2005.

Adobe made the SWF format a partially open format in 2008. The Flash

technology is widely used on the web. SWF files can be played by the Adobe flash

player (either as a browser plugin or standalone player).

Being of multimedia nature Flash has the ability to create highly accessible

content: multiple ways of presentation (audio, text, graphic, video, etc.), scalable,

keyboard accessible, extracting audio from the animation is possible replacing the

need of a screen reader.

 232

Flash can be made accessible but to take advantage of these abilities, many

issues have to be taken into account while creating the files. For example, to address

blindness issues, the creator should ensure screen reader accessibility or provide an

accessible alternative, ensure keyboard accessibility, do not interfere with screen

reader audio or keyboard commands, provide textual equivalent for all non-text

elements.

Flash can be made accessible if the Flash developer develops it with

accessibility issues in mind, such issues are exposed in many tutorials aiming at

directing such development (e.g. WebAIM article (WebAIM, 2010)).

SWF presents various drawbacks. It is not supported by any browser and

requires the use of a plugin. It is in a binary format which is not human readable. It

does not support cubic Bezier curves, font definition, has limited zooming and limited

filtering.

 233

SUMMARY OF GRAPHICAL FORMATS and ACCESSIBLITY of DIAGRAMS on the WEB

 Vector Formats: “set of geometric objects” Raster Formats: “rectangular array of pixels”

Advantages

Appropriate for charts, technical drawings, logos, etc.
 Resolution independent: fully scalable without loss of resolution
Generally small files size independent of resolution
Searchable when text is represented as text strings
Metadata can be added and made an integral part of the structure of the
graphic

Appropriate for photographs and images using complex shading

Limitations

Not appropriate for a photograph File size, slow downloading speed
Resolution dependent: expanding will change alter the quality
Structural information of the diagram is lost as only data describing individual
pixels of the image is available, inability to search for the content of the image
Linkage to some part of raster graphic possible but not easy
Not possible to edit individual part of such vector images as separate objects
Appearance of the graphics cannot be styled

 SVG WebCGM SWF PNG GIF JPEG

Characteristics

W3C
Recommendation
open format
XML Based language
Uses CSS and DOM
Native support in
most browsers

A profile of CGM
W3C recommendation and
ISO standard
Mainly used In technical
documents
Metadata which can be
added are XML based using
the XML companion File
(XCF) and support the
DOM
There is no XML
representation of WebCGM
WebCGM does not use CSS

Partially open
Binary file format
Most used format
on the web for
displaying simple
animated vector
graphics
Browser plugin
required

Open file format
W3C recommendation and
ISO/IEC standard
Efficient lossless
compression technique
Supports 24-bit true-colour
images
Acceptable for real world
images
Offers transparency and
better interlacing

Best suited for simple
illustrations, logos or
diagrams with only
solid colours or area
of uniform colours
Fixed 256 colours
palette maximum
Lossless compression
technique
Offers transparency
interlacing and
limited animation

Best suited for
Photography
Support full colour
images (16.7 million
colours)
Lossy compression
technique
JPEG2000 also offers
lossless and lossy
compression.

Accessibility
features

Alternative
descriptions
Title
Desc
g

Metadata can be added
Content
Layerdesc
grnode

Keyboard
accessible
Multiple way of
presentation
Text equivalent

Mechanism for adding
descriptive text to the image

 Supports metadata which
can be embedded in the
file header

 234

Appendix B

Accessibility

B.1 Definition

The World Wide Web (WWW) is an important resource of information which

has an impact on our every day life: education, commerce, finance, politics, etc. The

World Wide Web Consortium (W3C), which is the international consortium

developing Web standards, aims at “leading the World Wide Web to its full

potential”. It has defined four main goals with the first one being a “Web for

Everyone”, which involves making the benefits the WWW offers “available to all

people, whatever their hardware, software, network infrastructure, native language,

culture, geographical location, or physical or mental ability” (W3C, 2008d).

In other words, accessibility involves providing access to this information for

ALL, disregarding their disability, environment and technology.

The word “accessibility” is used here in a sense that is illustrated by the

following quotation (WAI, 2009): “Web accessibility means that people with

disabilities can perceive, understand, navigate, and interact with the Web, and that

they can contribute to the Web. Web accessibility also benefits others, including older

people with changing abilities due to ageing. Web accessibility encompasses all

disabilities that affect access to the Web, including visual, auditory, physical, speech,

cognitive, and neurological disabilities ... a key principle of Web accessibility is

designing Web sites and software that are flexible to meet different user needs,

preferences, and situations.”

Web accessibility has to be seen as a collective effort to improve the web, not

only by web developers who create the web content but also by user agents (web

browsers, assistive technologies (e.g. screen readers) used to access web content

(W3C, 2002) and by the web software producers who provide tools (W3C, 2000) that

support and encourage accessible web design by supporting and propagating

guidelines developed by specific accessibility initiatives within the W3C, such as the

WAI (WAI, 2009). All over the world, legislation has been put in place to ensure that

efforts are made by all.

