THE UNIVERSITY OF NOTTINGHAM

FACULTY OF APPLIED SCIENCE

Applications
of

Computers

LECTURE 8

"PROGRAMMING STRATEGY"

by

S. GILL,M.A.,Ph.D.

"PROGRAMMING STRATEGY"

SUBROUTINES

Fundamentally, a subroutine is simply part of a programme, The
reasons for considering a programme as made up of subroutines are
three-fold:

1. By splitting the calculation into parts
and specifying each part separately,
the programmer is enabled to concen-
trate his attention on one thing at a
time.

2. Each subroutine can be tested independently
if desired by building it into a simple test
programme.

3. It may happen, particularly in scientific
calculations, that several of the sub-
routines have already been required in
previous calculations, so that the same
bit of programming can be used again.

For scientific work the last of these reasons is very important.
Every new type of computer rapidly accumulates a collection of standard
subroutines, known as a "library'. Each subroutine in the library is
covered by a specification showing exactly what calculation the subroutine
performs and what conditions must be observed when it is used.

A number of different techniques have been worked out for incor-
porating subroutines into programmes. For example, there is a dis-
tinction between the ""open' and "closed' form of subroutine. The former
type is inserted amongst the other instructions of a programme, whereas
the latter type stands on its own in the store and waits for control to be
transferred to it by means of a jump instruction when it is required to
operate. A closed subroutine is arranged to transfer control back to the

rest of the programme when its operation is complete.

&=

In order to make a library subroutine more generally useful, it is
often arranged to accept parameters defining certain details of the operation
to be performed. These parameters have been classified as "pre-set'' and
"programme' parameters. Pre-set parameters remain fixed in value
throughout the entire calculation, whereas programme parameters are re-set
every time the subroutine is used. Thus a subroutine with programme
parameters may be used to perform a number of slightly different tasks
during the same calculation, whereas a subroutine having only pre-set
parameters always operates in exactly the same way during any one cal-
culation.

One of the commonest types of subroutine is that used for the input
or output of numbers to and from the computer. Numbers, as they are
presented to the machine and as they are required to be printed out, exist
in a variety of different forms, distinguished by different numbers of
digits, different positions of the decimal point (if any), different disposition
of spaces, etc. The computer designer cannot easily cater for the inter-
pretation of all these forms automatically, and he therefore usually provides
a rudimentary input or output instruction and leaves the programmer to
construct subroutines for carrying out the necessary conversions between
the internal form of numbers and the various forms which they take in the
outside world. These subroutines are, of course, just as important in
business as they are in scientific work. They make considerable use of

parameters to define the exact form of the numbers being handled.

INTERPRETIVE ROUTINES

An interpretive routine has been described as a generalisation of the
idea of a subroutine with programme parameters. In this case, however,

the subroutine is capable of a variety of operations, and is capable of

-—2-

accepting a long string of programme parameters. It works its way
through these parameters one by one, carrying out an operation defined
by each one. In fact the subroutine behaves towards these parameters

in a similar manner to that in which the computer itself behaves towards
its instructions. The parameters are in fact sometimes referred to as
"interpretive instructions', and the programmer writes a "'programme"’
of interpretive instructions in much the same manner as he writes an
ordinary programme. The code by which they are interpreted is, however,
not the instruction code of the machine itself, but a code determined by the
interpretive routine. The possession of an interpretive routine thus
gives tac programmer the feeling of possessing a new type of computer,
operating according to a different instruction code.

This is therefore an extremely powerful technique in programming,
and is frequently used for the programming of lengthy calculations on
elements which are not ordinary numbers, but which may be numbers
expressed in a different form (e. g. floating point or double-length numbers),
or even entirely different mathematical entities such as vectors, matrices,

or group elements.

MISTAKES IN PROGRAMMES

A mistake in a programme often has the same effect as a fault
in the computer, and it is sometimes hard to distinguish. The symptoms
are often puzzling. The machine may print rubbish, it may enter a closed
loop of instructions which it appears to be repeating indefinitely, or it may
stop. In any case, there may be little evidence to show the original cause
of the trouble. The machine operates so fast that it may have executed
many hundreds of operations since the mistake was first encountered, and

these operations may have obscured the evidence.

=3=

MISTAKE DIAGNOSIS

With luck, it may be possible to reconstruct the path of events
merely by examining the instructions and numbers remaining in the
store when the calculation ceases. In order to print these out, various
small subroutines are provided with every computer, known as ''post
mortem'' routines.

A post mortem examination can however only produce a static
picture of the machine after the event. If this is insufficient, it is
necessary somehow to obtain a dynamic picture of the course of action
pursued by the machine during a period in which the mistake was
encountered.

