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LINEAR ALGEBRA

SYNOPSIS

General remarks. Programime checks.

Simultaneous Linear Equations. Gaussian Elimination.
Inversion of Matrices.

Latent roots and vectors of matrices.

General manipulation of matrices: compound problems:
need for an interpretive scheme.

1-INTRODUCTION
In numerical work '"linear algebra' means any calculations

restricted to operations upon arrays of numbers like

aii ajz als ai4

azi azz azs az4

a3l asz a33 a34
in which multiples of one row.or column are added to others. Such
arrays are called matrices, and a single row or column is often
referred to as a vector. We may use symbols A, x for matrices
and vectors respectively. Linear algebra arises naturally in a
very wide field of applications, nearly always through consideration

of sets of simultaneous linear algebraic equations, that is to say

equations such as



1
o

STRIMES AR kA

1
azju +azavt azzw = by (1)
azju +azpv + azzw = b3

where one knows the coefficients ajj and "right-hand sides' bj
and requires the solution u,v,w. The term '"linear" is borrowed
from geometry, in which such equations describe lines, planes,
etc.
The problem of inversion is to determine a matrix

€11 C12 €13

€21 €22 €23

€31 €32 €33

such that the solution of the equations (1) can be written explicitly

as
u = Cllbl + C12b2 + Cl3b3
v = cpiby t c, b5 + 023b3 (2)
w = c31bp * c32b2 + c33b3

This is useful when a large number of sets of equations
such as (1) have to be solved, in which only the b;j are changed
between one set and the next.

The symbol A-1 isused for the inverse matrix of A, which

has to be square.

In the analysis of oscillatory systems, whether electrical
or mechanical, one is led to the more difficult "latent root' or
"eigenvalue' problem.

Here one has to determine a quantity A such that

allu + aizv + 3.13W = )\ u
A v (3)
A w,

azqu +apyv +az3w

ajziu +a32V +a3z3w
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and for n equations there will in general be just n values of A ,
real or complex, for which there is a corresponding solution

u,v,w, called the "latent vector'or "eigenvector'. A will be

related to a natural frequency of oscillation of the system and
u,v,w will represent the corresponding mode of oscillation. The

matrix A of coefficients has to be square.

What makes linear algebra so ideally suited to automatic
calculation and so tedious by hand is the uniformity of the arith-
metical manipulations required - the same simple sequence of
additions and multiplications is constantly repeated.

One can store the elements of a row or a column of a matrix
in consecutive storage locations and have a relatively small and
fast loop of instructions for dealing with each element as it is

selected from store.

Another important advantage is the very satisfactory pro-
grammed arithmetic check known as the 'distributive check' which
is available. This is achieved by storing the sum sy=ajjtajz+aj3tby
together with the numbers ajj,ay,,2a13,b1 and treating it in the
samé way. Then, in the simplest case, after forming the multiples
kajii, kajz, ka3, kb, ksy in the course of a calculation, the
machine checks that the last one is still equal to the sum of the

preceding numbers.

Taking all digital computers in the country together, it is
probably true to say that for about half of their operating time on
real problems they are doing linear algebra. Almost the first

general purpose programme to be prepared for a new computer is
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one for solving sets of simultaneous linear algebraic equations,
and there is very soon a demand for matrix inversion and latent
root programmes as well.

As instances of the origins of such sets of equations may
be mentioned the following: (i) Analysis of elastic structures,
such as steel frames of buildings or aircraft wings and fuselages.
Given the elastic constants (the aj;) and the loading (the bj) it is
required to calculate the consequent deflections (u, v, w).

(ii) Steady flow of heat, fluids, electrical fields, and a wide range
of other physical problems are expressible as the solution of

partial differential equations of elliptic type.

As far as the computer is concerned these amount to sets
of large numbers of linear algebraic equations, usually of rather
simple form. The development of very large storage capacity
for future computers is stimulated by the need to solve these very
large sets of equations, especially in connection with military
applications, shock waves, nuclear explosions and the like.

The above two categories have the common property that

they arise from the idealisation of a continuous physical system to

a discrete mathematical model. Thus in studying the deflection

(and vibration) of a beam one replaces it by the simplified "model"
of a number of point masses, elastically interconnected, each
representing a finite strip of the beam. The larger the number of
representative points the more accurate the idealisation, although
engineering accuracy is obtained from surprisingly few points.
Likewise in the heat conduction problem one works with the
values of the temperature at the corners of the squares of a regular

network covering the region of interest, and there is one equation
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for each point of the net. Again, the finer the net the more accurate
are the results, although adequate estimates of thermal gradients,
for example in assessing structural safety factors, may be obtained
with a fairly coarse net.

(iii) A further common origin of sets of simultaneous linear algebraic
equations is statistics. Any regression analysis, and in particular
curve-fitting of data at unequally spaced intervals by the method of

least squares, leads to such equations.