 235

B.2 Legal Frameworks

Many laws and policies have been passed regarding web accessibility. Web

accessibility has been long seen as a social responsibility but the development of new

laws makes it a legal requirement. Many countries around the world (France, UK,

United State, New Zealand, etc.) have enforced web accessibility by setting up

specific legislation on the matter.

In the U.S, the Rehabilitation Act and the Americans with Disabilities Act

(ADA) are civil rights laws protecting disabled people from discrimination. The ADA

is more general, it does not deal directly with accessibility of the internet. It is more a

law to make sure disabled people have equal opportunities for education,

employment, transportation and inclusion. In 1998, an amendment to section 508

(SECTION508, 2009) of the Rehabilitation Act instructs the federal agencies to make

their Electronic and Information Technology (EIT) accessible to people with

disabilities, which includes web sites.

In the UK, in 1995, the Disability Discrimination Act (DDA), part III aimed to

tackle the discrimination many disabled faced. All providers of goods, facilities and

services to the general public are required to take into account disable people. In

1999, amendment to this Part III mentions explicitly Web Accessibility requiring web

sites to be accessible.

More recently, accessibility follows a path from a legal obligation into an

opportunity for society inclusion. The European Union looks at accessibility in a

different perspective through the “e-inclusion” initiative (EUROPEAN, 2009): an

opportunity rather than a solution to be imposed by legislation.

This initiative aims at guiding society towards the establishment of an

“Inclusive Information Society” taking into account the whole range of population

differences: age (e-Ageing), disabilities (e-Accessibility), education (e-Competences),

geographical location. It does so by investing in research for the development and

deployment of technologies, by developing policies, and by promoting best practices.

ICT is seen as essential (WHITNEY and KEITH, 2008), an opportunity for both

individuals and organisations to overcome traditional barriers to acquire information

much needed by all to be fully involved and play an active role in society (e.g. screen

readers allowing blind users to access current news, vote, pay taxes, live

 236

independently, etc.). Europe wants to be an “Accessible Information Society”, e-

accessibility, by promoting ICT accessibility, especially web accessibility.

B.3 Accessibility Guidelines

Accessibility has become a very important issue for the World Wide Web

(WWW), and even more so, since the report on Web Accessibility from the UK’s

Disability Rights Commission in 2004 (DRC, 2004b).

The World Wide Web Consortium (W3C) is one of the leading organisations in

promoting Web Accessibility and in developing guidelines and techniques to

encourage the development of accessible web content through work from the W3C

Web Accessibility Initiative (WAI).

Web Accessibility guidelines have been defined to support and promote web

accessibility. These guidelines have been set by Web accessibility standards. The

W3C Web Accessibility Initiative (WAI) (WAI, 2009) developed the Web Content

Accessibility Guidelines (WCAG) (W3C, 2008c, W3C, 1999). The WCAG have been

developed over several years involving many participants including experts and

individuals sharing the same interest. They are the most widely accepted

recommendations to ensure web content accessibility. The first version of the WCAG,

WCAG 1.0 (W3C, 1999) provided techniques to achieve accessibility which were

mainly related to HTML. The second version WCAG 2.0 (W3C, 2008c), which

became a recommendation in December 2008 aimed at being more general by taking

into account different advanced technologies that have made their place in today’s

web content and more precise so that compliance could be tested automatically.

WCAG 2.0 focuses on four principles of accessibility: Perceivable, Operable,

Understandable and Robust (POUR) aimed at providing a flexible framework to

encourage conceptual thinking throughout the process of designing accessible web

content. Some techniques are presented as separate documents.

Many other organisations have developed guidelines based on the WCAG.

Another well known guideline is the one aiming at ensuring the implementation of the

section 508 (SECTION508, 2009) of the U.S Rehabilitation Act of 1973 which was

reinforced in 1998. Both the WCAG and section 508 have developed a set of

guidelines and techniques to address issues on web content accessibility.

There are different kinds of disabilities. The four main types are:

• Sight: blindness, low vision, colour-blindness

 237

• Hearing: deafness

• Motor: inability to type on a keyboard or/and manipulate, control a mouse,

inability to click on small links

• Cognitive: clinical disability (includes autism, dementia, Down syndrome

or traumatic brain injury) and functional disability (difficulties with

memory, problem solving, attention, reading, linguistic, verbal

comprehension, visual comprehension, mathematical comprehension).

Each type requires a certain amount of consideration when designing web

content. It is important to understand that such considerations benefit not only

disabled people but everyone finding themselves in a situation where one or many of

their senses might be impaired (e.g. broken arm (motor), screen too small to display

graphic (sight), noisy environment (hearing), working in parallel on another task

(cognitive), etc.).

B.4 Blindness

The term blind is used in the following sense: blindness is defined as a total

absence of useful vision. It involves loss of useful sight caused by various origins

(inherited, disease, diet, etc.).

Blind cannot make use of external visual representations. Some visually

impaired who are not clinically and socially categorized as blind but do not make use

of external visual representation are also considered on this research, as they depend

on other means of access than visual.