Most machines are equipped with manual controls which enable
the operator to make the machine work slowly through a section of the
programme while he examines its contents on some form of monitoring
device. This however is a slow and uncertain procedure, and although
various methods have been invented to make it rather more efficient,
it is usually frowned upon as a procedure to be adopted by any but the
most alert and experienced programmers.

Various automatic means have been devised for providing
systematic information about the progress of a calculation. Some
machines are equipped with special circuits which can cause them to
print out automatically certain information such as a list of control
transfers, transfers between fast and slow stores, etc.

Similar information can also be obtained by using an interpretive
routine which regards the original programme merely as a series of
parameters. It interprets these parameters according to the same code
as the instruction code of the machine itself, with the exception that suit-
able information is printed out to assist in locating mistakes.

-4-

In some cases a combination of these techniques is used.
Special circuits cause control of the machine to be switched periodically
to a special checking routine which prints out or accumulates suitable

diagnostic information.

PROGRAMMING NOTATIONS

In the examples given in the last lecture it was assumed that
the instructions were written in the same form as that in which they were
stored. It is more usual however to write instructions in a different form,
and to arrange for the programme input routine to carry out a conversion
when the programme is loaded into the machine. There are various
reasons for this. The function part, for example, may not be easy to
use and remember in its numerical form, and may therefore be written
in a different code, perhaps an alphabetical one. The addresses also
may need some adjustment to take care of the fact that when the programme
is first written the exact positions of the various parts in the store may not
be known.

This conversion of a programme during loading is only one: of
a series of changes which happen to it throughout its life. During the
process of programming, the programme goes through a series of forms
of lessening abstraction and increasing detail until it finally appears in
the form of instructions. These instructions are then converted as they
go into the machine, and are further interpreted in the form of a very
long series of elementary operations when the programme is scanned and
executed by the control unit of the computer.

Various logical changes are occurring throughout this process.
Human language is being replaced by rigid symbolic language which can

be recognised by the machine. General statements are being replaced by

5=

particular statements. Short comprehensive statements are being replaced
by long series of elementary ones.

Often the same logical change can be made at different stages in
the development of the programme. For example, if the programmer wishes
to programme a calculation on complex numbers, he may either write out
the programme in terms of real numbers alone, or he may write it in
terms of complex numbers and arrange for it to be interpreted suitably.

In the latter case, the interpretation may be done either during the loading
of the programme into the machine, each complex instruction being re-
placed by a short series of instructions relating to real numbers, or an
interpretive routine may be used which interprets each complex instruction
when it is due to be executed.

Thus, by letting his programme be translated in various ways,
or by incorporating subroutines, a programmer may derive considerable
benefit from the efforts of others. It is important however that all the
standard routines written for a particular computer should follow similar
conventions and be so designed that they can be used in conjunction with
one another. A self-contained collection of notations, conventions, and
available subroutines may perhaps be referred to as a ''programming
scheme''. The more advanced types of programming scheme are some-
times referred to as "automatic programming' schemes. A well-designed
automatic programming scheme can considerably reduce the amount of
work involved in preparing a programme, at least for conventional types
of problem. Considerable interest is currently being shown in automatic
programming, particularly in the U.S. A.

The aims of a scheme are two-fold: to make programming easy
to learn, and to make it easy to do when learnt. These aims are some-

times in conflict. For example, a scheme which is easy to use will employ

-6-

a fairly concise notation so that the programmer does not have an unduly
large amount of writing to do. However, a concise notation is usually
more difficult to learn than a more expansive one.

One of the most serious limitations in designing programming
schemes is the choice of symbols which can be used. It is obviously
highly desirable that the scheme shall be devised so that a programme,
when written, can be typed out directly for the computer. This means that
only symbols which appear on the keyboard of the equipment which is
used for preparing the input to the computer may be used by the pro-
grammer.

Ideally, a programming scheme should allow a programmer to
write his programme in the form in which he first states his method
of solution. Recent schemes developed in the U.S.A. and in this country
are certainly tending in this direction. However, as schemes become
more powerful and permit the programmer to write a greater variety
of words and phrases, it becomes increasingly difficult to lay down
precisely what he may and may not write. It will probably never be
possible to allow him to write plain English, which is usually full of
ambiguities. The greater the range of things which he is allowed to
write, the longer becomes the list of restrictions.

One programming task which has not yet been performed
very satisfactorily by automatic means is the allocation of the space
in the store of the computer or on the magnetic tape to the various items
of data. Thus, for example, in a machine with two levels of storage,
the arrangement of the transfers of information between the two levels
can only be done satisfactorily by the programmer himself. nWhen
magnetic tape is used, the placing of the various items within one block

of information on the tape must also usually be done by the programmer.

ol

k4

e