2-METHODS

Gaussian Elimination.

This is the method one learns at school. Starting from
equations (1) we eliminate u from the second and third equations
by adding —a21/a11 times the first row of the matrix to its second
row, and also -a31/a11 times the first row to the last row. This
gives a matrix of the form

aj1 a2 213 by

0 ah, abz b

0 as, a3z b3
We now eliminate the second variable v from the third equation
by adding -a},/a}, times the second row to the third row and
end up with the matrix "reduced to triangular form"

a;l a1z 213 Py

0 ab2 abs 5



1Al

33 from the last equation,

Finally we determine w = b}/a

use this to substitute in the second equation to get
= | - i ¥

v (b_2 a23w)/a22,

and use v and w to substitute in the first equation to get

u = (by - aq,v - a13w)/a11.

This is the second half of the process and is called "back-substitution''.

It is obvious that the method would break down if the so-called

"

a33 were zero, and would cause trouble

"pivots' aj; or al,, or
if any of these were small. A simple precaution, which renders
Gaussian Elimination the reliable and universally used numerical

procedure that it has become, is to rearrange the equations at each

step in the reduction so that the pivot is always the largest number in

the first column of the partially reduced matrix. Thus we arrange

to begin with that az; and aj; are not larger (in absolute magnitude)
than ajy, and at the next step that a'32 is not larger than a'zz -
otherwise we interchange the last two equations. If small pivots

still appear the solution is poorly determinable and the equations

are said to be "ill-conditioned".

Other methods, suitable especially for equations of particular

forms, will be dealt with if time permits.

Inversion of matrices.
This is simply an extension of 2.1 in which one deals simul-

taneously with right-hand sides

1 0 0
0 1 0
o, o, 1

The three solutions so obtained are the three columns of the inverse
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matrix. During the reduction one keeps all right-hand sides through-
out the working, except where storage space can be saved by not
storing zeros. The back-substitution is carried out separately for

each column of the inverse.

Latent roots and vectors of matrices.

The variety of methods available here is due chiefly to the
very varied requirements for specific purposes.

In vibration problems one has essentially a symmetric matrix
(az1 = ayp, azy = ay3, a,, = a23) and the roots must all be real; one
wants only the largest few roots and corresponding vectors and the

roots are not often very close together. In this case the standard

method is to start with any set of numbers \lrl 11 and "'multiply' by
the matrix to get a second set "

u = ajjuy + a;,vy + ay13%,

V2 T azuy + a;,>vq + a23W1

Wz = azquy + a?’zv1 + a33w1

"normalise" this set by dividing through by its largest element

(to make the largest one 1), and again multiply by the matrix. This
process is repeated until the numbers converge - the result is the
latent vector x corresponding to the largest root )\ , and the root
itself appears as the largest vector element after the matrix multi-
plication.

One has then to ""remove'' this root, i.e. to calculate a new
matrix B whose roots other than A arethe same as those of the
original matrix A, and either (a): B is smaller than A by one
row and column, or (b): B is the same size as A and has a zero

root in place of )\ .



Method (a) is perhaps commoner; it reduces the volume
of computation a little and is applicable directly to unsymmetric
matrices A. If the normalised latent vector of A is i then one
forms B by subtracting from the second and third rowswof A the
multiples v and w respectively of the first row, and then omitting
the first row and column. The latent vectors of B have now only
two elements and need to be combined with the vector x by a back
substitution process to obtain the corresponding latent vectors of A.

Method (b) for symmetric matrices avoids a back substitution
step since the latent roots and vectors of B are already appropriate
to A. B isformedfrom A Dby subtracting }\ times 1,v,w from
the first row of A, )\ v times this from the second row of A, and
A w times this from the last row.

Among other methods of value according to the requirements

of the case are those of Jacobi, Lanczos and Givens which will be

described if time permits.

3 - MATRIX ALGEBRA IN GENERAL

Occasionally one has already available for the computer
the coefficients ajj and bj , but it is more usual to find that a variety
of simple preliminary calculations are necessary in order to obtain them.
These calculations generally fall under the heading of 'linear algebra',
and can be expressed in terms of matrix addition or multiplication, or

simplified forms of these operations.



If the matrix
A= [a;; ay, aj3 apy]

azi az2 az3 a4

| 831 232 #33 %34
is added to another one B, which must be of the same shape and
size, i.e. of three rows and four columns, the result is got by

adding together corresponding elements in the two matrices, thus:

—

A+ B = all+b11 a12+b12 a13+b13 a14+b147
azy] +bhzy azpt+bzy azztbys azytbyy

a3y +bzy a3z +bzy azz3tbzz azythbyy,

If A is multi—;lied in front by a row vector [p q r], which_
must have the same number of columns as A has rows, the result
is another row vector which is got by adding together p times the
first row of A, q times the second row, and r times the third,
thus:

[pqr A = [pall + qapp + razy, pajp ¥ qapy +rasp,
pa13 +qaz3 + rass, paj4 tqazg + ra34]

We call this row a linear combination of the rows of A with coeffi-

cients p,q,r. g
If however A 1is multiplied behind by a column vector|f |,
this must have the same number of rows as A has columns, and
the result is another column vector which is got by adding the mul-
tiples of the four columns of A given by d,e,f, g respectively, thus:
Ald)= [a11d + ajze + agsf + agg]

d
e
f a_21d + ajoe + a23f + 8.24g
g

azjd + agze + az3f + azyg

This column is a linear combination of the columns of A.