According to (RESKINOFF et al., 2004) in 2002, there were 161 million

visually impaired people in the world, of whom about 37 million were blind. The

RNIB (RNIB, 2009) states that there are two million people with sight problems in the

UK of which 183,693 are registered as blind. The RNIB also specify that this number

is an under estimate as many blind people do not register themselves as blind either

because they are not aware of the services they are entitled to or they simply do not

want to.

Blind users are not able to see the screen so they do not rely on the computer

monitor and mouse that others use everyday to interact with computers. Blind users

nearly always rely on screen readers to access, navigate and interact with the

information presented to them on computers. Screen reader users mainly use their

keyboards as a way of navigating the web. As well as converting text into speech,

 238

screen readers can also convert text into Braille characters on Braille devices for users

who might prefer Braille access or users who are deaf-blind.

Screen readers provide access to speech or Braille devices. It is important to

mention the difference between blind people that were born blind and those that

became blind later in life. People with congenital blindness and later in life blindness

have different ways of treating information (HELLER, 1989, KENNEL, 1996) as they

have different personal knowledge. Blind people who were not born blind recognise

and interpret graphical information much more easily.

B.5 Screen Readers

A screen reader is an assistive technology that makes information on the

computer screen accessible to blind users. It can present this information either in

speech or in Braille on a refreshable Braille device. A screen reader often offers

functionalities through keyboard keys to interact with most of the information

presented (e.g. manage the flow of text, direct access to lists, navigation of tables,

etc.). The most popular screen readers are Jaws (FREEDOMSCIENTIFIC., 2009),

Window Eyes (GWMicro, 2010) and NVDA (NVDA, 2010) (Figure 98).

In the UK, agencies recommend NVDA and once the person is proficient he can

judge if paying for another one is worthwhile. In December 2008- January 2009, Web

Accessibility in Mind (WebAIM, 2009a) conducted a survey of preferences of screen

reader users. WebAIM specifies that the sample of screen reader users was not

controlled and so not representative of all screen reader users. Out of the 1121 persons

who took part at the survey, 74% use Jaws, 23% use Window Eyes and 8% use

NVDA.

Figure 98: Screen Reader Usage (WebAIM, 2009a)

 239

When using a screen reader to access information on a web page, the interaction

experienced by the blind user, will depend on how well the web page is encoded.

Users of screen readers are presented the information in a linear way, generally

from top left to bottom right, one line at a time, or using other navigation methods for

example through the links, the frames, the headings, etc.

Using these assistive technologies, blind users gain independence. They do not

depend any more on others to access information. It is true for textual information but

is it true for other kinds of information: what about access to graphical information?

What about diagrams?

 240

Appendix C

Accessibility of Diagrams

C.1 Diagrams on the Web

Currently it is possible to insert both vector graphics and vector images (raster

graphics) within a web page.

C.1.1 Diagram inserted as vector images

Vector images appear in web pages via the element in HTML. The

location where the image is stored is specified using the src attribute. The author

could add an alternative text for the image used to provide an equivalent alternative in

case the image cannot be seen.

e.g.

Depending on the context, HTML offers different possibilities to add such

alternative descriptions using the alt-text and longdesc attributes within the

element. If the description cannot be done briefly then an alt text is not enough, so it is

necessary to either:

• Use the longdesc attribute to link the vector image to a long description.

• For user agents who do not support longdesc, the use of a d-link, which is a

link to a long description of the vector image, should be added after or next

to the image.

C.1.2 Diagram inserted as vector graphics

Vector graphics (e.g. SVG, SWF) can be embedded in web pages via either the

<embed> element, the <iframe> element or the <object> element. However each of

these are supported differently by browsers (STROBBE, 2008). Introduced by

Netscape, the <embed> element, even though supported by most browsers, has never

been accepted in HTML standard until it appeared in the HTML 5 working draft

(W3C, 2009). The <iframe> element is not supported by XHTML 1.1 (Strict) and is

slowly being replaced by the <object> element.

For the <object> element to be accessible to screen readers, descriptive text,

HTML or other information should be enclosed within the object body. A text

 241

equivalent can be provided by inserting it between the opening and closing tag as seen

in the following example:

e.g. <object data=“MyImage.svg” type=“ image/svg+xml “>
 Text equivalent for my vector graphic…
 </ object >

In the event the <object> element cannot be displayed the code between its

opening tag (<object>) and closing tag (</object>) is executed. This is called the fall-

back mechanism and should be used to provide an alternative way of presenting the

information.

When using <object> it is also possible to provide longer descriptions within the

element’s content. Unlike the alt-text attribute of the element, alternative

descriptions provided within the content of the object element are not limited in size

and can include markup, adding more flexibility to the type of information provided

(e.g. links). One extra advantage with the <object> element is to provide alternative

representations of information by embedding other object elements within the content

of the current object element.

