Harwell Variable Energy Cyclotron

The V.E.C. allows ready acceleration of positive ions obtainable from gaseous elements and compounds, and from some solids, up to at least mass 90. A selection is shown overleaf.

Energy

is continuously variable over a range of ten for lighter ions with a maximum 84 charge² MeV (53 MeV mass

for protons).

Currents

available depend upon the ion accelerated and range from several tens of microamperes for protons, deuterons and alpha particles to nanoamperes for highly stripped ions e.g. 175 meV C⁵⁺.

Three areas of special interest are:

- (i) Protons ~ 50 MeV Alphas ~ 84 MeV
- (ii) B. C. N. O. Ne $\sim 5-13$ MeV per nucleon at μ A levels.
- (iii) Ni, Cr, etc. $\sim 1-2$ MeV per nucleon at μ A levels.

Energy Resolution

from the machine is about 0.5% but better resolution can be obtained at reduced current levels e.g. 0.1% for 50 MeV protons at $0.5 \mu A$.

The Beam Spot

is normally about 1 cm diameter. Two dimensional programmed scanning is available to give uniform current deposition over the target area, and scattered beams can be used for extreme uniformity at very low current levels.

Eight Beam Lines

are available for alternate use and customers' target systems can usually be left in position between runs.

Equipment

is available for irradiation of thick and thin foils and some powders, and there are three scattering chambers.

Computing

A PDP8 is available in the building and there are teletype links to the IBM 370.

Enquiries to: R. W. McIlroy Building 540.2 AERE, Harwell Oxfordshire

Telephone: Abingdon (0235) 24141

Ext. 2694

Table of extracted beams available: June 1974

Particle.	Appro	ximate	Energy	(MeV)	at extrac	ction ra	dius.
H ⁺	7 30	10 35	13 40	17 43	20 46	24 48	27 53
H ⁺ 2 2D+ }	10.0	12.5 30	13.7 32.5	15 36	17.5 40	20 42	22.5
3 _{He} +	21	12	02,0	30	40	42	
3 _{He} 2+	28	33	39	53	73	83	
⁴ He ⁺	4 11	5 12.1	6 17.5	7.2	7.5	8	9.3
4 _{He} 2+	20 52	25 53	27.5 60	30 65	35 72	40 80	45 84
10 _B 3+ 84+ 11 _B 3+ 84+ 12 _C 2+ C ³⁺ C ⁴⁺	40 72	76 134 67 120 22 24 44 88 175	48 118	52	56	65	70
14 _N + N2+ N4+ N5+	45 125	3 7 53 150	84	98			
16 ₀ 3+ 04+ 05+ 18 ₀ 5+	32	49 70 128 116	81				
19 _F 4+		60					
20 _{Ne} 3+ Ne ⁴⁺ Ne ⁵⁺ Ne ⁶⁺	20 60	38 65 85 146	110				
27 _{A1} 3+ A1 ⁴⁺		30 53					
40 _{Ar} 6+		64 130					

Table of extracted beams available: June 1974 (Continued)

Particle	Approximate Energy (MeV) at extraction radius				
52 _{Cr} 6+	52				
52 _{Cr} 6+ 56 _{Fe} 6+	50				
58 _{Ni} 4+ Ni ⁶ + Ni ⁸ + Ni ⁹ +	24 48 100 120	- 18			
59 _{Co} 6+	47				
63 _{Cu} 7+	60				
90 _{Zr} 6+ 92 _{Mo} 6+	32. 32				