The general case of pre-multiplication of A by a matrix

B is just the same, but insead of a single row pqr producing a
single row product we have each row of B treated in the same way
to produce the same number of rows in the product matrix. This
can be expressed by saying that BA is a matrix of as many rows
as B, each row being a linear combination of the rows of A, the
coefficients in the combination being the elements of the correspon-
ding row of B. For this to be possible B must have as many
columns as A has rows.

Likewise post-multiplication of A by B can be regarded

as the formation of a matrix by columns, each of which is obtained
as a linear combination of the columns of A using coefficients from
a column of B. B must have as many rows as A has columns
(which is the same condition as before).

When A is pre-multiplied by the square matrix

F—p 0 0
0 q 0
0 0 r|

(called a "diagonal' matrix) the result is

paji PpPaiz paj3 pajg

qaz21 Q9322 Q9az3 qaz4

rasqg ra32 I'3.33 ra34J

i.e. the rows of A are multiplied by the diagonal elements.

Likewise post-multiplication of A by the diagonal matrix

= —

d 0 0 0

0 e 0 0

0 0 f 0
0 0 0 g.

produces
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ajyd ajpe aj3f  agug

az1d azpe azs3f apzsg

| a31d  azze  azsf  asg)
the columns of A being multiplied by the diagonal elements.

In the special case p=q=r we have all elements of A
multiplied by p and call this "scalar'' multiplication of A by p.

Finally the matrix may be written "transposed'', i.e. with

columns and rows interchanged thus:

e

aj;  ajz 213
az1 a2 a3

a3l asz ass

a41 a4z a43

L p—

This is often denoted by A'.

With the aid of the above ideas much of the systematic pre-
liminary processing of numerical data can be effected by linear
algebra.

Scaling the columns of a matrix, which corresponds to
scaling the variables u,v,w separately in the case of the linear
equations (1), is simply post-multiplication by a diagonal matrix
composed of the scaling factors. Scaling the rows, which does
not affect the result in (1), may be desirable if some rows of
coefficients are much smaller than the others, and can be achieved
by diagonal matrix pre-multiplication.

Change of origins of u,v,w to p,q,r respectively amounts

P b1

to subtracting A {q | from the right-hand side | b
r b

3
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As a result of the relatively few kinds of operations involved
in the manipulation of matrices the subject lends itself particularly
well to the use of interpretive programmes. One can do most of
the necessary calculations if one has the following repertoire of
functions available -

Input a matrix to location a

Output a matrix from location a

Add the matrix at location a to the matrix at location b,
and store the result at location c.

Multiply the matrix at location a by the matrix at location
b, and store the result at location c.

Transpose the matrix at location a and store the result
at location c.

Pre-multiply the diagonal matrix at location a by the
matrix at location b and store the result at location c.

Post-multiply the matrix at location a by the diagonal
matrix at location b and store the result at location c.

Extract part of the matrix at location a and store the
result at location c.

Compound the matrix at location a with the matrix at
location b and store the result at location c.

If the dimensions (numbers of rows and columns) of the matrices
are stored with them, each sub-programme called into use by the
master programme when interpreting a codeword needs only to be
given the addresses of the matrices to be operated on and the
address to which to send the resultant matrix. Thus a three
address code is convenient, and we can arrange for the addresses
to refer to track numbers on an auxiliary magnetic drum store,
as with DEUCE. A codeword (a,b,c,r) can mean ”carry out
operation number r using matrix addresses a,b,c'".

The distributive checks can be incorporated in the component

programmes, but are only possible with precision where fixed point
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working is used. However, the device of '"block-floating' arithmetic
can be used, in which a common exponent is associated with each
matrix, the exponents of two matrices being taken into account in
deciding the exponent of their sum or product. This preserves the
automatic scaling advantages of ordinary floating-point arithmetic.
Where multiplication is involved the products are accumulated to
double-length (two word) accuracy before shifting and rounding off
to single length. This means that each component programme (when
multiplication is used) has to carry out the operation twice - once
to find how big the largest element of the resultant matrix is and
hence the shift after multiplication (and the exponent to be associated
with the result), and then again to form and store the single-length
matrix.

Because each component operation takes some time, the
time of interpretation of each codeword is not so important as with
other interpretive schemes. It is at present of the order of one

second for DEUCE.
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