C.2 Guidelines for diagrams accessibility

At the time of writing this thesis, it is believed that there are no specific

guidelines for making vector graphics accessible on the web. Guideline 1.1 from the

WCAG 2.0 (W3C, 2008c) attempts to address the accessibility problem of diagrams

represented as vector graphics or as vector images (“any non-text” content) by

recommending the use of text alternatives. Such recommendations present some

limitations.

C.2.1 WCAG 2.0 – Guideline 1.1 Text Alternatives

In the context of web graphics accessibility, the main guideline (Guideline 1.1

Text Alternatives in WCAG 2.0) states that it is necessary to “Provide text

alternatives for any non-text content (includes for example pictures, charts, applets,

audio files...) so that it can be changed into other forms people need, such as large

print, Braille, speech, symbols or simpler language.” , which involves providing an

alternative textual description of the information represented graphically. When

possible, it is also recommended to provide a description of the image within the

general text.

As mentioned earlier if a diagram has been represented as a vector graphic and

inserted using the <object> element, a text alternative should be provided using the

 242

fall back mechanism that the <object> element allows. If the diagram is represented as

a vector image and inserted within a web page using the element, a text

alternative should be provided.

C.2.2 Limitations of Text Alternatives

Despite the efforts in developing Web accessibility standards, still many

designers either ignore them or simply do not follow them properly (DRC, 2004b).

The two main problems concerning the description of vector images on the web

(DRC, 2004a) are stated as:

• The omission of alt text attribute on many images

• The lack of useful information in the case of images which include a

description as an alt-text and/or longdesc attributes.

MAMA (WILSON, 2008), the “Metadata Analysis and Mining Application”, is

a structural Web-page search engine developed by Opera. MAMA examined

3,509,180 URLs in 3,011,668 domains. Out of the set analysed, 91.74% used the IMG

element and out of this 78.30% included an Alt attribute. This research does not

specify the validity or nature of the Alt attribute (e.g. valid and usable, empty) but its

frequency. Studies by Jeffrey P.Bigham (BIGHAM et al., 2006b) found that out of

500 most high traffic websites, only 39.6% of significant images found on their

homepages were assigned alternative text.

Some tools have been developed to facilitate the addition of the alt text by

formulating, when possible using the context, and providing alt text automatically to

images (WebInSight (BIGHAM et al., 2006a) and Altifier (VORBURGER, 1999)),

but these tools work only on some images, for the remainder human labelling is

suggested and encouraged.

Web Accessibility standards have provided an important core in ensuring a

more accessible web but as stated by Brian Kelly et al. (KELLY et al., 2005b) they

prove challenging in implementation in certain situations. As an example an alt text

attribute can be present but how do you validate that the alternative text describing the

image is an appropriate alternative?

Sometimes even if they are used they are not usable or carry the wrong

alternative text: as Kelly et al. (KELLY et al., 2005a) point out the “ALT tab merely

names, not explains an image.” So, if it is not the case it will still conform to the

 243

WCAG but won’t be usable (i.e. the alt-text description is not useful). In this case

technical accessibility would be satisfied but usable accessibility will not be achieved.

In an attempt to deal with all these issues, which they support in a survey of 100

homepages, Helen Petrie et al. (PETRIE et al., 2005) presented the initial stage of a

program to encourage and improve the ALT-text descriptions by producing a set of

standard guidelines to produce useful descriptions of images. There are different kinds

of images used on the web, decorative images to navigate and structure a web page

and there are images that convey content information to understand a web page.

Vector images of diagrams are images which convey content information. Such

images can be classified in two group “simple” and “complex” vector images.

The proposed guidelines allows decorative and simple images to be made

accessible using appropriate alt tags for short descriptions or longdesc attributes for

long description. Some (non-standard, non-official) guidelines have been produced in

an attempt to guide the creation of alternative descriptions of diagrams (CORNELIS

and KRIKHAAR, 2001, OU, 2009, NCAM, 2008, NBA, 2000, NCAM, 2006, AULT

et al., 2002).

Most of the issues ALT-text presents have been recognised and standardised.

Indeed, the HTML5 specification (W3C, 2009) provides a set of requirements (part

4.8.2.1 of the HTML5 specification) for providing text to act as an alternative for

images depending on what the image is intended to represent. But all these are not

enough (PATIL, 2007) for complex vector images of diagrams which are sometimes

“worth a thousand words” (LARKIN and SIMON, 1987). Indeed alternative

descriptions of complex diagrams are not trivial to produce and their quality depends

on the expertise of the person authoring it. Depending on the author of the description

the process can be complex and costly in term of time and effort.

Descriptions which are too long and too hard to make sense from can become

confusing, tedious to read and hard to follow due to limited working memory

(MILLER, 1956). The distinction between overview and details is hard. Such

description requires a reader to listen to a whole description even if only some

specific information from the diagram is needed and vice versa. This makes access to

complex diagrams an issue. Furthermore, some diagrams are really difficult to

describe or simply are inappropriate for textual representations as they provide

complex information which is not always accessible sequentially (LARKIN and

SIMON, 1987, MILLER, 1956).

