Harwell Variable Energy Cyclotron The V.E.C. allows ready acceleration of positive ions obtainable from gaseous elements and compounds, and from some solids, up to at least mass 90. A selection is shown overleaf. Energy is continuously variable over a range of ten for lighter ions with a maximum 84 charge² MeV (53 MeV mass for protons). #### Currents available depend upon the ion accelerated and range from several tens of microamperes for protons, deuterons and alpha particles to nanoamperes for highly stripped ions e.g. 175 meV C⁵⁺. Three areas of special interest are: - (i) Protons ~ 50 MeV Alphas ~ 84 MeV - (ii) B. C. N. O. Ne $\sim 5-13$ MeV per nucleon at μ A levels. - (iii) Ni, Cr, etc. $\sim 1-2$ MeV per nucleon at μ A levels. ## **Energy Resolution** from the machine is about 0.5% but better resolution can be obtained at reduced current levels e.g. 0.1% for 50 MeV protons at $0.5 \mu A$. The Beam Spot is normally about 1 cm diameter. Two dimensional programmed scanning is available to give uniform current deposition over the target area, and scattered beams can be used for extreme uniformity at very low current levels. #### **Eight Beam Lines** are available for alternate use and customers' target systems can usually be left in position between runs. ## Equipment is available for irradiation of thick and thin foils and some powders, and there are three scattering chambers. # Computing A PDP8 is available in the building and there are teletype links to the IBM 370. Enquiries to: R. W. McIlroy Building 540.2 AERE, Harwell Oxfordshire Telephone: Abingdon (0235) 24141 Ext. 2694 Table of extracted beams available: June 1974 | Particle. | Appro | ximate | Energy | (MeV) | at extrac | ction ra | dius. | |--|-----------|---|--------------|----------|------------|----------|----------| | H ⁺ | 7
30 | 10
35 | 13
40 | 17
43 | 20
46 | 24
48 | 27
53 | | H ⁺ 2 2D+ } | 10.0 | 12.5
30 | 13.7
32.5 | 15
36 | 17.5
40 | 20
42 | 22.5 | | 3 _{He} + | 21 | 12 | 02,0 | 30 | 40 | 42 | | | 3 _{He} 2+ | 28 | 33 | 39 | 53 | 73 | 83 | | | ⁴ He ⁺ | 4
11 | 5
12.1 | 6
17.5 | 7.2 | 7.5 | 8 | 9.3 | | 4 _{He} 2+ | 20
52 | 25
53 | 27.5
60 | 30
65 | 35
72 | 40
80 | 45
84 | | 10 _B 3+
84+
11 _B 3+
84+
12 _C 2+
C ³⁺
C ⁴⁺ | 40
72 | 76
134
67
120
22
24
44
88
175 | 48
118 | 52 | 56 | 65 | 70 | | 14 _N +
N2+
N4+
N5+ | 45
125 | 3
7
53
150 | 84 | 98 | | | | | 16 ₀ 3+
04+
05+
18 ₀ 5+ | 32 | 49
70
128
116 | 81 | | | | | | 19 _F 4+ | | 60 | | | | | | | 20 _{Ne} 3+
Ne ⁴⁺
Ne ⁵⁺
Ne ⁶⁺ | 20
60 | 38
65
85
146 | 110 | | | | | | 27 _{A1} 3+
A1 ⁴⁺ | | 30
53 | | | | | | | 40 _{Ar} 6+ | | 64
130 | | | | | | Table of extracted beams available: June 1974 (Continued) | Particle | Approximate Energy (MeV) at extraction radius | | | | | |--|---|------|--|--|--| | 52 _{Cr} 6+ | 52 | | | | | | 52 _{Cr} 6+
56 _{Fe} 6+ | 50 | | | | | | 58 _{Ni} 4+
Ni ⁶ +
Ni ⁸ +
Ni ⁹ + | 24
48
100
120 | - 18 | | | | | 59 _{Co} 6+ | 47 | | | | | | 63 _{Cu} 7+ | 60 | | | | | | 90 _{Zr} 6+
92 _{Mo} 6+ | 32.
32 | | | | |