 244

C.2.3 Screen Readers and diagram accessibility

Blind users are known to face a certain number of barriers while accessing the

WWW (WAI, 2009) inaccessible graphics and poorly described images with

inadequate description are some of them.

A screen reader is an assistive technology that makes information on the

computer screen accessible to blind users. A much detailed description of screen

readers can be found in (Section B.5). Screen readers have some limitations, they

cannot describe diagrams by themselves and they rely on alternative description

information attached to the vector image. Diagrams represented as vector graphics

also present some challenges for screen readers.

A. Diagrams as vector images on the web

When the screen reader finds a vector image on a web page inserted using an

 tag in HTML, the screen reader looks for the alt attributes, three situations can

happen:

• If the alt-text attribute is present, the screen reader will read the attribute

which should in ideal cases provide a useful description of the vector image

of the diagram

• If the alt-text attribute is an empty string, the screen reader ignores the

image

• If the alt-text is missing, the screen reader informs the user that an image is

present but that no description is provided. Some screen readers in that case

convey the “image file path” (e.g. “file11022545685245.jpeg”) or simply

the word “graphic” with no extra information. So the user is simply denied

access to information that could be important which usually leads to the

feeling of frustration.

Most of the older screen readers did not recognise the longdesc attribute, which

is also poorly supported by browsers. Jaws (FREEDOMSCIENTIFIC., 2009) for

Windows was the first product (from version 4.01) to support the longdesc attribute.

Although now available in latest screen readers, because it is used so infrequently,

many users are unfamiliar with the longdesc attribute. A link to access more

information about the image is recommended for that situation.

Even if an alternative description of a vector image is read out by the screen

reader it does not mean that the screen reader can convey the meaning of all images.

 245

This is for reasons explained previously (i.e. adequacy and accuracy of the alternative

description or very long descriptions which are tedious to listen to and follow due to

working memory limitations) and which are independent of the screen reader’s

capabilities.

B. Diagrams as vector graphics on the web

Despite its many accessibility features (MCCATHIENEVILE and KOIVUNEN,

2000) (see Appendix A section A.2.2), SVG is currently not yet well handled by

screen readers (SWAN, 2009). The reasons why are unclear and various (browser

support and compatibility, not easy keeping up with fast emergence of new

technologies, etc). Although a load of work is needed to get screen readers to support

SVG and its accessibility features, the problem is acknowledged and progress is under

way.

The Accessible Rich Internet Applications documents (WAI-ARIA) (W3C,

2010) could become a future solution. It defines a way to make Web content and Web

applications more accessible to people with disabilities by defining new ways for

adding information to be provided to assistive technology. WAI-ARIA is only a step

before becoming a recommendation and several browsers and assistive technologies

already support it. ARIA 1.0 does not focus much on SVG but will apparently do in

ARIA 2.0.

For Vector graphics inserted into an HTML page using the <object> element, to

be accessible to screen readers, descriptive text or alternative representation should be

enclosed within the object content. But the fall back mechanism of the object element

is not well supported by screen readers (PILGRIM, 2003).

 246

Appendix D

Accessibility of Diagrams and the WCAG 2.0

The four main principles of WCAG 2.0 (W3C, 2008c) have been used in this

thesis for specific visual web content: “diagrams”. The focus is particularly on

perceivability, operability and understandability of diagrams represented as “vector

graphics”.

In the context of this research project, the most important principle considered is

“Perceivable” as it is the principle for which access to diagrams differ the most.

D.1 The POUR Principles of the WCAG 2.0

D.1.1 Perceivable

 Users must be able to perceive the information presented using at least one of

their senses, if the content cannot be perceived then it cannot be accessed “…the

information must be perceived…that is the first step to accessibility upon which all

others are based, and without which accessibility cannot happen” (WebAIM, 2009b).

Diagrammatical communication is only possible if people can perceive the

diagram content. They need to have access to the content presented to be able to

process its information. For example, blind people are unable to use their sense of

vision. They mainly rely on their sense of touch and hearing to gain access to

information.

A. Availability of the information behind the diagram

The user needs to have access to the information behind the diagram in order to

understand, think, reason, judge, analyse, navigate and memorize the information

presented in the diagram.

The availability of the information relies on two important considerations: the

author’s willingness to make it accessible and the format used to store it.

1. Origin of the information

� Author’s willingness

If the author is amenable, it would be useful if the original information from

which their diagram was constructed was made available to the user.

 247

At this stage what the author wants should be taken into account. It is believed

that for various reasons most authors would not agree for that to happen. One possible

reason could be the unwillingness to invest the effort. But perhaps the author might

not want the real data to be showed as the diagram might have been deliberately

simplified or distorted to convey a misleading message. It is his right as accessibility

guidelines only expect “equivalent” content of visual representation of diagrams

rather then deep description of the original underlying data which might expose

potential misleading messages enabling the intent of the author.

If the information presented diagrammatically was linked to the presentation of

the diagram then this information could be adapted and accessed according to the

user’s needs.

It is believed that it would be more useful if the information represented

diagrammatically is captured at the creation stage. This would allow a “direct access”

as opposed as an “indirect access” to the information represented in the diagram. In a

“direct access” a user obtains the information directly from the graphic and with an

“indirect access” the information is first inferred and interpreted by a third party

(human or computer) and then conveyed to the user using an alternative format.

The exploration of that information should then allow the user to understand and

process the diagram.

� Format used to store the information behind the diagram

The format to be used to make it happen is very important.

Given the vector graphic format, it will be good if the information behind the

diagram could be preserved to be made accessible.

For vector graphics to be made perceivable they would need to have all the

necessary information of the diagram encoded within its format:

• the information it represents should be well structured (use of groups and

ids) and appropriately coded (e.g. use text for true text rather than paths)

• facilities offered by SVG should be used properly (title, desc, comments)

• appropriate metadata should be added when needed

• separation between presentation and content: the content should not depend

on the way it is presented (use of class attributes for styling).

2. Graphic format used to store the diagram: What format is used to store

the information of the diagram

 248

B. Type of information stored: structure and semantics

It would be useful to have access to the structure and the semantics of the

diagram in a machine understandable way.

SVG allows both to be achieved. SVG stores structural information about the

diagram as an integral part but the author has to provide a well constructed structure

using the appropriate facilities (e.g. grouping). Storage of the well-defined data-model

behind the diagram and the knowledge represented within the diagram represented as

ontologies would be of benefit in making the semantic of diagrams accessible.

This information should be “programmatically determined”. This means that the

information is authored in such a way that it is machine-understandable. User agents,

including assistive technologies, could then have access to the information.

As previously explained the benefit of presenting co-ordinate positions of the

objects composing the diagram has been investigated by David Bennett (BENNETT,

2002) and has proved to provide no benefit in the non-visual presentation of diagrams

in audio for example. The information concerning the layout of the diagram is not

important information whereas the concepts and relationships between these concepts

represented in the diagram are important information.

But requirements concerning the information needed to be accessed vary

depending on intended tasks, user’s capabilities, preferences and objectives.

For example the individual requirements of blind users are different. Congenital

blind and later in life blind have different ways of treating information (KENNEL,

1996) as they have different personal knowledge. Blind people who were not born

blind recognise and interpret graphical information much more easily. Depending on

the information researched, the blind user might be interested in either the structure or

the semantics of the diagram.

3. Type of information available: What kind of information is available to

the blind user? The structure or the semantic of the diagram? Is it the

implicit semantic or the explicit semantic?

C. Multimodal presentation of the information behind the diagram

When the visual channel cannot be used to perceive the diagrammatical

information, this information has to be converted into alternative presentation

modalities that can be perceived such as audio or tactile. This information needs to be

presented in a way which can be easily perceived by the blind person using their

 249

available senses “Since not everyone has the same abilities or equal use of the same

senses, one of the main keys to accessibility is ensuring that information is

transformable from one form into another, so that it can be perceived in multiple

ways.”… “ Overall, text is the most easily and most universally transformable format”

(WebAIM, 2009b).

4. Output modalities: what are the output modalities supported and/or

possible? Textual, graphical, Tactile, Audio, Tactile/Audio, Haptic,

Haptic/Audio?

The alternative information presented should not restrict the blind person. The

blind person should be allowed to gain access and explore the information or a subset

of this information according to its need.

D. Access and exploration of the information

� Provide ways to access and navigate the information of the diagram:

• Being able to adapt the level of information provided: general overview,

detailed, etc.

• Being able to access and navigate only relevant part of information hiding

unnecessary details (“viewing options”)

• Possibility to navigate between different presentation modalities (e.g. from

textual presentation to visual presentation)

• History mechanism, annotation mechanism “bookmarks”: would be useful

if possible in order to come back to past exploration or as memory cues

� Support active interactive exploration

Query and search the information of the diagram and present the result in an

accessible adaptable way. It should be possible to query the structure and the

semantics of the diagram.

The query system gives some power to the user, who decides what information

he wants from the diagram, what information is relevant for him to be communicated?

Giving this power to the user can solve the problem of deciding what information is

relevant, allowing the user to decide for him-self depending on the task he wants to

achieve.

5. View of information provided: Power given to the user on the view of

information provided (overview, detailed).

 250

6. Type of exploration: Active or passive exploration? In a “passive”

exploration the user cannot interact with the information provided whereas

in an “active” exploration the user interacts with the information by

querying it, annotating it, adapting it to his needs while exploring it

(pause, hide, and stop). If “active” exploration then specify facilities

offered to interact with and navigate the information (ability to annotate, to

query, details-on-demand enables getting detailed information from

specific elements of interest, ability to hide, stop, repeat, pause, travel

forward and backwards when needed).

E. Adaptability

This concerns the facility provided to adapt the information to user and /or

device requirements. Create content that can adapt to the specific needs and

preferences of the user without losing information and in a location convenient to

them (preserve meaning, relationships, reading order). The aim is to obtain diagrams

which adapts to individual needs and preferences.

Adaptation facilitates access to information by adapting/ reconfiguring this

information to specific input/output devices, modifying, filtering, transforming or

removing/adding aspect of the current presentation into a different modality

depending on user requirements.

7. Adaptability: Is adaptability considered? Does the output take into account

device and/or user requirements?

D.1.2 Operable

Users must be able to operate the access to the information of the diagram. For

example operability for both sighted and blind users to permit possible collaborations.

Guidance should be provided to explore the diagram: instructions, error alert,

warnings, etc.

Multimodal access should be considered. Keyboard accessibility allows many

technologies to be operable providing alternative mode in allowing search,

exploration, navigation and interaction with the information, allowing access to

different disability types. Blind users use their keyboard as their primary means for

navigating the web.

So keyboard accessible or other accessible input modality adapted to blind users

(Braille, voice) should be provided to access the information behind the diagram.

 251

D.1.3 Understandable

The usability of the information accessed relies on its Understandability

“…providing alternative or supplemental representations of information can often

increase understandability” (WebAIM, 2009b).

Users must be able to understand the information presented as well as the

operations the system offers. Functionalities offered to explore the information in its

alternative forms should be understandable (e.g. navigation and interaction

functionalities).

The language employed should take into account the intended audience taking

into consideration educational background, knowledge familiarity with the domain

content, etc. The knowledge such as the type of diagram would allow a better

understanding of the information provided.

D.1.4 Robust

Careful thought needs to be given into the choice of technologies used with

regards to compatibility with existing technologies such as web browsers, assistive

technologies (e.g. screen readers), etc. The diagram should remain accessible, no

matter how the technologies evolve.

Extensibility, interoperability and deployment should be taken into account.

SVG support in all browsers (native and/or using SVG Web) and continuous

improvement makes it a good format to use for interoperability.

A standard should also be provided for capturing graphic information at a higher

level.

D.2 Existing approaches in the context of the defined

requirements

The following tables (Table 9 and Table 10) provide an overview of all the

existing approaches reviewed. The following information is presented.

Aim result of the project: Describe the aim result of the project in terms of

general outcome (methodology, system, guidelines, etc.).

Advantages: Present the advantages of the approach

Limitations: Present the limitations of the approach

1. Origin of the information

 252

2. Graphic format used to store the diagram: What format is used to store

the information of the diagram

3. Type of information available: What kind of information is available to

the blind user? The structure or the semantic of the diagram? Is it the

implicit semantic or the explicit semantic?

4. Output modalities: what are the output modalities supported and/or

possible? Textual, graphical, Tactile, Audio, Tactile/Audio, Haptic,

Haptic/Audio?

5. View of information provided: Power given to the user on the view of

information provided (overview, detailed).

6. Type of exploration: Active or passive exploration? In a “passive”

exploration the user cannot interact with the information provided whereas

in an “active” exploration the user interacts with the information by

querying it, annotating it, adapting it to his needs while exploring it

(pause, hide, and stop). If “active” exploration then specify facilities

offered to interact with and navigate the information (ability to annotate, to

query, details-on-demand enables getting detailed information from

specific elements of interest, ability to hide, stop, repeat, pause, travel

forward and backwards when needed).

7. Adaptability: Is adaptability considered? Does the output take into account

device and/or user requirements?

 253

REVIEW OF BOTTOM-UP APPROACHES FOR VECTOR IMAGES and Vector Graphics ACCESSIBILITY

Text Alternatives
(W3C Guideline,

WebInSight, Altifier, Ault
project, etc.)

AudioGRAF T3 BIS GUIB

Aim result of the project
Guidelines, Corrective

tools
System System System Methodology

Advantages
Might make some simple
vector images accessible

if comprehensible auditory
display then allow user to
build a mental map of the
information

provide effective access
for simple diagrams
multiple levels of details
which organize and allow
a large quantity of
information
Interactive experience

Allows the exploration
of the structure and
implicit semantic of a
vector image.

for frequently used vector
images allows the work of
one sighted person to be
used by many blind people

Limitations

Quality depends on
willingness and expertise
of its author
Might be incorrect,
unusable, incomplete or
inappropriate
automatic generation not
100% efficient
not trivial and not enough
or inappropriate for
description of complex
diagrams
can be costly in terms of
time and effort for
complex diagram

preparation work to be
done by sighted person
special equipment
a bad auditory system
could deep the user into
confusion and so
frustration and giving up
limited by the limitations
of tactile graphics
involves special equipment
Tablet plus tactile graphic

preparation work to be
done by sighted person,
which can be time
consuming and require a
certain level of expertise
which can be difficult to
carry around
diagram need preparation
limited by the limitations
of tactile graphics
involves special equipment
Tablet plus tactile graphic

preparation work to be
done by sighted person
the description obtained
depends on the person
creating it, who will
probably not be the
author of the diagram
and might omit
important information
from the description

preparation work to be
done by sighted person
who has an important
responsibility, who decides
what information to
convey and imposes his
view
involves special equipment
blind user depends on
sighted for rarely used
diagrams
involves special equipment
Audio accessories

 254

Text Alternatives
(W3C Guideline,

WebInSight, Altifier, Ault
project, etc.)

AudioGRAF T3 BIS GUIB

1. Origin of the
Information

Inferred by Author or third
party

Inferred by Author or third
party

Inferred by Author or third
party

Inferred by Author or
third party

Inferred by Author or third
party

2. Graphic format used to
store the diagram
(Raster or vector)

vector image vector image vector image vector image vector image

3.Type of information
presented
(structure or semantic)

Information that the
graphics intend to convey
visually
(implicit semantic) and/or
structure of the graphic
(depends on the author of
the description)

Structure, implicit semantic
Structure, implicit
semantic

Structure and implicit
semantic

Structure and or semantic
depending on the sighted
person describing it

4. Output modalities
Textual description
accessed using screen
reader

Tactile/Audio Tactile/Audio
Textual, audio using
screen reader

Audio through text-to-
speech device

5.View of information
provided
(overview, detailed)

Depend on how well the
guidelines are followed

Multiple levels of details,
the choice is given to the
user

Multiple levels of details,
the choice is given to the
user

Filtering information to
filter out unnecessary
information

Depends on the description
provided by the person
describing it, , but user has
no choice

6. Type of exploration

Passive
Possible Navigation
depending on the encoding
of the textual information
and the screen reader used
(accessible XHTML)

Active
Interaction using the touch
panel

Active
Interaction using the touch
panel

Active
Exploration of the
semantics or the
structural using the
browser to navigate
around the tree of
objects

Passive

7. Adaptability Not addressed Not addressed Not addressed Not addressed Not addressed
Table 9: Review of Bottom-up approaches (part 1)

 255

 SIGHT

TeDUB

iGraph Lite ViewPlus SVG Linearization

Aim result of the project System, methodology System System System composed of set of tools Methodology

Advantages

sometimes provides
intended message
successfully
does not require
intervention of author
does not involve the
use of specialized
hardware

allows the navigation and
annotation of diagrams
through a number of input
and output devices
Presents overview of the
information by providing
access to hierarchical data
structure for the information
of the diagram

Makes some information
carried by the vector
image accessible
attempt to make some
implicit features explicit
(e.g. max, min)
Provides facilities to
access and explore
information (e.g.
sequential query system)
Open source, free

provide effective access for simple
vector image and various vector
graphics
multiple levels of details which
organize and allow a large quantity
of information
Interactive experience

Generate accessible
description of the
diagram if the SVG
is appropriate will
well organised
information.

Limitations

Not 100% effective:
message inferred not
always the one
intended
Based on
assumptions
Some technical issues
concerning the
amount and quality of
information presented

Rely on a semi-automatic
process to recover the
information form the vector
image which might generate
some errors due to some
noises in the vector image
Overcoming this issue
might require human
intervention and time
involves special equipment
computer game joystick

Depends on plug-in which
might not be supported by
graphical applications
Some information are not
inferred and so not
conveyed
the present query system
is not flexible and
depends on the sequential
exploration of the textual
description

preparation work to be done by
sighted person, which can be time
consuming and require a certain
level of expertise
information in SVG might need to
be reorganised or enriched with
extra information if missing
limited by the limitations of tactile
graphics
involves special equipment Tablet
plus tactile graphic and embosser,
which can be difficult to carry
around

Rely on author’s
patience and
willingness
adding RDF is an
onerous task for the
author
might involves
tedious efforts

 256

 SIGHT

TeDUB

iGraph Lite ViewPlus SVG Linearization

1. Origin of the
Information

Inferred by automatic
analysis

Inferred by Semi-automatic
analysis

Inferred by automatic
analysis

Inferred by Author or third party
Inferred by Author
or third party

2. Graphic format used to
store the diagram
(Raster or vector)

vector image vector image vector image vector image and vector graphics Vector graphics

3.Type of information
presented
(structure or semantic)

Hypothesized
Intended message of
the diagram (implicit
semantic)

Structure and semantic
(implicit)

Implicit semantic Structure and implicit semantic
Structure and
implicit semantic

4. Output modalities
Textual description
accessed using screen
reader

Textual, Haptic/audio
Textual, Audio using
screen reader

Audio and tactile
Textual, audio
using screen reader

5.View of information
provided
(overview, detailed)

General and detailed,
but user has no
choice

Presents overview of the
information using
hierarchical data structure

Detailed as possible to
navigate diagrams

Extract, explore and
navigate information
using
Flexible and scalable NL
dialogue, Sequential
query system
iGraph-Lite navigation
tool

Multiple levels of details, the
choice is given to the user

No

6. Type of exploration
Passive but plan to
provide facilities for
interaction

Active
Diagram exploration and
information searching,
annotations facilities

Active and/or passive
Textual description using
screen reader or query
system

Active
Interaction using the touch panel

Passive

7. Adaptability Not addressed Not addressed Not addressed Not addressed Not addressed
Table 10: Review of Bottom-up approaches (part 2)

 257

